The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checkect below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or faminated/
Couverture restaurée et/ou pelliculcé

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-Etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le citre de l'en-téte provient:

Title page of issue/
Page de sitre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Fin the termadian dournal

FIG. 20

FIG 19
Section un line C.D. Frg. 1H.

FIG. 17
Section on line G.H. Fig. It.
rlay

ETG. 16

TORONTO, APRIL, 1854.

Meteorg and Fallingostare
Read before the Canadian Institute, February 4th, by T. Henning, Esq.*

SHOOTING-STARS.

The more important questions relating to shooting-stars, are the smaller size of the meteols, their infinitely greater frequency, the arcs they describe, their divergence or point of departure, their frequent occurrence in showers, and the periodicity of certain of these phenomena. We can touch but very slightly upon any of these interesting points. Falling-stars are distinguished by most observers into those that fall separately and in small numbers, and those that come in swarms or showers of many thousands. The former are said to fall eporadically; the latter which the Arabian writers compare to swarms of locusts, are periodic in their visits and move in streams, generally in a parallel direction, proceeding from one or more points of divergence. Olbers gives five or six as the mean number of meteors which can be reckoned hourly in the range of vision of one person on ordinary occasions; Quetelet gives eight. Julius Schmidt, of the Bonn Observatory, an observer long accustomed to astronomical accuracy, states in a letter lately written to Humboldt, that the mean number of sporadic shooting-stars observed in an hour on ordinary occasions is from four to five. Of the periodic meteors, there may be expected on the average in each hour above thirteen or fifteen. The most remarkable of the periodic falls are those which occur from the 12th to the 14th November, and on the 10th August, the festival of St. Lawrence, "whose 'fiery tears' were noticed in former times in a Church Calendar of England, no less than in old traditionary legends, as a meteorological event of constant occurrence." Although several remarkable falls on the night between the 12th and 13th November had been noted, such as the splendid ane in 1799, described by Humboldt, and which had been seen in America from the equator to New Herrnhut in Greenland (Cosmos, vol. iv., p. 216), also in $1818,1822,1823,1831$, and 1832, still, the connection existing between these falls and the recurrence of certain days was unthought of. The magnificent shower of 1833, when the stars fell "like flakes of snow," 240,000 having fallen during a period of nine hours, and was visible from Jamaica to Boston. Similar streams, of somewhat less intensity, were observed in the United States in 1834, 1835, and 1836, of which very interesting accounts are given in the $27 \mathrm{th}, 29 \mathrm{th}$, and 31st volumes of Silliman's Journal, by Olmsted and Palmer, of Yale College, who were perhaps the first to detect the periodical character of this fall. The next most celebrated fall is that of the 10 th of August. The frequency of meteors in the month of August was noticed by Muschenbroek as early as 1762 , but their periodic return about St. Lawrence's Day was first shown by Quetelet, Olbers, and Beuzenberg. Several other periods, however, have since been added to this number, making the list stand thus:-
$J_{\text {ANoARy }}$: between the 1 st and 3 rd . (Somewhat doubtful.)
April: 18th or 20th. (?) (Arago was the first to call attention to this as a recurring phase. Great streams: 25th April, 1095; 22nd April, 1800 ; 20th April, 1803.-Cosmos, vol. i., p. 125-6.)

[^0]Vol. II., No. 9, April, 1854.

May: 26th. (?)
July : 26th to 30th. (Quetelet: maximum properly between the 27th and 29th July.)
Avaust: 10th. (Muschenbroek and Brandes.)
October: 16th to 18th, according to Professor Lowe; 19th, and the days about the 26 th, says Quetelet.
November: 12th to 14th; very seldom the 8th or 10th.
December: 9th to 12 th; but in 1798, according to Brandes' observation, the 6th and 7th; Herrick, in New Haven, 1838, the 7th to 8th; Heis (Aix la Chapelle), 1847, the 8th and 10th.

Eight or nine epochs of periodic meteoric streams are thus recommended to the attention of observers.

The hourly variation in the number of stars observed to fall during the night is a very remarkable thing, and one very diffcult to account for. A very important paper upou this point was presented lately to the Institute at Paris, by M. de Coulvier Gravier, a plain country gentleman, who has devoted thirteen years to the study of falling stars, with the view principally of being able to predict therefrom the changes in the almosphere. By the advice of M. Arago, be commenced in 1840 to keep a journal, which, by the personal co-operation of the celebrated astronomer Saigney, has been rendered a valuable acquisition to astronomical science. From 1841 to 1845,5312 shooting-stars were observed in 1034 hours. An analysis of these observations prove that they appeared, with slight exceptions, in increased numbers as the night advanced towards morning. The number seen hourly stand thus:

From	6 to	clo			$8 \cdot 1$
"	7 to 8	"	"		$4 \cdot 5$
"	8 to 9	،	"		$3 \cdot 7$
"	9 to 10	،	"		$4 \cdot 10$
"	10 to 11	،	"		$4 \cdot 5$
"	11 to 12	،	"		5.0
"	12 to 1	"	a.m.		$5 \cdot 8$
"	1 to 2	"	"		$6 \cdot 4$
"	2 to 3	"	"		$7 \cdot 1$
"	3 to 4	،	،		$7 \cdot 6$
"	4 to 5	،	"		6.0
"	5 to 6	"	"		$8 \cdot$

His observations between the 10th and 11th August, 1853, correspond with this. The hourly number of stars seen by him on the 9 th was 49 , and on the 10 th 56 . Between 9 and 10 o'clock p.m. on the 9 th he saw 36, but between 1 and 2 a.m. 56. Between 12 and 1 o'clock on the night of the 10th-11th, 78 were seen, and 88 from 1 to 2. The direction was quite uniform, the radiant being near Cassiopeia. Mr. Herrick, at New Haven, on 10 th August, 1853, saw from 12 to $3 \frac{1}{4}$ o'clock, 388 stars, being 110 from 12 to 1,115 from 2 to 3 , and 44 from 3 to 3.25 . Apparent radiant place did not change its position among the stars. Another result of M. Gravier's tables is the fact that the light of the moon does not efface more than three-fifths of the aggregate number of the stars thus seen. Again: while shooting stars appearing in the north of the hemisphere are not so numerous as those from the south, it is the same with the stars from the west as compared with the abundance of their appearance in the east. M. Gravier also ascertained that those stars comprised between the N.N.E. and the N.E. make the longer mean course, viz., $11^{\circ} 3^{\prime}$, while those between the S.W. and W.S.W. take the shortest mean course, viz., $11^{\circ} 30^{\prime}$.

With regard to the point of divergence it may be necessary to state a few facts, as on this has been grounded an argument for
their being luminous bodies which present themselves independently of the earth's rotation, and penetrate into our atmosphere from without-from space. The observations of Olmsted proved that in the case of the November falls in 1833, 1834, and 1837, the stars proceeded from the star γ Leonis, but in the August fall in 1839, Algol in Perseus, or a point between Perseus and Taurus, was the centre of divergence. According to the accurate observations of Heis, at Aix la Chapelle, as quoted in Vol. I. of the Cosmos, "The falling-stars of the November period present the peculiarity that their paths are more dispersed than those of the August period. In each of the two periods there were simultaneously several points of departure, by no means always proceeding from the same constellation, as there was too great a tendency to assume since the sear 1833." After investigating the paths of 407 stars, he found that 171 came from Perseus, 83 from Leo, 35 from Cassiopeia, 40 from the Dragon's Head, but full 78 from undetermined points. Schmidt, of Bonn, in a letter to Humboldt (July, 1851), says: "If 1 deduct from the abiundant falls of shoot-ing-stars in November 1833 and 1834, as weil as from subsequent ones, that kind in which the point in Leo sent out whole swarms of meteors, I am at present inclined to consider the Perseus point as that point of divergence which presents not only in August, but throughout the whole year, the most meteors. This point is situated in Right Ascension $50 \cdot 3^{\circ}$, and Declension 51.5° (holding good for 1844-6.") He adds, "If the directions of the meteorpaths are considered in their full complication and periodical recurrence, it is found that there are certain points of divergence which are always represented, others which appear only sporadically and changeably."
theories regarding the origin of meteoritrs and fallingstars.
Passing over the opinions of those who attributed meteorites to the effect of lightning in tearing up the earth and converting it into a compact mass, of Aristotle, who considered them masses of stone carried by a hurricane from one locality to another, and of those who have supplied that mysterious region, the North Pole, with an enormous volcano, hurling its eruptions to the distance of many hundred miles, the hypotheses regarding their origin may be reduced to three: 1st. that which makes them of atmospheric origin; 2nd. that which gives to them a lunar or phanetary origin; and lastly, that which is now generally received as the true one, viz, that they are of cosmical origin.

The hypotheses respecting the atmospheric origin of these bodies are now generally exploded; and yet a great deal can be said in their favour. The ablest and most satisfactory paper upon this subject that I have been able to procure, is one written by F. G. Fischer, Esq., in the Berlin Memoirs. It is too long, and discusses too many points, to admit of the compression suitable to a paper like this. He lays down his positions something to this effect: Owing to the many gases and exhalations which are continually evolving at the surface of the earth, many matters exist in the atmosphere which escape chemical investigation, either from the want of tests to denote their presence, from their extreme rarity, or from their accumulating only in the higher regions of the atmosphere, where no experiments can be made. Owing to their extreme lightness, these exhalations ascend with the rapidity of lightning immediately on being disengaged, commingling only when they reach a stratum of air of equal rarity. What becomes of these vapours and gases, which, in the lapse of ages, must be greatly augmented? "Perhaps," says Mr. Fischer, "falling-stars, fire-balls, northern lights, and meteoric stones are the means by which Nature either transforms them into her own essence or returns them directly to the earth." In the reduction of these
gases to solids, he has recourse to the agency of electricity, but the modus operandi he attempts not to explain. Kepler held somewhat similar views, and describes fire-balls and shootingstars as "meteors arising from the exhalations of the earth, and blending with the higher ether." Sir William Hamilton, while giving an account of the great eruption of Vesuvius, in August, 1799, ascribes such phenomena to local electrical agency, developed by volcanic ejections. "This kind of electrical fire," says he, "seems to be harmless, and never to reach the ground." (On the improbability that meteoric masses are formed from metaldissolving gases, which, according to Fusimeri and others, may exist in the highest strata of our atmosphere, and, previously diffused through an almost boundless space, may suddenly assume a solid condition, and on the penetration and misceability of gases, Humboldt treats largely in his Relation Historique, vol. i., p.525.)

ORIGIN IN LUNAR VOLCANOES.

Another opinion is, that aerolites derive their origin from volcanoes in the moon. Chladni states that an Italian, Paolo Terzago, was the first to surmise (1664) that these bodies were of selenic origin. In 1795 Olbers commenced an investigation into the amount of the initial tangential force that would be requisite to bring to the earth masses projected from the moon; and the mathematical possibility of a sufficient force existing, together with the then prevalent opinion of there being active volcanoes in the moon, led to the belief in some minds of the physical probability of such an origin. La Place, Biot, Brandes, and Poisson all gave considerable attention to this ballistic problem, as Humboldt designates it. Olbers, Brandes, and Chladni thought "that the velocity of 16 to 32 miles, with which fire-balls and shootingstars entered our atmosphere," furnished a refutation to the view of their selenic origin. Setting aside the resistance of the air, an initial velocity of 8292 feet in a second would be required, according to Olbers; to La Place, 7862; to Biot, 8282; and to Poisson, 7595 . Olbers has shown "that, with an initial velocity of 8000 feet in a second, meteoric stones would arrive at the surface of the earth with a velocity of only 35,000 feet. But the measured velocity of meteoric stones averages five times that amount, or upward of 114,000 feet to a second, and, consequently, the original velocity of projection from the moon must be almost 110,000 feet, or fourteen times greater than La Place asserted." -(Cosmos, vol. i., p. 121.)

La Place, in one portion of his great book, cautiously observes that aerolites, "in all probability, come from the depths of space," but elsewhere inclines to the hypothesis of their lunar originassuming, however, that the stones projected from the moon "become satellites of our earth, describing around it more or less eccentric orbits, and thus not reaching its atmosphere until several, or even many revolutions have been accomplished." The distinguished chemist Berzelius has examined this hypothesie at great length, and adopts it on grounds which he finds in the chemical constitution and mineralogical character of these bodies. His arguments, which are copied in the Edinburgh new Philosophical Journal, are exceedingly ingenious, but still they are built on hypothetical conjectures which can be met and answered. Von Ende Beuzenberg and others coincide in his general views. The great velocity of these bodies, however, as well as the direction of their orbits, which is often opposite to that of the earth, are now regarded as conclusive arguments against this hypothesis. In connection with this, I may just name the opinion of Olbers and those who consider these meteoric bodies the debris or fragments of a large planet which had burst, and of which the asteroids are the remaining portions. The smaller fragments continue to c^{r} culate about the sun in orbits of great eccentricity, and when they
approach the regions of space through which the earth is moving, they enter the atmosphere with great velocity, and in consequence of the great resistance and friction which follow, are rendered incandescent, and emit a light as long as they remain in it. As there have thus been believers in the planetary origin of meteorites, so some of the Greek philosophers thought they came from the sum. This was the opinion of Diogenes Laertius regarding the origin of the Aegos Potamos stone, about which Aristotle held such an absurd idea.

COSMICAL ORIGIN OF AEROLITES, ETC.

The more general opinion now is that the greater portion of meteors are of cosmical origin-that is, bodies revolving in space, independent of the earth's rotation, and subject to the same laws as the other celestial bodies. "Shooting-stars, fire-balls, and meteoric stones are," says Humboldt, "with great probability, regarded as small bodies moving with planetary velocity, and revolving, in obedience to the laws of general gravity, in conic sections round the sun. When these masses meet the earth in their course, and are attracted by it, they enter within the limits of our atmosphere in a luminous condition, and frequently let fall more or less strongly heated stony fragments, covered with a shining black crust; but the formative power, and the nature of the physical and chemical processes involved in these phenomena, are questions all equally shrouded in mystery."
The great argument in favor of this view of the character of these bodies is derived from the divergence or point of departure being generally stationary, and secondly, from their entirely planetary velocity. These facts led Sir John Herschell to decide "that a zone or zones of these bodies revolve about the sun, and are intersected by the earth in its annual revolution." Capocci, of Naples, regards the Aurora Boreali, shooting-stars, aerolites, and comets as all having the same origin, and as resulting from the aggregation of cosmical atoms, brought into union by magnetic attraction. He supposes that in the planetary spaces there exist bands or zones of nebulous particles, more or less fine, and endued with magnetic forees, which the earth traverses in its annual revolution; that the smallest and most impalpable of these particles are occasionally precipitated on the magnetic poles of our globe, and form polar Auroras; that the particles a degree larger, in which the force of gravitation begins to be manifested, are attracted by the earth, and appear as shooting-stars; that the particles in a more advanced state of concretion give rise in like manner to the phenomena of fire balls, aerolites, etc.; that the comets which are known th have very small masses are nothing else than the largest of the aerolites, or rather uranolites, which, in course of time, collect a sufficient quantity of matter to be visible from the earth.

After the great shower of stars in 1833, and the observed periodicity of its character, Professor Olmsted, collecting all the facts within reach, deduced from them the existence of a nebulous cloud or mass of meteoric stars, approaching the earth at particular periods of its revolution, under conditions as to time, direction, and physical changes from proximity, which he has fully detailed in Silliman's Journal of Science for 1834 and 1836. His speculation that this meteoric cloud might be part of the solar nebula known as the Zodiacal Light, was taken up and enlarged upon by Biot in a Memoir read by him in 1836. He shows that on the 13th November the earth is in such a relative position that it must necessarily act by attraction or contact upon the material particles of which this nebula is composed, producing phenomena which we may reasonably consider to be represented by these meteoric showers. He brings the same
theory to explain the sporadic shooting-stars of ordinary nights. He supposes that the habitual passage of Mercury and Venus across the more central regions of this nebula must have dispersed innumerable particles in orbits very little inclined to the ecliptic, and so variously directed that the earth may encumber, attract, and render them luminous in every part of its revolution. Supposing, then, we admit that these meteors compose a closed ring or zone, within which they all pursue one common orbit, how is it that we so seldom witness such splendid spectacles as those exhibited in the November showers of 1799 and 1833? "If," says Humboldt, "in one of these rings, which we regard as the orbit of a periodical stream, the asteroids should be so irregularly distributed as to consist of but few groups sufficiently dense to give rise to these phenomena, we may easily account for the unfrequency of such glorious sights." Olbers has predicted, but I know not upon what data, that the next appearance of the phenomenon of shooting stars and fire-balls intermixed, falling like flakes of snow, will not occur until between the 12th and 14th November, 1867.-(Cosmos, vol. i., p. 127.) Again: the enormous swarm of falling-stars in November, 1799, was almost exclusively seen in America-the swarms of 1831 and 1832 were visible only in Europe, and those of 1833 and 1834 only in the United States, and occasionally the November stream has been visible in but a small porion of the earth. A very splendid meteoric shower was seen in England in 1837, while a most attentive and skillful observer at Braunzberg, in Prussia, only saw on the same night, which was uninterruptedly clear, a few sporadic shooting-stars, between 7 o'clock $\mathrm{p} . \mathrm{m}$. and sunrise the next morning. Bessel explains, "that a dense group of the bodies comprising the great ring may have reached that part of the earth in which England is situated, while the more eastern districts of the earth might be passing at the time through a part of the meteoric ring proportionally less densely studded with bodies." In the same way Humboldt accounts for the nonappearance, during certain years, in any portion of the earth, of the two great streams of August and November, to intervals occurring between the asternid groups. Poisson's account of this is somewhat different. "If," says he, "the group of falling-stars form an annulus around the sun, its velocity of circulation may be very different from that of our earth; and the displacements it may experience in space, in consequence of the actions of the various planets, may render the phenomenon of its intersecting the planes of the ecliptic possible at some epochs, and altogether impossible at others." The latest form of this hypothesis is that adopted by M.M. Saigney and Gravier, in France, viz., that meteors and their substances have their original abode in infinite space; that large groups of shooting-stars are situated in portions of the heavens visited by our earth; that, when our globe arrives in the vicinity of these corpuscules, they are attracted by the earth, and, bursting, leave the material of which they are composed to fall upon the surface of our globe.

Whilst this is now generally regarded as the most probable hypothesis yet framed to account for the origin of these mysterious appearances, still, even by it, many things regarding meteors . are left unsolved. Many questions there are yet awaiting the possible solution of the future, and this solution can only be the result of more extended observation and experiment. It is the duty, therefore, of all who desire the advancement of science, to aid in adding at least to the number of recorded observations, and thus to broaden the basis on which the astronomer and the man of science are to build their hypotheses and their theories.
In conclusion, it is remarkable to find that the opinions of some of the Greek natural philosophers, particularly those of the Ionian school, early assumed the cosmical origin of meteoric stonen.
"Falling.stars," satse Plutarch, in his lifo of Lysander, "are not emanations or detiached parts of the elementary firc, that go out the moment they are kindled, nor yet a quantity of air loursting ont from some compressinn, and tahing tire in the upper regions; but they are really heaven! bodies, which, from sweme relatation of the rapidity of their motion, or by some irrewuhtr concussion, are bosened, and fall." And Diogenes, of Apolloni:a, says: "Invisible (dark) masos of stone muve with the visibhe stars, and remain, on that accoum, unknown. The former sometimes fall upon the earth, and are extiuguished, as happened with the stony star which fell near Aegos Potamos."

