The institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pellir.uléeCover title missing/
Le titre de couverture manqueColoured maps/
Castes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encis de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modiřication dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged,
Pages endommagies

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue!
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraisonAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE CANADIAN JOURNAL.

NEW SERIES.

No. XLVI.—JULY, 1863.

REMARKS ON THE NEGATIVE INDEX OF A FUNCTION.

BY THE REV. E. K. KENDALL,

LATE PROTBGSOR OP MATHBMATICB IN TRINITY COLLEGA, TORONTO.
In the consideration of indices, whether used to denote powers of numerical or algebraical expressions, or the successive performance of some operation or function on a quantity, it is usual in examining the meaning of negative or fractional indices to state that it is convenient to assign certain interpretations, because of a certain generality which then obtains in the results. In the words of a recent author,* "Experience will prove that the notation here given is often convenient, and we may shew that it is not altogether an arbitrary notation but one that naturally presents itself." It appears to me that this, at any rate in the case of negative indices, is an inadequate mode of expressing the ground on which these indices are interpreted, and that the meaning to be assigned to the index is not only one that naturally presents itself; not only not altogether arbitrary, but the meaning which must be assigned, exclusive of any other meaning, and no more arbitrary than the use of the notation for positive integral indices. With respect to fractional indices even, I an of opinion that the above would be an insufficient account of the reasons by which we are led to accept an interpretation of the index since it would leave an impression that we are guided rather

[^0]by what is convenient than by what is true, and that perhaps some other more couvenient explanation might some aay replace the one now adopted. But in the case of the negative index such a mode of expression is still less admissible, because the steps by which the meaning is established are so easy and straightforward.
If any operation performed on a quantity x be denoted by $f^{1}(x)$, we sbould denote the same operation performed upon $f^{f^{1}}(x)$ by $f^{1}\left(f^{1}(x)\right)$ or conveniently by $f^{3}(x) . f^{2}(x)$, therefore, denotes the operation f^{1} performed once upon $f^{1}(x)$, or twice successively on x. Similarly $f^{3}(x)$ may be used to denote the function f^{1} performed once on $f^{2}(x)$, twice successively on $f^{1}(x)$, or three times successively on x, and so on. Adopting this notation we shall have $f^{m}(x)$ to represent the operatiou f^{1} performed m times on x successively, and $f^{m+n}(x)$ or $f^{n+m}(x)$ to represent either the performance of the operation $f^{1} m$ times on $f^{n}(x)$, i.e., $=f^{m}\left(f^{n}(x)\right)$ or n times on $f^{m}(x)=\boldsymbol{f}^{n}\left(\boldsymbol{f}^{m}(x)\right)$ or $m+n$ times on x, the result being in each case the same, i.e.,
\[

$$
\begin{align*}
f^{m+n}(x) & =f^{n}\left(f^{m}(x)\right) \tag{a}\\
& =f^{n^{2}}\left(f_{n}(x)\right)
\end{align*}
$$
\]

Hence $f^{m}(x)$ is derivable from $f^{n+m}(x)$ by undoing the n operations denoted by f^{n} in (a) and $f^{m}(x)=\overline{f^{m+n}-n}(x)$.

Hence - n in the index must be regarded as undoing the operation $f^{1} n$ times supposing it had been performed more than n times on x.

But what does $f^{0}(x)$ or $f^{-n}(x)$ represent of itself, when there is no operation to undo?

Now we observe that f^{1} denotes an operation performed once, f^{2} twice; f^{m} m times.
$\therefore f^{0}$ represents the operation performed no times, that is, not performed at all, or $f^{\circ}(x)$ is the same as x, for just as truly as $f^{\prime \prime}$ represents m operations, so truly does f° represent no operations:
one is as general ns the other. Hence we can assign the meaning of the negative index, for f^{-1} means the reverse operation to f^{1}; if both f^{2} and f^{-1} be performed on x, one undoes what the other does, and the result is x. So that $f^{-1}(x)$ represents that quantity or quantities, for there may be more than one, on which if you perform the function denoted by f^{3} the result is x. And so f^{-2} denotes that quantity or quantities on which if you perform the function f^{1} twice the result is x. It will not be possible in every case to assign a numerical or even symbolical expression of every inverse function that may occur, but it appea:s to me that tho meaning of the notation is perfectly definite, and that it ought to be treated as such. The theory of indices stands on very different grounds from any arbitra:y convenient explanation of, for instance, the symbol $\sqrt{-1}$, derivel from the truth of results obtained by treating it as a real quantity. It may, however, be as wel! in conclusion to notice one or two obvious cases to which the above remarks are applicable:
(1). Theory of Indices in multiplication or division of lik? quantities in arithmetical algebra,-

Here $a^{m}=a \times a \times a$ to m factors.
Now a denotes an operation performed on unity, namely, multiplying it by a. Hence a replaces f^{1} and 1 replaces $x, 1$ being usually for simplicity omitted. Thus $a^{0}=a^{0}(1)=1$.
$a^{-1}=$ a quantity which, multiplied by a, will $=1$, i.e., $=\frac{1}{6}$.
$a^{-9}=$ a quantity which, multiplied twice by a, will give 1 , i.e., $=\frac{-1}{a^{2}}$, and so on.
Unity is here abstract or concrete, and the result abstract or conerete accordingly. In the few cases in which an interpretation may with more or less strictness be applied to the multiplication or division by one another of concrete magnitudes, the unit will of courso be of that denomination which is denoted by the index after such multiplication or division.
(2). Indices denoting Trigonometrical Funetions, for example, $\operatorname{Sin}{ }^{0}(x)$ means x.
$\operatorname{Sin}(x) \quad$ " the sine of x.
$\operatorname{Sin}^{-1}(x)$ " that angle of which the sine is x. $\operatorname{Sin}^{2}(x)$ " the sine of the sine of x, and so on.
N.B.-These must carefully be distinguished from $(\sin x)^{2},(\sin$ $x)^{-1},(\sin x)^{0}$, which come under the former or following head, and are frequently, though inaccurately, written as above.
(3). Indices denoting any function whatever,-

Example (1): Let $f^{1}(x)$ be the differential of $x=d x, f^{0}(x)$ is $x, f^{-1}(x)$ is $d^{-1}(x)$ meaning that which, if differentiated, will give x-in other words the integral of $x . f^{-2}(x)$ is $d^{-2} x$ that which, if differentiated twice, will give x, or the second integral of x, and so on.

It will be observed that this illustration shews clearly that a definite meaning is attached to the inverse symbol, for although our analysis may not be sufficient to enable us, in any special case, to integrate the required number of times, yet the operation is not only conceivable but never beyond the bounds of possibility, and may be practicable, and, what is more, mar in every case be performed independently of our knowledge of the results of differentiation.

Example (2) : Let $f(x)=x+\frac{1}{x}$

$$
\begin{aligned}
& f^{0} x=x \\
& f^{-1}(x)=\frac{x}{2} \pm \frac{\sqrt{x^{2}-4}}{2}
\end{aligned}
$$

For performing the function f on this we get,-

$$
\begin{aligned}
x \pm \sqrt{x^{2}-4}+\frac{2}{2}+\sqrt{x^{2}-4}= & \frac{2 x^{2}-4+2 x \sqrt{x^{2}-4}}{2\left(x \pm \sqrt{x^{2}-4}\right)} \\
& \begin{aligned}
+4
\end{aligned} \\
& =\frac{2 x}{2\left(x+\sqrt{x^{2}-4}\right)}
\end{aligned}
$$

And similarly,

$$
f^{-2}(x)=\frac{x \pm \sqrt{x^{2}-4} \pm \sqrt{2\left(x^{2}-10 \pm \sqrt{\left.x^{2}-4\right)}\right.}}{4}
$$

which may be verified. Beyond this point, the analysis fails to give the inverse function, though equations may be found to determine them. To take one more example, -

$$
\begin{gathered}
f(x)=\sqrt{a+x} \\
f^{0}(x)=x \\
f^{2}(x)=\sqrt{a+\sqrt{a+x}} \\
f^{-1}(x)=x^{2}-a \\
\text { for } f^{1} f^{-1}(x)=\sqrt{a+x^{2}-a}=\sqrt{x^{2}}=x \\
f^{-2}(x)=\left(x^{2}-a\right)^{2}-a \\
\cdots=\cdots \cdots \\
f^{-\pi}(x)=\left\{\cdots \left\{\begin{array}{l}
\cdots \\
\text { to } n \text { brackets. }
\end{array}\right.\right.
\end{gathered}
$$

Note:-Since writing the above, the invaluable treatise of Professor Boole on Differential Equations has been published. In his XVIth chapter there are a few remarks on inverse forms, which seem to bear out what has been said on their proper interpretation. He writes, commenting on the index laws as applied to functions: "All that is said above relates to the performance of operations definite in character upon subjects proposed to be given. But an inverse problem is suggested in which it is required to determine, not what will be the result of performing a certain operation upon a given subject, but upon what subject a certain operation must be performed in order to lead to a given result." So below he adds: "If π represent any operation or series of operations possible when their subject is given, and then termed direct, and if in the equation $\pi u=v$ the subject u be not given but only the result $=v$ then we may write $u=\pi^{-1} v$. And the problem or encuiry contained in the inverse notation will be answered when we have, by whatever process, so determined the function u as to sstisfy $\pi u=v$ or $\pi^{-1} v$ $=v$. By the latter equation the inverse symbol π^{-1} is defined. Thus it is the office of the inverse symbol to propose a question, not to describe an operation."

If the inverse symbol has an office, it.is obviously more than a mere convenient notation. The form of the above statement may perhaps be open to objection, since when two precisely reverse operations are performed it seems as fair to denote one of them a question as the other. But the view taken of the inverse symbol is the same, rhatever be thought of the propriety of this statement.

REMARKS ON SOME GENERAL PROPERTIES OF CURVES.

l:Y 3. W, MARTIN, LL.D.

Tur geometric method of investigation, so highly esteemed by Newton and his followers, has experienced considerable vicissitude as regards the amount of attention bestowed upon it by mathematicians at different periods. Having for more than a century held undisputed sway in the universities of Great Britais, it was at length obliged to yield to those more powerful methods of investigation, which, prosecuted with untiring zeal and ingenuity by men possessing unrivalled powers of analysis, had placed the continental mathematicians so far in advance of those in England. Though for a time decried as much as it was before injudiciously extolled, the geometric method has never been utterly neglected. It possesses merits of its own that must ever claim the attention of men of science. It affords solutions of many questions far more concise than cen be furnished by the analyst, and occasionally presents us with theorems which, as beautiful as unexpected, shew that its powers have not even yet been developed to the utmost.

1. If two curves lie, the one inside the other, and a right line be drawn cutting the curves so that the sum of the areas of the segments cut off shall be constant, the envelop of the right line is the locus of the centre of gravity of the sum of the chords.
2. Similarly, if the difference of areas is constant the envelop of line is locus of centre of gravity of difference of chords, that is of the portions of the right line enclosed between the two curves.

These theorems have been slightly altered in form so as to exhibit more strongly an analogy to a theorem given by Professor Cherriman, in the Canadian Journal, February, 1863.
3. The envelop of chords cutting a curve at equal angles is locus of a point dividing these chords, so that rectangle under segments is constant.
4. The envelop of chords joining points of taction of parallel tangents is locus of a point dividing those chords in a given ratio.

If the curve is a central conic the envelop is a point, the centre of conic.
5. If the curves S and $S^{\prime \prime}$ are so related that tangent at any point
\boldsymbol{p} in S cuts the cuicic $N^{\prime \prime}$ at a constant angit in $\overrightarrow{r^{\prime}}$, tangent to evoiute of S makes with evolute of S^{\prime} a constant angle.
6. If S and S^{\prime} in ${ }^{\circ}$. sect in the point O, the arc $O P^{\prime}$ bears a constant ratio to the difference be veen the arc $O P$ and the tangent $P P^{\prime}$.
The logarithmic spiral will serve to illustrate the two last theorems.
7. If right lines drawn from any point R in the curve S to touch the curves S^{\prime} and $S^{\prime \prime}$ in the points P and Q are equal, the product of the tangents of the halves of the angles which the lines $R P, R Q$ make with the tangent to S at the point R is constant.

As particular examples of this theorem we may take, firstly, the case of tangents drawn to a circle from any point in a line given in position.

Secondly, tangents drawn to two given circles from any point in their radical axis.
8. In the same figure as the last, if instead of having the tangents equal we have the angle $P R Q$ constant, the circle passing through the three points P, R, Q, touches the curve S at the point R, and the normals to the three curves at the points P, R, Q, meet in a point.
9. If right lines drawn from any point R in the curve S touching the curve S^{\prime} in the points P and Q contain with the arc $P Q$ a con stant area, tangent at R is parallel to the right line joining P and \boldsymbol{Q}.
10. If the vertex of a constant angle is at the point O, and the sides of the angle cut the curve S in the points P and Q, and the curve S^{\prime} in P^{\prime} and Q^{\prime}, area of the figure $P Q P^{\prime} Q^{\prime}$ is a maximum when difference of squares of $O P$ and $O P^{\prime}$ is equal the difference of squares of $O Q$ and $O Q^{\prime}$.

Hence if from a point O outside a circle it is required to draw two secants containing a given angle, so that the area of the figure contained by the secants and the circumference of the circle may be a maximum, it is wl the secants make equal angles with the diameter passing through the point O.
11. If the vertex of a constant angle is at the point O, and the sides of the angle cut the curve S in P and Q, the sum of $O P$ and $O Q$ is a minimum when the ratio of $O P$ to $O Q$ is equal to the ratio of the tangents of the angles which the sides of the given angle make with the curve.

REMARKS ON THE TEMPERATURE COEFFICIENTS - of MAGNETS.

by g. t. kingston, m.a.
idlrector of the provincial magnetic observatory, toronto. .

It has been long a matter of notoriety, that the correction to the scale-reading of a force magnetometer which is due to a change of one degree in its temperature, and which is derived from a comparison of the changes in its scale-readings with those of the attached thermometer, is often greatly at variance with $\left(\frac{q}{k}\right)$, the value of the correction in which q is the temperature coefficient of the magnet found by the ordinary hot and cold water experiments, and k the scale coefficient. The discrepancy has been attributed to the action of changes of temperature on the supports and appendages of the magnet when in adjustment, independent of, and in addition to, the alteration that such changes effect in the magnetic moment of the magnet; and as these effects cannot be determined a priori, it is safer, instead of relying on the experiments, to adopt the practice now almost general, of deriving the temperature corrections from the recorded observations with the instrument and its thermometer, either by grouping them in seasons, as explained in page ii. of the Introduction to the third volume of the Toronto Observations, or by comparing groups of scale-readings at intervals of a few days, as in pp. xxiii. and xxiv. of the same volume.

Since, however, the first of these methods requires an unbroken series of two or more years, and the second a series of a year in length at least, it may be worthy of consideration whether the method of obtaining the correction from the temperature experiments cannot be made to yield results in sufficient accorciance with the truth to serve the purpose of provisional reduction, or to meet the case in which the bifilar is needed as an ausiliary instrument to aid in the reduction of the absolute determination of the horizontal force, where since the range of temperature during the observations is small, the effect of a small error in the correction to the bifilar readings will be of less moment.

Let (m) be the magnetic moment of the magnet whose temperature coefficient (q) is sought, and which is placed as a deflector with its
axis at right angles to that of the susuended maguet in its defected position, the axes of the two magnets being in the same horizontal plane, and the centre of the unifilar in the prolongation of the axis of the deflector.

Also let r be the distance between the magnetic centres, u the angle of deflection, X the horizontal component of the force.

The relation between m, r, u, and X is given by the formula $m=f(r) X \sin u$, (where $f(r)$ is some function of r)
and that of their simultaneous small changes by

$$
\frac{\Delta m}{m}=\frac{f^{\prime}(r)}{f^{\prime}(r)} \Delta r+\cot u \Delta u+\frac{\Delta \mathbf{X}}{\mathbf{X}}
$$

Now, if $\frac{\Delta m}{m}$ be the increase in the maguetic moment due to a decrease of $\left(t-t_{0}\right)$ in the temperature, and q that due to a decrease of 1°, so that $\frac{\Delta m}{m}=q\left(t-t_{n}\right)$, the preceding equation will become

$$
q=\frac{1}{t-t_{0}}\left\{\frac{f^{\prime}(r)}{f r} \Delta r+\cot u \Delta u+\frac{\Delta \mathbf{X}}{\mathbf{X}}\right\}
$$

It is customary to assume that $\Delta r=0$, or that the magnetic centre occupies a fixed position in the magnet during the changes of temperature. Such will probably be the case if the magnet be strictly homogeneous throughout; but if its molecular condition be not uniform, it is at least conceivable that a change of temperature will affect differently the different parts of the magnet, as it is already known to affect the general magnetism of two different magnets.

Suppose, then, the north end of the deflectcr to be directed towards the suspended magnet, and that a decrease of 1° in temperature causes the magnetic centre to recede from the north end by the small quantity (a), so that $\Delta r=\left(t-t_{0}\right) a$. Also, suppose q_{1} to be the value of q determined in this case on the supposition that r is constant or that $\Delta r=0$.

We shall then have

$$
q=\frac{f^{\prime}(r)}{f(r)} a+q_{1}
$$

Similarly, if q_{2} be the value determined on the same hypothesis when the south end of the deflector is presented,

$$
\begin{aligned}
& q=-\frac{f^{\prime}(r)}{f^{\prime}(r)} a+q_{\mathrm{s}}, \\
& q=\frac{1}{2}\left\{q_{1}+q_{\cdot 3}\right\},
\end{aligned}
$$

Whence
or the temperature coefficient q will be the arithmetic mean between q_{1} and q_{2}, the values derived from the experiments in which the North and Suuth Poles respectively are presented.

The probability that an alteration in the distribution of magnetism does sometimes accompany a change in the temperature of a magnet, was suggested by the results of temperature experiments made by me in March, 1861, on two magnets in use at the Toronto Observatory. With one of these-the magnet of our small bifilat-the results were as follows :

North pole presented	$q_{1}=0000603 ;$
South "	$q_{2}=0001105$;
Giving	$q=0000854 ;$
But the scale coefficien	$k=000115 ;$
When	$\frac{q}{k}=0 \cdot 74$ near

But from the observations in the period to which the foregoing value of k belongs, and by.the method on pp. xxiii. and xxiv. of the Introduction to the third volume of the Toronto Olservations, the equivalent in scale divisions for a change of one degree of temperature, was 0.66 nearly, a result with which the above value of $\frac{q}{k}$ shews a very tolerable accordance.

The value oi $q_{2}=000110 \overline{5}$, which is given above, agrees very fairly with the results of a series of experiments in 1843 and another in 1845 , which gave respectively $q=0001032$ and $q=0001138$.

Again, in page xxvii. of the third volnme of the Toronto Observations, we find that by experiments in 1843-44, on the magnet of Lloyd's Vertical Force Magnetometer,

$$
q=000112
$$

and by experiments in 1846,

$$
y=00007
$$

But in March, 1861, when the North Pole of this magnet was presented, I found the partial value of the temperature coefficient to be

$$
q_{1}=000196
$$

and when the South Pole was presented,

$$
\begin{aligned}
& q_{2}=000067 ; \\
& \text { giving } g=000086 \text { nearly as the true tempera- }
\end{aligned}
$$

ture coefficient.
The remarkable accordance of q_{1}, q_{2}, with the results of the two earlier experiments, makes it very probable that the North Pole was presented in the experiments of 1843-44, and the South Pole in those of 1846. Should such be the case, the true value oi ~during that period would have been 00009 nearly. But it is shew. on the same page, that by the multiplication of the equivalent to a degree of temperature by k the scale coefficient, there is obtained

$$
q=0001105
$$

which agrees much better with $q=000112$, the value derived from the experiments of 1843-44, than it does with $\varphi=00009$; from which it would appear that the error that would be committed by taking $q=0001 t 2$, and which is caused by a change in the distribution of the magnetism, would be almost completely con-pensated by the superposed effects of temperature on the instrument.

The discordance above referred to between the results of temperature experiments in which the two poles are successively presented, may be an exceptional property. Of eight magnets tested at my suggestion, by Mr. Stewart, of the Observatory at Kew, through the kind intervention of General Sabine, one only showed any material difference in the results derived from presenting both poles; and for other magnets that I have tried, results materially the same have been obtained, whichever pole was presented; nevertheless, the fact that it has been occasionally otherwise is a sufficient motive, I think, in conducting temperature experiments to present each pole of the deflector instead of one only.

NOTE ON POINSOT'S MEMOIR ON ROTATION.

3Y J. B. CHERRIMAN, M.A.
profesour op natural philosophy, university collbge, toronto.
This celebrated memoir of Poinsot's, which, in connection with his invention of couples, has revolutionised our whole system of mechanics, treats the subject partly in au analytical, partly in a geome-
trical manner. In our modern text books the analytical method is mainly adopted, and it has seemed to me that the beauty and simplicity of the system have thereby been much overlooked. In following, and possibly simplifying by a more elementary geometry, Poinsot's course, we commence with the general reduction of a set of statical forces to a single resultant force and a single resultant couple.

1. Let P be one of a set of forces acting at assigued points of a rigid system, and let \boldsymbol{A} be a point arbitrarily assumed as an origin. At A apply two opposite forces, each equal and parallel to P. Then the original force P is renlaced by an equal and parallel force acting at A, and a couple. Fach of the forces of the system may be treated in the same way, and the whole set will be replaced by a set of forces acting at A, (which may be combined into a single Resultant R), and a set of couples which may be combined into a single couple G.
2. Since R is compounded of a set of forces which are severally equal and parallel to those of the original set, R evidently remains the same in direction and magnitude, whatever origin be assumed; G in general varies for different origins in both respects, but evidently remains the same for all origins which lie in the direction of R.
3. To examine the changes which G undergoes in passing from one origin to another, let B be any other origin, aud at B apply two opposite forces, each equal and parallel to R. We have then, R at B, the couple σ, and the newly introduced couple $R a$ (a being the distance between the directions of R at A and R at B). Now suppose G to be resolved into two couples, whose axes are severally parallel and perpendicular to R; these will be, $G \cos \theta$, and $G \sin \theta$, where θ is the angle between R and the axis of G. Then the axis of the couple Ra being perpendicular to R, this couple will combine with $G \sin \theta$, but will not affect the other resolved part $G \cos \theta$. Hence, whatever origin be adopted, the resolved part $G \cos \theta$, whose axis is in direction of the resultant force, always remains the same. The other component of the couple admits of all values according to the origin adopted. We may therdfore adopt an origin (or in fact a line of origins parallel to R) such that this other component shall be zero, and we have then remaining a couple whose axis is in the direction of the resultant force. In this case, the resultant coupie evidently has its least possible value.
4. Calling G^{\prime} this value of it, on transterring to another origin as in (3), the new couple will be compounded of G^{\prime} and $R a$, the axes of which are at rightangles to each other; and the new couple
will therefore have the same value so long as a remains the samethai is:-for all origins lying on a circular right cylinder about the line of origins spoken of, and for this reason this line of origins is called by Poinsot the central axis.
5. Since R is the same for all origins, the set of forces is not reducible to a single couple, unless it should happen that $R=0$.

In this case, the forces must be capable of being represented in magnitude and direction by the sides of a polygon (or of several polygons) taken in order. If the forces were represented in position also by the sides of the polygon, and the polygon moreover were a plane one, then the magnitude of the resultant couple would be independent of the position of the forces with regard to the system, being in fact represented geometrically by the area of the polygon.
6. Since $G \cos \theta$ is the same for all origins, the set of forces is not reducible to a single force, unless it should happen that $G \cos \theta=0$.

That this may be the case, we must either have $G=0$, or $\theta=\frac{\pi}{2}$; that is:-we must find at our assumed origin either the resultant couple vanishing, or else its axis at right angles to the direction of the resultant force. If the le'ter be the case at any one origin, it must plainly be so at all origins, and it is easy to see in what way the reduction to a single force is effected. For the plane of the couple can be moved so as to contain R, the couple can be turned till one of its forces is opposite to R, and the arm can be altered till this force is equal to R; these two forces being then removed, there remains the other force (h) of the couple for the single resultant, acting in a line whose distance from the direction of R through our assumed origin is equal to $\frac{G}{R}$. (Of course if R should nappen to be 0 . this transformation is illusory.) This condition is evidently satisfied when the forces of the system are all parallel, and the single resultant in this case is equal to the algebraic sum of the forces, provided that this sum be finite.
7. Any set of forces can also in the general case be reduced, in an infinite variety of ways, to two, acting along lines which neither meet nor are parallel. For, let the couple G be transferred till the direction of oue of its forces intersects that of R; then these two can be compounded into a single force, and this and the remaining force of the couple constitute the two forces acting as stated. The clements of these two forces are of course not
entirely arbitrary, but may be shown to be subject to the condition that $T T^{\prime} a \sin \phi$ is constant, where $T, T^{\prime \prime}$, are the two forces, a is the shortest distance between their lines of action, ϕ the angle between these lines. (Cambridge S. H. 1833.) For let the couple be changed so that its forces are T, T, and a is its arm, and let it be placed so that T acts at the same point as R, and the arm is at right angles to R. Then T and R being compounded into T^{y}, the angle between T^{\prime} and T will be ϕ, and we have $T^{\prime} \sin \phi=R \cos \theta$. Also $\theta \cos \theta$ being constant, and $T a$ being equal to $G, T a \cos \theta$ is constant, and therefore, since R is constant, we have $T T^{\prime \prime} a$ sin ϕ also constant. This can also be expressed geometrically by saying that if the two forces be represented in position and magnitude by two straight lines, and the extremities of these lines be made the angular points of a pyramid, the volume of this pyramid will remain the same, whatever way of reduction be chosen. This elegant proposition was first given (so far as I am aware) in the Ladies' Diary, 1836.

In a subsequent nute the analogous propositions in the motion of a rigid system will be discussed.

FORMULE FOR THE COSINES AND SINES OF MULTIPLE ARCS.

BY THE REV. GEORGE PAXTON YOUNG, ENOX COLLEGE, TORONTO.

§1. Take the expressions,

$$
\begin{equation*}
\mathrm{T}_{0}=2, \mathrm{~T}_{1}=1, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \& \mathrm{c} . \tag{1}
\end{equation*}
$$

So that, t being any quantity, and c a number greater than zero, the relation

$$
\begin{equation*}
T_{c+1}=\mathrm{T}_{c}-t^{2} \mathrm{~T}_{c-1} . \tag{2}
\end{equation*}
$$

always subsists. Hence $\mathrm{T}_{\mathbf{2}}=1-2 t^{\mathbf{3}}, \& \mathrm{c}$. In like manner, take the expressions,

$$
\begin{equation*}
t_{0}=0, t_{1}=l_{s} t_{3}, t_{3}, \& c ., \tag{3}
\end{equation*}
$$

So that, $\cdot \boldsymbol{t}$ being any quantity, and c a number greater than zero, the the relation

$$
\begin{equation*}
t_{a+1}=t_{c}-t^{2} t_{0-1} \tag{4}
\end{equation*}
$$

always subsists. Hence $t_{2}=1, t_{3}=1-t^{2}, \& c$. The law of the formation of series (3), expressed in equation (4), being the same with that of series (1), expressed in equation (2), the difference between the series (3) and the series (1) arises solely from the difference in their first terms. The general terms T_{m} and t_{m} are easily found. In fact, m being any number greater than zero,

$$
\begin{gather*}
\mathrm{T}_{\mathrm{m}}=1-m t^{2}+\frac{m t^{4}}{[\underline{2}-}(m-3)-\frac{m t^{6}}{[\underline{3}}(m-5)(m-4)+\frac{m t^{8}}{\sqrt{4}}(m-7)(m-6) \tag{5}\\
(m-5)-\& c ., \ldots \ldots \ldots .
\end{gather*}
$$

and $t_{m}=1-(m-2) t^{2}+\underset{\underline{L}-3)(m-4)}{(m-3} \quad t^{4}-(m-4)(m-5)(m-6) t^{t}$

$$
\begin{equation*}
+\& c . \tag{6}
\end{equation*}
$$

When m is even, the number of terms in the value of T_{m} is $\frac{m+2,}{2}$ and $\frac{m}{2}$ in the value of t_{m}. When m is odd, the number of terms in each of the expressions T_{m} and t_{m} is $\frac{m+1}{2}$. To prove (5), we observe that $T_{1}=1$, and $T_{8}=1-2 t^{2}$. Henee the law is true for the first two steps. Assume it to hold for $m-1$ steps. Then

$$
\mathrm{T}_{m-2}=1-(m-1) t^{2}+\frac{(m-1) t^{4}}{L^{2}}(m-3)-\& \mathrm{c}
$$

and $t^{2} \mathrm{~T}_{m-2}=\quad t^{2}-(m-2) t^{4}+\& c$. Therefore, by (2),

$$
\mathbf{T}_{m}=1-m t^{2}+\frac{m t^{2}}{\left[\frac{2}{2}\right.}(m-3)-\& c_{.}:
$$

which proves the Law universally. In the very same manner equation (6) can be shewn to hold.
§2. The following formulx may now be established:

$$
\text { If } \begin{align*}
2 t \cos \theta & =1, \text { and } 2 t \sin \theta
\end{aligned} \begin{aligned}
& =k, \\
\text { then } 2 t^{m} \cos m \theta & =\mathrm{T}_{\omega}, \tag{7}\\
\text { and } 2 t^{m} \sin m \theta & =k t_{m} . \tag{8}
\end{align*}
$$

§3. To prove (7), we remark, that, by hypothesis, the Law holds for the first step, that is, when $n=1$. Assume it to hold for $n-1$ steps. We have only to shew then that it holds for the succeeding step. Now, since the Law holds for $m-1$ steps,

$$
\mathrm{T}_{m-1}=2 t^{m-1} \cos (m-1) \theta=\frac{4 t^{m} \cos (m-1) \theta}{2 t}=4 t^{m} \cos \theta \cos (m-1) \theta,
$$

and $t^{2} \mathrm{~T}_{m-2}=2 t^{m} \cos (m-2) \theta$. Therefure, by (2),

$$
\mathbf{T}_{m}=2 t_{m}\{2 \cos \theta \cos (m-1) \theta-\cos (m-2) \theta\}=2 t^{m} \cos m \theta
$$

§4. To prove (8), we ohserve, that, by hypothesis, the Law holds for the first step, that is, when $m=1$. Assume that it holds for $m-1$ steps. Then

$$
k t_{m-1}=2 t^{m-1} \sin \left(m-1 \theta=\frac{4 t^{m} \sin (m-1) \theta}{2 t}=4 t^{m} \cos \theta \sin (m-1) \theta\right.
$$

and $k t^{2} t_{m-1}=2 t^{m} \sin (m-2) \theta$. Therefore, by (4),

$$
k t_{m}=2 t_{m}\{2 \cos \theta \sin (m-1) \theta-\sin (m-2) \theta\}=2 t^{m} \sin m \theta:
$$

which proves the Lav universally.
§5. In equations (7) and (8), m may be negative as well as positive. The series (1), starting from the terms T_{0} and T_{1}, may be carried not only forwards in the direction of the terms $T_{9}, T_{3}, \& c$. , but also backwards through the terms $\mathbf{T}_{-1}, \mathbf{T}_{-2}, \& c$.; the relation expressed in (2) always subsisting. In fact, by (2),

$$
\mathbf{T}_{1}=\mathbf{T}_{0}-t^{2} \mathbf{T}_{-1} \therefore \mathrm{~T}_{-3}=t^{-8}=t^{-2} \mathbf{T}_{1} .
$$

In general, it is easily seen that

$$
\begin{align*}
& \mathrm{T}_{-m} \tag{9}
\end{align*}=t^{-2 m} \mathrm{~T}_{m} .
$$

By equating the values of T_{m} in (9) and (7), we have

$$
\begin{aligned}
\mathrm{T}_{-m} t^{2 m} & =2 t^{m} \cos m \theta=2 t^{m} \cos (-m \theta) \\
\therefore 2 t^{m} \cos (-m \theta) & =\mathrm{T}_{-m} .
\end{aligned}
$$

In like manner, by equating the values of t_{m} in (10) and (8), we have

$$
2 t^{-m} \sin (-m \theta)=k t_{-m} .
$$

§6. As an instance of the application of the formule which have been obtained, we shall now find $\cos m \theta$ in terms of $\cos \theta, m$ being a positive integer. In (5) substitute for T_{m} its value in (7), and replace t (see §2) by $(2 \cos \theta)^{-1}$. Then

$$
\begin{aligned}
& 2 t^{m} \cos m \theta=1-m t^{2}+\frac{m t^{4}}{[2}(m-3)-\frac{m t^{6}}{\Omega}(m-5)(m-4)+\& c . \\
& \begin{aligned}
\therefore 2 \cos m \theta & =\frac{1}{t^{m}}-m \frac{1}{t^{m-2}}+太 c . \\
& =(2 \cos \theta)^{m}-m(2 \cos \theta)^{m-2}+\frac{m(m-3)}{L^{2}}(2 \cos \theta)^{m-4}-\delta c .
\end{aligned}
\end{aligned}
$$

§7. In like manner, we may find $\sin m \theta, m$ being a positive integer. In (6) substitute for t^{m} its value in (8). Then $2 k^{-1} t^{m} \sin m \theta=1-(m-2) t^{2}+\frac{(m-3)}{[2}(m-1) t t^{*}-\& c$.
$\therefore 2 k^{-1} \sin m \theta=t^{-m}-(m-2) t^{-(m-2)}+\frac{(m-3)}{12} \frac{(m-4)}{2^{-(m-4)}-\& c . ~}$
But because $2 t \cos \theta=1$, and $2 t \sin \theta=k, k=\frac{\sin \theta}{\cos \theta}$. Therefore $\frac{2 \cos \theta}{\sin \theta} \sin m \theta=(2 \cos \theta)^{m}-(m-2)(2 \cos \theta)^{m-2}+\& \mathrm{c}$.
$\therefore \sin m \theta=\sin \theta\left\{(2 \cos \theta)^{m-1}-(m-2)(2 \cos \theta)^{m-3}+\& c.\right\}$.
§8. Another very simple instance of the application of the formulæ which we have obtained is the following. By (2),

$$
\begin{aligned}
\mathrm{T}_{n+1}=\mathrm{T}_{n}-t^{2} \mathrm{~T}_{n-1}=\mathrm{T}_{n}-t^{2}\left(\mathrm{~T}_{n-2}-t^{2} \mathrm{~T}_{n-3}\right) & =\mathrm{T}_{n}-t^{2} \mathrm{~T}_{n-2}+t^{4} \mathrm{~T}_{n-3} \\
=\mathrm{T}_{n}-t^{2} \mathrm{~T}_{n-2}+t^{4} \mathrm{~T}_{n-4}-t^{6} \mathrm{~T}_{n-6}+\ldots & +(-)^{c} t^{2} \mathrm{~T} \mathrm{~T}_{n-2 c}=\ldots \ldots \\
& +(-1)^{\left.c^{1} t^{2} t^{2(c+1}\right)} \mathrm{T}_{n-3 c-1} .
\end{aligned}
$$

Substitute for $T_{n+1}, T_{n}, \& c$., their values in (7), and divide by $2 t^{n}$.
Then

$$
\begin{array}{r}
\cos n \theta-\cos (n-2) \theta+\cos (n-4) \theta-\ldots \ldots+(-1)^{c} \cos (n-2 c) \theta \\
=t\left\{\cos (n+1) \theta-(-1)^{c+1} \cos (n-2 c-1) \theta\right\} \\
=\frac{\cos (n+1) \theta-(-)^{c+1} \cos (n-2 c-1) \theta .}{2 \cos \theta}
\end{array}
$$

In like manner,

$$
\begin{aligned}
& \sin n \theta-\sin (n-2) \theta+\sin (n-4) \theta-\ldots \ldots+(-1)^{\bullet} \sin (n-2 c) \theta \\
&=\frac{\sin (n+1) \theta-(-1)^{c+1} \sin (n-2 c-1) \theta}{2} \frac{\cos \theta}{}
\end{aligned}
$$

Vol. VIII.

MATHEMATICAL NOTES.

1. On Linear dsymptotes in Alyebraic Curves:

A method of finding asymptotes, given by D. F. Gregory in Vol. IV., p. 42, of the Cambridge Mathematical Journal (to which my attention was called by Prof. Irving), is so elegant and simple that it is surprising it has not yet found its way into the text-books.

Let the equation to the curve, expressed in rational and integral form, be of n dimensions, and be arranged in homogeneous functions of x and y in descending order, as fullows:

$$
f_{n}(x, y)+f_{n-1}(x, y)+\ldots \ldots . . .=0
$$

Then the equations to the assmptotes, (x^{\prime}, y^{\prime} being current coordinates), are given by

$$
\left\{\begin{array}{l}
f_{n}(x, y)=0 \\
x^{\prime} \frac{d}{d x} f_{n}(x, y)+y^{\prime} \frac{d}{d y} f_{n}(x, y)+f_{n-1}(x, y)=0
\end{array}\right\}
$$

The expression is left by Gregory in this form, but a little further reduction will give it us in a shape in which the equation to an asymptote can at once be written down \cdots inspection merely. Thus let $\frac{x}{l}-\frac{y}{m}$ be a factor of $f_{n}(x, y)$, and let $\phi(x, y)$ be the quantity containing the remaining factors, so that the equation to the curve may be written

$$
\left(\frac{x}{l}-\frac{y}{m}\right) \phi(x, y)+f_{n-1}(x, y)+\ldots \ldots \ldots=0
$$

then the equation to an asymptote is

$$
\left(\frac{x}{l}-\frac{y}{m}\right) \phi(l, m)+f_{n-1}(l, m)=0 .
$$

The case of an asymptote parallel to one of the axes (e.g., that of y) is included in this by making $l=1, m=\propto$. and evaluating ($\phi: f_{n-1}$) in the usual way.

The method fails when the above equation becomes indeterminate by the simuitaneous vanishing of ϕ and f_{n-1}, which can only happen when $\phi(x, y)$ contains the same factor $\left(\frac{x}{l}-\frac{y}{m}\right)$; that is, when there are parallel asymptotes. Perhaps the easiest way of treating this case is to substitute in the equation to the curve $f^{\prime}(x, y)=0$, for x and y the quantities $l r+x, m r+y$, and to arrange in descending powers of r. Then, as before, $f_{n}(l, m)=0$ will give the
directions of the asymptotes, and the coefficient of the next lower power of r which does not identically vanish for these values of $l: m$, .will, on being equated to zero, give the asymptotes.

This also shews clearly the reason of the occasional failure of the common rule, when terms of the second highest dinension are wanting, viz. : equate to zero the terms of the highest dimension. The rule succeeds when the expression of the highest dimensions consists of factors occurring singly, but may fail when the same tactor occurs in it more than once.

2. On a Reduction of Curves of the Second Order:

In the modern system of analytical geometry, as pursued by Salmon, Puckle, and others, the curves of the second order, as represented by the general equation in Cartesian rectangular coordinates, are first separated into central and non-central, and the further reduction of the equation is then effected by transformation of coordinates, which is a rather long and troublesome process. It has occurred to me that this reduction might be simplified by following the course taken by Euclid with regard to the circle, namely, by seeking whether there exists a line (or lines) with regard to which the curve is symmetrical. For this purpose let us take the curves separately.
I. Central curves, $C^{2}-A B$ is not zero, and the equation referred to the centre takes the form

$$
A x^{2}+B y^{2}+2 C x y=F
$$

Let the curve be cut by the line

$$
\begin{equation*}
\frac{x-a}{l}=\frac{y-\beta}{m}=r,\left(l^{2}+m^{2}=1\right) \tag{1}
\end{equation*}
$$

then we obtain a quadra. - for the values of r at the points of soction, by substituting for a, y, in the equation to the curve, and the coefficient of the simple power of r in this, is

$$
A l \alpha+b m \beta+C(l \beta+m a)
$$

and if this vanish, the values of r are cqual and opposite, and (α, β) will be the middle point of the chord of section. Now this condition is

$$
\begin{equation*}
(A l+C m) a+(B m+C l) \beta=0 \tag{2}
\end{equation*}
$$

and if $l: m$ be given, the locus of this equation is a straight line through the origin.

Now we can almays assign such a value to $l: m$, that (2) shall be at right angles to (1). For the condition of perpendicularity is

$$
\frac{A l+C m}{l}-\frac{B m+C l}{m}=0
$$

or, $\quad l^{2}-\frac{A-B}{C} l m-m^{2}=0$
which, being a quadratic in $l: m$ with its last term negative, has necessarily real roots. (Indeed it shews that there are two directions, at right angles to each other, in which the chords may be drawn, and in fact gives the directions of the axes of the curve).

Hence there exists a straight line such that it bisects all chords of the curve drawn at right-angles to it; that is, such that the curve is symmetrical with regard to it.

Now let us take this line for the axis of x; then for any given value of x, the equation to the curve must be satisfied by $-y$ as well as $+y$, and this requires $C=0$. The equation thus reduces to

$$
A x^{2}+B y^{2}=F
$$

the form of it proving again that the axis of y is also a line of symmetry.

The equation is now reducible to the three known varieties, according to the nature of the intercepts of the axes, namely:
\qquad the ellipse, $\frac{x^{2}}{a^{3}}+\frac{y^{2}}{b^{2}}=1$;
(2) the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}= \pm 1$, including two intersecting
lines

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=0
$$

$$
\begin{equation*}
\ldots \ldots \text { wholly imaginary, } \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=-1 \tag{3}
\end{equation*}
$$

II. Curves in which the centre is at an infinite distance, and $C^{2}=A B$, the equation being

$$
A x^{2}+B y^{2}+2 C x y+2 D x+2 E y=F
$$

The same process as before demonstrates the existence of a line with regard to which the curve is symmetrical. Taking this for axis of x, we must bave

$$
C=0, E=0
$$

But $C=0$ requires either $A=0$, or, $B=0$
The latter reduces the equation to

$$
A x^{2}+2 D x=F
$$

representing two parallel (or, it may be, coincicent) straight lines; the former reduces it to

$$
B y^{2}+2 D x=F,
$$

and by taking the origin on the curve, still further to

$$
y^{2}=L x
$$

representing the parabola.
3. On a method of Approximating to the Square Root of a Number: The following singular proposition is given by Murply in his Thenry of Equations, Art. 77, and is very characteristic of a mathematician, perhaps, the most original of modern times. The demonstration that follows is his own, somewhat simplified. Let N be the number, and let \sqrt{N} be between n and $n+1$. Put $N-n^{2}=a$, $(n+1)^{2}-n^{2}$, or, $(2 n+1)=b$. Take any proper fraction $\frac{\boldsymbol{u}_{0}}{\boldsymbol{v}_{0}}$, and let a series of fractions be successively formed by the law

$$
u_{x+1}=a v_{x}+u_{x}, v_{x+1}=b v_{x}+u_{x},
$$

then $\frac{u_{x}}{v_{x}}$ converges to the decimal part of $\sqrt{\bar{N}}$.
For, $\frac{u_{x}+1}{v_{x}+1}=\frac{a v_{x}+u_{x}}{b v_{x}+u_{x}}$, and is a proper fracion since $a<b$,

$$
=\frac{a+\frac{u_{x}}{v_{x}}}{b+\frac{u_{x}}{v_{x}}}
$$

Let then $y=$ Limit $\frac{u_{x}}{v_{x}}=$ Limit $\frac{u_{x}+1}{v_{x}+1}$;
then ultimately $y=\frac{a+y}{b+y}$

$$
\text { or, } y^{2}+(b-1) y=a
$$

$$
\text { and } y^{2}+2 n y+n^{2}=N
$$

whence $y=-n+\sqrt{ } \bar{N}$,
since the positive sign must be taken.

$$
\text { Hence. Limit } \frac{u_{x}}{v_{x}}=\sqrt{N}-n,
$$

or $\frac{u_{x}}{v_{x}}$ converges to the decimal part of \sqrt{N}.
Murphy gives as an example $\sqrt{10}$. Assume the fraction $\frac{1}{6}$; then $a=1, b=7$, and the successive convergents are

$$
\frac{1}{6}, \frac{7}{43}, \frac{25}{154}, \frac{179}{1103}, \frac{1282}{7900},
$$

of which the last written $=0.162278$, which is correct for $\sqrt{10}$ except tho final figure which should be 7 .

He does not give any method of determining the limits of the error of any convergent, without which the process is of little prac* tical use.
J. B. 0.

ABSTRACT OF METEOROLOGICAL OBSERVATIONS, FOR THE YEARS 1861 \& 1862 , TAKFN AT STRATFORD. CANADA WEST.

BY CHARLES JOHN MACGREGOR, M,A.

Having been engaged, in my capacity of head master of the Grammar School, Stratford, in taking the observations required by law to be made at each county town in Upper Canada, I have thought that it would not be uninteresting to the members of the Institute, if I should lay before them the results of these observations for the years 1861 and 1862. I am induced to do so from the fact of having observed, in various numbers of the valuable Journal issued by the Canadian Institute, a notice calling on the members generally to furnish reports of any phenomena that may fall under their observation.

The instruments used were supplied by the Chief Superintendent of Education, and were, I believe, tested at the Provincial Observatory prior to their distribution to the schools. They consist of a barometer, dry and wet bulb hygrometer, maximum and minimum selfregistering thermometers, rain gauge, and wind vane. The means are reduced from tri. daily observations taken at 7 a.m., 1 p.m., and 9 p.m. The self-registering thermometers are read at 9 p.m. each day. No observations are taken on Sunday. The thermometers are fixed in position in a shed attached to the Grammar School building, which protects them from being unduly influenced by radiation and the direct force of the wind.

An approximation made by means of the levels taken on the line of the Grand Trunk Railway, kindly furnished me by an engineer of the company, gives the height of Stratford above Lake Ontario at Toronto, as 948 feet, which will consequently make it 1182 feet above the sea level.
GENERAL METEOROLOGICAL REGISTER POR TEE FEARS 1881 AND 1862, TAKEN AT STRATFORD, CANADA WEST.

The fcllowing table gives the mean temperature and the mean height of the barometer in the different quarters, the winter quarter in each case being taken so as to include December of the preceding year.

Comparative view, in the years 1861 and 1862, of certain meteorological results :

	1861.	1862.
TEMPERATURE.		
Mean temperature of the year.	4353	43.37
Warmest month .	July	August
When the mean temperature of the month was..	65.94	65.53
Coldest month	January	January
When the mean temperature of tbe month was..	24.92	26.11
Difference between the warmest and coldestmonths.	41.02	3962
Warnast day	August 2nd	July 5th
When the mean of the day was	785	76.9
Coldest $\dot{\text { c }}$.	Feb. 8th	Jan. 14th
When the mean of the day was	-6.2	143
Highest temperature	90.4	860
Which occurred on	August 2nd	\{ July 6th
Lowest temperature	-204	$\begin{aligned} & \text { \{Ang. 8th } \\ & -17.7 \end{aligned}$
Which occurred on	Jan. 13th	Dec. 14th
Range of the. year. .	110.8	103.7
BAROMETER.		
Mean pressure of the year	28.6955	28.7246
Month of highest pressure	December	September
When the mean pressure of the month was.	25.8322	2S 8075
Month of lowest pressure	February	March
When the mean pressure of the month was	28.6033	28.5807
Maximum pressure of the year	29.317	29.436
Which occurred	\{ Jan. 22,	$\{$ Nov. 5,
Minimum pressure of the year	$\left\{\begin{array}{c}9 \mathrm{p.m.} \\ 27.943\end{array}\right\}$	$\left\{\begin{array}{rr} 1 & \text { p.m. } \\ 28 & 021 \end{array}\right.$
Which occurred	\{ May 7, \},	\{ March 3,
Range of the year	$\underset{1.374}{7 \mathrm{am} .} \mathrm{j}$	$\left\{\begin{array}{l} 9 \mathrm{pm} \\ 1.415 \end{array}\right.$

Comparative view of meteorological results-Continued.

	1861.	1862.
IIVMIDITY.		
Mcan humidity of the year	81	79
Month of greatest humidity	October	December
When the mean humidity of the month was.	88	86
Month of least humidity	May	May
When the mean humidity of the month was	67	61
RAIN.		
Total depth of rain in inches	31.8135	31.9802
Number of days on which rain fell	119	91
Greatest depth in one month fell in.	July	July
When it amounted to.........	4.4772	4.7205
Rainy days were most frequent in	September	October
When their number was.	15	15
SNOW.		
Total depth in the year	80.4	S0.8
Number of days on which snow fell	59	63
Greatest depth in one month fell in.	February	January
When it amounted to.	$2 \mathrm{S.7}$	24.8
Days of snow were most frequent	January	January
When their number was.	15	16
WIND.		
Kost windy month .	February	April
Least windy month. .	August	July
AURORA BOREALIS.		
Aurora visible on	16	16
No. of nights on which it was possible to see aurora	166	162
do. do. impossible to see aurora	199	203
PERIODICAL PHENOMENA.		
Spring birds firs seen. .	Misrch 5	March 17
Crows first seen	-	March 22
Thunder first heard	March 29	April 2
Wild pigeons seen	April 13	-
Mill , ond free from ic	April 14	April 15
Swallows seen	-	April 15
Frogs heard	April 20	April 16
Latest snow of the season	May 1	April 23
Currant and lilac bushes in leaf	April 29	May 8
Plum trees in blossom	May 21	May 15
Forest trees in leaf	May 25	Miny 18
First hoar frost of autumn	-	September 3
First ice of the season	October 21	October 20
First snow of the season	October 23	October 22
Indian summer		October 30
hill pond frozen	November 17	November 9

Haloms.-There were nine lunar haloes ubserved in 1861, and ten in 1862. Fight solar haioes were observed in 1861, and one in 1862.

Of these, the only one that deserves particular mention was a lunar halo observed on the 16 th of June, 1861. It consisted of ares of three circles. The are of the circle round the moon had a paraselene near one of its extremities; at the apex of this circle was a tangent circle, apparently of the same radius as the first one; and through the centre of the tangent circle was a third, parallel to the last mentioned, but of a greater radius. The sky at the time was clear, with the exception of light stratus clouds, extending from the S.W. to the N. horizon, by which the lower portion of the first mentioned circle was obscured.

NOTICES SCIENTIFIQUES.

PAR. M. ARAGO.

Notice sur les observations qui ont fait connaitre la constitution physique du Soleil et celles de diverses étoiles. Esamen des zonjectures des anciens philosophes et des données positives des astronomes modernes, sur la place que doit prendre le Soleil parmi le nombre prodigieux d' étoiles dont le firmament est parsemé.
($L u$ dans la séance publique des cinq Académies, le 25 Octobre, 1851.)
[This memoir is an excellent example of the popular and yet strictly scientific résumes which we owe to the pen of the illustrious Arago, and is also a good illustration of the charn of his peculiar style. Although recent researches havs reversed some of his conclusions, as we have indicated in a few notes, the memoir itself will always be a classic in the history of science, as a thorough seaction of the state of knowledge at the time it was written. En.]

Towards the middle of the month of July last, astronomers belonging to the principal observatories in Europe, beiook themselves to Norway, Sweden, Germany, and Russia, and fixed their stations in places where the solar eclipse of the 28 th of that month would be total. They hoped that this phenomenon, studied with powerful instruments, would lead to plausible explanations of sundry appearances noticed in previous eclipses, on which nobody had dared to pronounce in a decisive mamer. "What!" cried some ill-tempered spirite (little acquainted, I must suppose, with the history of astronomy); "What! can the science, which is called the most perfect of all, find still some problems to solve, even with respect to the body
around which all the planetary movements are performed? Is it true, that in many respects we are not more advanced than the philosophers of ancient Greece?"

It has been thought that these questions should meet a serious reply, and I have undertaken the task of supplying it, not concealing from myself the dryness which must needs pervade it, nor forgetting that details, which have become at the present day elementary truths, will force themselves prominently under my pen; yet I have thought that your indulgence will not fail to one who is in the performance of a duty.

A general glance at the labors of ancient philosophers and modern observers, will readily prow that, if the sun has been studied for two thousand years, the point of view has often changed, and that, during this interval, science has made immense steps in advance.

Anaxagoras asserted that the sun was scarcely larger than the Peloponmesus. Eudoxus, who enjoyed a great reputation in antiquity, assigned to this star a diameter nine times greater than that of the moon. This was a great step, if we compare this value with that of Anaxagoras, but the number given by the philosopher of Cnidus was still enormously wide of the reality. Cleomedes, who wrote in the reign of Augustus, tells us that the Epicureans, his contemporaries, regarding only appearance, maintaired that the real diameter of the sun did not exceed one foot.

Let us now compare with these arbitrary guesses the value which is deduced from the labors of modern astronomers, executed with the most minute care, and by the aid of instruments of extreme delicacy. The sun has a diameter of 357,000 leagues (of 4 kilometres.) There is some difference, we see, between this number and that adopted by the Epicureans.

Supposing the sun to be spherical, his volume is fourteen hundred thousand times that of the earth.

Numbers so enormous not being frequently employed in common life, and failing to convey a precise conception of the magnitudes which they imply, I shall here recall a remark which will enable as better to grasp the inmensity of this solar volume. Imagine the centre of the sun to coincide with that of the earth; his surface would then not merely extend to the orbit in which the moon revolves, but would reach nearly as far again beyond.

These results, so remarkable for their immensity, possess all the
certainty of the principles of elementary geometry which have served as their base.

The course which I have to pass over being sufficiently long, I will not enter uponany detailed comparison between the results (which are really absurdly small) at which the ancients stopped in estimating the distance of the sum from the earth, and those which have been deduced from modern ohservations. I shall limit meself to saying here, that it has been demonstrated-(and it is not without reason that I make use of so positive a word)-that it has been demonstrated, since the observation of the transit of Vemes in 1769, that the mean distance of the sun from the earth is thirty-cight millions of leagues, and that, during summer and winter, his distance from us varies by more than a million leagues. Such is the distance of this immense globe, whose physical constitution modern :stronomers have made some progress towards determining. In the ancient philosophers we find nothing on this subject which is worthy of occupying us for a moment. Their disputes on the question as to whether the sun were a fire pure or gross, eternal or capable of extinction, not being founded on observation, left in the deepest darkness the problem which the moderns have tried to solve.

The progress which has been made on this track dates from 1611. At that period, which is not far from the invention of the telescope, a Dutch astronomer (Fabricius) observed distinctly the apparition of some dark spots on the eastern limit of the sun, which, atter advancing gradually to the centre, crossed it, and moved to the western edge, disappearing finally after a certain number of days. From these observations, frequently repeated since then, we can infer that the sun is a spherical globe, possessing a motion of rotation about an axis through its centre, the duration of which is twenty five days and a half.

These dark spots, variable and irregular, but well defined in outline, have sometimes considerable dimensions; some of them have been observed of a magnitude more than five times that of the earth. They are generally surrounded by an aureola less luminous than the rest of the surface of the star, to which has been given the name of penumbra. This penumbra, first remarked by Galileo, and carefully observed, with reference to the changes it undergoes, by astronomers since his day, has led to a supposition with respect to the physical constitution of the sun, which at first sight looks singular enough-

The sun might be a dark body, surrounded by an atmosphere at some distance, which is comparable with the atmosphere of the earth, as being the seat of a continuous layer of opake and reflective rlouds. To this first atmosphere might suceed a second, self-luminous, which has been called the photosphere, and this, distant more or less from the interior clouly atmosphere, would determine by its outline the visible limits of the star. Pursuing this hypothesis, spots would be formed on the san, as often as there occurred, in these two concentric atmospheres, corresponding opraings (relaircies) which permitted a view of the dark central bodg. Persons who have studied the phenomena with powerful telescopes-astronomers by profession, and competent judges-recognize in the hypothesis of the sun's physical constitution, which I am going to speak of, a satisfactory account of the observed facts, yet it is not generally adopted.* Some writers of authority would represent the spots to be increly scoria floating on the liquid surface of the star, and given out by the solar volcanoes, of which we have only a feeble image in those of our carth. It was desirable, therefore, that we should proceed, by direct observations, to determine the nature of the sun's incandescent matter. But when we reflect that we are distant from this star by an interval of thirty-eight millions of leagues, and that we can only communicate with his visible surface by means of the luminous rays which proceed from it, to propose this problem to ourselves seemed to be unjustifiable rashness. The recent progress in the science of Optics has, howeier, furnished the means of completely solving it, and certain details, which you will pardon my laying before you, will render this solution evident. Everybody at the present day is aware that physicists have been led to distinguish two inds of light-natural and polarized. A rcy of the first species possesses properties which are the same for each point of its contour ; but it is not so for polarized light, where different sides of the rays have not the same propertics. These differences are shewn in numerous phenomena which I need not here mention. Before going further, let us remark that there is something strange in the results which have logically led physicists to speak of different sides of a ray of light, thus drawing a distinction between one side and

[^1]another; and the word strange, which I have used advisedly, will certainly appear natural to th se who reflect that millions upon millions of these rays can pass together through the eye of a needle without interfering with each other.

The polarization of light has enabled astronomers to enrich their means of investigation, by the addition of some curious instruments which have already done good service, and among these is the one named the polariscope.

If you look directly at the sun through one of these polariscopes, you will see two images of the same intensity and tint-both white. Suppose, now, that you look at the sun's image reflected at the surface of water, or of a glass mirror. In the act of reflexion, the rays become polarized; the polariscope no longer gives two white and similar images, but on the contrary, they are tinted with most vivid colors, although their form does not undergo alteration. If the one is red, the other will be green; if the first is yellow, the second will have the violet tint, and so on-the two tints being always complementary, as it is called, that is. capable of forming white light by their misture. Whatever be the process by which natural light becomes polarized, the colors are exhibited in the two images of the polariscope, just as if we had been looking at light reflected from water or glass. The polariscope, then, furnishes a very simple mode of distinguishing polarized from natural light.

It was for a long time thought that the light proceeding from any incandescent body reaches the eye in the condition of natural light, provided that in the passage it had not been partially reflected, or much refracted, but this proposition fails in certain cases. A member of the Academy has discovered that the light which proceeds, under a sufficiently small angle, from the surface of an incandescent body, whether liquid or solid, and even when it is not polished, offers evident traces of polarization, so that by passing into the polariscope it becomes decomposed into two colored portions (faisceaux colores). The light which proceeds from a gaseous substance in the act of burning (as the gas which to-day illuminates our streets and shops) is, on the contrary, always in its natural state, whatever may have been the angle of emission.*

[^2]The process in order to decide whether the substance which renders the sun visible is liquid, solid, or gaseous, will be nothing more than a very simple application of the preceding remarks, notwithstanding the difficulties which appeared to arise from the enornous distance of that star.

The rays which render visible to us the borders of the disk have evidently issued from the incandescent surface at a very small angle. If, then, the borders of the two images seen directly through the polariscope, appear colored, the light of these borders must proceed from a liquid body, for every supposition which would make the exterior of the sum a solid body is definitely excluded by the observation of the rapid change of form in the spots. And if the borders retain in the polariscope their natural whiteness, they are of necessity gaseous in character. Now, observations made by viewing the sun directly any day of the year through large polariscopes, fail to discover the least trace of polarization. Therefore the substance in combustion which defines the sun's outline is gaseous, and we can generalize this conclusion, because the different points of the sun's disk, by reason of the movement of rotation, come, each in its turn, on the border.

This experiment removes from the region of mere hypothesis the theory we have above indicated of the physical constitution of the solar photosphere.

We do not find any thing, properly understood, either in the arbi-

[^3]trary conceptions springing from the brilliant imagination of the ancient Greek philosophers, or in the relics of the labors of the most famous astronomers of the Alexandrian school, which can, even by a forced comparison, be likened to the results I am announcing. These results, let us loudly proclaim, are due entirely to the united efforts of observers of the 17th and 18th centuries, as well as, in part, to those of our contemporary astronomers.

Let us here notice a remark which we shall presently have occasion to apply when we endeavour to determine the physical constitution of the stars.

If the matter of the solar photosphere be liquid, and so the rays issuing from its border be polarized, we shall not merely see colors in each of the two images given by the polariscope, but they will be different at different points of the contour. If the highest point in one of the images is red, the point diametrically opposite in this image will also be red. But the two extremities of the horizontal diameter will both be green, and so on. If, then, we proceed to reunite, in a single point, the rays proceeding from all parts of the sun's limb, even after their decomposition in the polariscope, the mixture will be white. Such a constitution of the sun as I am here establishing will equally serve to explain the existence on its surface of spots not dark but luminous. The former, which are designated facula (facules), were first observed by Galileo; the others, of much smaller extent, and for the most part circular in form, were seen by Scheiner* and by him denominated maculce (lucules), and give to the sun's surface a sparkling appearance. I may refer (a somewhat singular circumstance) the discovery of one of the principal causes of these facule and maculx to an administrative visit I paid to a fashionable shop on our Boulevards.
"I have reasor to complain of the gas company," said the proprietor of the establishment; " they ought to turn on to my goods the broadest part of this bat-wing jet, and yet often, through the negligence of their agents, they place it so as to throw the light edgeways." "Are you quite sure," replied one of the assistants, "that in this position the flame throws less illumination than in the other?" The doubt appearing ill-founded, and, I may say, even absurd, exact experiments were resorted to, and it turued out that a flame throws

[^4]the same quantity of light on an object whether the broad part or the edge of the flame is turned to $\mathrm{it} . *$ It follows from this that an incandescent surface of gas of a definite extent appears more luminous when we view it obliquely than under a perpendicular incidence; and consequently if the sun's surface presents inequalities, like our atmosphere when it is corered with dappled clouds, it ought to appear feebly illuminated in comparison in those portions of the inequalities which are presented to the observer perpendicularly, and more brilliantly in the portions oblique to him. Esery conical cavity ought then to appear to us as a lucule. It is not therefore necessary for the explanation of the appearances to suppose the existence of millions of points more incandescent than the rest of the disk, or of millions of spots distinguished from the neighbouring regions by a greater accumulation of luminous matter. \dagger

After having proved that the sun consists of a dark central body, of a cloudy reflective atmosphere, and of a photosphere, \ddagger we ought uaturally to ask if there is nothing beyond, and whether the photosphere ends abruptly without being surrounded by a gaseous atmosphere, less luminous than itself and of feeble reflective power. This

[^5]third atmosphere would commonly disappear in the ocean of light by which the sun appears always surrounded, and which arises from the reflection of his rays by the particles composing the terrestrial atmosphere.

A mode of resolving this doubt presented itself, by choosing the moment in a solar eclipse when the moon completely covers the sun. Just at the instant when the last rays issuing from the borders of the luminary disappear behind the opaque screen formed by the moon, our atmosphere, in the region where the two bodies are projected, aud the surrounding parts, cease to be illuminated.

Now we see what was the principal object aimed at by the astronomers who in 1842 betook themselves to the south of France, to Italy, Germany and Russia, where the solar eclipse of July 8 would be total.

In researches of every kind, the part played by the unforeseen is always immense. Thus the observers were strangely surprised, when, after the disappearance of the last direct rays of the sun behind the rim of the moon, and of the light reflected by the surrounding terrestial atmosphere, they saw some rose-colored protuberances, of from two to three minutes in height, shoot forth, so to speak, from the contour of our satellite. Each astronomer, following the ordinary bent of his ideas, arrived at a particular conclusion as to the cause of these appearances. Some attributcd them to mountains of the moon, but this hypothesis will not bear a moment's examination; others would see in them only the effects of diffraction or refraction. But calculation is the touch-stone of all theories, and the most indefinite vagueness was found to accompany those of which I am speaking in their application to the phenomera under notice. Explanations which give us no precise account either of the height, the form, the color, or the permanence of a phenomenon, ought not to find place in Science.

Let us take up the idea, strongly recommended for a time, that the protuberances of 1812 were solar mountains whose summits passed beyond the photosphere covered by the moon at the moment of observation.

According to the most moderate computation, the height of one of these summits above the suu's disk must have beeu 19000 leagues. I am well aware that no argument based on the enormous amount of this height ought to lead to a rejection of the hypothesis. But we can forcibly upset it by remarking that these pretended mountains
had large portions out of the perpendicular, which consequently in virtue of the sun's attraction ought to have overturned.

Let us cast a rapid glance at a fourth hypothesis, according to which these protuberances resembled solar clouds swimming in a gaseous atmosphere. We shall not find any physical principle which will prevent our admitting the existence of cloudy masses of from 25 to 30,000 leagues in length, with abrupt and irregular contorted outlines. Only, in following the hypothesis further, we shall clain the right to be astonished that no such solar cloud had ever been seen entirely separated from the limb of the moon, and it was to this point, the crucial test, that the researches of astronomers had to be directed. A mountain not being able to sustain itself without a base, there was only wanting a chance observation of a protuberance visibly separated from the monn's limb (and, by consequence, from the real border of the solar photosphere) to overthrow the hypothesis of solar mountains from top to bottom. But, let us here mark well, it is not in astronomical researches as in those of chemists and physicists. These latter have the power of varying at will the conditions under which they work, and of changing the nature of their results; but astronomers cau exercise no mftuence on the phenomena they are studying, and are obliged to wait sometimes for centuries in order that the stars may present themselves in positions favorable for the solution of a difficulty.

In the present case, the doubtful points raised by the observations of 1842 have already been able to be submitted to a new experimental examination, during the last year. An eclipse of the sum was amnounced for August 8, 1850, which would be total in the Sandwich Islands. The naval captain, Bounard, in command of our station at Otaheite, was struck by the happy idea of dispatching the engineer of bridges and roads, M. Kutscyki, from the island of Tahiti to Honolulu, the capital of the Sandwich archipelago. The account which we have received from this able observer contains the following passage :-" 'The part, detached and reddish in color, which was near the northern protuberance, has appeared completely separated from the limb of the moon." Later, in the eclipse of July 28, 1851, MM. Mauvais and Goujon, at Dantzic, and the foreign astronomers of great celebrity who had gone to divers points of Norway, Sweden, and North Germany, saw, all of them, at every station, a spot, like. wise of reddish hue, which was separated from the moon's limb.

The observation of M. Kutseyki, and the concordant observations
of 1851 , puta stop without possibility of recurrence to those explanations of the protuberances which are founded on the supposition that there existed in the sun mountains whose summits extended considerably beyond the photosphere.

When it shall be rigorously proved that these luminous phenomena cannot be the effect of the inflexions which the sun's rays undergo in passing near the inequalities which border the moon's contour; when it shall be proved that these rosy tints cannot be assimilated with mere optical appearances-that they have a real existence, and are veritable solar clouds :-then we shall have a new atmosphere to add to the two of which we have already spoken, for clouds could not sustain themselves in a vacuum.*

Everyone now knows what the uncertainty is which remains as to a very special point in the sun's physical constitution. When we reflect that the phenomena which might serve to resolve all our doubts are habitually invisible and that they can only be seen during total eclipses of the sun-that such total eclipses are few in numberthat, since the invention of the telescope, the astronomers of Europe and America have hardly had the opportunity of making proper observations on more than six occasions-no one will have a right to be astonished that, in the middle of the 19th century, the question raised by these mysterious red flames, of which we have spoken so much, is yet a subject of study.

After these.examinations, of which you will pardon the length, let

[^6]us indicate in few words the series of measurements and deductions by which Science has been able to tix the sun's real place in the totality of the universe.

Archelaus, who lived 448 B.C., and was the last philosopher of the Ionian sect, said of the sun -"He is a star ; only this star exceeds all the rest in magnitude." This conjecture (for that which is founded neither on measurement nor experiment deserves no other name) was certainly very bold and beautiful. Let us pass across an interval of more than two thousand years, and we shall find the relations between the sun and the stars established by the labors of the moderns on bases which defy all criticism. About a century and a half ago, astronomers sought to determine the distance of the stars from the earth. Repeated unsuccessful attempts seemed to prove that the problem was insoluble. But what are the obstacles over which genius united to perseverance cannot ultimately prevail? We have learned within the last few years the distance which separates us from the nearest stars. This distance is about 206,000 times the sun's distance from the earth, that is more than 206,000 times 38 millions of leagues. The product of 206,000 times $38,000,000$ would too far exceed numbers we are in the habit of considering, to render it of any use to state. The imagination will be more struck by the immensity of this number if I connect it with the velocity of light. The star Alpha of the constellation Centaur is the earth's nearest neighbour, if indeed we may speak at all of neighbourhood when we are dealing with such distances as in this case. The light of Alpha Centauri takes more than three years to reach us, so that if the star were amihilated, we should still see it for three years after its extinction. When we remember that light traverses 77,000 leagues (308,000 kilometres) in a second of time, that the day is composed of $8!, 400$ seconds, and the year of 365 days, we may well stand, as it were, aghast at the immensity of these numbers. Furnished with these data, let us transport the sun to the distance of the star which is nearest to us of all, then this circular disk so vast, which in the morning lifts itself so gradually and majestically above the horizon, and in the evening takes a considerable time to descend completely below that plane, will no longer possess sensible dimension even in the strongest telescopes, and its brightness will range it among stars of the third magnitude. You see, gentlemen, what has become of the conjecture of Archelaus! We may possibly feel a little humiliated at the result which reduces
to so small a matter our place in the material world. But let us reflect that man has arrived at this result by drawing all from his own peculiar fund, and we shall recognise in this his elevation to the most eminent rank in the domain of ideas. Astronomical investigations may therefore well excuse a little vanity on our part.

Would that it were permitted to me to follow modern astronomers in their immortal career across the multitude of sums that glitter in the firmament!

We should observe them, in the first place, determining with the aid of their instruments the relative positions of these stars by cataloguing some hundred thousand of them. We know that the bilder Iliny was astonished that Ilipparchus had endeavoured to observe 1022 of them, and that he compared this work to that of a deity! We should remark in some recent works complete enumerations which would show us that the number of stars visible to the naked eye in a single hemi-sphere-the Northern-is less than 3000 -a result which is certain, but which, from its smallness, will strike with astonishment those who have vaguely examined the heavens in the fine winter nights. This astonishment would change its mature if we pass to the telescopic stat In this case, carrying the enumeration as far as stars of the fourtecuth magnitude, the last we can percejve in our most powerfil telescopes, we should find, by a calculation which furnishes only an inferior limit, a number greater than forty millions (forty millions of sums!!), and the distance of the firthest of them would be such that light would require from these to four thousand years to traverse it. We shonld then be amply authorised to say that the rays of light, these messengers so rapid, bring to us, if we may so speak, the very ancient history of these distant worlds.

I photometric investigation, of which the first hint is i, be found in the Cosmotheoros of Muyghens, undertaken by Wollaston a short time before his death, would teach us that it would be necessary to unite twenty thousand stars like Sirius, the most brilliant of the firmament, in order to throw upon our slobe a light equal to that of the sum.

Guided by the genins of Willam Herschel, we should examine the stars which are apparently in contact, and this great astronomer would prove to us that these stars, coupled together in some manner, do not merely appear to us near to each other by an effect of perspective, but are really in mutual dependence, and revolve about their common
centre of gravity in periods of sufficiently short duration, which have already in certain cases admitted of determination. Observing that these double stars are of colors very unlike, our thoughts would naturally be carried to the inhabitants of the planetary bodies, nonluminous and turming about their own axes, which to all appearance revolve about these suns, and we should remark, not without a real anxiety for the works of the painters in these distant worlds, that to a day illuminated by a red light there succeds, not indeed a night, but another day, of equal brilliancy, only illuminated by a green light. The comparisons of the positions of the stars cetermined at different epochs would prove to us that they are very improperly denominated fixed: that in fact they are in motion in space in different directions, so that in the course of tinc, the form of the actual constellations will be completely changed ; that the absolute velocities of these stars are unequal, but that the velocity in one of the cases which have been determined with entire certainty is at the rate of twenty leagues a second; lastly that the sm, like all the other stars in this respect, is not stationary, and carries in his train the family of planets with which he is surrounded. We should be struck by the unetual distribution of the stars in the calestial sphere. In one place, we should see more than twenty thonsand in an area equal to the tenth part of the moon's apparent surface. In another, in an aren of the same extent, not a simgle luminous point would be visible, even with the best telescopes.

After having cast an attentive glance at the luminous matter scattered over immense spaces, which, by its agerlomeration continued through centuries, seems capable of giving birth to new stars, we should discuss the nohle conceptions of Wright, Kant, Lambert, and W. Herschel, on the constitution and dimensions of the milky way. Finally, some steps further in conjectural astronomy-that is to say, in that brancl of the scionce which rests only on imposing probabilities and natural generalisations, there would be unveiled to us phenomena, which by their nature, or the enormity of the numbers which measure them, would cast the strongest minds into a sort of vertigo.

But let us leave these speculations, however worthy of admiration they be, to return to the main question which I proposed to treat in this note, and to try, if it is possible, to establish some commexion between the physical nature of the stars and that of our sun.

We have succeeded, by aid of the polariscope, in determining the nature of the substance which composes the solar photosphere, because,
by reason of the large apparent diameter of this body, it has been possible to observe separately different points of his contour. If the sun were removed from us to the distance where his apparent dinmeter would be inappreciable, as that of the stars is, the method would become inapplicable. The colored rays, proceeding from different points of his contour, would then be found closely mingled, and we have already it that their mivture would produce white. It appears then that we must give up the application to stars not posserssing semsible dimensions of the process which has led us so well to our grom in the case of the sum. There are however certain of these stars which lend themselves to this method of investigation. I allude to variable stars.

Astronomers have remarhed stars whose brightness changes considerably. There are some of them which pass in a very small number of hours from the second to the fourth magnitude. There are others in which the chauge of brillinucy is much more decided. Such stars, very visible at certain epochs, disappear afterwards totally, to appear anew after intervals, longer or shorter, and subject to some slight irregularities. Two explanations of these curious phenomena presert themselves to the mind. One of which consists in supposing that the star is not equally lumimous at all points of its surface, and that it has a motion of rotation on its own axis. Consequently, it appears brilliant when its luminous face is turned towards the earth, and sombre when its dark face comes into that position. On the second hypothesis, a satellite, opaque and not self-luminous, revolving about the star, would periodically eclipse it.

In reasouing on one or other of these two suppositions, the light which is sent to us some time before the disappearance or the reappearance of the star, has not issued from all the points of its contour, and there can no longer be occasion for the complete nentralisation of the tints we just now spoke of. If a variable star, examined with the polariscope, remains perfectly white in all its phases, we may be sure that its light proceeds from a substance like our clouds or burning gases. Now, such is the result of the small number of observations that we have yet been able to make, and which it will be of much utility to complete.* This same mode of investigation requires more care, but succeeds equally well when it is applied to stars which

[^7]undergo only a partial variation of brightness. The result to which these observations lead us, and which we can, I believe, generalise without scruple, can be amounced as follows :-our sum is a star, and its physical constitution is itcontical with that of the millions of suns with which our firmament is acrywhere strewn. I have beren compelled, in the duty which wan eommitted to me in the commeneconent, to give a sketeh of all our present knowledge relative to the volume, distance, and physical ramstitution of the immense globe which illuminates us. This sketch, within the preseribed limits, will be sufficient to undeerive those persons who had thought it neecessary to call in question the importanes and certainty of the resultes obtained by modern astronomers. They will acknowledge, is they are candid, that in the history of the progress of knowledge, a progress which will without doubt be unlimited, the labors of the astronomers of the nineteenth century will not pass unperceived. As to criticisms not inspired by the love of truth, they would not deserve to fix for a moment the attention of this assembly, and I think that I may, for my own part, pass them by with contempt.-Iranslated from the " Annuaire du Burrau des Longitudes pour l'an 1852."
J. B. C.

GCIENTIFIC AND LITERARY NOTES.

THE ENTOMOLOGICAL SOCIETY OF CANADA.

A meeting of Canadian Entomologists was held at Toronto, in tho rooms of the Canadian Institute, on Thursday, the 16th of A pril, for the purpose of taking into consideration the propriety of forming a society for the advancement of Entomologicai pursuits.

The following gentlemen were present:-Rev. Prof. W. Hincks, F.L.S.; Prof. H. Croft, D.C.L.; Beverly R. Morris, Esq., M.D.; J. H. Sungster, Esq., A.M.; and J. Hubbart, Esq., of Turonto. Thomas Cowdry, Eaq., M.D.; and H. Cowdry, Essq., York Mills. Rev. C. J. S. Bethune, M.A. Cobourg; and W. Saunders, Est., London.
l'rof. Hincks was appointed chairman, and Mr. Bethune Secretary pro tem.
letters of apology for non attendance were read from E. Billings, Esy. F.G.S., Montreal; R. V. Rogers, Esy., Kingston; F. Reynolds, Escy, Hamilton; B. Billings, Esq., Prescott; Rev. V. Clementi, B.A., Peterboro'; and E. B. Reed, Esq., London. These gentlemen expressed decp regret at their inability to attend, and pledged themselves to do all in their power to further the interests of the nociety.

The following resolutions were then unanimously adopted.
1st. That a society be formed to be called the Entomological Society of Ganada; consisting of all students and lovers of Entomology, who shafl express their desire to join it, and conform to its regulations.

2nd. That its officers shall consist of a President, a Secretary, Treasurer, and a Curator; to be clected annually, at the first general meeting in each year; whose duty it shall be to manage the affairs of the socicty.

3rd. That the annual contribution of members shall be two dollars, to be paid in advance.

4th. That application be made to the Canadian Institute for the use of a room in their building for the purposes of the society.

5th. That two separate collections be formed, a general one to be the property of the Canadian Institute, and a duplicate one to be the property of the society, and to consist of all surplus specimens contributed to the Society by nembers; and that all members be at liberty to exchange species for species under the supervision of the Curator.

6th. That meetings be held at $3 \mathrm{p} . \mathrm{m}$., on the first Tuesday in each month, and that special meetings may be called when necessary by the officers.

7th. That Prof. Crolt be President for the present year; that Mr. W. Saunders be the Secretary-Treasurer, and Mr. J. Hubbart the Curator.

8th. That the President be authorized to bring the subject before the council of the Canalian Institute at its next meeting.

The following papers were then read to the society :-Insect life in Canada; March and April," by the Rev. C. J. S. Methune; and a synopsis of Canadian arctidae" by W. Saunders: the latter illustrated by a complete series of specimens.

A number of interesting insects were brought to the meeting for inspection, chiefly from the collections of Dr. Morris and W. Suunders. Among others, Canadian specimens of the following were much admired. Limenitis ursula, Vanessa cania, tlellitaraycteis, M. phacton, Thecla niphon, T. mopsus, T. laeta, L,ycæna neglecta, Polyommatus dorcas, Hesperia mystic, F. wamsutta, and Pamphila numitor. A specimen of Colias eurytheme, though not itself Canadian, was regarded with great interest, from the fact that a specimen had been captured last fall, near St. Catharmes, by D. W. Beadle, Esq.

The pretty little moths, Glaucopis semidiaphana and Melanipue propriaria, were duly represented. also beantiful specimens of Aretia dione, and sphinx drupiferarum.

Magnificent specimens of Cemtocampa regalis, and Dryocampa imperialis, wero exhibited, and, although not natives, the probabilits of their being yet fonnd with us, gave them an additional interest.

Among the Colcoptera we observed some rarities; for example, Xyloryctes satyrus, Canthon chalcites, Charnius lithophilus, Colosoma frigidum, Geotrapes splendidus, Bolbocerus Iazarus, Aphonus frater, and Leptura nitens; all natives of Canada.

After a careful examination of all that was interesting, the meeting adjourned each one highly pleased with the results of the gathering.

The application for the use of a room, in the building of the Canadian Institute, for the purposes of the Society, was brought bufore the Council, by the President at their meeting, on Saturday, the 18th, when they very liberally granted it, free of expense.

The Society thus formed, will, we trust, be a prosperous one The number of Entomologists in this country is not large, but they are amply sufficient to sustain an organization of this sort. The advantages the Society offers to its members are not by any means small. The general collection will be open to all for murposes of reference and comparison, and will thus afford valuable opportunitios to those who wish to name their specimens; while the cabinet of duplicates will offer means of exchange with all parts of Camada. It is intended that duplicate copies of Entomological prpers published by those connected with the Society shall be left with the carator for distribution among members. It is probable, also, that as soon as the funde will permit an Entomological library will be added to the other athactions in the socrety's rooms: and that a stock of pins will bo purchased from which members may obtain supplies at cost price.

That the meetings of the Society may be made as interesting and attractive as possible, it is desirable that members from a distance would furnish short monthly records of interesting captures in their localities, accompanied, where convenient, with specimens of the insects spoken of.

All lovers of Entomology may become members of the Society by remitting the smount of the yearly subscription to the Secretary-Treasurer,

Wharam Satndris, London, C.W.

THE GORILLA.

During the last meeting of the British Association at Cambridge a smart attack was made upon Professor Owen's views respecting the importance of the characters of the brain in men as distinguishing him from the monkeys as well as from inferior animals, by Professor Huxley, supported by Professor Rolleston and Mr. Flowers. It is known to all students in \%oology, who attempt to keep uy with the times, that Professor Owen some time since proposed an improved arrangement of Mammalia, in which the leading divisions are made to depend on the degree of development of the brain. In this system there are four primary divisions; one of which is occupied by man alone, whilst in the second the Quadrumana (the ape and monkey tribe), with the Carnivora and other important tribes of Mammals, form an extensive group. The tabular view of Professor Owens plan was given in this Jouraul at the time of its pubication, and may he referred to by our readers. Professer Huxiey immediately called in question the importance, and, to a certain exteat, the reality of the distinctiona drawn by Owen, and a controversy has been carried on for several years. On the present occasion Professor Owen brings before the Natural History section of the association a paper entitled, "On the \%oological significance of the Brain and Limb-characters of Man, with remarks on the cast of the Brain of the Gorilla." The main object of this paper is to justify the system previously proposed by a further exposition of the difiereuces between the Human brain
and that of the Quadrumana, as seen in its highest form in the Gorilla. In a paper published as an appendix to his lecture on Sir Robert Reade's foundation, delivered before the University of Cambridge in 1859, Owen had fully given his reasons for contimuing to place the Ourangs above the long armed apes, and for regarding the Gorilla as the highest known development of Quadrumam. He now, therefore, by means of a cast from the interior of the Gorilla's skull, brings the brain of this anmal, which may be taken as the nearest approach to man, into direct comparison with the Human, and he considers the result as contirming bis prerious conclustons. "In the brain of man the posterior lobes of the cerebrum overlap, to a considerable extent, the cerebellum; whereas in the Gcrilla the posterior lobes of the cerebrum do not project beyond the lobes of the cerebellum. The posterior lobes in the one are prominent and well-marked, in the other deficient. He had placed man-owing to the prominence of the posterior loves of his brain, the existence of a posterior cornu in the lateral ventricles, and the presence of a hippocampus minor in the posterior cornu, in a distinct subkingdom, which he had called Archencephala, between which and the other members of the class Mammalia the distinctions were very marked, and the rise was a very abrupt one."

We know not whether Professor Owen availed himself of the cast of the Gorilla's brain, not merely to confirm a previous argument, but specially to invite the renewal of an old controversy; however this might be, in the assembly he addressed he must certainly have anticipated opposition, and this was offered with less of moderation and respectful consideration than a sense of decorum seemed to demand We refer especially to the renarks of Professor Rolleston, though Professor Huxley's observations had enough of rehemence. He commenced with a very just remark that "the question was partly one of facts, and partly one of reasoning." The question of fact was, what are the structural differences between man and the highest apes? The question of reasoning, what is the systematic ralue of those differences?" But there are difficuities here. A large proportion of those who are interested in such inquiries, and snow bow to appreciate ovidence brought before them, have never, or very seldom, had the opportunity of examining the irain of any monkey, or even in favourable cases have seen for themselves a very small variety. They must, therefore, receive the facts from others, and if those on whose knowledge, skill, experience, and intention to make known the truth they most rely, flaty contradict one another on the most essential points, what becomes of the foundations of their belief, or with what advantage can they proceed to reason on the application of facts themselves alwgether uncertain?

Here is Professor Huxley's statement as reported : "Professor Owen had made three distinct assertions respecting the differences which obtained hetween the brain of man and that of the highest apes. He asserted that three structures were 'peculiar to and characteristic' of man's brain-these being the 'posterior lobe,' the 'posterior cornu,' and the 'hippocampus minor.' In a controversy which had lasted for some years, Professor Owen had not qualified these assertions, but bad repeatedly reiterated them. He, (Professor Huxley) on the other hand, had controverted these statements: and affirmed, on the contrary, that
the three structures mentioned not only exist, but are often better developed than in man, in all the higher apes. He now appeated to the anatomists present in the section, whether the universal voice of continental and British anatomists had not entirely borne out his statements and refuted those of Professor Owen."

Tha is very stoong langtiage. As to certain anatomists present, no doubt the learned protessor knew that he could rely upon them to support his views, but we are exceedingly mistaken if their verdict would be confirmed by the great body of those conversant with the facts. At all events, those who aro obliged to take their data from others find, in this case, that, respecting matters of fact, two of the very highest anthorities are directly opposed; and upon what are they to rely? They may, indeed, renember, as accounting in some degree for the different perceptions of the observers, that Professer 0 wen believea in the reality and permanence of species, atd regards the various degrees of development of the nervous system as likely tu furnish the most impertant of all characters; whilst Professor Huxley warmly defends the Darwinian theory respecting the origin and changes of species, and professes to regard the superiority of man to other animals as independent of structural differences. The former, in studying the brains of the animals nearest to man, would be watchful for good distinguishing characters, and acutely sensible to any which presented themselves: the latter would look at the same objects to search for analogies, and to find out the course of transition from oue structure to another. We cannot but think that much of the difference in this case is, not as to what is actually seen, but as to the importance and real meaning of the appearances; and we must add that Professor Owen's view is strikingly confirmed by the gradations in the Mammalian brain throughout the lower forms, the extension of the cerebral hemisphere anteriorly, and still more manifestly posterionly, being the invariable accompaniment of every elevation of structure.

Protessur Rolleston, in professing to specify the real differences between the brain of man and that of the apes, which he accused Owen of neglecting, points out, from Gratiolet, striking particulars of real importance, though not what Owen had taken for the character of his Archencephala, but the assumption that Owen was ignorant of or neglected these particulars because they did not enter into his differential character, for which purpose they were not well suited, is most unfair. The preseuce of gyrations on the brain is assumed by him as the distinction of his sccond great division, being thus taken as a sign of more advanced development than when these gyrations are absent, the natural conclusion being that they would be still more fully developed in the higher division. And-this was even expressly stated by Owen, as in his Cambridge lecture, in 1859, where he concludes his character of the Archencephala in these words: "The superficial grey matter of the cerebrum, through the number and depth of the convolutzons, attains its maximum of extent in Man." Besides all this Professor Owen was able to repel the charge of overlooking this peculiarity by referring to his lectures on the convolutions of the brain, delivered " almost at the very time. when Leunet wrote his memoir on the subject," and the diagrams of which are still in the Muscum of the Royal College of Surgeons. Withont neglecting or andervaluing other accompanying signs of higher de-
velopment, which all contirm his view, lrofessor Uwen twok the posterior enlargement of the cerebral hemispheres so as to cover the cerebellum, with the other characters above noted in connexion with this, as forming the best technicat distinction of that highest Mammalian group which he named Archencephala, He insists on the reality of the character and contends for its importance. As to the matter of fact, with directly opposing testimony where wifful falsehood cannot be attributed to cither party, it is not always easy to find out the truth, but the deliberate assertion of one of the ablest observers and perhaps the most experienced of his time, supported by figures professing to we carefully taken from nature must have grent weight, and it seems probable that the counterstatements of some very eminent men are due rather to difference of expression and interpretation than of simple fact.

Taking a general view of the whole subject it is antecedently probable that the comparative development of the brain should furnish the most important characters and no one can reasonably doubt the practical result of Owen's system being a great improvement in the natural arrangenemt of Mammala. In the case of the Lyeucephala the peculiar character of the brain corresponds with a lower type of the reproductive system and the section is unquestionably natural. In respect to Gyrencephala and Lissencephala the difference in the character of the brain is very striking and the groups thus associated are felt to be natural, uur are the exceptions more numerous on either side than are always to be expected in the way of special modifications and transition forms where we are obliged to place objects according to their affinities, though departing from technical characters. Now we are noue of us perhaps disposed to consider the difference between man and the highest Gyrenzephata as less than that between these and the Lissencephala. In some way we feel sure that the human race is elevated above all other creatures, and as in all other known instances superiority is connected with special development of the brain, that is what we have to expect here; as in other instances the enlargement forward, backward, and by gyrations of the cerehral hemispheres is the test of elevation of structure, so here it is what we are led to expect. We know that in the human bram, even in the lowest varieties of our race, the postcrior cerebral lobes cover and even pass beyond the cerebellum. Whe are assured that even in the bighest section of the Quadrumana, which must be admitted to be on the whole nearest in structure to man, this is never the case. We have thus a character drawn from the structure of the brain, confirmatory of all other reasens for assigning to man that elevation in a \%oological system which in other ways we know him to possess, and it is really easier to suppose that some ingenious and able men are led away by theoretical prepossessions in their mode of estimating and expressing what they see than to question the direct testimony of one who has done wore for the comparative and theoretical anatomy of the Vertebrate sub-kingdom than any of his contemporaries and has himself dissected the brain of at least one species in nearly every genus of Mammals, when what he tells us is probable in itself and agrees with many important statements by others. Until we obtain better cvidence we must for ourselves adhere to Owen's views and believe the facts he records. Some of our readers may have smiled
at Cbarles Kingsley's witty application of the Darwinam theory in his Fairy tale of the Water babies. His moral is an excellent one, but neither men passing into apes, nor apes passing into men, accord with our ideas of the position given us by our Creator. We cherish the belicf in an essential and permanent structural distinction, and Owen's account of its mature, if not truc, is very phasible, and is certainly not yet shewn to be false.
W. II.

AURORAL AROH OF APIIL 9 mm .

A very remarkable auroral phenomenon was recorded at the Magnetic obser. ratory, Toronto, on the night of A pril 9 th.

About 8 P.M. a bright luminous band of extraordinary hrilliancy was observed extending from E.S.E. to W.S.W. through or a little to the South of the \%enith. The band was at first stationary with an uniform wilth of about 3° or 4° and with well defined edges.

At 830 luminous lines without any apparent movement were obse:ved to fringe the northern edge through about 15° of its length on eacl. sude of the zenith. The fringe thus formed tapered off to pointe at both extremitics, the width of the centre being about 7°.
At the same time the southern edge, from its eastorn extremity to about 20° west of the \%enith, formed the boundary of a fringe of small streamers ascending upwards from the sonth, and which on reaching the arch were deffected so as to form in appearance the material for the supply of a mass of luminous clouds which rolled tumultuously along the track of the band with enormous rapidity. The motion as far as the eye could judge consisted in a transfer of luminous matter and net as on ordinary occasions in uadulations or pulsations, a circumstance constituting the chief peculiarity of this displi:y.

From 9 to 930 when the arch was contracied in its length about, 0° at each extremity, the rays on the aortbera edge had disappeared, and the streamers were limited to the eastern extromity, but there was nc abatement in the mass or velocity of the luminous torrent. The arch then became irregular in its form ; by 940 it had disappeared, but returned again in a less acveloped state and continued from about midnight till 2 a.m., when it ceased.

A magnetic disturbance was going on during the earlier part of the display, which ceased with the departure of the arch and recommenced with its reappearance. The extent of the disturbance, in harmony with what commonly occurs during the presence of bands at right angles to the magnetic meridian, was much less than in the case of auroral movements emanating from the north.

The Rev. Vincent Clementi of Peterborough writes that the arch as seen by him appeared first in the north, simultaneously with and appareatly forming part of the aurora; that it disconnected itself with the aurora and passed onward with great rapidity until it crossed the zenith, where it remained stationary in the south stretching eastward and westward, streamers or rays breaking from it through the whole extent of its southern edge. The form of the band according to a sketch which he has kindly forwarded was uct precisely the same as that seen at Toronto being much wider at the centre and converging
to a point at both extremitics, with a secondary band with its western extrenity coinciding with that of the primary and with its eastern extremity immediately under its centre. He further states that the arch was of such extreme tenuity that stars shone throngh it with seemingly no diminution of their brilliancy.

The chief points of difference between the phenomena at the two places consist in the tenuity of the luminous matter as seen at Peterborough, the circumatance that there the streamers proceeded from instead of into the arch, as at Toronto, and that Mr. Clementi makes no mention of the apparent transfer of the luminous matter which here formed the chief peculiarity.

Luminous arches extending through the zenith in a direction pernendicular to the meridian, though not an ordinary accompaniment of the aurora, have been noticed before at Toronto and elsewhere, though rarely attended with the peculiar appearances which marked the display of April 9 th.

G. T. K.

NOTE ON TBE SPECIES MONOHAMMUS.

To the Editor of the Canadian Naturalist.

In the December number of the Canadian Naturalist Mr. Billings has described some of the pine-boring beetles of Canada, of the genus Monohammus, and mentions that the M. titillator is cited by Mr. Couper and Mr. Ibbetson as occurring at Toronto, but is of opinion that the insect described is the M. confusor.

I can confirm this idea of Mr. Billings, as the insects in my own collection and in that of Mr. Ibbetson were named on reference to Harris' work. The description agrees very closely with the reddish brown specimens mentioned by Mr. Billings as haring been obtained from Toronto, where from my own observations they seem to be much more common than those of a cinereous tint.

Moreover the drawing of Monohanmus titillator in Olivier's work agrees very well with these specimens. Those in my collection are mostly of the same size as the M. confusor and generally a little more robust, but are probably only a variety. The M. scutillatus is moderately common about Toronto, but the M. marnoratus quite rare ; the latter easily distinguished by its smaller size, ita rugosely punctured thorax, and the elytra mottled with brown and grey.

In my collection there is also a crippled specimen very like M. scutillatus but the elytra are covered with large white spots, in this respect resembling Leconte's AI. fatuor, which however is now referred to M. marmoratus.

In the recent edition of Harris' work the name titillator is still employed.
H. C.

ON GROUND-ICE, OR ANCHOR ICE, IN RiVERS. BY PROFESSOR JAMES THOMPSON.

In this paper the author described the two principal modes of growth of ice, in still water and in running water. In still or slowly moving water the ice forms itself as a crust on the surface, because, as the water cools from about
$40^{\circ} \mathrm{F}$. down to the freezing-point, it expands, and therefore becomes lighter, and remains floating at the surface, and then, on freezing there, it expands still further, and therefore still more tends to float. In rapidly-moving river water, on the contrary, and especially nt the foot of rapids, ice is often found to grom attaching itself to the rocks or stones forming the bed of the river, as a spongy or porous mass, which, seen in the aggrecrate and not examined minutely, presents a gencral appearance not mulike the spawn of frogs. In large rivers in cold climates, as, for instance, in the St. Lawrence, immense quantities of this ice, called ground or anchor ice, are found to accumulate with astonishing rapidity. These accumulations of ice, by damming up the water, cause great floods, and by yiclding to the force of the water, and moving down with the current, especially after they have become jammed and heaped up with other ice formed on the surface, act in producing very striking geological effects in distarbing the bottom and banks of the river, and in shoving along huge boulders which otherwise would remain immoveable. The ground and surface-ice also, by their shoving-action, introduce formidable difticulties and dangers in the construction of bridges or other enginesting works requiring to be founded on the beds of rivers in cold climates. In the construction of the Great Victoria Bridge across the St. Lawrence at Montreal (the most costly bridge which has ever been executed), these difficulties have been successfully overcome, and a structure has been raised which is likely to stand secure against the muchdreaded forces of the ice. On account of the tendency both of water approaching to the freezing-point and of ice to float, it has long been regarded as rather a singular circumstance that ice should ever be found growing at the bottom of a river. From among the many suggestions which have been offered at various times to account more or less completely for the phenomenon, the author sets out by accepting as quite correct the view that the essential difference between the circumstances of the freezing of lake and river water is, that in the former case the water is left undisturbed to the action of the cold, and is allowed to adjust itself in strata in which the coldest parts, being also the lightest, float to the top; while in rivers the whole water is, by mixing, due to its rapid flow, brought to an uniform temperature at the freezing-point from top to bottom, and is thus brought into a condition in which it is ready to freeze at any part where additional cold may be applied. He is not, however, satisfied with any of the numerous suggestions which have been offered to account for the growth of the masses of spongy ice at the bottom, rather than that the ice should be found at the top, or in a state of mixtnre with the water throughout its depth. Some, for instance, have thought that radiation from the bottom to a cold shy (see paper by the Rer. James Farquharson, Philosophical Transactions, 1835) would cause ice to grow at the bottom of the river much in the same way as hoar-frost grows on land. Arago, having rejected the supposition of radiation being the cause, assigned two other reasons: first, that there might be expected to be a peculiar aptitude to the formation of crystals on the stones and asperities at the bottom, like as there is found to be a special readiness for the formation of crystals on rough bodies in saline solutions; and secondly, be supposed that the existence of less motion of the water at the bottom would favour the growth of the crystals there. As against this view, the author of the present paper Vol. VIII.
pates, first, that the weter of a rapid river when freezing has abundanee of amall spicula or fragments of ice foating diffused thromgh it, erery one of which offers at least as free a point for the reception of new ice crystallizing from the water as can be presented by asperities on the botoms: and secondly, that the slower motion at the botiom would not favour the occurrence of freezing of new ice there rather than at the top, but that, on the contrary, if effects on the tendence to crystallization are to be sought for in such a slight cause, it should rather be taken that the greater fluid friction at the bottom, and the heavier pressure there, are causes slightly, but certainly very slichtly, tending to oppose the freezing of new ice at the bottom.

Mr Hodges, the engineer of the contactors for the grent bridge across the St. Lawrence at Montreal, in his large and valuable work recently published (in 1880) on the construction of that hridge, descibes the ice-phenomena or the St. Lamrence, which he had been obliged during many years to watch and inquire into with anxious care: and in respert to the origin of the ground-ice, he supposes that the water in passing down rapids may become aerated by the rapidity of the current, and that particles or globules of cold air, being whirled hy the eddies till they come in contact with the rocky bed of the river, attach themselves to it, and there give ont cold which they have brought with them from the very cold atmosphere above, and so induce the freezing of ice around themselses in adhesion to the bottom of the river. As against this speculation, the author of the present paper states that the cold which could be conveyed down into the water by smal! bubbles would be totalls inadequate to produce the results in question, and that any recezing which small buhbles of air could produce rould occur during the period of their eddying about through the water, rather than at a later time, when their temperature would be assimilated to that of the water. The author's view, which it was the chief object of the paper to present, is that crystals or small pieces of ice are frozen from the water at any part of the depth of the stream, whether the top, the middle, or the bottom, where cold may be introduced either by contact or radiation, and that they may be supplied in part by snow or otherwise; and that they are whirled about in currents and eddies until they come in contact with any fired objects to which they can adhere, and which may perhaps be rocks or stones, or mas be picces of ice accidentally caught in crevices of the rocks or stones, or may be ground-ice already grown from such a beginning. The growth of the ice by adhesion of new particles formed elsewhere he attributes to the property of any two pieces of moist ice to adhere when brought into contact, wh ch has been a subject of much discussion of late years, and of which the quthor's views are 10 be found in various recent papers in the 'Proceedings of the Royal Society, and have also been submitted from time to time to the Belfast Natural History and Philosophical Society. He is confident that the anchor ice is not formed by crystallization at the place where it is fou:d adhering. He is aware that the idea has sometimes been mooted, that snow falling into rivers might somehow be converted into anchor ice; but he is not aware that hitherto any explanation has been offered coupling the formation of the anchor ice with tise property of ice now commonly designated as "regelation," but which until late years was not rery generally known or understood, more especially as a pro-
perty cupable of bringing about the union of small pieces of ice floating treely under water : and the mode ofogrowth of ground-ice is, he believes, as yet commonly regarded as au unsettled point, no opinion ottered having received vers decisive or general "ssent.—Proceedings of the Buffinst Natural History and philesophical suculy, May i, 1N6?

DRY COLLODION PROCESS IN PHOTOGRAPHY.

Mr. Sutton claims to have discovered a process with dry plates which gives all the rapidity and keeping properties of the well-known trade secret of Dr Hill Norris. The followng account is extracted from the "Photographic Notes" Oct. 15, 1862.
The problem which has most interested photorraphers of laie years has been the discovery of a dry collodion process, by which plates can be prepared as sensitive as with wet collodion. In the wet process the negative bas to be taken and finished upon or near the spot from which the view is taken, and with wet collodion the tourist is therefore obliged to work in a van or tent, and carry a load of paraphernalia about with him, which is of course both expensive and inconvenient. To avoid this he is compelled to work with dry plates, and hitherto no process bas been published by which dry plates can be made ay sensitive as wet ones. A rapid dry process has therefore been an important subject of investigation to photographers, because during a long exposure of a plate the shadows move, and figures sometimes alter ther position. A man or borse, for instance, are likely to remain still for a few seconds, but not for tea minutes.
I have lately solved this problem of rapid dry collodion, aud produced dry plates as sensitive as wet ones, which will moreover preserve their sensitiveness and good qualities for several weeks, and yerhaps indefinitely. This process, and the principles upon which it is basen, I will now briefly describe.
The rapidity of this dry process depends upon the accelerating effect of bromine in dry collodion, and in this respect an anology exists between the Daguerreotype and dry collodion processes. In the former a silver plate simply iorized is extremely insensitive, but when submitted to the fumes of bromine its sensitiveness is increased a hundred-fold. The same thing happens in those collodion processes, wet or dry, in which the free nitrate of silver is washed out of the film. A collodion film simply iodized, and without free nitrate, is a insensitive as an iodized Daguerreotype plate, but a bromo-iodized collodion film without free nitrate may be rendered as sensitive as a bromo-iodized silver plate. In the wet collodion process the most exalted sensibility is conferred upon a simply iodized film by the presence of free nitrate of silver; but you cannot retain free nitrate in a dry collodion film because it not only crystallize: on drying, but by becoming concentrated as the water evaporates, dissolves the iodide of silver, and forms a curious and interesting double salt, the exact properties of which have not yet been fully investigated. You cannot even retain a perceptible trace of free nitrate entangled in a dry collodion film without introducing an element of instability, and consequent uncertainty in your work. The principle therefore of preparing a rapid dry collodion plate consists in using
bromo-iodized collodion, and removing all the free nitrate, which is the element of instability.

But the image produced upon a bromo-iodized silver plate, developed with mercury, is extremely thin and superficial, as may be proved by transferring it to a sheet of gelatinizea paper. And similarly, the image developed by pyrogallic acid upon a dry bromo-iodized collodion film is thin, ar.d too transparent to yield a good printing negative. It is necessary therefore to apply to the film a coating of some organic substance, in order to give density to the dark parts of the negative. Many substauces have been employed for this purpose, viz., gelatine, metagelatine, albumen, various syrups, gum arabic, infusion of malt, tannin, \&c, \&c.; and experimenters have, almost without exception, exhausted their ingenuity in varying these preservative coatings, as they are called, instead of seeking in the use of bromide for the true accelerating agent. The preservatives named have not all the same effect, and besides affecting the sensitiveness of the film they also determine the color of the finished negative, gelatine and gum giving a black, tannin a red, and albumen a yellowish color to the deposit in the dark parts. Much therefore depends upon the selection of a proper preserrative, when the most exalted sensitiveness is required.

Oae more difficulty remained to be overcome, and it is this. When a collodion film has once been allowed to get dry, and is retted a second time, it is very liable to split and leare the glass: or if a preserrative bas been applied to it, it is very liable to rise in blisters, which spoil the negative. But this may be prerented by giving the glass plate a preliminary coating of india-rubber dissolved in Kerosolene.

The operations in the rapid dry process are therefore as follors :-

1. Clean the glass plate, dry it thoroughly, and apply to it a solutiou composed of l-gr. of india-rubber dissolved in an ounce of Kerosolene.
2. Coat the plate thus prepared with bromo-iodized collodion containing an equal number of atoms of iodine and bromine, added in combination with cadmium. There should be about 5 -grs. of mised iodide and bromide of cadmium to the ounce of collodion.
3. Ezcite the film in a bath composed of 30 -grs. of pure recrystallized nitrate of silver, slightly acidified with nitric acid.
4. Wash off all the free nitrate of silver, and pour over the film a preservative composed of $25-\mathrm{grs}$. of gum arabic freshly dissolred in an ounce of water. Let it dry spontancously, and before putting the plate into the dark slide, dry it again thoroughls before a bot flat iron.
5. Give the same exposure as for wet collodion.
6. Develope the picture by first wetting it with distilled water, and then poriring orer it a dereloper consisting of $1-0 z$. of distilled water, $2-\mathrm{grs}$. of pyrogallic acid, 2 scruples of glacial acetic acid, and a fer drops of a reak solution of nitrate of silver. The image appears immediately, and very soon acquires the necessary intensity
7. Fir the negative in the usual way with a saturated solution of the byposulphite of soda or lime, and mben dry varnish it with spirit rarnish.

Negatires taken in this way are equal in every respect to those taken upon wet collodion plates, and the process is as simple as any of those which are now employed for slow dry plates.

328

[^0]: *See Todhunter's " l'lane Trigonometry."
 vor vitit

[^1]: - At the present day th:s hypothesis finds even still less favor. We shall see presently that the argument for tho existence of this dark central body is inconcibive. and is opposed to more recent experiments. All the flebomena comected with the spots call be satisfactorily explained on the supposition that they are cloudy masses floating in the sun's atmo. sphere ; of the reality of whel clouds the subsequent remarks of the author leave no donbt. -(Trans.)

[^2]: - The incandescent bodics of which the licht emitted under different angles has been examined with the polariscope, are the followine: solids, forged iron and platinun; liquids. melted iron and fused slass. According to these experiments, some one may say, youl have a right to sflim that the sun is neither melted irou nor fused glass, but what anthorines you to

[^3]: generalise? 'This is my answer: according to the two only explanations that have be en given of the abmormal pularization presented by the rays emitted uuder small anzlec, the rosults ourlit to be the same in all respects, except that of magnituke, whatever be the liquid examined, provuded that the surface of emergence has a semitherefleting power. The ouly case of "xreption might be that of an incandescent undy whirh should be, as rearards density, analownt a a sas, as, for example, the fluid of an almost ideal rav:ty, which many geometers have been led to pace hypotiontically at the extreme limit of our atmosphere, where the phenomelia of polarization and color might possibly disapmear. I am mot ignorant that I shouhd add weycht to the resul.s mentioned on the text, by dionosing then in a photometrio point of view. I possess all the materials for such an exammatom, but thes is not the place th devilop. them. I will, however, here anticipate a difficulty. It ousht to be remarked that the likits proceedine from two liquid substances may, arcordme to the xpecial nature of these substances, not be dentical as regards the number and position of the dark lanes of Framhoter, which oecur m their prismatic nectra. These differences ate of a kind to be considerably angmented by the diferently constituked atmospleres wheh the rays have traversid before reachmis the oberver.-(Authur's note.)
 The experiments spoken of in the - . xt and note have been objected to as inconclusive, by M. Kireloff. on the gramd that h. liquids there cxammed were mastate of rest. If their surfaces were in much agitation, a, that of the sun munt duhtlens be, the ray, would be cmitted at all an- les, and every trace of polarization would prolably disapprar. In addition to thes, it may be remarhid that Aravo takes no areomit of the pomonhe effect which might be produced on the rays by passing through the sua's atmosphere-('Trans.)

[^4]: * Scheiner's claim to the discovery is doubtrul. Johm Fabricins and Galileo were the first observers of them, nearly contemporancously, and Harriott also, a little later, mado the same obscrvations independently.-(Trans.)

[^5]: * If $2 b$ be the length of the jet, considered as a luminous line, and h the distance of an illuminated small area from the centre, the ratio of the intensities of the illumination in the two cases will be as $\sqrt{ }\left\{1+\frac{b^{2}}{h^{2}}\right\}$ to $1-\frac{b^{2}}{h^{2}}$ which if b be small compared with h is seusibly 1 . (Trans.)
 + We may add hero the curious discovery of Mr. Nasmith, that the surface of the sun is mottled with an enormous number oflens-shaped or willow-leaved figures, disposed without the least attempt at symmetry. Also the fact of the decennial period of a maximum occurrence of the solar spots, and its coincidence with a corresponding maximum is the disturb. ance of the terrestrial magnetisin due to the sun.-(Trans.)
 \# The recent rescarches of MM. Kirchoff and Bunsen, on the prismatic spectrum, which have led to the most beautiful discovery of modern times, have thrown an unexpected light on the question here disussed by Arago. The following brief resume may be excused. The light proceeding from incandescent bodies, whether solid or liquid, gives a continuous spectrum when refracted through a prism, but when a flame in which such substances are volatilised is examined, the spectrum is found to be crossed by a number of bright lines of different colors, the number and position of such lines for each distinct substance being always the same. When a pure light is transmitted through such a flame, so as to overpower it, the bright lines become replaced by dark ones in the same positions. Now, when the solar beam is examined, it is found to be crossed by dark lines, which occupy the known places of the brizht lines of various substances. It is thence inferred that the light of the sun proceeds from an incandescent solid or liquid body, and has passed througin a vapor in which these substances are volatilised. Amoug the substances thus detected are sodium, lithium, iron, calcium, magnesium, chrome, nickel, cobalt, barium, copper, zine, besides very many yet undetermined. Hence we are led to reject the lispothesis of Arago, (or rather of W. Herschel) and to adopt the more obvious supposition, that we really see the incandescent body of the sun through a trausparent atmosphere, of considerable extent and feeble illumination, in which many known terrestrial substances exist in a state of vapor--(Trans.)

 Vol. VIII.

[^6]: - In order that these clouds might sustain themselves in a varuum, it would be necessary that the centrifugal force arising from their circular motion should be at each instant cqual to the gravitation which would tend to make them fall to the sum. It would be necessary to trausform them into actual planets revolving about this body with an extreme rapidity. Such is, in substance, the explanation which M. Babinet has given of the protuberances of 1842, at the mecting of the Acade ny of Sciences, on 16 February, 1816. The reader will see, in the memoir of the learned academician, the ingenious considerations on which this theory reposes, and how it may be connected with the cosmogonic system of Laplace. I believe, now that the phenomenon has been minutely observed, that JI. Babinet will find more than one difficulty in reconciling the inmense velocity which he is forced to assign to the matter of those protuverances, with the relative immobility of those which were obser ved in 1851 , and the chanje of height which they presented. These difficulties disappear when the spots are assimilated to clouds, floating in a solar atmosphere which has a rotatory motion of small rapidity. I would besides remark that the existence of this third atmosphere is established by phenomena of an altogether different kind, namely, by the comparative intensities of the rim and centre of the sun, and also, in some respects, by the zodiacal light which is so visible in our climates at the time of the equinoxes. But the question considered in this point of view would require details that 1 an forced to omit.-(Author's note:)
 The existence of an atmosyhere extendine beyond the visible photusphere is cortainly proved by its actual appearance in the shape or a corona or ring of light, which is seen to surround the sun during a total eclipse.-(Trans.)

[^7]: - I am not aware that these experiments have been successfully prosecuted, but the method of prismatic examination of Kirchoff and Bunsen, alluded to in a previons note, has beon applied with success to various stars, and has resulted in similar conclusions to those drawn in the casce of the sum.-(Trars.)

