Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

Vol. 12.
SEPTEMBER, 1884.
No. 9.

Communnications relating to the Editorial Department should be addressed to the Editor, Henry T. Bovin, 31 MeTavish Street, Hontreal.
The Editor does not hold himself responsible for opinion's expressed by his correspondents.
N_{0} notice will be taken of anonymous communications.

AMERICAN PERMANENT WAY.

BY JOSEPH M. WILSON, A.M., C.E.
Mem. Inst. Civ. Engrs, London, England ; Mem. American Soc. Civ. Engrr. : Mem. Engrs. Club of Philadelphia
Fellow Amer. Inst. Architects : Men. Philosomer. Inst. Architects; Mem. Amer. Philosophical Soc.; Mem. Frankliss Institute etc. etc.
The word "American" covers a very wide field, including not only Canada and the United States, but the whole continent; a vast extent of country with all varying conditions of climate, ments. ents.
Comes therefore American Permanent Way sarily involve a considered, the subject must necestions, divolve a considerable variety of construcditions. depending upon location and other confor a railroad the form of construction required in Canada, built to resist the severe States or these latituda, built to resist the severe winters of for the tatitudes, might be unnecessarily expensive with he mild climate of the south; also roads stantial consy traffic require a more solid and sublight service ; truction that those having only a struction ava ; then again, the materials of conapart are available in places geographically far must are often very different, and the engineer materials ad himself to circumstances, using what cost. Permanent Way, or Railway Superstructure, as it is sometimes called, is that portion of a
railway which railway which directly receives the weight of the
moving trains and moving trains and transmits it to the road bed
below. It comprises the rails, the cross ties or sleepers to which these are attached, and the distributing material in which the ties or sleepers are bedded. The object of the Permanent Way, no matter how constructed, is in all cases the same; to provide a way for the running equipment of the road to move upon, and to so transmit and distribute the weight from this to the sub-structure, that the latter, which is usually a soft material, as earth, may be able to sustain the load without settlement.

American Permanent Way only differs from that of other countries, in the adaptation of the materials available for the construction of the work, taking into consideration their relative abundance and value, and displaying, perhaps, some of the aptness for which Americans have a reputation.

It is necessary for a first-class perfect track to have good surface, good drainage, true line, accurate gauge and tight joints.

Rails have been made of wood, iron and steel. Wood is so soft a substance and so perishable, that it can only be employed for very light and temporary service, such as is sometimes required in lumber regions. It has been so employed, and may be considered as essentially "American." Iron and steel are the materials used throughout the world for railway service proper, and the cost of steel in late years has so nearly approached that of iron, that with its vastly superior qualities it is rapidly driving iron out of use ; in fact the use of iron may already be said to be of the past. The shape and weight of the rail is governed by several conditions. Its section must be so formed at the top as to properly carry the wheels of the moving load with the least amount of wear, and at the bottom so that it may be securely attached to the supports upon which it rests, at the same timetransmitting the load effectively to them. It must be designed with the greatest possible economy in weight, to carry
with safety its load between the points of support, acting as a continuous girder of a span equal to the distance of the points of support apart, or rather twice that distance, so that in case any one should fail or give way, the rail would still be able to carry over the increased span with safety. Theory therefore points to a deep rail having a comparatively thin web, with upper and lower flanges, the upper flange being rounded to the proper shape to receive the wheels of the moving load, allowing sufficient width of bearing surface to prevent crushing under the action of the wheels, but not more than necessary, as the friction would otherwise be increased; and the lower flange shaped to adapt it to the mode of support adopted. In England, where iron chairs of peculiar kind are used to carry the rail the lower flange is made of a similar form to the upper, while on the continent of Europe and in America, the lower flange is made flat, to rest on a timber tie or sleeper. The width of this flange should be such that the load will not cause the rail to sink into the timber. The web of the rail must be sufficiently thick to give stiffness sideways and prevent the load bending the top of the rail over and crushing it. The section of the rail is made symmetrical about a vertical axis, allowing of reversal, if desired, when the inner edge has become seriously worn by the wheels.

As to the proper depth and weight of the rail, it will readily be seen that this depends upon the distance that the supports are placed apart, and the load carried. The loads carried on first class American railways are no lighter than those carried on European railways. Class K Engine, as used on the Pennsylvania Railroad, has a total reight in working order of 92,700 pounds, distributed on a wheel base of 22 feet $71 / 2$ inches, and a weight on the first pair of drivers of 33,600 pounds. Class L Engine, on the same road, has a total weight of 124,100 pounds, on a wheel base of 31 feet 4 inches, with a load on the main pair of drivers of 32,500 pounds. Class M Engine has a total weight of 87,500 pounds on a wheel base of only io feet 8 inches, and a weight on the first pair of drivers of 33,400 pounds. But in Europe, where timber is expensive, the ties or sleepers are placed farther apart than they are in America and therefore heavier rails are required. So long as timber is cheap in this country light rails will be used, but there is a tendency on some lines to heavier rails.

In assuming the proper load to be used in calculating the proportions and weight of a rail, it is not sufficient to take the static weight from the heaviest wheel, but an amount must be added to this on account of the load being a live or moving load, and also for impact, the tendency of a rapidly moving train, particularly with the driving wheels of the engine, being to pound down, as it were, upon the track making sudden
applications of heavy loads. The percentages of addition thus required to the dead load cannot be determined theoretically, but must be assumed more or less empirically, depending upon the results of practical experience. The rails, when fastened firmly to their supports, must also possess sufficient lateral stiffness to resist all deflection sideways from the swinging motion of the train, centrifu val force on curves, etc.

The author is indebted to the courtesy of the Cambria Iron Company, Johnstown, Penn., for the standard sections of steel rails shown on plate I, as adopted and in use on a number of American roads. These will represent pretty fairly the general practice throughout the country. In comparing these it must be borne in mind that the service on some lines is not so severe ${ }^{25}$ on others, also that the same railroad company uses lighter sections on its branch lines than on its main stem, on account of the difference in service. Sections that are quite suitable in one case are not so in others.

The numbers by which the several sections are designated are those of the Cambria Iron Iron Co. Where the roads using any section are noted, and the date is given, it simply means that this section was rolled for that railroad at that date. It does not follow that the railroad in question may not have changed its section, at some other mill since then, but this is a mater that could not be ascertained and its probability is not very great.

The Grand Trunk Railway of Canada uses the Sandberg pattern of T rail, weight 65 pounds per yards.

The Chicago \& North Western Railway Co. is using 30 feet rails, the weight on main line 2 since 1882 being 65 pounds per yard, on less in ${ }^{6}$ portant lines 60 pounds per yard, and some 56 and 50 pound rails on branches.

The material of which rails are formed requires great care in selection. It must be sufficiently strong to sustain as a girder, tough to avoid all brittleness and danger of breaking under sudden shocks, and at the same time compact in texture and having hardness in the top to resist wearing action under service. With iron rails it is sought to arrange for these qualities in the packing of building up of the masses of iron from which the rails are rolled, taking advantage of the well known principle that the different parts of mass keep their same relative positions in the section of the bar when rolled out as in top original pile. Harder material is put in the rails of the pile and softer in the bottom. Steel ${ }^{\text {alil}}$ however are rolled from solid ingots and as ${ }^{\text {a }}$ consequence they are of a homogeneous text ${ }^{\text {thils, }}$ throughout. They do not split like iron which sometimes show the result of imperfich weiding between the separate pieces of which the original pile, from which the rail was rolled was formed.

Rails are rolled to a certain maximum length, 30 feet being the usual standard on American roads, but there is always a certain proportion of shorter rails allowed, which, however, must Conform to regular specified lengths, these being generally arranged to conform to the standard spacings of the cross ties.
The following specification of the Pennsylvania Railroad Company for steel rails, adopted January 27th, 1879, may be regarded as a standard for first class manufacture.
" As it is the desire of the Pennsylvania Railroad Company to have on the roads under their control none but first-class tracks in every respect, and as the rails laid down on these tracks
form an important part in the achievement of
this result, the Pennsylvania Railroad Company
in regard it necessary to make certain demands
with ing to the manufacture of their steel rails,
ins which the different rolling mills and rail ${ }^{1}$ spectors will be required to comply.

1. The steel used for rails shall be in accord-
ance with the 'pneumatic,' or 'the open hearth'
Process
Moress, and contain not less than thirty, nor
of carban fifty one hundredths of one per cent. carbon.
2. The result of the carbon test of each charge,
of which the Pennsylvania Railroad Company is
${ }^{k}$ receive rails, and of which an official record is
inspect each mill, is to be exhibited to the rail
and A test bar three-quarters of an inch wide Web about ten inches long, is to be taken from a 4 Th rail made from each charge.
year The number of the charge and place and figures manufacture shall be marked in plain tail.
3. The sections of the rails rolled shall correspond with the respective templates issued by
the P ene the Pennsylvania Railroad Company showing adopted and dimensions of the different rails 6. The their standard.
emplate space between the web of the rails and
less thate representing the splice bar shall not be
three-eighe-quarter of an inch, nor more than
4. The ths of an inch.
the stane weight of rails shall be kept as near to
${ }^{0}$ mptandard weights as can be demanded, after
5. Clying with section No. 5.
be drilled ircular holes, one inch in diameter, shall
at equal through the web in the centre thereof,
flange and distances from the upper surface of the
and fifteen lower surface of the head, and three
rail ifteen sixteenths inches from the end of the
inches fromentre of the first hole, and of five
centre from the centre of the first hole to the $h_{\text {eit }}^{9 .}$ Thelengthend hole,
heit Thelengths of rails at sixty degrees Fahren-
of the stli be kept within one quarter of an inch
twenty-seven stand lengths, which are thirty feet, -
feet. That not more than ten per cent. of the shorter lengths, not more than five per cent. of No. 2 rails, will be accepted on any one contract.
io. The rough edges produced at-the ends of the rails by the saw shall be well trimmed off and filed.

I I. All rails are to be straightened in order to insure a perfectly straight track.
12. The causes for temporary rejection of the rails are :
I. Crooked rails.
2. Imperfect ends (which, after being cut off, would give a perfect rail of one of the standard short lengths).
3. Missing test reports.
4. A variation of more than one-quarter of an inch from the standard lengths.
13. The causes for the permanent rejection of a rail, as a No. I rail, are :
I. A bad test report, showing a deficiency or excess of carbon.
2. The presence of a flaw of one-quarter of an inch in depth in any part of the rail.
3 A greater variation beteen the rail and splice bar than is allowed in paragraph No. 6.
4. The presence of such other imperfections as may involve a possibility of the rail breaking in the track."
In the construction of a railroad, the rails should be accurately laid to line and level stakes as given by the engineer. On straight lines, the two rails of a track must be laid to the same level, but on curves the outer rail is elevated according to the desree of curvature, the elevation commencing at each end back of the point of curvature, by a distance also depending upon the sharpness of the curve, and increasing to the curve itself, around which the full elevation is carried uniformly. The amount of elevation varies on different roads, and, indeed, on the branches and main stem of the same road, depending upon the velocity at which trains are intended to be run. If one rides at a rapid rate over a road adapted in this respect for slow speeds, he will soon discover the want of elevation to the curves. John B. Henck, an American Civil Engineer of great reputation for his "Fieldbook for Railroad Engincers," published many years ago, gives the following table for clevation of the outer rail on curves, based on the question of centrifugal force tending to throw the car against the outer rail and the elcvation of the same above the inner one to counteract it. Practical use of this table has demonstrated its correctness. M in the middle represents the specd of train in miles per hour, and the elevation is given in decimals of a foot for the degrce of curvature and the speed of train M.

RLEVATION OP OULER RAIL ON CURVES.*
John B. Henck, M.A., C.E.

Defree.	$\mathrm{M}=15$	$\mathbf{M}=20$	$\mathbf{M}=25$	$\mathbf{M}=90$	$\mathbf{M}=40$	$\mathbf{M}=50$
${ }^{0} 1$. 012	. 022	. 034	. 049	. 088	. 137
2	. 025	. 044	. 068	. 089	. 175	. 274
8	. 087	. 066	.103*	. 148	. 263	. 411
4	. 049	. 088	. 137	. 197	. 351	. 548
5	. 062	. 110	. 171	. 247	. 438	. 685
6	. 074	. 151	. 205	. 298	. 528	. 822
7	. 088	. 153	. 240	. 345 .	. 613	. 958
8	. 099	. 175	. 274	. 394	. 701	1.095
0	. 111	. 197	. 308	. 443	. 788	1.232
10	. 123	. 219	. 342	. 493	. 876	1.368

The Atlantic \& Pacific Railroad Company elevate the curve one-half inch per degree up to a ten degree curve, which has an elevation of five inches, and all sharper curves are kept at this same elevation. This corresponds very nearly with Henck's table for 30 miles per hour. The elevation of outer rail is run off, onto straight track, a distance of ten feet per degree of curva-
wire. on the Thus, for a 2 degree curve, the distance on the tangent is 20 feet, and for a 10 degree cuvre it is 100 feet.
(To be continued.)

NOTMS ON BLEETRIOTTY AND MAGNETISM.

by PROF. W. GARNETT.
(Continued from page 231.)
When a number of battery cells are connected in mantiph a number of battery cells are connected in
Lol cipe, or, as it is sometimes expressed, in parallol circuit, so that the conductivity of the battery is the sum of the conductivities of the several cells, while the eloctromotive force of the whole battery is simply
that of ant of one cell, the battery is sometimes said to be inanged "for quantity." This is because the battery shopable of sending a very great current through a *hort thick wire of very small resistance, for though the snch. F. is only that of one cell the circuit possesses The a small resistance that the current is very great. channol hole arrangement is analogous to a very large quantity which is capable of delivering a very great raaky be of water per minuto, though the head of water Wh very small.
that then the colls of a battery are connected in series so rinitances of the of the battery is the sum of the the battery of the several cells, while the E. M. F. of oulc, the battory is sum of the electromotive forces of the intenoity." battery is sometimes said to be arranged "for ing a carrent such an arrangement is adapted for send-- for exrrampt through a conductor of great resistance, aranged in this a long telegraph line; but a battery a currant ther this way is not capable of sending so great Whonent the colugh a wire of very small resistance as Winh the colls are arranged in "multiple arc." If we $4^{0} 0^{0}$ a pump a stream of water through a very great
an eonrive mone of theoe fisurts are morely theoretical and out of varve at 50 milly. No one would expeot to go around a 10 Carre at 60 milly. por hour, but would reduce speed.
length of very fine tabe, a pump with very small suction and delivery valves and worked at very high pressure, will be best suited to our purpose; but if we wish to pump a great body of water through a comparatively short length of pipe of great diameter, we must select a pump with very large valves, though the pressure at which it is worked may be much less than in the former case, otherwise the "internal resistance" of the pumps will prevent our obtaining more than a very small stream of water notwithstanding the low resistance of the pipes. As before stated, a given number of battery cells will produce the greatest current in a given conductor when the cells are so arranged that the "internal resistance" of the battery is equal to the resistance of the external conductor.

Though we may speak of a battery arranged "for quantity" or "for intensity," we must avoid the error of speaking of " quantity currents" and "intensity currents." A current is completely defined by the number of units of electricity which pass across any section of the condacting cirouit in a second, and two currents can differ from one another only in this respect. The one current may be produced by a high electromotive force in a circuit of great resistance, and the other by a comparatively low electromotive force in a circuit of correepondingly low resistance, but if the total quantity of electricity passing per second in each circuit is the same the currents are equal. If in some parts of the circuit the conductor is very thin and at other parts very thick, the amount of current per unit area of the section of the conductor will differ in different parts, and we may regard the current as more intense when the section of the conductor is smaller, but using the word in this sense the same current may have a high intensity in one part of the circuit and a low intensity in another. This is not the sense in which the phrases "intensity currents" and "quantity carrents" have been erroneously employed.

In electric lighting installations, where incandescent lamps are employed, it is desirable that all the lamps should be placed in "parallel circuit" or " multiple arc," so that any lamp can be extinguished without affecting others, and without wasting the energy of the current. Hence, if the installation comprise 40,000 lamps, each having a resistance of 160 ohms, the resistance of all the lamps together will be only $\frac{160}{40.000}$ ohm, or 004 ohm . Δs we shall learn shortly, it is important on the score of economy, that the resistance of the whole of the rest of the circuit, including the dynamo, which takes the place of a battery, should be small compared with this. Hence, the necessity for oopper conductors of very great section, and for dynamo machines of very large dimensions.

Electrical resistance, like all other physical quantities, must be measured in terms of a unit of its own kind. The unit generally adopted is called an ohm. It was originally determined by a Committee appointed by the British Association for the Advancement of Science, and was based on cortain theoretical principles, which will be explained nnder the head of Electromagnetism. For the present it is sufficient to know that the ohm is the resistance of a certain coil of wire, measured at a particular temperature. The electrical resistance of all metals increases as the temperature is raised, the increase in the case of pure metals being greater than in the case of alloys. The British Asso-
ciation Committee, construc!ed a number of standard "ohms:" of different alloys, and marked upon them the tempentures at which they were correct, but, afier the lapse of twenty years, it appears thit the resistinces of these standards have somewhat changed, and they are not all consistent with one anothrer In addition to this, it has been found thit the oriorinal determination of the absolute unit is considerably in error, and the International Conmittee have recommended that that ine standard ohm should be the resistance of a column of pure mercury, one square nillimetre in scc tion, and of a $1 \leq n$ neth to be determined in accordance with the electro-magnetic principles above referred to. This length will be between 104 and 105 centimetres.

Boxes containing sets of resintance coils are constructed, and by means of such resistancs hoxes, as they are called, any desired resistance can be introduced into a circuit. These coils are made to represent multiples (or fractions) of an ohm, and are generally arranged on the same principle as a set of weights. Thus, it is usual to construct resistance boxes cipable of furnishing any multiple of an ohm, from 1 ohm to 10,000 ohms. Such boxes usually contain sixtern coils, which, exuressed in ohms, are as follows :-1, 2, 2, 5, $10,10,20,50,100,100,200,500,1,000,1,000$, $2,000,5,000$. It will be seen that, from this set, any number of ohms, from 1 to 10,000 , can be obtained. The coils are so connected that any coil can be introduced into the circuit by removing a brass plug.

If one end of the wire is connectel to the positive terminal of a battery and mainained at petential V while the other end is connected to the ntgative ter. minal and also to the earth, and so kept at potential z ro, the potential of the wire will diminish uniformily from one end of the wire to the other as the current flows along it; that is to say, there will be the eame fall of potential between any two points on the wire, the risistance between which is the sance. In order to raise the wire to this rotential the surfuce of the wire must receive from the battery a statical charge corresrondingat every point to the petentid to which it is raised. In the case of a submarine cablo we have a copper conductor surrounded by an insulator, and this again surrounded ly iron sheath ng, or by sea water. Such an arrangement possesses all the characteri-tics of a cundenser, and possesses a viry great capacity. Hencs, a las ge quantity if electricily must be provid il by the battery in order to change the suif ce of the wire b fore a "steady current" can be maintained in tha circuit. This behwiour of the cabie, (ressembling that of a Le yden jar) limits the "speed of sigualling," which can be outanued throurith lo g stib-matine cables. The charge raken up by the cabie when employed in transnittong a current with its far t I to rarth is one half that which would enter the cable if the remuto end wore iusulated ald the whule cible raised to the s me potential. V, as the end lommery connected with the buttely. The teason of this is that when one end of the cable is "put to enith" the average gotatiul to wh:ch the cable is raised is only $\frac{1}{2} \mathrm{~V}$.

Thrse are great many diff rent method of measuring the resistance of the whe. Furexample, the wire misy be introduced into a batery cincuit alung with a galvirnometer, and the deflection of the galvanometer, which measures the strength of the current, noticel: The wire may then be remuved, asd replaced by resistanc; coils
until the galvanometer shews the same deflection. The resistance of the coils will then be equal to that of tho wire, provided that the battery has experienced 10 change.

But, both the electromotive force, and the resistsnce of a lattery, are liable to undergo considerable chang8, when th 3 current flowing through the battery is altered evenfor a short time. Hence it is desirable that comparis n of the wire and coils should be made by dd current flowing through both at the same instant, 8 not liy two observations made in succession. Th9 b arrangement for this purpose, is known as "W stone's Brilge." The method depends upon the fact that the potential diminishes uniformly per unit resistance along a wire in which a current is flowing.

Suppose two canals to be cut from a mountain to the sea, and, for the sake of illustration, we mat suppose one canal to be long and winding, and other short and straight. Since the difference o between the extremities is the same, it follows that slope of the first canal will be gentle, and that of other steep; for simplicity, suppose that the slope ${ }^{6}$ each is the same throughout its whole length. let a cross canal be cut, so as to join one point on canal, and one point on the other. There will flow of water in this canal, unless it is horizonta which case the water in the cross canal will remain tionary. The condition that the cross canal ma horizontal is that the points selected on the two may be distant from the top of each canal, by the fraction of the length of the canal, since the level uniformly along each canal. Thus, if the point 8 on the long canal is one third the way down, the un the short canal must be also one third the down. The existence or non-existence of a current the cross canal will determine whether this condition fulfill d or not.

Now suppose two conductors, a and b, to be j end to end, so as to form one conductor, and le extremities of this conductor be connected with the te minals of a battery. Suppose two other condu and d, to be similarly connected together and to balt ry, so that the battery current divides itself tween the two compound conductors $a \div b$ and Now let the terminals of the galvanometer be cond with points of junction of a with b and of c Then no current will flow in this conductor, w only when, these points of junction are at potential. But the potential falls uniformly of resistance along each conductor, from the posit pule to the nfgative pole of the battery. Hence, condition that the points :hould be at the same f tial, is analagous to the condition that the ends 0 cross canal may be at the same level, and it may expressed, thus:-

Resistavce of $a:$ Resistance of $b:$: $c:$ Rusistance of d. Hence, denoting these re by P, Q, R, and S respectively, if there is no in the galvanometer, we know that

P: Q : : R : S.
 if a, b, and c consist of coils of known resistanc

 reristance of c being changed until there is no in the galvanometer, then P, Q, and R are known. the unknown resistance, S, of the conductor found fiom the above proportion. (T_{0} be Cont
A CORK GRINDING MACHINE.

The new material "linolrum" required the invention of a made machine for pulverizing the cork, of which it is chit lly Builder This machine is described by the Manufacturer and steel der as follows: The machine consists of a series of cast saw. Thisks (18 or 20 in number), with serrated edges like a diametere disks are alternately seven and nine inches in closeter, and one-half inch in thickness, and are mounted in Which they with each other, side by side upon a shaft, to treen they are keyed. Closely atjoining, and fitting in beedeen these disks, with just space enough left lutween their of the and the peliphery of the disks to permit of the feeding similar cork to be redaced, are a series of steel plates with position by bed eggs. These plates are held firmly in juxtiposition by bolte, which serve also to at ach fhem firmly to the 180 of the machine. The toothed disks are rotated at about michine to thens per minute, and the cork is reducd by the duced to the size of a pea. These frigments are futher re ased to nowder by ordinary horizontal uills resenbling those is carried grinding corn. From the millstones the cork powder and fined by a screw elevator to a sieve by which the coarse production fragments are separated into several grades for the production of several qualities of linoleum. If any of the mapowder too coarse, it is returned to the mill. The very fine oil, and afteated with the suitable mixture of oxidized linseed i_{s} susceptibl the product is finishel, makes a floor cloth that the other hale of a very high finish; the coarser material, on - hand, makes a wore elastic linoleum.

肘HCTRICITY AS THE MOTIVE POWER FOR STREET RAILWAYS.
RAILWAYS.
The announcement, which has been extensively circulated,
On elfectricity has been successfully used as a motive power as "impet railways in the city of Cleveland, may be designated stance mapapers, prove to be only partially true, the circumterest. may still be regarded as one of the very highest in-
ter There is a sort of superstitious confidence in the future pos. common of electricity, which is not without a basis of sound made within the rest upon. The rapid strides that have heen and within the past decade in its domain, and the unexpected it to onderful things that have been accomplished in applying to ponseful purposes, cquse even conservative men of s ience is alleged long andseriously before pronouncing anything that Phone, the to be done in its name to be impossible. The teleelectric marvels, are of too recent date to encourage skepticism
feppecting ent leged eleceven greater achievements; and beside these the alIn the ricr. ilway of Cleveland appears common place.
spatem of obrnce of the necessaiy ditails to informus if the practical operation, we prefer to withhold any opinion of the coubtless be shof the Cleveland experiment; but these will ces of the shortly forthcoming. The probability of the suconly the experiment, it may be added, is made strong, not the fact, the very general admissions of the daily press, but by rarionst, as all cur readers know, that electrical railways of pereral Erms have been, and are now, in actual operation in periment shopean localities. If, however, the Cleveland exit, it will should turn ont to be as satisfactory as report makes plication have the distinction of being the first successful apcitieg, and electricity as a motive power for street cars in it may prove to be so. for may add, finall
or the ituventor finally, that there is no more promising field saltan motive power. It is in this field that mos. valuable re. Bult may power. It is in this field that mos. valuable re-
$B_{u i}{ }^{2}$ der.

[^0]in their gills and stomach. From this it is therefore apparent that, in the Baltic, salmon are in the habit of quitting the rivers of Northern Sw-den and Finland in the antumn in order to visit the shores of Northern Germany during the winter, and r turn to their haunts in the spring. That the fish should be capable of performing the enormous journey across the Bal-tie-from the upper gulf to the Pomeranian coast-and back every year may indeed seem incredible, but that it is impos. sible is fuily disproved by the experiments with salmon and thont $\&$ ffected by the late Mr. Frank Buckland on the coasts of Scotland arid England in the same direction.

In March 1872 Profs. Virchow and Hansen were commis sic ned by the Gi rman Fishery Association to "mark" some of the salmon which has been hatched artificially near Hameln, in order to ascertain whether th+y were in the habit of returning to the river. The fish then in the hatching reservoirs were one year old, and mostly seven centimetres in length, although some were twice the size. Having tried cutting off various parts of the fins, it was found that it was most suitable for the ol ject in view and the health of the fish to cut the so-called "tat" fin right away, parlicularly as the fish would retain this mark even when full grown.
On March 23 and 24, 1872, a thousand salmon marked in this manner were let out into the Weser. The marking was effected by taking the fish in the left hand, and then cutting the fin away with a pair of scissors, whereby the fish were perfectly uninjured. The little fat fin, which is mostly found on Salmonidæ ouly, contains no nerves of any importance, and has no particular function, so that its removal dues not impair the fish in the least.

Ever since that year the fishermen between Bremen and Haineln have been on the look out for the marked fish, but not until a month ago a fish was caught, weighing 30 Ibs., at Osterdeich, just above Bremen. The fat fin, which, on the fish one metre long, ought to have been six centimetres, was entire. ly absent ; and, when the well-healed cut was felt, the hard membrane indicated that an operation had at one time or another been performed at this spot. The fish which was marked as a gril.e in 1872, was then thirteen years old-an age which in every respect corresponds with the age fixed by the fisherman. According to general observation, it has been demonstrated that the salmon in the Weser is, when one year old, from five to twelve centimetres long. In the second year it has been proved that the salmon go into the sea, and when they re-enter the river at four years of age they weigh from eight to twelve pounds, and in the fifth year from twelve to fifteen pounds. From that age upwards the weight increases rapidly.

The results of the artificial hatching in the Weser are exceedingly promising. Thus the salmon fisheries at Hameln have been douhled in cons quence during the last ten years, the tax at presen' pard to this town alone by the salmon fisheries being more than a thousand pounds.
In Norway, too, efforts have been made in the same direction during the last few years. Thus in 1883 the Storthing granted a sum of noney for this purpose, and with this amount the Chief Inspector of Fisheries, Herr A. Landmark, has effected the marking of several hundreds of salmon and trout, chiefly on the west coast of Norway, during last autumn and winter. The marking here is effected by means of a tiny bit of platinum, 7 mm . long, and 4 mm . broad, being thus a bout the size of the wail on the little fiuger, which is attached by a very fine platinum wire to the fat fin of the big fish and the tail of the smaller ones. The piece has a number stamped on it, which corresponds with one in a "log" giving all the particulars as to the date the fish was marked, its weight, size, \&c.

In order to encourage fishermen to be on the look out for these marked fish, the inspector offers a reward of two shillings and sixpence for each mark forwarded to him, if accompanied with precise information as to the spot and date when it was taken, the length and breadth of the fish, and its weight.

As these restarches will tend greatly to ascertain the habits and migrations of Salmonidack, the result will be watched with interest.-Nature.

SEATS IN RAILWAY CARRIAGES.-Nature.

In a recent atticle in Science et Nature the writer, after animadverting on the lateness of the day at which shoemakers have at length begun, though still very imperfectly, to take account of the osseous framework of the human foot, proceeds to investigate the relation between
the structure of the human trunk and that of the seat, more particularly in railway carriages, designed for its accommodation. In a sitting posture the pelvis has for its sole function the support of the upper part of the

Fig. 1.

Fig. 2.
iody. The spinal column, however, is inserted in the pelvis, not in the form of a straight line but of a curve (Fig. I). This inflection on the part of the backbone, while adding to the mobility of the trunk, imposes on it

the necessity of a continual balancing movement, the centre of gravity being shifted every time the head and thorax sway to one side or the other. Such balancing

Fig. 5 .

Fig. 6.
movement is necessarily also attended by a certain expenditure of energy. To allow the upper part of the body to remain comfortably at rest there must be sup-
ports for the back, the shoulders, and the head. So far as these are wanting, the body will tend of itself, unless counteracted by an effort of will and nervous force, to bend forward, till at last the forehead finds the knees to lean on. The position of the body in sitting is all the easier, and its rest all the more complete, the more decided is the inclination of the back of the seat and the more obtuse is the angle formed by the trunk and

the thighs. Seats such as the dormeuses realise the most favourable conditions in this respect.

Fig. 2 represents a man comfortably seated and propped. The back of the seat supports him principally under the shoulder-blades, offers the chest a depression to sink in, and altogether keeps the upper part of the body in a free and easy position. Fig. 3 shows the same person in a similar position, but with his head resting

Fig. 8.
behind. In both these figures the back of the seat is seen exactly in profile; and to the writer of the article such seems the construction which is most convenient railway carriages.

Fig. 4, on the other hand, represents the profile of man seated as passengers are in many of our actua first-class carriages. His position is perceived to be ${ }^{8}$ forced one in contrast with that just noticed, and ation
gether disagreeable. Fig. 5 shows exactly the stiff attitude the head is compelled to take in order to rest.
Finally, Fig. 6 reproduces the comfortable position indicated in Fig. 3, and at the same time represents the profile of the back of the seat actually in use in our railway carriages. On comparing this profile with the posi-
tion of the tion of the man comfortably supported, the following
defect defects in the back of the seat are observed :-
I.. It is too
I.- It is too vertical.
2. It allows an empty space between the lumbar verte-
bre and the bre and the lower extremity of the shoulder-blade exactly at the place where one is in the habit of putting a cushion "behind the back," as it is called.
3. It is at least half a foot too high, and so makes it impossible for the head to rest behind. It is customary man of averack of the seat tally with the height of a man of average size seated bolt upright.
Under the actiàt conditions, such as they have been

described, what becomes of the traveller when sleep at
length overtakes his seat ortakes him? Little by little he slides down on Which has the lower extremity of his shoulder-blades, projection most need of support, finds the most sensible actually are which, as the backs of our railway carriages a point, nare, is precisely where it is least serviceable-at Lastly, namely, on a level with the region of the pelvis. not bury itsead inclines forward or to the side, if it does Fig. 8 itself in the breast (Fig. 7).
ing ${ }^{\text {Fig. }} 8$ gives a front view of the face of the bench servstuffed the back of the seat. In the centre is seen a may rest his projection, on each side of which a passenger suppert, his cheek. The shoulder, getting no separate project, must contrive to lodge itself between this stuffed back of the a kind of plateau fixed in the side of the breadth above the seat, offers a resting-place to the elbow
(Figs. 8 and 9).

DTPrRAMAABLLI CONSTRUCTION IN RHFFHREHNCE TO

carrying on ander the supervision of Dr. Pettenkofer, I am able to speak from ocular demonstration concerning the panotrability by air and water of the materials commonly used in the construction of buildings both pablic and private.

There are circumstances under which it may be desirable that the air should find its way through walls; for example, wherever no other means are provided for the change of the air in dwellings. Indeed, were it not for the flimsy constraction of the houses of tho poor, and the passage of the air through the outer walls, and through the crevices about door and window openings and basement floors, the air of the rooms would become perlectly stagnant, and be much more unhealthy than it is. Bat in the construction of the houses of the future apon sound sanitary principles, it is of course presupposed that nothing comes by chance, that the providence of the designer anticipates and provides forevery contingency, and thus puta under the control of the occupier the means of warming, ventilating, and maintainining in healthful condition the house he inhabits. To attain this end, it is obvious that in the first place it must be possible to insure that the bassment floor shall be impervious to ground air and moisture.

But what is ground air? It is the superincumbent pressure of the external atmosphere which passes through the earth subjected to its pressure to find its eecape in the direction of the least resistance, which direction is commonly that forming the site of a honse. The resistance to this external pressure is much reduced by the temperature of the air within the house, which is usually much higher, and consequently much lighter; so that there is every inducement from natural causes for a stream of ground air to be continually passing through the basement, or lowest floor from without, unless steps are taken to construct an impervious flooring, the resistance to the passage of the air through which shall be greater than the pres sure.
When the earth is clean and the house is pure there may bs no great harm in allowing this process to go on, but for one consideration, viz., the humidity of the air so passing during wet seasons. But in populous places, whero the earth is fouled by innumerable accumulations of refase of all kinds, and where defective drainage has rendered pestiferous the very soil npon which the house stands, and leaky gas-pipes have rendered the external soil black and reeking with gaseous deposita, \&co., I say under these circumstances it becomes a matter of enormpus moment that the house itself shall not be made the safety-valve for the reception and accumulation of all these abominable im. purities in the form of imperceptible "ground air."

IMPRRMEABLE BAREMENT FLOORS.
There are two ways of overcoming this evil. The one is by forming an impervious flooring as before mentioned, and the othes is by constructing channels ander the floor leading to the kitchen chimney flue. These channels should be of porous materials, and should be 6 ft . apart; and by being carried to the kitchen chimney, the ground air will be drawn off with the heated air and smoke of the chimney, and tend to increase the draught in the flue at one and the same time. This was accidentally discovered by Dr. Renk during his experiments at Munich ; for, being unable to account for the difference of ground air pressure in different parts of the basement upon which he was operating, he excavated the floor, and found that one of the air flues from the chemical laboratory passed under the basement floor to the foul air extract shaft, drawing with it the gronnd air in its immediate vicinity, thus relieving the pressure upon a certain area, and giving the confirmatory exception to the rule he was formulating.
The ordinary materials for paving basement floors are all of a very porous character, and where boarded floors are provided no attempt used to be made to cover the soil at all, till the last amendment of the Act governing these matters required a thin layer of lime concrete to be laid over the earth ander the floors generally.
The experiments made on various materials show that hydranlic cement is always impermeable, and a layer of cement concrete covered with pure cement, or an asphalt surface, or concrete formed of Portland cement mixed with granite or alag chippings, and finished with a smooth surface, will answer the purpose desired. But, for the sale of comfort and warmth to the feet, it is often desirable that wood should be the covering. This is equally well secured by the adoption of one or other of the many excellent wood block floorings exhibited in this greast International Health Exhibition, to bo laid on 0 in. of cement
concrete. The blocks need not be more than 2 in . thicis and 6 in . long by 3 in . wide. They should be dovetail grooved at the buttom, burnetized before using, and bedded in cement. Powdered cement should be brushed into the interstices after the laying is complete, and the surface well washed with pure water and left clean.

Deal, pine, pitch pine, oak, walnut, teak -most kinds of wood will do, which may be planed or polished, and laid in any variety of pattern, equivalent in beauty to a parquet floor. Where there are no basements it would be better that all the rooms should be thus paved, the difference in the purpose of the rooms being expressed by the character of the design and the quality of the material used. Vitreous porcelain tiles are hest for passages, being both impermeable and not slippery on the surface. But excellent tiles of every kind are now avail. able for the purpose, and are most easily kept clean.

impermeable wall construction.

In the second place, let us consider briefly the case of the enclosing walls of a building. Nothing but the observation of carefully conducted experiments will enable you fairly to realize the remarkable porousness of the ordinary building materials used for the external walls of dwelling houses.

The impermeable qualities of terra-cotta, give to it a foremost place in the decorative construction desirable in all buildings. Mr. Waterhouse has proved its value as a material for use in the metropolis. The Natural History Museum has the exceptional advantage of being, as it were, cased in terra-cotta. In the erection of buildings of the ordinary porous materials, however, precautions may be taken to achieve a similar result. There are a variety of systems for forming hollow walls, the inner and outer casing being connected with strips of bent iron galvanized. But hollow walls are not always efficient, and are rarely perfectly well done, and, of course, leave a space into which bad air can accumulate, and vermin may some day find their way and be unable to get out and die, and thus fumigate the building. The system is costly too, and covers a larger area than solid walls.
There is another system which makes a wall at once air and water proof so far as it extends, leaving nothing but the crevices in the ill-fitting of the joiner's work of doors and windows which only good workmanship can eliminate. It consists of an asphalt bond between the inner and outer casing, applied in the following manner. Let us suppose a $14 \frac{1}{2} \mathrm{in}$. wall, on one side 9 in . of brickwork, on the other $4 \frac{1}{2}$ in., with 1 in. division between, the opposite joints being left free of mortar for about three quarters of an inch each. At every two or three courses the heated asphalte is poured in, and the crevices all filled up with this impervious material, and the result is a wall much stronger than the ordinary wall, occupying no more space, and perfectly wind and weather proof. Inpermeable water tanks may thus be constructed, an example of which may be seen in the Parkes Museum.

In facing with stonework, this will be found a valuable accessory, but the preservation of the face of the stone will not be secured, and another and a wider question is opened up as to the best kind of preserving solution for treating stone and other porous facing materials, and preserving it from the action of the weather and disintegrating gases afloat in the atmos phere, and found to be so destructive in London, and the manufacturing towns of the provinces. But before discussing this question, let us return to the impervious walling, to observe that there is still a weak point not rendered imp:egnable to damp air.

damp courses.

The asphalte must not only be applied vertically but also horizontally at the foot oi the wall and at the level of the lowest floor adjoinirg. In fact, the asphalte may be continued at the level of the underside of the wood block basement flooring, and so seal up the walls and fieor.

The horizontal course in walls is called a damp course, and is usually applied, but when it is absent the result is that damp rises in the walls forced up by the pressure of the ground air by the variations of temperature, by capillary attraction, \&c., and the plaster becomes demoralized and falls off the walls, and considerable discomfort and expense is the consequence.

preserving solutions.

This was the subject of an interesting discussion at the Institute many years ago, under the presidency of the late Sir Wm. Tite, and in the iransactions of the Institute the whole matter was vtry carefully reported. I invaiiably specify that
the stonework shall receive when in a dry state, two coats of a solution, the effect of which is to render the surface of the stone comparatively imperneable, at all event; till such a time as the stone has had time to weather and form its own skin and natural protector from the weather. In fact, wax an 1 gum are dissolved in a spirit, and the solution is applied with a brush on dry stonework ; the spirit volatilizes, aut the congealing of the rest forms a skin as thick as the stone is impregnated; two coats are usually sufficient.

At Hanover Church, Regent Street, may be seen three different processes, nine of which have as yet shown signs of failure. The builling had become perfectly black, but very few signs of decay had taken place except in the towers, and I was desirous of removing the soot without taking away the weathered surface of the stone, and this 1 achieved by the use of the wet steam jet. I also discovered that the portions which had been treated with linseed oil when first erected fifty years ago had not decayed to any extent, while the rest was so far gone that the greater part of the stones had t o be replaced.
Of course a great deal of the defective stone we see arises from injudicious selection; there is good and bad stone of every kind, and unless pains are taken not only to select the quarry itself, but to mark the approved stones at the quarry, and then to see that they lie in the building on the same bed that they lay in the quarry, disappointment must ensue whatever the solution you employ. Solutions should only be used to preserve good stone, not to make bad stones pass muster.*

THE ROOF.

A very few words must suffice to dispose of this subject, having regird to our limitations as to time. It is not my intention to speak of flat roofs of fileproof construction, and covered with impermeable materials of various kinds; obviously they are rarely required, and, when wanted, only need to be well executed to answer the purpose intended. But the ordinary house roof is a thing that forms a hat to a building; it may or may not have projecting eaves, or a brim to the hat, but it is always presumed to rise above the greater part of the topmost rooms, and to form an air space protective of the inmates from the extremes of heat and cold. That this is but ${ }^{8}$ presumption is, in many cases, only too true, and the cruelty of putting servants in slate, or even metal-covered attics, within a few inches of the outer air, is often forgotten alike by the builler who sells and the master who buys his family residence.
The ordinary speculative house-builder gets the thinnest slates, often absorbent of moisture and permeable by the sun and wind, and he fixes these with common niils to sappy battens, secured to light rafters at the least available gauge, instead of making every third slate lip the first at least three inches, and be fastened with two copper nails to each slate to inch rough boardiug, throu h which the snow may be further pievented from fiading its way by putting an intermediate layer of no° dorous felt, and thus keep back the heat and the cold and the rain and the snow, and form a sound external covering to the house.

Zinc does not last above a dozen years in the English climate as a rule; but if used, it should be put on with laps, and without soldered seams or anything to hinder its free ex. pansion or contraition, and should be put in much thickers than is customary - not less say than No. 15 gauge.

Lead forms the best and most durable roof covering, pro perly laid, of sufficient thickness-say 5 lbs. weight for the square foot for ridges and flashings, 7 lbs for gutters and flats. But nothing is more effective than tiles, and nothing, when well done, warmer in winter or cooler in summer. The Broseley tiles are admirable in colour and hardness.
Projecting eaves are a great protection to the walls; and the projections on the fice of the walls for cornices, labels, stringg, should all be well under-cut, not only becau-e of the good tffect of a sharp shallow, lut becau $3 e^{\circ}$ the water is thus $\mathrm{rr}^{\mathrm{r}^{-}}$ vented from ruaniug down the face of a building and disfigur ing it, and making it damp.

ventilation.

It is not my purpose to enter very deeply into the question of ventilating and warming, but it is obviously necessary parmake suitable provision for ventilation not only for the pare poses of human respiration, but for the sustenance of the

* I have had models made of an ordinary brick wall, and one ${ }^{\text {ith }}$
asphalte core, both of which I have fited with caps to show the $p^{4 b^{-}}$ asphalte core, both of which I have filted with caps to sho
sage of the air through oue and its exclusion in the other.
healthful condition of the materials used in the cons'ruction of a houve. Dry rot, and other forms of premature decay, being induced by the want of a free circulation of air about the places where it apprars, the best proof of which is that by the introduction of the air the grow th of the fungus is arrested. As Thave already remarked, the exclusion of the air from the enclosing roofs, walls, and basement floors of dwellings renders it necessary to provide ventilation of a simp'e kind, and I shall conclude my paper with a few remarks upon the subject.

If we have somethin g to learn from foreigners of the scientific application of the principles of warming and ventilating great public buildings, as I have elsewhere shown, foreigners have much to learn Irom us of the domestic comfort derivable from the homely fireside of the English people. That it is wasteful of fuel is true; polluting to the atmosphere cannot be denied. Nevertheless, it is the best system of warming and ventilating ordinary living rooms. But few rooms have any corresponding inlets, and so to supply the omission, whizzing draughts come in through the keyhole and crevices of the doors and windows and floors, and even through the walls themselves. When there is no fire the aspiration by the chimney flue is much diminished, but might be maintained throughout the summer by the use of a ring of gas-jets just over the mouth of the register. There are circumstances, however, under which this 8ystem is inapplicable, and the guidance of a professional man is desirable in all cases. -The Building and Engineering Times.

MIND IN MAN AND BRUTE.

bY GEORGE J. ROMANES.

If it is true "The proper study of mankind is man," assuredly the study of nature has never before reached a territory of thought so important in all its aspects as that Which, in our own generation, it is now for the first time approaching. After centuries of intellectual conquest in all regions of the phenomenal universe, man has a^{*} last begun to find that he may apply in a new and most unexpected manner the adage of antiquity, "Know thyself." For he has begun to ferceive a strong probability, if not an actual certainty, that his own life ng nature is identical in kind with the nature of all other the and that even the most amazing side of that nature-nay, ledge most amazing of all thing, within the reach of his know-ledge-the human min titselt, is but the topmost inflorescence of one mighty growth, whose roots and stem and many branches sumk in the aby:s of planetary time
The problem, therefore, which in this generation has now, for the first time, been presented to humau thought, is the or them of how this thought itself has come to be. Λ question of th deepest importance to every system of philosophy has Ween raised by the stuly of biology, and it is the question of the the mind of man is essentially the same as the mind of the lower animals, or, having had, esther wholly or in part, some other mode of origin, is essentially distinct, differing not enistence ingrer, but in kind, from all other types of physical Firse.
First, then, let us consider the question on purely a priori grcunds. The process of organic and of mental evolution has life andunied to be continuous throu hout the whole region of U_{a} ground mind, with the one exception of the mind of man. On grounds of a very large analogy, therefore, we should deem
it anteced Whatecedently inprobable that the process of evolution, elseThere so unifurm atd ubiguitous, should be interrupted at its extonal phase; and I think that, looking to the very large cousider the aualogy, this antecedent presumption is really so comsiderable that it could only be fairly counterbalanced by beme very cogent and unmistakable facts, showing a difference lender it anmal and human psychology so distinctive as to one could in the nature of the case virtually impossitle that the first ever have graduated into the other. This I posit as Next consideratiou.
Next, still restricting ourselves to the a priori aspect of the of every it is uqquestionabl that human poychology in the case a every individual human being presents to actual observation a process of gradual development, or evolution, extending from at a zero to manhood; and that in this process, which begins at a zero level of mental life and may culminate in genius, there is liowbere and uever observable a sudden leap of pro-
gress, gress, suchas the passane of one order of paychical beng into Theref distinct in kind might reasonably be expected to show. nut huinan it is a matter of observable fact that, whether or
admits of gradual development from a zero level ; and to this we must add that, so long as it is passing through the lower phases of that development, it assuredly ascends through a scale of mental faculties which are pari passu identical with those that are permanently presented by the psychological species of the animal kingdom. These facts, which I present as a second consideration, tend still further, and I think most strongly, to increase the force of the antecedent presumption against the process of evolution having been discontinuous in the region of mind.

Again, it is likewise a matter of actual observation, that in the history of our race, as recorded in documents, traditions, antiquarian remains, and flint implements, the intelligence of the race has been suliject to a steady process of gradual de-velopment-a general fuct which admits of any amount of special corroboration by comparing the psychology of existing savages, where the process of evolution in the past has not been so rapid or has in part been arrested, with that of civilized man. This is the last consideration that I shall adduce of the a priori kind, and its force consists in the fact of its proving that if the procers of meutal evolution was interrupted between the anthropoid apes and primitive man, it must again have recommenced with primitive man, and since then have continued as uninterruptedly in the human species as it previously did in the animal species. This, to say the least, upon the face of the indisputable facts, or from a merely antecedent point of view, appears to me a highly improbable supposition. At all events it certainly is not the kind of supposition which men of science are disposed to regard with favour elsewhere; for a long and arduous experience has taught men of science that the most helpful kind of supposition which they can bring with them into their investigations of nature is that kind of supposition which recognizes in nature the principle of continuity.

Taking then, all these a priori considerations together, they must, in my opinion, be farrly held to make out a very strong prima facie case in favour of the view that there has been no interruption of the developmental process in the course of psychological history, but that the mind of man, like the mind of aninals-and, indeed, like everything else in organic nature-has been evolved. For these considerations show, not only that on analogical grounds any such interrup tion must be held as in itself improbable; but also, that the human mind unquestionably admits of having been slowly evolved from the zero level, seeing that in every individual case, and during many past millenniums in the history of our species, the human mind actually does and has undergone the process in question.

In order to overthrow so immense a presumption as is thus erected on a priori grounds, the p.ychologist must fairly be called upon to supply some very powerfal considerations of an \dot{a} posteriori kind, tending to show that there is something in the constitution of the human mind which renders it impossible, or, at all events exceedingly difficult, to imagine that it cas have a genetic relation to minds of lower orders. Knowledge.

PASTEUR'S REMEDY FOR HYDROPHOBIA TO BE INVESTIGATED.

We learn that Pasteur has communicated the results of his four years of investigation of the nature of hydrophobia and its cure to the French Academy. He asks this eminent body to appoint a commission to examine and report upon his results. The Academy has acted upon this request, and has appointed a number of eminent men to institute a board of examiners to make the necessary investigation.
The essential portions of Pasteur's commanications to the Academy we quote below, from the Popular Science News
' 1. If the poison of rabies be transmitted from the dog to the moukey, and then from monkey to monkey, its virulence diminishes with each inoculation. If the virus which has been thus enfeebled by inoculation from monkey to monkey be then retransmitted to a dog, a rabbit or a guines-pig, it still remains attenuated. In other words, the virulence never returns at once to the degree found in the mad dog of the streets.

* 2 . The viruleuce of the poison of rabies is increased when it is transmitted from rabbit to rabbit, or from guinea-pig to guinea-pig. When the virulence has thus increased, and reached its maximum in the rabbit, the virus still retains the high degree of virulence when transmitted io the dog, and is evidently much more intensely virulent than the virus of the
niad dog of the streets. Under these conditions, indeed, the
poison is se virulent, that when inoculated into the circulation of a dog, fatal rabies is the invariable result.
" 8. Although the viralence of the poison is intensified in its passage from rabbit to rabbit, and from gainea-pig to guinea-pig, it requires many successive inoculations before it recovers its maximum virulence, when it has been previously attenuated in the monkey. Further, the poison found in the mad dog of the streets, 'which, as I have just said, is far from being of maximum virulence, when it is inoculated in the rabbit, requires to be passed through many individual rabbits before it attains that maximum.
"If we apply rationally the results I have just communicated, wo can easily render dogs proof against rabies. The investigator may have at his disposal the virus of rabies in different degrees of attenuation; the non-fatal kinds preserving the economy from the effects of the more active and fatal kinds. Let us take an example. We take the virus of rabies from a rabbit which has died, after inoculation by trephining, at the end of a period of incubation exceeding by several days the shortest period of incubation commonly met with in the rabbit. This period invariably occurs between the seventh and eighth day after incubation by trephining with poison of maximum virulence. The virus from a rabbit with the longest incabation period is inoculated again, by trephiniag, in a second rabbit ; the poison from this rabbit in a third. Each time the poison, which is becoming less and less viralent, is communicated to a dog. The latter is at length found capable of resisting a poison of fatal virulence. It becomes, in fact, entirely proof against rabies when the poison of the mad dog of the streets is introduced into its system, either by intravenous inoculation or by trephining."
The proposition for testing his discovery by a commission is this : "The crucial test which I would propose would consist, in the first place, in taking from my kennels twenty dogy proof against rabies, and placing them side by side with twenty dogs intended to serve as my witnesses. We should then have these forty animals bitten successively by mad dogs. If the facts which I have enunciated are correct, the twenty dogs which I believe to be proof against the disease would all remain healthy, while the twenty witness dogs would become infected with rabies. In a second and not less conclusive experiment we should take forty dogs-twenty vaccinated before the Commission, and twenty not vaccinated. The forty dogs would then be inoculated by trephining with the virus of the mad dog of the streets. The twenty vaccinated dogs would be proof against the infection, while the other twenty would all die of rabies, with symptoms either of paralysis or madness."

PRZEVALSKY'S WILD HORSE

GREAT interest is, attached to the question of the origin of our domestic animals, and especially to that of the horse-which is generally supposed not now to exist in an aboriginally wild state. Every fact bearing upon this subject is of importance, and the discovery by the great Russian traveller, Przevalsky, of a new wild horse, more nearly allied to the domestic horse than any previously known species, is certainly well worthy of attention.

The horses, which constitute the genera Equus of Linnæus, and are the sole recent representatives of the family Equida, fall naturally into two sub-genera, as was first shown by Gray in 1825 (Zool. Journ. i. p. 241)Equus and Asinus.

The typical horses (Equus) are distinguishable from the asses (A sinus) by the presence of warts upon the hindlegs as well as upon the fore-legs, by their broad rounded hoofs, and by their tails beginning to throw off long hairs from the base, instead of having these hairs confined, as a sort of pencil, to the extremity of the tail. Up to a recent period all the wild species of Equus known to science were referable to the second of these sections, that is, to the sub-genus Asinus, known from Equus by the absence of warts or callosities on the hind-legs, by the contracted hoofs, and by the long hairs of the tail being restricted to the extremity of that organ. Of this group the best known species, commonly called wild asses and zebras, are (1) the wild ass of Upper Nubia (Equus taniopus), probably the origin of the domestic ass; (2) the wild ass of Persia and Kutch (E. onager) ; (3) the
hemippe or wild ass of the Syrian Desert (E. hemippus); (4) the kiang or wild ass of Tibet (E. kemionus) ; (5) the quagga (E. quagga) of South Africa; (6) the Burchell's zebra (E.burchelli) of Southern and Eastern Africa; (7) the zebra (E. sebra) of Southern Africa. As already stated, these seven animals all possess the characters of the second sub-genus A sinus as above given, and no recent species of horse referable to the first sub-genus (Equus) was hitherto known to exist on the earth's surface, except the descendants of such as had been formerly in captivity.

Under the circumstances great interest was manifested when it was known that Przevalsky, on his return from his third great journey into Central Asia, had brought back with him to St. Petersburg an example of a new species of wild horse, which belonged, in some of its characters at least, to true Equus.

This new animal was described in 1881 in a Russian journal by Mr. J. S. Poliatow, and dedicated to its discoverer as Equus prsevalskii.

The recently issued German translation of Przevalsky's third journey ${ }^{1}$ enables us to give further particulars of this interesting discovery.

Przevalsky's wild horse has warts on its hind-legs as well as on its fore-legs, and has broad hoofs like the true horse. But the long hairs of the tail, instead of commencing at the base, do not begin until about half-way

Przevalsky's Wild Horse.
down the tail. In this respect Equus przevalskii is intermediate between the true horse and the asses. It also differs from typical Equus in having a short, erect mane, and in having no fore-lock, that is, no bunch of hairs in front of the mane falling down over the forehead. Nor has Przevalsky's horse any dorsal stripe, which, althoug by: no means universal, is often found in the typical horses, and is almost always present in the asses. Its who general colour is of a whitish gray, paler and whiter be neath, and reddish on the head. The legs are reddis It to the knees, and thence blackish down to the hoofs. is of small stature, but the legs are very thick and strong and the head is large and heavy. The ears are smalier than those of the asses.
Przevalsky's wild horse inhabits the great Dsungarian Desert between the Altai and Tianschan Mountains, where it is called by the Tartars "Kertag," and by from Mongols "Statur." It is met with in troops of from five to fifteen individuals, led by an old stallion. Ap parently the rest of these troops consist of mares, whicls, all belong to the single stallion. They are lively animals, very shy, and with highly-developed organs of sight, hearing, and smelling.
They keep to the wildest parts of the desert, and are
I "Reisen in Tibet und am oberen Laut des Gelben Flusses in den In in dow 1879 bis 1880," von N. von. Prschewalski. Aus den Ruasfischen frei 1879 beutsche ubertragen von Stein-Nordheim. (Jena, 1884.)

UPPENBORN'S ELECTRICAL MEASURING INSTRUMENT.

very hard to appreach. They seem to prefer especially the The diatrictes and to be able to do long without water. Winter pursuit of this wild horse can only be carried on in and mor, becanse the hunter must live in the watorless districta, and most depend upon a supply of water from melted anow. encold well be believed, such an expedition during the severtak cold of winter into the most remote part of the desert, must the D tleast a month. During the whole time of his stay in this meramgurian Desert, Prezevalsky met with only two herds of In wild horse.
In rain he and his companions fired at these animals. With optatrotched head and upliftod tail the stallion disappeared
lito and hightring, with the rest of the herd after him. Prezevalaky and his companions could not keep near them, and soon lost their tracks. On cons could not keep near them, and soen lost
from one seond occasion they came npon them from one side, yet one of the herd discovered their presence, ud they were, all gone in an instant.
The single specimen of Prezevalsky's horse subseguently proCuted is now in the Maseum of the Academy of Siences of Europe. Petersbarge and is the only example of this species in

OPPEANBONN'S HLIBCTRICAL MHA SURING INSTRUNERNT.

The number of the measuring instruments recently devised is very great. The practical man is not satisfied with the delicate instrument of the physicist, whilst the latter, of course,
cannot cannot be satisfied with the results of the measuring instrumentra arranged by engineers and technical electricians, howortar antisfactory for industrial purposes. Both this circum. of the mand the variety in which the actions of the current asd of instragnetic forces are manifested haveled to the abundance Uppenbonts, which meet with practical applications.
rents and onn's apparatus, both for the measurements of curequand of electromotive force, give their indications in corThe disc consistion of the current upon an eccentric disc. upper margin ofsts of soft iron (shown in Figs. 1 and 2 on the appor margin of the zinc plate apon which the instruments are monifted); it is fixed npon an arle, which rests with steel
of aluminiam and a counterpoise, which tende to bring the pointer to the zero point of the scale.
The cores of the electro-magnets of both inutruments app fitted with threads, and can be approximated to the diso by means of a sorew, thus rendering the apparatue more or lae sensitive.

When the instrument has been adjusted, the core cas be fixed in its position by means of a nut on the serew.

The apparatus for measuring currents is distingriehed from that for measuring electromotive force by the manner of wrapping the bobbin of the electro-magnets, for which is ased s ahoit insulated wire of the parest copper. For wrapping the electromagnet of the voltmeter there is used a pure and woll insulated, but very thin copper wire. On both sides of the lower part of the electro-magnet in the latter are applied the coils of a rosistance, which can be introduced or removed by the plug shown at the foot of the zinc plate, so as to regalate the senaitiveness of the instrument.
These apparatus are graduated empirically. In consequence of their convenience and their une in their installations arranged by Schuakert and Uppenborn they have come into very extended use.
Uppenborn mukea also magnetic meters on the same principle. The action of the electro-magnets to be teatod for their magnetism upon the eocentric causes it to rotate. To its dise is fixed a torsion-spring leading to a button. By turning this a second inder attached to it is brought to zoro, 80 that the angle of torsion may be read off. It is then proportional to the square of the effective magnetism. An already estimated, the indications of this instrument are sufficient for practical purposes.-Electrical Review.

The Pulse of Syorers.-From experiments made apon the pulse and temperature as affected by smoking, it has been found that the rate of both is increased. Let the average tem. perature of non-smokers be represented by 1,000, then that of moderate smokers would be 1,008; and while the heart of the former class was making 1,000 beats, in the lattor there would be 1,180 in the same space of time. This quickening of the action of the heart is considered a dangerous symptom.

PETROLEUM FUEL FOR LOCOMOTIVES. (Yontinucd from page 243.)

Mr. Bedson remarked that his firm, b-ing manufacturers of charcoal irou, had at one time a large quantity of charcoal dust to get rid of, and that they had uthlized it by mixing it with refuse petroleum and burning it, but the price of petroleum advanced and its use was discontinued. Mr. W. S. Tomkins pointed out that the locomotive boilers shown in Mr. Urquhart's diagrams conld only be regarded as make-shifts or adaptations of existing boilers; he believed that when Mr. Urquhart designed special boilers for petroleum fuel, it would be found that the construction could be much simplified, the present expensive copper firebox being done away with and other changes made. Mr. Boyd, he added, had referred to the difference between the fuel consumption in the summer and winter months during Mr. Urquhart's trials; this, he said, was always so in Russia, the consumption in water being largely increased by the inclemency of the weather, \&c.
Mr. Cardew, of the Indian State Railways, next spoke as to the use of petroleum as a disincrustant in locomotive boilers. In the Indian State lines they had exceptionally bad water to deal with, this water containing a large proportion of sulphates; so much so that the boilers had to be washed out after every 100 miles run. With a view of obtaining the deposition of the solids in the form of dust, the introduction of Rangoon oil had been tried, but at first the result was to cause excessive priming and to produce leaky tubes, \&c., so much so that when an engine using it went out they never quite knew when it would get back again. Eventually, however, they found that by using very minute quantities of the oil they got the desired result without these inconveniences, and the practice ultimately arrived at was simply to paint the interior of the tender tank with kerosene each time the boiler was washed out. The application of kerosene as an anti-incrustator had been made on several Indian railways, but he believed that on some it had been given up as being too ticklish to manage.

Mr. Druitt Hulpin observed that he had for years successfully used petroleum as an anti-incrustatur in boilers supplied with worse water than that found in the Purjaub (with the character of which he was acquainted). The boilers in which he had ased it were of the Lancashire type, 7 ft . in diameter by 30 ft . long, and from a pint to one and a half pints of petroleum was used per boiler per week, the petroleum being put in the boilers through the safety valves on Monday mornings.

The President, in bringing the discussion to a close (the anthor not being present), remarked that he agred with the statements in the paper as to the heating power of petroleum, but the latter, of course, varied much in quality. If we were to employ petroleum in place of coal for firing boilers in this country the effect would be a rise in the price, which would in turn renderits use prohibitive. He agreed also with the desirability of carefully adjusting the air supply so as to obtain the best results, imperfect combustion heing a serious cause of loss. With regard to a remark made by Mr. F. C. Marshall, he observed that as the rate of transmission of heat through the heating surfaces of a boiler fell off as rapidly as the difference of temperature on the two sides of a plate was diminished, it would never be possible practically to eveu approximately fulfil the conditions which Mr. Marshall aimed at, the additional heating surface required to approximate to this re-ult being such as to render it impracticable. A speaker had referred to the firebricks in the furnace as forming a " regenerator ;" this was incorrect, as the bricks trapped no heat which would otherwise be lost, they merely acted as equalizers of temperature. With regard to the differeuces which appeared in Mr. Uiquhart's paper between the relaiive eva porative powers of petroleum and anthracite and their relative economic powers as fuel in locomotives, he pointed out that in the latter case, the result was affected by the heat absorbed in generating the steam used in injecting the fuel, and other losses. The aclmission of this steam to the furnace might also become a source of loss. Ot course of the steam was decomposed heat would be absorbed and the total effect of the two operations would be nil ; if, however, the combination did not take place a loss would ensue. In conclusion he proposed a vote of thanks to Mr. Urquhart for his paper-a vots which was heartily carried. -Enginecring.

Covering tre Head.-In a recent paper, Dr.Almond refers to the custom of covering the head out of doors and uncovering it within doors as very injurious, as making people so sensitive to draughts of air as to cause them to take cold.

THE HISTORY OF A LIGHTNING FLASH.

BY W. SLINGO.
Lately we have all felt, I doubt not, a considerable amount of interest in the varius phenomena attending this summ r 's unusu lly heavy thunderstorms, accompuied, as they have been, by vivid lightuing discharges of a more or le-s hurfful nature. The list of di-asters published in Knowle ige, No. 143, might be very materially augniented were we to record such damage as hat benn wrought since that list was compiled.
There is not, I suppose, in the mind of any intelligent man at the present day a doubt as to the electrical origin of a lightning flash. The questions to be considered are rather whence comes the electricity? and in what way is the thunderstorm brought about? In attempting to answer these queseions, sight must not bs lost of the fact that the very nature of electricity is in itself almost sufficient to baffle any effort put forth to ascertain from lightning, as such, its whence and its whither.

It is possible, however, with the aid of our knowledgo of static electricity, to arrive at hypotheses of a more than chimerical nature. In the first place, that our sphere is a more or less electrified body is generally admitted. More than this. it is demonstrated that the different parts of the parth's surface and its enveloping atmosphere are variously charged. As a consequence of these varying charges, there is a constint series of currents flowing through the various parts of the earth, which show themselves in such telegraph wires as may lie in the direction followed by the currents. Such currents are known as earth-currents, and present phenomena of a highly interesting nature. But, aprart from these electrical manifestations, there is generally a difference of electrical condition between the various parts of the earth's surface and those portions of the atmosphere adjacent to or above them. Inasmuch as air is one of the very best insulators, this difference of condition (or potential) in any particuliar region is in most cases incapable of being neutralised or equilibriated by an electric flow. Consequently the air remains more or less continually charged. With these points admitted as facts, the question arises, Whence this electricity? There have been very many and various opinions expressed as to the cause of terrestrial electricity, but far the greater portions of such theories lack fundanental probahility and indicate causes which cunot be regarded as sufficiently extensive or operative to produce such tremendous effects as are occisionally witnessed. I take it that we may safely regard the evolution of electricity as one of the ways in which foree exhibits itself, that, in other words, when work is performed electricity may r sult. When two hodies are rubbed together, electricity is produced, so also is it when two connected metals are immersed iu water and oue of them is dis. solved, or when one of the juactions of two metals is raised to a higher temperature than the other junction. I will go further than this, so far, in fact, as to maiutain that there is reason able ground for supposing that every movement, whether it be of the mass or amongit the constituent particles, is attended by a change of electrical distribution, and it this is true it may easily be conceived that inasmuch as motion is the rule of the universe, there must be a constant series of electrical changes. Now, these changes do not all operate in one direction, nor are they all of similar character, whence it is that not only are there earth currents of feeble electro-motive force, but that this EM F is constantly varying, and that, furthermore, elso tricity of high E M F is to be met with in various parts of the atmosphere.
With earth currents we have here very little to do. The rotation of the earth is in itself suff ient to grnerate small currents, and the fact that they vary in strengthat regular puriods of the day and of the year tufurces the sugs"'st on that the sunt extrts consilerable electrical iufluence on the earth. Latting it be gratitd, however, that the earth is variou,ly charg-d, how comes it that the air is also charged, and with electricity of greater tension than that of the earth itself? It was pointed out by Sir W. Grove that if the extremities of a piece of platinum wire be placed in a candle flime, one at the bottom an the other near the top, an electric current will flow throush the a ire, indicating the presence of electricity. If an electrified body be heated, the electricity escapes more rapidly as the tend perature rises. If a vessel of water te elect ified, and the water then converted into steam, the electic charge will be rapidly dissipated. If a vessel containing water be electrified, and the water allowed to escape drop by dro!, electricity will escape with each drop, and the vessel will soo, he discharyed. We regard it as an established fact that the earth has always a greater or less charge; whence it is safe to assuue that in

the
the process of evaporation which is going on all over the surface of the globe, more particularly in equatorid regions, every particle of water, $n=$ it lises into the air, carries with it its portion, however minute that portion may be, of the earth's electric charge. This small charge distributes itself over the bigher of the aqueous particle, and the vapour rises higher and bigher until it reaches that point above which the air is too rare to support it. It then flows away laterally, and as it to the to the earth's surface. The aquerus particles, becoming relluced. in size, the extent of their surfaces is proportionately reducreduce fol ows that as the particles and their surfaces are reduced, the charge is confined to a smaller surface, and atlains, therefore, a greater "surface density," or, in simpler Electricity a greater amount of electricity per unit of surface. "static" static" condition (to distinguish it from electricity which is propertysferred in the form of a current), when it has the property of "repelling itself" to the utmost limits of any conthe ch upon which it may be confined. This will account for and will finding its way to the surface of the water particles charge as thermore account for the greater density of the sarface as the particle gets smaller and has the extent of its face of a spidly diminished. It may be mentioned that the surface of a sphere varies as the cube of its radius. Returning to he discussion of the state of affairs existing when the particles imagine reacd their highest position in the atmosphere, we may the northat they set themselves off on journeys towards either the colder or the south pole. As they pass from the hotter to combiner regions, a number of particles coalesce; these again visible with others on the road until the vapour becomes $W_{\text {tight }}$ as cloud. The increased density implies the increased topards and the cloud particles, as they sail pole-wards, descend formards the surface of the earth. Assuming that a sperical of particles implined throughout, the condensation of a number the contes implies a considerable reduction of surface. Thus, eight (the cube of 2) drons on combining will form a drop twice the cube of 2) drops on combining will form a drop conce the radius of one of the original drops. We may saftly place until handreds and thousands of such combinations to take are mortil a cloud mass is formed, in which the constitnent parts as a singless in contact, and, therefore, behave electrically accumulale conductor of irregular surface, upou which is ${ }^{\text {over }}$ the sure all the electricity that was previousely distributed pose the surfaces of the millions of particles that now comThe t
ductor tendency of an electric charge upon the surface of a connearest to to ta upon itself a position in which it may approach neutrality an qqual and opposite charge, or, if possible, to attain other cloud. If, then, a cloud has a charge, and there is no atat earth above or near it, the charge induces on the adja. ing the clurface, electricity of the opposite hind. Thus, assumjactnt earth to be charged with positive electricity, the subJacent earth will be in the negative state. The two electricitios
exert a strong Whence atrong tendency to combine or to produce neutrality, air. Possibly the coucias of stress applicd to the intervening earin mosibly the coud will be drawn bodily towards the small. Ore or less rap:dyy, a ccording as the charge is great or carrying its influenther hand, the cloud may roll on for leagues, che earth its influence with it, so that the various portions of charged as therneath becomes successively charged and disShould the cloud progresses on its journey.
highly charged, the be near the earth, or should it be very grat as to oved, the tension of the two electricitios may be so If this resistancome the resistance of the interveniug air ; and does the distance should prove too weak, what happens? How lightning flasharge show itself? It lakes place in the form of a or, may he, simultaneously from both - produces neutrality more or less complete.
There has recuntly There has recently be
cerued tect of lighmiug a little discussion in these pages on earth the discharge to takr place upwards-that is, from the Whether or no the cloud. I will not venture so far as to say possibly or not the direction of the discharge is discernible; Io trll ; the flash may sometimes be long enough to enable one पyon ; he eye as a deceitf so seen it, and have always looked ash itself eys a deceitf 1 member-viry. "The lightning bowever, just as likely that a discharge $\frac{1}{10000}$ of a second." It is, downer, just as likely that a discharge may travel upwards as
of thearus. What controls the discharge? Does the quality
more prone to break disruptively through the insulating medium ? Investigations with Geissler's and other tubes containing highly rarefied gases have made it tolerably clear that there is a greater "tearing away" influence at the negative than at the positive pole, and if two equal ball, containing one a positive and the other a negative charge, be equally heated, the negative is more readily dissipated than the positive. But, so far as we at present know, this question enters into the discussion scarcely, if at all. Our knowledge seems rather to point to the substances upon which the charges are collected. The selfrepellent nature of electricity compels it to manifest itself at the more prominent parts of the surface, the level being forsaken for the point. The tension of the charge, or its tendency to fly-off, is proportionately increased. And if at a given moment the tension attains a certain intensity, the discharge follows, emanating from the surface which offers the greatest facilities for escape. The earth is generally flatter than the cloud, whence in all probability, the discharge more frequently originates with the cloud.

Should a lightning flash strike the earth and produce direct neutrality, it is possible that no damage will result, although this again is not always certain, because when the cloud charge acts inductively upon the earth it produces the opposite (say negative) charge on the nearer parts, the similar (or positive) state is also produced at some place more or less distant. Sometimes this "freed" positive (which, by the way, accumulates gradually and physiologically imperceptibly) is collected at some portion of the earth's surface. When the negative is neutralised by the discharge, the freed positive is no longer confined to a particnlar region, but tends to dissipate itself and a shock may be felt more or less severely by any within the region. Or, again, a similar shock may be experienced by a person standing within the negative zone on the neutralisation of the charge.

I may take the opportunity here to mention a highly interesting and instructive incident observed on local telegraph circuits during a thunderstorm. The storm may be taking place at some distance trom the point of observation. The electrified cloud induces the opposite charge beneath it, the similar charge being repelled. It is noticeable that the needle of a galvanometer, starting from the middle position; goes gradually over to one side, eventually indicating a considerable deflection. Suddenly, owing apparently to a lightning discharge some distance away, the force which caused the deflection is withdrawn, and the needle rebounds with great violence to the opposite side. In a short time, the cloud becoming again charged on its under surface, and recommencing its inductive effect upon the subjacent earth, the needie starts again, and goes through the same series of movements, a violent counterthrow following every flash of lightning.

If we can so far control our imagination, we may conceive the earth to be one large insultated conductor, susceptible to every influence around it. If, then, the earth, as a mass of matter, behaves as above indicated, there is no plausible reason for declining to regard any other large conducting. mass in a similar light, and, as a body capable of being subjected more or less completely to the various impulses affecting the earth. In other words, a large mass of conducting material, partially or perfectly insulated is, during a thunderstorm, in considerable danger. With this portion of the subject I shall, however, deal more fully when discussing the merits of lightning protectors.

Lightning discharges do not take place between cloud and earth only, but also, and perhaps more frequeutly, between two oppositely-charged clouds. We then get atmosperic lightning, the flash often extending for miles. This form of lightning is harmless, and in all probability what we see is only a reflection of the discharge. The oft-told tale of the lightning flying in at the window, across the room, and out of the door, or up the chimney, is all moonshine, and before dealing with lightning protectors 1 intend to expose some of the fallacies concerning lightning. Were the discharge to pass through a house it would infallibly leave more decided traces and do more damage than simply scaring a superstitious old lady now and again. Many people are often and unnecessarily frightened during a thuuderstorm, but it may be safely predicted that a person under a roof is infinitely safer than one who is standing alone on a level ground, and making himself a prominence inviting a discharge. Rain almost invariably accompaniex the discharge, and the roof and sides of the house being wet, they form a more or less perfect channel of escape should a flash strike the building.-Knowledge.

HIGH PRESSURE TURBINE.

This illustration is taken from the photograph of one of the best descriptions of these Patent Turbines. It is working from a clear head of 92 feet, or 40 lbs . per square inch, and producing 80 horso-power, while making 450 revolutions per
minute. The guides, buckets and slaice are made of the beft gan-metal ; and the Tarbine runs with perfect freedom from vibration.

PORTABLF BRIDGRS.

At the Paris Universal Exhibition of 1878, Mr. Alfred Cottrat, of Naples, the well-known Italian bridge constructor, exhibited models of a system of portable bridges, which attracted considerable attention, and for which a silver modal was awarded. Since that time Mr. Cottran has introduced many modifications and improvements in his system, and in its latest development, it forms an important collection at the present Turin Exhibition, under the general title of Politetragenal bridges, and made by the Ironwork Construction Company, at their works in Castellamar (Stabia).

Whatever may be the span (within limits), the width and the load to be carried, bridges made upon this system, are built up of three elements, Figs. 1, 4, and 5 connected by means of
bolts and keys, and washers, as in Fig. 6 and 7. As oxampla of bridges constructed on this system, the elements, Figs all and 5 , weigh respectively $220 \mathrm{lb} ., 103.5 \mathrm{lb}$., and 22 lb ., all therefore very easy of transport. The combination and arefurs of these bridges, even by unskilled laboar, or by ordinens troope, is easy and rapid, but with properly trained moln span of 65 feet, can be completed within an hour. It is that there exist other and well-known systoms of mility bridges, the erection of which can be effected in even time, but the special advantage which Mr. Cottrau claimerib that while portable bridges on existing systems are neoesserivoly limited in their spans, his principle is applicable to relatively large openings, the weights of the component parts remaine always the same; moreover, the strength of the structure be modified according to the load which has to be carried,

PORTABLE BRIDGES.

elements areater ease and economy of transport. The several otrain of are made of steel, and are calculated for a working doubled about 7 tons per inch, which, under necessity may be is no occasion withonger to the safety of the structure. There the invension to enlarge on the various advantages claimed by purposes, portabilis system. For military and other temporary Which would portability, rapidity of execution, and strength, than would naturally be tested far closer to the altimate limit tores, are be admissable in ordinary and permanent struchowever, devote qualies which speak• for themselves. We may, aridger, derote some space to a notice of some of the typical and Which ered from different combinations of the elements, Niga. 8 to illustrated by examples at Tusin.
Geop, and to 12 show an application with girders 4 ft . 14 in. voldion, and for moder fordinary road traffic, for the passage of and for moderately heavy vehicles. In this arrange-
ment, suitable for spans up to 74 ft ., the panels are boltod end to end and form a single intersection trellis. Fig. 13 shows a method of obtaining greater stiffness, by bolting the elements together in the direction of their greatest depth, or two series of panels may be secured side by side, one series being shifted longitudinally through the length of half a panel in such a way as to obtain a double intersection trellis. As is shown in the cross sections, Figs. 10, 11, and 12, the transverse supports are obtained by means of similar elements placed between the longitudinal girders at intervals. Figs. 8, 10, and 11 show an arrangement in which the width is about 10 ft ., and only one panel is employed. In Fig. 12 two such panels are used, and the width is increased to 16 ft . If desired three elements may be introduced, and the width increased sccordingly. Whers additional strength is required, as for the passage of heavy artillery, two light channel bars with top and bottom plates
can be introduced instead of one as indicated. From experiments that have been conducted with su h hinges as we have described, it has been found that a bridse of 50 ft . span, composed of 27 elements, Fig. 1, 36 elements, Fig. 5, and 604 bolts, weighs about 3.4 tons, and will carry safely a uniformly distributed load of 11 tons, or a wagyon weighing 4 or 5 tons may be sent over it with safety. A second bridge, 79 ft . span, of the same try is also extremely light. Composed of 42 elements, Fig. i, 12 elements Fig. 3, 56 elements, Fig. 5, and 1050 holts, and weighing about 5.8 tons, its safe working load is 41 lh . per square foot, and it can carry a vehicle of 7 t m ns .

Bridges up to 82 ft . span, adapted for heavy military service, secondary roads, \&c., can be constructed according to the type Fig. 13, and experiments have been conducted with them, showing that with a total weight of structure of 8 tons, a uniformly distributed loa 1 of 17 tons can be safely cariled. For larger openings and heavier loads, the elem \cdot nts can be doubled as already explained, so as to make double inter-ection parels, or the width and number of main girders may be increased. Such a bridge 131 fr , span, weighing 495 lb . per foot run will cary a load equally eistributed of 165 lb . per square foot, with a strain of less than 6 tons ner square inch.

A further development of this system, carried out by Mr. Cottrau, is for the construction of railway bridges, either for contractors, for military purposes, or for temporary work, and by suitably combining the differeut elements, spans relatively considrable can be very rapilly constructed. Equally the same 1 ments can be used in the construction of piers as shown in Figs. 14 and 15.

In a large majority of cases bridges constructed on this system can be put together, on one bank of the stream they aro to cross, and be launched into their ultimate positions, the extreme lightness of the structure rendering this operation comparatively easy, and without any dingerous strain heing thrown upon the sterl duing the operation. And should it be found advisable to halance the bridge during the period of launching this can be easily effected by adding a sufficient number of panels in the ordinary elements.

The great amount of care and ingenuity which so eminent a bridge constructor as Mr. Cottrau has bestowed on the elaboration of this system of portable bridges, will doubtless command for it the attention of contractors, military authorities, and othersinterested in a practical solution of est blishing' temporary communication, rapilly and efficiently, especially in countries where the transport of materials is difficult and costly. We shall probally take an opportuaity of again referring to this system.-Engincering.

THUNDER STORMS.

by John trowbridge.

Benjamin Franklin once remarked, in substance, sadly to a frimi, "It is now right years since I showed that mankind could be protected from the danger of lightning by lightui:,g. rods; vet there is hardly a house in Phlladelphia provided with them." The heart of the great American philovopher would be greatly warmed if he could perctive the activity of his diecples, who waylay +very builder of a house, and awakeu teats where all was peare bere. There is no qu stion of fener asked of the professor of physics that this: "Shall I put lightning-rols on my house, ind, if I erect them, what thould be their lorm and position?" Personally I have given the following ablreviaced answers: "If your house is surrounded by tal trees, or if there are higher houses in your im. niediate neiphborhord, I shouhl trust to the trees, or kindly leave the expense of your lightning rods to your nighbor. If your house stands alone, a prominent point in the landse pe, on a cliff, or remote from trem, I should be in fivor of a properly placed liohtningerod. I should plane two or three ponit d oods three or fuur feet ahove the highest point of the houne; allow the metallic rod, which shoud be at least onehalf a square inch in section, to rest, without glass insulators, upon the house; connect all the tin sheathing, the copper gutters, the gas and water pipes with this liohtning-rod; and conduct the latter, by the shoitest course possible, to wet carth."
These answers seldom conclude the correspondence, however, alihough oue ge erally prefers to leave to the neighbor the exprone of ertctiug lightniug-rods. One brings instances of houses having been struck which are situated lower than one's neighbors, and are surrounde d with tall trees which over-topped
the houses ; and one a:kswi"h a shudiler, "Can I connect my gas-pipus with a lightning-rod ?" Inded, the writer or wouldbe authority on lightning rods has not an easy life brfore him. He must not only satisfy the timid heart of the believer in him, but he must also fight with all his knowledge the brazell limb of ignorance and superstition, who starts with the postulate that no scientific man knows any thing concerning thunder and lightning, and that the true knowled je has been revealed ouly to himself while working in a cornfield. It is not long since, that an American professor of physics was sued for twenty or thirty thousand dillars damages formantaining that the mem. bers of a lightning rod company which placed lightning-rods like a letter U upon the roofs of houses were practica!ly quasks; the theory of this lightning-rod being, that the lightning, if it struek one point of the U, wonld be dissipated into the air from the other point. There is a lightning-rod company in Massab chusetts at the present time which erects lightning-rods on the theory that lightuing always seeks electrical earth-currents; and, if there are earth.currents beneath a honse, that house should be protected aud the rols lad ints the path of the earthcurrent. If, on the other hand, no earth-currents run near the house, such a house is safe, and needs no lightning-rods. The electrician of this firm is self-taught: there are no bookg on electricity in his library. He discovers the earth-currents by a forked stick. Not deterred by the fact that there is $n 0$ evidence to prove that a discharge takes place between ${ }^{8}$, charged cloud and a current of electricity in the ground, and, mor over, no evidence to prove that earth-currents move id regular paths through the earth, and, indeed, no conclusive evidence of the existence of earth-currents, he persuades eves the so-called practical electrician to re-arrange the lightning rods on his house.

The student of electricity is therefore called upon to assert the grounds of his belief ; and he finds it difficult to convince his audience; for they are, in general, not sufficiently convers. sant with electrical phenomena to appreciate his arguments. The position taken by most professors of physics on the subjein of lightning-rods is based upon the experiments of Franklia, in which he showed that pointed metallic rods, so to spesk, facilitated electrical discharges; the experiment of Faradsy, by which it was shown that a person, and even the most dich cate electrical instruments, inside a large metallic cage whidful was connected with the ground, was unaffected by power discharges of electricity between the cage and the prime co by ductor of an electrical inachine; and the statistica collected by the English government, which show, that, since vessels ${ }^{18}$, been provided with lightning rods the number of casualtie A produced at sea from lightning have been greatly reduced. it b builling covered by a metallic netting suitably connected wear the ground would he well protected from lightning. The neal est approach to this condition of sifety would be to connect pet the network of metallic conductors abont a house with the ground; and one argument ag inst placing under ground at n+twork of telephone and telegraph wires in cities is, thatiog present, wher they are very numerous, they motect buildiog $c^{s^{\theta}}$ from danger from lightning. This is, of cou se, not the The where a single telephone or trlegraph wire enters a house. Witer latter should always be well connected with the gas or wigher pipe. In resard, however, to the beli-f that tall trees, hig the than the houses in their imme tiate neighborhood, protect in ts hou-rs, we can point to the well known efficiency of small por paf in faciitating electrical discharges hy slow degrees. Eich the and twig is such a small point. Moreover, during a rdin, the dripping from the leaves re luces the electrical charge on in° tree to the sume sign and amount as that of the air in the experime liate neighborhoor, as is shown by the well-known ex , rom ment of Sir William Tiomson, in which an insulated can, which a stream of water issues in drops, is connected electrometer; and the latter shows thit the metallic can ${ }^{\text {ban }}$ of taken the rharge of the air in its neizhborhood. The dropl water continually reduc the can to the elect ical potential the neighboring air. The tree, therffor, can be looked as a more important electrical factor than the few salient points of a builling.

It is safe to affirm that not one ont of a thousand ligh rods at present upon our buildings are of any use, simple reason that they are not led into moist ground,
therefore offer great resistance to the passage of au elect diveharge. Any one can be convinced of this by scrapiog this lightmms.rod at any point, convee ing a bright wire at point, aul, having led ihe other end of the wire to the w
in this circuit, and leading the wire in a north and sonth direction direclly over an ordinary porket compass. If the
lightning.rod euters moict round or makes a connection with the narng.rod enters moist ground, or makes a connection with the earth, the conipass should indicate an elentrical current by its deflection. Generally it will be found that no such earth. connection exists, and the lightning-rod is therefore worse than aseless. It should be immediately connected with the waterpipe, or with a spring, or some body of water. To illustrate the fact that the mere entrance of a metallic rod into the ground is not enough to insure the passage of an electrical disat ange to the ground, drive two metallic rods into your lawn, at any suitable distance apart ; connect them ty a wire, which includes a Leclanché or other voltaic cell; and, baving led the if yover a pocket-compass in a north and south direction, see
obtain a deflection of the needle. If, moreover, you if you obtain a deflection of the needle. If, moreover, you
labor under the delusion that a surface-sprinkling of the earth near the rodse delusion that a surface-sprinkling of the carth perform the experiment. It is probable that several bertes of perform the experiment. It is probable that several acres of earth. would have to be thoroughly sprinkled before a suitable a modern election could be obtained. A few experiments with Btance-n electrical machine-a Toepler-Holtz machine, for insipating will readily convince one of the effect of points in dis-
disectrical charge, and of the fact that an electrical discharg an electrical charge, and of the fact that an electrical
betways takes the path of least electrical resistance between two points. Having ascertained these facts resistance acquired all the intellectual capital that is possessed by most lightning-rod men. If one apparently discovers that gilded $\mathrm{ti}_{\mathrm{ons}}$ for the conductors, or twisted ones, have peculiar attracof fact for the electrical discharges, one leaves the sure ground ${ }^{\text {stady }}$ for the region of the unproven. The difficulty in our sufficiently thander-storms is, that we cannot experiment on a
to to follow the expeale, and our means are too tardy to allow us What we the exceedingly rapid changes of electrified bodies. electrical laws, combined with the laws of elasticity of matter. The focal laws, combined with the laws of elasticity of matter.
a positive lightning discharge is an expression of the fact that path of leastrge is combining with a negative charge along a by the least resistance; and the air is fractured, so to speak, cracks conpression, just as a plate of glass yields in zigzag Pression is it is supported on one edge, and a force of com. medium is applied to the other edge. The inflnence of the - be readily through which the electrical discharge takes place can ent gases, such by obtaining the electrical discharge iu differthese phes, such as carbonic-acid gas or nitrogen, and comparing
can photograpos with those taken in free air. Although we Can study cegrapons with those taken in free air. Although we cessfully in certain phenomena of at inospheric electricitv suc-
Ponitive cur laboratories, yet we cannot charge a cloud with Powitive electricity, and fill the sky with different strata of hat and cold electricity, and fill the sky with different strata of hot Men, that air. It is generally believed to day among scientific bused to the electricity of thunder-storms cannot be attri-
dired direct experimen eraporation or condensation of moisture; for dre to experiment has failed to reveal any electricity which is Perimente in canses. Mr. Freeman made many delicate exsity tonte in the physical laboratory of Johns Hopkins univertricity, decide the question whether evaporation produces electhis caanse. He could find no evidence of any that was due to physicale. Herr Kayser has also lat laboratexperimented at the densation, withory of Berlin upon she elecr rical effects of conexperion, with negative results. Personally I feel that all the
eperiments eraporation hitherto conducted on the electricity dus to
Bmall a Bmall a rcale to to condensation have been conducted on too can bo cale to test the question; and I do not see how they impense conducted on a larger scale. When we think of the nature, of the upon which these optrations are conducted in and of of the evaporation from every square foot of the ocean,
reajize the rapid condensation through miles of space, we can readize that an infindensation through miles of space, we can ${ }^{8}$ mall to be detected in a laborateryt of electrical charge, too a large amotetected in a laboratory, might be integrated into detmendounant, and, becoming localizod, might produce the ros.

The most conduct future investigations upon thun. eestorms ? The most promising direction for scientific work
than to be in the establishment of systematic observatious on thander-storms, and establishment of systematic observatious on
 by themertain definite paths, and other tracts, are never vis:ted
are, in There is a gener.l impression that electrical storms
tevere common langer evere common language, attracted by rivers, and are more sta
tion, be, nothinge budies of water in general. And are more
However this continued, can increase our knowledge. If the
government, iu connection with the signal-sorvice, should establish a number of electrical stations throughout the west and south, where thunder-storms and tornadoes are so frequent, duily thunder-strm maps might be issued, showing the probable path of the electric disturbances. Perhape we should then see, in districts peculiarly infested by thunder-storms, certain "insurance-against-danger-by-lightning retreats," in which Benjamin Franklin's lightning-rod should rise from a small hut, completely covered with a net-work of metallic rods which are connected with running water or a large extent of moist earth. The safe retreats would certainly be a great desideratum for many who now suffer greatly from nervous terrors during thunder-storms.-Science.

THE SEA HORIZON.

It is amusing to note how ignorant many ordinary seamen and nearly all sea travellers are of such matters as the dis. tance of the sea horizon, the way in which a ship's place at sea is determined, and other such matters-which all seamen might be expected to understand, and most persons of decent education might be expected io have learned something about at school. Ask a sailor how far off a ship may be, which is hull down, and he will give you an opinion based entirely on his knowledge of the ship's probable size, and on the distinctuess with which he sees her. This opinion is often pretty near the truth; but it may be preposterously wrong if his idea of the ship's real size is very incorrect, and is sometimes quite wrong even when he knows her size somewhat accurately. Any notion that the distance may be very precisely inferred from the relative postion of the hull and the horizon line seems not to enter the average sailors's head. During my last journey across the Atlantic we had several curious illustrations of this. For instance, on one occasion a steamer was passing at such a distance as to be nearly hull down. From her character it was known that the portion of her hull concealed was about 12 feet in height, while it was equally well known that the eye of an observer standing on the saloon- passengers' deck on the City of Rome was about 30 feet above the water-level. A sailor, asked (by way of experiment) how far off the steamer was, answered, "Six or seven miles." "Bnt she is nearly hull down," some one said to him. "I didn't say she warn't, as I knows on," was the quaint but stupid reply. Now, it might be supposed to be a generally known fact that even as seen from the deck of one of the ordinary At'antic steumer, the horizon is fully six miles away, the height of the eye being about 18 or 20 feet, and that for the concealed portion of the other ship's hull a distance of four or five miles more must be allowed : so that the man's mistake was a gross one. And several other cases of a similar kind occurred during my seven days' jouney from Qucenstown to New York.
The rules for determining the distances of objects at, sea, when the height of the observer's eye and the height of the concealed part of the remote object a above the sea-levcl are both known, are exceeding simple, and should be well known to ail. Geowetrically, the dip of the sea surface is eight inches for a mile, four times this tor two miles, nine times for three miles, and so furth; the amount being obtained hy squati.g the number of miles and taking so m ny timeseight inches. But, in reality, we are concerned only with the optical depr ssion, which is somewhat les; because the line of sight to the horizon is slightly curved (the concivity of the curve being turued downward). Instead of eight inches for a mile, the optical depression is about six inches at sea, where the real horizon can be observed. Buc, substituting six inches for eight, the rule is as above given. S x inches heing half a foot, we obtain the numbre of six inch lengths in the height of au observer's eye by doubling the number of feet in that height; the square root of this number of six-inch lengths gives the number of ailes in the distan ee of the sea horiz in Thus, suppose tue pye of the observar to be eightern leat above the sea levil; the.. we double eightern, getting thirty-six, the square roat of which is 6 ; hence the hoizinn lies at a distance of six miles as seen from an elevation of 18 fret. For a height of 30 teet, which is about that of the gye of an observer on the best deck of the City of Rome, we double 30. getting 60, the square root of which is 7.7 ; honce, as seen from that deck the horizon lies at a distance of $7 \frac{7}{10}$ miles. If the depth of a part of a distant ship's hull bolow the horizon is known, the distance of thit ship beyond the horizon is obtained in the same why. Thus, suppose the depth of the part concealed to be $12{ }^{\circ}$ feet then we take the square root of twice 12 , or 24 , giving $4 \cdot 9$, showing that

JURY RUDDER OF THE S.S. "KNICKERBOCKER."

that ship's distance beyond the horizon is 41_{10}^{9} miles. Hence, if a ship is seen so far hull down, from the hull of the City of Rome, we infer that its distance is $4{ }_{1}{ }^{9} 0$ miles beyond the distance of the horizon, which we have seen to be $7{ }_{10}^{7}$ milesgiving for that ship's distance $12 \frac{8}{5}$ miles. And with like ease may all such cases be dealt with.-Newcastle Weekly Chronicle.

JURY RUDDER OF THER B. S. "KNICKBRBOCKIRR"

The Steamship Knickerboekor, Captain Frank Kemble, of the Cromwell Line, from New Orleans, arrived at New York on Wednesday morning, April 23rd, steering with a jary rudder rigged at sea. Captain Kemble reported that during a heavy north-east gale on Sunday afternoon, about 120 milea S.S.W. from Cape Hatteras, the rudder and rudder-post were carried away. Daring the continuance of the gale the steamer was ateered by'towing a heavy hawser astern, which by judicious use of the sails enabled the vessel head on to wind and sea, and to proceed on the voyage toward New York. Captain Komble at once set to work to build a jury rudder on deck, made from cargo gaffs and spara, with cross-pieces securaly nailed and fastaned with atrong lachings and strains, an ahown in accom-
panying drawing taken on the dock from the radder itollf. On Treesday morning the weather had sufficiently moders to to enable the captain to get the radder in pooition, and 1008 secare it in place, further protected by gays running alous each side of the ship to the deck amidship, and kept fro ${ }^{\circ}$ getting foul of the propellers by gays running to the end ol apar projecting over the stern of the ship, then steering lines ranning throagh blocke at the end of another apar (p) amidships), thence to blocks on the mast, and so down to deck. Thus rigged, the ship was readily and succesefaly steered to her destination, refusing all assistance, coming past Sandy Hook, and ap channel to the Quarantine Btatio at Staten Island. Captain Kemble telegraphed to his ornd and came to wharf a little later, employing only a tug to the ship into her berth at Pier 9, N. R.
The Knickerbocker is a large and valuable ateamer and had full cargo and forty paseongers. The vessel and cargo som probably worth at least half a million dollars. Captain ble deserves great aredit for his ability in improvising successful and ingenious steering appliance, which enabled the steamer to complete hor voyage without other asaistance, ing her owners and the underwriters from large sall age other expenses and trouble, which follow acoepting at sem.-Engincering.

TEB WOLP BAFHTY-LAMP.

BY HUGENEB. WILSON, DRIFTON, PA.
(Prom the Transactions of the American Institute of Mining Engineers.)
The development of coal-mines has kept pace with the facilities at command for ventilating and lighting. In fact, it was formerly customary to leave unworked those mines, or portions of mines, in which naked lights could not be used withont orenger. Attention was then turned to the ventilation; but even with improved ventilation, the naked light was often not
safe. The new era in coal mining dates, we may say, as far back as 1815, when Sir H. Davy and Mr. George Stephenson discovered the principle of the safety-lamp. Since then many improvements have been added to their lamps, but until recently, none can be said to have given entire satisfaction ; and even now the question of more light is being agitated.
The difficulties to be overcome by improvisers were many. Attention was first directed to the locks, with the view of making them more secure, and of preventing the miners from picking them to light their pipes, or from relighting the lampe in the mines in case they had been extinguished-such a procoeding being, of course, highly perilous in fiery mines. The

improvement of locks was not found, however, to be perfectly $+\mathrm{ff}_{\mathrm{c}}$ cturl, since the miner could, by the aid of his picker, ra'se the wirk of the lamp to such a height as to draw the flame through the gauze and thus light his pipe. Lagislature, then made the act of smoking in firry mines a criminal offense; but even this did not put an entire step to it, nor could it be guarded against since the pickers were indispensable in order to raise and tim the wick. On the other hand, could all the miners have been convinced that in drawing the flame through the gauze, they put in jopardy their own as well as the livis of othets in the colliery, and thus persuaded t) cease from the practice voluntarily, still the danger would not be entirely renoved; for we have it from no less an authority than Mr. D..rlington, that suarks may fly off from the lamp when the ficker is used, and that one spark would be sufficient to cause an explosion.

The n+xt attempt was to invent a lamp which would not pass the flame through the gaze when moved rapidly. The Boty lamp on being immersed in an atmosphere highly charged with fire damp, becomes extinguished. Bat the miner thus finds himself in an unenviable position, since he cannot relight his lamp, and must, consequently, remain in the dark or grope his way back to the fire-boss to have his light unlocked and relighted-a dangerous undertaking at best.

What was needed was a lamp, the lock of which could not be tampered with ; the wick of which could not be raised ; and which did not require a picker, and could be extinguished or lighted at pleasure without opening.

Such a lamp is the invention of Mr. Wolf, of Zwickau, Saxony. A friend of the writer brought one of them from Germany last fall, and it has been greatly admired for its simplicits, efficiency and safety. The accompanying drawing shows Wolf's improvement as attached to the Mueseler lamp, which which was considered by the Belgium Commission of 1868 to be the best, and the use of which was again made obligatory by a royal decree in Belgium in 1876, as it had been also in 1864 , before the Commission re-examined the question. The Mueseler lamp is, like the Clanny, a modification of the Davy in which a glass cylinder is interposed between the wire-gauze cylinder and the body of the lamp, so that the light of the flame is not diminished by the wire. The Mueseler lamp has, however, also a sheet-iron chimney inside the gauze, which is said to have the effect that the light is extinguished by a strong draft or by an oblique position. The Mueseler lamp burns vegetable oil. The Wolf lamp, on the other hand, burns benzine, which is less expensive, gives a brighter and more uniform light, and does not deposit soot. The consequence is, that a much finer wire-gauze can be used, with great increase in safety ; and the miner does not need to pick his flame or clean his lamp during the shift, the wick being made of mineral wool. The opening of the lamp is prevented by a lock which is operated by a magnet ; and as it is not necessary to open the lamp to relight it, all legitimate occasion for doing so in the mine is removed.
The body of the lamp, W, which contains the benzine, is packed with mineral wool, to prevent spilling. Thus held, the $\mathrm{b}+\mathrm{nzine}$ is itself no source of danger. The flame may be made larger or smaller, to a limited and not dangerous extent, by the screw S, working in the collar M. The arrangement for lighting is not clearly shown in the drawing. It is similar to that which is so commonly sold by tobacconists for lighting cigars, ronsisting of a tape, carrying at intervals snall per-cussion-wafers. The detted lines between A and B indicats in a general wsy, the position in the lamp of this arrangemient. The button B operates both the feed of the tape upward (bringing a $\operatorname{Ir}+$ sh pucussion cap to the point of ignition A) and, by means of a spring, not shown, the tripping of the lever which explodrs the cap. This lever is shown in the drawing in contact with the tape-holder at A, as it would be just alter the explosion of the cap.

In the latest edition of Serlo's Leitfaden zur Bergbaukunde (B-rlin, 1884), vol. ii., p. 453, the above-mentioned advantages of the W.lf lamp are ennmerated (bit no drawing is given); and it is added that the lamp is said to go out when dangerous proportions of fire damp are preant, and als" 10 burn in "bad anr," Iong alter cil lanps have gone out. It centainly seems to the writer to be the nearest approach to a perfect safet!-lanp which we have at present. There is, of course, yet room for invention. We want more light, and better instrumental means of warning when fite-damp is present.

Gitiscduaxeoxs Totes.

The Siberian Polar Sea.-Petermann's Mitteilungen publishes a paper by Pıof. Mohn on the Siberian Sea, in which be discusses the observations on the Vega on the temperature and salineness of the sea.water. The accompanying diagrams shor very clearly to how large an extent these are affected by the warm water of the Siberians rivers.

Eantiquakies and the Change of Position in ths Ealnti's Axis - At a recent meeting of the Geographical Society of San Francisco, Cil., Vice-President Stevens read sid interesting paper on the movements of the poles of rotation, or the change of position in the earth's axis, considered as the cause of earthriakes and the recent reat convulsion of nature in Italv, Java, and Alaska. The various causes which may be supposed to produce this change of position in the earth's ax ${ }^{19}$ of several degrees, were considered, and their relative imurtance discnssed. Chief among these causes were mentione the deposit of immense bodies of sediment, as by the rivers of Thibet in Central Asia. The disputed question of the solidity or fluidity of the iuterior of the earth was also considered in its bearings upon the subject. The conclusion was that the prohlem presented was one difficult of solution, but the time might come when it would be so clearly demonstrated that the wonder would be why the matter had been thought so obscare,
Life on the Planfts. - The conclusion of the whole matter, says Prof. Mc.Farland, as far as astronomy and physics can \quad ffi. tell, is this, that the four large outer planets have not su we ciently cooled down to allow life on their surface such as sec on the earth ; that Mars gives all telescopic and spectro scopic probabilities of conditions compatible with life as see it ; that the earth certainly for millions of years has be covered with multifarious life ; that of Venus and Mercury have no certain knowledge, and that the satellites are pret in certainly not fitted for such life as is on the earth; that, particular, our moon has no water ard no atmosphere, conge quently no climate or vegetable life. If the sun and the plape far continually lose heat, then there will come a time in the future when the son itself shall go out in everlasting, niggld aud the planets cool down so that the "eternal snow" wown be hot compared with the degree of cold throughout all spac where everything shall be dead.

The Salmon Yield.-Mr. Huxley's report of last yegr is salmon fishing confirms his own assertion that very little known about the influences which regulate salmon supplid. The taking of salmon and sea-trout has increased and dimily ished in detiance of all theories, and Mr. Huxley is equal unable to establish any consistent relation between the salmon and the proportion of grilse present in succeeding $?$ large take being sometimes followed by scarcity, and times by abundauce of grilse. Mr. Huxley's sympathy manulactures has grown with his experience, and while knowledges the imporance of the rivers, his confidence in the power ot legislation has diminished with experience, but be still insist on the necessity of it. The two points brought we by the continued experiments of Mr. Giorge Murray, ${ }^{\circ}$ British Museum, are that the fungus may attack fish whole skins, and otherwise perfectly healthy, and that an ${ }^{\text {ex }}$ cess of lime in the water is not a predisposing cause of th disease.

Buining Wet on Dry Coal.-Thequestion of burning in a wet or dry state is still being discussed in the Eng journals, a large amount of both theory and practical inform is tion beiug set forth. One writer says that, although il generally conceded to be tiue that wet bituminous coal wi produce as much steam in a boiler as dry coal, there are figures to substantiate this. The result of a series of teste, recently with much care, are regarded as having, consi weight in the determiuation of the points involved. pears that a mass of washed slack, holding 18 per cen water and 9910 per cent. of ash, evaporated 57.10 pounds water per pound of fuel, while the same coal with only 3 jiug cent. of water made Irom 8 to 8510 pounds of steam; maik due allowance tor moisture by reducing to a standard quantities of coal free from moisture, a direct loss of cent. is shown in using wet coal. In reference to this a contemporary says: Part of the prevalent impression the greater value of the wet coal is based upon the notion
in some way or other the water itself is converted into gas and buins with great $+\mathrm{ff}^{2} \mathrm{ct}$, but this in the vast majority of cases is a delusion. The witer on the coal as thrown on the fire oust necessarily be slowly heated and at lengif fully evaporatrd hy an absurption of hrat from the burning fuel beneath it. The vapor thus given off passes away undi.r the boiler and out to the stack, carrying with it a volume of heat corresponding stack tumperature of the waste gas at the entrance to the 8tack, and also, what is far more impartant, the hat due to the conversion of this whole amount of water into stram. The more of the heat thus abs, rbed is an absolute loss, and the more water there is in the fuel the greater this loss must be.

Wood Carpeting. - What is described as a wood carpet has lately been patented by Herren Kuny \& Marx, of Munich. It consists of prepared wood fibre, filted by the aid of oxidized
linseed linseed-oil and crlaring matter on to a jute fabric, the hack of thich latter is covered with a coat of varnish. The material easily obtained is said to have a pleasing appearance, can be taken cleaned and repaired, is warm, noiseless, and can be taken up like carpets and quickly relaid on a change of resiin ver. The surface can be produced either flat or with designs As will be seent relitf. The coloring is honogeneous throughout. in some respects from the above description, the wood carpet is be, howe respects not unlike our linoleum. The price is said to the nowever, much lower, while durability is also claimed for in Bew Saltpetre Bed.-To the eastward of Cocha-bamba, in Bolivia, Sulthetre Bed.-To the eastward of Cocha-bamba,
discovered near an immense saline deposit has been the ingred near the village of Araué. Aualysea by Mr. Sace, of salt and ents are potassic nitrite, 60.70 ; borax, and traces dissolving water, 30.70 ; organic matter, 8.60 per cent. On plentifug this mixture in boiling water and cooling it, a on which crystall zation of pure saltpetre is obtained. The soil on which the bed lies is brown aud inodorous when it is dry,
but when moistened it gives ont an o lour of carbonate and 8ulphhyd moistened it gives out an olour of carbonate and incombuste of ammonia. M. Sace has found it composed of
ganic motible residue, 74.20 ; borax and salts, 15.50 ; and organic matter with water and ammoniacal salts, 10.30 per cent. The incombustible watesidue is formed of a very fiue sand, and
of phosphate of phosphate of lime, magnesia, and iron, in large proportion. the ammetre has evidently originated from the oxidation of froduced by the salts of the soll in presence of potash and soda thep rest. by the slow decomposition of the schists on which the rest. The potasic nitrate has mounted by capillarity to
has been of the soil, whilst the deluquescent nurate of soda has been drawn by the rains towards the dry and warm regions of the coast, where the rains towards the dry and warm regions
Worked in Corms the beds of nitrate of soda actually forked in Chili. As inmense quautities of fossil bones are beds there, soil around Arané, it is possible that the saltpetre are a result of the decomposition of a vast deposit of ante. diluvian animal remains. THE PROJET remains.
Roudaire projected Augerian Sea. - The proposal of Col. in the south M. de Lesseps to flood the dry bed of the Shotts sea, has of lat Algeria, and thus create a North Afican iuland in the Frente net with a good deal of unlavorable criticism isserting that Academy of Sciencts, one critic, M. Casson, idea that the Shothougis M. Rouduire has abandoned the thonghat the Shotts was the Trioon Bay of the ancients, and 0_{4} the a Commi-sion of luyuiry has pronounced utfavourably plan. Angret, he, M. Ruudare, stall clings to his original Wiench Au,ther cintic, M. Letourneux, potests against the Which, in his opmition, would cause the complete ruin and de${ }^{8}$ praction of Beiad-el-Dj wid aud S the coumplete ruin and dePhed to of Beiad-el-Dj rid and Suuf. M. de Lesserps has te-
his theory Bay; but that the Shotis is the same locality as the Triton and be points ont cuntrary, is still engaged in supporting it; examined the out that the French Academy of Sciences has Moreover, the project and regarded it in a favourable light. $h_{a s}, h^{2} e$ asserts, the demonstrated the advantages of the plan, and
$h_{\text {as }}$ never thas never disapproved of it, and, though they will wot assist
the enter prise
it it be cartied out they are far from whshmy, to oppose it, provided alieady bed out by private meaus. A group ot prajecturs have no demon the Outd. Melah, a woin whose montance reyuires

Porpoise: Oil and Leather. - A new industry is growing up on the Atlantic coast, whica may soon, in a great measure, supp'ant the loss to that portion of the Union of the whaling business. Small vessels are now being fitted uut to cateh porpoises, which are very numerous on the At'antic coast and bay*, and which have hitherto at'racted vely litile attention in an industrial point of view. One of these vessels recently arrived in Philadelphia with 75 fat pornoises from which the fulloning products were expected : 1,000 gillons of oil, 3,750 pounds of hide for leather, and 15 tous of phosphate. The oil is said to be equal in value to sperm; leather from this sonrce is pronounced equal to the hest French call. It has bern made in su:all quanties for some years in Eugland and Gurmany. The fish are caught in a large sea net, with wings a mile long, by which they are inveigled into a sack some 60 feet wide by 24 deep aud 120 feet long. The 75 fish above alluded to were caught in two hauls, buth being madu in one day. If the above items are correctly stated, it will be readily s.en that the business might be made a very lucrative one.

The Lost Rivers of Idano.-One of the most singular features in the scenmry of the territory of Idaho is the necurrence of dark, rocky chasms, into which creeks and large streams suddenly disappear and are never more seen. The fissures are old lava channels produced by the outside of the in ass coolin's and forming a tube, which, when the fiery stream was exhausted, has been left empty, whilst the roof of the lava duct, having at some point fallen in, present there the opening into which the river plunges and is lost. At one place along the Suake, one of these livers alpeare, gushing from a clett high up in basaltic wall; where it leaps a catarast iuto the torrent below. Where this stream has its origin, at what point it is swallowed up is absolutely unknown, although it is believed that its sources are a long way up in the noith csuntry. Besides becoming the channels of streams, the lava conduits are frequently found impacted with the ice masses which never entirely melt.

New Electric Battenies.-A novel thermo-chemical battery has been invented by M. Vincent Riatti, prolessor in the Polytechnic School at Torli (Italy). The production of the current results from the difference of temperature of two layers or strata lyng at different levels in a vessel filled with liyuid. The cell consists of a wooden box or vessel traversed by two copper pipes placed the one over the other, and separated by a distance eyual to about half the height of the vessel, which is filled with a solution of sulphate of copper. A current of steam passes through the upper tube, and a current of cold water in the lower, with the effect that copper is deposited on the latter, while the substance of the former is reduced. By changing, from time to time, the position of the tubes, equilibriun is established. 'l'his battery is said to work well and not to polarize, but up to the present no practical information as to its periormance has been published, and coustqu-ntly we cannot do more than call attention to the principle of its action. M. Grimite'd, of Vitnna, has devised a moditication of the Cal. lauct battery, in which there is employed a glass vase divided in two by a mid partition half the herght of the vase. The two upper halves are thus in free communication, while the two luwer halves are separated by the partition. In the bottom of one of the cells is placed the disc ot copper ; the zine is at the top of the other. By this arraugement the deposition on the copper of black particles falling frum the zinc is avoided; at the same t me, however, the resistance of the cell is increased and its cost augmented. A modification of the Leclatuche element has received from its author, M. Fin, of Suttyard, the name "immersion battery." It consists of a glass vase at the bottom of which is placed a layer of binoxide of maliganese. The vast is closed by a cover carrying a caibon, and a ling of zine. An inverted flask filled with a solution of chloride of ammonium keeps up the supply of hquid.

The Finland Polar Expedition.- M. Lemstrom has published the cmef results of the Finland Polar expedition of 1883.84. The scientific observations wtre made at Sodankyla (latitude, 67 deg. 24.6 min. north; longitude, 27 deg .17 .3 min. east of Grenwinh) aud at Kaltula (latitudr, 68 deg. 29.5 miu. north ; longitude, $26 \mathrm{~d} g .39 .4$ mull. east). The ;arth curtents wire studited from September, 1882, to September, 1833 , at the same time as the maynetic varlations. 'Two conductors of copper wire, running from north to south and east to west for about 5 kilometres, terminated in platinum plates buritd to a depth of 1.3 metres. The wires were insulated on telegraph poles and a seusitive galvanometer was interposed in
the circuit of each. Wires of iron were also nsed with plates about 2.5 kilometres apart. At Kultala the earth plates were plunged in the river Fralo and its tributaries. With a Mascart electrometer giving eighteen divisions for a volt, and with the galvanometer, the perturbing forces due to the polarization could be eliminated. From the fact that the variations of carrent in the east and west was very slight, M. Lemstrom is in. clined to believe that there is a belt of earth currents round the pole. The magnetic variations were found to be intimately associated with those of the earth currents. The atmospheric currents were observed with a wire network. At Kultala, four of these nettings of wire, with brass discharging points and zinc earth connections, were erected at different heights on a moun tain side. With these it was found if two discharging nets of similar construction and at the same height were connected together through a galvanometer, no current was observed. With one net higher than the other, and both connected, a current was sent from the higher to the lower. The electromotive force of the currents observed did not rise above. 326 volt (on March 20). Near the surface of the earth there is a layer of air which has a much greater electric density than layers higher up. The minimum density was formed at a height of 3 to 9 metres. During the aurora the atmospheric current was always positive, that is to say, going from the atmosphere to the earth; at some other times it was negative. With regard to the artificial aurora sometimes seen crowning the discharging networks, M. I amstrom states that they showed either diffused light, or visible rays. They were observed by the naked eye and by the spectroscope, which showed the lines of the polar aurora. A Holtz machine working in connection with the wires could reinforce the effect under favourable circumstances. If the moon was high the phenomenon was never seen with the naked eye.

An Improved Componnd for Plastering or Stricco Work.-The object of this invention is to furnish an improved plastering for a finishing coat for ornaments, mouldings, statuary, and the like. This compound is coloured uniformly throughout, and requires no subsequent labour, in tinting the surface, nor is it discoloured and defaced by the scratches on the surface, like ordinary tinted walls. It may also be made waterproof, so as to be uninjured by repeated washings, or by steam. My improved composition consists of the following ingredients: I take by measure one part of air-slacked lime, one-half of a part of fine sand, from one-half to two-thirds of a part of rice flour, and one-fourth of a part of fine salt if beach sand is used, otherwise one-half of a part. Then I mix dry, with the desired colouring matter, preferably dry aniline colours, being careful to make the mass homogene. ous by thorough.y mixing its elements to ensure nniformity of colour and avoid streaks. When about to be applied to the wall or other surface I render the mass plastio by adding sufficient weak glue in which has been dissolved, while boiling, from ten to twelve grains of bi-chromate of potash to each quart of the liquid, for the purpose of rendering the finished surface waterproof. When the liquid is added the whole is stirred so as to effectually moisten all the ingredients, and intimately incorporate them into one mass of uniform consistency and colour. It is then spread over the foundation cost with the trowel, in the same manner as any fine plaster. Walls finished with my componnd may be frescoed either in oil or water colours as readily as ordinary walls. For stucco or other fine work I sometimes substitute plaster of Paris for the lime, and reduce somewhat the proportion of sand and salt, while retaining the full percentage of rice flour. Less colouring matter is needed than when lime is employed. The elements are mixed and stirred with the weak glue as already described, adding the bi-chromate of potash as stated, when it is desired in either case to make the surface waterproof.

THIA FHNTOMOLOGY OF A POND.-(Knowledge.) BY F. A. BUTLEER.
 (Continued from page 254.)

Passing on now to the stouter-bodied, shorter.horned flies, our only example will be the insect called Stratiomys chameleon, the common chameleon fily, which belongs to a family containing several aquatic representatives. It is a broad, flatbodied insect (Fig. 1), with a velvety black body, adorned with yellow markings, and is a near relation of those lovely, glossy, metallic-looking flies, with long, dark wings, and bodies of a greenish, purplish, golden, brassy, or bronzy tint, that are
often seen sucking the honey of flowers in damp places, or sunning themselves, and displaying their beanty on the leaves of trees. The eggs are not launched in rafts, like those of gnats, but laid in overlapping rows, like roofing slates, on the underside of the broad leaves of the water plantain, A lisma plantago. The larva, which is of an elongate form, tapering greatly towards the tail, is chiefly remarkable for the perfect star of dbont thirty feathery hairs it carries at that extremity. As usual, this circle of hairs is intended to assist in the respiratory function. To breathe, the insect slowly rises to the surface by serpentine wrigglings, and remains suspended there, the coronal hairs acting as a float, and by their capillary attraction causing the water to recede from the respiratory orifice which is situated in their centre, so that air can be taken in st pleasure. When this has been effected, the insect closes its hair star somewhat as one would shut an umbrella, and slowly descends to the depths again, carrying with it the spoils of the outer world in the form of a silvery globule of air entangled in its plume. Its jaws and other appendages of the head are in constant 'motion, creating currents which bring to it the minute creatures on which it feeds. During larvahood, thell, it does not very greatly depart from the general style and method of life of the gnats and other long-horned flies, bul when we come to the next stage we notice a great difference. Hitherto we have found the pupa shaped like a large common and breathing by appendages attached to the thoraic region In the chameleon fly, however, a totally different arrangemen is made. The true pupa is formed within the old larva sking which retains its form so that but little change, except an inf flexibility of body, is apparent outwardly. The pupa itself, however, reveals all the organs of the futare insect, and with its wings and legs folded lengthwise along its breast looks like a miniature Egyptian mummy. It is much smaller than the larva, and so does not occupy nearly the whole of the space the old skin affords, the long tail-like part being converted into

Fig. 1.-Chameleon Fly.
an air-chamber to supply with aerial nutriment the imprisoned mummy, which has its spiracles situated in the usual position down the sides. When the time for emergence arrives, a por tion of the case near the head is removed, and the fly malal its exit through the opening.

There is a small family of moths whose caterpillars art aquatic, and may be found feeding on plants below the surface; but we will reserve a notice of these till wic treat of the perfoul insects, which are abundant amongst the rank vegetaios fringing the edges of the pond.

Berides the bugs, beetles, and fly larvo, which are the legitio mate inhabitants of this part of our pond, certain perfeot in sects belonging to orders that one would assuredly not expeot to find represented in the water-at least in the adult may occasionally be detected paying flying visits to these gions. About twenty years ago, Sir John Labbock discores that some minute insects allied to the ichneumon fies, is therefore belonging to the order Hymenoptera, are aquatio tho habits. This was a most surprising discovery, for though the Hymenoptera form an enormously large order, the numbor dio species having been estimated even at 30,000 , not a sing member of this vast host had previously been known to hes any connection with water. Sir John Labbock describes hos discovery as follows :-"Great was my astonishment. . od wn I saw in the water a small Hymenopterous insect, evidegh quite at its ease, and actually swimming by means of its At first I could hardly believe my eyes, but having found ral specimens, and shown them to some of my friends, can be no doubt about the fact. Moreover, the same was again observed, within a week, by another entomologisty Duchess, of Stepney . . . It is a very carious coincidence after remaining so long unnoticed, this little insect should be found almost simultaneously by two independent obeervert

Were females. The tiny being (Fig. 2) measures no more than $\frac{1}{25}$ of an inch in length. It has no nervures in its wings, the hinder pair of which are so narrow as to be scarcely more than linear in shape, and both pairs are fringed round the edges with hairs. It belongs to a group which, like the ichneumon flies, are parasitic

Fig. 2.-Polynema natans.

npon

 beir hosts, not when the latter are in the larval condition, but actaally while they are in the egg, the contents of a of the egg being sufficient to furnish nutriment to the grub of the parasite during the whole of its brief larval career, siten. Thmes even one egg is the home of several parsLabbock Po present insect, which was named by Sir John bability Polynoma natans, may, therefore, with much proeigge of be presumed to have been in quest of the larva or berood. It of aquatic cresture in which to deposit its own beod. It would seem, however, that this can hardly bethe sole cause of the inasmuch ase of the entry of these insects into the water, inasmuch as the males were found swimming as well as the
lemales. The wings did not twimming The wings did not seem particularly effective as low, and organs, the progress of the insects being but ming, and in a series of jerks; sometimes, too, the swimplanta, Mas abandoned in favour of crawling over the aquatic planto Marvellous as it may seem that a creature should reatly awimming-organs delicate membranous wings, appagreater adapted only for aërial flight, the marvel becomes not in when it is remembered that the little diver is life, in any way structurally adapted for an aquatic but except it be by the fringes. round the wings, amonese it has in common with other members of the no flattening which never enter the water at all. There is no artangeng of the leas, no tapering of the form in front, breathingement to provide for subaqueous respiration. The spiracles, and conducted in the ordinary way by means of to to apeak, to hold its breath, just as one of the higher animals woald, to hold its breath, just as one of the higher frew thought it would seem, therefore, that the tiny Weature, in obeying its maternal instincts, incurs some risk
of drowning not requing, but it must be remembered that insects do the hequire a renewal of air anything like so frequently as O Anduranoe seems to and in the present instance the power Oir John Lubbook to be much greater even than usual. endure submbbook found that one of his insects could bat that after fourteen hours it was to all dead. dead; however, on being transferred to a dry spot, it rivod, and, after a time, became as lively as ever, so experience in fact, that, notwithstanding its uncomfortable Wherience of temporary drowning, it did not hesitate, the an opportunity was again afforded, again to enter in Water. Professor Weatwood has suggested, however, explanation of this power of enduring prolonged subNoncion, that the fringe round the wings may carry down
entangled in its hairs a small quantity of sir, sufficient for the wants of the insect during the time it would naturally remain below.

Curiously enough, a second aquatic species, a trifle larger than the other, and much less common, was discovered on the same occasion and by the same observer. It swam, however, not by aid of its winge, which were kept atill, but by a rowing motion of the legs, and thus progreased more rapidly than its relative.

Ichneumon flies have recently been bred from the pupso of a Gyrinus, or whirligig beetle, which, as will be remembered, is, in its larval state, subaqueous. It is not known, however, at what period in the history of the Gyrinus the ichneumon eggs are inserted in the body of the host, though, judging from analogy, it would seem probable that it is the larva that is thus viotimised, and in that case either the ichneumon must dive, or the larva must be attacked during its temporary exposure on the aquatic plant on which it forms ite cocoon; still, however, the eggs may be deposited in the pupa through the walls of the cocoon, the ichneumons possessing ovipositors long and powerful enough for the purpose.

Certain caddis flies, or water moths as they are sometimes called, and dragon flies bave also been known voluntarily to submerge themselves in order to deposit their eggs in appropriate positions.

Fig. 1 -Ranatra linearis (reduced).

Leaving now the middle depths, which have detained us so long, and continuing our descent, we reach the bottom of the pond. The bottom of a pond can hardly be considered a particularly attractive abode, at least so far as appearances are concerned, and if one remembers its usual compositiou it will appear even less desirable as a home. Here is collected a fine mud, composed of the remains of all sorts of rubbish that is continually being rained down from the watery heights above. It is, as it were, the dust-bid, the cesspool, and the cometery of the pond. Dust blown in from time to time by high winde, fragments of plants broken from aquatic vegetation, dead

Fig. 2.-(A) Fore-leg of Ranatra: (13) Leg of Star-beetle. a. Coxa; b. Trochanter; c. Femur ; d. Tibia; c. Tarsus.
leaves and bits of stick fallen from the trees on the banks, the excrement of the insect and other inhabitants, together with fragments left from their repasts, empty shells of all sorts of water-snails, cast skins of larræ, the dead bodies of the uultitudinous aquatic population (and the mortality in a thickly fopulated pond must be considerable) together with those of worms and other terrestrial creatures that have had the mis. fortune to fall in and be drowned-these are some of the materials that, besides the mere earthy matter, help to form the ever-increasing mud at the bottom. There are, however, multitudes of minute creatures constantly at work on this refuse matter, dividing it up and transforming the dead and effrte materials into the living tissues of their own bodies, and thereby reducing the ultimate waste substance to a much smaller bulk, and rendering it innocuous to a degree that might at first seem impossible. Half buried in this mud, or slowly crawling over its surface, are the lurking monsters of entomological pond life, the majority of which belones to two orders we have hitherto scarcely noticed, the Neuroptera and Trichoptera, the former containing the dragon flies, and the latter the caddis flies. We will, however, first consider certain bugs which haunt these parts.

They are known as water scorpions, and two species inhabit this country, one commonly found in almost every pond, the other of much less frequent oecurrence. The have, of course, no connection with the true scorpions, which are not insects at all, but eight-legged creatures belonging to the class contain. ing spiders and nites. The water scolpions, too, unlike their terrestrial namesakes, are not venomous. The first, and much the less common, is a loug, narrow insect, called Ranatra linearis (Fig. 3). On account of its habit of frequently lurking in an inclined position amongst the water-weeds, often ouly a little below the surface, this creature belongs less to the fauna of the bottom than its common relative. Still, they are best treated of together. It is of a brownish colour, except the upper surface of the abdomen, which is scarlet, but this is concealed when the insect is in the water, being made apparent only when the wings are expanded, and then it is quite astonishing to see what a beautiful creature the appareutly uninteresting object becomes. The head is small, but the eyes exceedingly prominent, as is often the case with aquatic insects, and the beak short and sharp, not bent underneath, but projecting in front like an extremely acute nose. Both thorax and abdomen are elongated to an enormous extent; indeed, the insect, with a length of an inch and a-balf from tip of snout to end of abdomen, has its greatest breadth no more than onesixth of an inch. The upper pair of wings, while almost as long as the abdomen, are each only about half its width, but the hinder pair are considerably broader, and have to be carefully folded up before they can be stowed away under their narrow covers. These hind wings are beautifully delicate and transparent, similar, indeed, to those of the Corixidæ before referred to. But when we have reached the tip of the abdomen, we have by no means got to the end of the insect; from this point there extend two long bristle-like organs, about an inch in length, which project straight behind like a stiff tail; they are tubular, and communicate at their base with the tracheal system, and are, of course, respiratory in function. The legs are loug and slender; the first pdir are not used for progressiou, but for seizing prey, and it is these in front, and the re-piratory filaments behind, that give the creature whatever resemblance it may have to a scorpion, although the similarity to that venemous animal is not nearly so exact as in the other species to be considered presently. The front legs are most remarkable objects, and will well repay a careful study. To understand clearly their peculiarities, we must first refer to the general plan of an insect's leg (Fiy. 4).

There is first a joint, usualiy comp iratively small, and more or less glolular, ca led the coxa, by which the leg is articulated to the body, and which is usually invisible from above. Succetding this is a small triangular joint, called the trochanter, squetzed in, as it were, between the coxa and the noxt joint, and looking as if added, as an afterthought, to fill up a gap. Then follows, attached to the side of the trochanter, the first long piece of thr leg, the thigh, or femur, then another long piece, the shank, or tibia, and lastly the tarsus, or foot, which is composed of from two to five joints, and usually terminated by a puir of claws.

Now let us take one of Ranatra's fore-legs and compare it with this plan. First we fiud a long joint, which extends far beyond the head, but still, from its being that which articulates the leg to the thorax, we know it must be the coxa,
though it protrudes so far that we may pasily at first mistake it for the thigh. Then there is the trochintir, a little larger and more than usual, and this is succeeded by a long piece lightly curved at the further end, and with a tonth a little beyond the midule; this, of course, is the femur. Atter this there is a short, sickle-shaped part, less than half the length of the femur, and lookinglike a great claw; it is able to be folded back upon the inner ed se of the frmur, along which a narrow groove, serrated at the edges, is excavated to receive it, and then the tip just reaches the above-named tooth. This sickleshaped part consists of both tibia and tarsu*, the latter of which is very small and has no claws. It will thus appear that the leg proper is, as it were, spliced on to the end of a long handle, the elongated coxa, an arrangement the effect of which is to give the limb much greater freedom of motion and a much wider sweep, and thus to enable it to levy tribute over a mucb more extended area. So peculiar is the plan of these linbs that it is no wonder that many persons have been puzzied to understand them.

We must leave the habits of Ranatra for consideration is the uext paper.
(T_{o} be continued.)

Engixecring Motes.

A New Mechanical Puddling furnace is claimed as one of the late achievements of English invention. The English correspondent of the American Manufaciurcr speaks of it for an improvement of Cort's puddling furnace, and a device for making the puddler (or boiler) no longer the drudge who handles the rabble bit, but the gentleman who watches auto matically working machinery do all the labor required to turn crude iron into walleable iron, or into steely iron. It is more pretentious than the Danks furnace, says the above corres ${ }_{\text {But }}$ pondent, since it proposes to ball-up as well as to boil. But whether it is likely to be attended with more success than that device is questionable. If it could be run as the iuventor ventures to hope, then it would be a considerable improveme ${ }^{n}$ upon the Danks, since it would not only do more of the man ual work, but would do it with a continuance scarcely con templated by Danks; without, however, ore would think, tbee capability of the Danks to treat heavy charges; though a series of rapidly perfect bails ought to be really beaten by the shing ling hammer into massive blooms. But the device has not yet gone beyond the stage of models and plans.

How to Determine Expansion.-Mr. C. E. Emery made ${ }^{\text {de }}$ a very complete series of experiments some years ago upon the engines of the United States revenue cutters, Rush, Dexter Dallas, and Gallatin, from which he deduced the followivg simple rule (subject to certain limitation) for the be-t ratio ol expansion in steam engine : Rul-Add 37 to the steam pres sure as shown by the guage; divitie the sum by 22 ; the $q^{u 0}$ tient will be the proper ratio of expansion. Example: An engine is running with a pressure of 90 pounds per square inch what would be the ratio of exprusion? $90+47=127 \div 22$ $5.77=$ the best ratio of expansion.

New York's First Cable Road.-The Third Averue Rallroad Gompany is progressiog raphily wiih its cable ruad extending thrugh 125 th street fram the East River to the North River, and from 125 th street to 187 th street on Tent avenue. Concerning this new road Mr. J. D. Mlller, the chiol engineer, says: "This railway wil! be somewhat diffrent from any other in the norld. It is an improvement on the Chicaf cable ruad for several reasous. In the first place, it is plannedg on a duplicate system - that is: ther, ure two cables working in the same way on each track; while one is in use the ot ake is not; but in case of accident to the one in use, it would take the only two minutes to transfer the brake to the other, and the delay would be hardly noticeable. In the second place, jast pulley wheels, which move the cable, are placed in vaults jus 35 feet apart and 22 inches square. Now, the tracks are formed that, in ca.e of rain, the water will be stopped by the ${ }^{0}$ to instead of flowing toward the curbstone, and will sink ind these vaults. To iake away this water a sewer pipe 6 inches d. diameter will run the whole length of the road, underuroul n^{0} The whole road will be composed of steel aron, and concrete, wood being used, because wood rots. The cars will be runilid early in Uctober."

A N_{ew} Irish Scheme. - The project for constructing a ship canal aeross Ireland has been warmly espoused by influential people in England. Elaborate plans and surveys have been made at considerable expen-e, and have been submitted by Capt. Ends, the American engweer. The plans were prejared Th Mr. T. A. Walker, of Gre t G orge street, Westminster. The proposed canal would be 127 miles in length, anl would contain thiriy locks. For ships of 1500 tons the cost would be eight millions; for ships of 2,500 , 1 welve millions, and for ohips of 5,000 and upward, twenty millions sterling. If built on this scale, the canal would be 200 ft . wide on the surface and 100 ft . at the bottom. The passage through the canal Would be effected by a system of towaye, and it is estimated that the passage of a ship from Galway Bay to Kingstown would 0ccupy between thirty-four and thirty-six hours. An alternative schme of a ship railway, in which the ships woud be carried in cradles, which could be constructed for ten millions, is proposed, by which the duration of the passage through the
island island would be reduced to twelve hours. An inmense aqueShannould have to be constructed to carry the canal over the being one at Banogue, and would be over three miles in length, with one of the most difficult and costly works in connection with the undertaking.
The London lnver Circle Railroad. - The London InDer. Circle ikailroad is a marvelous feat of eugineering skill. It
rans through of the larghout its entire distance under the business centre of the largest city in the world, and the operations attending injuryaration and construction have proceeded without serious have had or interruption of busines; or traff:. Quicksinds bave had to be passed through, beds of old rivers spannedfoundy warehouses and massive buildings secured, while their of gas anns have been undermined, and an intricate network of gas and water-pipes sustained until supports had been ap-
plied to plied to them from below. Added to this the six main sewers
had had sereral times to be reconstructed. Day and night the work
has been gineers carried on for eighteen months, and now the enTheers are able to announce that their tunnel is complete. portion layg of the rails and the building of the stations are the a very of the immense work that remains to be done, and in a very short trains will be passing over the whole of this won-
derful subterranean A subterranean road.
of the New "'Maid of the Mist."-The keel of a new "Maid river. Mist" has been laid on the Canadian side of Niagara feet. The keel of the new boat will be 70 feet long, with 16 feet beam and 7 feet hold. The propelling power will be a 5
foot bronzel constructe wheel. The boat will have two 12×14 engines, so canse may that that they can be run separately or together as the $u_{s a m y}$ may require. Either of these engines is larger than is of the wat in a boat of this size, but owing to the peculiarity against any the boat is intended to navigate and to guard connected breakage the two will be put in. The engines are ter. Thed with a shaft of hammered steel $4 \frac{1}{2}$ inches in diamebail ise timbers are of the best oak that can be procured. The on the ouilt in what is termed an 8 .inch filched frame, covered 2 inch outside with oak plank $2 \frac{1}{2}$ inches thick and ceiled with balf of plank. A cabin with glass sides will occupy about onecabin the after deck, while the front deck will contain a will be divisufficient for the engine and pilot-house. The boat boiler bulked into three water-tight compartments; divided by पpholstery whate The cabin will be finished in hard wood, no
tion
 to New Paper Pulp Machine.-Mr. G. H. Pond, according manafacture Falls (N.Y.) Times has divesed a machne for the ex perimenture of paper pulp froun saw dust. The working of the n_{0} diffental machine was so successful that the inventor found arrangeulty in interesting capitillsts in the invention, and bo built in in have been nade by which a model machine will Prper mill in that city immediately with a view of establishing a that Mr. Pund which it is to be used. The paper further states manufr. Pund's invention will work a revolution in paper letter papture. His experiments show that a five quality of Made paper, as well as brok, news and wrapping stock can be With the expense of beating eugines and other ponderous ma-
chinet Cbinery expense of beating engines and other ponderous ma-
Pottablishon to paper mills. He has made arrangements to
claidh a ten ton Clai;ped a that ton mall at once. Through his iuvention it is as by a the present mill can be puthod in of peration for $\$ 50,000$,
capacity capacity will cost $\$ 150,000$ or more.

Balloon Navigation.-M. Hrpe Mangon has presented his report to the Frunch Academy of S siences concerning the recent balloon a-cension at Mendon. The balloon was under the direction of Captain R nard, and, although it moved against the wind, it easily followed the course along which it was, steered. It was then veered around and brought back to the point from which it started. M. Mangon considers it a memorable event in the history of aerostatic science. Captain Renad, the inventor of the navigable bailoon, claims that the preblem of aerial navigation has been completely solved, and it is now only a questiou of time and money. He claims that he could insure a balloon postal system as easily as by railroad and could coutruct balloons, each one of which could carry over 100 soldiers.

Healtix aud exome.

Making Alcohol Innocuous.- The discovery of a method for taking the fusil oil out of alcohol is creating something of a sensation in scientific circles. It is claimed that the experiment his succeeded in reducing the deaths from alcoholism in Stockholm from 600 to 100 per annum ; and the inference is therefore widely drawn that the new process robs the whisky bottle of its turrors. But information is lacking as to whether the product of this process stil retans the ability of getting the drinker iutoxicated. If iiquor is still to possess the power of bringing its imbibers down to the level of beasts, by making them first upioarious and then stupid, it does not seem to make any vital difference whether it contains the fusil oil or not. On the other hand, if the power of intoxication is removed from the whisky, none of the drinkers will want it. Could anything more disgust the old toper who starts out to get comfortably full and strikes a beverage that has no drunk in it ?

Arsenic in Green Wall-Paper a Myth.-Mr. Robert Gilloway, M.R.I.A., publishes in the Journal of Science for August a paper on "'Emerald Green; its Properties and Manufacture," in which he satisfactorily shows that the arsenical poisoning supposed to arise from green wall-paper has in fact no foundation. Those who are interested in this question shovid read the paper in the journal referred to.

Cholera Prevention.-M. E. de Cyon brought his experiments with borax as an antireptic before the Academy of Sciences at the séance of July 21st. As a prophylactic against cholera, he recommends boracic acid or a solution of borax to be applied to all the external mucous membranes, and about six grains of borax to be taken with the food and drink every twenty four hours.

Poisoning by Canned Food.-Dr. J. G. Jonnson, of Brooklyn, N.Y., in a communication on the subject of the alleged unwholesomeness of canned provisions from various causes, calls attention to what he considers to be a source of danger in the process of sealing the cans. In this operation, it is customary to close the small opening lelt in the top of the can by first brushing around the surface to be soldered with what is commonly known as soldering fluid, which is a solution of zine in muriatic acid. This operation, he asserts, is put on with hrushes by boys, and the soldering iron then passed around it. Nothing is easier, he adds, than for some of the muriate of ziuc to get inside the can, and to become absorbed in its contents, rendering the same "extremely poisonous." It is further noticed that the chloride of tin may be produced by the action of the free acid (usually present in the chloride of zinc) on the tin of the can. Concerning the above, we may say that burax, or some other comparatively harmless flux, should be used for the purpose instead of zinc salt. But while we do not wish to be understood as encouraging carelessness on the part of the manufacturers, or as underestimating the possibilities of danger from such carelessness, we are inclined to believe that the real danger from the cause named is grossly overstated ; and the result of such extravagant statements is to cause needless alarm. The amount of chloride of zinc that would be likely to find its way into a can of provisions when used for the purpose named, is extremely small, and we think the facts will bear us out in stating that no authentic case of yoisoning from its prestuce has ever occurred. The facts are, that the canued food products, as a class, are entirely wholesome, and the very small number of cases of sickness resulting
from their consumption will bear another and simpler explanan tion than that of mineral poisoning. The cause of such unwholesomeness, when it does make its appearance, we are quite satisfied is to be looked for in the quality and condition of the food itself. It is apparent that food, vegetable or animal, which is in bad condition when canned, or which is improperly prepared for canning, may occasionally escape the notice of the operatives in the large establishments where canning is carried on ; and this appears to us to afford a satisfactory explanation of the few cases where bad consequences have been noticed in the consumption of this class of food products. The fact that the presence of sufficient lead, tin, or zinc salt, in a can of prepared food to cause any serious consequences, wonld render it so nauseating as to be utterly unfit for food, is a complete answer to the sensational statements of danger from mineral poisoning in using canned provisions.

ON THE EVOLUTION OF FORMS OF ORNAMENT ${ }^{1}$
 II.

THE leaf in Dracunculus has a very peculiar shape: it consists of a number of lobes which are disposed upon a stalk which is more or less forked (tends more or less to dichotomise). If you call to your minds some of the Pompeian wall decorations, you will perceive that similar forms occur there in all possible variations. Stems

Fig. 12.
are regularly seen in decorations that run perpendicularly, surrounded by leaves of this description. Before this, these suggested the idea of a misunderstood (or very conventional) perspective representation of a circular fower. Now the form also occurs in this fashion, and thus negatives the idea of a perspective representation of a closed flower. It is out of this form in combination with the flower-form that the series of patterns was developed which we have become acquainted with in Roman art, especially in the ornament of Titus's Therme and in the Renaissance period in Raphael's work. [The lecturer here explained a series of illustrations. of the ornaments referred to (Figs. 12, 13, 14).]
'From a paper by Pror. Jacohsthal in the Trans.actions of the Archaco-
logical Society of Eerlin. Continued from 1. 25I.

The attempt to determine the course of the first group of forms has been to a certain extent successful, but we meet greater difficulties in the study of the second.

It is difficult to obtain a firm basis on which to conduct our investigations from the historical or geographical point of view into this form of art, which was introduced into the West by Arabico-Moorish culture, and which has since been further developed here. There is only one method open to us in the determination of the form, which is to pass gradually from the richly developed and strongly differentiated forms to the smaller and simpler

Fig. 13.
ones, even if these latter should have appeared contenil poraneously or even later than the former. Here we have again to refer to the fact that has already been mentioned, to wit, that Oriental art remained stationiary' throughout long periods of time. In point of fact, the simpler forms are invariably characterised by a nearer and nearer approach to the more ancient patterns and also the the natural flower-forms of the Araceæ. We find the spathe, again, sometimes drawn like an Acanthus leaf, more often, however, bulged out, coming to be more and more of a mere outline figure, and becoming converted into a sort of background; then the spadix, generally conical in

shape, sometimes, however, altogether replaced by a pes fect thistle, at other times again by a pomegranate. $A{ }^{\text {a }}$ " berville in his magnificent work "L'Ornement des Tissus, ${ }^{\text {al }}$ is astonished to find the term pomegranate-pattern is most confined to these forms, since their central part dis generally formed of a thistle-form. As far as I can dis cover in the literature that is at my disposal, this question has not had any particular attention devoted to it excepl in the large work upon Ottoman architecture, publishbe in Constantinople under the patronage of Edhem Pasb The pomegranate that has served as the original of
pattern in question is in this work surrounded with leaves
tillitit gives some sort of an approach to the pattern (There are important suggestions in the book as to the employment of melon-forms.) Whoever has picked the fruit from the tender twigs of the pomegranate-tree, which are close set with small altercd leaves, will never dream of attributing the derivation of the thorny leaves that

Fig. 15.
appear in the pattern to pomegranate-leaves at any stage of their development.
It does not require much penetration to see that the outline of not require much penerration to see form corresponds to the spathe of the Araceer, even although in later times the jagged contour is all that has remained of it, and it appears to have been provided with ornamental forms quite independently of

Fig. 16.
the rest of the pattern. The inner thistie-form cannot be derived from the common thistle, because the surrounding has not negative any such idea. The artichoke theory also was not enough in its favour, although the artichoke, as pressed the thistle, was probably at a later time directly attention into service. Prof. Ascherson first called my attention to the extremely anciently cultivated plant, the

fowers (Carthamus tinctorius, Fig. 15), a thistle plant whose draws were employed by the ancients as a dye. Some the subjs and dried specimens, as well as the literature of wa subject, first gave me a hope to find that this plant borne the archetype of this ornament, a hope that was unable to by the study of the actual plant, although I was -

In the days of the Egyptian King Sargo (according to Ascherson and Schweinfurth) this plant was already well known as a plant of cultivation ; in a wild state it is not known (De Candolle, "Originel des Plantes cultivés"). In Asia its cultivation stretches to Japan. Semper cites a passage from an Indian drama to the effect that over the doorway there was stretched an arch of ivory, and about it were bannerets on which wild safran (Safor) was painted.

The importance of the plant as a dye began steadily to decrease, and it has now ceased to have any value as such in the face of the introduction of newer colouring matters (a question that was treated of in a paper read a short time ago by Dr. Reimann before this Society). Perhaps its only use nowadays is in the preparation of rouge (rouge aregetale).

But at a time when dyeing, spinning, and weaving

Fic. 20.
were, if not in the one hand, yet at any rate intimately connected with one another in the narrow circle of a home industry, the appearance of this beautiful gold-yellow plant, heaped up in large masses, would be very likely to suggest its immortalisation in textile art, because the drawing is very faithful to nature in regard to the thorny involucre. Drawings from nature of the plant in the old botanical works of the sixteenth and seventeenth centuries look very like ornamental patterns. Now after the general form had been introduced, pomegranates or other fruitsfor instance, pine-apples-were introduced within the nest of leaves.
Into the detailed study of the intricacies of this subject I cannot here enter; the East-Asian influences are not to be neglected, which had probably even in early times an effect upon the form that was assumed, and have fused the correct style of compound flowers for flat ornament with the above-mentioned forms, so as to produce peculiar
patterns; we meet them often in the so-called Persian textures and flat ornaments (Fig. 16).

We now come to the third group of forms-the so-called Cashmere pattern, or Indian palmetta. The developed forms which, when they have attained their highest development, often show us outlines that are merely fanciful, and represent quite a bouquet of flowers leaning over to one side, and spring. ing from a vessel (the whole corresponding to the Roman form with the versel), must be thrown to one side, while we follow up the simpler forms, because in this case also we have no information as to either the where or the when the forms originated. (Figs. 17, 18, 19.)

Here again we are struck by resemblances to the forms that were the subjects of our previous study, we even come across direct transitional forms, which differ from the others only by the lateral curve of the apex of the leaf : sometimes it is the central part, the spadix, that is bent outwards, and the very details show a striking agreement with the structure of the Aroid inflorescence, so much so that one might regard them as actually copied from them.

This form of ornament has been introduced into Europesince the French expedition to Egypt, owing to the importation of genuine Cashmere shawls. When it cropped up in isolated forms, as in Venice in the fifteenth century, it appears not to have exerted any influence; its introduction is perhaps rather to be attributed to calico-printing.) Soon afterwards the European shawl-manufacture, which is still in a flourishing state, was introduced. Falcot informs us that designs of the celebrated French artist, Couder, for shawl-patterus, a sulject that he studied in India itself, were exported back to that country and used there (Fig. 20).

In these shawl-patterns the original simple form meets us in a highly developed, magnificent, and splendidly coloured differentiation and elaboration. This we can have no scruples in ranking along with the mediæval plane-patterns, which we have referred to above, among the highest achievements of decorative art.

It is evident that it, at any rate in the high stage of development, resisted fusion with Western forms of art. It is all the more incumbent upon us to investigate the laws of its existence, in order to make it less alien to u, or perhaps to assimilate it to ourselves by attaining to an understanding of those laws. A great step has been made when criticism has, by a more pains. taking study, put itself into a position to characterise as worthless, ignorantly imitated, or even original, miscreations such as are eternally cropping up. If we look at our modern manufactures immediately after studying patterns which enchant us with their classical repose, or after it such others as captivate the eye by their beautiful colouring, or the elaborative working out of their details, we recognise that the beautifully-halanced form is otten cut up, choked over with othres, or mangled (the flower springing upside down from the leaves), the whole being traversed at random by spirals, which are utterly foreign to the spirit of such a style, and all this at the caprice of uncultured boorish designers. Once we see that the original of the form was a plant, we shall ever in the developed artistic form cling, in a general way at least, to the laws of its organisation, and we shall at any rate be in a position to avoid violent incongulities.

I had resort, a few years ago, to the young botanist kuhintr, assistant at the Botanical Musfum at Schoneberg, who has unfortunately since died of some chest-disease, in order to get some sort of a groundwork for direct investigations. I asked hin to look up the literature of the sul ject, with respect to the employment of the Indian Araceæ for domestic uses or in medicine. A detailed work on the sutject was produced, and establishes that, quite irrespective of species of Alocasia and Colocasia that have been reftrred to, a large number of Aractæ were employed for all sorts of domestic purposes. Scindapsus, which was used as a medicine, has actually retained a Sanserit name, "vustiva." I cannot here go further into the details of this investigation, but must remark that even the incomplete and impertt ct drawings of these plaists, which, owing to the difficulty of preserving them, are so difficult to collect through travellers, exhibit such a wealth of shape, that it is quite natural that Indian and Persian flower loving artists should be quite taken with them and employ them enthusiastically in decorative art. Let me also mention that Haeckel, in his "Letters of an Indian Traveller," very often bears witness to the effect of the Aracia upon the general appearance of the vegetation, both in the full and enormous devtlopment of spe. cies of Caladia and in the species of Pothos which form such impenetrable mazes of interlooping stems.

In conclusion, allow me to remark that the results of my investigation, of which but a succinct account has been given here, ntgative certain derivations, which have been believed in, though they have never been proved; such as that of the form I have last discussed from the Assyriad palmetia, or from a cyyress bent down by the wind. To say the least the laws of formation here laid down have a more intimate connection with the forms, as they have come down to us, and give us a better handle for future use and development. The oliject of the inves* tigation was, in general words, to prepare for an explazation o the guestions raised, and even if the results had turned out other than they have, it would have sufficed me to have given an impulse to labours which will testify to the truth of the dead master's words :

> " Was Du ererbt von deinen Vätern hast, Erwirb es, um es zu besitzen."-Nature.

EPIDEMIC CHOLERA AND INFECTIOUS DISEASES.

The presence of cholera this summer in epidemic form in southern France, the appearance of sporadic cases at widely scattered places and on shipboard at various seaports of the Europtan continent and of England, have brought western civilization once more face to face with two of the most impor tant problems which modern science and social organisation can be called upon to solve. These problems just now come home to every one, but in ordinary years are put out of mind, or left to the care of laboratory devotees, or of officials charged with departments concerned with public hygiene.

The first involves a purely scientific question as to the causes, modes of origin, and ways of propagation, of the $i n-$ fretious or so-called zymotic diseases : the second, evolving itself naturally from the first, is of a more immediately practical nature, and deals with the processes best calculated to prevent and antagonize these diseases, especially when presenting themselves as epidemics. And these problems owe this much to such epidemics, - that by them men as individuals, and governments (their representatives), are stimulated to a vigor of inquiry and action which are never evoked by a customary rate of mortality, however high, from endemic diseases, such as are always with us; just as the stimulus of prospective want of ten meets with a ready response whre chronic destitution make an ineffectual appeal to action. Typhoid•fever, resembliug cholera very much in its propagation, demands a steady toll from the populations of Europe and North America, compared to which the occasional ravages of cholera become insignificant; and yet it is impossible to inspire them with an intelligent dreail of that enemy expressing itself in possible and comparatively simple precautions. The self-reliant Anglo-Saxon continues to regard typhoid-fever with a measure of the same indifference felt by the fatalist of India toward cholera; and the explanation is to be found, we believe, largely in associ8tion, and not merely in the fact that filty per cent of those attacked with the latter disease die, whereas about eightr-five per cent of typhoid fever cases survive. The typhoil sufferer, as a surviver even, is robbed far more ruthlessly of time and strength, which by the Anglo-Saxon are transformed into walth, which to him is life

By this seeming digression we would impress upon readers, hegging them to keep it steadily before themselves and theif mililic ruthorities, the fact that cholera is but oue form under which these great general problems of the canse and prevention of infections diseanes present themselves. The prevelance d cholera in Frauce gives the health evangelist in the United States, who might otherwise continue crying in the wilderness, at o ce a text and a hearing, from which those who have com out from their usual routine must not be allowed to depart without a resolve to amend their ways, even though thes esc'pe rhis especial visitation. This threatening of cholerb should be the spur to animate northern zeal for the s olution of these prohlems which the south so often finds in the proximity of yellow-fever.

It now seems quite possible that the United States mas escape, at least this year, an invasion of enidenic cholera; but if so, the reprieve should be used to perfect precautions and vigilance against next year, and to collate, as far as may be, the latest scientific investigations with previous observatioll and experience. Science has already published, either in fult or in abstract, the seven reports to the German government in
emanating from the cholera commission under Dr. Koch, emanating from the cholera commission under Dr. Koch, Egypt and in India. These, in giving in a somewhat popular
form the results of studies of the fiesh excreta of forty cholera patients and of the cadavers of fifty two recent victims, offer
an interesting an interesting and doubtless valuable contribution to the sub. active under discussinn, but by no means demonstrate that the active principle of cholera reeides in a microbion, or that the particular microbion has been discovered.
Notwithstanding the lahours and advances in this direction during the last ten or twelve years, the number of diseases in
regard regard to which a positive affirmation can be made that they are cansed by a microorganism, and by a specific microorganism, is still very small, and neither cholera nor typhoid
fever can regard can as yet be included in that number. The number in regard to which there is only a strong probability that they
result from result from a snecific germ, propagating amid favorable sur-
roundings roundings, and finding entrance to the system of the victim under favorable circumstances, is much larger, and must still regarded as embracing cholera.
The investigations of the German commission will probably at Berlinued under the auspices of the German health bureau $l_{\text {ast }}$ apporlin, or otherwise; and the British government has at Heneapointed a commission consisting of Drs. Klein and the nature Gibbes, to go to India and pursue this inquiry as to ject andure of cholera; so that a further elucidation of the subject and of the precise significance of Koch's ohservations, may
reasonably reasonably be anticipated at no distant day. In the mean
time it is the it is our duty to protest against a confident application to disinfectise itself $r f$ measures of prophylaxis, of treatment, of the comina, or of quarantine, based upon the life-history of to the action tipped bacillus, or upon its behavior when subjected Althe action of certain media or of certain germicides.
Althounh their specific microbions have not been definitely lished the proballe accuracy of certain views in regard to both tyl hoid fever ande accuracy of certain views in regard to both ado ${ }^{2}+$ fed aver and cholera; and upon these the measures to be
Thry are Thty against such maladies are at present to be based.
"Slearly and concisely set forth in a circular entitled "Suare clearly and concisely set forth in a circular entitled
the Mgestions relative to epidemic cholera," lately issued by the Massachusetts coard of health, itself following generally a previous circular emanating a year ago last June from the
English English local government board, und reprinted under the same
anthority, with other supporting papers, last July.-Science.

Stientific Totes.

Bell, of ${ }^{\text {Temature of }}$ ofhe Spheroidal State.-Prof. Louis Bell, of Darture of The SPheromdal State.-Prof. Louis
ticulars determine some experinents which he has recently made to Thermine the temperature of the spheroidal state of liquids. We in periments were very carefully conducted and were sim-
upanner. The spheroids of the liquids experimented upon were produced in a spoon heated over a spirit lamp. A
large ner large number of experiments were made, the average variation
of which di. of which did not exceed 1°. The size of the spheruids had no
efec upa $\mathrm{a}_{\text {a }}$: for the temperature. The temperature thus found that : for water, 90°, and for alcohol 69°. We are not aware temptrature ant had previously heen made to determine such Mninh loture. The results of Prof. Bell's experiments show a
spherer temperature than has hitherto been assigued to the
 Erfect of Case-Haindening on Inon.-Among some maspry juechanits and locountive builders there exists a strong bitud fail in favor of using cise-hardened pins, yet pins of this Some time ofteuer than any other part of a first class locomotive.
care. the Baldwin people becoming convinced that care-baime ago the Baldwin people becoming convinced that Tone syst ned piatics wtre unreliable, they determined to nake The took a bar of 2 inch irove the matter beyond peradventure. inches. ${ }^{\text {a }}$ a bar of 2 inch iron and cut it into lengths of 12 the case. One piece they kept out and the others they put in
one candening furnace. Alter being an hour in the furnace one piece waldening furnace. Alter being an hour in the funnace case-ha in, and so on till the five pieces had gone through the in five hours, operation, the last piece taken out having been t_{0} a breaurs. All the p.eces were inen in succession suljected ${ }^{8} \mathrm{~m}_{\text {reng }}$ reaking strain, when it was found they had decreased in hact. Examportion to the time they had been in the furdid. Examination showed that the case-hardening process centre. Inerely affect the outside of the iron, it went to the In lie piece that had benen in longest, the heart had indicatio, and very coarse. All the others showed indications in small degrees according to the time they
had been in the furnace. In the breaking tests, the pieces that had not been in the furnace doubled without breaking, but all the others snapped off.
Mineral Formations.-By an ingenious artificial contrivance, chemists in France and Germany bave succeeded in imitating the conditions which are supposed to exist in nature and have produced crystals of native copper, and red oxides of copper, and of various oxides and sulphurets like those which are deposited in the mineral veins. These results explain several hitherto irreconcilable facts in the phenomena of mines. Native sulphides, if brought in contact with metallic solutions, effect the reduction of the dissolved metal. Galena if placed in a solution of auric chloride, becomes gilded, Mercury is also precipitated under the same conditions. These facts indicate certain geological consequences, particularly as regards the combinations to be found in metallic veins. We have convincing proof that long ago, when the waters covered the face of the earth, the influence of electricity (in producing crystals and entire veins of metallic bodies in their rocky repositories) was felt and that when the convalsions of nature forced the waters to recede and evaporate, the metals which were then held in a state of solution, were precipitated and thus quartz leads were formed. The action of electricity, by which heat is produced, is the grand principle which creates and sustains both animal and vegetable life and by which the earth was formed-this same agent is the origin of not only base metal ores, but of all ores containg gold and silver in their native state.
A New Means of Producing Light.-Professor Matthew Williams, writing in the Gentleman's Magazine, says:-I now learn that Professor Radziszewski has actually separaced the luminous matter of the Pelagia noctiluca, one of the multitude of species of marine animals that appear like little lumps of jelly, and produce the phosphorescence of the sea.
I have collected and examined a great variety of these animals at different times ; the most remarkable occasion being one morning after a magnificent display of marine luminosity in the Mediterranean, a few miles off the shores of Algiers. The surface of the sea was encrusted, I might almust say, with countless millions of small jelly-like creatures, spherical, ovoid, oblong, dumb-bell, and other shapes, varying in size from a mus-tard-seed to a pea; a bucketful of water taken over the ship's side appeared like sago broth. They were all internally dotted with a multitude of what I suppose to be germs, that would be liberated on the death and decay of the parent. The practical importance which I attach to the study of the luminosity of these creatures is the fact that they supply light without heat. The costliness of all our present methods of artificial illumination is due to the fact that we waste a largely disproportionate amount of energy in producing heat as well as light.

Protecting Steel and Iron from Rust.-Professor Calvert has recently made the interesting divcovery by practical tests, that the carbonates of potash and soda possess the same property of protecting iron and steel from rust as do those alkalies in a catstic state. Thus it is found that, if an iron blade be immersed in a solution of either of the above carbonates, it exercises so protective an action that that portion of the iron which is exposed to the influence of the damp atmospheric air does not oxidize, even after so extrnded a period as two years. Similar results, it appears, have also been obtained with sea water, on adding to the same the carbonates of potash and soda in suitable proportion.

Disinfecting the Sick Chamber.-Dr. Vilandt recommends that the atmosphere of a sick chamber where the patient is ill of diphtheria, measles, scarlet fever, or any allied disease, should be i-npregnated with the odor of a mixture of equal parts of turpentine and carbolic acid. Hulf a teaspoonful of the m:xture will be enough at a time, if it is put into a kettle of water kept near the hoiling point. The odor generally gives some relief to the sufferer, and tends to prevent the spread of the malady. A disinfectiug lamp can also be advantageously used and may be easily prepared for purifying any place where a disagreeahle odor is perceived, being esp cially useful in sick rooms and in damp cellars where vegetables have decayed. Take any glass lamp for burning kerosene or oil, fill it chloric fther and light. The old fashioned camphene or burning fluid lamps, with a snall, round wick, will burn longer and be of more service than the flat-wicked lamps. While the ether burus, a disinfectant escapes that will soon purify the most offensive atmosphere, even that of a sewer.

1

$\stackrel{\sim}{\circ}$

Examples of Wrought Iron Work.

[^0]: ## THE MIGRATION OF SALMON.

 Daring the last ten yrars some exceedangly interesting reand Nor have been effected by German, Finni:h, Swedish, ${ }^{0}{ }^{2}$ theirwegian ichthyologist, as to the nigration of ealmon Whedish and Five coasts. Thus, by cartful researches, some Which in the Finnish sarants have proved that the salmon, Bolf of the Baltiomer are caught in the rivers of the upper the winter, Baltic, have at another season, most probably in
 Oermany paid a visit to Germater, paid a visit to the shores and rivers of Northern
 in the s. This has been This has been conclusively proved by salnon caught wiah snd Finui-h rivers having Germen-made hooks

