Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

UPPER CANADA MEDICAL JOURNAL

0 F

Medical, Suxgical and Physical Science.

ORIGINAL COMAUNICATIONS.

Art. NXXVI.-Pahological Histology, by Dr. Gotmbeb Gluge. Translated from the Giermun by Josepil Lemy, Esa., M. D., Pinilurldificu.

SECONI SECPION.

8. The tissues and eliments of the tiosues in an imperfact condition of developmunt: certobliest, oin', nurlioli, muclei and cells.
finst chass.
l'rokine proluminating.

1. Amorphous or fincly granular substance.

This is without a trace of organization; even the ordinary arborescence presented by congulated fibrinc. It is found only in scirrhus, and is that material deposited among the fibres which gives the tissues its characteristic hardness.
2. Nucleus-like bodies in an amorpinous, or finely granular dry substance.

To this case belong tubercle and typhoid matter. From neither are fibres or vessels ever developed. Once deposited, they operate as foreign bodies in the position they оссиру.
3. Nuclei in a liquid albuminous blastema.

Tis this category belong the corpuseles of medullary cancer, of pros, and those found in catarrh, of mucus membranes, of grandular ducts, especially of the kidneys, of the gastrie glands, of the glands of Brumer, and of the duodenum.
4. Jelly, or an amorphous gelatinoid matter, in which, at a later period, cells, fat-globules, and isolated smooth fibres may appear, as in colloid,
5. Cells with a rater aceompaniment of others prolonged to fibres.

The cells are either simple or endogenons. The later frequently occur in larger quantivy in medullary cancer, sometimes in scirrhus, in tunors of the mucous membrates, and occasionally in catarrhal affections.

The cell-structures frequemly approximate, in their form and their chemical relation, to those of the organs, within or in the vicinity of which they are developed. Thus, in epithelial tumors with, or without ulectation, the cells are like those of the normal epithelium;* and, in the same manner the cells of medullary cancer of the liver frequently are quite like the hepatic cells.

1. Pigment,-The black pigment of most pathological products exists in the form of free gramules, or within cells; which are sometinues elongated in a fusiform manner.Generally, it consists either of carbon, and is therefore insoluble in mineral acids, as in melanotic tumors, in the lungs, skin, glands, etc., or of sulphuret of iron, soluble in the latter acids-as upon the intestial mucous membrane frequently occurring in typhus.

The crystallized trausformations of hematine into hematoidine found in the blood which has been a long time stagnated, either within or external to blood-vessels, and rore especially in that effused after rupture of the graafian vesicle, were first accurately investigated by Virchow.

According to the latter, the hematoidine appears in the form of spherical bodies, granules, and oblique rhombic prisms, or perfect rhombs; is yellowish red, red, or rubyred, and is insoluble in water, alcohol, ether acetic acid and weak mineral acids. In hydrate of potassa it becomes spongy, and then crumbles into gramules which gradually dissolve. In concentrated mincral acids-as for instance, sulphuric acid-the crystals lose their sharp contour, and break down into granules, which become brownish-red, then green blue, rose-red, and finally, dirly yellow. According to my own researches, the crystals of hematoidine, of which the chemical composition is yet unknown, although its origin is undoubtedly from bematine, sometimes exhibits a very variable relation with the same reagents. Thus, in one case, I observed the rhombic crystals break up into red granules with a considerable developuent of air-bubbles,

[^0]which probably indicate a combination of the coloring matter with carbonate of lime. Hematine, or the red-colouring matter of the blood, however, does not only undergo gradual conversion into gramules and crystals of hematoidine but also into black pigment, usually lound in the form of graunles, and very rarely in that of crystals. This tranformation oceruss either by the gradual solntion of the walls of biood corpuseles, leaving only red or black granules, which may associate in masses and become enveloped in a cell membrane, thus constituting red or black pigment cells; or masses of blood-corpuseles fuse together and modergo similar changes to those just mentioned, and notwithstanding the blood-corpuscles appear to remain unatered in composition, their coloring matter is no longer soluble in acetic acid. In this mamer groups of blood corpusles may become enveloped in a newly-formed cell. In a third case the blood-corpuscles may remain unchanged in their form, and the colouring matier transude and becone converted into the forms of hemotoidine.*
But although we conclude that hematine may be transformed into black pigment cells, from the simaltaneous presence of these with such as are red, and are gradually undergoing the change of color, yet 1 am far from considering it proved that most melanotic tumours originate from eflused blood, and directly from hematine, for I have frequently examined large tumors of the kind mentioned without detecting any indication from which a previous transformation of the blood conld be inferred.
That red and black pigment cells originate in the manner stated, may be concluded from the fact that in the same specimen all shages may be observed from the formation of granules to the fully-developed erlls; bat that previonsly existing cells may become infiltrated with pigment granules \dagger I do not deny, althongh I consider such a mode of origin rare in pathological structures.
2. Free Liquid Fat-Oleine in large or small drops, frequently occurs within the investing eells of the ducts and terminal follicles of glands, as in stearosis of the liver and kidneys. The deposit is most frequently in the hepatic cells; the cells of the tabuli urineferi bring more disposed to be

[^1]detached by the penetrating fat. Further, newly-formed cells frequently become infilterated with the latter substance.

Fat also occurs in the form of granules of uniform size, from the ${ }^{\frac{8}{8} 95}$ to the 9.95 of millimetre, consisting of oleinc, associated with proteine, or the solid fats, as in exudations.

In the crystalline condition, margarine occurs rarely in the form of acicular erystals mingled with other substances. More frequently cholesterine is fraud cither alone-as in cholesteatomatous tumors, or associated with other deposits. In the former case it has a pearly lustrons appearance, and is erystallized in rhombohedral tables; or, in combination with other fats, it is contained within cells.
9. Transition לorms to Perfect Tissues.

1. Fusiform fibres constructed upon nuclei, and nuclear fibres produced by elongation of the latter. These constitute the characteristic form in soft polypi of mucous membranes, and that modification of the same in which cysts filled with serum are developed simutancously within tumors composed of them-as in cystosarcoma and fibrous tumours. Further, they also compose those hardened flesh-like tumors of the skin, the so-called sarcomata. Again, they form firm masses, consisting of nuclei and nuclear fibres, as in some varieties of fibrous tamors of the uterus.
2. Branched flat fibres, not fasciculated, with numerous hollow or solid nuclei, accompanied rarely with sparse cells, and de; ;osited in an albuminous, amomphous, or granular substance, as in albuminous sarcoma.

10. Perfort Tissues.

1. Areolar and adipose tissues are frequent pathological formations. Whe former, with fat cells, is the most common metamorphosis of plastic matter when deposited in excess. It is formed from exuded fibrine, the result of inflammation or the ordinary course of nutrition, ond it is to be remarked, in the former case, its fibres origituae according to the four modes previously indicated-i.e., by cleavage and enagulation, by deposit around nuclei, by clongation of nuclei, and from cells.

Examples of areolar or fibrous issue, developed as a result of inflammation, are presented by the pseudo-membranes, and others produced in the course of physiologiea! nutrition, are the adipose tumors or lipomata.
2. Tendinous tissues-at least so far as it resembles such in external appearance and in the arrangements of is fibres, is very frequently developed in the so-called fibrous
tumors. Very often the later presents a distinct fibrous structure to the naked eyc, and yet neither by the microscope nor through the tinest sections can isolated fibres be separated or demonstrated. This condition is particularly the case when the fibres do not originate from cells, but by spitting or cleavage of plastic coagulated matter, as is frequent in fibrous and fibrinous polypi, in the tumors of the merns which have been produced from coagula of blood, and in old fibrious exudations. The contour of the fibres in these cases often is indicated only by shaded lines.
3. Striated muscular tissue rarely originates independently of the muscular system, but lately has been observed by Rokitansky "in a tumor of the testicle. On the contrary, its production is frequent in hypetrophy of the muscles. The mode of development of this variety of muscular fibre is unknown. Unstriated or smooth muscular tissue frequently originates anew upon that of the stomach. The fibres of this variety are formed by the deposit of layers around a mucleus which snbsequently disappears.
4. Nerve tissucs in the form of cylindrical fibres I have observed in pseudo-membranes and in the rare cases of reproduction of eephalic substance after loss from hemorrhagic softening. The made of developmemt in both cases is minnown.
5. Mueoas tissue. The pus-producing membrane and granulations alone belong to this catēgory. It originates fivin cells
6. Blood and blood vessels. In pathological structures the blood-corpuscles form earlier than the blood-vessels, are grouped in soolated poins, and in size resemble those of the cmbryo, as in pseudo-membranes and in enchondroma. The new blood-corpuscles are at first pale, and their nucleus is frequently distinct, but disappears At a later period. The formation of blood vessels is as dificult to trace as in the normal development, but 1 am aequainted with three modes in which it occurs, viz.:-

1. By prolongation of pre-existing vessels-a process which is more frequent than is generally supposed.
2. By the production of channels, the sides of which, at a later period, become defined by vascular paricties.
3. By development from cells. This 1 consider to be the trest mode, having myself obscrved it but once. \dagger
[^2]The new vessels, whereve: formed, at first are longitudinally extendec, and possess few anastomoses, but in time lose this character by the production of lateral braches, which at the commencement, appear as cecal precesses.

The mode of origin of lymphatic vessels I have not observed, but, according to Schareder van der Kulk, they occur in fully-developed pseudo-membranes.
7. Hair and teeth, besides occurring in the ovary, are also produced in sebaceous turrors. I never saw the hair growing from follicles, nor the root inclosed by a sheath; but on the contary, other observers state they have seen the roots of the hair of sebaceous hanors surrounded by a sheath.
8. Glands, like those of the slim, I have never seen myself, but Krause and Lebert state that they have observed such in sebaccons tumours of the slin.
9. Serons tissue, or, in other words, a vascular areolar tissue covered by an epithelinm, oceurs frequently in cysts; but, nevertheless, not all the latter are lined by an epithelium.

10 Cartilage.-In the production of this tissue an amorphous blastema is the basis in which appear nueleolateil nuclei, separated by light interspaces; and later, upon the simple or compound nuclei, rises the cell-wall.

In this case endogenous cell-production is frequent. The vessels of cartilage are developed after the origin of the blood corpuscles.

The cartilage may be permanent, as in enchondroma, or it may ossify, as exemplified in the healing of fraciures and in osseous tumors.
11. Osseous tissue is always preceded by cartilage in is development. Ordinarily, in its production, a network is formed frequenty quite similiar to that of normal bone; then the nuclei of the cartilage-cells become converted into osseors corpuscles, by the deposit of calcarious matter, and finally the cell-membrane fases with the intervening substance, and both become pervaded by the calcarcous matter. The radiating tubuli of the corpuscles appear to be the remains of the unossified intra and intercellular-substance. Frequently, in the course of the conversion of cartilage into bone the process ceases, constituting tumors, which I have described under the name of jelly-osteophte-the osteoid of Müller. The bone canals (Haversian)-or rather the medullary canals-are developed party from becoming calcified and partly from branched areolar channels of the cartilage, and never from cells. The formation of vessels is by no means essential to the ossification
of cartilage. The dental tissue is frequently developed in eneysted tumors-as in the ovary; and the structure is quite like that, physiological or normal.
12. Calcification.-No tissuc of the body, except the hair, mails, and epidermis, is free from liability to calcification. It occurs in the non-vascular as well as in the vascular tissues. Thus are caleified the non-vascular inter-articular eartilages, the erystalline, the lens, epithelial cells of the month (tarter), cells of glandular ducts, fibrous and serous tisstaes, and even the muscular fibres and nerve tissues, though rurely, and mueh more rarely the grandular tissues. More frequem is calcification in pathological structures, as psendo-membrane and tubereles, but very rarely in the cells of cancerous tumors. Calcification is effected chiefly by carbonate and phospate of lime.
(To be conimaed.)

Art. XXXVII.-The Fip-joint-Considerations on its iniurzes and diseases, deduced from the shatomy, by S. J. Stratrond, M.R.C.S., Eug., Toronto, continued from the last Journal.

(Contimect.)
In the last Journal we pointed out many of the symptoms of ligamentous inflammation; we especially indicated the character of nutrition in the structure, and pointed out the fact that the development of pus was impossible from the nature of the part ; that softening and distention of the tissue was the most frequent consequence of infammatory action.
In inflammation of the ligamentons structure of the hippoint, inflammatory fever often runs very high, the tongue is thickly furred, the pulse full and bounding, while a profuse morbid perspiration often breaks out that greatly exhausts the patient's strength, without alleviating his suffering or mitigating his pain. His thirst is great, and his urine often deposits a copions sediment of lithic acid, showing that in many cases of this disease of the hip-jom the imitainn of the fibrous texture is mainly dependent upon the recumalation of this material, or the protinozs compounds trom which it is formed, in the blood.
It has lately become evident, from the great improveRents in animal chemistry and the use of the microscope, Gaf from the peculiar condition of the blood is derived Q great variety of dialbisis which the human constitumpresents in an abnormal condition. That several of 4t morbid states appear to specially influence certain faracters of tissnes, and that the fibrous tissue is the

[^3]especial seat of grout and themmatism. Dr. Garod has succeeded in demonstrating the presence of mate of soda in the blood of patients labouring under these complaints. He has collected the blood from a guaty patient, evaporated it to dryness over a water-bath, and then reduced the mass to a dry powder. This was digested in water at the temperature of 100° for an hour. Hiaving dissolved out the urate of soda, and having evaporated the solution to a small bulk, he added a litte strong acetic acid, acetate of soda was formed, and crystals of uric acid deposited after a few hours; at the same time that he demonstrated that urate of soda existed in the blood of gouly patients, he showed that urea was remarkably deficient in the urine, and that this was especially observable immediately before a paroxyism of the disease, facts that clearly indicate that this pecoliar inflammatory action of the fibrons structure is mainly dependant apon, or greatly influenced by this morbid product in the blood. The miversal distribution of the urate of soda throughout the whole mass of the biood may, in some degree, account for the intense constitutional irritation at tending some varicties of inflammatory action of the fibrons tissues, and may serve to explain how every case of inflammation that attacks the various tissues of the body will be influenced by the different conditions, and varying peculiarties of the vaseular fluid.

Without doubt, inflammation of the structure of the ligaments may oceur without the necessity of gout or rheumatism being present in the constitution, but should sach peculiarity happen to exist, it makes the disease both more severe in its character and more lengthened in its dnration. The severity, however, is rather dependent upon the pain and constitutional irritation than upon the organic changis: which happen to the part, for individuals may iave of repeated returns of inllammation, withont complete destruction of the hip-joint. Inflammatory action may arise from a strain or other injury, and is constantly more or lessa. tendant upon dislocation of the joints, and in old persons the discase may remain for years the pertinacious adheren! of the injured structure. The result of this condition is that the fibrous structure of the ligament remains considerie bly swelled, softened and greally thickened from the in creased amount of serous fluid in which it is, as it wer. consiantily maceratel, while the naturally transparent ter sels continue to be filled and distended with red blow marking a continuous bypercmic condition of these resest in which the neighbouring lissues participaic; henee me often have seen effusion into the cavity of the hip-joinat constantly find that the blood vessels of the areola structar
surrounding the joint, are conjested and the tissue itself hypertrophied and largely filled with fat.
Instead of remaining confined to the fibrous strncture of the hip-joint, the fillammatory action may have spread to ins serous tissue; and having influenced this in the diseased action, all the symptoms of synovial inflammation will be developed and added to those which indecate the affection of the fibrous nissues. There will be found more or less effusion int the cavity of the joim, the character of the pain will be changed, now acate and easily increased by pressure on the trochanter major. The areola tissue external to the capsular ligament may participate an a similar excitement, and effusion of serum into its meshes may be the result, that will give a swelled and enlarged appearance to the whole lip. On the occurrence of this serous effusion, the diseased vessels of the part may have been relieved from their state of coniostion, especially if proper means have been empleyed io assist the efioris of nature and a cure be now obtained ; such is constanly the case in the disease called synovial rheumatism, and to our mind the extent of this discase alone constitutes the difference between gout and rheumatism. It would appear that the constitutional caase was similar in both comptains, but that in gout increased action is alone present in the fibrous tissues, while in acate rheumatism it has spread to the synmial membrane.
Should the amount of inflammatory action in the fibrous lissues be more intense, the eflusion of aibumen and fibrine may occur in the fibrous structure, this is generally but small in quantity, for the unyielding tenseness of its fores would seent not very readily to permit it to take on the changes, to which this morbid blastema is constanly liable, bat as the impulse is suou spread to the synovial stracture within the joint, this eflision ofien occurs there to a cousiderable amount, and may likewise happen in the areola tissue without the capsular ligament. When the fibrine or blastema which bas been effused into the cavity of the hip-joint, has failed to become organized, it softens, and pus corpuscles are in tome developed, until matter is largely formed within the joint. The discase will now be found to implicate all the textures of the joint, and will follow in is onward course all the stens, and be liable to all the changes, which has already been pointed to, in disease of the synovial membrane, until, in all probability, consecutive disloc:ation, or death is the result.
As a consequence also of the effinsion of coagulable tymph into the areola tissue, without the capsular ligament,
we have the formation of pus without the joint ; it may occur in numerons distinct abscesses, which after a time become general; it may burrow down among the muscles, and pointing may be evacuated before the matter in the distended cavity of the joint has forced its way through the capsular ligament. This formation of matter withont the joint may even occasionally occur without a simultaneous result happening within; as such, it has been recognized as abscess of the areola tissue of the hip-joint. When this condıtion is readily understood, proper management will generally cure the disease, without the destruction of the joint.

In the treatment of acute inflammation of the ligaments of the hip-joint, we have particularly in consider, if the caase has a constitutional or a traumatic origin. If the complaint is evidently connected with and forms a feature of rheumatic disease, the peculiar constitutional treatment will be required. If the fever is intense, the pulse quick, full and bounding, the tongue furred, and the whole system morbidly excited, whale the patient, is of a strong plethoric constitution, the free employment of blood-letting will be necessary, followed by the exhibition of colchicum and the application of warm fomentations to the diseased hip. The plan I have adopted with considerable success is, after the free abstraction of blood and use of active purgatives, to combine the sulphate and carbonate of magnesia with the vinegar of colchicum in some spearmint water, into a mixture, a cose of which is to be repeated every three or four hours, according to its effect upon the bowels. I also give alterative doses of calomel and opium night and morning; these means will generally remove the intense pain, and by their action upon the kidnies and liver will commonly remove the poison from the system and cure the complaint within the joint. The free employment of citric acid has been of late strougly recommended in this disease, with a view to change the protinous compounds within the blood, and enable the process of nature more readily to remove the poison from the constimtion.

When acute inflammation of the ligaments of the lipjoint is dependent upon an injury, such as a strain or violent twist, applied to the unyielding ligaments considerable constitutional excitement, and great pain may be protised, these symptoms are, however, often several days in being fully developed, it being a mark of ligamentous iniammation that it is slow of progress. In such a case, general blond-letting may be demanded; but ihe employment of copping or the appheation of leeches, repeated according
to the severity and persistence of the inflammatory action, will be found peculiarly advantagcous. These means, assisted with warm fomentations to the part, and followed by repeated doses of tartarized antimony and epsom salts, so as to nauseate the stomach and fully purge the bowels, these will generally remove the disease. Among other means, however, the most scrupulous attention must be given to leeep the part in a state of perfect rest, heing particular not to adventure too much motion for a time, even after the part seems perfectiy restored to health. But if it should happen, notwithstanding these means, that the disease is determined to increase and spread to the other structures of the joint, causing effusion oi serum, or the deposit of fibrine within or without the joint, so that pus shall be formed, and this being developed to a sufficient extent, a free exit should be secured for it as soon as it is plainly diagnosed to exist. From this period forward, without doubt, this inflammatory disease, now established in the hip-joint, will follow all the stages, will be liable to all the changes, and experience all, the chances of recovery, which we have already explained may happen to the same part affected with inflammation of the synovial membraus; and now that all the structures of the joint are implicated in the di-ease, the treament must strictly correspond with that proposed in extreme cases resulting from inflammation of the serous membrane, which has already been fully detailed, and which, therefore, it will be umecessary for me again to repeat.

In chronic cases, however, this disease of the ligaments of the hip-joint not unfrequently endures with amazing pertinacity; in such cases, however, the inflammatory action has never advanaced beyond the congested state of the vessels of the part, and some degree of effusion of serum. The fibrimous texture in these cases has become swelled and softened by the increased amoumt of serous fluid constantly surrounding it ; and when the poison of gout has existed in the constitation, by the deposit of the urate of soda between the fibres of the ligament, it has often become greatly hickened and enlarged; this always produces stiffness and immobility of the limb, and is constanty attended with a dull heavy pain, particularly increased upon changes of tha atmosphere. When this disease has contimued for a rery long time, especially in aged patients, when the pain and stiffiness of the ligaments has rendered motion intensely painful or almost impracticable, then shall we often see a wasting of the head and neck of the thigh bone, dependent upon interstitial absorption of the bone. In such a
case the extremities begin gradually to shorten, the patient has long limped upon progression; when he attempts to walk the toes turn outward, but still the sole of the foot comes flat upon the ground; the lumber vertebra acquire considerable mobility, corresponding in some degree with the immobility of the hip-joint ; the battork of the affected side is much less prominent than its fellow, while admeasurement of the limb shows actual shortening. This condition is very liable to be confounded with fracture of the neck of the thigh bone, especially after a patient has met with an accident in this region; doublless this is the disease which has bern truly described as chronic theumatic arthritis of the hip-joint.

The treatment of chronic inflammation of the ligaments of hip-joint should consist principally in the employment of the counter-irritants applied to the neighbourhood of the part; blisters made perpetual by the use of the savine cerate; stimalating liniments, or the ointment of tartarized antimony, have been used with advanlage; the application of warm, stimulating plasters, and splints, so as to retain the part in a state of perpetual rest; cupping, moxas, and the actual cautery, have been recommended to be used in obstinate sases. In many cases of this disease in which the urate of soda has been largely deposited in the structure of the ligaments, the internal use of benzoic acid has been found of great advantage ; this medicine acting upon the protinous compounds in the blood, has prevented the formation of uric acid, by converting it into the hippuric acid, this being far more soluble and passing out of the system more readily with the urine, has tended to prevent the formation of this urate of soda and its deposit in the ligaments, and has even been said to favour its removal, after it has been largely deposited in the ligaments of the jcint.

Inflammation of the Curtilages of the Hip Joint.

The consideration of the true nature of the structure of the articular cartilages will alone explain the phenomena of inflammatory action when it implicates these structures, and it presents us with a very apt illustration that inflammation of every structure in the body is, in its first stages, but a direct lesion of its nutrative functions-that is to say, the embarrassed circulation, the first step in inflammatory process-impedes or ohberwise deranges the cordition necessary to those changes which alone constitutes a proof of the vitality of the part.

The articular cartilages are formed of a fibroas structure, largely supplied with cells; these cells are developed in the
meshes of the fibrous tissue from a very early period of its existence ; and this organization is for the most part retained in the structure to the most pxtended term of its existence. The cellular structure of the cartilage does not appear to be directly nomrisicd through thr medimm of blood-vessels; the finer portion of the blood passing by transudation around the fibrous element is absorbed by the cell wall, so as to fill this structure and nourish its growth ; the fluid absorbed, consequently, must be of the most attenuated character; and we find, to fornish this material, that the cartilagimous structure is every where surrounded with large ampulle or varicose dilatations of blood-vessels; these supply due nourishment to the cellular structure without the necessary intervention of capiliary vessels, as takes place in other parts of the body. That a similar condition of cell formation is also present in the early stages of the formation of bone, has been fully proved ; it would seem to me that this formative process had been arrested in cartilage covering the extremities of bone; and that the condition of cartilage is maintained by the function of the parts; the universally intermitting pressure to which this structure is subruitted, preventing the elaboration and deposit of the calcareons salts in the fibrous tissue; hence a limb mainlained in perfect rest for a very long period of time may become anchylosed, while cartilage will invariably be found at the extremities of fractured bones, submitted to the intermitting movement, which canses a false joint to be produced. A puint of great importance to be cemarked is the absence of nervous filaments in the structure from which cartilage is formed; hence diseases of this part may progress to a very considerable evtent and for a very considerable period without much pain being complained of by the patient, a fact which is very remarkable, as long as the disease is confined to this structure.
Such being the mode in which cartilage is formed and nourished, let us consider the first result of inflammatory scion or the How of an increased amount of blood to the vascular apparatus which supplies the erllular structire of the cartilage. The first stage, then, of inflamuatory action is a local hypoemia, a defitation of the ampulle and a relasation of their coats, wath an especial increase in the amoum of the red corpuseles of the blood: these, with all the other component materials, are increased in quantity While the walls of the capillaries are distended to their utmost. The result of this congestion of the ampullex is a greatly increased supply of the natural secretion, the nutritive material of the cells, so much so, that the fibrous ele-
ment is greatly swelled and softened, while the cartilage cells themselves, surrounded by this excess of serous fluid, are greally distended by endosmodic action, until they increase so that they burst and are destroyed, and their nuclei are liberated. During the last efforts of the cartilaginous structure to form bone, these cartilage cells were arranged in strait rows, extending from the last formed bone towards the free circumference of the cartilage; hence we find that in these cases, that as cell after cell suffers from this destructive influence, many are hereby destroyed; those which remain are enlarged, and their nuclei escape, the cavity filled with serous fluid now left in the cartilaginous structure; into these cavities so formed, the disiended ampullæ or loops of blood vessels in comnection with the bone, or lying between the cartilage and the basement membranc of the synovial tissuc, are pressed; these vessels now distended with red blood, fill the cavities so formed in the cartilaginous structure; so that when on dissection we separate these several structures, numerous nipple-like projections are observed upon the vascular apparatus, and minute cavities on the diseased cartilage will be found to correspond with them; to so great a lengll is the process sometimes carried, as we shall presently see, that the naturally firm connection between these several parts serms almost severed. As this state of things progresses, it will frequently happen that the basement membrane, and even the epithelial cells of the serous membrane, may be submitted to a similar action, a slow dissolation in the serous fluid may take place; the consequence is, that the nutritive vessels of the cartilage and also of the serous membrane, are left on the surface of the denuded cartilage, completely free within the joint ; this is the structure that has been described by Mr. Keys as a ner formation of vessels, which had been produced for the purpose of causing ulceration of the cartilage. It is clear that this collection of blood vessels is the result, not the cause, of the ulceration. This vascular structure, which was firsidescribed by Mr. Goodsir, being now unsupported by the fibrous element on either surface, and hanging free in the joint, will after a time cease to perform its function of car: xying red blood, and as soon as this function has ceased, will die. These vessels themselves will be dissoled in the serous fluid now free in the jom, and by degrees their dissolution and destruction will be complete, so ity they will be emirely removed from the part, leaving 0 surface of the cartilage bare. At this period the surface of the cartilage will present the appearance of elongated
fibres, dependent upon the destruction and removal of the cartilage cells, vascular apparatus and synovial membrane, leaving the fibrous clement floating in the joint; if this condition of things increase, the fibrous element of the cartilage will be dissected up, as it were, by the destruction and removal of the cartilage cells, so that the fibrous element may be left as large bands or fibres floating in the cavity of the joint. Although this state or condition of the part camnot be distinguished by the eye, upon a section under the microscope it is plainly visible, and to the feeling of the hand will seem soft like velvet. Under these circumstances we often find the nuclei of the cartilage cells to abound in the part, being entangled in these fibrous elcments, and now wanting due support and proper nourishment, the nuclei are not properly developed into cartilage nells, but they may enlarge, and we may find them filled with fat globules, as pointed out by Dr. Redfern.
It will frequently happen before the synovial membrane and the vascular apparatus of the part is destroyed, that the cartilage cells have been largely submitted to distention rupture and destruction, that a cessation may take place in the discased action, so that the joint by degrees regains its power of motion; the compression of the surfaces now experienced by these parts consolidates the fibrous structure, by pressing them closely together; when we come to examine the part, it will appear that more or less of the cartilage has been removed, and the indentation and destruction of its substance will sometimes apparcnty amount almost to complete removal, leaving the surface of the bone to a considerable extent denuded of this structure. We shall, however, in these cases find that the surface of the mjured cartilage, or what remains of it, is still covered with synovial membrane, similar to that which lines the other porions of the joint, and which in point of fact has never been destroyed by the ulcerative action; the efiect of which isplainly visible through it, has progressed below this structare, but it is now clearly consolidated and united to the surlace of the cartilage or what remains of 11 . When this disfase has progressed 10 a cousiderable exient, it not unfregrently happens that the cartilage cclls which remain after this destruction of its substance will take on a calcareous deposit composed of phosphate of lime. The perfect rest to Thich the jomt has been subminted has in all probability fremitted this deposit to form, which, had motion continued, fould not have bappened any more than in ordinary cartihes, but having occurred, and motion being again by slow fegrees established, the fibrous element will be consoli-
dated, and with the phosphate of lime, will take on a vitrenus character, giving to the remains of the cartilage a firmness and consistence equal to porcelain.

In some cases this disease in the cartilage will progress in the vascular apparatus upon both its surfaces, the ampullæ next the bone and those connecting it with the synovial membrane will be impheated in the disease, and this may proceed so as completely to isolate the cartilage from the bone, and before it is completely dissolved, to set it free as a foreign body in the cavity of the joint; should this happen, it wall assuredly be sulficient cause to bring on general inflammatory action of all the structures of the joint, that will in all probabinty, progress to the most fatal results.

$$
\text { (} T 0 \text { br Contiauced.) }
$$

Art. XXXVIII.-On Phlegalgia Oris, by Wimhan Kerr, Sujgeon. Corresponding Member of the Medical and Physied Society of Calcutta, and of the Medico-Chirurgical Society of Glassout, Gali, r. W.
The disease which forms the snbject of this pane: has not, as far as iknow, been described by any author. From its most promment symptom I take the liberty of namingit phlegalgia oris, or buming pain of the mouth.

On looking into the month chaps are observed on the tongue, its edges are raw and tender. and papula are seen on the gums as well as on the tongue. The principa! seat of the disease is the edges of the tongue adjoining the under teeth.

The diseased appearances, however, are slight, and give no idea of the sufferings of the patient, who eomplains of a constant sensation of burning or sealding, interrupted only by sleep, varying in intensity from day to day, but continuing without cessation perhaps for years. During sleep the tongue generally becomes parched, and so dry and painful that on awaking the patient can scarcely move it. While awake dryness gives place to an increased secretion of saliva. Anything having a pungent taste, such as salt, pepper, or alcoholic liquids, taken into the mouth aggra: vates the pain. The patient always prefers soft food, as even potatocs communicate the sensation of containing sand. To relieve the scalding, a litte milk or cream is often taken into the mouth, and for the same purpose the patient is frequently observed sucking in cool air betweed the lips. Breathing a really cold air, however, aggravaley the pain, so that on going out of doors when the day cold, the patient is glad to cover the mouth with a handkif
chief. As may be expected from this fact, the complaintis generally worse in winter than in summer. Sometimes the pain stretches to the back of the head, and more frequently up the side of the face, like toothache.
Ihave met with the combination of symptoms constituting phlegalgia oris, only in females. It generally commences during pregnancy or lactation, but sometimes arises without being connected with cither of these.
The digestion is often impaired, and the patient is never actually robust, though her general appearance may not isdicate any deviation from healh.
For several years after I became acquainted with phlegalgia oris, I was in the habit of directing my patients to take wine, porter, or some alcoholic liquad; and prevented local smarting, by instructing them to coat the tongue with thick mucilage of gum senigal just before using them. I also often succceded by giving bitters, the object of the treatment being to commonicate greater vigour. Many years ago, however, a case occurred which baflled my most earnest exertions to cure it, and convinced me that these remedies, though capable of removing recent or slight affections, were altogether incapable of cruing proiracied or severe ones. The case was that of a lady, who after the birth of one of her children, was aflicted with phlegalgia oris. The ordinary medical attendant having failed to give relief, several medical gentlemen were consulted. At the end of several years, no benefit having been obtained, she repaired to Edinburgh to obtain the opinion of an eminent operator, at that time residing there. A consultation having been held, an assurance was given that ber complain arose from a concretion lodged somewhere about the ront of the longuc. To remove this an operation was performed, but a concretion could not be found, and she returned home deeply mortified with the result, and with her impressions of the candour of the profession considcrably lessened.
About fifteen years from the commencement of the disease, I was consulted, being somewhere about the twelfth medical man who had seen her, and, like all my predecesPors, I failed to cure. Ten or fifteen years afierwards she fied of another disease, the sensation of scalding remain\log to the last. Mercury, arsenic, iron, opium, belladoma, Wrax, the local application of nitrate of silver, and seveHother medicines were tried at different times, but withat benefit.
No case equalling the one now shortly sketehed, in duraFon or severity occurred to me till last January, when I fas consulted by an elderly female for phlegalgia, which
had commenced about twenty years previously, and which often, especially in cold weather, was productive of considerable suffering. Scveral medicines had been tried both in Scotland and Canada, but without benefit. In this case I resolved to make a trial of extract of hyoscyamus and camphor, and accordingly instructed her to take two and a-half grains of each twice a day. The result was most gratifying. Before a week was ended she was quite well, but to increase the security, the medicines were continued for two weeks in the whole; she then had taken seventy grains of hyoscyamus and the same of camphor. I am happy that she has not had the slightest return of phlegalgia, though a good deal exposed to weather of every kind.

I have since met with several recent and not severe cases, which yielded much more readily and specdily to hyoseyamus and camphor, than they would have done, I am satisfied from previous experience, to the remedies I was formerly in the habit of employing. An investigation is still necessary to determine, whether the cure depends upon one or both of the medicines I employed; but having succeeded in a most obstinate and protracted case, a parailel to which may not occur for many years, I consider myself warranted in laying this paper belore the medical profession. Debility being more or less connected with the disease, it is possible that cases may occur requiring stimulants besides, or if debility be kept up by some cause in the system, that this cause must be removed before hyoscyamus and camphor can act beneficially.

Phlegalgia oris having its seat in the nucous membrane, more extended obscrvation may perhaps detect it in the stomach or alimentary canal. In the first very protracted case, years after the commencement of the affection of the mouth, the patient fell and struck her side with considerable force, against the end of a piece of wood. For a long period afterwards chords of false membranes, evidently from the interior of the colon, were voided from time to time afterwards, in dysenteric attacks. The same patient informed me, that lithle pieces of gelatinous exudation occasionally peeled from the edges of the root of the iongue.

A few months ago I was consulted by a middle-aged female, the mother of seven children, who immediatly after a miscarriage, at the beginning of the year, had ad invasion of the symptoms of phlegalgia oris, the sensation of scalding aggravated by pungeut substances extending down the gullet into the stomach. Acidity was often pre: sent, and attacks of dysphagia, squemishness and vomiting were not unfrequent; the bowels were constipated; she
slept ill and had an unhealthy aspect. This ease was deeply interesting on account of phlegalgia affecting the mouth, the gullet and the stomach. A rapid improvement followed the administration of hyoscyamus and camphor, and by the end of a month she was quite well.
While residing in Scotland I was consulted by a gentleman who complained of what I at first supposed to be chronic diarrhoa; but discovered it to be frequent discharges of mucus followed by healthy evacuations. Experience had taught him that constipating medicines were injurious. He had previously consulted a very eminent practitioner, who failed to cure him, and my prescriptions failed likewise This year an elderlylady with precisely the same symptoms requested my advice, and I am glad to say that hyoscyamus and camplior produced a cure without difficulty. There were no symptoms of phlegalgia in the intestinal canal.
I suspect that the general voice of the profession is, that the treatment of dysentery is unsatisfactory, and the conclusion seems to be thai opium of itself, or along with laxatives, is inadequate. In byoscyamus and camphor we evidently possess medicines capable of healing papula and chops in the mucous membrane, and the question seems will they likewise heal the ulcers which form in the mucous membrane in dysentery ? The effect of their use, certainly of their prolonged use, is aperient, not constipating. Of late, in several cases, I have tried them along with opium, a laxative being given from time to time on the occurrence of febrile symploms, and the success bas been such that I am determined to continue my trials on the return of the dysenteric season. Will the same medicines be uscful in cholera? In a disease which runs its course so rapidly, we may expect to do good wherever we find a medicine capable of speedily, not slowly, checking the progress of dysentery.

REVIEW.

PRINCIPLES OF PHYSIOLOGY, GENERAL AND COM-Parative.-Bx Willam B. Carpenter, M. D., F. R. S., Examiner in Physiology and Comparative Anatomy in the University of London: Professor of MFalical Jurisprudence in University College, fc., §c.
(Continucd from No. 1.)
JRIM.ARE MLSSEES UF PLANTS.
In the first number of the Journal, Oct. 1853, we pointed out that the vegetable cell-wall was in most instances composed of two layers of very different composition atid properties. The inner, which appeared to be first formed, was called the primordial utricle, extremely thin and delicate, but most essential to the structure of the cell, and appeared to be an azotised componnd, in all probability, of an albuminous nature; while the second appeared to be generated on the external surface of the primordial utricle, and to surround it; being composed of cellulose, a substance identical with stareh; this might consist of one or many layers.

In the interior of the vegetable cell we find a granular matter, which is usually coloured; it is called the endochrome; it is this, with the albuminous covering or primordial utricle, which constitutes the true cells; in it are exbibited the phenomena which indicate the vitality of the cell, and the existence of a continual morement of the floating gramules may be seen, carried along in a stream in the flaid contents of the cell. Thas motion appears to be confined to a viscid layer, which seems in close connection with the primordial utricle. In the aquatic plants among the characea nayadaca and hydro-chervidacee we may observe this movement most easily; n some the current is so strong as 10 carry along with it granular masses of starch, chlorophyll and albuminous matters. Several distinct currents may exist in the same cell, and these may be observed to have a point of departure and return-a mass of granular matter attached to the cell-wall, termed a mucleus appears to be the centre of the vital activity of the cell. This movement would appear to exist in every vegetable cell, at a certain stage of its development, and its cessation would seem to indicate the arrest or termina tion of the formative powers of the cell.

Besides the evident circulation above mentioned in vegetable cells, we may sometimes observe another phenomenon, the rapid changes of form which the; sometimes assume; this may even produce obvious motion, sometimes dependent upon internal causes, sometimes produced by external exciternent. In the oscillatorice we may observe elongated cells in a state of continual vibration; these are remarkable as possessing no cell-wall, so that the power of movement must reside in the primordial utricle, and endrochrome.
Of the multiplication of cells, one thing is certain, tha each individual owes its oigen, in some way or other, 10 a pre-existing cell; the method adopted seems to vary in different cells, but of one, there is no doubt, that the endrochrome of the parent cell is the starting point of its successor, while the outer cell-wall is comparatively passive. The most usual method of increase in the cells of plants is by sub-division into two halves. Take the hematococcus binalis as an example; these cells are of globular shape, and, when the process of sub-division commences, they become oval, a constriction appears to take place around them, and by degrees the endrochrome separates into two halves, is eventually divided, each portion of the original primordial utricle obtains an envelope of its own, but it is still inciuded within the external cell-wall of the parent cell. Into this last a thick secretion occurs, which often considerably divides the two young cells, and places them at a distance from each other; the same process again takes place, with like results, in the divided cells, and other cells are continually formed. In the conferve the first step is the division of the endrochrome, and the inflection of the primordial uticle around it , a division of the parent cell takes place by a kind of hour glas: contraction, these two surfaces of the utricle are enveloped in a double layer of cell membrane; this appears not to be confined to the contiguous surfaces of the sub-divided cells, but to proceed from the whole surface of the primordial utricle.-In the lower algoe this process tends to the formation of a prolonged filiment or flatened leaf-like expansion, dependent on the mode of the division of the cells during the process of subdivision, the influence of the nucleus is not very evident, when it is present, it is divided with the endrochrome, and half is appropriated to each cell.
Another mode of increase is apparem in some cells; for example, in the conferva slomerata, a certain portion of the primordial utricle appears 10 grow on the surface, it proPecie; carries before it the outer cell-wall, forms a protuber-
ance often of considerable extent, before separation begins to take place in the pareni cell; this, however, gradually proceeds by the folding of the primordial utricle, until the endrochrome of the young cell is completely separated from its parent. This process is called budding, in distinction from $s u b-d i v i s i o n$, and may, as in the characea, form a circular row of buds, each of which may develope a whorl of branches. This process is observable among ferment cells, which under favorable circumstances shoot forth with buds at several points. In this process the nuclei do not appear to take any very prominent part, as new formations sometimes appear from cells apparently destitute of them, and when present do not seem to be included in their structure.

Another variety in the multiplication of cells would appear to depend upon the separation of the endrochrome into numerous parts, each of which acquires a cell-wall, and a mee forms a brood of new cells, generated in the interior of the parent; the original cell-wall bursting, sets them all frec. In the achlya proliferc, it appears that on the detached tubiform cell, a circulation of granular particles may first be distinguished, then a collection of distinct masses ; cach of these appear to acquire an individual cellwall, then they begin to move within lise parent cell, and when quite mature burst the cell-wall, and go forth to form new and independent plants.

In some instances we find that new cells may be generated in a proto-plasma, or mixture of starchy and albuminous fluds elaborated by cell agency, in which the germs have been formed and set free, although they escape observation, from their minutencss; this fact has been brought forward as a proof of spontancous generation. So also has the sudden appearance of the protococcus navalis in alpine regions, which ofien suddenly reddens large tracks of country. Doubtless the bature and rapidity of celi growth, directed, as it clearly is, by laws impressed upon its own individual character, may be greatly influenced by external agencies; for cxample, some kinds of fungi have been known to grow in one night from a mere point to the size of a large gourd, and, upon calculation, have developed cells at the rate of four thonsand miltion per hour.Again: the form of cells are often evidently infuenced by their position, the rounded form in most varieties is retained, but when aggregated together, the sides of the vesicles on being pressed together become flattened in every shape and variety; should the preponderance be equal in all directions, the form assumed will be a rhomboidal dodecahedron, a 2 welve-sided solid, with equal faces, so
that each surface is connected at all these points with neighbouring cells, without leaving an interstice between. In some cases, again, these cells appear held together by intercellular substances, a kind of mucous layer that intervenes between them, and is, in all probability, a material elaborated by the primordial utricle, receiving its nourishment throngh the cell-wall. In some instances we find that distinct fibres line the internal sufuce of the cell-wall, of a spiral form and an clastic character, or the lining of cell-wall may be of a ligneous or sclerugenous character, which may be deposited in numerous conventric layers; this is sometimes so thick as to fill the cell and to compress, and almost obliterate the primordial utricle; in other instances this matter would appear irregularly deposited over the surface of the cell-wall, as in the gritty matter of the pear; at all events, in the primordial utricle would appear to exist the active agency which shapes these various developments.
The woody fibres of plants, which in a', the higher forms of the vegetable lingdom constituie its most firm and durable character, giving support and protection to the softer and more delicate structures, is evidenty composed of cells, which become clongated at both ends, assume a fusiform or spindle shape, and has elaborated within it ligneous matier, which gives it great firmmess and tenacity ; even in the more delicane structures of herbaceous plants, these cells perform an important function; bound up in bundles and farsuli, they constitute the skeleton of the leaves, and the trm:ees of the stems. It is said that these elongated cells, in their early condition contain and conduct fluids with great facility, and in the coniforous tribes are the sole channcl for the ascent of the sep, the stems and branches being destitute of vessels in their mature condition : when in this tribe these are filled with ligneous deposit, we may observe a pecuiar set of markings, apparently a deficiency of this lining deposit; being a circular or lenticular boundary, surrounding a globular body; this may sometimes be detached, while its shape indicates the variety of the plant.
The spival vessels of plants are also formed from cells, containing circular fibres, developed on their interior, these winding from end to end, remain distinct from the cellFall; in some plants they become hollow, and appear to contain air, and to be connceted with the leal-stalk, through Which they are distributed to the leaves. Bearing a near analogy to these is the tubular tissue of plants, formed from cells laid end to end, whose partitions becoming obliter-
ated, then fom a continuous duct for the conveyance of fluids. In many ducts the original markings of these cells are sufficiently obvious, but in others their history can only be learned by studying their development; in some cases a partial deposit apparently occurs upon their surface, giving them the appearance of dolted ducts. Upon the longitudinal section of sume plants, we find all these forms of ducts bound up in the same bundle, and occasionally their crifices are to be distinguished hy the naked eye. It is certainly curious to note the weat resemblance there exists between the spiral vessels of plants and the tracheal system of insects, in whose case spiral formed vessels ramily by minute divisions through their whole bodies, conducting air to all parts, while the similarity to the trachea of vertebrata is also worthy of molice.

It is a general feature in the ducts of plants that they ron in strait lines, parallel with each other, from the roots $t 0$ the leaves: their office being for the most part to carry fluids in a direct comre from one to the other; still here are in lactiferous plants a system of anastomosing vessels not unlike the capillaries in animals; these from a notwork by the coalescence of cells, and the development of vessels; they are often made particularly distinct by secondary deposits. 'ilhe inlercellular spaces of planis are large and fully communicating passages, that intervene between the large cells in the loose structure of plants, as in the leaves, when they contain air, while in other situations they appear to afford the means of circulation to an elaborated juice, not unlike the iactiferous contents of the branching vessels.
we the mimany tiennes of ammats.
Having dewonstrated that the vaions tissues of planis are the production of cell growth, so the microscope teaches that the primary tisates of animits are alike dependent upon a similar formation; the more complex structures of animals, however, renders this fact more indistinct, but if we trace the development of the animal cell, we shall find that it is essemtially the same element of animal, as we found it is to be of vegetable life. The albuminots character of the animal cell-wall agrees with the primordial utricle of plants, receiving is pabolum from without; while the eaternal cell-wall of plants appears io have the power of generating the necessary natiment for is cell. It is in the chatacter of development, and the powers of selection, in which the groatest diversity appears to raist between thes: different cells. Among the animal cells we nd they hare the power of selecting from the same materials perfectly
different products, a clear indication of a guiding agency controlling the common forces of matter.
In the multiplication of animal cells we may witness the two principal modes of development which continually presem themselves in plants. In onc case the new cell is formed from a nucleus of the parent cell; the nucleus appears to assume a more important office than in the cells of plants; in this case, the cell undergoes a sub-division, each portion of the nucleus contracting around iself a portion of the contents of the parent cell, before any division of the eavity becomes apparent-such is the cartilage cell. Again, the nucleus may break up into several fragments, each portion becoming a nucleus and ultimately developed into new cells, without the sub-division indicated in the previous mode; these having arrived at maturty, each saccessive crop of young cells is liberated with the rest of the contents of the cell draw from the blood, this in fact forms the process of secretion from the follicles of glands. In the first variety the cells are intended firr a permanent destination, to build up the body; in the second, they are intended but for a transitory purpose, and are required to be removed from the system.
In the vegetable world we have found cells developed in a proto-plasma elaborated by cell life, withoat doubr, from invisible nuclei; so in animals, says Carpenter, "have we now to consider those in which new cells originate in plastic or formative material, without any direct intervention of pre-existing cells." In this variety of cell-growth Mr. Carpenter, without doubt, has reference to the blood corpusclee; to say that these are formed withont any direct intervention of muclei, is, I think, a positive mistake. If it is remembered that the result of the process of digestion is topresent to the lymphatic vessels a material of which one of its principal constituents is albumen. This material taring been'absorbed, is carried by the lymphatic vessels to the lymphatic glands. These glands are made up of tavoluted linots of absorbent vessels, the single cylindrical tanals, which are now dilated intolarger cavities, or cells; tese cavities are lined with epithelium; in the lymphatic resels, these epithelium are flat and scale-like, forming stagle layers on the basement-membrane. but in the gland Self, we find them composed of numerous layers of pherical nucleated cells, of which the superficial are easily thached, and, without doubt, form the granular muclei Thich are to be developed into the white corpuscle of the Wool. The granular nuelei grow by the absorption of pasma from the blood, which principally consists of albu-
men derived from the food; by degrees these increase until the white corpuscle of the blood is perfectly formed. The albumen, absorbed within the white corpuscle, helps to nourish and develope its nucleus, until this has arrived at maturity. The white corpuscle then opens and liberates the red globule of the blood, which now maintains an independent existence, and becomes the carrier of oxygen and the developer of animal heat. Along with the red globule of the blood was elaborated in the white corpuscle the most important material of the animal frame, this is the fibrine of the blood. The red globule of the blood itself is also largely composed of fibrive; and when in the course of nature this has fulfilled its function, and becomes broken up, and disintegrated, will add its modicum of fibrine to the circulating system. Thus we have presumed to differ from Mr. Carpenter in the origin of the blood corpuscles, and intend at some future period to demonstrate the facts we have now enunciated--viz. that the granular nucleus, derived from the lymphatic gland, is the origin of the white corpuscle of the blood; that the nucleus of the white corpuscle is developed into the red globule, while the main fabricator of the fibrine is the white corpuscle of the blood; for these reasons we venture to declare that the protoplasma of these cells is not fibrine, but it is the albumen of the blood; and this albumen becomes vitalized by ceil development and turned into fibrine, hence fibrine is the only structure of the animal frame which presents a vital action, and can act without the immediate intervention of cells.
(To be continued.)

BOOKS RECEIVED FOR REVIEW.

A treatise on the Anatomy, Physiology and Diseases of the Hunan Ear.-By James Ryan, M.D., Professor of Surgery in Genera Medical College : Professor of Institutes of Medicine and Medirel Jurisprudence in the Philadelphia College of Miedicine : President of the Medica Chirurgical College of Philadelphia: Corresponde ing Member of the New Yort Nicdical and Surgical Society: Member of the American Nedical Association, and of the Cort vention for the Revision of the United States Pharmacopatish \&c., \&c., Philadelphia, 1851 : 124 pages.
A succinet and scientific litule work, that shall receive due notite I.

EDITORIAL DEPARTMENT.

PROVINCIAL LUNATIC ASYLUM.

Having observed an advertisement inserted in the Daily Colonist newspaper of this city, requesting applications for the appointment of medical superintendent to the Provincial Lunatic Asylum; and being desirous of giving the notice all the publicity our subscription list will permit, we copy the advertisement.

GOYERNMENT NOTICE.
Norice.-The situation of Medical Superintendem of the Provincial Lunatic Asylum at Toronto having become vacant, applications forthe said situation, accompanied by testimonials, will be received by the Government of Canada until February next.
The salary auached $£ 500$ currency per annum, with a residence in the Asylum. Applications must be addressed to the Honorable the Provincial Secretary, Quebec.

P. J. O. CHAJVEAU, Provincial Secretary.

Pbouncial Secretary's Office,
Quebec, Nov $4,1853$.
It appears to us that a more extended notice of so imporlant an appointment as that of medical superintendent of ta Provincial Lunatic Asylum should have been given by Greinment; at all events, it is sincerely to be hoped that a Eost liberal and enlightened policy will be adopted in this matier, and that a severe scrutiny wiil be made into the *ilities and qualifications of the person who may be enFwid with the onerous duties of this appointment, such as filf faliy satisfy the public that judgment and humanity tibe exerised in the management of the poor unfortunate Egss committed to his charge.
Without a doubt the previous political nistory, and the sent dreadful condition of the fourdation, of the building, Fid deter many eligible persons from undertaking the tagement of the insanc in this institution. With regard lefirst point, we hope tinat the Government have seen Wly of political appointments; and with respect to the Fond an absolute necessity exists, that a proper system
of drainage be undertaken, (which by some is said to be impossible) before any person can do justice to his charge. Only fancy a collection of muck many feet deep proceeding from the scullery and washhouse drains, accumulating under the noble building, which has cost the Province so much money, without a possibility of escape. In this mass of putrid and decomposing matter, we find fomites amply sufficient to account for the low form of remittent fever that is constantly showing itself among the inmates of the insitution, and which, with ail occasional exercerbation of dysentery or cholera, carries off many of the patients. This poison produces very marked effects, for the patients commonly very soon sink, after they have been attacked with the disease; while the same complaint will not unfrequently show itself among the keepers and other servants residing in the building. There is no doubt but that a remedy must be found for this deplorabie condition of things, by the adoption of a proper system of drainage, and a better mode of ventilation; for if the cause of the poison which has been accumulating under the building eversince it was inhabited is allowed to remain, a superintendent possessed of almost miraculous powers would surely be foiled in his best endeavours to cure the mental disease, while the animal frame was oppressed with a deadly poison, continually imbibed from such a hot-bed of disease and death. We propose at an early period, to return to the consideration of the terrible condition of this Lunatic Asylum building, and some other circumstances connected with the institution

degradation of The medical profession

A circumstance of the most disgraceful character has just happened in the village of Emiskillen, C. W., and at it forcibly demonstrates the disadvantages under whith the medical profession of this Province labour, we shall relate the facts. It appears that two rival pracitionersin medicine have been exercising their calling in the villag and neighbourhood of Emniskillen; the one has received
a license from the Medical Board of the Province, and the other has "a license to kill" issued by the voice of the Canadian public, and has for some considerable time followed, or rather we should have said, degraded the noble art and science of medicine, without any other legal authorily. A spirit of rivalry between these gentlemen has ripened into bitter and rindictive feelings. It so happened that the quack, (we beg pardon) the individual licensed by the people, found himself going to the wall; so to improve his position, and make his claims upon the country good, he induced a newly passed licentiate to join him in his business. It seems this umboly union was regarded with no pl-isant feelings by the opponent; nevertheless it was sanctioned by the public woice, and he had to abide by it. Some few days since a person was buried in the graveyard, and on the next day it appeared evident that the body had been removed, for the grave was left but partly covered, and as though it was intended the theft should be disclosed. So heinous an offence against public morals was immediately taken in hand by judge Lynch, and astrict search was made for the corpsc. The first house and premises examined were those occupied by the licensed practitioner, who was most anxious to disabuse the public that he should ever have been guilty of the dreadful crime of dissection: not the slightest vestige however of such professional zeal or industry could be found on the premises. The next point was of course to search the residence of the gentleman practising under "the license to kill." Such an individual could of course enjoy the confidence of the public without requiring any knowledge of the human frame, and certainly would not be guilty of desecrating the grave for such a purpose; it was evidently contrary to reason and common sense, to imagine that the body could be there; but nevertheless led to the place, a search was commenced, and low and behold, the missing body was found hid in a dung-hill. The popular fury was at once aroused, warrants were sought against the people's practitioner and his partner, but as they were not issued with sulficient speed by the magistrates, the mob to ': the matter into their
own hands; they set to work and demolished the man's house and all his furniture; and having laid hold of the partner, violently assaulted him, so that he narrowly escaped with his life. We understand that warrants have been issued against all the parties concerned, who have been bound over to appear at the court of assizes to be held at Cobourg in a short time.

We manatain that this transaction is another proof of the increasing degradation of the medical profession in this Province, and a striking proof that the public must become the sufferers by such deterioration. The want of an act of incorporaiion is here clearly demonstrated, for had the profession the power to improve the standard of medical education in this Province, by requiring a higher grade of professional study and acquirements, and by encouraging a more elevated tone of conventional politeness, we should have science assume its true position, and not stooping to beleague with quackery and humbug, for the spoliation of the pablic, and the degradation of the profession.

We herewith present to our readers the Tariff of Medical Fees agreed to at a public meeting, and the names of the gentlemen who have promised to adopt the scale as a standard of their charges for medical attendance, visits, operations, \&c. It may be observed, that a very considerable latitude is permitted in the amount of the fees, ranging as they do between the columns marked maximum and minimum. To our friends in the country it may be offered as a data (but with very considerable margin, we fear) to regulate their charges. The tariff would certainly serve in some degree as a guide in the settlement of a medical man's bill, when it should happen to be in dispute, and in this respect might really be very useful. It must, however, be remembered that this scale of fees has been adopted by Gentlemen of the medical profession in this city, some of whose standing for science and professional skill would naturally deserve the highest reward; and as such they can assurre a position in this matter, in which ail the.
profession could not venture to follow them. If it is understood that this matter of the fees shall remain an open question for all who please to adopt it, then we are sure that the whole profession will be indebted to those gentlemen for setting so good an example, and thus vindicating to the public the rights and emoluments of the profession; but if it is intended to brand any person as unprofessional who does not readily and uncompromisingly adopt the tariff as their rate of charges, then we say that those Gentlemen will be most completely mistaken; for it is perfectly certain that, in very many cases, the scale of fees here set forth could not be universally carried out, and that especially in the country parts.

MEDICAL TARIFF, \&C.

For a Medical Opimion Wisit in the day time (from 7 a.m. to 5 p.m.)	mammon. 1 mandos				
		${ }_{0}^{\text {d. }}$	10	10	
	0	0	05	5	0
If not the regular Medical Attendant	0	0			
Night Visits (from 9 p.m. to 7 a.m.)....... Visits into the Country, 5s. per mile in addition to regular fees, reckoned from the Market-place, Toronto. Consultation Visits-first three	1	0	10	10	0
	$\begin{array}{lll:ll}1 & 0 & 0 & 0 & 10\end{array}$				
Consultation Visits-first three Do. do. for a continuance....	010	0			
Letter of advice or certificate For detention at a case, in addition to fee, per hour \qquad	2	0			0
	010	0	0		0
SURGICAL OPERATIOMS.					
Capital Operations - such as Lithotomy, Amputation of Extremities, Removal of Tumors, Artificial Pupil, \&c.	$20 \quad 0 \quad 0 \quad 10 \quad 0$				
Minor Operations-such as the Removal of Tonsils, Amputation of Fingers, Cutting for Fistulas, \&c.	50000210				
In addition to the above, the subsequent attendance to be charged.					
Introduction of Catheter, Probang, Sc.--irst introduction					0
Every subsequent		0	0		
Sening of Fractures	50	0	15		
Reduction of Dislocations	50	0	15		
Bleeding, Vaccination, Touth Drawing, Op ing Abscess, \&c., in addition to regular		0	0	5	
ressing a Simple Wound, Cupping, Se and losucs, dec.		0			

midwifery cases.	n. mixisem.
Attendance in all ordinary ca	
Subsequent attendance to be charged as ordi nary visits.	
Instrumental Delivery, Turning, Hremorr hage, dit.	$\begin{array}{llllll}10 & 0 & 0 & 210\end{array}$
On journey into the country to perform th same, 5 s. per mile in addition, \&e.	1

At a public meeting of the Medical Practitioners of Toronto, held at the General Hospital, on the 25th tay of Oetober 1853, it was unanimously agreed to adiere to the ahove scale of fees.

Join King,	franels primrose,
James Grant,	C. Widmer,
Walter Telfer,	W. R. Beavmont,
George Herrick,	Rdward M. Hodder,
Francis Badgeley,	Willami hadiowel.,
Cornelius S. Philbrick,	James boveli,
Normar Bethune,	John T. Saune.

As a matter of curiosity, while we are on the subject of medical fees, we may present to our readers the scale adopted by the medical profession in San Francisco, California; it is taken from the Gazette de Paris, and, as the Medical Journal of New Orleans suggests," the medical faculty of the Eidorado must be looking up."
For consultation and visit $\$ 3200$
For each visit 1200
For one consultation. 1600
For an extraordinary visit, and detention over one hour 3200
For a nght's consultation. 10000
For a consultation cus of town, per mile 1000
For medical legal opinion (written) 15000
For a declaration of opinion before a Judge 20000
For an accouchement 300000
For a mortuary certificate 10000
For the operation of lithotomy 100000
For introducing a catheter 3200
For dilating a stricture of the urethra 50000
For exploring anus or bladder 10000
For amputating finger 10000
For trepanning 400000

SELRCTED MATTER.

A COURSF OF recturas on okganic cinemistry.

Dibereta in the Lathocatory of the lioyal Institution of Great Britain, by Dr: A. IF. Ilofmam, li.R.S.. Professor at the Roy, Colloge of Chemistry.

Lacavre IIT.

Gentlenen:

Having in my last lecture fully decoribed to you the process used in satimating the carbon and the hydrogen, I hase now, in order to complete this sketeh of organic malysis, to shur you how we determine the nitrogen. I have already stated that sitrogen, milise carbon and hydrogen, is in some cases estimated in the free state as nitugen gas. the volume of which has to beaceanately measured. 'This detemination by volume was, in fact, the only vene practised in the earlier stages of orgavie analysis. It was not until ten vears ago that mother process was introduced, whieh, had it been appliwhe in all cases, woud have superseded the fomer method altogether. itis process is foumde? upon the same principle ars that which I pointed out in the determination of cabom and hydrogen; instead of entimating the pitrogen in the free state, this element is convarted into a compound of salient properties, easily collected, and estimated by the balauce; that is to cay, the nitrogen is weighed in the form of ammonia. This new process, for Which we are indebted to Messrs, Will and Varrentrap, may be used in the majority of cases; there are only one or two ciasses of nitrogan-ompounds Thich still require the determination of that element by volume. On account of its practical importance (being, in fact, by far the most frequently emphoyed) we will consider the ammonianrocess first, allhough it is the atore recent one.
When organic substances containing nitrogen are heated tith the bydrates of the fixed alkalies, for exumple of potasa or som, the whule of the titrogen assumes the form of ammona, at the expense both of their own bratogen and of that contained in the water of hydration of the alkali. The aygen, both of the substance and of the water, combines with the carbon, onserting it into carbonic acid. Sometimes ammonia and carbone acid are the sole products generated in this process. Take, as an illustration, urea, Be composition of which is represented by the formula

$$
\mathrm{C}_{2} \mathrm{II}_{4} \mathrm{~N}_{2}, \mathrm{O}_{2}
$$

It is obvious that the hydrogen contaned in his substance is not sufficient taconvert the whole of the nitrogen into ammonia. There are required for Wis purpose two additional hydrogen equivalents which are supplied by the Fater of the alhali with which we heat the urea: but we thus obtain also tro additional equivalents of oxygen, which, together with the oxygen conwined in urea, are sufficient to convert the whole of its carbon into carbonic sid.

But, before proceding any imether, allow me to show to you hy experisent the disengagement of aimmonia from a nitrogenous substance by the tion of an alhati, L.et u; take urea, the very compound whieh 1 have foted. For this purpose, a fer erystals of this substance are rubhed togethe with soda-lime (a nixture of caustie vola and lime). I might have
employed soda alone, but we prefer the addition of lime, which diminishes the fusibility of the pure alkali, and moderates, to a certain extent, the powerful energy with which the pure alkali corrodes the glass vessel used in the operation. The mixture is now introduced into a Florence flask, provided with a delivery-tulhe. Is suon as heat is applient, torrents of ammenia are disengaged, which is readily recognized by its characteristic propertios, viz., by imparting a brown colon: to tumeric paper, by restoring tho biue colour of reddencd litmus, and by producing dense clonds of chloride of ammonium on coming in contact with hydrochloric acid vapour.

The decompocition of urea by the action of a liydrated alkali may be taken as a type of what happens in the case of other nitrogenous substances of a more complex composition. If abstances are very poor in oxygen, or vers rich in hydrogen, it may oceu: that only a portion of the carbon is oxidised, while another portion combines with hydrogen, and is evolved, together with the ammonia, in the form of sereral of the varieties of hydrocarions.

Of this behariour of the great majority of azotisel organic compound, Messrs. Varrentrapp and Wills linve availed thenselves in order to determine the amount of nitrogen. For tinia purpose is weighed quantity of the compound is mixel with soula-lime, ami carefully introduced into a combustiontube, into which is then fitted a small giass apparatus, containing lyydrochloric acill for the absorption of the ammonit generated. The form of this apparatus recalls that of Liebig' ${ }^{\text {jontah-hulhs. It is, in fact, the potash- }}$ bulb, only slightly molified fur the oceacint. The combustion-tube is nor placed in a fumace perfectly similar to that used fir carbon determinations and gradually heated cither by gas or charconi.

Ihe combustion being cumpleted, the print of the tube is broken off, and a current of air sucked through it in order to collect the ammonia-rapour which may still linger in it. The while of the nitrogen of the compound under examination is now present in these bulbe, in the form of ammonia combined with the hydrochlorie acil.

But how is the amount of this ammonia determined? It the first glane It might appear that the simpla-i plan would consist in ascertaining the inerease by weight of the hylrochloric acin hulbs after the termination of the combustion, a motle of pinceeling merfectly amalorous to that which is thllowed in deremining the carhon. Thic method, howerer, is inadmissible in the present ease. A considerable quantite of earbonnettel hydrogen passing constantly chrough the apparatas during the combastion, a portion both of the hydruchluric acil aml of the water is carried of in the proces. On the other ham, many of the hydrocarbons produced, athough they are in the state of vapour at the temperature of their formation, become liquid. and evensolid at thi common temperature: they foat upon the suriace of the bydrochlorie acid, and, of course, increase the weight of the apparatos, Hence, it is obrious, that its change of waight is due to a variety of cause: we must therefore adopt another fhan iust. da simply weinhing.

The amount of ammonia in the hybmehbric weid any lic determined tr two proceseses, which I will briefly deccribe to jum. In huth it is necessary to pour out the liquid from the bulle: aul hence the necessity for their shape to differ slightly from that of the ordinary potach apparatus. We may now precipitate the ammonia from the liquid is menns of lichlorided platinum, which, as you know, forms a benuthen yeilor c: yataitine rompomis With the chloride of ammonium ; thic salt i - cailected with the uetal pre cautions, and weighed; from its weicht ant the hoown composition of the sult we calculate the percentage of nitrogen. A shorter mode of procestios consists in using a stundard solution of hydrochoric acid for the neutralize tion of the ammonia, i. e., a sulution, the concentration of which has beef aceurately determided by experiment. We have, mureover, prepared standard solution of soda. and carefuily aserotained how nutin of the stite is uecessary to neutralize a given volume of the famme. Supiwse we emples a cubic iuch of the standarl acin for the ahsmotion of the ammonia, and know that 109 nearures of our standard allati are necersary to neutrait this culbic inch lucfore combustion, -suppose we find that after the combel
tion, i. e., when the acid has absobed the ammomia, that the aed thas partinly neutralized rerpires for saturation only in measures, it is evident
 this the amome of nitrogen in the wiginal sabstance.
The estination of nitrogen in the form of ammon's is, a you see, very eaxy and expeditions: anl, whenever this methon is appicanio in the malysie of an azotised body, it is insavially emphoyed in preferese to sny other. There is, however, a number of connpomis contanius the nisogen in the form of an oxide, as nitrons, of hymitric, or even nime arid., which camot he analyseel by the ammonia-process, masemuch as only part of their nitrogen is convertille into ammonia by fusion with sum-tibe. Ai: sin, a swien of ritrogenous carbon-compoun l-, which are very mahorm. thanonia, (the compumls lenown by the narae of alkalowls, yieh their nitrogen with cousuerable difficulty in tisis mamer. In analysinfs subtances of this kind, we bave to alopt another phan; may methents have beea devisel for this purpae, which all consist in collecting the nitrogen as such, and measuring its rolume. I confine myself to showing you the one which has heen first used by Dumas, and which, with tise exeeption of the amae nia-pwes-, is perheps more frepuently emphed than any wher.
If nitrogenous substances are bumed with black uside ot erpper carbon and hydrogen, as we have seen, are usidivel, bat their nitrigen eseapes acombined. Small quatities only mit ${ }^{n}$ vecasionally with oxygen, forming timoxide of nitrogen, or nitrous acil; these compounds, however, may be maily destroyed again by phacing a heyer of bright evopry turaings ia the sterior part of the combustion-tibe. The eqper, at a high iemperatare, anites with the oxygen, and reee-er the small quantity of nitrogen which may have combinerl with it. In order to measure comectly the volume oi titrogen generated during the combinstion of an azodised brily, it is, as you ance perceive, absolutely necerary to ex, el in the first instome every mec of atmospherie air from the apraratus in which such a deternination sto be made. For this purpme, immediately after the mintre aif oxide of xper with the weighed anount of wint ane to beanalysel, and the copper traings are introduced into the thise, a strean of corbuic acid is passed trogh it, until the whole of the air is swept out and rerdaced ly carbonic eid; this carbonic acil is often liberated hy heatne bicarbenete of soda Fich has been placel in the penstrior pintion of the tuld, hat more Spuently a largo twonecked botile is emploven, .n which the carionie aenl idisenguged from carbmate of lime and hytrochloric aciu. A" eron as we are ascertained that the cas which is acs from the delivery-inbe in front i, sirely frec from atmospieric air, we may commence the onemation.
But let me first show to you how this absence of atmospheric sir is ascerosed experimentally. Whr this purpose a long eylinder is fillel over zacury with the gas is-uing from the delivery-tub, and then immersed in a thien of potassa. If the gas is perfectly absorberi, we conclude that every Fe of atmospheric air has been expelled from the apparatus. A graduated N is now half filled with hereury, and half with a concentrated s,lution of fissa; it is then coverel with a ground glass plate, and inverted over Wary, in arter to enlled the gases generated during the combustion, Eich is performel exactly as it it were intended to estimate the carkon. Whbole of the carhomic ainl issorbed by the potassa; the volume of
3 affected ly this liguil consints of nitrogen. The conburtion being rainated, we have now only to weep out the nitrogen which still linger
the tube. This may he arain accomplishen by a carrent of carbonic acid.
Grolume of nitrogen which is thus obtained is left for some time in contact
The the ali, in order that every trace of carlonic acilimay be aboorbed; It is then tuansferred into a tall glase cylinder filled with water, and Pately measured, hy remlering the lipuid inside and outsile perfectly The barometer and thermometer havang been simultaneousiy observed, 5 reramins only to correct the volume for temperature and pressure, in Fto deduce from it the weight of the nitrogen and its per centage in the ifound analysed.

Tha shot sketcin of orgaic amalys ins, 1 hope, familimisel you with the more important processes for determining the composition of organic substaces which are used in the lahoratory. I must now invite you to follow me for a moment to the writing ded. at whin the chenist calculates tha results of his expriments. Let us open his note-boh, and inspect the actual numbers ohtained in the analys. of two ar thee suhstances.

You will be supriven tes see by how simple at veries of calculations he converts the immeriate reoults of amassis into per centare mumbers and lastiy into formula. "he combustion ot henzoie acid hats furnishod the following data, which the diamram exhihits to you in exactly the formin which they are noted in his haboratory memonamm-hook:-

Weight of benzoic acid burned-i, grains.

The composition both of water and carhonic acid are very acemately known. The combining number of earhonic acid $=2.2$ contains 6 of carbo The combining number of water $=0$ contains 1 of hydrogen.

The following propertions give us the amount of carbon and of bydrogin in 5 grains of benzoic acid:-

$$
\begin{aligned}
& \text { Grains of } \\
& \text { Carton. } \\
& 22: 6=12.57: x ; i=\frac{6 \times 12 \cdot 57}{22}=3.43 \\
& \text { Grains of } \\
& \text { Hydrager. } \\
& 0: l=2 \cdot 25: x ; x=\frac{1 \times 25}{9}=0.25
\end{aligned}
$$

But it is more convenient to know the quantities of carbon and hydrgea in 100 parts of the substance. These we obtain by multiplying the abore numbers by 100, and dividing by 5 , for we have the proportions:-

$$
\begin{aligned}
& 5: 3 \cdot 13=100: y: y=\frac{8 \cdot 4, \times 100}{5}=68 \cdot 6 \\
& 5: 0.25=100: y ; y=\frac{0.25 \times 100}{5}=5
\end{aligned}
$$

The percentage of atygen is equal to 100 mimes the percentages : cathon and hydrogen $100-(684+5)=264$.
In a simitar manner, the combustion of the volatile alkalod aniline ta furnished the following results:-

$$
\begin{aligned}
& \text { Weight of aniine burnt. } \\
& \text { " cerbonic acid produecd } \\
& 9 \cdot 9 \\
& \text { *: } \\
& \text { ". water } \\
& 2 \cdot 39 \\
& \text { " }
\end{aligned}
$$

From these data, the folloring numbers are deluced in exactly the se manner as before:-
0.91 grains of carbonic acial correspond ti 2.702 grains of carbon $=\overline{7}$ yer cent. of carbon.
2.39 grains of water correspond to 0.265 grains of hydrogen $=7.75$ cent. of leydarogen.

Aniline is a nitrogenous substance; it is evident that hy dechucting fy 100 the joint percentage of carbon and hydrogen, we witain a number me senting the nitrogen and oxygen, i. c., aniline contains $100-(77 \cdot 2+\%$
$=15.27$ per cent of mitroren and wyen biliac : one oi those substance which are decomposed wiun oreat difitulty by notia-hime, hence the nitrogen had to he determined by volume.

The combustion of 10.5 grains of thic conmoum formintal a volume of gas
500 eabic inches, at the somat presurea 30 inches, (mote accorately 20.0.) and the nomal tumperane i. e., at the freezing point of water.

 the propurtiva-

$$
100: 81 \cdot 60=5 \cdot 67: x ; x-\frac{31 \cdot 66 \times 5 \cdot 07}{100}=1.605
$$

and the percentage of nitrogen in anime by

$$
105: 1.605=100: y ; y=\frac{1600 \times 100}{10.5}=15.28
$$

From this result, it is evident that amine camot contan any oxymen. since the percentage of nitropen is almost exactly the complement of the joint percentage of the carbin and hytrogen, which, as we have seen, was $76 \times 7.54=84.74$.
For reasons, which will be obvious to you immediately. 1 quote, as a last example the amalysis of a substanes containing farbon and hydrogen only. I select Mr. Femalis's bicabide of hydrogen, the substance which is now more gencrally hown ley the mat kenzol.

$$
\begin{aligned}
& 2 \because 2 \text { grains of benzoi, when bmont, gave } \\
& 3022 \text { grains of carbonic acid }=\frac{2.46}{6.5} \text { grains of carbon. } \\
& 0.25 \quad: \quad=0.25 \text { hydrogen. }
\end{aligned}
$$

The corresponding percentiges are-
Carbon 92.18 Mydregen $7 \cdot \mathrm{~S} 1$

Analysis has thus led us to the composition in t 60 paris of benzoic acid. ci aniline. and of benzol-

	beazoic Arial.	Anilime	1 lmazot .
Carbon is-f	$77 \cdot 20$	92.18
nydrogen $\overline{\mathrm{b}}$ 0	7.57	7.81
Oxygen $20 \cdot 4$..
Sitrogen	15.28	
	100.0	$100 \cdot 05$	99.90

Let us now consider how these percentage nambers may be amslated into formule acpresenting tie atomic constitation of the subatances in question. In the frst place, in order to find the relative proportions of carbon, hydogen, and oxigen atoms in heazaicaed. we have to recollect the atomic treight of these threc clements, whicl: are respectively 6,1 , and s. It is obvious that the number of carhom atoms is given ly the proportion

$$
6: 3=0 ; 6: \therefore x=\frac{1 \times 650}{6}=11 \cdot 35
$$

In a similar manner we obtain for aydrogen

$$
1: 1=5: y ; y=\frac{1 \times 5}{1}
$$

dud for oxygen

$$
s: 1=26 \cdot 1 z ; z=\frac{1 \times 264}{s}=3 \cdot 0
$$

or, in other words, we find the relative proportions of the carbon, hydrogen. and oxygen atoms in a compound. by dividing the perecutages furnished in enalysis by the reffective atomic number. If the revolts of analysis were absolutely currect, the quoticnts in question womblerepesent the cxact atomic relations of the elements.

Accordingly, benzoic acid would consist of

$11 \cdot 43$	atoms	cf Carbon,
$5 \cdot 00$	Hydrogen, and	
3.3	"	Oxygen.

Or, in round numbers, of

> 114 atoms of Carbon, 50 "، $3 y$ Hydrogen, 33

It is obvious that the ratio of these numbers is very complicated. We know by experience that the composition of organic compounds, although generally less simple than that of mineral bodies, nevertheless but rarely exhibits relations of such intricacy. We recollect, moreover, that the results of analysis, s , far from being exact, are always affected by errors unavoidable in the mast careful experiments; we therefore endeavour to reduce these numbers to a more simple relation.

The numbe: of oxygen atoms being evidently smallest in benzoic acid, we will seek how many carbon atoms and how many hydrogen atoms this compound contains for each atom of oxygen. For this purpose we divide the above numbers by 33 , and we now obtain

$$
\begin{aligned}
\text { Number of Carbon atoms } \frac{114}{33} & =3.45 \\
\text { ". Hydrogen atoms.................. } \frac{50}{33} & =1.5 \\
\text { " Oxygen atoms.................... } \frac{33}{33} & =1
\end{aligned}
$$

These quotients are as near as possible as $3.5: 1.5: 1$; or, in entire numbers, as $7: 3: 2$; i. e., in benzoic acid we have for every 7 atoms of carbon, 3 atoms of hydrogen, and 2 atoms of oxygen, and the formula

$$
\begin{array}{lll}
\mathrm{C}_{7} & \mathrm{H}_{8} & \mathrm{O}_{2}
\end{array}
$$

accordingly would be the simplest atomic expression for benzoic acid. Let us now see how near the theoretical percentages of carbon, hydrogen, and oxygen, calculated from this formula, agree with those obtained by combustion.

$$
\begin{aligned}
& 61: 42=100: x ; x=\frac{42 \times 100}{61}=68.85 \text { p. c. carbon } \\
& 61: 3=100: y ; y=\frac{3 \times 100}{61}=4.91 \text { " hydrogen } \\
& 61: 16=100: z ; z=\frac{16 \times 100}{61}=26.22 \text { " oxygen }
\end{aligned}
$$

Composition of Benzoic Acid.

		Theory.
Carbon	$68 \cdot 85$	Experiment.
Hydrogen...................$~$	4.91	$58 \cdot 6$
0xygen................	$26 \cdot 24$	$26 \cdot 4$
		$100 \cdot 60$
	$100 \cdot 00$	

You observe that the experimental and theoretical numbers closely agree; the experimental number for carbon is; somewhat lower, that of hydrogen somewhat higher than the numbers deduced from theory; but I have pointed out to you that the ordinary mode of combustion generally involves a slight deficiency of carbon, whilst it furnishes a small excess of hydrogen.

I have explained to you at some length the derivation of the atomic expression from the mere percentage result of an analysis; because, without a perfect acquaintance with this proceeding, it is impossible to obtain a clear conception of the meaning of a chemical formula.
A few minutes will now suffice similarly to translate the other two amlyses which T have guoted, namely, those of amiline and benzol.
By dividing the nercentages of eareon, hydrogen, and nitrogen by the respective atomic weights, we obtain the following quotients:

$$
\begin{aligned}
& \text { Carbon } \frac{77.20}{6}=12.80 \text { or } 1286 \\
& \text { Hydrogen } \frac{7.57}{1}=7.57 \text { or } 757 \\
& \text { Sitrogen } \frac{15.28}{14}=1.08 \text { or } 108
\end{aligned}
$$

And if we calculate for 1 atom of nitrofen, (the elenent of which the smallest number of atoms is present) by dividing the three quotients by 108. we arrive at

$$
\begin{aligned}
& \text { Carbon } \frac{1280}{108}=11.90 \\
& \text { Hydrogen } \frac{754}{108}=7.00 \\
& \text { Sitrogen } \frac{108}{108}=7.00
\end{aligned}
$$

from which the simplest atomic expression for anitine,

$$
\mathrm{C}_{22} \quad \mathrm{H}_{7} \mathrm{~N},
$$

is at once evident; the theoretical percentages of this substance, when conpared with those obtained by analysis, are as follows:

The ratio of the carbon and hydrogen atoms is given in the quotients:

$$
\begin{aligned}
& \text { Carion } \frac{92.18}{6}=15.86 \\
& \text { Mydrogen } \frac{7.81}{1}=7.81
\end{aligned}
$$

hithout further calculation we see at once that these mumbers are closely as : 1, and that the simplest atomic cepression or ratio for this substance is ce fommula

$$
\mathrm{C}_{2} \mathrm{II},
$$

Bence the original mame of bicmburet (bicarbide) of hydrogen. proposed by
4. Fraday. The theoretical numbers of this formula, however, sufficientiy Toe with the results of combustion, as will be seen from the following marison:-

Gomposition of Benzol.

		Theory.	Expmiment
2 atoms of cathon 1 atom of hydragen	12	(20)	62.15
	1	7.69	7.81
	13	$100 \cdot 00$	99.99

The formule which 1 have developed to you are the simplest atomic expressions in entire numbers whieh can be framed for the substances in question; they are not, however, always those which are generally adopted. A varicty of considerations frequently induces chomists to assume multiples of these formula as more appropriately representing the constitution of these bodies. In the next lecture I intend to bring before you some of these considerations, und to show you their inthence uron the notation of organic substances.

on "Rigit's mishase or this kidner.

By Dr. Gieoryc si huson.

[We present to our readers in thio parer the view of this eminent writer; for, though professing to be a review ". swe foreign woris, it is, in reality, an interesting and short monugraph on this wubjeet. by Ur. Jomsou. First, of the morhin elange of the kinney:]

The following is the oder of phenumena as interpreted by Reinhardt and Frerichs: an engorgement of the remal blogl vesseis, an eflusion of inflammatory produci, a more ar less complete asd general monamphosis of these products inte fat, and fually atrophy and wasting of the hisloge. The small contmeter gromuar kinneys have unce been fat ; the larqe, 1 rale, fat kidncys are in contimual procress torards atrophy aml contraction.
[In answer to this definition of ibright's discase, In. Johmon reantra:]
The first ciseervation which we have to make, with reference to this systematized description of renal disease, ia, that there is no proof whaterer that hyperemia or over-fulness of the bluod-vesed, is either a cause or an antecedent of those exulations into the urinifernis thber, whicl: constitutean esscutial feature of the inflammatory forms of veal bispace. We refer now to the rapid formatim of cpithelimm within the cens, oluted tubes, an's to the occasional replacement of the nomal cithelina hy purifurm cells. These changes in the tubes, it is true, are aceomphaid hy engorgement of the blood-vessels, and the piamomena oceur :amust, if not tuite, simultancously; but, in the order of causation, the changes in the ecreting cells stand first The circulation is impeded in consecuence of morbin chungres primarils affecting the secetiny cells, and reaziang their functions. Engorgenent of blood-res-ch imples, nut ar merca-ed atilux of bloot, or a more rapid circulation, but a retarded and impedel cirenlation, the impediment being shown by the frequent occurvence of hemorthage from the Malpighian capillaries in the carly stages of acute renal iivense, and by tortuosity of the arteries, with great hypertrophy of ther muscular coats, after long-continued morbid changes affecting the secretinis cel?.

The theory of the oneness of timehis divease has arewently had its infloence in leading our authors to overlook the importance of distinguishing the various kinils of exudation intu the tuice, which ociur haring the infarr matory forms or stages of the disease. If these varictice of morbid products were appreciable only after the death of the pasient, their diatinction woold have little practical value ; a moderate amount of clinieal nbeervation, bowever, will show, first. that the precise mature of the pationogical.changos which are occurring in the kidney, may, with irw exerptions, be as readion detected by a microscopical and chemicnl erammation of the urine durig life, as by the most searehing post mortem inspection of the lodineys: and secondly, that the various kimds of products wiscried in the urine have: widely different signifieance when viewed in relation to prognosis. Whim reference to this point, it is of the first importance to ascertain, in any cast of recent albuminuria, whether the urine is clear and free frem sediment, whether it deposits morbid materials, and what is the nature of these make-rials,-whether there are any furms of tule casts, and what is their apper ance,-are they composed of blood or of jure fibrin? no do they enturge organic cells of any sind, and what is the nature of these cells? have thy
the character of renal nland-cells; and do they contain oil, or aro they free froin that material ; or, lastly, do they more nearly resemble pus-corpuscles?
[The mirroscopical examination of the urine, during the patient's lifotime, is of the greatest importance in investigating the disease. In the infiammatory stages, iu a large proportion of cases, renal gland-cells are entamglet in the fibrinous materials of the casts; and in utier instances the casis are transparent and honogenous, apparently being composed of pure fibrine, larger, and without entangled epithelinl cells. The latter oncs hare been formed in those tubes which possess to epithelial lining: the former and smaller have been formed in those tubes which possess the epithelial lining complete.]
The Stuge of Fatty Dcgeneration.-In considering the snbject of fatty dereneration of the kidney, it is yery important to bear in mind that the morbid condition occurs in two distinct forms. The large granular fat kidney, which is represented in the third figure of Dr. Bright's third plete, is, in a large proportion of cases, a secondary condition, which has beeu preceded for a longer or shorter period by an inflammatory state of the organ. We have observed the approneh of this form of the disease under the following circurastances:

1. An avute attack of general dronsy, with high-coloured, albuminous, and blooly wine, and an aliandant desquamation of epiticlium, is followed, after a neriod of three or four weeks, by an appearance of oil in some of the cells; and as the dicease makes progres, the tatal amount of epithclium in the urine diminishes, while the propertion of the cells which coniain oil is increased, until at length neariy all the cells are more or less distended with oil, many of the cells, as well as scattered oil-globules, being entangled in small transparent wax-lise casts. After death the kidncys are found colarged, the cortical substance 1 ale, and having scattered through it the chanacteristic yellow grauulations, which very much resemble the minute atheromatous spots which are often ceen in the arteries. These granulations are found, on mieruseropical eamination, to be composed of convoluted tues distended with oil, whe has partly fire and partly contained in cells. In of her tubes the epithelium appears opaque, but contains no oil, and the central canal is free from denusit, while in others again there is an accumulation of epithelium, or a fibrinous effision, or both combined.
2. In other cases the approach of fatry degeneration is different. The disease is chronic from the commencement; the wine is lighly albuminous but frequently of the matural colnur, and either free from sediment, or it depsits a light cloud, which contains some of the small trausparent waxy asts before mentioned. After a period, which may vary from a few weeks to many months, these casts entangle oil partly in the form of scattered giobules, and partly contained in cells. The oily casts and cells continue todi the fatal terminatinn, and after death the kidneys present essentially te same appearances as in the cases last mentioned.
The second form of futly degenciation of the kidney differs in many important particulars from the preceding. The kidney is enlarged, but the cortical shbiance wants the grautations which are characteristic of the first-mentoned form, and it hos instead a mothed appearance. On a microscopical tramintion all the tubes of the cortical substatec are foumd to contain an uecssive quantity of oil, which is. for the most part, contained within the withelial cells. This c mlition of the kidney is sumetimes found both in the tran subject and in the lower amimals-in cats and in dogs-unconnected Ridalbuminuria, or with other functional symptoms of reual dispase; while 4 other cases of dinncy, with albumen and oil in the urine, this mottled hra of fatty degeneration has been the only anatomical change observable athe kidueys after death. It will be seen, therefore, that the two forms of itty degeneration differ in these important particulars: 1st, that in the moular form of dise se the fatty degeneration is partial, while in the mottif iorm it is general, throughout the tubes of the cortical substance; 2nd, stia the granular form of disease, albuminuria, and what may be confered an inflammatory stage, precede, sometimes for a considerable period,
the signs of fatty degeneration, while in the second form : great degree of fatty degencration may exist unasociated with an alfuminous condition of the mine.
 of the kinuey, the most remariable outward teature of which is a diminution of size and weight. . The atrophy effect primarily the eortical substanee. the surface of the kiducy usuaily becomes uneven and conrsely granular, and its vascularity is mach timinished. The first and cecond gigures in Dr. bripht? third plate ate jrobably hamiliar to most of our readers.

We have adremly statel that licinhardt and Frerichs adree in considering that these small gramom kina ys have pased through the stage of fatty degencration, whe that atruphe of the crima is only a later stage of the same morbin proces: as that uf which intiammatury eflusion and fatty degeneration constitute the first and seoond stagt- In this opinion Bisemmann and Mazomn also coneur, although they differ from Reinhardt and Frerichs in respect to some puit- ai le-s importance. Now, with reference to this fuestion, we ciasent entardy from, the opinions of these pathologists. True it is that a careful and extended series of whervations upon morbid urino and kidneys had led us to form a juilgment upon the point in question before We had any knowletge of the opinions referred to, but we trust that we rere not, on that aceount, less open to conviction by any evidence which might bo adduced to prove the transtion from fatty degeneration of the kidney to that contracted condition of tho organ with which every pathologist is familiar. But as we have met with no such evidence in the couse of our own stuiy of morbid phenomena, so we find none in the writings to which we have access. Nons of our authors atteript to prove the transition in question by clinical observation of the urine, but their opinion appears to be based upon what they consider the mobid change in the kidneys, as determined by post-inortem examination.

Our limits will permit as to indicate only some of the priacipal facte, which tend to prove, as we think inconte-tably, that the large granular fat kidney and the small contracted kidney are the result of two morbid processes as essentially diverse as is consistent with the fact of the tro disenses affecting the same tissues.

The most characteristic feature of that form of the disease which leads to atropliy of the kidney is a disentegration of the epithelial cells, which appear in the urine in the form of granular casts of the tubes. In consequence of this washing away of disintegrated epithelium from the tubes, the basement membrane is left denuded, and subeequently the tubes, laving lost their epithelial lining, either waste away entirely, or, as we believe, they may continue to secrete a scrous liguid, and so become dilated into cysts. In cunsequence of the atrophy of the tubes, the meshes of the matrix, in which the tubes are packed, become namowed, aml the fibres appear relatively thicker. Frerichs describes a development of new fibrous tissuc as an occhsional occurence, and Mazomn considers it to be a constant and a characteristic condition. As Frerichs doubts the very existence of the normal fimous matrix, his evidence upon this point is of little value to those who beliere in the existence of such a tiseue. Mazomn recognizes the normal intertubular tissue, and belicves that he can distinguish this from the nowly formed fibres which are the pruduct of disease.

A very few of the tubes may usually be found to contain oily matter, and this occurs more frequently in the deuuded tubes than in those which still retain their epithelial lining. The thickening, and finally the obliteration, of the Malpighian capilharies, and the hypertrophy of the arterial coats, occur in this as in all forms of chronic renal diseace.

The points of contrast between the fat gramular kidncy and the contracted mranular kidney are chiefly in respect of the tuhes, with their cpithelial lining. In the contracted kidney the disintegrated enithelium is swept away in the form of granular casts, and the tubes thus left denuded cither raste or grom into cysts. In the fat lidiecy the epithelium for the most part retains its position, and undergoes latty degeneration, the tubes neither
become denuded nor waste as in the contracted kidneys, nor do they, except in very rare instances, grow into cysts. The combination, in the same subject, of the characters of the fat and the contracted ki-hes, are so rare as to prove that, while the two forms of disease are not absolutely incompatible they are by no means allied: indeed, their relation is rather one of ontagomsm. since, in the one case, the epithelium is disintegrated and swept aray, while in the other it remains, and undergoe fatty transformation.
That the fat liduey has no tendency to pase into the contracted one, is shown by the post-mortem examination of eases which have been for a long tine under cobservation. Nut lungsince we examined the hidney of at man who had been nealy four years ill. He first had drongy in the atumn of 18.18: the urine was highly albuminous, aud contained only casts and echls in November 1S4, the same in January 1850. and again in December 1830; after that we have no note of the urine. He died in March of the present year (15.52). One kidney had been destroyed by a calculns in the ureter, and the uther mas more than duable the natural size and weight, and had an the chameters of a gramiar fat kidney, but not a trace of demuted or atrophied tubes. In another case, which had been nine months miler oliservation, the wine, from first to last, contained oily easts and cells. The Lidneys were much ularged, and presented all the cinaracters of fatty degeneration, but not a trace of the process which leads to atrophy.
But the essential difference between the two torms of discase may be prored by evidence of mother kinh, which may appear more conclusive to some of our readers who. perhaps, have less contulence than ourselves in the results of microscopical observation. The chronic desquamative disease Fhich canses the disintegration and destruction of the cpithelium, and fiadly extreme wasting of the kilney, is in many cases one of the most insidious of maladies, and it may proceed to the extent of destroying a large portion of the cpithelium of the kidney without the occurrence of dropsy or any other formidable sympton; when perhaps, suddenly, in consequence of sone accidental cause, the most urgent symptoms of -uphressed secretion arise, the patient sown dies, nud the kidneys are foum wastel, and many ditheir tubes denuded and atrophied. We have befere us the notes of tour Fed cases; one pationt was subleniy seized with peritonitis, and died in a ith hours, a second died with apopletic ssmptoms, a third with delirium snd epilepsy, and a fourth with obstinate vomiting, comsequent upon euppression of urine. The furst two patients were suppozed to be in good health abil the period of their sudden scizure. In the last case alone had there ben any dronsical symptoms, and these were only very slight and transient. fall the cases the kidneys were in an advanced stage of that chronic form of disease which is characterized by denuled and atrophied tubes. In Watrast with these cases, which are by mo means rare, we place the fact, dat, according to our experience, the armular forn of fat kidney necer esiroys life without the previous occurrence of dropsy, which is usually one if the most prominent and distressing sympt mas. Again, we have yery arely met with a case of inflammatory disease of the kiancy-such as einhardt and Frexichs agree in referring to the fr-t stare of Bright's Esess-unaccompanied with dronsy in some degree, and fir a variable 4rios. Now, according to the upinion of these patholugists, the kidneys of beour patients whose cases we bave briefly mentionel must hiave passed Gugh an inflammatory stage, and a stage of fatry degeneration, before ey finally arrive at the stage of atrophy; yet, in there of the cases there sibeen no dropsy whatsocver, and in the fourth case a slight and transient frins of the ankles-such as might ocere in auy deliilitated subjeci-had Fred the only dropsical symptom. This sunposition is so improbable that ithould hesitate to admit the doctrine which is hased upon it. even without Thit we consider the conclusive evidence of the minute structural changes Bite kidneys. We therefore feel bound to disseat from the doctrine of the teness of Bright's disease, as propounded bo Reiniardt and Frerichs. The firent simplicity of the doctrine is not in accordance with nature, and it Fafore tends to cause confusion. While we recognise an inflammatory
form of the disease, we must, for the purpose of diagnosis anm prognosis, distinguish between the various kinds of effused promets, which are chiefly, besides sermm and bhom, epithelium, pus, ant pure unorganized fibrin. We must distinguish the granular form of fat kidhey, which may be a conseguence of a previnus inflummatory stage, from the motled form of the disease, which is analognas to ordinary latty degeneration of the liser, and not a consequence of inflammation. Finally, we must recognise the fact, that the small contracted kiduey, although an occavional conserfuence of an acute infammatory attack, is more commonly the result of a lisease which is chronic from the commencement, and never, as we believe, a consequence or a later stage of either of the forms of fatty lerencration.-Brit. and For. AFedico-Chirurgienl Revice. Jen. 185\%, ρ. 57.

ON TIE NATURE AND TREATMENT OT DIABETIS SELIITES, OR GLUCOSULA. By S. Bouchazekat.
[The following abstract upon this subject is taken from the review of an article in the memoirs of the French Academy, 18.9.2.]

By the plam which M. Bouchardat now recommends to our notice, in its full detail, he declares that he cim cure the majority of eases of diabeteshis test of cure heing not only present removal of the sugar from the wine, but the ability of the patient to cmploy feculentailment, without its reproduction. Ile, however, requires the intelligent co-operation of his patient, and. above all, the frequent testing of the arine, by the patient limself, as a menns of asecrtnining progress and guarling agnant relape. The means chicfly to be felied upen are those of hygienic character ; and at all events the power of these should be exclusively ascertained at first, before resorting to any medical agents.

1. Diel-As long as the wine exhibits sugar, all feculent and saccharine ailments must be entirely exchuled; l, ut the patient need not be confined to what is, called an exclusively hesh diet. although this, when not repugnant to him, is the best. Every description of neat, dressed with the usus sauces and seasuaings it the exclusion of flour, hovever) may he emploged: and for those who can get over the prejulice against it, the flesh of carnic orous animals, II. Boachardat :ays, is best. By proper management (and what cennota French cuok do ?) that of the cat or fox becomes athight relished viand. Severu! poor patients, who utherwise would have bees umable to procure fiesh diet, have resorted to this mesus with advanage. Fish, in all its numerous varictice, forms a valuable resomece for bothrich and poor, and may he enten with an abundance of oil and a moderate quantity of vincgar. Eggs, again, so suceptible of various modes of preparation, aro excellent; and althuugis milt: is inmiden, good fresh crean and all kinds of cheese are alioved. Ererent in patreme cases, greea vegetables and salads, although they eontair ome ugar, staveh or gun, may be taken in moderate quantities; bet ahumance of oil, or the yolse exgs, should be conjoinel. For such patients who canmot well overcome their liking for bread and other feculents, M. Bouchartat has, diming the hat tes years, had prepared a bread of flour containise 00 per cont of clatem.

As the prohibited feculen and sacciarine bodies belong to that revman group of alimentary substances, we have to cinose others from the same group; and those best calculated to supply thear places are fatty bodies and alcoholic drinks. Among the latier bomieanx wine occupies a prominat place, as much as from one to two litres (from two to four pints), beig admissible per diem, which at ten weer cent, of alcobol, wnuli anply aboul
 not be given too exclusively lest they weite diugust, hut mingled vith oters, aliments, from 150 to 200 grammes being required in addition to the aloobe Beer is okjectionable from containing dextrinc. Coffee, irunk without miz or sugar, and to which a little rum, cream or brimdy may be added, is 4
good drink. To relieve thirst, Seltzer, Spa, Vichy, or soda water may be taken ; but acid drinks, so keenly desired by the patients, are very objectionable The patient should always eat and drink in moderate quantities, slowly masticating his food. This practice tends to the relief of the attendant dyspepsia, and to assist the distended stomach to return to its normal dimensions. A flannel bandage applied around the epigastrium contributes to the same end.
2. Clothing-As chills operate very injuriously on these patients, warm flannel clothing forms a valuable protective agent, and beneficially excites the languishing functions of the skin. Indeed some medicinal agents are of no avail unless aided by complete flannel clothing which maintains diaphoresis. General frictions are very useful, and a moist warmth of the feet should be maintained.
3. Exercise.-To recommend this indiscriminately would be injudicious, for many patients are too feeble to undertake it. But when their strength has become somewhat recruited by regimen, walking, gymnastics, agricultural labor, \&c., much expedite the cure, and are found, as recovery is approaching, to enable the feculent aliments to become utilized by the system.
4. Pharmaceutical Agents.-M. Bouchardat entertains a high opinion of the utility of carbonate of ammonia (from 5 to 15 grammes- 77 to 230 in the 24 hours), providing flannel clothing be worn. Other alkalies suffice for slighter cases, when the urine contains uric acid as well as glucose. Employed consentaneously with out-of-door exercise, they seem to exert great influence in preventing the reappearance of sugar in the urine, when feculent aliments are resumed. Opiates, if given alone, are mere palliatives; but when conjoined with other remedies, and in moderate doses, so as to act on the skin, they are very valuable. M. Bouchardat sometimes prescribes Dover's powder, but prefers the old theriaca before all other preparations, without defending the absurd complexity of its composition.

In severe cases of glucosuria, then, diet, exercise, and flannel clothing constitute the basis of treatment, carbonate of ammonia and opiates best aid their action. Other remedies have their occasional uses, such as iron, tonics, chloride of sodium, and antiscorbutic plants. M. Bouchardat often employs emetics at the commencement, and endeavours to modify the disturbed functions of the liver by aperients, of which ox-gall with rhubarb is the best.

Circumstances influencing the effects of Treatment.-Foremost among the favourable indications in a case is the rapid return of the urine to a normal state, which may take place in from 24 to 48 hours after the feculents have been excluded. The recent date of the affection is another highly favourable circumstance; and because it is so, M. Bouchardat urges testing the urine whenever the slightest suspicion can be held, and for the detection of relapses, which are frequent and insidious. Other favourable circumstances are the retention of considerable embonpoint, the easy circumstances of the patient, and his being in possession of great perseverance.

The unfavourable circumstances are the reverse of the above; but negligence is still worse than poverty, as tie poor man has some resources. The treatment of the caso is usually ill managed in hospitals, owing to the vitiated air, the absence of exercise, the sameness of diet, and the insufficiency of the surveillance. The existence of a great anoefte is a common and not unfavourable circumstance, requiring only moderation in its gratification, at meals not too far separated. Want of appetize is a far more unfavourable sign, which should be actively combated. M. Bouchardat has found small doses of rhubarb, and exercise in the open air, of advantage. Obstinate constipation, resisting the most varied purgatives, is a bad complication, indicating disease of long duration, which has produced important inodifications in the condition of the alimentary canal. Fatty substances, combined with matters which leave residue, as spinach and gluten-bread with bran, are here indicated. Cold and damp air is un lavourable to diabetic patients; but M. Bouchardat has had patients from Algeria, and has not derived advantage from sending others to Italy. M. Douchardat agrees with Dr.

Prout in considering the appearance of allumen in the urine, which is often met with, as an unfarourable occurrence. The prognosis of saccharine aludminuria is not so serious as is that of simple chronic albuminuria. The frequency of the occurrence of phitheis in cases of glucosuria is fatmiliarls known. In all the autopsies the author has made, when the patient has not been cut off by an intercurrent affection, fubereles have been found in the langs; and he feels convinced that many eases of phthisis have had their origin in a glucosuria that has heen overlookel, amd which might have been easily removed. In severe and old cases of glucosuria, vision is always tound more or less enfecbled: but in most eases, when not of old date, as the condition of the patient has improved wher appropriate regimen, this amaurosis has subsided. When imbed this is not the case, the prognosis of the glucosaria is serimes: and it will often bo found complicated with albuminuria. Imputence, more or less decidet. is another effect of gheosuria; but in young subjects the qenerative functions roume their power when the original discase is pationally treaton. (i'anompia may oceur at any age, from infancy to senility: M. Botehordat hamer met with most cases between the age of forty and fity. He met with arme between cirgteen and tiventy-five. Ohd age does not constitute at ohstacle t., we; but so difficult is it to watch over chillren, that the author is not aware of a sustained cure prior to fifteen years of age. ile has met with more male than temale patieuts.-Bril. and Hor. Medico-bhirurgionl haven, fon. 1853, p. 141.

case of aniurism hy comprissjos.

Lisust the care of Jiluard Cock, ixq.

[From a very important case of popliteal ancurion treated ly compression, the following points would appear to hare beetu established :]

1. That the main-trunk, surplying an ancurism sae, may be steadily compressed for more than three months without the obliteration of the vessel being obtained.
2. That the aperture establishing communication between the still patent artery and the sac (the intter being partly filled up by the fibrinous layers) may during the same period, remain open, in spite of compression exerted on the arterial trunk and sac.
3. That the current of blood so numitted has sufficient force to make the aneurismal tumour pulsate continuously.
4. That the sac, notwithstanding the inpulse conmunicatel to it by the artery, goes on diminishing in size, and becoming hatder.
5. That all the pain and uneasiness comected with the aneurismal tumoar may cease, although the pulsation do continue.
6. That the tendency for a twelvemonth is rather toward the decrease thas. the increase of the tumour.
7. That great disturbance of the sac and vessel producing infiammation and congestion, may so change the relation of parts, and so far favour fibrinous deposits and general adhesions, as to repuire compression on the main trunk but a short time for the complete obliteration of the latter, and the coatsolidation of the sac.
[In a second case, however, of the sime disease, the features offereda striking contrast. The patient was a carpenter it years of age, tall and robust, and had always been of temperate habits. Three months before admission his leg and thigh had pained him for a few days, and a month: afterwards, he found a small lump, the size of a plum, in the popliteal space: During the next two months the tumour had got gradually larger, so 35 to seriously impede walking.]

On admission, the patient's state was the following:-There is a stroog pulsating tumour, partly in the right popliteal space, and partly lower down towards the gastrocneminus muscle. The swelling begins above, in
the popliteal space, opposite to the upper border of the patella, and ends below, on a level with the tuberele of the tibia. The tumor is rounl, and about the size of a thakey's ema: it pulates strongly, and presents, on auscultation, a strong bruit. The chest, on careful exploration, loes not yidd any evidence of thoracie aneurism. The tumour fecls yiehling and chastic, and the hand phacel upon it receives a sensation as if the vessel were dibated nore towards the inner than the outer side.
Mr. Cock, after considering all the symptome of the case, and giving due regard to the coustitution, heath, temper, \&ic., of the patient. resolved to give compreesion a fair trial, and used a clamp lately modified by Mr. Bigr, to which the hatur has given the name of "Bigg's Aneurismal Compressor." The instrument may be described as follows :-
Scmicirche of steel, with anterior and poaterior moveable arms, the anterior contaning the serew and paid wo the rest of the artery, the posterior holding the hinged cuthion or splint, on which the limb is placed. When the instrument is applied, the pad is screwed down so as to gratig compress the artery. The center screw is then umed to direet the pach inwards, and fis the arterg betweenit and the hone. The lower serev pinced beneath the cushion raises the onter edge of the splint, and prevents the instrument moviag in the slightest degrec. The aivantage of this instrument seemed to us to consist principally in giving the pad a divection inwards towards the bone, and in completely secoring the limb hy a good hroad splint, rhich may. by a serew phaced beneath it, be brought in closer contack with the thigh.
Mr. Cock expressed himself greatly pleased with the manner in which bis champ acted all througin the case.
The compression was begun soy. 24th, and regnlarly continned to Dec. 10th, making just sixteen days. The pulsation ceased fire days before the sparatus was completcly let off: but it was thought advisable to continue tha pressure, so as to ensure the due establishment of the collateral circubition. The tumour was on the laj of the patient's discharge '(Dec. 22. 183), thirty-seven days atter admission) just hall its oriminal bulk, and paenting a great degree of harduess. The pressure was kept up with geat regularity and patience, during the whole of the above-mentioned friod; the weight at the groin being substitutel for the claups when the atter were getting too inksome. The patient slept very litile fo: a whole ted; he was anxious to keop up the pressure in the most exact mamer; the was fully rewarded for his close adherence to Mir. Cock's directions, g the specdy solidifiation of the sae and the obliteration oif the artery.
Then the apparatus had been completely removed, the leg was tightly of erenly secured by a roller; and when the patient tirst attempted to whe felt the leg rather weak, but all pain in the limb hed quite disgesrel. Ife finally left the hoppital bec. 92,1852 , with the tumom quite sh, and the complete obliteration of the artery.
his is cerainiy a most satiofactory result of compresion in the treatment decuism, and iskely to make a lasting impression on all those surgeons
masy the case.
The operation of tying the main artery and compressing it for the cure of Gerism are, in fact, identicaily tie sume in principle. Scme surgeons,
Ay Syme, prefer the ohl methom. We must say, howevel, that the
Thession, as used in Dublin and Lmion, seems equaly successinl, if not **es. It may be sometimes more tedious, but certainly more safe. In apprations the current of blood in the sac is not prevented entirely. Plegature may stop the current in the main artery, hat not in the collateral Fition. Therefore in both cases the blond, in fact, is only impreled in thour-he previous momentum is checked. ant the binod nassing seriy, lines the parts win. fibrinous deposits; and if it be suldenly ghin the main artery hy a ligature, the sac rapilly becomes solidified bzoulun. Eventually, however. both pocesses are more or less val-Lancel, Jan. 8, 1853, p. 31.

> By llr. d. Moleschat!.

As it is well known dernard (competes lendus XXXT. p. 57․ 573) has shown the existence of sugar in the liver, not only of all vertebrata, but also in that of the gasteronotia, acephata and decapols. Frerich's (article "Verdama" in h. Wagner"s llandwörtert drysiol, p. S2i) has confirmed these observations for the liver of man and many animats; Vander Brock (Nederkaseh Laucet, p. 103, 110) fio that of dogs :mat rabbits: Pamnert (Erdman's fouma, liv. p. 3is) for that of the fox, the dog, the cat and the sheep; and I mde and Lehmann (Kunte, Helfepatis, manarum exstirpatione, Diss. Beroli, 1850, p. 11) for that of frogs.

1. selecter :welve frogs for woy investigations, and sotwithstanding the smalhess of atir livers, so moch surar appeared that it was easily shown by Tromme ; test. Jernard ani Lenman regard this sugar of the liver as grape sugar
the querson arises, in this sugar of the liver derived from the blow or is it formed by the liver proper? Serumd advocates the hatter view, since ho inas thus obtained the sugar wholly independent of the food, with the earnivord and herbivora, with ammuls famished during hibernation and with the foctus in utero. Freriehs, Fander Brock and Buamert have repeated these ouservations and confirmed them.
Still more impertant is the sesult obtaned by Bernard (loc. cip.) and Lemman (Ercham's Journal, LIII. p. 214, 275,) that the portai blood of the dos and horse contain little or no sugar, while the blood of the hepatic vein contains, like no other vein in the boly, this substance in considerable quantity.

To these data I would add n fact of some import. If the sugar is not Gound in the liver but is only strained orf, as it were, by this last from the blood, then the bloor of those animals whose liver had been removed would be found surcharged with sugar, exactly as the blood is filled with urea in aminals whose hidugys have been removed. Jut with frogs, some of which had been without the liver for fouricen days, athers for three weeks, I found no sugar in the Hood, ilesh, gastuic juice, urine, nor finally in the water in which twenty-sis of these animats thus mutilated had passed two days.

From all these facts it appears to me indubitable that the sugar contained in the liver is formed by the lireritself.- Maller's $\mathbf{d r c h i v , 1 8 0 3 , ~ M a r c h , ~ p . ~ S 6 . ~}$

Prosecelaion on minical min.

Within the past year several suits have been commenced and carried through agoinst medical men for malyutactice. Among those in this vicinity we may mention the triais of Dr. Irammond, of Nashua, and Dr. Sargent, of Rochester in this State, and more recently that of Dr. Jitiredge, of Andorer, Massachusette. la ine first case, Dr. Hammond mas acquitted, not more in conserquence of the ability of his comsel than the honesty and independence of the surgeon calied to testify for the plaintiff. In Dr. Sargent's case se are informed that the verdict was given for the phantif in the face of the most explicit testimony from medical men. The same was true in Dr. Kittredge's trial, in which, as we understand it, after an injury to the arm in which there was rupture of the brachial artery, the atiending surgeon. was broughti in guilty for causing the arm to slough off by tight bandaging. The community should be made to understand that by encouraging such prosecutions they are endangering their own safety, and surgeons will be compelled in self-defence to require beforehand a bond that they shall not be prosecuted, whatever may be the result of the treatment. From sereral recent trials we feel rarranted in saying that the chances are altogether better for the acquitial of an ignorant, uncducated pretemice to medical knowledge, who is really gailty, than for that of am intelligent, well-educatal surgeon to whom no fault can justly be charged.- Jicw Ifampshire Jurnal, of ilfadicine.

[^0]: * To speak of cpithelial cuncer is as unnccerary as to adept an hepatic cell-cancer.

[^1]: bog aedles, frequently arauged with grast re,tularity.
 fimot manathess wate whh the haghert powers of the microscone, cav oudo mose timengh
 and an sumo medentat "xpermente ca the his of the organic cell, I found the finest partitles of carminc, estimated to be lition of an iarb, wonla not endocmoro through any of the

[^2]:

 Tit-roufirms one hurdedge that in thece parte also pathological reproductions are most - fatte -7rans.)

 - Feliker states to has obeerved the origin of ressels in the batrachimu larra in these ris by proresses from the whi cavdalis from stellato celle, and by the productions of che 15.

[^3]: Thtdecription of inorganic deposits-concrenente, belong to the manuals of a patho balchemistry and anatomy, and therefore, 1 shall in this place mention but one form.

