Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

Communications relating to the Editorial Department should be addressed to the Editor, Henky T. Bovey, 31 McTavish Street, Montreal.
The Eiditor does not hold himself responsible for opinions expressed by his correspondents:
No notice woill be taken of anonymous communications.

- .

THE BRITISH ASSOCIATION.

It is quite possible that fifty years hence the *olebrated article, that appeared two years ago in the Times upon the British Aspociation and Canada, will
orcite oxcite as much amusement, as the old quarterly articles Thoy Keate and Wordsworth afford us at the present day. and increased friendliness between the United States arpanding mother country joined with the rapidly trip from facilities for locomotion, owing to which a in a Lrom London to Now York or even to Montreal than considerably less formidable undertaking Ten to journey between London and Edinburgh probable our grandfathers, make it more than Amociation the pending meeting of the British that body in Montreal will not be the last visit of the body to our continent. If this should prove to be able reesulte it would be difficult to overestimate the favourBrition to to of the further approximation of Great botice that her Transatlantic colonies. It is curious to followed that, this matter, the high priests of science have Anglican the lead of their religious brethren, Paned the and Pan-Presbyterian synods having anticipattotare. Lnternational British scientific gatherings of the Auilt this may be, but then again it may not. It is eption powible that the present move will prove an excophar will that the conservatism of the British philocountry will regard a visit to the colonies of the old Porty to ${ }^{4}$ a work of superorogatory condescension, too of the Britiep reated. However this may be, the advent the gity Britioh Association will, long be remembered in binly of Montreal, and in Canada generally. We certhriber impot recall a social and scientific event of ${ }^{7}$ re hope thartance in the history of our Dominion, and She wipe that all will take adrantage of the coming of mon from the east to our shores.

To look at things from the lowest point of view, the visit of the Association will be a capital advertisement for Canada as a home for emigrants. The farmer or the labourer will not feel that he is going to a strange land, when he remembers that it has been the spot chosen for the gathering of his scientitic teachers. But if from a commercial point of view we entertain just hopes of benefits accruing to our country from the coming visit, much more should we profit from it intellectually. The presence of Rayleigh, Reynolds, Adams, Dawkins, Gladstone, Roscoe, Thompson and Tylor, will doubtlems prove a furthur spur to the genius of our Hante and our Dawsons.
Nay, not only shall we profit from the ex cathedra utterances of our scientific visitors, but we must doubtless expect something similar to the criticism that our sonthern neighbour has received at the hands of Herbert Spencer and Matthew Arnold. Those who have grown up in an older and different stage of civilization will see much here to admire, bat much too to blame and censure. They will remark upon the splendid capabilities of the site of Montreal, situsted on the gentle slope of a hill, and they will notice also our imperfect sanitary arrangements, our defective drainage and bad lighting. If they visit the purliens of our eity, they will see much of the squalor of London, without the excuses that must be made for that old and over-crowded city. Criticism such as this we must expect, and we should-hail it gladly, remembering that we are not yet perfect, and that the Englishman is naturally disposed to grumble and, as our young emigrants have taught us, to express a wholesome contempt for all that differs from the state of thinge with which he is familiar at home.

Discoveries in Madagascar.-Several permons living in the interior of Madagascar have writton freely respecting the ditcovery of gold and precious atones in the interior. One gentleman, writing reoently, eays: "Gold has been found to oxist in considerable quantities, and diamonds also ; the diggers are begimaing to move in unita, but there is danger of a rush." Andiher says that "t the prospects of the country are good, as gold has been found, and precious atones aleo."

A NEW BOOK.

A Treatise on Toothed Gearing. By J. Howard PH.B. (New York, John Wiley \& Sons.)
In this work the author endeavors to set before the student in a concise and simple manner the principles governing the dosign of toothed gearing. Commencing in the first three sections with a discussion of the proper form of tooth-profiles, the conditions necessary for minimum friction and for uniform velocity, and the comparative advantages and disadvantages of cycloidal and involute teeth, he goes on in the next six sections to explain the various gears ${ }^{-}$(internal, bevel, screw and hyperbolic) and the methods employed for laying out the teeth. Sections IX to XV are devoted to a consideration of the relations between diameter, circumference, pitch, number of teeth, velocity-ratios, arcs of approach and recess and contact, the strength of teeth and arms, \&cc. After setting forth complete detailed designs of different wheels, and giving certain special practical applications, the work concludes with an appendix shewing the relative values of circumferential and diametral pitches, and an explanation of the process of cutting gear-teeth.

In compiling this treatise the author has made use of the works of many standard authors, and in order to meet the demands of those mechanics, "who continue to look with extreme distrust upon anything in the shape of book, because books are generally too deep and too theoretical," he has a number of simple rules and formulæ, for performing each and every operation necessary in the design of the different gears.

NOTES ON HLECTRICITY AND MAGNEIISM.

by prof. W. GARNETT.
(Continued from page 219.)
Applying this test to copper and zinc at ordinary temperatures it appears that the difference of potential is less than the millionth part of the electro-motive force developed by a pair of copper and zinc plates immersed in dilute sulphuric acid, and moreover the copper is at a h gher potential than the zinc. Hence it appears that the difference of potential due to the contact of zinc and copper may safely be neglected in discussing the theory of the Voltaic cell.

If we apply the same test in order to determine the difference of potential between either of the metals and the acid in contact with it, we at once meet with a new difficulty, for we can no longer say that when work is done by the electric forces, the only source of energy is the heat absorbed, or that when work is done against the electric forces the whole of the energy expended must appear as heat, inasmuch as a chemical action is going on in contact with the metallic surfaces. If we knew how much heat was being developed or absorbed by this chemical action we might apply the necessary corrections, but though we know what is the whole amount of heat developed (or absorbed) in the buttery cell (or the decomposing cell) we do not knew what is the exact nature of the action which takes place in the neighbourheod of each meted plate. For example, in the case of a copper and a zinc plate immersed in dilute sulphuric acid we know how much heat is developed when a pound of zinc is dissolved, and the corresponding amount (about half an ounce) of hydrogen liberated; but when the battery is in action the hydrogen is not liberated at the zinc plate, but in
contact with the copper plate, and we do not know what is the condition of hydrogen while it is travelling from the the zinc through the acid to the copper plate.

Thus, it may happen that the hydrogen before it can be liberated as free gas at the surface of the copper plate must absorb a considerable amount of heat, and this effect would mask the heat developed or absorbed by the electricity in entering the copper plate from the acid; while in the neighbourbood of the zinc plate the heat developed by the chemical action would be in excess of that due to the solution of the zinc and the liberation of free hydrogen, by the unknown amount of heat absorbed by the hydrogen when liberated from the copper plate.

In 1843 Prince Louis Napoleon, then a prisoner, writing to Arago, described two forms of battery in which only one metal was employed, 80 that there was nowhere a contact of dissimilar metals. The first consisted of a copper plate immersed in dilute nitric acid, (which acts strongly on the copper), contained in porous cell. The porous cell was placed in a jar containing dilute sulphuric acid in which was immersed a second copper plate. On connecting the plate with s galvanometer, a current flowed through the galvano 0° meter from the plate immersed in the salphuric acid to that immersed in the nitric acid. With a battery consisting of two of these cells he decomposed potassic iodide and cupric sulphate. The second battery consisted of two zinc plates, one immersed in dilute sulphuric acid contained in a porous pot, and the other in tepid water in a vessel surrounding the porous pot. This battery produced effects similar to that just described.

Napoleon then attempted to reverse "the usual order of the metals." He placed a copper plate in diluto nitric acid contained in a porous jar, whilo a plate of zinc was placed in pure (?) water surrounding the porous jar. On connecting the metals a current flowed from the zinc to the copper through the wire. These experiments alone seem sufficient to condemn the contact theory, as h6!d by those who maintain that the E. M. F. of a battery is due simply to the contact of dissimilar metals. More recently several other forms of battery have been devised, in which there is no CO° tact of dissimilar metals. Napoleon complained that he was unable to measure the E. M. F. of his batterios, as the iron bars of his prison interfered with his gat vanometers.

If we suppose that when the zinc and sulphuric acid are in contact and in equilibruim the potential of the acid is very much greater than that of the zinc, and similarly in the case of copper and sulphuric acid, the potential of the acid is much greater than that of the copper, but the difference in the case of the copper is less than in the case of the zinc, while we further sup pose, as vindicated by the Peltier effect, that there id no sensible difference of potential between copper and zinc when in contact, we can explain the action of Voltaic cell.

Suppose a plate of copper and a plate of zinc to immersed in sulphuric acid, but no contact to be m between the plates. Then the acid must be at the potential throughout, or it could not be in elect equilibrium. Hence, since the difference of pote between the acid and the zinc is greater than
between the acid and the copper, the potential of the zinc plate will be lower than that of the copper. and a quadrant electrometer will be capable of measuring this difference of potential which will be the electromotive force of the cell. If the copper and zinc are connected by a wire a cu rent will flow from the copper to the zinc along the wire, lowering the potential of the copper and raising that of the zinc, so that the equilibrium between the metals and the acid hecomes disturbed, electricity flows from the zinc to the acid and from the acid to the copper, so that the potential of the acid near the zinc is raised abovs that of the acid near the copper, and a current therefore flows through the acid from the zinc to the copper thus completing
the circuit.
If a plate of copper and a plate of zinc be c nneected together, and the free end of the copper plate dipped into one vessel of dilute sulphuricacid and the free end of the zinc plate into another vessel of the same liquid, the acid into which the zinc is dipped will be at a higher potential than that into which the copper is
${ }^{\text {dipped. If }}$ now a connection is made between the two
versels of acid, by inverting a syphon filled with acid 80 that one leg is in one vessel and the other in the
other, other, electricity must flow flom the acid in the vessel in which the zinc dips to that in the other vessel, the equilibruim will be disturbed and a continuous current will flow through the circuit as before.
In the frictional electric machines, in the Voss and Holtz machines, in the replenisher and electrophorus, the electrical energy developed is derived from the Work done by the agent in overcoming the electrical
attractions and keeping the machine in motion attractions and keeping the machine in motion, or, in opposition to ctrophorus, in raising the carrier plate in Opposition to the attraction of the electrified ebonite. In the case of a thermo-electric couple the energy of hot current is derived from the heat absorbel at the
junction on account of the Peltier effect, or aboorbed as the current flows from hot to cold of cold to hot along the current flows from hot to cold or cold
offect. effect. In the Voltaic circuit the euergy of the current
is derived is derived from the chemical action which takes place
between the metals, or one of (or electrolytetals, or one of the metals, and the acid ordinary batteries is the the energy of the current in the acid watteries is due to the solution of the zinc in amount of heas shewn by Dr. Joule, who determined the
phuric phuric acid. heat developed by a pound of zinc in sul-
meter, develo and determined the whole amount of heat Wire throd for each pound of zinc dissolved when the tained throgh which the current flowed was wholly con obtained was the calorimeter. The amount of heat so in the acid withe same as when the zinc was dissolved caraing acid without the production of any current. On calorimeter current from the battery to pass out of the secondeter and to flow through a wire immersed in a for each calorimeter, the heat developed in the battery bat the pound of zinc dissolved was less than before, $d_{0 \text { vel }}$ deped by by the was exactly compensated by the heat
corrent in the external wire, and cormoped by the current in the external wire, and
Fromunicated to the water of the second calorimeter. Fromunicated to the water of the second calorimeter.
is
omplose experiments it appears that when a battery ing to toyed in sending a current the heat correspondis not whe chemical action taking place in the battery tion of it is emploped inged in mathe battery, but a poris employed in making the current flow
through the circuit, and is reconverted into heat wherever the current doss work against resistance.

Faraday shewed that when a pound of zine is dissolved in a battery a definita quantity of electricity passes round the circuit. This will be referred to again in speaking of Faraday's law of electro-chemical equivalents. The electromotive force of the battery is the number of units of work done on the unit of electricity in going round the circuit. Hence when a pound of zinc is dissolved in a single cell, the electrical work done is proportional to the E.M.F. of the cell, being equal to the product of this E.M.F. and the number of units of electricity which flow round the circuit for each pound of zinc dissolved, and which is the same fur all batteries. Now it is clear that this work cannot exceed the energy developed by the whole amount of chemical action which takes place in the cell in consequence of the solution of the pound of zinc. Thus the nature of the chemical action taking place in the cell fixes a superior limit to the E.M.F. obtainable therefrom. For example, if zinc is dissolved and free hydrogen liberated, the work done in the cell is that due to the combination of zinc with sulphion, $\left(\mathrm{SO}_{4}\right)$ diminished by the energy absorbed in liberating the equivalent of hydrogen from the sulphion. If instead of liberating the hydrogen as free gas it is allowed to combine with oxygen (i.e. burnt) within the battery, the work done by the combination of the zinc with the sulphion will not have to be diminished by so large a quantity and the E.M.F. of the cell may be considerably increased. Thus, in Groves' coll in which the liberated hydroged is burnt at the expense of the oxygen of nitric acid, and in the "bichromate battery," in which the hydrogen combines with the oxygen of potassic bichromate, the E.M.F. is greater than that which would be developed if the same plates (zinc and platinum or zinc and carbon) were simply plunged in dilute sulphuric acid.

Def. The resistunce of a conductor is that property in virtue of which a finite electro-motive force is incipable of doing more than a finite amsunt of work in sending electricity through the condu tor.

Def. The conductivity of a conductor is the inverse of its resistanc:, $i . e$., if the resistance be denoted by R

1
the conductivity will be represented by $\frac{1}{R}$

R

All bodies possess a certain amount of resistance, and oniy a certain a nount, though the interval between the best conductors (such as copper) and the best insulators,or worse conductors, such as sulphur or paraffin wax, is very great indeed. The resistance of a bar of glass is not less than $600,000,000,000,000,000,000$, 000,000 times that of a bar of copper of the same dimensions.

The first measurement of the resistance of conductors were made by Henry Cavendish, who not only compared the resistance of metallic wires but also of liquids (electrolytes), especially of solutions of common salt. These measurements wero undertaken mainly in connection with his experiments on the torpedo, which led to the measurement of the resistance of spa water. From Caveudish's results it appears thit the, conductivities of saline solutions of diff rent strengths are nearly proportional to the per centage of ealt present, a fact recently rediscovered by Kohlrausch. Though

PORTABLE RAILWAYS.

Kig. 11. Snooth Turnbable

Fig. 12. Grooved Turriable.

Fig. 13. Dead Plate.

Scale $1 / 16^{\text {th }}$

Truck for Cannon, Timber, \&c.
Fig. 15. End Elevation.

rig. 14. Sections of Rail.:

Cavendish employed a Leyden jar for his source of electricity, and measured the resistance of the conduc. tor simply by sending the charge of the jar through the conductor and his own body, and estimating the intensity of the shock ; his results, so far as they apply to solutions of salts, were not improved upon until Kohlrausch took up the matter in 1857. Cavendish appears to have understood the theory of divided circuits and practically to have arrived at Ohm's law, though he dit not formerly enuniate the law.

The relation between the electro-motive force in a circuit and the current produced by it is expressed hy Ohm's law. As ordinariiy enunciated this law is as follows:-

The current in any conductor is equal to the electro-motive force between its extremities divided by its resistance.

From this it follows that the current in any simple circuit is equal to the whole E.M.F. around the circuit divided by the whole resistance of the circuit.

Ohm's law may be converted into the following statements :

The resistance of a conductor is equal to the electromotive force between its extremities divided by the current produced in it.

As no method by which resistance is to be measured has yet been explained, it may appear at first sight, that Ohm's law simply gives a definition of the measure of resistance, and this is all that is formally stated, but, like Newton's laws of motion, there is more implied in the law than appears on the surface. The fact that resistance is an attribute which may be assigned to a conductor without qualification as regards the current flowing in it, implies that the resistance of a conductor is constant so long as its temperature, mechanical condition, etc., remain unchanged. Hence, in the same conductor the current will be proportional to the electro-motive force between its extremities. Hence, if the E.M.F, be doubled, the current also will be doubled, and so on, and this is the law implied in the statement.

The clearest conception of the meaning of Ohm's law, may perhaps be gained by considering what is implied in its denial. Thus, if we deny that the current is proportional to the electro-motive force, we may hold that if the E.M.F. is increased, the current will be increased in a higher or in a lower ratio. Both these views have been maintained. According to the first hypothesis, the resistance of a conductor will diminish as the current in it is increased, as though the increased E.M.F. partially broke down the resisting power of the conductor. According to the second hypotheeis, the resistance will increase with the increase of the current. Now the measurement of the resistance of a conductor is an operation which can be carried to a higher degree of accuracy than any other physical measurement, except, perhaps, the measurement of mass by weighing. Thus, the equality of the resistances of two wires can be ascertained to within one part in a million. It is, therefore, possible to apply very severe tests to Ohm's law, but the law holds good under the most severe tests which have yet been applied.

When a current flows along a wire and can only enter or leave the wire by the ends, there will be the same current across every section of the wire. If the
wire be of the same material throughout and of unifor'n thickness, there is no reason why the potentisl should fall more rapidly in one part of the wire than in another. Thu?, there will be a steady fall of potantial at a uniform rate, from the ends at which the current enters to that at which it leaves the wire. H ince, the difforence of potential between any tw, points in the wire is proportional to the distance between the points. But the current in every portion of the wire is the same ; hence, for any length of the wire, the diff rence of potential between its extremities is proportional to its resistance, and therefore the resistance of any portion of the wire is proportional to its length.

