The Institute has artempted so obrain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may af:er any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or larnirated/
Couverture restaurie et/ou pelliculieCover tite missing/
Le titre de couverture manqueCo. 3 ured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de cosule.ar (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitred from filming/
Il se peur que certaines pages blanches ajourées lors d'une restauration apparaissent dans le texte. mais, lorsque cela ètait possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-itre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence -

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue

\square
Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de sitre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Génèique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

By J. L. P. 0'HANLY, L. \& E. Surveyor, Ottawa, C. W.
VOL. 1.]
MARCII, 1867.
[NO. 1
PRICLE $\$ 4.00$ PER ANNUTM IN ADV゙A NCE-SLNGLE NLIMBERS 40 OENTS.

BUSINESS NOTICE.
'The Scientific Journal and Serviyors' Magazine is published at Ottawacity on the first day of every month for four ($\$ 4$) dollars a year, payable strictly in advance; and half price to Surveying and Engineering students.

Tae Scientific Journal and Survetors' Magazine shall be exclusively devoted to the interests of the Surveying and Engineering professions in British North America; and shall discuss, examine and criticize all subjects affecting these inlerests-mental or ma-terial-except religıous or political squabblcs, dogmas or controversies, nove of mheh sinall ever bave access to its pages.

The Scientifle Joermal and Surimpors Magazine shall form a record of all transactions connected with these pursuits, and a depository of information relating thereto ; and consquently indispensable to Surveyors aind Engineers
'Ime Scientifio Jolrnal a.d. Scrulyurs' Magazine sball labor to remove all legal disabilities that stand in the way of the social progress of Surveyors and Engineers. It shall labor to sire Surveyors the sole conirol and management of their professional affairs, such as is now enjoyed by lawyers, doctors, Su. It shall labor to give Engineers a legal stutus with such privileges as are sought for Surveyors. It shall labor to secure for scientific men 3 system of practical education suitable to their callings, whereby their future may be alike advantageons to the publie, an honor to the state and a credit to themselves. It shal. labor to establish in this city, the capital of British America, a Narional Obserfatory, where the rising gencration may have the means of perfecting themselves in those stadies so essential to their future
usefnlness; and which is so difficult, if not impussihio, to attain at present in the Provinces. It siall labor to give Surveyors and Engineers that preferment to which their education and training entitle them-to secure the patronage of the Crown Lands and Pablic Works Departments : and which should ." the public interest exclusively belong to them.

The Sementific Journal and Surveyors Magazine shall advocate an entire change in the present expensive, uncertain and unsatisfactury mode of deciding questions of disputci Boundary; and establish in its stead a tribunal founded on a scientific knowledge of the issues involved; and shall labor assidiously to the accomplishment of this end.

Each numbur shall contain an article on Practical Astronomy, so far as that science is necessary in surveying operations in Canada; and a monthly Jphemeris of the sun and some of the principal fixed stars (particularly Polaris) for determining Latitude, tine and Azimuth, computed to the meridian 75° west of Greenwich ard 45° N. Latitude, which is nearly the geographical position of Ottara ; and which from its central situation is mostly adapted for all Canada without interpolation.

Each number shall contain a studente' department, consisting of useful remarks and practical hints to young surveyors.

Each number shall contain plates and descriptions of surveying, engineering, drawing and plotting instruments; together with notices of new inventions, alterations and improvements, and reviews and notices of new books.

The Scientific Jourval and Surveyors' Magazner shall from time to time contain no-
tices of public works and surveys, and extracts from reports, as well us drawings of important Provincial works ; and shall direct attention to such undertakings.

Especial interest will lue taken in public surveys and Colonization Roads, with practical hints and suggestions on the best modes of conducting these important nperations.

Particular attention will be given to verdicts and judicial decisions on questions of disputed boundary; and the conductor of the .Journal earnestiy hopes that corresponilents will furnish full particulars of such cases, for nothing is of more importance to the survesor than to be well posted in all such decisions, being the best guides in subsequent operations. And tho' the present tribunals are exceedingly faulty, yet so long as the system remains on the statute book, surveyors should learn its ways as well as possible.

To the foregoing and kindred subjects the best efforts of the Journal shall be directed. Its columns shall always be open to surveyors and engineers for the discussion of all those subjects we have indicated, or ang other matter connected with these professions; and it is to be hoped that they will not neglect to avail themselves of the opportunity, and by their contributions render the Jornsal respectable, useful and influential.
The Scientific Journal and Surveyors' Magazine shall, from time to time, contain
articles, original and selected, on practical mathematics and physical sciences.

The editor of the Journais shall always be happy to answer inquiries or give any information in his power connected with the objects for which it has been established.

To opticians, instrument-makers, stationers, booksellers and nuthors of scientific books, The Scienthio Journal and Survetors' Magazine will be an excellent advertising medium, which will be inserted at ordinary newspaper rates.

All communications (postpaid) should be addressed to the Editor of the Scientific Journal and Sharveyors' Magazine, Ottawa, C. W. Registered money letters at our risk.

The conductor of the Journal respectfully requests that any gentleman receiving this (the first) vumber, who does not wish to subscribe, will please return it immediately to this office ; and those gentleman who do not do so will be considered subscribers.

The conductor of the Jofrnal earnestly solicits the co-operation of all who wish the success of the enterprise; and trusts that they will interest themselves in its behalf. Any one sending us twelve (\$12) dollars will be entitled to four copics. We hope that a surveyor in each city and town in the Province will consent to act as agent for the Jourval.

EXe Single copies, 40 cents.

OUR POSITION.

HE conductor of this journal, in the prospectus of a Treatise on Surveying, promised, among other things, that "a pamphlet shall accompany each number, purporting to be an examen of the laws regulating the practice of Land Surveymg , and the admission of Land Surveyors in this Province, with suggestions for alterations and amendments; and a critical review of the conduct of Public Surveys under the supervision of the Crown Cands Department."

When we sate us down to redeem this, our solemn, pledge, we discovered that instead of the narrow limits of a pamphlet, our subject, to do it any justice would require volumes, and still be far from exhausted; and that, at most, we could barely glance at the topics indicated. So we bave coucluded to abandon this portion of our project, or rather to transfer it to a more spacious field and congenial soil. Not that we would be understood to imply that our first notion of a Surveyors' Magatine originatel thus. Far from
it, we have long been impressed with the necessity for such a publication, we have for years steadily adrocated its establishment,we have been a firm believer in its advantages; and as our experience increases, we are the more convinced of the correctness of our opinions. In our musings we have frequently felt surprised, aye, and chagrined too, at the apathy displayed by Canadian Surveyors in a matter, which to us appeared so indispensable to their prosperity, so inseparably allied to their social progress, individually and collectively.

This indifference, when contrasted with the sagacious and enlightened polity of other learned professions, appears still more unaccountable. If you chance into a lawyer's of fice, the first thing on which your eye rests is the 'Law Journal,' if you turn into the doctor's dispensary, you are sure to find the 'Medical Journal' strewn about; nay, if in your rural wanderings you stroll into the farmer's sitting room, jou will find it adorned with the instructive and beautifully illustrated ' Farmer's Joarnal.' It is our firm conviction that to this same lar journal and kindred
publications is due much of the influence and social standing of the legal profession in Canada. For it is suggestive of unity of thought and commuvity of interest, and is emblematic of a sure and eulightened method of directing action to its ulterior desirn-success. It is the type of progress, the soul and centro of organization, the offispring of a common interest, and may be compared to an itinerant preaciner, from whose lips nought is heard but the doctrines of his class. At home it is the promoter of harmony, the disseminator of practical, useful knowledge, and the refiner of manners ; and under its protecting aegis all its votaries find peace and prosperity. Nor is the 'Medical Journal' less important, less useful to its class.

It is a trite old saying, as weil as a recognized and orthodox principle in social ethics, that "a man"s affairs are best mavaged by himself "; and this principle, whether applied to individuals, classes, professions, states or communities, hoids equally good. Indeed, it underlies the whole social fabric. Now, by a parity of reasoning, work done by deputy, (i.e.) by one having vo interest in common with him whom he serves, is likely, nay sure, in the case of states or classes, to be ill done. The latter is the position of surveyors as a class in this country; and is best exemplifed by contrast with other learned professions.

The law society, for example, are vested with ample corporate powers for the management of all matters of a professional character. They enact bs-laws for the regulation of their tariffs, for the admission of members into their body. The control and management of their orvn affairs are in their own hands, they are the custodians of their own desting-they are masters in their own house. There are many preferments exclusively set apart for them, and to which none other is eligible. The medical faculty have also similar privileges.

How different with surveyors. For, tho' the law imposes on them heavy burthenstho' they must follow a long course of preparatory study in the most difficult, as well as the most exalted of all the sciences-mathematics-tho' they must undergo the expense of a preliminary exami-nation-tho' they must serve a long appren-ticeship--tho' they must pass thro' the ordeal of a final examination as a test of their theorctical and practical competency-tho' they must in conjunction with two securities enter ioto heavy recognizances with the state as a guarantee for the due and faithful performance of their professional duties-tho' before they can make the first move in the direction of carning, they must be provided with costly apparatus, consisting of ficld and office in.
struments, books, \&c., which at a moderate estimate will cost $\$ 400$-tho' their avocation is at once the most toilsome and perilous of any class of our people-tho' at a comparatively early age, trom the hardships, fatigues, privations and exposure incident to their calling, they are incapacitated from servicetho' they brave alike in summer and winter the rigour and ivelemency of our variable cli-mate-tho lodged in a cotton tent when the mercury is frozen in the thermometer-tho' doomed to pass much of their time in the society of tise very dregs of the populationtho' they bave to undergo all the burthens and hardships we have enumerated, and twice as many untold, what do they receive in return? What reward for their toils? What succour in those days when they become unfit for service? Whilst the lawyer, the doctor and the uctary are amply and properly recompensed for their services, the poor surveyor receives a paltry four ($\$ 4$) dollars per diem; and this not very unfrequently for very few of the 365 . How is it that of all the learned professions, that of the surveyor is the most expensive and difficult to attain; and when acquired the most laborious and the worst remunerated?

To these important questions we can give but one reply, which is, that all this arises from the fact that surveyors have no voice in the management of their professional affairs; and foreign management is well compared to a 'stepmother's breath." The merchant, the mechanic, the farmer or the laborer has as much control in the conduct of the affairs which govern surveyors as they have themselves. This, we think, is an anomaly-an evil which requires only to be exposed to be remedied.

For we cannot believe that the public require any sacrifices from surveyors any more than from any other class of the popalation. We are satisfied that they (the public) are as ready to recompenseour class-to give them a fair value for their labor, as they are to the lawyer, the doctor or the notary. We are sure, as it is deemed necessary to the general interest to lay restrictions on surveyors and refuse them admittance except on certain onerous conditions, the public are willing to accord them protection and privileges commensurate with the obligations they impose; and if such immunities hara not hitherto been conceded, it is entirely owing to the indifference of the surveyors as a class. For there is but one practical way known to our institutions for redressing grievances, and that is, to ask, to agitate, to appeal, to remonstrate. If a man fell into a pit, from which his own unaided efforts could not extricate him, would he not immediately have recourse to
shouting as the best way of attracting attention to his perilous situation ; and if he were so foolish as to neglect such means, he might remain a long time in the pit before chance vouchsafed him a deliverer. So with surveyors, if they submit without a murnur-with. out a remonstrance, the public, if they at all think in the matter, very naturally conclude that there is nothing to complain of-nothing to redress.

We hope we are doiug no violance to refined tastes when we remind our friends of the homely old proverb, "Union is strength;" and that it is as efficacious now as it was in the fabulous days of the bundle of sticks; nor of its twin-sister, "God helps those who help themselves." This is pre-eminently an age of progress; and it is clear as the noon-day sun, if surveyors do not keep pace with the times-if they do not avail thenselves of the improvements taking place around themi-if they do not imitate the successful policy of their neighbors-if they do not conform to the altered condition of things, they cannot wonder if they find themselves far bebind in the march. Whilst every other class of our mixed society is partaking of a change for the better, marchiog steadily onward in the path of social amelioration, our class alone appear to retrograde, or, at best, to maiutain an ignoble statuo quo. For none will deny that the social position of the surveyor 20 years ago was far abead of what it is to-day.

In continuing our comparison between surveyors and lawyers, we would ask the latter how would they like if the Finance Minister of this Province, by virthe of his office, was head of their corporation in Upper and Lower Canada ; and further, if his power was absolute in all maters relative to the administration of their professional affairs, so that he could appont merchants or farmers or mechanics to constitute the board whose office was to decide who were or were not competent to be admitted as lawyers, and all other matters belonging to their or ganization. We can fancy the reply such a query would justly elicit from the gentry of the long robe; and we doubt not that the Finance Minister who would presume on such functions once, would never repeat the folly. Again, how would the medical fraternity of Upper and Lower Canada like to have the Commissioner of Public Works, for example, by virtue of his office, the head of their affaire, the arbiter of their destiny?

Now, what we have been supposing in the cases of the lawyers and Doctors, is what actually takes place in the case of Surveyors. The Commissioner of Crown Lands, for the time being, is, ex officio, the head of the surveying profession in both sections of
tho Province. Ho is the President of the only administrative or corporate functions with which Surveyors are endowed; and at his whim or pleasure can subvert the whole institution, for the Boards of Examiners, who examine and decide the eligibility of candidates to practice as Surveyors, holia their places during his pleasure, and can appoint theroto whomsoever he pleases. Nor is what we suppose a mere case of possibility, but an actual fact, ior of the nine members, who at present constitute the Upper Canada Board of Examiners, five-a bare majorityare Upper Canada Surreyors. This would bo less aggravating if a dearth of talent amongst Upper Canada Surveyors caused this exclusion. sut we emphatically deny such a conclusion, though we must admit the infercnce is natural. In this particular Lower is far ahead of Upper Canada, for all the members, except the Commissioner, are Lower Canada Surveyors. Yet the Commissioner of Crown Lands, who wields such absolute power over the destiny of the Surveying professiov, is no more fitted by educa tion or training to be head of the Survesors, than is the linaance Minister or the Commissioner of Public Works fit to be the Comptroller of the Legal or Medical professions. Nay, we believe, that in general, Finance Miristers know more of legal lore, if not of legal forms, thau the Commissioner of Crown Lands knows of Surveying. We feel we are safe in sayiug that no Commissioner of Crown Lauds, since the Union of these Provinces, knew the distinction between altitude and α zimuth. between theodolite and circumfercritor. We must not be understood as making any charges ageinest Commissioners of Crown Lands, past or present, for it is an honor or obligation which, however unfairly, the law imposes on them; and we will here repeat, once for all, that whatever we may say in the discussion of this and kindred subjects, we wish it to be distinctly understood that our concern is not with individuals, however unavoidable from their connection with our subject it may be to mention individual names, that we are combating a system, of which the individuals are merely the agents.
That Surveyors could prosper under such baneful influences is simply impossible. Indeed, the wonder is that they have even maintained their present status under such adverse circumstances. At this stage two questions naturally suggest themselves:
1°. Should Surveyors occupy anequal position with the other learned professions?
2.. Are theirservices of such necessity and importance to the public weal as to sccure therin a respectable competence?