The utilitarian spirit of the present age is apt to enquire after the pratical uses to be attaned by the ubservation of there celestial phenomena. On this point but lithe can be sidid. So far ass I have been able to learn, the geneyaydical determination of degrees of longitude is the only practical purpuce which wellobserved falls of shooting-stats hate yet been mate to subserve. Beuzenbers published at japer on this subject in lsu:2, but Dr. Miskelyne hat pointed to this applic.tivat of the phenomenat some twenty years previously: In a letter dated Greenwich, Sove 6, 1783, he writes: "If the casat time could be han at different places, the absolute velocity of the meteor, the velocity of the sound propagated to us from the hiefler regions of the atmosphere, amd the longitule of places might be determined." (On this point, see Silliman's Junrnal fur Oct., 1S\&0.) lint apart from this siew of the matter, what deep interest attaches to meteoric phenomena, if we admit the connection that is now beliered to exist betuecn them and other planetary systems! "He who is penctrated "ith :i sense of this mysterious comection (to alopht the fine eentiments of II unboldt), and whose mind is open to deep impresions of Siature, will feel himself moved by the decejest and must solemn unction at the sight of every star that shoots across the vanit of heaten, no less than at the glorions spectacle of metcoric swarms in the November phenomenon, or on St. Lanrenceis Dis. Here motion is suddenle releaded in the midst of necturnal rest. The stall madiane of the vanit of heaven is for a momeat anmated with hife :and movement. In the mild radiance left on the track of the sluotingstar, innagination pictures the lengthened path of the meteor through the vault of heaven, while, ewervilare around, the lummous abteroids proclaim the existeme of one common material maverne. Accustomed to gain our knondedge of what is not telanic solely through measurenuent, calculations, and the deductions of reason, we expeo rience a sentiment of astonishment at fanding that we may examine, wejeg, and analyze bodice that atplertainio the vuter world. This awakens, by the puwer of the inaspasaion, a meditative, spiritual train of thonehn, where the untutured miad perceives only scintillations of hight in the tirmament, and secs in the blackened stone that falls from the explodend clond wothing beyond the rough product of a jowesful matural forec:"

Suggeations on the Puxaiblity of anian inctr Silk for Texthe limrinosci.

To the student of Nature, the delight which his investiomtions of the different kingdons create is very much cahanced if, during his researches, he cam diecoser amonir the natural productions of the country he inhabits any which maty le uscfully emplored in adding to the recessaries or luxamies of life.

In the following trifling sketch, it is the wish to call attention to a genus of Lepidopterous insects whose products may possiblybe as usefully employed as some of the coarser vanteties of silk now used in Imhia, and which, being indigenons, would not be liable to the failure that wroured some years ago in the attempt to introduce the true silk worm into the neighbouring States of the Unions. Should this expectation not be realized when tested by experiment, yet, it the himt now given should induce others to turn their attention to the as yet comparadively unexplored productions of this Province, they will not havo been written in vain.

To the family Bombycide belong those moths the enveloping tisulues of whose cocoons have been used for textilo purposes. The member of this family the products of whose labour hare bean most used by man, and to whuse sill it is generally thought we are entirely dependint for our silkea fabries, is the well-known silk-worm par excellence (Bombyx mori), with which all are too cosnisint to require further mention; but in India the web of other insects of this fanily are so employed. On this subject, Cuvier, or rather Latreille, in the Regne Animal, writing of the genus Siturnia, says: "Hacy have cmploved from time immemorial in Bengal two other species of the same division, the luomby: Mylition of Fibricius, and the Phatiena Cynthia, of Drury, and I am convinced, after the communication made me by M. Huzand of a Chinese manuseript on this subject, that the caterpillars of these ljombyes were the wild silk-worms of Chin:h and I think that a part of the silks which the ancients procured by their maritime commerce with the Indies was produced from the silk of these worms." Buth the insects above mentioned letong to the genus Saturnia as now constituted. Some of the Camadian species are very fine specimens of the genus, and spin large coccons; and is it unreasonable to imagine that one or other of the species might be made as available for manufacturing purposes as their Indian conereners? An olstacle to be overcome is the ditiiculty of dissoling the animal cements with which the caterpillar gives together the threads; but as the perfect insect his the power of dissolving this glue when about to escape from its cocoon (for it has no jaws to tear open the walls of its prison), could not the chemist, by analyzing this thuid there secreted, provide us with an efficient solvent? the natives of India for ene species use a lye made of the ashes of the plantain.

The fint is Siatumia Polyplacimus, one of the princes of the Canalian Lepiloptera: Phis fine insect expands five inches, is of a yellowish brown; loth wings with a lyaline spot. The anterior wing is marhed with two curved lines near the base, a waved line on the border, and a dark spot on the aprex. The lyaline spot is encircled by a yellow marein. On the posterior wing the layaline spot is lareer, with a bluish grey ins, shading into black, aml the marginal band is darker. The colours of the male are the same as thuse of the female, but more decided. The caterpillar is described by Gosse "as of a most brilliant light grech, nearly transparent, each sergment of the body rising into two roundish hamps, each endinginatittle bright yellow tubercle, bearing two or three short hairs; two rons of similar tubercles run dourn each side, which are joined by a diagonal yellow line on each segment, just belind which are the spiracles, which are scarlet. The head and legs are light brown, the last segment terminated by a line of purplish bromn. It is rather inactive, and slow of motion. Its length, when crawling, is two inches and a half, and its dinmeter about half an inch." He gives it as feeding on the choke cherry (Prunus Serotina), and probably any specics of Prunus rill scrie it for nourishment. The cocoon
is oblong, rounded at the ends, and very firm, capable of resisting considerable pressure, and in all those examined, with the leaves of one or other species of Prunns firmly attached. Its weight is about eleven grains. This inseet beani considerable resembthane to the Saturnia Mylitta of ladia, one of those species which are there cultivated for their silk, and which gowes there by the name of Tusseh silk. The matives are mable to rear these in continement, and trust to the egss of wild individuals for their ammal supply of caterpillurs. We may probably have the same dificulty with the Camadian species. The writer, during the last summer, raised a female, which, soon after leaving the cocoon, begran laying unimpregnated egts. He procured a male, which he phaced in the stme box, but, though left together for three or four days, no connection took place. Whether the female was exhausted before the introduction of the male (though it still continued to lay a few egsi), or whether, libe the Indian spectes, they will not breed in coutinement, requires further experiment. The silk of this species is of a lighter colour tham either of the tro following, not very nuch darker thau that of the Bomby: Mori.

The Saturnia Cecropia is another of the sill-spinning moths. This is the largest of the Canadian Lepidoptera, and in fact is inferio- in size to but fuw of the family: It varies from six to seven anches in width. Its head is red, with a white collar between it and the thoras, which, with the abdomen, is red. The latter is marked with white transverse lines; the ground colour of the wings is greyish brown; the base of the anterior pair same colour as the thorax, bounded anteriorly by a whitish band; disk oblons, rusty brown, with a kidney-shaped white spot margined with black; beyond his, a brown wayy band hordered with black, the rest of the wing shadiug down to light brown, with indented black line. Near the tip is a black spot, with a creseentic line of light blue; the colour of the posterior wing the same; the oblong disk larger, and marked with the same white spot. The feruginous band is broader, bordered with white, before which is a transverse row of black spots, and a black transterse line. The caterpillar is green, with several projecting points, which, as well as the head and legs, are yellow. On cach segment are two small blue spots. It does not confine iteelf to one species of plant for food. Albbut says it feeds on the wild American plum (Prunus Pennsylvanica). Here the apple seems its favourite food. It also feeds on a species of Spiriea, common on the borders of swamps. The writer has taken a cocoon from a common garden plum, and from a bitter nut (Carya Amara); but finding an occasional cocoon on a tree is uot a proof that on that tree the insect has fel, for the caterpillar will crawl some distance occasionally for a convenient situation. An individual which for the case of olservation, was fed on one of the above mentioned low shrubby Spireas, when about to change into the pupa, ascended a maple ten or fiften fect from the plant on which it was nourished. The cocoon is firmly attached to the under side of a twig. It is three inches in length, and of a brown colour. The outer layer is coarse and strons; the inner finer. It weighs about serentecn grains.

Saturnia Promethea is much more common than the preceding twa. The male insect is of a dark, chocolate bromn, nearly biacl. The margins of both wings are light brown, with adeeply indented wavy black line. Near the apex of the anterior wing is a banck spoh withascunicircular blue marginon the posteriorwing. Within the black line are sereral black spots. The female differs very much from the male, so much so as to be hardly recognizable as the same insect. The wings are not falcate, but rounded; the whole body of a reddish brown; the colour of both wings is the same; the interior half is a dark brown, the remainder much lighter, wilh minute black specks, looking as if powdered, and a
dark buff anargin. On the anterior wing is an angular white spot. The spot on the apex like that in the male On the posterior wing is a lunated white mark; on the linder margin a wavy line, within which ate reddish brown spots.

Peale deseribes the caterpillirr as of a delicate green, with yellow feet. E:ach segment of the body, except the posterior, is marked with six blue sputs, from which arise small black tubercles In the second and hisid segments however, the two central tubercles are repiaced by club-like projections of a third of an inch in leugth, and of a bright coral-red colour. The last segment is furnished with but few tubereles the central one of which is of the same clavate form :s thuse on the anterior $\mathrm{sc} \mathrm{c}_{\mathrm{mments}}$, but of a yellow colour. When about to change into the pupa state, it selects a leaf, the sids of which it draws together by means of its silk, which it continues orer the peticle to the brauch, round which it firmly fastens it. Within the leaf it then spins its cocoon, and retires fur the winter, during which time the leaf and its footstalk wither, and are carried away by the blast, leaving the cocoon hanging by its peduncle, and, to a casual glance, looking like a withered leaf. On tearing off the outer lager which originally lined the leaf, and which is very strong, an oblong cocoon remaius, about the size of that of the sill-worn., of a dart brown colour, and very firm. The perfect insect appears in June. This insect seems is indifferent in the choice of its food as the last species. Abbot figures it on the Halesia Tetraptera. It feeds on the spice-wood (Laurus Benzoin), the sassafras (Laurus Sassafris), and the common wild cherry: In this part of Canada the last is the farourite fuod.

Another species, the Saturnia Luna, the most beautiful, though not the largest of our native Saturnix, judging by analogy, would also furnish silk; but from its marity, none of its cocoons have come under obscrvation.

Of the insects above mentioned, their usefulness will probably be in the order of their enumeration. The Saturnia Polyphemus, though rarer, spins a considgrable quantity of silk, and will be most casily unwound. The Saturnia Cecropia, although the largest and more frequent, at least in this locility, has coarse silh, which will probably require to be torn in shreds and carded as cotion or wool. Saturnia Promethen is by far the most conmon, but will probably be the most dificult to use, the coccon being very firmly glued together.

Remarlan on some Eoincidencen between the Primitife Antiguitict of the Old and liew Wiorld.

By Professor Wilson, LIL.D. Enirersity College, Toroneo.
In introducing this subject to the members of the Canadian Institute, Professor Wilson ol erved:-

It is well known to the students of antiquities, in so far as such relics of the past are valuable to us for the purposes of historical illustrauion, that the archaologists of Europe have of late years devoted much of their study to those remains which pertian to epochs older than the classic aryes, and to areas lying beyond the ancient limits of Greece and Rome. In this study of the primitive antiquities of Europe, Scandinavian and British archreologists have taken the foremost place, and the result has been the disclosure of traccs, throughout the North of Europe and the British Isles, of the extremely rade and primitive arts and sepulchral rites of a people occupying thesc arcas long prior
to the dawn of history, or to the intrusion of even the oldest of the histhnic races on regiuns from whinh they were being disphaced, or had already disappeared, at the eally dates when the timst shimpses of tamsilipine Europe are met with in the pages of Greek or Roman historians. Whe recent investigations of the archaeokgist and philolongist, though punned on entitely difierent grounds, and with little concurrent aim or purpose, alitie discluse the tact that there have enisted on the Continent of Emope races entirely distinet from the great historic group to whom the lndoGermanic languages pertion; and white the philological investigation: of Dr. Pritchard have extended this group so :s to embrace the Celtic hanguages, and convert the whole into a more compreheasice Indo-European classification, the researches of Nilsson, Retzius, Worsaae, and their l3ritish coadjutors, appear no less conclusively to estallish the fact that the ancient heltai were intruders on still older Allophylian races.
It is probable that some of the results of such investigations are already familiar to members of the Canadian Institute, especially as the labours of Scundinavian antiquaries, to whose researchres some of the most valuable results are due, have aequired a special interest for the colonists of this Western World since the recent publication of the "Antiquitates Americance" has by the Society of Antiquaries of Copenhagen, added upwards of three centuries to the historic era of the continent rediscovered by Columbus. Tu ulizers, however, a reference to such archaeologicad investigations may not be without novelty as well as interest. It had long been known to antiquaries that, along with the relies of elassic art, there were also to be found throughout Europe monojithic structures, fictile ware, and weapons and implements of stone, copper, and bronze, the manifest productions of ruder artificers than even the legionary artizans of Imperial Rome. These, when they attracted any attention, were loosely designated as "aboriginal" or "Celtic," and were supposed to receive a sufficient classification by being thus set apart from the classic remains, which were alone thought worthy of careful study. During the present.century; however, the archaologists of Northern Europe have devoted special attention to such traces of aboriginal arts and primitive civilization, and the result has been the clasification of their various sub-divisions on principles of scientific chronological order and logical analogies, akin to those by which the palaontologist has reduced to order and method the older chaos of unsystematized and uninterpreted geolost:

The first class in this system of primitive archacology is designated "the Stone Period", as embracing the Eiuropean era of rudest aboriginal arts, during which the necessities of war and the chase, and of the simple domestic economy of its ancient people, were supplied loy weapons and implements constructed entirely of such ready natural materials is stone, hom, bone, etc.

After referring to the abundant evidence of the existence and duration of such an era of primitive savage arts in Europe, is is proved by collections including many thousind specimens in European Muscums, Professor Wilson next proceeded to show the remoteness of the era to which they belons, as demonstrated by the circumstances under which some of them have been found. In proof of this he referred, among other examples, to the discovery in the alluvial valley of the River Forth, in Scotland, at different periols from 1513 to 1824, of gigantic fossil balcenoptere, at heights varying from twenty to mearly forty feet above the present level of the sea; and while the situation of such cetaceous fossils manifestly proved a crin of dry land from the sea, and that not by the filling up of the ancient estuary, but ly the upheaval of the whole area, the discovery along with them,
in more than one instance, of the rude bone lance or harpoon by which it may lo presumed they had been assailed by some hardy Caledonian whaler of the remute era which they reveal, no less conclusively establishes the fact that such changes must have occurred since the British Istands were occupied by a human population. He then drew attention to tho well ascertained examples of the uphaval of large areas within the historic period, apart from such instances of active volcanic action as ${ }^{1}$ 'uzzuoli and other parts of the Bay of Baie, in ltaly, exhibit. Special reference was made to the ascertuined rate of upheaval still going on over a large portion of the Scandinavian peainsula, extending from Gothenbury to the head of the Gulf of Bothnia, if not indeed to the North Cape, and from this he inferred that the evidence of the colonization of the British Isles pointed to a date, at the very lowest computation, of some fifteen centuries before the Cluristian cra.

At a period thus approximately defined, the primitive races of Northern Europe and the British Isles were practising arts precisely analugous to those with which we are familiar on this contincut, as still pursued among its rude aboriginal tribes. At a later period, as appears from the investigations of European archreologists, the metallurgic arts were intuduced among the primitive tribes of the Old World, and implements and weapons of copper and of bronze gradually displaced their ruder stone predecessors. Such would appear to have been the common experience of the untutored races of mankind, for no primitive and barbarous people has been met with in modern times, cut off from intercourse with civilized nations, among whom any knowledge of the metallurgic arts existed; and no partially civilized people, when similarly isolated, appears to have acquired the art of smelting and working the iron ore The Esquimaux, and the whole natives of the Polynesian Islands, were, when first discovered, in precisely the same condition as the Allophylian races of Europe duing its Stone Period. They were without any knowledge of the metals, and supplied all their wants by means of implements of stone, shell, bone, and wood. Such also was the condition of the Indiaus of North America when first brought into contact with Europeans. Nor is this conclusion affected by such discoveries of mining operations as those referred to in Mr . Whittlesey's paper on the Ancient Mines of Lake Superior.* In so far as any traces of the emplogment of their products, either by the Indians or ly the mound-builders of an older era, have been recovered, they prove the extremely primitive and untutored arts of both mees, while amply bearing out the justice of that writer's olservations that "the copper is apparently cold zerought, and does not show that it has been melted. It must, therefore, have been found ly the mound-builders in its native state, and there are no mines in North America known at this time from which native metal can be had except those of Lake Superior."

Such a process of working the malleable ores has already been recognised as far too partial a manifestation of any knowledge of the propertics of metals to be accepted in proof of the introduction of the methllurgic arts amony a people It has been remarked, in reference to similar specimens of "cold vorough" metallic relics:-"It is not impossible that the working in gold may have preceded even the age of bronze. If metal conld be found capable of being wought and fashioned without smelting or moulding, its use was perfectly compatible with the simple arts of the Stone lecriod. Of such use masses of native pold, such as have beca often fuund both in the Old and the New

[^1]World, are peculiarly susceptible; and some of the examples of Scottish gold personal ormaments fully currespund with the probable results of such an anticipatury use of the metals."*

The metallurgic arts were, however, introlucel into Northern Europe at a period prior to the dawn of authentic history, but now designated, from the remains of its novel arts, "the lironze Period;" and America had its corresponding amte-historic ern, during which the metallurgic arts of Mexico and Yucatan were developed among a people to all appearanco of the same race as the mound-builders of the Mississippi Valley, and, like them, totally ignorant of the more laborious sud difficult art of smelting and forging the iron ore.

Professor Wilson having pointed out. somerrhat in detail, the great similiarity ouservable betreen the stune, bone, and hom implements and weapons of the Americau Indians and those found in the ancient sepulchral barrows of Northern Europe, and also the amalogies between the copper tools and weapons of the mounds of the Mississippi Valley and the copper and bronze relics of Europe's pre-historic period: concluded by remarking that it must le regarded as a subject of just interest thus to perceive that aboriginal races, had been displaced by the historic races from the ancient area of Europe, equally rude in their arts, and low in the scale of civilization, with those whom the philanthropist and the scientific observer now watch with a common regret disappearing before the advances of the European on this grat continent, like the dews of moruing before the rising sun.

On tome Nev Gencra and Specien of Cyatidea Irom the Trenton himestonce

Road lefore the Canadian Institute, Fclruary 11th, oy E. Bretivas, Barrister at Laur, Bytown, Canada Hest.

The Cystidea were first set apart as a separate order of the Echinodermata by the late illustrious geologist, Leopold Von Buch, in a memoir which appeared in 1845 in the Triansactions of the Royal Academy of Sciences of Berlin, and afterwards in 1846 translated and published in the Journal of the Geological Society of London. From the latter publication the following definition of the order is extracted:
"The Cystidea were natural bodies supported on a stem or pedicle, which was attached to the ground; their surface, more or less spherical, was covered by a great number of polyhedral phates, accurately fitted to one another, and between these plates wero certain openings; necessary for the performance of the animal functions.
"With regard to the openings on the surface, we find in all the Cystidea, 1st, that the mouth was phanted in the central part of the upper surface, generally in a moveable probosecis covered with minute plates; 2nd, that besides this mouth, and close to it, there is geucrally, if not always, a small anal orifice penetrating the plate, but not itself surrounded with any plates peculiar to it: 3rd, that further towards the middle, but alnuest invariably on the upper half of the body on which the mouth is phaced, there rises a round or oval aperture, not connected with the mouth, and often covered by a five or six-sided pyramid, which seems to be compesed of as many little valves. This probably forms the ovarial orifice of the animal."—Quarterly Journal, Gcological Socicty, vol. ii, p. 29.
Von Burh also supposed that the Cystiden were not provided
-Wilsan's I're-ritionic Anmals of Soulland, p. 214.
with arms similar to those of the Crinoidea, but since the date of his munugruph soteril species hate been bruught to light firmishand with :aphembighe which tury he called amms. These, tugether with certhin other ungas satposed to bo peenibiar to thim group, will be referred to heremter.

Tho C'ystidea are rare fosils, and as yet but imperfectly understood in some respects. Von Buch, in the artiche abwe yuoted, describes seven spucies known in 18.5 on the continent of Larope, and in 1848 Prifessor E. Forbes, in the Afemoirs of the Geological Survey of Englant, gave an account of twent-one species discoverod in the Silurian rocks of Great Britain. Uf these, two were found to be identical with Spheronites aurantium and Caryorystites gronatum, also descriled by Von Buwh, whilo several others were mere fragments, recognised to le portions of Cystideans. It is probable that in all Eurpe aut mure than thisty species had been clearly established in 1848.
The American species already made known are only seven. They are the following:

1st. A tossil fuund at Bytown many years ago ly Dr. Bigshy, and described by Mr. G. 13. Sunerhy in Vol. II. of the Zonhurical Juarnal, p. 318. Profasur E. Furbes refers this curious urganism to the genus Ayelucrinites vi' Vannem.

2nd. Echino-cncrinites anatijormis, in Vol. I. of H:lls Palcontology of New York. This species and the former are the only Cystidea yet described as having been discovered in the Trenton limestone. It has been found by Mr. Logan in Lower Camada, and in Owen's Report on the Geologry of Wisconsin, p. $\mathbf{5 0 5}$, it is said to have been met with in the upper magnesian limestone of that region, a formation clasififed as the equivalent of the Treuton limestone.

3rd. Callocystites Jewettii.

4th. Apiocystites Elegans.

5th. Hemicystites Parasitica. The three last are from the Niagara shate, and described in Vol. II. of the Palieontology of New York.
oth. Lepadocrinites Grlbardii, from the Pentamerus limestone, figured but not described at p. 346 in Nather's Report on the Geology of the First District of Ner York.
Tth. Agelacrinites Hamiltonensis, from the Hamilton group, noticed in Vamuxem's Report on the Geology of the Third District at p .15 s , and figured at the end of the volume.

I now propose to add to the above list of American Cystidea sereral new species discovered by me within the last two years in the Trenton limestone at Bytown and in the immediate vicinity: The first of these, as it constitutes a new genus, may be called Glyptocystites, on account of the profusion of sculpture with which its surface is ormamented. Its description is as follows:

genus glyptocystites. (Nov.gcn.)

[Greek, ravxios, sculpthis, and suatis, resica.]
Body oblong, mmposed of four horizontal, irregular series of plates, so disposed as to form five nearly vertical pill, as, each of which supports an arm; pelvic phates, four; sccond, third, and fourth series of five plates earh, summit closed by several small pieces; anms originating from the top of the fourth series, deflected domawards, and attached to the sides throughout their whole lengtl; a sinuated groove, terminating upwards in the mouth, occupies the centro of each amm; a row of tentacles on each side of cach groove, mouth situated in the apex, and closed by a valru-
lar apparatus of small plates; anal orifice on the lett side, near tho mouth; ovarian aperture in the lower half of the body, without valees; column short, and tapering to a puint downards; peetinated rhombs on mamy parts of the buly.

But one species is known, which is the following:
Glyplocystites Multipora.
digmama of the stractime and ambagbiget of the parts.*

Fig. \quad.

Derelopment of the plates and pores of of Glyprocyatites inultipora.

Fig. 6.

Derclopment of the plates and pmes of Syaryiftes (behinoencrinites) angulasus, as Jrakn by Von luch.
-Quarterly Journal, Gcographical Society, Vol. II., Mafe 4.
This beautiful little fossil is about one inch long, and five-eighths of an inch in its greatest diameter. Sume of the sp:cimens are larger, but these appear to be the aserage dimensions. The body is of an ollung and slightity conical shayes most obtuse at the base. It is also olscurely five-sided, the arms leing situated upon the angles. Its cuvering consists of a number of poly hedral phates, firmly united at their edges, and funning a strong calcareuns shell, which, if fissured down from the top to the buttom, and unfulded on a plane surface, would present the arrangement seen in Fig 5.

In the several other genera of Cystideans allied to this, the rows of plates extend in uninterrupted bands horizontally round the body, but here the second and third rows are broken through by the extension of the plates in the series below and above.

In the basal series there are four plates resting upon the upper joint of the pedicle, one of them hexagonal, and three pentagunal. The hexagonal plate orcupies the base on the posterior side, and supports that plate on which rests the ovarian aperture; and the

[^2]pentagonal plate, immediately opposite on the front side of the fossil, is remarhable fur beiug twice the height of the uthers. As allusiun will be frenuently made to it in the course of the following dencription, it is marked No. 1 in the diagrim Fig. 5 , for convemence of ifference.

The second series consists of five plates, three hexagonal, and two slightly heptagonal. This row is divided in front hy the great extension upvards of No. 1. The ovarian aperture rests in a concave notch excasated out of the upper side of the plate in this series, which is supported by the hexagonal pelvic plate. These two rows enclose the lower one-third part of the body. In the third series a small but conspicuous hexaronal phate occupies the front, resting on the apex of No. 1 , and having a small pentagonal plate on its right, or on the left side of the fossil. On the right side is a large rhomboidal plate, made heptagomal by being notched on its lower side to fit upon the angles of the two plates below, one of which it covers in part, the others entirely. This plate is easily recognised by the large pectinated rhomb between it and the orarian aperture, and by the diagonally-placed rhomb, which lies partly across the fossil at the upper side of the plate in question. It is separated from the small hexagonal plate by a projection of one of the plates of the fourth series, which here rests upon a plate of the sceond. Two other partly rhomboidal phates of this series enclose the sides of the ovarian aperture, and meet over it.
Tho three last-mentioned plates of the third series are each in height about one-third of the total length of the fossil, and resting upon them are three phates of the fourth series of nearly the same size and shape, which extend to the line of the origin of the arms. The other trio plates of the fourth series are more than half the whole length of the body: One of them stands upon the small hexagonal and pentagonal plates, and the other in part upon the smail hexagonal phate, and in part upon a plate of the second series. All the plates of the fourth series are excavated on their summits where the five arms originate from them. They do not close the fossil at the top. The circular space sumounded by their upper extremitics is closed over by a dome, in the top of which is the elongated mouth.
The five plates in the second series, and in some of the specimens the two small ones in the third, are ornamented by strong rounded ridges, which radiate from the elevated centre of the plates to the corners, or cross the sides at right angles. There are also generally one or two short ridges between the rays, while sometimes several concentric lines of growth may be observed.

The principal characters upon which the genern of Cystidea and Crinoidea hate been extablished, are deriv cel frombthe number and arrangement of the plates between the base and thuse points near the summit whence the arms arine. Many Crinoids, aniong which may be mentioned, as affording goorl examples, the very ancient Ifeterocrinus, several species of which abound in the same strata alung with the Cystidea now under examination, and also the recent species, Pentacrinus Caput Medusc, living in the Caribbean Sea, are formed simply of five vertical pillars of plates, which stand upon the pelvis, and proceed straight up the sides of the cup to the top, where each supports an arm. These, with many others that could be eited, might be properly arranged into a family, in which the distivetive feature would consist in the presence of those arm-bearing pillars of more or less quadrangular phates, placed one above the other. This structure appeans, with some slight irregularities, in the unfulded calcareous shell of Glyptocystites, as represented in Fig. $\overline{0}$.

As the arms max be considered simply as continuations upwards of those pullars, and as the base of tho fossil whence they arise is the back of the animal, they (the arms) are said to be developed
from the dirsal pule of the cuticular skeleton. Volborth, an eminent palienntologist, contends that it is so in the Cystidea, and that they are true Crimoils, while several wher writers upon the seience maintain an opposite opinion, aud regird the arms of the Cystidea as springing from the beatral atspect, and boing dencloped downwards. Upon this curions question 1 do nut feel myself authorized to ventume an opinion, atud staill conkent myself with directing attention to the faet that this new genun appears to be constructed very nearly upon the same plan as the Crinoids above mentioned.
The small cup of an Encrinite, figured at the end of this paper for another purpose, is formed upon a difterent principhe. The phates of the second row alternate with those of the pelvis and those which bear the arms do not rest immediately upon single plates below, but in the augles formed by the sloping sides of the phates of the second series. There is nu trace of the arm-bearing pillars, as in Ifeterocrinus and Pentacrinus. It is a member of a different family, in which the genera Cyathocrinus, Poteriocrimus, Ifomocrinus, and others of similir structure may be placed.

In Fig. 6 is represented the structure of the Cystidean Echinoencrinites, which is the same in principle as this family of Crinoids, with alternating plates. 'This genus, and four others, Pseudorrinites, Prunocystites, Apiocystites, and Lepadocrinites, are all constructed exactly alike so far at recgrads the plates below the arms; and as they are the only Cystideans yet known to which Glyptocystites exhibits anything like a near approach, it must for this reason alone be considered a new genus.

The arms are five, four of them in perfect specimens extending from the summits of the plates of the fourth series to the base, and the fifth being only about three lines in length. They divide the surface into four compartments seen in Figs. 1, 2, 3, and 4. The right side, Fig. 3, is nearly twice as wide as any one of the others. It is divided at the upper part by the short arm. The two arms on the ovarian side, Fig. 3 , unite near the summit, and the grooves which occupy their centres here unite, and cross over the aper in a single furrow to the other side, where they separate, and follow down the front pair of arms. A short groove also from the apex extends to the lower end of the short arm. On each side of each groove there is a row of secen or eight protuberances, which are the bases of the tentacles.

On none of the Cystidea heretofore discovered are there more than three of those organs called pectinated rhombs or ambulacral openimys, white this sjecies disphays the extraordinary number of thirtect. Whe oflice performed by then in the anmal ceonomy Las but yet been caplained. They cunsiot of spaces of smail extent, perfurated by elungited peren, which pieree the plates to the interior. Whey are gemerally of a rhumbundal shajus, atal cach is situated upon two phatw, one half heilug upun each. In cilyptocystites they diftier somewhat in external apprarance from those dearibed as Lelunging to the Eughish and American Cystidea already htuwn, but correapund in form very nearly with those of the Russian species of Echino-cncrinites. In the Geolngy of Russia, as quoted by Mr. Hall in Vol. I. Palaontology of New York, p. Ss, it is stated: "The Echino-cucrinites is further distinguished by the presence of pores, not disseminated over the entire surface, is in Echino-sphucrites, but occupying a determinate place, and lordering three smadl rhomboidal areas." This is their furm in Glyptucystites. There is in caeh a smooth rhombondal space, the lengrth of which is twise the breadth, and completely surroundiag it is a row of elongated pores. The suture between the two plates upon which each of thense organs is situatel, forms the greatest diagonal of the rhomb. These pores do not terminate at the border of the smooth space in the centre, but are extended beneath it, and cross over to the other side. I ascertained this
fact by grinding down the surface of a sjecinem. When tho unperfurated space in the cente is thus remuver, these rhombs aro pheciely similar to thuse of one of tho species of Pleurocystites, presently to bo described in this paper.

The sereral positions of these rhombs are as follows:
On the left side of the fossil, Fis. 1, there are two, one of which extends from the centre :bunt hatf way to the summit, melining towards the rear as it ascench, with a very small one immediately above it, and inclining to the front. It mast here be noticed that, in all the large shombs of this species, there is an eleated border along one side of the unperforattel area in the centue. In this compartment the lorder is on that side of the large rhomb which corresponds with the lef hand of the observer.

On the ovarian side, Fig. 2, two are visible, a small one under the left side of the aperture, and a large one, with the border on the left, standing peryendicularly above it.

On the right side, Fig. 3, there are five: 1 st. A large one upright along the left side of the division, in length one hailf that of the fossili, aud with the border on the right: 2 nd. A small one perpendicularly above the upper cand of the last: 3rd. A third lies across the fossil from the top, of the large one, but inclinug downwards, and with its border on the lower side: 4th. The fourth extends from the lower end of the third nearly to the summit; its border is on the right: 5 th. The remaining rhomb on this side appears to be half of a large one. It consists of two rows of pores; united a little below the centre on the right side of the division, and spreading apart from each other in the direction of the point above, where the two last mentioned touch each other at their lower extremities.

On the front side of the fossil, Fig. 4, there are four of those rhombs two of which occupy precisely the same position as two of those on the Rusian species of Echino-encrinites. Referring again to the Geology of Russia, we find it stated: "Two of these poriferous rhombs are situated near the base, and have ther greatest diagonals united upon one of the angles of the opeang where the stem is inserted, while the third is found on the opposite side between the mouth and the great lateral opening, and clirectly abovo the pentagonal basal plite. The two first are mounted upon plates of the two inferior ranges, and the last upon those of the two superior ranges:" In Glyptocystitcs one half of each of these two rhomis is situated on the elenatel basal plate No. 1 , and the other halves on the plates of the second range, which lean against its long, dhying cilles. In earlh the lorder is on the upper side. By referring in Fig. n , it will be wem that Yon Buch has figured them in the same ${ }^{n}$ wition, wihh the exeption that there the greatest diagonal is at right angles to the suture between the plates. In this fresil, the gratest diagroal in all tine riombs fullows the suture, and the lesser diasonal crises it. In the English species of Echinoencrinites there is but one rlumb below and two abowe, while in the Ruscian fossils the reverse is the case. The true form and disposition of those organs as described by Von Bucl, and by tho authors of the Geology of Russin, although alludel to, have evidently been overlooked in the English and American norks before referred to. On the right side of the small hexagonal phate in front there is a very stmall rhomb, and, with its geatest diagonal ruming perpendirulaly upwards from the centre of the upper side of this phate to the thi, of the phates of the fourth series, there is a iary large one with the burder un the left side.

The whole of the lower part of this fossil to the top of the second serics is enactly like Echinu-cucrinites angulosus. as described by Von Buch, with the exception of the great height of the basal plate Nio. 1. He says: "The stem is very slender at its further (lower) extremity, and is provided with articulations, whose kngth
is threo or four times greater than their diameter. Towards the cup the diumeter, however, increnses, the articulations approach one another and becone rings, and at length, when they reach the basal plate and rass into it, this diameter is as much as one-third of the whole diameter of the cup.
"The base of the cup into which the stem passes is nearly a perfect square, which may becone changed into a rlomb, the angles of which are hlunted by compression of the entire form. The basal plates are deeply depressed near where the stem is attached."

This description applies so nearly, that no other is necessary for the base of the fosil now under examination. On looking at the bottom, four sharp, straight ridges will he seen, forming a perfectly square inclosure, round the opening into which the stem is inserted, and upon one of the angles of this square the lesier diagonals of the two basal rhombs are united. In E'chino-encrinites, however, as deseribed by Von Buch, and as is mentioned in the passage from the Geology of Russia above quoted, it is the greatest diagonal of each rhomb that points to the corner of the square.
It has been already stated that a deep groove passes over the summit, and sends down branches to the extremities of the arms. Exactly on the apex of the fossil, and in the bottom of this groove, there is an elongated oval opening to the interior, one-eighth of an inch in average length, and of the width of the groove. In this aperture all the grooles of the arms terminate as in one common centre. This is probably the mouth of the animal, and as aftiording an analogy in support of this view, it may the here observed that with few, if any exceptions, the grooves on the under sides of the rays of the star-fishes, the ambulacra of the sca-urchins, and the pisendambulara of the pentremites all terminate in the mouth. In all the armless Cystidea, the buccal orifice occupies the centre of the apex, and in the four-armed species of Pseudocrinitce, figured in the Mermoirs of the Geological Surrey of England, this aperture is placed in the same position in the central point from which the arms radiate. The only other orifice on or near the top of the fossil is a minute pore upon the left side, indistinctly visible to the naked eye, which appears to be altogether too small to be considered the mouth, when we compare the great size of that organ in Echino-encrinites, as figural by Von Buch and Professor E. Forbes. It appears probable that, in all those Cystidea with sulcated arms radiating from the summit, the mouth will be found in the centre, where all the grooves meet.
In well-preserved spocimens, the groove neross the summit is filled with two rows of small oblong plates, which project upwards and lean against ench other above, but do not interlock. If the apical orifice be the mouth, then, without doubt, these rows of plates formed a peculiar valvular apparatus by which it was opened and shut. They also fill the groove down to and past those points where it branches into the arms; and it is dificalt to conccive what their office could be here, unless to form a covered way for certain vessels passing from the mouth to the extremitics.

Figs. 7 and 8 show this part of the fossil with and without those

Fig. 7.

Fig. 8.

plates, and I also forward herewith two specimens which are in the same condition. There are other specimens in my possession exhibiting these and other parts in greater perfection, some of which

I hope to place in tho Museum of the Camadian Institute during the approaching seasou of navigation, when parcels of fossils cau be sent with saffety.
The ovarian aperture is in form like a spherical triangle, with very obtusely rounded angles, one of which usually forms the lowest corner of this organ on the right side. It rests wholly upon that plate of the second series which stands upon the hexagonal pelvic plate, a position somewhat different from that occupied by it in the other allied genera of Cystidea. It is generally supported by this plate and the next on the left in the samo series in the species lieretofore made public. It is altogether in the lower half of the bolly, its upper margin being about half way betireen the summit and the base. I have foumd many specimens of this fowsil under such circumstances as to leave but littlo dcult that it was unprovided with the valves by which tho ovarian aperture was opened and closed \vdots. several species. In this respect it resembles also the Ecli ino-encrinites of Pulcowa, so often referred to in this paper. Nuy of the European geologists are of the opinion that this latter tad not an ovarim pyramid, while others maintain an opposite view, supposing that, in being rolled about the bottom by the wares and currents after death, the plates became detached, and thus they have never been seen; but in one locality I disinterred many specimens from a bed of shale between two strata of limestone, where it was perfectly evident that they could not bare suffered any other violence than such pressure as might result from the accumulation of the deposit above them. They had evidently lived and died in this spot. The lower stratum of limestone was partly formed of their plates and disjointel columns to the depth of an inch of its upper surface, and it may be inferred from this circumstance that they had flourished here for a great length of time undisturbed. In the shale, which varied in thickness from one to three inches, were innbelded a nuinber of perfect specimens, some of tiem standing nearly upright, and with the pedicle apparently still attached to the rock below. The delicate little tentacula on the arms were preserved with all the plates still occupying the grooves. It was casy to read with oue glance the whole history of the catastrophe which fell npon them and occasioned their destruction. They had been buried alive by a deposit showered down upon them from a superficiol current passing far alvee, while at tho bottom it was still water. If, after death, they had nut been subjected to a sufficient amonnt of violence to remove the tentacula, it is highly probable that, had they beel. provided with ovarian valves, these would also remain; but in upwards of sisty specimens discovered here and in other localities, not a trace of a valse is to be seen.
(To le continued.)
Earata.-Om page 215, for "A. Fiegana" read "A. clegans," and for "II. Parasitica" read "II. parasitica"

On some Points connected with the Early Illatory of Rome*

> By the Ree. E. St. John Parry, M.A., Professor of Classics in the University of Trinity College.
"Ancient History"" it has been well said, "is the biography, of the dead, while Nodern History is the biography of the living." "And it must therefore necessarily follow," as the same author says, "that Modern History must be especially interesting to

[^3]ourselves, innsmuch as it treats only of national e:istence not yet extinct: it contains, so to speak, the first acts of a great drama now actually in the process of being represented, and of which the catastrophe is still future." Aud to carry on the idea of this great historical writer, if we may speak of the history now enacting, and in progress since the dismemberment of the Westem Empire as une great Drama; we may aho cumpare Ancient Histury to the Prolugue of that Drama, or rather, perhaps, to the mass of presupposed action and interest, of which the Drama itself takes no accome but in so far as its own colour and incidents are derived from it. It is in this point of view that Ancient llistory interests us so deeply, as containing not only the type of what follows, but in many cases the actual germ from which our own institutions, our own political forms, are primarily derived. 'This is true of the Early History of Rome to a greater extent perhaps tham of any other History. From the Roman Empire we have derived many of our distinguishing national institutions, as well as a large element of our language. In its early History we find these institutions embedded, as it were, amid a mass of heterogeneous matter: from which it requires much labour and discrimination to detach them. Some of the greatest geniuses of Modern times have been employed in investigating this subject. Glareanus, Perizonius, Beaufort, and Vico, are some of the names which every Scholar reveres for their services done to the cause of critical historical enquiry; and if we give Nicbulr the precedence above them all, it is because he has brought to bear upon a subject which they had previously touched upon, the full strength of modern criticism, aided by a commanding and practical genius; carryins with him to the investigation of carly Roman History the experience of the diplomatist and finacier, and above all, the uubending patience of the Teutonic character, he has reproduced so faithfully before the present generation the genuine form and features of the old Republic, that we are tempted to pay him an almost undivided homage, and to recognize in him the Second Founder of early Rome.

Within the limits of this paper, it is impossible to give a general account either of modern discoveries, or of the early history which they illustrate. It will he sufficient to endeavour to illustrate one or two subjects; and we may confine our aims to some few notes on the Ethology and Languages of Ancient Italy.

I. ETHNOLOGY.

1. Pelusgians. The greater part of Italy appears in very carly times, to have been inhabited by the Pelassians, whether under the name of Siculians, ALorigines, Enotrians, or Tyrrhenians. Under one or other of these names, they occupied the southern part at least of Etruria; the district round Reate in the Sabine territory; and the west and east of Southern Italy. It is generally allowed that these Pelasgi, were part of that extensive and wide spread family, which many centuries before our era occupied all the countries situated on the Mediterranean, from Etruria to the Bosporns. Wo ind their monumentscommonly known as the Cyclopean masonry, in Arcadia, Argolis, and Attica, in Grecee; in Etruria, and Latium, in Italy.* These walls formed of enormous block;, mised as it were by the hands of Giants, have defied the lapse of time, and still remain to us as unaccountable monuments, whether of the skill or of the

[^4]strength of the extinct race. The gencral family of the Pelasgi is found at Dodona, worshipping the mystic vo , of tho prophetic dove; at Lemnos, Imbros and Samothace, successors of the Cabiri, deriving their rites from the religion of tho East. Theirs was Troy,t the great Pelasgic town, whose founder, Dardanus, was falbed in varivus legends to have come from Areadia, from Samuthrac, or from Cortona; all histurical centres of the early Pelisgic race.
The Polncgians are generally reported by writers of antiquity to have formed settlements on the coists of Italy; and in the various legends of the foundation of Italian towns by the race, we perceive that they are traced to two centres, the Areadian and Argive Pelasgi, and the Lydian or Tyrrienian Pelisgi. It cannot bo doubted that the Pelasgians, as an unsettled and seafaring race, may have occupied simultineously many points on the coast of Italy. As a commercial and industrial race, they would naturally establish themselves on the sea coast, and at the mouths or on the banks of the larger rivers. Thus we find them, according to tradition, occupying welve citics on the banks of the Po , twelve in Etruria, and twelve to the south of the Tiber; corresponding to the same Pelasgic number of twelve townships in Attica, twelve towns forming the Amphictyonic I ague in Grecce, the Eolian and Ionian Leagues in Asia Minor. If we remember what has just been noticed, viz:-the dispersion and industrial chameter of the Pelasgic nation, we are at no loss to account for their disappearance from history: they are indeed branded in Grecian story as blood-thirsty marauders; of their race is told tho tragedy of Lemnos, the inhuman murder of Phoccean prisoners at Agylh Nor can we doubt that these tales arose from the hatred of the warlike frecks to an agricultural and industrial population, distinct from the heroie tribes who afterwards peopled both Greece and Italy, in their possession of a knowledge of nature which inspired their enemies with fear and with hatred. The Telrinines of Rhodes, the wizards of ancient fable; the Cyclopes of Peloponnesus and Sicily, who penetrated the depths of the earth with lamps fixed on their foreheads, the one-eyed miners of antiquity; the Cabiri of Lemnos and the Eastern Pelasgic races-workmen as well as Gods, who were worshipped under the image of earthern jars, the emblems of the mystery of the potters art: all these teach us that the genins of the Pelasnic race was one of industry and skill, buth undervalued by their ruder contemporaries. So the Pelasgi in Italy were made subject to various conquerors; those of the North to the Gothic Rasena; those of Centre Italy (the Siculians inhabiting Latium) to the Oscans, who drove them into the island which has ever since retained their name; those of the South (the (Enotrians and Peucctians) when the invading Hellenes subjugated their old seats in Lucania and Apulia, were reduced to serfdom, as their kinsmen were in Etruria; while a portion of them, the Bruttii, retained for cerer the name as well as the condition of slaves.
The consideration of the history of this Pelasgic race, and its settlement in Italy, is so intimately connected with the after condition of their clief territory (that of Etruria), that we may lem anticipate a little the course of events, and advert to the concurest of Etriria by the Etruscans.

[^5]The early Inhabitants of Etruria were Tyrrhenians, a branch of the Pelasgic race. That they were at any rate closely connected with the cally inhabitants of Greece, if not belonging to the same great family, is clear from several considerations. These T'yrthenians appear by the preponlerating evidence of antiquity to have migrated from Greece and Asia Minor. Succee ling and conquering them we find a race which is referred to Lydatis its mother country on the testimony of Herodotus, is well as of many other uncient authors. This theory of their origin has been supported by Mr. Denuis; and quite lately by Profesisor Newman. On the contrary we have the absence of any corroberating testimony in Xanthus, the annalist of Iydia, as noticed by Dionysins; and the fact that the language, religion, and institutions of theso Etruscans did not correppond with those of Lydia. This negative oljection isoverruled by Newman on thesegrounds:

1. That the positive testimony of Herodutus is worth far more than the omision of Xanthus.
2. That the tendency of fiction in nations is to remodel the past, not the future. "They feign forefathers," he says, "not children: so that this belief of the Lydians is a weighty circumstance."
3. That the native population of Etrusia was then Umbro-Pclasgian; and that the language and institutions of the Etrurians would naturally undergo a sensible change from their proximity to the old population, just as the language of the Lycians themselves had undergone a sensible change during the vicissitudes which befel them in the growth of the Persian Empire.
Niebuhr, as is well known, combats this view; and would derive the Etruscans from the country north of Italy, supposing them to have conquered the Tyrrhenians and Umbrians, and occupied Etruria proper and the country about the Po. This view is that which, after all that Professor Newman urges sgainst i, seems nevertheless to rest on the surest ground. I will, before proceeding to state the accepted theory of the Etruscan History and their invasion of Central Italy, offer one or two remarks on the arguments by which Mr. Newman has endeavoured to set aside that theory.

1st. As to the positive testimony of Herodotus. His account of the story may be freely translated as follows :-
"The Lydians say of themselves, that the common games which are now in use in Greece are their invention; and that, besides iuventing these games, they moleover sent a colony to Tyreenia. The following js their story:-In the days of Λ tys, the son of Manes, their king, there was a sore famine throughout all Lydia. And for a time the Lydians lived in distress, but afterwards, when the fimine stayed not, they sought for remedies against it. It was then they say that they invented dice, and knuckle-bones, and ball, and all other kinds of games except draughts. * * * * For one whule day then they played games that they might not want food: and the next day they took their turn to eat, and rested from their games. Thius they lived for eighteen years. But when the evil abated not, but rather grew worse and pressed them sore, then at last their king divided all the Lydians into two parts, and drew luts for the one to remain at home, and the other to leave the country. And with the lot that drew to remain at home the king joined himself; but with that which was to depart from the country, he joined his own son, whose name was Tyrsenus. Now the paty who were appointed by lot to depart ont of the land went down to Smyrna, and built ships for themselves, and put in them all their moveable property, and sailed away to look for a livelihood and a home: and they passed by many
nations, until they came to the Ombrici. And thero they built citics in the lame, where they live even unto this day. But they changed their name from Lydians after the name of their king's som, who had led them out, and were called 'lyrsenians." (IIdt. I. 04).

I think that no one who reads this paragraph can fail to observo that Herodotus tells this tale merely as a tale, and does not attach to it any great importance. We have no words of criticism, or of assent, such as he so often appends to stories in themselves far more probable. He seems to class it with the invention of games, and to give the Lydians credit for one as lightly as for the others. At any rate, the amount of credit which Herodotus gives to this story can hardly be characterized as positive testimony, or be set against tho omission of any such account in Xanthus, who, more perhaps than any one, would have endeavoured to raise the listorical importance of his country by recording this legend, if he had regarded it as entitled to credit. I confess that it seems to me to belong too clearly to the a posteriori class of fictions, where the name of the hero is represented as descending to the people and the country, where the national life is traced fondly back to some semi-heroic cponymus-to some god, or child of a god, who had left Olympus and walked among men, and trunded for himself a city and a people in the gollen age. This tendency is illustrated by many familiar instances, which we need not recill to our readers' miuds; but it may be interesting to observe how such a fiction may arise, not only in an early and credulous age, but at a cultivated and critical period-nay, how even the critic may show undue credulity, misled by this name-parentage of early fiction. Let us take as our instance Tacitus, the historian, the seeptic; a man of all others the most likely, we should think, to have entertained that "wise dishelicf" which "is our first grand requisite in dealing with materials of mixed worth." And yet, when treating of the history and institutions of the Jews, he shows not only ignorance and prejudice, both of which we can easily account for, but he gives us a remarkable instance of the tendency of eponymising (if we may coin an expressive word) which we have noticed above. Among various theories which he mentions, these two are to the point: "Quidam (memorant) regnante Iside, exundantem per Egyptum multitudinem, ducilus Hierosolymo ac Juda, proximas in terras exoneratam;" and again: "Alii, Judsorum initia, Solymos, carminibus Homeri celebratam gentem, conditam urbem Hierosolyma nomine suo feciss.'-(Tuc. Hist, V. 2, cf. also, 3-8.)
2. Professor Nerman's second argument does not appear conclusive. Although the fabulous tendency in nations looks to the future rather than to the past; although "they feign forefathers," as he says, "not children," yet we cannot allow that this belief of the Lydians is in itself a circumstance of any great weight; for we must distinguish between the art of inventing a posterity gratuitously, so to speak, and the art of claiming the parentage of a nation alrealy existing, and presenting sumficient marks of a family likeness to render the claim feasible. This wo conceive to have been the case with the Lydians. They found a nation existing in Italy in whom they recognized some marks of a common stock. This nation they chaimed as their offspring. Their claim must be modified or rejected according to one of tro alternatives. We may suppose that the nation whom they wished to claim was merely one branch of that Pelasgic family which has its seats in Lydia as well as in Italy. In that case, they may have had a real connection with that western out oost of their family, but with the 'lyrrheno-Pelasgic inhabitants of Etruria, not the Etrunians proper. Or, secondly, if we consider this legend as referring to the strict Etrurian race, we feel bound to
reject it-to class it among other mational claims to an illustriuns progeny, placing it in the same category with the claim of the Jews to the colonization of America,* or with the rival cham of the ancient Weleh to a discoverer and colonizer of the New World in the person of their fabulous Prince Madoe.
3. The change of language is equally explicable on either theory. Whatever were the respective languages of the original inlabitants of tho country and of its later conquerors, it is very probable that both underwent considerable moditicatiou, so that we can easily account for the apparane of a new composite tongue, equally distinct from Pelasgian and from pue Etruiam. Thus much we may say here, in inticip:tion of what will fall into its place more properly when we come to consider the Languages of Ancient Italy.

These considerations appear to my mind feasible enough to incline us to :urree with Niebuhr rather than with Dennis, to look for the Etruscans rather to the north of the Italian Peninsula than to the east. So far we agree with Dernis that in Etruria are found many traces of the influence of Eistern customs and religion; but wo hesitate to make the introduction of these customs contemporary with the incirsion of the Rasema or pure Etruscans. The monuments discolered in Etruria only increase our difficulty. Not only do they present us with an unintelligible language, but they further perplex us by the strange medloy of religions which appears in them. As Michelet describes them:-"'lhese men, with large arms and large heads, remind one of the statues found in the Mexiean ruins of Palamque. * * * * * * This caghe-horse carries me to l'eria; these personages who cover their mouths as they address a superior seem to have been detached from the bas-reliefs at Persepolis. At their side I see the man-wolf of Egypt, the Scandinavian dwarfs, and perhaps the mallet of Thor.' Without following out all the fanciful resemblances perceived by this author, we yet clearly perceive enough uncertainty to forbid our basing upon these remains any very important theory.

How, then, are we to explain the history of Etruria?

I. We must remember that there was existing in the country from the earliest times of which any record remains, a population which may be described as Tyrrheno-Pelasgiam, composed of a mixture of the distinguishing Italian with the Greek element. This race perhaps supplanted an old Umbrian population, probably existed side by side with it. At all events, it is found in Etruria in the middle of the sixth ceutury B.C., at which time Agylla is nentioned by Herodotus as a town consulting the oracle at Delphi, in which temple it had a chapel or store-room-an evidence of Pelasgian origin.

[^6]II. Against this nation (a peaceful industrial population, as we have noticed above) there eane from their fastuesses in the Rhectian Aps the walike Resena, known to the Ronams by
 have heen Rhatians: athough, as ho observes, their languge had been greatly moditied by the ciremmstances of their local position. Huvever this may be, yet we have cery reason to conceive that the rate which now infested Italy was neither Umbrian, nor Lydiam or Pelangic, but Gothic; that they swept from the Alps, like their successurs the Gauls, in an overwhelming torrent, conquered Lombady, and thence, passing down the western side of the Appeninnes and furcing, perhaps the Umbrians who still inhabite! Northern Etruria, to cruss the mountains and contine themselves to the Eastern coast, they spread down from Lake 'Trasimenus along the valley of the Tiber, and flooling the country to the sea coast, established within those limits the empiro of the Rasema.

This period may be marked by the date 523 B . C., at the latest: for we know that between that date and 533 Bl . C., Agylla (afterwards Ciere) was still a Pelasgo.Tyrrhenian town in communication with Delphi. From that dite to about 470 13.C. is the probable prioul of Etruscan conquest: and duriur this half century they must have overrun Central laly and received the suthmission of Latium, and, among the Latin towns, of Rome herself.* In the year 470 they are said to have founded Capua; and were about that time at the height of their power. Hiero broke their naval power at the battle of Cuma, and about the same time, in all probability, a rising of Latium took place, when they were beaten lack with loss from under the walls of Aricia. From that periud their power declined. The Romans, after shaking off their temporary yoke, rose ateadily. The Etruscans were henceforth confined within the liber as their southern border. About the middle of the 4 th century of Rome the Gauls deprived them of their possessions in Lombardy. In B. C. 280, they are admitted to terms of Jasting friendship with Rome; and continue the faithful allies of Rome for two centuries till in the year 88 , they, together with the Umbriams, received the Roman franchise.

Nore has been said of this branch of Italian ethnology than would have been necessary, and more perhaps than may seem compatible with the restricted limits of this paper, because I found it necessary to disagree with the views put forth by Professor Newman, and was unwilling to do so without assigning my reasons more at length. We may pass on more briefly to a notice of the remaining natious who may be classed among the canly inhabitants of Italy.

The Umbrians and Oscans seem to have occupied large portions of Italy to the north and sonth of Latium. Under this class of nations were included the hardiest and most warlike of Italian nations. The hardy Samnites, who maintained many hoody wars against the power of Rome and Latium; the Volscians, those eternal enemies of the Roman name; the Sabellians, the moumtain shepherls, distinguished from the less hardy Osci, who enltivated the plains. the former worshipping Mavis, Mamers, or Mars, adored under the form of a lance; the same deity, whose name was dorived from the Sabine quiris, a spear, and worshipped as Quiruius in carly Rome. The latter worshipping a kind of Hercules, known by the names Sabus, Semn, Sancus, Fidius, the same deity whose name, we know; inseribed "Semoni Sanco" on a stone found on the island in the

[^7]Tiber, gave rise to the tradition mentioned by J_{1};tin Martyr, (Apol. 1., 26) that Simon Magus wis worshippea as a god at Rone, and that a statue in his honor had been erected by Claudius Cesar.

This family of nations imhabited tho districts known by the names of Unbria, Picenum, Sabinum, Samnium, and Lucania.

The chicf element of Italian population which we have hitherto loft umoticed is the Greek, purely derived from Latin Grecee, and distinguished from the Pelasgic population which had settled in Italy long previously. The earliest Greck colony in Italy was Cume, in Campaguia, which is referred to a fabulous date. There were, no doubt, many other towns of which there is no distinct record. Even in Southern Etruria we can trace in the legend of Tarquinius, and the story of the arrival of Demaratus from Corinth with the artists Enchir and Eugrammus, a link between the sea-board of Etruria and the maritime cities of Peloponnesus. In Magna Grecia the Greek element was most firmly planted, and there, both in religion and in philosophy, it gave rise to a school as distinguished as any in old Greece itself.

> (To be continued.)

List of Imiligenoug Plants found in the melgbbourlinot of Hamiltung, with the dates of their behng fomil in Flower and Examinct.

By Dr. Craigie amd Mr. If: Craigic.

Aipil 2lst.
Symplocarpus fetidus. $28 t h$.
Sanguinaira Canadensis.
Hepaticat triloba
Claytonia Virginica.
Erythronium Americanum. Mn 4 th.

Viola ovata. " pubescens.
Leontice thalictroides.
Trillium erectum. 8th.

Thalictrum anemonoides.
Viola cucullata.
" blanda.
" Canadensis.
Dicentra Canadensis.
" Cucullaria
Chrysosplenium Americanum.
Uvularia perfoliata.
Trillium grandiflorum. " cernuum.
10th.
Caltha palustris.
Dentaria diphylla.
Pamax trifolium.
Anemone nemorosa.
liragaria Virginiana.
11%.
Cardamine rhomboidea.
Dentaria haciniata.
Ranuunculus abortivus.

May $12 t h$.
Asarum Canadense. Waldsteinia fragarioidce. Amelanchier Cunaden: s. 14 th.

Mitella diphylla.
Saxifriga Virgiviensis.
Phos divanicata.
lhanunculus seeleratus.
$16 t h$.
Xanthoxylum Americanum.
Lonicera ciliata.
Atragene Americana.
$21 s t$.
Thalictrum divicum.
Viola sagitlaria.
Tiarella cordifolia.
Arum triphyllum.
$22 n d$.
Zizia aurea.
Sissafras oflicinale.
Sambucus pubens.
Benzoin odoriferum:
$23 r$ d
Platanthera bracteata.
Acte:a rubra.
" Americana
Cornus Camadensis.
Iithospermum arvense.
$24 t h$.
Thientalis Americana.
libes hirtellum.
2Thl.
Smilacina stellata.

May 2 thl.
Osmorhiza brevistylis.
Geranium maculatum.
Cerasus Penusglvanica.
Zizia integerrimio.
28th.
Streptopus roscus.
Orchis spectabilis.
Prunus Americiana.
Ribes tloridnm.
Pedicularis C:anadensis.
Castilleja coccinca.
Cardamine hirsutis.
$29 t h$.
Polygonatum pubescens.
Podophylime pelatum.
lRubus triflurus.
30th.
Prosartes lamuginosa.
Staphylea trifulia.
Veronica peregrina.
Juse 4th.
Cornus Flonida.
Crateryus cocciner.
Cerasus Virgimiana
Geranium Robertianum.
Cerastium hirsutum.
Cypripedium pubescens.
Acer spicatum.
Veronica Americina.
5th.
Potentilla Canadensis.
Crategus punctata
Aquilegia Canadensis.
Hydrophyllum Virginicum.
Sanicula Marilondica.
Platanthera Hookeri.
7 th.
Lathyrus ochrolcucus.
Comandra umbellata.
Smilacina bifolia.
Eigeron bellidifolium.
oll.
Triosteum perfolintum.
Aralia mudicaulis.
Cornus circinati.
Smilacina racemosa.
10 h .
Cerasus serotima.
Cornus alternifolia.
$12 t h$.
Cornus stolonifera.
Viburnum Lentago.
Rubus villosus.
Pyrol- rolundifulia.
16th.
Linnea borealis.
Calla palustris.
Cclastrus scindens.
$18 t h$.
Leucanthemum vulgare.
Eltonymus Americanus.
19/h.
Aphyllon uniflorum.

June 2lat.
Stultaria longifolin.
Circoea alpimal
Speculania perfoliata.
P'otentilla Nowegica.
Osmumda cimamomea.
" interrupta.
$23 r d$.
Viburnum acecifolium.
Diervilla trifida.
Yeronica oflicimalis.
Myosutis las:i.
24 th.
Lilium Philadelphicum.
l'entstemon pulverens.
C:mpanula rotundifolia.
Polygala Senega.
Ilypericum perforatum.
Rosia lucida.
Liriodendron tulipifera.
Gillemia trifoliata.
Ranumenlus fasciculais.
$251 /$.
Sagittaria variabilis.
Pyrola elliptica.
Cynuglossum officinale.
Euphorbia platyphyllia.
Frasera Caroliniensis.
Oxalis stricta.
Iysimachia quadrifolia. 30th.

Iris versicolor.
Utricularia vulgaris.
Nuphar alvenit.
Nymphea odurata.
Asclepins incarnatia " debilis.
Apocymum cimunbinum.
Lathyrus maritinus.
Geum Virginianum.
Archangelica atropurpurea
31 st.
Prunella vulgaris.
Sisyriuchium anceps.
G:lium trifiorum.
" lanceolatum.
Batrychium Virginicum.
Hyposis erecta.
Meleola Virginica.
Mitchella repens.
Silene noctiflora.
July $2 m$.
Asclepias phytoliccoider.
" Syriaca
Cornus paniculatia.
Moneses uniflora.
$3 r d$.
IIydrophyllum Camadense.
Rhus typhina.
Sparganiain ramosum.
Allium tricoccum.
Lathyrus palustris.
Vicil Americana.
」athyrus myrtifolia.
Stachys aspera.

Junr 4th.
Trifolium procumbens. " arvense.
Galium boreale.
Malva rotundifolia. Euphorbia polygonifolia.
Verbascum Blattaria
Lepidium Virginicum.
Polygonum convolvulus. $11 / \mathrm{h}$.

Epilobium angrastifulium. coloratum.
Thnlictrum Cormuti.
Ranuuculus actis.
Tuubus odoratus.
Pyrola secunda. " asarifolia.
Sambucus Canadensis.
Anemone Virginica. 12 th .

Ceanothus Americana.
Apocynum androsemifolium.
Geum strictum.
Anemone Pemsylvanica.
Rudbeckia hirta.
14 th.
Lilium superbum.
Lysimachia ciliata
15 h.
Hydrocotyle Americana Orchis hyperborea. 10th.

Solanum dulcamara.
Ramunculus aquatilis.
Circea Latetiana.
Galium asprellum.
Helianthus trachelifolius.
Cnicus arvensis.
Agrimonia Eupatoria.
Aspidium acrostichoides.
Monarda fistulosis.
Lysimachia stricta.
Tilias Americana.
Physalis viscosa.
Sium lineare.
Eupatorium perfoliatum. 18th.

Scutellain galericulata.
Enothera biennis.
Antennaria margaritacea.
19th.
Corallorhiza multinora.
Chimaphila umbellata
Ampelopsis quinquefolia.
Hypericum corymbosum.
Campanula Americana.
Monarda didyma.
20th.
Gerardia flava
Lobelia puberula
Halenia deflexa
$21 s t$.
Melissa clinopodium. T'eucrium Canadense. Gaultheria procumbens.

Juir 22md.
Polygonum Persicarin.
Mimulus ringens.
Erigeron Canadense.
Barbarea vulgaris.
Arctium lappa.
24 th.
Lobelia spicata.
Phryma leptostachya.
Cicuta maculatia
Desmodium acuminatum.
Euphorbia corollata.
Asclepias tuberosa.
Astragalus Canadensis.
Melampyrum Anericanum.
$26 t h$.
Polmisia graveolens.
Solidago Camadensis. " odora.
Datura stramonium.
Potentilla Anserina.
Cicuta bulbifera.
Bidens conmata.
Phytolacca decandra.
Clematis Virginiana
Verbena hastata.
Calystegia sepium.
Eupatorium ageratoides.
Impaticns fulva.
" pallida.
Mentha Canadensis.
Saponaria officimalis.
Eupatorium purpureum.
Polymnia Canadensis.
Urtica divaricata
Aspidium marginale.
Polypotiam vulgare.
Polygonum aviculare.
30 th .
Scrophularia Mavilandica.
Aralia racemosa
Leonיrus cardiaca.
Cnicus lanceolatus.
31 st.
Aster miser.
" corymbosus.
Inula IIclenium.
Desmodium Canadense. " cuspidatum.
Cynoglossum Morisoni.
Platanthera psycodes.
Struthiopteris Pennsylvanica.
Spirea salicifolia.
Penthorum sedoides.
Climaphila maculata.
Goodyera pubescens.
Lobelia inflata
Desmodium nudiliorum.
Veronica anagallis.
Hypopitys lanuginosa.
Sonchus olcraceus.
Heracleun lanatum.
Avacst 4th.
Gerardia quercifolia.

* pedicularia.

Avacst 41h.
Solanum nigrum.
Decodon verticillatum.
Aster Tradescauti.
Desmodium paniculatum.
Lespedeża frutescens.
Jessmodium Dillenii.
Circium discolor.
Polygonum Peunsylvanicum " amphibium aquitticum.
Aster macrophyllus.
" simplex.
Dryopteris thelypteris.
Camptosorus rhizophyllus.
Lactuca clougata.
Solidago altissima.
5 th.
Chenopodium urbicum.
Hieracium longipilum. " Canadense.
Nabalus albus.
13aptisin tinctoria
Lobelia syphilitica
Epilobium palustre.
Acalypha Virginica 0th.

Scutellaria laterifora
Collinsonia Canadensis.
$15 t h$.
Rumex hydrolapathum.
" Cuscuta Americana.
Pontederia cordata.
Diplopappus albus.
Helianthus strumosus. " giganteus.
Phaca neglecta.
Liatris cylindracea.
17%.
Polygala fastiginta.
Tofieldia pulens
Lobelia cardinalis.
$18 t h$.
Bidens frondosa.
Solidago squarrosa.
" bicolor.
" latifolia
Polygonum hydropiper.
Erigeron strigosum.
Lespedeza hirta.
Pycnanthemum incanum.
|Auarst 18th.
Hedeoma pulegioides. $20 t h$.

Apins tuberosa.
Polygonam amphibitun terrestre.
Gerardia tenuifolia.
Hienaciam paniculatum.
Phaseolus helrolus.
Scutellaria parvula.
Artemisia Canadensís.
" gnaphatcdes.
Bidens chrysanthemoides. " cernua.
Polygonum Orientale. $28 t h$.

I'arnassia Caroliniana.
Spiranthes cernu:a.
Gentiana Andrewsii.
Abutilon avicennec.
Chelone glabra.
Senecio rulgaris.
Cirsium muticum.
Solidago cosia
" puberula.
" patula.
" Muhkenbergii.
" altissims:
Aster multiforus.
" longifolits.
" punicens.
" nove Anglia.
" acuminatus.
Sfiptember lat.
Amphicarpœa monoisa.
13 lh .
Polygonum arifolium.
" sagittatum.
" lapathifolium.
Solidago nemoralis.

* latifolia.

Lechea minor.
Aster amplexicanlis.
" dumosus.

* prenanthoides.
" azureus.
" cordifolius.
" patens.
$25 t h$.
$\underset{\text { Gentiana }}{\substack{\text { Guinqueflora. } \\ \text { criuitz. }}}$

Toronto Marhour-Its Formation and Preservation.
Read before the Canadian Muslitute, ly Sandford Fleming, C. E.,
June 1, 180.
Sceond, That the Peninsula proper has been formed solely by the mechanical action of the waves, that the sand and gravel of which it is composed have been by this action gradualiy trans. ported from the eastward and deposited on tho deltaic shoal of
the Don, and that the delta has thus been raised above the surface of the water and extended westwand fir beyond its original limits.

The effects producel by wares on a shore exposed to their action are of various hinds, depemang in a great measure on the nature of the beach, the direction of the wates, and their mechamical force: if the shore be of clay the action is entirely dostructive, the bambs are undermined and contimatly caving in, the fine argillaceons particles are tiken up by the water, carried out anl deposited after a time at depths uniffected by the motion at the surface; if the shore be of sand or gravel the effects produced are quite different. When the direction of the waves is not at right angles to the leach a progressive action results, and when the waves break point blank on the shore line with sulficient force the action is destructive, in which case the banks are broken down and the spent wave returns loaded with sand to be deposited outside of the breakers in the form of a shoal generally pradel to the coast; if the soil of which t.e banks are composed be a mixture of clay and same the action is both destructive and progressive, the clayey particles are washed out and deposited in still water, while the sand, gravel, and stones are left behind to be moved forward either in one direction or another, and at a rate depending solely on the strength of the impinging waves, and the gravity of the materials themselves On a rocky shore the effects produced are precisely simili:-, although of course to a much more limited extent; by continua: exposure to the wearing action of water and weather a mass is undermined and tumbles down, a portion of the debris is put in progressive motion during every storm when the waves impinge otherwise than at right angles to the shore line and is moved, according to the locality, in a certain prevailing direction, until necting a projecting point or other hindramee to its onward progress; thus forming those shingle beaches seeu at many places on all rocky shores.
The effects of the destructive action on banks of clay can be tracel wherever the shore is entirely of that material; the owners of property along many parts of Laike Ontario can bear testimony to its annual encroadiments; and, to come neares home, many citizens of Toronto must have witnessed the gradual alteration in the form and recession of the clay banks betiveen the oid and new garrisons.

The effects of the progressive action can also be witnessed at many points on all the lakes; but at none in a more remarkabic degrec than at Tornnte, aithough at other phaces to even a mueh greater extent. And since to the peculiar motion of sand and gravel beaches will the attributed not only the extroodinary changes the Peninsula is at present undergoing, but even the greater part of the entire formation, it will be necusary to explain fully the nature of it, and give the reasons why the bench should have a tendency to move in one direction in preference to another.

Let us take an example when the direction of the wind forms an acute augle with the shore, a particle of sand resting on the surface is driven forward up the inclined phane of the leach in the direction in which the wave itse!f moves, the particle cither remains at ice now elerated position or (as is more usual) sweeps along in a small curve and rolls downsards with the expended wave to a net position, the distince of which from the first will be in proportion to the mechanical foree of the wave and its direction; amother and cach successive wave drives the particle forward in a similar manner, umless be accident it finds a recting place behind some obstruction or be buried loy other particles en the same mission as itself. If we take instead of a grain of sand,
a small pebble, we find that the same ware, or a wave having the same furce, moves it a less distimee than it does the sand, that larger pebbles being heavier make propotionately les progress, and that stones still heavier are moved only when the waves have considerable power. All of these badies, however, when within the impelling fure of the wave and pated in pusitions fairly exposed to its direct action, seem to be governed by the same lan, and are moved forwand a less or greater distance according to their weight and gravity.

Fig. 2.

The arrones denote the direction of the arates; the dinted lines show the pathis of grains of sumd and pellules.
The zig-zar direction taken by the sand and gravel on the heach is indicated by the various dotied lines on Fig 2 , the smallest one is intended to show the couse of a grain of sand, and the two largest lines that of pelbics sarying in size. The progressive motion is slightly suspended between cach wave, but although intermittent is continued so louse as the sea breaks on the shore from the sume quarter, and untit the moving mass mects with an obstruction, or by reason of a sudden bend or other preculiarity of the shore line is deposited in a position beyond the influence of the waves.

When the waves impinge at right angles to the shore the progressive motion of the beach is theoretically nothing, the various particles of sand are rolled upwards end downwards, changing pasition ouly laterally or in the line of direction of the wawes; when the waves impinge somewhat less than a right angle the grains of sand move along in a sharp zig-zag line, as

Fig. 3.

in Fig. 3, when much less than a right angle the particles move onward in a long undulatory line as in Fig. 4. The distance hetween the points of each indentation being in proportion to the cosine of the angle formed by the direction of the waves and the line of the shore.

Fig. 4.

Granting that the direction of the waves is governed loy that of the wind, it follows that whencer the wind hows from a quarter to the right of a perpendicular to the shore, the beach sand is moved to the lefh, and rice rersa. If, therefore, the wind her with equal strength and luriug equal times from all proints of the compass thronglout the year, and the waves also had at all times the same mechanieal foree, the sand would at one time more to the right, and at another time an equal distanee to the left; but, to sprak in general terms, the leach would remain ever as it was (excepting the effects of the destructive action). Sinom the forces secer could act simulaneously, we would have, it is true, a constant repetition of complicated motions, zip-zag. un-
dulatory, lateral, progressive, and retrograde; but, from their assumed equality and the equal times of their application, there could be no resultant. The mean velocity of the wind may properly enough be taken as equal throughout the year from all points of the compass, since the actual difference, as obtained by observations, will effect the results inappreciably; but the mean force of the waves will not in consequence be equal, as this is greatly influenced by the locality: It is found that the mechanical force of a wave depends chiefly on the strength of the wind and the extent of open water traversed; allowing then that the wind blows equally from all points, it will fullow that the resultant of the argregate forces of the wayes inpinging at any particular place, will be a line lying in a direction opposite to the largest area of open water.

In applying this conclusion to the beach in front of Toronto we find that the greatest extent of Lake Ontario passed over by winds blowing from any point westward of the perpendicular A B, Fig. 5 , does not exceed forty miles, nor is the area of water over twelve hundred square miles, while to the East of A the

Fig. 5.

waves have a fetch of as much as a hundred and eighty miles over an expanse of water measuring nearly nine thousand square miles; hence then (the duration of the action being taken as equal in both cases) the intensity of the collective foreses of mares impinging at A from the castward is many times greater than that of those from the westrard, and the motion of the beach at A must therefore be westerly; it must of course move widh a variable velocity because the forces are not constant; its path, or rather the path of each particle, undulatory, since the forces act impulsively on the plane of the heach in combination with gravitation; it must sometimes retrograde since the direction of the forces is ever changing, and they never act simulaneousis: but aggregatels, the beach sand, subject to many complicated motions, and acted on by innmmerable and incalculable forces, must move absolutely from east to west, and (taking the forces on each side of line $A \quad 13$ respectively ns positive and negative) with 2 velocity proportionate to their algebraic sum.

On that portion of the beach sucecssively washed by the waves only, can the progressise motion be proved occularly, yet doubtless a similar action must be produced between the breakers and the main land all along the shore, and when we consider that the lake is seldom or never entirely at rest, that even during perfert calms, unless continued for several days, a gentle ripple capable of moving sand is found on the shore, throughout the whole ycar, therefore, must the materials composing the beach be continually changing place, and although sometimes moring casterly, yet generilly, as prosed above, in the contrary direction.

The accompanying drawings of natural groynes very strongly confirm the conclusion here come to. They are copied from sketelhes recently taken (1850) on the spot, between Privat's Hotel and the Scarboro' Heights. Fig. 0 was formed by the falling of a tree opposite a fisherman's hut cast of the Narrows on a passing log: the outer end of the tree was supported by its branches: about one half of the \log was floaing, but kept stationary by the tree; the remaining half rested on the surface, and enabled the sand to accummlate at its casterly side. Figs. 7 and 8 appear also to have been formed in a similar manner. They were found on that part of the shore between Ashbridge's Bay and the Scarboro' Heights. The dotted lines indicate what

Fig. 7.

Fig. 8.

Sketches of nalural Groynes.

mas supposed to be the original water-mark. In all cases, the water was from one to two feet deep on the westerly side of the logs, and in several instances the sand was five or six inches above their upper surface on the ensterly side These groynes, formed by accident, show very clearly the results of the westward motion of the beach, and, although simple in the extreme, are natural models from which may be designed other contrivances for the retention of the moving sand, and will be referred to hercaicer in treating of the preseration of the Hisabour.
In addition to these indications of the westrard motion of the beach, it may be obserred that, on an examination of thes mouth
of several small stre:mas diselarging into the lake east of Ashbridges Bay, it is font that, whaterer be their geneal direction inland, so sum as they interseet the sand bath, heeir couse is westward. In most cases they tun parallel to the shore, separated from it by a small ridge of sand, and ultimately discharge into the Lathe some distance west fiom the puint where they leate the noods.

We hane also palpaile and poitive prove of the westward motion of the beach an the extenion of the Pominnala itself in that directann. Juseph Buachette, late: Survejur-General of the Province, maice a survey of Turumbor liabur in 1596, a redured plan of which was published in 1815 aldong with his work on Canada At the diate of the survey, that part of the Peminsula on which the light-house is erected was then the margin of the Jake. Since that time, one sand ridge after another has been washed up, until now; after a lapse of only fifty-four yeans, a tract measuing upwards of thirty acres has been added, and the Lake is no:v distant from the light-house about eighteen clains.
The general appearance of this recent addition to the Peninsula resembles sa closely other older portions, and its geological character is so clearly identical not only with the adjacent parts, but also with the whole formation. that we may very properly infer they ane each and all proluced by the same causes. Admitingy thea-and it is indisputible-thint this enlargement of the lighthouse puint is due to the presresive motion of the beach saud dirunsh the mechancal ageney of the wates from the eastward, we cone to the concluston that the wiole Peninsula is the result of the same action, continued through past ages, and trace:ble to the same eastward source
Arrived at this conclusion, we are now naturally led to enquire whence has the abundum supply of material for so extensive a depost been ohtaineal. Abunt fite mikis cast of Toronto, a high bluff, known as the Searbore' Heights, stretches alung the shore for several miles. The hatf is :ibout three humdred feet high, and is chiety composed of sand, with at intervals a stratum of clar. It is kinown by the farmers residis:a in the neighbouriond to reciede ten or twelve feet anna:lly at the present day. Fanther castward, the const has a low aipect, and is of a suil capable of providing but littic of the substances of which sand and gravel beaches are composed. Moreover, by contouring the country bordering on this high cliff, it is found that the bines betuken a former ifreat projection lakeward, of which Fig. 3 (see plates) is an ideal outine, and Fir. 16 a sectionad sketch on the line $K L_{L}$, at right angles to the shore. For these reasone, then, we are induced to fin upen this guint as the lixality from whence has been drifted the materials forming the deposit in question.
Founded on denmonstrative and prolable evidence, here in part set forth, I will now ventare to lay hefore you what I believe to loe a correct themry of the gradual formation of that singular deposit which has provided ior Toronto so good a hartbour.

On the sthisidune of lake Ortario from a high to its present level, the land fell in easy slopes to the water's cilge, and the gradual, deseending surfice-lines were continued outward under water; the abrupt terminations of the land along the boundary of the lake having been formed by its encroaciments through a long course of ages, the promontorics whach formerls projected lave heca roumbel of lif the destructure intucuce of the demerits. The sund and chay of which they consisted, and which lav between the arecient and present margins of the water, having been removed to other pais, the clay carned out and strati-
fied at the bottom of the lake, and the sand formed into new deposits, kindred to the une under discussion.

Referring to Fig. 16, we have an illustration of this as applied to the Scarboro Meights. K represents the present position of the elift, and L the supposed tormer shore of the lake, the point of hand extending from K to L, Fig. 9 , having been remored by the waves.

Fiss. $9,10,11,12$, and 13 are shetches of the def m^{2} sit at several perivis priur to and during its fumativn. The first shows the suppused vigrinal outhe of the late immediately after its subsidence, prive to any emroachments or changes of the shore line; the second, a sinall spit ruming westerly fron the Starboro' promontory; the third and fourth, farther extensions of this spit, and wearing alsay of the promontory. At this perion (Fig. 12) the liver Don has brought down a large guantity of drift from its valler, as explained in the fist prart of this paper, and the lake dejosit is now going on over the shoal water. Only a small portion of the spit thrown up at this period now exists, the remainder hating been encroathed on and moved westerly as the heeights at Scirboro' receded. The portion referred to is a narmow ridge ruming landward to the west of the Don. It may now be seen streteling frum near the wind-mill outward, and separating the marsh from the harbour.

Fig. 13 shows still farther encroachnents on the land at Scarburu, the almost entire rcmural of the spit shown by Fig. 12, and the advancement of the Peninsula westward.

Fir. 14 represents the present state of the deposit. The dotted lines are contours (explained on the phate) showing the rapid progess of the shoal lamdward at the western boundary of the Harbour. Its calge between the point of the Peninsula above water, and the mainland, at the Queen's Whari, may be taken at the ten feet water-line, within which it immediately rises, and gives a depth of alwot four feet only along the eastern side, and from six to thirty inches along its western boundary.

Figs. 17, 18, 19, and 20 are sections across the Marbour and Peninsula on the lines G II, 1; F, C D, and A B, drawn on Fig. 14. These show ciearly, wilhout unnecessary explanation, the nature and linits of the denosit. Fig. 20 runs from the foot of George Streci southerly, through th:it point of the Narrows proposed for the eastern entrance to the harbour, hereafter mentioned; Fig. 19 on a line parallel to the tirst, from the Parliament Buildings southerly; Fig. 18 from near the Queen's Wharf directly across :he shoal at the entrance: this, as well as the last, cuts several of the many ridges of samd, with long narmor ponds leetween, by which the upper surface of the formation is characterized. Fige. 17 rums from the old French fort parallel to the other sections, intersecting no portion of the deposit, but passing very close to its western limit at the Lighthouse point, in sixty feet water. The depth of water, increasing as the deposit was extendel westerly, accounts very satisfactorily for its spreading so mach towards the noth. Although an equal amount of sad may annually have been brought forward, yet, as the dejposit was forced out into inereasing depths of water, this rate of extension westerly would in proportion be dininished, thus allowing the southerly waves more and nore time to act in moving the deposit towards the north.

In the manner above explained, it is argued that the Peninsula has been formed, is still miderg,ing yreat changes, and is eren now receising large ammal additions from the same source. It seems too, from what will shortly be laid before you, that the same natural agents which hate raised up a breakwater, and formed one of the most canacious harbours on the Inke, are
as actively engaged in its destruction, by fencing in, as it were, the whole smooth water basin they have made, and justify the inference that, if left entirely to themselves, will at sume future period unite the Peninsula to the mainland west of the Queen's Wharf, in the same mamaer as it was originally connected by the ridore from near Privat's to the Wind-mill. 'I'his stage of the deposit is illustrated by lige. 15, at which petiod the surphas water of tho Don would in all probability time egress wer the bar by a shalluw channel, flactuating in prosition ats well as depth during every southerly gale, or by riech gups as are vecasionally openced in the narrow belt of sand separating Ashbridge's Bay from the main Isake.

The progressive motion of the beach, observable only on close examination, and apparently of little moment, is when continued during incalculalle periods of time, thus proved to be productive of very extraordinary results. Nor is it confined to this neighbourhood, for we discover umintakeable indications of its operations along the shores of all the great inland lakes.

Round Lake Ontario its effects can be traced at Burlington Beach, the mouth of the Niagara liver, Prespue Isle, Cubourg, Port Hope Windsor Bay, and at innumerable points along the cast and south boundaries of the Lake.

IRound Lake Erie we see its results at Sandusky 13:1y, Point aux Pins, Long Point, Port Colborne, Butfalo, and it Eric.

At Saganaw Bay, Thunder Bay, Rivjers Aux Sable, north and south, at Nottaw:ssaga, and the Christim Islands, on Lake Huron.

Round take Superior we also havo many examples of a like kind; at Fond du Lac, a gravel beach resembling in a marked degree, boh in appearance and position, the Burlington lomach near Hamilton. At the month of the Bad liver, and at Point Iroquois, also, are found beach formations.

Nany of these closely resemble in outline the Peninsula at Toronto. Some of them are kindred to the lypothetical stage dencted by lig. 15 ; all of them are i.lentical ingeolorgical character, and exemplify the workiuns of one of Nituress ever active agencies, co-enistent and co-extensive with the jakes themselves. One fact which very strongly confirms the theary of the formation of the Peninsuia here propoundel, is morting of notice: all the examples above mentioned invariably conform with the rule laid duwn-the trend of the deposits bearing in a direction opposite to the longest fetch of tire wates, or the largest area of open water traversed. The entire alisence of boulders is also very remarkable, and whenever gravel forms part of the drift, this largest sized is generally found nearest its sourec, the finest kinds being at the greatest distances. This circumstance is explaineid by Fig. 2, and the accompanying remarks, which show that small ludios are moved onwards with the greatest facility. Large boulders, in consequenee of being able to resist the mechanical foree of the waves remaia at rest, and thereiore can form no part of beach formations.

To arrive at a knowledge of those clanges more particularly referred to, which have taken place on the shoal at the month of the harbour, I have with permission carefully examined the old maps and charts in the Surveyor-Geneml and Orinance Departments: many of them are wanting in detail, ame in this respert of litule service to the enguiry; others are of considerable value, the most reliable of which apyear to be the charts of Bouchette, layfich, and Bonuycintle, dated reapectively 1:06, 1808, aud 1si5; for although they do wot profess to much nicety of detail, yet emanating from these sources we hare un
renson to doubt their general accuracy. Fig. 2 shows the position of the shoal at the several dates of theie chats, and as it now exists; the soundiags have reference to as present state. I have mach to rerret being as yot unsuceessfal in procuing a coly of one very whe chant, the pissession of which wond be invaluable, secing that it is without doubt the carliest recond of 'loronto Harbour in deistence. 'lhis chant is said to have been made by a corps of engincus whos :cemmanied the first pencers from France ne:nly 200 yans aro. 1 cups, perhaps the only one on the Cuntancht, was mentuastely destruy ed with the Parliament Baildings in Muntreal, in 15 5° : the original is suposed to be deposited in a Jesuit College in Paris.

On comparing the charts of Bouchette, 13ayfield, and Bonnycastle, with my own from a recent surver, shasuing the state of the l'eninsulat at the present time, we obtian results: follons:-

First, that the chamnel between ten fect water lines was,

Second, that the quantity of sind deposited at the snuth side of the entrance by an aproximate estimate is as follows:-

From 1790 to 1549-50 nearly 660,000 culic yards, being in 53 years about 12,400 yards per annum.

From 1528 to 1549 neariy 235,000 cubic yards, being in 21 years about 11,200 yards per anmum.

From 1835 to 1849 nearly 155,000 cubic yards, leing in 14 years about 11,000 yards per annum.

The alarming progress of the shoal lindwarl is frum these figures wery apparent. Fifty-three gears agoilie entrance is slown to have been four times its present width, and fourteen years ago more than doable, thus decreasing at the rate of from seven to ten yards annually, by the depresit of about 11,000 cubic yards.

If such be the case, and it is founded on the most authentic information relative to the past condition of the IIarbour as yir in our posesssion, we have substantial reasons for believing that if left unhecded it will in ten or twelve years be inaceessible cxeept to the smallest craft.

The extension of the shoal may be attributed to the same canses which are proved to have formed the whole Penimsula. The beach sand having renched the Light-house pwint cannot by reason of the great depth of water, as shown by the contour lines lije. 14, make mach progress in extendiug the l'eninsula from thence westerily; there is therefore nothing or at least not much to prevent the southerly waves from acting in full play, they having a fetel of forty miles in opposition zo) the northerly immediately off the land, and washing along the bar (scarcely under water) towards the north "dump"," as it were periodically, large quantities of sand into the channcl.

Certain outmard and inward currents occasionally exist at the entrance, caluced probably by gales slightly varying the level of portions of the lake, or, as it is also supposed, by local anriations of the atmonpheric prisure on its surface; these may asist to a limited extent in prolonging the existence of the cilamel, but from all the observations I have as yet been able to make, they appear to be surface currents only, having litile or no apprecinble eifect five or six feet under rater; ceen this supposition therefore is rers problematica!.

$1 T 8$ PRESERVATION.

Having by sufficient evidence set forth the probability if not the certainty of an early destruction of the harbour by the damming up of its entrauce, we may now proceed to the practical, and, so far as the commercial interests of Toronto are concerned, the vitally important part of the inquiry, and endeavour to obtiun a satisfactory :mswer to the query-How can such a catastrophe be obviated or indefinitely postponed? A problem which becomes of comparative easy solution when the immediate canse of the ovil is set beyond a duabt, and the nature of its operativens chearly ascerlained.

To keep those harbour chamels subject to obstruction from moving samd-bars in a navigable condition, tlree expedients are generilly rearted to: First, continuous or periodieal dredging; second, the application of a scour to remove the bar as it is formed; third, the construction of such works as are catculated to prevent the deposition of the saud in the chaunels, by retaining it at a distance, when its source is known, or by diverting it to those points where depth of water is not eisentially necessirry.

The first is often applied as a temporary remedy, and as suchi: may at times be viewed as a fit expedient, but to employ it as the lanting counteracter of a constantly increasing evil, is to adopt an indubntable suurec of unceasiug attention and endless outlay; it should accordingly be dreaded as a permanent restorative, and emphoyed only by compulsion from unusual difienty in the application of other measures that are generally less costly and always imore satisfictiory.

The second is obtained at marine ports be taking advantage of the tidal fluctuations, and is generally produced twice cach day by using the currents of rivers at low tide, or by holding up tho sea water in large artificial basins at flood, then concentrating and guiding it to the bar at elb. The impracticability of procuring a scour on Lake Untario from tidal fluctuations must be admitted, since practically there are none; true it is we have a gradual riso and fall of about two feet ammally, and at times strecessive oscillations in level to the entent of several inclas, mush resembliug small tidal wanes; but the latter, allhough they give to the surfate water at the entrate of the harbour at perceptible curent, are too rare and too feeble to be of any real value Nor have we at Toronto a river suticient for the service, for the Don has hitherto failed to keep open its own chanuel to a greater depth than two or three feet. Indeed I feel quite convinced that all attempts on these inlaud waters to keep permanently open those harioor chamels much exposed to beach drifts by other than the largest class of rivers must shoner or hater prove ineflectual. The currents of the Nottawasagen of the Sabie, and of the Saugeen, are unable to keep open to a sufficieat depth or width the mouths of those sivers, and yet they are in volume from ten to twenty times greater than the Don.

The third remedy can always be advantageously emplored in cases when the obs!ructions are the natural results of moving beaches, and when the works are located and executed with proper care they usually answer a gool purpose; the second is often after great outhay unider favourible circumstances of doubtul efficacy. In the case of Toronto, even if we had at command a current capable of removing the sand on its arrival at the point of the shoal, 1 question very much if it shouht be considered as more than an ausiliary, since it would of necessity tend to spread the deposit, and thus, although injaring the clamel in a less degree would inyair the harbour gencrilly by lesening in depth the approach to it. Without doubt the sieps likely to confer the greatest seeurity, and hence the most adrisable to be taken, are
those which are calculated to keep the drit at a distance from that point where it is not wanted.

I thenefore ber leave to submit for your consideration the following preventive and remedial measures:-

1st. That a Groyne should be constructed at the Light-house point from the shore outward to 8 or 9 fect water for the retention of the moving sand, on the principle of those very simple natural onts shown by Fige. 6, 7, aud 8 .

2ud. That an auxiliary Groyne be ran westerly across the outer edge of the shallows, a little to the south of Gibrathar point.

3rd. That a Pier or brealswater be built along the south side of the channel as shown on Fig. 21, increasing the navigable water to six hundred feet, by cutting off the point of the shoal north of the proposed line of picr.

The third alone would prubably suffice for many years to keep the chamel perfectly free from deposit; but the sand, if not retainel at the Light-house point, would as at present be moved northward by the southerly waves, aud would gradually accumulate to such an extent as to fill up the whole space along the south side of the pier until ultimately rounding ats extremitics To effectuatly prevent this the first and second should also be coustructed, the first would divert the drift westerly into deep water, where the navigation could never practically be obstructed; and the second groyne placed about midway between the fiot and third would have the effect of connteracting all progressive action along the west end of the Peninsuin.

If the destruction of the Harbour entrance, and the formation of the Peninsula generally, be satisfactorily determined, I think it is equally corchasive that these works, or works of the same characer, woukd, if citablished in due time, be exercised to a very bencficial result,-the preservation of the Harbour for an indefinitely long period.

There are other erile, which, if they affect the salubrity of the city more immediately than they prove detrimental to the II:rbour, are not on that aceount of the less consequence. The Don annually transports ecen at this day considerable quantitics of silt from the interior of the country to the Marsh, and, during freshects, a prortion estapes from thence into the harbour through the openings in the beach between the Wind-mill and Privats, tending of counse, nhen deposited in the basin, to lessen its depth. Ail the drains :nd sewers empty into the bar, making it, in truth, the grand cesspool for a propulation of probably 30,000 inhabita ats, with their hores and cattle. The sewers of neessity bring down no inconsiderable portion of solid matter, impairing greatly the purity of the water in the Harbour, as well as graduaily lessening its depth. This ecil, increasing in a proportionate ritio to the growth of the city, might be greatly ameliorated, if not almost totally removed, by the constriction of a main sewer along the whole city front eastrard to the Marsh. Into this sewer all the lateral ones from the north, and the drainare of gas, eliemical, and other such like works should be made to discharge. The feculent mixtures probined would thus be collected and conveyed to a distant point, where by similar operations to those now ripening in Britain, which will strip them not only of their noxious, but even of their offemsive characters mighat be profitalily converted into a marketable commodity of the highest value to the farmer.

The projudicial effect of the Don on the depth of the Harbour may :llo be destroyed by closing its presert outlet, and forming an opening of sufficent capacity in the beach separating the main Lake from Ashbridge's Bay.

All proposed works relative to the inprovement of the harbour
should be carcfully considered before any be proceeded with, lest some of them may interfers with preservativo measures, or tho general improvement of the whole. It may not be out of phace, thercfore, to consider brietly another proposition, which, for many years past, has engaged public attention perhaps more than aty other in comection with the Harbour, viz, the ferming of au eastern entrince.

Julging from the following paragraph, extracted from the Courier newspaper, dated 5th Mauch, 1835, the project was seriously talked of fifteen years ago:
"Cet across tue Pexissela.- 1 respectable meeting of the friends to this measure was held on Thursday evening at the Commerciul Hotel, when a Select Committee was appoiated to request the Governor to name an Engineer, and also to request the Mayor and Corporation to name another, to mect him for the purpose of reporting on the probable result of the cut. The Committee waited on His Excellency this morning, who very readily mamed Captain Bonnycastle, at the same time exrsessing a hope that a measure so adupted to promote the bealth of the city would be carried into ctiect. His Excellency also promised to do all in his power to put the entire Marsh at the disposal of a company, with a view to its being reclaimed as far as it is possible to do so. There is every reason to expect that the Corporation will take the same view of the case; and if the report of the Engiuecrs shall be favourable, a number of wealthy merchants and others in the city have expressed their intention to take up a sufficient quantity of stock to complete the undertaking."

A few months thereater, the following was gazetted amongst the Notices of l'ublic Improvements:-
"TAKE NOTICE.-The Inhabitants of the City of Toronto will make application to the next session of the lrovincial Parlizment to incorporate them into a Company for the purpose of opening a Ship Navigation through the neck of the Peninsula between the Lake and the liny of Toronto.
"Toronto, August lst, 1835."
It is unnecessary to say that the contemplated improvement has not been carried out. The spirits of the projectors were probably damped, aud their stock-book Jaid aside, after the opinions of the engineers appointed to examine were made public. I have only been able to obtain the perusal of one of these documents, but an informed that the report of the gentleman appointed by the Corporation was even less favourable.

Captain Bonnycastle says, relative to cutting a navigable canal through the Peninsula:
"If this should be done without due consideration, the larrier which Nature has interposed for the preservation of a Harbour formed probably loy the cutting action of the Don when it was a larger river, which it only requires to look at its banks to consince one's self that it anciently was, will be thrown down, and the Harbour entirely destroyed.
"The reasons to be assigned for this opinion are as follors:
"Tha southern face of the Peninsula, a low ridge of sand, is bordered to some distance out, excepting near the Narrows, by large and flu:tuating shoals, well known to the fishermen, who have so recently established a prefitable trade on them.
"The force of the casterly and westerly gales on these shoals and the bounding shore is tremendons, as every person in Toronto has frequent opportunities of hearing, even at the great distance which the city is from them.
"Should a mavigable caual, without duo restrictions, be cut throngh the slemder lolt which divides the waters of the Lake from the hasin, all the millions of tons of large shingle, small rounded and angular fragments of grauite and other hard rocks which line the beach will be put in motion!-will break down by
their crosive power any barrier opposed to them!-will carry before them the whole extent of the Narrows, and perhaps penetrate through the ponds, fill the basin, and convert it into a fresh samd bauk." This he goe on to show might be produced by a current through the canal, ath theher st:thes, "It might in fact tear away all the strip of heachatang the western or bay shore of the geant Marb, and let the wholo of that body of the mud of Ages into the B:sisu.
"It is argued that all this may be avoided by ruming out extensive piens into the Lake, and forming a strong embambment along the Ontario face of the Narrous. These, if phaced in such situations as ω break off the strength of the casterly or wemterly swells, will do much towards it, but it will be also necessary to make the camal of stone, to puddle its sides to a considerible thickness or extent, to make it narrow, and to place gates both at its entrunce and exit.
"With these precautions there can be no harm in trying the experiment."

Although entirely concurring with Captain Bounycastle in the expediency of closing up the present outlets of the Don, and of conveying the whole sewage of the city to the Marsh; get hating already, with all due respert, expressed my reisons fur ditileting from the view he takes of the formation of the Harbour, and since conclusions on this point affect directly and very materailly the consideration of all works of improvement immediately comected with the P^{P} chinsula, I may also be permitted to entertain opinions not altogether coinciding with his as to the probable effects of the proposed sonth-estern entrance, and its mode of construction.

Knowing the nature of the action of the beach at the proposed site of the canal, and I think it is estiblished beyond a doubt, there can be no possible danger of any part of the Peniusula being tom away; or the basin within being filled up with sand, if proper steps be taken to counteract such action. 'This action is chiefly the progressive motion of the beach, which would effectually be suspended for many years by the piers of the canal themselves constructed with crib work in the ordinary manner. The canal need neither be narrow, as suggested, nor provided with gites since the former would inerease the danger in entering, while the latter would add to the cost and inconrenience, and no benefit could result from either.
Fig. 22 shows the proposed position of the canal. Its extreme lengeth, from 18 feet water in the bay to 17 feet in the Lake, is 1000 feet, with a width of 300 feet. The easten pier, presenting an obstruction to the mution of the beach westward, would, acting as a groyne, retain it permanently at its eastem side; the western pier, on the other hand, would be exercised to a sinilar result in suspending the retrograde motion. The sind gradually accumulating in the space north of the lines A 13 and $D \mathrm{C}$ would thus strenghen the Peninsula at its weakest point, amd remove any damger which may be feared from the destruction of the narrow sepmating ridge between the Lake and the Mabour. The entire destruction of the Isthmus, athough hypothetical, is nevertheless a contingency add isable to guard against. Openings have repeatedly been fureed through the ridge bounding Ashbridge's Bay by gales point blank on the beach: these, laving a destructive action only, might produce a similar result here. If at the same period the base of the Scarboro Heights becman partialiy protected from the fury of the waves by the lodgnent of an unusual number of trees, or the falling of boulders from the eliffs above, the supply of sand from the east would for a time be diminisled, the sap would reman open, and liable to be widened by every southerly wind. The Peninsula sould thus be converted into an island, resembling its kindred formation "lomg Point" oa Lake Erie.

Through course of time (ronghly estimnted at about 20 years) the sand acemmalaing east of the camal would reach the line $A 13$ athd ultinately romid the piers. Then it would be nevessary to make amothe provision for its etention. A groyne on the line (i F would eftet this ohjeet, and wetan the samd for nonother period, until it rathed as tar the the line E F . The camal might thus be kept open ber repeating the construction of groyns like E F and II K, ad infinitum, from time to time as necesity required; or the same purpose may be eftiected by simply extemiing the eastern pier as the sand acemmatated ontward along its enstern side.

The canal, having thus the effect of widening the Isthmus and removing all probability of its destruction, would, besides being a great accommolation to sailing cratt in advense winds, and to steam ressels at all times likely enough prove of service in another respect. The purity of the water in the biy is ever liable to be impaired by the vesels in dock, and its close proximity to the city. The canal wonld provide an additional opening for the ingress and eyress of the slight tidal waves fumberly reterred to, doubthes presenting areater fimilities for the rencwal of the water in the harbour on the occisional flactuations in level.

From certain simplo and welleetablished premises it has been my purpose to draw rewomable conclusions, which in recipitulation may brietly be stated as follows:-

Fins, That the foundation of the Peniusula cuclosing the larbour may be attributed in its early stages to the deloris of the country tracend ly the Don, in conjunction with a drift from au ancient promontory at Scarboro'.

Second, That the drift from Searboro has supplied and gradually deposited the main purt if not the whole of the materials composing the more recent pontions of the furmation.

Third, That the drift is in consequence of the singular progessive action given to sand and gravel beaches under certain circumstances by the waves.

Fourth, That the harbour is daily being impaired by its chicf arent of formation, and that its only entrance is threatened with early destruction by the sime cause.

Fifth, That its preservation may he permanently effected by the construction of groynes at well selected ponts.

Sixth, That the dargers to the feared from the silt of the Don and serrage of the city although remote, would, taken in conjunction with the inereasing deleterions effects of the latter on the water of the harbour warrant their total exclusion.

Seventh, That the construction of a south-astern entramee mould be a great accommodation to the shippingr may improve the purity of the bay water, and, if promoly exemtet, have no effect in lescening its depth; but would only assist in the proselration of the harbour so far as its piens, ather as groymes mirht retard the sand, widen the narrows, and thus strengthen the wenk point of the Peniusula.

Although the preventive and remedial measures are founded on what 1 believe to be correct deductions, yet, seeing that they differ materially from those adranced ly others who have considered the subject, they are presented on that account with s me degree of timidity. 1 purpose, however, with the view of either confirming or modifying the conclusions arrived at, to continue a series of ubservations, carefully noting the various changes going on; and will if deemed worthy, take much plensure in liy ing the results of such observations before the Institute at a future time.

Mran rosults or Metonrologieni Oibscrvations, monio at git
Minting inle Jewis, Canniar Einnt, (atio mile went or Muntreat) Cor 1853.

BY CHALLES SMALIWOOD, M. D .
(The orographical co-ordinates of the place are $45^{\circ} 32^{\prime}$. . . I.at., and $73^{\circ} 33^{\prime}$ It. Lonij. Ilewhit above the leiel of the sea, 118 feet.)

Barometric Pressure.-The readings of the barometer are all correted for capillarity, and reduced to $32^{\circ} \mathrm{F}$. The means are obtained from the three daily observations, taken at 6 A.M., 2 p.s., and at 10 r.s.

Tho mean height of the barometer in Jamary was 29.75 t inches in Fehruary $29 \cdot 6 \overline{5}$, in March 29.584 , in April 29.654 , in May $29 \cdot 644$, in Iune $29 \cdot 648$, in July 29•470, in August 29.598, in September 29.325 , in October 29.500 , in November 29.637, nad December $29 \cdot 450$ inches. The highest reading was on the 28th of January, and indicated 30.382 inches; the lowest was also in Jamury, on the 24th day, and was 28.638 inches; the yearly mean was 29.578 inches, tho mean yearly range was equal to 0.993 inches. The atmospheric wave of November was marked by its usual fluctuations, the final trough terminated on the $30 t h$ day.

Thermoneter.-The mean temperature of the air, by the standarl thermometer, wis in lanuary $16^{\circ} \cdot 6 \mathrm{~S}$, in February $16^{\circ} \cdot 36$, in March $29^{\circ} .65$, in Λ pril $41^{\circ} \cdot 36$, in May $56^{\circ} .34$, in June $68^{\circ} \cdot 60$, in July $68^{\circ} \cdot 04$, in August $68^{\circ} \cdot 61$, in September $58^{\circ} \cdot 04$, in October $43^{\circ} \cdot 37$, in Novenber $31^{\circ} \cdot 00$, in December 160.57. The highest reading of the maximum thermometer was on the 16 th of June, and marked $99^{\circ} \%$; the lowest reading of the minimum thermometer was on the 27 th of January, and wis- $28^{\circ} \%$ (below zero). The mean temperature of the quarterly periols was Winter $10^{\circ} \cdot 22$, Spring $42^{\circ} \cdot 46$, Sunmer $68^{\circ} \cdot 43$, Autumn $44^{\circ} \cdot 10$. The yearly mean was $42^{\circ} 89$, and the mean yearly ramge $50^{\circ} .2$. The greatest intensity of the sun's mys nias in August, and indicated $143^{\circ \cdot 6}$, the least intensity was in January, and was $64^{\circ} 0$, and the lowest point of terrestrial radiations was- $22^{\circ} \cdot 1$ (below zero) in December.

The mean hwnidity (staturation being 1-000) was, in January .909, in February - 006 , in March -ssi, in April 858 , in May -895 , in June $\cdot 730$, in July 727 , in August $\cdot 741$, in September -334 , in October, -555 , in November -708, in December. $\% 59$. The yearly mean was $32 \overline{0}$.

Ruin fell on 90 days, amounting to $44: 201$ inches and was accompanied by thunder and lightuing on 17 days The greatest amount of rain which I obiserved, fell in September; it commenced at $5 \cdot 10 \mathrm{ram}$, on the 14 h , and continued until 5.40 r.s. on the 15 th and amounted to $5 \cdot 142$ inches. I have only olserved once, this year, a yellow matter fall with the rain, and that was on the 24 hin day of September. It was without thunder or Jightning, but was accompanied by slight hail. Snove fell on 37 days, amounting to $1 \mathbf{1 6 8 1}$ inches on the surface. The first snow of the winter $1552-3$ fell on the 17 th day of October, 1852, and the last fell on the 14th diay of A pril, 1853 ; the whole amount of snow in the winter $1850-3$ amounted to 110.10 inches. The river Jesus was frozen on the 28th day of November. The last steamer left Montreal (on the St. Lawrence) on the 7 th of December; the first steamer arrived at Montrea! on the 15 th day of April. The winter fairly set in on the 18th day of December.

The amount of craporation was measured regularly from the 1st of April to the 31st of October, and amounted in

April to 1.80 inches, in May 2.51 inches, in June 3.41 inches, in July $3 \cdot 98$ inches, in August $3 \cdot 16$ inches, in September 2×23 inches, in Oetober 2.31 inehes. This period includes what 1 consider conld be taken with anjthing appowaching to acenracy, owing to frosty weather.

The most prevalent wind during the year was the W. S. W. least prevademt wis the k ; in the winter quarter the most prevalent wind was N. E. by E., and the lenst S. ; in the spring gharter the most prearalent wind was N. E., and he least so S.; in the summer quarter the most prevalent wind was W. S. W., and the least N.; in the :ummun ynarter the most prevalent wind was W. N. W., mal the least 1:. The greatest volowity of the winl was on the $14 \mathrm{th}_{1}$ diay of Manch, and was 32.60 miles per hour. The yearly mem of the manimum velocity was 15.81 miles per hour, the yearly mean of the minimum velocity was 0.32 miles per hour. The quartenly mems were as follows: winter, maximum veloity 1293 , minimum velocity 0.25 ; spring, maimum velocity $16 \cdot 68$, minimum velocity $0 \cdot 51$: summer, maininum velocity $11 \% 3$, minimum velocity $029 ;$ nutum, maximum velocity 1613 , minimum velocity 0.18 mites per hour.

Crous were first seen on the Th day of March, wild geese Anser Canadensis, on the 30th day of March, swallows, hirundo ruju, were tinst seen on the lst of Apil; shad, Alosa, were first caught in this ncighbourhood on the 30th of May; fireflies, Lainnpyris corusca, were seen on the 10th day of June: frogs, Rence, were first heard on the 23 rd of April.

The Aurora Burealis was visible on 39 nights as follows:
Junuary 12th, 10 p.m. Faint auroral areh, dark segment underneath.-13th, 10 p.M. Idem, Zodiucal light, bright.

February 1st, 10 p.m. Faint auroml streamers.-8th, 4 A.s. Faint uturoral light.- 14 th 10 P.m. to daglight. Bright auroral areli.-20th, 10 p.m. Fiant auroral arch. Lumar halos were visible on two nights during this month.-Zodiacal light was very bright also on $\overline{5}$ nights.

March 8th 10 r.m. Fiant auroral light to horizon, occasional streamers. Zodiacal light still visible and bright.

April 1st, 9 p.m. Low suroral arel, dark segment underneath; 10 r.a., streamers, segment vatished- 5 th, 9 r.m. Zenith clear, N. W., horizon cloudel wilh strati, Aurora Borealis faint; 9.30 , auroral arch 40° high, dark segment underne:ath at the horizon.-6th, 8 p.a. Fiinut low arch; 9 r.m., arch 20° broad, dark segment underncath: $9 \cdot 40$, streamers in N. W., of a yellow green eulor; $10 \cdot 30$, streamers extending to the zemith. -
 bright on 5 mights during this month.

Muy 1st, 10 r.m. Faint auroral light-2ad, 8.40 r.m. Splendid dieplay of clouds of auroral light forming a distinct arch stretching from the Eastern to the Western horizon, aper of the arch passing the zenith, extending through the enonstellations Bootes and Leo; 9 r.m., :arroral clouds in the N. W., low and very near the horizon, arch very faint; 9.5 , arch resumed the same brilliant appearance as it $\$ 40 ; 9 \cdot 10$, the whole of the Eastern and Western heavens were lighted up with a splendid display of auroral clouds, assuming various shaypes and colors from yellow to crimson, arch disippeared; $9 \cdot 30$, all van-ished- 4 th, $9 \cdot 10$ p.m. Low auroral arch, dark segment underneath, oceasional streamers.- 30 h , 10 r.s. Low faint auroral light to the horizon. Lunar halo visible on the $20 t h$, diameter 63°.

June 14th, 8 to 10 1.M. Auroral streamers, moderate bright-
ness, dark segment underneath.-30th, 10 r.m. Faint auroral light.

July 10th, 9 ram. Auroral light, darla segment, occasiunal streamets; 10 p.an, datk segment and streamers vanished.11 th, 11 r.s. Fiaint aturoal haght to the honizon. -12 ih, 10 to 11 R.m. Stremers to the zemath, extendiug from N. N. W. to E.-1Sth, 1 to 2 A.m. Low dank arch of auroral light, moderate brightuess, orewiomal stremers.-23d, 10 1.m. Anroral streamets of moderath lyightmess.-206h, 10 1.m. Faint auroral arch.-2ith, 10 m. Auroral light to the horizom, splendid stremmes. Shooting stars numerous during the montl.

Auphst thi, 10 p.x. Faint amoral streamers, dark segment in the North.-20̈th. 10 r.s. Fiant streamers, of auroral light. - 31 st, 10 p.m. litint auroral light. Showting stars numerous from the 6 th to the 13 th. Comet first seen here on the evening of the 22 d daty, in the constellation Leo, at $8^{81} 20 \mathrm{~m}$ M. T., R. A. $11^{14} 30^{\mathrm{ma}} 10 ;$ Declination N. $20^{\circ} \mathrm{E}$.

September 1st, 8.50 r.m. Splemidal display of auroral clouds, forming four distinct arches, of about 3° in widh, with dark segments between, strecthing from F . to W., from it point centered as it were in Arcturus. The most southern arch pasing at its zenith through Aquile, the next through Lyra, the next through Poluris, umber which was a dark segment, from which were sent up frequent stremmers. These appearances continued with slight intermissions in intensity of color, from 8.50 till 9.50 P.m. The southern or superior arch remained the longest time visible. 'The northern hooizon was lighted upf fur sume time, but faint (until 10.5). Stars of low magnitude were visible through these appearances.-2d, 8.50 to 1140 r.m. Mheh tho same aplyarance as last might, but the arches not so well defined. The most southern arch was several degrees south of zenith. Mamy floating auroral clouds extending from E. to W.-3d, $7 \cdot 30$ L.M. Auroral arches again seen this evening, only two in number, the most southerly a little N. of Poluris, very dark segments in the N. to the horizon, occasional streamers.- 12 th, 10 p.m. Faint auroral light.-18th, 10 r.m. liaint auroral light. 24 hh, 10 r.m. Faint auroral areh, dark segment undemeath.

Octoler $23 \mathrm{rd}, 10 \mathrm{~m} . \mathrm{m}$. Faint auroral light.
November sth, 10 p.a. Floating auroral clouds-very high mind.-27th, 10 p.ar. Faint amroral light to the horizon. Zodiacal light yery bright and well detined apex at a Leonis, (Regulus.) Base in East very extended.

December 4th, S r.m. :aroral light bright to the horizon.20 th, 10 r.m. Auroral arch; no dark segment.-2sth, 10 г.м. Low auroral light to the horizon.

Electrical state of the atmospliere.-The atmosphere has daily afforded indications of clectricity varyiur in intensity, and bind: the highest tension bas inern !fnerolly noticed in the winter season; the tri-dialy observations (which could not be condensed) would oceupy too much space for the columns of this Journul.

Ozonometer.-Olservations have been carefully registered twice daily, for some yare, of the amount of ozone present in the atmosphere; the slips of iodized paper are carefully preserved in a dark place after having been exposed to the atmosplere, shaded from the sun, and rain. As a general rale, rain or snow shows an increase, and so far as my own observations go, a high cleetrie state of the atmosyhere does not show an increase in the amount of ozone.

St. Martin's January, 25, 1854.

INCORPORATED BY ROYAL CHARTER.

Eleventh Ordinary Mecting, March 4th, 1854.

David Buchan, of Toronto, was proposed for membership.
A donation from James Bovell, M.D., of various mineralogical specimens from Barbadoes, was announced.

A paper, written by Thos. Cottle, M.D., of Woodstock, was read by Professor Croft, the subject of the paper being "Canadian Saturnix, with suggestions on the possibility of using their Silk for textile purposes." A number of fine specimens of Canadian Saturnie from Professor Croft's private collection were on the table.

James Bovell, M.D., read a paper "On the Re-production of the Digestive Organs of the Holothuria" 'The paper was illustrated by dissected specimens of the Holothuria from Barbadoes.

A paper was laid on the table by the First Vice-President containing a list of indigenous plants found in the neighbourhood of Hamilton, with the dates of their being found in flower and examined, by W. Craigie, M.D., and Mr.iW. Craigie, of Hamilton.

Twelah Ordinary Mectins March 11th 185\%

The First Vice-President announced a further donation from the eminent publisher, II. G. Bohn, Esq, of London, of fourteen volumes of Bolu's Slandard Library.

The thanks of the Institute were ordered to be presented to Mr . Bohn for his valuable donation.

John J. Macauley, of Toronto, was proposed for membership.
David Buchan, of Toronto, was elected member of the Institute.

A paper written by Elbanah Billings, Barrister-at-Law, of Bytorn, C. W., "On some new Genera and Species of Cystidea from the Trenton Limestone," was read by Professor Hind.

The Rev. Dr. McCaul, who was to have read a paper "On some doubtful points in Grecian and Roman Antiquities," hav-
ing been unavoidably prevented from attending the meeting, Professor Wilson delivered a very interesting Lecture on "Traces of the Practice of the Medical Art amongst the Early Romans." Professor Wilson exhibited some wax impressions of Roman medical stanips found in Scotlaud.

Thirtecnth Ordinary Mrecting March 18ih 1854.

The names of the following candidates for membership were read:-

The Rev. H. J. G	Toronto.
James Ross.	Belleville.
Loftus 'Turner, J	Toronto.
Thomas Brunskill	"
W. W. Copp	"
T. C. Orchard	"
Jolin McNabb.	4

John J. Macauley, of Toronto, was elected member of the Institute.

A paper written by Major Lachlan, of Montreal, "On the establishment of a system of simultancous Meteorological Observations, etc., throughout the British American Provinces," was read by the Rev. Professor Irving.

At the conclusion of the paper, it was moved by Professor Cherriman, seconded by Professor Irving, "that the subject of Major Lachlau's paper be referred to the Council, and that a Committee be named by the Council in accordance with Major Lachlan's proposal"

Professor Hinclss delivered a short Lecture on a peculiar vegetable parasitical production from South America.

Fonrtecnth Ordinary Mreting March 25th 1854.

The names of the following candidates for membership were read:

J. L. Wilkes	Brantford.
Thos. Maclear	Toronto.
Hiram Piper.	

The following gentlemen were elected members:
The Rev. H. J. Grasett. Toronto.
James Ross.... Belleville.
Loftus Turner, Junior Meniber Toronto.
Thomas Brunskill...................... "
W. W. Copp............................. "
T. ©. Orchard.......................... "

John McNabb.......................... «
A communication from the Council was read by the Secretary, announcing that in accordance with the proposal contained in the paper by Major Lachlan, read at the last mecting of the Institute, they had nominated a Committee to take into consideration and report on the subject of Major Lachlan's suggestions.

The following gentlemen constitute the Committeo: Professors Cherriman, Irving, Croft, Hind, Chapman, and Mr. S. Fleming.
A paper was read by the Kev. Henry Scadding, D.D., the subject being " Memoranda of Vesurius and its neighbourhood."

Professor Chapman delivered a short Lecture on the tooth of the Elephas primigenius found in the River Credit.

The First Vice-President announced a second paper by Elkanal Billinus, Esq., Barrister-at-Law, Bytown, "On some new Genera and Species of Cystidea from the Trenton Limestone," to be read at the nest Ordinary Meeting of the Institute; also, a paper by Professor Wilson, entilled, "Some remarks on the intrusion of the Germanic races into the area of the older Keltic races of Europe."

Mitcellancous Intclligence.

(Vunom 1 . P'nocirres.-()fficial returnsjust publishedfrom the l'rovince of Nova Scotia furnish another illustzation of that extraordinary progress of the British colonies of North America which is rendered more striking from the little that has been said about it. Notwithstanding the losses sustained a few years back from the potato rot, all the great interests of the province exlibit revived activity; employment is general, and the revenue, under a tariff which is lower than any other on the Ancrican continent, yields a large surplus for educational purposes and internal iaprovements. Allhough in liova Scitia the duty on imports is only $6 f$ per cent., while in Canadn it is $12 \frac{1}{2}$, and in New Brunswick from $7 \pm$ to 30 per cent., the receipts increased from $54,1792$. in 1849 to $98,039 \%$. in 185%, while the accounts for the past sear, when made up, are expected to be equally fuvourable. The exports for 1852 amounted to $770,780 l$., and the imports to $1,194,175 l$.; and, although an adverso balance is apparently thus exhibited, it is explained by the shipments being ralued at loome prices, and by no estimate being included of the gaius from freight obtained by the ressels of the colony. The actual trade is therefore one of extensive profits, and the augmentation in the staple articles of production, as well as in the mercantilo marinc, is such as to show a vigour of growth unsurpassed in Canada or the United States, or, indeed, in any part of the vorld. The number of vessels registered and actually employed in the fisheries and trade of Nora Scotia is now 2,943, with a capacity of 189,083 tons, and the rate of progress is on a scale to Jenote that at no distant day she is destined to be one of the largest shipping countries in the world. "She owns now nearly one-third as much tonnage as France. She beats the Austrian empire by 2,400 vessels, and by 69,000 tons; and owns 110,000 tons of shipping more than 13elgium. She beats the Two Sicilies by 38,449 tons; Prussia by 90,783 . Holland, which once contested the supremacy of the seas with England, now owns but 72,640 tons of shipping more than this, one of the smallest of the British colonies; and Sweden, Fith a population of three millions, only beats Nova Scotia in shipping by 36,927 tons." At the same time, the comparison with the United States is also remarkahle. Out of the 31 States which constitute the Union, there are only six (New York, Massachusetts, Maine, l'ennsylvamia, Louisiana, and Maryland) whose tonnaj;e exceeds that oi Nova Scotia, and the last three of these she is likely to outstrip in the course of a year or two. Considering that the colony is only 100 years old, and that her population does not exceed 300,000 , thesc results are beyond anything ever before witnessed. But it is not alone as regards fisheries and shipping that the energies of the people are manifested. The agricultural capabilities of Nova 8 cotia are great, and are being turned to good account. "With the Wheat-growing countrics that surround the great lakes, whether on the British or American side, she is not," it is remarked, "to be compared. She loes not raise her own bread, but while one barrel of her mackeral will purchase tro barrels of flour she can alrays afford to bay what she requires. It is curious, huwever, to discover t'at even as a Wheat-growing country she beats five of the New England States and 12 of the more recently settled States and territories." In the growth of rye she is far ahead of 16 of the States and territories of the

Union; in oats she exceeds 13 , in lay 21 , in buckwleat and potatocs 23, and in barley every Stato and territory excopt Ohio and New York. Under these circumstances, coupled with the fact that the province enjoys, in common with Canada and New Brunswick, the full development of representativa institutions, it is evident that the prospects of its prosperity are uulimited.-Times.

Purification of Gab.-at the City Court of Sewers, held yesterday, Mr. Deputy l'acock was unanimously elected chairman for the ensuing 12 months. The attention of the Court was for some time occupied with inquiries as to the supply and purification of gas. The subject was intruduced by a report from the Committe on General Purposes, to whom was referred a statement made by Dr Letheby, that he hod found 21 grains of oil of vitrol in 100 cubic feet of gas. The committee recommended that Dr. Letheby should be allowed to proceed with certain experiments, with a view to test the quality of the gas supplied to the city of London by the various gas companics, and also to promote its purification. This surgestion of the committee was adopted. A report was then read from Dr. Letheby respecting the power and quality of the gas supplied to the city by the Great Central Compans. This report stated, that during the last three months the power of the gas had been nearly 29 per cent. grater than was required by act of larliament, and that the resuit of various experiments was highly satisfactory. The report then congratulated the Court upon having directed pullic attention to the puritication of gas as one of the most important samitary and commercial questions of the day. Nearly $4,000,000,000$ culic feet of gas wero now annually consumed, of which aboat $500,000,000$ were supplicd to the city of London. The consumption of gas in London was nearly trebled since 1837, but hitherto nothing lad been done to control the companies engaged in its manufucture. Coal gas was linble to be contaminated with four impurities calculated to injure the atmosphere; but, as science could furnish a remedy, and render the gas pure, the report suggested that those in authority should pay attention to the sulject, as the use of coal gas "might lecome cither the greatest curse or the greatest boon of the 19th century."-Times.

A New Effect of the Magetic Telegnaph.-The tarious wires of telegraphs begiming to intersect so many sections of our country are said to have a decided effect upon electricity. That eminent srientific man, Prof. Olmstead, of Yile College, states, that as the storm comes up, and especinlly when over the wires, say fint or a hundred miles distint, the lightning is attracted by the wires; which can be proved by any one remaining in a telegraph office for half an hour. About the time the storm is coming up, the wires are continually filled with electricity. It is my opinion, he says, that we should never have heavy thunder showers, or hear of lightuing striking so loug ds we have telegraph wires spread over the carth.-American Paper.

Photograpmic Light.-A novel application of the combustion of zinc has just been discovered by Mr. Wenham. He takes fine zine pariugs or shavings, and forms them into a pellet. which, whenignited, affords a brilliant, and it is said, a steady light for photagraphic purposes.

Cladgens's Flax Woris.-According to the statements of the parties interested, the recent fire at Claussen's Patent Flax-works at Broomley occurred at the time when the company had fully succecded in establishing the process, and when large orders were in progress. A fresh manufactory is to be formed as soon as possible.

Extraordisary Dumond.-The extraordinary diamond recently deposited at the Bank of England from Rio was submitted this morning to the Queen by the consignces, Messrs. Devoy and Benjamin. It Feighs 2.542 carats, and is alleged to be likely, when polished, to exceed in size and brilliancy the bol-i-noor.-Timas.

Substifute for Coffer.- Aspatagus, according to Liebig, contains, in common with tea and coffec, a principle which he calls "Taurine," and which, by the way, he considers essential to the health of all who do not tale strong exercise. Reading this led me to think that asparagus might be made a good substitute for coffec. The joung shoots Which I at first prepared were not agreeable, haring an alkaline tavour. I then tried the ripe seeds; these, rossted and ground, make a fullflaroured coffec, not easily distinguishable from a fine Mocha. The seeds aro casily freed from the berrics by drying them in a cool oven, and then rubbing them on a sieve.-Corrapondent of the Gardener's Chronide.

Menthy Meteorological Regieter，at the Provinctal Magnetical Obeorvatory，Toronto，Canaila Westo－February，185ts

Latitude， 48 deg． 89.4 min ．North．Longitude， $79 \mathrm{deg} .21 . \mathrm{min}$ ．Wesl．Elevation abovo Lake Ontario， 108 fets．

	Barom．at tem．of 32 deg				Tem．of the Air				Tension of Vapour．				Humidity of Air．				Wind．				$\left\lvert\, \begin{aligned} & \text { Rain } \\ & \text { inch. } \\ & \operatorname{lnch} . \end{aligned}\right.$	$\begin{aligned} & \text { Snow } \\ & \text { in } \\ & \text { Inch } \end{aligned}$
$\underline{\theta}$			$\begin{array}{r}10 \\ \text { P．} \\ \hline\end{array}$	Sea	$\begin{gathered} 6 \\ \text { A.M. } \end{gathered}$	г.м.	$\begin{gathered} 10 \\ \text { P.M. } \end{gathered}$	M＇s．	$\stackrel{6}{\text { A.3. }}$	$\begin{gathered} 2 \\ \mathrm{P}, \mathrm{M} . \end{gathered}$	P．M．			P．${ }^{2}$	$\left\|\begin{array}{c} 10 \\ \mathrm{p}, \mathrm{M} . \end{array}\right\|$		6A．M．		r．m	Menn		
				29．168	$35 \cdot$	42.7							04	88	91	． 90	S W	Wbs	Calm	$3 \cdot 22$		0.8
0	2 2 450	－533	$\cdot 714$	． 592	$18 \cdot 6$	$9 \cdot 1$	$5 \cdot 4$	$9 \cdot 48$	$\cdot 094$	－059	． 049	－068	90	83	81	83	N N W	NEbN	N N W	10.03		1.0
－	3.833	$\cdot 732$	． 843	． 805	－5．7	14.8	4.7	$4 \cdot 62$	－029	．071	－ 045	． 048	81	78	79	79	Calm	N Fin	NWbW	$3 \cdot 90$		
－	4.953	9．9\％	． 902	－985	1.8	14.2	$8 \cdot 0$	$8 \cdot 27$	－045	$\cdot 071$	－054	．057	87	80	79	82	NW	WN W	Calm	$1 \cdot 97$		$1 \cdot 0$
b	5.693	－512			16.9	$19 \cdot 5$		－	－083	－092			84	83			SEUS：	N EbN		$6 \cdot 77$		$1 \cdot 0$
a	630.037	30．082	30.093	$30 \cdot 079$	－4．3	－1－5	14.8	10.80	． 028	$\cdot 100$	－074	－068	73	84	83	79	Cal	Calm	WS W	$1 \cdot 14$		
－	730.046	29.85	29.688	$29 \cdot 856$	12.6	27．5	27	22.8	$\cdot 071$	－135	－120	－108	83	89	79	83	Cal	Ebs	S E ：	（6． 28		3.2
	8.29 .382	－024	－07i	－150	2938	$36 \cdot 2$	35．7	32．8	－154	－191	－190	－171	94	90	91	91	SEbE：	EbS	Wbis	6． 63	$0 \cdot 465$	
	9.163	－140	． 272	－199	31.6	$\because 1.4$	：30．9	28.6	－162	－097	－150	－138	92	81	91	87	WbS	Wbs	WbN	1		$0 \cdot 2$
	$10{ }_{10}$－470	－743	975	－761	$18 \cdot 3$	$19 \cdot 3$	7.9	15.07	－088	－081	－050	－070	85	75	83	82	W，W	NW	Calm	$5 \cdot 18$		
b	$11,30 \cdot 125$	30－16．4	30．055	$30 \cdot 118$	$0 \cdot 3$	$13 \cdot \underline{2}$	$18 \cdot 6$	11.07	－045	－050	－092	－067	92	67	88	84	Calm	SEbF	ESE：	$5 \cdot 27$		tnap
－	1290.91	2－727			$2 \mathrm{~L} \cdot 1$	24		－	－108	$\cdot 128$		－	88	90			ES			$11 \cdot 32$	$0 \cdot 685$	
c	$13-433$	－359	29－512	$29 \cdot 447$	35－2	$38 \cdot 4$	34－8	36．10	$\cdot 203$	220	－18：	－203	99	95	92	96		Calm	\cdots	$5 \cdot 3 \%$	$0 \cdot 065$	$0 \cdot 3$
c	14.67	－082	\cdots	$\cdot 484$	30－2	20	$27 \cdot 6$	28	$\cdot 158$	－134	$\cdot 185$	．142	94	34	88	91	Ebs	ENE		$9 \cdot 69$	tnap．	$0 \cdot$
c	$15 \cdot 274$	$\cdot 473$	． 698	－461	3：6		$\because 0.0$	$\because 7$	$\cdot 179$	$\cdot 131$	－125	－1．41	97	86	88	90	S	W	IW S W	T－64		
	$16 \cdot 634$	700	847	－737	23	－	11.8	－1	－112	－115	－086	－101	90	80	84	85	Vbs	Wbs	W N W	$5 \cdot 09$	．．．	$0 \cdot 1$
	17.974	－968	－319	－915	94	$21 \cdot$	－0．7	17.8	． 110	－080	－100	． 088	81	73	86	79	Culm	Wb S	SW bW	782 8.87	．．．	
	18 －691	，	－379	－568	≤ 4.9	：39－1		31.28	$\cdot 123$	－197	－102	－161	89	83	94	90	S WbW	swhw	Nbw	$8 \cdot 87$	\ldots	$0 \cdot 2$
	19.768	1			11	－3．6		－	－080				8	75			NWh，	Suf：		$4 \cdot 37$	．．	
	20.710	－614	$\cdot 359$	－621	18.6	$\because 4$	19	20	． 088	－	－094	－089	83	64	83	78	NE．，E	S	NEb	9.87		
	21． 625	－620	－57\％	－605	16.5	$\because 8$	－	－	－084	－13	$\cdot 129$	$\cdot 121$	30	84	80	85	N N	ssw	SWbS	$3 \cdot 97$		$0 \cdot 1$
	22－ 46	－251	－564	－ 412	（ris 1	835	10．8	26.60	－174	$\cdot 18$	$\cdot 072$	－140̈	92	89	90	92	SWhw	SW	N N W	13.94	．．	2.5
d	－ 23.976	－98．5	－879	$\cdot 941$	0.4	13	$1.8!$	$10 \cdot 5$	－10	－058	00	－ 1	90	64	84	79	N ${ }^{\text {N W }}$	N W	V S W	6．65		
－	24－763	－7\％	30．013	－860	\cdots	134．5	$\because 1.5$	20：8	－107	－	－100	－124	88	86	89	87	，	WNW	NNE	$8 \cdot 15$		0
－	25，30－129	－ 007	29.870	$\cdot 997$	14．4	16．2	2.24	17.70	－076	－08	－110	－（0）\％	80	86	88	87	Eb	EbS	E．bN	11.33	0．105	$1 \cdot 0$
－	－6												95	${ }^{96}$			Eb	E		12.07	$0 \cdot 140$	$5 \cdot 5$
ca	$27 \cdot 676$	$30 \cdot(01$	30－161	． 972	16.2	$\underline{1} \cdot 4$	8.0	10．37	－085	$\cdot 10$	． 05	－083	90	87	87	87	Nbs	，	NbF	7.48		
，	28，30．121	$29 \cdot 607$	$29 \cdot 908$	． 991	$\pm .0$	$\underline{-9.7}$	$29 \cdot 1$	$\because 1.25$	－ 042	－14	－142	－110	82	87	88	85	NbE：	NWbW	SW	1.		
	$1129 \cdot 697$	29		2		2500					8	0	89	83	86	80	$\underset{6.51}{\text { Miles. }}$	$\frac{\text { Miles. }}{7.08}$	$\underset{7 \cdot 17}{\text { Niles }}$	Wiles	－ 460	18.

IIighest Barometer．．．．．． $30 \cdot 172$ ，at 8 a．m．on 11th $\}$ Monthly range： Lowest Barometer ．．．．．．29．002，at 4 p．m．ou 8 th $\}^{1 \cdot 170}$ inches． Highest temperature．．．． $42^{\circ} \cdot 8$ ，at p．m．on 1st Monthly raage： Lowest tenperature．．．．．$-10^{\circ} \cdot 8$ ，at a．m．on 3 rd$\} \quad 53^{\circ}$ 施．
Mean Maximum Thermometer． \qquad $29^{\circ} \cdot 63$ Mean daily range：

Greatest daily range \qquad
\qquad 90.15 $20^{\circ} 4 \overline{4}$ ．

Warmest day．．．．．．．． $37^{\circ} \cdot 1$ ，from p．m．22nd to a．m．of 23rd． Coldest day． \qquad 3rd．Mean temneratur \qquad $37^{\circ} \cdot 12$

Sum of the Atmospheric Current，in miles，resolved into the four Cardinal directions．

$$
\begin{array}{cccc}
\text { North. } & \text { West. } & \text { South. } & \text { East. } \\
1743.73 . & 1577.85 . & 626.08 . & 1724.33 .
\end{array}
$$

Mean direction of Wind $\mathrm{N} 7^{\circ} \mathrm{E}$ ．
Mean relocity of the Wind．．． 6.91 miles per hour．
Maximum velocity ．．．．．．．．．．．． 22.9 miles per hour，from 9 to 10 p．m． on $22 n d$.
Most rinds day．．．．．．22nd；Mean velocity．．． 13.24 miles per hour．
Least windy day．．．．．．6th；Mean relocity．．． 1.14 ditto．
Raining on 6 days．Raining 25.2 hours．
Snowing on 15 days．Snowing 60.8 hours．
Aurora obscred on 4 dajs．
Possible to see Aurora on 12 days．
Impossible to see Aurora on 10 days．

The change of temperature from the 1st to the 2 nd was very rema able，amounting to $27^{\circ} \cdot 64$ between the mean of the tro days．

Comparative Table for Februarye

突		Temperature．－${ }^{\text {a }}$ Lum．					strow．Wind			
	Mean．	）	Min． bs＇rd．	llange		Inch．	D＇ys	Inch．	$\begin{aligned} & \text { Mean } \\ & \text { Vel'y. } \end{aligned}$	
									$\dot{8}$	
1840	28.0	$49 \cdot 1$	-8.3	57.4	8	$1 \cdot 475$	6	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	
1841	$22 \cdot 4$	$43 \cdot 4$	$-0 \cdot 3$	43.7	1	$0 \cdot 000$	9	乐睌	4	
1842	26.9	48.7	$+2 \cdot 5$	46.2	8	3．695	1	c	$\underset{\sim}{\sim}$	
1843	$14 \cdot 5$	37.5	－10．2	$47 \cdot 7$	1	0.475	21	14.4	1.05	1t．
1844	26.0	47.1	－0．4	47.5	4	0－430	7	10．0）	$0 \cdot 43$	th．
1845	26.0	46.6	－3．9	50.5	5		9	19.0	0.99	tb．
1848	$20 \cdot 4$	41.4	－16．2	57.6	0	$0 \cdot 000$	13	46.1	$0 \cdot 65$	th．
1817	21.5	42.2	-1.0	$43 \cdot 2$	2	0.550	13	27.3	0.69	－
1848	26.6	46.3	-0.6	47.5	4	0.775		10.8	$5 \cdot 69$	Mile
1849	$19 \cdot 5$	41.1	－0．2	$50 \cdot 3$	2	0.240	13	$13 \cdot 2$	6.58	Miles
1850	26.0	49.2	＋－1．3	47.9	7	1.235	9	$\underline{2} \cdot \underline{1}$	7.61	Mile
1851	$27 \cdot 6$	50.2	＋1．3	48.9	7	$2 \cdot 600$	4	$2 \cdot 4$	6.94	Miles．
1852	$23 \cdot 4$	41.2	$\underline{-3.2}$	$44 \cdot 4$	3	0－650	11	13.0	$6 \cdot 42$	Miles
1853	$24 \cdot 1$	4.4	-0.6	$44 \cdot 0$	4	1.030	15	$12 \cdot 6$	$7 \cdot 9$	Miles
1854	21.1	42.7	$-5 \cdot 7$	$48 \cdot 4$	5	1.460	15	18.0	6.91	Ai
M＇n．	23－60	44．71	－3．63	$48 \cdot 35$	4．1	1.039	10．8	$18 \cdot 0$	6.78	Mil

[^8]Most prevalent Wimi, N' F; b Li. Least do., do., E.
Most Windy Day, the 10 h day; mean miles per hour, $14 \cdot 77$.
Lenst Windy Way, the 28 th day; mean miles per hour, 0.00 .
Lenst Windy Way, the 28th day; mean miles per hour, 0.00 .
The electrical Boreal visible on 5 nights. Might have heen seen on 10 nights.

Latitude-45 deg. 82 min. North. Longitule- 73 deg. 36 min . West. Iright above the Level of the Sen-118 Fect.
bx liedt. A. noble, r.a.
Latitude, 46 deg. 49.2 min . North; Longitude, 71 deg .16 min . West.
Homthy Reteorological Regieter, Quebec, Canada Eanto-February, 1854.

[^9]
[^0]: * Continued from page 191.

[^1]: - Cunadian Journaz, Vol. I, p. 10

[^2]: - The ajdo contaning the large ovanan nperture may be onnaderod ar the pariermes aide of the animal. and modequently the right and ler sides vill mrmapoud with the right and lea hands of the obeerver, while the anterior side will bo directly oppoalte or jo frod.

[^3]: * The following paper originally formed the substance of a recturo delivered before the Canadian Institute. It has subsequently undergone some alteration and nondification. The Author feels bound to ackuowledge the suggestions of Professor Wilson. whose view he has carcfully considered, although he still inclines to Niebuhr's Theory of the Etrurian race in preference to that of Dennis.

[^4]: * The force of this argument fur the identity of the Italian and Greek I'clasgi has been questioned; but although some such works may be found of a much later date, yet we must accept the existence of such monuments as are unquestionably of ancient date, rppearing contemporincously in Greceo and Italy, as a strong evidence of somo connection between the tribes that at that period occupied those two countries.

[^5]: \dagger Professor Newman, while rejecting much of Niebuhr's speculations concerning the l'elasgi, thinks that "we may well accept his conjecture that the migrations of the lelasgians by sea from the const of Troas to Sicily and Italy, carrying with them their l'enates and religious worship, generated the poctical legends concerning \$Encas and others: indeed it can harilly be donbted, that the worship of the Penates, sond Palladium of Lavinium, which Encas was surposed to have conreged thither, was strikingly similas to ceremonies practiced on the north and north-east coast of Jgean." (Newman's Regal Rome, p. 8.)

[^6]: * The question of the probable locality of the Jews of the Dispersion has excited much curiosity since the the that Alexander the Great, followed by birds who spuke Greek, attenpted to find the llechabites in the dark mountains. Pemm, we know, fancied he had discovered the Jews in Amerien, and supposed them to hare passed over from the eastern extremity of Asia to the western extremity of America. Others have discovered them beyonl the Corderillas, have eren traced the route hy which the trite of Reuben reached the West Indies, or hnve lridged over Belaring's Straits to make the migration more proballe Xay, we are tohl that Xoah syent the hast 350 gears of his life in colonizing varinua parts of the earth. Others have traced the Americans from the Camainites who fled before Joshua, from the Carthinginians, or from the nations who would not embrace Christinnity. The migration of Madoc is placed A.D. 1170 , and has been made the theme of poets and historians. We inay spare uurselves the trouble of refuting these opinions, for they refute each other. They are brought forwiml here as an instance of the contradiction and lifficulty whichattends these national traditions, and of the large share which national pride or religious bias may have in their construction.

[^7]: * This fact, though disguised by Livy, as he followed the old poetical story, is expressly admitted hy Tacitus, (Hist. III. 72.) and pinved at large hy Nicbulir. (IIist., Vol. I., p. $511-551$, \&e., Eng. Tr.)

[^8]: The Mean Temperature of the Month was 40.16 below that of last year.
 Hain fell on 3 days amounting to $0 \cdot 16$ inches.
 Snow fell on 13 diass amounting to $23 \cdot 96$ inches

[^9]: $\left.\begin{array}{c}43^{\circ} \cdot 1 \\ 4^{\circ} .0 \\ 32^{\circ} .0 \\ -14^{\circ} .2\end{array}\right\}$ Climatic Difference, $46^{\circ} .2$ Greatest Daily Range, on the 10th.......
 Least Daily Rauge, on the 1jth.. Coldest Day, the jeth; mean tempe Possible to see Aurara on 13 nights.
 Aurora visible on 9 nights.

