Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

NOTE AND COMMENT.

 INCE the completion of Knight's American Me chanioal Diotionary, in 1877, the progress made in the development of the mechanic arts is unprecedented in the history of the world. Not only in such striking and wonderful achievements as relate to the tolephone, phonograph, and electric light, toward which popular attention is naturally drawn, but in every department of applied mechanics, there has been developed a fertility of resource in the adaptation of means to ends quite as marvelous and equally important in practical results. Achievement has outrun the most sanguine expectation, and with such rapidity that even the most recent records are found to be very deficient in supplying the "pecial information most desired.
$\mathrm{M}_{\mathrm{mo}} \mathrm{The}^{2}$ hearty approval which Kniaht's American the wanioal Dictionary has received in all parts of entirely has encouraged the Publishers to issue an the dily new volume, thus continuing the record from the date at which the former work went to press, but carefully avoiding repetition, and aiming to furnish bot only a satisfactory supplement to the original work, rate book which shall have an individual and separate value as a complete record of half a decade in the history of invention. From this fact it is evident that this volume forms an indispensable supplement to all Torths of reference upon mechanics now extant, as none of them coferer the period mentioned.
The camer method has been adopted in dealing with the subject matter in both works. First, each article thpears in its proper alphabetical place, thus fulfilling the function of a Dictionary, in affording direct res-
ponseo Ponse to inquiry. Second, the items of information Special Indibuted throughont the work are classified in to which Iexes of the Art, Profession, or Manufacture function of a pertain. The book thus fulfills the traction of a Cyclopmodia, which is a collection of

The value of a work of reference depends largely upon its Index. When one has a question to ask of an ordinary Cyclopædia it is frequently very difficult to deterime under which title or heading to look.

The author has invented a system of what he terms "Specific Indexfs" by the use of which the inquirer is guided straight to the information he is in quest of, even though he is entirely ignorant of the name of a thing, and have but the most vague and general notion of its use. This is accomplished by grouping under the general title of each Science, Art, Trade, or Profession a list or "Special Index" of every article in the book bearing any relation to the subject in question. The titles of these Indexes are in turn grouned at the beginning of the book, so that by a glance oue map determine which clew to follow.
Besides the use above mentioned, these Specific Indexes afford the reader an excellent opportunity for investigating thoroughly all that pertains directly or indirectly to any special subject, by using the Index under the title of that subject as a sort of head-center, and following out its various branches through all their samifications.

Special attention is called to a new and valuable feature in the work, by means of which exhaustive information on any subject is placed within easy reach. The author has made a complete Index to technical literature, covering a period of five years, and embracing all English and American technical journals published from 1876 to 1880 inclusive. Under title of each subject may be found a complete list of every article which has appeared, during this period, in the columns of these periodicals and as every subject of importance has been thoroughly discossed therein, it is evident that the whole range of recent investigation is thus placed at easy command. This Index cannot fail to meet with the heartiest appreciation among those who have experienced the labor and difficulty attending an exhaustive search upon any line of inquiry.
"Index-learning turns no student pale,
Yet holds the oel of science by the tail,"
The work treats of many thousand subjecte and is illustrated with over 2,500 carefully prepared engravings and numurous full-page plates, and for general typographical excellence, quality of paper, and printing it is unsurpased. Hovgeton, Mifflis \& Co., Boston, Mass.

VIVISECTION AND MORTISECTION

The pursuit of knowledge under difficulties has, from time immemorial, furnished a fruitful subject for the moralist, the philosopher, and the humorist. Perhaps danger gives zest to certain pursuits which would otherwise want for disciples. The cold and privation which constitute the risks to be incurred in Arctic exploration have, for certain people, the same irresistible power of attraction that lend a charm to the dangers of tropical Africa, and lead thither those brave men who take a real pleasure in advancing the boundaries of knowledge.
The difficulties encountered by explorers in barbarous countries are scarcely less than those to be overcome in civilized communities, owing to the prejudice of the populace and ignorance of the law givers. As man himself stands at the head of animate creation the last and crowning glory of the Creator's handiwork, the study of man becomes the noblest of studies. A selfish spirit prompts us to seek our own physical welfare, and, admitting of self-defense as the first law of our nature, no branch of science deserves greater attention nor should excite greater interests among all men then anatomy. A knowledge of the machine is absolutely essential to those who would repair it.

In early times when life was held in small regard it was not considered so very wrong to sacrifice a human being to appease some angry god or ward off a threatened plague or pestilence. To carve a lifeless corpse in order to prepare it for the roasting spit, or to obtain the entrails for the altar, was no uncommon deed, and yet up to the beginning of the fourteenth century we read of no case where a dead body was publicly dissected for the purpose of learning how it was made, its parts and their offices. The Mohammedan religion still forbids the dissection of a human body, and the people of to-day, ninetenths of them at least, are Mohammedaus at heart and would fortid dissection if they could.

The recent shooting case in a graveyard has called attention to this subject, and the question is asked afresh: Why must men risk their lives and incur the wrath of the community and the scorn of their fellows to ohtain the only means whereby the surgeon and the physician shall learn his duty? Is it because the dead are more sacred than the living? The Jewish law required that he who shed the blood of another should suffer a like fate; but modern ('hristian people have decreed that those who touch the dead shall suffer swifter vengeance than those who destroy the living Those who desecrate a grave in hope of extorting from the heraved r latives an exorbitant ransum deserve severe penalties; but another law should apply to the man of science, who, actuated by his love of truth, and a desire to benefit mankid and to relieve suffering humanity, goes forth at the grim hour of midnight upon an errand most repulsive to his soul, and with trembling hand disturbs the sacred soil of "God's acre." Why does he brave cold and wet, even the danger of shot gun or pistol, and, at a loss of time and sleep, disturb the ashes of the dead? Certainly not for the fun of it ; but because in many sections of the country law and custom make this his only resource. The same legislator that would make a dissection a sine qua non for the degree of doctor, would render dissection impossible by giving him no subjects except those obtained from graveyards, and then making body snatching a capital offense.

A false sentimentality makes us unwilling to see the remains of our relatives mutilated, yet many of our leading men confess themselves more than willing to submit to cremation. Here the question of premature burial naturally presents itself, and many persons say they should prefer to be burned alive than buried alive. It seems rather a sad choice! Well authenticated cases of burial alive are known; and with the general introduction of cremation cases of burning alive will probably take place, although then there will be no means of proving it, for the involuntary motion of the limbs in the furnace is no proof of life. While burning and burying alive are both possible, it is safe to say that no one ever has been, or ever will be, dissected alive, for the first stroke of the scalpel would detect the faintest spark of lingering life. In fact, cases are reported where this has happened, while in other cases body snatchers have proved rescuing angels who have saved hurnan life. From a consideration of these facts the unprejudiced mind would acknowledge the dissecting room to be a safer refuge than the grave or the cremation furnace.

In the meantime this does not settle the question as to how material is to be obtained for dissecting-rooms without robbing graveyards. Cremation would put a stop to this, and thus seriously interfere with medical instruction. It is not enough
that some States give their dead paupers and criminals to the colleges, for the number of medical colleges is greater than the number of the subjects thus obtainable. But there is one way, at least, out of the difficulty. Let every medical student solemnly swear, as he stands with uplifted scalpel before his first subject, that in return for the privilege of dissecting others he agrees to give up his own body after death for a like purpose. The medical fraternitv owe it to their successors to form a mutual dissecting league, and thus render themselves independent of the general public, and at the same time win the respect of those who now blame them for encouraging grave robbicg, an offense that none of them defend except when absolutely necessary.

Equally detrimental to the cause of science and the interests of humanity is the foolish attempt to prohibit vivisection. Theology, jurisprudence, and art have, in times passed, subjected human beings to torture worse than any vivisector ever inflicts upon numb animals. In the name of religion, of justice, and of art, vivisection has been practiced on man, but it is now denied to the student of anatomy, of physiology, and of pathology. Is "the true " of less consequence than "the good," "the right," and " the beautiful ?" Trade and commerce, fashion and dress, epicureanism and gormandism, as well as art and industry, inflict upon our harmless neighbors of fur and feather woes greater in number, more severe in character, than the scientific investigator visits upon the animals subjected to his knife. The huntsman that leaves his dying prey in the bush, the taxidermist that flays a trembling bird for my lady's bonnet, the purveyor who stuff's the Strassburg goose until his liver is hypertrophied, and mutilates animals of all kinds to tickle my lord's palate - are they not quilty of acts as cruel and less defensible than the vivisector's? But we forbear to multiply examples. The case of the Dutch society for the prevention of cruelty to animals, which secured the passage of an act prohibiting the harnessing of dogs and compelled the women to drag their canal boats alone, is but an example of the way these self-styled humanitarians work. Sci. American.

CREMATION.

BY IH. SAMUEL KNEELAND.
The four principal ways of disposing of the dead have been: First, mummification; second, hurning ; third, interment: fourth, aerial exposure; Of the first, practised chiefly by the ancient Egyptians, and of the fourth, by many savage uations, I need say nothing at this time.

In most nations, savage and civilized, from time immemorial, it has been the custom to inter the bodies of the dead in the ground, or to seal them up more or less tightly in tombs. Though these may answer all sanitary purposes, and fulfil all the sacred obligations of the living to the departed, in scattered populations, they are attended with danger, always increasing in populous communities.

This danger has practicaily been recognized by the fact that cemeteries have generally been placed without the limits of thickly inhabited districts. When persons, dead from infectious diseases, are buried in graves, they leave behind them to the public, as residuary legatees, a fearful amount of danger ; and faithfully and impartially is the deadly legacy divided among all dwelling within a circle of one thousand to three thousand feet of such graves. Earth will, to a certain extent, deodorize, hut cannot destroy or impede the escape of minute poisonous germs.

The danger from this source has never been fully appreciated by the public, entirely ignorant of the process of decomposition, and the products thereof. Of course the decay of the body committed to the grave depends as to rapidity entirely on the soil and temperature. In the Aretic regions decomposition is imperceptibly slow; in dry, torrid sands desiccation takes the place of putrefaction, and a kind of natural mummification takes place. In low, damp, or wet soils, in temperate zones, decay may be complete in one to one and a half years, giving off deleterious gases for that length of time, with perhaps the seeds of contagious disease. In dry, high, and airy soils the process is much slower and less dangerous.

What is decomposition of the human body? What are its products ? What its dangers?
An English writer has defined the human body, chemically, as 45 pounds of carbon and nitrogen dissolved in $5 \frac{1}{2}$ pailfuls of water. Oxygen, though the principal of life, is also the great destroyer ; the moment life ceases, our carbon by its agency is
converted into carbonic acid, which escapes into the air, or is tare. up by the roots of plants, according to the mode of sepuldecompr nitrogen combines with some of the hydrogen of similar wosition, forming ammonia, which escapes in a similar way; the water which forms about two.thirds of our weight is lost by evaporation. We are resolved, therefore, into gases, and the only dust which remains behind is the four or five pounds of lime salts which constitue our bones and hard parts. Nature provides sufficient animate and inanimate agents for the removal of decaying animal substances in the air, in the ground, or just beneath its surface, and the more speedy tion are and damp climates where the results of decomposiinterfe the most deleterious, provided man in his folly does not human bodies her processes. Man, by his mode of interring decay of hises, contrives to prolong as much as possible the the peay his deceased brethren, thereby increasing to the utmost contaminatity of poisoning the air, infecting the earth, and Air and surf the water in the neighborhood of living beings. minut surface burial permit free access to the myriads of own having creatures whose oftice it is to convert into their own harmless substance the bodies of dead animals and
men.
In the grare of six feet or more in depth, light and air are in
great measure excluded, and there is no access to the insects a great measure excluded, and there is no access to the insects popular beliefgs emerge the grubs or worms, from whose jaws body. The belief expects the rapid and total destruction of the much. The truth is that the devouring worm is a myth, as supposed without foundation as the "dust" into "which we are horrible to be resolved, and the results of decomposition are sational enough in reality without adding any imaginary sen. Thal acessories.
The modern process of cremation is performed as follows: story high crematory at Washington, Pa., is a brick structure one rooms, a re thirty feet long, twenty feet wide, divided into two and a reception room twenty feet square, including walls, Gremation furnace room twenty feet by ten including walls. the manu is performed in a fire clay retort, such as is used in shape, hufacture of illuminating gas, but of a somewhat different Work, heated to a red heat before the body is introduced, which an iron requires about twenty-four hours. The body is placed in rods win crib made in the shape of a coffin, with small round bottom of feet three or four inches long to keep it up off the of irom of the retort. These feet are inserted into a flat strip the ends inches wide and a quarter inch thick, turned up at easily. In that the crib with the body will slide into the retort is covered addition to the ordinary burial garments, the body of alumed with a cloth wet with a saturated solution of sulphate its form, and (common alum) which, even when burned, retains until the and prevents any part of the corpse from being seen Cremation bony skeleton begins to crumble down. During the as thation there is no odor or smoke from the consuming body, natter. Thace is a self-consumer of smoke and other vaporable two hours, The time required to complete the operation is about shorten the but improvements in the process will doubtless but the the time. A very small portion of the remains is ashes, ments, very is in the form of calcined bones in small fragmay be pres white, odorless, deprived of animal matter, and There areserved any length of time without change.
sized adult bour to seven pounds of these remains from various one-gallon bodies; they can be placed, for preservation, in a Which a photograst's bottle, with large ground stopper, into can a photograph of the deceased, with appropriate record, be placed in the fore introducing the remains. This bottle can the ched in the columbarium of the crematory, kept among beside other memorial of the family of the deceased, or placed yards.
This building, with its appliances, cost about $\$ 1,500$. A labor and equally efficient, could now, at the reduced cost of rails that materials, be built for $\$ 1,000$. An impression preand that this crematory was erected for public accommodation, fees. This owner of it follows cremation as a business for proprietor and mistake. It was built for the use of its present this reform. Nriends in the vicinity who concur with him in n his posses No fees have been charged, nor ever will be while A not unision.
tion in the expentant item in this process is the great diminumar each body buried is $\$ 100$, the average cost by cremation is body buried is $\$ 100$, the average cost by ere-
from the adop the aggregate saving in the United States, millions adoption of this system would annually amount to that of an dollars. The expense of cremation is less than
ordinary burial case.

Cremation certainly is not barbarous, for it never entered, nor could it enter into the heads of barbarous people. It is not burning ; there is no pile of wood or other combustibles, no visible flame, no sickening odor; it is a process of great scientific skill, the reduction of the body to ashes by the application of inteuse heat, $1,000^{\circ}$ to $2,000^{\circ}$ Fahr., by which it is resolved into its chemical elements at once, and without the flame coming into contact with the body.

We are all, more or less, carried away by our emotions and sensibilities, especially in the matter of the treatment of the bodies of our dear ones. As rational beings we must not allow our instincts and emotions to run away with our reason, especially in a matter as important as this.

The history of cremation in the United States is very brief, as the progress of such a radical change in long established customs must, of necessity, be slow. The earliest known instance was of Colonel Henry Laurens, in South Carolina, in 1796. Including that, to the present time not more than eight, or possibly ten, cases have occurred, the last in the current year and three or four in the crematory at Washington, Pa. Among those who left instructions for the disposal of their remains by cremation was Dr. Charles F. Winslow, of California, a former member of the Society of Arts, whose body was cremated about five years ago, in Salt Lake City, in a temporary furnace erected by his command, by the administrators of his estate. The Washington, Pa. crematory has had nearly one hundred applications, which have been declined, as the trustees do not intend to follow it as 'a business. They will permit only an occasional cremation for the purpose of keeping the subject before the public, and of hastening the disappearance of the prejudice which exists against this modelof disposing of the dead. It is believed by them that similar structures will be built at other places, and they will furnish for such laudable purpose anylinformation which their experience enables them to give.

Leaving out of the question, then, all bat sanitary reasons, cremation is far preferrable to earth burial : and we cannot but think that by degrees this reform will supplant prejudiced superstition, the pomp and profits of undertakers, aud give to the living that immunity from many diseases, arising from foul air, impure water, and poisoned earth, which they are entitled to receive from the progress of sanitary science.-Proc. Soc. Arts, Boston.

A KING'S OUTFIT.

The orders from the King of Siam for the furnishing of the new royal palace at Bangkok have created a pleasant sensation in Spitalfieds, where silk has been specially manufactured to supply the largest demand for any one order since the furnish. ing of the palace of the late Viceroy of Egypt. The furniture for which this London silk has been required made a pretty show in the establishment of the London manufactures who were intrusted with the execution of the order, and who show also the plan of the new palace for which the furniture has been designed.

Popular interest seems to center in the wonderful royal bed. stead, quite an edifice in itself. It is fourteen feet wide and twenty feet high, and has a dome-like canopy, lined with rosecolored silk. It has the appearance of three European beds joined in one, the center part of the bed being about a foot higher than the sides. The material is walnut, elaborately carved and gilt. The chief decoration of the carver represents the triple-headed elephant, the imperial crown and the State umbrellas, which compose the royal arms. These arms are woven in, imprinted, or sarved on the furniture and upholstery of all the different apartments.

For the Queen's drawing-room all the furniture is gilt even to the Erard piano ; and chairs and couches are covered with rich fancy silks. For the dining room, the sideboard is of royal dimensions - eighteen feet wide and as many feet high. It is of solid mahogany, and is adorned with fine carving. There are furnishings also for the King's study and newsroom -including a writing desk, which is the envy of those who see it - for the council chamber, the audience chamber, the audience chamber, the aquarium, the smoking room and the various other apartments.

To execute this large order, several of the warerooms were for some months turned into workshops. The important business of packing took some time, and the shipment was at last made in the month of March.

THE CREUSOT EIGHTY-TON STEAM-HAMMER.-(See Editorial.)

MACHINE RIVEIING.

We select from the bulletin of the Hartford Steam Boiler Inspection and Insurance Co., the following article, which will be found to contain same pertinent comments on the merits of machine riveting

There has been no little discussion among engineers as to the relative merits of hand add machine riveting. Those belonging to the old-school class of engin"ers have been slow to recognize any advantage in riveting by machinery, and in many boiler shops hand riveting is the practice to-day. Sir William Fairbairn advocated machine riveting more than twenty years ago. He says: "In hand riveting, it will be observed that the tightness of the joint and the sounduess of the work depend upon the skill, and also upon the will, of the workmen, or those who undertake to form the joint and close the rivets. ln machine riveting neither the will nor the
hand of man has anything to do with it ; the machine closes hand of man has anything to do with it ; the machine closes the joint and forms the rivet with an unerring precision, and in no instance can imporfect work be accomplished so long as
the rivets are heated to the extent compressible by the ma. the rivets are heated to the extent compressible by the ma-
chine. This property of unvarying soundness in chine. This property of unvarying soundness in the work
constitutes the superiority of machine over hand riveting." Sir William says much more, and while in the main his stato ments are correct, there are certain important qualifications which will appear farther on. The machine which he uged, and which is illustrated in one of the volumes of "Useful Information for Eugineers," was driven by a belt, and far in ${ }^{-}$ ferior to the steam and hydraulic riveting machines of to-day. Still, with this machine he accomplished some good work, as is shown by the experiments on the strength of joints riveted up with it. The steam and hydranlic machines, as first con structed, were too light to accomplish the best results; there was more or less vibration, and consequent imperfection in the joint. This difficulty has been mainly overcome by the additional strength and weight which has been given to the machines.
If, however, careful men and men of good judgment are not emplnyed, very poor and inferior work may be done with the best machines. It is well known to those familiar with stesm or hydraulic riveting machines, that there is a cup-shaped die on the end of the piston rod which presses against a fixed die. The work is brought into position for riveting by cranes. The rivet is placed in position by hand, the pressure is admitted to the cylinder and the die on the piston rod presses against the

Fig. 2.

Fig. 4.

Fis. 3.

rivet head, which finds resistance against the fixed die and is pressed into shape. Fig. 1 will show the relative position of the several parts of a riveting machine ; S is the standard, on the top of which is the fixed die D; the piston rod die is indirated at P; the rivet R, and the section of the boiler to be riveted by B; C C show the chains which support the section of boiler, which are attached to the crane above. Now, it will be seen that to do good work the axes of the two dies must be in exact line. If one is higher than the other, or if the piston varies to the right or left, the result will be an imperfect rivet. These errors we should not expect to find in a well made machine, under the supervision of a careful, intelligent man. But another ditficulty, and one which even the best machine cannot overcome, is carelessness in the adjustment of the rivet holes in the plates to be riveted. If the axis of the rivet hole is not coincident with the axes of the dies, an imperfect rivet will be the result, and the imperfection will be increased in proportion to the variation. To make this plainer: If the man in charge is careless in adjusting his work to the machine - that is, if he elevates it too high or lowers it so that the rivet hole is a little below the dies, or if the materials swings or sways to the right or left, the result will be an imperfectly formed and weak rivet. This is a difticulty that is not confined to any one shop; we have it in connection with the work of some of the best shops.

Fig. 2 to 6 are specimens of rivets which have been carelessly driven, and which we have selected from a collection of rivets that have been gathered up from different places.

From the foregoing it will be readily seen that this class of imperfect work is solely the result of carelessness on the part of the man in charge of the machine. When the boiler is all riveted up, it may be next to impossible to detect the true character of the work. But when leaks begin to appear and repairs become necessary, the defective worknanship becomes apparent. Boiler makers cannot be too careful in having competent workmen for such service, for in addition to the risk of impairing a well earned reputation, a very weak boiler may be unwittingly put to service.

EXTRACTION OF LEAD FROM ORE.

In the various lead-smelting districts of the world, it is strange to note the variety of methods of reduction in vogue, the various classes of furnaces employed, as well as the differences in fluxes and fuel, etc., employed in each district in the common object of separating the lead from the gangue. It is found, however, that each one of the various methods pursued and furnaces employed has usually special advantages to recommend it for adoption in that particular locality; and that frequently a furnace or method which in one locality appears to work more satisfactorily and afford a better result than another working in a different locality, would, if transferred to the new district and worked under the altered conditions of ore, fuel and flux, prove an entire failure.

The considerations which thus determine the method of reduction to be pursued and the furnace to be employed in the smelting of the lead ore of any locality are : First, the nature and yield of the ore to be trated; second, the character of the gangue or vein stuff; third, the nature of the available fluxes; fourth and most important, the nature and abundance of fuel in the district ; and fifth, the means of transnortation of material.

The processes employed for the smelting of lead ores may be classed according to the type of furnace employed, as, according to Greenwood, first, the methods of smelting in England, France and Carinthia; second, the methods in which cupola furnaces are employed, as practised in the Hartz, Silesia, etc. ; and third, the methods of reduction in open hearths, as in the ore furnace or Scotch hearth, and the American hearth. But Dr. Percy supersedes these classifications by grouping the various processes employed for the smelting of galena or other sulphur compounds of lead under three types, according to the agent employed to effect the decomposition of the ore and the separation of the lead, thus: First, " air reduction processes," in which atmospheric air, aided by heat, forms the reducing agent ; second, the " iron reduction or precipitation process, " in which iron, or an oxidized compound of iron which, under the furnace conditions yields iron, is employed for the separation of lead ; third, the method of "roasting with subsequent deoxidation of the product by carbonaceous matters ; "while, fourth, for the smelting of ores of lead, such as carbonates, silicates and oxides in which the metal exists wholly in the oxidized state, it is necessary to
reduce the metal either by carbon or iron, or both of these agents may be employed.-Mining aud Sci. Press.

DEVELOPMENT OF THE PRACTICAL USES OF ELECTRICITY.

The popular existence of the olectric light is due entirely to the application of steam, gas, or water power to the dynamoelectric machine. By this means electricity can be generated much more cheaply and effectively than by batteries. Before the dynamo machine existed the electric light was so expensive a scientific appliance that it could not even claim a place in the catalogue of luxuries. To whom the credit of the first complete dynamo machine is to be attributed, is doubtful, but its principle was undoubtedly embodied in one of the most im. portant discoveries of Faraday, that of the mechanical production of electric currents. This germ idea is contained in the Gramme machine, in those of Siemens, Edison, and many other inventors. These all produce a strong electric current capable of giving a good light within about a mile radius. This current once obtained, the next step was its conversion into light. A sensation was created when, following Sir Humphrey Davy's idea, certain inventors exhibited carbon candles, into which the electric current was sent by steam power, and which that current consumed, giving forth at the same time a strong light. About this time, 1876, M. Jablochkoff applied the carbons in a way which rendered all mechanism for their regulation unnecessary. This light is now known technically as "are" lights, from the arch of light produced, as the current leaps from the point of one carbon to that of another, and was called by Sir Humphrey Davy the voltaic arc. Of this class of lamps no less than fifteen collections are shown at the International Flectric Exhibition now being held in London. These lights were impractical for domestic purposes, and the next problem to be solved was the domestic electric light. This has been accomplished by sending the electric current througl a horseshoe-shaped carbon thread, formed of vegetable matterbamboo and esparto grass-and placed within a pear-shaped glass globe, from which all air has been removed. This is called the incandescent light since it is given forth from the carbon film, when this is heated to an incandescent state by the electric current. There can be but little rivalry between the are and this class of lights. Each has its peculiar advantages for particular purposes. The globe and the carbon film remain intact after burning from 600 to 1,000 hours, and when the film is burnt away both globe and carbon are readily re ${ }^{\circ}$ placed. Already the carbon light has won a position which ten years ago would have been regarded as fabulous. It is to be seen in all the important streets of the great cities of both hemispheres; the largest houses are adopting it; railway trains are lighted by it ; the piers in New York; it is taken under ground and under water, and the boring operations of the tunnels under the English channel and the Hudson river are carried on with more than usual rapidity by its aid. At St. Etienne, in France, the Furens Falls have been utilized to supply the town with electricity.

Not less rapid has been the growth of the telephone system as a means of communication, supplementing that of the telegraph. In the larger cities of America and Europe, and, it may soon be added, in those of India and Australia, telephonic exchanges have been established. In London, the Telephon ${ }^{6}$ Company, during October and November, 1881 , sent 19,500 messages per day, containing, it is estimated, $1,450,000$ words, while the General Post Office Telegraphs carried $35,000 \mathrm{~m}^{80^{8-}}$ sages per day during the same period, containing only 700,000 words. The cost of the telegrams to the public was $\$ 8,750$; while the charge for the telephone messages was only $\$ 405$! This is the practical result of the telephone, and it represents an amount of time, money, and trouble saved which mere figures are unable to express.

The miscellaneous uses to which electricity can be applied are discovered to be more and more numerous. In the wide
field of railway signalling it will soon have a more prominent place than ever. As a locomotive agent it has entered upons practical stage in a number of cities in Europe. In the domain of science it measures the speed and pressure of the wind, the velocity of a shot, and regulates clocks. In that of art it r° produces engravings, records music, and under its lights photo ${ }^{\circ}$ graphs can be taken. In that of industry and agriculture railways may be driven by it, land ploughed, fire damp do to tected, and plants grown. Indeed, it would he difficult to limit the sphere in which electricity may not shortly be applisd. All prognostications heretofore made regarding its failure $\mathrm{h}^{\circ} \nabla^{\theta}$
proved baseless. It was said in 1869 that one telegraph wire four, never take more than one message at a time, but now one another and even six messages can be transmitted and cross a Select aner on the same wire. In 1870 it was declared before general committee that the telephone would never come into general use. At the Paris Exhibition in Is78 a French scientithe man called the electric light " an exhibition craze," and in neverlowing year another man of science said that it would never be used in dwelling houses. But it should be rememuntil a mextenuation, that the telegraph shared similar neglect

One murderer happened to be captured by its agency.
already great problem is now awaiting solution, and is, perhaps, and powerfued. An arrangement is wanted in which large ported. Py erful quantities of electricity may be stored and trans ported. By the use of such cells and accumulators the present rent wenerd at once obtain a more secure position, for the curtor inserating them could then be drawn from the accumulaequalitiead of directly from the machine, and thus the into the lies in the production of the latter would not be conveyed but thight. Accumulators are already made by M. Faure, a reallye, so far, have not found extended application. When really strong and practicable storage apparatus has been in. Vented, the last step in the triumph of electricity will have any marte. Electric-power could then be brought to us from any part of the world.-Iudustrial Nerrs.

CHRONOGRAPH FOR ENGINEERING PURPOSES.

In the by w. r. ECKART, C. E.
ing seconds chronograph illustrated, the tracers, both for recordmade of flat as well as the velocity curve of the engine, are ed at the end strips of spring steel, the axis of each being pivotmotion the end on adjustable screw centers to prevent lost to the oppositeans of a small steel wire and weight extending as desirable de side, the tracers can be made to bear as lightly pressure is on the paper, and when properly adjusted the the paper is only sufficient to remove the lanpblack with which a fine wher is coated without touching the paper, thereby leaving interruption line on the dark backgroun l with the least possible dipping the face motion. The whole is permanently set by Inste the face in shellac.
electro-magnet using a pendulum for producing (through an other method the marks spacing seconds on the paper, some Was found that would adinit of compactness and portability only on the surfary, as the chronograph was to be used not but had the surface where the pumping engines were situated, After to be adapted to underground use.
timer), such as is experiments, the use of a rhronoscope (or to give such as is to be had for timing horse races, was made or base plate pactory results. (See Fig. 1, front page). A stand stanchion plate upon which the timer was placed had a brass second hand suspending a fine platinum wire directly over the num insert ; this wire, when at rest, bore on a piece of platistanchion insed in a rubber insulator projecting from the electron, each of these wires being connected through the circuit wagnet on the chronograph to a two-cell battery. A
revolving always fomed, except when the hand of the timer, revolving once every sed, except when the hand of the timer, from its metal every second, swings the suspended wire free in the rubber buiding at the apex of the triangular notch cut tion of the guide piece; as contact was broken every revolurecorded the second hand, the armature of the electro-magnet resting on the same by a side movement of the steel tracer wire was the prepared paper of the drum. The suspending instrument made adjustable to suit the second hand, and the Mr. Briggas covered with a glass case.
otitute that states in a paper read before the Franklin InOrdingnat Prof. Hilgard used a chronoscope for the Navy inches apart. Department, in which the second marks were 30 ${ }^{\text {Volving }}$ drum of $6^{\prime \prime}$ diameter, until the second marks were 20 nches apart, but for practical use, a length of three to ten
inches (depending hehes (depending somewhat on the engine speed), was all
that was desired, nch divided desired, aud by use of a standard steel scale with the n the one onto hundredths, changes of motion taking place and recorded withousanith part of a second were easily read the too frequent without trouble, and the crossing of lines due to 8troke frequent revolution of recording drum during one
electro.me the engine was avoided. The use of the small ${ }^{\text {electro.magnet, on the was avoided. The use of the small }}$ the cariage, to raise for an instant found racing pointer off of the drum at any desired point, was
intermecessary in determinine the effects of elasticity in the interruption and in determining the effects of elasticity in the Pion and variation of motion, where a lony line of
pump rods was used, and was also found useful in fixing, positively, the exact point of closing or opening of the steam valves of the engine independent of all reference to the indicator cards taken.
Two drawings giving different views of the chronograph as constructed and used, are attached to this article, exhibiting details of construction to complete what otherwise might be considered a defective description of the instrument.

The instrument has been succesfully applied to several of the different types of large pumping engines found on the Comstock Lode, such as direct-acting flywheel engines, geared pumping engines, and the "Davy engines; " it has also been used to determine the motion and relative motion of pump rods, and pumps some 2,500 feet below the surface engine driving same, and at intermediate points. The results are exceedingly interesting and instructive, and as numerous indicator cards were taken from the engines and pumps simultaneously with the motion diagrams, nearly all conditions of motion and power, during the time under consideration, were definitely determined, and may hereafter form the subject of other papers when time will permit.
Some very important results of the elasticity of long pump rods are clearly set forth in one case : A rod at a point 1,800 feet below the surface showed a positive pause, while the engine driving it was nearly at its point of maximum motion, and pumps attached to the rods may have and do have strokes in excess of or deficient to the stroke of engine driving same, and to an important extent. Hence, 1 think, it can be definitely stated that any consideration of motion of pumps, or discharge capacity of same, driven by a long line of pump rods based upon the motion or stroke of a surface engine alone, will in no way be even approximate, unless the elasticity and effects of counter-balancing by balance bobs on that elasticity is also considered.

The effects of different degrees of compression upon the engines and motion of the pump rods in passing the centers have been considered, and the diagrams clearly show the importance of considering it in connection with the strength of the rods and balance bobs.

The latest use of the instrument in conjunction with an engine test has been to determine, if possible, the rate of condensation of steam per second, in the steam cylinders of a pumping engine, where the change of motion due to each fractional part of the stroke was determined. Also, a ten hour experiment trial, to show the economy of compression as compared with a ten hour trial of the same engine on the succeeding day where no compression was used (otherwise all conditions being similar), has been made, when charges of velocity of piston were determined by the chronograph.

While it is well known that a Committee of the British Association applied a chronograph of Morin's type in 1843.4, to the determination of the velocity of piston for a Cornish Pump Eagine, I believe there was no application of the instrument to the rods below grounl, and, from published records at my command, I am led to believe that this is the first application of a chronograph of sensitive construction ever made to pit work, and the other purposes so briefly mentioned.-Scientific American.

MAGNETIC PREPARATIONS OF STEEL AND. IRON.

Many investigations upon the relation between the mole. cular conditions of iron and steel produced by heat, by torsion, and by annealing processes, and the resulting changes in mag. netic conditions, have been made. It appears from the paper of Louis M. Cheesman that the effect of mechanical hardening has not been properly investigated, and this paper contains. the results of his investigation upon this point. The method of research consisted simply in determining the magnetic moment of the magnetic bar after it had been subjected to well devised mechanical pressures. The result of his investigations is summed up as follows: Iron in a mechanically hard condition cau receive more permanent magnetism than in a soft condition. The magnetic moment of a steel magnet in a mechanically hard condition is greater or smaller then in a soft condition, according as the ratio of its diameter to its length is less or greater than a certain limit.-Auu. drr Physik und Chemie.

Sharp castings are obtained from cast iron holding too much phosphorus to be good for puddling or for castings requiring strength. Such metal is very good for ornaments having no strains to hear.

Fig. 2.-CHRONOGRAPII FOR ENGINEERING PURFOSĘS.

FIG. 1.-CHRONOGRAPH FOR ENGINEERING PURPOSES.

FIG. A. WHITE'S BRIDGE LIFE BOAT.

Lxphatifg apparatus at the reognt haval AND Stibinarine kxhertion.

 Enginger, $^{\text {Wen engravings (for which we are }}$ recencer,) of a variety of life-saving apparatus, thown at the Pig. Naval and Sabmarine Fxhibition, London, England. Dock. 1 shows a "bridge life boat," by John White, Medina, ship, Cowes. This life boat is held on the bridge atlwart 4t the cent consists of a launching way pivoting horizoncally Wale on eithe so that oither end can be tipped down to the gunboat oh either side, when the deg shores being struck, the life. throaghoots into the water. Any Fater shipped is discharged has long valves, and the boat is easily lannched. The Orontes bighlyg been fitted with this boat bridge which has been so tha Tamarproved of that the system has been now adopted for men. Fill and Himalaya. This boat carries from 150 to 200 Fif. Filled with water she would support 100 .weight is Riveper's life raft, forming a captain's bridge. Its tended to given as 54 tons, flosting power 80 tons. It is in$\mathrm{R}_{\mathrm{op}} \mathrm{ped}_{\text {to }}$ be self-launching on itts (astanings being released. Mr. umply rest also self. floating raft decks for river. boats. These
 Presingmooth water they are desigued to flost of with the With dects. A model of the ill.fated Princess Alice is fitted The decks which are calculated to support 900 passengers. decks, and apoposed are fore and main and fore and aft saloon at the and sponson house tops. The design took a first prize *loat. Thism. Fig. 2 and 3 show the raft on deck and $\mathrm{R}_{0 \text { se's }}$ This raft took the 100 gainea prize at Islington.
iron backets buoy seat, shown in fig. 3, consists of two thin They magkets scrowed together at the bottom, with tops closed. u^{2} ay be used as buckets, or a buoy, or to render a hencoop
seat bnoymat-aide Figs, 4, 5, and 6. The cushions of the hencoop seats are life belts. A specimen made for Sir T Brassey's yacht, the Sunbeam, was shown.

Copeman, of Downham Market, exhibited a raft constructed of seats by means of connecting rods, spars, and grating seats. This wias put together by two men in less thau two minutes repeatedty 敏 the ex hibition (see Fig. 7). It is a very serviceable, strong, and simple arrangement. The inventor claims that the expense is small-about $\$ 25$ extra on each seat ; that the apace occupied is no more then that of ordinary geats; that it is always raady for use, and when in the water cannot be upset. Masts and oars are carried. The strength and simplicity of this will probably commend it. It is to be tried shortly for the Prince of Wales.

The wreck escape, hown in figs. 8, 9 , and 10 , is the work of Mr. Hodgson, another practical man eminently qualified to judge as to what may be done in a moment of danger, having earned eight or nine medals for saving life himself, and also so ready to point out anything good in designs of others, that one must respect the honesty of his opinions. Two wreck escapes, one of wood tubes and cells, the other steel, weight 7 to 17 cwt ., supporting twenty to seventy five men; rope bottom reversible; may be used as an ordinary boat, the resistance being brought down to much less than is usual in bottomless boatg. It is stated that it has been actually tried and obtained good ppoed. The form appears to be a very good one for a bottomless boat. It was tried with success before Admiral Mends in 1869. It is, we believe, the first and also the best reversible boat. It is possible for a man under it to pull the ropes asunder and creep through the bottom.
(For balance of Cuts, see page 172.)

Enacationar.

EGYPTIAN ANTIQUITIES.

The year 1881 has added considerably to our knowledge of Egyptian antiquity, partly owing to the discovery of inscriptions in the pyramids, and partly owing to the finding of many antiquities of the time of the Theban dynasty in Upper Egypt. Although the value of the inscriptions above-mentioned was at first overrated, and that of the antiquities considerably dimin. ished by the chaotic condition in which they were found, they yet yield a rich field for the further development of Egyptological science. It is extremely interesting; therefore, to listen to what one of the most celebrated Egyptologists says about the value and kind of those antiquities, and the hopes for science which are derived therefrom. Dr. Brugsch-Pascha recently gave a lecture on this subject in Vienna, and we believe we shall henefit our readers and all friends of science by reporting the most important parts of Dr. Brugsch's address. Through all antiquity there can be traced a spirit of reverence towards the dead. This trait is seen not only in the more civilized, but in all ancient peoples. It is proved by their manner of burial, for their tombs were constructed to endure for ages, and within them was laid everything that had become dear to the departed during their lifetime. From such sepulchres and their contents we draw conclusions very important to the knowledge of the history and culture of ancient nations, and it may be rightly said, "When men are silent, stones will speak." Among the nations whose ruined tombs provide us with such a rick fund of antiquities the ancient Egyptians rank first. The laws of their religion were: First, to praise and thank the gods; second, to love all mankind : and third, to honour the dead. Their dead, therfore, were buried with great solemnity and ceremony. Most of the ancient tombs are ruined, hut even the ruins tell their own tale. The Egyptians Jaid little value on their dwelling houses considering them to be merely temporary resting places-ante-rooms to the long period after death-and spent very little trouble on their arrangement or construction. All travellers in Egypt will have been struck by the entire ahsence of human dwellings, contrasted with the number of ruins of tombs and temples. There is nowhere to be found the ruins of a regal nalace. Here and there are seen monumental remains of large brick edifices, but nothing betrays by whom they were inhabited. The tombs, on the contrary, are built of lasting materials, and the interiors richly decorated. On enquiring into the condition of the people it is necessary to fix on great periods. We distinguish two of these periods; the first and most ancient is the Memphis period, until about 250 b.c., the second and youngest was the Theban dynasty. The first of these periods is characterized by the building of the pyramids, which stretch for miles along the edge of the desert. The ancients were aware that the more ancient pyramids were the graves of Egyptian kings. The size and height of the different pyramids vary greatly. The discoveries of the past year have for the first time shown, beyond all doubt, the disposition and construction of the it terior of these immense masses of stone. The first of these discoveries was that of the pyramid of King Cheops. The centre of this and all other pyramids consists in a sepulchre hewn in a gigantic granite monolith, with a roof of the same material, upon which rests the whole weight of the pyramid. On the north side a slanting passage leads into the tomb; this passage is divided by two or three falling blocks-the first of which closes the opening on the exterior of the pyramid-into so many chambers. When first built a pyramid was not higher than from 80 to 100 ft . ; but if the king for whom it was built lived long, he caused other stone coatings to be built over it. There have been found in some cases five repetitions of such a casing, and the length of a king's reign can be deduced from their number. The local sequence of the pyramids from north to south corresponds with the sequence of the dynasties; a proof of the civilization of all Egypt, which progressed also from north to south. About 1830 to 1840 great interest was taken in the pyramids but as the inscriptions in the interiors were not then discovered scientific research remained without any great result, a few stones with the names of kings being all that was foumd. Dr. Brugsch has counted four or five. But a step has heen made by last year's discoveries. In February some arabs who had sunk i kind of shaft into a ruin from above, found all the inside walls covered with inscriptions. But the hope raised of discoveries of historic value was not realized. Here, too, nothing was found but the names
and titles of several kings, and some copies of the course of life of the soul, which, in ancient Egyptian conception, wanders like the sun, from east to west. Still, the inscriptions were or value, for they taught us the most ancient language in the world, as it was spoken 3,300 years ago. Brugsch, when be visited the spot, found that the pyramid had already beep robbed. The corpse of King (heops was gone. Brugsch only found one hand, and a great quantity of linen, so fine that the Arabs burst out into the exclamation, "Silk!" In another pyramid examined by Brugsch he found the body of the king therein buried lying on the earth, but perfectly preserved. It was that of a young black haired man, apparently about 20 to 30 years of age. It is yet hoped that some pyramid may be found, the contents of which have not been disturbed, and one which seems untouched is now being opened. The operation will take same time, and a year may elapse before it is accond plished, for the immense number of stones which a pyramid contains is incredible. If the pyranid of Cheops were coater the with lead, that lead would be sufficient to entirely cover the tower of St. Stephen, in Vienna, and if the stones of the pyrs mid were placed side by side, they would be sufficient to $\mathrm{sur}^{r^{-}}$ round the whole of France. The lower classes of Egyptians were not entombed in pyramids. For them vertical shafl were dug in the rocks, with a second shaft at right angles, gift the head of which the dead were deposited. The vertical shat was then filled with sand, and a hall for prayer built above it. When the Memphis dynasty, from what cause we know not, was at an end, that of Thebes arose. Then the building of $p y$, ramids ceased, for the very nature of the mountainous country, with its narrow valleys forbade such a proceeding. The to $\mathrm{m}^{b^{s}}$ were now made in the rocks of the mountains, into the boson of which deep shafts were dug. Au interesting discovery bas been made of a well preserved roll of papyrus, containing The finished plan of a rock tomb by the hand of the architect. T shafts leading into the Royal tomb are slanting, and each of them is always diviled into four successive corridors. comes a fifth chamber, the so-called "waiting room"; then ${ }^{8}$ sixth, and chief room, the "go.den hall." ir the centre of which stands the sarcophagus ; and behind this the seven ${ }^{(10)}$ and eighth rooms - the "statue-hall" and "treasure-chativ" ber." In the golden hall was placed everything that had be longed and was dear to the king ; his arms, his whip, and his eating and drinking vessels, \&c. The statue-hall contained number of statues of Osiris, with the head of the king. Ther still exist twenty five such tombs. But everything they cons tained has long since been removed, not only by the homan ${ }^{n}$. and Arabs, but also by the Eeyntian themselves-meither ro bed or removed hy order of the Egyptian Government. Ther have been robbers in all times, also among the Egyptians. document exists relating to the most ancient theft of which we have any knowledge, in the year 1100 b.c. This docum ${ }^{\text {en }}$ is in Vienna. It coutains the process against the thieves, the conduct of the case before the justices, and the Royal verdict. After the Egyptian came the foreign thieves; who they wer we do not know. When Strabo went to Egypt, a century ich ter Christ, he visited forty open tombs on the walls of whin, he found, not Egyptian but Greek inscriptions ; then, as no travellers used to immortalize themselves by writings on wash Now only twenty-five of these Royal tombs are known to ex so the rest must have been completely ruined and erased.

The emptying of the Royal tombs by order of the ancie abo Egyptian Government has been found out as follows: Ab Dr six or seven years ago some travellers, among whom was ${ }^{\text {a }}$, Brugsch, saw in Thebes some remarkable Egyptian antiquit from small statuettes, which had evidently been brought Royal tombs. They belonged to the twenty-first priest dy ${ }^{\text {ga }}$ the ty. In spite of the deep interest Dr. Brugach took in matter, he was unable to make further researches, for he accompanying a high personage. Last July the origin of t antiquities was ascertained. Two Arab brothers quarrelled, and their dispute revealed the fact that in a certain rav which was not a Rryal tomb, there was hidden a mass the mummies with everything belonging to them. One of to brothers, being promised immunity, offered to show the way the ravine. It was a deep chasm in the rocks, ending in casern full of coffins, nummies, and the olijects generarge found in tombs. There were so many that they filled a larbor for Nile steamer to such an extent as scarcely to leave room the crew. On examination it was found that the brothers not themselves heaped up these antiquities, but that the Rop tombs had hern amptied by order of the Egyptian Governmber about 1000 B. C., in Salomo's time, and their contents tak of to the cavern in question, no doubt, with the intention
preserving them from robbery and profanation by an approachhas been (Assyrians?) An examination of the objects found Which are commenced. There are thirty-nine mummies, among cesses. 1000 . Among the first is a king who reigned in the year ander the Gid who was a great conqueror in the style of Alex3 in . long Great. But his mummy is scarcely more than 3 ft . ingly small therefore this great hero must have been of exceed. mommies physical dimensions. The objects found near the themmies are so numerous that it will take years to examine the order inghly. If the Arabs had left what they found in been historichich they had been laid, everything could have carious, and histly fixed and arranged. But Arabs are restless, about in ind disorderly, and the antiquities have been thrown mumamies indescribable confusion. It is known that one of the Amonies must be that of Rhamses II., but it is not certain. Amongst the remains are traces of indications of the wandering met with, from east to west. Copies of many objects are also even of, for it was the custom to lay heside the mummies,
during the lower order, the favourite objects they had used during the lower order, the favourite objects they had used always their lifetime; but it seems that their survivors did not s_{0} substituted part with such useful and beautiful objects, and Egyptians, for them copies in miniature. The ancient people, were, who are usually represented as a grave and gloomy of enje, were, on the contrary, exceedingly cheerful and fond conclusionent. Ir. Brugsch found proof of this view in the Who died of an inscription on the tomb of an Eggptian woman
sented fonted as in the year 25 1...., in which the deceased is repre. drink, love, and be joyful, tor the dead are dead, and friends!
there is no there, is no, and be joyful, for the dead are dead, and for them
not union with the living."

WALL DECORATION.

A writer in the Chronique des Arts,
Wonderful work in chronique des Arts, after referring to the
Muranu, has been done on the island of "This says:
end of the art could not escape the decadence, and about the renown. last century its vaunted products had lost their high by his studit remained for our century to bring fourth one who, has recovered researches, observations, and marvellous work, Though the Mue the art and surpassed all his competitors. ful things, Murano Company has produced some very beauti-
bothing aothing is impossible Dr. Antonio Salviati has proved that admired is impossible for it. At the Milan Exposition we
Pere some objects which are unique of their kind. There Were some vases of extraordinary grandeur, some cups with
flowers in are unique of their kind. There one might inef, daisies and roses of incontestable naturalness,
${ }^{0}$ bjects with imagine that the artist's caprice had sprinkled these Salviati freshly gathered flowers.
glass, which has also recovered the secret of the myrrhine the, 'Which was so precious to the ancient Romans, and of betweentistian' glass, with its golden decorations placed of fifty-eight layers of glass. He exhibited a large glass plate in enamel centimeters diameter, upon which was a painting picture by representing a Venetian regatta, copied from a Its 'Another admira.
Its diamer admirable plate was of smoky ' Christian' glass. Christ surrounded by the Twelve Apostles. Not less beautiful
Were the Were the munded by the Twelve Apostles. Not less beautiful
of charmingrine plates, sprinkled with lilies of the valley In 1859 grace.
Was in 1859 , Salviati first took up mosaics in enamel, which state ofgested to him by seeing the forlorn and dilapidated Dice. the ancient mosaics in the Basilica of St. Mark at Veat the order and have visited his factory, and was astonished comegh the ronms where the materials are deposited after they come from the fus where the materials are deposited after they and finally the furnace, and where they are cut into fragments, reaches the into little blocks, with surprising exactness, one further end is the wicture the mosaics are put together. At the artists end is the picture to be reproduced, and a half score of
of that seated at little tables each with his design, a part of that to be copied, before him. It is incredible how they
can make the tables ach with his design, a part "According shades to reproduce the color of the flesh.
rome, the wall to be decient method and that now in use at ment, the wall to be decorated is covered with a layer of ce-
take ind the little blocks of enamel are forced into it. This once; infinite time buless of enamel are forced into it. This
mosaic according three workmen can work at Mosaic upside down to Salviati's method of constructing the
and more divisibn and stuck upon paper, the work is easier more divisible. He is also able to send his mosaics, en.
tirely finished, to the most distant countries and to put them in place without difficulty. Stuck upon paper, the bits of mosaic are pressed upon the wall, which has been covered with fresh cement; and the paper is then torn off. It makes no difference whether the wall be vaulted, horizontal, or vertical."

EMBOSSING AND GHDING ON GLASS.

There are two ways of embossing glass : by means of hydrofluoric acid and by the sand-blast. The second method being rather beyond the power of amateurs, I shall not describe it here. In the hydrofluoric acid process, the glass is first coated with some protecting substance, and upon this the design is drawn with a sharp instrument, so as to expose the glass below. The acid is then applied, when the exposed portion of the glass becomes corroded. The wax can be afterwards removed. In practice, the glass should be warmed and coated with molten bees-wax (not parafin, which is to? brittle). Superfluous wax should be drained off, so as to leave as thin a coating as possible. Or a composition may be used, formed by melting together two parts of beeswax, two of asphalte, one of black pitch, and one of Burgundy pitch, and heating them together until a drop placed upon a cool surface gets hard and tough. Whatever the protecting substance used, it should be parmitted to set, and the design should then be traced with some pointed instrument, care being taken to cut right downto the glass. If the design is complicated, it will be found better to trace it first on paper, and then to go over the lines with a pricker. The paper can then be placed upon the wax, and some dark-colored powder dusted over the holes. On removing the paper, the outline of the design will be found marked on the surface of the wax. It will then be easy to cut away the wax at the desired places. A shallow tray of guttapercha or of sheet-lead must then be taken, and into it be placed about half an inch of the dilute hydrofluoric acid of cominerce. The glass must then be placed wax-side down over the tray, and left exposed to the vapor of the acid for some time. On removing it, washing with water, and cleaning off the wax, the design will be found etched in opaque lines upon a bright ground. If required bright upon an opaque ground, the waxed glass, instead of being exposed to the vapor of the acid, should be dipped into the acid itself. After the removal of the wax, the surface of the glass should be ground with very fine emery.

Another way is to draw the design on the glass with a pencil and Brunswick black, using as a guide of sketch on paper placed beneath the glass. On exposure to the acid vapor, the whole background will be rendered opaque. The Brunswick black can be cleaned off with turpentine, leaving the design in clear glasa. Instead of Brunswick black an ink may be used, made by dissolving asphalte in turpentine, and thickening with beeswax and resin. Where it is desired to produce an artistic effect by the introduction of shading, recourse may be had to Gruene's patent process, wherein the wax or Brunswick black is replaced by substances not altogether impervious to the action of the acid. The design is drawn with oil-varnishes, greasy printing ink, or some such substances (using a good protector for the high lights, a bad protector for the deep shades, and so on), and is then dusted over with finely powdered metal, copal, \&c. When dry, the glass is dipped into hydrofluoric acid and allowed to remain in for a few seconds, and is afte;wards washed. If care is taken in the selection of the protecting materials, it is possible for an artistic workman to obtain very striking results.

Giling. -Gilding may be done either with bronze powder or with gold leaf. If the powder is to he used, the design should be traced on the wrong side of the glass with Japan gold-size thinly laid on, which is afterwards dusted over with bronze powder. When dry, a coat of varnish is laid on. In tracing the design, it must not be forgotten that the wrong side of the glass is being worked at, and that when viewed from the front everything will appear twisted round-the right being to the left, and the left to the right. To gild with leaf the glass must be carefully cleaned and laid upon, the design. Then a solution of isinglass is put on by aid of a flat camel hair brush. While still wet, golll leaf is laid on with a gilder's tip (for the sake of economy adhering to the design as nearly as possible). When quite dry, the design, the outline of which has been pricked out as before described, is taken and placed upon the gold. Dark colored powder is then sprinkled on aspbefore. The pajer is next removed and the ontline carefully

gone over with Brunswick black. The superfluous gold is cleaned ofl by the aid of a sharp, narrow chisel. The size is made by dissolving $\ddagger \mathrm{oz}$. of isinglass in a sufficiency of water, adding a quarter of a pint of rectified spirits, and making up to half a pint with water.
Nore.-If hydrofluoric acid is dropped upon the fingers it is desirable to wash it off without unnecessary delay; but let no one be deterred from using the acid by the dreadful things the textbooks say of it. 'They don't apply to the diluted arid sold at the shops.

Scientific Items.

A simple process of nickel plating by boiling has been described by Dr. Kaiser. A bath of pure granulated tin tartar and water is prepared, and after being heated to the boiling point, has added to it a small quantity of pure red hot nickel oxide. A portion of the nickel will soon dissolve and give a green color to the liquid over the graius of tin. Articles of copper or brass plungid into this bath acquire in a few minutes a bright metallic coating of almost pure nickel. If a little carbonate or tartrate of cobalt is added to the bath a bluish shade, either light or dark, may be given to the coating, which becomes very brilliant when it is properly polished with chalk or dry sawdust.

A solittion fok silver plativg.- The following is a good bath: Suft water, 1 gallon; cyanide of potassium, 8 ounces. Dissolve the silver nitrate in a small quantity of soft water, gradually add, with constant stirring, solution of cyanide of potassium until no further precipitate of silver cyanide forms (avoiding any excess of the precipitant). Throw the precipitate on a fine cotton cloth filter, and as the liquid runs through, wash the precipitate on the cloth with pure water. Mix and dissolve this waste precipitate with water in which has previously been dissolved the cyanide of potassium. If the silver cyanids does not dissolve readily add more cyanide until it does.

Bronzing for brass.- The articles, which must be free from grease and polished, are first immersed for $\frac{1}{2}$ minnte in a cold solution of 10 gm . of potassium permanganate, 50 gm . of sulphate of iron (ferrous), and 5 gm . of hydrochloric acid in 1 liter of water. They are then washed off and dried in fine, soft sawdust. If the color has become too dark, or if a more reddish-brown color is required, the objects are immersed, immediately after they have been taken out of the liquid, for about 1 minute into a warm $\left(60^{\circ}\left(\mathrm{C}=140^{\circ}\right.\right.$ F.) solution of 10 gm . chromic acid 10 gm . chloric acid, 10 gm . potassium permanganate and 50 gm . sulphate of iron in 1 liter of water, and treated as above. By using the second liquid alone, a brighter dark-yellow, or red-brown color is produced.
The following is recommended as a cement for stoves and steam apparatus: Two parts of ordinary well-dried powdered loam and one part of borax are kneaded with the requisite quantity of water to a smooth dough, which must be at once applied to the joints. After exposure to heat this cement adheres even to smooth surfaces so firmly that it can only be removed with a chisel. Another cement for steam pipes is prepared, by mixing 430 parts in weight of white \backslash lead, 520 of powdered slate, 5 of chopped hemp and 45 of linseed oil. The two powders and the hemp cut into lengths of $\frac{1}{4}$ to $5-16$ of an inch are mixed, and the linseed oil gradually added, and the mass kneaded till it has assumed a uniform consistency. This cement is said to keep better than ordinary red-lead cement.

Preventing forest fires.- The idea that the best way to prevent forest fires is to burn all trash and small undergrowth aunually, seems to gain popularity. One who is well posted in forestry matters says: "If the undergrowth is kept down and dead matter not allowed to accumulate, there will be no fire to hurt the live trees. We know a piece of woods that is burned under every year by spark, from the Reading railroad locomotives, but the standing timber has never been injured. It will not cost a thousandth part as much to clear out all the brushwood in the United States as we lose in one year by the forest fires, and the true way to preserve our forests must start from just here. At any rate, this idea removes the great objection to forest planting-that it may get burned. If rank vegetation is kept down fur a few years during the growth of the forest, it will, by its own shade, keep down the growth thereafter."

Astranomy aud trology.

THE TOTAL SOLAR ECLIPSE.

The solar eclipse of the 17 th of May was successfully ob served by English, French, and Italian parties at Soham, ${ }^{8}$ village in Lower Egypt, on the Nile. The duration of totality at that point was only seventy two seconds, but the observ* ers did prompt and efficient work in this short space of time. The telegraph swiftly bore the record of their labors to our Western World, and the first fruits include the view of ${ }^{8}$ comet near the sun, indications of a lunar atmosphere, and a photograph of the spectrum of the corona.
The precious secoads when the sun's face was hidden by the moon's dark shadow revealed in the first place a comet near the sun. It could not be Comet a or Comet Wells, for this much talked of visitor to northern skies does not reach peri; helion until the 10th of June, and has, therefore, three weets of time in which to speed its course to the near neighborhood of the great luminary. It will be comforting to those who have borrowed trouble from its close approach to the solar fires to know that another comet, eluding the grasp of terrestrial ob servers, is safely circling around the magnet of the system without let or binderance. It has not thus far fallen into the sun to add fuel to his flames and bring destruction to the earth. It will doubtless keep on its harmless course and $p^{8^{88}}$. with quickened step beyond solar bounds to star-depths unfathomable, as myriad other comets have done before and will do again, for observation confirms the theory that space is full of comets, meteors, and intangible forms of matter. A small portion of the mighty army becomes visible in the form of comets and meteors, but the invisible denizens of space $f a r$ exceed those that are visible. For every comet that spans the sky with its gossamer tail millions pass over our heads unseen. For every meteor that falls upon our world millions of millions fall upon other worlds, while vain would be the effort to form any idea of the infinite numbers of those that fall upon our sun, or the countless suns of space. The comet seen near the darkened sun has been photographed, and the picture of the daring intruder in solar domains will form a study of attrac. tive interest.
The second item coming from the eclipse observers is more astounding thar the first, for the darkening of the lines of the spectrum, as seen by the French astronomers, gives indication of a lunar atmosphere. If this observation is substantiated there will be a revolution in existing ideas concerning lunast physics. Our nearest celestial neighbor, the moon, at legst the side turned toward the earth, has for a long time befin considered the abode of desolation, her purpose in the material in economy accomplished, a dead world, a symbol of the fate in reserve for the earth in the slow revolution of ages. Years ago an observer detected a rosy cloud floating over the lungr crater Linneus, but the phenomenon was looked upon by more staid astronomers as a flight of fancy. A few years $\mathrm{ag}_{0} \mathrm{o}^{\circ}$ an observer in one of the Western States detected a change the form and an appearance of volcanic action around one of the moon craters, but the scientific world in geveral considered it an optical illusion. It may be that these observers were not so far out of the way, though the startling discovery will not be accepted without strong proof to verify it. Those who are best acquainted with the moon as seen in the telescope will be slow to believe in the slightest manifestation of life on her chaotic surface.
One more meager item closes the first bulletin from the eclipse expeditions. It is that the spectrum of the corona wor photographed for the first time. We may, therefore, hope ${ }^{\text {for }}$. increased knowledge of the constitution of the sun's magni ${ }^{1}$ cent appendage, seen only in a total eclipse, so grandly best tiful as to make the beholder feel like veiling his eyes in ${ }_{\substack{\text { th } \\ \text { its }}}^{\text {, }}$ celestial presence. The corona, with its silvery light, ${ }_{\text {out }}$ t spreading wings, its circles, arches, and curves stretching into fathomless depths around the darkened sur, is cunsider as one of the most impressive and awe-inspiring sights it which celestial majesty and grandeur are ever embodied. constituents and office in solar economy are problems who ${ }^{90}$ solution is much desired.
The English eclipse expedition observing at Soham, wit th $^{\text {h }}$ Professor Lockyer as the chief direetor, laid out an organized plan of operations. Some of their points of observation to note if the abundance and activity of the rosy protuberan ${ }^{c^{5}}$ gave proof of the present disturbed condition of the sun whir ${ }^{10}$ passing through its maximum period of sun spots ; to compare
and detect the difference in the spectra of rosy flames and sun ${ }^{8 p}$ pots 2; to t get an difference in the spectra of rosy flames and sun
that is, to the physics of the solar atmosphere may be to find what it looks like, to study - if the expression chemical used - its circulatory system ; and to determine its in the sun are dissenecially if the chemical elements existing ture existing dissociated or separated by the intense temperaphysics and there. Special attention is now directed to solar genious theoryemistry, in consequence of the bold and ingenious theory of Dr. siemens on the conservation of solar
energy. Phy.
Photography was greatly relied upon in the solution of in the rapicate problems, and so much hạve methods improved sensitized rapidy with which the image can be impressed on the minutes did the that seconds will now record more than troscope cold twenty years ago. The telescope and the spec${ }^{8}{ }^{8} \mathrm{n}^{\prime}$'s sur combined with the photograph in the attack on the There is ${ }^{8}$ surrings during the eclipse.
obtained is every reason to hope for noteworthy results to be mical instrum the recent solar eclipse with the best astronoof world-widents the world can furnish, and with astronomers cloudless wide renown to use them effectually under the the Nile. Wky and in the serene atmosphere of the station on thin line. We have still to hear from other stations on the graphs that totality, and to wait for fuller details and photoProfessor will tell more of the good news.
Professor will tell more of the good news.
hard They tra to prepare for seventy-two seconds of observation.
of traveled thousands of miles and transported thirty cases of instruveled thousands of miles and transported thirty cases lent, and labor to aid them in the work. If their time, tathe sund labor have succeeded in drawing a single secret from they ask; thelped to confirm a single theory, the reward is all ap of ask; they have not labored in vain. For this heaping generabservation upon observation is the work of the present
ledge from astronomers, the only means of wresting. know-
peop ${ }^{\text {from }}$ our sun People space.-S sui. Aur brother planets, and the suns that

A SIMPLE WAY To convert a pillar and clay STAND TO AN EQJATORIAL.

Almost by f. G. BLINy.
telescost every one who is the possessor of an astronomical
the, mounted on a pilliar and claw stand has remarked the dife mounted on a pilliar and claw stand has remarked of the hiculty experienced of keeping in the field of view any for ${ }^{\text {a }}$ heavenly bodies, and, if the olservation be interruptell
notice thort time, of finding them agnin. This is enpecially noticeabrt time, of finding them again. This is especially
finder if it using a Thide . Pflue contrivance here described answers the purrose of an i. e, erial mounting when used with the pillar and claw stand,
'he The parabling one to follow the star by a single motion.
shonld parts should be made frou $1 \frac{1}{2}$ or 2 inch boards, and Wellge chnsist of two pieces say 15 inches square, and two
lalitesto ${ }^{10} 0^{\prime}$ 'ude of the pieces subtending an angle effual to the co00^{\prime} the of the place (i.e. $90^{\circ}-$-lat. ; thus, if the litt. be 40°
in inche angle should be $50^{\circ} 00^{\prime}$, and 15
$t_{w o}$,
${ }^{\text {two }}$ triangular tyges. Now fasten these - Ppposiangular shaped rieces, at A, on
Carpeste sides care they should of the piece B, taking B , and thy should stand perpendicular to to
pieces their ends even with the side, ID
 piecees faster ends even with the side, D) ; on top of these two Tow you have ; no adjustment for this piece is neeessary ; ${ }^{\text {tak }}$ ken for frave finished. The pillar and claw are now to be of the 4 inches or or head and fastened at F. In case, the the stand with or over it would be advisable to fill the inside It If stand with iron or rocks to insure steadiness.
stripe a pect a pillar hace out of doors it wonld be a good plan strif of a pillar having a level top, on which is fastened a
only brass lying in the lan on the meridian then it is only neceass lying in the plan of the meridian ; then it is she whels bary to set the edge, B, parallel in this to insure
sionally bistung in adjustment, as the stand might be occadisturbed.

 matt be tery paper will do ; but if of long standing, the tools.
The tefinished.

 France, 13,715 ; and Austro-Hungary,

Santaxy and IPhmbixg.

an improved system of heating and ventilation.

The subject of the proper heating and ventilation of dwelling houses and public buildings is one that is at length coming to receive at the hands of architects and builders something of the serious attention to which its importance as the first of sauitary considerations entitles it. It was not so long ago, as most of our readers will remember, when the constructor of a building, even of some pretensions, scarcely deemed the problem of heating and ventilating it worthy of his professional consideration, or if he gave it any thought, it was to dismiss it to the charge of some irresponsible, and probably ignorant, subordinate. Of late years, h ippily, there has been so pronounced a change in public sentiment upon all matters relating to household sanitation, as to amount to a positive revolution from indifference to anxiety, and heating and ventilation are matters which are ranked as high in value and importance as drainage and sewerage, and receive as much attention at, the hands of intelligent constructors as the latter.
To heat and ventilate buildings comfortably and properly is by no means the easy task that one unfamiliar with such matters would imagine. We are sutticiently well acquainted with the laws governing the circulation of aeriai currents, to be able to affirm that we know the principles upon which such a system should be based; but to carry them into successital practice is a task that has puzzled the brains of the ablest constructors. The heating alone, or the ventilation even, would not prove so serious a task, but to properly combine the two, so that, as it should be, the one shall supplement the other, and both combined shall form an effective system, operating in conformity with sanitary principles, is an undertaking, the difficulty of which can only be duly appreciated by one who has undertaken it. In many cases, too, the most obvious blunders are committed, and persisted in, in the apparently simple problem of ventilation. An old custom for a long time, and even yet to some extent in vogue, was to admit fresh air at a low level in the room, and allow it to escape at a high level, on the mistaken notion that the vitiated air of the apartment that has been breathed, being warm as it issues from the lungs, would rise, and that the placing of a ventilating register at the top of the room, to effect its withdrawal, solved the problem. The notion is entirely wrong. The vitiated air expelled from the lungs speedily acquires the temperature of the stratum of air into which it enters, and, heavily laden with carbonic acid and water vapor, sinks to the Hoor, and unless removed by some means, accumulates there in a stratum of constantly increasing volume. T'o attempt to remove this stratum of vitiated air by providing openings for its escape at the top of the room, is simply absurd; and it is not only incorrect in principle, but wastrful of heat (and consequently of fuel), for the warn, fresh air entering the apartment, no matter at what level, being speeifically lighter than the air already in the room, immediately rises to the ceiling and escapes through the ventilating apertures without warmiug the apartment, leaving the bulk of the vitiated air of the apartment undisturbed. Intelligent observers have, therefore, in view of these facts, come to the conclusion, that, both for the efficient renewal of the air of an apartment and for economy of heat, the proper plan is to have the openings for the escape of foul air near the floor.
The preceding remarks will serve to introduce a description of the combined heating and ventilating apparatus, and which is at once simple in construction, rational in principle, and effective in operation.
In describing the steps that led the inventor of this apparatus to the desired construction, it will be well to note the circumstance, which he claims to have proved by actual experiment, that in a room warmed by a supply of heated air, delivered through a register near the floor, the coolest spot in the room is invariably directly below the entering stream of warm air. How the inventor took advantage of this fact, in comnection with the general principles previously announced, will shortly appear. We owe this very simple and efficient system to the ingenuity of the late George R. Barker, of Germantown, Philadelphia, by whom it was introduced with most satisfactory results into many public buildings and private residences in Philadelphia and its viciuity. It will be understood from the following description :
The air in a room is in a constant state of circulation ; delivered from a register, it rises; reaching the ceiling it moves

Fiti. 1.-"Tidal Wave" Water-Closet, Showing Basin and Surply Tank Connections.

Improved Heating and Ventilating Apparatus.

Fif. 2.- "Tidal Wave" Water-Closet, Showing Seat Connections with Supply Tank.

Equatorial Mounting

DESIGN FOR A SEASIDE COTTAGE.-ESTIMATED COST, $\$ \mathbf{2 , 2 0 0}$.

across the room and being gradually cooled falls to the floor. There it is, and must be drawn off and removed in some thorough and simple way. Our illustration, partly in perspective and partly in section, shows the invention quite clearly. A supplementary flue A, flared at its lower end, surmounts the flue leading from the furnace. This pipe is smaller than the air flue, leaving a space all around between it and the walls of the air flue for ventilation. Its upper extremity is curved to terminate in the upper half of a register, through which the hot air is delivered into the room. It will be observed that the register, though having a single grating of the usual size, is divided by a horizontal partition, and each portion is provided with a separate set of slats, either of which may be opened or closed at will. While the hot air from the flue A pours into the room in an ascending current, as indicated by the arrows, the cold and heavy vitiated air, which sinks to the floor, makes its exit into the lower half of the register, entering the main flue in the space between the supplementary pipe and the brick-work, and theuce passing up the chimney. By this means a constant circulation of air is maintained in the apartment.

It will be noticed from the foregoing account of the Barker apparatus, that the draft of the flue which is used for ventilation is materially increased by the warmth of the galvanized iron pipe throngh which the fresh warm air is delivered to the apartment. Its action is at once simple and rational, effecting a frequent and thorough change and rentwal of the air of the room to which it is applied, and by the completeness of the circulation which it establishes and maintains effecting a considerable economy of heat, representing a corresponding economy of fuel.

The thoronghness of the circulation effected by this apparatus, has another and highly important advantage - namely, that of producing a very nearly uniform temperature in all parts of the ruom. With this simple apparatus then, operating automatically, it is claimed, and we believe without exaggeration, that the problem of wholesome heating and ventilation, involving the essential conditions of comfortable warming, frequent and thorough renewal of the air, and the maintenance of practically uniform temperature throughout the apartment, is solved, affording an experimeutal demonstration of the fallacy of the argument that the only way to secure efficient ventilation is to force the air into or out of a room of machinery.

The following additional details respecting the mechanical operation of the Barker arparatus are if intreest to note: The small pipe B arranged above the Hue A, is provided within with a valve operated by a suitable rod and handle (' outside the register. By this device either a portion or the whole of the hot air rising in the Hue A may be discharged into the vitiated air flue, the register of the hot-air pipe being either opened or closed accordingly, and thus increasing the warmth and consequently the draft of the vitiated air flue, a result of much importance in crowded rooms, where the heat becomes excessive and the air very impure. From our own personal observation of the practical operation of the device, we feel satisfied that the truth of the views above noted is fully proved -a candle or handkerchief held before the two portions of the combined register indicating clearly the direction of the ingress and egress currents. By a simple modication the device is adapted for floor registers, and in cases where several flues pass up the wall side by side, a metal partition is used to separate each at the point of location of its register, enabling the apparatus to be conveniently and readily applied. The invention has already elicited favorable notice from eminent sanitary authorities in New York, Philadelphia aud Washington. This apparatus has been introduced with great success all through the hospital and medical department of the University of Pennsylvania; the new public school buildings, Camden, N. J. ; the People's Bank (Girard Building), the City National Bank, the Western Saving Fuud, the Baptist Publication Building, Memorial Hall (Art Building), Philadelphia Stock Exchange, and in many private residences in Philadel-phia.-Manuf. and Builder.

AN IMPROVED WATER-CLOSET.

We describe in what follows, with the aid of the accompaying illustrations, an improved water-closet, which, to use the words of the makers, is a self-emptying, automatic water-closet, that takes care of itself, is simple and positive in operation, clean in use and all that it should be in a sanitary point of
view. To this improved device the makers have attached the expressive title of the "Tidal Wave" water closet.

It is made of one single piece of white earthenware, dis pensing with plug, soil-valve, floats, float-chambers, putty and cement joints, and complicated supply valves.

Referring to Fig. 1, A is a ${ }^{3}$ inch air and ventilating pipe; B, a $1 \frac{1}{4}$ inch flushing pipe; C, the supply pipe; and D and E, vents. The construction of the basin is such that a large body of water is retained in the bowl by a trap of unusual dip, under any circumstances, while a second trap directly under the bowl. in connection with the vent at D , forms an additional safeguard against sewer gas. The closet is provided with copper-lined tank, with service box of the usual construction, and can be operated by a lever and chain attached to the closet seat in the usual manner, or by a bell-pull, or by an ordinary closet-pull. The seat attachment (see Fig. 2) is automatic, as will be seen from the following description, and is a most desirable feature in connection with apparatus of this class, being especially adapted for the use of children and others too thoughtless to make use of mechanical devices. From the following description the working of the apparatus will be unt derstood: While the seat is occupied, the service box fills, the water expelling the air from the service box into the ventilating flue F at the top of the tank. Relieving the seat changes the position of the valves in the service box, closing the supply and opening the outlet valve to the flushing pipe B. The water rushing down to the flushing rim of the bowl, creates a partial vacuum in the service box and air pipe A, causing the air between the two traps to rarefy, and the contents of the bowl are inst ntaneously discharged into the lower trap, starting at the same time a continuous 4 -inch siphon which carries everything with it into the soil pipe. The va ${ }^{\circ}$ cuum is broken after the water in the service box has run oft to the extent of two-thirds, and the remaining one-third of water in the service box is reserved to refill the bowl.

The closet here described cas readily be substituted for any other in use, without changing the soil pipe connections. It can be reversed, so as to be conveniently supplied either from the right or the left, and the supply tank can be placed at any desired height from the floor.

REGULATIONS FOR HOUSE PLUMBING IN NEW.YORK.

Under the new law for the registration of plumbers and the inspection of phumbing by the Roard of Health, the board has adopted the following regulations, as given by the sicientife American

Whenever any plumbing work is completed, and before it is covered from view, the Board must be notified in order that it may send an inspector. The arrangement of soil and waste pipes must be as direct as possible. The drain, soil, and be waste pipes and the traps should, whenever Iracticable, be exposed to view for ready inspection at all times. Whed placed within walls or partitions they should be covered with woodwork fastened with screws, so as to be readily removed In no case should they be absolutely inaccessible. Every house or building must be separately and independently $c^{n^{-1}}$ nected with the street sewer by an iron pipe caulked with lead. The house drain must be of iron, with a fall of at least half-an-inch to the foot if possible. It must be provided with a running trap placed at an accessible point near the front of the house, and there should be an inlet for fresh air entering in the drain just inside the trap of at least four inches in diameter, leading to the outer air, and opening at any con venient place not too near a window. No bick, sheet meta, or earthenware flue shall be used as a sewer ventilator, nor shall any chimney-flue be used for this purpose. Every sor pipe and wast pipe must be of iron and must extend at lean two feet above the highest part of the roof or coping, of uab undimished size, with a return bend or cowl. Horizontal sold and waste pipes are prohibited. All iron pipes must be sound free from holes, and of a uniform thickness of not less thar one-eighth of an iuch for a diameter of two, three, or fous inches, or five thirty-seconds of an inch for a diameter of five be or six inches. Before they are connected they must be thoroughly coated inside and outside with coal tar pitch, applied hot, or some other equivalent substance. Iron pipes before being connected with fixtures, should have opening stopped and be filled with water and allowed to stand twenty four hours for inspection.

All joints in the drain pipes, soil pipes, and waste pipes ${ }^{s}$ must be so caulked with oakum or lead, or with cement mid
> of iron filings and sal-ammoniac, as to make them impermeable to gases. All connections of load with iron pipes as the be made with a brass sleeve or ferrule, of the same size and caulk pipe, put in the hub of the branch of the iron pipe, to thealked in with lead. The lead pipe should be attached bathe ferrule by a wiped joint. Every sink, basin, wash tray, effectively, and every tub or set of tubs must be separately and fixtures as trapped, and the traps must be placed as near the siphonage by practicable. Traps should be protected from a half ine by a special metallic air pipe not less than one and Watercloset, in diameter. Every safe under a washstand, bath, not directly or other fixture must be drained by a special pipe or sewertly connected with any soil pipe, waste pipe, drain, loor or outside discharging into an open sink upon the cellar must be sumplide the house. All waterclosets inside the house the be supplied with water from a special tank or cistern, closets must which is not used for any other purpose. The pipes. A grouper be supplied direct from the Croton supply on the A group of closets may be supplied from one tauk, if
tanks should floor and contiguous. The overflow pipes from tanks should discharge into an open sink or into the bowl of
the closet ither drain or sewer. cient or sewer. When the pressure of the Croton is not suffiWater leaders supply these tanks a pump must be provided. Rain nor shall any soil, waster be used as soil, waste, or vent pipes, steam exhaustil, waste or vent pipe be used as a leader. No Waste exhaust will be allowed to connect with any soil or impervious Cellar and foundation walls should be rendered pitch in side dampness by the use of asphaltum or coal-tar should always adion to hydraulic cement. Yards and areas paved, always be properly graded, cemented, flagged, or well These pipes should be effectively trapped. $\xrightarrow{\infty}$ pipes should be effectively trapped.

Cabinct Zaxking.

A GIPSY TABLE.

BY A PRACTICAL WORKMAN.

Thous
and song a gipsy table is such an ordinary piece of furniture, few makers. It is known well enough as represented to but 6, but given the round unbored ball, the top, and the turned legg, to bore the holes in the ball, and to bore them rightly, is
not Well 80 simple a matter as it would seem at first sight, and is
Worthy of an explanater We will sup an explanatory paper.
of clean pine suppose that Fig. 1 is the top of the table, a piece circle A pine, 21 in . in diameter and $\frac{7}{8}$ in. thick, and that the screwed or glued, the lin. in liameter, into which the legs are $b_{\text {eilug the }}$ or glued, the line which reaches from E to the ball points for plan of upper part of leg. To obtain the exact as well (see Fig the ball, we shall have to draw an elevation ${ }^{1}$ rawn, (see Fig. 2). The base or floor line, B, must first be $\mathrm{mu}_{\text {st }}$ be marked required height of the table top, $2 \mathrm{ft} .4 \frac{1}{2} \mathrm{in}$., The top of the gipsy table legs should comes of the top shown. the top as possible, so that the table may bo steady ; therefore The a circle, EF, so that the table may bo steady; therefore The topircle, EF, defining the exact center line of the legs.
lower ond all three legs must come on this line, and the table to ends of the legs will come out from the center of the This from the point the same distance; so drop a perpendicular of the point is the center of the the under side of the top at D. of the lower part center of the top end of one leg. The plan calar line (Fig. 1) to F, and from the point F drop a perpendiD, and ine to G on the base line the point F drop a perpendi, and it G on the base line Fig. 2 ; draw a line from G to
cause the ball pass right through the center of the ball, betop the ball H is just midway between the under side of the this mane floor. We cannot draw the remaining two legs in points from the as to show the exact distances of the boring the legs would benter of ball, because in the elevation, Fig. 2, the eye in pould be foreshortened, i. e., they would appear to latterore, could not we mich they do not really occupy, and, atter remark. Thot be measured. Fig. 6 will illustrate the
appears to the gipsy table is there represented just as it
from from the the eye when turned one-twelfith of a revolution say that position shown in Figs. 1 and 2 . It is needless to
throw are the the leg 1 orkman would think of boring the ball so as to plan there sho I or J or K in the varying bevels in which they 1 , yet the table having been turned a little round,
the apparent positions of the legs present such foreshortened views that it would be impossible to work from them. Hence we take one leg only, and have it exactly in the vertical plan, as E F, Fig. 1 ; we then obtain the true bevel, boring points, and length of that one leg, and having once obtained these it is an easy matter to place the remaining boring points; the lengths and bevel will be the same.

Fig. 3 is an enlargement of the ball H, and L and M are the boring points. Suppose we have the solid round ball in our hands, and we want to mark the boring points, we see the exact chuck centers O and N. Set a pair of compass es to the distance $L N$ and with one leg of the compass on the chuck mark draw a circle on the ball, draw a second circle on the other side of the ball with the other churk mark for the center, obtain a cardboard straight-edge 9 in. long, and bend it round the ball, taking care that the edge is just coincident with the chuck marks ; then draw a pencil line along the straight edge so as to intersect the circles drawn round the chuck mark, see Fig. 3 ; the line will pass through N L O and M, and if a screwbit is started at L, and it comes out at M, the hole will be right, but before the hole is bored the remaining two points must be obtained. Fig. 4 is the same as Fig. 3 would appear if we were looking down upon it from the point D, it is a plan of Fig. 3. P is the chuck mark, and $S S S$ is the circle round it, on which the boring points are placed ; $P \mathrm{Q}$ is the cardboard straight-edge, the boring point T , being the same in plan as the boring point L in elevation Fig. 3. To obtain the remaining points, take the radius P T, and starting from the boring point T, set off the distances round the circle SSSS ; it will just go six times, and each alternate point, as U U , will be the boring points. It will be advisable to make a tin template of these points, with the chuck mark in the center, and always stick to one size of ball, one size of top, and one height of table, which will save much waste and disappointment. Fig. 5 gives the length of the legs, and is obtained from D G, Fig. 2, the pattern for the turning being shown. Black and gold is the usual finish for gipsy tables, the tops being covered generally with cloth, and trimmed with fringe.

Smell of Paint. - To get rid of this most objectionable odor in a chamber or a living-room, slice a few onions and put them in a pail of water in the center of the room; close the doors, leave the window open a little, and in a few hours the disagreeable smell will have almost gone. Another method is to plunge a handful of hay into a pailful of water, and let it stand in the newly painted room over night; this plan is also effectual. The foregoing have the important advantage of being simple remedies, as the necessary materials are always easily obtainable. Yet another plan, but it is rather more complicated. Place a grate of lighted charcoal on a piece of flag or slate in the center of the room, and throw on it a hand. ful or two of juniper berries; shut out all ventilation from the room for 24 hours. The doors and windows can then be opened, when it will be found that the nasty sickly smell of paint has entirely gone. The furniture may be left in the room during the process, and noue of it will be injured. But the best way to avoid the smell of paint is by not having the painters in the house.

Black walnut can now be manufactured very cheaply. One part of walnut peel extract is mixed with six parts o: water, and the wood is coated with the solution. When the material is about half dry a solution of bi-chron ate of potash with water is rubbed on it, and then your walnut is ready. Furniture dealers have been known to make excellent walnut from very poor pine, lut the difference was slightly perceptible ; however, this method is said to defy detection.

An experienced cabinet maker says that the best preparation for cleaning picture frames and restoring furniture, especially that somewhat marred and scratched, is a mixture of three parts of linseed oil and one part spirits of turpentine. It not only covers the disfigured surface, but restores wood to its original color, leaving a lustre upon the surface. Apply with a woolen cloth, and when dry, rub with woolen.

A firm and fusible wax for ornaments and inscriptions put on loam moulds of bells, for instance, is prepared as follows : Melt at a gentle heat a mixture of 80 parts wax, 13 white pitch, 4 fat and 3 poppy oil. After a thorough stirring, filter
through wool flannel.

A SEVEN-FOOT SIDEBOARD.-By Mr. W. Robinson, Dublin.

Enucational.

THE NEW EDUCATIONAL CODE OF ENGLAND.

An educational movement of great moment has been in progress in England for several months. On March 6 the New Education Code was completed by the Education Department, signed by Spencer, Lord President of the Council, and A. J. Mundella, Vice-President of the Committee of Council of Education, and placed before Parliament. Education Department is defined to mean the Lords of the Committee of the Privy Council on Education. The first code was adopted by Parliament in 1870 , it being the work of Mr. Robert Lowe. The new code will go into effect April 1, 1883. The revision has been very elaborately and conscientiously performed. Mr. Mundella has been the responsible agent to complete the work; he has invited suggestions and criticisms from all sources. The following statement from the provisions of the code is condensed from the London Times.

The details of the code are arranged in the following divisions: (1) Infant Schools, (2) Subjects of Instruction for Children over seven, (3) the Annual Examination, (4) the Attendance Grant, (5) School Expenditure, (6) Night Schools, (7) School Attendance, (8) Pupil Teachers, (9) Miscellaneous Regulations, and (10) the Rate of Payment for Arithmetic, Reading, and Writing. The average attendance of the year will form the basis of the whole grant. The items have been settled as follows: The fixed grant on attendance is raised from four shillings to four shillings and sixpence. The grant for reading, writing, and arithmetic is eight and fourpence per head, if the whole of the children on the school-books pass satisfactorily in all three. For each child that fails to pass, a deduction of one penny will be made, so that a school which passes,-e. $g ., 80$ per cent. of its scholars will receive, not eight and fourpence, but six and eightpence per head on the average attendance. In the grant for siuging no change is introduced, except that only sixpence per head will be given if singing is taught by ear, and the full shilling if it is taught by note. In the grant for "class subjects" the sum payable will be one shilling or two shillings per subject, according as the knowledge shown is fair or good. For general merit, such as organization, discipline, intelligent teaching, and quality of school-work, there is a further grant, varying in amount in accordance with the inspector's report. A report of fair, or good, or excellent, will carry a corresponding grant of one or two or three shillings per head, calculated, like all the rest, on the average attendance of the year.

As regards the specific subjects, some changes are made in the contents of the schedule fixing them ; and the children offering them must be of at least the fifth standard (the fifth school-year), instead of the fourth standard (the fourth schoolyear) as now. In these, and in these alone, the payment will be individual, and will not be calculated by any reference to the average attendance of the year. The intended result of the new arrangement is that good schools will be able to earn more than they do now, and that bad schools will earn less. This will be insured chiefly by the rule that the scholars presented for examination must be the whole number on the school-books, and not only those who have made a full number of attendances. The percentage of failures will thus be increased in every case, and the worse the school and the more irregular the attendance the more numerous will the failures become.

It is claimed, also, on behalf of the new system, that it admits of greater flexibilitv and a more exact adaptation to the merits of each case. The grant for reading, writing, and arithmetic will obviously fix itself by an easy, self-working rule, and it will be possible, as it is intended it should be, that a school in which the teaching is sound and the general intelligence good should earn a higher grant on a lower percentage of passes in reading, writing, and arithmetic than a school can in which the actual bare passes are more numerous, but the teaching and general intelligence are of a lower order. Each certified teacher will count as providing for the instruction of sixty children instead of eighty.

The code abolishes the child's school-book system, with its separate record of the date of birth, date of entry, and year's progress of each child. The examination of classes by inspectors will not be made by sample but by bulk. Teachers holding first-class certificates will not need to be endorsed each year by the inspector, but will be entitled to claim from the school-managers a certified copy of the inspector's annual
report on the school. Graduates of universities and women who have passed certain specified university examinations are to be eligible at once for assistant teachership, their promotion to the rank of certificated teacher being subject to the same conditions as those of other assistants. Experienced teachers are to be admissible to the post and pay of sub-inspectors. The code bestows a premium on intelligent and sound methods of instruction in infant schools and night-schools. The new code has the merit of being more simple, more distinct, and more carefully thought out than its predecessors have been.-Journal of Education.

THE GREAT BELL FOR ST. PAUL'S.

The following particulars of the great bell for St. Paul's have been forwarded by a well-known correspondent, Mr. W. S. Franks, of leicester, who has had an opportunity of person ally inspecting what is, we believe, the largest bell ever cast in England. It is standing mouth upwards at the foundry of Messrs. Taylor, Loughborough, and struck as it stands, the deep boom is almost too deafening for the ear in such close proximity. The weight of the bell is $17 \frac{1}{2}$ tons; its diameter at the mouth 9 ft . 6in., and thickness at soundbow $8 \underset{4}{3} \mathrm{in}$. The bell itself exceeds 7 ft . in height, but from the lip to the top of the cannons it measures 8 ft . 10 in . Our correspondent gays that the note is E flat. At present the bell is struck by means of an iron ball weighing 600 lbs ., which is slung by a chain to an overhead girder. When the question for a big bell for St. Paul's was first mooted there were objections. It was said that the Chapter had got a bell of iour or five tons weight which they scarcely ever rang, and what did they want with more? It was urged that the tower which was destined for the bell would certainly come down; that the neighbouring men of business would be disturbed in their operations; that nobody in England could cast a big bell. This last allegation has been satisfactorily set at rest. A bell weighing some seventeen tons and a half - that is four tons heavier than the great bell at Westminster-has actually been cast in a satisfactory manner by a Leicestershire firm. There is an idea in England that all big bells are necessarily named Tom. Peter, of York, and Harry of Canterbury suffice to counterbalsnce the Toms of Oxford and of Lincoln. Tom or no Tom, how. ever, the big bell of London outweighs its civals both of Lin coln and Oxford by many a ton. It is, indeed, insignificant beside the vast and partly-ruined monsters of Moscow, but with the great bells of Western Europe it can vie very fairly. Moreover, it is said to be excellent not only in size but in quality, which may be frankly admitted to be the more important excellence of the two. Sir E. Beckett, calculating the weight of the great Russian bells by their dimensions, makes the great bell of Moscow 220 tons in weight, and another 110 tons, but practically these are bells only in name. Of the great bells of Western Europe, those of Rouen (destroyed), Olmutz, and Vienna alone exceed the weight of the new bell, and that only by a few hundredweight, but the most famous bell-that of Erfurt - weighs much less (13 tons 15 cwt.). Mr. Froude has somewhere called bells a special and characteristic cres. tion of the Middle Ages. They are, no doubt, specially characteristic of that side of the Middle Ages which, if not the most historically true, is the most poetically impressive - its mystical and romautic side. The conclusion that they are out of place in a modern town is a hasty and an unphilosophical one. Except in a very confined space, and at too low a level, bells are by no means intrusive. When Big Ben was hung the same prophecies of evil were made, and with all his draw. backs, exaggerated as they have been, Ben has been long accepted as a rather pleasant ingredient of the strepitus of our modern Rome, than which the old one could hardly have beent more noisy, as it probably was not wealthier, and certainly not halt so smoky. A rival at the other end of the Embankment will be far enough off to enter into no indecent compe ${ }^{\circ}$ tition, and the greater size of the new bell will enable it to master the louder roar of the neighbouring streets, though wood and asphalte have come to its assistance beforehand in that matter. Only it is to be hoped that the tower will be well looked to before the bell is hung. Report has it that the Midland Railway is shy of a passenger some eighteen tons in weight and some 9 ft . high by l0ft. broad, and that the bell will have to be brought by road, meeting, let us hope, with no opposition from alarmed highway boards, and not crushing in more culverts, cellars, and other traps of their kind than is reasonable.

Txisccl!ancous.

INTERNAL MACHINES AND THE EXPLOSIVE AGENTS USED IN THEIR CONSTRUCTION.

The probabilities are that infernal machines will come into tate re general use than is desirable either for purposes of prithe invenge or the removal of tyrants and nuisances. With nitro-glytion of such explosive substances as gun cotton, nitro-glycerine, dynamite, litho-fracteur, cotton powder, and blagtonoine, dualine, saxafragine, mataziette, gluoxiline the lording gelatine, there are substances enough to terrify can be said the earth for years to come. In general terms, it stantially that all these substances resolve themselves sub$\mathrm{B}_{\mathrm{ot}} \mathrm{B}_{\mathrm{ta}}$ arly into two, namely, gun cotton and nitro-glycerine. latter in a nitro compounds, the former in a solid form, the fine sto a liquid. Cotton powder is gun cotton reduced to a of a state of division; tonite is the name with the admixture sawdust nitre or similar body; dualine is nitro-glycerine and cotton , and blasting gelatine is nitro-glyceriue in which gun rine is preeen dissolved so as to form a jelly. Nitro-clycepermitting prepared by mixing glycerine with nitric acid and then into wing the mixture to drop or fall into a narrow stream cotton is, when the nitro-glycerine at once separat/s. Gun covered in simply cotton immersed in nitric acid. It was disin camp in 1846 by Schonbein, a Swiss chemist. A solution in camphor is extensively employed to imitate bone and ivory, is also enown under the trade name of celluloil. Gun cotton in this extensively used in photography. That which is sold and is country is soluble in a mixture of alcohol and ether, Another explosive.
$\operatorname{can}^{\text {Another peculiarity of gun cotton is that wet gun cotton }}$ cotton be exploded. Dry gun cotton burus vehemently; wet gun With wet absolutely uninflimmable. You can put out a tire and wet gun cotton just as you would with a wet blanket, ress. yet you can use the same material for blowing up a fort must be as see the advantage it has over gun powder. This in order to much protected from water and damp as from fire saler and to be effective, while gun cotton the wetter it gets the has absore more unintlammable it becomes, yet detonates if it absorbed but 30 or 40 per cent. of water as readily as if it had how this but 2 or 3 . It may not be improper here to relate $\mathrm{i}_{8} \mathrm{~m}_{0}$ this gua cotton is exploded under water, or wet. There The difficulty with dry gun cotton, it producing an explosion. primary is detonated by using on intermediary between the intermediarge of fulminate and the wet gun cotton. The The fulminy is a slab of dry gun cotton termed a primary. and this quill for convenience sake, is put in a quill tube, ${ }^{\text {or }}$ primer quill tube inserted iuto a hole in the gun cotton slab cause of the The quill of fulminate that furnishes the primary fixed of the explosion is called a detonator, and the detonator to explod the primer or dry gun cotton slab causes the latter the water. A torpedo of 450 pounds of gun cotton sunk in ing a base will throw up a cone of water 60 feet in height havWhich the no less than 220 feet. This was the principle by same the rocks in Hell Gate were blown up, and it is the ${ }^{\text {same }}$ Then it priple used by the Russians in the Crimean War. nachine whill be seen how easy it is to construct an infernal cartridges which, wet or dry, will easily explode. Dynamite ordinary are about as explosive infernal machines as an burg, Sax couspirator wonld need. At a ball in Schwarzenbisg, Saxony, lately a young man entered with something in chandelier, which apyeared to be a cigar. He went to the The lights as if to light it, and a terrible explosion ensued. of the dancere extinguished, the walls partly gave way, some and the dancers were covered with blood and pieces of flesh,
and the young man covered with blood and piewn himself clear out of identifica-
tion by means of

$$
\text { ss of a dynamite cartridge. }-A m \text {. Inventor. }
$$

POP CORN

P A New York contemporary thus describes the process
is The basement in the woodul house at 28 Thompson Street, is perpetually so full of coke smoke that a visitor is nearly
choked Choked on going full of coke smoke that a visitor is nearly
one back. The it. There are two rooms, one front and
and one back. The into it. These are two rooms, one front and
and the Tront room is littered on one side with barrels, cions bin. Fr side is taken up by a broadi shelf and a capacorn; the From the shelf rises an airy pyramid of loose pop-
the the dark bin contains several thousand pop-corn balls. In fire which rear room, seen through the door way, glows the coke
a deep produces the smoke and pops the corn. It burns in deep fire.place, in the top of which is set in irou hook.

From the hook hangs a wire work cage two feet square and height inches deep. A long handle fixed in the cage runs out into the room, and the end of the handle is grasped by a pair of red and massive hands, which shake the apparatus as if the object were to annihilate it. The owner of the hands sits on one barrel and is surrounded by twenty or thirty more. He is the centre of a small area of brilliant illumination, and appears of a fine red color, while the space about him is pitch dark. He is coatless and bare-armed, and his shirt is rolled away from the neck and breast. Every two minutes he throws into the wire cage a quart measure of yellow kernels of dried corn, and hanging then the cage upon the hook before mentioned, jerks the handle back and forth with a short movemient of so energetic a nature that the perspiration rolls from him. In half a minute there is a noisy and violent commotion in the wire-work cage. It begins with a single sharp repert, which runs rapidly into a tremendous volley. The kernels leap as if in pain, and dash themselves against the glowing iron walls which encompass them. Simultaneously they dilate, each to twenty tim's its original size, and the cage seems on the point of bursting under the pressure of the mass, which is as fleecy and as white as newly fallen snow. A final pop, denoting that the last kernel has surcumbed, and the man in a jiffy swings the cage from the hook, throws open a lid in the top, and dumps the contents into a vast dark bin at his side. In this way and at this place pop-corn is turned out during the holiday season at the rate of about thirty barrels a day. It goes as far South as Virginia, and finds its way Fast into Massachusetts and Connecticut. The pop-corn man has three assistants. Corn pops in his establishment for sixteen hours a day, Sundays included, and two dollars a barrel is the price which the perfected product brings."

THE SUN'S FUEL

What keeps the majestic ball hot and bright? This has greatly engaged $p^{\text {hysicists }}$ and astronomers, and various have been their theorirs. If the sun shone only by mre combustion of its own materials, the calculation is that its fire would not last 5,000 years. It is very kind of Dr. Siemens to come forward with an entirely new theory, which holds out the hope that the men of science are all wrong with their dismal foreboding, and that the creation is not schemed on the poor footing of a Germin stove or a suburban gas company. The learned ironmaster and physicist believes that the sun may very well go on illuminating and warming our world and the family of sister planets for an indefinite, if not intinite, time. He supposes interstellar space to be filled with an extremely atteuuated hydrogen, and interplanetary space with denser gas, albeit more rarefied than the atmosphere drawn round each world. The sun, he thinks, whirling on its axis, draws into its poles the thin hydrogen, hydrocarbon and oxygen of our sphere, and these, being kindled, are projected outward at his equator into space. The accepted view is that the heat and light there developed and radiated perish, as far as we are concerned, except for the small portion arrested by each solar satellite ; but Dr. Siemens argues that this heat and light do their chief work in decomposing the carbonic oxide and watery vapor which were produced by the kindling at the solar poles, so that the sun itself perpetually renews its own supplies, and restores by its energy the waste matter which has fed that energy. The theory is much too technical and complicated to be here discussed, and we should offer a bad compliment to its ingenious author even to attempt such a task. Dr. Siemens, however, has had great experience with the phenomena of radiated heat, and his applications of the new view to the nature of the zodiacal light and of comets is particularly striking. Of course it is startling to hear of something in our own system which closely resembles perpetual motion; and those who maintain that everything comes to an end, and that all mechanical energy must be gradually degraded and metamorphosed, will be slow to receive the new suggestion. London Telegraph.

Cleaning lime choked pifes. - Feed, water and other pipes frequently become choked with lime incrustation, causing great annoyance. The following plan has been sug. gested as a remedy: After plugging one end up securely, pour the pipe full of coal oil, letting it stand over night, when the whole mass will probably slide out. Pipes have been cleared of incrusted matter in this manner which before were regarded useless.

BALUSTRADE BY M. BAUDRIT OF PARIS.

Workshop Skitching.-Fig. 54.-Method of Delinea-
ting a Common V Thread.

WOREBHOP SEETCHING.

BY Joshon rose, m. e.
VI.

Pror increw threads of a large diameter it is not uncommon to method the thread curves as they appear to the eye, and the marked of doing this is shown in Pig. 54. The thread is first these an boticles sides of the boit, as explained in the last of bolt, lineses, and instead of drawing, let straight across the tomplate to represent the tops and bottoms of the thread, a to thalf-circles, one curves by is recuired To get these curves, The bottom of the equal in diamefer to the top and one equal There half-circles thread, are drawn as in Fig. 54 of equal divisions; thus, in the into any convenient number ${ }^{2} n_{0}, b, 6$, etc., for the outer, in the Fig. 54 each has 8 divisions, ${ }^{0}$ lines $_{\theta}$. The etc., for the outer, and i, j, k, etc., for the inner rided into pitch of the thread is then divided off by vertical rided into, as by equal divisions as the half circles are ditight from as by the lines a, b, c, etc., to 0 . Of these, the the top of the correspond to the eight from $a^{\prime} g$, and are for tal eight on thread, and the eight from i to o correspond to tal light on the inner half-circle, as f, i, j, k, etc. Horizontremertical lines of drawn from the points of division to meet ${ }^{\text {fom }}$ a' meal lines of division ; thus, the horizontal dotted line ${ }^{4}$ dot in mads the vertical line a, and where they meet as at A $Q^{4} b_{8}$ another dot isere the dotted line from b ' meets vertical Ois another dot is made, as at B, and so on until the point
on ond. throne side A curve drawn to pass from the top of the thread ${ }^{\text {top }}$ p of these points to the top on the other side, and passing $t^{\text {to }}$ of the thread, end from this curve a template may be made the tops all the other from this curve a template may be made For the the thread on the bolt will be alike.
j_{1} Whil 2 to mottoms of the thread, lines are similarly drawn, as j_{1} Whil ${ }^{\text {to meet } i} \boldsymbol{i}$, where dot I is marked. J is got from g^{\prime} and
the as dravota from got from the intersection of k, with k, and so on, temph for the I to O, being those through which a curve is We plato also bottom of the thread, and from this curve is he have in our my be made to mark all the thread bottoms. but example used eight points of division in each either more or less points may be used, the
only requisite being that the pitch of the thread must be di. vided into as many divisions as the two half-circles are. But it is not absolutely necessary that both half-circles be divided into the same number of equal divisions. Thus, suppose the large half-circle was divided into ten divisions, then instead of the first half of the pitch being divided into eight (as from a to h) it would require to have ten lines. But the inner halfcircle may have eight only, as in our example. It is more convenient, however, to use the same number of divisions for both circles, so that they may both be divided tagether by lines radiating from the centre. The more the point of division, the greater number of points to draw the curves through; hence it is desirable to have as many as possible, which is governed by the pitch of the thread, it being obvious that the finer the pitch the less the number of distinct and clear divisions it is practicable to divide it into. In our example the angles of the thread are spread out to cause these lines to be thrown further apart than they would be in a bolt of that diameter; hence it will be seen that in threads of but two or three inches in diameter the lines would fall very close together, and would require to be drawn finely and with care to keep them distinct.
The curves for a United States standard form of thread are obtained in the same manner as from the $\bar{\nabla}$ thread in Fig. 54, but the thread itself is more difficult to draw. The form of this thread is shown in Fig. 55, it having a flat place at the top and at the bottom of the thread. A common ∇ thread has its sides at an angle of 60 degrees, one to the other, the top and bottom meeting in a point. The United States standard is obtained from drawing a common V thread and dividing its depth into eight equal divisions, as at x, in Fig. 55, and cutting off one of these divisions at the top and filling in one at the bottom to form flat places, as shown in the figure. But the thread cannot be sketched on a bolt by this means unless temporary lines are used to get the thread from, these temporary lines being drawn to represent a bolt one-fourth the depth of the depth of the thread too large in diameter. Thus, in Fig. 55 it is seen that cutting off one-eight the depth of the thread reduces the diameter of the thread. It is necessary, then, to draw the flat place on top of the thread first, the order of procedure being shown in Fig. 56. The lines for the full diameter of the thread being drawn, the pitch is stepped off by arcs, as $1,2,3$, etc.; and from these, arcs, as $4,5,6$, etc., are marked for the width of the flat places at the tops of the threads. The one side of the thread is marked off by lines, as 7 , which meet the arcs $1,2,3$, etc., as at a, c, etc. Similar
lines, as 8 and 9, are marked for the other side of the thread, these lines, 7,8 and 9 , projecting until they cross each other. Line 10 is then drawn, making a flat place at the bottom of the thread equal in width to that at the top. Line 12 is then drawn square across the bolt, starting from the bottom of the thread, and line 13 is drawn starting from the corner f on one side of the thread and meeting line 12 on the other side of the thread, which gives the angle for the tops of the thread. The depth of the thread may then be marked on the other side of the bolt by the d and c and the line 14 . The tops of all the threads may then be drawn in, as by lines $15,16,17$ and 18 , and by lines, as 19 , etc., the thread sides may be drawn on the other side of the bolt. All that remains is to join the bottoms of the threads liy lines across the bolt, and the pencil lines will be complete, ready to ink in. If the thread is to be shown curved instead of drawn straight acrosa, the curve may be obtained by the construction in Fig. 55, which is similar to that in Fig. 54, except that while the pitch is divided off into 16 divisions, the whole of these 16 divisions are not used to get the curves, some of them being used twice over; thus for the bottom the eight divisions from b to i are used, while for the tops the eight from g to o are used. Hence g, h and i are used for getting loth carves, the divisions from a to b and from o to p heing taken up, by the flat top and bottom of the thread. It will he noted that in Fig. 54 the top of the thread is drawn first, while in Fig. 55 the bottom is drawn first, and that in the latter (for the I.S.S. standard) the pitch dis marked from centre to centre of the flat of the thread.

FRENCH AND ENGLISH WROUGHT IRONWORK.

We have at different times called attention to the possibilities in wronght ironwork in the art line, and have occasionally present de some examples of work showing what has been done and may be done in this direction. Our first-page illustration this month shows two very handsome designs, the one on the It ft being a specimen of wrought ironwork from the establish. ment of M. Baudrit, of Paris. It is original in design and admirable in execution. There is a charming variety in the work, characteristic of the highest productions of French artists. The lower portion is solid, as the foundation of the terminal post of a balustrade should be, but it lies on the stairs naturally and elegantly. The upright pillar and hand-rail are sufficiently massive, while the decorative portion has all the light elfgance of a flower.

In this country our designers are wont to draw work of this kind for expeution in cast iron, and so accustomed have we hecome to casting all ornamental work of a similar character that our blacksmiths scarcely know what it is possible to accomplish with the hammer and anvil. The secoud illustration, which we present herewith, is not less striking, and is an ex. ample of work in good taste for a similar purpose to that shown in the first instance. It is as unlike it, however, in character and execution as the two nations from which these pieces of work come. The secold engraving represents a continuous balustrade executed by Messrs. Batcliff \& Tyler, of Birmingham. An oval in the centre is very happily arranged panel fashion between the scroll work which serves the purpose of pilasters. The design is neither ton ornamental nor is it poor. The connecting links of the work, including the attachment to the stairs, are graceful and effective. This pattern also, if made in this country, would very likely be executed in cast metal, and would lose all those peculiar characteristics that render it attractive, and, as at present, considered an example of true art workmanship. Our only pu:pose in presenting ob. jects of this kind from time to time is to stimulate the effort that is now being put forth to increase work of this kind in this country. The mechanical ingenuity of our smiths is universally acknowledged, but in artistic taste and in the ability to execute ornamental work they are very much behind those of other nations.

The getea percha sypily. - Reports from Brazil show that the supply of gutta percha, which is used in insulating underground wires, is fast giving out and will be exhausted in 30 years. It is said that this prospect of a scarcity in insulating material is one of the chitf reasons for the strong opposition by interested parties to underground telegraphy.

Polishing black Ash.-Give it a coat of shellac, and then one of boiled linseed oil.

Architecture.

RITUALISM IN CHURCH ARCHITECTURE.

It is good and gratifying in these days of general architectural license to revert to "first principles" to find a solid foundation under our feet-to revert to the classical orders, or to our more national Gothic, with its sound principles. It is likewise good, when weary with the effort to discriminate between the many-spired and Gothic-windowed buildings put up by our toonumerous Protestant sects and the Established Church of the land, to perceive the aims of a section of our national Church members, which appear to be very much the assertion of a ritual.

Mr. Street writes of the artists of the Middle Ages:- "They were men who had a faith and hearts earnestly bent on the propagation of that faith," and questions his readers, "Have we less to rontend for-less faith to exhibit or less sacritice to offer than they ?" Surely not a less "faith" because freer from superstition. The Ritualistic movement is one which pervades not the clergy only, it seems like a call from the Church's members to open all these "silent sepulchres" and let human sympathies be allied with the principles of worship and artistic with spiritual aspirations.

When we refer to the origiu of Christian ritual in the rites of the Tabernacle of Moses, we can observe at the same time the assimilation in the plan of their churches, of the general arrangement of the Divinely-appointed type. Whether this was adopted from perception of this as a key or typu, or whether the earliest (christians approximated the Jewish form and plan in order not to offend the Jewish converts, it is not easy ${ }^{10}$ affirm. We observe the arangement of their Church plans as follows:-The Narthex, or vritihulum, where the penitents and catechumens stood; the Nass, or temple, where the comb municants were seated; and the Bema, or sanctuary, of the clergy. Aft'r entering tha magnum or great porch in front, there was a large court or atrium, in the centre of which sto 0^{\prime} a fountain and round which a colonnade or cloister was built; under the cloister stond those who were not allowed to enter the church: here they sought the pravers of the faithful as they went forward to church. In the early churches it was customary te separate the sexes, the women generally havipk the galleries appropiated to them. The ambo or reading dess stood in the middle of the nave, and was used sometimes as pulpit, though the rising steps of the altar was the recognized P'ace for preaching. In the nave also stood the canonical singer and here the clergy administered the first service, called the missa catechumen.
In the time of St. Angustine, too, the ritual involved or in ${ }^{-}$ cluded high ceremonial and all that tended to promote exated taste and feeling and d-sire for the appropriate adornment of the churches.
The development of the Liturgy in England through slow centuries, and its eventual almost general acceptance in the form of the Sarum Breviary and Missal of a.d. 1085, witnessed ${ }^{s 0^{\circ}}$ wonderful advances in church architecture simultaneously go for ing on, and from that date our architectural remains speak for themselves, suffice it to say, that same Liturgy with occasionle emendations, continued in use during the attainment of eccle siastical art and architecture to their climax during the thr following centuries. Referring to the Decorative Period, Psle. exclaims, "This was the glorious age of church architecture" It was the climax beyond which Christian art was never carrit ${ }^{\text {t }}$ Though all that riches and devoted piety and sublime tale ${ }^{1}$ it could effect was done to sustain its consummate ex cellence, followed the universal law, and having once reached perfectios began gradually to decline." And soon followed the reri, th of the Sarum use-in $1516 \cdot 31 \cdot 33 \cdot 40$, in the latter revision, lessons appointed to be read in the English tongue. The ious stages in the transition of the Liturgy from the Cath ${ }^{f f^{\circ}}$ to its Protesiant form must be left for the student's own rence, it will not be truitless, if he is not already well acqua ed with them. Cranmer's "Rationale" of the ceremond be used in the Church of England, together with an exp tion of the meeting and significancy of them, including ${ }^{\text {a }}$ of the vestments to be worn by the ofliciating clergy, with distinctive meanings and siguificance, still preserve to us reverence observei for the hallowed uses of the Church, the realization of the emblematical meanings in then. such crises as the Reformation, which was a work of deve ment, we know that there was a paramount extrcise of pas
as well as reason, as the dissolution and spoliation of the
ries, the le church altars, decorative sculpture, painting, and greater monstion of the
fies.

The Genevan party succeeded in getting altars removed by the storm inction in the third year of Edword VI.; still, after deliberately was parted, the Rubrics of Elizabeth and Charlos II. remain the ordered that the ornaments of churches were to rails were same as in the second year of Edward VI. When the pere used universally in the time of Charles II., by which fied, it is perment position of the table at the east end was signiPaley again for us to insist upon the moveableness of them. "Gothic Restorers us, in his admirable allegorical story of the I. rood screenstors," that from the time of James I. to Charles screens had been were erected in the churches, and where the old bean or debased destroyed or removed. The number of Jacotoken or debased screens he had seen was a very interesting several instances, he adds, I have seen Jacobean doors added to eristing inces, he adds, I have seen Jacobean doors added aid in truth screens. Even Wren's churches always had screens, sarcely ever omitted ; inst hundred years I suspect they were Leeds, for ever omitted; see St. John the Evangelist Church, Now, to revample of one of Charles II. reign.
ed by early Chert very briefly to emblematical meanings adoptthe Basilicas Christians in their buildings. The adoption of no doubt had their worship in the first place may have, and church plans in some influence in the arrangement of their now, plans in succeeding times. These Basilicas, as we of the building, vizy or threefold division of the main body for economyng, viz., nave and side aisles, in all probability tian views, and the roofing. Still, this coincided with Chrisa_{s} suggest, and has been in a greater degree, generally retained the plan of the cross from three up to the present day. Again and no of the cross from the earliest times has found favour, and chancel wor. The twofold division and treatment of nave and the Church decoratively as indicative of the Church militant northe Church triumphant. The inclination of the chancel stated wasds, which Durandus, of the thirteenth century, has land of his do be observed in a quarter of the churches in Eng-
bead on figuring the inclination of our Saviour's bead on the Cross. The placing of the pulpit on the north
side. The Holy Eucharist represented by the altar, to be approach. ed though the other Christian ordinances. There is notice-
able in the threefold division of plan-Narthex porch or bab. tistry the threefold division of plan-Narthex porch or bab-
th our Lord's chancel, a forcible coinciding in their meaning and assert theillow the tapering spires to speak for themselves absence of their own influence in devotional spor apiration in the very far, the minte symbolic meanings. Not having travelled Cathedral, the mention of the spires of St. Etienne, Caen, Bayeux rathedral, Contames, Salisbury, Chichester, and Lichfield first-bamed, Grantham and Newark churches must snffice. The sketchamed, St Etienne's spires reminding me of the first Will remain tour I ever made, loft a nrofound impression, which Whonever and how indelibly engraverd on my mental vision, and al waps with however I look at Grantham church spire, it is
the change drom devoted admiration. We must not forget
ened ehge from the short lapse of ened chancel of the short lapse of the Normans to the length-
the formery English period, the single lights of an insmer to the triplet in the square pnd of the latter. As Staffordance of a lengthy Early English Chancel, see Breewood,
With With triple lancet lighet windows in the six bays of chancel, of the three lights lig in east wall. And again, the change of the decorated period-as instand particularly seven lights Windows decorated period-as instances, Selby and Ripon east farhions with a host of others. As coloured glass became the bere accordingly th century, the window lights and tracery at the symbly multiplied and adapted to the display, and at the symbolism of numbers seem to fail. Who can look
$M_{\text {inge }}$ fall lancet wind Renerally without feeling a desire to know therally termed feeling a desire to know why they were five, Sero is some meaning or symbolic significance hidden therein. three, We know, is the number of completeness composed of car to and four many significant applications to which will ocedgereation from the Scriptures: six, the number of days in edge cation ; five, the number of our senses or gates of knowl-
the nume number The cirer of the Apostemple and of the kingdom; twelve, The circular the Apostleship.
call the Char churches will naturally suggast their origin all t_{0} our minds of the Holy Sepulchre at Jerusalem-and re. - our minds the religious chivalry of the Crusaders.

Referring to ecclesiastical sculpture and decoration, the earliest records of the former in the Catacombs, furnish us with an expression of simple faith and hopefulness; though rude in execution, there is purity and reverence of thought. The representation of Christ as the Good shepherd and as the Lamb were predominantly in favour, the First Person of the Holy Trinity represented by a lamb within a nimbus, the Third Person by a dove within a nimbus, though occasionally by personal repre. sentation, but in preforence emblematical signification was given. We see the fear of anything that should detract from the honour of Him who was spiritually present during worship, or lead to a species of idolatry, for the Council of Eliberis in A.D. 305 decreed that mural paintings.should not be allowed less that be represented which is worshipped or adored. Old and New Testament subjects never wearied them, and testify to this day of their faith, then why should we weary of them, for ours is the same faith. As art developed in Christendom, the more beautiful the sculpture and painting, the vestsments, shrines and furniture of our charches became, but the more profuse the art. Mimicry, sarcasm, and the grotesque asserted their unedifyidg influence, though this was mostly due to the rivalry between the monastic orders-systems while they worked much good yet provoking much evil. Perhaps more correctly I should have said the rivalry between the secular and regu. lar clergy, and between the latter and the mendicant friars. The idea of the earlier grotesques was generally the representa. tion of evil spirits - note the fine Norman Chancel arch of St. Chad's, Stafford, where many of these ungainly creatures are crawling out of the sanctuary, around the arch mouldings and jambs, to make a speedy exit westwards. The symbolic forms of the circle, triangle, cross, crown, initial lettering, and that wonderful form of two equal ares, the " venia piscis," are all familiar to us.

ANTIQUITY OF THE SQUARE.

Among some stools found in a ter.ple at Thebes was a square, which is the most-satisfactory evidence we have of the early use of this instrument. From marks upon it, it has been estimated to have been made nearly thirty-five centuries ago. Since the arts in ancient Egypt at that time were at the height of their development, the square must have been known for some time previous, and therefore it is believed that the use of the square dates back not less than four thousand years. The square known to the ancients, and the tool with which they accomplished wonders of construction and calculation, was not by any meaus the square of the present day. This instrument as now employed, with blade and tongue and heel and the graduated lines which appear upon its surface, is an invention known only within a comparatively short time. The square, as an instrument, has been brought to its present state of perfection within a very few years. Er.

CLEANING FLUXES FROM TIN PLATES.

We very frequently have correspondents asking us in regard to the method of preventing iron or tin from rusting after having been soldered with acid flux. A little knowlenge of chemistry would generally enable our corresponden's to answer this question for themselves. All the acids, whether nitric, sulphuric, or hytrochloric, or the commoner ones like vinegar, lemon juice, citric acid, \&c., can be neutralized s that they no longer retain acid properties by the use of what are called alkalies, that is, sunstances like lime, soda, potash ; many of the compounds of these alkalies, like bi-carbonate of soda, or carbonate of soda, the carbonate of lime, in fact, marble or lime plaster will act the part of alkalies when brought in contact with an acid. They are really already in combination with an acid themselves, but the acid is so weak that they leave it and combine with a stronger one. While the acids thus readily attack metals, it is found that the compounds which result from their combination with alkalies are neutral and do not attack metals. These compounds have in chemistry the name of salts. It is easy to see, therefore, that when we wish .to render an acid harmless we must immediaiely combine it with an alkali. This holds good iu the case of poisoning when an acid has heen swallowed. It equally holds true by poisoning by a dose of any of the strong alkalies, in which case some harmless acid like vinegar, lemon juice, or citric acid, or tartaric acid, may be taken.--Mefal. Worker.

THE FOX KUSU in the berlin aquarium.

Hatuxal Histoxy.

THE FOX KUSU IN THE BERLIN AQUARIUM.

The whole group of animals of the order of Marsupialia derive their names, as is well known, from a pouch situated in the lower part of the abdomen, a broad fold of skin, which is of the greatest importance for the existence and subsistence of the young of these animals.

The pouched animals are born naked, blind, deaf, and with stumpy legs, and are so helpless that it is impossible even with the greatest care, to bring up the little creature artificially.

It was a puzzle for a long time how the young were placed in the poach, but it has been found that the mother takes the little ones up with her mouth, as a cat does her kittens, and places them iu the protecting covering. In this pouch are the nipples, which the little imperfect animal would not be able to find, if the mother did not immediately press them to it.

The little animal remains in the pouch for several months developing and finally reaches out its head to look around the world.

Many weeks pass before it ventures to forsake its warm well furnished little house. Finally it takes the great step, and moves about for the first time in the open air, but at the least noise it returns in haste to its mother's pouch, from which it aguin looks forth when the imaginary danger is past.

The fox kusu (Phalangista vulpina) is a climbing pouched animal, and resembles the squirrel. The length of the body is 60 centimeters, of the tail, 40 centimeters. The color of the upper side is brownish gray, with markings of pale red : the under side is yellow, the back and tail blaek. The tail is used for grasping and holding firmly to objects, and appears to be an indispensable organ.

It climbs and leaps like the squirrel, but the squirrel far surpasses it in intelligence. Like most of the representatives of this order, the fox kusu shows a certain want of mental capacity ; this is evident in its motions and in its capture by day. If it is pursued it soon gives up the flight and hangs with its tail to a branch, from which it may be easily taken. It has been ascertained that the continual gaze of the hunter wearies the animal and in a measure blinds and bewilders it, so that it finally falls down helpless.

The fox kusu inhabits Australia and Tasmania, lives in the foresta, and leads a nocturnal life. Its nourishment consists mainly of vegetables, but it likes eggs and young birds.

It is much hunted by the natives for its flesh, which is repulsive to others. The skin is of some value, and is sometimes seeen in the market.

The kusu of the Berlin Aquarinm was soon tamed, is always peaceable and gentle; but it is difficult to decide whether its amiability does not proceed from stupidity.

FILIGREE JEWEL CASKET.

We give an engraving of an exquisite filigree jewelry box of silver from the celebrated Gruenes Gewoelbe, in Dresden. In this repository many beautiful and valuable objects are stored. Our engraving represents this fine piece of silver work so well that it is unnecessary to enter into a detailed description of it.

TABLE, AFTER SHERATON.

Ingeniously contrived dressing and other tables were among the specialties constructed by Thomas Sheraton. While light of structure, they were generally strong, and such articles, made of Spanish mahogany, are still occasionally met with in a good state of preservation, which latter is partly due to the admirable workmanship that characterized all Sheraton's productions, and partly to the well-seasoned timber he employed. We illustrate below a table which has been adapted from ons of his designs, und which we take from the columns of the Furniture Gazette of London. In giving sketches like these, our object is not to induce our readers to slavishly imitate them, but rather to enable cabinet-makers and designers to turn them to account in evolving new shapes and forms. Such examples, moreover, help to make modern craftsmen familiar with the distinguishing characteristics of the eighteenth-century styles.

The first saw-mill was erected in the Island of Madeira in 1420 ; and the next at Breslau, in Austria, in 1432.

zitiscllameons.

COVERED PULLEYS FOR BELTITG.

In driving machinery which makes a great number of revo lutions per minute it is often necessary to have comparatively small pulleys, and as for very high speeds the belt should be as light aud thin as possible, some means of getting greater adhesion between the belt and pulley are required. To drav the belt very tight will not answer, as that means both straining the belt and putting a great pressure on the bearings next to the pulleys. To use a tightening pulley to increase the "arc of contact" is an awkward and troublesome expedient, as most : who try it will find, even at 10 w speed of belt, and one that causes friction and frequently destroys the belt. One of the best means of increasing the friction is to cover the iron pulley with some substance which will cause a greater friction between the surfaces of the belt and pulley. Wooden pulleys are sometimes used, but as the are apt to split, or get out of truth, they are not so reliable.
A very good plan is to make an endless band of rubber belting, and draw it tightly over the pulley; the friction be tween it and the pulley being round the whole circle of the pulley, will always be greater than can well be got betweef the driving belt and the new face of pulley made by the rubber.

Another plan, and one often much more convenient, is to cover the pulley with leather. A good way to do this is to bore a number of holes around the circumference of the pullefy and drive hard wood wedges into these, then tack on any old belting or strips of leather of nearly uniform thickness. Having done this, put the pulley in a lathe and turn up the leather face carefully but with a rough surface, and then cement or glue on another coating of new leather all in one piece ; if possible, the joint had better be scarfed, and woodel pins may be driven through the leather, so as to fasten the whole together. This method has been successfully done eved with large pulleys. In one instance, where a belt 22 inch ${ }^{8} 8$ wide was running on a puiley about 40 inches diameter and required a lightening pulley to prevent it from slipping and had frequently broken, the pulley was covered with leather in the manner described with the result that the tightening pul ley was dispensed with, and a new belt gave no furthble trouble, and drove the machinery without any appreciable slip. The original. belt had only been in use a few monthe, but was found quite brittle from overstraining, and brok short off across its whole width, the elasticity apparently being all exhausted.

It may appear a little troublesome to cover the pulleys, but once well done it is a permanent job and makes a gread improvement in the wear and tear of the belt.-Canadia Manufacturer.

NEW WATER MOTOR.

A new apparatus for measuring the consumption of water has been introduced that appears to have the merit of simpl city and cheapness. It consists of two cast-iron cylinders placed together at the bottom, and inclined from each oth ${ }^{B 7}$ at an angle of about twenty degrees. They are supported side, a pivot, and on this they are free to rock from side to sid to as the weight of the water in one or the other canses it the move. These cylinders are connected with each other at the bottom, and are partly filled with quicksilver. There also inlets and outlets for the water, controlled by the oscis lation of the cylinders, which serves to move a registering device that marks the quantity of water that passes throus drives the apparatus. The water, on entering one cylinder, drider. out the quicksilver and it passes over the other cylin the Here the weight of the quicksilver serves to rock or upset port cylinder, and its movement on the pivot opens the outlet plat and closes the inlet port. At the same time, a second inler, port is opened and the water flows into the second cylin id driving out the quicksilver. The same operation follows the the first cylinder, and thus the continuous passage of ${ }^{\text {ls }}$ water is secured, while the oscillation of the cylinders contro the registering apparatus.- The Century.

From the Syriac translation of the Bible we find that pund were invented by Otesibus of Alexandria, $224 \mathrm{~B} . \mathrm{C}$. and wholly or partially made of cast brass or bronze.

Japanese engineers and mechanics.

$\mathrm{E}_{\mathrm{ng}}^{\mathrm{T}} \mathrm{T}$ ish skill and ingenuity of the natives of Japan, says an these qualithange, have long been well known, and proof of leare qualities is given by the aptitude which they display in
fivning the working of fill the the workings of railways and qualifying themselves to
Jan the mosponsible $J_{\text {apanese }}$ more responsible of the sullordinate positions. The ters ande, from whom for sone time past all the station-mas-
beand been drawn porters, as well as the plate-layers and artisans, had
 The enginedrivers, and apparently witi satisfactory results.
ing chief fault to be found with the native drivers is seem. ing chief fault to be found with the vative drivers is, seem.
tion that the they do not thoroughly understand the construc-
on of the engines uoder Which of the engines under thin charge, but this is a matter
a longer experience will rectify. There also appears to be a lack of prexperience will rectify. There also appears to be Whact of presence of mind and watchfulnesss, and it is is some. bis tradicrous to read of a driver starting with only half of
the the thin in broad daylight, and not discovering the want of the othere half until he had reached the next station. It is,
smepere, not surprising that the strictest examination and sip pervision ot surprising that the strictest examination and
in in ordision has to be kept on all engines under native drivers,
satpe time avoid any chances of failures or casualties. At the
site

 at forned, the Englishmen appear to have been quite as often of Japlt as their native fellows-while the increasing number is foll panese elnployed bears testimony to the confidence which
work in their capabilities Forkmen their capabilities. In other capacities the native for insen display great skill, the carriage and wagon building, by the tance, being carried on in a highly satisfactory manner
bad beepanese foreman carpenter ; and two engines, which bad been tranese foreman carpenter; and two engines, which pht toen transferred from one line to another, having been
without her again and got ready for work by a native fiter, without any asain and got ready for work by a native fitter,
made agsistance from Europeans. The only complaint Made any assistance from Europeans. The only complaint
clear, gainst them is that they are somewhat slow. It is
fied bowever, that the fred, however, that the Japanese are quite well enough quali-
ferp to carry 8pstem carry on the workings of their railways; and, after the
find has been compled

It appears there-proof INK.

and appears that the effort to manufacture a fire-proof paper
net ink for either writing or printing Thet whith either writing or printing purposes has recently
'0alities success in Germany ground was made with chemically possessing fire proof ground or mas made with chemically treated usbestos fiber asbestos or finely divided wood fiber. Ninety-five parts of
of
of lue was used with five parts of the wood fiber and hy aid fine, sme water and borax were made into wool fiber and hy aid It ${ }^{\text {smooth }}$ and borax were made into pulp, which yielded a
whid the unur, could be used for writing purposes. Whad the unusual quality of sustaining the influence of a inke heat without injury. Fire-proof printing and writing
der ande made by combining platinum chloride, oil of lavender and lame by combining platinum chloride, oil of laven${ }^{4}$ prindingmplack and varnish. These ingredients produced Indiagink, and when a writing fluid was wanted, chinese
parts of and gum arabic were added to the mixture. Ten parts of the and gum arabic were added to the mixture. Ten
of lavender
of platinum chloride, twenty five parts of the oil lavender ary platinum chloride, twenty five parts of the oil
童 i ield a and thirty of varnish are reported by a local writer mith a a good printing ink of this valuable kind when mixed paper pmall quantity of lampblack and varnish. When the repuinted with this compound is ignited the platinum salt brownced to a metallic state and becomes a coating of a
fire. te-proof plack color. A free-flowing ink for writing on the Tith bed by using with an ordinary metallic pen may be obith 15 py using five parts of the dry chioride of platinum
We parts of of of of lavender, 15 parts of Chinese ink, and We part of gum of oil of lavender, 15 parts of Chinese ink,
Whic, adding thereto 64 parts of water.
When the paprabic, adling thereto 64 parts of water.
pear ink, the paper is ignited after being written upon with
Priting insparent, and ingredient causes the writing to apriting as arent, and, as a consequence, it is claimed that such $f_{0}^{\text {gr }}$ maib again during the process of illegible will become rapidly metainting during the process of heating the paper. Colors
 the 's coalding with the chloride of platinum and painters' or col covering an ordinary aquarelle pigment to strengthen "alorgering power" of the color. These fire-proof paints
inf col col be easily used in the same manner as the common inflep colors, and it is claimed they will resist the destructive
Print ance of of great heat quite as successfully as the fire-proof Writing inks just referred to.-Ex.
steel manufacturing city will be created in the ccal
southern Illinois.

HOW STEEL RAILS ARE MADE.

They run the steel into ingots about fifteen inches square and about five feet long, and then, while still hot, carry them to the mill, where they are put into a furnace until they get the required heat, and are then rolled into what are called blooms. These are seven inches square, and are cut, while still het, with the shears, so that they will roll out into a rail of the required length. They are not allowed to get cold, but are again put into a furnace and reheated, and then run through a series of rolls in what is called a 21 inch mill. I inquired the meaning of this 21 -inch, and was told that it meant the distance between the centers of the rolls. When the bloom passes through the last roll it is a finished rail, and runs on to a long carriage, where a saw at one end makes it ju-t the right length. At the other end of the rail is what is called a cambering machine, to camber the rail. This was a new word to me, and I was told that camber means to bend and it did bend. It put a perfect curve in the rail the whole length of it; this is done so that it will cool straight. I was informed that, if the rail "ere straight when it was hot, it would be cambered when it was cold, so they cumber it hot, and have it straightened cold. The rails are then run out of the works and loaded ready for shipment, so that from the time the ore is taken from the mineuntil it leaves the works all finished, it is never allowed to rest, and, when once hot, never gets cold until completed. The steel ingots especially are hurried off, for if they are allowed to cool they will crack. -Mechanical Engineer.

OIL FOR STORMS AT SEA.

Considerable discussion has recently occurred in the daily press regarding the effect of pouring oil upon the sea, at the time of a storm, for the purpose of lessening the action of the
waves. It seems to be clearly established that oil thrown waves. It seems to be clearly established that oil thrown from a vessel into the ocean will lessen the effects of a storm. In October, 1861, the Port Royal expedition started from Fortress Monroe, under command of Dupont. A fearful storm was encountered off Hatteras, and it was thought that a small side-wheel steamer, called the "Vixen," could not possibly survive. But as the flag-ship approached the rendezvous off Port Royal she was seen quietly at anchor, having reached there among the first of the squadron. The commander, Mr. Platt, in relating the experiences of the storm to his chief, Mr. Boutelle, modestly recounted that, when the storm grew tou heavy for him to keep his course, he had brought the vesse!'s head to the sea and hard put out a drag to assist him in keep. ing her in that position. As the storm reached its height and the huge waves frothed and combed they began te break on board and the vessel was in great danger. He then poured about a gallon of oil overboard, just ahaft the lee paddle-box. It drifted with the vessel and soon formed an oily scum about her, after which not a sea combed or broke on board, and she rode out the gale in safety, arriving at the appointed reudez. vous in advance of many vessels of enormously greater power and speed. Mr. Boutelle immediacely reported the circum. stance to his official superior, Professor A. D. Bache, superintendent of the Coast Survey.

A whitewash that will stick and wash. - We find in a German paper a formula for a wash which can be applied to lime walls and afterwards become waterproof so as to bear washing. Resenschek, of Muninh, mixes together the powder from three parts silicious rock (quartz), three parts broken marble
and sandstone also two parts of burned porcelain and sandstone, also two parts of burned porcelain clay, with two parts treshly slaked lime, still warm. In this way a wash is made which forms a silicate if often wetted, and becomes after a time almost like stone. The four constituents mixed together give the ground color to which any pigment that can
be used with lime is added. It is applied quite thickly to the be used with lime is added. It is applied quite thickly to the wall or other surface, let dry one day, and the next day fre-
quently covered with water, which makes it waterproof. This wash can be cleansed with water mithout losing any of its color ; on the contrary, each time it gets harder, so that of can even be brushed, while its porosity makes it look soft. The wash or calcimine can be used for ordinary purposes as well as for the finest painting. A so-called fresco surface can be pre-
pared with it in the dry way.-Sci. American.
The electric will effect the colors of cloths, as well as paint. ngs, in the same way but not so quickly as sunlight.

GOSSIN'S FLOATING DOCK FOR STOPPING CREVASSES.

KETHOD OF STOPPING CREVASSES.

Uwing to the want of sufficient elevation, both banks of the lower Mississippi river, except at a very tew points, are subject to inundation whenever there is a freshet in the river, and earth embankments are thrown up, to protect the rich lands that border on the river. Sometimes a crevasse, as a break in the levee is termed, occurs from too great pressure of water, or imperfect construction of the levee, and no one who has read the daily papers for the past few months needs to be told of the great destruction of property, loss of life, and the want and misery that follows from a crevasse. No certain means of stopping them has been devised; the necessity for such a means was never greater than at present.

In the accompanying engraving is shown Gossin's floating dock for stopping crevasses, which is a flat-bottomed boat of any suitable length, from two to six hundred feet, having one of its sides straight, while the other is curved to better resist the pressure of the current. The boat is provided with water valves of sufficient capacity to secure a rapid sinking hy the admission of water, and also with pumps to discharge the wa. ter after the break is closed. In the external surface of the hull of the boat are formed perpendicular dovetail grooves, which receive corresponding projections on one of the sides of heavy planks or piles. The location of the grooves is such as
will secure close contact of the piles when they are in positios on the boat. Cranes 'to which are connected pile drivers placed in the boat. In stopping a crevasse, after ascertainding the precise depth of the water in the break over the nator tho surface of the bauk, the dock, completely surrounded by coating of piles, is taken by a tow boat just above the crevas the curved side being next the shore, and fastened at its 10 ind end by strong ropes. The dock is then sunk by admitity water, until the bottom is lower than the natural bank, by the influence of the current its upper end is swung aroun until it comes in contact with the levee below the crevast the straight side being next to the shore. The pile drivers instantly put into operation, to drive the piles into the an first upon the straight side, and if that does not stop the wiv then upon the convex side, and if it is necessary, a tarpanat may be lowered on the outside of the boat in such a ma the as to cover the whole face of the piles and a few feet of taty bottom bevond the piles, and this will be found absolati it effectual. As soon as the flow of water is stopped, the love thrown up anew and the piles are drawn, and the dock my once be taken to another crevasse if needed.

Further information in regard to this ingenious devices be obtained from Mr. A. Gossin, Lafourche, Lafourche Par La.--Sci. Anerican.