If the resist inces of a round wire and a ribbon of the same material and having the same sectional area, be compared, they will be found to be the same, length for length. But if the sectional area be the same, the surface of the flat ribbon will be very much greater than that of the round wire. Hence, it follows, that the resistance of a wire depends on its section 1 area and not on its surface, and the conduction of electricity is a phenomenon which takes place uniformly throughout the substance of a conductor and not on its surface. It follows, therefore, that two wires of the same iength, material and section, placed side by side and having both their extremities joined, will be electrically equivalent to a single wire of double the sectional area of either, and so on. But if a given electro-motive force act between their extremities, the two wires will carry twice the current that either wire would carry, and so on if there are more than two wires. Hence, the resistance of the compound conductor will be inversely proportional to the number of wires. It follows, therefore, that the resistance of a single wire of given length and material will be inversely proportional to its sectional area. Hence :-

The resistance of a conductor of uniform section is directly proportional to its length, and inversely proportional to its sectional area.

Thus, if two wires are taken, one, say, 100 times as long as the other, and of 100 times the sectional area, the resistances of these wires will be the same whatever be the strength of the currents flowing through them, if Ohm's law is true, but not otherwise. The experiment has been tried by Prof. Chrystal in the Cavendish laboratory (with slight necessary modifications due to the heating of the fine wire), the wires being balanced against one another, and very strong, and comparatively feeble currents being sent through the wires in rapid succession, when it was found that precisely the same adjustment produced a balance both for the strong and feeble currents, though the currents in the fine wire were such as to raise the wire to a red heat. This experiment, therefore, proved the truth of Ohm's law to a very high order of approximor tion. The method of comparing resistances will form the subject of a future lecture.

When a number of conductors are connected so that the same current flows through each in succession, they are said to be arranged in series, and the resistance of the compound conductor is the sum of the resistances of its constituents.

When a number of conductors are so connected. that the current divides itself between the conductors, part flowing through one and part through another, they are said to be arranged in multiple arc, and the corn
ductivity of the compound condactor is the sum of the conductivities of its constituents.
Thus, if conductors whose resistances are $\mathrm{R}_{1}, \mathrm{R}_{2}$, $R_{3} \ldots$ are arranged in series, the resistances of the system will be $\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots$ If they are arranged in multiple arc, the conductivity of the system will be

$$
\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

and its resistance will be
$\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots .}$

A number of battery cells are said to be arranged in series when the same current flows through each in succession, the zinc of one cell being connected to the copper (platinum, carbon, \&c.) of the next and so on. In this case the electro motive force of the battery is the sum of the electro-motive forces of the several cells, While its resistance is the sum of their resistances.
A battery is connected in multiple arc when all the rinc plates are connected together as well as all the copper (platinum, carbon, \&c.) plates, so that the curthent is divided between the cells. If all the cells have of the $\begin{aligned} & \text { E.M.F. and the same resistance, the E.M.F. }\end{aligned}$ the resiattery will be equal to that of one cell, while number of res will be inversely proportional to the

Sor of cells.
of colls treated as connected in series, the several series then Suppose there are nm cells, and connected in multiple arc. force E there are $n m$ cells, each of electro-motive m series, E and resistance r, and that they are arranged in series then beach series containing n cells, and let the m minals of be connected in multiple arc and the terductor of the battery connected by an external con${ }^{n}$ cells of resistance R. The E.M.F. of each series of of the wholl be $n \mathrm{E}$, which will therefore be the E.M.F. Will be whole battery. The resistance of each series
be $n r$, therefore the resistance of the whole battery Will be ${ }^{n r}$ - Hence the assistance of the whole circuit m
will $b_{0} \stackrel{n r}{-}$
$\frac{m}{m}+R$, and by Ohm's law the current, C will begiven by the equation : $_{m}^{m}$

$$
C=\frac{n E}{n r}
$$

m
Tho quantity ${ }^{n r}$

[^0]sistance to be defined later on), and it is desired to send a current through an electro-magnet having a resistance of one ohm, the best arrangement will be to set up the battery in four series each of 20 cells. The resistance of each series will then be 4 ohms, and that of the whole battery 1 ohm , that of the whole circuit being 2 ohms, while the E.M.F. will be 20 E , (the E.M.F. of a single cell being denoted by E), and the current will be 10 E .
(To be Continued.)

ON PORTABLE RAILWAYS.

by m. paul decauville, of petit.bourg (seine and oise), FRANCE.

Narrow-gauge railways have been known for a very long time in Great Britain. The most familiar lines of this description are in Wales, and it is enough to instance the Festiniog Railway (2 feet gauge), which has been used for the carriage of passengers and goods for nearly half a century. The prosperous condition of this railway, which has been so successfully improved by Mr. James Spooner and his son Mr. Charles Spooner, affords sufficient proof that narrow-gange railways are not only of great atility but may be also very remunerative.
In Wales the first narrow-gauge railway dates from 1832. It was constructed merely for the carriage of slates from Festiniog to Port-Madoc ; and some years later another was made from the slate quarries at Penrhyn to the Port of Bangor. As the tract of country traversed by the railways became richer by degrees, the idea was conceived of substituting locomotives for horses, and of adapting the line to the carriage of goods of all sorts, and finally of passengers also.
But these railways, although very economical, are at the same time very complicated in construction. Their arrangements are based upon the same principles as railways of the ordinary gauge, and are not by any means capable of being adapted to agriculture, to public works, or to any other purpose where the tracks are constantly liable to removal. These permanent narrow-gauge lines, the laying of which demands the service of engineers, and the maintenance of which entails considerable expense, suggested to the author, then a gentle-man-farmer und distiller at Petit-Bourg, near Paris, the idea of forming a system of Portable Railways composed entirely of metal, and capable of leing readily laid. Cultivating one of the largest farms in the neighbourhood of Paris, he contemplated at first nothing further than a farm railroad; and he contrived an extremely portable plant, adapted for clearing the land of beetroot, for spreading manure, and for the other needs of his farm.
From the beginning, in his first railroads, the use of timber materials was rigidly rejected; and all parts, whether the straight or curved rails, crossing tarntables, \&c., were formed of a single piece, and did not require any special workman to lay them down. By degrees he developed his system, and erected special workshops for the construction of his portable plant ; making use of his farm, and of some quarries of which he is possessed in the neighbourhood, as experimental places. At the present time the the system of portable railways is in use for all the purposes of agriculture, of commerce, of manufactures, and even of war.

Within so limited a space it would be impossible to give a detailed description of the rails and fastenings used in all these different applications. The object of this is rather to direct the attention of mechanical engineers to the various uses to which narrow-gauge portable railways may be put, to the important saving of labour which is effected by their adoption, and to the ease with which they are worked.
The success of the Decauville railway has been se rapid and so great that many inventors have entered the same field; but they have almost all constructed the portable track with sleepers that can be detached. There are thus, at present, two systems of portable tracks; those in which the sleepers are capable of boing detached, and those in which they are not.
The portable track of the Decauville system is not capable of so coming apart. The steel rails and sleepers are riveted together and form only one piece. The chief advantage of these railways is their great firmness; besides this, since the line has only to be laid on the surface just as it stands, there

PORTABLE RAILWAYS.

Trucks for sarrying Cannon, Mimber, \&s.

Fig 16. Elevation

Soals ${ }^{1 / 2} 6^{4}$ \qquad 60 1 \qquad 2 3

PORTABLE RAILWAYS.
Fig. 20. Inspector's Carriage for Channel Fiuinel.
Fig. 19. Section of Channel Tunnel.

Fig. 21.

there are not those costs of maintenance which become onavoidable where the sleepers are fixed by means of bolts, clamps, or other adjuncts, only too liable to be lost. Moreover, tracks which are not capable of separation are lighter and thertfore more portable than those in which the sleepers can be detached.

With regard to sleepers, a distinction must be drawn between those which project beyond the rails, and those which do not so project. The author has adopted the latter system, because it offers sufficient strength, while the lines are lighter and less cumbersome.

Where at first he used flat iron sleepers, he now fits his line with dished steel sleepers, in accordance with Figs. 1 and 2, Page 228. This sleeper presents very great stiffness, at the same time preserving its lightness ; and the feature which specially distinguishes this railway from others of the same class is not only its extreme strength but above all its solidity, which results from its bearing equally upon the ground by means of the rail-base and the sleepers.
In special case, the author provides also railroads with projecting sleepers, either of flat steel beaten out and rounded, or of channel of iron; but the sleeper and the rail are always inseparable, so as to avoid lessening the strength, and also to facilitate the laying of the line. If the ground is too soft, the rail. way is supported by bowl sleepers of dished steel, Figs. 3 and 4, Page 228, especially at the curves; but the necessity for using these is but seldom experienced. The sleepers are riveted cold. The rivets are of soft steel, and the pressure with which this riveting is effected is so heavy that the sleepers cannot be separated from the rails, even after cutting off both heads of the rivets, except by heavy blows of the hammer, the rivets being driven so thoroughly into the holes in the rails and sleepers as to fill them up completely.

The jointing of the rails is exceedin ly simple. The rail to the right hand, Fig. 5, Page 228, is furnished with two fishplates: that to the left has a small steel plate riveted underneath the rail and projecting 14 inch beyond it. It is only necessary to lay the lengths end to end, making the rail which is furnished with the small plate come in between the two fishplates, and the junction can at once be effected by fish-bolts. A single fish bolt, passing through the holes in the fish-plates, and through an oval in the rail-end, is sufficient for the purpose.

With this description of railway it does not matter whether the curves are to the right or to the left. The pair of rails are curved to a suitable radius, Fig. 6, Page 228, and only need turning end for end to form a curve in either direction. The rails, Fig. 14, Page 229, 'weigh 9 lbs . per yard, $14 \mathrm{lbs} ., 19 \mathrm{lbs} .$, and 24 lbs. per yard ; and are very similar to the rails used on the main railways of France, except that their base has a greater width in proportion. As to the strength of the rails it is much greater in proportion to the load then would at first sight be thought : all narrow-gauge railways being formed or the principal of distributing the load over a large number of axles, and so reducing the amount on each wheel. For instance, the 9 lbs.rail used for the portable railway bears easily a weight of half a ton for each pair of wheels.

The distance apart between the rails differs according to the purpose for which they are intended. The most usual gangs are 16,20 , and 24 inches. The line of 16 ins. gauge, with 9 lbs. rails, although extremely light, is used very successfully in farming, and in the interior of workshops.

A length of 16 tt .5 ins. of 16 ins. gauge, with 9 lbs . steel rails and sleepers \&c., weighs scarcely more than 1 cwt ., and may therefore be readily carried by a man placing himself in the middle and taking a rail in each hand.

The members of the Institution who recently visited the new Port of Antwerp well recollect seeing there the portable railway which Messrs. Couvreux and Hersent had in use; and as the works at the Port of Aniwerp gave rice to the idea of this paper, it will be well to begin with a description of this style of contractors' plant.

The earth in such works may be shifted by hand, horse.powor or locomotive. For small works the railway of 16 ins. gauge, with the 9 lbs. rails, is commonly used, and the trucks carry double-equilibrium tipping-boxes, containing 9 to 11 cub. ft. These wagons, of smaller size than those shown in Figs. 17 and 18, Page 232, bnt of similar construction, having tipping. boxes without any mechanical appliances, are very serviceable; the box, having neither door nor hinge, is not liable to need repairs, and it keeps perfectly in equilibrium upon the worst roads. To tip it up to the right or left, as shown dotted in Fig. 17, it must simply be pushed from the opposite side, and
the contents are at once emptied clean out. In order that the bodies of the wagons may not touch at the top, when several are coupled together, each end of the wagon is furnished with a buffer, composed of a flat iron bar cranked, and provided with a hanging hook.

Plant of this description is now being used in an importsint English undertaking at the port of Newhaven, where it.is employed not only on the earthworks, but also for transporting the concrete manufactured with Mr. Carey's special concrete machine.

These little wagons, of from 9 to 11 cuh. ft. capacity ran along with the greatest ease; and a lad cou'd propel one of them with its load for 300 yards at a cost of $3 d$. per cubic yard. In earthworks the saving over the whoelharrow is 80 per cent. ; for the costs of wagons propelled by hand comes to $1 d$. por cubic yard carried 100 yards, while to go this distance with s barrow costs 5d. A horse draws without difficulty, walking by the side of the line, a train of from 8 to 10 tracks on the level, or 5 on an incline of 7 per cent. (1 in 14).

One nile of this railway, of 16 ins. gauge and 9 lbs . steel rails, with 16 wagons, each having double equilibrium tippirg* box containing 11 cubic feet, and all accessories, represents weight of 20 tons, -a very light weight, if it is considered that all the matrrials are entirely of metal. Its net costs price per mile is $£ 450$, the wagons included.

Large contracts for earthwork with horse haulage are carried on to the graatest advantage with the railway of 20 ins. gand and 14 lbs . rails. The length of 16 ft . j ins. of this rail. way weighs 170 lbs. ; and so on can be carried easily by two mery, one at each end. The wagons most in use for these works ath those with double-equilibrium tipping-boxes, holding 18 cub . ft., Figs. 17 and 18, Page 232. These are now being emplojed in one of the greatest undertakings of the present time-name ly, the cutting of the Pannama Canal, where there are in us6 upwards of 2700 such wagons and more than 35 miles of track.

A mile of this railway of 20 ins. gange with 14 lbs. rails together with 16 wagons of 18 cubic feet capacity, with appuri teLances, costs about $£ 660$, and represents a total weight of $\mathbf{8 3}$ tons.
This description of plant is used for all contracta exceedin\} 20,000 cubic yards.

A very curious and interesting use of the narrow-gauge lingy and the wagons with double-equilibrium tipping-box, was mado by the Sociéte des Chemins de fer Sous-Marins on the proposod tunnel between France"and England. Fig. 19, Page 233, rep resents a section of the tannel, with two lines of rails, on on of which is a train of wagons, and on the other an inspection carriage with two seats. The line used is that of 16 ins. gange with 9 lbs. rails.
The first heading of the tunnel, which was driven by mesn of of a special machine by Colonel Beaumont, had a diameter of only 2. 13 m . (7 ft .) ; the tipping-bozes have therefore breadth of only 2 feet, and contain 74 cubic feet. The box are perfectly balanced, and are most easily emptied. The wagons run on two lines, the one being for the loaded traiph and the other for the empty trains.

The engineers and inspectors, in the diacharge of their dutiol make use of the Lilliputian carriages ahown in Figs. 19 aplo 20, Page 233. Theffeet of the travellers go between the wheole and are nearly on a level with the rails : nevertheless they aro tolerable comfortable. They are certainly the amallest cail. riages for passengers that have ever been built; and the bailj der prophesies that these will be the firat to enter Englap thrnugh the Channel Tunnel.

One of the most important use to which a narrow-gange lipe can be put is that of a military railway. The Dutch, Russisi and French governments have tried it for the transport of prip visions, of war material, and of the wounded, in their rocen campaigns. In Sumatra, in Turkestan, and in Tunis, thal. military railroads have excited much interest, and have so fart Iy established their value that a short description will bert suffice.

The campaign of the Russians against the Turcomans pro sented two great difficulties, in the crossing of the distribe where water was extremely scarce or failed entirely, and in victualling of the expeditionary forces. The latter object compeletelv effected by means of 67 miles of railway, or 20 gauge and 14 lbs . steel rails, with 500 carriages for food, and passengers. The rails being laid simply on the sand, locomotives could not be used, and had to be replacrd Kirghiz horses, which drew with ease from 16 cwts . to one for 25 miles per day.
$\mathrm{lh}_{\mathrm{l}} \mathrm{In}$ the Tunisian war this railroad of 20 ins．gange with 14 19 ibs．rails．There were quite as great difficulties as in the the ly unknown campaign，and the country to be cross d was entire a flat and an．The observations made hefore the war spoke of could not sandy country．In reality a more uneven country continually be imagined：alternating slopes of about 1 in 10 $7 \frac{1}{2}$ miles of succeeded each other，and betore reaching Kaironan horses harna swamp had to be crosied．Nevertheless the tweive to sessed to the railway carriages did on an average carriages．In sevinteen times the work of those working ordinary conts，the use this campaign also，on account of the steep as aerved for use of locomotives had to be given up．The track and cannon，the conveyance not only of victuals，war material， the cannon，but also of the wounded；and a large number of the meavors owe their lives to this railway，which supalied ings，from the their speedy removal，and without great suffer－ Places where the temporary hospitals，and of carrying them to The carriagore care could be bestowed upou them．
$\mathrm{P}_{\text {a }}$ ges carriages which did duty in this campaign are shown on
of metal and 236 ．They are wagons with a platform entirely of metal，resting un．They are wagons with a platform entirely in．long and 2 ft unon eight wheels．The platform is 13 ft ． 1 will in． 9 ins．，as shown．This carriage may be turned at Till into a goods wagon ；or into a passenger carriage for six． $\mathrm{P}_{\text {age }}{ }^{\text {persons }}$ ，with seats back to back，as in Figs． 21 and 222 ， sons，as in Fr int）an ambulance wagon for eight wounded per－ For^{\prime} ，an in Figs． 23 and 24.
anve adoptransport of cannon the French military engineers and 232 ．A complete equipage，capable of carryingguns weigh－
ing from
ard axles，each to 9 tons，is compos $\cdot d$ of tracks with two or three it is，each being fitted with a pivot support，by means of which Pieces of ered possible to turn the trucks，carrying the heaviest
Witho ordance，on turntables，and to push them forward Thout their going on turntables，and to push them forward The tracks woing off the rails at the curves．
the forts in Paris are have been adopted for the service of the ong in in Paris are drawn by six men，three at each end of Thans weighing 3 tons． More narrow－gange railway
more thorow－gauge railway was tested during the war in Tunis that corr authorities decided，after peace had been restored in ly conatry，to mantain the nater peace had been restored in Hor thice．Th is satisfactory proof of their having rendered good tegice．The line from Sousse to Kairouan is sti． 1 open for
Which traffic．In hich leaves．In January，1883，an ex press was established，
distance Ranance of torty miles－in five hours，by means of regularly or－
traned relays．The number of carriages and trucks，for the Traneport of passengers aud goods，is 118 ． to he success passengers aud goods，is 118 ．
nevrope how thus attained by the narrow－gauge line goes far
cer suffice cortain caffice for continuous traffic．The opinion is based on a sht raill weighing Colonies，where it was thought fit to adopt ithe old neighing about 18 to 27 lbs ．per yard，but keeping poseible nornal gauge．It is nevertheless evident that it is
 The costly in proportion than that of standard railways．
here，arrow．gauge is altogether in its right place in countries noficient notable in the case of the Colonies，the traffic is not $V_{\text {roal }}$ gauge railway．capitalising the expense of constructing a of ${ }^{\text {ety }}$ Brecently the Eail
$\mathrm{t}_{w_{0}}$ buenos Ayty the Eastern Railway Company of the Province of their stas have adopted narrow－gauge for connecting
rains 19 lations，the gauge being 24 ins．and the weight of lbs．per yard．They have constructed altogether narrow－gauge road，with a rolling stock of thirty $1 £ 7,500$ and goods trucks and two engines，at a net $1 £ 7,500$ ，engines included．This line works as reg－ the main line with which it is connected．The con． lages in use are shown in Figs． 25 and 26，Page 237， and the nothing to be desired with regard to their appear－ open，and comfort they offer．Third－class carriages，covered the and covered goods wagons，are also employed．
run the Festining Ronstructed according to the model of run at $12 \frac{1}{2}$ milesing Railway．The engines weigh 4 tons， of 16 to miles per hour for express trains with a live mule an ；whiur．
purpose for
purpose for which the narrow gauge road is of the
highest importance in colonial commerce is the transport of sugar cane．There are two systems in use for the service of sugar plantations ：

1．Traction by horses，mules or oxen．
2．T＇action by steam－engine．
In the former case，the narrow－gauge of 20 ins．with 14 lbs. rails is used，with platform tracks and iron tipping cradles about 5 ft ．long and 4 ft ．wide，as shown in Figs． 27 and 28， Page 237．The use of these wagons is particularly advantag． eous for clearing away the sugar cane from the fields，because， as the crop to be carried off is followed by another harvest，it is important to prevent the injury done by the wheels of heav－ ily ladeu wagons．The cradles may be made to contain as much as 1300 lbs ．of cane tor animal traction，and 2000 lbs ． for steam traction ；the cane is cut up into pieces of 4 to 5 ft ． length，which are laid transverseiy across the cradle．In those colonies where the cane is not cut up into pieces，long platform wagons are used，made entirely of metal，and on eight wheels， in which the cane is laid longitudinally．When the traction is effected by horses or mules，a chain $14 \frac{1}{\mathrm{f}} \mathrm{ft}$ ．long is used，and the animals are driven alongside the road．Oxen are harness－ ed to a yoke，longer by 20 to 24 ins．than the ordinary yoke， and are driven along on each side of the road．On plantations where it is desirable to have passenger carriages，or where the narrow－gauge line may come to be required for the regular trans－ port of passengers and goods，the 20 －inch line is replaced by one of 24 ins．gauge．
The transport of refuse of sugar cane is effected by means of tilting basket－wagons，the lower part of which consists of plate iron，as in earthwork wagons，while the upper consists of an open grating or network，offoring thus a very great holding capacity without being being excessively heavy．The content of these wagons is 90 cubic feet（ 2500 litres．）To use them for the transport of earth，sand，or rubbish，the grating has merely to be taken off．The cost of one mile of the 20 －inch road，with 14 lbs．rails，thirty basket wagons，and accessories for the transport of sugar cane，is $£ 700$ ；and the total weight of this plant amounts to 35 tons．
In case where the transport of sugar cane has to be effected by steam power，the most suitable width of road is 24 ins．， with 19 lbs ．rails ；and this line should be laid down and ball． asted most carefully．
Owing to the great lightness of the portable railways，and the facility with which they can be worked，the attention of ex－ plorers has repeatedly been attracted by them．The expedition of the Ogowe in October 1880，that of the Upper Congo in Novem－ ber 1881 ，and the Congo mission under Savorgnan de Brazza， have all made use of the Decauville narrow－gauge railways sys－ tom．
During these expeditions to Central Africa，one of the greatest obstacles to be surmounted was the transport of boats，where the rivers ceased to be napigable；for it was then necessary to employ a great number of negroes for carrying both the boats and the luggage．The explorers，were，more or less，left to the mercy of the natives，and but very slow progress could be made．
On returning from one of these expeditions in Africa，Dr． Balap and M．Mizon consulted the author as to whether the narrow－gauge line might not be profitably adapted for the next expedition．He accordingly proposed to transport their boats， without either taking them to pieces or unloading them，by placing them on to pivot trollies，in the same manner as guns are transported in fortifications and in the field．The first ox－ periments were made at Petit－Bourg with a pleasure yacht． The hull，weigbing 4 tons，was placed on two gan－trollies，and was moved about easily across country by means of a portable line of $20 \mathrm{ins}$. gauge，with 14 lbs ．rails．The length of the hull was about 45 tt ．，depth 6 ft ． 7 ins．，and breadth of beam $8 \mathrm{ft}, 2 \mathrm{ins} .$, that is to say，five times the width of the narow． gauge ：notwithstanding which the wheels never left the rails． The sections of line were taken up and replaced as the boat ad． ranced，and a apeed of ह⿸⿺⿻一丿丶⿻乚㇒日阝 tile per hour was attained．Dr． Balay and M．Mizon declared that this result far exceeded their hopes，because during their last voyage the passage of the rapids had sometimes required a wholv week for one Eilometre （ $\frac{8}{8}$ mile），and they had considered themselves very lucky in－ deed if they could attain a speed of one kilometre per day． The same narrow－gauge system has siuce been three times adop－ ted by African explorers，on which occasions it was found that the 20 －inch line，with 9 lbs ．or 14 lbs．rails，was the most suitable for scieutific expeditions of this nature．
The trucks used are of the kind usually employed for military

[^1]It remains only to mention the various accossorias which have been invented for the papoee of completing the systom. They are illustrated in Fige. 7 to 13, apd consiste of offrailera, crossings, turntables, dc.
The off-railer, Fig. 7, is used for eatablishing a partable line, at any point, diverging to the right or loft of a permanent line, and for transferring traffic to it without interraption. It consists of a miniature inclined plane, of tho same height at one end as the rail, tapering off regularly by degroes towards the other end. It is only necensary to plaee the offrailer (which, like all the longths of rail of this system, forms brit one piece with its aleepers and fish-platea) on the top of the fixed line, adding a curve iu the direction in which it. is intended to go, and to push the wagons up the ofl-milor, when they will leave the fixed line and pass on to the new track.
The awitchen consist of a rail-ond 4 ft . long, which sarves as a movable tongue, placed in front of a complete eroesing, the
rails of which have a radius of 4,6 , or 8 metres ; a push with the foot suffices to alter the switch. There are four different models of crossings constructed for each radius, namely:

1. For two curves with symmetrical divergence.
2. For a curve to the right and a straight track, Fig. 8.
3. For a curve to the left and a straight track, Fig. 9.
4. For a meeting of three tracks.

When a fixed line is used, it is better to replace the movable switch by a fixed cast-iron switch, Fig. 8, and to let the men who push the wagons turn them in the direction required. Planed switch-tongues are also used, Fig. 9, having the shape of those employed on the normal tracks, especially for the passage of small engines; in this case the switches are completed by the application of a hand-lever, Fig. 10.

The portable turntable, Figs. 11 and 12, consists of two faced plates, laid one over the other, the lower of thick sheet-iron, and the upper of cast-iron. The sheet-iron plate is fitted with a pivot, round which the cast-iron plate turns. The top plates may either be smooth, Fig. 11, or groved for the wheels, Fig. 12 ; the former are used chiefly when it is required to turn wagons or trucks of light burden, or, in the case of earthworks, for trucks of moderate weight. These turntables are quite portable ; their weight for the 16 ins. gauge does not exceed 200 lbs . For engineering works a turntable plate with variable width of track has beon designed, admitting of differont tracks being used over the same turntable.

For permanent lines, and to carry heavy loads, turntables with a cast-iron box are required, constructed on the principal of ordinary railway turntables. The heaviest wagons may be placed on these box turntables, without any portion suffering damage or disturbing the 10 vel of the ground. In the case of coal mines, paper-mills, cow-honses, \&c., with permanent lines, fixed or dead plates are employed, Fig. 13. Such plates need only be applied where the line is always wet, or in workshops where the use of turntables is not of frequent aecurrence. The fixed plate is most useful in farmers' stables, as it does not present any projection which might hart the feet of the cattle, and it is easy to clean.
The only accident that can happen to the track is the break. ing of a fish-plate. It often happens that the fish-plates get twisted, owing to rough handling on the part of the men, and break in the act of being straightened. In order in such cases to facilitate the repairs as much as possible, the fish-plates are not riveted by machine, but by hand; and it is only necessary to cut the rivets with which the fish-plate is frstened, and remove it if broken. A drill passed through the two holes of the rail removes all burr that may be in the way of the new rivet. No vices are required for this operation ; the track to ve repaired is held by two men at a height of about 28 ins. from the ground, care being taken to let the end under repair rest on a portable anvil, which is furnished with the necessary appliances. The two fish-plates are put in their place at the same time, and the second rivet is held in place with one finger, while the first is being riveted with the hammer ; if not so hrld in its place it may be impossible to put the second rivet in afterwards, as the blows of the hammer often cause the fishplate to shift, and the holes in the rails are pierced with great accuracy to prevent there being too much clearance. No other accident need be feared with this line; and the breakage above described can easily be repaired in a few minutes without requiring any skilled workman.
The narrow-gange system, which has recently undergone so great a development on the Continent, where its usefalness and the facility of its application to the most varied purposes have been demonstrated, has not yet met in England with the same universal acceptance; and those Members of the Institution who last year visited Belgium were perhaps surprised to see so large a number of portable railways employed for agricultural and building purposes and for contracters' works But in the hands of so practical a people it may be expected that the portable narrow.gauge railway will soon be applied here to even a large number of purposes than elsewhere.
M. C. L. Flatean, as the manager of M. Decauville's branch works at Corbeil, Paris, expressed the regret of the author at being unable to be present. He exhibited an extensive series of photographs, showing the application of the portable railway and plant to many of the parposes dessribed in the paper.
In regard to the alleged disadvantage of the dished sleepers, which it was supposed were so weak that there would be a risk of the line losing its gaage, it must be remembered that, according to the purpose for which the line was designed, the
thickness of metal in the sleepers was changed. If for instanco the line was wanted for farming purposes, the sleepers wor made much thinner than if it was for heavy earthworks or for ${ }^{2}$ tunnel. With the proper thickness of metal in the sleepers there was no reason for fearing that these dished sleepers would get bent at the places where the rails rested on them. He had had occasion himself some days ago to see a severe practical trial made of the projecting sleepers and the non-projecting sleepers. A commission having been deputed to make so to experiments on M. Decauville's grounds had asked him ${ }^{\text {to }}$ plough up a short length of the ground over which the portabio railway lay. It had accordingly been ploughed up, and the line was then laid down again over the ploughed ground, witho out the fish-plates being even bolted together, and a 4-ton 1000 motive was run over it, together with several trucks loaded all 7 tons each; and after this experiment had been continued day the gauge was specially examined by the commissionet
who could not find any place where the non-projecting dish sleepers had given way.
With regard to the shoe-plate which had been described in discussion, for joining the rail-ends by means of a clip or ja mo as far as his own experience went he did not think it was ${ }^{80}$ very practicable a plan as had been represented; because if thit it shoe.plate were lying for any length of time on the ground would of course get rusty, and no doubt some difficulty would be be experienced in undoing the joint, and it would certainly be necessary to use tools to undo it; but when it eame to putting the joint together again, it would be found quite an impos sibility to get the rail-end into the jaw on account of the rust The ordinary fish-plates shown in Fig. 5, which been spoken of as not being strong enough for a locomot line, were not used for such cases; on lines to be wo by locomotives stronger fish-plates were used, which very similar to those used on permanent narrow-gauge ways.
The crossing shown in Fig. 8, which had been glla 0 ded to as being made of cast-iron, was not made of cast-iron all, but was formed of the ends of the rails themselves; it is nothing else than four rails meeting' together, and those which represented the curve were bent. The fixed castivo switch shown in Fig. 8, was used only for permanent lin ope When it came to lines which were very often shifted frons on place to another, as for instance in earthworks, there the swil was nothing else than a simple piece of rail about 4 feet looks Which could be moved right or left by foot or by a stick of bar of iron.

As regard the coupling of the trucks, the paper was only of a general character, and it could hardly be expected therefor ${ }^{5}$ that all the details should be mentioned. For ordinary wor ${ }^{\text {b }}$ such as farming purposes, several kinds of buffers were adopto For earthworks the central dead buffer shown in Figs. 17 ad 18, Plate 9, was used, and it did very well so long as there plato but little shock, as was the case with the tipping boxes, pruch 9 ; bat when it came to heavy earthworks, when the trua is were drawn by horses, then a dead buffer like that shown ${ }^{\text {bef }}$ Plate 9 was used on one side of the wagon, and on the of the side a buffer with a spring, the object being to prevent ${ }^{\text {th }}$ wagons from coming off the rails. Of course in wagons int the ed for conveying soldiers and for other similar purposes, all buffers were made with a spiral spring inside.
As to the turntables, he had himself made many experimer ${ }^{14}$ with them, and he had been present. many times at ments which had been made with them for the transp guns. He had taken great interest in the transport materials, because he always considered that this portable way was of the greatest use not only for common purp such as errthworks, farming, and so on, hut also for the port of very heavy cannon where great quickness an facility in using the plant were necessary. In his own e
ments, employing unskilled workmen taken from the fie gun weighing $4 \frac{1}{2}$ tons had been turned end for end on the table, that is to say first the breech and then the muzzle this had been done with the greatest facility. experiments at which he had been present, very heavy had to be carried over ditches 5 to 8 feet wide, where it that a bridge would be necessary ; and he had hiresel trial of putting a simple straight section of the railway such a ditch, with a plank alongside for the men who dro gun to go over; and he had found that not only did the not bend very much, but no rivet had given way,
length of railway across the ditch had remained perfectly length of railwa
under the load.

Comparison of the transmisbion of force by MLBCTRICTITY AS COMPARED WITH THE othrir most common meceanical transmission.

BY A. BERINGER.

to the admit that the local conditions are equally favourable comp four syatems (viz., electricity, water under pressure, eot on one air and telo-dynamic cables), that is to say, if we the other side particular conditions which may render one or of prices system more suitable in a given case, the comparison most favourable that electricity and telo-dynamic cables are the these two we mable agents for the transmission of power. Between transmisaion mast choose the cable as effecting the eheaper tanomisaion op to a distance of 1 kilometre, but for greater disWe note inicity is preferable.
motive powe, in passing, the interesting result that a hydraulie kilometrea poransmitted by electricity to a distance of 20 by a large costa less than the same power produced on the spot Fater-power at 0 ored steam-engine, even if we calculate the that a power at 0.03 franc per horse-power hourly. It follows leagraes, power water-fall will supply, within a radius of four of 100 , power cheaper than that produced by steam-engines
c
200 horse. competo 200 horse. power, and within a far wider radius it will 8u4.
the coungh cables are very suitable for distributing power in question when a few separate places they are quite out of the i.g., in a when it is required to effect unlimited sub-divisions, In this a distribution of power from house to house in a town. Gield. ${ }^{\text {his }}$ case the three other systems remain alone in the
${ }^{\text {Por }}$ distances of leas than 1 kilometre electricity has only the tage ingereases for centimes over air and water, but its advanbormoncreases for longer distances. Thus the hourly cost per ${ }^{\text {franc, }}$, and for 12 kilometre is 0.24 franc, for 1 kilometre 0.25 reach this for 12 kilometros 0.37 frunc, whilst water and air Trangmisgioe for $1 \frac{1}{2}$ to 2 kilometres.
electricmissions by water and air are therefore far', surpassed by stenm in a central and if we wish to produce power by to house a central establishment and distribute it from house farnish an economical solntion of the prohlem.
Wo must economical solution of the problem.
only buast here remark that such a distiibution of power can
than for the present, useful in the small trades, for if more than 1 co , for the present, useful in the amall trades, for if more
tegeong horse-power is required a special motor is more a lvan. tapors. horse-power is required a special motor is more a lvan-
equare divide the region to be supplied with power into notor, of 8 to 10 kilometres a side, having each a large steamWhinat 0.82 franc supply a horse power at 0.25 franc hourly as Which in a conside, which would be the cost of a gas motor, There a consideralle econony in favour of electricity.
imponsible to numerous cases where local conditions render it regaired, and set up a motor at the place where the power is employed. Thany certain systems of transmission can here be only are applicable anining and tonnelling, air and electricity morte-power we see, and if we suppose that there is need for 10 mitted by compree, on comparing the price of the power trans-
tage is age is greatly in favour of the latter. For more considerable
manemisions metresianions of power the prices agree tairly well up to 5 kiloTory decided beyond this the advautage of electricity becomes in my eatablia In addition, an electric transmission is more 4 mach easiar to than the conduction of compressed air, and it Condid. asier to extend a aystem of the first kind than of the for ventinly boring machines with compressed air often suffice
to bentilation, whilat an the accompan, whilst an electric transmission of power requires aom adrantaganied by apecial appliances for this purpose. Still occ there is noat that we cannot hesitate to employ it when-
timan explor that sparks from the dyuamo-machines may tivan on explosions, eat sparks from the dynamo-machines may
In as erve for lighting In cerve for lighting.
plicable ellectric tran in cases were telo-dynamic cables are not apmoter or comic transmission is much preterable to transmission wiontar for compressed air. It is more economical than gaskin by cableansmissions up to 5 kilometres. When transmiskilometre. Froble is applicable it is the more economical up to 1
tage. Rom From 1 to 5 kilometres eleatricity has the advan.

A MEXIOAN CUPHLLLATION-HEAARTH.

BI W. LAWRENOE AUSTIK, PH.D., SANTA BARBARA, chindarias, mexico.
At the Troy meeting of the Iastitute, in October, 1883, I preeented a paper entitled "Smelting Notes from Chihuahna, Mexico," in which was briefly deecribed a cupellation-hearth, pommonly met with in the northern part of Mexico, called in the vernacalar un vaso.

Since writing the paper I have had occasion to construct a hearth of this doscription for myself, asing it, in conjunction with a water-jacket, for the reduction of a very refractory ore in the form of concentrates ; and I now avail myself of this opportanity to qualify some of the statements made in the paper referred to. At the same time I wish to presont some sketches Which will enable anyone to ran up a similar furnace within three days, should occasion demand it. As it is built entirely of common clay (the more refractory the better) and the ashes of sorub-oak taken from the ash-pit of the farnace itself, the matoriale necessary for its construction are available anywhere. Even the grate-bars of the fireplace are made of adobes cut in two. There are, scattered over the West, small deposits of fefractory lead-silver ores, which, because of their rebellions pature or the isolation of the locality, do not admit of the ordinary smelting procoss, and are not amenable to amalgamation or any other asstem of reduction commonly practised; yet with the help of litharge, or, in other words, by performing a crucible assay on a large scale, these ores can be readily and cheaply beneficieted, even where iron and coke are unattainable. I am at the present time engaged in an operation of this discription, and am producing fine silver from a mixture of galena, prrites, and blende, using as fuel oak-charcoal, doing without the valuable fluxing-ores attainable in most smeltingcampe, and depending ซholly upon the litharge produced by the little adobe hearth I am about to deacribe. In doing this I am only imitating the common Mexican practice, which has been in use for centary or more.

In building the furnace which is the subject of the accompanying aketch, I made use of labor and materials as folfows:

Cost of Constructing One Furnace.
800 adobes, © $\$ 0.01$................ $\$ 00$
80 gallons clay, $\}$ for tost, nothing
One builder, 4 days, @ \$1.20...... 480
Two helpers, 4 days, @ $\$ 0.60 \ldots . . .480$
Two boys, 4 days, @ $\$ 0.30 \ldots$.

Total
$\$ 1500$

By comparison with my former figures these wilf be found somewhat in excess, a fact that arises from two cuases: first the inaccuracy of the statements upon which my colculations were based, and secondly, the fact that the natives of Mexico, from one of whom I obtained the figures referred to, are, in their own country, always able to get work done more cheaply than a stranger can. This fact, by the way, it is well to bear in mind when forming estimates in that country, since the cheap operations of small proprietors often allure the inerperienced to commit grave errors of judgment. . It will only be in rare instances that the profits of native proprietors can be ang mented by haadling large amonnts of their ore with American machinery.
The Mexican is a good miner and a better metallurgist. It is well to examine closely the property he offors for sale; especially when it has a fine record and atill cannot yield him sufficient for his simple wants.

But, to retarn to our vaso, the difference betwoen the figures given above and those of my former paper is so slight as not to merit comment were it not for the lesson it conveys.

Lead-ore, even when poor in silver, is very desirable in sil-ver-lead smelting operations, and is sometimes paid for beyond its value. Again, the shipment of silver bars may, under cortain conditions, be preferable to handling lead bullion. When a cupellation-hearth can be put up, a cheap lead-flux provided, and the advantages of the former method of shipment testod without incurring serious expense, it might, in some cases, be worth a trial. The Mexican vaso requires no expense for caetings, no exorbitant freight-charges on the material for its constraction; in fact, it is simplicity itself, and answers very well for an experiment or where limited amounts of material are handlod. In firing-up, care is necessary not to orack the test, but heat can be applied immediately after tamping-in. Eighteen hours later, the farnace is hot and ready for charging. Should the test be defective or worn out, chisel off the surface for six or eight inches, tamp it in again, and the furnace is ready for firing. In patting in the test, the whole amoant of material (clay, 4 parts, and ashes 8 parts, by measure), aftor being thoroughly mixed and dampened so as to retain the form of the hand when pressed, is throwi in together and tamped solid with wooden poles 5 feet long and 8 inches in diametery, sharpened at ono end to a point 14 inches aquare. The reasoll for patting the whole amonnt of material in at once is that by this means the whole is beaton into a compact mass; whereash by tamping in a little at a time, thin lavers are formed, which easily peel off. Atter the whole is thoroughly pounded in, the test is cut out with a piece of hoop-iron. The accompanying diagrams, exhibiting crose-sections and plan of the furnale are self-explanatory, The adobes, or sun-dried bricks used, are 18 inches $\times 9$ inches $\times 4$ inches, excepting those forming the roof of the canal leading from the fireplace and covering the test, which are 26 inches $\times 11$ inches $\times 3 \frac{1}{2}$ inches. Extra caro is necessary in their preparation and they are dried in the

Fig.I. Vertical section at right angles to Fig. 3.

A MEXICAN CUPELLATION-HEARTH.

Fig.2. Plan on lino A-B'(Fig. I.)

Fig. 3. Vertical 8ection through b, e.gy (Fig.2.)
shade to avoid sun－cracks．The capacity of a furnace of this description is something over one ton of lead－bullion in twenty－ four hours，cousuning less than half a cord of wood，and riquiring the the attendas ce of four men，two on the shift， whose collective wages amount to about $\$ 2.80$ per ton．

We have，therefore，in this apparatus，a fifteen－dollar furnace， built in three days，capable of reduciug one ton of bullion to almont pure silver in twenty four hours，at a cost of $\$ 6.80$ per ton．The operation of the furnace is very simple．The bullion is placed on the inclined hearth at k ，wher fi me passing over the molten metal strikes and gradually melts it down．Blast is not put on until the test，which holds 300 pounds of lead，is filled，when its strength is so ganged as to cause slight ripples to play over the surface of the bath．The litharge is drawn off as it accumulates into a basin outside the furnace，where it soldifies and is liftel off in cakes．Jt is noticeable that no stack exists，yet the flame shoots firecely out over the metal whenevera stick of wood is laid in the fireplace．Repairs on the test made necessary by the corroding properties of the litharge，are attended to when the silver is taken out．An old test pounded up finely and mixed with wood－ashes furnishes the material for making such repairs．The silver is ailowed to cool gradually in the furnace，and，when solid，is removed， and the cake is thrown into water．－Trans．Am．Inst．Mec．Eng．

PETROLEUM FUEL FOR LOCOMOTIVES．－Engineering．

On the meeting being resumed on Wednesday morning the first paper read was one by Mr．Thoms Urquhart，of Borisog－ lebsk，Russia，＇On the Use of Petroleum Refuse as Fuel in Locomotive Engines．＂＇This was an excellent paper on an in－ teresting subject and gave rise to a well－maintained discussion． In his paper Mr．Urquhart stat that the first experiments on the use of petroleum for fuel on locomotives，were made in 1874 by the aui hor on the Grazi and Tsaritsin Railway，South Russia， but at that time the great cos tof the fuel previ nted its extended use．Naphtha refuee has a theoretical evaporative power of 16.2 lb ．of water，and anthracite of 12.2 lb ．at 120 lb ．pressure per square inch．hence petroleum has，weight for weight， 33 per cent，higher evaporative value than anthracite．In loco－ motive practice a mean evaporation of 7 lb ．to $7 \frac{1}{2} \mathrm{lb}$ ．of water per pound of anthracite is generally obtained，thus showing 60 per cent．of efficiency．But with petroleum，the author said，an evaporation of 12.25 lb ．is practically obtained，giving 75 per cent．efficiency，and hence the practical evaporative value of petroleum must be taken at 63 to 75 per cent．higher than that of anthracite．

The form of spray injectors，which had been found by the writer to give the best results，was illustrated by diagrams． The combustion chamber is constructed with firebrick inside it，which，when heated，acts as a regenerator，retaining the ignited gases long enough to secure their thorough admixture with air．In certain instances the incoming air at the for－ ward ash－pan damper，was heated by passing through a narrow channel in the brickwork．All the locomotive sprays were worked with steam，but in a tyre－heating furnace the author uses an air blast from a Roots blower．In this the cost of fuel is only one－third of what it was with bituminous coal， and the work done per day has increased 25 per cent．Four spray nozzles are arranged tangentially to the tyre，and there is a circulation of flame all round．

To get up steam in a petroleum－fed locomotive，it is tem－ porarily connected to a shunting locomotive or stationary boiler，to obtain steam for the blower and the spray jet． Steam can be raised to 45 lb ．in 20 minutes，and to 220 lb ．in 55 minutes．If the water be already hot，the full pressure is obtained in 25 minutes．In lighting up，the spray nozzle is first cleared of water by the steam jet，and at the same time the blower in the chimney is started for a few sonds，to draw the gas，if any，out of the smoke box．A piece of cotton waste or a handful of lighted shavings，is put in the combustion chamber，and the spray turned on；the oil immediately ignites without an explosion，and then its quantity can be augmented at pleasure．When the fuel is turned off，as in descending a long incliae，the ash－pan doors are closed，and also the revolv－ ing air damper in the chimney to retain the heat．When the fuel is turned on again，the box is hot enough to light it．

There are 72 locomotives running with petroleum under the author＇s care； 10 of them are passenger engines， 17 are eight－wheel coupled goods engines，and 45 are six－wheel
coupled．The length of line over which they run is 291 miles， from Tsaritzin to Burnack ；and there are four main storage reservoirs，each holding 2050 tons．At each shed there is ${ }^{\text {s }}$ distributing reservoir provided with a gauge－glass and scale．

The paper ends with a number of tables．The first gives the specific gravity and weight of petroleum refuse at different temperatures．The second is the record of 17 trips，giving mean consumption of $39 \cdot 15 \mathrm{lb}$ ．per train mile．The third gives the results of comparative trials of different kinds of fuel in summer and winter．In comparison with anthracite，the saving in favour of petroleum was 55 per cent．in cost，an 41 per cent．in weight．With bituminous coal there was \＆ difference of 49 per cent．as to weight，und 61 per cent as to cost．The fourth table is the record of 19 trials in summor， and shows a consumption of 32.08 lb ．per train mile．Other tables give the consumption for each month in the year．In conclusion，the author said that although it was scarcely possible that petroleum firing will ever be of use for locomo tive in England on ordinary railways，yet its employment on underground lines would be an enormous boon．

In the discussion which followed Mr．Urquhart＇s paper the first speaker was Mr．Joseph Tomlinson，Jun．，who directed attention to the difference between the relative comparativa values of petroleum and anthracite as given in the part of the paper with the saving effected in actual practice with locomotives as recorded in the latter portion of the com munication，the advantage possessed by the liquid fuel in the latter case being much smaller than in the former．Consider ing how largely Mr．Urquhart has used the liquid fuel he （Mr．Tomlinson）wondered that he had not constructed special locomotive boiler for its use，while with regard to Urquhart＇s suggestion that the petroleum fuel was well fould for use on underground lines，he considered that it wo of never do to use it on the Metropolitan Railway，on accoun $⿴ 囗 ⿱ 一 一 廾$ the danger attending its storage and other considerations． added that at present there was practically no smoke mado fro the Metropolitan line，the engine chimneys being entirely f from any soot deposit and only dust being discharged．

Mr．William Boyd，of Newcastle，who spoke next，remar that he had no experience in working locomotives with liquof fuel，but he had supplied the machinery of some steamers service on the Caspian Sea which were fitted up for usin is such fuel．A diagram showing the arrangement adopto this case was exhibited．The boiler shown had two furnan and the petreloum fuel was brought to it from a storage by a pipe passing across the front just below the firehole From this pipe branches，fitted with cocks，conveyed two brass arms－one to each furnace．These arms double passages formed in them，the upper passage arm receiving the petroleum refuse，while to the lower was admitted．At the end of each arm，facing the centre ${ }^{0 / 5}$ the furnace，were two jets directed at an angle of abo deg．，so that the steam discharged from one met the liq ace fuel discharged from the other，and injected it into the f The furnace had an ordinary grate，provision being ma closing the ash－pit by a damper．A lump of greasy placed on the grate served to ignite the jet．The arrang described had been fitted to five vessels，and the only point about the boilers was that the tubes were longe usual in proportion to their diameters．In the first the tubes were made $3 \frac{1}{4}$ in in diameter and 7 ft ．long， the latest they had been made $2 \frac{3}{2} \mathrm{in}$ ．in diameter long．He（Mr．Boyd）had been struck by the value（ 21s．per ton）placed on the petroleum fuel by Mr．Urg On the Caspian the value was very much less． that he had not any accurate data as to the evaporat formance of the boilers to which he had referred，but i peared that the consumption of the petroleum was about 2 per indicated horse－power per hour．Judging from the to ${ }^{1}+1$ he had received，however，he believed that，owing to cessive cheapness，it was carelessly used．Mr．Boyd referred to the Tables given in Mr．Urquhart＇s paper， directed attention to the enormous difference betweons consumption of fuel in the summer and winter mon be served that petroleum fuel gave the power of raising very rapidly，more rapidly in fact than was desirable in case of ordinary marine boilers．

Mr．G．B．Rennie remarked that the system of burnid
petroleum described in the paper closely resemblt d one which had the had tried some twelve or fourteen years ago. They the expen used it on their workshop boiler, and the results of with the liment-running one month with coal and another latter. The liquid fuel-showed an advantage in favour of the its use The price of the petroleum, however, increased, and jecting appon abandoned. His firm had also fitted the in Tigris, wheratus to a steamer sent out for service on the clean oil and it had been used, but the difficulty of getting abandonment the consequent clogging of the jet led to its Mr. Tant.
Mr. Tartt, the superintendent engineer of the company for structed, steamer referred to by Mr. Rennie had been conWhich had been read an interesting statement of the results cannot had been obtained with liquid fuel in this case. We economical results Tartt's figures, but we mav say that the It wamical results were decidedly in favour of the liquid fuel steady huwever, at one time found very difficult to obtain aband supplies of this fuel suitable quality, hence its use was on some bin the earlier experiments the fuel was injected ewhes, and it ws laid loosely on the bars, and covered with that , and it was found that dense smoke was evolved, and ${ }^{\text {sab }}$ bequere was a strong smell of unburnt petroleum. In a furnace, intrial the bridges were built up to the crowns of the to paces, interstices being left between the bricks for the gases incomplete comb. In this case there were also evidences of When a clear brightion until the bricks got thoroughly hot Mr. T. R C bright flame was obtained.
petroleum refuse could we successfully burnt no doubt that tion as to refuse could be successfully burnt; the only quesfuel was its employment here was one of cost. When such ${ }^{0}$ wing to the limented with some years ago, it was found that to inctease the limited supply here, its employment at once led ${ }^{8} \mathrm{chch}$ fuase of cost. With reference to the mode of burning improved if the air in the paper, he thought that it would be fuel, and if the air required was taken in with the steam and
With proper means provided for regulating its supply. With proper arrangeans provided for regulating its supply. be obtained. He added that it was desirable to know how
the leumokebox temperatures were affected by the use of petroWould be ; he anticipated that with this fuel the temperature R. Mr. F.C. Mars
R. and W. Marshall, of Newcastle, stated that his firm (Messrs. describetroleum fuel, the arrangement being very like for Very bed by Mr. Buel, the arrangement being very like that Boyd long tubes, and had made them even longer than Mr. of 10 ft . Evene, they being $2 \frac{1}{2}$ in in diameter with a length the ends. The with these proportions the flame came out at ${ }^{\text {air }}{ }^{\text {ton }}$ was. The question of properly adjusting the supply of ton as to most important one, and he agreed with Mr. Cromp-
steam to desirability of the air being taken in with the Want and fuel. In the boiler to which baken in with the Thant of morel. In the boiler to which he had referred the the $V_{\text {evolution of }}$ of dense smoke was a subject of complaint on not able to in the case of steamers using liquid fuel. He was he had mentioned, buta the engineer stated that when biler
petroleug
bare um steam was baroleum steam was kept up much more easily than whing
petrale wood. Ren petroleuw Wood. Referring to the remarks of Mr. Boyd as to obrine boiler more rapidly than is desirable, Mr. Marinall biferved that it was a papidy than is desirable, Mr. Marshall
protuce at we had not yet been able to circulation marine boiler in which there was an efficient
the that yeen able to Hedime would steam was being got up. He believed that foditerranean, come when many steamers trading in the land. some of the would find it preferable to obtain liquid fuel attention the question of smokebox temperatures required more a chimn than it had generally received ; he would like to see parsingey dispensed with and the products of combustion boiler. at a temperature little above that of the steam in escribed
${ }^{\text {tiveribed }} \mathrm{Mr}_{\mathrm{r}}$. Jeremiah Herent arrangements which had been marges of oxes desemiah Head pointed out that in the locomobrickwork which were absent in the marine boiler mentioned by which were absent in the marine boiler
difference combustion the results as far as the attainment of combustion is concerned. There was no doubt
that an accumulator of heat was much wanted with liquid fuel, while it also appeared important that both the fuel prior to injection, and the air required to support combustion, should be preliminarily heated. He doubted if the steam used for injection was decromposed; he rather thought it probable that it passed into the smokebox as steam.

Mr. P. F. Nursey observed that in 1878 he was present on board a steamer fitted up for burning liquid fuel, when it was tried between London and Graveiend. The results were satisfactory as far as the combution of the petroleum refuse was concerned, but it was subsequently found that no regular supply of the required fuel could be obtained at a moderate price, and the intention of regularly working the steamer with such fuel was abandoned. He added that some years ago he had been interested in the introduction of petroleum into steam boilers for the purpose of preventing priming, according to the system patented by a Danish engineer. The plan had been tried very successfully, amongst other cases, on the steamer Ida, belonging to the London, Brighton, and South Coast Railway Company, and trading between Newhaven and Dieppe. The boilers of the vessel primed so bodly that it was proposed to take them out; but by the employment of the petroleum this fault was cured. The petroleum was injected with the feed, a small quantity being put in at the commencement, and again about the middle, of each trip. It was found that not only did this use of petroleum prevent priming, but also that it did away witi hard incrustation in the boiler, and rendered unnecessary any lubrication in the engine cylinders.
(To be continued.)

Scientific Motes.

Manganese in Animals and Plants.-Recent researches by Mr. Maumene have shown that the mefal manganese exists in wheat, rice, and a great variety of vegetables. Wheat contains from $\frac{1}{5000}$ to $\frac{1}{150} \sigma_{0}$ of its weight of the metal, which exists chitfly as a salt of an organic acid. It is also found in potatoes, beetroot, carrots, beans, peas, asparagus, apples, grapes, and so on. The leaves of the young vine are very rich in it; so are the stones of apricots. The proportion in cacao is very great, as it is in coffec, tobacco, and especially tea. In the 50 grammes of a-hes left by a kilog amme of tea, there was found 5 grains of metallic manganese. There are vegetables, however, in which no manganese can be found, as, for example, oranges, lemons, onion ${ }^{\text {, \&c. Many medicinal plants contain it, as, for }}$ example, cinchona, white mustard, and the lichen (Roccella tinctoria). Animal blood does not always contain it, but it is found in milk, bones, and even hair. Mr. Maumen's regards its presence in the human body as an accident, and not of vital importance. He aiso suggests that doctors should cease to employ manganese as a succedaneum with iron, for while the latter is useful to the blood, the former is an intruder which is only tolerated in small traces, and rejected in larger quanti'ies. l'ea, coffee, and other vegetables requice abundance of manganese in the soil for their proper cultivation, and the absence of it may account for the fuilure of many plantations.

Accomding to the Times Paris Correspondent, M. Pastenr's experments with the virus of hydrophobia are going on with unbroken success. He has thus far experimented on 57 dogs, 19 of them mad and 38 bitten by them under uniform cond. toons. Out of these 38 half had been previously inoculated, the other half not. The latter without a single exception, died with unmistakable signs of hydrophobia, whereas the 19 others are about and as well as ever. They will be watched for a year by veterinary doctors to see whether the inoculation holds good permanently or only temporarily.

Electric Conductivity of Solotions.-According to the recent researche of Mr. Bouty, the neutral salts in very extended solutions of water form a group apart as regard their electric conductivity. For example, ethyelic alcohol, glycerine, eryihrite and phenol, ghocose and candied sugar, ordinary ether and dichlorhydrine, ethylic aliehydr and aretone, as well as alhumen, all conduet very badly. Mr. Banty has also come to the conclusion, from his experiments, tiat on anhydrous alkali or acid is not a conductor, uut that a hydrated acid or alkali conducts like a salt.

THE EFVOLUTION OF FLOWERS.

by grant allen.

Some Higher Lilies.

(Continued from puge 218.)

All the true lilies with which we have dealt so far have had bulbs to grow from, and have been, on the whole, very succulent and herbaceous in character. They have also persisted in the primitive lily habit of producing dry capsules, each of of the three cells in which contained numerous seeds.

There are, however, some higher types of lily, not very largely represented in our British flora, which differ considerably from the tulip, the fritillary, and the tiger-lilies in one or other of these central characteristics. I propose briefly glancing at two of these to-day, the common asparagus (Asparagas officinalis) and the butcher's broom (Ruscus aculeatus). They are our two English representatives of the sub-order of Liliaceæ known as Arparagex.

Dismiss from your mind entirely the ordinary garden notion of asparagus, as a thick, stumpy, succulent shoot, and try to realise the life of the wild plant itself as it grows by the sandy, tideless levels of the Mediterranean, or far more sparingly on a few isolated rocky headlands of our own Cornish or Irish coast. Essentially a maritime weed, the wild asparagus has, instead of a bulb,a deep creeping root-stock, buried far out of harm's reach in the sand or the crannies; and from this stock it sends up every spzing a few soft, scaly, annual shoots, thin and wiry, which branch out afterward into tufted feathery heads of minute foliage. In our gardens, we trench and manure the selected and cultivated varieties, so that each gear the annual stems grow very large, high, bushy, and collect abundant material for the next spring's growth, which they conceal during the winter in the buried root-stock. Hence the young shoots in the garden kind have become unnaturally large, thick, and luscious. But in the wild state, asparagus
seldom attains more than one quarter the height of the bis luxuriant, cultivated variety, and its spring shoots a thinner, stringier, and more woody in texture.

On the edible young stems of the garden asparagus body must have noticed a few short, stumpy scales, gene of a faint mauve colour ; and these are almost the only leaves the plant ever produces. When it grows older place of foliage is fulfilled by the fine clustered hair-like 8 points, which are, in fact, very small branches, or, if you to be extremely scientific, abortive pedicels (that is to flower-stalks whose buds and blossoms have never develop fal Look very closely at the base of each such a cluster-th grown garden asparagus will do quite as well for this p in as its wild ancestor-and you will see that it is enclos very tiny dry scales, each of which is really a bract or 100 similar to those on the spring shoots. From the axils angles made by these bracts with the stem, the cluster of 2 tive pedicels springs, just as each separate blossom in hyacinth or a common spotted orchis, springs from a bract of a far more auspicuous character. One may fact, that each cluster of so-called leaves in the ass answers to a whole head of flowers in the bluebell or only that the actual blossoms themselves are in th never developed.

Why the asparagas has thus taken to producing these numerable pedicels instead of true leaves would be a 1008° difficult question to answer fully. It must suffice here is say briefly that in many plants of dry places (for example, the stonecrops) the stem and branches as well as tho are filled with chlorophyll, and help to perform the functions. In others (for example, in the cactuses) the leaves have dwindled away absolutely to nothing becau succulent stem performs their functions better under it peculiar circumstances. In asparagus, the true leaves only as protective scales, but the work of foliage has taken on by the stom and pedicels, simply because they do the work more conveniently.

Fig. 1.-Asparagus Officinalis.

The fowers of the asparagus are small and greenish, and at You will very inconspicuous. On looking closer, however, dietinct see that they are perfect little lilies, each with six petals, $_{8}$, the distinn-pieces-that is to say, three sepals and three bix otame distinction being here well marked-and the usual however, have stamens only; others bave pistils with flowers, dintinct ble plant is just beginn:ng to separate the sexes in bonet blossoms. But the separation has not yet gone far;
thon of the femste though the female flewers have as yet quite lost their stamens, ninthers. Ihey are reduced to useless fllaments bearing abortive
netain Indeed, a fow blossom on each plant ingally still
cotain both stamens and pistils. Unattractive as they are in colour, the stamens and pistils. Unattractive as they are in bocrete abundaragus flowers have a delicate perfume, and hive bees and a few ; hence they
tibguished fromt marked peculiarity about the asparagus, as disis certainly from the other lilies we have hitherto examined, dry green or brown that it produces red berries, instead of prodaced, or brown capsules. This berry has, of course, been cordingtribute the seeds in the intervention of birds, which enchingly, the plant is able to lessen the number of seeds in or cell to one only. To be sure, the flower has two ovales
young seeds in eable to lessen the number of seeds in ripeng, seeds in each cell of the ovary; but as the fruit of evalct reversal of usually becomes abortive. This is just directution; and yet it is we saw happen in an earlier stage moction, und and yet it is only a further step in the same ${ }^{40}{ }^{\text {necotyl}}$, under a slight disguise. We noticed that the earliest -ry flower, each such as the alismas, had many carpels in redu as the tulip and fritillary seed. In the simpler lilies, reduced to three and fritillary, the number of carpels was compensation, the seeds in a single capsule), while, by way of the seeds in each cell were increased to several.

But in the asparagus, the improved mode of dispersion by the aid of birds enables the plant still further to s1mplify its plan by reducing the number of seeds in each cell to one. It thus effects the greatest possible saving both in fertilisation and in dispersion of seeds.

The butcher's broom is a still more singular modification of the lily type, in which the foliar functions are performed by flattened, leaf-like branches, exactly simulating true leaves. It stands alone among British monocotyledons in attaining a shrubby, woody, tree-like habit. The branches are so extremely like leaves in outward appearance that their true nature can only be discovered by reasoning and analogy. Most of them bear on their under surface (or rather on the upper side, which is so twisted as to turn downward) a single small whitish lily flower, having six distinct perianth pieces, and either three stamens or a three-cell ovary, for the division of the sexes is here almost complete, though a few hermaphrodite blossoms occasionally occur. If you look very closely, however, you will see that each flower is borne on a small pedicel, united along its whole length with the leaf-like branch (well shown at b in the accompanying woodcut), and that a very tiny. scale or bract lies under every blossom. Similar very small scales, the last relics of the true leaves, now abortive, are found beneath the leaf-like branches. The flowers and fruits seem accordingly to grow out of the middle of a leaf, a peculiarity which gives butcher's broom a very strange and uncanny appearance. In the immature ovary, there are two ovules in each cell, but, as the fruit ripens, one in each cell always becomes abortive, so that at most there are but three seeds in the berry. More often, however, only two perfect seeds are developed, and it is not uncommon to find berries with only one; so that butcher's broom, in fact, carries all the tendencies of the asparagus just one stage further. The berries are bright red, and very attractive to birds, but the soeds are excessively hard and indigestible. Butcher's broom is a glossy evergreen, and the leaf-like branches are atiff and prickly, effectually deterring cattle from browzing off its tempting foliage.-Knowledge,

Fig. 2.-Ruscus Aculeatus.

LIFE OF STONES.

Some months ago these pages had an article on the "Decay of Building Stones." The subject is worthy more than a passing paper, as it affects not only the permanency of public buildings, but the lasting qualitits of the mementors to our own dead. A run through the graveyards of the oldest settled portions of the country proves that some of our more recently formed stones possess an enormous amount of durability ; the slates, for instance, outiasting even marble, to say nothing of sandstone. But the oldest stonts which have been found, those retaining their inscriptions legibly, are those from such quarries as the Bolton Ledge, in Connecticut, specimens of which may be found in other localities. But the chief value of this stone is that it is a resistant to the acids in the atmos. fhere, especially those generated in manuficturing localities from combined smake and steam emitters. This stone appears to be a slate impregnated with mica so rlosely mixed that it gives the entire surface an almost glassy appearance. It is much in favor for pavements for hospitals, chemical laboratories, and other places where the floor would be exposed to the action of acids and other chemicals. In the early story of the country, especially of New England, these stones, being easily quarried, were largely used for memorial headstones, and the inscriptions, although shallow, are still quite legible. Even when set on edge and exposed for a century or more to the changes of our northern climate, the layers refuse to $s \in$ parate, and even the face wears out sooner than the stone disintegrates.

Slates, of the dark blue color, have withstood the wear of a century and atill retain all the sharpuess of their inscr!ption. Tlete is something peculiar about this stone. It is simply a clay deposit under water, but it is a great rcsistant of water and is a!most fire proof - much more so than marble or granite.

Sindstones, either of the light shades or the dark red colors, are pecul anly susceptible to elementary or weather influences in this clamate. Moouments in cemeteries composed of the Portlard red sandstone show marks of weather wear within ten years. Buildings composed of this stone are defaced almost before the elements have given them the seal of age by their mellowing in flu nce. Window stools of churches, steps, balus trades, hoods, and 1 rojecting caps peel off in flakts or crack as though under too much wtight. This stone is only sharp seasand aghlutin $z \cdot d$ and cemented by the oxide of inon. It dis integrates too rapidly on exposure to the atmosphere to be fit for enduring structures. So certain is this to thove who cut the cherse like tone from its natural quarry that their cemeteries, in close vicinage to the quarries, show very few of these stones in their monument.

Glanice, whele not exposed to destructive heat, as to great firts like the momorable ones of Chicago and Boston, is very entuing. Its clean surface will not encourage even the attachment of mose, while sun heat and trost cold srem to have little i_{1} fluence onit. It is almost abolutely proof against chemical attacks from the atmo-phere, and so for sustaining crushing force thet is nolhing in the me ely mineral materials than can equal it, Quincy granite and Weterly granite approaching iu thenr reintant qualitits to crude cast iron.

Marble is a cabbunate of line, and this simple statement is stifficient to show that marble is not an appreprate matrial to mett our frigid Winters and torid Summers. The public buildings that have rectutly been constiucted of marble show already signs of decay. If our climate eucouraged the cryptogamous growth on mural stones that the air of Eugland, the British Isles, and even of Southern Europe does, our marble edifices miyht be sure of a life of ten or more generations. But there is no surety of permatency in the marble buildings erected nowadays. The marble is not pure, and the climate is not fitted for even the purest marble. Our granite and blue stone quar. ries will lie forever our best resorts for building and monumental :tone.-Scicntific American.

SOLDERING ALUMINIUM.

The use of aluminium in the arts has been much restricted by our ignorance of any method of soldering it, either to itself or other metals. Now, however a French engineer, M. Bourbouze, has discovered a way of effecting both classes of the operation with ease. The process cousists in plating both surfaces to be soldered, not with pure tin, but alloys of tin and zinc, or tin, bismnth, and alunfinium, dic. Good results are
obtained with all such alloys. but those containing tin and aluminium are best. They should contain different proportions, according to the work the soldered parts have to do. For parts to be fashioned after soldering, the alloy should he composed of 45 parts of tin and 10 of aluminium, as it is suticiently malleable to resist the hammer. Pieces thus united can also be turned. Parts which have not to worked, after being soldi red, nay be united with a soft solder of tin contaiving less aluminium. This last solder can be applied with a hot soldering iron, as one solders white iron, or even with a flame. Neither of these solders requires any prior preparation of the pieces to be soldered. It sulfices to apply the solder, and extend it by help of the iron over the parts to be joined. When, however, it is desired to solder certain metals with aluminium, it is hest to plate the part of the metals to be soldered with purb tin. It is sufficient then to apply to the part the aluminium plated with alloy, and to finish the operation in the usug manner.

Eugtuecriug totes.

The Utilisation of the Niagara falls.-At a recant meeting of the American Association of Civil Engineers, Mr Benjamin Rhodes described what had been done and whal might be done towards the utilisation of Niagara for electriad purposes. He said: "The power of Niagara can be estimating very approximately. The average flow of the river accordid. to many careful measurements is 275,000 cubic feet per secent The fall in the river through the rapids immediately ahove fall is 60 feet. The hright of the falls is 165 feet, makiug 00 total of 230 feet; thus we have for the whole power 7,000, horse-powtr. To utilise this amount of power by water-w tie citie generate electrical currents, and transmit to various citid within 500 miles, would necessitate a plant represented the $\$ 5,000,000,000$. Such figures as these give some idea of enormous amount of power here in reserve." He states that on the Canadian side the entire use of the falls is represented by small over shot wheel, which propels a pump, furnishing the meagre supply of water to the aljoining village. On th American side there are five separate raceways, developing ilic all 800 to 1,000 horse-power. After describing the hydraul canal, the greatest puwer now in use at Niagara, he made al " Further developments of power at Niagara may be mad little expense. The hydraulic canal can be deepened widened, and wheels may be set under greater heads, the amount thus made available here being equal to the necess of many years. It may safely be said that the use of $\mathrm{Ni}+\mathrm{g}^{15}$ hay just begun. Low water is unknown; troubles from $\mathrm{ic}^{\text {c }}$ 保 slight ; hours of use are nat limited to 8 or 10 , but 24 hours the day and 365 days in the year, and unlimited power is rab in making the most reliable, as it is the grandest, water-pow the world."

The Silver Voltameter.-At the last meeting of Physical Society for the present session, Lord Rayleigh sident elect of the British Association, exhibied the plati bowl voltameter which he has desigued for measuring strength of an electric current. This is the best mesur the found for estin ating the current in absolute measure. platinum bowl is the cathode in his apparatus; the being a sheet of silver wrapped up in clean filter-paper r und it. The filter paper is a sheath for the anode to any grains of silver which may be loosened from it in of decomposition, and prevents them from falling on the tom of the bowl or cathode. The bowl is filled with a of silver salt, the pure nitrate or pure chlorate being P Silver acetate ought not to be used, as it does not 8 good results. The anode is dipped in the solution sheet is quite immersed; and the current turned on ampère deposits 4 grammes of silver in an hour, then quarter to half an hour is sufficient to give one to two gt a quantity which can be weighed with sufficient accuracy chemical balance. Any current from $\frac{1}{10}$ to 5 amperes ${ }^{a n D}$ successfully weasured in this way.

New Method of Producing Steel Plates.-Dr. Muirhead, president of the Physiological Society of Gla has recently brought before that body some particulars method of manufacturing steel plates for shipbuildipg boiler-making purposes which is of much interest, althon
leading feature is not a novel one. It is the invention of Mr . joseph Whitley, of Leeds, who has erected works for prosecuthead the manafacture. Briefly describing the process, Dr. Muirbrick, revolves a hollow metal cylinder, lined with ganister or other gutter revolves at high speed, the axis being horizontal. A along or rhone, perforated with holes, passes into the interior, ateel, which, whole length. Into this gutter is poured molten mild the, which, escaping through the holes, is carried round by of steel of revolving case, and is formed into an inner cylinder still hot, is inch or more in thickness. This cylinder, while rolling mis drawn, cut across by means of a saw, put into a rolling mill, and rolled to the lingth and thirkuess required.
In his common Whitleymmnication to Dr. Muirhead on the subject, Mr. building wrote as follows: "Suppose I wish a plate for shipfeet long; then, given a mould five feet in diameter and five taken out and cut is a cylinder an inch thick. This, when It is then and cut, is fully fifteen feet long and tive feet broad. plate then rolled down to half an inch in thickness. such a monld is nine thirty feet long and five feet broad. The present have succesofuet long and tive feet in diameter. With it I ewt." successfully cast a mild steel shell weighing about 30 Wringing Potato-Digger--A United States manufacturer is *uccesaful in Anew form of potato-digger which has been so adid to have been sold in three years, that he is endeavouring to find a save been sold in three years, that he is endeavouring consideratly for it in the English colonial inarkets. It differs
made in the made in this country. In general appearance it resembles a plough, and country. In general appearance it resembles a
plongh. In it drawn by a horse and guided like an ordinary Find of instead of a share under the drag-beam, there is a Which inverted shovel, set at an angle of about 15 degrees, blade or shops ny the earth. Attached to the upper end of this
in diamel are a number of bars or fingers, about an inch in diameter, apread a number of bars or fingers, about an inch and separate them out in fan shape, which lift up the potatoes mized. To the right and left of the blade, and set at an angle to the line the right and left of the blade, and set at an angle or Tings, which clear a aliongs, which clear a way through the weeds or huln, and ayth. About without cutting the potatoes, any superfluous mpplied with fingers, which raises any potatoes near the surThis Which may have been left partially or wholly covered. a feld complement is reported to be of light draught, and to leave team comparatively even, while it digs potatoes as fast as a coupean walk. By verbal description alone it is difficult to
Rnglish correct idea of the invention, but it is one to which English correct idea of the invention, but it is one to which Tra antage turn their attention.
stancea of the valuc Continuous Brake.--Two remarkable inreported recently, which may be commended alike to the atten-
tion of thin of the Board of which may be commended alike to the attenthis country. While the Chicago limited express was running exploded, of forty miles an hour, the boiler of the locomotive the frod, killing the driver and fireman instantly, and causing pipen Were shattered leave the metals. Fortunately the brake ipplied throughout, and, the brake-blocks being immediately Orer-running and the train, prevented the rear coaches from
tion of the and tescoping those in front. With the excepion of the driver and felesing those in front. With the excepIjuries Were distributed amongat the passengers in the smok-
ing-car, who ombar, who were knocktd about as their vehicle went over the Prance Rent. The other instance happened on the Eastern of cruant Railway, near Bar le Dac, when, owing to some mis. the maving loosened a rail, the engine and font carriage left
train in its. A prompt application of the brake stopped the thain in its own prompt application of the brake stopped the the river, the only length, and saved it from running bodily into ina, Who received a few contusions. These are two of many biake in which serve to eostablish the efficiency of the modern thow mpeventing accidents, and railway travellers may well to turn much longer the companies will wait for "something ected lines in the kingdom. Tag Testine in the kingdom.
lateet instructiong of Steel Rivets.- The following are the atoel rivetactions issued by the British Admiralty for testing a altimate tensile strenge to be made from sterl bars, having quare inch of tensile strength of not less than 58,000 pounds per miaimuma of section, not more than 67,000 pounds, with a - An elongation of not less than 20 per cent. in a length
of eight inches. A portion of one bar in every fifty is to be taken for testing before being made into rivets. Pieces cut from every bar, heated uniformly to a low cherry red, and cooled in water at 82 degrees Fahreuheit, must stand bending in a press to a curve of which the inner radius is equal to the radius of the bar tested. Rivets are to be properly heated in making, and the finished rivets allowed to cool gradually. The rivets are to stand the following forge tests: (1.) The shank to be bent double cold, without fracture, to a radius equal to the radius of the shank. (2.) Bent double hot, without breaking, to as small a radius as possible. (3.) Flattening of the rivet head while hot, without cracking at the edges-the head to be flattened until its diameter is $2 \frac{1}{2}$ times the diameter of the rivet shank. (4.) The shank of the rivet to be nicked on one side, and bent over to show the quality of the material. Oue rivet in every hundred to be forge.tested as a sample.

Llectric Light Wires as Lightning Conductors.-The new drill hall of the State University at Minneapolis, which stands on an eminence, was recently struck by lightning during the progress of a musical festival. A workman on the roof had his shoe torn off, and his leg badly burned; another person in proximity to one of the masts was temporarily paralysed; and two or three ladies fainted; but that was all the damage sus. tained. A loud report was heard, as if of heavy ordnance, balls of fires were distinctly seen through the large skylight, and following the electric wires awav from the building. Subsequent examination showed that the lightning first struck the flag staff surmounting the door, theuce pierced an oaken beam to which the staff was fastened, the splinters, or the concussion, breaking the glass in the skylight. An iron rod conducted the fluid to the network of electic wires below, where the charge was divided, a portion leing harmlessly distributed over the general circuit, and the remainder shattering several electric masts near the building. A metallic ball surmounting the flag staff is supposed to have attracted the lightoing.

A New Subvarine Boat.-The Pall Mall Gazette is our authority for the following :-A submarine boat which ought to be able to destroy the navies of the world has been made at Stockholm. It was tried on the Mälar lake, and will shortly le brought over to France. The boat has the shape of a cigar, is 64 fect long, 6 feet wide, and has an engine of 30 -horse power. It is said that it can be navigated under water, goes at the speed of ten nautical miles the hour, and that four persons can, without any danger, remain in it for six hours running. The funnel shaped cylinder is the only part of the boat which is visible. A winding stair leads to the boat, which is steered from the top of the cylinder, where a glass roof enables the man at the wheel to see the surface of the water, and direct the course of his strange submarine engine of destruction.

New Method of Rolling Shaped Bloom.-The Pittsburgh Steel Casting Company rolled recently, in six hours, 92, 940 lbs. of shaped deck beam blooms. At no time during the uperation was there a longer interval than sixty minutes from the melted iron to the shaped blooms. The steel was of low carbon, with a guaranteed elongation of 23 per cent, in 8 inches. The special difficulty in rolling deck-beam shapes lies in the fact that there is 22 per cent. more reduction on one side than the other. This $n+w$ method of rolling direct from the ingot will tend to a seduction in the cost of producing shapes of all kinds. A patent has been applied for by the Pittsburgh Steel Casting Company which will cover this process.

ON THE EVOLUTION OF FORMS OF ORNAMENT. (Nature.)

The statement that modern culture can be understood only through a study of all its stages of development is equally ture of its several branches.
Let us assume that decorative art is one of these. In con. tains in itself, like language and writiug, elements of ancient and even of prehistoric forms, but it must, like these other expressions of culture, which are for ever undergoing changes, adapt itself to the new demands which are made upon it, not excepting the very arbitrary ones of fashion ; and it is owing to this cause that, sometimes even in the early stages of its development, little or nothing of its original form is recognizable.

Investigations, the object of which is to clear up this process of development as far as possible are likely to be of some service: a person is more likely to recognize the beauties in the
details of ornamental works of art if he has an acquaintance with the leading styles, and the artist who is freed from the bondage of absolute tradition will be put into a better position to discriminate between accidental and arbitrary, and organic and legitimate forms, and will thus have his work in the creation of new ones made more easy for him:

Hence I venture to claim some measure of indulgence in communicating the results of the following somewhat theoretical investigations, as they are not altogether without a practical importance. I must ask the reader to follow me into a modern drawing.room, not into one that will dazzle us with its cold elegance, but into one whose comfort invites us to remain in it.

The simple stucco ceiling presents a central rosette, which passes over by light conventional floral forms into the general pattern of the ceiling. The frieze also, which is made of the same material, presents a similar but somewhat more compact floral pattern as its chief motive. Neither of these, though they belong to an old and never extinct species, has as yet attained the dignity of a special name.

The walls are covered with a paper the ornamentation of

Fig. \quad.
which is besed upon the designs of the splendid textile fabrios of the Middle Ages, and represents a flotal pattern of apirals and climbing plants, and bears evident traces of the influence of Eastern culture. It is called a pomegranate or pine-apple pattern, although in this case neither pomegranates nor pineapples are recognizable.
Similarly with respect to the pattern of the coverings of the chairs and sofas and of the stove-tiles; these, however, show the influence of Eastern culture more distinctly.

The carpet also, which is not a true Oriental one, fails to sivet the attention, but gives a quiet satisfaction to the eye Which, as it were, casually glances over it, by its simple pattern, which is darived from. Persian. Indian archetypes (Cashmere pattern, Indian palmettas), and which is ever rhythmically repeating itself (see Fig. 1.)

The floral pattern on the dressing gown of the master of the house, as well as on the light woolen shawl that is thrown round the shoulders of his wife, and even the brightly coloured glase knick-knacks on the mantel-piece, manufactured in Silesia, after the Indian patterns of the Reuleaux collection, again show the same motive; in the one case, in the more
geometrical linear arrangement, in the other, in the more freely entwined spirals.

Now you will perhaps permit me to denominate these thrie groups of patterns that occur in ournew home fabrics as modern patterns. Whether we shall in the next season be able, in the widest sense of the word, to call these patterns modern, natur ally depends on the ruling fashion of the day, which of course cannot be calculated upon (Fig. 2).

I beg to be allowed to postpone the nearer definition of the forms that occur in the three groups, which, however, on in closer examination all present a good deal that they have in common. Taking them in a general way, they all show a leaf: form inclosing an inflorescence in the form of an ear, or thistle; or at other times a fruit or a fruit-form. In the same way with the atucco ornaments and the wall-paper pattern.
The Cashmere pattern also essontially consists of a leaf with its aper laterally expanded ; it encloses an ear-shaped flower* stom, set with small forets, which in exceptional cases protrude beyond the outline of the leaf ; the whole is treated rigorously as an abeolute flat ornament, and hence its recogaition is reno derod somewhat more difficult. The blank expansion of the leaf is not quite unrelieved by ornament, bui is set off rith small points, spots, and blossoms. This will be thought le

Fig. $1 a$
Fig. 13
strange if we reflect on the Eastern reprementations of animelley in the portrayal of which the flat expanses produced by muscle-layers are ofton treated from a purely decorative ${ }^{0}$ of view, which stritioe um as an exaggeration of convention.

One cannot go wrong in taking for granted that plantforms were the archetypes of all these patterns. Now we tory that it holds good, as a general principle in the histhery of civilisation, that the tiller of the ground supplants the shepherd, as the shepherd supplants the hunter: and the like holds also in the history of the branch of art we are discussing, -representations of animals are the first to make their appearance, and they are at this period remarkable for a wonderful sharpness of characterisation. At a later stage man first begins to exhibit a preference for plant-forms as subjects for representation, and ful to him for such as can in any way be useful or hurt-- We him. Wowever, meet such plant-forms used in

Fig. 2.
Ornament in the oldest extant monuments of art in Egypt,
side by side with representations of animals; but the previous side with representations of animals; but the known. history of this very developed culture is unstudying In such cases as afford us an opportunity of of culture more primitive though not equally ancient stages above dictum for instance among the Greeks, we find the have to deam confirmed, at any rate in cases where we flora to deal with the representation of the indigenous plants as weradistinguished from such representations of case that is now imported from foreign civilisations. In the
very far in now to occupy us we have not to go back so ery far in the history of the world.
The ornamental representations
of plants are of two

reproduction of phave to deal with a simple pictorial
Doughs of olive and plants as symbols (laurel branches, mere characteristic de and branches of ivy), i.e. with a stress is laid upon thecoration of a technical structure, object plassible, -the the most faithful reproduction of the the studysible,-the artist is again and again referred to general rule Nature in order to imitate her. Hence, as a these forme, there is less difficulty in the explanation of
object It is how and the even the minute details of the natural It is quite and then offer points that one can fasten upon.
decoration whiter thing when we have to deal with actual at emplion which does not aim at anything further than
Organioying the strue organise the une structural laws of organisms in order to .
a higher vitality. These latter forms depart, even at the time when they originate, very considerably from the natural objects. The successors of the originators soon still further modify them by adapting them to particular purposes, combining and fusing them with other forms so as to produce particular individual forms which have each their own history (e.g. the Acanthus ornament, which, in its developed form, differs very greatly from the Acanthus plant itself); and in a wider sense we may here enumerate all such forms as have been raised by art to the dignity of perfectly viable beings, e.g. griffins, sphinxes, dragons, and angels.

The deciphering and derivation of such forms as these is naturally enough more difficult ; in the case of most of

them we are not even in possession of the most necessary preliminaries to the investigation, and in the case of others there are very important links missing (e.g. for the well-known Greek palmettas). In proportion as the representation of the plant was a secondary object, the travesty has been more and more complete. As in the case of language, where the root is hardly recognisable in the later word, so in decorative art the original form is indistinguishable in the ornament. The migration of races and the early commercial intercourse between distant lands have done much to bring about the fusion of types; but again in contrast to this we find, in the case of extensive tracts of country, notably in the Asiatic continent, a fixity, throughout centuries, of forms that have once been

introduced, which occasions a confusion between ancient and modern works of art, and renders investigations much more difficult. An old French traveller writes:"J'ai vu dans le trésor d'Ispahan les vétements de Tamerlan; ils ne different en rien de ceux d'aujourd'hui." Ethnology, the natural sciences, and last, but not least, the history of technical art are here set face to face with great problems.

In the case in point, the study of the first group of artistic forms that have been elaborated by Western art leads to definite results, because the execution of the forms in stone can be followed on monuments that are relatively not very old, that are dated, and of which the remains are still extant. In order to follow the develop-
ment, I ask your permission to go back at once to the very oldest of the known forms. They come down to to us from the golden ers of Greek decorative art-from the forth or fifth century B.c., - When the older simple styles of architecture were supplanted to styles characterised by a greater richness of structure and more developed ornament. A number of flowers from capitals in Priene, Miletus, Eleusis, Athens (monument of Lysicrates), and Pergamon; also flowers from the calathos of a Greek caryatid in the Villa Albani near Rome, upon many Greek sepulchral wreaths, upon the magnificent gold belmet of a Grecian warrior (in the Museum of St. Peters-burg),-these show us the simplest type of the pattern in question, a folded leaf, that has been bulged out, inclosing a kob or a little blossom (see Fig. 3 and 4). This is an example from the Temple of Apollo at Miletus, one that was constructed about ten years ago, for educational purposes. Here is the specimen of the flower of the monument to Lysicrates at Athens, of which the central part consists of a small flower or fruits (Figs. 5 and 6.)

The form passes over into Roman art. The larger scale of the buildings, and the pretensions to a greater richness in details, lead to a further splitting up of the leaf into Acanthuslike forms. Instead of a fruit-form a fir-cone appeurs, or a pineapple or other fruit in an almost naturalistic form.

In a still larger scale we have the club-shaped knob developing"into a plant-stem branching off something after the fashion of a candelabra, and the lower part of the leaf, where it is folded together in a somewhat bell-shaped fashion, becomes in the true senee of the word a campanulum, out of which an absolute vessel-shaped form, as e.g. is to seen in the friese of the Basilica Ulpia in Rome, become developed.

Such remains of pictorial representation as are still extant present us with an equally perfect series of developments. The splendid Giæco-Italian vessels, the richly ornamented Apulian vases, show flowers in the spirals of the ornaments, and even in the foreground of the pictorial representations, which correspond exactly to the above-mention Greek relief representations. [The lecturerer sent round, among other illustrations, a amall photograph of a celebrated vase in Naples (representing the funeral rites of Patroclus) in which the flower in question appears in the foreground, and is perhaps also employed as ornament (Figs. 7 and 8). 7

The Pompeian paintings and mosaics, and the Roman paintings, of which unfortunately very few specimens have come down to us, show that the further developments of this form were most manifold, and indeed they form in conjunction with the Roman achievements in plastic art the highest point that this form reached in its development, a point that the Renais. sance, which followed hard upon it, did not get beyond.

Thus the work of Raphael from the loggias follows in uu broken succession upon the forms from the Thermæ of Titus. It is only afterwards that a freer handling of the traditional pattern arose, characterised by the substitution of, for instance, maple, or whitethorn, for the Acanthus-like forms. Often oven the central part falls away completely, or is replaced by overlapping leaves. In the form of this century we have the same process repeated. Schinkel and Bötticher began with the Greek form, and have put it to varions uses ; Siüler, Strack, Gropius, and others followed in their wake until the more close resemblance to the forms of the period of the Renaissance in regard to Romian art which characterises the present day was attained (Fig. 5.)

Now what plants suggest this almost indispensable form of ornament, which rayks along with the Acanthus and Palmetta, and which has almost become so important by a certainffushion with the structural laws of both ?

We meet with the organism of the form in the family of the Aracte or Aroid plants. An enveloping leaf (bract), called the spathe, which is often brilliantly coloured, surrounds the florets, or fruits, that are disposed upon a spasix. Even the older writers-Theophrastus, Dioscorides, Galen, and Pliny-devote a considerable amount of attention to several apecies of this interesting family, especially to the value of their swollen stems as a food-stuff, to their uses in medicine, \&c. Some species of Arum were eaten, and even nowadays the value of the swollen stems of scme species of the family canses them to be cultivated, as, for instance, in Egypt and India, \&c., (the so-called Portland sago, Portland Island arrowroot, is prepared from the swollen stem of Arum maculatum). In contrast with the smooth or softly undulating outlines of the spathe of Mediterranean Araces, one species stands out in reliff, in which the sharply-marked fold of the apathe almost corresponds to the
forms of the ornaments which we are discussing. It is Dracunculus vulgaris, and derives its name from its stem, which is spotted like a snake. This plant, which is pretty widely distributed in olive-woods and in the river-valleys of the countries bordering on the Mediterranean, was employed to a considerable extent in medicine by the ancients (and is so still nowadays, according to von Heldreich, in Greece). It was, besides, the object of particular regard, because it was said not only to heal snako-bites, but the mere fact of having it about one wus aupposed to keep away snakes, who were said altogether to avoid the places where it grew. But, apart from this, the striking appearance of this plant, which often grows to an enormous size, would be sufficient to suggest its employment in art. According to measurements of Dr. Julius Schmidt, who is not long since dead, and was the director of the Observatory at Athens, a number of these plants grow in the Valley of Cephisis, and attain a height of as much as two metres, the spathe alone measuring nearly one metre. [The lecturer here exhibited a drawing (natural size) of this species, drawn to the measurements above referred to.]
Dr. Sintenis, the botanist, who last year travelled through Asia Minor and Greece, tells me that he saw beantiful specimens of the plant in many places e g. in Asses, in the Neighbourhood of the Dardanelles, under the cypresses of the Turkish cemeteries.
The inflorescence corresponds almost exactly to the ornament but the multipartite leaf has almost had a particular influence upon its development and upon that of several collateral forms which I cannot now discuss. The shape of the leaf accounts for several as yetunexplained extraordinary forma in the ancient plane-ornament, and in the Renaissance forms that have been thence developed. It first suggested the idea to me of studying the plant attentively after having had the opportanity five years ago of seeing the loaves in the Botanic Gardens at Piss. It was only afterwards that I succeeded in growing some
flowers which fully confirmed the expectations that I had of them (Fig. 10 and 11.)
(To be continued.)

THE VITLATION OF AIR BY DIFFHRHNT ILLOMINANIGS
The following table, propared for the Engineering and Mining Journal, shows the oxygen consumed, the carbonic acid pro duced and the air vitiated by the combustion of ceftain bodies burnt so as to give the light of twelve standard sperm candles, each candle burning at the rate of 120 grains an hour :

Burnt to give light of 12 candles equal to 1120 grs. per hour.					
Cannel ga	$3 \cdot 30$	16.50	201	217.50	1960
Common ga	$5 \cdot 45$	$17 \cdot 25$	3'21	348.25	27.5
Sperm oil	4.75	23.75	8.33.	${ }^{356} 75$	235.5
Bensole.	$4 \cdot 46$	$22^{\prime} 90$	3.54	576.30	238
Parafin.	6.81	34.05	$4 \cdot 50$	484.05	36
Camphine	$6 \cdot 65$	33725	477	$510 \cdot 25$	951
Sperm cand	7.37 8.41	\$7.85	577	61485	${ }_{988}$
Stoaric...	8.82 8.82	4200 $4 \cdot 10$	6.90 6.25	632 669	374
Tallow	12.00	60.00	8.73	933.00	10.6
Electric light.	none.	none.	none.	none.	

Gas Engines and Electric Lighting.- Sufficient rience, says the Leeds Express of the 20th inst., has now gained of the lighting by electricity of a portion of the new municipal buildings in Calverley Street to place its su beyond doubt. This result is the more gratifying, inasman as the employmont of gas ongines in driving the dynamo-m chines which generate the electric current was, for long subject of strong opposition, and it was only by prolonged persistent investigation, and after mach trouble that thon who pinned their faith to gas engines secured their adoption The employment of steam engines and boilers would be incor renient and expeusive, while the cost of conveying tho p from an out-building to the place intended to be lighted wow not only have been considerable, but in transmission a sorioud proportion of the power would be lost Thus, it was ealculstor
power cast $£ 1$ per light when the lamps were distant two hurdred yards from the engine, it would cost $£ 4$ per light if they were distant four hundred yards; while there would be a conof the loss in the conducting wires equal to about ten per cent. of the total power. Some members of the Corporation Committee, however, held that the makers of the "Otto" gas en. gines had now reaohed a point in their manufacture which did away with the risks and disadvantages urged against their use now this purpose. Those who visit the new library any evening how can see in the perfectly satisfactory nature of the lighting and well grounded this belief was. So perfect is the lighting, and so well have the "leads" been arranged, that the variabuilding power in the light from the top to the bottom of the the pailding-from the starting place to the furthest point to which the power is carried-does not exceed two per cent. For evil thin few days of the lighting those who had prodicted evil things of the gas motors found cause of complaint in a sion caus produced by their working, arising from the exploby caused by the gas. This, however, was quickly remedied filled with coletion of the exhaust receiver-a brick enclosure sand; by rubble, over-laid by a four-inch deposit of river ceptible which the noise of the explosion is rendered impersapplied The engines are of 12 horse-power each, and are sapplied from two 80-light meters.

THE ENTOMOLOGY OF A POND.-(Knowledge.)

> BY E. A. BUTLER.
(Continued from page 224.)

The Middle Depths.

Abont a month after the hatching of the eggs, it is time for this aquatic life to close, and an existence less gross and far hore ethereal now lies beiore the little creature, which has, life, and by this time nearly completed the cycle of its moral freedand so has but scant opportunity left to enjoy the greater Fill bring. Wleasures which the acquisition of superior powers formed bring. Within that ugly, limbless pupa-case has been sylph.like delicate, long-legged, feathery-horned, two-winged, "Beauty being, which, like the Prince in the old story of hideounty and the Beast," is but waiting the removal of its grace. The disguise to appear in all its rightful elegance and thace. The moment of deliverance having at length arrived,
thele part tail is brought up level with the surface, a considerwater. The the thorax being thereby caused to rise above the imprisoned fly then splits between the two horns, and the most criticaly begins to emerge at the opening. This is the thorax releal moment in its whole career, for with head and therax released, but legs still encumbered by their encasement, top-heavyre is perfectly helpless and, at the same time, rather capsize the ting a sudden gust of wind may in a moment capsize the tiny boat and disappoint the hopes of the halfmiserable fiy, which can then look forward to nothing but a occars, the death by diowning. If, however, no such mishap of legs, the struggling insect gradually drags out first one pair on the water and another, and theu, leaning forward, rests them of the water and draws out the third pair; then making use Wings empty pupa skin as a sort of canoe, it soon dries its Where around are aloft to join its companions, who everytame. In thare at the same time putting on their adult cose to meet In their society we will leave it for the present, hoping

The larver ain later on.
probably fam of the midges are called bloodworms, and are for sably familiar to everyone who has kept a rain-water butt, Worm-like thacles often swarm with the wriggling, blood-red, indeed in things. They are also abundant in ponds, and, cerning the life stagnant water. The remarks made above conthe present life-history of the gnat apply in great measure to ever, mast insects also. These red, worm-like things, howal ${ }_{80}$ innabit not be confounded with a certain red worm that of rivers; theresh water, forming vertical burrows in the mud close togethey are gregarious, and crowd their tiny burrows and thusether, remaining with their bodies partly protruded, amasing forming large red patches upon the mud, and it is they all to see the sudden disappearance of such a patch as intrader. These retreat into their holes on the approach of an Wormer. These, however, are not insects at all, but true and have or, as they are called in scientific language, annelids, atage in theired, in this vermiform condition, the highest $r_{c} d_{\text {wriggler development. The fly, which is the parent of the }}$ rigglers of the water butt and staguant pond, is called

Chironomus plumosus. The larva is rather more worm-like than that of the common gnat, and the pupa carries some elegant plumes of fine hairs on its ungainly thorax.

There is a beautiful little creature, clear and transparent as crystal, that is the larva of an another member of this group, and is noteworthy for the variety of curious appendages i^{t} carries on the fore-part of its body. Imagine an animal with a pair of arm-like hodies consisting of a stem with long bristles at the end, and used to lash the water, then a stout bundle of hairs movable en masse, then a pair of little saws, then a kind of policeman's truncheon, with bunches of hairs at the end, also capable of swaying backwards and forwards, and then pair of jaws and a set of bristles, and you will see at once that Corethra plumicornis, as it is called, must have enough to do to mauage properly all these contrivances. Such is its trans. parency, that it may easily elude observation till its wriggling, jerky motions betray its presence. This same transparency, however, affols wonderful facilities to the microscopist for the study of its internal anatomy and physiology, for, by aid of the microscope, all that is going on in its interior is mado plainly visible. It is, of course, a distinct advantage to be able to study the action of an animal's internal organisation without interfering with the free action of its parts, or placing it under abnormal conditions, as there is thus less chance of mistaking for essential peculiarities accidental ones, such as might beinduced by the altered circumstances. It is not to be wondered at, therefore, that this ereature has become classic by having been made the subject of elaborate investigation by more than one observer; and, indeed, there are few more entrancing occupations to those who have a desire to search out the secrets of nature than to watch, hour after hour, under a good microscope, the varied actions and vital processes of this and other minuti\& of animal life. It must not be ignored, however, that the very transparency of parts tends also to introduce a certain element of difficulty into the investigation; for where several organs overlie one another it is not always easy to trace their relative pesition, and it becomes necessary to examine the object from different points of view before such a matter can be settled.

Through the transparent skin of Corethrs can be seen, first the whole of the digestive apparatus, forming a long tube of varying diameter, stretching almost from one end of the body to the other ; then, on one side of this (the mouth side) can be traced the greater part of the nerve system, looking like a long string, with knots tied in it at tolerably regular intervals. Where it approaches the mouth, however, the string divides, and sending one branch on each side of the throat tube, terminates on the opposite side of the digestive tract in a double mass of nervous matter, which is all the representa. tive of brain the poor creature possesses. Then all down the back (to be traced with a little more difficulty, on account of its extreme transparency) is the "dorsal vessel," as it is called, which is an insect's equivalent of a heart. Those who have kept silkworms or other pale, smooth-skinned caterpillars, will probably have noticed this apparatus as a dark line running along the back just underneath the skin, and alternately contracting and expanding from behind forwards at the rate of from forty to fifty pulsations per minate; in the present insect the pulsations are not so rapid, being only about twelve per minute. Then there can be seen the numerous oblique bands of muscles by which it is enabled to effect its wriggling movements, as well as those strips by which the motions of its various appendages are controlled. Again, at each of two places, one near the head, the other much farther down, will be noticed a pair of black bags, which are air-receptacles counected with the system of breathing-tubes distributed over the body ; the tracing of these latter, however, is, on account of their extreme minuteness, a mutter of much more difficulty. At the tail there are two tufts of featbery hairs, one at the end, the other at the side; small though they are, the hairs are hollow, and connected at their base with the tracheal system, and, whatever other function they discharge, they evidently take part in that of respiration. All these aquatic fly larve are mare or less transparent, but we have chosen the present for more detailed reference, because its superior transparency renders it best adapted for microscopical inveatigation. Like the rest of its brethren, it is carnivorous, and its favourita dish seems to be the quaiut little creatures called, from their spasmodic, jerky movements, water fleas, though they are not fleas at all, nor, indeed, even insects, but belong to the group of animals of which crabs, lobsters, and shrimpa are the most familiar representatives. These specks of creation, which aro

considerably more minute than our household fleas, are caught and crunched by Corethra in considerable numbers, and with great avidity. To facilitate the crushing of their hard horny skin, it is furnished with a pair of strong jaws, carrying stout, tooth-like projections.

The large and important group of water-beetles now calls for notice. They are readily divisible into two sections, which differ considerably both in structure and habits. One of these, called the Hydradephaga, is a carnivorous group, and containg, along with a multitude of minute species, some large and kighly-predaceous insects. They are, in fact, the aquatic representatives of the most highly carnivorous of all the Colooptera, the active and rapacious ground-bootles, which are, to beetles generally, as lions, tigers, wolves, and jackals are to the rest of quadrupeds. The Hydradephaga, therefore, are to the ground-beetles as seals, sea-lions, and warliruses are to the above-named terrestrial carnivora-viz., a section of the group specially modified for an aquatic existence, and having as their appointed duty the repression of the superabundance of aquatic life, just as their terrestrial brethren do their best to provent an excess of population on land. This function they fulfil admirably, for they are extremely voracious, especially the larger kinds-e. g., one large insect, found on the Continent, was observed on one occasion to devour two frogs within the space of forty hours. They will also atteck young fish, as well as other insects. The other group, called the Philhydrida, contains fewer large and con-- apicuous insecte, though one of its members is the largest of all our British water-beetles; they are to a great extent vegetarian in diet, at least in the perfect state, and so remind one of the dugongs and manatees of the mammalian world. To gain a clear notion of the difference between these groups, it will be well to consider a typical example of each; fortunately there are two large insects which are common and wellknown, and will very well sorve to illustrate the points of distinction. They are the Water-beetles, par excellence, Dytiscus marginalis and Hydrophilus piceus. The former is the carnivore and the latter the herbivore, for which reason Dytiscus is eschewed and Hydrophilus welcomed as an in. habitant of an aquarium.

Fig. 1.-Heads of (A) Dytiscus and (B) Hydrophilas. a. Antennse. b. Maxillary palpi.
b. 1

Looking first at the general appearance of the two insects we see that while both are of an oval shape, an obvious advantage to creatures that have to cleave thiir way through the water, the former is a good deal flattened and the lattor more convex ; in colour, too, they differ, Dytiscus being olive brown with a yellow border, and Hydrophilus uniformly black or olive-black, a difference which is hinted at in the speciftc names "marginalis" and "picous." Descending now to structural details, we find the greatest differences in the appendages of the head (Fig. 1). In the carnivore the anternne are long and thread-like, but in the herbivore short and clubbed; this point, however, may not be made out at a first glance, as Hydrophilus frequently carries its antenno packed away close to the body out of sight, and flourishes instead a long pair of thread-like organs very similar in appearance to antennæ of Dytiscus, but different in function, differently placed, and composed of fewer joints. These organs are the maxillary palpi, and are attached to the maxille or secondary jaws, and correspond to the organs terminating in a hatchet; shaped joint we refe red to when considering "ladybirds." Dytiscus has similar organs, but not so conspicuously developed, and hence they are apt to escupe observation, the long, thread-like antenam being the first things to attract attention.

Examining now the legs in our two typical insects, we wee that while the hind pair in each are fringed with hair, and compressed so as to become natatorial, this modification in carried out most completely in Dytiscus; again, whilst the first two pairs are near together in the brown beetle, and the third is placed much farther back, thus giving plenty of room for an extended backward and forward movement in swimming, those of its black cousin are much more regularly disposed. There is a curious point about the hind legs that deserves notice. In beetles, generally, the legs are attached to the body by a rounded joint, which is "let in" to a corresponding perforation in the chitinous armature with which their under surface is protected, and is capable of more or less free movement therein, an arrangement which permits motion of the legs in various directions. If now the hind legs of Dytiscus be compared with those of other beetles, this basal joint seems to fewanting, and the leg therefore seems to have one joint fewer than usual. But it will be observed that each leg is attached to a broad plate (Fig. 2), the pair of whish stretch right across the body, and are prolonged in the centre into a bifid 'spine, which is differently' shaped in different species.

Fig. 2. Part of hind-legs of Dytiscus. a. Coxa; b. thigh.

Now
modified plates are really the much-expanded and greatlyenormous excle, or basal joints above-mentioned. Their enormous enlargement provides a large area for the attachment of the muscles that move these limbs, and thus enables imgorous and powerful strokes to be made, though their of the limb considerably impairs the freedom of movement of the limbs, and in fact limits it to the horizontal strokes philus are most useful in swimming. The coxe of Hydrophilus also are considerably enlarged, but do not attain the mapy be said of those of Dytiscus. The former, moreover, may be said to paddle rather than swim, moving its legs a frog. Thaty, while the latter moves them both together, like a frog. Thus, in every respeat Dytiscus is of the two much insoct, too, it had for an aquatic life. Though the smaller ites blact too, it has been known to attack and make a meal of black cousin.
The distinctive peculiarities which characterise these majority of are exemplified more or less clearly in the nuajority of the members of the two groups. A large latory legs, the Philhydrida, however, have ordinary ambusubaquegs, and, indeed, are more given to crawling over some of the plants than to independent swimming, and circumsta the Hydradephaga even are somewhat similarly this group, are while the Gyrinidæ, which also belong to aborrant group, are, as we have already seen, an exceedingly A practionily.
A practical difficulty now suggests itself. Here are airWholly ing creatures whioh spend their existence almost ducted? in the water; how is their respiration to be con0xygenation is well. known that the air necessary for the oxygenation of an insect's blood is taken in, not at the openings in the other part of the head, but through certain openings in the sides, which lead by short tubes to two
long ones running the whole length of the body and
sending ont branches to the different parts. If an iniect be cut open, these tubes appear as to many minute silvery threads, branching sometimes like the roots of a tree. Moet of the spiracles, or entrances to these tracheal tubes, are, in beetles, situated on the upper surface of the back, under elytra and wings. The back is flat, and the elytra being somewhat arched, but fitting closely to the body at their outer edges, except at the extreme apex, a hollow ohamber is thas formed over the spiracles, which can be filled with air, but to which the water has no access. In order to breathe, therefore, the insect repairs to the surface, and, thrusting the tip of ite body jugt out-of the water, with head sloping obliquely downwards, balances itself by means of its outstretched oars, whilst it receives the outer air into its air-chamber. The supply thus taken in eaters the spiracles as required, and is suffoient to meet the demands of the insect for some time, so that it in perfectly free to enjoy its subaqueous life till the complete vitiation of this store renders another visit to the surfice necemsary. An advantage following this arrangement in that the wings are always kept dry and ready at any moment to bear their owner per auras, if the spirit of migration should come upon it. A similar arrangement holds good for the buge described in the last paper, as well as for the Gyrinidan.
The larve of thene two great water-beetles are elongate, sixfooted creatures, with powerful jaws (Fig. 1), presenting no sort of resemblance to the beetles themselves ; both are carniverous and extremely voracious, dealing, destruction to great numbers of their companions in pond-life. The ordinary spiracles being aborted, their respiration is conducted through certain projections at the tip of the tail, which are thrust above the surface to imbibe air. Having passed a comparatively short life in the larval condition, the insect quits the water, and, forming a cell in the damp margins of the pond, there effects its change to the papal state. In due time the beetle is produced from this, at first soft and pale, but acquiring, after a few days' exposure to the air, ite normal coldar and consistency. The female Hydrophilus forms a marvellous sack for the reception of her egg. It is composed of a grmmy substance, the secretion of which is effeoted not in or near the mouth, but the other end of the alimentary canal. A tough, papery bag is formed, which carries a long spoke, and is attached to subaqueous plants. The eggs, about fifty in number

Fig. 1.-Larve of Eydrophilas picous.
are regularly placed side by side within this, and are thus protected from the attacks of such aquatic creatures as might foel disposed to try the taste of beetles' eggs.
Another of the Philhydride, a much smaller ingect, of yel-lowish-brown colour, called Spercheus emarginatus (Fig. 2), which used to be found at Whittlosea Mere, and was sapposed by many to have beceme extinct as a British species until recontly rediscovered by Mr. T. R. Billups at a certain spot in the neighbourhood of Sonth London, forms a bag which the mother carries about on the under surface of her body. This insect, both in the larval and perfect state, is described by the

Fig. 2.-Spercheus emarginatus.

Rev. W. W. Fowler, who has kept and watched the species, as baving the peculiar habit of walking on the under-side of the surface of the water with its back downwards, after the fashion of a fly on a ceiling, a thin film of air contained between the body and the edges of the elytra seeming to act as a float; the larva, too, is so completely perneated with air by means of its large trachem as to be rendered quite buoyant, and to find, apparently, as much difficalty in sinking as a man with a cork jacket on ; so it needs no efforts to maintain itself in its inverted position just below the surface.

Water-beetles, as we have already said, are not confined to the water, but at night frequently leave their native ponds and enjoy themselves in the air, or migrate to other quarters. No collection of water is so small as not to prove attractive to them ; even cart-ruts that have been converted into sn many miniature canals by a heary rain may soon become tenanted. They cannot boast of any great brilliance of colouring. Yellows of no very conspicuous hue, browns, greys and blacks, singly or intermixed, are the prevailing tints. Some few of the brighter yellow species are spotted with black, and so become rather pretty, and some of the Philhydrida, are slightly adorned with spots and patches of a metallic tint something like that of "peacock copper ore," but with these few exceptions they are a sombre set of insects, and their chief interest certainly lies in the remarkable modifications which fit them for aquatic life.

We now pass to the Dipterous fanna of the middle depths. The Diptera it will be remembered, are the two-winged flies, and none of these in the perfect state inhabit water; some, however, are aquatic during their two earlier stages. Omitting a few very aberrant forms, there may be considered to be two very distinct types of flies, one slender, with abnormally long and fragile legs, and with antenne of moderate length, and frequently tulted or fringed with hairs; the other stouter and more substantial, with much shorter legs, and antennæ so inconspicuous as often to be unnoticed. It is to the former of these groups that most of the species whose larva are aquatic belong. They consist of certain kinds of gnats, midges, and daddy-longlegs, insects whose names are as familiar as honsehold worda, thought no very exact signification appears to be popalarly attached-at any rate to the two former of these, which are often vaguely used for any minute and delicate flying insect, of whatever nature. Very varied are the habits of the lung-legged, long-borned flies: some of them are the canses of certain gall-like excrescences that occasionally disfigure plants, and inside which their larvæ live ; the larve of othors, again, live in the earth, especially in damp places, and it is only a few members of the group that are aquatic, and these we have now to deal with.

It may seem difficult to conceive of a method by which so fragile a creature as a gnat, which would be irretrievably damaged by contact with the water, can manage safely to convey its eggs into such a position as will permit the larva hatched from them at once to get into their proper element. Most wonderful, indeed, is the plan adopted. Finding some floating shred of straw, stick, grass, or other such support, the expectant mother rests her two fore-legs on this, allows the next pair gently to touch the water, and crosses the third pair behind to form a sort of vice in which to hold the eggs as they are deposited. Then a long oval egg is lodged in the angle formed by the crossed legs, with its longer diameter vertical; another, following it, is glaed on to the side of the first in a similar position, and so on till some 200 or 300 are fastened into a sort of raft, or rather life-boat, as the mass is curved upwards at es ch end. Then the little vessel is abandoned to the mercy of winds and wavelets, and so floats about for a few days, benefiting by sun and air, till the growing embryos, finding their quarters too close, push open a kind of trap-door in the floor of the egg and take a dive at once into their watery home. They are quaint-looking creatures, with a big head and thorax and long, tapering body, and they swim about head downwards. Near the tail, a straight branch, carrying a number of hairs on its tip, projects at an angle with the body. This is a respiratory tube, and communicates both with the outer air at its tip, and with the trachael system at its base. All that is necessary for breathing, therefore, is that the tip of this tube should be above the surface. Accordingly, when at rest, the larva takes up this position, while at other times it goes wriggling about through the water, being of sufficient buoyancy to rise without effort to the surface when occasion demands. $\Delta f t e r$ soveral changes of skins the pupal state is reiched, and and the last noult is accompanied by a remarkable alteration
in the appearance of the insect. The head and thorax now appear as if thrown into one large mass, from which the body tapers away. But the most astonishing change of all is that which takes place in the respiratory system ; the entrance to this is now transferred to the opposite end of the body, and appears as two small twisted horns projecting from the gigantic head. If now the insect were to retain its inverted position, there would obviously be no possibility of bringing tnese breathing horns nearer the air than a whole body's length; therefore, it turns a somersanlt in the water, and henceforth goes about head uppermost, an attitude which, when it is at the surface, brings the organs in question just above the water. Though the creature is now a pupa, and can take no nourishment, it is possessed of almost as much freedom of motion as before, and jerks itself about by vigorous wriggling of its awkward form.
(To b: continued.)

2xiscellaneoxs tiotes.

Adatralian Timber - A Board appointed to inquire into and experiment on the best kind of timber grown in the Aus. tralian colonies, and adapted for the construction of railmay vehicles, has sent in its report. Among the woods which the Commissioners mention as suitable are blackwood, mountain ash, bluegum, and Gippsland mahogany. Under test the blackwood presented results which were superior to any other timber. The mountain ash was second to the blackwood for railway purposes. It should be felled, the Commissioners. think, during the winter months, when it has attained ma. turity, and is between 4 ft . and 5 ft . in diameter, and it might remain felled for six months before being broken down. into planks for seasoning. Bluegam should be treated in the same manner. Going somewhat boyond its reference, the Board deals with the question of timber licenses, and recommends that getters be compelled to pay for the timber felled, and to confine their operations to a given area, or otherwise that selected lots of trees be sold by tender. It is also strongly recommended that a forest board should be called into existence. [The above, taken from Engineering, serves to show that the continually. increasing demand for timber is causing considerable anxiety, not only in Europe and America, but in every quarter of the civilised world.]

Diamonds in Australia.-The diamond field of Bingera, New South Wales, bids far to rival in richness the famous Kimberley District of South Africa. During the last fer months hundreds of diamonds have been discovered, the size and number increasing with the depth of the diggings. The work of the miners has been seriously impeded for want of water for washing purposes, but recently a plentiful supply has been struck at a depth of from 50 to 60 feet, the result being not only increased activity on the part of the diamonds miners, but also the formation of new diamond mining companies, and the taking up of nearly all the land in the district for diamond-mining purposes.

Bleafiing Tallow.-The Oil, Paint and Drug Reporter recommends the following as the best process known te it for bleaching tallow:
About 50 lb . of caustic soda lye are placed into a cleann boiler and the steam is turned on. Salt is then added to the lye until it shows 25.28 deg. B. The fat- 300 lb . -is now placed in the boiler, and the steam is turned on until the mass is brought to a boil, when the steam is shut off to prevent over flowing. It is allowed to boil up 1-2 inches at the most, an then left to itself for 35 hours, so that the fat will clarify. A the end of this time, the upper saponified layer is ladled off; the pure tallow is removed and passed through a hair sieve or lined. The residue in the boiler, consisting of sponified fat and lye, is removed and used in the preparation of curd soap, togethar with the upper layer.
The kettle is thoroughly cleansed, and about 30.85 pounds of water with $\frac{8}{4}-1$ pound of alum are heated to boiling. To for solution the fat is added, and the mass is allowed to boil for about 15 minates, until all the filth has disappeared from toft
fat. The mass is then transferred to another vessel, and fat. The mass is then by itself for 3.5 hours.
The pure fat is then again placed into the boiler and heated to boiling, until it shows a temperature of 170.200 deg . C. ID
this last operation the fat becomes snow-white. The steam mast be turned off as soon as the slightest trace of vapor of a used or left odor is thrown off. The fat may then be directly used or left to conl.
the fire ras already been stated, the steam must be turned off or cones removed as soon as a trace of disagreeable vapors becomes visible, whether the temperature be 150 deg. C. or 170
Freshl for if this is not done the fat will again turn dark. Freshly rendered, sweat fat (not acid or rancid) is most readily bleached, and may be heated quite high. Still the fit fying the 300 not tie too fresh, or one will take the risk of saponiTallow which. without leaving any to bleach.
toilet soan which has been treated in this way, when used in alco sodapted for candle-makinges it becomes exceedingr. It is P Pasta ror Paper hanging.- Beat up four pound of good ter-sifting when four in cold water-enough to form a stiff batlompisting the flour first, and beat it well to take out all the fimpa. Then add about two ounceas of well-powdered alum. frome a quantity of boiling water ready at hand, take it boiling atirring it rapidly pour it gently and quickly over the batter, to swell it rapidly at the same time; and when it is observed uso. The quantities here indicated the flour, it is ready for fourth The quantities here indicated should make about threeit while of a pail of solid paste. It is recommended not to use A little hot, as when cool it adheres better and goes further. thit formation water poured over the top of the mass will prevent Whermation of a skin from the drying out of the paste. should bout to use, a small additional quantity of cold water quickly under aded, so that the paste will apread easily and used quickly the brush. In warm weather this paste must be menting and souring cannot be kept for many days withont ferleas. If and souring, when it becomes thin, watery and usedrops of carbolic desired to sooid this, the addition of a few enabsole it carbolic acid to the mass when it is prepared will $D_{\text {AIRP }}$ is to kept almost indefinitely.
Dominion Industry of Canada.-The dairy industry of the ment of the conada is an indication of the remarkable developbatter the country in recent years. In 1866 the export of and of ches $10,448,789$ pounds, valued st $2,000,000$ dollars; ing of choese, 8,700 quintals, valued at 123,000 dollars, mak-
both total of $2,217,764$ dollars. In 1883 the total value of both exports wes $8,167,000$ dollars. In 1883 the total value of Went to ports Was $8,157,000$ dollars, of which $1,705,817$ dollars
checes. It accont of butter, and $6,451,870$ dollars to that of cheere. It is also remarked that whereas in 1871 there were in
the $D_{\text {omine }}$ double that n. 853 cheese factories, there are now more than Ma_{4} nuractuber.
production of med Mandres.- During the past ten years the greatindustries of the mared manures has become one of the manufactured during the lad States, the commercial fertilisers to $\$ 11,921,400$. South Carolina is the chief source of mineral
phonphe Phomphates in the Stutas. In 1880 the chief source of mineral ishmentes in the Statas. In 1880 the total number of estab-
the total pronufacturing commercial manures was 270 , and in the nal product 727,453 tons. South Carolina ranked tenth and fifth in the of establishments, fifth in the product by tons, the other in the value of the products, being in advance of all 1880 there Southern States, with the excep ion of Marvland. In Value of tate, which turned out 64,794 tous of fertilisers, of the ralue of $\$ 1,537,280$.

Ment of Pab of Manitoba.-The annual report of the Depart-
atatea thablic Works, presented to the Manitoba Legislature atates that notwithatanding many drawbacks incidental to the
opaning schoolg ap. of a new country, such as the want of roads, bridges, tion has, charches, railways, \&ce., a nteady atream of immigra. being for the into the Canadian North. West, the immigrants of a well-to most part of the best possibie description, people The peose well as from the other provinces of thom Northern The people well as from the other provinces of the Dominion. Which give have manifested a pluck, energy, and intolligence Will bo piacthe strongest idea that in the near future Manitoba - Wa for placed in the front rank in the Dominion, holding her nocial and educial enterprise and prosperity, as well as for number of oducational privileges. It is also stated that a large mayy miloe of ofgos have been built during the past year; that quantity of gradion ange have been constructed, and a large atsted that gradiog and road-making completed. It is further
Prorince reaches a total of $\$ 98,800,000$. 65 micipalities in the

Whale Meat for Human Food.-Some experiments have been made in Norway relative to its use. It is reported that at a recent dinner given to a number of persons interested in the question, it was proved that the artinle may be prepared for the tahle in numprous ways, and that varioun parts exhibited a great want of resemblance, some tasting like turtle, some like beef, and others being as tender and delicate as chickens.
Nfw Use fór Paper.-An ingenious individual has discovered a new nase for paper, being nothing less than its employment for what he terms a "paper-pad shirt front." According to his plan the bosom of the shirt will con. sint of several layers, which can be pulled off as desired, each layer on being removed exposing to view a snow. white surface, on the principle of the ordinary blotting-pad. Ingenious as this thrifty-minded inventor undoubtedly is, he has been quite outdone by another, who has dpvised a method of printing in instalments on the back of each layer a sensational tale of ahsorbing interest. This, it is calculated, will have the effoct of materially increasing the demand for the paper-pad shirt, as so irresistible will be the influenee of the story in the direction of continuous pernasl, that, instead of removing a layer each day, as contemplated by the first inventor, the wearer will find himself unable to bear the suspense involved by delay in following the coarse of events in the exciting fiction, and will strip off the layers in quick succession.
A New Invention.-Dr. George Hand Smith, well known in the acientific world as a patient stu lent of analytical chermis. try, seems to have hit unno a now method of nainting upon stone, or rather in ston . His di covery has, d ulutless, a future. The free exhibition in Piccadilly Hall, to whi h ama eurs and scientific students are admitter simply on presenting their cards. tells its own tale. After years of patient experiment, Dr. Hand-Smith has got a line of colour to travel down into atone or ivory unaltered, and without sprealing baneath the surface. It took hi'n three years to get the colour "kean"then the reat seemped to follow speedily. The colour at a certain stage " becomes alive;" its molecules seize on the stone molecules and eat their way down without swerving. Any stone ran now be painted to al nost any depth. On removing the surface the picture remains indelible as the colour reaches, and it is absolutely indeatructible. Specimens of Mr. Poynter's work in this new stone-colour art, Miss Bitterworth's decorative sarolls, and others are on view, as well as numerous pieces of marble treated to varinus depths. The colour is a metal oxide, forming part of thestone, and is, therefore, not oxidisable or perishable. The stone thus trantel hacomes translacent like alabaster, and sone tery beautiful ruby, emersld, and sapphir -looking slabs are thown againtt the light, looking like the tiuest stuned glass. From an artistic, decorative, and architectural point of view alike, the invention seeras to us to be of very great importanc ${ }^{\text {a }}$, and it has won the admiration of Mr. Norman Lockyer and other men of science.
The Hudson's Bay Routr.-A report on the opening and closing of navigation at York Fantory on the weat conast of Hudsonंs Bav, with observations extending from 1823 to 1880, has been communicated by Mr. W. Woods to the Hulson's Bay Company. The latest recorded date of epeu witer in spring is June 1, the earliest closing of uavigation November 3. The earliest recorded date of opening was May 4, the latest date of closing D-comber 9 . There is, therefore, some six months of open water on the average in the hay itself, but the communication between the bay and the Atlantic can only take place through Hudson's Straits, and this passage is only clear in July, August, and September, with probably a part of Octolier. Further information on this head is much needed, and it is satisfactory to learn that Hudson's Bay is shortly to be properly surveyed, for the question of its navigability is a most important one to the suttlers of Manitoha and the Suskatchewan, eince they can ship their exports for Earope by this shorter route, instead of by the Red River and the St. Lawrence.

A diseased coffee leaf from Nalal has been transmitted to Kew by Prof. Macowan, Director of the Botanic Garden, Cape Tuwn. It has been examined by Mr. H. Marshall Ward, lately employed by the Goverament in the investigation of the coffee disease in Ceylon, and he finds it attacked with a typical form of the fungas Hemileia vastatrix, to which the well-known leaf-disease of that colony is due. This is the farthest westward extension of the disease at preseut. Eastward it has long maintained a position in Fiji.

[^0]: m
 resistance of the battery while R is called the external
 resistance
 that is, for of the circuit. For a given number of cells, greatest for a given value of $n m$, the currents will be a Dearly when the external and internal resistances are Thus, if possible equal.
 $\mathrm{haping}_{\mathrm{a}}$, if there is a battery of 80 Grove cells, each g a resistance of 2 ohm (the ohm is a unit of re-

[^1]:

