Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagee
Covers restored and/or laminated /
Couverture restauree et/ou pelliculée

Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Additional comments /
Commentaires supplémentaires:

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquées
Pages detached / Pages détachees
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials /
Comprend du matériel supplémentaire

\square
Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été numérisées.

Bibiotheque,

Le Séminaire de Q 配ect
3, rue de l'Université, Québac 4, QUE.

CANADIAN QUARTEREY

AGRICULTURAL \& INDUSTRIAL

DEDICATED TOTME FARMERS OF CANADA.

By WILLIAM EVANS, author of the treatise on "agriculture," \&e.
[MAY, 1838.-YoL. I.-No. 1.]

PRINTEDBYCAMPBELL \& BECKET, hum's butldings, place d'armes.

P'uy..
Introductory Address to the Furmers of Upper and Lower Canadia 3
Present State of Agriculture in the Canadas 19
Application of Capital to Agricultual Production 21
Emigration to British North America beneficial to the Parent State as well as to the Provinces... 29.
Extract from Thomson's Lectures on Botany, \&c. 32
Now Process for obtaining Manurem 38
Bono Manure. 40
Hotation and Distribution of Crops 43
 47
Scarler Trotul. 52
 53
Summer Fallowing, Weeding, \&i. ib.
Camadian Manufactures.. 57
Misceltaneeus:-
Sheep in the British Isles. 65
Improvement on Land in Norfolk, England.. 66
Quality of Milk during the process of Milking.. 67
Bread made from Saw-dust ib.
Extract from Park's Chemical Catechism 68
The Bounty of Providence 69
Unity of Design. 70
Agricultural Report far April and May 71
Markets. 72

THE

CATADIAN QUARTERLY

AGRICULTURAL AND INDUSTRIAL

DEDICATEDTOTIETARMERSOF CANADA.

Bx WILLIAM EVANS, Authon of the treatise on "Agriculture," Sc.
[MAY, 1838.-VoL. I.-No.

IVIONTREAT:

PRINTEDBYCAMPBELL\&BECKET, muir's buildings, miace d'armes,
1838.

THE CANADIAN QUARTERLY

AGRICULTURAL AND INDUSTRIAL

No. 1,
MAY; 1838.
Vol. I:

INTRODUCTORYADDRESS

TO THE
FALMERSOF UPPER AND LOWER CANADA.

I beg leave respectfully to submit to your judgment, the first number of "The Canadian Quaiterly Agricultulal and Industrial Magazine."

This number was prepared for the press with very little time for consideration, and I hope you will receive it with indulgence.: I expect that the coming numbers will be more worthy of your approval.

I have ventured to commence this publication, because I thought a work conducted on the plan which I propose to follow was wanted, and would be likely to prove beneficial to the agricultural and industrial classes in Canada. : I would willingly have left the task in more competent hands, had any one undertaken it. As I have taken it upon myself, I shall use every exertion in my power to give useful information on all subjects in any way connected with agriculture and industry. To enable me to do this, I have made arangenents to have a constant and ample supply of
the latest and most approved publications on these subjects, from which I propose to make suitable selections. The original matter shall be delivered in a plain unornamented style, without any pretension to flourish.

It is my intention togive a general summary of proceedings in the Imperial or Colonial Legislatures that will beinteresting to Canadian farmers. I shall also give statistical information of other countries, the progress of education, Sc. Regular reports of the state of the crops and of the markets, both in Britain and in Upper and Lower Canada. In fact, it shall be my ambition to render the Magazine conducive to your interest and entertainment, and to the general prosperity of our common country.

I would entreat those conversant with rural affairs, and with our domestic manufactures and industry, to aid my endeavours, by useful and interesting communications.
$:$ For this year, the Agricultural and Industrial Magazine will be phblished
quarterly:-in May, August, November, and February, each number about the size of the present.

Perhaps you will cousider this as an unsuitable time to offer to your notice a publication on the peaceable subject of Agriculture, when a considerable.portion of the inlabitants of the Canadas are armed for selfdefence. God forbid that our safety should be in so much danger from our foes, even were they much more formidable than they are, that we should be prevented from giving the requisite attention to agriculture and uşeful industry.

The whole population of the Canadas are now perfectly peaceable, and certainly have no temptation to be otherwise. Agriculture cannot be neglected with us, without incurring the risk of a famine next year. In the spring we shall have a sufficient nilitary force here that will relieve farmers from the necessity of being constantly armed, and enable them to : give due attention to the business of husbandry, so necessary for our ivery existence; and that of the whole -community The number of persous usually employed in agriculture are not sufficient for the judicious management of the soil already in cultivation, consequently it must be -extremely injurious to withdraw any of them from that employment in the seasons of'spring, summer, and harvest," if it were possible to avoid it. If you can in the spring safely lay asida your arnis for a season,you will not be less ready and willing to resume thicm again at a moment's warning, should enemies threaten you from aily quarter. It is so much the interest and the duty of the inhabitants of these Provinces; of all parties and origin, to support the Queen's Government in Canada, andour coinnection witli Britain', that we must maintain it at all risks;'and at whatever sacrifice. But I trust this can be doive without injuriously interfer-
ing with the business of husbandry or of useful industry. We would be giving too much consequence to the enemies of the peace and prosperity of Canada, were we to be constantly occupied in preparation to resist their foolish and wicked designs. We can carefully observe their proceedingsbe prepared against any surpriseand at the same time plough, sow, and plant, and with the blessing of Providence, gather in the harvestand eat the fruits thereof-notwithstanding all that our enemies would or could do to prevent us.
It is not intended that politics shall occupy many pages in the future numbers of this work; but on the present occasion I hope you will not think it improber that I should submit for your consideration a few remarks on matters in which you are deeply interested. Your class forms the great majority of the permanent inlabitants of Canada; and, consequently, you must be more interested than any other portion of this community in' the : good government, peace, and prosperity of this country. In Lower Canada our political aftairs have been too long int the hands of representatives who were generally unconiected with Agriculture, and unacquainted with the means that were necessary to be adopted to promote its prosperity... We will feel the loss of the privileges which the Constitution confurred upon us the less now; because, when we did possess them; some of us could not, and others, who were the majority, did not, exercise them much for our advantage, as the results have fully proved. It will be impossible to submit a fair and caudid statement of the political difficulties that have distracted this Province for some time past', without giving offence in some quarter. It is, however, duc to ourselves that such'a statement should be made, whocver may take offence at it. For several years the public atten-
tion in Canada has been so much occupied with politics, that the people had not time to think of more useful subjects. We have suffered in consequence. Our interests have been sacrificed to party views and purposes: Improvements have been neglected,--aud, instead of advancing in wealth and prosperity, in proportion to our opportunities, we have been retrograding fast. It is our duty to encleavour to understand perfectly what has been the cause of all this, and who are to blame for it.

We may have had grievances and abuses to complain of,-and what people are exempt from them? -but those who were most loud in their complaints liere might have reremedied many of them, had they been so disposed. But instead of doing so, they have, by their conduct, inflicted new grievances, that are more injurious to us than any we were subject to previously. And - what shall we say of those men, who :would have involved us in revolution and civil war as a remedy for our grievances? Truly, the cure proposed would lave been infinitely worse for us than the disease it was intended to remedy; and the men who, on such a pretense, would bring. the desolating effects of war upon this country, could not have understood our true interests, or must have been indifferent about our welfare, and only anxious for their own aggrandizement.

Late events should be a warning to Agriculturalists to be more than ever cautious how they give confidence to, or suffer thenselves to be led by, men who are unconnected and unacquainted with agriculture. It is very natural to suppose that such men will not give much thought to a subject which they do not feel themselves directly interested in. Merchauts and professional gentlemen are generally sufficiently occupied with thicir uwn affais, without study-
ing yours; and I need not tell you that they cannot, therefore, know much about the interests of farmers. We may rest assured that our interests will be best taken taken care of by ourselves, and the more fully we make ourselves acquainted with what they are, the better it will be for us, and the more certainly will our prosperity be advanced.

In as tew words as possible, and without fear or partiality, the nature of the principal grievances complained of in Lower Canada, both by the French Canadian, and the English parties, shall be candidly explained, in order that our friends, as well as ourselves, may lue able to determine how far these grievances would justify the whole or any part of the population of this Province in taking uparms against their lawful Sovereign, with a view of severing the connection between England and Canada.

I shall not confine myself' to any regular order in introducing the several topics to notice, but will allucle to them as they occur to my recollection. My object is usefuhness, and I beg you to excuse any defects you may perceive in my method, and any want of other qualifications that you may consider essential for an author to possess.

It is a great mistake to suppose that it is only the French origin part of our people who have any grievance to complain of, when in fact the only one which they did exclusively suffer under, was that of their not being appointed to a due proportion of places of trust and emolument. There certainly was grounds for this complaint formerly, but within the last fow years, and particularly during the administration of Earl Gosford, many Canadian gentlemen were appointed whenever there was an opportunity; to places of honour, trast, and emolument. For example, one was appointed Sheriff of the District of Montreal, considered to be the most
lucrative place at the disposal of the Government in this Province. Another was appointed joint Commissioner of Crown Lands. In fact, nost of the appointments to place, made by Lord Gosford, was to French Candians. And when it is considered that the French Canadion party had, with very few exceptions, the nomination : of the members of the House of Assembly at their command, and exereised this power to the uttermost, they could not reasonably complain of their share of intluence in the political affairs of the Province. All other grievances that in reality existed in Canada, were equally felt by the immabitants of English as well as of Prench origin; as will appear when the nature of them is described.

1. The first grievance that I shall allade to, is one about which there can be no difference of opinion, namely, the defalcation in the revenue to a large mount by the late Receiver General. This officer was appointed by the British Govermment, without sufficient sceurity, it appears, and therefore it is difficult to ncquit the Imperial Government of all blame in this transaction. There is one consolation for us, however, that the property given up by Sir Johu Caldwell in liguidation of this debt will, it properly managed, pay the greater part, if not the whole. The property is well situated, and of great value, and if bought in for the Province it will, in a very few years, amply satisfy the debt, and perhaps all the interest.:" The defalcation in the revenue has been greatly magnified, and made use of as one of the principal engines to cxcite the people against the Government in Lower Canada:
2. The revenue derived from the confiscated estates of the Jesuits has not been devoted to the purposes for which"it" was originally designed, namely, gencmal edacation. This is a grievane that aficets the whole

Canadian community of all origthis, and is undoubtedly one that ought to be redressed with as little delay as possible. These estates should not be appropriated to the benefit of one party, but to the general education of the youth of' Canada, without distinction.
3. It is complained that the Jesuit's estates, and other public property, have been let at rents that were less than the value, to persons unjustly favoured by the Government. If this complaint be made on just grounds, it is both necessary and easy to remedy it.
4. Pluralism, or more than one oftice under Government held by an individual, was loudly and justly complained of. It has been in a great measure remedied by Lord Gosford while in the Govermment.
5. Monopoly of offices in the same family, was a great injustice towards the people generally. It could only be justified by proving that only particular families were qualified for offices of hononi, trust, and emolument under Government. This is an abuse that cannot, perhaps, be remedied immediately, or during the lives of the present incumbents.There is not mnch probability that future appointments will be made in the same way: three or four in: one family.
6. The composition of the Legislative and Executive Councils were complained of, and it is generally admitted with very just canse. There have been reforms in both lately, but whether they vere such as ought to have given satisfaction, I will not take upon me to say, as the functions of both Councils are now suspended.
7. The independance of the Judges. Every man that wishes to see justice fairly and impartially administered in our Courts of law, and the British Constitution established in Caumda in all its purity, will admit the necessity of providing for the indepondate of
the Judges, as in England, during good behaviour. As we are at so great a distance from the seat of the Imperial Government, perhaps it would be indispensable to constitule at the same time a competent tribunal for the trial of impeachments against the Judges and other public oflicers. We need not doubt, however, that this matter will be attended to by those who will have the authority to provide for the independance of the Judges.
S. Feudal Laws. The abrogation of these laws, and a fair and equitable arrangement of seignorial claims and privileges, is about the first reform that should be introduced into Lower Canada, for the general advantage of all the inhabitants. The Provincial Legislature has not attempted this reform, though it, was in their power to have effected it. It is in vain to say as an excuse, that the French Canadians were averse to any change in these laws. They are, on the contrary, most anxious for the change, and it would be most extraordinary if they were not so, when they must be aware how great an influence it would have on their future prosperity. I have already in the Supplement to my Treatise on Agriculture, published my views on this subject; and therefore it would be superfluous to repeat now the many objections I have urged before to the Fendal Laws, and to seignorial claims and privileges. An equitable arangement of them cannot too soon be effected, as they are the most injurious grievance that the people of Canada are subject to. The English Government are not to blame for this grievance.
9. The Cunadian Tentres Act of 1825 was complained of by the House of Assembly, but unquestionably without any sufficient cause. It does not unjustly interfere with the rights or privileges of Canadians of French origin. And if the latter wish to retain the laws that they are accus-
tomed to, it is very excusable in British settlers in the English Townships to have the same inclination for their own laws. The latter have full as good a right to this privilege as the former have to retain their own. The other provisions of the Act are unobjectionable.
10. The establishment of Offices of Registry are required to sccure the free circulation ol capital and property that must be necessary to the improvement and prosperity of this country, and no reasonable objection has ever yet been advanced against their establishment. This matter was altogether in the power of the Provincial Legislature, and no other authority could have well interfered in it. It is a subject that is so well unclerstood, that it cannot require any further discussion to recommend it.
11. The Land Company. Though I never did think the Land Company the best means by which the wild lands could be settled, yet I admit it would be better they should be settled by that means, rather than remain waste. But this is not the question to be considered, but whether there is any cause that the Land Company should be deprived of their Charter:

It never has been disputed that the British Crown possessed the right to dispose of the waste lands of the Colonies to British subjects. The British Crown and Parliament inust, therefore, be perfectly competent to dispose of some of these lands to the Land Company, as they have done; and whether the measure was expe. dient or not, the Land Company have got as good a title to their lands as any proprietor in Canada can have to his lands; and it would be an ungualified act of injustice to deprive them of their just rights, without giving them a full equivalent.

If it was found that the grant to the Land Company would give them a monopoly in laud that was very
injurious to the country, it might be prudent to purchase their rights at the full value. But when there is so much wild lands yet unoccupied, the quantity granted to the Land Company cannot be very injurious to the public interest, provided that in future the waste lands of the Crown will be clisposed of only to actual settlers. All the injury which the Land Company can produce, if they are not allowed to get any more of the waste lands of the Crown into their possession, is very trifling indeed, compared with what the Feudal Laws, and seignorial claims and privileges must inflict upon the country, considering that the seignorial lands are the most conveniently situated for occupation and improvement, and that all our cities and most of our towns and villages are built upon seignorial property. When we hear men cry out violently against little matters, while they neglect to redress great evils that are in their power to remedy, it is no wonder we should doubt the sincerity of their desire for real and necessary roforms that would produce general good.

Tho most injurious of the grievances which the inhabitants of Canada, of all origins, complained of, have now been slightly adverted to; and it will be perceived that the British Govermment was not to blame for them all. It will also be seen that the French Canadians were not more oppressed, in any respect, than their fellow-subjects of British origin. Other minor abuses may have existed in the administration of the Colonial Government; but when we know that there is nothing perfect on earth, either in man or in laws, we could not expect to have more perfection in our government and institutions, than any other people on earth, and perhaps no people had less cause to complain in this respect than ourselves. As to the Agricultural class, they were neyer mate acquainted
with the existence of a government here, by tax collectors, or by any direct oppression. Had they been under any other government on earth, they would not have enjoyed the same freedom from taxation, and from every lind and degree of oppression. It is almost incredible that, perfectly acquainted with all these circumstances, the leaders of the late insurrection in both Provinces could for a moment suppose that sensible men, who had any British feelings, or even a regard for self-interest, would join them in their foolish and treasonable designs, however sincerely they might be disposed to make, by all lawful means, really necessary reforms.

It is perfectly plain that were Canada an independent state, or a state of the adjoining Union, the pecuniary burdens of her people must, as a matter of necessity, (unnecessary to explain here) be increased twenty fold what they ever have been hitherto. We would find this to be a more certain consequence of a successful revolution and change of government, than any benefit to proceed from it to the agricultural class.

Previous to the arrival of Lord Gosford in Canada, the proceedings of the Honse of Assembly will not be noticed. But from that period their proceeding has had a very great inHuence in producing the late unfortunate events that have occurred in this Province, and it is due to their constituents that their conduct should be impartially examined.

We may regret that the reforms that were required in the Executive Council, were not introduced at an carlier period. In the Legislative Council, lately, the Judges, with the exception of the Chief Justice, were very properly excluded, and other members to whom objections were urged, received a friendly intimation that their attendance would be dispensed with. Lord Gosford. in-

Upper and Lower Candla. S.M.E.

his specch to the Legislature at the commencement of the Session in 1835, promised that every reasonable reform would be gradually introduced; and in fact he pledged himself to pursue such a liberal course in the Government as ought to have insured for him a fair triad; and there is no cloubt these promises were made with sincerity on his part. Had the House of Assembly met these advances with a sincere disposition to endeavour to arrange finally the differences that had so long distracted the Province, there was not a Governor in Canada for many years, that would more certainly have granted all reforms that would be consistent with our continued comection with Britain.

The Provincial Legislature concluded their session in March, 1836, withont making any appropriation to the payment of the arrears due for the support of the Civil Government, and declared they would not make any provision for that purpose until their demands for reform, and a change in the Constitution, would be complied with.

No one will question the right of the representatives of the people to have the full controul over the provincial revenue-the power of appropriating it--of seeing thateveryitem of the expenditure was correct-that no public officer receives a larger salary than would fairly remunerate him for the claties he had to perform-and we may add, that they should prevent any officer from receiving the emolument of more than one placeoremployment.

When we acknowledge that the representaives of the people should exercise all this controul for the people's good, it by no means follows that they should exercise a controul to the injury of the people.

It will be admitted that no society can be kept in a state of peace and prosperity, without some kind of government. It is for the support of a necessary civil government first of
all, that a revenije is raised frovifur people. Can tila.representatyes fothis people construmonalevarifuse to appropriate so much oftothis revenue, as would be actualily required to support this Civil Government, which every individual in the Province is interested in supporting? It is not the British Sovereign, larliament, or people, who would suffer most by the dissolution of our Civil Government for the want of support, but it would be the people of Canada who would feel the evil; therefore it is unjust to inflict punishment on our community, because the demands of the House of Assembly are not complied with by the Imperial Govermment.

What would be the consequence to our society, were all the officers of Government to have refused to exceute their several duties for the last three years, when they would not be paid their salaries. The Judges might have retired from the Benchthe criminals might have been discharged from the Gaols-the whole country might have been in such a state of anarchy and confusion, that neither life nor property would have been in security for an hour? It was possible that all this might have happened, from the House of Assembly refusing to grant supplies for the support of the Civil Govemment, had not the Imperial Government advanced money for the purpose. There is not on record any precedent for such proceedings in the British dominions for the last 150 years.

At the accession of William the III. to the British throne, Belsham tells us that :-By a just and wise regulation, they (Parliament) established a distinction between the ordinary and extraordinary expenditure of the Nation; settling by a provisional act the sum of £600,000 upon the Crown, to defray the necessary demands of the Civil Government, under the appellation of the Civil List; and leaving all the remaining supplies to be voted upon
estimate, and appropriated to special services, stated by the ministers, and approved by the Parliament. At the commencement of every subsequent reign up to this time, a Civil List has been granted to the Sovereign for life, withont any opposition as to the principle, though thare might be some to the items and the gross amount.

It has never been proposed to the House of Assembly to grant an expensive Civil List here; and had they granted one, with due attention to economy, they would still possess ample influence, in having full controul over the remainder of the revenue.

But the principal charge against the House of Assembly, is, their relusing for the last three years to appropriate the money in the chest for the payment of the arrears due to the officers of the Civil Government, when at the same time they helped themselves to no less a sum than about $£ 20,000$, on their own simple vote, to pay themselves, their expenses, agents, sc. This proceeding is certainly difficult to justify satisfactorily to men of common understanding.

If any officers of the Government were guilty of crimes against the laws, or had not perfomed their duties properly, it would be perfectly fair to withhold their salaries, and put them on their trial. If there was no competent tribunal in Canada for their trial, the British Government and Parliament might be safely appealed to. It is a well known fact, that in consequence of the representations of the Assembly, several officers have been dismissed by the British Government; and there is no reason to suppose tirat any officer would be kept in office here who would be proved to be unworthy to fill it.

It is not because men may want places that a community institutes a Civil Government to malic places for them, but to promote the peace, order,
and happiness of society; and faithful and competent men are wanted to fill the several offices of a Government, execute the laws, sc., and for their services they have a right to be failly remunerated. It is utterly inconsistent with the spirit of the British, or even our own Constitution, for the representatives of the people to refuse to provide for the support of their Civil Government, the administration of justice, \&c. \&c. In all the other British Provinces there has been scarcely any objection offered, and a permanent Civil List has been granted in each of them, and we certainly have not many more grievances to complain of than they have.

It has been a very great injury to Lower Canada that the revenue collected from her people for the last five years has been kept under loek, and no part of it distributed or put into circulation. In such a country as this, where capital is so much wanted, and would be very productive if judiciously employed; were our revenue to have been regularly distributed as it was collected, it might perhaps by this time have been the means of creating a new capital, equal in amount to the whole revenue. This certainly would be a greater benefit to the people gencrally than any advantage they will gain by the House of Assembly withholding the supplies, and refusing to appropriate the revenue.

The House of Assembly of Lower Canada have lately made a demand that the Legislative Council shall in future be rendered elective. They should be perfectly satisfied of the reasonableness of this demand before they would insist upon its being conceded to them, as the only condition on which they would proceed in the business of legislation. It should not be forgotten that the people of Lower Canada form but a very inconsiderable numerical portion of the population of the Sritish Empire.

They had a Constitution as similar in its principles to that of Britain, as it was possible to make it. If the people were now to be unanimons in wishing to introduce a fundamental clangein this Constitution, that would make it most materially different from that of Britain and of the other Britisli Provinces. And that this proposed elange was considered by the other inhabitants of the British Empire to be a bad precedent-a dangerous innovation, and likely to prove detrimental to the general interests of the British nation-could we reasonably complain that our wishes would not be complied with? Certainly we could not. How much less could a trifing minority of the Canadian people (and they were nothing more) expect to obtain such a change in the Constitution.

We must acknowledge that the agricultural population. of Lower Canada are generally uneducated, and therefore camot be very competent to form the most correct opinion of the merits and defects of the British Constitution. They may be told that there are defects; and many of them believe this report, and suppose that their condition would be improved, were the proposed change in the Constitution to be adopted. Indeed it is by such representations that many of the imnocent Canadian people have been led into the most fatal errors; and to this hour ill-disposed and desiguing men are doing all they can to deceive the uneducated population, in order to make them dissatisíied and disloyal.

It is in vain to pretend that the great majority of the Canadian electors could understand perfectly all the consequences to the British mation and to themselves, of introducing the elective principle in the appointuncit of the Legislative Comcil. And if they did, they could not expect that Lower Canada alonc, of all the countrise and lerovinces of the
extensive empire of Britain, should be grauted this clange in their Constitution. A change that is not even asked for in any other Province. If it should ever be introduced in other countries or provinces of the empire, Lower Canda may expect it, but undoubtedly it would not be the most proper place to make the experiment first.
The House of Assembly lave complained that many useful bills passed by them were rejected and lost in the Legislative Council, and particularly the School or Education Bill, in 1836. This may have been the case in some instances. But if the Council were not allowed to have an opinion of their own, on bills brought before them, and the free exercise of their privilege as a branch of the Legislature, their services might as well be dispensed with altogether, and allow the House of Assembly to take the whole business of legislation into their own hands. Had the House of Assembly provided first for the payment of the arrears due for the support of the Civil Goverument, they would not, in all probability, have met with any unreasonable opposition from the other branches of the Legislature in appropriating the remainder of the revenue (which was nearly two-thirds of the whole) to such useful purposes as they might think proper. Had a good understanding and friendly intercourse been established and maintained between the several branches of the Legislature, concessions would have been made by all parties, and many bills would have passed that were rejected and lost. It is the country that has suffered, througl the uncompromising disposition of her legistators. Indeed it would be impossible to exprect useful legislation from a Parlianent divided against themselves, and where one branch had denoniced the other, and songht to accomplish their destruction, or diseolution.

There can be no doubt that many members of the House of Assembly, who usually voted with the majority, would never have thought of countenancing any revolt against the Govermment. They wished for reforms, but not for revolution and a change of Government. Unfortunately, they did not perceive in time the real olject of those who only sought the overthrow of the Queen's authority in Canada, or they might have prevented much of the evil that has occurred, by seceding from them two or three years ago.

In modern times the objects of revolutions, in all civilized countries, was to relieve the people from grievous oppression, from bad laws, or from usurpecl authority over them. When such were the real motives, and the people unanimous, revolutions could not be condemned. But even where all these justifying causes existed, we know that in many cases the advantages that have been ultimately obtained were very dearly purchased, by the sacrifice of life, of property, and the various sufferings brought upon the people by a war.

All party views aside, will any sensible man, who is thoroughly acquainted with the circumstances, religious, civil, and political, of the people of Canada, pretend to say that the grievances and abuses that may have existed in the administration of the Govermment were of such a nature, that the people would be justified in raising the standard of rebcllion, with a view to effect a change of Government and the severance of the connection between this country and Britain? It is not on light grounds of complaint that such an attempt should be made; and it may safely be affirmed that the late insurrection in Canada was the most causeless and unjustifinble that ever was attempted in any country. This assertion is not made without due consideration.

Itis not to be denied that grievances
and abuses did exist in Canada, but within the last few years several of them were redressed, and there was every reason to expect that all further necessary reforms that could only be introduced by the British Government, would be very soon granted by respectfully persevering in applying for them. But supposing there was no certainty that they would be granted immediately, that uncertainty would not justify a trifling portion of the population in their attempt to overthrow the Queen's authority in Canada, contrary to the wishes of a vast majority of the people, and the true interests of all of them. The men who would have inflicted civil war upon us (and they must have been aware that they could not have accomplished their designs without it) as a remedy for any existing abuses in our government, would unquestionably have brought evils upon us a thousand fold more grievous than any which the people of Canada had to submit to from the Government since the period of its becoming a British Colony. And every inhabitant of these Provinces, wilhout distinction of origin, owe unbounded thanks to a Good Providence that the futile attempt to involve the country in civil war has completely failed.

Men who would take upon them to effect a change in our long established Constitution and Government, and propose to give us one of their own manufacture in their stead, ought to have given some proof that they possessed superior talents, and a sufficient share of useful knowledge and good sense to enable them to understand perfectly how the prosperity of our country and her people could be most certainly promoted. We have every reason to suppose that the leaders or actors in the late insurrection were deficient in those most essential qualifications. It would appear incredible, if we had not positive
proof of the fact, that in Lower Canada these men, with few exceptions, openly declared that emigration to this country was injurious to our people, ought to be discouraged, and prevented ir possible; and it is distressing to know that this opiuion is generally entertained by the uneducated part of the population, in consequence of these representations. When weare convinced that additional labour and capital are the grand requisites to ensure the wealth and prosperity of Canada, and that emigration is the only means by which we can obtain both, it is difficult to account for the delusion of those who would oppose it. We may, however, be perfectly satisfied that such men were utterly unfit to give us improved institutions, or to have the management of our aflairs committed to their charge, though we should have no other glaring proofs of their incapacity to lead us to peace, prosperity, and happiness.

It cannot now be a matter of doubt that the object of the late insurrection in the Canadas was to effect a revolution, and the separation of the country from the dominions of Britain. It is equally certain that a change of Constitution and Government was not generally desired by the people of either of the Canadian Provinces. If there is any faith to be placed in men, we must believe that even in Lower Canada a vast majority of the people did not wish any change; and much less would they consent to risk their lives and properties in fighting for it. In the Upper Province, it was only a mere fraction of the people who would consent to any change in the Constitution or Government. To speculate now, upon what may have been the secret disposition of many of those who did not take any active part in the insurrection, is not necessary: It is very probable that most of those who might have been inclined to dis-
loyalty, have long ago discovered the folly and madness of any attempt to overthrow our prosent Govermment, and will in future hold firm their alleginuce to their lawful Sovereign.

The standard of rebellion was raised in Canada by men who certainly did not suffer under any oppression that their fellow-subjects were excmpt from. Was it because they were more enlightened-understocd better the principles of good govermment-were more attached to free institutions-and to perfect civil, political, and religious liberty, than the loyal inhabitants of Canadia, that they presumed to attempt to effect a revolution, and the severance of these Provinces from the Mother Country, contraly to the wishes of their fellowsubjects, who formed a great majority of the inhabitants? Unquestionably it was not; aud were the real motives of these revolutionists known, they would not be entitled to much eredit for patriotism, or their love of good govermment and efuitable laws.

It would be the duty of all good citizens, that would have any pretensions to real patriotism, to submit to the established Constitution and Government, under which they were borne, and from which they nevor suffered any oppression, rather than attempt to forec a change that would be unsupported by a large majority of the Canadian community. How much more like sensible men, and good Christians they would act, were they to say:-Though we are perfectly well convinced that the change we are anxious to introduce in the Constitution and Government, would inevitably prove beneficial to the whole prople of the Canadas, advance their prosperity, and insure their happiness; yet, as we find that we are not supported generally by the people whom we wish to serve, but on the contrary, are opposed by most of them; and as we see that if we persevere in our designs, we must
bring all the horrors of civil war apon our country, and her people; we will forbear and strive to reconcile ourselves to a state of things that we fitd we cannot alter, without incurring the risk of bringing death and suffering upon our fellow-subjects. This would be the conclusion that all real patriots would have come to, and they would not lave madly and wickedly engaged in a contest that they were well aware must bring death and ruin on the unsuccessifal party. Untortunately for themselves the Canadian revolutionists of both Provinces did not perceive the strong probability that existed, that the unsuccessful party would be their own. And while they expected that the evils of revolution and civil war would be inflicted chiefly upon their opponents, they were indifferent about the matter. To succeed in their own ambitious designs, they caved not what amount of life and property must be saerificed, or whether or not the surviving inhabitants of Canada would ultinately benefit by their success.

The plamers of the late insurrection must have greatly miscalculated the amount of opposition they were likely to meet with, or have some promise of effectual aid from without, or they never could have been guilty of such folly as to think of rebellion. In Lower Canada, were the Freneh Canadian population disloyal to a man, their situation was so scattered over an immense territory, that it would be impossible to concentrate a sufficient force of them, to overeme the Queen's troops and loyal volunteers in Montreal, Quebec, and other principal stations in the country. All that part of the population below Quebec, comprising about a fourth of the whole, were completely cut off from giving any assistance, without insuring their destrnction in the next spring. The remainder of the imhabitants, setted orer a country of greaterextent than the british likes,
it would indeed be a difficult matter to collect together from their farms and families, to take up arms and fight in a cause in which they certainly could not well understand bow they were interested. It is useless to tall: of oppression to men who never felt any. And when we know that this is the case of the people of Camada, we can scarcely believe that men would risk their lives and prom perties to engage in so dangerous a game as that of fighting with the British mation for the possession of Canada. What means were there to procure arms, munitions of war, provisions, and all other necessaries to support an army? They could not expect that the English people would tamely submit to see their loyal fel-low-subjects ruined, and a fine country wrested from them by violence, without making any effort to prevent it. When we think of all these circumstances, we must come to the conclusion, that the planners of the late attempted rebellion were totally destitute of the sound judgment, good sense, and good fecling, that was necessary for men to possess, who would pretend to form a new Consititution, Government, and Laws, for us, that would be preferable to those we already enjoy.

At the conquest of Canada by Eagland, the French inhabitants were fow in number, (only about 60,000 souls.) They were treated in the most generons manner by the Euglish. Their property, retigion, laws, and language, were gnaranteed to them, and this guarantee has been most religiously observed by England. These concessions, lowever, did not give them any exclusive right to the country', further than the extent of their propertics. If the late rebellion had been successfiul, God.only knows whether equally generous terms would have heen granted to those who would have opposed it. The people of Canada conid not form
a connection with any other nation on earth, that would alford them the same perfect protection without taxation and other advautages that they enjoy from British connection; and the men who would lead us into a rebellion, with a view to sever this country from Britain, could not be our true friends, whatever were their pretensions.

There will be many opportunitics in the progress of this work to point out the advantages that British connection affords us, and all of them would be losi were a separation to take place, and without any strong probability that we would be compensated for this loss by any new connection we could form.

As British subjects, we must fecl sensibly the insult that has been offered to ourselves and to our nation, when foreigners would presume to enter armed into Canada, under the pretence of giving us liberty and better laws. As Britons, we do not want to learn from others what government and laws are the best for us. If we find changes and reforms necessary in our Corstitution and laws, we can obtain them without the meddling interference of strangers; and all true Britons will ever reject with indignation any, the slightest, interference of foreigners between them and their own Government, on whatever pretence. Notwithstauding all that may be asserted to the contrary, there is a vast majority of the people of Canada who would not change their own Government and laws for any other that they are acquainted with, were it left to their own free choice to do so, and they would be migit.

Indeed there is a very strong presumption that no insurrection would have been attempted in Canada, were not secret encouragement given, and aid promised, by foreigners to the disaffected in these Provinces. And viewing all the events that have
occurred, this presumption is almost confirmed. They will have the less of the guilt of blood upon them whose own minds acquit them of the imputation. The disaffected in Canada conld never dream of success, knowing the materials they had to work with and the opposition they had to expect, unless they had hope of foreign aid. It is not intended to question the good faith of the General Government of the United States, but certainly the citizens of that country, who have entered armed into Canada in time of profound peace between their nation and our own, never can be excused.

And what are we to think of our own countrymen, who would be so lost to all patriotism as to sanction or invite the invasion of their native country by amed forciguers? Let them consider well the following lines, by a distinguished authority :-
" When a mution is divided into parties, and the party that has the disadvamare calls in some ufighbour to its nid, it is the mont miserable fate that ean befal a country; and no pumishment is suficienty severe for the men, who have so far lost every sentiment of patrintism as to have recourse to such a step."

It is impossible that a greater insult could be aftorded to a powerful nation, and a fiee people, than for strangers to come armed into their territory to force a change of government upon them with riftes, powder, and ball. It is perfectly manifest that the men who invaded Canada lately under such a pretence, must have despised all government and Jaws, even those of their own country, or they would not have passed their own boundaries. Those citizens of the United States, who were so very allxious to give us liberty and a new form of Government, when we do not require it of them, should rather turn their faces south ward, and give liberty to the millions of human beings that are kept in complete and abject slavery within their own territories, a slavery a thousand fuld more
degraring than any one has to endure within the boundaries of British America. We have no desire to meddle with them, their government, or institutions, and we only wish that they would act in the same friendly way to us, and leave us to oursclves. Sensible people will not trouble themselves with the polities of other nations, so long as they are not likely to suffer by them.

When the whole population of the Canadas may think the time arrived that it would be proper for them to separate from Britain, it is to be lopied that the separation may be effected by mutual consent, and without the sacrifice of either life or property, but in the same way that a grown up family would separate from their parents to provide for themselves. God forbid that we should ever think of doing so until this country is able to secure her own independance without any assistance from our neighbours, who appear so anxious to afford it now unsolicited. It would be unreasonable to expect we could prosper, were we to sever violently the connection between Britain and this country, without first securing to the inhabitants of Britain the capital and property that belong to them in Canada, and which they have invested in it in good faith. It would be an atrocious act of robbery and spoilation to deprive them of it, without giving them full compensation. This country can never be severed from British connection by violence, without the unjust sacrifice of life and much property. We cannot hide from ourselves the certainty, that had the late insurrection been successful, a large proportion of the property of the loyal inhabitants would have been confiscated to reward both foreigners and natives who would have fought in the cause. It would be the natural
consequence that must inevitably result in all such cases. Thank God, the enemies of peace and order have been disappointed, and every friend to the prosperity and happiness of the people of Canada should rejoice at it.

Dimond, in one of his Political Essays, tells us :-
" There are no evils which make volence politically cexpedient. The right way of effectiug amendments is by enlightening the national mind,-by enabling the publis to think justly and temperately of pulitical affinirs. If to this temperate and just judgment, any part of the practice or of the form of our rovernment should appear unquestionably adverse to the general yood, it needs not to be feared that the corresponding atteration will be made, -made by that best of all polilical areats,-the power of deliburate publio opinion."

Palcy says:-

"The will of the people, when it is determiner, permanent, and general, almost always at length prevails."
And if it should appear to the lover of his country that the prevalence of his will is too long delayed, let him take comfort in the recollection that less is lost by the postponement of reformation, than would be lost in the struggle consequent upon intemperate measures. We have numerous examples in history of the dreadful evils that has bcen brought upon comtries by revolutions, when the people were not nearly unanimous in supporting the change of government, proposed to be introduced. Hundreds of millions of the people have found their death in such contests.

However unwilling we may be to acknowledge it, it is nevertheless true, that national origin prejudices and hostile party feeling have produced much evil in Lower Canada. It is no less true that it would be the interest of this community that all such prejudices should now cease ;that hostile party feelings should be no. longer entertained;-but that all
loyal subjects should cordially unite in the good cause of promoting the improvement and prosperity of our common country. It is not to be expected that any friendly feelings can exist for the present between
loyal subjects and those who have manifested in a way that camnot be misunderstood, a disposition to ove:throw our Government by vialence and force of arms. It is not necessary, however, that hostile feelings and national origin antipathies should continue between those who did not and who will not take any part in rebellion against their lawful Sovereign. It is certainly our duty towards each other not to impute disloyalty to any who conduct themselves peaceably, in public and in private. Indeed, every inhaivitant of the Canadas are so deeply interested in supporting our comnection with Britain, that it is difficult to believe that any sensible man can be disloyal.

The perple of Canada are nearly all British born subjects, and have cause to rejoice that they are so. Their condition would not be improved were they the subjects or citizens of any other nation on earth, The sooner that all our people become in reality, as well as in name, attached members of the great British family, and feel proud of their privilege of being so, the sooner they will be prosperous and happy, and see nothing to envy in the situation or circumstances of any other people in the world.

However all wise and moderate men may regret the peculiar circumstances which made it prudent to arm one portion of our people to maintain, with the Queen's troops, Her Majesty's authority in this Province, every loyal man in the Canadas ought to rejoice that there was a sufficient armed force to put down at once a foolish insurrection, and to protect us subse-
quently from all hostile atteinpts that have been made by pirates who have invaded our territories at various points on our frontiers. It is not to offer any offence or violence to the unarned inhabitants, while they continue peacenble and loyal, that arms have been put into the hands of Voluntecrs, but to maintain the connection of the Canadas with Britain against all attempts of those who would wish to sever that connection. From the time the insurrection was put down to the present moment, not one act of violonce has been committed by the armed Volunteers upon the unarmed inhabitants, and this is highly creditable indoed to His Excellency, the present Administrator of the Goverument, and to the Volunteers. When there is sufficient troops in the country, there may be no longer a necessity for armed Volunteers; and I sincerely hope there will not.

It is greatly to be lamented that up to this day, secret attempts are being made to keep up excitement, by circulating false reports among the people. The authors of these false representations are the worst enemies to the French Canadian inhabitants, and to the peace and prosperity of this country. All true patriots will recommend to their countrymen to maintain peace and order, and support the established Government. If they would act in this way, the unfortunate excitement and bad feeling, which at present exists between parties, would soon subside, and our community would become more united, prosperous, and contented.

As to the Agricultural class, the judicious improvement and cultivation of their farms would fully occupy all their time, and it would be a much more imocent, pleasing, and profitable employment for them, than politics or civil war.

It should be a very urgent necessity indeed that would withdraw the agriculturist from his useful and peaceable occupation, to arm himself with implements for intlicting death on his neighbours and fellow-subjects, unless it was to resist such an unnatural rebellion as that lately attempted in Canada. He will find, in the practice of husbandry, and in the study of the benatiful works of nature, with which he is surrounded, much more pleasing and solid happiness, than he could expect from being engaged in strife and blondsied, however victoriously the strife might terminate for him or his party.

The Constitution granted in 1791 to Lower Canada, is now suspended. It is the natural consequence of the House of Assembly refusing to legislate for the country, until they would obtain a change in the Constitution that would make the Legislative Council elective, and would in reality give the entire government of Ca nada into the power of one party. There could be no doubt on this point, from the experience we have already of the election of members to the House of Assembly. While we continue a British Colony, a Constitution modelled as nearly as circumstances will admit, after that of Britain, will be the most suitable and expedient for us.

Men will pretend to tell us that we cannot possess political liberty, unless both or all the branches of the Legislature are elective. We know, however, by what has occurred in other countries, that if we even did possess the privilege of electing all the branches of the Legislature, we might be enslaved after all. The most simple republicanism, were it established in Canada, might prove to be a most oppressive tyranny to a large proportion of our inhabitants, and there is almost a certainty that it would prove to be so.

I did think at one time that there was no reasonable objection to have the Legislative Council elective. I have, however, on a more mature consideration of the probuble consequences of such a change, and the manner of its working, a different opinion now, and for more than thrce years past, on the subject. Until there is more unity between our people, and all national origin distinctions at an end, I am firmly persuaded that it would be a dangerous experiment to introduce in Lower Camada, and by no means necessary to the good government and prosperity of the country.

A British Noblenan, of high rank, large fortune, splendid talents, and liberal principles, is now on lis way to Canada, possessed of the most ample powers which his Sovereign and the British Parliament could confer on him, to govern this country. Though the Constitution is suspended, and our class is in reality uncepresented, we need not apprehend any oppression from him. All loyal subjects, of whatever origin, may rest perfectly confident that they will not have any cause to complain of the measures that will be adopted. If it is not our own fault, our condition will very soon be made equal to that of the other British Provinces. It was impossible that we could be put into a much worse state than we have been for the last few years, though we should never get in new Constitution. As to the ultimate decision which the British Parliament may come to on our affairs, we may rest satisfied that it will be wise, liberal, and just towards all parties here. That great assembly of Legislators will not be influenced by our party strifes and foolish prejudices, but will act in that manner towards us that ought to satisfy all reasonable men among ourselves, and will ensure the approval of the great
bulk of their own countrymen, and of the world.

I have, at much greater length then I first intended, subnitted for your consideration a plain and candid statement of our political alfairs, so far as I thought them particularly interesting to you. More might be written on the subject, but I fear I have already tired your patience. I can say truly, that I have not " sel down augit in malice;" and if I should give offence in any quarter, I will regret it. It is right, that here, and elsewhere, it should be well understood, that the great majority of the Canadian community, in both Provinces, however they might wish for those reforms that are necessary for their good government and prosperity, they never did think of introducing them by any other than peaceable and lawful means. As Agriculturists we ought to be men of peace, and not be led into any wild schemes of asgression, by men, who might in the end leave us to pay the penalty. It is our duty and interest to maintain peace and order, and not allow it to be disturbed. Let us leave it to others who are not bound to the soil, to try their experiments in troubled and dangerous waters. The implements of husbandry are much more suitable and profitable for us, than the implements of war, while we are allowed to remain unmolested by enemics from within or withont.

That you may find this yoar to be one of peace, and every way favourable to your prosperity and happiness, is the sincere wish of your ever failhful friend.

$$
\begin{gathered}
\text { Cotest. paul, } \\
\text { Mril } 20,1 \mathrm{SSS} .
\end{gathered}
$$

IRESENT STATE OF agnoluture in tue canadas.

There is no statistical information that can be relied upon, of the annual produce of agricalture in the Camadas. It is only by making a tour trough the country, at the proper seasons of the year, that the real state of her husbandry can be known. Any man, however, who will make such a tour, cannot fail to discover the generally defective system of management, and the consequent scanty crops, and unprofitable flocks and herds. Fortunately for the credic of the country, there is abundant proof that the soil and climate are not the cause of scanty crops, or unprofitable stock, because there are many farms that, from judicious management alone, not firom any. superior quality of soil, or other favourable circumstances over other farms, produce grood crops, and have good stock. With the exception of wheat, that in parts of Lower Canada has been greatly injured by the wheat-fly for the last three or four years, crops of barley, oats, rye, peas, vetches, potatoes, carrots, parsnips, beets, mangel wurtzel, turnips, on new land, clover, and other excellent meadow grasses, flax, hemp, and hops can be raised with lesstisk of failing, and not much inferior in quantity or quality to the same species of crops raised in the British Isles. The stock of neat cattle, horses, sheep, and swine, might also be so managed as to do credit to the country, and be profitable to the farmer. Hence, it must. be manifestly in the power of the farmers, if they are not prevented by the want of capital, or other accidental causes, to improve their crops and stock, at any time they choose to adopt the proper means.

Camda is an agriculturat country. and her inbabianss mist defonat
chiefly upon the produce of her agriculture for the supply of all their wants, directly or indirectly. It should, therefore, be the principal object of her people to augment this produce as much as possible, as the first means to secure their prosperity.

The farmers of Canada are generally proprictors of the land they cultivate. However large the produce, it is their own. Neither landlord, or tax collector, have any claims upon it. Ender such circumstances would not the farmer and his family be able to obtain more of the comforts and conveniences that are prized by man, from a large than from a scanty produce?

Does her agriculture now produce sufficient to furnish those occupied in Husbandry with all the advantages they could reasonably expect from the favourable circumstances they are placed in? Unquestionably it does not!

It is true that existence may be supported at little cost; but a beautiful world, and a fertile snil, was not bestowed upon man by a Bountifue Creator, that he might only enjoy as much of the fruits and beauties of it, as would thereby keep life in the body.

Men will talk of the wants of our nature being easily supplied; but we seldom find those who do talk so, inclined to practice such doctrines in their own persons. Extravagance or dissipation in any shape, are extremely burtful, particularly in such a community as that of British America. But certainly furmers should be able to enjoy a reasonable share of the good things, and the rationalpleasures that other members of the community think neecssary for their own confort and happiness; be able to educate their own children, and when of suitable age, supply them with means to provide for themselves. The farmer who will
not endeavour to obtain as many of these advantages as possible, docs not perform his duty to his family or to society. He cannot properly excuse himself by saying that he has acted as his father did, and that he will leave his children as his father left him, to shift for themselves with all the world before then. To stand acquitted to his Creator, to his family, and to the community to which he belongs, it is necessary that. he should lave done all that was in his power, in proportion to his opportunities, to improve his condition, educate his children, and provide suitably for them. There is-not much danger that a farmer, with all his exertions, will be able to leave his children so much worldly goods, as thereby to endanger their safety and usefulness, if they are properly brought up.

It is an opinion gencrally entertained, that men can do as they please with what is their own; and by this argument, that a farmer would be justified, if he chooses to cultivate his farm in the most imperfect and slovenly manner, allow useless and hurtful weeds to occupy the place of useful plants, to the great injury, not only of himself, but of his neighbours. It was the opinion of many great men that, on the contrary, it is our duyy to extract as much useful produce out of our estates as they are capable of yiclding, and that it is simfinl in us to nerlect doing so. The latter opinion is certainly the most rational, and it would greatly increase the means of ${ }^{\circ}$ human happiness in Canada, were every occupier of land in it to conform to this rule, and augment the produce of his lands, to the utmost possible amount that it could be brought to, by a judicious application of labour and grod management.

Any competent farner who is generally acquainted with the agri-

Application of Capital to Agricultural Production. 21

culture of the Canadas, must be convinced that the annual produce of the country might be increased to domble what it is, at an expenditure that would leave ample profit to the farmer. It shall be the principal object of this publication to afford the most interesting information of the practice and results of the agriculture of other countries, and suggest such plans for the improvement of Canadian hasbandry, as shall appear to be reasonable and practicable.

It is not necessary to occupy the reader's time with any further detail of the present state of Canadiam agriculture. It is sufficient to know that it is such as to be capable of great and profitable improvement, and that there is ample encouragement to effect this improvement.

How much more beantiful would be the appearance of this country, when every field was well cultivated, bearing ample crops of useful grain and vegetables-no useless or hurtful weeds to be seen-our flocks and herds judiciously chosen, and well managed-our mealows producing abundance of hay-and our pastures covered with excellent herbage-and all around us affording the most convincing proof of the industry, intelligence, comfort, and happiness of the rual population. We might realize this pleasing picture. The country is naturally one of the finest on earth, and offers to her inhabitants advantages that are not to be met with elsewhere, if they would be content, and make a proper use of them.

APPLICATION OF CADITAL TO AgRICULTURAL PRODUCTION.

" The porlion ot eapital anbarked in alomostie agrioulture, is somployed best for the interests of a mation; it enhenees the jnordustive power of the latal and of the lathons of a enuntry. It aturments at ones the profits of

imantry and those of real propurty."-Say's

 I'olitical Economy.In a preceding article, the prosent state of agriculture in the Canadas has been described, perhaps, with as much aecuracy as it was possible to do so. If the reader thinks the description a fair one, it will not require any further argument to prove to him the necessity which exists for the improvement of Husbandry, and the increase of the stock of cattle and sheep. How this is to be effected, is the next enquiry.

The want of sufficient capital, and in many cases the want of a practical knowledge of good husbandry, are the great checks to the due improvement of agriculture in Canada. As far as possible, to provide a remedy for both wants, ought to occupy the most scrious attention of all true friends of this country.

With the French Canadian farmers the want of a practical knowledge of good husbandry, is more injurious than the want of capital. Miny of them who have ample means will not employ labour, or adopt improvements that would repay them the outlay, with interest, and will not keep a sufficient stock of cattle to manure their land. This must proceed from their being unacquainted with good husbandry and its results -because few men would be so indifferent to their own personal interests as to forego the opportunities of promoting it, if they knew it to be fairly in their power to do so.
Mi. Thomson, in his Lectures on Botany, in speaking of English agriculture, has made use of the following language, which may be very properly applied to Camadian Agriculture also:-
"But so bitud are men offen to their trae intorests, that arembure in this combery has, till withia a'tew years patet, been regavend as a: emphoyment tit only for the most minformed part of snciely. Following stupidy in , the loolsteps of his pecdecessors, and intimed
hy a few moles, which lad heen hambed down to him from the rudentares, the arrictlarist was igmonnt that a kuowledge of the thoury of his oppratioms was mecessary for embling him to overcome unexjuctetel obstates; tu gramd against the uncertanty of sersoms, thal to empioy the means of suphlying the wants of the community and enriching limself."

The only remedy in this case will be the judicious education of the rural population. Uritil this is effected, improvement will not make much progress with the French Cabadian farmers.

Emigrants from the British Isles, of the agricultural class, seldom leave their own country with much capital. They generally maintain their ground in the country of their birth, while any hope remains that they will be able to succeed there. The consequence is, that many of them come here, and have to work in a new country, under the disadvantages of insufficient means; and when this is the case, it will take many years to acquire adequate capital to carry on their business successfully and profitably, however industrious and skilful they may be.

It is very probable that capital would be more freely embarked in agriculture, had not farming lost credit in Canada, through men dabbling in it who were totally ignorant of improved practical husbandry. Some of these men had more money than experience of the business they embarked in. Others did not possess either. The latter could not succeed. The fornier, from their wanting the necessary practical experience of agriculture, did not apply their money in the most judicious manner, and the consequence was, that in many cases it was very much wasted, or altogether lost.
Capital may be very soon squander. ed in farming by those wio are unacquainted with the practice of good husbandry and its results. If money
is freely expended in improvements that may not give quick or adequate returns, and often perhaps give no returns; and if there is more attention given to show than to utility and profit, capital will soon waste. Expending money on untried and doubtful experiments, expensive improvements, and on various matters that are more showey than useful, must be hurtful to the credit of farming. That expenditure of capital, that will produce the most valuable returns, in proportion to the amount expended, will always be the best in Canada.

Fotunately for the credit of farming in the Canadas, there are many examples where capital and property have been acguired by the practice of agriculture, even under the disadvantage of laving to commence in a new country of strangers with scarcely any capital, or with an amount that was very insufficient. The ill success, however, of others. arising from the causes that have been stated, have greatly discouraged the investing of capital in agricultural improvement and production, to the very great prejudice of the whole community.

Canada is not a manufacturing country to any great extent; and for ages to come her manufactures will not, perhaps, supply her own people with the most necessary articles of common use. Her geogrephical situation will prechude her from possessing a large fleet of merchant ships, either to carry her own produce, or that of other nations. Her people must, therefore, depend chictly upon their lands to supply directly or indirectly all their wants. And were skill and sufficient capital employed in their cultivation and management, the inhabitants of Canada might be as well provided for from their own resources, as any other people on earth, notwithstand-
ing that our waters are covered with ice, and our fields with snow, for four or five months of the year.

The working seasons are short in Canada; and in consequence of this circumstance, it requires that farmers should use great exertion to have each work executed in the proper time, almost to an hour. Without a practical knowledge of agriculture, he is not likely to do this. In the British Isles, farmers had the whole year generally for out-door work; and although they might not have each work exccuted in due time to a clay, is was possible for them to make up for lost time. Here it cannot be done. Nevertheless, the author of this article, after twenty years experience in Canada, will take upon him to say, that on al! farms that are judiciously drained and properly managed, the furmer who understands his business will very rarely fail to have ample opportunity to execute all his work in due time, if it is not his own fault. Want of skill, industry and capital, are more to blame for deficient crops in Cimada, than the inclemency of the seasons.

It is stated that Mahomet Bay, King of Tunis, was dethroned by his subjects for having the reputation of possessing the philosophers' stone. He was restored by the Dey of Algiers, upon promising to communicate to him the secret. Mahomet sent a plough, with great pomp and ceremony, intimating that agriculture is the strength of a nation; and that the only pholosophers' stone is a good crop, which may be easily converted into gold.

It has been the opinion of many, that a large production might be injurious, and not find consumption at a price that would pay the cost of production. There is not much danger of such a result, provided the industry of all classes are properly directed. The following selections
are made from notes by the translator of "Sag's Political Economy," and refer to prodaction :-

Abstract

" All material prodects whatever, as som as produced, beconte items of indivilual and matiomal eapital. Why? Becanse they may be so embanat, as to concur in the hringing into existence of some prodace not then in existemet: Every aldition to the productive jower of a uatien is a prositive prood; and theme is no possibility of prodection outrumning consumption, so long the the consumption is free. If mative problats be superatbumbant, they will len exalnanged for foreign prombats; if material prodacts be over pole tiful, they will be batered five immaterial ones; and the refative advantage of engraging in these several departanents of production, will letermine the chonece of inmividan indinstry: * * * It is miterly impussible for the mational power of production to become excessive, exesept by the limitation of national consumption. I3y this experlient abone can willing industry be deprived of occupation, and ative pombation of its resward. * * * Ta a commanity, city, proviate, or mation, that prohuses abumbatly, and adds every momeat: to the sum of its products, almost all the lnanctios of commerce, mandiature, and generally of industry, yield handsome profits, becanse the demand is gent, and becanse there is always a liurge quantity of produe in the market, ready to bid for new proluctive serviens."

These extracts are given from an authority, whose opinion may have more influence than that of the writer of this article would have.

If it is not safe to employ capital here on cleared lands that are of exce!lent quality, provided they are properly managed, and free from all rent and taxes; it is difficult to believe how it is possible to pay all the charges that lands are subject to in England, and farmors, after all, able to make a respecrable living. Capital judiciously expended on stock; and preparing the soil for crops, does not become annihilated, it is all safe. The stock may be yielding a constant product in milk, butter, sc. or be gaining flesh and more value. The labour and seed expended in preparing and sowing, will be refunded by the produce of

24 Application of Ctipital to Agvicultural Production.

the crops. Indeed it is hard to conceive that if an cesfate of sufficient extent should be managed with order, economy, and intelligence, that the profits of the cultivator would not enable him to lay by a surplus, after replacing the entire value of his capital, and defraying the expenses of himself and faniily. Capital applied in this way, though expended on stock, and consumed on labour, is yet not destroyed, and may reproduce itself with a profit. This re-production will euable the farmer to repay the advance; and, if very fortunate, he may have realized a profit that will enable him to employ more labour, and make it unnecessary for him to require any further advance of capital. But if he should still require a lone, it will every year be of less amount, as his own profits gradually accumulate.

It is by showing the comparative advantages of the usual modes of employing capital, that it will be seen, which is most useful to this community. And first, let us suppose that $£ 1000$, or any other sum, is expended in erecting a house in the city of Montreal-this house is an improvement to the city. The capital expended upon it is safely invested-and so far profitable that it may be let for a rent, that one year with another will be equal to the interest of the money laid out. The money paid away for the materials; and to the various persons employed in building the house, goes into circulation in the most useful channels. So far, all is very well. The man who expends his capital, reccives a fair annuity from it, but the capital is no longer at his disposal to be applied to reproduction, or to productive consumption; it remains fived in the walls of a house, \&c., and cannot be set free again for his use, except by a sale. Suppose further, that the money, or part of it,
was borrowed to build the house, and, subsequently, payment is demanded. It cannot be paid unless the house is sold, and possibly at a large sacrifice.
Were the same amount of capital to be employed on landed property, that was real estate; in the judicious improvement of land-the raising of crops-and keeping of cattle,-the capital, and a profit, proportioned to the skill and good management adopted, would be returned in a year, and be again free to be expended in extended improvements; and thus it might continue, year after year, and the expenditure each year producing all the advantages that a new money capital brought into the country could do.
"All products whatever, whether of unm assistel hature; or of mature nifled by human industry, whieh are available in any way for the purposes of hature production, are in fact capital. Why? Because they may be, not becanse they are, so empluyed. Hroviously to sted emphoyment, they are dead or inactive, duriar sith enplogment, they are active capital. This is the natukal and simphe nomagement. Whertfore, the returis of eapital; when atombly in land, are themselves capital. If those returns be largee than the outlay, enpital is on the incruase,
 Say's Political Economy.)

The capital that was expended on land, finds circulation among the industrial classes, where it, is most required. Part of it finds its way from them to the merchant, manufacturer, \&c., and may be circulated without end. Thus the first capital expended, produces full as much benefit as that applied to building the house in the city. Each goes into extensive circulation. But that expended on the house is only once circulated, while that on the land is reproduced, augmented, and again circulated every year, with the same advantage to the community as at the first. It creates new funds constantly for the employment of labour,
and greatly augments the active capital of the country. The house in the city will never much increase the disposable capital, because it does not bring into existence any new produce,-the capital expended upon it being fixed. And if it do happen to be released or set free by a sale, the money is likely to be invested again in the same description of property.

The Manufacturer-the Tailorthe Shoemaker-the Blacksnithand the Carpenter, may all be said to have a part in agricultural produc. tion. They provide the farmers with articles of indispensable necessity to them, and for which they give in exchange a part of their produce, or the money price which they receive for it from other customers. The furmers find it convenient and profitable to be furnished in this way, and the namuficturers and tradesmen are equally benefitted by the arrangement, because all are employed in the business they understand, and in the manner that their labour will produce most profit to them.

If the manufacturer is useful to the farmer, the merchant is equally so, as the agent for transacting busincss between them. For this agency, he is entitled to profits proportioned to the extent of the business he transacts. The greater the quantity he sells the larger ought to be his profits. The agricultural class form the great majority of the people of Canada, and should be the principal customers of the merchant. It is the abundance of native products that can alone give them the means to purchase what they may require of foreign commodities. It is worthy of remark, however, that the importation of goods camnot be of any use to the farmer, unloss he has a produce to give in exchange for them, or to sell to others customers, and
with the procceds, buy from the merchant. While the goods remain in the merchant's store, they cannot assist production. If the farmer, for want of capital, can only raise a scanty produce, perhaps barely sufficient to support existence, he never can purchase much from the merchant or the tradesman. Hence the necessity that capital should be adplied to production before any thing else.-The mere circuinstance of the creation of one product, opens a vent for other products. For this reason, a good harvest is favourable, not only to the agriculturist, but likewise to the dealers in all commodities generally. The greater the crop, the larger the purchases of the growers. "A bad harvest, on the contrary, hurts the sale of commodities at large. The merchant is decply interested in the abundant produce of husbandry: So is the tradesman, who only manufactures for home consumption. And by the same rule, Bankers, and professional men, who derive their profits and income from Canadian transactions, and practice, must also be interested. Indeed, the total annual income and expenditure of all the settled inhabitants of Cavada, cannot greatly exceed the gross amount annually created by our agriculture, whatever that may be.

The expenditure of the British Government in Canada, and the capital brought by emigrants, must be extremely beneficial to the country. But in order to give the country the full ad vantage of it , the agriculturists should be able to supply the British troops, and enigrants, with all they would require of farming produce; and if they allow any part of this supply to be procured out of Canada, they lose so mich capital, that might be their own, had proper means been adopied by them.

Timber is a native product, and if
the dymthlhinh whes were te stoply Het kboum and all he provisiome lhat tre exdenderd in mamphy it for ex.

 matey cthers, depend un then mbundatse sud encellente of agricultural אvithon

Cquital expemied on milromts, cabsk behtere, whe wher public im. frovencents may yrently assist proawcrim. by lessening the espenses of transpert. Not The money expested in their construction, finds circulation in the most uselul chme nels sud must produce great benefit to the community. Nevertheless, this expenditure is not likely to be refunded in a very short time to be again applied to production, as capiital would be, that was employed in agriculcure. However, when judiciously applied; it will be more productive of good; to the agricultural class in particular, than any other fixed capital.

The total amount of importation from foreign councries to Canada, mas be considered as a part of her production, so long as an equivalent in money or produce is found in Canada to pay for imported commoditics. It is giving to our people the advantage of purcliasing what they want, by disposing of what they do. not want, and it must ever be their interest to do so. There are mative products, that camot be readily or adyantageorinsly disposed of, and theme whond by all means be manafinctured in this comatry for sur own uec, tand for sale; and cophad emphyed ia such manufactures, will be the next most nseffal to that emphiyed in ugriculture; but this shall has dincosaed mader another head. To diseonme the importation of foroigh chmasditica that ate neevebury for bind people, or they would not he imperted, and that must be
paid for chicfly by native products, or what has been raceived in exclange for native product, must clearly be against the best interests of the Caualian cornmunity.
Ho may be replied to that has been niluancect, that the classes not agricultural, who reside in our cities and towns, requirt: houses for theiraccommodation, and therefore the money expended in their erection, is a necessary application of capital. Certainly it is; and the object of writing this article is not by any means to diseourage the building of houses, and the forwarding of other improvements in our citics and towns, but to show that there are other modes of employing capital that are equally necessary-that will yield larger re-turns-will be productive of more certain benefit to the community, and would be perfectly safe ; and it is left to the reader's judgment to decide. Were te to have registry offices, and some reforms in our laws, there is not a country on earth where capital might be more safely employed in agricultural improvement and production, than in Lower Canada.

The present state of our agriculture has been already explained. To effect the necessary amelioration, skill and capital are required. Capital will not make up the want of agricultural skill to those who hare it not, nor will this skill compensate to those who possess it the want of sufficient c:lpital to carry on this business.

If money is borrowed by the farmer, which he is bound to repay within the year, it is essentially necessary that it be applied in such a way that it will yield quick and sure returus or the aceoramodation may prove an injury both to the person who grants it, and he who receives it. Bue it the money is judiciousty expendea on the purchase of stock for the dairy, or the
shambles, or in the improvement of arable land, that will give a return within the year, the farmer is sure to

- be able to repay the loan he receives; and, perhaps, realize such a profit as will give him a good rent for his land, and pay him for his own time.
- Indeed, it is almost impossible that any disappointment can occur under ordinary circumstances, if the farmer acts with prudence, and remenbers that the money is not his own, bat belongs to a partner who has advanced it, and will expect it to be returned with an equitable proportion of the gain that will be acquired by its employment, as the interest.

It has been a very general opinion that banking accommodation was unsuitable for the agricultural class. It might be so in the British Isles, where there are so many claimants for the farmers' produce that must be paid before bank debts. In Canada the case is widely different. There is scarcely any clams of rent, tithes, or taxes upon the lands. Whether banking accommodation is, or is not, suitable for Canadian Agriculturists, there can be no doubt whatever that in no way can capital be more usefully employed or produce more gencral prosperity, than in the judicious improvenent of hus. bandry, so as to augment its produce in every way. Agriculture must be the frundation of the wealth and resources of Canada, and it is impossilfe to build up the prosperity of her people on any other basis.

It would be instructive to know what effect it would produce on manufactures and commerce; were they to be deprived for a short time of all banking accommodation. It would probably give some idea what injury the want of such accommodation is in the prosperity of agriculture. The discounting of mercantile bills has scarcely any effect in assisting agricultural product, be-
cause the product must first be in existence before the farmer can receive any bank notes. If, for want of a small sum of money to purchase cattle, manure, or labour, he is unable to raise more than a scanty product that is barely able to give him the means of supporting existence, he never can have much spare produce to exchange for bank notes ; and poverty is his lot through life. It is a mistake to suppose that no more encouragement is required for the prosperity of agriculture in a new country like this, where capital is not abundant, than to be sure of a marhet for out produce when it is raised and ready for sale. But what is the man to do who may have land, but not the means to cultivate or stock it? He cannot have produce to sell, however good and convenient the market.

It is considered that if a manufacturer has sufficient capital of his own to erect his building and purchase his machinery, an advance may sately, be made to him that will be sufficient. to procure him the raw materials, and employ labour to carry on his business. If he could not obtain this advance, a most useful manufactory might never be at work, and many people might be unemployed. The agriculturist who has all his capital in land, and the necessary buildings upon it, but has not sufficient capital to procure a stock of cattle or employ labour, is exactly in a similar situation with the manufacturer ; and has the same necessity for accommodation, in order to set him failly at wrok. Without this accommodation, notwithstanding all bis other advantages, he may never be anything but a poor man, and contribute very little during his life towards the good of the community. The manufacturer and the farmer, may each repay the capital advanced to them, by a product brought into

28. Application of Cupital to Agricultural Production.

existence by means of this advance. What are the circumstances, in these cases, that would make it imprudent to grant acconmodation in one case, that might be safely granted in another ? If there are circumstances in favour of our case more than the other, it is anquestionably that of the farmer. If an agricultural produce is not first created, there can be no. manufacturer. It is only with the produce of agriculture that manufactures can be purchased.

Hitherto banking in Lower Canada has been in the hands of merchants; and their discounts have been almost exclusively confined to mercantile bills. No objection cun be offered to this course, nor can any fault be found to it; but it would be the object of the writer to prore that banking accommodation might be usefully and profitably extended to the agricultural class also.

The Scotch banking system is the only one that would be suitable to afford accommodation to agricultur. ists, by granting a credit on cash accounts. The Bank of British America is the only one in Lower Canada who propose to adopt this system, and they deserve to meet with every success if they introduce it.

A Bank that commences business with $£ 100,000$ capital lodged in their vaults in specie, might very safely issue their own notes to the amount of $£ 300,000$. Any bank that would be entitled to public confidence would not apprehend any run upon them; and abank that was not entitled to the public confidence, could not be put down too soon. It is necessary to the prosperity of banking in Canada, that a good feeling should be established and maintained between them, and this would be perfectly possible without injury to any one of them. If banks are necessary, it never can be for the
good of this community that any attempts should be made to put down any one of them that is considered safe, and transacts business upon a fair principle-by unfair or ungenerous means. It would be for the public interest that banks should rather support ench other, and it would certainly be for the general interest of banking, because that in case of the stoppage of a bank in the country, it is sure to have a very unfivourable influence on the public confictence in other banks. It is the jealousy of banks towards each other that has generally been the cause of their ruin, and not the want of public confidence in them. When there is reason to doubt their solvency, it is right to put a stop to their issues, but not on other grounds.

Nothing but capital and labourers can be wanted in a country such as Camada, that possesses an immense territory of highly fertile land. But as capital is indispensable, it might be supplied in part by banks, and a paper circulation based on sound principles. The following extract is from an article in the August number of Blackwood's Magazine, on "The Late Commercial Crisis;" and there cannot be any doubt that the extraordinary advancement of improvement in the United States is chiefly owing to the establishment of banks and paper circulation; but it is equally certain that a large amount of worthless paper got into circula. tion, and that the public sustained considerable loss by it.
" Banks are the great inatrunent by whith integrity and talent supply the want of capital ; by whebroulente and industry, setting out on the bisis of parer eredit; attan at lengytle to the solid adsuntage of sulistantial cupital. Such a system quadruples at once the active capital of the conatity, by producing it paper capital based on crefle, which, as long as that cipital remanis unhroken, aiswas all the purposesofenmamging inthatyr, just as well in the metallit trowares of Mexico and Poth. It provento a hag portion of
the national wealth from being absotbed in the umprotitable and nuproductive form of a metallic correney, and provides for the necessaty circulation at a fift purt ol the cost. Old states, in which capital is redmadat, and all home emphoyments nearly filled up, may dispense with a paper currenty, fust as the finished scholar may distart the iondiments, or the accomplished equestrian forgat the lessums of the manegre; but till that stage las arrived, it is the greatest act of mational insanity to destroy or restrain, escept within those limits which the public safety reguires, the invaluable ally of a paper circulation. It has 'uadrupled in the last hall' century the wealth of Scotland, and multiplied ten-fold that of the United States. But fior the powerful impulse given by the advane of hatiers, and the enlarged capital which they put in motion, the industry of the CTuiten States, insteal of having long ago crossed the Alleghany Mountains,and gi ven birth to $4,000,000$ of men in the valley of the Mississippi, would lave been still slowly advancing along the shores of the Alantic, and not yet lave pierced the protomad solitules al the Ohio or the Missouri. Accordinerly, from a very early period bunting establishments, as will le the case in all frec, intelligent, and atvancing commonities, have been established with extrandinary bencit to the United States. The advantages, however, with which they are attended, live not heen ummised with evil; there, as alsewhem, fiandulent insolVency ton olten ustuped the King's Prerogative, and issued its own worthjess paper as the current coin of the realm."

> (To be continued.)

EMIGRATION TO BRTMES NORTH

 AmELICA benericial to the panevit state as well as to THE PROVINCES.In the author's Supplenent to his Treatise on Agriculture, he has stated that in the British American Provinces not over a fifticth part of the cultivatable land has yet been brought into cultivation, and that nearly all the remainder is covered with immense forests of trees, and only occupied by wild animals. The following extract from one of the tables: in thé Supplement, may be intercsting to the reader :-

From the above table it may be scen how great!y men and capital are wanted in British America to bring her dreary wastes into cultivation, and make them productive of all that is useful to men. Those who would consider the climate unfavourable, must be very well aware that it could not be less favourable for a full population, than it is for the few inhabitants that are now scattered over its immense surface. On the contrary, when the country would be setrled, the forests cut down, and the lands properly drained, there is not a doubt that the climate would be ameliorated, and be more
favourable for man, for catule, and for the production of profitable crops. All the uncultivated lands of British America do not now yield any valuable product, except the trees that grow upon them, and they are of little value in the forest until labour is expended upon them, to prepare them for exportation. This waste land might be made to produce all that would be necessary to provide directly and indirectly for a population from twenty to thirty times as numerous as we bave in British America at present.

Can those men who would oppose emigration to Canada explain in what manner it would be hurtful to the interests of our present population? Would it lessen the value of the property in cities and towns? Would the value of the lands already settled in the most favourable situations in the Provinces, as regards markets and the best means of land and water communication, be of less value to their owners? The cities and towns would increase in extent and population, in proportion to the increase of trade and commerce, and trade and commerce would increase in proportion to the augmentation of a produce that will give employment to trade and commerce. Therefore, whatever augments our population and the amount of the amual produce of our lands, must be advantngeous to trade, and commerce, and to all those who derive their income in any way from Canadian resources; and argain the marker for the sale of agricultural produce, must extend in proportion to the increased number and enlarged means of those who have to buy it constantly.

In the Supplement to the Treatise on Agriculture before referred to, pages 72 and 73 , it has been endeavoured to shew that the annual product created by each full grown nerson employed in agriculture, after
allowing interest of capital in land and stock, is about $£ 9710 \mathrm{~s}$, Without bringing any new land into cultivation, there is no doubt that an additional man could be usefully employed on every farm on an average, in this Province. And supposing the number of farms to be 60,000 , were that number of men judicionsly employed in agriculture, in addition to those already engaged in that occupation, their labour would certainly produce an amount for each fully equal to the above estimate, $£ 37$ 103. annually; and this alone would increase the anmual produce created by agriculture from the lands already in cultivation, about S2,300,000. Two-thirds of this amount might be consumed by the labourers, and one-third be at the disposal of the farmers, which would be adding about fifty dollars, on an average, to the annual income of each proprietor of a farm. This is a very low estimate of the profits that might reasonably be expected from the employment of more labourers in the judicious management of husbandry. Every one acquainted with Canadian farming must be aware how much it is required to employ more labour on almost every farm to make them profitably productive to their owners.

Suppose that an emigrant, who has capital, gets possession of a lot of forest land; lue begins to clear it, and prepare it for cultivation; he must work for a year upon it, before he is able to obtain any produce from it for his subsistance, or that of his family. For all that time, he is a custoner to the Canadian farmer for his produce, and pays him cash for it. He is in no other way injurious to the farmer settled here before him, unless it is considered an injury to increase the number of his customers, and the demand for his produce. It is by his industry and capital, the
settler raises a product, from that which was before unproductive. How, then, does he injure those who are settled here before him? Whatever he is able to sell from this product, goes to increase the capital of this country, and the means of giving employment to others in productive industry.What injury could it be to us that the wild forest of. British America, that yields us no profit in its present state, should be converted into cultivated fields; producing corn and cattle, for the support of our fellowmen, and fellow-subjects, who would at their own charge, and labour, bring them into that useful state? We can have no just pretensions to exclude British subjects from settling in Canada; and if we did possess the right to do so, it would not be our interest to exercise it. On the contrary, we should cheerfully allow our fellow-subjects to take possession of a share of the boundless wastes that surround us, even though these wastes did of right belong to us, which they do not, and never did. There is abundance of land in British America for all the emigrants that will come to it for many centuries ; and, therefore, we need not be so anxious to keep land waste, that our posterity, for very many generations, will not be able to occupy or cultivate.

It is a perverse and blind policy. indeed, that would offer any opposition to emigrants coming to this country, either with capital, or with strenglh and inclination to labour. Every able-bodied man settling among us, might properly be considered equal to a capital of 450 . Hence, were 1000 or 10,000 men, able to work, to come to us in a year, it would be equal to an increase of our capital to the amount of $\mathfrak{f} 50,000$, or $£ 500,000$ currency. Men, and the means to employ them, is what is required in British America. The capital that would
be wanted to set them to work, would not be lost. The produce from their labour, applied to the cultivation of good lands, fiee of rents and taxes, could not fail to refuad amply the capital first employed.

In the British Isles, they have a great many unemployed labourers that are a burden to the wealthy and employed portion of the population. It must be the interest of the latter, if they could fairly accomplish it, to get rid of this burden, and enable unemployed labourers to provide for themselves. . This can be accomplished by adopting a proper system of emigration under judicious superintendance. The poor emigrants are not to be landed upon our shores without any further care of them. By proper management they would filly repay all that would be expended upon them; and instead of their being burdensume to the wealthy and employed inhabitants of the British Isles, they would in a very few years be able to become purchasers of British manufictures, and thas they would be contributors to the wealth and prosperity of British industry and enterprize.

The following extract from Dr. Paley; on Colonization, may be interesting to the reader, who has not seen it before:-

[^0]wewe these anticles fur themstives. The Mrother Country, memwhile, derives from this commection an inerease buth of provision and employment. It promotes at ance the two grent vequisites upus which the fecility of subsistence, and by cunsepuence the state of mpulation depends,-prodnction and ritstribuelion; and lhis in a manner the most direct and benelicial. No situntion cin be imagined more fivenvable to population than that of is country which works up goods for others, whilst iluese other's are cultivating new trats of land for them; for ass in a genial cimate, and liom a fresh soil, the labour of one man will mise provisions eliough for ten, it is manifist where all are emplayed in ngricultare, mach the ;greater part of the produce will be spared from the consumption; and that three out of comer, at least, of those who are maintanued by it, will resille in the country which receives the redundaney. When the new country does not remit provisions to the old one, the alvantage is less ; but still the exportation of wrought grode, by whatever retiur they are paid for, aluances puntation in that seemdary way, in which those trades promote it that are not emphoyed in the production of provision. Whatever prejultice, therefore, some hate events have excitedagainst sclemes of colomazation, the system jtself is founded on apparent national utility; and what is more, upon principles favourable to the common interests of human mature; for, it does not appear by what other method newly diseovered and turfrequmted countries can be peopherl, or during the infancy of their establishment be protected or supplied."

From what has been submitted, it must be manifest that emigration from the British Isles, to British America, cannot fail to prove highly beneficial to both countries, as well as to the emigrants. What remains to be considered is,-how emigration could be most judiciously and successfully encournged and promoted, with the greatest advantage to all parties concerned. This shall be discussed in a future number, and the whole subject more particularly considered. It is one that is of much consequence to us, as well as to the wealthy and industrial classes of the British Isles. These provinces have abundance of fine land, to afford means of settlemen, employnent and subsistence to the redundent popu-

Jation of the mother country; and both countries will receive all the advantages of a new produce brought into existenco by their labour applied to what is now waste and unproductive.

DATRACT FROM THONSON'S TECTURES ON BOMANX, ON SOILS, MaxURES, Se.

It is a wise provision of nature, that as plants are not endued with volition and extensive locomotion, nor guided by instinct nor reason, they are subject to more regular and unalterable laws than the animal creation, at least than that portion of it which possesses those functions which have been enumerated. Their food is always placed within their reach, and they enjoy good health, and arrive at perfection in theip growth, independant of external accidents, to which animals are equally liable, when they are situated where the soil contains those principles which are best adapted for the various purposes of their economy. The consideration of this question suggests the questions-What is the composition of soils? What part of soils are taken up as food by the roots of plants? To answer them has long employed the attention of the philosophical observer, and many and varions opinions have been given to the public; but it is only since modern chemistry made those discoveries which may justly be regarded as the most splendid triamphs of experimental science, that any thing rational and satisfactory has been advanced.

The fact cannot be too often repeated and impressed on your minds, that plants are living beings, possessed of powers which enable them to convert into their own material substance, matters of a nature apparently very different from it,

Extract from. Thomson's Lectures on Botrany, S.c. 35

without keeping this in view, we should be forcel to look for all the different productions of plants ready formed in the soil where they grow, and to suppose that these are simply taken up by their roots, and deposited in the different parts of the plant; an idea too incongruous to be admitted. On the contrary they do not even take up those principles which are most abundant in the soil where they grow; but select particular parts of them, although these are not found, in general, forming in their uncombined state any part of the vegetable frame. *

The ultimate components of all the various substances produced by vegetables have been found the same, differing only in the guantity and the mode of their combination; and the-parts-of the soit which supply these have been found to be much fewer than was previously supposed.

Every soil fit for yielding nutriment to vegetables may be supposed to consist of earth, water, air, a small proportion of metallic oxyds, and decomposed vegetable and unimal matters, in which are included salts, gases, and vegetable extracts.

Earth, which is the essential basis of all soils, is, as it is commonly spoken of, a compound of different carths: the most general of which are Calcurions earth, Argillacious eurth, Sificious earth, Maynesian etuth. and Ferrugenous earth.

1. Calcarious Earth comprehends line, ustally combined with carbonic acid, in a slate of limestone, chalk, shells, and marl, which is a misture of carbonate of lime with clayey and sandy matters; but lime is sometimes, also, found in combination with suiphuric acid, forming a substance called gypsum; and more rarely with phosphoric acid. When too much calcarious matter is enntained in a snil, it is nufertile,
owing to its absorbing moisture, and consequently remaining too dry. But the case is different when the calcarious matter is mixed with silica, for then the moisture absorbed remains in a free state, and not so united with the chalky matter as to disappear and be useless to phants. But the absorbing properties of all calcatious soils are not alike ; and a great difference depends on the degree of comminution of the calcarious matter. Thus 100 parts of calcarious sund retain, according to Professor Schübler sesperiments, 29 parts only of water, whilst 100 parts of the same matte: in the state of fine powder retains 85 per cent. In the first case, wlien calcarious earth and silica predominate in an arable field, they produce a hot and dry soil; when in the second, a moist and cold soil.
2. Argillacbous Eartil comprelends clay, which is generally: mixed with silicious sand and mineral substances, and is very reteitive of moisture.
3. Silicious Earth is almost entirely composed of sand. The water passes so readily through it, that very litle is retained for the purposes of vegetation; and scilis which contain nucli of this earth are, therefore, barren and uuprofitable. In the form of sand it retains 25 per cent. only of water; while 100 parts of it, as it occurs with clay in an arable field, retains $2 S O$ per cent. of water.
4. Magnesian Eaith is not so commonly found as the earths we have already noticed. The magnesia it contains is combined with carbonic acid, and mixed with silicious particles. It approaclies nearest to the nature of clayed earths in its power of retaining moisture; that power enabling it to retain $4 \frac{1}{2}$ times its own weight of water. This renders it, when it predominates, very prejudicial to vegetation; while. it

34. Entract from Thomson's Leclures on Botany, sc.

increases, when added in moderate proportions, the fertility of a dry sandy soil.
5. Ferruginous Earth consists of those oxyds of iron, known by the names of ochres and pyrites, mixed with silicious matter. These oxyds, in particular the pyrites, when in considerable quantity in a soil, if it contains litile calcarious matter, are extremely injurious to vegetation. The pyrites is a compound of sulphur and iron, and is converted by exposure to air and moisture into sulphate of iron, which destroys plants by over-stimulating them.

Vegetable earths have the least specific gravity, and sandy soils the greatest, whether they be dry or moist ; the vegetable earths contain, besides vegetables in a state of decay, animal matter and a large proportion of salts, which are chiefly common salt, sulphates of magnesia and of potash, nitrates of lime, and carbonates of potash and of soda.
Such are the earths generally contained in soils; when any one of them abounds, the compound earth is named after the component; as for instance, a calcarious soil, an argillaceous soil, \&c.

The principal difference which characterises the various kinds of earths, is their power of retaining the next component of soils, Water. Water, as forming a part of soils, is either chemically combined with the carth, or merely mechanically mixed with it, and retained in combination by cohesive attraction: In the former, it is of no use to vegetables; in the latter, it is essentially necessary for their support. If the soil be not sufficiently retentive, the plant is starved, for nothirg can be taken up from the earth that is insoluble; and as we shall show afterwards, water itself is a principal part of the frod of plants. If the soil be too stiff and retentive, the water re-
mains upon its surface, and does not percolate to a sufficient depth to be applied to the roots; and if the vegetable be of a succulent kind, the herbaceous part remaining constantly surrounded with moisture has its vegetative powers weakened,and rots. This is particularly the case in winter; for; as the vital energy of the plant is then much lowered by cold, a disease of the vegetable takes place, similar to what happens in a leucophlegmatic state of the animal body, from which the plant rarely recovers. The most efficient soil, as far as winter is concerned, is that which contains a due mixture of carbonate of lime, sand, and pulverized clay, with some vegetable or animal matters ; and in which the materials are so mingled as to remain loose and permeable to the air. This soil is calculated not only to retain the water in proper quantity; but also to absorb it from the atmosphere, which is one great source of the supply that vegetables require; for water, as has been already remarked, is requisite for rendering the other matters in soils sufficiently soluble to be taken up by the roots of plants. All the carths are more or less soluble in water; thus line is taken up readily in its pure state; and also if the water contains much carbonic acid in solution, when the lime is in the form of chalk, or a carbonate, in the proportion of about 1-680 part of its weight. Clay is soluble in a minute proportion in rain water; silica even may be retained in solu tion by the aid of carbonate of potash; and in the minute state of division in which it is precipitated from an alkaline solution, it is soluble in 1000 parts of water: 2000 parts of pure waterhold one of magnesia in'so' lation.

Air is, also, a necessary component of soils. Atmospheric air is absolutely necossary, as we know, for

Eutrect from Thomson's Lectures on Botany, \&c. 35

carrying on the process of germination; the more pulverulent, therefore, the soil is, the more air it is capable of containing, and consequently is the better adapted for supporting vegetation. But a soil which is too sandy, the water not being retained, although it appears to be loose, yet does not contain so much air enveloped in it as is required; for the small particles of which it is com. posed apply more closcly to each other, and lie in a smaller compass than the aggregated masses of a better soil, which touch at a few points only, and, therefore, have more and larger interstices between them. When the soil is too retentive, the water which remains on its surface evaporates in summer, and deposits the clayed particles which it had suspended, a kind of paste is left, which hardening, by being baked, as it were, in the heat of the sum, no air can penetrate to the parts beneath it; nor can that which has been already used in the vegetative process, and which is unfit to carry it further on, escape ; and we know that as atmospheric air is vitiated by the roots of growing plants, and during the germination of seeds, a constant renewal of it is requisite for supporting the vigour of vegetables. It is the oxygenous portion of the atmospherical air contaired in the soil which is vitiated by the functions of the roots of plants.

* : * The last component of soils which we have to mention, has always been regarded as the most important of the whole. We allude to animal and vegetable matter in a state of decomposition, from which the black mould which constitutes the richness of soils is almost altogether: formed. But the analysis of some of the most fertile soils has proved, that their fertility does not depend on the presence of a large proportion of those substances. Thus

Sir H. Davy found in the soil of a very fertile field in East Lothian, contained nine parts only in the humdred of decomposed animal and vegetable matter; and a soil from the low parts of Somersetshire, long celebrated for yielding large crops of wheat and beans without manure, contained five parts of these principles only in the hundred. It is indeed true, ithat the carbonaceous matter contained in plants can be derived most ensily from decomposing animal and vegetable substances; but these : also yield salts, which prove highly stimulating to growing plants; and although plants seem to attain great bulk and vigour. When much manure is applied, yet they are over stimulated, and their growth is connected with disease, in the same manner as in an overfed and pampered animal. The natural state of both is altered ; premiature age succeeds, and death arrives long before the period when he should be naturally expected. 'Ihose plants also, which are intencled for food for man and animals, when reared upon sail of the kind we are now noticing, yield less nutriment in the same bulk, than that which more healthy plants yield; and it is also of an unwholesome kind. Upon the whole, we may truly assert, that more harm is done by loading soils artificially with much animal and vegetable matter, than the natural deficiency of it in soils can occasion.

When a Botanist examines a space of ground, he forms an estimate of the nature of the soil, by observing the kind of plants, or weeds, as they are termed, which it naturally produces, and draws his conclusions from the knowledge he possesses of the relation which always subsists between the plant and the soil. If the plants are hose which have divided roots, he concludes that the soil is pulverulent and casily penetrated;

36 Extruct from Thomson's Leatures on Boluny, \&c.

but if the roots are thick and fleshy, that, as they require a humed soil, it is probable that it is damp and retentive, Some kinds of plants grow on one soil, but are never found on another; some require a large supply of carbonacious matter, or a rich fertile soil; others, he knows, glean the little they require in the most barren, and soon die in richer spots. But the knowledge of the Botanist, although it is an accurate guide to a certain degree, in directing lis judgment as to the value of uncultivated soils, and is valuable in preventing him from making bad speculations by introducing new objects of culture into a place which camot admit of them ; yet it is of little avail in examining soils under the immediate influence of cultivation. The experienced cye of the farmer supplies much of this defect. On too loose and poor soils the roots of barley and other grains are long, but the stems small and weak; but in a richer and more tenacious soil the roots are short, thick, and very closely set with fibrils. The reason of these circumstances is, that the root shooting out towards the spots where the stimulus of nutriment is in greater quantity, exhausts the little nourishment it can obtain in adding to its length, and, therefore, an insufficient supply is left for the stem and leaves; but in richer soils the whole of the fibrils being surrounded by nutritious matter, a greater quantity is actually taken up by a much smaller surface of ronts, and supplies more freely the herbaceous parts of the plants.

To ascertain the real nature of soils, chemistry must lend its assistance; and this mode of examination is undoubtedly the most certain. $\operatorname{Sir} \mathrm{H}$. Davy has, however, justly remarked, "that the results of analysis, considered as affurding indications of fertility, must necessarily differ ac.
cording to the variations of climate, situation, and other circumstances. Thus, the power of soils to absorb moisture ought to be greater in warm and dry countries, than in cold and moist ones; and when the quantity of argillaceous earth they contain is larger. Soils, likewise, which are situated on declivities, nught to be more absorbent than those in the same climate situated in plains and valleys. The productiveness of soils must likewise be influenced by the nature of the subsoil, or the earthy and stony strata on which they rest. Thus, a sandy soil may sometimes owe its fertility to the power of the subsoil to retain water; and an absorbent clayey soil may occasionally be prevented from being barren, in a moist climate, by the influence of a substratum of sand or gravel." [Here follows the mode of examining soils, which will be given in a future number.]

Every farmer knows the fact, that many plants will grow only in certain soils; and his art consists in supplying to the natural sils that part which is most essentially necessary for their support. As we have proved that the components of all vegetable matter are carbon, hydrogen, and oxygen, we must look for the supply of these ingredients in the soil ; and it is from water and decayed organic matter that they are undoubtedly obtained. From this matter, then, the carbon is supplied; and as water only, and those substances which it can hold in solution, can be absorbed by the mouths of the ronts of plants, the carbon, which is contained in the soil, separated from vegetable and animal matters by decompasition, must be dissolved in the water in order to be taken into the system of the plant; and it thus becomes their proper food.

If this view of the subject be correct, the art of the husbandman and
horticulturist must consist in applying those substances to the soil which will promote the growth of plants without over stimulating them. The different matters known under the title of manures, which are employed for this purpose, must act in four ways to produce the effect required. 1. They must render the soil of the consistence which will enable it to retain a sufficiency of water; but not too much. 2. They must render it pulverulent to admit the roots of the plants to permeate, and spread freely in it. 3. They must enable it to admit and retain air in its interstices; and, 4 , fit it to form carbon, and afford healthy stimuli to the vegetable irritability. The importance of a finely pulverized soil was first pointed out by Jethro Tull, in 1733 ; but although his ideas on this subject exiended to an absurd degree, and led him to form a theory of vegetation altogether mechanical, yet the direction of the agriculturist to the importance of pulverization, has been productive of most beneficial results. It allows of the easy extension of the roots of plants, admits a necessary supply of air during the process of germination, and assists those decompositions which are requisite for rendering manure useful.

The first place among the substances fit to answer the purposes already specified, is certainly due to lime. This substance acts upon soils either mechanically or chenically ; and on the plants it acts physologically. When in the state of carbonate, or united with carbonic acid, it is added to clayed soils, it acts mechanically by rendering them more free, loose, and pervious both to air, moisture, and the roots of plants; it acts chemically when it is deprived of carbonic acid, or is in the cnustic state, by destroying worms and other insects hurtful to young
vegetables; and, by "quickening the decomposition of their dead bodies, render them useful to vegetation. In either state it neutralizes acids. and decomposes salt of iron and other injurious saline matters often contained in snils; and by the healthy stimulus it affords when in the state of quicklime, it invigorates vegetation both in young and mature plants. Lime also hastens the decomposition and solution of vegetable matter; and has been long known as a most useful manure when applied where half-decomposed vegetable matter abounds, as for example, in peat soils. The best corrective, therefore, for ground that has been too much dunged, is lime ; and peat mosises, which consist of vegetable substances, the decay of which has been suspended by the formation of a peculiar acid in them, are rendered arable and highly fertile by a proper use of lime. In this operation the lime is combined with the acid contained in the moss, and also with carbonic acid, and remains as a component of the newly formed soil. Every kind of quicklime, however, does not answer for manure, and particularly that which abounds with magnesia; for although magnesia, when united with carbonic acid; is a useful ingredient in a soil, yet in its uncombined state, or as calcined magnesia, when united with carbonic acid, is a useful ingredient in a soil, yet in its uncombiued state, or as calcined magnesia, which is that in which it must be, when magnesian limestone is burnt into quiclime, it is injurious to plants: as proved by the experiments of Mr. Teunant. When, however, even the best quicklime is too freely used, it becomes hurfful by over stimulating the growing plants; and, therefore, the more fircquent and small application of it is preferable.
The object of all manures is either
to alter the retentive quality of the soil, or immediately to supply carbomaceous matter to the plants. For these purposes, as occasion has required, clay, brick, ruibish, limestone, marl, chalk, sand, gravel, has been employed as mechanical means; salts of various kinds as stimulants; and soot, ashes, and dung, as affording the proper nutriment of plants. That salts are taken up ready formed from the soil by vegetables is pretty certain; Drs. Hamel and Cadet having established the fact, that, if the marine plants, which yield soda when they grow near the sea, be removed to inland situations, they gradually cease to yield soda, and at lenguh potash only is obtained from the ashes. We shall merely notice, with regard to dung, that when it is completely rotten it does not afford much soluble carbon, owing to its becoming as it were oxydized, and the carbon being converted into real charcoal; other principals also, such as carbonic acid and ammonia, useful both as stimula and nutriment to plants, are dissipated during the violent fermentation which is requisite to reduce dung into this state. Fresh dung, or that which is not completely rotten, on the contrary, benefits not only the present crop but several subsequent ones, as its good effect continues as long as the process of decomposition goes on.

(To be continucd.)

A notice has appeared in a late number of the Dumfries and Galloway Courier, of a new process for obtaining cheap and valuable ma-

[^1]nure without aid of cattle, said to be invented by Mr. Jauffret, of Aix, in France. Unfortunately, the ingredients of which the wash or lye is made, and which is said to convert any common clay into good manure, is not mentioned, but it may be interesting to farmers to know, what is said of this new invention, which would certainly prove of incalculable advantage to agriculture, if the representations made of it are correct. The following is a copy of the notice :-
'. A method has been discovered in France of making manure as it may be wanted, without cattle, in twelve days, and with great economy, as appears from a report made to the Committee of the Academy of Agriculture at Paris, by M. Chaielain, its Secretary, who, with Mr. Caillean, President of that Committee, M. de la Gerandiere, President of the Academy of Agriculture of Blois, and the Narquis de Saint Croix, were appointed to examine into the merits of Mr. Jauffret's invention.
"These gentlemen report, that by a cheap wash or lye, the ingredients of which are to be found in all places, and which every cultivator can make on his own land, all sorts of herbacenus and ligneous substances, such as heather, furze, brambles, and even the livingr doustooth, can be put into a state of rapid fermentation, and not only these substances, but even earth itself, be its nature what it may; be converted into a valuable manure.
"That the manure producer by this new system is quite as valuable as the best horse litter; its effects are visible upon several successive crops; and it can be obtained with perfect facility at pleasure.

That M. Jauffret supplied the Committee with numeraus and undeniable proofs of experiments, ranging over a period of nine yeare, in five cormmes of the depariment
of the Bouches-du-Rhone, which trials were made upon an extensive scale, on different linds of soils, and on various seeds, plants, and trees, The success of these trials surpassed the most sanguine expectations, as has been attested, Ist, by the Academy of Aix, (annal nublic session 1835, at 36 and following pages of the report); 2d, by the circular of the Prefect of the Bouches-du-Rhone; Sd, by 38 certificates from most respectable inhabitants and farmers of that department, founded upon repeated experiments made by themselves; and 4.th, by the declarations of well informed proprictors of the department of Vaucluse, who for years have attentively watched the trials of the Jauffet manure.
"That in order to convince themselves more thoroughly on the subject, the Committee wrote, unknown to Mr. Jauffret, to some indieiduals who were most distinguished by their agricultural science, and who had given certificates to the inventor, and that their replies, which are annexed to the report, are of so satisfactory a nature, as to lenve no doubt on the minds of the Committee of the importance of the discovery.
"By means of a cutting machine, the cost of which is about $£ 15$, and which, after a careful examination, appeared well adapted for the purpose, three men and a horse can prepare 180 quintals, or 700 kilograms (about 7 tons English) of manure per day, and the machine is easy erectecl. Ten quintals of straw produce 40 quintals of manure; this is effected by the addition of the lye or the fermentation, by the fermentation dilating the material operated on.
"The Jauffret process adnits of greater economy as to labour; for the wooden cistern, and the ingredients of which the lye is made, inay be carried to the field which is to be
manured, and the compost to be preparcd on the spot; and thus the carriage of the vegetable mater from the field to the yard aind back again from the yard to the field, is saved; the escape also of carbonic acid gas, out of the most valuable componant parts of manure, which takes phace during the removal, is thus prevented. The inventor asserts, moreover, that he can vary the degree of fernientation to suit the effects or qualities of different soils: and as lhe can raise tlie heat caused by the fermentation as high as 169 deg. of Fihrenheit, his process has the additional ad vantage of destroying the germ of all noxious herbs, which might foul the latid.
"That in considering this process, the Committee were struck with the advantage that might arise from establishing manufactories, not only ion large farms, but near towns and villages, to which every cultivator might bring his refuse vegetable matter to be converted into manure. The cutting machine might be worked either by horse, water, or stcam power.

The Jauffret process will be advantageous, not only to large proprietors, by whom an expence of $£ 15$ will scarcely be felt; but it will be of more importance to small farmers, who may cut their weeds by hand, and prepare a guantity as perfectly as any made by the machine. As to the conversion of earth into manure, any one can make it without the help of the machine invented by M. Jauffret; and the manure made from the earth by this process, is not less valuable than the compost. Thus those who may have no cattle to feed, may employ all their fodder for manure; others can render available weeds, briars; dogstooth, thistles, \&e.; and those who have neither straw, fodder, nor weeds, can convert earth into manure, so
that no discovery was ever more capable of easy or general application. The Jauffret process tends to supply agriculturists, with new and powerfal means of increasing their wealth, especially in the case of poor land-farmers, who usually find a difficulty of finding a sufficient supply of manure."
If this invention is entitled to the recommendation given of it, agricultural improvement might be readily advanced in Lower Canada, as the want of nanure is severely felt in many situations.

A Bill has been lately introduced in the present session of the Imperial Parliament to incorporate a joint stock company-"The Thumes 1 m provement Comipany and Drainaye Mennure Association.-" The preanble of the bill states, that it is expedient and desirable to preserve and render available for agricultural purposes, the deposits created by the drainage that now falls into the xiver Thames from the public sewers of London, Southwark, Lambeth, Westminster, and the vicinity. And that the objects aforesaid may be effected by making tanks and connecting sewers at certain places in or near the ma:gin of the said river.
The act enipowers them to purchase Iand, to erect tanks, receptacles and other works, upon and near the margin of the river Thames. They are further empowered to convert, widen, alter, divert, open and stop up such sewers, drains, pipes, water courses, channels, and passages for discharging the drainage into such tanks, and securing it from polluting the river.

The company are empowered to raise a capital of $£ 500,000$, in shares of $£ 50$ each, with power to increase their eapital if necessary.

This plan will immensely increase the quantity of manure in London and that neighbourhoon, for arricultumal purposes: How desimble diat
some suel measures would be adopted in the city of Montreal to preserve the manure from beithg cast into the River St. Lawrence, when it is so much wanted on the lands within a compass of ten niles of the city. It might very well be collected in tanks, until it could be carried away. There are many thonsand loads of useful mamre lost anaually in Montreal, and it would certainy materialy improve the appearance, cleanliaces; confort, and, 1 believe, the healthfalness of thic city, to liave it collected and carried away, and applied to the production of useful plants for men and catlle.

BONE MANTRE.

The following article is from the Penny Cyclopedia:-

Bones have been of late years very extensively used as manare, especially on poor and dry sands and gravels. Many cargoes from abroad have been imported for this purpose into thic eastern parts of Britain. Bones have thus become a considerable article of commerce with Germany, Belgium, and Holland; so much so that the govermments of some of these countrics have it in contemplation to subject them to an export duty.

Experiments on bones as a manure were made long before their use was extensively adopted; and these, in general, were not attended with very favourable results, in consequence of the bones not being broken into sufficiently small pieces, or being put upon the land in too fresh a state. But since mills have been erected to crush them to a small size, and the proper use of them has been ascertained, the advantage of this manure, in distant and moultivated spots, where the carriage of conmonstable or yard manure would have been ton expensive, and where it could not be
made for want of food for cattle, is incalculable. : By means of bones large tracts of barren sands and heaths have been converted into fertile fields.

The bruising and grinding of bones has become a distinct business in London and at the principal ports, ready to put upon the land. They are broken into different sizes, and accordingly called inch bomes, hurlf inch bouts, auml dust. Most of the bones procured from London and the manufacturing towns, have undergone the process of boiling, by which the oil, and a great part of the gelatin which they contain, have been extracted.

At first sight we should be led to imagine, that laving lost much of the rich animal matter which they contained, they would be proportionably less effective in the soil. This, however, does not seem to be the case from the comparative experiments made with bones which have been subjected to boiling, and those which were quite fresh. All those who have used bones extensively report, that little difference can be observed between them; some men give the preference to those from which the oil and glue have been extracted. But. oil and glue form excellent manures. How is this to be explained? It appears, from the results of many experiments, that bones do not furnish much nourishment to the roots of plants, until they have undergone a certain degree of decomposition. The fat and the gelatin, being intimately blended with the boney matter, and contained in cavaties or cells, may remain a long time in the earth without decomposition. As a proof of this, it has been found that bones which have lain in the earth for many centuries, on spots where ancient battles were fought, affordect, on analysis, nearly as mith gelatinous matter, by the
abstraction of the earthy parts, as fresli bones would have done. Bones analysed by Fourcray and Vauquelin were found to consist of

Irarts.
Solid cartilage, gulatine, aml oil. 51
Phosphate of line. 377
Carhonate of lime.. 10 .
Phosplatio ol magucsia....... :.. 1 . 3
It would seem, then, that the great effect of bones, as a manure, must depend on the phosphate of lime; and the effect of bone ashes seems to strengthen this opinion. But a close examination of the fields manured with: bones, has led us to surmise, that much of their inportance depends upon the mechanical texture of the bone, and on its power of $a b-$ sorbing and retaining moisture; for if a plant, which vegetates with peculiar vigour in a field manured with bones be pulled up, it will be almost invariably found that small pieces of bone are attached to the roots; and when they are minutely examined, the smaller fibres of the roots will be found to have grasped them, and to pervade their cavities, which will always be found more or less moist. The moisture, then, and a small portion of the remaining gelatine dissolved in it, lorms the food on which the plant has thriven. The more the bones have undergone fermentation, the more soluble the gelatine will be. In its fresh state, it is only soluble in warm water, and the oil repels moisture. This accounts for the seeming anomaly of the superiority of boiled bones. They have undersone fermentation. The residue, although not deprived of all its animal matter, is much more porous, and will imbibe and retain moisture in its pores. The food of the plant is here ready prepared and dissolved, and kept in store without being in danger of being washed through a porous soil or evaporated by the hear. The selid substance, which is
chiefly phosphate of lime, has a stimulating effect, and assists that of the more soluble parts. But phosphate of lime is not soluble in water, and does not decompose readily in the earth; its effect, therefore, is not so great as to account for the general result. The universal experience of all those who have used bones as a manure, proves, that they are of little or no use in stiff or wet soils. In stiff clays the pieces of bone are bedded in a tough substance, which prevents their decomposition; and in very wet soils the advantage of these snmall: but numerous reservoirs of moisture is lost: Hence it is easily seen why bones are of less use in such soils.

But it is ascertained that the effect of bones on the crop is much increased when they have been previously . mixed in heaps with ashes, burnt clay, or light loam, or made into a compost with the dung of nnimals, and with veretable substances. In this case the fresh bones will evidently be much more advantageous than those which have been boiled; for the fermentation will extract and clecompose the oil, and a great part of the gelatine, which, mixed with the other ingredients of the compost, will much eurich them; while the bony residue will be in the same:state as it would have been, if the bones had come from the boilinghouse. By comparing all these facts we naturally come to the conclusion, that the most economical use of bones is to extract from them the of and gelatine, which, if not of sufficient value for the manufacturer of glue or of ammonia, may be used as a supplementary food for pigs, in the fornm of a broth, or pot ligour, which; mixed with meal, will greatly accelerate their ${ }_{j}$ growth, or increase thcir fut. For this purpose the bones should be broken in a mill to a muderate size, like those called inch
bones; they should then be boiled or steamed for several hours, and the liquor strained ; this, in cooling, will be found to form an animal jelly of more or less strength, which may be thickened by boiling, and finally dried into a glue or portable soup, which will keep for a considerable time.

The price of fuel, and attendance being calculated, it will be seen whether this operation is a real economy or not; if not, the bones may be allowed to ferment in a heap, being mixed with sand or coal-ashes. In this case, they may be ground at once to the size called falf:inch; in the other, they may be passed again through the mill after having them boiled.

The mode of applying bone manure to the land is by sowing from twenty to forty bushels of them per acre, by the hand broad cast, as is done with corn, and harrowing them in with the seed. About twenty-five bushels per acre is sufficient to produce a good crop, on poor light sands, and it does not appear that beyond this quantity they have a proportionate effect. It is better, therefore, to repeat the dressing, than to put on much at once. When used as top dressing for grass land, they have, in some instances, produced a great and very durable improvement, when the quantity was large; but in most other cases it has been found much more advañtageous to reserve them for turnips or corn. Bones have been dilled with wheat, at the rate of thirty bishels of bones, and two and a half or wheat per acre, and a good crop (twenty-four bushels per acre) has been obtained on very poor soil : while portions of the same field sown without any bones, in order to ascertain the effect, did not produce sufficient plants to cover the ground or return the seed.

On very dry gravelly soils, and in
dry summers, bones produce the best crops. Many large tracts of waste land have been brought into cultivation by means of bones, as the only manure which could be procured; and without which they must have temained in a baren state A great advantage of manuring land with bones is that they introduce no weeds, which farm yard dung inevitably does. At present they cost in London 2 s. per bushel coarsely ground, and $2 s$. 6d. to 3s. when in a finer state. The mill which is used to break and grind bones; consists of two iron or steel cylinders, with groves running round their circumference, the projections being cut so as to form strong teeth. These tura upon one another by means of machinery, so that the teeth of one run in the grove between the teeth of the other. There is a plan of the machine and mill given in the Cyclopedia.

HOTATION AYD DISTRIBUTION OF CRODS.

Mirbel, A lecturer at one of the Colleges of Paris, makes the following excellent remarks respecting the well known fact in rural economy, of the necessity of changing crons-or of not requining the same land to do the same thing twice in succession:-
"Every farmer knows that he is obliged to mary his erons, nor dous he over think of exacting carn fin two sticcessive years firm the stme pitece of latif hat few art probahly a ware of the many explanations which have been propuseat, to explain this apparent caprice in the earth. When it has leen aseernaned that any pivoting phant (as turnips for example) flourishing upon the soil where the year before the locto segestes had waved their yellow com, this was supposed hy some writers on agriculture, to result from the radicles of this class of plants having a pawer to make their way theough the already impoverished sutperficial layers," and striking deeper into a'virgin suil where thie power of sustentation was yot unimpuited. To this hypothesis it may be objeeted, thint were the elements of nutrition and growth contanodin the eath, and these all that phats required fin . their
support, then it would be sufficient to manure the corn-field of the year preceding, to mako it capable of a second year's erop. This, however, is contradicted by experience. Pip.let's necount is mit more satisfletary. This writer suppoed that the circumstance of turnips succertiar carn (or of the suceession of crops to each other generaly) wisis pohably owiag to different piants requiring and withdraving, not the same lint difereat elements, the supply of any of which being linited, the earth is amerced of some new and sustaning primaple ly every steceeding crop. This explanation, however, assmmes that plants have a power of stetectiag their nuritive materials, in assumption not only hypothetical, bat wholly contradieted by expurience ; for phats are ohserved to take up bulferenty all substaness saluble in watier. 'The spacuLation of Decamdulle is a third unsucessfulattempt, vis; that the exeretions firm plats diuring theng grow th may ate as puisans of tho earth, amd atter a certatit time, so injure it, as to prevent tha further growth of a plant that may have recently flouththed there. Such axeretions he suppuses to be cmanations from the root, the remans of these juices which the earth sud air comointly supply, and upon whieh in reality, the phanemxists. Butagrinst even the very fate mentioned ly Deeandelle, in confirmation of his opinion, that opium strewed upon the ground kills phants, and renders the soil hencelerth unprepluctive, we may quote the muel mine oquisite fict, that trees (and why not thereflire, " firtioni; e"rns, and grasses) grow and flourish fir entirecenturies. in the midst of exeretimens firom their roots. Mirbel's own explanation, is simple, and we think satistactory: Phans' require other clements for their support, hesides tho clements of assinisiation, and nerer thrive without them-for instance, there is silex in the enne, mand there is lime in certain plants, whose organization conld not he completa without it. The quantity of may sum foreign ingredients in a plant is generaly very small; bat the necessity fur it- may be 'presumed idsolate. Plants camant be constituted, unless all the materials they require lus furnished to them ; and indeed the same onservation will apply to animals: deprive a hen of lime, her eges will have ho shell ; deprive animals generally of salt, and you ruin their power of digestion; deprive the earth then of its sodi, and rou must supply its place by patash; for satcs are the excitants of the growth of planti, and of the clovers in a very remarkable mumer.- The stimlest quantity of sea salt has frequenty been found to effect wonders in vegetation. But the spontancous formation of any of these sults is the result of yrary show niminical ohanges, which have ineen at work for centurics ; find
when the natural and very limited supply is exhausted (as it sonn will be, if the earth be forced to give her increase,, the corn of every succeeding. year deteriorates, the field looks shably, becomes chlorotic, and pines away; lat allow the corn to fall where it grow, and the earth will re-issume the salts extracted from it during such growth, and the same grain will continue to flourish indefinitely. In short, a peele of salt is worth a time of manure; and it is to the understanding of this fact that we may attribute the lusitiance of the environs of Paris, where the suil is nathrally of the poorest kim, but is made loy this simple addition to yield its unequalled produce, and to fill its flower and its fruit markets with plenteousness."

Every experienced farmer must be aware of the utility of a judicious rotation of crops, particularly on lands that lave been some years in cultivation. Arable land, may, by proper management, be kept in a state of profitable production for many years, provided green and grain crops of various kinds are cultivated upon it, in regular succession. The arable lands of Canada have been exhausted and injured in consequence of growing the same species of grain upon them year after year, without introducing summer fallow, green crops, manure, or lime.

Rotations must be suited to the different kinds of soils. The rotation that would be proper for clays would not be suitable for light and sandy soils. The cultivation of turnips can never be extensively introdued inour rotation in Canada. We will therefore have to summer fallow to a much greater extent than we have hitherto done, in order to clean our lands, and give a'better opportunity of ploughing then into the proper sort of ridges, which can be better executed alter fallow than when ploughed after grass or any kind of crop, except, nerhaps, a drilled crop.

The strong clay soils of Lower Canada require to be judiciously managed, or they will not be profitable. Unless they are thoroughly drained, and ploughed into well formed ridges, they must, at all times, be
either too wet, or too $\mathrm{d} y$, to be profitably worked. It is when land is fallowed, that it may receive the most perfect culture, and be brought into such a state that it will produce several profitable crops afterwards. By a judioious fallowing, and manuring if necessary, the exhatisted soils may be fully restored to the highost degree of fertilits:

Every experienced farmer must know that all kinds of soils are not fit to produce a good crop of wheat, without inparting to it some qualities that are wanted, and that are necessary for soils to possess in order to their producing a profitable crop of wheat. Almost all the lands of Canada, if properly drained and manured, may produce the other kinds of grain that are usually cultivated in perfection. Heavy clay soils are not the most suitable or profitable for potatoes or other root crops, and these kind of soils will do better to be fallowed and manured, and thus kept constantly clean and in good order, while in tillage. When laid down for meadow, they will generally produce abundant crops of hay.

Moory soils, if properly drained, and dressed with lime, clay, or sand, will produce good crops of cither grain or vegetables, but unless they are perfectly drained, and dressed with lime, clay, or sand, they will not yield profitable crops. Good crops of wheat have been obtained in Eugland on moss land, when well hmed. It is very essential that the farmer should understand the nature of the soils he has to manage, and distribute his crops accordingly. A good crop of oats may be obtained on land that would not be in a fit state for either wheat or barley, and a good crop of barley may be grown on land that would not produce a profitable crop of wheat. Rye may also be grown on lands that are not fit for wheat. Sowing lands with wheat that is not
fit to yield much over the seed, has been the cause of great injury to Canadian farmers.

The following remarks on "The Succession of Crops, or Rotations," is from the "Penny Cyclopredia":
"It has been found by experience, that besides the general exhaistation of humas produced by vegetation, especially by those plants which bear oily or farinaceous seeds, each kind of crop thas a specific effect on the soil, so that no care; or manure, can make the same ground produce equal crops, of the same kind of grain, for any length of time, without the intervention of other crops. Whether this be owing to any peculiar nouvishment necessary to each particular kind of plants, or because plants not indigenous degenerate in a foreign soil, the fact is certain with respect to most crops usually raised, and particularly red clover. This points out the advantage of valying the crops, according as they are found to succeed best after each other. In general, all kinds of grain succeed best after a crop which has been cut before the seed has ripened, or the stem is cried up. Those plants which have a naked stem with few leaves, thrive best after leguminous plants, Which have more succulent stems and more leaves, and which bear their seeds in pods, as peas, beans, tares or vitches; or after esculent roots, which strike deep into the ground, as carrots, parsnips, beet-roots, and turnips.From this circumstance, confirmed by universal experience, the different systems of rotation have had their origin, taking the nature of the soil into consideration.

The simplest rotation, and one which cin only be adapted to the richest strong allivial soils, is that of wheat and beans, alternately, and withont any intermission. It is in use in some parts of Kent and Essex, and in a few places in Gemany. The
land is well prepared and manured for the beans, which are set or drilled in rows, so as to admit of horse-hocing between, till the beans get to a considerable height; besides this, careful land-hocing and weeding are practiced, by which the land is cleaned and stirred as in a regular fallow. The beans being cat, the ground is ploughed once, and the wheat sown.

The oldest rotation known; and Which was almost miversal in Europe, from the time of the Romans, whereverany regular system of agriculture prevailed, is the triemial rotation of fallow, winter corn, and summer, or lent, or spring com; that is, wheat or rye sown in autumn, and barley or onts sown in spring. This was called the three field system; and on erery farm, the arable land was divided into three parts, one of which was in fillow, one in winter corn, and one in summer corn. *************)

This rotation had its advantages, or it could never have been so long in use. When a sufficient quantity of manure could be collected by means of cattle fed on pastures and commons in summer, and in the strawyard in winter, to give a regular dressing to the fallows every third year, good crops were produced, and fertility kept up. The labour was very equally divided throughout the year, and such was the regularity of every operation, that a large quantity of land might be cultivated by a proprictor, at a considerable distance, with only occasional inspection, without ány overseer or bailift, provided he had honest servants. But, when pastures came to be broken up, and converted into arable land, and cattle consequently diminshed, the rand coild not be manured on every fallow; the erops suftered, less being grown, the quantity of manure was diminished, and the land hecame gradually less and less productive, till from necessity, a portion was left uncultivated, and returned to natural
and inferior pasture; this gave the idea of laying the land down regularly. to grass by sowing seeds; and gradually introducing the alternate aud convertable system. '* **' \%

A long fallow from after harvest until the second spring, including two winters, prepares the land, if strong clay, admirably for barley, so thal it can be sown without any manure, which may be reserved as a topdressing for the young clover alter the barley, or after one crop of clover'. [This is a very excellent method].

A very common rotation in Scotland is fallow, wheat, clover, or grass, fed one, two or three years, then oats, peas, or beans, and whent, aguin, ilthe land is clean and in good heart: for there is no rule better established, than that of never allowing the soil to be exhausted beyond a certain point, where manure and tillage can readily recruit it The greedy cultivator is sure to pay dearly in the end for every crop forced from the land unreasomably.

A proprietor with skill and experience, cultivating his own land, need only consider the state and guality of his fields, and what will most likely grow well in them; what is most in request; both for his own use and in the market; what will keep his men and cattle "in most regular work, without confusion or hurry. If he allows his land to be impoverished for want of manure, or to son wild with weeds, for want of hoeing or fallowing, he has not the experience and judgment which are necessary for his pursuits.

The Flemish Tiusbandry proceeds upon this principle. The greatest attention is paid to manuring and weeding. Much more manual labour is bestowed than vith us, and the crops'sem more certain; varied, and abundant. That it is not unprofitable we may conclude from the wealth of
the peasants, the comfort of the labomers, and the sleek appeamace of the cattle. From the very interesting account of Flemish agriculture in the work of Mr. Van Aelbrock, of Ghent, written in Flemish, translated into French, and published in Paris in 1830, we hear with what great: care the soil is cultivated in Planders. After ploughing into lands as we do, every intervening furrow is deepened and cleaned with the spade, the earth being thrown over the bed sown. Liquid manure (which is sadly thrown away in this country, chiefly: the urine of animals and drainings of duughills, is carefully collected, and is carried on and distributed dver the poor light soils, by means of water-carts, before sowing, and again when the crop is come up. By this means; such lands are made to yield crops of rape seed, clover, lucern, flax and com, equal in luxuriance to those in the richest soils.: Fallows are rendered unnecessary by the careful destruction of weeds: . In short, it is a garden, culture on an extended scale.

This system is said to be also followed in Switzerland, which, considering its soil and climate, is, perhaps, one of the best cultivated countries in Europe."

The extract that is given from the Penny Cyclopredia is well worthy the attention of Canadian agriculturists; and what follows, from the same work; is not less so; though it refers only to English farming, where lands are subject to rent and taxcs.
"We have now given a brief outline of the manner in which arable land may be cultivated and improved. If we should be asked, whether so mucli attention and labour upon land of a proper quality will be repaid by the yalue of the produce, after deducting the portion due to the landlord, or to the state? wo shall answer, without any hesitation, in the aftemi-
ative, proviled the cultivator is possessed of knowledge, judgment, and experience, and devotes all his time to the superintendance of his farm. The calculations on which this opinion is founded camot be introfuced here; some idea, of them will be given in the article Panm, Agriculture is so healthy, so agreeable and so moral an occupation, that it can never be extremely profitable; the competition for land will always prevent this. The butcher and the cattle dealer will always, if successful, make far greater profits than the famer; and decent livelihood, with a moderate interest on the capital laid ont, is the most that a farmer can expect, even with the greatest assiduity. It he neglects his business, and leaves it to others less interested in the result, he must be a loser. Gentlemen who cultivate for pleasure, and employ bailifts, are fortunate if they get a moderate rent after paying expenses. For carcless farmers, the simplest system alone can prevent great loss; and grass land may be profitable in the lituds of a proprietor, who would probably be ruined if his land were all arable and in his own hands."

In a future number this subject will be again referred to, and various rotations proposed. Also, an article will be given on the "Absorption of Natriment by Plants."

SPIENG SOWING, AND PLANTMNG.
Up to this day, May the first, the weather has been so eold and unfavourablescarcely has the spring work been commenced. The sowing of Wheat is purposely putiof by farmers till about the midule of May, as the only means to save the crop from the ravages of the wheat fly. There is considerable risk in sowing wheat late, that in unfavomable seasons it. will be subject to be injured or totally destroyed by rust or mildew; but.
the danger to be apprehended from the fly is still greater, and the only chance of safety in a great part of the district of Montreal, is by : late sowing, so that the wheat may not come into ear before the middle of July at the soonest, and by that time there is less danger of injury by the fly, thongh it may not escape altogether. This insect has rendered wheat a very uncertain crop in some sections of Lower Canada; and perhaps the only means to get rid of the plague would be to desist from sowing wheat for a few years.

Perlaps it would lessen the risk in wheat when sown late, not to sow clover or any grass seed with it. When the season happens to be moist, the young clover growing luxntiantly among the wheat is very subject to produce mildew in the crop. In the month of July, if the weather is moist and warm, a crop of wheat that has clover, grass, or weed;, growing among it, is almost sure to be injured by mildew. Thegreen herbareabout the wheat stalks retains the moisture constantly in close damp weather; and when that is the case, the crop has no chance of escape from disease.

Fern wheat is a spring wheat, and said to be very productive, and early sipe. The following report of it, and other spring wheats, will show their comparitive value :-
"When sown along with common white, and red Essex wheats, on the 26th of March, 1833, the fern was cut on the 27th August, and the others on the 30th of September, making a difference in favor of the fern wheat of thinty-four days.

Produce per acere. Wright per bushel. Fern wheat. 36 bushels : $63 \frac{1}{1} \mathrm{lbs}$. Led Essex......... 30 di. \because G2L lis. Common white... $27 \frac{1}{2}$ dow $60 \frac{1}{4}$ lbs
This difference, both in quantity and quality, in favor of the fern wheat, was supposed to arise entirely from its early ripening ; the weather having set in clull and wet for two weeke previous to the other sorts being cut, and continuing so the greater part of
the time they were in stock: When sown in the last week of March in Euglaud, it is found to ripen as early as any of the fall wheats sown in October or November previous.

The spike is very long (about six inches), compressed; of a light redish colour, spikelets and awns spreading, the former very remote, and often containing four grains, and the latter considerably shorter than the spike; srains elongater, and of a brighthight reddish colour, rather flinty:

It requires to be pickled before sowing, being liable to smut, and should not be allowed to stand till over ripe, being very apt to shake.

Cone Rivet, Anftety, or German thickser Wueat, is, I belieye, a fall wheat, and of inferior sumple. It is said to be very little injured by the fly, and is the only wheat that resists the ravages of that insect.

Bamesy is, of all the cultivated grains, that which comes to perfection in the greatest variety of climates. It bears the heat and drought of tropical regions, and ripens in the short summers of those which verge on the frigid zone. It is certainly the nost suitable grain that can be caltivated in those districts of Canada, where the wheat crop has been'subject lately to the ravages of the wheatfly. Boul the soil and climate are favoumble to its production in perfection, and if the consumption of this grain could be increased ini the same proportion that its production is capable of being angmented, it would be the most profitable crop that we could cultivate in this country.

In Scotland, Germany; Holland, and many other countrics, barley is prepared in ratious ways, and used as food by the labouning classes.

[^2]When properly manufactured, excellent flour inay be made of barley ; also, what is known as pot and pearl barley; used in broths, stews, and puddings, as a substitute for rice. The bran is good for feeding cattle and swine; and if steeped in water, and allowed to ferment till it becomes acid, what is called soucons may be made from it, which is a sort of food very much relished in the old countries. It would be better that our farmers should cultivate this grain, and accustom themselves to use some of it as food, than to incur the risk of sowing wheat while we are subject to have it destroyed by the wheat-Ay.

All kinds of barley, require the same soil; aid whatever time they are sown, the ground must be well prepared, and the soil puiverized by repeated ploughings and harrowings, if necessary; in order that the fibres of the roots; which are very minute and delicate, may penetrate the soil easily in search of nourishment. If the soil be heary and tenacions, and not in a sufticiently divided state to receive the seed with advantage, it should be worked and stimed until a proper tilth is produced. It is an irretrievable ervor to sow barley on land not properly pulverized. It is considered in Engrand, that the soil can scarcely be too dry on the surface at the time of sowing, and, provided a. fow showers supply the moisture, necessary to make it vegetate and spring up, there is no great danger to be appreliended from too diy weather Barley has been known to grow and ripen, when not a siogle shower refreshed the soil from the day it was sown to that in which it was reaped. Land that lias been properly summer hallowed is the very best for growing barles. Barley is now frequently sown in England with the drilling machine, and it is considered the best mode of sowing. The land that is tou rough to allow of drilling, is supposed to be unfit to sow barley in,
and only fit for oats. With the drilling machine, from two to three bushels of seed is sown in England; and if not drilled, about one bushel more. 'Two bushels are anuply sufficient in Canada.

The proper time for sowing in this country will be the first day that the land will be in a proper state to receive the seed. The early-sown will be the best, provided the soil is well prepared, and dry when sowing. It will have more time to tiller before the hot weather draws up the stems, and the crop will generally be heavier than the late sown.

The depth at which the seed should be deposited, depends on the nature of the soil and of the season. As a general rule, a depth of from one and a half to three inches, according to the nature of the soil, is most likely to enable the seed to sprout well, and give a sufficient hold of the land by the roots to avoid the danger of lodgring. In very light soils, and dry seasons, when the seed is deposited sufficiently deep, the roots, springing immediately from the seed, are less exposed to be dried up. But in stiff soils the seed, buried deep, may have much difficulty in germinating, the air not having sufficient access, and the first shoot not being able to pierce the compact soil above it. It is of consequence that all the seeds be deposited at a uniform depth, to ensure their shoots rising at the same time; for when some rise earlier and some later, it is impossible to reap the whole in good order; some of the ears will be too green, while others are shedding the seed from being too ripe. This is one reason why the drilled crops are in England much more regular in their growth than the brood cast:

The practice of sowing clover and other grass seeds with the barley, is considered in the British Isles, as one of the great modern improvements in agriculture. It is also very gene-
rally practiced in Canada by farmers from Europe. Indeed, lands cannot be laid down for grass in good condition, unless this practice is adopted. In England, when the season is wet, clover is often found to injure materially the barley crop by its lasuriance; but in Canada there is not so mucli danger from this cause, as the barley is carlier ripe, and the seasons genemally drier.

In Flanders, clover is seldom sown with barley, but chiefly with rye; but they sow a species of white carrot instead, in the sandy soils. These push out very little of the green top, but shoot their fibres downwards, which form the rudiments of the carrot. After harvest, the ground is well harrowed, and watered with liquid manure. The carrots, which. could scarcely be observed above ground, soon spring up, and a good: crop is secured before winter, that is extremely useful for feeding cattle. and swine.

The same practice might be adopt-. ed on a small scale in some situations. in Canada. It is certainly worth a trial.

The produce of barley in England: on soils properly prepared, is from: 30 to 50 bushels, and sometimes. more, per statute acre, weighing from 4.5 to 55 lbs. per bushel, according to. the quality. According to Sir H. Davy, the whole quantity of soluble: or uutritive matter in 1000 parts. of wheat was 955 , in 1000 parts of: Norfolk barley was 920 , and in 1000. parts of oats 74.3. In the article on. barley in the Penny Cyclopredia, a. different estimate is given. Wheat is said to contain 78 per cent of inu-. triment, and barley 65 per cent. A bushel of barley weighing 50 lbs . will: contain about 32 lbs of nutriment, wheat weighing 60 contains 47 liss-. and oats weighing 40 lbs will contain. 24. lbs of nutritive substance; so that the comparative value of wheat, barley, and oats, in feeding cattle, may:
be represented by 47,32 , and 24 , the meastre being the same. It is remarkable that, allowing some addition to wheat, as more generally used for human food, these nambers very nearly give the usual proportions between the prices of these grains. The experiments on which this calculation is founded, were carefully made by Einhof, and confirmed on a large scale, by Thear, at his establishment at Môgelin, the accounts of the results being accurately kept.

On all good loamy soils properly prepared; barley is a more profitable crop than oats, and exhausts the soil less. On stiff clay soils it will not thrive so well, and on them oats should be sown. In some districts in England where the best barley is grown, the farmers seldom sow oats, but prefer buying them for their own use, even with the additional expense of market and carriage.

Oats can be raised in great perfcc-tion in Canada by proper culture, and early sowing. We may see bad samples of oats in our market, but it is certainly the farmer's fault that they are so. We cannot expect a large produce and good sample, from imperfect cultivation, and late sowing, which is the usual practice here. Oats, above all other grain, requires early sowing, to insure its being a profitable crop. When sown late, unless the season is very favourable, it will not ripen perfectly, or be of much value. Ploughing for oats is senerally put off until the spring, and with the other work that has then to be executed, the sowing of oats is sometimes continued to the 1st of July, when it ought to be nearly fit to harvest. The same quantity of land that is usually in Oat crop in Canada, might, by judicious management, produce certaniny double what it does now both in straw and grain, and withont much additional expense, except for better draining. This is a great sacrifice, for which
there is not much excuse for the farmer, under ordinary circumstances.

Oat meal is coming into use in Canada, within the last few ycars, particularly since wheat has failed so much in some sections of the province.

Potatoes have been subject to the disease of dry rot in Lower Camada for the last three or four ycars; and it is a disease very difficult to account for or to imblerstand. Early planting is the most effectual remedy against it. This year, carly plauting will not be practicable unless on farms that are well drained, and that are of a light loamy soil. While the sed is sulject to dry rot, potatocs ought not to be planted later than the end of May; and when it is not possible to have them planted before that time, it would be well to plant them whole. Potatoes that are planted whole, if sound when planted, will not be destroyed by dry rot. It would be necessary that farmers should raise new seed of potatoes from the apples. It may be readily done, by preserving the apples that are produced upon the potatoe vines. The proper method of doing so shall be explained in the next number.

New varieties of potatoes might be introduced from the British Isles; and though they would not succeed in perfection the first year or two, they might be inured to our climate, in a few years, and be brought to the greatest perfection.

In Lawson's "Agriculturist's Manunl" there are 146 varicties of the potatoe described. The name is given -height of stem, habit of growth, folinge, flower, slape of tubers, colour and other peculiarities of the skin, fold of increase, general remarks, and the quanity of starch in the pound of tubers. It may be useful to give a description of a few of the varieties that are not known in Canada.

Of the early sorts adapted for forcing, on account of their dwarl' labit of growth, are the following:-

Fou's Early Dolight is described to be mealy, stuperior flavour, and healthy; shape of tubers,' slightly hollowed at the euds; colour white, skin rough, and netted-like. Fold of increase 13 -starch in 1 lb . of tubers, 619 grains.

Fox's Soln Bull, or Early Kiclney, is of at whitish. colour, the skin smouth; shape of tubers, long, and of nearly uniform thickness. Excellent guality. Fold of increase 15-starch 54.3.

Taylor's Forty-fold, shape of tubers, oval, mach flattened, colour dull ruddish, mealy, superior flavour, and healthy. Fold of inerease 20starch 502.

Or the carly feld sorts, The Old Flat White is described as a good variety. The shape of the tuburs is much fattened, and slighty oblong ; very white and sminoth. Fold of itcrense 16 - starelh 880 .

Wells of Creat Dritain, are of a broad shaipe, slightly flattened near ihe point, and smooth. A very good sort. Fold of incrcase 15 ; stareh 648.

Dougtas's Irish Kidney, sliape of ubers, loug, mil thickest towards the point; colour dark bluesish purple; mealy, sood Havour, and healthy: Fold of increnae 16 -starch 560.
Fich Nosed Kiducy, shape of tubers, loug, often slighty curved; colour whitisti, with a reddish point, and about the eycs. Fold of increase 16-starch d4. An excellent variety.
Late field potatocs, the foliage of which, in ordinary seasons, will not decay until ingured by frost, and the tubers of which generaliy require to le kept some time before they are fit for using to the greatestadvantage.

Pinh-ryed Srish, shape of taibers, mondish; colour whitish, slighty tinged with red, aum pretty smooth. Fold of increase 15 -starch 650. Mealy and healdily.

Louthm Bhese, slape of tubers, round; colour, diat haceish purple
and rough. Fold of increase 16starch 687. Mealy, good flavour, and healthy.

Stafóld Hall, or late Wellington Potaioc.-Specimens of this valuable variety presonted at various periods; by Richard Lowthian Ross, Esq! of Staftold Hall, Cumberland, who ob. tianed the Highand Society's medal in 1827, for its introduction. Mr. hoss has grown this sort successively on a deep rich soil, approaching to clay, for a long period, and lias never found it to present the least symptom of curl or discase of any kind, either in its foliage or tubers, and to produce per imperial acre he has found in several instances to excecd 30 tons. Mr. L. Ross further states, that the Staffold Hall potatoe does not attain its greatest perfection for using until about the end of November; or until it has been pitted for a month or two; and that it remains good until the carlier soits are ready in the following season ; and that also, from its possessing great solidity in cooking, it is better adapted for steaming than boiling. Also, specimens of tubers by Andrew Fowden, Esq., East Lothian; crop 1534, averaging from $3 \frac{1}{2}$ to 4 . lbs. imperial cach, under the names of Wellington or Provost; and besides its use as a table potatoe, he recommends its culture for feeding cattle, from the great return which it yields, and which, by referring to his important "Essay on the comparative value of different varietics of the Potatoe," published in the transactions of the Highland and Agricultural Societics of Scotlaud, vol. 19th, will be found in this respect surpassed hy few in his colloction, amounting in all to one hundred and thitry varisties. Also, specimens by Robert Downic, Esq. of Appin, grown in Argyllshire, where this varicty is fomed to succeed remarkably well, and to keep till Junc. It is worthy of remark, that the Stalfold Fall, or late Wellingtou potates,
was found superior its specific gravi-, ty and quanity of starch contained in a given weight of tubers, to any of the other varieties there enumerated, amounting, to seventy-three. The shape of the tubers of this potatoe is rather flattened, round, or a little oblong; colour of the skin, dull red, approaching to purple. The fold of increase 22, and is described to be very mealy, very superior flavour, and very healthy. One pound of tubers produced 813 grains of starch.

Large prolific sorts particularly adapted for feeding cattle.

Pink-eyed. Dairymaid. Colour, pink or purplish; shape of tubers, roundish and deep-eyed. Fold of increase 29-starch 506-indifferent flavour, very healthy.

Irish Lumpers. Colour whitish; shape of tubers, slightly oblong, and much flattened. Fold of increase 23 -starch 661-bad flavour.

Brown's Pancy. Colour whitish; shape of tubers, slightly oblong, and flattened. Fold of increase 1Sstarch 4.98-medium flavour.

It is not necessary for the present to allude to any other of the varieties mentioned by Lawson. We can mise as many varieties as we please in Canada from the seed-apples; and it is probable that the varieties so mased will be better suited to our climate, and other circumstances, than any we can import from abroad.

It is recommended in England, to mix some powdered fresh lime among the seed potatoes after they are cut for planting, as a means: to prevent dry-rot.

SCARLET'IREFOIL, \&c.
Scarlet Trefoil is said to produce in Fngland three tons per acre, where, on the same farms, red clover did not produce over one ton per acre. In Lawson's Agriculturist's Manual, this clover is fully described Trifolium Ingarnatum-Scarlet,

Crimson, or Italian Clover, or Trefoil. In French, Le Trüfle Incarnate. Specific Characters-Spilses, or heads oblong, tapering, and nodding on one side, of a beautiful bright scarlet colour when in flower, leaf. lets roundish, stem pretty upright, much branched; the whole plant (stem, branches, leaves, and calys) villous or covered with short wool or hair, flowers in June and July; height eighteen inches to two feet; root annua!, native of Italy. It has been lately introduced, and grown with much success in the South of England. It is found to succeed best; either drilled (in rows at the distance of from S inches to 12) or sown broadcast on stubble after the corn crops have been removed, and with no previous preparation save a course or two of harrowing, just sufficient to stir the soil to the depth of an inch or tivo, so that the sced may be more easily covered. In very tenacious soils a very shallow ploughing is given ; but in general it is found better to dispense with the plough altogether:- Failures that have occurred are attributed entirely to the ground having been too much loosened and pulverized by repeated ploughings.

It is said to be much more readily eaten by horses than the common clovers. 18 or 20 lbs. of seed is sown to the acre in England.

The Scarlet Italian Trefoil, when ripe, the sced will appear by the top of the capoule opening of a yellow or gold colour, and when one half has attained this state, do not wait for the other; for although this will retain a green hue, it will be good growing seed; and if this is waited for until fully ripe, lalf the other will be left in the field. 'A fter cutting, move it as little as possible, or the capoule will separate from the stem, and when raked in for carting, perhaps it might be neccessary to do so
while the dew was on in the morning. Fifteen bushels of seed is produced from the acre on an average.

Alowandrinum, or Eryptian Clover, has flowers of a light sulphuryellow, or French white. It has been lately introduced in England, but is not yet much cultivated there. It is, however, considered a valuable agricultural plant.

Sainfoin is an agricultural plant that ought to be introduced into Canada. It is highly recommended both in England and France, as being productive on light or chalky soils. A new variety received lately from M. Vilmorin \& Co. Paris, and cultivated at Meadowbank Nursery, flowered the fourth of June; height two and a half feet; seed ripe 2 Sth July; height fully three feet; second cutting in full flower on the 4.th of September; greatest height about two and a half feet; seed necessary per acre 100 lbs ., or four bushels.

I'LALIAN RYE GRASS.

In the twelfth number of the Quartely Journal of Agriculture, the following obscrvations, from the BulRetin des Sciences Ayricoles, were made on Italian rye grass :-
"This plant is said to be distinguished from the common rye grass (Lolium pereme), by its large leaves, by its being of a decper green, and by the greater height to which it grows. It is usually sown in Autumn, as is the general practice with grass-seeds in the south of Europe. After the field is harrowed, it is sown at the rate of from 16 to 18 lbs . per acre, and the seed rolled in. In the following Autum the turf is covered like an old meadow, and the crop of the following year is more than double. It may be also sown in spring. If it be sown with clover or lacerne, its growth is so rapid that it will quickly choke them.

It is enten greedily by cattle whether green or dry, and yields fifty per cent. of hay."

Mr. Lawson says this grass is found to be more hardy than the common rye grass; for, in the vicinity of Hamburgh, the common rye grass will not sland the winter when very severe; whereas the Italian rye grass withstands the severities of winter, even when sown in September ; and, consequently, the plants are young and tender when the frosts prevail. It is a perennial grass.

This grass lias been lately introduced into the British Isles, and is very highly recommended by those who have cultivated it. In a future number a more full account may be given of its cultivation, produce, \&c. The spring is now nearly over, and the sowing almost completed; so that it will be too late to procure any new seeds for this season.
summer fallo ving, weeding, Sce.
"Exposition to the atmosphere is one of the principal advantares. The most stubborn, and unfertile soil, if exposed to atmospheric influence, will be improved in its texture, and rendered much better calculated for the process of vegretation. This is effected, either by the soil acquiring properties from the atmosphere, or by those substances which render it barren, being neutralized, destroyed, or washed away. The fact is, that by no other means but by a complete summer fallow, can a wet bottomed clay be freed sufficiently of the moisture it has imbibed, which having been long locked up in the soil, holds saline and mineral matters in solution. These matters being discharged, the soil readily imbibes fresh water, and gets into a mellow and fertile state. The soil becomes more friable, the crops which it produces are vigorous, and abundant, and,
coniparatively speaking, free from weeds."-(Tstrat from Sinc.air.)

An experinent has been made in Scotland by planting potatoes in a part of a fallow field where the soil was favourable, with a greater allowance of manure than the naked fallow; and it was found that the part cultivated with potatoes yielded a less crop of wheat, than the ground that had been fallowed; -the other crops on the fallowed part, were likewise more abundant; and the land much cleaner in the end. The ploughings should be carried on in dry weather, and the cross-ploughing carefully executed, otherwise the process will be imperfectly done, and will not produce much benefit to the farmer.

We cannot expect profitable results from naked fallow, if the process is imperfectly done, and certainly that work is seldom properly executed in Canada. Mr. Marshall, in his agricultural work, accounts fallowing to be the best preventive of the wire worm. All herbivorous insects which. have not the power of tight, at least in their early stages, are bost extirpated by keeping the soil which they inhabit fiee from every thing herbacious, especially during the summer months, when they are in a state of activity, and doubtless require daily support. In that case, they must be destroyed in soil that is properly fallowed. In many English counties fallow is thouglit essential, especially for barley, and it is considered that wherever the soil is strong, clayey, adhesive, and wetbottomed, it camot be profitably managed without fallowing.

The expense of six ploughings, six harrowings, and cleaning of an acre in England, is estimated at $£ 3116$. It would not cost so much in Canada. In Flanders, much of the land is trenched with the spade, and liglit suils are prefered for that operation.

The expense on light lands, trenched 18 inches deep, is fl 60 per acre. On strong lands; 18 inches deep $£ 1$ 112 per acre. And on strong lands, 2 feet deep, $£ 250$ per acre. In parts of England where men are to be found accustomed to dig, light lands would be trenched at $£ 2$ per acre, and strong lands at £2 100 per acre.

Summer fallowing would be extremely beneficial to the strong clay lands of Canada: But unless the lands to be summer fallowed are ploughed the previous fall, the work is not likely to be well executed subsequently:
The following tmarks, on Clay Soils, are from the "Penny Cyclopredia," and correctly apply to much of the soil of Camada :-
"Clay is an essential component part of all fertile soils. . A clay soil consists of a large proportion: of alumina, united to silica, of various degress of fineness, and frequently also a portion of carbonate of lime. When the silien is very fine and intimately mixed with the alumina, the clay; although stiff in appearance, is fertile in proportion to the humus which it contains, or which is artifi cially added to it. It then forms the class of rich wheat soils which produce successive abundant crops without change or manure. "It has a strong afinity for water, which prevents the plants that grow in it being injured by drought; and it has a sufficient degree of porousness to, allow superfluous moisture to percolate without making it too soft. All that is required for such a soil is a porous substratum of rock or gravel ; and where this is not the case; suflicient'drains must be made to produce the same effect.
When clay soils are well drained, and when the effect of noxious salts has been removed by liming, burning', and frequent stirring, it will.be found
that a much smaller quantity of manure will produce a certain return in grass or corn, than on any light soils. The great difficulty is to choose the time when stiff clays are to be worked; and here it may be observerl, that ploughing sometimes does more harm than good. When clay is wet, especially in the beginning of summer, and it is ploughed in the regular procoss of fallowing, the tough moist slice cut out by the plough is set on edge; and the sum bakes it into a bard mass like brick: In this state it is: not improved by exposure to the air, which cannot penetrate this hard substance. It would be much better to plough out deep water-furrows with a plough made oi purpose, and wait until the moisture is reluced by gradual percolation and evaporation; so that the plough should raise a slice ready to break and crumble as it is turied over."' This should be done immediately before winter, and then the frost will so divide and mellow the soil, that, provided it be kept free from superthous water by drains and water-furrows, it will have the appearance of the finest mould when worked with the harrows in spring. To plough it again!would be to spoil all:- It should have received the necessary manuring in autumn, and be ready for the seed to be sown on this pulverized surface. The horses which draw the harrows or the sowing machines should be made to walk in the furrows, which should afterwards be deepened out with the spade, or by a plough constructed for the purpose. A free course and outlet should be formed for all surface water; for no maxim is more true than this, that stiff clays are never injured by a continuance of dry weather, unless they were in a wet state immediately before. The dryest clay contains sufficient water to supply the roots of plants for a long time; but wet clay, in drying and
shrinking, destroys the texture of the roots by mechanical pressurc. This may be of use when weeds are to be eradicated, and in that case a different mode of proceeding may be recommended; but when good seed is sown, the clay should be in such a state as to crumble under the harrows, and it should not be too moist. Experience has taught the plough.. man that clay soils should be laid in round lands or stiches; and much of the produce of a feld depends upon the skill with which this is done. It is not only the surface which should lie in a rounded form, bit the bottoms of the farrows should lie in a reqular curve, without sinall ridges or inequalities between them; so that when heavy rains penctrate through the whole thickness which the plough has raised, the water may find its way into the intervening furrows, without being retained by the small ridges left by, an unskilful ploughman. It is seldom that a common labourer can be made to perceive the consequence of his carelessness. The slightest inclination of the plough to either side makes an inclination in the bottom of the furrow. An inequality in the depth does the same. The ustal method is to increase the depth of the ploughing from the crown of the stich or ridge to the outer furrow. If the land has been cross-ploughed or dragged level before the last ploughing, this may answer the purpose ; butit the stiches are only reversed, and the centre of the new stich is to be where the waterfurrow was before, it requires twice ploughing to bring the stich to its proper fom, and this is not always done, for fear of trenching the land too much. Hence it isalways preferable, where it can be done, to lay the land flat by cooss ploughing and harrowing, before it is raised in stiches or ridges. The marrower the stiches are, the dryer the land will be. The
most convenient width is five bouts, as it is called, that is, five furrows on each side of the centre, which allowing nine inches for each furrow, makes seven and a half feet; leaving 15 inches for a water-furrow, which is deepened into a narrow channel in the middle. *. * *

Clay land will bear a repetition of the same crops much oftener than lighter lands; but every scientific agriculturist knows the advantage of varying the produce as much as possible, making plants of different families succeed each other. : The cere-al grasses are one family, which is the reason why wheat, oats, barley, sc. do not succeed so well after each other as after leguminous plants or clover."

The foregoing remarks will give a very good idea of the best method to manage strong clay lands.: By summer fallow, one year's crop is lost certainly, but the second year the land may produce a crop that would be more valuable than two crops obtained without summer-fallowing, and the land will be left in a much more fertile and profitable state. Indeed, according to the Canadian plan of managing land, leaving it one year idle, or growing natural grass and weeds. and the next year, once ploughing it for a crop, we may say that only one crop, and that very frequently a bad one, is obtained in two years, so that to summer-fallow the land cannot be considered to cause the loss of a crop.

Weeding is simply the extracting of such plants as it is not desired or needful to cultivate. The operation may be performed in various ways, by the hand alone; aided by a broad pointed knife; by gloves or by the aid of forks, spades, or other weed-ing-tools. In weeding thistles from pasture land, it has been found in England, that breaking or bruising them over-renders the roots much
less liable to spring again the same season, than cutting or even pulling them up. About the lst of July is a good time to cut down thistles on pasture. They have to be destroyed before this period in the growing crops. It is necessary, early in June, to take them out of wheat, barley, oats, \&.c. or they cannot well be meddled with after. They are very subject to spring a second time in the growing crops, but they do not generally grow to any considerable size to do injury.

Preventing the soils from being ingured by weeds, is attended with. much greaterdifficulties than is commonly imagined.

It is most important to free the cultivated soil; by every means that can possibly be devised, from those destructive intruders, and to prevent their growth in grass lands, on the sides of the roads and other places, wherever they are to be found:

It is the more necessary to attend carefully to this subject, as the powers of propagation, which: have been imparted by nature in this description of plants, render it extremely difficult for farmers to prevent their growth. Many of them are propagated, by their roots and their secds. Some plants extend their roots so far under ground, that it becones extremely difficult to dig them up. Ti some instances new plants spring up from every joint left under ground. Others stretch out runners or stolous every way above ground, and to a considerable distance, while many plants, from their seeds having wings, by means of which they are scattered about by the wind in every direction, and frequently to a considerable distance. These are so dangerous as to require every effort to have their future progress arrested, by cutting them down wherever they are to be met with, before or as soon as they have flowered.

In Canada, weeding is much neglected. Some of the richest and most fertile portions of the soil, near farm houses, and by the fences and drains, is allowed to be almost exclusively occupied by useless and hurtful weeds-weeds also occupy a portion of the surface of the cultivated soil, and thereby the production of useful plants is considerably lessened. Any regulations, Civil or Legislative, that would contribute to the destruction of weeds, would greatly improve the appearance of the countrywould be highly adyantageous to the industrious and careful farmer, and to the general interests of agriculture. Farmers have no riglit to hold lands, if they allow them to be overrun with weeds, that must scatter their seeds over their neighbours' farms to their great injury.

CANADIAN MANURACTURES.

The principal Canadian Manufactures consists of woollen and linen cloth, manufactured chiefly by the Agricultural class; the tanning of leather; the distillation of whiskey and gin; and the brewing of ale and beer. There are a few other manufactures that are not of much value, and not necessary to notice at present. "There is no means of ascertaining accurately whether we manufacture more wool than is grown in the Canadas, or whether we export any of our own wool in a raiv state. The total quantity of wool grown annually in Lower Canada may be about $1,500,000$ libs. In Upper Canada perhaps the quantity is a third less. We may suppose that the whole of this wosl, and probably more, is manufactured in the Canadas into course cloth, flannel, Sc. for the use of our people. In a few small manufactories that have been lately established, cloth of excellent quality for farmers' use, is
made. There can be no doubt, that this kind of manufacture should be encouraged by the agricultural class; because it ensures a good market for an agricultural product, that might not otherwise obtain a ready sale on favourable terms for the farmer. It is converting our own raw produce into articles of indispensable necessity for our use; and the persons employed in this manufacture are supported chiefly by other Canadian agricultural products, that perhaps we would not be able to dispjose of otherwise. . It is a duty we owe to ourselves and to our country, to consider well all these matters, and to act in that way that we think will be most likely to advance individual and general prosperity, in the land we live in. It would not be prudent in us to manufacture for ourselves; what we could buy on more favourable terms; but if we raise aproduct that we cannot sell to advantage in a raw state, and that we can manufacture that product so as to make it supply the place to us of manufactures obtained from abroad, it certainly must be our interest to do so. In the present circumstances of the Canadas, with a thin population; and scanty capital, it would not be our interest to import a foreign raw produce, to manufacture here: It will be much more profitable for us to cultivate our lands, and learn to make the most of the produce, by selling what we can sell toadvantage, and by manufacturing what we cannot sell, either for our own use, or for any c.stomers we can procure.

The manufacture of linen cloth is not carried on to any great extent. It is confined to a very course linen that is made by private families, for their own use. If more flax was grown, this manufacture might be vastly increased, but while cotton goods are so cheap, it is doubtful whether it will be protitable to ex-
tend this manufacture so far as it would be possible to do so. The subject will be discussed in a future number.

The tanning of leather is carried on to considerable extent for our own supply; but a large proportion of the leather is very imperfectly tanned, and consequently of inferior quality. The tanning process is finished in about a third or fourth of the time that is found necessary to tan leather in England; and the Canadian leather is not certainly half so valuable as that of England: There are some exceptions. In some of the tanneries establislied in our cities, leather of niddling quality is made; but in all of them the process of tanining is too much hurried. In a future number this particular manufacture will again be referred to.

Beer and ale, of excellent quality, is brewed in Lower Canada, and the consumption of these articles is very much on the increase. The author has not in his power at present to state what may be the probable quantity of grain and hops amually consumed in this manufacture, or the quantity of ale and beer made, but will endeavour to give this information at another lime, Were the inhubitants of the Canadas, to make use of ale and beer in the same proportion that they do in England, it would take nearly $2,000,000$ of bushels of barley annually to supply them. Distillation of whiskey, gin, \&c. is at present carried on to a considerable extent in the Canadas, but not to such an extent as to prevent the importation and consumption of foreign spirits. While we do use ardent spirits, it would unquestionably be our interest to manufacture it from our own agricultural produce, which we camnot find a market for, unless it be applied to this purpose. No other grain but wheat can be advanta-
genusly exported from Canada. We are at so great a distarce from England, that it would not pay to export. our barley, or oats, unless in case of the failure of the crops in Britain. We might manufacture much more ardent spirts in Canada, than would be necessary for our own consumption, but the duty that would have to be paid in. Britain upon the article, were we to attempt to export it to that country, will always act as a prohibition. Perhaps the time may not be very distant, when it will be found expedient to allow Canadian spirits to be imported into Britain on more favourable terms. If we cannot grow much wheat for exportation, it is necessary we should find some substitute to exchange for what we want of English manufactures; otherwise we cannot pay for them.

For the information of those who may be disposed to commence the trade of distilling, the following extract is given from the "Penny Cy -clopedia":-
"Distillation is a chemical process, for applying a regulated heat to fluid substances in covered vessels of a peculiar form called Axembics, in order to separate their more volatile constituents in vapour; and for condensing them immediately by cold into the liquid state, in a distinet vessel, styled a refigigerator. ****

In the present article we shall consider distillation solely in reference to the production of alcohol. The process, when applied to distilled waters, althers, and oils, belongs to pharmacy, chemistry, \&c.

The subject naturally divides itself into two branches : 1 , the formation of the alcohol; 2 , its elimination from the ingredients with which it is mixed.

The only substances employed in this country in the manufacture of ardent spirits, upon the great scale, are different kinds of corn: such as
barley, rye, wheat, oats, buck-wheat, and maize; peas and beans also have been occasionally used in small quantities. The principles in these grains, from which the spirit is indirectly produced, are starch andalittle sweet muciliage, which, by a peculiar process called moshing, are converted into a species of sugar. It is the sugar so formed which is the imatediate generator of alcohol, by the process of fermentation. *

In mashing one or more kinds of corn, a greater or a smaller proportion of malt is always mixed with the raw grain; and sometimes malt alone is used, as in the production of malt whiskey.

The process of malting is that incipient growth called germination, in which, by the disengagement of a portion of the carbon of the starch, in the form of carbonic acid, the ultimate vegetable elements become combined in such a proportion as to constitute a species of sugar. Malting is the most effectual method of converting starch into sugar. But it is known from the researches of Saussurs, that if starch in solution be digested for some time at summer temperature with glaten, it will undergo a remarkable change, nearly one-half being converted into a species of sugar, and one fifth into gum. A similar change is more rapidly effected upon starch, by boiling its pasty solution with one-hundred parts of its weight of sulphuric acid. The recent discovery of diastase, by Persoz and Payen, has enabled us to effect this curious conversion with much greater certainty, and to a greater extent than was possible by the gluten or the acid. If 8 or 10 parts of ground malt be mixed with 100 parts by weight of starch, previously diffused through 400 parts of water, at 140° Falir., and if this mixture be kept at a temperature of from 158 to 166 deg. for
three or four hours, the nearly insipid pasty liquor will become a limpid syrup, which may be evaporated by a gentle heat into an uncrystallizable sugar, not only in the vinous fermentation, but in many operations of the confectioner. The same change which takes place upon pure starch in the above experiment, is effected in the process of mashing, as carried on in breweries and distilleries. A larger or smaller proportion of the ficula of the corn is thereby converted into sugar, and thus brought into a state fit for producing alcohol by fermentation.

The manufacture of whiskey or ardent spirits consists of three distinct operations; first; mashing; second, fermentation; third, distillation. 1, Mashing-Either malt alone, or malt mixed with other grains, and coarsely ground, is put into the mash-tun, along with a proper proportion of hot water, and the mixture is subjected to agitation by a mechanical revolving apparatus, exactly similar to that employed in: breweries for manufacturing beer. When malt alone is used, the water. first run into the mash-tun among. the meal has usually a temperature of 160^{\prime} or 165° Fahrenheit, but when. a considerable proportion of raw grain. is mixed with the malt, the water is. let on at a lower temperature, as from. 145 to 155 deg. for fear of makings. such a pasty magma as would not allow the infusion or worts to drain, readily off.

The following are the quantities of malt and raw grain mixed, which have. been found to afford a good product of whiskey in a well-conducted Scotch distillery:-
$2: 2$ imshels of malt, nt 40 : the, per buehel:.
948 : do. barley, at 58 年 lhe, per do.

150 du. :- onts, att $47 \frac{1}{3}$ lhss per do.
150 do. rexe, at b3 lis. per der,
1500 bushis.

From each bushel of the above mixed meal $2 \frac{1}{2}$ gallons of proof whiskey (specific gravity 0,921) may be obtained, or $18 \frac{3}{3}$ gallons per quarter. A few distillers are skilful enough to extract 20 gallons from eight bushels of that mixture. Ten imperial gallons may be considered a fair proportion of water to be introduced into the mash-tun for every bushel of meal at the first infusion. After two or three hours agitation, the whole is left to repose for an hour and a half, and then the worts are drawn off to about one-third of the volume of water employed, the rest being entangled in a pasty state among the farina. About two-thirds of the first quantity of water is now let into the tun, but at a temperature somewhat higher, and the mashing motion is renewed for nearly half an hour. A second period of infusion or repose ensues, after which the second worts are drawn off. Both infusions must be cooled as quickly as possible down to the temperature of 80 deg . or 70 deg. Fahr., otherwise they are apt to run into the acetous fermentation by the rapid absorption of atmospheric oxygen. This refrigeration is usually effected by exposing the wort for some time in large shallow cisterns, called coolers, placed near the top of the building, where it may be freely exposed to the arial current. But it is sometimes cooled by being passed through serpentine tubes, surrounded with cold water, or by the agency of ventilators blowing over its surface in extensive cisterns only three or four inches deep.

After the second wort is drawn off, a third quantity of water, fully as great as the first, but nearly boiling hot, is run into the mash tun, and well incorporated with the magma by agitation ; after repose, this third wort is also drawn off, cooled, and either directly mixed with the preceding worts, or after it has been
concentrated by boiling down ; in most cases, however, it is reserved, and used instead of water for the first infusion of a fresh quantity of meal.

In Britain the revenue laws prescribes the range of specific gravity at which the worts may be let down into the fermenting tuns. In England the law restricts the distiller to the densities between 1,050 , and 1,090. In Scotland, between 1,030, and $1,07.5$, which for brevity's sake, are called $50,90,30$, and 75 , omitting the 1,000 , common to them all. At these densities the quantities of solid saccharum contained in one barrel of 36 imperinl gallons, are 47,25 $\mathrm{lbs}, 85 \mathrm{lbs}, 28 \mathrm{lbs}$, and $70,3 \mathrm{lbs}$, respectively.

The mashing and fermentation are jointly called treuing in England, and the period in which they are carried on is by law kept quite distinct, from the distilling period, the one occupying usually one week, and the other another in rotation. About 150 gallons of wert or wash are obtained from each eight bushels of corn employed.

The first of the above worts will have generally the density of 1,078 when the grain is good and the mashing well managed, and the second a density of 1,054 , so that the mixture will have a specific gravity somewhat about 1,060, and will contain about 60 lbs. of extract per barrel. Now, by the excise rules, 100 gallons of such wort ought to yield one gallon of proof spirits for every five degrees of attenuation which its specific gravity undergoes in the fermenting tun, so that if it falls from 1,060, to $1,000,12$ gallons of proof spirits are supposed to be generated, and must be accounted for by the distiller. If he understands his business, he will be able to produce from 5 to 10 per cent. more than the law requires.

Distillers were accustomed to use one fifth at. least of malt, with raw
grain ; latterly they have diminished it to one-eighth, or one-tenth of the whole grain. One principal use of malt, besides its furnishing the saccharine ferment called diastaste, is to keep the mash magma porous, and facilitate the drainage of the worts.

The cost at which whiskey is made in England is stated by a Mr. Smith, in his examination before a Committee of the House of Commons, to be; ,where barley is 4.s. 9d. per bushel, he reckons that one gallon of proof spirits costs 2 s . for corn or meal, and 1s. 2d. for the charge of manufacturing. This statement of Mr. Snith was considered to be over charged, when it was known that from 18 to 20 gallons of proof spirits may be made from eight bushels of mined grain.

2d. Fermentation. This is undoubtedly the most intricate, as it is the most important process in distillation, but unfortunately one hitherto studied with too little regard to scientific precision by the distiller. Experiments having proved thequantity of saccharine matter converted into alcohol is dependant upon the proportion of ferment or yeast introduced into the worts; if too little be used, a portion of the sugar will remain undecomposed, and if too much, the spirits will contract a disagreeable taste. In general, the worts are let down at the specific gravity of 1,050 to 1,060 , and at a temperature varying from 60 deg. to 70 deg. Fuhr., and for every 100 gallons one gallon of good porter yeast is immediately poured in, and thorouglaly incorporated by agitation with a stirrer.

When by attenuation the density is diminished to 1,035 , one half gallon more is added, and another half gallon at the density of 1,055 , after which the worts usually receive no further addition of yeast. The temperature of the fermenting mass rises
soon after the introduction of the yeast 8 or 10 degrees, and sometimes more ; so that it raches in some cases the 85th or 90th degree of Fahrenheit's scale. From the appearance of the froth or scum, the experienced distiller can form a toierably correct judgment of the progress and quality of the fermentation. The greatest clevation takes place within thir-ty-six hours after the commencement of the process. The object of the manufacturers of spirits is to push the attenuation as far as possible, which so far differs from the beer-brewer, who wishes always to preserve a portion of the saccharine matter undecomposed, to give flavour and body to his beverage. The first appearance of fermentation shows itself by a ring of froth round the edge of the vat usually within an hour after the addition of the yeast ; and in the course of five hours, the extrication of carbonic acid from the particles througlaout the whole body of the liquor, causes frothy bubbles to cover its entire surface. The temperature mean-while rises from 10 to 15 deg. according to circumstances. The greater the mass of liquid, the lower the temperature at which it was let down into the tun; and the colder the surrounding atmosphere, the more slowly will the phenomena of fermentation be developed under alike proportions of yeast and density of the worts In gencral, large vats afford a better result than small ones, on account of the quality of the process. It is reckoned good work when the specific gravity comes down to 1,000 , or that of water, and superior work when it falls 4 or 5 below it, or to 0,995 .

Af.er thirty-six hours upon the moderate scale, the yeasty froth begius to subside ; and when the attennation gets moreadranced, the greater part falls to the bottom on accouit. of its density relatively to the subja-
cent fluid. In from forty-eight to sixty;hours the liquor begins to grow clear, and becomes comparatively traviquil. It has been deemed advantageous towards the perfection of the fermentation to rouse up the wash occasionally with a proper stirrer, and in some cases to increase its temperature a few degrees by the transmission of steam through a sarpentine pipe coiled round the sides of the vat. Distillers generally enclose their vats, alter the first violence of the action of fermentation, under tolerably tiglit covers.

Mr. Smith, the gentleman before referred to, states that the acetous fermentation is always proceeding simultaneously with the vinous fermentation; for, judging by the usual tests, there is always a sliglit degree of acidity in fermenting wash; that vinegar is in fact forming along with alcohol, or that while thie attenuation is increasing, acetic acid is being formed. This important fact, which agrees with our own experience, serves to show how very fallaciois at best the attennation or dimimution of density is of the amount of alcohol generated and existing in a fermented wash. The acetic acid, along with the undeconposed mucilaginous starch may, in fact, so far counteract the attemating effect: of the spirits as to produce a specific gravity, which shall indicate 10 or 15 per cent. less spirit than is actually present in the wash.

With corn-wash there is never moret than four-fifths of the saccharine matter decomposed into alcohol and corbonic acid, in the best managed fermentation, and frequently much less. A pound of real sugar may be dissolved, by a successful process, into half a pound of alcohol, or into about one pound of proof ejpiris; and hence as a solution of sugar, at the density of 1060, contains 15 per cent. by weight, or 16 per cent by measure, which is nearly 1,7 pounds per gallon, it should yied nearly 170 pounds from 100
gallons, or 180 pounds measures equal to 18 gallons of proof spirits; whereas 100 gallons of corn-wash, fermented at the above demsity, seldom produce more than 13 gallons and a fraction. There is thus, therefore, a wide difference between the production of spirit from real saccharine matteras fermented bythemen of science, and the produce obtained by our best malt and grain distillers. The main defect lies undoubtedly in the very imperfect saecharification of the ticula of the corn in the mashing process, which, in our opinion, would require to be entirely remodelled, and conducted upon sounder and more scientific principles.
In the large fermenting vats used by the corn distillers in this country (Britain), the fermentation goes on far more slowly than when conducted upon the moderate scale referved to in the account of this process given above. About one gallon of yeast is added at first for every 100 gallons of wort, and a half gallon additional upon each of the succeeding four days, makings in the whole three per cent; when less can be made to suffice, the spirits will be better flavoured: The fermentation goes on from six to twelve days, according to the modifying influence of the circumstances above enumeratecl. After the fifth or sixth day, the tuns are covered in, so as to obstruct, in a certain degree, the discharge of the carbonic acid, as it is supposed that this gas in excess favours fermentation. The temperature is usually greatest on the fourin or tifth day, when it sometimes rises to 85 deg. Fahr. from the starting pitch of 60 deg: or 56 deg. When: ever the attenuation has reached the lowest point by the hydrometer, the wash ought to be distilled, since immediately afterwards the alcohol begins to be converted into acetic acid. This acidification may be partially repressed by the exclusion of atmospheric oxygen.

Distillation. Grrat distillerics are
usially mounted with two stills, a larger and a smaller. The former is the wash-still, and serves to distil from the fermented worts a weak crude spirit called lov-wines; the latter is the low-wine still, and rectifies by a second process the product oi the first distillation. In these successive distillations a quantity of fetid oil, derived from the corn, cones over along with the first and last portions received, and constitutes by its combination what is styled the strong and weak faints, in the language of the distilleries. These milkey faints are carefully separated from the limpid spirit, by turning them as they begin to flow from the worm end into distinct chamels, which lead to separate receivers.

From these receivers the various quantities of spirit, low wines, and faints, are, for the purpose of distillation, pumped up into charging-backs, from which they are run in guaged quantities into the low-wine and spirit stills.

One of the greatest improvements in modern distillation is the accomplishment of this essential analysis of the impure spirit at one operation. We shall content ourselves with investigating the scientific principles of a perfect spirit still, and with a delineation of its outlines.

The boiling point of alcohol varies with its strength, in conformity with the numbers in the following table :-

Specifin Grubty.		Specific Girtibity.	6y Frohrs. Settle.
0,7939	168, ${ }^{\prime}$	0, 8575	181, 0°
0, 8034	168, 0	0, 8631	183, 0
0, 8118	168, 5	0, 8705	187,0
0, 8194	169, 0	0, 8892	190, 0
0, 8265	172, 5	0, 9013	194, 0
0, 8332	173, 5	0, 9126	197, 0
0, 8397	175, 0	0,7234	199, 0
-0,8458	177, 0	0, 9335	201,
0, 8518	179,0		

Hence the lower the temperature of the spirituous vipour which enters
into the refrigerater, the stronger and finer will the condensed spirit be, becanse the noxious oils are less volatile than alcohol, and come over chiefly with the aqueous vapour. A perfect still should, therefore, consist of three parts; first, the cucurbit or boiler; second, the rectifier for intercepting the greater part of the watery particles, and the whole of the corn oil; and, third, the refrigerator. Three principal objects are obtained by this arrangement; first, the extraction from fermented wort or wine, at one operation, of a spirit of any desired eleanness and strength; second, a great economy of time, labour, and fuel; third, fireedon from all danger of blowing up or boiling over by mis-managed firing. When :a mixture of the alcohol, water, and essential oil, in the state of vapour, is passed upwards, through a series of winding passages, maintained at a regular degree of heat, from 170 deg. to 180 deg., the alcolol alone in notable proportion, retains the elastic form, and proceeds onward into the refrigeratory tube, in which those passages terminate, while the water and the oil are in a great measure condensed and retained in these passages, so as to drop back into the body of the still, and be discharged with the effete residunm.

The system of channels is so contrived as to bring the compound vapours, which rise from the alembic into intimate and extensive contact with metallic surfaces, immersed in a water-bath, and maintained at any desired temperature by a seif-regulating thernostat, or heat-governor. The neck of the alembic tapers upwards, and enters the bottom or ingress vestibule of the rectifier. The top, or egress vestibule, communicates with the under one by parallel cases, or rectangular channels, whose widh is small, compared with their length and height. These cases are open at top and boltom, where they are
soldered or riveted into a general frame within the cavity, enclosed by two covers which are secured rommd their edges with bolts and packiug. Each case is occupied with a numerous series of shelves or trays, placed small distances over each other, in a horizontal or slightily inclined position. Each slelf is tumed up a little at the two edges and the one end, but sloped down at the other end, so that the liquor admitted at the top may be made to flow back wards and forvards in its descent through the systeni of shelves. The shelves of each case are hamedtogether by two or more vertical metallic rods, which pass down through them, and are fised to each shelf. On removing the:cover, the set of shelves may be lifted out of the cases to be cleaned, and are hence called moveable.

The intervals between the two cases, are left free for the circulation of the water contained in the bath vessel; these intervals being considerably narrower than the cases. The thermostat, or heat-governor, is shaped somewhat like a pair of tongs. Each leg is a compound bar, consisting of a that bar, or ruler of steel, and one of fine alloy, riveted facewise together, leaving their edges up and down. Where are links joined to the free ends of these compound bars, which receding by increase of temperature, and approaching by its decrease, act throngh a lever upon a stop-cock fixed to thepipe of the cold water reservoir, and are so adjusted by a screw-nut, that whenever the water in the bath-vessel rises above the desired temperature, cold water will be admitted through stop-cock and pipe into the bottom of the cistern, and will displace the over-leated water by the overfow pipe. Thus a perfect equilibrium of caloric may be maintained, and alcoholic vapour of corresponding uniformity be transmitted to the refrigerator.

The refrigenator consists of a doa-
ble tube, placed in a zigzag direction, but in one plane, and supported by two upright beams.: The alcoholic vapour enters at an orifice, and descends aloug an inuer tube till it becomes condensed by the counter current of water continually ascending in the annular space between a blocktin or copper tube, and an outer cast. iron pipe. The water of condensation enters into the annular space by a pipe and the nose of the stop-cock. The fumnel into which the cold water is poured must be somewhat higher than the point from: which the water is discharged, after laying been heated to the same temperature as that of the alcoholic vapour last exposed to its influence.

When water lias its particles kept by any means at rest, it becomes a very bad condiactor of caloric; it acquires its maximum, conducting or cooling power, only when its particles are set in rapid and continuous motion. The present construction of wom is calculated to effect the most complete refrigeration of the vapours, with the smallest expenditure of cold water, and to turn out the spirit in the coolest state. The number of turns in this serpentine may be increased at the pleasure of the distiller. If a small portion of the overflow lot water be made to trickle down and moisten the outside suiftace of the two or three upper lengths of the serpentine, it will by evaporation produce a considerable degrecof coolness, and thereby save cold water.

The preceding still apparatus is worked as follows; into the alembic put as much lemmented lignor as will protect its bottom from being injured by the fire; when it is not planged in a batli of muriate of lime; but exposed directly to the fuel A s soon as the ebullition in the alcmbic has saised the temperature of the water-bath to the dusired rectifying piteh, whethe 170 deg. or 150 deg, the thermostatic instrument is to be alfusted
by its serew nut, and then the communication with the charged back or cistern is to be openied by moving the index of the stop-cock over a proper portion of its quadrantal arch. The wash will now descend in a regulated stream through the pipe, thence spread into the horizontal tube, and issue from the orifices of distribution into the respective flat trias or spouts. The direction of the stream in each shelf is the reverse of that in the shelf above and below it; the turned up end of one slielf corresponding with the discharge slope of its neighbour.

By diffusing the cool wash or wine in a thin fim over such an ample range or surfaces, the constant tendency of the bath to exceed the proper Himit of temperature is counteracted to the utmost without waste of time or fuel; for the wash itself in transitic becomes boiling hot; and experiences a powerful steam distillation. Thus also a very moderate influx of water through the thermostat stop-cock suffices to temper the bath; such an extensive vaporization of the wash producing a far more refrigerant influence than its simple fieating to the boiling point. It deserves remark, that the greatest distilation with the least fuel is here effected without any pressure in the alembic; for the passages are all pervious to the vapour; whereas, in almost every wash still heretofore contrived for similar purposes, the spirituous vapours must force their way through successive layers of liquid, the total pressure from which causes undue clevation of temperature, obstruction to the process, and forcing of the junctures. Whatever supplementary refrigeration of the vapours in their passage through the bath may be deemed proper, will be administered by the heat-governor.

The bath regulated by the thermostat may, However, , ve used for obtaining fine spirits at one operation, without trasmining the wash or low
wines down through its interior passages; in which case it becomes a simple rectifier. The empyrcumatic taint which spirits are apt to contract from the action of the naked fire on the vegetable gluten in contact with the bottom of the still, is somewhat counteracted by the rotation of chains in the large stills; but it may be entirely prevented by placing the still in a bath of strong solution of muriate of lime, regulated by a thermometer, or, still better, a thermostat. Thus a safe and effectual temperature of from 270 deg. to 290 deg. Falr., may readily be obtained.

In a future number of this work, a plan of the still, rectifier, and refrigerator, will be given, with a particular description of each, and some further remarks on Canadian distillation. For the present, perhaps too much space lias been occupied with this subject.

SIIEER IN THE BRITISH ISLES.

The foilowing table exhibits a view of the principlal breds of sheep in Great Britain:-

1. Teeswater, long wool; no horns.
2. Lincola, lony wool, no horns:
3. Dishley, or New Lecicester, long wool, fine, me horns.
4. Cotswold, long wool, fine, no horns.
5. Rominey Nirsh, lung wool, fine, no horis.
6. Darmeor, or Bamptori, long wool, fine. no horns.
7. Exmoor, lung wool, coarse, horned.
8. Black fuced, or Heath, longwool, coarse, lorined.
9. Herelard, or IRythid, short wool, fime, no hurns.
10. Morf, Shropshite, short wob, fint, horned.
11. Dorset, shomt woil, fine, homent.
12. Wilts, short wool, middling, horned.
13. Berics, long wool, no burus.
14. South Down, short wenl, no horns.
15. Nortolk, shert wool, horned.
16. Herdwiek, sbort wool, hormed.
17. Cheviat, short wool, no borns.
18. Danfated, short wool, no horis.
19. Shethan, fine cottony wool, who home.
20. "Spanish;" short wool, supertine, rums" horned.
21.'Spmash Cioss, short wou, fine. :
 long woolled sheep ill England and Wales, in 7800 , to be. $4,153,308$ Of short woolled slicep........ $. .1 \cdot 14,854,299$
Total number of sheep shom : 4. . $19,007,607$ Slaughter of shoit woolled sheep,
per nunhmm.
Carion of to...
Slanghter of long woolled sheep
Carrion of do
, 1,78
.....
Slayghter of lambs. \qquad
Carion of do. \qquad

Total number of sheep ama
lambs... $26,148,463$
In'the General Report of Scothand, the number of sheep is estimited at 2,850,000, and, allowing for the increase that lias taken phace since 1814, perliaps the total number may now be $3,500,000$. The number of sheep in Ireland is not exactly known. In the north of Ireland there are not many sheep; and on the loest lands in the west and south, horned cattle are fattened; and many cows are kept for the dairy: Throughout Freland the proportion of sheep stock is not so great as in Britain, and it is probable that the total number does not excect from 4,000,000 to 5,000,000.

On thic whole, if the estimates that are made be correct, perlaps the total number of sheep in Great Britain and Ireland now, may be alout $35,000,000$ of all ages. The ruantity of wool shorn annually, in Greai Britain and 'Ireland, must' exceed $100,000,000 \mathrm{lbs}$.

MMPROVEMENT OF LAND IN NORTOLK, ENGLAND.

From an agricultural report for Norfolk harvest, 1835, the following selection list been made :-
" It would be a great national benifit, could the farmers of England inspect the crops now growing in Holkham Park, and the lands of Mr.

Coke's (now the Earl of Leicester) tenants-that identical land which was refused at five shillings an acre, tithe-free, when he comes to his estatc. Upon this noble domain there are upwards of 400 acres of wheat, computed to yield at least cight coombs (or 32 bushels) per acrebarley from 15 to 17 coombs, (at 4 bushels to the coomb), and upon one piece in the occupation of Mr. Wiseman, it is not doubted there are 20 coombs per acre, equal to 80 bushels. We never saw corn stand so thick or so heavy in the ear. The mangel wurzel is fine and flourishing, and the turnips made as certain a crop as any grown by the ridge system of cultivation. If it be inquired how all this is achieved upon a soil naturally far from the most fertile, we must answer, it is the triumph of skil! and capital. When Mr. Coke cime into possession, 800 indifferent Norfork sheep walked where 4000 of the most perfect bred in England are now depastured-notwithstanding from 1000 to 1,500 acres of land have been since planted. About 200 Devon oxen are sent to Suithfield yearly from the same fields-and, instead of horses, Mr. Coke now only employs the store stock for all his ploughing. Here, then, forty cows feed daily upon his lawns. The catthe enrich the soil, and the soil in turn gives suscenance to the cattle and the abundance of its crops. So long as the Holkham sheep-sheering continued, these facts were continually subject to a wide and beneficial observation, and we feel that we do a little towards excluding the advantages by recalling recollection to those noble bygone scenes of science and hospitality, and by making known the successful continuation of the supremely excellent systeni of cultivation still pursued under the same liberal and energetic management."

Mr. Coke, the first of agriculturists, has ever been the wam supporter of whatever was likely in the least degree to forward the interests of farmers and to elevate the science he so fondly loved.

QUALITY OF MTLK DURRG THE PhOCESS OF MLIKRNG.
Several large coffee cups having been successively flled from one cow, till she was quite dry, the following results appeared, grent care having been taken to weigh the cups to ascertain that the quantity in each was exactly the same - - In every case the quantity of crean was found to increase in proportion as the process of milking advanced. In different cows the proportion varied, but in the greater number the excess of cream in the last cup, as compared to the first, was as sixteen to one; in some it was not so considerable; therefore, as an average, it may be called as ten or twelve to one. The difference in the quality of two sorts of cream was not the less striking; the cream given by the first drawn milk was thin, white, and without consistence, while that furnished by the last was thick, buttery, and of a rich colour. The milk renaining in the different, cups presented similar differences; that which was chrawn first was very poor, blue, and had the appearance of nilk and water; that in the last cup was of a yellowish hue, rich, and to the eye and taste, resemble cream rather than milk. It appears, therefore, from these experiments, that if after drawing seven or eight pints from a cow, half a pint remains in the tits, as much cream will be lost as the seven or eight pints will furnish.--Euglish Praper.

MRBAD MADL FHONL SAW-DUST.
Mr. Brande, in his hate lectures on
vegetable chemistry at the Royal institution, has státed, that excellent bread may be made from sun-thast; and exhibited a cake made from that niaterial, which appeared to be good bread, It is said that bread made from saw-dust is : far more nutritious, and might casily be made more palatable then the sole food of the Irish peasant-the potatoe. At all events; it is a curious instance of the wonderful transformation of chemistry: Our wonder, indeed, will abate a bit when we recollect that sugar, starch, gumarabac, wheaten flour, wood-that is saw-dust-manna, arrow-root and vinegrar, are coniposed of precisely the stune ingredients, combined' in very nearly the same proportions, so that if we were permitted to view, behind the scenes of nature, the manner in which they are combined, we might be able to transform the one into the other ad (tibitum. . This will perhaps appear more evident from the following table:-

Flutst Sugrar Ciandy.	Fhemat Steroh.	Aryent hinat.	$\begin{gathered} \text { Citam } \\ \text { Arubise } \end{gathered}$	1Fimut.
Cuthon, . 42.85		4.1-4	12-23	13-7
Water . . 527 -15	450-15	55-6	6\%-75	5, 7 -3
1000	100- 0	100-0	100.01	100-0

Saw-dust is thus made to differ very little in its chemical characters from those highly nutritious substan-ces-sugar, arrow-root, wheat and gumb-arabic. Professor Antenveith's method of cooking it into bread consists simply in first removing every thing soluble from the wood, by frequent macerations and boiling. The wood is then reduced into a minute state of division; 'by minute division is meant a fine powder, which after being repeatedly subjected to the heat of an oven, is ground like corn, when it appears to be a yellowishwhite flour; this flour requires, like corn flour, to be fermented with leaven, with which it forms a uniform and spongy brend, which Anterveilh also
states: that wood-flour in water forms ajelly, which is in like manner very nutritious. Connected with this subject; very few know how to prepare carrot-soup.: Mr. Brande, by the aid of chemistry, has, however, been able to discover the secret, which consists simply in adding a little alkale, or common pearlash, to the soup when boiling. . The vegetable matter enters into a chemical compound with the alkale, which is soluble in water; hence the rich and nutritious character of well-prepared carrotsoup. Sir J. Herschell says, that linen rags are capable of producing more than their own weight of sugar by the simple agency of some of the cheapest and most abundant acids. He also says that saw-dust is susceptible of conversion into a substance bearing no remote analogy to bread, and though certainly less palatable than that of four, yet no way disagreeable, and both wholesome and digestible, as well as highly nutritive.

FRON PARK'S CHEMICAL CATECHISM.

Chomists have agreed to call the matter of heat, Caloric, in order to distinguish it from the sensation which this matter produces. Caloric is every where indispensable to the existence of man. "It is with fire that, in every country, he prepares his food, that he dissolves metals, vitrifies rocks, hardens clay, softens iron, and gives to all the productions of the earth forms and combinations which his necessities require." The sun is: the principle, and, probably, the original fountain which furnishes the earth with a regular supply of caloric, and renders it capable of supporting the animal and vegetable creations.

According to the laws of nature, animal and vegetable life are both very much influenced by the temper-
ature in which they exist; we therefore find different kinds of vegetables, and a different race of animals, appropriated to the different climates of the earth.

That caloric is as necessary for the support of vegetable as it is for that of animal life, may be proved by direct experiment. If, in the midst of winter, a hole be bored in a tree, and a thermometer put into it, it will be seen that the tree is many degrees warmer than the atmosphere. Caloric is the cause of fluidity in all substances which are crapable of becoming fluid, from the heaviest metal to the lightest gas. When the temperature of the atmosphere is reduced below 32' water gives out its superabundant caloric by degrees, till at length the cold atmosphere robs it of its caloric of fluidity also, and it becomes ice.

Owing to the distance of this globe from the sun, and to the vast mountains of ice at the poles, the atmosphere over a large portion of the earth is at times reduced to so low a temperature, that, were it not for a wise provision of providence, all vegetable life must be destroyed. Caloric has always a tendency to equilibrium; therefore, if the temperature of the air be lowered, the earth cools in proportion; but, when the atmosphere is reduced to 32°, the water which is held in solution becomes frozen, and precipitates in the form of snow upon the earth, covering it as with a carpet, and thereby preventing the escape of that caloric which is necessary for the preservation of those families of vegetables that depend upon it for their support and maturity. Be the air ever so cold (and in the northern parts of the Russian empire it is sometimes 70 degrees below the freezing point) the ground, thus covered, is seldom reduced helow 32^{\prime}, and is maintained equally at that temperature for the purpose above
mentioned. How multiplied are the means which nature has adopted for the preservation of all her productions.

The quantity of heat given out in freezing, occasions the progress of congelation to be extremely slow. The constant emission of caloric from the freezing substances operates favourably; for thus the severity of the frost is mitigated, and its progress retarded. On the other hand, if the return of caloric to the frozen body of water were not equally slow, what sudden inundations would be occasioned; in those countries where large masses of ice are collected, at the first approach of summer, as has before been remarked. ' That the melting of ice produces cold, is seen in many operations. By melting ice with common salt, confectioners produce cold much greater than that of the original ice.

In general, all bodies, whether solid or fluid, contract their dimentions, and become of more specific gravity when cooling This axiom has been long known and acknowledged; but water affords a remarkable and striking exception. Water, as it cools below 42^{\prime} ' , instead of contracting and becoming of greater specific gravity, actually becomes increased in bulk, and its specific gravity continues to lessen as it cools. From experiments, it has been found that water becomes of less specific gravity, whether it be heated above or cooled below 42' 5; a fact too astonishing ever to have been discovered or imagined a priori. The wisdom and goodness of the Great Artificer of the world will manifest itself in this arrangement, if we consider what would have been the consequence had water been subject to the general law, and, like other tluids, become specifically heavier by the loss of its caloric. In winter, when the atmosphere becomes reduced to

32', the water on the surfuce of our: rivers would have sunk as it froze; another sheet of water would have frozen immediately, and sunk also; the ultimate consequence of which would have been, that the bed of our rivers would have become repositories of immense masses of ice, which no subsequent summer could unbind; and the world would shortly have been converted into a frozen chaos. How admirable the wisdom; how skilful the contrivance, that, by subjecting water to a law contrary to what is observed by other fluids, the water as it freezes, becomes specifically lighter, and, swimming upon the surface, performs an important service by preserving a vast body of caloric in the sutjacent fluid from the effects of the surrounding cold, ready to receive its own accustomed quantity upon the first clange of the atmosphere!

These reflections, perhaps, will not be thought misplaced, should they but afford

One ray of light in this terrene nifode.
To prove to man the goodntes of his God."

TIE BOUNTY OF PROYIDENCE.

Tlie various orders of vegetables provided in every part of the globe, for the countless forms of animated existence, are eminently illustrative of the provident Creatob, and show us how great and how good is the Father of the families of the whole earth. The Giver of all good has indeed made a bountiful provision for the use of man-"For" him the earth has been covered with plants; and though their -pecies be infinite in number, there is not one but may be converted to his use. Some may be selected ont of every class to minister to his pleasure, or his support, wherever he slall please to fix his habitation. Others serve for his bed, for his clothing, for the cure of his discases, and for the fire of his hearth. The sluggish cow
pastures in the cavity of the valley; the bounding sheep on the declivity of the hill ; the scrambling goat browses among the shrubs of the rock; the duck feeds on the water plants of the river; the hen, with attentive cye, picks up every grain that is scattered and lost in the field; the pigeoni of rapid wing, collects a similar tribute from the refuse of the'grain; and the frugal bee turns to account even the small dust on the flowers: There is no comer of the earth where the whole vegetable crop may not be reaped. These plants which are rejected by one are a delicacy to another, and cren anong the finy tribes contiibute to their fatness. The loog devours the horse-tail and the hen-bane; the groat, the thistle and the hemlock. All return in the evening to the habitation of man, with murmurs, with bleatings, with cries of joy, bringing back to him the delicious tributes of innumerable plants, transformed by a process the most inconceivable, into, honey, milk, butter, eggs, and crcam." -St. Pierre.

UNITY OF DESIGN.

From Royet's Bridyewater I'ratise.

Newton, struck with immensity of nature, compared our knowledge of her operations, into which he had himself penctrated so deeply, to that of a child gathering pebbles on the salshore. Compared, indeed, with the magnitude of the universe, how marrow is the field of our perceptions, and how far distant from any approximation to knowledge of the existence of matter, of the source of its powers, or even of the ultimate configuration of its parts! How remote from all human cognizance are the intimate properties of those imponderable agents, Liglat, Heat, and Electricity, which pervade space, and exercise so potent a controul of the bodics in mature!, Doubthes, there existsaround us, on crery side, iultuences of a still
more subtle kind, which "eye hath not seen nor ear heard,". neither can it enter into the heart or imagination of man to conceive. How scanty is our knowledge of the mind; how incomprehensible is its comnection with the body; how mysterious are its secret springs, and inmost workings. What:ineffable wonders would burst. upon :us, were we admitted to the perception of the spiritial world, now encompassed by clouds impervious to mortal vision!
The Great Authos of our being, who, while he has been pleased to confer on us the gift of reason, has preseribed certain limits to its power; permits us to aequire, by its increase, a knowledge: of some of the wondrous works of his creation, to interpret the characters of wislom, and of goodness, with which they are impressed, and to join our voices to the general cloruis whicli proclaims. "His Might, Majesty, and Dominion." Prom the same gracious hand we also derive that uiquenclable thirst for knowledge, which this fleeting life minst ever leave unsatisfied; those endownents of the moral senses, with which the present constitution of the world so ill accords; and that inate desire of perfection which our frail onidition is so inadequate to fulfil: But it is not given to man to penetrate into the counsels or fathom the designs of omnipotence; for in directing his view's into futurity, the feeble light of his reason is scattered and lost in the vast abyss. Although we plainly descern intention in every part of the creation, the grand object of the whole is placed far above the scope of our comprehension. It is impossible, however, to conceive that this enormons expenditure of power, this vast accumulation of contrivances and of machinery, and this profusion of existence resulting from them, can thus, from age to age, be protigally lavished, without some whterior end. Is manthe faroured cerature of nature's
bounty, " 'The paragon of animals," whosespinithods communion with celestial powers,formed butto perisli with the wreck of his bodily frame? Are generations after generations of his race doomed to follow in endess succession, rolling darkly down the stream of time, and leaving no track in its pathless ocean? Are the operations of Almighty power to end with the present scene? May we not discern, in the spiritual constitution of man, the traces of higher powers, to which those he now possessses are but preparatory; some embryo faculties which raise us above this earthly habitation? Have we not in the imagimation; a power but little in harmony with the fetters of our bodily organs; and bringing within our view purer conditions of being, exempt from the illusions of our senses and the infirmities ofour nature, our elevation to which will eventually prove that all these unsatiated desires of knowledge, and all these ardentaspirations alter moral good, were not implanted in us in vain?: Happily, there has been vonehsafed to us, from a higher source, a pure and heavenly light to guide our faltering steps, and animate our fainting spirits, in this dark and dreary search; revealing thiose truthis which it imports us most of all to know, giving to morality higher sanctions, ele vating our hopes and ouraflections to nobler objects than belong to earth, and inspiring more exalted themes of thanksgiving and of praise.

Agriculturat report

Foft AlMIC AND MAF:

The montli of $A_{\text {piol }}$ wis so cold and fiusty themblout, that the spring work was satuety commenced betore the first of Mny. The consequence probinty will he, that sowing and phating will he contimaed to a very late period of the semont. . The minthe of Nay was
 vegetation up to the 22 d. - Tho fivost remaned so long in the groumd that the soll has bren kejet in a wet ithd unsuitable state for working, cocept on light landy that were well
danined, and jubicionsly flothed into well formed ridges last fatl. : Perfect draibage. and good plonghings is the only remedy in the firmer's power fugainst it eold aud unm fivourable spriug. When this : remedy is alopted, frost or wat canmot have so injurious an effeet upun the suil as they otherwiso must have, whethar in thaye of in grass. When lands are left in such a state, that they can be alried only, by watal evapomation, it will be foumd a very tedious prosess in such a cold, damp spring, as, this has been.

Many firmers in the District of Montreal have sown math less whent this year than usuml ; ohers luve not sown any:. For the last thae or tour years they fonme whent to be a very uncertatin crop, owing to the raviges of the wheat-1ty- 'llowe who have sown whent, deferred haing so genetally until the IOth of lith of Misy, as the hest means to save the crop from injay by these vile insects that of late-genrs live pluguen the firmers ill several segtions of this l'rovince. If thi season is dry. and fivournble, a good crop of wheat may chance to be oltatined.

Bamey has been suvin this year to a grenter extent, perdaps, than, for many years past, The bisthleries and breweries, alremp in operation, and those that are in prouress of being erected and prepareal for work next tail, has encouraged farmers to sow more al'this grain this spring than usual. 'The price of barley will, very probably, comtinus to be a remuneratiag one to the furmer, ind offers at fate encotrage ment for the cultivntion of this gratin that is so suitable for the climate aud soil of Camada. If farmers will lemon to understand their own trite interests, there is not much danger of nn over, poductian of barley. There; are many uses to which it imay be applied, as well as to the making of beer and spirits; and ly converting it to these uses, a remmerating price may, abways be seconed.

A latige quantity of oats will be sown this spingr; but a conisideralde portion of it will be late, and hence must incur the risk of hot ripening perfectly, until elhecked by early frosts. 'Ine min that fell on the 23 and -4th of May, has retardel rgiventumat operations, priticahaly as he soil was net oyer dry previously.

Potatoe phating is wat likely to be fintshed before the latter end of Junc. . Uuless on very dry soils, the platiting is very buckward now.. I'bedryorot has alreadyaffected the seed this yebr. Whether it will previll to such an extent as in yeme post, it is inpossible to say. 'Jhat potatoms have t tendency to deciy in the cellars, in a way thatwas nom usual it former yerts, there can he no doubt; and pothtoes that are olsurved to have this tendenag, ate not sate tio be used as sed, tinles platited whole. The flogrot in a disease, that if not
checked, will cause great damage to the farmer, and the only remedy is, to obtain a new and a different seed.' 'To prepare and manure land for jotntoes, is a considerable expense, and when the crop partly, or wholy fails, it is a great draw-back to the farmer. There is a further inconvenience that is the consequence of dry-rot in' the seed planted, which is, the great production of weeds where the seed fails.: J'he farmer does not think it worth the trouble to take out the weeds as they grow, from a crop that has partly fuiled. Hence, the manure applied for the potatoe crop is in a great degree exhatusted, in the production of hurtful weeds, that in many cases are allowed to produce sied, ripen it, fall to the ground, and remain in the soil to sprout aigain.'
'T The t pastures and "mendows were very lackward up to the 20th of May; ; since then they have improved considerably. Aany thrmers: complain that mendö́vs have been injured by the frost, particularly newly laid down:lands. It was scarcely possible that meadows could escape damage by frost this stason, in exposed situations, and where not covered by snow: 'Indeed, it is very probnble that most meadows have suffered in some degree, by hiving more or less of the roots. of grass destroyed. It is impossible for the aithor to say at present, how fut this injury has' extended." It will always be for the advantage of the farmer, that his lands should be covered with snow, from the latter end of November to the latter em of March. The roots of the grass will he preserved by it; the frost will le prevented from penetrating the suil to any considerable depth,'cnloric will be retained in the soil near the surface, sud it will take less time in spring to render thie soil fit for working, and for vegetation. When' the lands are bare, and exposed to the severe frosts of a Canadian winter; the frost gets into the ground to a great depth, and it requires a long time in spring to thavit; and while it is thaving, the soil is kept in a dimp, cold state; unfit to be worked, or to produce vegetation in plants." These effects are more perceptible this season than in any other, during theauthor's residence in Canada for the list twenty years.

The price of hay has been high, since the midde of March. "In the Montreal market, from ten to twelve dollars the hundred bundles was about the average price. It is not likely to be lower until we have the new crop, Strav lins not been high. .. Theat, Barley, and Oats, have brought a fair price; if the erop of whent bad been anything like ain average, Potatues also, have sold at a Irice that would remunerate the farmer, but not over. The produme ot the dary has sold at'in moderate peice, that eamot le complaned
of, hy either buyer or sellew: Butcher's ment has generally brought a good price. It is higher in proportion than any other produre, and offers fair encouragement to the fariner to increase his stock of cattle, and the produce on which they can be kept, and fattened.

The country is not yet adorned in all its blossoms and beanty, but very soon will be. Spring is the senson of hope to the farmer. If he executes his part properly, he ought not to feel any uneasiness about the results of the harvest. If we do our own part of the work well, we may safely confide in a Good and Bountiful Providence, for the success of our labours, that in due time, He will clothe our meadows with a thick foliage, -will crown our fields with ears of granin,our gardens with ripe and delicious fruits,and fill our stores with useful roots for men and cattle.

Cote St. Paul, May 26th, 1838.

MLARKETS.

The prospect of the wheat crop in the British Isles; by thie latest necomints, are, on the whole, favourable. No report can yet be made of any other crop except wineat. In France, it is suid, that the wheat crop lins suifered from the severity of the winter, and that several fields of it hnve been ploughed up this: spring to be sown. with other grain. It is impossible to speak with any certainty at present of what the erops are likely to be. They are subject to so many castulties before they arrive at maturity, that no report mule at the present inoment can be of inteh consequence. If the braird of griain that appears over groind promises fairly, we mist trust in Proyilence that it will progress jrosperously to maturity, and yield an abundant produce.

Smitified Cattee Manket, Armil 2d, 1838.-At per stone of 8 lles. to sink the offals.

British ivool per $l b$.

Several Articles alrendy prepared are necessarily postponed.

Campell \& Becket, Printers.

[^0]: "The only view under which onr sulyent will permit us to consider colonization, is in its tendency to angment the population of the parent state. Suppose a fertile, hut empty ishand, to lie within the reach of a country in which arts and manufactures are alrealy established; suppose a colony sent out from sueh at country, to talse possession of the ishand, and to live there under the protection and authority of the native Government; the new setters will naturally convert their lahnour to the cultivation of the vacant soil, will draw is supply of manufactures fom their countrymen at home. Whilst the inhabitants cointine lew, the lauds cheap and firesh, the colomists will liml it easier and more prolitalle to raise com, wr rear cathe. and with eom and eatile to purchase woollen cloth, firt instance, or linen, than tor spin or

[^1]: Marnesian limestone is generally of a fawn colour, that it may he known loy its benir ten times as bong in dissolving in an neid as common limestntie. Accordiag to Kirwan, Hypum is composed of 30 parts of sinpharie acid, 32 enarth, and 35 water.
 in Thomsont's Lecturos on looting, the following rule is fiven:
 100 parts of $5 y$ psum contains 45 of acid, 34 of lime, and 18 of water.

 100 parts of tepom silts 33 of do. 19 of do. 48 of do.

[^2]: In tho above artiple the antlor has jutrobuced wome oxtracts fom the peany Cgeamedin. now
 fadifing that he is grently imdebted to that work for
 ou serural mernsions. tater tha liburiy to copy in* teresung mattos from it:

