The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagieCovers restored and/or laminated/
Couverture restaurie et/ou pelliculiceCover title missing/
Le titre de couverture manque

\square
Coloured maps/
Cartes giographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas êté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ttre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la mithode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolories, tachetées ou piquiesPages detached/
Pagas détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Tizre de départ de la livraison

Masthead/
Génërique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

agricultural journal,

AND
TRANSAETIONS
OF TH:

Cower \mathbb{U} anàa Agricultural $\mathfrak{s o c i e t u}$.

How very desirable it would be that the rural population of Lower Canada should bestir themselves, and endeavour to realize the numerous advantoges which their situation and circumstances have placed attheir disposal. We have frequently attempted to enumerate these advantages, and the more we see of this and other countries, we become more firmly persuaded that we have never over estimated Lower Canala as compared with other countries. The rural population with us, we believe, are not so generally educated, as the farming classes of neighbouring countries, but this 'efect is in our own power to remedy. In introducing any changes of our systems of education for the rural population, it is to be hoped that due provision will be made to give this education an agricultural character that will be suitable for, and userul to the youth to whom it is imparted. Above all other considerations this is necessary, if we desire to attach the educated sons of farmers to the profession of their fathers. If this is not attended to, the childres of farmers that obtain elucation according to the present system of schon's, are very likely to fancy any profession rather than that of an agriculturist. Agriculture has never been done justice to in Canada by the systems -of education that are got up for the children of agriculturists. Nothing can be more calculated to estrange the mind of a youth from the pursuit of agriculture than the teaching he receives at school. His reading and teaching, from beginuing to end, is of every subject but agricul-
ture, although his parents, perhaps, intended him for a farmer. He naturally concludes that farming cannot be a suitable employment for a man of education, or it would require some education to fil him for such an occupation, he is, therefore, disposed on leaving school to despise the occupation of his father, and to apply himself to some other husiness. Farmers perceiving this propensity in their children, are not so anxious to have them properly educated and we condemn farmers for their disinclination, we humbly conceive, very unjusily. We oliject not to a good education for the children of the rural population, on the contrary, let it be as good as possible, but let the science and art of agriculture be a part of the education. If youth will, after such instruction, go to other professions, and prefer them, thiere can be no sound objection offered, however such a choive may be regretted. The sons of farmers would thus have a fair chance of practising their profession with advantage and being duly educated for it would not have any disinclination to it, or disrespect for it. It is time we should come to some just conclusion on this matter, and provide for the agricultural classes, the same advantages of instruction in their profession, that are provided for other classessin their several professions.

Large minds, like large pictures, are seen best at a distance. This is the reason, to say nothing of envious motives, why we generally undervalue our contemporaries, and over-rate the ancients.

We in a former number stated, that we were not disposed to admit but that LowerCanada could show examples of good hushandry, equal to any on this continent, and that we were in a condition to lead in the art of good husbanilry, and the manufacture of good impilements, instead of following any other country in North America. We are more confirmed in this opinion every day and although we write this article before the Industrial Exhibition takes place at Montreal, we feel confident that the result of that exhibition will fully sustain our pretensions. We shall be much disaipointed indeed, if we do not show products of Agriculture, Horticulture, and inplements of husbandry equal to any that have been exhibited, and we hope, that will surpass ail other. Our ploughing match also, we have not the slightest doubt, will show work executed by our implements that can$n_{\text {ot }}$ be excelled. It is in this way we expect to prove that our pretensions are not idle words, and that we are in reality entilled to lead instead of following in the art, and prartice of agriculture and in the manufacture of agricultural implements. The necessary implements of agriculture are not so numerous, and we should greally prefer, a few, well selected and suitable inplements, that would be necessary to carty on our business properily, to a large number that were not of the best quality, and which might not be required for use. It is only a waste of capital to be collecting every implement that may be offered for sale whether neressary or not. It is certainly well to have all necessary implements, but it is atsurd to purchase every thing offered and recommended unless a farmer wishes to open a hardware store, or one of agricultural implements. Well made implements of good materials, light, and at the same time of sufficient strength to execute the work they are intended for, are the grand requisites, and we have seen very many implements exhibited, very defficient in these qualities, and only fit for the show room. Farmers should be cautious in purchnsing im-
plements until they have been proved at work in the field hy parties who can be depended upon. We hope the Industrial Exhibition will show farmers where they can best supply themselves with agricultural inplements.

To the Edilor of the Agricullural Journal. St. Fox, County of Quebre, 15th October, 18:50.

$\mathrm{Sr},-\mathrm{I}$ take the liberty of enguiring, through the columns of your valuable Journal.-Whicther it be proper and uecessary, at Ploughng Matches, that the depth and width of the Furrow Slice should be given?-And, likewise, the time for finishing the work?
By answering the above in your fottheoming number, you will greatly oblige

Your obedient servant,
 A YOUNG PLOUGHMAV.

In reply to a "Young Ploughman," we never witnessed a Ploughing Match in the old country that there was not a scale given to plongh by, so that the furrow slice should be of the due proportion in depth and width. The usual scale was 5 inches in deptin by 8 inches wide, or 6 inches in depth, by 9 or $9 \frac{1}{2}$ inches in width, and if the proportion was not kept, the ploughman was disqualified. We have seen the same scale given at Montreal. Some parties may imagine that establishing a certain scale is not necessary. We think otherwise. Land ploughed by the above scales will be better ploughed than by any other scale and give a better seed-bed for the crop. In the smaller scale, if properly executed, each furrow slice covers the one turned before it. 3 inches, thus leaving an angle of the furrow slice for the harrow, of 5 inches each way, to cover the seed. In the larger scale, an angle of 6 inches each way is left. There cannot be any better mode of executing ordinary ploughing than this. When due proportions are not observed, the ploughed soil will lie too flat, and cannot be harrowed properly to cover the seed. In summer fallowing, or for green crops, it is not so necessary to adopt any particular scale, so that all the land is turned, but in all cases, if a minute division of the soil is desired, the smaller the furrow slice the better. There was, and should be, a time given to complete the work,
and any ploughman who did not finish withia the time was disqualified. The usual time allowe to plough half an acre was three to four hours according as the soil was easy or difficult to plougit.

St. Foy, County of Quebrc, 14 th October, 1850.

Sin,-I take the liberty to forward jou a sma!! quantity of a peculiar quality of oats, which I find to answer this climate extremely well, and to be profitable as to the quality and quantity of meal it yields; its flavour is peculiarly agreeable, -I got a small quantity of these oats last year, which I sowed the 20th May last, in light soil which, the previous year, had been under potatoes, and reaped them on the $20 t h$ August. The straw was of good length, and not too rank, and therefore not subject to lodge.
I hope the sample I send you, when tried, will induce farmers in the Province to prefer it to other oats, as more profitable, yielding as good, and a more certain crop

> I have the honot to be,
> Your most obedient humble servant, MATHEW DAVIDSON.
Wim. Evans, Esq.,
Montreal.
It appears from the following extract, from the Bankers' Circular of September 20th, that the wheat crop in England is far from being a very heavy crop. We have also seen Reports from several English counties. and from Ireland, hat state the damage to the wheat crop, hy the wheat-fly and other causes, is very extemsive indeed, it is said that the crop has not heen mose deficient for twenty years past in Englan!. We have no particutar Reperats of the state of the wheat crup in sicotiand, but it appears that in the latter country, the season has been very dry this year, and that was faviurabie to wheat:-
"There has not been in England a season for :wenty years, in which the diseases in the wheat crop were so various so extensive, or so general. The midge, the smut, the red-gum, and the mildew, have appeared more or less in moist counties of England. "Me tío first may be passed over as being of partial range, and conparative-

Iy unimportant in effect. The red gum, or, as it is termed in some counties, the red robin, may be found in all seasens, but in no forner year for a long period of years has it ever been so golleral or so destructive as in the year 15s00. Many farmers will tell you that it has destroyed one-. half of their wheat crop. Suci extieme cases, however mast be rare. There cuan be no doubt of the extentand of the destructive nature of the discase upon the wheat crop of 1850; 1 have discovered it in all the midland, western, and eastern countics of Lusfiand; aloo in Durham and Nuthumberland. As fura, my obsicrv,tion enables me to determine, it was most rife in Berkshire, Willshire, Oxfordshire, and Gloucestershire, and the coumties lying between ithern and the coast countics of the eastern shore. Careless persons are apt to treat the red gum with indifference because it prevails more orless every season; but they will lind that in this year it spread to an extent that will make a serious inroall on our ammal supply of wheat of domestic grow:h. Thelieve it las stiuck out it quantity greater than that which inas beea lost by mildew, beeanse it spread muci more extensively, aud affected nuarly all districts-some to
a lamentable derree a lamentable degree.

[^0] other hue. The same from Refford, througi Lincoln, to near Peterborough. When you reached within about five miles of that city, the wheat crops presented a healthy harvest colour, and olle could observe very little of this disuase all the eray from that point to London; some in Huntingdonshire, while Bedfordshire and Hertfurlshire were comparatively free from it. The milderw also prevai'ed extensively throughout the low marsh lands of the East Riding of Yorkshire, neither were the wolds entirely free from it. The Times newspaper still talks about an average crop of wheat; but in its renott of the corn trade in Mark-lane on Tuesday last, there is this significant passage : ‘The samples on sale from Cambridgeshive and Imeohnstire for delivery by railway, presented a striking contrast to the Lissex and Kent, as-although a few were fine and bold-the principal part were shrivelled and light.' To be sure they were, as the writer might have known they must be, if
he had examined those counties a month ago. The worst samples from the midland districts will never be sent to the London market for sale.
"These are, consequently, the main facts of the case, so far as the wheat crop of England is concerned: 1. General deficievicy arising from blight, and the inability of the injured plant to feed a numerous family of grains. More widespread disease of a great variety than has been known in England for more than twienty years.

WOOL.

The wool of the different races, families, and breeds of domesticated sheep differs so widely in comparative length of staple as to have occasioned them to be classified into short-woolled, middle-woolled, and long-woolled-and differs also so widely in comparative softness and tenuity as to have caused them to be classified into coarse-woolled, medium-woolled, and fine-woolled. But the wool of any one breed differs both in length and in fineness, as well as in other properties, according to the circumstances of climate and pasture and treatment in which the breed is reared and maintained; and the wool of each individual of every breed, in all circumstance, has somewhat widely different properties in different paits of the boily. The wool of the most steady climate, the most congenial pastures and the most judicious management, is always bulkier and finer than that of inclement districis, irregular feeding, and bad store husbandry ; the wool of light arenaceous or calcareous sheepwalks has always a cleaner texture and a purer colour than that of such soils as those of some parts of Gloucestershire, which impart to it an orange tinge, or that of such soil as those of some parts of Hertfordshire and Warwickshire, which give it a brownish hue, or that of such districts as the fens of Lincolnshire and Cambridgeshire, which give it a dark blue tint ; and the wool of the shoulders, back, and sides, of any individual sheep, is finer than that of the upper pait of the thighs, the upper part of the legs, and the parts extending thence toward nearly the haunch and the tail-and the wool of these parts, again, is finer than that of the upper part of the neck, the throat, the breast, the belly, and the lower part of the legs. The separating and assorting of the different qualities whether from one fleece or from a collection of fleeces, is a nice process of art, and is performed sometimes under the direction of the manufacturers who have purchased and ąre about to use the wool, but more commonly by a class of persons called the wool-staplers, who have qualified for their employment by a regular apprenticeship, and who purchase the raw material from the grower, and sell it in an assorted state to the manufacturer. The operator unrolls the tleece on the tabie, spreads it out under a clear
light, and, under the joint guidance of his sight and his touch, culls out successive locks of uniform fineness of filanent, and deposits them in a basket; and he assorts the whole into six or ten or, in some cases, a greater number of kinds, and has beside him a separate basket for each kind, and yoes through the whole process with a promptitude, accuracy, and celerity, which quite astonish the uminitated. "In sorting wools," says MPCulloch, "there are frequently eight or ten different species, in a single ileece; and if the best wool of one fleece be not equal to the finest sort, it is thrown to a second, third. or fourth, or to a still lower sort, of an equal degree of fineness with it. The best English short native fleeses, such as the fine Norfolk and Southdown, are generally divided by the woolsorter into the following sons, all varying in fineness from each other, viz., first, prime; second, choice; third, super ; fourth, head; fifth. downrights ; sixth, seconds ; seventh, fine abb; eight, course abb; ninth, livery; and tenth, short-coarse or brack wool." But either these divisions, or any others to a lesser or greater amount, would be far better designated by simple numerical names; and all vary in their relative market value, according to the demand for respectively coarse, middle, and fine cloths. The long wools, in an aggregate view, have a staple of seven inches and upwards-the middle wools, of from four to seven inches-and the short wools, of from two to four inches.
The comparative properties of wool are very varuely expressed by the epithets coarse and fine or by any other two or three general words ; and they have been somewhat better desiguated as follows, by Arthur Young, in the order in which they are esteemed and preferred by the manu-facturer:-"First, fineness with close ground, that is, thick-matted ground; second, fineness; third, straight-haired, when broken by drawing; fourth, elasticity, rising after compression in the hand; fifth, staple, not too long ; sixth, colour: seventh, what coarse is in it to be very coarse; eight, tenacity ; ninth, not much pitch mark, but this is no other disadvantage than the loss of weight in scouring. The bad or disagreeable properties are-thin, grounded, toppy, carlyhaired, and, if in a sorted state, little that is very fine, a tender staple, no elasticity, many deadwhite hairs, very yolky. These who buy wool for combing and other light goods that do not want milling, wish to find length of staple, fineness of hair, many pitch-marks." Another clearer, and shorter classification of properties may be made into soundness, length, cleanness colour, softness and feltability. Soundness arises from the healthy condition and proper feeding of the animal, and comprises uniformly, flexibility, and kindness of the pile, but perfectly comports with the wide diversity of the other properties correspondent to the different families
and breeds of sheep. Length or shortuess or any medium between the two must be variously suitable according to the different purposes of the manufacturer, but ought always to be uniforin in the same specimen, or at least as nearly 80 as will comport with a due regard to the assortment of the other properties. Cleannces, though mainly desirable for preventing expense and the loss in the process of scouring, is desirable also for its appreciable conservation of soundness and sofmess; and it requires that no dirty or discolouring ingredient be employed in salving, that as little as possible of any ochreous substance should ever get into the shepherd's or store-master's possession, and that the living flock, as well as the separated fleece, should be kept aloof from whatever might pollute them. Colour is important because wool excels cotton and linen and even silk in taking on bright and beautiful hues in the process of dyeing-and because white wool receives the colouring matter more readily than black, and clear white wool more readily than creamy-coloured or brownish or dingy-and because any mixtite of black filaments with the white,mars the harmony of the dye, and renders the whole specimen unsuitable for the reception of the brighter and more delicate hues. Softness has been raised to paramount importance by the demands of fashion ; and depends partly on the minuteness of the fibres, partly on the combination of soundness and feltability, and partly on the abundance and tenuity of the lubricating yolk; and it more or less comprises or inciudes the two properties which Arthur Young and many cther popular nomenclators call fineness and elasticity. What we have designed feltability is the most curious of all the properties; and is identical to a certain extent with what is popularly called fineness, but still more with a peculiar and very beautiful structure of the filaments quite recently discovered; and may be well understood from the following account of it by Mr. Spooner:-"The felting property and other qualities of different wools have long been known by practical experience; but we are indebted to Mr. Youatt for the discovery, that the felting property depended in a great measure on the number of serrations on its surface. This gentleman, after several laborious attempts, at length succeeded, with the assistance of a powerful achromatic microscope and its scientific maker, in developing the singular structure of wool and the different qualities. Each fibre was found to consist of a number of leaves attached to a central stem or band, and extending in one direction, viz., from the root to the point. This was the result of examining a filament on an opaque object ; but when viewed as a transparent object, the edges of the leaves were more visibly apparent, appearing like so many teeth pointing in one direction, and thence properly termed the serrated
edge. The fibre of wool thus magnified appears somewhat like a common fir-tree. On examining different wools, Mr. Youat found that the number of serrations corresponded to the felting qualities of the wool, being in the Saxun no less than 2,720 in the inch, in the Southdown 2,080 , and in Leisester 1,860 alone. Thus fine wool differs from conrse in having a greater number of serrations and growing in a more spiral form, which, of course, increases the number of curves; but to this we must add the fact oi its buing actually finer or smaller in its fibres; so that while a fibre of the coarsest wool is $1-450$ th, the finest is $1-1500$ th of an inch in diameter. It can easily be conceived how the curious structure of the wool, particularly its serrated edge, must conduce to its felting property. As long as the filaments are kept in the same direction, these serrations are comparatively inoperative; but torn to pieces by the card and mixed in every direction, the serrated edges must tend to hook and entwine tugether; and this must be pretty much in proportion to the number of serrations in a given space, particularly when this is added to the fact that the wool is more curved as the serrations are nume-rous."-Rural Cyclopadia.

A DAIRY STOCK.

I recommend the following mode of managing a milk stock, the principles of which are followed by the best milk-selling farmers. Curry and wisp the cattle once a day, give water twice a day when in the stall, and an hour'ss airing in the yard. Let the food be given to them at exactly the same hour every day, and likewise the water. When food is given, and any cow does not take to it readily, take it from her, and let her be without any until next feeding time (this is the way man should do to remain in health.) Never pamper immediately after calving. At milking time the master or mistress should assist, or be present, in order to see that the milkers milk briskly, and without talking. A great deal depends on these two points. A milker may sing or whistle, but not talk, but then it must be tuneable. There is an old saying, that the last drop is the richest, and should be drawn. This is wrong, for the last drop from a good milker never does come. I have seen milkers pulling at the udder for the " last drop," while a weakly constituted cow has been nearly sick. A mother who has suckled children can understand this, and yet I have known thoughtless mothers to forget it when milking cows. In stripping a cow, a milker finishes with his right hand, by taking the teats in rotation, and getting what he can out; and when he gets hold of a teat, if he can get mi'k twice, he must try that teat again after he has gone them round; but if he can only get malk
once, he should give up, for the last drop which ought to be taken is then come: aud if more after this is rot, it is a pull upon the milk veine and is no richer than milk taken at the first, or rather, it is of an average qualiiy. If a milk farmer intends to follow his business to the best advantige, either he or his wife must themselves milk, or be piesent during the time of milking. One of the lest managers I am acquainted with, always did the stripping himself, and left the others to do the regular miking.

The proper temperature for a dairy, where butter is mide, will be from 50 to 60 decrees, according to the temperature of the weather. There should be plenty of air circulating through it. If it be too warm where the cream stands, it will lift in the coeam mug, and the butter will be rancid; and if it be too cold, the cream will not get sufficiently acid for churuing in proper time; in this case the butter will have what we call a bingey taste. Bad dairyers, to insure grod butter, will churn the cream before it is acid, but this is a waste of labour, inasmuch as the cream, in this case, must be churued until it is acid, before the butter will separate from the milk. When churning commences the crean: should be at from 62 to 65 degrees, according to the temperature of the weather, or of the room. No water should ever be used about butter in making up, as water left in butter is just as bad as milk, and it will soon make the butter bad. Nothing but labour, by working the butter, will produce real solid sweet butter, and make it keep sweet. The following is a statement for eight years, previous to 1840, of the stock, produce, \&e., of a dairy farm in the neighbeurhood of Rochdale:-The farm is on the mixed system of dairying, that is, part of the milt is sold in the new, part skimmed, the cream being churned, and the skim milk ansl butter-milk sold as well as the butter.

In addition to the above there were about 150 lbs. of butter, and 1,000 quarts of milk amually consumed in the house ; value about $£ 15$. The cows were keft on pasture in the summer, with: about one quarter bushel of grains each daily;
in the winter on hay, potatoes, tumips, and graias, with bean flour or oatmeal. On an average 11 cows were changed (bought and sold) every yar, at about $f(6$ loss for each cow changed. 'ithe faria was an entire grass form, consequently all the provender had to be parchased, and cost, on an average, diE0 por yoar, -Ruiluell's Agriculure of Lancashire.
[The report on the agriculture of Lancashire, from which the above extract is taken, was intended for competition for the prize offered by the Royal Agrientural Society of England, but. arniving too late, could not be received. It contains much of sensible remark, and will well repay perusal.-ED]

Stram Machine fon Marina Bread.-On Tuesday last we attended an exhibition of the process of making bread and biscuits by stean, a patent being taken out for apparatus by Messis. Lee and Robinson, of W,pping. The two important points in tin:s process with struck our altelition were, fist, the preparing the dough almost immediately, withont being set in sponge five or six hours, as is the common practice at present; and secoudly, the appropiating the waste steam to the purposes of baking-that being the power which ennverts the dough in:o bread ia the oven. The following is as concise a description, as we can give of this most surprising invention. The flowr falls into a hopper in at even and regular manner, at the same time a requhar supply of carbonated or soda-water is likewise supplied ; these, interningling in even proportions, are conducted to a tub, where m: chincry like that in a pug-mill mixes, and, at the same time macerates the mixture, until it is converted into dough: then it is expelled through a square openint, where, by a simple contrivance, as it protrudes, it is cut by a sliding donr into any weight, rem that of a quartern loaf to a biscuit. As each piece of dough is cut, it falls into a cloth attached to endless chain, whereby the epreration of " moulding:" is performed: a small boy then places the loaves on a bakinr-tabie furnished with whe els, the whole batch being thereby set in or withdrawn from the oven at the same moment. The same free curtent of steam which keeps the machinery in motion is the power which heats the oven: it pa-ses openly and directly upon the bread, thus avoiling the dangerous pressure where heationt by steam in strong pipes is used. That steam is the power used in baking is shown by the patentee, who opened the door of the oven, intreduced an iron shovel, and withdrew it with the steam condensed on it into water; while at the same time the bread in the oven was collceting a strong brown crust from the same anctey. The machinery is very simple, and can be easiiy attached to any steam-mill; and, by l:aviag the flour directiv conveyed into the hop-
per of this invention, to be mixed as alove described, the same stram power which now produces thour can, with the same ease and faciity, produce in the same establishment, br anl. Oh
the score of economy, ats well as that of clem the score of economy, as well as that of clean-
laness, the above process deserves evely amonlmess, the above process deserves evely encour-
arement. The apparatus is in argement. The apparatus is in dai!y u-e at 278, Wipping, and the inspection of it wili well
repay a visit. repay a visit.

DRAINING.

The following remarks on Draining are from the Peany Cycloperia, and by the Editor:-

As a certain quantity of moisture is essential 10 vegetation, so is an excess of it highly detiomentill. In the remoral of this excess counsists the ant of draining. Water may render land unproductive by covering it entirely or partially, forminer lakes or bors ; or there may be an ev-
cess of moisture diffused throurd the soil and cess of moisture diffused through the soil and
stagnating in it, by which the fibres of the roots stagnating in it, by which the fibres of the ronts
of all plants which are not aquatic, are injured, of all plants whic
if not destroyed.

From these different causes of infertility arise three different branches of the art of draining, which require to be separately noticed.

1. To drain land which is tlooded, or rendered marshy by water coming over it from a hirgher level, and having no adequate outlet below.
2. To drain laud wherespriags rise to the surface, and where there are no natural chamels for the water to a moff.
3. 'To drain land which is wet from its imperviuns nature, and where the evaporation is not sufficient to carry off all the water supplied by
snow or rain, snow or rain,
The first branch includes all those extensive operations where large tracts of land are reclaimed by means of emblankinents, canals, sluices, and mills to raise the water; or where deep cuts or tunnels are made through hills which furmed a natural dam or barrier to the water. Such works are generally undertaken by associations under the sanction of the Goverument, or by the
Government itself; few individuals buing Government itself; few individuals boing pos-
sessed of sufficient capital or having the sessed of sufficient capital, or having the power to oblige all tho:e, whose interests are affected by the dainingr of the land, to give tle eir consent and afford assistance. In Britain there is no dirficulty in obtaining the sanction of the Lerislature to any undertaking which appears likely i) be of public benefit. In every session of Parliament acts are passed, giving certain powers
and privileges to companies and individuls and privileges to companies and individuals, in order to enable them to put into execution extensive plans of draining. That extensive draining In the counties of Northampton, Huntingdon, Cambridge, Lincoln, Norfolk, and Suffolk, which s known by the name of the Bedford Level, ras confided to the management of a chartered orporation, with considerable powers, as early
as the midhle of the serenteenth ceatury; and by this means an immensu evtem of land has been rendered highly productive, which befure was noiniag but one comtinued marsh or fen.

In the valleys of the Jurn, in the camton of Neufehatel in Switzerland, which are noted for then industry and prosperity, exteasive lakes and matshes have been completely laid dry, by making a tunnel throught the soliti rock, and forming an outlet for the waters. The areater part of the Netherlands, and Holland, have been reclaimed fiom the sea, and from rivers which tlowed over them; an! they ane now as productive lands as any on earth.

In Canada, draining is very difficuit; and in consequence some of the best situated lands are allowed to remain waste, that would not requiry a lage expendature to drain tham perfectly. The principal obstacle is, the want of power i. oblige all those whose interests would be affected by the draining of the land, to give their consent, and atford assistance. In some particular cases, were a proper application to be made now to the (xovernment, perhaps the necessary powers might be obtained. It is only where outlets require to be cut, that would drain large tracts of land; or where small rivers require to be straightened and deepened, that the interference of the Govermment could be applied for. But in such cases, were the Government to grant the necessary powers, it would greatly promote improveme:t, and prove highly advantageous to the industrioús agriculturists.

In hilly countries it sometimes happens that the waters, which run dowu the slopes of the hills, collect in the bottoms where the soil is impervious. In that case it may sometimes be laid dry by cutting a sulficient channel all round, to intercept the waters as they flow down, and to carry them over or through the lowest part of the surrounding barrier. If there are no very abundant springs in the bottom, a few ditches and ponds will suffice to dry the the suil by evaporation from the surface. This principle might be applied with great advantage, in many cases, where the water could not be drained out of considerable hollows, if it were allowed to ru:
into them.

When there are different levels at which the water is pent up, the draining should always be begun at the highest; because it may happen that when this is laid dry, the lower may not have a great excess of water.

In draining a great extent of land, it is often necessary to widen, straighten, and deepen rivers, and alter their course; and not unfrequently the water cannot be let off without being carried, by means of tunnels, under the bed of some river or canal, the level of which is above that of the land. In more confined operations, cast-iron pipes are often a cheap and easy means of effecting this. They may be bent in
a curve, so as not to impede the course of the river, or the navigation of a canal.

The daining of land, which is rendered wet by springs arisings from under the soil, is a branch of more gencral application. The principles on which the operations are carried on, apply as well to a small field as to the greatest extent of land. The object is to find the readiest ehannels by wbich the superfluous water may be carried ofli; and for this purpose an accurate knowledge of the strata through which the springs run is indispensable. It would be useless labour merely to let the water run into drams after it had sprung through the soil and appears at the surface, as ignorant inen frequently attempt to do, and thas carry it off after it has already soakel the soil. But the origin of the spring must, if possible, be detected; and one single drain or dnch, judiciously disposed may lay a great extent of land dry if it cut off the springs before they run into the soil. Abundant spriugs, which flow continually, generally proceed foom the out-breaking of some porous stratum in which the waters were confined, or through natural crevices in rocks, or inpervious earth. Λ knowledge of the geology of the country will greatly assist in traciug this, and the springs may be cut off with greater certainty. But it is not these main springs. which give the greatest trouble to an experienced drainer ; it is the various land sprines, which are sometimes the branches of the former, aud often original and independent springs, arising frum sudden variation in the soil and subsoil.
In Englard, it is found that in one situation boring will bring water, and in another it will take it off. This principle being well understocd will greatly facilitate all draining of springs. Wherever water springs there must be a pervious and impervious stratum to cause it, and the water either runs over the impervious surface, or rises through the crevices in it. When the line of the springs is foumd, the obvious remedy is to cut a chamel with a sufficient declivity to take off the water in a direction across this liae, and sink through the porous soil at the suiface into the lower impervious eath. The place fur this channel is where the porous soil is the shallowest above the breaking out, so as to require the least depth of drain ; but the solid stratum must be reached, or the draining will be imperfect. It was by attending to all these circumstunces that Elkington acguired his celebrity in draining, and that he has been considered as the fati.er of the system. It is, however, of much earlier invention, and is too obvious not to have struck any one who seriously considered the subject. In the practical application of the principle, great ingenuity and skill may be displayed, and the desired effect may be produced more or less completely.

When the drains cannot be carried to a sufficient depth to take the water out of the porous
stratum saturated with it, it is often uscful to bare numerous holes with an auger in the bottom of the drain through the stiffer soil, and, accordin: to the principle explained, the water will eitiuer rise through these bores into the drains and te carried off, and the natural springs wiil be dried up, or it will sink down through them if it 18 above.
If the surface of peat mosses be properly drien, dressed with lime, and consolidated with earth and gravel, they will soom become pruductive. If the soil, whatever be its nature, cath he drained to a certain depth, it is of no consequence what water may be lolged below it. It is unly when it rises so as to stagnate about the routs of plants that it is hurtful. Land may be drained, so much as to be deteriorated in some cases.
When a single large and deep drain will pro. duce the desired effect, it is much better than when there are several smaller, as large drains are more easily kept open, and last louger than smaller ; but this is only the case in tapping main springs, for if the water is diffuse through the surrounding soil, numerous small drains ife more effective ; but as soon as there is a sufficient body of watercollected, the smaller drains shoull run into larger, and these into main drains, which should all, as far as practicable, mite in one principal oullet, by which means there will be less chance of their being choked up. When the water comes in by the side of the drains, lo:se stones might be laid in them to a litlle above the line where the water comes in, and they may then be covered with sodscut off the surface anil and with earth.
The third branch in the art of daining is tine removal of water from impervious soils whici lie flat, or in hollows, where the water from rain, snow, or dews, which camuot sink into the siif on account of its impervious nature, and which cannot be carried of by evaporation, iuns alum, the surface a:d stagnates in every depression. It requires much skill and practice to lay out he diainis, 80 as to procure the greatest effect att:e least expense. There is often a layer of light earth iminediately over a substratum of chir: and atter continued rains this soil becomes filled with water like a sponge, and no healthful veretation can take place. Open drains should bs made in the most soitable sititations, and if the land is plonghed into well formed ridges, the fur ows between the nidgres may answer all thd purposes of under draius, and convey the surface water into the mand drains.
Though much of the lands of Canada a:\% very level, yet in the most level field, thereit geneally an inclination in some direction. It necessary to ascertain in what ditection the gread est fall may be had, and tocut the drains so ast obtain the full benefit of the fall. Drains canms always be in a straight line, unless the groundt perfectly even. They should, however, nerf
have sudien turns, but be bent gradually where the direction is changed. The outlets of all drains should be carefu!! kept clear, for wherever water remains in a dain, it will soon derange or choke it. Cross drains whould be so arranged or turned, that the outlet shall meet the main drain at an obtuse angle towards the lower part where the water runs to. A drain brought at right angles into a ditch must necessarily soon be choked by the deposition of sand and earth at its mouth.

The following is an article on the same subject from the Quarterly Journal of Agriculture:At the conclusion af our last thoughts or draining (vol. vii. p. 533.) is expressed a sentiment which cannot be too emphatically impressed on on the minds both of landlords and tenant, thst draining is the first step towards the improvement of the soil, which, if neglected, and the soil permitted to remain, not only in its natural, but in a half cultivated state, all other means of tertilizing it will only prove comparatively abortive in their application. Were draining thoroughly effected, ail the present undrained but improveable soil of the country would be rendered capable of receiving all the benefits derivable from numerous indirect modes of fertilizing it. These various modes of fertilizing soil, were enumerated to be plonghing, dung, lime, and bone-dust, and these subjects were recommended as interesting topics of enquiry for another paper. It is our purpose now $i:$ prosecute that enquiry.

1st, Ploughing.-In ploughing undrained land, particularly land resting on a wet subsoil, the attention of the ploughman is constantly exercised, otherwise the plough may be thrown out at one place, and dip deeper at another, wilhout any apparent cause for the diversity of its action. There is, however, a paramount cause for it. The texture of soil, however homogeneous it may appear at the surface, greatly varies where the soil rests on a wet subsoil, in being consolidated at one place, and loose at another; and of course in being hard and soft at different places. The hard portions become dry by the expulsion of water, by the compression of the soil, and the porous portions remain coustant receptacles of superfluous water. Small stones become firmly imbedded in the hard portions of the soil, and are loose, and apt to be pushed before the plough in the soft portions. The plough, through these alternate changes of hard and soft, wet and dry portions of the soil, requires the utmost attention in its guidance: the hand and the eye of the ploughman being constantly in requisition, during the operation, to prevent the plough being thrown out or burying itself. But even with attention, such ploughing is unequally executed, and therefore unsatisfactory: whilst the disagreeable nature of the work tends to fatigue the body, and irritate the mind of the ploughman, and the unsteady draught occasioned
by the unequal state of the soil, jades the horses more severely than the extent of the work performed. Great discomfort, both to men and horses, attends plonghing soil in such a state, at any season, and it is only less irksome than the danger which both run of injuring their health. Ague and consumption affect the men, whilst cholic and inflammation of the bowels not unfrequently cut short the existence of tha horse. That this is no exagrorated result can be attested by all farmers of wet land. But the evils of wet land are not confined to the annoyance of men and horses, they obviously affect the state of the culivated suil, the nature of work, and the condition of crops, With regard to wetness affecting the state of cultivated soil, whatever labour and manure may be bestowed upon it, it always seems poor, huligry, weeping, and is apt to become foul with the stroner tamifications of semi-aquatic plants, threading themselves in all directions through it. Being inelastic, its surface permanently imprinted with the hoofs of animals, and consequently, easily poached. Of the nature of the work on soil in that condition, the furrow-slice in breaking up lea, is not easily laid over with the ear of the mouldboard, its under edge adhering tenaciously to the subsoil, the vegetable matter in the soil becoming, in fact, a kind of incipient peat. When the furrow slice cannot be easily Jaid over, the slices never clap close together. The harrows rather make scratches over the turrows slices than cut them in pieces and blend them together, and the roller compresses such land so as to deprive the sown crops of the power of spreading their roots in it. As to the effects of wet land on crops, they consist of stinted growth of straw, or should a flush of vegetation be at any time encouraged by the state of the weather the grain in both cases is lean, thick-skinned. and light. The grass too, is short, wiry, and inclined to acidity, instead of being mucilaginous and saccharine in quality and taste, or rather the finer grasses disappear and coarse semi-aquatic kinds occupy their places.

Thoroughly drained land, on the other hand, can be easily worked with all the corrmon implements. Being all alike dry, its texture becomes uniform; and being so, the plough passes throי꾸 it with a uniform freedom; and where ordinary-sized stones obstruct its course, the plough can easily dislodge them. The plough by its own gravity tends to raise a deep furrow, and the furrow on its part, though heavy, crumbles down and yields to the press "ie of the mouldloard, forming a friable, mellow, richlooking mould, not unlike the granular tevture of raw :ugar. The harrows, sastead of being held bask and starting forward, swim smooihly along, raking the soil into a smooth uniform surfacc, entirely obliterating the prints of footmarks. The roller compresses the surfare o.
the suil, and leaves what is helow it in a soft state for the expansion of the roots of plants. All implements are mach casier drawn, and hald or driven on drained land; and hence all the operations on it can be executed less fabohionsly, and, of course, more economically and satisfactorily than on undrained. Mueh las of bate been said of deep-plonghing in connexion with diained hand. heap ploughing we condeive to be a safe practice under every circumstance. It acts as lraining to wet land, which of course mast be vely temporary in its effects. Its efficacy can ouly be fully developed on land that hats been drained. There it forms the indispensable sui:plement to draininus. It opens an easy access for light and air to the ronts of plants, and facihitates their combined beneficial inthuence on the ingrediens in the soil which go to suppiont vegetation. These are all natural consequeaces of deep phoughing in the ordinary staice of land; but these consecinences will culy be permanen:!y observed and feit on thoroughly dramed land. It matters not in what manner thie soil is deeppy stirred, the benefis of it will be derivel in any case. The common plough with furr horses, or a ploush made a littlestronger for he purpose, will stir the soil that is thoroughly dained, deep emough for the rumination of the roots of all plants raised in agrieuture. Sucha plongh is ecrinally efficient as any subsciil plourg. A soit thus stirred one foot in depth witl afford sufficient scupe for the roots of most cultivated plants, and cren fusiform rocts will penetrate heegond that depth in a subsoil that has been thereughly drained. It maters lithe, we conceive, wather a drainel subs, il is brought ap by ale plongh or no. Weare sure it can do no hain when hought up, for it can be made the medium of conveying nourishment to phans as wall as the upper soii. Both may be blended torechier for the common object, and, in a shont time, neithercan be distingushed fiom the other. By finis property of drained land, we anticipate as ener:al and increased improvement in soil, such an expansion, in short, of capabilities as to gield more abuntant crops with the ordinary guantim of labour and manure.
2. Dung.-The bancful effects of unlraized laid on farm-yard and oflyer mather comnonly called maure, are most obvions. The percep-
tible daripness in undrained soil, tible danrinuess in manrained soil, dissolves the soluble portion (ff farm-yard manure, which, by gravily, descends beyonit the reach of the rootlels of you:rg piants; whilst the strawy portion remainsundecomposed for a le:ngth of time. This state:nent may acemunt for the invariabie hanguid regelation of plants while young in undrained land. After the straw has been decomposed, mad vegetation been foreed by the adrameement of the seasons, the plants dintive numrishment mit ouly from the decumposed straw, but probably aliso from the solitb:e matiter which liak?
provinusly desended tir what the damp sui!. Vegetation is thas promosed in summer, but it is sumerally too late for that season to footer the plazts to full maturity. The lateness atid immaturity of crops on wet land may thas be explained. The fact is, wet land camot be put i. heart with manure to a sufficient degree to fu!ce vegutation without the assistance of t!e spatme. Thrse effectson manure will be similar, whether the manus has been applied broadtast or in drills ; but as the driil systum deposits manmere in larger nassess on the same extent of gromul, the effects will always be found to be comparatively less jrrejulicial to drilled than to broadiast crons. As an instance in paint, potatoce carnot be successfully raised on wet land, when the manure is spread broadcast on the ground in Autumn or early in Sypring. Before such a practice can succred, the haud must be in heart. But even in drills, on wet iand, the manure will
be decompuced in diftent be decomposed in differeat degrees and at difit:rent times. The diest portion of the soil will fi:st and most effectually decompose tiee manure, the harlest next in degree and time, and the wettest will retain it in a siate of maceration, as long as the water is un. vaporated by drought. Beesides manure remaining inert in wet land, it alsq remains inert in such land rendered dry ly drough:! In that predicanent the manure is u:idpcomposed, andpasily sepparated from the soil, which becomes, like a sterile powder; and remains so uatil the return of rain. Were the min to fall in morlerate quantities, the decomposition of the manure would be rapidly hastened in the warm soil, but if in inordinate quantities, its decomprosition would be retarded as effectually as by the drought, although in this case it would tye dissipated before decomposition. Nothing can so comvincingly prove the benefits of draining in immeriately securing the fertifity of manure to the sail, than in contemplating the bancfull effects of too much drought or moisture. And to render the proof the strouger, we have only to contrast these effects with the effect of drained land on manure. The "oment that manure is deposited in a proper state, liat is in a state of humaidity in crained land, its juices are alsorbed by the diry soil, and retained there as in a wet sponge half squeezed. The sirawy portion being thus deprived of moisture by absorption, and still skitroundrd with comparatively dry soil which retains heat within itself, and readily absorts more from the air, it is readily decomposed, and snon becomes intimately blended with the snil. Fond in a semi-mnist state is thus placed near and ready prepared for the tender spongioles of plauts to exist upon; and supiosing the weather no honter but only equal to that we have sepplosed in the case of mamure deposited in undrained land, the progress of vegetation will completely outstrip that in the later.

[^1]ure, and talk of it as such, but it camnet be a mature, that is food for plants, in the canstic state in which it is desired to be applied to land. however it may be changed in its nature by admixture with the soil or exposure to the air. Canstic lime would som destroy vegetable life. Instead of itself being a manure, it rather conveats other s.bstances into manare waich wo.hd ctherwise have remained in an inent state. It acts on vargetable matter on all soils, and, by decompusition, renders that matter fit fuod fur phants. This is its chemical mol:a of action. it also acts mechanically, by separating the particles of adhesive suil by desication; but it is not probable that it acts chemicully on the earthly portions of any soil. Cunfomiang these properties of the action of linar, whic:a applied to suil, with one another, mirltt lead us to form erroneons conclusions resarding them. When, for insunce, we observe lime to act with effeet on veretable matter lying inert in soils, we might conclude that it wuld be applied wiha beit eff.ct to wet land, in which veigetable mather is most abun lantly foumd to be i:sert. When lime is fonad to pulverize and to dry clay suil become hard and clocl ty with moisture, we might conclude that wet clays would derive rnost benefit from lime. Buth these conciasions would be decidedly erroneous. Decause, althongh lime readily dec monas vergetable matter in soil, it only decompusis it advantaseonsly in dry soil, or rendered dry by draining, the moisture in wet land rendering tie lime effute before it has time to act chemically on the vegst.tble matter in the soil; and lime only acts beneficially on drained suil, that comains excess of verotable matter. Many dry soits, and particulatly wet soils when drained, contain excess of vesetable matter, which matter although encouraginer a flash of vepetation, is defieie:a of silicato inathen the straw and fill the grain. Caustic lim: convetts a portion of this soft vegetabie matter into silica, whilst it converts another portion of it into a pabulum, by which vegetation is powerfully supparted. In like manuer, the application of lime to wet clays would be to convert them into montar, which would harden the soil in drought that was intended to be pulverizen. Even in the case of top-dressing grass with lime, which is an exceilent practice when performed aright, pasture in a coastantly swaiapy state can derive no benefit from it. Before the application of lime therefore, in any circumstances, land should be thoroughly drained.
4. Bone-1)ust. - The extraordinary power of crished bones, when mived with the soil, to promote vegetation, has not yet beea satisfactorily explained. The tizer the bone-dust, and the more intimately it is mixed with the soil, the more active is the vegetation. That the bone is chemically decomposed in its unime with the soi! is obrious. Lift up a hamifal of canta
in waich bone-dust has been mixed for some days, and it will be founl to be saturated with a ruel oily substance, which makes the earth adnere tozetiner i.itwathall when squevzed in the !adad; and this eflect will he whemed ahburg the bones shomld have been builed presiously is beitso crushed into dust. It is hardly conceivable, a priori, that so small a guantity of any subetance, as of the bone-dust witen used, should be able to procure so sensible a chatere on the soil immediately in comat with it. We cantot positively assert whicin of the ingredients of the bone-dust it is that coinstitutes the ford of plants, for although the circumstance of boiied, crusied bones being as grod manure as those in a raw state, would support the belief that it is nut the oily matter in bune which constitutes tie manure, yet the fact that boiled, crushed bones rende the soil apparently as rich with oil as raw, fo.bids us froin asserting that the phosphate of lime alone constitates the fucd of plants in bones. But whatever the chemical action of bone-dust on suil may be, we can assert with confidenee, that buthe-dat wial impart no richness to any kind of suil, ualess the soil is cither maturally dry, or has been drained; and whea soil dees require draining, the mose thoroughly it is drained, the greater effeet will bone-dust have upon it as a manure.

We thas see, that ualess land be theroughly drained, all the adventitious substataces which are cmployed to reader it iertile, camot impart their fullest benefits to it. Since this is tia case, it is lamentable to think what vast gamtities of manuze, whicis take much time to collect, and much money to pa.chase, ate yearly wasiel on undrained latad! How mach in-se produce might not these quan itics of manure amually raise, were they applied to land rendered fit to receive them by tho ough drain-ins.-Qiarícrly Agricultural Magazine.

SPRING TARES OR VETCIIES.

In Dorsetshire, farmers have a practice which deserves notice, it is the following :-After the clover is fed of early by sheep, the land is then phoughed about the end of May, or berginmug of June, and sown with rape and sprinct tares, which give ain abomdant produce in Autumn, on which the sheep are folded, and tino land is thus weil prepared for whe:!. A bushe! of tares or vetches, and two quams mpe-seed is sown on the acre. The ciop is feal oif by the begimian of October.

In Canada, hand that is plonghed in the Fall, intended for the summer fillow the next y:ur, might, in Spring, be sown whth tares and rapuseed that wonld afford in July, August amd September, a considerable quantity of provender for stock, when the pastures may be very poor. The land misht be cleated off in the later end
of Septe:nber, manured if necessary, and ploughed and prepared for a Spring crop. The tares and lape would not impoverish the soil much, and if they covered the ground well they would effectually prevent the growth of weeds.
This practice might be introduced without any difficulty, and we have no doubt that farmers would find it profitable, provided the tares and rape were sown in time, and fed off judiciously by stock, so as to allow the land to be ploughed and prepared in the Faill for the succeeding. Spring sowing. If tares were sown alone without rape, they might be cut when green, and dried and preserved for Winter food for stock. In good weather they might be sufficiently and readily dried to keep perfectly -afe. We might thus add very considerably to dur stock of Winter raud Summer foud for cattle, and at the same time keep our land cleaner, and in higher fertility than we do now, and withrut any greatly increased expenditure. Such experiments as this will be safe for the farmer, though yet untried in Canada.

AGRICULTURAL MUSEUM, ROYAL DUBLIN SOCIETY.

The Agricultural Museum of the Royal Dublin Suciety is now well worth the attenion of the agriculturists, landed proprietors, and all others engaged in the cultivation and improvement of land.
In preparation for the late triennial exhibition, many models of implements and implements themselves of great value and interest were of necessily put aside, stored up, and huddled away in corners for want of space. Since the close of that great and interesting national exhibition, the whole of the apartmentis devoted to the Agricultural Museum have undergone a thorough cleansing, repairing, and renovation. The models and implements have been cleaned and painted, and to the formernumerous collection of first-rate prize implements have been added all those that have been most approved of the different shows and exhibitions which took place during the past season, including the prize implements. Here is to be seen the most extensive assortment to be found in any establishment in her Majesty's dominions of ploughs, harrows, straw-cutters, ai' cake, pulse, and corn bruisers, drilling machines, manure distributors, liquid manure carts, and portable pumps, hand thrashing machines, rollers, clod-crushers, pipe-tile machines, \&c., \&c., in endless varicty and by the first mamfacturers in England, Scotliand, and Ireland. The whole arranged in the most convenient manner for inspection and comparison, each being ticketed, named and priced in such a manner as to enable the agriculturist to select that which is most suitable to his wants and means. Every information can be obtained.on
the spot from the curator, Mr. Corrigan, who lias, with great taste, exertion, labour, and perseverance conducted the re-arraugement and classification of this most valuable national museum, so immediately commected with our national wants and prosperity.

Cooking and Digestion.-A mixed diet of bread, meat, and vegetables, is better than any of the three alone; meat satisfies the appetite more completely and for a longer time than either of the other two; and, if a choice must be made between bread and vegetables, the bread should be chosen. Most kinds of game are easy of digestion. Roast beef and mutton are the most eacy of digestion of all butcher meats. It is a fact worth remembering, that roasting and broili ig are the modes of cooking meat which best suit the stomach : this is proved by a comparison of the time required for the digestion of different sorts of food. Thus, beef or mutton roasted or boiled, rather underdone, are digested inime bems

Salt beeff, cold, boiled... 4_{3}^{3} Heart, fried............. 4
Suft eggs........ 1 to $3 \mid$ Milk, , wailed............ 2
Hard.boiled, or fried egse $3 \frac{1}{2}$ Bread................... $3 \frac{3}{3}$
Yenison, broiled........14,
Fruit and vegetables require from two to four hours, according to quality and mode of cooking. Potatoes roasted and baked, and raw cabbage, are digested in two hours and a-half; but boiled potatoes need another hour, and builed cabbayse, with vinegar, fuur hours anda-half. Here we see why some things disagree with the stomach when eaten; those which stay the longest are the most troublesume. Vegetables, in general, afford the least nutriment, and they are mostly passed on from the stomach, without being fully digested. This has been proved in several instances which have occurred of patients with openiuss leading out of their bowels just below the stomach ; when they had eaten meat it could not be distinguishedt as meat by the time it reached the opening, but spinach, carrots, and other vegetables were but little altered. M. Londe, the medical attendant, says, "In my patients, salad,, prunes, apples, and spinach, always appeared at the end of an hour, while the animal food never reached in less than three hours. It seems as if the digestive canal, anxious to get rid of the vegetables, from which it could exiract nothing, anit always contracting to drive them away, look the opportunity which the accidental hole afforded of expelling them allogether while it retained, by a sort of ia predilection or elective attraction, the animal matter which could repay the expense of its labor." Soup is not wholesome or digestible unless eaten with a good portion of solid food;
where children are fet largely on soup, their health suffers in some way. In several workhouses and Poor Law Uuions, the use of peasoup has been discontimed, as it was fomnd to render children liable to disease of the mesentery. Fish, in general, is easy of digestion, and is good for those to whom meat would be too stimulating. Bacon, also may be caten, as ra.hers, toasted in front of the fire, or broiled; but, as a rule, builed salt meats are best avoided. Veal, pork, hot butter, and pastry, are more or less indigestible, and, consequently, to be eaten with caution. The mischief of pie-crust consists in the fat with which it is prepared. Sume persons make it with flour and water only, as a coves to the fruit; it is then harmless. The chief good of a pie, however, is in the refreshing qualities of the cooked fruit.-Famiy Economist.

IS LIME INDISPENSABLE TO THE FERTILITY OF A SOIL?

The practical farmer in nearly all countries has been accustomed to add lime to the soil; but can lime not be dispensed with? Is there no improved mode of culture by which the use of lime may be superseded? There are several considerations from which an answer may be drawn to this question.

1. Extensive and prolonged experience has shown that the fertility of many soils is increased by the regular addition of lime-that the surface of whole districts even is sometimes double or tripled in value by the addition of lime aloneand that, if it he for a series of years withheld, sach soils become incapable of producing luxuriant crops.
2. All naturally fertile soils are found upon analysis to contain a notable proportion of lime ; while in many of those which are naturally unproductive, the proportion of lime is comparatively small,
3. A naturally productive soil, even though regularly manured, is often found, affer long cropping to become incapable of srowing particular crops in an abundant or healthy manner. On analysis these soils are not unfrequently found to contain only a very small proportion of lime. After an addition of lime to such soils, the diseased or failing crops often grow again healthy and in abundance.
4, Lime added to one part of a farm sometimes produces no visible effect, while upon another it greatly increnses the produce. In such cases, a chemical analysis not unfrequently shows, that those soils or fields on which it produces no effect already contain a sufficient supply of lime, and in the state most favourable 10 ferility.
Thus barsen, sandy soils often admit of profitable cultivation after lime has been added; and clay soils, in which litte or no lime can be de-
tected, are often entirely changed by the addition of lime. So, also, it may usually be laid with profit upon soils formed from decaying granite, while its action is frequently less sensible when applied to soils of decayed trap. This is chielly because the granite contains little lime naturally, while the trap-rocks for the most part abound with it.

These practical considerations, all lead to the conclusion, that line is really indispensable to the ferlility of the soil.
5. This conclusion, drawn from experience, is rendered certain by the fact, that all the crops we raise, contain lime, which they derive solely from the soil. To this fact I shall hereafter more particularly advert, when treating of the purposes served by lime in'the soil,-Professor Johnston on Lime.
on the nutritive value of oat hay.
On Oat Hay, and the relative value of oats cut green and cut fully ripe," by Dr_{A} A. Voelcker, Professor of Chemistry in the Royal Agricultural College at Cirencester.

In the present case, Dr. Vpelcker seems to have happily united science with sound practical views, and we constantly have intelligible and reliable statements from him.

The first point to which attention was directed, regarded the proportion of water contained in the straw and grain of the ripe and unripe oat respectively; both samples being of the same variety and taken from the same field. As might have been expected, the green oats contained most water; this is shown by the following table :

OATS FULLY RIPE.
Por centage of Water. Proportion of Straw to Grain. $\begin{array}{cccc}\text { Straw } & \text { Grain. } & \text { Dry Straw. Grain. } \\ 3848 & 2065 & 3756 \quad 4041\end{array}$ 37564041
OATS CUT GREEN.
$\begin{array}{llll}5.33 & 28.66 & 6543 & 3456\end{array}$
I have taken the mean of the various results, given, as some discrepancy appears in the single determinations. By this table several general conclusions are indicated-

1. That the proportion of water in the unripe plant is greatest.
2. That the proportion of the $d r y$ straw in the unipe plant is greatest.

3, That when the plant is dry, the grain bears a larger proportion to the straw than would have been imagined; being even, in the green plant, more than one-third of the whole weight, and in the dry plant nearly one half.

The next step taken by Dr. Voelcker, was to determine the nutritive value of his several samples. In this case regard was had only to the amount of nitrogen contained in them, that being considercd the most important ingredient in estimating any particular variety of nutritious
fopd. He calls the body in oats which contains nitrogen, by the general name of protein; this name applying to a class of bodies that contains about as mosin hitrogen, and that are about as nutritious, as lean meat when it is dry.
The proportions, or percentages of protein obtained by Dr. Voelcker were as follows:-

> i. oats fully bipe.-mean hesults
> (irain, 1530 per cent of protelin compounds.
ji. oats cut green.

No. II. was cut when the stalk and leaf were yet quite green, and the grain milky, but fully formed. They were cut at the same time, the green outs having been sown about one month later than the others.
The conclusions to be drawn from the above results are not only extremely interesting in a scientific point of view, but are of much practical importance.
I. We see, in comparing the numbers in the ripe and unripe straw, that the latter contair $3 \frac{1}{2}$ per cent. more nitrowen than the former.
2. That the unripe grain also contains mure nitrogen, this may seem a very strange resulh but may be explained when we consider the fact, that the unripe oats, athough they had not attained their full bulk had received most of their nitrogeneous compounds, and that the after increase, while ripening, must have consisted mainly in an accumulation of starch, and other non-mitrogeneous bodies.

In addition to the facts established by these analyses, it is borne in mind, that the unripe straw is also mucia richer in stareh, gum, sugar and other compourds of the same nature, all of them both nutritious and easily digestible, but which are for the most part, in ripening, gradually converted into woody fibre.

Here too, the larger quantity of water which has been already shown to exist in the unripe straw, is to be brought into accomnt. This water helps to render the food more soluble, and more easily digestible by the animal. We find then that an equal weight of the unripe straw and grain contains more nitrogen, more sugar and gum, and also more water; so that while it is more nutritious, it is also at the same time more easily assimilated and digested by the animal. This last is a point of more imporiance than is usually imagined. Of two kinds of food containing equal quantities of nitrogen, one may be vastly superior in its effects when fed, and this simply because it can be readily digested; a large porion of the other may even pass through the body unaltered.

Dr. Vuelcker gives, in addition to his theore:ical results two letters from farmers who have seen oat hay tried. Oine of them says, "that
when cut fine, oat hay groes one-fouth farther than if the oats and straw had been allowed to ripen."

In many parts of the comntry, it is very difincult to produce grood grass for cutting, but easy to grow quite toletable oats, at least so far as bulk of stiaw and appearance of head is concerned. The grain was not filled ont as well as if allowed to stand, but still would serve a grood purpose as fodder when cut green and made into hay. There is no loss of the gram by shellinu when cut in this way and the hay would be highly relished by stock.

Futhitive Valde of the Diffenimi Cacrs. -Cabbage. - The cabbage has late!y bee:a chemically examiaed, in consequence of the failure of the potato, with a vitw of its subsitution for that root. It is found to be richer in "muscle-forming matier" than any o:her crop we: grow. It contains more "florin" or " glu"en," of which sabstance the muscles are mule, atad hence is ripher in the material essential to the health, growth, ard strength of an animal ; wheat contains about 12 per cent. of it; beans, 25 per cent.; but died cabbage contains from 30 1060 per cent. of this all-important material, of which the princtpal mass of the animal structure is built.

An acre of grod land will produce 40 tons of cabbage. But-
1 acre of $2 n$ tons of drum-head cabbage will yield 1500 of yiuten 1 do. of $3^{\prime \prime}$ t tons of swede turnips 1000 do. 1 do. of 25 bushels of berans $\quad 400$ da. 1 du. of 25 busibels of wheat 1 do of 12 tous of potatos

| \because | 200 | $d o$. |
| :--- | :--- | :--- | :--- |
| $"$ | $5 E 0$ | $d o$. |

Such is the variation in our general crops, as to the amount of this "gluten," ihis special kind of nourishment, this " musele-sustaining principle," which actomnts for the preference given by experienced farmers to the cabbage as food for stock and milche ows, a!though the crop impoverishes their land, winich requires much manure to restore it to its former fertility.

Oars.-The grain of the oat plant is found on analysis to be richer in this g!uten, this "mus-cle-forming material," than the grain of wheat, and oatmeal a better form of nourishment than llour. Hence the superior strength of the Caledonians.
Bran is found to be richer than the interior patt of the grain in "gluten," in "muscle-forming material"-which proves that our antiquated country dames mdulge not in mere conceit when they persist in preferring good wholesome wholemeal-bread to the white luaf.

Butter and Cumd of Mine.-A voice from the laboratory tells us that the butter and curd of milk correspond to the fat and musele of the animal, "hence the reason why frod milhers are generally poor, and why the milk decreases when they begin to fatten." Oily substances, given as food, in the animal economy become
chaified into butter, or spread over the bones as fat. If we want buther, we mast give linseed 0 dinseed-cake. If we watat to fitica, we must to the same, or give other fatty substancus, rich in oil, with their ordinary food. But if curd or cheese is wanted, then we must give beams or cablage, or uther fuod rich in "glaten"-ihat alivays-lo-be-remembercdnusele-furning material" -(applause.)

Bardey and Malt.-Late experiments have settled the question as to the inferiority of malt to barley in feeding cattle. Barley in the proeress of malhins loses about seven per cent. of hishly nutritive substances, and thus is its nutritive power diminished. But in malt there is a peculiar sabstance fuund, generated in the malting process, and of high solvent power, which greatly aids the digestion of other foud, even when such malt is siven in small quantities. Onetenth part of the barley devoted to feed stock may be used in the shape of malt. A small portion may be given, ats a digestive, witin dry fued. A sinaller portori still wiah moist fucl, like potatoes, may be given: the digestion will thus be improved, and the lealth of the animal unsured ; while even in man tha mastication of a lithe inalt after meals would contibute to the digestive process.
Swine.-The same remarks apply to the food of the hog. If we wish to promote proper development of the muscular parts, and of the bone, we must give food rich in the "muscleforming material," and not deficient in the "phosphates"-cabbage, swedes with their leaves; and afterwads feed the animal with substances containing much charcoal, so that fat in moderation may be spontancously formed: such articles are beans, oatmeal, barley, grains, \&c. If we wish to transfer fatty matter alread formed-to make the animal into a "kind of oil butt "-we must give, with other food, greasy substances--" tallow-crap," linseed meal, anything in short which contains the unclean fat we wish to be clarified and manufactured, by this most useful creature, into grod wholesome lard (cheers.)
Pasture Land.-Every milk cow robs the land annually of as much phosphate of lime (bone-forming materiai) as is contained in Solbs. of bone-dust. From-this cause the Cheshire pastures became areatly deteriorated, but were restored to their former fertility by being well boned. Land continually repastured must be fed regularly with phosphates-by the application of bones, nightsoil, \&c. Some description of lime contains phosphates in sufficient quantity, but not all. When the mountain limestone of Derbyshire, formed almost entirely of a conglomeration of fussil shells, and hence rich in phosphates, becomes accessible by railway, it will probably be found of great talue to pastured land (applause.)

Tue highland \& Agucultural SociettThe show of the Highland and Agricultural Society uf Scol!and, took phace at Glatrow on Wednesday, Thursday and Friday. The place of exbibition was the linges pant, or the upper part of the green-a spot admirably adapted for the purpose, aliko for convenience and effect. The fine tall trous which shinted the sides of the enclosure, and separated in the midst, the implement and cattle departments, gave a pleasing appearance to the whole, white the dark luxuriant grass proved most agrecable to the numerous visitors. The weather was very auspi-cious-the first two days not a drop of rain fell, while the slight shower of the morning of Friday, onty make the succecding brightness more pleasant. The arraugements of the Directons were excellent; and the Show itseif may be considered perhaps, the most successful which the IIighland Sucicty !.as had in its longr and useful comse. The only objections we heard were from some of our keen agricultural fiteads, who, embracing the earliest opportunity of entrance on Thursday, had not proceeded over half of the exhibition, before the crowds, entering at the reduced rates, prevented any thing approaching to a careful and minute inspection of the animals.

To Mare Whitewasir-As this is the time for cleaning up door yards, and whitewashing. buildings and fences, we give receipt for making whitewash, which is said (in the Horliculiurist) to be one of the best and most durable character. Take a barrel, and slake one bushel of freshlyburned lime with boiling water. After it is slaked, add cold water enough to bring it to theconsistency of good whitewash. Then dissolve in water; and add a pound of white vitriol (sulphate of zinc) and one quart of fine salt. To give this wash a cream colour, add half a pound of yellow oche in powder. To give it a fawn colour, add a pound of yellow ochre, and onefourti pound of Indian red. To make the wash a handsome gray stone colour, add one-half pound of French blue, and one-fourth pound of Indian red. Λ drab will be made by adding onehalf pound sienna, and one-fourth pound of Venetian red.

Present to Her Majesty.-QueenVictoria,is soon to receive a curiou-present from the Province of Posen, in Poland, as a token of gratitude for the protection granted by her to the Polish refugees. It is the fleece of a ram of very singular beauty, bred on the property of Count Ignatious Lipsli, who is celebrated for his breed of sheep. This distly fleece is enclosed in a bov with a glass lad, and on which is inscribed the genealogy of the ram in four languages.

Soul-cheoring is it to live in an age when a thought is stronger than a sword, public opinion more poweriulthan a standing army, the people's mouth more potent than the cannon.

Agritultural $\mathfrak{I o m r n a l}$

AND

TRANSACTIONS OF THE LOWER CANADA AGRICULTURAL SICIETY. MONTREAL, NOVEMBER, 1850.

THE CANADIAN INDUSTRIAL EXIIBITIONHas at last been brought to a conclusion and we believe realized fully the public expectations. As it was not an Agricultural Exhibition, or rather we should say, one where Agricuhturists were directly expected to exhibit their products, we should not perhaps, take upon us to make any particular report on the subject, except as a visitor like any other parly who has spen the Exhibition. Indeed we feel that it would be an intrusion, were we to do more than simply to state that we conceive the Exhibition altogether, was very creditable to the Pr.svince, and to the parties exbibiting. We are quite incompetent to descritie the numerous and excellent articles exhibited, as the greater portion of them had no direct connection with agriculture. The various samples of grain, wheat, oats, peas, and indian-corn were all of excellent quality. Several sampirs of cheese and butter were also very good. We did not pay such particular attention to the comparative excellence of the samples as to authorize us to mention the names of any exhibitor, nor should we ronsider ourselves justified in doing so, as the judges have decided who produced the best samples. The Monireal Press have already given such a full report of the Proceedings at the Exhibition, and all that was to be seen there, that it would be quite ridiculous of us, at this late period, to repeat all that has been written on the subject as we could not give it any new or better colouring than it has already received from our confrères of the Pres:' The Exhibition, we were rejoiced to perceive, was numerously attended by Canadians and strangers
whoappeared greatly interested, and we have n) doubt that the business portion of the Montreal citizens have every reason to be satisfied with their participation in the benefits of the Exhibition.

The Country of Montreal Ploughing Mateh, took place on Mrs. Mills' farm, Cote St. Pierre, near the Lachine road, on Monday tha 21st. Octuber last. We believe there were 27 ploughs, of which, perhaps, about a third were French Canarian ploughmen, who ploughed in a separate field. All the ploughs were of iron, and what are known as the Scotch swing plough. The land was of thr very best description for a ploughing match, and in gond order, paricularly the fiel. for English ploughmen. The field for Cauadians was stiffer clay, and not so easy to plough. The ploughing was exceedingly well executed by all, withous exception. There was not an ill ploughed ridge in the whole of what was ploughed. The land ploughed is very acces:able to any party who may be disposed to see it, and it is worth the trouble of goong some cistance to see it. The only objection, we conceive, that was to the mode of deciding the premiums, was that it did not appear there was any regard to the time orcupied in ploughing the land assigned to each plough. It is a very material object to a farmer what quantity of land can be well ploughed in a day. In the old country, the land assigned to each plough was exac:Iy measured and each plough had the same quarity. There was a certain time given to finish the work, and any party who did not finish within that time was disqualified, however well he ploughed, and the prizes were awarded to the party who executed the work in the best manner and shortest space of time, within the time given. This should be the rule at all Ploughing Matches, and four hours should be the longest time allowed to plough well half an arpent. Peculiar circumstances might occasionally justify a departure from this rule, but otherwise it should be general, o_{n}
land not very diffirult to plough. We do not offer the:e suggestions to favour one party more than anothreras they would of course apply to all competitions. The visitors to the ploughing match were lieated to a very excellent lunch, with abundance of beer, wine and brandy, for all who had not taken the temperance pledge The whole affair was very creditable to the managers and to the ploughmen. The horses, harness and implements were excellent. We have never, in America, seen better ploughing, generaliy, executed at a Ploughing Match, and the unsucressfal p!oughmen had very little less merit than those who were so furtunate as to be awarded premiums. We wish them all, life and health to come forward next year in a similai honorable competition.

At the late county of Montreal cattle show, we were sorry to observe that there was not one of the stallions exhibited for prizes that appeared to be of pure Canadian breed. This breed is so unmistakable in certain points, that the slightest cross with other breeds may be detected. A horse of pure Canadian breed has invarially, characteristic marks of that breed that can never be mistaken for any other. We conceive it to be serious matter of regret, that decided encouragement should not be given by Agricullural Societies for the pure Canadian bree.ls of both stallions and brood-mares. We do not obje:t to prizes being offered for mised breeds, but let there be always a separate class of prizes for pure breeds. Mised and pure breeds should not be exhibited in the same classes. There is another objection which we have often urged, that is, to the manner in which animals are kept upon the place of exhibition. The animals entered in the same class are not kept together, but all classes, ages, and sizes are mixed t.gether, and the judges who have to decide which are the hest animals in each class, have to do sn in the best manner they can from this mixture. We do not know how judges of cattle manage to decide correctly
under such circumstances, but we do know that we could not pritend to to anything of the kind. In the liritish Isles all animals entered in the same class are placed together to enable the juiges to compare the merits of each accuraely and properly. It may be dificicult to indure exhibitors to conform to the regulations of Agricultural Societies, but no animals should be allowed to compete for prizes, but surh as would be led to the shows, and could there be secured in their proper class that they were entered in. Catle-shows should be so conducted that thre would be an opportunity offered judges of animals to make a correct decision and a ward. It is not the opiuion of judges of cattle that will make one. animal superior to another, if it is not so in reality, and therefore if judges are prevented from making a corvet award, there are other parties who will discover his error, and it has a tendency to do much harm. If it is worth parties while to take animals to cattie shows, they should not have any objection to conform to necessary regulations.

We atten:ed at the District of Montreal Cattle show, held at St. John's, on Wednesday the 9 th. Ortolier last, and were glad to perceive that a large number of domestic aninals of every species, were exhibited, and many of them of excellent puality. The show of horses were numerous, but of very mixed quality. The horses eutered in the class for "Best French bred Draught Stallions" were, as far as we could judge, all of mixed breed and we did not observe one that had the decided marks of the pure Canadian breed of hor:es. The show of what was termed "English bred Draught Stallions" was very superior, although we doubt that several of them should have been entered in this class. We couned 20 horses in the ring tugether in this class, for the judges award, and every one of them were fine looking animals. We never before, in America, saw so many fine stallions
(we canaot sizy wher they were all the most suitabie for drangla or not) exhibited together. They were very marh superior, as a class in appearance, to the class of French bred draught strllions, and this is altogether our farmers' fault in not preserving the breed of the Canadian horse inits purity. There were many brood mares, but of very mixed quality, and mised breeds. We observed one brood mare of pure Canadian breed, and we should never desire to see a better specimen of brood mares for agricultural purposes. She was in every respect what we would consider the most perfect shape and size, for a powerful and enduring working horse, and undoubtedly possessed more good points, according to our estimation, than any brood more we saw at the exhibition, alhough there were some nthers very good. The most objectionable mode of allowing all animals to be mixed up without keeping them together in the class in which they are entered, prevents the possibility of tnaking any just estimate of the relative merits of animals entered for competition in separate classes. The horses, however, were brought before the juitges in their separate classes, but we did not see that distinet breeds were separated. There were many fine bulls, cows, and heifers of dilferent breeds; scattered over the ground, and all varieties and ages mixed. This sort of confusion renders it impossible to form a correct estimate of the relative quality of the varions brreds and crosses. With sheep it is the same case. There was the Leicester, South-down, Alerino, and numerous mixtures of all these breeds, and, we believe, all allowed to compete in one class for premiums. We cannot even conjecture, how judges could award prizes correctly, under such circumstances. Leicester sheep may be very good as a separate variety competing in a separate class, and so may any other variety of sheep competing in separate clasees. But why should we compare the Leicester' with the South-down, Merino, or nixed breeds? What would be a perfection in one breet, would not
be a perfection in the other. Many farmers may choose to have different varieties of sheep but not for competition of the several vameties in one class at a cattle show. One varicty of sheep may be more suitable and profitablis in certain situations than another, but this circumstance should not determine to which variety the prize shouhd be awarded at a cattle show. If there is only one general class of premiums for sheep, let the bread be determined that will be allowed to compete, and do notallow the different varieties to compete together in the sarne class. As well might groats and sheep be allowed to compete together! It is not acting with fairness towards parties who import Southdown or Merino sheep, not to give them an opportunity of competing in separate classes for these breeds. If thete variaties of sheep are pronounced by any Agricultural Societyito be unworthy of encouragement they may be excluded from competition but under other circumstances, they are entitled to a fair chance of competition in separate classes for each variety. There may be very good South-down and Merino sheep, that would have no chance in competition with Leicester sheep, although they migh tbe bet:er of theirkind than the Leicester. It is the same case with horses and cattle of different breeds, their owners can only be done justice to by having the various breeds competirg in separate classes for each. The Ayrshise breed of neat cattle are not fit to compete with the Durham, "nor are the Canadian breed fit to compete with either of these in the same class. There should be a separate class for each of the first two breeds, and always a separate class for Canadian or mised breed to compete together, in order to show the effects of crossing, compared with the pure breed, that farmers may be able to determine the best course to pursue in regard to the breeding of neat cattle. We submit these remarks and suggestions for consideration. without any design to give the slightest offence to any party. We conceive it to be our duty to act in this way
while eonducting this Jumsal. Our deas m: y not tee correet on these suije ete, but we anly of: fer the:a wih a view that wigutural exhibitions: may be conducted so as to produce the geatest positile amount of gool to firmers, and that every exhibitor shall have a fair chance of obtaining the aredit he may be entilled to. Any party who has had an opportunity of sceing a great Agricultural Eshibition in the British Isles, will understand how much better our Exhibition would appear if the animals were kept more orderly, and the different varieties; and ages kept separate in the classes in which they were to compete. Our animals of every description would appear to much greater advantage, and our shows be worth looking at.

There is another observation we would offer on this subject. The true mode of determining the relative excellence of animals, is by endeavouring to aisertain the number of established, or generally admitted good points, and also the number of the objectionable or lad points, that each possess, and by comparing these marks of excellence and defects, a right conclusion may be arrived at by judger. This is a simpl ule to act by, but we should be glad to be infurmed whether juiges are able to adopt this rule generally at catle-shows, or whether they have time or oppostunity to do so, while the stock exh:bited are mixed up in such confusion as they usually are, and scattered over a large space of ground. If animals were kept together in their regular varieties, "ges and clasese, one half the stock brought to show might at once be removed, as their owners would perceive that they had no chance of obtaining premiums, and this would relieve judges from, considerable trouble, and difficulty in seler:ting the best animals. We conceive it to be a duty that all Agricultural Sucieties owe to the publie that this matter should receive due consideration, and anyremedies that may be necessary, intruduced with as litle delay as pussibie. While there is any attempt to class animals, there should be separate classes for each dis-
tinct waty, an: the dastine:inn should be strierly oherned, or justire canat he dune to burties exhibiting stock.

We should he !!elighted to see an honorable competition entered into between the farmers of Lower and Upper Canada, as to which would surceed in raising the largest and most valurble produce from their lands. We conceive that this eompetition might be entered upon on equal terms, neither party requiring any advantoige over the other. There may be some sections of Lower Canada rather too far north to be able to join in this competition, but with his exception we should have no fears for the rapabilities of Lower Canada, to enter into com petition in agriculture with any part of North Americ:a. This will be considered no doubt, a groundless pesimmption on our part, but we are prepared to sustain it. We do not pretend that we can dispose of the produce of an acre for as much money as can he had for the produce of an acre in many parts of the United States ; we only state that we can raise, acre for acre, as much of the products of husbandry here, as in any part of North America, so far as regards the common crops raised upon a farm incluting wheat (nerlaps) barey, oats, rye, buck-wheat, Indian corn, peas. beans, hop:, hay, pasture, pulatue, turnips, carrols, parsnips, mangel-wartze!, beets, every description and variety of garien vegetables-most of the varieties of fruits-dairy produce-beef, mutton, lamb, real, pork, wool, honey, flax, hemp, horses, sce.

This is a numerous list to be thankful for, and we might add many more valuable natural products, such as, wood of every useful variety, sugar produred from a variety of this wood, fish and forvl in great abund,nce andexcellenees. Surely a country that produces all these good things and in full proportion to the care and skilful attention we bestow upon it, is one to be proidid of. Who can dispute the list we have given above of our products? We
have seen gool crops, and good products, of every thing we have enumerited, produced in Lower Canala Let our farmers only exert themselves, and we can a.sure them that there is not one of these articles we have set down in the above list, that they cannot produce in as much perfection, os in any prart of North A merica that we have seen, with the exception, perhaps, of wheat.
We hope it will not be supposed we desire tn undervalue other countrie., and over estimate Lower Canada because we happen to reside there. It is not so with us, we feel firmly persuaded in the opinion we have expressed, althongh it is possible we may be in error in some items. We would give up as hopeless, the improvement of agriculture in Lower Canada, if our farmers were of opinion that the climate and soil were unfavourable for improved agriculture, and that it would not be profitable to introduce improvement. It is doing the greatest injustice to the country, to give the climate or soil a charac:er that is unfavourable to agriculture, as compared with Upper Canada or the neighbouring States. It is an old saying that, "hillslook green when far away," but were we to go to these hills, we might not find thern so green or so pleasing as they appeared in the distonce. It is so in respect to other countries than our own, we may hear great things, and most favourable accounts of them, but were we to leave our own country to seek these promised advanlages that are at a distance, we might have reason to regret the change when too late to retrace our steps, or recover the advantages we had foolishly cast away from us.
If parties have succeeded elsewhere in realizing, or accumulating property, we are not without numerous examples in Lower Canada also, of parties having succeeded in acquiring considerable property, from srarcely any capital to hegin with, and we know several of these parties that had not a dollar. We freely admit that a greater number of emigrants' may have succeeded in acquiring property in Upper than
in Lower Canada, hut the cause was, that generally the most skilfil and enterprising emigrants settled in the Upper Province. We know very many instances of French Canadian farmers succeeding admirably-indeed, we have not known one of this class who has adopted an improved system of husbandry that did not succeed. These parties have been grnerally prudent, and taken glood care of their profits, and the consequence is they are wealthy. When some parties, of all origins, can thus succeed under ordinary circumstances, there cannot be any fault to the soil or climate. What can be done by one parly, can be done by another, uniler similar circumstances, if they adopt the same means of doing it. There is nothing connected with Lower Canada that should give it an inferior chararter, unless her population resolve to stand still when the order of the day in most other countries is to g . ahead at all events.

A series of letters has been published lately in the North British Agriculturalist, upon English farming as compared with that of Scolland, by a Scotch farmer who has visited various farming establistiments in England. These letters are very interesting, and give a high character of English farming, and candidly admit, that the English practice is equal, if not superior in many respects to that of Scotland. We know there are many parties in Canada who will be slow to believe this statement, but all who may doubt it, we refer to the (Norts British Agriculturalist and Journal of Horticulture, an excellent paper, published in Dalkeith, Scotland, which may be seen at the office of the Lower Canada Agriculural Society. The writer of these letters describes the English farming, and points out in what respects he thinks it superior to Seotch farming. This is the fair way of giving an opinion by stating the grounds upon which it is founded. We believe there is no part of the world where farming in every department, is carried on in
greater perfiction than upon an extensive Enylish farm. We include everything, farmhouse, farm-buildings, the tillage, meadows, pasturage, horses, neat-cattle, sheep, swine, and rearing and feeding of stock; dairy inplements, fences, and trees, the whoie establishment is superior to any thing to be found elsewhere. We ronceive that a fine od pasture stocked with beautiful animals, is one of the greatest ornaments of the farm There is nothing artificial about it. A nimalsenjoy themselves delightfully on a fine old pasture that becomes covered with a great variety of the best of grasses. No matter how well land is cultivated and manured, new pastures of one or two years growth or standing. are never so good for cattle as old pastures; if the land is of good quality. The constant tillage of land without rest, in grass for more than a year or two, under, lo wever good management, will ultimately injure the soil, break the staple of the land, so that it will not produce healhy and full crops of grain. This is said to be ihe case with much of the lands in Scotland at this moment, that they have been too long and constantly cropped, and lime applied to them, to make them give out every thing that is in them. We have soen the effert of this constant cropping, and we are certain it has a most deteriorating effert upon the soil, however well manured. Previous to potatoes beroming diseased, we raised a large quantity annually, and our practice invariably was to plough in the Fall as early as possible, after meadow or j lasture, and give the land, again in the Spring, a cross ploughing, and if this did not break it sufficiently, give it a sec:ond ploughing, and then piant it in potatoes with manure. The following year, this land was laid down with wheat or barley, thus only taking one green, and one white crop, and once manuring. The land was consequently laid down in gond condition. If kept in meadow, it was top dressed every second year, pastured occasionally, and not ploughed again for seven or eight years.

There was more labour by this method in prepraring for the potato crop, but wa found that the potatoes had not much weeils, were always good in new sod land, the crop of grain, good, and the land laid down in good heart. In any system of rotation that would be established here, we think it would be desirable that for every two or three years that land would be kept in tillage, it should be left for six or seven years in grass. The roots of the grass would then, when ploughed up, be a considerable assistance to manure the soil. If farmers would, the first year that grass land was broken up, sow it with peas and oats; the second year, manuring all they could of this land for green crops, such as potatoes, beans, mangel-wurtzel, turnips, carrots, parsnips, indian corn, \&cc., and Summer fallowing the remainder; the third year the same land might be seeded down for grass, with wheat or barley, and not ploughed again for seven years. This is a simple rotation that any farmer might adopt, and we do not know a better or more suitable for Canada. Of course, if the farm is too small to allow the land to remain so long under grass, the tillage shnu!d be increased and the period under grass diminished to three, four or five years, as the case may be.

This Fall has been very favorable for ploughing and draining, as there were not many days wasted by bad weather. It was also a good time for top-dressing-land, as the soll was not over saturated with moisture, and would not be cut up with cart wheels. We have frequently recommended the mixing of soil as one of the most certain and lasting improvements. The sloping of drains, and the banks that are so often formed on the edges of the drains, are well adapted for compost heaps, to be mixed with other substances, and might be carted to convenient situations, without much trouble, to be made use of as opportunity serves. There may he parts of the farm where the sloping, \&c., might be carted at once to mix
with defferent soik, such as sand with clay or mois, or ciay with moss or with sand. Whire marl of good quality ean be had conveniently, it is a good mixilure with sandy or clay soils, but it requires a considerable guantity to produce any useful effect.

Experiments are frequently made in all these matters, and when they do not succeed, the plans suggested are condemned as mi-chievous expenditure, without any useful result. The fault, however, is very generally to be attributed to the imperfect, and insufficient manner in which experiments are exccuted. It would not be expecied that any great effect would be produced by a slight dressing of different soil, because the application of a small quantity does not sufficiently change the nature and texture of a soil to produce much improvement in it. There must be a considerable dresing to make any permanent inprovement, if it is the nature of the soil that has to be changed. Where this improvement is attempted the soils should be well mixed up by frequent ploughings, or by Summer fallow which is the best of all to bring mixed suils into a state of production. Lime would also be an excellent addition when dressing one soil with another. Sufficient draining of land that was previously wet, has the effect of changing the nature and quality of its productions and making it altogether of much more value.

We have constantly advocated the advantage of preserving a proportion of the na!ive forest trees on every farm, and when they have already been destroyed, that more trees should be planted in suitable situations. This country is so very favourable for fruit trees, and of other trees the maple might be planted principally, which would in a short time yield valuable products to the farmers. There is not a farm in Canada that would not yield fruit, were the trees planted properly. Where the soil might be unfavourable in its natural state, it would be possible to make it suitable by draining and mixing the
soil, praeing stones under the roots of the trees, or platiting the trees upon the surface of the soil, and raising mounds about the roois, so that the roots shall be altog.ther over the surface of the soil. We offer these suggentions to induce farmers to make the experiments of planting fruit trees, even where they might conceive the soil not to be favourable. The climate we linow to be favourable for the production of fruit, and we believe the soil is in the power of the farmer to be so improved by artificial means, as to be made saitable for the healthy growth of fruit trees, indeed, we have no doubt of this. There is every inducement to us to plant trees where they are wanted for shade, for use, or for ornament. There are many cases that it is very difficult to preserve the natural forest, or any part of it, but it is always in our power to plant young trees, that will soon become of good size, with the rapid growth of this country. Hedges might also be cultivated for fences, and we have the means here to plant them at once ly taking young plants from the forest of suitable species, or by growing the native white thorn from the seed or haws, which should be gathered and sown in the fiel: in seed beds, from which they can be removed when two or three years old. The haves should be sown now in drills, about a foot apart, to admit of the soil and young plants being kept clean, until trans-planted to where they are to form the hedge. There are several varieties of nut trees that might be planted, that would yield an annual produce, and are suitable for shade and ornament. The butter nut is a very handsome tree, and is useful for its wood and its fruit. We shall in a future number give the names of various nut and other trees that might be planted. There is very little doubt that it is most injurious to the country that has been natural!y covered with a forest of beautiful trees, to have them all cut down and destroyed, without heing replaced to a certain extent by other trees. It is said that in other countries the lands have been rendered sterile, and
almost useless, by destroying at the trees upon. them. From whatever cause or by whatever means, it is certain that a reasonable propurtion of trees improves the climate of warm countries, makes them more fertile, and more suitable, and healthfiel for man and for tiomestic animals. We wish there was a law to compel the planting of trems where there are no trees upon the fara. It appears to the a degree of vandalizm for us to come into a country, rovered with majestic: forests of every variety of trees, and cut them all down, burn and de. stroy them wherever we settle. We have only to compare a country that is sufficiently wooded, with one that has scarcely a tree upon it, and the difference is most striking. The first is a paradisp, the latter is only a desert. Farmers may olject to the waste occaasioned by trees, but we are convinced that a good farmer might very well 'pare the land occupied by the trees, necessary for a faim, if he was to cultivate, and occupy property all the other parts of his farm. We cannot adnit there is any valid excuse under any circumstances, for the total destruction of our trees withoui planting other trees in their place.

WHEEL AND SWING PloUGHS.

There is a very considerable difference of opinion exists respecting the merils of the wheel and swing plonghs, and we believe their respective merits have not yet been tested in Canada, by fair compettion in the field. From having had a trial of both ploughs upon our own farm, we can state from experience, that each pough has its fair proportion of mert. In land that was in good order for plonghing, free from stones, or other inpediments, we would prefer the wheel plough as more easy to manage, and more sure to cut and turn over, perfectly, the furrow slice. The swing plough would answer best in land that was not free from stones or roots, and in fact is an excellent implement on any lands, in the hands a of man, who knows how to use it proper!y. We im-
ported the lest deseription of wheel ploug', from Englatd with the oljopet of introluring some necessary improvement in the Canadian wheel plough. We have ever considered it more judicious to endeavour to inprove the implements we find in general use in a country, if suseeptable of improvement, than to attempt a total change at once. We have frequently seen excellent ploughing by the Canadian wheel plough, murh better ploughing, than we hare seen execulted by some swing ploughs of high pretensions. We have no hesitation in stating that the Canadian wheel plough might be improved so as to be an excellent and suitable implement for the strong clay lands of Canada, and we should be very far from recommending Canadian farmers, generally, to put away their wheel ploughs for swing ploughs, until they find out by their experience where it would be prudent tor them to do so. The greatest objection to the wheel plough is the great width they give to the furrow slice, compared to the depth, but this might be corrected by the ploughman, as it is by no means a necessary consequence of the wheels, that they should nake a disproportioned furrow slice. We have seen wood swing ploughs turn as broad and as shallow a furrow slice as a wheel plongl, and at a ploughing match too. Crooked ridges and furrows are not a necessary consequence of using a wheel plough any more than if a swing p'ough was made use of. If the farmers generallymade use of the swing plough, we would not be the firsu, to rerommend them to adopt the wheel plough in stead of it. But we shall never admit that the Canallian wheel plough retards the improvement of our agriculture, and we think it very injudicious at ploughing matches, not to have a class of prizes offered to them for competition. If the ploughs are bad, this would be the proper way to convince their owners that they were bad, and if otherwise, they should have the merit they deserve. We confess we would be inclined to question the
julgment and good sinse of any party who would condemn an implement before its merits were fairly tested, particularly any one that had been long in use. The wheel plough we imported from England which was of the same make as the wheel ploughs that was awarded the first prize at the ge 1 annual Exhitition of the Royal EnglishAgricultural Society for several years where ploughs of every make were in competifi. $\cdot \boldsymbol{c}$, has been condemined in our presence as worthless, by parties who have never seen such a plough at work. One would say it was too heavy, when we know it is lighter of draught than any iron swing plough; another would observe that the wheels would sink in the soil. This last objection is absurd, because the soil when unfit to bear the wheels would be unfit to be ploughed, and if too soft for the wheels, it would certainly be too soft for the horses' weight, that would be much heavier than the wheels. Caution in adopting a new imple ment, never before in use, is very proper, but for us, in Canada, to reject, without testing, a plough that is in general use in England, (that is unquestionably, the first agricultural country on earth,) because it is not the sort of piough we make use of, is, to say the least of it, a great absurdity. A good ploughman will be able to cut a furrow slice of proper proportion with a swing plough, but with a wheel plough, a man who would not be so experienced might turn as good a furiow slice, and would not he so likely to leave any of the slice uncut. We have never seen a plough cut a cleaner furrow then the wheel plough we imported. A well ploughed riilge, should, if all the turned surface was removed, be perfectly level and without the slightest inequality appraring. This is necessary in order to allow the water to escape from the ploughed soil into the furrow. They must be good ploughmen, who with a swing ploigh, will have a perfectly smonth surface under the furrov slices. There are great objections made to the Canadian Wheel Plough, but they are, in many instances, groundless.

In our humble endeavours as Editor of this Journal, it has constantly been our most anxious desire to conduct it so as to make it useful to Agriculturists, aud promote, if possible, the profitable improvement of Canalian husbandiy. We have carefully excluded all political and party discussions, and every subjert that might give offence. Our views on Agricultural suljects may not be in all cases correct, but we should have been most happy to give insertion to any communacation that would have differed from our views, and be thankful for any instructions offered. Although we have spent a long life empioyed in Agriculture, we see there is murh to learn every day, and we are as willing to be instructed now as when a boy. During the many years we have emploged ourselve, occas:onally in writing on Agricultural subjects, we have been favoured by the approbation of many whose approval we set the highest value upon, but we regret to have to say that we have also met with many discouragements, and from partics who we might reasonably expect would countenance and support us, in our humble exertions to promote the improvement of Cavadian Agriculture, where it most requires improvennent. It is for the Luwer Canaua Agricultural Society this Journa: has been published, but while acting as Editor for them, we feel any negiect or want of support to the Journal, as if we were the only paris interested. We offer our most sucere acknowledgements to all the kind friends who have ever supported or encouraged our humble services, and only regret that they were not mure worthy of their favour. We can, with truth, assure them that paid or unpaid, our best services have ever been rendered to Agriculturists, and what we conceived was best calculated to promote the common gnod of our beloved country. Counterance and support to the Journal we might reasonably expect fron the educated and the wealihy, and this conscimusness of favour, would, we believe, inspire us with mach more happy and usefu!
i. duscouragement, neglect or want of support.

There is said to be a new mole of preparing flax without steeping, ado ted in England, noticed in the following parag aph:-

Preparation of Flai Witholt Steeping. This simple and economical mode of preparing the fibre for the spimer is attracting important attention at this moment. The machinery employed is singularly facile and inexpensive. The flax may immediately be taken from the tield, dried, and prepared; and the yieid is onethird more, and the strength one-third greater, than when treated in the ordinary way. Not being tamned by steeping, it is bleached as easily as cotton; as the essential oil remaini.us in the fibre imparts a lustre to the flax, and preserves that "nature" which will enable the spimer to rival the finest hand-spinning, both in quality and brightuess. So economical is this process, that the woody portions broken away, retaining much of the richmess of the plant, are admirably adapted for feeding cattle; and thus not one single atum of this valuable produce of our soil need be lost. There is, moreover, a peculiar idiosyncrasy in flax so prepared to unite kindly with woollen or silken fabrics, imparting great strength and bcauty, and considerably lessening their cost.

As far back as 1816 we recollect to have seen flax prepared without streping, and of beautiful quality. The mode now recommended, may be different, and it would be a great advantage in the management of flax if it could be dressed without steeping in water, as it is frequently injured by this process if allowed to be too lung in steep, and the length of time it should be in steep is not generally we.l understond. We hope to be able to give some further information on this subject soon, that may be encouragement to the rultivation of flax in Canala, which we conceive would be vely desirable.

We have received, through the kinilness of Sir James Ed. Alexander, from Prufessor Rubb, President of the "New Brunswick Snciely for the Encouragement of Agriculture, Home Aianufactures and Conmerce" the fist number of their Journal, with the New Brunswick Almanac for 1851 , prepared under the
su:erintendance of the Fredericton Athenæum. We beg to return thanks to Professor Robb for these intiresting works, and riquest he will accept the exchange oftite Journal of the Lower Canala Agricultural Suciety from their commencement, which we hope Sir Jas. Ed. Alexander will be so good as to forward to Fredericton. We are authorized to state that the Lower Canada Agricultural Society will be most happy to correspond with the New Bunswick Sucicty on any subject connected with the subject which both Societies have been organized to advance. In our next number we shall ref: to these books, and copy some extracts.

AGRICULTURAL REPORT FOR OCTOBER.

This month finishes the harvest of the farmer. The crup of the year will now have been collected, and he will have some idea of the total amount of his produce, although he may not, of its actual value in our future markets. As we before obsersed, the result of the year, we believe, will be favourable, as regards the general produce of the crops. We do not pretend that the acreable produce will be very large of any grain, but we have no doubt it will be equal to our culivation of the soil for the various crops. Farmers in Canada have not much idea of the great expense incurred in England in the cultivation of ordinary farms, and the a:nount of capital employed. The latter is generally from $£ 6$ to $£ 10$, per acre, and frequently over this last amount. The expenses per acre annually, exchusive of rent and taxes, is from $£ 2$ to $£ 5$--all sterling. We have lately seen a Report of a farm of 740 acres, situated near Brighton, England. The annual expenses, including rent, taxes, \&c., are $£ 4.500$--and the annual returns for the last three years, are about $£ 9$ per acre, leaving a profit for the farmer of over $£ 2000$, for interest of capital an:l superintendance. This is not kept as a far.n to supply garden vegetables, as there is $\mathbf{3 5 0}$ acres of grain grown annually-

1:0 acres of peas and giten crops, and the remaintler of the farm is in neados, clover, tares and pasture. The stork kept upon this farm is, 28 horses for work,--- 21 Mileh cow:12 Heifers-a 3 hout 500 South Down sheep, and some pigs. The amount paid for ilanure anmually, is ahout e700, and will it be believed? the farmer has 12 ploughs, all of woot, and having two wheels each, and very much resrobling the Canadian wheel plough. Such are the only ploughs in use on the firm, with only e nee-that some of them are lighter than the others. This farmer, Mr. Rigden, has two drill machines, which cost $£ 36$ each, for sowing his grain, and ahthough he finds it advanrageous to use none hut wheel ploughs, he has all other implements of the very bust descriptior. He has an Iron Roller that cost $£ 70$, and will roll over 20 acres in a day, and is drawn by 6 horses. Here is a farmer with wooden whee ploughs, whose average of wheat is 36 bushels per acre, barley 40 bushels, outs from 60 to 80 bushels, mangel wurizel 30 tons, and potatoes, from 150 to 300 bushels per aure. We introduce an extract from the Report of this farm, that we hope may not be without its usefulness, although it may be imagined as out of place in a Canadian Agricultural Report. We would be glad to see a Report of a larger general return from a farm where only swing ploughs would be used. There is not anything better calculated for instruction than reading reports of well managed farms in the British Isles, and the report we have now referred to is made by a Scotcimman (now in England,) to a Farmers' Club in Berwickshire, Scutland. We are very anxious to see the necessary improvements introduced in our system of husbandry, bu we do not wish, nor is it necessary to destroy all that belongs to the present system of Agriculture in Canada to effect this improvement. The Fall, so far, has been very mild, with scarcely any frost up to this time, allowing a good opportunity to take up potatoes and other root crops, in good
condition. Potatoes are partially disense l, but we hope there has not yet been auy great loss hy rot. The crop is generally light, ami from this circumstance, thry will be more likely to escape disease. We would strongly recommiend any farmer who has the neans, to manure for potatoes, carrots, and parsnips now, in-tead of in the Spri:g, and for grain cropss also if possible. This is a very favourable season for ploughing. It in much preferahle that the land should be rather lyy than over wet when ploughing. Soil plotuged in too wet a state is very much injured, ami it. is difficult to restore it to a proper state. Land intended for summer fallow should be ploughed this Fall. This process we shatl never cease to recommend to Canadian fermers as a necessary and casy aneans of improving their land. During the period that the land is fallow, it would often be necessary to change the dirertion of the ridges, and this is the ouly time to do so. If the situation of the land and drainage would. admit, we should always prefer to have the ridges run Norih and Suath, or as near to it as possible. We believe that land, ringed in this way, will produce more of whatever erop, than if the ridges were to run in any other dircclion. The furrows and drains in ploughed laud should be carelully cleaned out this Fall. Every farmer will understand how much better, land can be plonghed and drained, when the ridges are straight, than when crooked, and how much better the appearance of the field. The pastures continue green and afford a "ull supply of food for stuck. The markets are well supplied with butchers' meat and all other descriptions of Agricultural product:, and the prices fur all ar: moterate. There is a considerable quantity of Canadian made cheese of grod quality in the market this Fall, and we rejoice at it. Strangers who would visit the Montreal Market of a market. day would find it a very fine Exhibituen of Agriculturil prolurts, and fruit, and vegetables, not to be excelled in North America. This is the
fumers Extibi:ion and one he may be proud of, nowithstanding that the gerneal state of out Agritulture is not so advanced in improvement as it might he, or as it is desimathe it shound be. A well stuphie! market, of excellent prosuats, will be the het amb nost prolitable Exhibition famers can exer have, and gond prices at the marke will be the best prizes they can ever obtain, aad we fervently hope they will do all that is in their power to make this Exhibition better every day and every year, and we wish tiem God Speed with all our heart.

October 25th. 1850.

Nutice.--The Directors of the Lower Canada Agricutural sociesy a;e reguested to mpet, at their Roons, in this City, on Saturday, the 16th day of Nurember instant, at 11 o'elock, A. M.

By arder, Wm. Evans,

Scc. L. C. A. S.

Expermantal agriculture.

By Professor Jolunston.

Purposes for wilich expermenis are made. Object of the sugrisitions contaized in the present worle.

The utimate ains of applied science, in its relations to agriculture, will be the more fully and speedily attained in proportion as it staceceds in converting the practical farmer into a skilful, reasoning, and cantious s.perimenter, and every agricultural holding into a progressing and pro-fil-giving experimental farm.
Experiments in chomical science are made with the wiew either of illustrating what is known, of testing what is asserted, or of discovering what is unknown.
In the flrst case they are intended cither-
1°. To cexhibit the knowa properties and mutual relations of bodics, and their infuence uan ausmal and vegetable life ; or,
2^{\prime}. To demonstrate received theoretical views in roference to these known properties and relations.
These are merely illastrative experiments, such as the chemical lenturer makes before the zunlience he i:s instructing.
In the second case, they are intended to try alleged facts; to test hypotheses; to determine whether observations stial to have been made have beenamade correctly; whether conjectures
thrown out have any fomblation in truth ; whether theories propobided are deserving of a placo in our books, or ought to be banished phtarether from their pages. These researeltes of the experimemal critic are as valuable and importaut as any which can he made. To them we must he indelted for clearing away mach rubbish which at present finds a phace in our works uppu se:e:tifice and practical agriculture.
In the ltived case, they are intended to discover new properties, refations, and useful applications of bodies; to determin:e more accurately and more fully the ciream.tances by whiel these relations and applications are modified; and thus to help us forward to the establichment of new or more general theoretical priricipals, and of new practical deductions.
To thase last the term research most stiactly applies, though with a viev to both the second and the third of the objects specified above, experiments in the field and the feeding-house are fitted to reader much service to the arts of rural life.

In surgesting the experiments proposed in the following parges, it has been my intention, among other things, -

First, To bring into view the numerous weak, or doubtful, or attogether diark poims in our present knowledge of agricultural theory; and,

Second, Critigally to consider the bases on which our opinions in reference to many practical points really rest. Weak points in theory, an:l uncertainties in practice, onght to be farriy stated and considered. Instead of being corered over and hidden by confident assertion, they ought to be made the subject of experiment in the ficld or in the feeding-house, and of anaIftical research in the labor,tory. It is to the field and feeding experiments that I intend priacipally to conime the attention of my readers in what is to follow, though I shall not fail to indicate from time to time those experimental researches in the laboratory which appear most urgently to be required.
Such a procedure will benefit agriculture, not merely by suggesting to indididual cultivators what may prove interesting and instructive additions to the ordinary labors of the farm, but also by putting into ihe liands of agricultural socictics-now so often at a loss for subjects of jintellectual interest to which the attention of their members may be drawn, or for which premiums may be offered-an alnost boundless field of iutuiries. upon which their labors may, year afier year be benoficially expeuded; inquiries, each of which will tend to awaken thought and excite discussion, while they are of a kind, also, upon which the least cumning in agriculture will unt venture to cast ridicule.
Some ycars ago, the Ifighlaish and Agricultural Society of Scotland bescan to offer premiuns for experiments in the field, founded on the
sugrestions contained in the appendix to the fist edition of my published Lectures. ${ }^{\circ}$ The Royal Agricultural Suciety of England also took up the sime subject, though less warmly than the Highland Society, and still more limited exertions in the same walk have been made by many provincial societies. These premiuns caused many persons to undertake such experimental inquities, many compelitors appeared for the prizes which were offered, and a large boly of valuable results has from time to time been published, especially in the Trunsactions of the scottish Society.
But, with the award of the premiums and the publication of the results, the labors of the Societies have ended. The experiments and their results have never been criticized, compared, or digested,-their merits or defects carefully and candidly pointed out, -the purposes for which they were made, weighed against the infurmation they yielded, - the rubbish they presented, separated from the useful matter they contained, -and the steps distinctly pointed out which ought next to be taken, in order to secure a further advance.
These things it is $m y$ wish to do to extent in the present work. The suggestion of such a umion between theoretical science and field experiment, with a view to the more secure and rapid progress of agriculture, originated very much with myself; and I feel bound, in so far as my knowledge and leisure permit, to show how much we have as yel attained, how our methods of experimental procedure may be improved and made more reliable, and what new inquiries may be entered uron, in the hope of solving
the numerous agriculural problems which lie the numerous agricultural problems which lie still unexplained before us.
The progress of scientific agriculture cannot fail to be greatly nromoted by an extention of the habit of cautious experimenting, and the multiplication of results in which confidence can ke placed. But many persons, capable of benefiting the art of culture in this way, are unaware of the points which chiefly require to be investigated, and in what way the investigation is to be commenced; while others are now groping in the dark, uncertain, and therefore unsuccessful, in their experiments. Many also who have hitherto felt no interest in such pursuits, ru quire only to have their objects clearly set before them to become warmly and zealously devoted to them. These have served as additional inducements to me in preparing the fol-
lowing pages.

Habits and analogies of the species (f plants on which experiments are made, and of their general nrrieties.
But a knowles of the special habits and analogies of particular species of plants, and of their several varieties-the soils on which
they grow-the diseases to which they are sub-ject-the enemies, animal and vegetable, by which they are liable to be attacked,-these things are not less important to the suggester oi experiments than a kinowledge of their general physiological and chemical functions.

Chemistry, from the mouths of some of its more hasty or more ardent cultivators, has promised to make any plant grow luxuriantly, zand at will, upon any soil, provided only that it be suited to the prevailing climate. But such promises are mere idle bonsting, and argue much ignorance on the part of those who venture to make them. Even chemistry, with all her power, must bend to the constitution and natural habits of a plant. Thus-
1°. The oat and red clover love a firm and stiff soil-a natural habit, which chemistry cannot hope to change. On sume soils the Tartary oat yields heavy crops, while, on the same soil, the more valuable Potato oat refuses a remunerative return. Where other varieties of yats grow sound, the Hopeton oat is subject to a disease called sedge or tulip root, which is gradually driving it out of cultivation. I do not know whether these qualities of the Potato and Hopeton oats be within the dominion of mechanical or of chemical causes.
2°. Wheat.-Winter wheat fails in many places where Spring wheat is found to do well. Such a result has been observed in the island of Islay, where so many improvements have in late years been made by Mr. Campbell of Islay. Is clemistry or climate, or the special constitution of the variety of wheat, or the mechanical condition of the soil, to blame for this ?-and which of these causes has most to do with the capability of this or that firld to grow white or red wheat, or with the greater productiveness of this than that variety of seed on similar soils?
3°. Barley affects a lighter soil, but the quality of the grain varies with the natural dryness, the drainage, or the quality of the land; and the maltster, the feeder, or the pot-barley maker, buy it accordingly. Yet, in regard to the physical condition of the soil, different varieties have different tendencies. The Chevalier barley grows on clays on which the Annat-one of our best varietips-does not succeed; and this is probably one reason why the Chevalier barley has spread so widely, and yiclds good crops even on the Huntingdon clays. Sume varieties show a great difference as to the physical nature or condition of the soil, while others are most choice in their selection of a suitable soil. Thus the Annat variety, already mentioned, not only dislikes a clay, but a gravelly soil also, and thrives best on a dark-coloured loam.
4°. Rice grows usually on low alluvial flooded tracts of land, and abundance of water at the earlier stages of its existence are in most cases
a necessary of life to this plant. But there are varieties of hill rice which grow healihily, and ripen on dry land. This difference, though a little more striking, is. in reality, not more remarkable or deserving of attention than the constitutional differences above mentioned in regard to barley.
$5^{〔}$. The Turnip.-The numerous varieties of turnip so generally known in this country, differ little less in habit, and tendency, and choice of soil, and power of resisting the effects of climate than varieties of grain do. It is essentially favoured by a cold and humid climate. Hence it is a less profitable culture in our southern countries, and yields less abundant crops along aur eastern borders. The yellow and the white varieties differ greatly in nutritive value and in climatic habits. Of white turnips, again, varieties differ. Thus the while stone comes quicker to maturity than the white globe; so that what is filted to nourish and brin! forward the one will not promote the growth of the other in an equal degree, or cause it in the same month of the year to yield an equal ciop. In different districts, also, and under different treatment, the same variety is differently nutritive-a circumstance of much importance in all experiments on feeding.

The turnip is also liable to special attacks from insects, and to special diseases-such as that called fingers-and-toes-accidents which are more or less completely beyond the calculations of pure or theoretical chemistry.
6°. As the cultivated carrot is the offspring of the wild carrot, (daucus carola,) so the white beet (beta vulgaris campestris alba) are allied to the sea-side beet, (beta maritima,) which, like them, has a fleshy root, and is good for foord. This analogy indicates the probable wants of the beet tribe, the probable utility of saline applications to the plant while growing, and the especial expediency of making experiments upon it with that common salt for which the Beta malitima frequents the sea-shore.
The farmers of the Guildford Club, (Surrey,) in a recent discussion on the growth of beet, came to an unanimous resolution that, in their soils, experience had shown common salt to be a valuable promoter of the growth of this root, and that it was worthy of being recommended.
The analogy above stated throws light on this result of practical experience, and points out to the improving experimenter the special value to him of a farmiliarity with such analogies: they not only modify and restrain the conclusions to which pure chemistry might erroneously lead him, but they indicate new paths of inquiry on which his chemical knowledge may exercise itself to the manifest advantage of scientific agriculture.
7°. The pea exhibits, among its several varieties, similar liabilities to be attacked by insects
as the turnip does, and which, as in the case of the turnip, do not admit of easy or satisfactory explanation.

1 lately saw on the home farm of Lord St. Johm, at Melshburne, in Huitingdon, a field of winter peas, sown in November 18:8, which had been all trealed and manured alike, but on one half of which the seed sown was the early maple-a common field pea; on the cther half the Ringwood marrow dwarf-a white pea. The latter was attacked at Christmas by the slugs, and in great part devoured so as to require filling up with fresh see:l, while the former-the gray pea-was untouched by them. There may have been some other reason besides the difference of variety for this limited attack of the slug; but it is obvious that circumstances or liabilities of this kind may materially modify the effect of chemical applications made to our crops, and may be the often unsuspected cause of important discordancies in our results.

I might give many other illustrations of the general habits and analogies of our commonly cultivated ciops, and quote many special physiological facts, such as that dry weather makes roots like mangel-wurtzel run prematurely to seed, and that the seed so prematurely formed produces plants which, under any circumstance of weather, exhibit a similar tendency, (Stephens;) that, to succeed equally, some seeds, like that of the parsnip, must be sown new or fiesh, (Le Couteur,) while others will germinate readily and healthily though kept for years, and so on ; but the examples already given are sufficient to show that much other linowledge besides what is purely chemical is necessary to the suggester of agricultural experiments even of a chemical nature. His skill in regard to the circumstances in which they are likely to succeed, and therefore ought to be tried, and, above all, his ability to account for failures and discordant results, will in a great measure depend upon the possession of this practical physiological knowledge.
8°. So in experiments upon trees, no less than unon field crops, practical knowledge of a similar kind is most necessary. That the clays of the gault and weald fatvour the oak; that the elm flourishes only on the soils of the intermediate more sandy strata; that our cider countries rest chiefly on the old red marls, those of France on the chalks of Normandy, and the tertiary or more recent drifts which overlie them; that, in Bermuda, the coffee-tree grows luxuriantly on the recent hard calcareous rock of that island: such facts as these, with which the practical man is unsually most familiar, are all of much use to the experimental adviser, and are rich in suggestions as to the kind of experiments which are likely to succeed upon each species, as to the method of making them, and as to the kind of soils on which good results are to be expected.

MULES

or

THE LEGELATVE ASSEMBSY, RESEECING PRIVATE BLLLS.

A1)(OTP1:D un 3rd Aurust. 1850, an:i sub-tituted for the libles (bamivered go to ig) leretotore in furce.
60. That haronfer no lesition for any Pinate ow lown bat will be rewoded by the House, attore the
 ers shath have tivet applied. after notice thereof, fire lave ta present such l'ettion, atad untained peamission of the latise to do so.
61. That hereafter this Mouse will nut receive any Private or lucal lials, execept within the first funr weress each session.
62. That uhis House will not receive any Report of a Standing or Special Commiture, upun any Irivate or local Bill, cxecpt within the tirst six weets of each Session.
63. That ihe Clerk of this IIntse shall, immendiately after the issuiner of the Proclamation convoking tho Provincial Parlitue:at for the dospath of business, announce, in the Camama G. zetite, and wiber newspapurs puhlishod in this Province, until the opening of l'aliame:t. the day om which the time linited for receiving letitions fo: Private Bills wiil expire. according to the liales of this Ilouse ; and the Satat Clark shall alsu amonnce, hy notice sat up in the Spucial Commitere Inomms, and in the Lobby of this J lonse, by the first day of evory Session, the duys on which, necording to the izulas of this Honse, the tinge for receiving l'atitusts for l'sivate l3ills, Reports on thone l'etitions, and Reports via the Bills upon those Potitions, are to expire.
64. That all applications for Private or lowal Bills, whether for the crecelin of a Pridge the making of a kail hasd, Turtpike hosd, or Telenarah Line ; the construction or improventest of a llatraur, Camal, Lack, 1) ann, or Clide, w where like work; the: construction of works for sumplying pas or water ; or for the ine mponatian of any partioular Profession or Trade, or of any Banking on other Commercial Company, w Cumetury Cumpany ; the incur oration of : Cown or City ; the levging of any local Assessment; the division of any Coumty or Township; the rerabition of a Common; the re-survey of any Township, , atue, or Concession ; or fur granting to any individual or in tividuals any ceclusive rights o: privileges whatamer, or for doing any mather or thing which in its wperation would affect tiae rights or property of other parties ; or for makiar any ameatment of a like mature to any former Ace, shatl repuire the following uotice to be published, viz.:

In Upper Can idu-A motice inserted in one newspaper published in the Cquity, or Union of Counties, ifficted.

In Lower Canadit-A notice inserted in one newspaper in the Enclish, and one nowspaper in the Fr-nch language, in the Mistrict affect ol (if any he publishod therein). athd also afixived at the Churelh -dome of every Pamish or Township that such :ppitcation may affect, or in the most public phace wia. re there is mi Chureh.

Such nutices shat! be eminined in each ease for a
period of at least t wo montins, during the interval of time hetweren the close of the next preceding Bession, and the prearetation of the l'etition.

6is. 'That belate anve letition praying for leave to brines in a l'rivate lizill for the wrection of a To, Bridge is perestated to this House, the prison on persons purpasing to jetition for such Bial shal!, ugan giviar thenotice presurited by the Gath linh, atso, at the same time, and in the same manare, rite a motice in writing, stating the rates which they interil to and, the wextent of the privileres, the height

 tioning also whother they propuse to arect a danbridge or not, and the dimensions of such drawbridge.
66. That parties publinhing notices of intended application for Private Bills under the 64th lithe, shall be required to send, adilyesed to " l'rivate bill Office, Leeristative issembly," (as suon as may be after its publication) a copy of the lucal newspaper comaining the tirst insertion of any such notice (or a cortibe:ate of the insertion thereof, by the proprictur of s:teh paper) ; and also, after the presentation of the l'ctition, a cupy of the paper containing the last insirtion of the suid notice for a certificate thereof), turether with prouf of notioes laving been affixed (when reguired) at the Chatela doors.
67. That every l'rivate IBill shall be prepared ly the parties abplying for the same and primted by the eontractor for the S.asimal lrinting of the House, at the expense of the said partios, and wne hundred and fifty copies thereof shall be deposited in the Private lsill Office, for the use of Meinbers, before the second readinge.
68. 'That liills of a private mature shall be introdnced on at letition, to be presented by a Member, and seconded.

6'). That when any Bill shall be brought into the House for contirming Letters Latent, a true culiz of such I.cters latent shall be attached to the Dili.
7.). That the experstes ant costs attending on Mrivato Lills giving :my cxch.sive priviloge or advantage, wherther for the creetion of a Bridere, or the con-truetion of a liailmat. Tampike Rabi, Ted. graph Line, Harbour, Camal, Lack, Slide, Dam, or other like work; or for the incorporation of Banking os Co:nmercial Companies, Cemetery Companies, or Campanies for the constanction of Gas or Wratr Works, or for any sther objects or profit; or for amending, exiendiny, or anlaruing any former Acts in sucia manner as to confer adilitomal powers, curfit not to fall on the public, and that for the purpose of dofrating the sathe, the gmains secling to obtain any such Bill shall be reçaired to pay into the hams of the Clertik of ihi I lause the suma of fiftem pounts, hefure, in :any cast, the said Eill shall be fuather proceeded upos after being read a secomd time.
71. That wery Private liil, after having been read a sucomd time, shall be referred to the Standing Commatiee on Private lBills, if any such shall have been appointed, or to some other Standing Committec of the same character.
72. That whenever any Petition or Bill presented to the Ifons shat! have bein referred to at Committee to examine the matter thereof, and report the s:ame as it shall appear to them, to the llunse, the IIunse wi!! not al: nit a:gy Petitiours to be lieard, by
themsolves or Cumbsel, ngainst such I'etition or Bill, until the matter shali inave been first reported to the Ilouse.
73. That all persone whose interest or property may be affected by any Private Bill shall, when reguired by the Committee. appear in person before them to give their consent, and if they camot personally appear, they may semd their consent in writ.ing, which shall he proved brfore the Committee by one or more witnesses. And in every case the Committee upon any Bill for incorporating a Company, shati requite proof that the persons whose namie's appear in the LBill as composing the saill Company, are of full ate, anil that they are in a position to effect the objects contemplated by the Bial, and have per -onally consented to become so incorporated.
74. That an Committee on any lrivate Bill. based upon a Perition, notice of which is required by the 64 th Rule, shall sit thereupon, "ithome first causin. a weck's notice of the day of sitting to be set up in the Lubby.
75. That the Cummittee to whum any Private Bill shall hawe been referred, shall rethint the bill to the House, whether such Cummittee shall or shall tuot have agreed to the l'reamble, or gone theough the sereral clauses, or any of them, and when may attrration shall have been made in the Preamble of the Bill, such alteration, together with the ground of making the same, shall be specially stated in the Report.
79. That when the Committee on any Private Bill shall report to the House that the Preamble of such bill has not heen proved to their salisfactiom, they shall also state the grounds upon which they have arrived at such a decision.
77. That a filled up B:ll cuntaining the amendmonts proposed to be submitted to the Committee on the Bill, be deposited in the $P_{\text {'i ivate }}$ Bill Office, one darar day before the meeting of the Committee upon such Biil.
78. That the Chairman of the Committee shall sign, with his name at length, a printed copy of the Bill, on which the amend!nents are fairly written, and shall also sign with the initials of his name, the several anendments made and clauses added in Committe.
79. That no Private Bill be rea.] a third time, mail the party interested shall have delivered to the Clerk a certificate from the Queen's Printer, that the cost of printing one hundred and fifty copies of the Act for the Goverment, has been paid, or secured to him.
80. That (except in cases of urgent and pressing necessity.) nu motion shall be made to disperse with any Sessional or Standing Order of the House, relative to Private Bills, withyut due nutice thereof.
81. That a Book, to be called the "Private Bill Repister," shall be kept in a room to be called the "Private Bill Office," in which Book shall be entered, by the Clerk appointed for the business of that Office, the name, description and place of residence, of the parties applying for the Bill, or their agent, and all the pruceedings thercon, irom the Petition to the passing of the Bill ; such entry to specify briefly each proceeding in the IIfuse, or in any Cornmittee to which the Bill or Petition may be referred, the diay on which the Committee is appointed to sit, and the name of the Committee Clerk. Such Bouk to
be open to the public inspection taily, during Office hantrs.
81. That the Clerk of the Private Bill Offee do promere duily. lists of a! I Private Balls, amal loritions fin Private bills, upm whinh any C'ommitter is appointed to sit, specifying the time of mereting, mad the rom where the Commither shall sit ; and the same shall be hung up in the Letbly.

MA'THEW IOODY,
 m.ntractuzea of

THRASIING MACHINES, IEAPING MACHINLS, STUMPANDSTONE EXTRAC'TORS, ROOTCUTPERS, BETOLVINGAN1) CASP-STEEL MORAL RAKES. DATEN'T CilURNS, WIGGONS, \&e. Sc. \&c.
TYun Subscribre has hern enployed sinee 18.16 in manufacturiner hes improved THRASHANG MACHINES, with Home powers. lie was awarded the highest Prize at the Terrebonne County whibition after competition with many fothers. They have thrashed and cleaned, with 2 horses, frum 100 to 12.4 minots of What per day, and from 200 to $2 \overline{0} 0$ of ()ats, and have given universal satistaction. Ihe guaranteess all purchasers for any recourse by laige \& Co, of hiontreal, who allege having a pateat fur these machines, dated Decomber, 1848! and warrants them equal to any made here or elsewhere, for efficiency and durability.
One of his Raping Miachines may be seen at Kerr's Hotel. St. Lawrence Street, price $£ 25$.

Having lately erected new and enlargeal Works for the above artciles, he will execute promptly all orders in his line.
Thrashing Mills constantly on hand. Two second hand Mills, in warranted order, cheap for cash.
Thrushing Mills reprived, and finishing worts done
Agency in Montreal, at Iadd's Fundry, Griffintown; in St. Andrews, L. C.. at Mr. Henry Kempley's. Terrebonne:, August, 1850.

CANADIAN GLASS MANUFACTORY,

near schneider's landing, vaudreuil, Erected and carried on by Messrs. Buden \& Le Bert.

TIIE Iroprietors of this establishment are prepared to Manufacture LOOFING GLasS PLATE and WLNDOW GLASS, of every size, ciloured and funcy, nccording to patterns or orders. Shades for (oil and Gas Lamps, plain. tinted, or coloured, in the richest hurs-Cutoured Glass of any pattern for Churches, similar to those of European Churches; also, for Cottages, Gardens, Henses, and Steamers-Bottles and Vials for Druggists made to
order. order.
SODA, GINGER, andino- \quad BEER BOTTLES, with or without the maker's name.

-AND,-

MULK C.LNS, of suitable sizes.
All these articles shall be of the very best quality and disposed of on reasonable terms; and the proprieturs solicit a share of public patronage, and the

GREAT AGRICLUTCRAL WORK!

THE FARMER'S GUIDE.

 T"
Scientific and Practical Agriculture.

BY HENGE BTEMHENS, F, R, B. E,

Authar of the "Book of the Farm," ED, fitor of the " Guirte ly, Jomrnal of Agrivalture." fe. \& \dot{c},

 Prọfessor of Scientific Agriculture in Yale College, New IHaven, Author af Agricultural Prize Eissays Sc., g.c.'T\checkmark IIIS highly valuable work will comprise two large royal celavo volumes, containing over 1400 pages with 18 or 20 splentid steel engravings and mure than 600 engravings on wood, in the highest style of the ait, illustrating almost every implement of husbaudry now in use by the bist farmere, the best methods of ploughing, planting, haying, harvesting, \&c. \&e., the various domestic animuls in their highest perfection; in short, the pictorial feature of the book is unique, and will render it of incalculable value to the student of agriculture.

This great work is the juint production of two of the most talented agricultaral schulars of the day ; the one eminent as an author and editor in Great Britain, and the other as a l'rofessor in Yale College. Jouth are eminently prartical as well as scientitic men, and all they say may be relied on as the result of profunal research, tested and sustained by practical experiment. The contributious of Professor Norton are chiefly designed to adapt the British portion of the book to this country, and thus to make it an AnghoAmerican work, giving to its realers all the really useful agricultural knowledge at present attainable in either country.

The work is divided intu furr departments, distinguished by the four scastins of the ye.r, commenceing with Winter, and Irvof. Nuttun's nutes, will be published as an appendix to each part. The first chagter treats of the following subjects, under the head of

INITIATION.

On the best of the existing Methowls for acquiringa thorough knowledge of Practical Ilusbandry.
On the Difficulties to be encountered in learning l'rue-
tical Ilusbandry, and on the Means of overcoming them.
On the Different kinds of Farming.
On the persons required to Conduct and Execute the Labor of the Farm.
On the Branches of Science monst applicable to Agriculture.
On the Institutions of Education best suited to Ag ricultural Science.
On the Evils attending the neglect of Landowners and others to learn pratical Agriculture.
On ohserving the details and recording the facts of Farming by the Agricultural Student.
Terms of the Work. -The American edition, the first number of which is already issued, will be pubJished in semimonthly numbers of 64 pacres, "ith an English steel engraving in each number, of whiteh there
will be ahout 22 in all. Phee, 25 Cents prir Numbent, of $\$ 6$ 1N advance yor the 22 Numbers.

CLUBBING.

Threc Copies will be sent to one address for \$12: Four Copies for $\$ 15$. Five Cupies for $\$ 18$. Cash in all such chass to be remitted direct to the Publishers, and not through Agents.

The work can be sent in Numbers at periodical rates of postage, and mail remittances may be made at the risk of the l'ullishers.

AGENTS WANTED.

Liberal commissions will be allowed to good canvassing Agents.-Booksellers and Periodical Deatens will be supplied on liberal terns.

All orders and communications should be addressed, post paid, to

LEON ARD SCOTT \& CO., Publishers,
70 Fulton Stgeet, Entrance 54 Gold Street, New York.

NOTICE.

THE WASHINGTON COUNTY MUTUAL INSURANCE COMPANY.

THE Undersigned, AGENT of this Company for the district of MONTREAL, begs to state, that he is now prepared to make surveys, effect insurance, and attend to all instructions left for him, at his Father's Residence, Côte St. Paul, or at the Residence of his Brother, River St. Yierre, and at the Post Office Montreal.

WILLIAM EVANS, Jun.
Côte St. Puul, 9th August, 1850.

Agents for the Agricultural Journal.

II. Aylmer, Esq.,Melbourne and Ship.

Capt. Stewart.................. ...Clarenceville.
J. R. Robins, Esq.................. Polnte it Cavignol.

Rev. F. Pilute.........College of St. Anne.
Dr. Grusbuis, M. D..........Chambly.
Dr. J. H. R. Desjardins......... Green 1sland.
Dr. Conoquy..St. Cesaire.
Dr. De la Bruère..................St. Hyacinthe.
Mr. T. Dwyer......................St. Pauls, Abbotsford.
Paul Bertrand, Esq., N.P.......St. Matthias.
Thos. Cary, Esq., (Mercury)...Quebec.
Dr: Smallwood......................st.Martin, Isle Jesus,
Rubt. Ritchie, Esq................Bytown.
Major Barron.Lachute.
L. Guillet, Esq..Three Rivers.

Hon. F. A. MathiotVerchères.
J. B. E. Durocher, E.isq.............St. Charles, Chambly.
A. C. Cartier, N. P.................St. Antoine.

John M-Larren, Esq.,...................Murruy Bay, Sag.
All communications connected with this Journal, to be addressed, post paid, to the Secretary of the Society-Whminam Evass, Montreal.
Annual Subscription for the Journul, five shillings.

M- ifreal :-Printed by Lovill \& Gibson, Saint Nicholas Street.

[^0]: " The mildow prevailed in Northamptonshire, Rutlandshire, Levicestershire, Derbyshire, and Nottinghamshite, partiaily; in the low lands of Cunbridge, Lincoln, and East Yorkshise, very extensively. On two lites of mailroad through Lincolushire you coukd sarce!y find a single field of full-cropped wheat withont mideew; some of those crops were almost wholly destroyed by this destruetive disease. All the way form Neiv Holland, through Giinsty and 13veston, to near Peterborough, it was quite melancholy to look over large fields of whent beaten duwn that, of a dark diagy green colour, showing that the corn would never ripen, and would never assume any

[^1]: 3. Lime.-Many farmers consider lime a man-