If these two guostions can bo answored in the affirmative, it is manifest that if their services, coupled with indus'ry and frugality, fail to secure them like advantages enjosed by others similarly circumstanced, the fault must lay where we have indicated.
To the first question we will nuerely say that we have no fear that Surveyore, individually or collectively, in education and uatural intelligence are equal, we will not say supe. rior, to a like number of any other of the learued professions in this Province. The avswer to the second has already been supplied by our Legislature, in the obligations which it has imposed on all persons seeking admissiou to our rauks; and all this having been done, as we have shewn, not in the interest of Surveyors as a class, it necessarily follows it was done in the interest of the public. For bad it becia done in the interest of survegors or at their dictation, it would have been accompanied with those other couditions without which it is not only wortbless, but a burden to the Surveyor. and the reason is evident. Public men, in their anxicty to protect the general interest, never enquire into special claims, except at the solicitation of the interested parties, and then only on a conviction of the justice and reasonableness of their demands. So that if such concessions have been overlooked in the case of Surveyors, it is their own fault; it is owing to the absence of organization, owing to the want of a medium through which they could appeal to the public, and address it in the only manner they could have weight or iufluence-their collective capacity.
But though we withdrew those legislative reasons, whilst their repeal would not be pro bono publico, it would not diminish the importance of the Surveyor's services, though it might considerably affect his ability. If Surveyors in Europe, where land-marbs have for ages been fixed, are held in sucu high repute, and fagure so largely as their prominent men, how much more should they be esteemed in Canada, where, like ancient Egypt, their most important function is the establishing and defiring of bonudaries, and re-establishing those previously determmed, and of whose existence not a vestige is often to be found except on parchment. In the competent and faitbful discharge of such duty, every member of society has a deep interest.
For our own part, if the Legislature refused to accord Surveyors priviloges commensurate with the obligatious it has inposed, we would at once advocate unrestricted permissions for practice to such as wished, and efface all professional distinctious. Nay, we consider" it to be a gross injustice to the
rising generation, who roay from choice or accident embrace surveying, to continue existing obligations without equal protection. Should such a policy be iuaugurated, we have no fear for the ultimate result. We kuow that a very fow yeurs' experience would restore our professional enactments with increajed protection and privileges; and that our services would be better appreciated.
But leere we have been presuming a thing in itself improbable-that the Legislature would refuse to concede a just and legilimate protection, and such as is enjoyed by all the other learned professions, il backed up by the united voices of the Surveyors of the Province. We fear no such contingency. We believe all we have to do is to ask, to specify our grievances, and point out a remedy ; and that our petition will receive that attention which it merits. And if our grievances are thus loug unredressed, it is mainly, if not wholly, owing to our own apathy, our want of union, the want of a means of holding intercourse ove with another, to interchange ideas, to discuss subjects affecting us, and deliberate on the best means to be adopt. ed to remedy them.
We alluded in a preceding paragraph to the monopoly of preferment enjoged by the legal profession in ome brauches of the pablic service. They have the bench-the great goal of their ambition-the reward of professional diligence, and several minor appointments in the administration of justice to which none other can aspire. This eligibility for high offices, this chance of distinction, operates favorably in inciting to increased industry and study, Far be it from us to object to theso and similar special privileges, believing such a policy resulta beneficially to the whole community. For, we conclude, such preferment originated in the superior fitness of a certain class to administer the duties of certain offices; and by which disposition the people are the gainers ultimately. It cannot be gainsaid that barristers by training and education are likely to make better iudges than any other class, just as a blacksmith is likely to make better horse-shoes than a shoe maker or a carpenter-

But we complain that a system found so salutary and beneficial in the case of lawyers is not extended to other profeesions similarly circumstanced. If there is one class more than another, who can lay a well-founded claim to preferment, it is surveyors. As we have shown, they are subject to onerous legal obligations, their outfit very expensive, their vocation peculiarly toilsome, and in an especial manner subject to all the diseases certain to follow in the wake of exposure to our inclement seasons, so much so, that while yet
comparativoly young they become unable to sustain the fatigues and toils of a bush life; and compelled to abandon the calling iu which they spent their bloom and strength, with disease and inlirmity, contracted in the service of their country, staring then in the face, with as scanty exchequer to cheer their declining days; when, we say, all these circumstances are fairly considered, no class of our population are betcer entitled to preferment if it can be given withous aletriment to the public good.

Thev, if education, training, habit and experience are the best credentiais to public preferment, the surveyor's claims to many branches of the public service stand pre-eminent, and cannot be ignored. Who so fit for Crown Land and Crown limber Agents as survey. ors? Who so fit for the location and supervision of public roads and other public works as surveyors? Who, again, so fit as surveyors for emigrant agents? Who so competeut to administer the fisheries as surveyors? Yet though these situations are peculiarly the proince of the surveyor, still he is overlooked. We say advisedly that it would be no greater anomaly to take an ordinary member of society, say of the mercantile class, and make him a Crown Timber Agent, than to take the same individual and make him Judge of the Queen's Bench; and he is as well qualified to discharge the duties of the one oflice as of the other. In the latter case it would simply be an intolerable outrage, whilst in the former it is the every day practice.

In the same manner surveyors, and surveyors only, should superintend the constructhon of colonization roads. For the primary qualification of such an office is long experience in "bush" life. Because in our rugged country, where the rocks are in many instances concealed by moss and the accumulated debris of the foliage of ages, no matter how carefully the road may be located by a surveyor (for now, we believe, it is admitted that surveyors should do the direct surveying) many important deviations have to be made from the route chalked out, which are entirely dependent upon the experience and judgment of the superintendent, and the excellence of the road will be in the direct ratio of his experience of bush life. So much so that if a renowned European engineor were transported into our forests to construct a road he would be bewildered; and sure to make a road, botin very inferior and very ex. pensive.

By this carelessness in the superintendence of Colonization Roads tens of thousands of dollars have been squandered in Upper and Lower Canada in making roads, some to
completion and others near completion, and then abandoning them as impracticable.

In consequence of the utterly wretcbed manner in which these works have been conducted, the prevalent belief among settlers on colonization roads is that the Government, giving the road lots, free, selected the most barren, rocky tracts for the route, reserving the good land in the intermediate tracts for sale-a belief from which they are not easily dissuaded.

There are screral other appointments such as Collectors of Customs and Inlaud Revenue, to which surveyors by education are well fitted, and are as eligible to most others as members of the community generally. Yet, strange to say, we seldom or ever hear of a surveyor's good luck in succeeding to any of them. We camot attribute this apparent ostracism to any popular ill-will to our class, but rather to their own apathy.

The Crown Lands and Public Works Departments should be to the scientific professions what the berich is to the bar. All appointments in and connected with these two branches of the public service should exclusively belong to surveyors and engineers, because no other class are so competent to discharge the duties belonging to them with efficiency.

To redress these grievances, even to attain partial success, is a prize well worth competing for, and for whose accomplishment we should all be ready to make some sacrifice. We feel assured that within ourselves are contamed the latent elements of victory if properly applied. We bave the mechanical advantage on our side-the odds in our favor. Surveyors are the power, this little journal the lever, public opivion the fulcrum, and the grievances enumerated the weight to be removed; and with the power and the lever on our side we can remove any obstacle to our progress.
Nor is the present time for our undertaking inopportune. By all appearances we are on the ave of a great constitutional cbange in this Province, whether for good or evil none with certainty can predict, but we do our duty if we strive to make the most of it. Several, if not all, the departments will undergo chavge and re-organization-let us hope that in this change existing defects may be wholly eradicated. The Crown Lands will be subdivided, and we hope grounded on a better basis. Let it be the pleasing task of surveyors to point out a better system in that part, at least, of the Government|machinewith whose working they are specially acquainted. This is a golden opportunity. Let us not be slow in availing ourselves of the advantages which, like a beacon, it holds forth. Let us then, one
and all, join vigorously, and success is beyond doubt.

It is with these objects, for these purposes this periodical has been ushered into existence. We wish the task of conducting it had devolved on more competent hands; but whatever may be our lot in ennnection with the enterprize, we sincerely hope that the Journal may live and flourish, and that its career may be long and useful both to the public and those in whose especial interest it has been established; aud if it once takes root, we look on suci a result as inevitable, that it will become an institution in Canadian literature, and a necessity to its patrons. If it bad once passed its infancy, there would be no fear for its future. This then is the season to succour, cherish and protect it , which is the duty, and should be the spesial business, of every one of those in whose interest it is undertaken. It requires the undivided support and active co-operation of every surveyor and engineer in Canada; and ench should act as it its fate solely depended on ais individual efforts.

For our own part we expect from it no special advantage, nothing but what it may bring to the common stock; and if any other would take it up and relieve us of the responsibility, so convinced are we of its usefulness, that we would freely contribute from our limited means towardss its gratuitous support ten times the annual cost we have set it down at. To sustain a periodical of this character requires a great effort from every one interested. For it is not like an ordinary newspaper or magazine, which bas patrons and readers in every class of society. This must exclusively depend on surveyors and engineers. Neither can it have the two great sources of newspaper vitality-advertisements and job work.
But for its support there are, at least four hundred surveyors in the Provinces, and if all these join with the unanimity which we expect, enough can be raised to pay the cost ot publication, which is as much as we expect or desire from it. Woodeuts, lithographs, engravings and other illustrations, as well as mathematical tables and astronomical ephencris add considerably to the cost.
When all this is considered, it will be found that we have set it down at the lowest possble figure to insure cost of publication. Judged by ordinary newspaper rates, the - price of this, no doubt, woufd be excessive, but we have endeavoured to shew that such would not be a fair comparison. The Law Journal, and publications of that kind, will afford a better test. Now, though the Lano Journal has a much wider circulation than we can reasonably expect for this Magazine,
though its matter entirely consists of ordinary newspaper tyne, withous tables or ilustrations. yet, notwithstanding all these odds as against us, we believe it 18 published at our price in monthly numbers of twenty-eight puges each, by which our friends will perceive that our charge is ns moderate as can be.
We appeal to all Surveyors to come generously and unanimously to its support. We appeai to those who have retired, or are about to do so, from active service, either from age or infirmity, from baving secured a competence, or having embraced other more remunerative or congenial pursuits, not to forget their own struggles, and to contribure their sbare in alleviating those of their successors, to do for the rising generation what they must have often wished their predecessors had achieved fur them; and have the pleasing satisfaction, in life's decline, of being instramental in the permanent improvement of their class.
To those who, like ourself, are still struggling in the race against odds, we would say, though you should curtail your ordinary expenses, the cause is worthy of some selfdenial, contribule in the hope of a better future. Those in comparative affluence need vo stimulant from us to incite them in so good a cause. To those who are well enuugh (haisez faire) and would be content to "let well enough alone," we would suggest, you, in particular, should be most assiduous, for you know not how long "well enough" may last: the millionaire of to-day may be the bankrupt of to-morrow. The young Surveyor has every stroug inducement to be most generous, for if any good effected, he, at least, is sare to reap the benefit.
It is not surprising that Surveyors have hitherto almost exclusively engaged our attention; and that reference to the sister profession (Engineering), seems more like casual than studied. Yet this can scarcely be wondered at. The Surveyor has a legal status in this country, which the Civil Engineer has not; and if the latter are unrecognized on the statute book, they are likewise relieved of legal obligations. Besides, Surveyors being by far the most numerous, vaturally claim a larger share of attention. And though in the future Surveying sballsecure the largest meed, until its affairs are settled, Engineering shall not be neglected. It shall be our aim to unite both, not only in the bonds of fratercal friendshin, but in the iodissoluble ties of wedlock. We inope soon to sce the Canadian Surreyor and Engineer occupping a position analogous to the Attorney and Barrister.

In conclusion, dear confrcres, you have heard our say, you know our object. Our
future is now in your hands, lifo or death in your gift. If you bay yca, this Journal will live and flourish, if nay, it is sure to perish. But wha'ever may be the result, we hare performed our part, and will take your decision in good cheer. If we have thus appealed to you it is with no sinister motive. We would, horever recommend each and every ove, before coming to a final conclusion, to weigh well our aaguments, aud not to forget that perchance another such opportunity may not be afforded the nresent generation of eurveyors. If yon do this you perlorm your duty. Should your decision be adverse, this magazine must, expire, for had we the :nclination we bave not the means of publishing it at our own expense; and then, is heretoiore, your class/will be unrepresented, a standing reproach to your education and intelligence, and a great impediment to your success in life.
N.B.-We have to apologize for the appearance of this number, but being at best, only an introductory one, we crave the indulgence of our readers; and will endeavour in our next issue to compensate for the defects and omissions of this, as by that time all our arrangements will be in complete working order. Amongst other matter we expected to have several plates and cuts, but found they could not be ready in time for this number, a delay which would defer our birth for another month ; and deprive you of rur agreeable society and friendly counsel.

Fints to Students and Young Surveyors. CRTEYLNG is the science wheh practically teaches how to measure the surface of the earth or any limited portion thereof, to enable us to find its area and construct a map or fig. are representing it on a plan ? su:face. There are two kinds of sarveying: Plane and Geodeticit.
Plone Sureying is the art of measurins small portions of the earth's surface, consiă. cred as a plane or lovel sufface; and may be subdivided into 'wo parts: Land Surveying and Engineciing Surveying.

Land Surveying shows how to measure, lay out and subdivide small tracts of land, as a farm, an estate, ife.

Eugineering Surveging teaches how to lay out lines of reade, canals and railways, and to find the difference of level between any two points on the earth's sarface.

Geodeticm Surveying is the science which treats of the measurement of large tracts of the earth's surface, considered as a spheroid, and of mensuring the length of a degree of

[^0]the meredian, by which the spbericity of the earth is practically determined.

Young friends, in order that you may be competent to discharge the duties of a surveyor creditably to yourselves, bencficially to your emploser and honorably to tie commonweallh, it is absolutely necessary that you should have a thorough and profound knowledge of geometry, plane and solid; of trigonometry, plane and spherical ; of arithmetic, of Algebra, of analytical geometry and trigonometry, of the application of geometry and trigonometry to the measurement of heights, distances and surfaces, commonly called mensurations, of practical astronomy, as much, at least, as is sufficient to determine the latitude of your station, azimuth. by which the meridian is determined, and the local time at your station, with optics and magnetism as guides to know your instruments. The foregoing knowledge being absolutely necessary, we shall call primary.

There is besides tinis a secondary knowledge of many branches of physical science, such as geology, mineralogy and botany, which add not only materially to your usefulness, but largely increases your own pleasure in life.

Therefore, if yon have notalready acquired the branches which we have called primary. you should immediately set about stadying them. We do not mean that you should again resume your scholastic education, but presuming that in school you have acquired an clementary knowledge of arithmetic, algebra and plane geometry, which if you have, your learning with a hitle diligence and perseverance, is adequate to the task of acquiring the rest; and that too in a much shorter time than you would be willing to believe us if we specified it. Do not tell us you have no time. We say you have, for me have seen as mnch accomplished at a camp Gre as we have here set before you; and jou cannot plead any such excuse for ignorance hereatter if you heed not our advice. We need not add, that some of the brightest luminaries in the galaxy of science have learned under circumstanets as adverse, and some, too, fur advanced in life, iVe, ourself, small as is our stock, have in the last six months; anidst the cares that beset and surround our station, acquired more mathematical knowledge than we imagined we could accomplish in many years.

We would, then, recommend if, as is not unfrequently the case, you have, since leaving sehail, neglected the stady of gemmetry, to ${ }^{-}$ commence with that most important-the ba-sis-of the exact sciences; because, without a sound, deep-laid knowledge of it, you will be rauderiag in the dark, rolling a stone uphill. For this purpose, Chambers' is a very
a hill. For this purpose Chambers' is a very cheap and gond treatise. Every day spentin getting a thorough knowledece of geometry is two days gained in future progress.

To be Continued.
Management of the Pablic Lands.

LIE administration of this Departmeut should be to the surveyor what the administration of the law is to the bar, because a certain amount of special training and education is necessary to the eflicient discharge of ang service, whether of a public or private character-a principle observed in every walk of civilized life.

In this article we shall point out a few of the penalties which the people pay for an infraction of this fundamental law of society. The lands of the Province belong of right to the people, and like all common or public property, are committed to the care and mauagement of che Government. It would be a needless waste of time were we to dwell on the importance of land generally, or to expathate on the public domain of Canada particularly. Suffice it, therefore, to say that this interest has justly been considered so important as to have a member of the Cabinet specially detailed to conduct and administer its affairs. Had the legislature, which evinced so much zeal and solicitude in the guardianship of thes rust, gone a little farther in imitation of a merchant, a builder or farmer, in quest of a clerk, a mechanic or ploughman, and decreed what class of the population should be eatrusted with the management of the public lands, just as has been dove in the cases of the law and Finance Departments, their work would have been complete and ample. It is much to be regretted that some such provision had not beeu made, and that political exigencies are paramount to fitness.

But if, in the nature of our institutions, competency combined with partizan fealty is, if nut impossible, difficult of attainment, we would reasonably expect that the political head would be surrounded with persone, who by education and experience rould be unmistakeably qualified to guide, counsel and direct him in the management of this most important public trust. If Commissioners of Crown Lands must be selected for their ig. norance of the affairs of the Department over which they are called on to preside-as nine-ty-nine per cent of them are-it would be fair to presume that the permanent officials would be chosen to preveut and counteract the mischiefs sure to follow from the incapacity of the chief. In the same manner, as if a draper, embarked in lumbering, with whose management he was wholly unacquainted,
would be certain to secure the services of an agent. whose knowledge of the business was undoubted; and did he neglect to do so, the consequences would be certain failure.

This, we confess, looks like arguing in a vicious circle, because, first we cbarge the commissioners with a want of the slightest knowledge of the duties they undertake to perform, and secondly, accuse them of want of discrimination in the efficiency or inefficiency of their subalterns, and want of discernment in making new appointments. Indeed to expect such results in the conduct of public affairs, however consistent with private management, would not only be unreasonable but puerile. But we would expect that the statute book in the multiplicity of its tomes would contain some safeguard, some guarantee against such a contingency-that it would prescribe what class of the people were particularly fitted for this duty. Neither would such an enactment be novel or naprecedented, nor an encroachment on the prerogative of the crown or natural rights of the individual.

Is "law" more important than "land"? We fancy only the lawyers will answer in the afiirmative. Why then is the administration of the law so carefully guarded, whilst that of land is left to chance? It is because the majority of our legis'ators, the governing classes, the leaders and framers of public opinion, are unacquainted with the nature, character and peculiaritics of our pablic domain. We confess whenerer we approach this subject we feel embarrassed from a consciousness of the difficulty of making our meaning intelligible to those classes, s.nd that any amount of writing without experience is insuffcient to convey a comprehensive, satisfactory notion of this matter to those unacquainted with life in the backwonds of Canada. Indeed, the great majority of our city populations are as ignorant of Canadian "bush-life," as they are of life in Timbuctoo. To many this will sound strange and incredible. But we can safely appeaifor confirmation of what we have here advanced, to the members for Russell, North Leeds, Essex and South Grenville,ard to the hon. members for St. Clair, Rideanand Inkerman, as well as to lumbermen, \&ic., generally.

Whenever a person desires any information connected with land, a sarveyor is instinctively uppermost in his mind, just as a tailor for a cnat, a doctor for a pill, or a lawyer to defend bis person or pocket. (?)

For he knows that these, each in his respective sphere, are best qualified to relieve his wants or gratify his curiosity. Why is this rule, so admirable in men's affairs generally, ignored in the management of our public
lands? Whence does the Commissioner of Crown Lands derive the knowledge so indispensable to the accomplishment of his duty? Is he surrounded by men who by education and experience are qualified to give him necessary information and reliable advice? We adrisedly answer these questions in the negative. We have carefully scamned the official list of the Crown Lands Department, from the Commissioner down to the messengers, consisting of sixty-five souls, and of these we unhesitatingly say there are not half a-dozen who could possibly be capable of giving counsel based on practical knowledge. Probably not more than this number have ever set foot on our wild lands-the trust they are supposed to manage for the public good. Of course we do not consider that riding in a railway carriage to Barrie or Brantiord or Sarnia or Riviere du Loup to hold a sale, or going to Manitowaning or Shebananing to make Indıan treaties, or quell Indian mutinies, as adding to their information, they might as well be sailing on the Atlantic. And of the few who possess any knowledge of it, two are old-good men in their time, but their ideas llke themselves are antiquatedfar behind the time. With such counsellors it is not to be wondered at that all attempts of successive commissioners at good managemen and ecoromy have signally failed, and that the Crown Lands Department has perversely continued a standing reproach to our institutions.

We see the consequence of their blunders and failures every day. We see it in abortive attempis to force settlement in districts wholIy unfic for agricultural purposes at enormous public cost. We see thes? settiements languishing or entirely abardoned when the pine forests, in whose destruction they have been chiefly instrumental, are exhausted; and the only legacy they leave is the wanton waste of our timber-the devatation in a few hours of the crep of centunies growth, and more precious than mines of gold. We see it in a reckices system of cunstructing colonization roads, which after s!ending thousands upon thuusands. idollars on them, are abandoned as impracticalile, to the griat disappointment and injury of pror setters. who were induced through the facihties of communication which they afforded to scule along them. We see it in the a momalons syotem of granting lands aloug these roads free, whilst the inacecss:ble lands in the interior are charged lull pice, and wien comb:tant rates. We ser it in the crude, urdiges.-
 ed, by wheh the mannac nare ot our stat ple e mome ce- umberers-and solters-l hae piosecrs of oui s!catnes:-are kept in perpe.
tual conflict-two parties whose mutual interest it is to live in harmony, for each is essential to the success of the other; and by which the speculator only is benefitted. We see it in the abolition of the best system that has ever prevailed for the settlement of our wild lands-we mean respect for the rights and improvements of equatters, whose labor alone gives the land its value. We see it in the incungrous ssstem of defining the boundaries of Thmber Limits, and which though very expensive is only temporary. Had a different system been intaduced, by which timber boundaries should agree with future subdivisions fur settlement; and which as exploratory lines would determine and decide the tracts or portions fit for settlement, as well as those which prudence and economy should reserve and set apart for timber purposes. We see it in the descriptions of licences, which are in numerous instances so rague and ambignous as to be scientifically meavingless, and could only be defined by the assumption that a superticies was meant-sure sources of vexatious and doubfful litigations by which men, whose all is embarked on the strength of their validity, are frequently ruined. We eee it in official misrepresent ations of the character of our wild lands, when the truth would answer bettei, for emigrants founding their hopes on these fabulous accounts of fertility are sure to turn away from our shores in disgust when they encounter the stern realitythe victims, as they suppose, of fraud and swindle. We see it in the careless disposal of large tracts of our lands to individuals and corporations, contrary to every sound principle of pulitical economy.

Our position is ayprupriately illustrated by the absurd regulations recently iasued relative to cur rivers, by which, if persisted in to the letter, must soon annihilate one of our most important brapches of native mdustry. Just fancy the complete extinction of our sawn lumber trade, in which an almost incalculable sum has been insested, in whose manufacture thousands of our popalation are annually employed at very remunerative wages, and through which millions of dollars lind llacir way into home circulation, besides the large amount to the revenue for the sake of what? Fur the sake of protecing a few barbotes (mudpru's), in the taking of which nut a dozen poor creatures 3rag nut a miserable existence. Il the lumber offal and refuse would have the supposed effect, nothing could be more humane to these poor uretches If this is law, we presume it was hatched in the Crown Lands Depariment, and if not, it was their duty to have opnosed its passage; and 1 l of that ciass, which is better in the violation than observance.

Will any one suppose that if the management of the publi, domain were under the control of its proper custodiaus-surveyorswe could have such a record to chronicle. Most assuredly not, for surveyors of experience, however indifferent they might be about the public welfare, could not bat be sensible of runuing great risk of coming to disgrace in the pursurt of such a policy; and this with their knowledge of what should be done would be a powerful incentive to follow a currect course. But the men at the head of affairs know not these things. They are not conscious of mismanagempnt, and, therefore, individually blameless. We believe, as far as their kuowledge goes, that they hont otly and faithfully disclarge their ciuties; and hence are not morally responsible for the many defects of the Department they administer. With the individuals we find no fauit. Did they refuse to accept these situations they would be more than human.

The public at this stage of our argument is auxious to learn what we propose to do with them, or if we recommend to cast them adrift after years spent in the service of their country. Far be it from us to recommend any such policy. In our opinion such a course would be unjust, ungenerous, cruel, and an ineffaceable blemish on national honor. But, under the new order about to be introdaced, we would suggest to have them transferred toother branches of the public service more congenial to their capacily, and where ther services would be really useful; and it none such can we found, we would unhesitatiogly advise to pension them off-to pay them a competence for the remaiuder of their days for doing nothing, for we are convinced that every dollar so disbursed would be ten gained in good management and progress.

There is, however, one class which in our juigment should be excluded from the endowment list-we mean the offepring of these officials, a goodly number of which tigure on the roll. Now we canaot for the life of us conceive on what principle, except hereditary right ry, that this practice of appointing the children to places in the departments in which their incompetent fathersoccupy positions, nor can twe imagine a greater outrage on public decency. We would, therfore, have these scions try their hands at living by their own exertions and industry, unless under the new regime we are going to perpetuate all the defects of the old.

We have shewn, if any one doubted the fact, that Commissioners of Crown Lands come to the adıninistration of that Department with the leest possible amount of fitness for the efficient, successful discharge of its important functions. Their tenure of office
is uncertain, even to a day, which makes them indifferent to acquire even the knuwledge witho their reach. They are consequently in the hands of their subordinates, and entirely at their mercy in administrative acts, they are afraid to move in any direction lest they might commit a faut pas, which not only might prove their owo overthrow, but that of the party then in the ascendancs. How much the more necessary under these circumstances, that they should be surrounded with men on whose experience, education and training they could rely in the administration of the affairs of the Department.

To be continued.
Alphabetical List of Terms used in Surpeying, Engineering and Architocture, from Brees' Glossary.

BACUS, the crown member of the capital of a column. The columns used in classical architecture are usually formed with a square abacus, and they are formed so as to project over the volutes, and sach parts, and cover them.
Abrevoir, or Abreuvoir (in masonry), the interstice or joint between two stunes of au arch, which is usually filled up with fine mortar or cement.

Abutment a term much used in reference to any fixed points, from whence, or by which, any support or force is obtained; thus the extremities of a segmental arch are gaid to be supported on abutments, upon which it rests or abuts; the extremities of a bridge are also termed abutments. The abutments of large segmental arches are usually formed with radiated beds at the present time, which increases their etrength considetably, by rendering the real rise of the arch sreater.

Abuttals, the buttings or boundaries of land.

Abutting Joint (in carpentry and joinery), a certan jointure of two pieces of wood, the fibres of one piece being perpendicular to the joint, or approaching thereto, and those of the other piece parallel to it.

Abstract, a list of articles and quantities arranged in a tabular form, and employed in the process of estimating artificers' work.

Acre, a measure of land amounting to-4 roods, or- 160 square rods. poles or perches; or-10 square chains:-4840 square yards also form an acre.

Accouplement, a timber tie or brace.
Adhesion, the force acting on the surface of two separate bodies in contact with each other, which tenas to bind them together, and which is proportionate to the number of touching points.

There are two kinds of adhesion : first, the
natural attraction existing between the surfaces of unconnected bodies, and which is said to be greater with two bodies of a similar nature than with two of a different kind, as the force which prevents the wheels of a locomotive engine from slipping on a road or railway-which is greatest when the road or rails are either quite dry or thoroughly wet, the surface then being most free from obstruction. When partially wet it is much reduced, as the wheels are more apt to catch up the dust. The adhesion of the wheels of the best modern locomotive engines to the rails, exclusive of the power to drive the engine itself, is supposed to be capable of overcoming a resistance equal to one-fiftcenth part of the insistent weight of the engine upon a level plane, or one-tenth in fine weather, and one-twentieth in very bad weather; and that of locomotives working with vertical cylinders, to one-twentieth part of the weight pressing on the rails by the driving wheels; or, taking the friction as equal to $8 \frac{1}{2}$ lb. per \% ton, or the 263rd part or the weight, a load equal to $\frac{263}{13}$ th or $\frac{263}{20}$ th of its weight respectively, or the weight acting upon the driving wheels. The wheels of railway locomotives are sometimes coupled, which nearly doubles or trebles the amount of adhesion, according to the make of the wheels. The degree of adhesion to the surface of an ordinary road is at least ten times greater than upon a railway, that of one wheel of a road locomotive being generally found sufficient; but in passing up a very steep hill another is sometimes fixed. The other description of adhesion is artificial thus the surfaces of some bodies are brought to adhere together by the use of glue and other tenacious substances. The adhesion between two flat pieces of glass or brass when smeared with grease and rubbed together, is very great.

Adit. Day Level, or Sough (in mining), a subterraneous gallery, or passage, extending frow the lorrest convenient point in a valley through a hill into a vein of metal, by which the water and minerals are conducted, and the miners sometimes enter and leave it. Adits are either walled or timbered where the soil is bad, and they do not alwass run in direct lines. The water of several pits is frequently received by one large adit, extending many miles in length. An air-shaft is also sometimes termed an adit.

Air-pump, an instrument employed in poeumatics for drawing the air out of a vessel, which is effected by a series of strokes acting upon the elasticity of the air.

Air-pump (in reference to the steam-engine) the pump employed in drawing off the condensed water from the condenser, com.
municating therewith by a pipe at the bottom; the air-pump and condenser are usually of similar capacity, cach being equal to oneeighth of the contents of the cylinder.

Air-escape, a contrivance for passing the air from water-pipes, without allowing the escape of the water; the air would otherwise collect in the bigher levels of pipes, and obstruct the passage of the water.

Air-gratings, small iron gratings built in walls, at the level of the floors. for the nurpose of affording ventilation.

Air-valve (in reference to the boilers of steam-engines), a safets-valve fixed at the top of the boiler, and opening inwards, to prevent rupture from the pressure of the atmosphere upon the sides of the boiler, should a vacuum occur within from the steam becoming condensed, or partially so. The valve is kept shut by a counterweight placed at the end of a lerer, in the usual manner. There have been instances of boilers becoming collapsed by the pressure of the air from without.

Air-vesscl (as applied to pumps, \&c.), a chamber containing air, attached to the ejection pipe of a pump. and communicating with the pipes through wheh the water flows. It is employed to obvate ang irregularity in the supply of water, which it effects by its elastic force, the discharge is thereby rendered constant and uniform-for instance, when the water is introduced, the air within it becomes compressed, and acquires a corresponding degree of clastic force, which it exerts upon the water as it escapes up the pipes, by which a continuousstreain is maintained in the rising main.

Ajutage, a tube fixed at the mouth of an hydraulic vessel for regulating the discharge of water.

Alcope, an ornamental seat in a garden; \mathbf{a} summer-house, bower, \&c.

Alto-relievo-in sculpture-the name applied to figures or ornaments when wholly projected from a flat surface; if partially standing out it is called demi-relievo, and if it be very slight bas-relievo.

Amulet, another name for a fillet. Amulets, however, are generally situated either over or under large mouldings.

Anchor and Collar, or Gate Hinges (sometimes called Collar and Clamp), the hanges employed in hanging iock-gates, scc.

The anchor is usually let into the stone coping, aud turned down into it at cach end, and well run with lead. The collar is made to fit the hooping on the top of the quoin-post! and is wedged up to the anchor as may be required, by means of keys.

Ancere, a sort of ornamental console apphed on each side of a door to support the
cornice, de.; they are also sometimes to be found on the key-stone of arches, but are usually called trusses at the present time.

Angle Bar-in joinery-an upright bar, , situated at the meeting of two of the faces of a polygonal window, as a bow window. The word angic is also annered in a similar manner to many other parts of a building when occurring in au angular situation-as angle bracket, angle rafter, engle rib, angle chimney, icc.

Angle lrons, the pieces employed to join the angles of iron framework, as boilers, dc., being riveted to the side preces. It is at present considered much safer to bend the plates of boilers carefully at the corners, in preference to using angle irons.
Angles-in joinery. The angles of wood work require to be secured togethe:, citier by tongues or rebates, as well as natls or screws.

Angle Staff, the strips of wood occurring in the inside of buildings upon the exterior vertical angles, and employed to protect the plastering. Angle stalfs are of two kindsviz., square staffs and round stafts, called also angle beads, the former being mostly employed when the walls are papered over, or otherwise covesed, and the latter when the angles are seen.

Angle Bead, or Stafi Bead, a description of Angle Staff. Angle beads are made llush with the finished surface pf the plastering on each return, and are therefore servictable in floating the plaster; they are secured to the bond plugging or wood bricks fixed in the walls by the help of nails. Angle beads are sometimes made to show double each way, forming a triple bead, although they are not employed in superior apartments; but the plaster is well guaged, and brought to an arris, a thin copper angle bar being sometimes fitted in to preserve it from accidental fracture.

In the case of an arched recess the wooten angle beads are fixed to the jambs, the bead only being continued round the head in plaster ; lience they should always be separated by an impost in good work, wher by the joint is concealed.

Argle T'ies, or Braces, the namo applied to any framing when situated on the inoer side of an angle, for the parpose of tying the work together; thus, there are angle thes :o secure wall plates at the several angles of a building, \&c.

Angle of Mepose-sonetimes called the angle of Frictiou-the utnost mesibation at which a carriage will stand at rest up on a ruad or railway, and when upon the least inerease of slope it is put in motion by the gravity of its weight; it consequently occurs when the
gravity of the load and friction upon the road are equal.

The angle of repose varies according to the amount of friction: taking the friction at 9 Ibs. per ton makes it 1 in 250 , or about 21 feet, per milt, which is generaliy considered the angle of renose upon a railway; and takng it at $8 \frac{1}{2}$ lbs, 1 pr ton, gives it at 1 in $203 \frac{1}{2}$, or 20 feet per mile.

The angle of repose, upon a turupike road with a good description of carriage, is about 1 in 40 , surposing the road to be perfectly hard.

The natural angle, at which the soil of a cutting or embankment will stand without: slipping imnediatcly atter teaming, is also called the angle of repose.

Angle of Traction, the angle formed by the inclination of the traces with the surface of the roadwny.

Animal luwer, also called A nimate Power, the power exerted by an animal in accomplishing aay purpose. The power of an animal is greatest when standing still. It will, consequently, support a greater load than it can carrs. Upon commencing motion its power is lessened, and it continues to decrease in propartion to the velecity of its motion. A speed may at length be atitained at which it camot carry any lond, the whole of its strength being required to keep upits velocity. It has been stated, that an auimal can produce the greatest efict in a given time when meving at one-third of its greatest velucity unloaded, the load being ficur ninths of that which it can just move.

As the mehanical eflect of an animal isaccording to the speed of its velocity and the weight of the load, it may, consequently be ascertained by multiplying them together. Most anthorities rate 1 horse equal to $\overline{5}$ men; some state it at 6 , and others at 7 .
i beciivf that lucomotives would soon compete with horses on common roads, possessed the scientific world a few yearsago, bur it is nut sugeneral at present. The sureriority of stam eugines over horses upon railways, is, howerer, solf-evident ; yet, as is is necessary for the trains upun a railway to start at certain fixed pricds, whether they have full loads or nut, they conserpelitly become expensise with light ones.

The expeuse of conveying grools by horses at 2.2 miles an hour, is abont the sume as by ioconnnives at 12 miles; lherefure where speed is uf bo consequetice, horser may be proferable, as anse railnay can be executed fir a much lese sum than a docomotive line. There are some railwas in the north of Engiand where horees stall comtinae la be nsed.

The following statement of the dynamical effect of human and horse power severally
applied to walking, wheel-cranes, crabs, cranes, pile-driving engines, horse-runs, \&c., for raising different materials, was drawn up by Mr. George Remie, C. E.:
manual labor.

Building Materials.

1stly. One man, in sixty-seven journeys, raised a weight of $16,342 \mathrm{lbs}$. (including his own weight), to the height of 30 feet in ten hours, equal to a weight of. 817
raised I foot per minute.
2ndly. One man, in forty-seven journeys. raised a weight of 11.374 lbs . (including his own weight), to the height of 50 feet in ten hours, equal to a weight of. 974.8 raised 1 foot high per minute.
Ordinary Cranes, from experimients made at the West India Docks.
3rdly. The power of six men applied to a crane is capable of raising $224,000 \mathrm{lbs}$., 15 fect high, in eight hours, equal to a weight of...... raised I foot high per minute per one man.
4thly. The power of six men applied to a crane is capable of raising a weight of 262,080 lbs., 12 feet high, in eight hours, equal to a weight of 1092 raised I foot high per minute per man.
N. B.-The triction of these cranes varied by experiment, from $\frac{1}{10}$ th to $\frac{1}{1}$ th of the absolute weight.
Ordinary Cranes, from Experiments made at the West India Docks.
5thly. By the walking wheel-crane, worked by six men, a weight of 787,920 lbs. was raised 7 feet in eight hours, equal to.
raised 1 foot high per minute by one man.
6thly. Again, by the walking-wheel crane, worked also by six men, a weight of $911,680 \mathrm{lbs}$. was raised 8 feet in eleven hours, equal to.. . raised 1 foot high per minute by one man.
7thly. By two crabs, worked by six men each, a weight of 728,000 lbs. was raised to a height of 16 feet in eight hours, equal to.

2012

8thly. The dynamical effect of 1-horse power applied to a pile-driving engine, was found to be equal to a weight of $42,536 \mathrm{lbs}$, raised 1 foot high in thirty-five seconds, or a weight of 36,459 raised 1 foot per minute per horse.
9thly. Again, the power of a horse applied to working runs, or raising earthwork up a run, or ivclined plane, the base of which was 60 feet, and the vertical height 40 feet, was equal to a resistance of 410 lb . travelling through a space 72 feet in oue minute, which is equal to raised 1 foot high per horse power per minute ; a result very inferior to the last, arising from the inconstant nature of the work.
Antæ, or Antæ Pilaster, a certain descrip. tion of pilaster attached to a wall.

Aperture, an opening formed in a wall or partition to receive a door or window, or to afford a recess. The sides of an aperture are called jambs, and the bottom the sill; the top is called the head, whether it be arched or level. Apertures are of other shapes besides square, as circular, oval, \&c.

A pron, a term aplied to the lower part of anything, as to the lower part of a window next the room, also the timber platform at the entrance to a lock against which the gates shut.

Apron-in Plumbing.
Apron Lining, the boarding covering the apron piece.

Apron Piece, or Pitchnng Piece, a piece of timber used in the construction of wooden staircases, for supporting the carriage pieces, or rough strings. The apron piece is placed in a horizontal direction at the end of the joists forming the landing, and is firmly wedged into the walls at either ends.

Aqueduct, a term applied generally, either to a series of arches over a valley, or to a tunncl through the earth, when either expedient is used for the conveyance of a body of water.
The ancient Roman aqueducts, some of which remain at the present time, were constructed at a great expense, consisting very frequently of several tiers of arches, supporting the water way, which was intended for the supply of the several public fonntains baths, \&c. The supply of water to Rome was considerably greater than the present I supply of London, and that of Paris is much
less than the latter. The Lune Aqueduct, in Lancashire, on the Lancaster Canal, by Mr. Rennie, and the Chirk Aqueduct, in Denbighshire, on the Ellsmere Canal, by Mr. Telford, are among the most celebrated aqueducts of modern times. The water ways of modern canal aqueducts are usually formed of plates of cast iron rivetted together. The ancient aqueducts were not used as canals for the purpose of navigation, as those of the present time, but for the conveyance of water for the use of the people.

Arch, a certain arrangement of over-lapping wedge-shaped stones or bricks, commencing usually from two fixed points or abutments, the beds radiating and meeting in the centre, thereby forming an equilibrium upon the removal of the woodea mould upon which the arch is turned.

Arches are of varions shapes.
The abbreuvoirs or joints of all arches should be perpendicular to the surface of the soffits.

The top of an arch is cailed the extrados or back, and the under side the intrados or soffit; the line from which they commence is called the springing line, and the first arch stone on each side the springers or reins, which rests on the imposts or abutments. The extreme width between the stringers is called the span of the arch, and the rise of the curve in the centre the versed sine. The bighest portion of the arch is called the vertex or crown, and the centre course of voussoirs the keycourse.

The side portions of all arches extending from the crown to the springing are termed haunches or flanks, and all arches require to be well sustained by backing carried up to the haunches. The walls built on the haunches are called spandrel-walls; and it is customary to carry up spandiel-walls with small arches turned over between them, termed relieving arches, upon the backing of arches of great span, for the purpose of preventing any irregular pressure of earth upon the same. Arches are also either cylindrical or groined, the former being an elongation of the same curve througbout its length; and where intersected by other arches cutting across it transversely the point of junction is termed a groin, such being described as groined arch. e8.

An arch equally balanced in all its parts, is called an arch of equilibrium. which is of similar strength throughout, or not more inclined to fracture in one point than in another.

It is found sufficient in practice, if the arch of equilibrium be comprised within the vouscoire, without forming the extrados and intra-
dos of the necessary form to constitute the same.

The construction of brack arches should approximate as closely as possible to those of stone. In the common mode of building then the innermost courses of bricks are laid very close, and pieces of tile or slate are filled in the outer parts of the joints; the bricks are in other instances laid iu separate rings, which system remedies the want of key in the former, but is defective from the want of connexion between each ring; it is therefore best to employ built voussoirs, by which the key is maintained throughout the whole thickness of the arch. This plan may be said to unite the advantages of each of the former methods; and it was somewhat followed in the construction of the arches of the Blackwall Railway.

Brick arches of very great span have been erected; those over the Thames at Maidenhead, on the Great Western Railway, are each 128 feet span, and 24 feet 3 inches rise, and are the largest yet bailt: they are turned in cement. The building of brick arches in cement doubly strengthens them; yet as the remainder of the erection is generally carried up in mortar, an unequal settlement naturally follows, and sonsequent fracture, unless a proper provision be made for the same.

Elliptical arches are therefore not unfrequently turned in mortar, from the springing to the haunches. and the remaiuder finished in cement; the arch is therefore enabled to accomodate itself at the mortar joints to any pressure it may receive from the spandrels, or from any sinking of the abutments, which it may do without impairing the strength or effect. Sometimes only a small portion only of the centre of an arch is turned in cement ; in other cases, a course of stone is carried along the haunches of an elliptical arch to strengthen it. There are some segmental arches on the Blackwall Railway, built of brick, with a span of 86 feet, and a rise of 16 feet, which are turned in cement, in old English bond, (the usual method of turniug arches being in balf-brick rings) there are three courses of bricks taken through the whole thickness of the arch (4 feet 3 inches) upon each side, their lower berls and cross-joints being laid in mortar, also the three courses next the springing of the arch.

Some engineers consider it a good plan to lay in the lower courses of the brichs dry, and grout them together, as it gives the bricks a more equable strain.

In reterence to railway arches, it may be stated, that the general size of the arches for occupation bildges over the London and Birmingham Railway is 30 feet in width and 17 feet in height to the crown; elliptic arches
being adopted, having a rise of 9 feet. and the arches umber the rifleay are made lis tee: wide, and of varions homight according; to that of the embankment. The extrme berortu of Temple Bar, London, is 17 fere 9 inches, which is not suficient for so ne of the wageons th pass undes. Arehos ale som.theses bimed of iron, also of woot.

(To be Cumtinem?.)
 Notice of New Bool:s.

We maderstand that Chan!-s P. F. Dan'large, Eig., of Chebee, I. L. Surveyor, Civil Engineer and Arehitect, has recently poblished a teanise on Plane and Solid Geome$\operatorname{tr} 5$, and Plan: and Spherical Trironometry, what we hope to be able t, reven in oid next issue. We believe that this is the frest nook of a seimific character published by a Canadian antho:. We are pleased to have to chronicle this promess; and particularly so, as the honour belongs to one of our own class.

We have no doubt that this beok will merit the patronage of scientific men, for having emanated from the pen of that distinguished scholar is a good guarantee of its cxcellence. We hope such enterprizes will meet with the success they merit. It has for a long time been a just cause of regret that this Province, so fruitiul in most other things, has produced few if any scientific authors; and now that this reproach is being wiped out, it would be a lasting shame to the country if they did not extend adequate encouragenient to the authors. We sincerely hope that MrBaillarge will reap the just reward of his eri. terprize; and we heartily congratulate him on his success.

We mould direct the attention of surveyors, engineers, architects, de., visiting the metropolis, who may require to purchase stationery, drawing instruments and materials, to the card of Hope $\&$ Co., to be found in another column. Te can speak from experience of the excellent quality of their goods, and beliere the establishment to be secund to none in the Province, both as respects quaslity, price and variety. We know that it is superfluous to say a word to surveyors residing in this vicinity, for we know it to be their lavorite mart. Give them a call.

As Onission.-Greek letters and characters being not generally in use in ordinary printing offices, we had to order them from a disfance for our Tables, and not having arrived in time we have been compelled to go to press without them, using in their place ordinary type.

Disputed Boundaries.

OCNDARY is the outside or limut (1) any body, or that which divides one limited or definite space from amother. The boundaries sof solids are sataces, and of surfaces lines. One bortion of the earth's surface is distinguished from another by its bomidaris. Of these there are two kimls, wotemel and artificial.

Natural bondartes are those barriers or uisisions enected hy mature to distingaish one portion of the glabe from another, as seas, rivers, lakes, momntains, sec.; and nsually form the limis of comaries.

Artificial boundaries are maginary lines or arbitrars matis, such as walls, lences, ditches, Le. ; and generally cmployed to distinguish the property of one intividual from another ; or they consist of mathematical descriptions by whinh such marks or monuments may be established as would enable any one member of the community to discern his property, and set it apart from all the rest.
Boundary, then, is the basis of private rights in real estate-a fundemental law of society, without which special or individual rights to certain tracts of land could not exist; and is coeval and contemporancous with modern civiliztaion, whilst the waut of boundarics is peculiarly characteristic of savage nations.
It is true that che lard within the limits o? any state might be arbitrarily and irregularly parcelled out or distribited anongst the inhabitants. either hy might or choice as was customary in ancient tinies. But experience has shewn that such a system would not only be not desirable but, exceedingly inconvenient, and almost impracticable in a couvtry like Canada, covered with an unexplored forest. Then, as the rigits of individuals to real estate is contingent on its boundaries, it is of the first 11 portance to the whoie population bo h ndividualiy and collectively, that original boundaries shoula be properly established by competent authority. It is with this object that the legislature bas provided that persons entrusted with this duty should be well versed in science-it is for this purpose that onerous obligations and sovere restrictions have been inposed on the Camadian surveyor, and that his education must be more extensire, it really qualified, than is necessary in any of the other learned professions. The Government perform the original subdivision by which data are furnished to fix any definite portion or parcel of land. It is scarceIf necessary to add that such allotment should only be entrusted to the first talent in the country, as well for the future stability and security of property, as the only means of
ascertaining innowiedge of the geography of the country. Tho important this service, truth compels us to observe that this rule is not very rigidly adhered to. For it is manifest that if in the first parcelling out of the land the quantitie, were accurately determined, the chances for future disputes would be considerably diminished. Such disputes generally originate in the perishable character of the marks or monuments employed in the original subdivisiou. It is a fact patent to every one that our courts, term alter term, teem with vexatious litigations on disputed boundaries; and that many an honest, industrious man has lost his all-the fruits of years of toll and struggling, in such contentions. But as from the nature of our country such disputes will sometimes arise in spite of all human caution and foresight, it is, therefore, absolutely necessary that such disputes should be decided by competent tribunals, wherein justice should not be administered in ignorance, bnt on unerring, scientific principles; and it is to this object we wish specially to direct public attention in this article.

Now in Canada there can be but one way of establishing boundaries, or re:establishing those which have been obliterated; and that way is by astronomy. But tho' we are limited to one mode, that mode is infallitie, and all others are fallible, uncertain and imperfect, and if ever correct only by accident. Of course our reasoning implies that none unacquainted with astronomy can astablish boundaries, and as they cannot establish them without this knowledge, a priori, they cannot pronounce intelligibly whether they are correct or not. But to acquire this knowledge, even partially, its possessor must be familiar with the principal branches of mathematics, and must be furnished with good and sufficient instruments to reduce this knowledge to practice, for without these helps his theory would be practically unavailing. When a dispute arises is this mode-the ouly possible one for adjusting it-resorted to? On the contrary, instead of applying to those who only could settle the difficulty, they rush to lawyers, as ignorant of the issues involved as the disputants, and a law-suit begotten in ignorance is instituted; and from thence to the termination every act in the legal drama is a ridiculous farce-a disgrace to the age and civilization of which we are so proud.

We will not follow the processes, the journeys hither and thither, alternately from the court-house to the lawyers' respective offices, but shall without further ceremony usher on the suage the crowning scene of this burlesque rn justice. Truly justice must be blind, or she would never permit her immaculate name to be tarnished by such proceedings.

The curtain rises, and what do we behold? We see twelve men selected as it were atrandom from the crowd, being put thro' the immoral farce of, what !-of solemnly swearing that they will perform an act, which for them is simply impossible-swearing that they will decide scientific issues, of which they know as much as they do of the inhabitants of the moon. Besides the losses it entails, or may any day entail on any one of us, see the moral cffect. What respect can the persons so drilled have for the solemnity of an oath. Next, lest there would be any chance of their seeing a scintillation of reason, all the succeeding ceremony is admirably calculated or rather perhaps speciaily instituted, to confuse and bewilder them. A surveyor is put in the box, and from the badgering which he gets from the lawyer, he appears to the jury and the public more in the character of a partizan on one side or the other, than an arbiter, his scientific operations being quite irrespective of either. When the whole institution is founded in ignorance, every question asked by the lawyers is quite irrevelant to the subject at issue, and on the surveyor retiring from the box, all intercsted are as ignorant of the matter at issue as they were before he ascended to it. Now if any light could be shed on such a tribunal it would be by the surveyor making a report, giving a detanled specific account of every operation; and then such further explanations of any points not clearly understood, as would make the matter intelligible to the court.
Now we ask-and we hope the press will hearken to our reason, and aid in removing this incubus from the statute book: Can anything be more absurd than to select twelve men to decide-admitting our legal compe-tency-whether our theodolite is one fit for making observatious and acquiring data, without which it would be impossible to solve our problem-that our theodolite was in perfect adjustment at the time of our observation, without which it would be valueless-to declare that we ascertained our latitude correctly, without which we could not determine azimuth, and without azimuth could not establish the meridian of our station; and without establishing the meridian, could not draw a line on any definite or given course. How this is possibie-how this is tolerated, with such mportant interests at stake, we cannot comprehend. We know, in all our experience, of only one thing rivalling this system in absurdity; and that is - granting a patent b_{j} our Government for the trisection of a plane rectilineal angle by the geometry of the straight line and circle !

It is easy to comprehend how twelve jury
men are properly qualified to decide on sworn oral testimony on the guilt or innocence of the commission of a crime, or the signing of a written instrument of promise, power, bargain, sale or contract. This ability to perform is quite rational and inte!ligible ; and the founders of this excellent institution (trial by jury) merit not only gratitude, but our admiration and reverence. These we have enumerated are its legitmate functions, and those for which it has been formed, but by diverting it from its real object, we not only pervert it, but run great risk of bringing it into disrepute.

Well, it will be said that tho' the jury are as we have described, yet the judge will direct them aright and they will be guided in their decision by his "charge" or counsel. Well, if we had this guarantee there would not be so much to complain of. But we must emphatically deny the existence of such a safeguard. We entirely deny the assumption that the judge-and we say it with all deference to the bench-is competent to decide such issues; and that five cases out of ten, at least, he is as ignorant of the scientific issues as the jury or the lawyer. Nor can this be wondered at. In fact it would be a just cause of surprise were it otherwise. For judges are not selected for scientific knowledge, and were we to admit for argument sake, that they were possessed of the theoretical knowledge, that alone would be totally madequate. But there is no reason to suppose that a judge is a better mathematician or astronomer than a merchant or mechanic, nay, a farmer. Tho' a slight knowledge of geometry may be required in the curiculum for barristers, yet such knowledge is not necessary to attain to the first eminence in their profession, for which, we believe, they are choseu qs judges. The lawyer's necessary education is exceedingly simple and limited, consisting of reading and writing, and sufficient arithmetic to compute simple interest. And if the great commentator and jurist, Blackstone, only knew what we have indicated, it was quite compatible that he would attain to as much eminence as if he knew the principia and calculu, as well as all the living and dead languages ever spoken. All the other acquirements of a lawye: are learning the legal forms and studying the authorities and renorts of decisons, for which the education we have referred to is quite adequate. Therefore, we repeat, it is not to be wondered at that judges are not qualified to direct in such issues. And from the well known probity and honor characteristic of our judges, both in Upper and Lower Canada, we are convinced that they will not demur to our argument; nor have we other
object than pointing out a grievance and suggesting a remedy; and in our sphere endeavoring to contribute our little share of usefulness to the general stock.

In view of this accumulated ignorance, is it wonderful that verdicts are so irequently at variance with justice-that litigations, when such hope is held to the dishonest, are so numerous, and that many of our farmers-innocent rictims of our tribuuals-are, if not hopelessly ruined, at least, driven to great want and destitution. It is on this account that we feel we rould be doing a good service to the country if instrumental in remedying this evil.

But to continue the farce to its denouement the jury retire bewildered, stupified, with as much knowledge of what they are going to adjudicate on as if they were going to propound a new theory of the universe at variance with the laws of gravitation. How then do they come to a decision? Dificult to answer the mode of reasoning, but the conclusion must be mere conjecture or chance. We believe the modus operandi is sometimes in this manner, if by any chance, which most frequently happens thro' the subtlety and legal acumen of the lawyer, a surveyor gets a verdict in any case of notoriety, and thereby acquires celebrity, the verdict, whether right or wrong, is likely to be on the side that he espouses. So that to aggravate this evil a highly educated and competent surveyor has often less chance than one known, in the manner we have pointed out, to the jury, tho' perhaps much less competent. Surcly such a system needs only to be uncovered to be overthrown. And we would earnestly recommend it to the consideration of the Government.

Hence, having endeavored to expose the rottenness of this system, we shall now attempt the task of proposing a remedy, lest we might have the Journal open to the revolutionary charge of tearing down without any ability to construct. (We may here add that we do not propose to meddle or interfere with the present mode of quieting titles, that is foreign to our object, for we believe the present tribunals are the proper ones for that purpose). We would propose that an entirely new tribunal be instituted, to be called a Boundary Court, somewhat resembling the Court of Chancery, having its head-quarters where you will, and to be composed of say three surveyors (eminent for their professional acquirements) and a barrister to decide and direct in all points of law. That these surveyors would make circuit for the hearing of evidence, as is now done by the court referred to. That at each county town the county or district judge would be associate to
dircet the evidence on legal points that may arise. That before such tribunal every surveyor should file a full and complete report of all his operations of what kind soever, and that the court, if it desires, could examine the instruments with which he made the survey, or in any other manuer test his competency for the accurate periormance of that service. Tho' we have specified this, we linow it would be seldom or never necessary, for a competent surveyor on the bencb could very quickly discern whether the operation was properly performed or not.

Then this evidence would be examined and adjudicated on in chambers before the whole court; and if found that the operations were either incomplete or incorrect, the court should have power to appoint a surveyor of whose ability it was assured.

By this means you would have decisions in accordance with scientific, unerring principles, and soon, instead of lawsuits of this kind being increas ng by multiples, it would be by submultiples.

Now as the best meals of unmasking this system is by facts, and as the experience is very scattered and divided amongst all surveyors, we earnestly hope that every surveyor from time to time will supply us with his experience, that we may accumulate such a pile of testimony as will strungle this monster in his lair.
'Tho' faulty and imperfect is the Lower Canada system of deciding questions of this class, yet, were it not for its tardiness, it is manifold preferable to the Upper Canada practice.

We must not be understood as wishing to disparage the standing or character of the legal profession in the discussion of this and kindred subjects. By no means: we know that to every civilized nation its legal profession is at once an honor and ornament; and in its ranks are to be found some of the most celebrated men of ancient or modern times.

In our next issue we shall commence, what we may reasonably characterize as a cause celebre of this kind, in which the conductor of this journal, in conjunction with two other surveyors, made a verification survey; and we think that it was one of the most extraordinary cases of disputed boundary that ever came before a Canadian Court. In its discussion we shall woid names, as we think it entirely unnecessary to a full understanding of our subject. Nor do we think that our correspondents should give names except absolutely necessary to an understanding of the subject, and when they do, we shall exercise our own editorial responsibility in suppressing them when practicable. For all such subjects should be discussed in a friendly
manner, with only one object in view, the public good.

We shall also in our next issue in this connection strive to remove a great popular falfallacy, which is that " surveyors themselves differ," or if we cannot accomplish so much, to give an inteliigible reason for it.

TO SURVEYORS, ENGINEERS, \&c.

Prospectos of a Treatise on Surveyina.

To be mullished on the 1st of May, 1867, a Treatise on Surveying, specially adapted to Canadian practice. It shall consist of three parts:
PART I—Shall treat of Plane or Land Surveying PART II-Of Engineering Surveying, and PART III-Of Geodetical Surveying.
The Mathematical Tables shall be found very comprehensive; and containing all those required for the three branches, together with Tables by the subscriber on Engineering Surveying, never before published, and which alone are worth the whole cost of the book.

The want of a work of this kind has been long felt by the Canadian practitioner, English and American authors being usually limited to Plave Surveying, and consequently falling far short of our requirements, whilst their tables are very incomplete and wholly inadequate. To supply these defects and omissions, and to procure for the Canadian Surveyor a text book embracing all the departments of his profession, is the object of the proposed work; and the undersigned reasonably expecte that 16 years' practice in the forests of Canada, with a fair share of Mathematical training, render him not unfit for the successful accomplishment of his undertaking.

A pamphlet (free to subscribers) shall accompany each number, purporting to be an examen of the laws regulating the practice of Land Surveying, and the admission of Land Surveyors in this Province, with suggestions for alterations and amendments; and a crit1cal review of the conduct of Public Surveys under the supervision of the Crown Lands Department.

It is scarcely necessary to add that the cost of publishing a scientific book of this character is very considerable; and that very few unaided would undertake it. With a view, therefore, to insure the immediate expense of publication, early application by circular will be made to all Canadian Surveyors and Engineers, to subscribe for, at least, one copy (\$6). It is to be hoped that they will respond
liberally, and encourage pative talent and enterprize. It is with this object that the prospectus has been issued so long in advance.

If sufficient encouragement is given the work will be published at the appointed time; nd if unequal to what is promised, no subscriber will be held liable.

Your obedient servant, J. L. P. O'HANLY, P. L. S. \& C. E. Ottawa, 26th October, 1866.

With reference to the above, we are in a position to state that circulars have bern addressed to over four hundred persons, chiefly surveyors; and we regret to state that sulficient encouragement has not bitherto been offered to warrant the publication of the work at the specified time. This, in our upinion, is almost entirely attributable to neglect on the part of those addressed. For, we know that every surveyor must have, at least, one treatise on surveying; and, moreover, we have not seen yet a single work on that subject adequate to the requirements of the Canadian practitioner, the defect having to be supplied by some other works on practical mathematics. It is to remedg this inconvenience that the propused work has been undertaken; and we are convinced, from the nature of the addition and improvements it is intended to contain, that no surveyor would cavil at the cost.

To adapt the work to theodolite surveying it is proposed to compute the "Traverse'Table" to every minute of the quadrant. The work shall also contain all the astronomical and mathematical tables necessary in Canadian practice, it shall also contain a series of origidal tables, prepared expressly by the author on engineering surveying, for laying out curves, and for laying out cutting and cm bankments, and calculating their contents. The addition in tables alone will be worth the entire cost of the work.

We know that in a matter of this kind it is customary, and we might add, necessary, to make a personal canvass for subscribers. But our friends will remember that such a canvass, where only one class, thinly scattered over the Province, can be applied to for support, is simply impossible. We would, therefore, add, if surveyors desire that the work shall be published at the appointed time they must contribute at once.

The author returns his sincere thanks to those who have subscribed, not only for their liberal support, but for their many expres. sions of approval and encouragement to cheer him on in his difficult undertaking, for to have one's efforts in doing good appreciated is a true source of pleasure.

The authur in his connection with this matter has experienced but one iustance of discourteous treatment, his circular having been returned with letter postage to pay; and the suljoined note written on the back:

(Cony.)

I have long since retired from the " nonpaying profession," and disposed of the most of my instruments.
(Signel,)

M. C. Schofield.

This was gratuitous, unlooked for information, in which the author had no snecial interest, and to which his circular or prospectus had no whence. The circuiar, like all others outside this city, was prepaid; and if Mr. Schofield did not wrsh to subscribe he could have cast it into the flames or the waste basket.

Astronomical Department.

STRONOMY is the science which, as its name indicates, treats of the astra or stars. The renowned astranomer, Si: John F. W. Herschel, defines this science thus: "The magnitudes, distances, arrangement aied motion of the great bodies which make up the visible universe, their constitution and physical condition, so far as they can be known to us, with their mutual influences and actions on each other, so far as they can be traced by the effect produced, form the assemblage of objects to which the attertion of the astronomer is directed.

The same author speaking of the sublimity of this science and the didiculty of acquiring a thorough knowledge of it, in his own incomparable style thus delivers himsell: "Admission to its sanctuary (astronomy) and to the privilegas and feelings of a votary is only to be gained by one means - a sound and sufficient knowledge of mathematics, the great instrument of all exact inquiry, without which no man can ever make such advauces in this or any other of the higher departments of science, as can entitle him to form an independent opinion on any subject of discussion within tleer range.'

Tho' few, if any, Canadian surveyors can expect to rach that perfection in astronomy which, according to this great authority, would entitle them to the privileges of a vo-tary-tho' such an opportunity is as jet denied the Cauadian sludent, yet it is absolutely necessary fur every Canadian surveyor to have a certain knowledge of practical astronomy ; and without which he cannot legalIy or adeguately perform the most essential duties of his important calling.

Tho' it is not our intention to write a treatise on astronomy (a task for which we are
far from competent) yet, we think that we caunot devote a few pages of each number of this magazine to better purpose than directing our readers' attention to the application of practical astronomy to Canadian surveying; and with that object we shall commence with the definitions and explanation of technical expressious used in that science. Tho' we are well a ware that this beginning to most of our readers is quite supertluous, yet if one only!of our class should unfortunately lack this fundamental knowledge of his profession; and by this means it would be imparted, and a taste for thefurther pursuit of this science implanted, we feel that this journal would not have failed in its mission, and that the design of its promoter would not be barren in useful results.

DEFINITIONS.

Of the heavenly bodies there are two classes, Fixed and IErratic.

Fixed Stars are those which maintain the same relative position one to another.*

Erratic Stars are those which are continually changing their places amongst the fixed; and divided into three classes, Planets, Satellites and Comets.

The Celestial Sphere is the concave sphere of the heavens, on whose apparent surface the heavenly bodies are situate,

The Axis of the celestial sphere is an imaginary line passing through the earth's centre, and produced to the region of the stars, around which all the heavensiseem to revolve, and is the production of the earth's polar axis.

The extremetics of the celestial axis are called the Poles of the heavens, the one towards the north, the North Pole, and that towards the south, the South Pole.

The Equinoctial or Celestial Equator is a great circle, which divides the celestial sphere into two equal parts, called the Northern and Southern hemispheres of the hearens; and being the carth's equator extended to the starry firmament; and therefore is the great circle to whose plane the celestial axis is perpendicular.

The Ecliptic is a great circle of the celestial sphere, in whose plane the sun performs its apparent annua! revolution around the carth (tine earth really around the sun), being the earth's orbit extended to the region of the stars. The ecliptic intersects the equinoctial in two points, called the Equinoxes, that one in which the sun moves from the south to the north of the equinoctial, the Ternal Equinox ; and that in which it moves to the south the Autumnal; and called equi-

[^1]noxes because the day and night are equal at these periods all over the carth.

The plane of the ecliptic makes with that of the equinoctial an angle of $23^{\circ} 27^{\prime} 15^{\prime \prime} .8$, called the Obliquity of the Ecliptic, being a variable, and the measure of the sun's greatest declination, north or south.

The Zodiac is a zone of the heavens, extending about 8 degrees on either side of the ecliptic. It is divided into twelve equal parts, called signs, each sigu coutaining 30°.

The first six lic on the north side of the equinoctial, and are called Northern signs, and the other six on the south, called Southern signs.

The vernal equinox is called the Frst Point of Aries.

The two points in the ecliptic distant a quadrant from either equinox are called Solstices; that on the north of the equinoctial the Summer Solstice, and that on the south the Winter Solstice.

The zodiac is important in astronomy as being that belt of the heavens in which all the mombers of the solar system, except the asteroids, are situate.

The Horizon is commonly understood to be the circle which binds the view of the spectator at any point on the earth's surface (i.e.) where the earth and sky appear to meet. This we have been describing is called in astronomy the Visible Horizon; and is the base of a cone touching the earth's surface all round, and having the eye of the observer for the vertes. Besides this there are two other kinds of horizon, called the sensible and rational.

The Sensible Horizon is a plane tangent to the earth's suriace at any point thereon, or a plane perpendicular to the direction of the plummet.

The Rational Horizon is a plane conceived to pass through the earth's centre parallel to the sensible horizon, produced to the spbere of the stars.

The Zenith is that point in the heaven's vertically over any spectator's head on its surface, and the Nadir vertically under his feet; therefcre the zenith and nadir are the poles of the rational horizon, for they are the extremities of that axis of the celestial sphere perpendicular to the plane of that horizon.

Vertical Circles are great circles passing through the poles of the rational horizon, or through the zenith and nadir. That which passes through the east and west points of the horizon is called the Prime Vertical.

The Meridian of any place on the earth's surface is the section of a plane passing thro' that place, the earth's centre and the poles of its axis ; and this plane conceived extend-
cal to the region of the stars is called a celestial Meridian.

A Celestial Meridian is therefore that great circle of the sphere which passes thro the zevith and nadir of auy spectator and the poles of the celestial sphere. The common section of the plaves c^{*} the sensible horizon and the celestial meridau is called a Mcridian Line, that extremity towards the north pole of the bearens is called the North Point or true north, and the other the South. The quadrants of the horizon on either side of the north aud south points are called East and West, that which, Jooking towards the north, is to the right hand side is the cast, and that to the left the west, and north, south, east and west are called the Four Cardinal Points of the horizon, the meridian line in angular measurement being zero.

Azimuth is the angular distance of a heaveuly body east or west, as the case may be, of the north or south point of the borizon, according as the spectator is in the northern or southern hemisphere of the earth; and is the inclination of the plaue of a vertical circle passing thro' the object with the spectator's celestial meridian, whose measure is the are of the horison contained between the vertical and the meridian line.

Amplitude is the inclination of a vertical plane passing through a heavenly body with the prime vertical; and its measure is the are of the horizon between that and the prime vertical.

Note.-The an:plitude of a body is talien when it appears on the horizon: and consequently of no practical utility to the surveyor.

The Altitude o£ a heavenly body is its angular distance from the rational borizon, measured on an are of a vertical circle passing thrcugh it. When the body is on the observer's meridian it is called a meridian altitude and the body in that position is said to culminate or transit. The observed altitude is the angle indicated by the instrument; the apparent altitude when corrected for instrumental error, and reduced to the centre if it be the sun, moon or planets; and true altitude when corrected for refraction and parallax.

The zenith distance of any heavenly body is the complement of its altitude.

The Latitude of any place on the carth's surface is its angular distance from the equator, measured an the terrestial meridian passing through it; and is reckoned north or south according as the station is north or south of the equator. \dagger

The longitude of any place on the earth's surface is the inclination of its meridian to some other meridian assumed to be zero; and its measure is the are of the equator intercepted between them. The meridian called zero, mostly used by English speaking astronomers' is that of the Royal Observatory of Greenwich, near London, England, and the station is eaid to be in east or west longitude according as it is east or west of that meridian. Most civilized nations make that meridian passing through each's metropolis, its first meridian. Then, in time, the meridian of Ottawa will be the first of our rising nation.

[^2]STARS OF THE FIRST AND SECOND MaGNITUDES FATORABLE FOR OBSERTATIONS OF THEIR MERIDIAN ALITITDDES FOR MARCH.

T.ABLE 3.

POLARIS.

Azinutil at Greatest Elongation.

Latitude N.	Day of Month.				ween Upper Transit and great- est Elongation.
	1	11	21	32	
\bigcirc	- " ${ }^{1}$	${ }^{\prime \prime}$	"	"	h m s
42	15244.9	48.4	52.4	57.2	5540.0
43	15434.0	37.6	41.7	46.5	5349.2
44	15628.9	32.3	36.7	41.5	$53 \quad 38.2$
45	15830.0	33.5	37.7	42.5	$53 \geqslant 0.6$
46	2037.3	41.1	45.4	50.5	53 14.8
47	$2 \quad 251.7$	55.6	$3^{1} 0.0$	5.1	532.3
48	2513.6	17.5	21.9	27.2	5249.7

TAB工E 5 .

	A URSA	MAYORIS.	Mean Interval betwees Upper Transit and Greatest Elongation.	$B U R S A$	INORIS.	Mean interval between Upper'I'ransit and Greatest Eiongation.
	Azmuth.			Azimuta.		
	Day of Month.			Day of Month.		
	${ }_{1}$	32		$2]$	32	
${ }^{\circ}$	\bigcirc : \cdot	$\bigcirc{ }^{\circ} \mathrm{\prime}$	h m s	- " ${ }^{1}$	- : "	h m s
42	382753.6	382749.5	$4.720,7$	204814.3	204510.8	$\begin{array}{llll}5 & 2 & 7.0\end{array}$
43	391293	30123.1	4.259 .4	21.918 .9	$\begin{array}{llll}21 & 9154\end{array}$	$\begin{array}{llll}5 & 0 & 2.5\end{array}$
44	395914.7	39598.8	35826.4	213133.7	213130.1	45753.6
45	404026.2	404921.7	35341.6	$\begin{array}{lllll}21 & 55 & 3.0\end{array}$	$\begin{array}{llll}21 & 51 & 0.0\end{array}$	45539.9
46	41431.2	414255.1	34841.1	221952.4	221948.7	45321.1
47	424020.6	424015.8	34325.6	2346	$2246 \quad 3.9$	45056.5
48	434147.7	434142.7	33653.6	231355.4	$\begin{array}{lllll}23 & 13 & 51.5\end{array}$	4 4 4826.3
Pol'r	273159.4	273156.7		151815.0	15 lS 12.5	

TATSLE.				TABIE 2.		
MEAN NOON, Calculated for the Meridian of 75° West.				MEAN TIME, Calculatedfor Lat. 45° N. © Long. 75° W.		
	THE SU	N'S.	Equation of		POLAR	
	Apparent Declination.	Scmi- diameter.	be subtractfrom mean time.	Polar Distances.	Azimuth.	Upper Transit.
		15	m s	$1^{\circ} 23^{\prime}$	$1{ }^{\circ} 58$	h m s
1	S. 733305.1	10.2	1284.5	46.9	30.0	$\bigcirc 3330.7$
$\stackrel{2}{2}$	7117.5	10.0	- 22.4	47.1	30.1	22934.2
3	64510.2	9.7	129.8	47.3	30.4	22537.8
4	6257.0	9.5	1156.9	47.6	30.8	22141.4
5	615 S .7	9.2	11.43 .2	47.8	31.1	21744.9
6	53845.4	9.0	1129.4	48.1	31.5	21348.5
7	51527.4	8.7	1115.0	48.4	31.9	2952.1
S	4525.8	S. 4	110.4	48.7	324	2505.5
9	42839.6	89	10 45. 2	49.0	32.5	$\because 159.4$
10	4510.5	7.9	1029.7	49.2	33.1	1 - 3.1
11	34138.4	7.7	10140	49.5	33.5	$\begin{array}{llll}154 & 5.7\end{array}$
12	3183.8	7.4	957.4	49.8	84.0	15010.4
13	25427.0	72	941.3	50.1	3.4 .4	14614.2
14	230485	6.9	92.45	$\bigcirc 0.4$	34.8	14217.9
15	$\therefore 78.4$	6.6	97.5	50.7	35.2	13521.6
16	14327.3	6.4	S 50.2	510	35.6	13425.4
17	$] 194.5 .5$	6.1	S 33.7	51.3	36.0	13029.1
18	056	5.8	S 15.0	51.6	36.5	12632.9
19	03221.3	5.6	757.1	51.9	37.0	12236.7
20	0 O 8339.5	5.3	789.0	52.2	37.4	11840.5
21	N. 0151.6	5.0	720.5	52.5	37.7	11444.4
22	03841.7	1.7	72.5	52.5	38.2	11048.2
23	12205	4.5	64.1	53.1	85.6	1052.1
24	12587.6	1.2	62.3 .7	53.4	39.1	1256.0
25	14932.6	3.9	67.2	53.8	39.6	$0: 859.9$
26	21350	3.6	548.7	511	40.0	0 0.5 3.8
27	23635.1	3.8	5303	[) 44	40.4	0517.7
28	$3{ }^{3}$	3.0	$\therefore 11.8$	54.8	41.0	04711.7
99	323 25.3	2.8	453.4	55.1	41.4	04315.6
30	34644.9	2.5	435.0	55.4	41.9	$0: 3919.6$
31	4100.4	22	416.8	55.7	42.3	03593

TABLE 4.

MEAN TIME OF UPPER TRANSIT
OF 2 CIRCUMPOLAR STARS, FOR LONGITUDE 75° WEST.

Day.	A Ursa Majoris.	B Ursa Minoris.
	$10^{\mathrm{h} \mathrm{~m} \mathrm{~s}}$	$14^{\mathrm{h} \mathrm{~m}}$
21	6022.2	5558.9
22	5625.1	522.8
23	5230.3	486.0
24	4834.4	4411.1
25	4438.5	4015.2
26	4042.1	3618.8
27	3646.6	3223.3
28	3250.7	2827.4
29	2854.8	2431.5
30	2458.9	2035.6
31	213.2	16599

Obliquity of the Elliptic on the 1st of March, $23^{\circ} 27^{\prime} 14^{\prime \prime} .81$.
In March there will be two eclipses :-
On the 5th, a partial eclipse of the sun, invisible in Canada.
On the morning of the 20th a partial echpse of the moon, visible ln Canada.
First contact with the penumbra, h m s March 20.:.............. . 1224
First contact with the umbra. 2136
Middle of echpse.............. 34554
Last contact with the shadow.. 51842

$$
\text { ". Penumbra } 62924
$$

Mean civil time at Othawa.
Magnitude of the eclipse (moon's diameter=1) 0.803 .
The first contact with the shadow occurs at 142° from the nortbernmost point of the moon's limb towards the east
The last contact at 107° towards the west; in each case for direct image.
For Montreal add 8 m 38 s ; forQuebec, 18 m 5 s ; for Toronto subtract 14 m 35 s ; for Hamil ton, 16 m 35 s ; for London, $22 \mathrm{~m} \mathrm{10s}$, and for Sarnia, 26 m 55 s .
Phases of the moon (mean civil time at 0 t tawa.)
hms
March 6th. New Moon. 435 6, A.M.
" 13tb, First Quarter... 344 12. "
" 20th, Full Moon....... 352 12, "
" 10th, Last Quarter.... 43 0,"
" 12th, Moon's Perigce.. ${ }^{6} 0$ O, P.M.
" 26th, Moon's Apngec. 11 0 0,""

Explanation of Astronomical Tables.

Table 1 contains the sun's declination, semidiameter and equation of time, reduced to the meridian of $75^{\circ} \mathrm{W}$. of Greenwich for every day of March at mean noon. The semidiameter and equation of time will answer for any part of Canada; and the declination for any other meridian will be determined with sufficient accuracy for surveying purposes, by reckoning for every degree of Longitude a change of declination of $4^{\prime \prime}$: if the declination is increasing, adding if west, and subtracting if east ; and if diminishing, adding if east, and substracting if west. Thus: What will be the declination of the sun at mean noon on the 10 th of March in Longitude 79° and $71^{\circ} 30^{\prime} \mathrm{W}$, respectively,The tabular declination......... $4^{\circ} 5^{1} 10^{\prime \prime} .5$ Change of declination for $4^{\circ} \ldots 0 \quad 0 \quad 16.0$

Declination required.
4454.5

Tabular declination........... 4 510.5
Change of declination for $3^{\circ} 30^{\prime} 0 \quad 0 \quad 14$
Declination required........ 4524.5
The semidameter is used for reducing an observation of the sun's limb to the centre; and the equation of time for changing mean time or time by a correct clock into apparent time or time by the true sun, to be used as directed at the head of the column.

Thus,--suppose the time found by an observation of the sun on the second of March is 2 h 10 m 45 s , P. M., what should be the time by the clock:-
Apparent time. 2 h 10 m 45 s .0 Equation of time on 2nd.... $0 \quad 12 \quad 22.4$

Time by watch... $223 \quad 7.4$
Table 2 contains the Polar distance, azimuth of the greatest elongations and mean time of upper transit, of A Ursa Minoris (Polaris) for every day of the month, computed for $45^{\circ} \mathrm{N}$. latitude and $75^{\circ} \mathrm{W}$. longitude The time of transit for any other meridian will be found sufficiently accurate by adding 0. 7 for every degree to the east, and sabtracting to the west. The succeeding lower transit is found by adding 11 h 58 m 2 s .045 to the time in the table.
Table 3 contains the azimutb of Polaris at its greatest elongations for the several drgrees of latitude in the first column for every tenth day of the month, and the meaninterval from upper transit to greatest elongation. The azimnth for any intermediate day or latitude
can be found by interpolation, as an inspection of the table will show they differ by very small quantities.

The column mean interval, \&c., is used in conjunction with table 2, to find the time of greatest elongations, subtracting the quantities for eastern and adding for western.

Example, At latitude 46° N., on the 4th of March, when will Polaris attain its greatest eastern and western elongations, -
b m s.
Mean time of transit 4th March. 221 41.4*
Interval for $\mathbf{4 6}^{\circ}$
55314.8

Civil time, A. M., of Eastern elongation
82826.6

Civil time, P. M., of Western elongation. 81456.2
The castern elongation being in the day time, the western is used for determining the azimuth.

Table 4 contains the mean time of upper transit of two circumpolar stars for the last 11 days of the month.

Table 5 contains the azimaths on the 21st and 32nd (lst April) days of the month for the above stars, and interval between their upper transits and greatest elongations; and at the foot their polar distances.

We have added these two stars, A Ursa Majoris and B Ursa Minoris, because towards the end of the month both elongations of Polaris take place in daylight. They are both well known stars, both of the second magnitude, the former being the brightest in the pointers of the great bear or plough, and the latter in the little bear.

Example 1.-Find the times of the greaiest elongations of A Ursa Majoris and B Ursa Minoris, on the 25 th of March in $44^{\circ} \mathrm{N}$. latitude.

Mean time of transit of A Crsa Majoris on 25th.	104438.5
Interval between U. T. and elongation.	35826.4
Mean time of eastern elongation.	64612.1
Mean time of Western elongation.	14434.9
Or 2 h 43 m 4 s .9 , A. M., on The eastern is in daylight.	$\text { e } 26 \mathrm{th} .$

[^3]| ean time of B Urba Minoris' transit. | |
| :---: | :---: |
| Interval to elonga | 45753.6 |
| tion. | 942 |
| ean time of Western elongation. | 19 | The western elongation is in daylight. To find their azimaths on the same day.

Azimuth of A Ursa Majoris on 21st for 44°..
395914.7

Difference for 11 days $5^{\prime \prime} .9$, then for 4 days.

Azimuth on 25th.
395912.6

Azimuth of B Ursa Minoris on 21st.
213133.7

Difference for 11 days $3^{\prime \prime} .6$, then for $4 . .$. $0 \quad 0 \quad 1.3$ Azimuth on 25th 213132.4 Table 6 contains 10 stars, all of the first and second magnitudes, favorable for observation in this month. Having their mean time of culmination for the first day of the month, and their meridian altitude for latitude 45°.N., they can easily be found. To find an approximate time of transit for any other day of the month, multiply the number of days elapsed by four minutes, and subtract the product from the tabular namber, the remainder will be the time of culmination.
Example.-When will Regulus calminate on the 18th of March:- $\quad \mathrm{h}$: s Regulas culminates on the 1st at 112313.9 No. of days elapsed- 15 multi-

$$
\begin{aligned}
& \text { plied by } \\
& \begin{array}{lll}
1 & 0 & 0.0
\end{array} \\
& \text { Time of transit (nearly). ... } 102318.9
\end{aligned}
$$

The Association of Provincial Land Surveyors and Instrtute of Civil Engineers and Architects.
We hope in our next issue to be able toannounce that the next meeting of the above association for the election of officers and other important business connected with that corporation will take place at an early day in this city. We would suggest to the worthy President and Executive that, in our opinion, some time about the 14th of May would be a very suitable season for this meeting. While on this subject we may add that in our next issue we shall endeavour to give the synopsis of a Bill to amend the laws regulating the admission and practice of Land Surveyros, to be submitted to the association at its next meeting.

LIST OF UPPER CANADA SURVEYORS.

NAMES.	RESIDENCE.	NAMES.	RESIDENCE.
Abrey, Geo. B. Aylsworth, Chas. F. Aglsworth, Wm R Allan James	Milton. Madoc. Tamworth. Renfrew.	Campbell, Alex Carroll, Peter Callaghan, Patrick Clupp, Gilbert S Carroll, Wm	Napanee. Hamilton. Etobicoke, Hum. P O. Napanee. Seneca.
Burwell, Lewis	Brantford.	Conger, John 0	Picton.
Benson, Sam'l Manson	Belleville.	Cromwell, Joseph MO	Perth.
Bower Thomas T	Seeley's Bay.	Caddy, Edward C	Cobourg.
Burrcws, Thomas	Kingston.	Creswicke, H, sr	Barrie.
Bruce, George	Osnabruck.	Cheesman, Thomas	Brantford.
Ball, Jesse P	Houghton, Vien. P 0.	Clementini, V C	Peterborough.
Bruce, Jobn S	Cornwall.	Clementini, TB	
Blyth, Thomas A	Hamilton.	Chadwick, FJ	Guelph.
Burke, Wm	Norwood, Asphodel.	Cooper, TW	
Ball, George A	Houghton, Vien. P 0.	Carroll, Cyrns	Wroxeter.
Bartley, Onesiphorus	Sandwich.	Chandler, Libert	Goderich.
Bridgland, James W	Ottawa.	Caddy, © F	Seymour Township.
Booth, Norman	Preston.	Cambie, H J	Toronto.
Browne, John 0	Toronto.	Creswicke, H, jr	Barrie.
Black, James, jr	Ayr, P 0.	Carre, Henry	Stirling.
Brown, David R	Osnabruck.	Cooke, R P	Kingston.
Bristow, Arthur	Paisley.	Chapman, CF	Prescott.
Burchill, John	Mirrickville.	Caddy, J St V	Hamilton.
Brown, J Smith	Matilda.	Campbell, D G	Mitchell Village.
Boultbee, William	Hamilton.		
Bay, Andraw	Clinton, $\mathbf{P} 0$.	Dennison, John	Goderich.
Brady, Crosbie	Lindsay.	Dennehy, Thos J	Lindsay.
Barke, J Wm	Elora.	DeCew, Edmund	Cayuga.
Brown, R C P	Cobourg.	Dennis, J S	Weston.
Beatty, Walter	Perth.	Deans, W H	Lindsay.
Brodie, Samuel	Ingersoll.	Deane, M	
Boulton, Henry C	Exeter.	Donnelly, PS	Moore Township.
Boultbee, Arthar	Newmarket.	Davies, C L	London.
Brownjohn, T C	Grimsby T.	Donovan. T	Meaford.
Burns, Robert T	Lindsay.	Dobbie, T W	St. Thomas.
Bell, Win	Pembroke.	Drennan, Wm	Peterborough.
Berryman, Edgar	St. Catherines.	DeCew, John	Cayuga.
Burnet, Peter	Orillia.	Daintry, John	Ceboarg.
Baldwin, Fred A	Ottawa.	Davidson, Alex	Arkona, War. Tp.
Burns, Thos	Chatbam.	Doupe Jos	St. Mary's.
Bellairs, W G	Toronto.	Donnelly, R H	Hamilton.
Brady, James	Lindsay.	Dyas, T W	London.
Byrne, Thos	Kingston. Elora.	Emerson, John	Roslin.
Battersby, L C	Guelph.	Ellis, W H	Eaniskillen.
Baikie, J D	Dunnville.	Esten, J H	Newmarket.
Bolton, Lewis	Lustowell Village.	Evans, J D	Toronto.
Bolger, T 0	Peterborough.	Edwards, Geo	Clarence Tp.
Bell, Andrew	Almonte.		
Bray, Edgar	Oakville.	Fairfield, W J Fell, Zenas	Bath. Merrittville.
Chewett, Jas G	Toronto.	Fell, C K	Pelham.
Campbell, Wm	Burritt's Rapids.	Fell, J W	Cbippawa.
Cleaver, Jas	Nelson.	Fraser, Charles	Port Brace.

LIST OF UPPER CANADA SURVEYORS.-(Contınued.)

NAME.	RESIDENCE.	NAME.	EESIDENCE.
Fleming, Sandford	Toronto.	Jones, J H	Sarnia.
Fox, Edwd	Ottawa.		
Eitzgerald, J W	Peterborougb.	Kirkpatrick, J	Hamilton.
Fleming, John	Collingwood.	Kelly. Thos	Castlemore P 0.
Francis, J J	Corunna.	Keating, John W	Chatham.
Featherstone, Thos	Milton.	Kerr, R W	Hamilton.
Fowle, Albert	Orillia.	Keefer, Thomas C	Ottawa.
Frost G H	Smith's Falls.	Kirk, Joseph	Stratford.
Foster, F L	Windsor.	Kerr, F	Guelph.
Forneri, C C	Chatham.	Kirkpatrick. G B Kehnedy, L	Ottawa. Acton.
Gibbs, Thos F	Adolphustown.		
Galbraith, Wm	Brock, Manilla P O.	Lynn, R	Meaford.
Grant, John	Mitchell.	Liddy, G P	Strathroy.
Gibson, Jas A	Willowdale, York Tp.	Lilly, Henry	Lyo P O.
Gilmoar, Robt	Paisle\%.	Lowe, H	Nanticoke.
Gardner, Peter	Paris.	Lowe, N. E.	"
Gossage, Brooks W	Toronto.	Livingston, T C	Iagersoll.
Grain, Wm	Fergus.	Lough, Matthew	Port Hope.
Gibson, Peter S	Willowdale, York Tp.	Lawe. Henry	Dunnville.
Gibson, Geo	Woodville, Fldon Tp.	Lapenotiere, W H L	Weodstock.
Gore, W S	Rice Lake.	Lumsden, H D	Woodville Vil.
Gardiner, Edward	St. Catherines.	Lynch, FH	Staunton.
Gaviller, Maurice	Bond Head Village.	Maicolm, E	Oakland.
Hall, James	Peterborough.	Misner, J	Welland Port.
Hanvey, Danl	St. Thomas.	McDonald, J	Goderich.
Hawkins, Wm	Toronto	McMillan, W	London.
Hamilton, James	Lendon.	McCleary, W	London.
Howard, John G	Toronto.	McDonell, J R	Williamstown.
Haslett, John J	Belleville.	McNab, A	Owen Sound.
Hamilton, Robt	L'Orignal.	Morris, John	Perth.
Horsey, Henry H	Ottawa.	McLaren, Peter	Riceville,
Hasking, Wm	Hamilton.	McPhillips, G	Richmond Hill.
Hobson, Jos	Berlin.	Maxwell, J	Paris.
Herrick, T W	Toronto.	McCallum, J, jr	Uxbridge.
Howitt, Alfred	Stratford.	Molesworth, 'IN	Brantford.
Hallen, S W	Newmarket.	McIntosh. J	Freelton P 0.
Hughes, Thos	Napadee.	Mercer. W	Simcoe.
Hamalie, L B	Penetangore.	McCallum, FC	Beaverton.
Herman R W	Listowell.	McLeod, it A F	Belleville.
Hawkins, Wm	Southampton.	Miles, E	Weston.
Hanning, Clement G	Bowmanville.	McFadden, M	
Hart, M	Brantford.	Morison, W	Willowdale, York Tp.
Harris, John	Kemptrille.	Malcolm, Sherman	Rondeau.
Ivory, Patrick	Ne	Macdougal, A H Murdoct \mathbf{W}	Peterborough Omemee.
Irwin, J M	Port Hope.	McKenna, J J	Brampton-
		McGuin, S 0	Sydenham.
Jones, Francls	Kemptville.	McGrigor, J M	St. Mary's.
Jones, ER	Sarnia.	Murphy, F	Mount Forest.
Jones, A	Chatham.	Molloy, John	Arthur Vil.
James, Silas	Newton Brook.	Miles, C F	Weston.
Johnston, jr, G B	Moore Tp.	McDonnell, A	Chatham.

LIST OF UPPER CANADA SURVEYORS.-(Continued.)

NAME.	RESIDENCE.	NAME.	RESIDENCE.
McPhillips, W	Richmond Hill.	Savigny, H P	Toronto.
Magrath, Bolton	Aylmer Vil.	Smith, W	Innerkip.
McGeorge, W G	Blenheim Vil.	Slater, J D	Ottawa.
McGee, J J	Mount Forest.	Stewart, G A	Port Hope.
Marshall, James	Carleton Place.	Simpson, A W Staunton, FHL	Guelph. Southampton.
Nash, T W	Kingston.	Sanders, Wm	Barrie.
Northcote, H	Toronto.	Sproat, A	Southampton.
Niven, A	St. Mary's.	Scotr, A B	Campbell's Corners.
Newman, R M	Elora.	Spry, Wm Sproat, Chas	Owen Sound. Troronto.
O'Mara, John	Newbury.	Seager, E, jr	Vaughan Tp.
O'Keeffe, D C	Hamilton.	Smith, H	New Hamburgh.
Oliver, John	Toronto.	Simpson, G A	Picton.
O'Beirne, Patk	Grimsby.	Scane, Thos	Ridgetown.
Pollock, James	Galt.		
Passmore, F F	Toronto.	Tidey, J A	Norwichville.
Perry, A B	Violet.	Tracey, W	Williamsburgh.
Peters, S	London.	Tully, John	Toronto.
Perceval W	Stella.	Thomson, A C	Orillia.
Prince, S R	Sanlt Ste. Marie.	Turner, W R	Durham.
Perry, N F	Violet.		
Rankin, Chas	Sydenham.	Unwin, Cbas	Toronto.
Richey, J	Perth.	Ussher, E R	Bowmanville.
Ross, R	Barrie.		
Reid, John	Peterborough.		
Rankin, A	Sandwich.	Vidal, A	Sarnia.
Richey, J	Packenham.	Vansittart, J P	Ingersoll.
Robinson, Wm	London.		
Rath, Wm wn	Mitchell.		
Rombough, W R	Durham.	West, J	Spencerville.
Rubidge, TS	Brockville.	Wilkinson, J A	Sandwich.
Rykert, G Z	St. Catherines.	Walsh, R	Lloydtown.
Robinson, 0	Brantford.	Walsh, T W	Simcoe.
Ralph, Wm	London Tp.	White, H	Toronto.
Rankin, C E	Picton	Wilkinson, A	Sandwich.
Robertson, R G M	Port Hope.	Wonham, W G	Ingersoll.
Robertson A C	Gnderich.	Wallbridge, W	Nervcastle.
Reid, J H	Colborne.	Winter, H	Wallaceburg.
Rombough, M B	Centreville.	Wood, Hi O	Ottama.
Russell, L A	Othawa.	Weatherald, T	Goderich.
Roberts, CE	Hull, © E.	Wheelock, C J	Orangeville.
Robinson, G	Paisley.	Wilson, H	Mount Forest.
Redden, F W.	Southampton.	Wall, I Webb, AC.	Dunnville.
Swallwell, Anthony	Ottawa.	Williamson, A E	Brighton. Teronto.
Springer, Benjamin	Delaware.	Wadsworth, V B	Toronro.
Strange, H	Rockwood.	Williams, D	Trenton.
Smileg, W	Wondstock.	Warren, J	Lucknow.
Schofield, Milton C	Berlin.	Wilson, Λ	Toronto.
Shier, John	Whitby.		
Salter, A P	Chatham.	Yarnold, W E	Prince Albert P O

LIST OF LUWER CANADA SURVEYORS.

NAMES.	RESIDENCE.	Names.	RESIDENCE.
Archambault, Chas	Chateauguay.	Edwards. W	Hemmingford.
Arcand, J 0	St Michel	Edwards, John	Township Franklin.
Allstone, T	Berthier.		
Allbright, G N	St Andrews.	Fere, Emery	St Eustache.
Austin, W A	Ottawa.	Fournier, C F	St Jean Port Joli
Arcand, Louis	Three Rivers	Fournier, E S	
Arccand, Leon	Three Rivers.	Fitch, J C	Godmanchester.
Addre, James	Ascot, St Francis	Falls Hugh Forbes: C F H	Richmond.
Barbeau, Jead		Farnan, F	Boltun, C of Brome.
Bouchette, Jos	Ottawa.	Fournier, J P	St. Thomas,
Bochet, A	Ste, Anne la Perade.	Fessenden, C	Montreal.
Brunet, F N		Fortin, J A	
Belanger, Elie			
Blanchard, L P Blaiklock, G W	St Hyacinthe. Ottawa.	Gamache, Jos Garon, G	Cap St Ignace. Riviere Ouelle.
Barrett, Wm	Beauharnois.	Geoffries, D H	St. Bridget.
Bignoll, Jno	Lake St Francis.	Guerı, T	Montreal.
Barthelet, G	Montreal.	Gagnon, A	Somerset.
Baillarge, C P F	Quebec.	Gilmour, R	Montebello.
Baillarge, G F	Montreal.	Grifin, P	Ottawa.
Bertrand, L A	Isle Veite	Graddon, W U	Quebec.
Bouchette, C J	Aylmer.	Grondin, E	Rimouski.
Belanger, F	St Thomas en bas	Gagnon, G	Quebec.
Bradler, A	Rimouski	Gauvreau, L P	
Brabazon, S L	Portage du Fort.	Gaudet, J F	Three Rivers.
Bolanger, J	Rimouski.		
Beangery, J U A	selme	Henderson, Hall, H G	Frampton.
Boisvert. Fabien	Becancour.	Holmes, J	Huntly.
Breen, Thomas	L'Isiet.	Hamel, A A	Quebec.
Barnard, James	Three Rivers.	Hayden, R S L	William Henry.
	Stanbridg	Hamel, F V	Quebec.
Corey, Lindal, the 2nd	"	Harkin, E J	Three Rivers.
Cleeve, F C	Richmon	Holwell, W J S	Quebec.
Casgrain, P A E	L'Islet.	Hamilton, A	Eull.
Chrevrotiere, A H T C	Deschambault.	Harwood, H S	Montrenl
Cleveland, Henry \mathbf{C}		Henderson, E D	Frampton.
Demers, J Bte	St Michel.	Johnson, H	St Thomas, Ronville.
Duberger, J Bte	Malbaie, Saguenay.	Johnstou, J	Hull.
Daly, Patrick	Drummondville.		
Dorion, P P ${ }^{\text {de }}$ G	Ottawa.	Knight, W H	Quebec.
Dery, I P	St Raymond.	Lambert, \mathbf{P}	Etchemin.
Dube, 0 A	Ste Anne de la Pocat.	Laurier, ${ }^{\text {C }}$	St, Lin.
Desrochers, Vital	St Paschal de Ramour.	Legendre, J B	Gentilly.
Duchesnay, A J	Ste Marie, Beauce.	Legendre, H	Three Rivers.
Duberger, G	Chicoutimi.	Livingstone, D	Huntingdon Vil.
Doucel, A J	Isle Verte.	Lefrancois, N	Ange Gardien.
Duberger, E	Chicoutimi.	Larue, A	Quebec.
Desmeules, J U	Malbaie.	Legendre, F F	N D dola Victoire.
Dorval, O	L'Assomption.	Lemay dit Poudrier, F	Somerset.
Duberger, TI,	Chicoutimi.	Leduc, E	St Andre Avelin.
Dumais, P II	Labarre.	Lemoine, L D	Ottawa.
Duval, J N	St Jean Port Joli.	Laviolotte, G	St. Jeromo.
Dion, CA	St Francois.	Lefrancors, N Y	Ange Gardien.
D'Artenil, Lewis	1 ,	i.egendre, E H	Maria, Bonaventure.

LIST OF LOWER CANADA SURVEYORS.-(Continued.)

NAMES.	RESIDENCE.	NAMES.	RESIDENCE.
Larue, E F \mathbf{X}	Pointe aux Trembles.	Russell, A J	Ottawa.
Laporte, J	Lavaltrie.	Ross, A	Frampton.
LeBel, LH	Ste Flavie.	Russell, A	Ottawa.
Legendre, F	St Joseph, Beauce.	Regnaud, FTV	Montreal.
LeBoutillier, G	Perce, Cy Gaspe.	Richard, J B	Gentilly.
Lefrancois, P 0	Ange Gardien.	Rielle, J	Laprairie.
Lippe, A G	L'Assomption.	Roy, C F	Ste Anne la Pocatiere.
Lavergne, PE	St Francois, R du Sud.	Roney, Jes	Aylmer.
Lloyd, G A	Glen Lloyd.	Rauscher, R	Buckingham.
LeBer, H	Montreai.	Rixford, G P	Stanbridge.
Lucas, SB	Richmond.	Stevenson, A	Rouville.
Morin, P L	Ottawa.	Slattery, Jas	Montreal.
McFarlane, J	Montreal.	Sheppard, C C	Wendover.
Mackenzie, W H	Montreal.	St. Pierre, 3 E	Rivieredu Loup.
Mitchell, M	Waterloo.	Sewell, A	Quebec.
Martin, J W	Berthier, 'en haut.	Sullivan, J	St. Catherine.
McArthur, Jas	Aylmer.	Sheppard, H C	Quebec.
Moffat, Jas	Chelsea.	Savage, Jos	Montreal.
Murison, P	Quebec.	Symmes, H C	Three Rivers.
Michaud, C E.	St Andre.	Tetu, F	St. Thomas, on bas.
Montgomery, G	Quebec.	Tremblay, J	St Paul's Bay.
McConville, P E	Jolietteville.	Tremblay, P A	Chieoutimi.
Neilson, S	Quebec.	Tremblay, 0	St Paul's Bay.
Ostell, J	Montreal.	Temple, E B	Quebec.
O'Neil, J F	Megantic.	Tetu, F A	St Thomas.
Oughtred, R	Ascot.	Towle, CE	Lennoxville.
O'Dwyer, W W	A bbottsford.	Tetu, R	St Thomas.
O'Brien, S	Ottawa.	Tremblay, \mathbf{P}	Baie St Paul.
Proulx, J P	St Francois.	Verret, Geo	Quebec
Pennoyer, J	Sherbrooke.	Webster, D	Stanstead.
Perrault, H M	Montreal.	Walkem, \mathbf{C}	Montreal.
Painchaud, E A	Gaspe Basin.	Wallace, A	Quebec.
Pozer, G R	St George.	Weekes, ${ }^{\text {G }}$	Montreal.
Pelletier, S	Warwick.	Ware, W	St Andrewrs.
Proulx, P A	St Francois.	Wells, A	Granby.
Parent, L E H	Quebec.	Wells, Alex	
Pams, 0	Montreal.	Wurtele, A S C	River David, Yamaska
Quinn J W	Ste Marie, La Beauce.	Wells, D W	Farnham, Cy Brome.
Quinn, T C	Lachute.	Whitcher, A H	Sherbrooke.
Qulnn, F P	Rawdon.	White, Jos	Pembroke.

LIST OF SURVEYORS COMMISSIONED BOTH FOR UPPER AND LOWER CANADA.

NAMES.	RESIDENCE.	NAMES.	RESIDENOE.
Austid, G F	Ottawa.	McLatchie, John	Templeton, OE.
Bell, Robert	Ottawa.	Newman, John	Aylmer, CE
Cattanach, Angus	Lancaster, Dal Mills.	Napier, W H E	Three Rivers. CE
Devine, Thos	Ottawa.	O'Hanly, J L P	Ottawa.
Driscoll, A	Aylmer, C E	Robertson, John	Fitzroy Harbor-
Evans, S T A	Pembroke.	Sinclair, Duncan	Ottawa.
Fletcher, E T	Ottawa.	Snow, J A	Hall, C E.
Forrest, A G	Ottawa.	Sinclair, Donald	Ottawa.
Johnstone, Quintin	Brantford	Sparks, \mathbf{R}	Ottawa.
Eingsford, Wm	Toronto, G T	Thistle, W R	Ottawa.
Lindsay, John	Quebec.	Wagner, Wm	Montreal.
McNaughton, J	Charlottenburg, Glen.	Tache, E E	Ottawa.

BUARD OF EXAMINERS,

For the examination of candidates for admission to practice as Land Surveyors in Upprar Canada:

The IIon. the Commissioner of Crown Lands, ex officio; A. Russell, Assistant Commissioner of Crown Lands; Joseph Bouchette, Depuly Surveyor General ; W. Ifawkins (7^{10} ronto). Professor Chapman ('Toronto), J. Stoughton Dennis (Weston), Sandford A. Fleming, Faliax; Thomas Devine, Otíara; Fred. P. Passmore, Toronto; T. F. Gibbs, A dolphustown. Secretary-Charles Unwin, T'oronto.

BOARD OF EXAMINERS FOR LAND SURVEYORS FOR LOWER CANADA.

The Hon. the Commissioner of Crown Lands, er, officio; J. Bouchette, Deputy Surveyor General; A. Larue, Quebec ; C. F. Fournier, St. Jean Port Joli ; L. P. Gauvreau, J. Bignell, F. W. Blanklock, C. P. F. Bailiarge, Quebec ; Edw.'T. Fletcher, Ottawa; Provincial Land Surveyors; Secretary, Wm. Blaiklock, Quebec. Examiner in Geology and Mineralogy, Sir W. E. Logan, de.

The respective boards meet in Toronto and Quebec on the first Mouday of the months of January, April, July and October, both for the examination of candidates to practice Land Surveying, and of examining students who wish to be apprenticed to Land Surveying.

The above lists comprise all the surveyors in the Province as far as we have been able to ascertain. Some may have been recently admitted, others may lave migrated from Canada; some may have rone to that "bourve from which none return," and others remaining in Canada may have changed their residences. Surveyors receiving this number will coufer a very great faror by examining this list ; and if they find any errors, correcting us at their carliest convenience. We would specially request the Secretaries of the Upper and Lower Canada Boards to do so and furnish us with a correct list.

In future issues we shall only publish the names of those surveyors who take the Journal; in order that our readers may know those who are anxious for the promotion of the general welfare and the progress of the profession.

We would also feel obliged to our friends if they would forward us the names of students who wish to subscribe for the Scientific Journal and Surueyors' Mragazine.

J. L. P.O'HANLY,

 LAND AND
EMGIIIEERIIGG SURYEYOR,

FOR

UPPER \& LOWER CANADA,

Land, Departmental

AND

Parliamentary aglent

OTTAWA, C. W.

All business connected with Land, Timber Limits and kindred subjects, whetber with the Public Departments or Private Individuals, promptly attended to.

JAMES HOPE \& Co., getamutacturity Stationtrw, AND BOOK-BINDERS,
importers of

GENERAL STATIONERY,

Surveyor's and Artist's Materials, SCLOOH BOOKS, BIBLES, CEURCH

SERVICES, \&C., CORNER OF SPARKS AND ELGINSTS.

```
Ottixan.
```


[^0]: *We shall restime this subject in ont next issue.

[^1]: *In a strict sense modern research has shewn that there is nothing fixed in the universe.

[^2]: This defnition is not strictly correct, because of the spheroidal flgure of the earth, and more correctly is equal to the altitude of the elevated pole of the heavens.

[^3]: *The time of Transit is astronomical tlme, or P. M. civil time.

