The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover zitle missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image rep:oduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
Coloured pages/
Pages de couleur

\square
Pages damaged/
Pages endommagées

\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/ Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continueIncludes index(es)/
Comprend an (des) index
Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional cumments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

SLEMENS' STEAM MOTOR.

Mr. Friedrich Siemens, of Dresden, has recently designod two motors one of which-the caloric-wo have already described. The second is a steam motor equally simple and ingenious. It consists of a casing of sheot iron A, Fig. 1, which is cylindrical at one ond and pear-shaped at the other. The whole is maintained in an obliquo position by means of an iron support $b b$. The inner portion A is freo to rovolyo round its axis of motion $l l$, whilo the exterior B is stationary ; d is a second casing surruanding the lower projection of it, and c a condenser. Around the interiur of A a helix, als \jmath of sheet iron, is wound so as to present to the cye the appearance of a series of interplaced funnels. The inner surface of B is lined with fireclay, as in oldinary furnaces. The condenser consists of a pipe of convenient diameter encircling part of the motor a sufficient number of times. One ead communicates with the upper portion of A, and the other with a vessel oi water. The space \bar{h} between A and its second casing d may be called the boiler of this apparatus; it is filled with water by means of a small opening in the superior part of A. A Bunsen burner placed beneath supplies the heat, which converts the water into steam. When the steam is generated, it passes through circular orifices perforated in the under surface of A, and rises in the interior of the motor. The force with which it impinges upon the sides of the helical sheets is at first insignificant, but it gradually increases with the continued gencration, and consequent pressure of steam, so as to overcome the incria of the motor, and to impart to it a comparativelv rapid movement. When the steam is circulating through the upper part of A, it enters the condenser, and is converted into water, which descends and feeds the boller. The products of combustion escape through a flue inserted in the outward fixed casing, and which cummunicates with the cylindrical space B. 'lo obtain a motive power of 16 lb . it 18 necessary to increase the supply of heat, and for this purpose a beries of Bunsen burners is employed. The mcvement is transmitted by means of the shaft h, which is connected witi the axis of the motor cither by bevel wheels or, in case of easy work, by a spring y.
When once rotating, this motor requires but very little attention. As both water and steam are confined within the revolving casing, and as there is no communication whatever between the interior and the caterior, thero is but little friction, and therefore a considerable gain of power Instead of a safety valve, the inventor has adopted a small plug of fusible metal, which is inserted in the upper part of A. This safety plug is also used as a hermetical stopper f.r the vater apeiture. The only object attained by this twofold office is greater simplicity in the general mechanism.

The chicf difficulty in the construction of this motor is to prevent the circulation of the water through the spisal spaces s, and approximately to maintain the iucrizontal level of the water, notwithstanding the movement of rotation. Of course absolute horizontality could not be preserved on account of the centrifugal force caused by the rototary motion, for it may casily be seen from the figures that the water revolves with the cylinder A. This inconvenience has been considerably diminished by making the spirals present oxtensive conical surfaces. This disposition affords a freu downward passage to the water, and permits only the steam to circulato through the helices.

When the motor is constructed for maximum power, the condenser is suppressed, and a funnel-shaped vessel, providing the water supply, is fitted into the upper part of A.

Mr. Siemens thinks that other fluids than water 2 ay be advantagcously used in his motor. He specially recommends oil and mercury. The latter would give moro power than water on account of its greater density and lesser specific and latent heats.

The principal advantages of this invention are the direct action of the stcam, a simple mode of condensation, utilisation of the full expansive force of the steam, and a gain of power corresponding to a great diminution of friction.

Like the caloric, this motor is only the realisation of a scientific idea. It is a germ which time perhaps may develop and cause to fructify.

Bossia now has more than ten thousand miles of railroad, which has grown from only eight hundred and twenty-nine miles in 1857.

PRINCIPLES OF SHOP MANIPULATION FOR EN. GINEERING APPRENTTCES.*

By Jonn Riomards, M.l.

(Continued from page 74, vol 3.)
misd power.
Wind power, aside from the objection of uncertainty as irregularity, is the cheapest source of puwer. Steam nathine ry, besides costing a large sum as an investment, is cuntur. ally deteriorating in value, consumes fuel and requires abilla attention. Water power also requires a large investmea greater in many cases than steam porser, and in most placa the plant is in danger of destruction by freshets; but wide power is cheap in every sense, except that it is uncelatio fa constancy except in special localities, and these, as it happens, are for the most part distant from other olements of thacuan. turing industry.
The operation of wind wheels is so simple and 80 generally understood, that no reference to mechaniom need be nadubter
The force of the wind, moving in right lines, is easuly i_{r} plicd to producing rotary mition, the difference from wast power being mainly in the weakness of the wiod currento as the greater area of the uurfaces required to act upon. Turbes wind whecls have been constructed very mach the samu as is. bine water wheels.
In speaking of wind yower, the propositions about heat mes not be forgoten, in fac: the apprentice should so stheve bia mibd and habits of this ling that, whenever the subyect if power is to be considereu in any way, he will at once traceva the connexion with heat.

We have seen how heat is almost directly utilise by te steam engine, and how the effects of heat are utilised by wai wheels, and the same connesion will be found with sux Wheels or wind power, becatiso currents of air are due W changes of temperature, and the connexion between the kex that produces such air currents and their applecation as pora is no more intricate than in the case of water power.

machinery for transmitting and dismmeting fowh.a.

To construe the term, transmission of puiver, in a cntal sonse, it should, whon applied to machinery, include nearls ${ }^{\text {d }}$ that has motion; for, with the exception of the last morem or where the power passes off and is expended upon the rait to be perfurmed, all machinery, of whatever kind, can bs io garded as machinery of transmission. Custom has, howerg confined the use of the term to such devices as are cmploge to convey power from one place to another, without incleders tbe organised machinery through which power is applied is mediately to the performance of work.
Power is transmitted by means of shafts, belte, fnctue whecls, gearine, and in some sases by water or air, as the cos ditions of the work may require. Sometimes such madnaet is employed as the conditions do not require, because theres perhaps, nothing of equal importance connected with a chanical engineering about which there exists so great a dire: sity of opinion, or in which there is a greater diversity of pri tice than in devices for transmitting motion.
I do not refer to questions of mechanical construction, $:$ though the remark is equally true if applied in this sense: 6o to the kind of devices that are bestin special cases.

Shafts for transmitting power.

There is no use in entering upon explanations of what th learner has before his eyes. He sees ,hafts wherever there machinery; he may also see the extent to which they are te ployed to transmit power, and the usual manner of arrangzi them; he can read in various text booh of the exact data determining the amount of torsional strat. that slafts dy given diameter will bear; that their capacity to esist toriosi strain is as the cube of the diameter, ahd that $\tau_{1} e$ deflection from transverso strains is so many degrees, with $n \cdot$ ng otbs matters that are highly useful and proper to know. Inm thercfore, not devote any space to these points here, but tre of gome of the more obscure conditions that pertain to shat

[^0]such as are demonstrated by practical experience rather than deduced ftom mathematical data. What is said will apply especially to what is termed line-shafting, for conveging and distributing power in machine shops and other manufacturing establishments.
The strength of shafts is governed by their size and the arrangements of their supports.
The capacity of shafts is governed by their strength and the speed at which they run, taken together. The strains to which shafte are subjected are the torsional strain of transmission, transverse strain from belts and wheels, and strains from accidents, such as the winding of belts.

The speed at which shafts should run is to be governed by the nature of the machinery to be driven and the nature of the bearings in which the shafts are supported.

As the strength of the shafts is determined by their size, and the size fixed by the strains to which the shafts are subjected, the strains are to be first considered. There are three kinds of strain mentioned-torsional, deflective, and what was termed accidental strains.
To meet these several strains the same means have to be provided, which is a sufticient size in the shafts to resist them; hence it is useless to consider each of these different strains independently. If we know which of the three is the greatest, and provide for that one, the rest of course may be disregarded. This, in practice, we find to be the accidental strains to which shafts are subjected, and they are always made in point of strength far in excess of any standard that would be fixed by either the torsional or transverse strain due to the regular duty the shafts have to preform.
'l'his brings us back to the old proposition, that for structures that do not involve motion mathemetical data will furnish dimensions, but the same rule will not apply in machinery.

Experience has demonstrated that for ordinary cases, where the power transmitted is applied with tolerable regularity, a shaft 3 in. in diameter, with its bearings four diameters in length, placed 10 ft . apart, and running at a speed of 150 revolutions a minute, is a proper size to transmit 50 horse power.

The apprentice, by assuming this or any well-tried example, and estimating larger or smaller shafts by keeping their diameters as the cube root of the power to be transmitted, the distance between bearings as the diameter, and the speed inversely as the diameter, will find his calculations to agree with the modern practice of our best engineers.

Shafts as a means for transmitting power afford the very important advantage that power can be easily taken off at any point throughout their length by means of pulleys or gearing, also in forming a positive connexion between different machines. Shafts are also the cheapest means of transmitting power within limited distances.
The capacity of shafts in resisting torsional strain is as the cube of their diameter, and the amount of torsional deflection in shafts is as their length. The torsional capacity being based upon the diameter often leads to what may be termed tapering slafts, lines in which the diameters of the several sections are diminished as the distance from the driving power increases, and as the duty to be performed growsless.
This plan of arranging line shafting has been and is yet quite common but certainly was never arrived at by any of the processes of reasoning that have been so continually alludedito in the course of this trealise.
Almost every plan of construction has both its advantages and disadvantages, and the best means of determining the excess of either, in any case, is to first arrive at all the conditions, as near as possible, then form a " trial talance," putting the advantages on one side and the disadvantages on the other, and foot up the sums for comparison.
Dealing with this matter of shafts of uniform diameter and shafts of varying diameter in this way, we find in favour of the later plan a little saving of material and a slight reduction of friction, so advantages; the saving of material relating only to first cost, because the cost of fitting is greater in constructing shafts when the diameters of the pieces are varied; the friction, considering that the same velocity throughout must be assumed, is scancely worth estimating.
For disadvantages, there is the want of uniformity between fittings that prevents their interchange from one part of the shaft to the other, a matter of great importance; a shaft, when constructed in this way, is special machinery, adapted to some particular place or duty, and not a standard product that can
be regularly manufactured as a staple, and thus afforded at a low price. Pulleys, wheels, bearings and couplings have to be all specially prepared, and, in case of change or extension of lines of shafting, this causes annoyance. and frequently no little expense. The bearings, besides being of varied strength, are generally in such cases placed at irregular intervals, and the lengths of the different sections sometimes varied to suit the diameter of the shafts.

Going next to shafts of uniform diameter, everylhing pertaining to the line is interchangeable; the pulleys, wheels, bearings, or hangers can be placed at pleasure, or changed from one part of the works to another. The first cost of a line of shafting of uniform diameter, strong enough for a particular duty, is generally less than that of one consisting of sections that vary in size, and all the above-named objections of diminishing are avoided.

I have called attention to this case, as one wherein the conditions of operation obviously furnish the true data to govern the construction of machinhry, instead of the strains to which the parts are subjected, and as a good example of the importance of analysing mechanical conditions.

If the general diameter of a shaft was predicated upon the exact amount of power to be transmitted, or if the diameter of a shaft at various parts was based upon the torsional stress that would be sustained at those points, such a shaft would not only fail to meet the conditions of practical use, but would cost more by such an adaptation.

The regular working strain to which shafts are subjected is inversely as the speed at which they run; a strong reasou in farour of arranging shafts to run at a maximum speed, if there was nothing more than first cost to consider; but there are other, and more important conditions to be taken into account. Principal among them is the required rate of movement when power is taken off, and the endurance of bearings.

In the case of line-shafting in manufactories, if the speed varied so much from the first movers on the machines as to require one or more intermediate or countershafts, the expense of fitting in this manner would be very greatly increased; on the contrary, if countershafts can be avoided, there i; a great saving of belts, bearings, machinery, and obstruction.

The practical limit of speed is in a great measure dependent upon the nature of the bearings, a subject that will be treated of in another place.

IMPROVED WA'TER WHEEL GOVERNOR.

The apparatus illustrated on page 132 is used in connection with the governor, where there is a variable head of water and hen it is desirable to beep up the he ad though at the sacrifice of speed. Its greatest utility is realized where steam power is employed in connection with water power. The water governor being speeded to run the line a trifle faster than the steam governor, the engine is relieved of its weight so long a: there is an available head for the supply of the wheel; but when the water is drawn down to a given point, say from three to twelve inches, the governor automatically closes the gate sufficiently to allow the water to regain the lost head, and, when at the available point, automatically resumes its natural action. All this is accemplished by very si nple means, as shown by the engravings. The reservoir is placed so that the high water line in the flume is within three inches of the top of the reservoir.

Our engravings represent opposite sides of the apparatus; and in Fig. 2 is shown the reservoir and float in connection.

The operation is as follows: Water is admitted from the flume through the pipe, I. The float, B, in the reservoir A, rises with the water, and the cord is slackened, which leaves the governor to the natural action. As soon as the water lowers to any given point (regulating according to length of cord), the pawl shifter, C, is drawn down, throwing the closing pawl, F, into action, and the water is closed off. Tho machinery being all in motion, the gate would become closed, with a tendency to go beyond, but for a stop motion which limits the hoisting and closing of the gate, and which is simply a sliding bar inside of the bracket I, and operated by the worm, E .

Another feature of the governor is an adjustable weight connected to an arm of the pawl shifter, C, but not shown in the engraving (other parts of the machine being in front of it). By means of this sliding weight the speed of the governor may be changed from 140 revolutions to 165 -a great convenience

NEW FORM OF GAS-ENGINE.

Eig. 1.
in many es ablishmente, partic \cdot lar in in the case of wheels driving paper machi is, wherean adjustable apeed is indispensable

These governors have been in use, it is stated, now about six years, in some of the largest as vell as in the smallest establishments, and attached to all kinds of wheels (even overshot and breast wheels), with heads varying from seven feet to reventy eight feet, including the lugest cotton mills in the world, in iron rolling mills, and down to one set woolen factories. The manufacturers add that they have yet to learn of the first complaint of them - icientific American.

NEW FORM OF GAS-ENGINE.

Motive power obtained from the explosion of a mixture of gases is at first thought so economical that is is only aiter an irritating experience of the advantages and defects of gas-engines that many powerusers, can be convinced of the superiority of the steam-engine under ordinary circumstances. Those who reckon the horse power of their ergines by tens are not likely to discard steam for gas, but there is a large class of small power-users who would be glad to have something less cosily than the steam boiler, and a much larger class who would be glad to use motive power if they could but have it at a cheap rate and at intervals. It is, perhaps not overstating the matter to say that a very large number of the steam-engines in use in this country are in reality idle for half the time that they are under steam, i.e., while coals are being consumed In many cases this is due to the nature of the work for which they are employed, but in all cases there is a considerable waste, or perhaps we should say loss, in getting up steam to commence work, and in letting it off at the close of the day's labours. It is chiefly in consequence of this, and not from the superior "duty" performed by gas-engines, that so many of that class have found their way into the workshops of England. They are undeniably bandy, although larger in proportion than steam-engines; and under conditions which prevail extensively they are economical, for they do not consume fuel while standing idle.
A patent has been recently secured in this country for a gasengine, the invention of Mr. Thos. B. Fogarty, of Warren, Massachusetts, which is adapted for use with ordinary coal-gas, or, where that is not obtainable, with the explosive vapours obtained from any of the distillates of petroleum, shale oil, or coal : in fact, the requisite apparatus for converting a hydrocarbon into gas forms a portion of the invention, although it is not, of course, essential to the gas-engine itself, and is not the foundation of the advantages the new engine is

SNOW'S STANDARD WATER WHEFL GOVERNOR.-Fig. 2.
asserted to possess. Mr. Fogarty's gas-ongine has a cylinder, crank, flywheel, \&c., similar to other machines of its class, the piston being raised by the cffects of the explosion of gas, nad being foreed down again by the pressure of the atmosphere The cylinder, however, is connected by a tubo, or rather is continued or prolonged into another cyliuder forming the gaschamber, the connecting piece being of the same diamoter as the cylinder, while the gas chamber is of smaller area. Both are arranged in a vertical position, to avoid the wear of side friction common in horizontal cylinders : and, as will be seen from the engraving, from a largo U tube, one leg of which is lovger than the other. 'The upper portion of the gas-chamber is made emaller in aria than thes rylinder, in order to obtain a longer range within which to regulate the supply of gas. Suitable valves and other appliances for the admission of the gaschamber, and also a valve for the admission and discharge of water, together with the waste products of tho explosion. The explosion may be effected by means of electricity, although the ordinary jut flame is shown in the engraving. The gas. making apparatus consists of a tank containing the hydrocarbon io be volatilised, which is furced by means of an air-pump into a boiler heated by Bunsen burners consuming a portion of the hydrocarbon, which is also burnt in the igniting jet. The ndmission of the gas and its admixture with air i i controlled by a poppet valvo in connection with a spring lever, which is moved by a cam on the shaft; while the quantity nr gas admitted is regulated by a needle valve capable of being shifted automatically by the governor of the eng:ne.
leferring to the engraving, A is the cylinder containing the piston, and B is the explosion-chamber full of water, and connected to the cylinder as shown. V is the tank containing the hydracarbon liquid, which is forced into the vaporiser or retort T by means of an air-pump connected to the pipe of the gauge W, showing the pressure existing in the tank. 'To set the engine to woik, the burners bencath the ritort are lit, and when the hydrocarbon is being vaporised, the jet seen near the top of the explosion-chamber is ignited. A partial turn of the flywheel then brings the $\operatorname{cam} Q$ to bear on the lever P, and the vapour in T rushes through the poppet valve O_{3} and the needle-valve L, into the gas-chamber, the slidevalvo I having been brought to the proper position for admitting the gas, which in its passage has become mixed with the requisite quantity of air entering through the valve K . The slide-valve H now opens, and the mised gases communicating with the flame of the jet explode, and, expanding, drive up the piston in the cylinder A. A vacrum being thus created, the pressure of the atmosphere forces the piston down, the waste gases, which are now condensed, escaping by the valre C, which also admits water to completely fill the explosionchamber. The engine is now fairly started, and it will be readily understood that the momentum of the flywheel keeps the shaft in motion, and $:$, actuates the requisite valves. The details of the engine may, of course, be modifice in a number of ways, but, as shown in the engraving the double poppet-valve 0 is keyt to its seat by the lever P, the syring serving as a cushion to present any damage from the upper part of the valve striking forcibly agaiust its seat. The valve is shown without a stuffing-box, as the inventor says it is not necessary ; but it may be desirable, in some cases, to have the security afforded by a stufling-box, which would render a slight modification of the valve advisable. The needle-valve L and the airvalve K are connected, as shown, to the governor, and the inventor claims that when once adjustod, they will respectively admit the requisite proportions of gas and air, notwithstand. ing the action of the governor shiftung their positions. The valves C, f and I are operated by eccentrics or cams on the shaft, and the cam Q, as before mentioned, lifts the lever P and admits the gas to the mixiny pipe through the valve L.

When coal gas is used the vaporizing apparatus is detached at the junctivn shown between O and L, and the zas admitted through an orifice, which is shown closed by a screw plug A uniform quanticy of witer is always maintaned in the cyliader and chamber, which serves to condense the gases to expel them when exploded, and to keep the parts cool. The nysrocarbun may be supplied to the retort or vaporiser by gravity, the inventor, however, prefers to use compressed air, but it will be understood that an equilibrium always exists between the liquid in the retort and that in the tani- so that the pressure can be read on the gauge. The burners b acath the retort may be supplied with vapour from tho latter as soon as sufficient Leat has been imparted to tho hydrocarben to vaporise
it, but the inventor prefers to tako tho supply of liquid for thi purposo before it reaches the retort.-English Mechanic.

A NEW NOUTI WALES RAIL WAY.

It will bo interesting to our readers in Canada, whose a: rcady existing and vast projected railways form so importet a feature of the political and rommercial commonwealth, 1 . notice how a sister colony has ove come extraordinary natori' obstactes in furthering a similar undertaking. The followis description and the illustration on page 137 are from the Lonses Graphec.
The view wo have engraved represents that portion of the Great Westera Railway of Now South Vales which crisus the Blue Jountains, near Mount Victoria. Theso monutars form part of the main dividing range of Eastern Anstralu, which extends nearly north and south about 600 miles, from the northern to the southern extremity of the colong. Mous Victoria is distant about eighty miles from Sydncy, andth. Blue Mountains are crossed at an elevation of about 3jin) fit above the sea-level. A ferf months ago the railway was mor. pleted to the city of Bathurst, about 130 miles from Sydars The rich agricultural districts around Orange, Wellingtor. and Muigee, and the pastoral districts still firther to the west, have received the benefit of such improved means communication.
In 1812, thirty years after the foundation of the colony, it was reported to Parliament that no one had been able to pun trate tho inland country aross the Blue Mountains. Sibin that time many attempts havo been made to find a practicab: road. In i813 Messrs. Wentworth, Blaxiand, and Lawion after incredible hardship. by heroic efforts, found a possil: track across the mountains. They were rewarded by discor ering the splendid pasture country extending for hundreds of miles into the far interior. A practicable road for stock ras soon made, and in May, 1815, Governor Macquarie travelld over the mountains. Upon the plains beyond, till then us trodden by the white man, he fired upon the site of a fiture town, named Bathurst. Effort followed ellort la au undavord spirit to find a better road. Bell's Liue was succeeded by the Main Western Road, which was constructed by Mr. Bennth C.E., engineer for roads., But many have been the casualtuest crossing Mount Victoria, and many a lifo has been lost omicg to the sterpness of the gradients, which could not be lessened.

About 1850 surveys were commenced by a party of Horal Sappers and Miners, under Capt. Hawkins, R.E., to find a rouk practicable for a railway to Bathurst. The Bathurst people offered a bonus of 55000 on its satisfactory determinatioz But it was reported to be impracticable.

Under the direction, hovever, of Mr. John Whitton, CE, evgineer in-chiel of the colony for railways, assisted by Mr E Barton, the present line was determined upon. This lioe crosses the mountains on a gradiant of about one in fort throughout. Some idea of the difficulty of its constructios may bo piven when it is stated that Pearith, at the foot of the mountains, is thirty four miles from Sydney and 88 ft . abore sea-level; but in thirty-three miles further, or seventy-sersa miles from Sydney, the summit near Mount Victoria is crossed at an altitude of 3426 ft . above sea-level, being a rise of 3333 ft . in thirty-three miles, or upwards of 100 ft . per mile, average. The sbarpest curve is eight chaius radius. It was pos. sible to cross the summit by means of a zigzag only for aboat three miles. This line is in the form of a flattened letter Z., and at each extremity are reversing points. The lue is worked with the greatest case and safety. It is literally constructed upon the sides of precipices. When the tasi survey was being made, and the heights of the cross sectuons taken, the men had to be lowered over the edge in baskets to hold the level-staff. In places, 1500 ft . of dark chasm wert bencath them. The coutractors also had the greatest difficulty in fixing the scaffolding-poles necessary for the travelling. crane to rest upon. Nuch ingenuity and great daring were ovinibited, and but ferp lives were lost. In some phaces th: face of the rock did not project sufficiently to bear the live, with the weight of a train, aud a viaduct became necessary There are seven such viaducts and two bridges, of an aggregate length of 2225 ft , varying in height from 10 ft . to 70 it ; also three tunnels, of a total length of 391 yards, in addition to the Clarence Tunnel, which is 639 yards in length. Tho
fifteen-mile contract, of which the aigzag forms part, shows cxcavation to the extent of $1,144,284$ cubic yards, of which exca,:10 cubic yards were out of solld rock. The amount of the contract for works only-ballasting and laying rails (exclueive of cost)-was $£ 328,284$, ono third of a million of mones.
mones tr velling along the uppor portion of the eigang, tho epect for obverves, many hundreds of feet bencath him, two lines of rallway, apparently distinct. He finds it hard to bcliere that the train will really pass over those lines ; but by gradients and curves so admirably disposed he will find tho train arrive at the bottom of the valley with an ease almost incredible. As from tho bottom he looks across those dark and gloony mavines up to thoso precipitous walls of rock, and sees the lines, like a wiro, suspended as it were, in midarr, he will still have considerable doubt, that the train really travelled over those two lines. Every spectator has felt this in his first journey. The masonry throughout is of the best possble description, and the milway as it stadeds is one of the finest piccis of engineering work in the world. The whole of the works have been carried out with consummate nbility by alr. Whitton.
We may ada that in each direction, to the north, bouth, and west the respective railways are opened to a distance of about 150 miles, and further cxtensions are rapidly being carried formard, by which means the vast resources of New South Wales in minerals, wool, and every agricultural product will be brought within a few hours' steaming of the metropolis.

THE IISTORY OF THE COMPOLND ENGINE, WITH AN F:XPOSITION OF ITS $\triangle D V A N T A G E S$.

The following abstract of M. A. Mallet's "Etude sur Jes Machines "ompound" will be found to contain a brief history of compound engines, and a clear exposition of thoir advantages. The history of compound engines, says Mr. Mallet, has heretofore been littlo known; wo are able to r ake it tolerably complte by means of documents that enter into minute details, contaning matter instructive and interesting, and shedding light upon points hitherto obscure. The idea of employing the 1 spansive power of steam is gencrally attributed to James Wit This is shown by the evidence of a patent of January 6, 176', No. 913 The process consisted in arresting the introduction of steam a little before the termination of the sfroke of the piston, thus reducing the pressure at the moment of the reverse stroke; at was not until some time after that it was percewed that a certain quantity of steam was thus economises.

Jonathan Hornbi swer, who built the Newcomen engines, patented the use of two cylinders to effect the expansion, on the 13th of July, 1781, No 1,298 He ssit that ho employed the steam after its action in the first cylinder in order to employ it in the second expansively. Here is the original:" 1 use two vessels in which the steam is to act, and which in
other stean-engines are generally called cylinders. I employ the steam after it has acted on the first vessel to op rate a second time on the other, by permitting it to expand itsolf, which I do by connecting the vessels together and forming proper channels and apertures, whereby the steam shall occasionally goin and out of the said vessels."
Hornblowe's engine met with small success. As it used steam at low pressure it had bute limited expansive pon and the advantages became of no account; on the contrar, they became negative on account of the resistances due to the use of two pistons. Besides, he could not use his engine without borrowing most of the parts of Watt's engine, such as the separate condenser, \&c. So Hornblower got by means of his inrention only the enmity of the friends of Watt, who accused him of indirect plagiarism, and created a bad renatazion for him, of which traces are found in the carly histories of the steamengine. At this time the use of two cylinders tuined out unsuccessful.
But when higher pressure was employed, Wool ${ }^{-}$did for the engines of 'rrevithick, Evans, and others what Hornblower had done for those of Watt; he applied to them the principle of the double cylinder. As he could make use of high pressure, there was promise of success for the invention, and it did succeed, 60 that he has given his name to engines having two cylinders. Woolf's patent was taken out in 1804. It contained, as has often beca remarked erroncous notions about the expansive porer of steam.

The fact that contributad to the succese of Woolfs engines was that although tho expansion was not suffisient to yicld much advantage over ordinary ongines, tho division of the work of tho steam between the two platons diminished tho differences in pressure and thu loss of steam. This was nn important matter in the early constructious. Engines of this kitd need little repair Wo could mention two instances in an industrial centre in Normandy, of engines with two cylinders which have been in action for nearly fifty years.

In 1805, Willis Earlo took out a patent for engines composed of a large and small cylinder superposed with two pistons mounted on the same rod, a dovice frequently repeated since that time.
The first Woolf engino whs set up in a London browery Afterwarda Mnll made a large number. In 1815 they ware intro luced into France by Edwards, and they rapidly came into ubr, without much change in construction. E Iwards' engine of 1817 differs hardly at all, ceen in detaite, from those that aro to-day put up in some of the menufacturing towns. In 1820 the English enginecrs, Aitken and Stcel, built engines with three cylinders, two small and ono large.
In 1834 Joseph Evo patented a compound engins, in which the steam, after acting in a high-pressure ongi 10 , passed into n low-pressure ongine, where it neted exponsively. He employed rotary cagines. Here was the first idea of a mo le of action differ. ent from that oi Woolf's engines.
In 1834 Frnest Woolf (a German, wo infer, from his name), took out a patent (No. 6,600) of an ongine, described as compound, as nowadays constructed, © which indicates the possibility of modifying existing engines 60 as to adapt them to the new more of action. This patent is very intercsting, and it is singular that English authorities hardly refer to it. It is certain that compound engines with two cylinders atd intermediate reservoir, to which the name of Woolf has been given, though they have not the same modo of action, should be called "Woolf engines."

We give the essential part of this patent. "The invention consists of the combination of two or more engines, each complete in all its parts, and so disposed that while the first recelves steam at on ', two, or more atmosphores of pressure, tho next engine is moved by the steam that escapes from the tirst In the last engine the steam is condensed in the ordinary way, or escapes into the atmosphere. The work supplied by the several engines is applicd to the same shaft, or to several combined or to independent shafts. As in steam-vessels and other applications, two conjoined engines are g serally employed. The present invention is expecially adapted for this purpose, as it presents economic advantages, and reduces the expense of the apparatus without increasing its comp'ication. It is sometimes useful to havo between the cylinders an iutcrmediate reservoir to regulate the pressure, this may be placed with advantage at the base of the chimnoy, so as to maintain or raise the temperature and the pressure of the st am in its passage from one cylinder to the other. Indeed, if necessary, the heat may be supplied a special fire-box. It is often necessary to employ a special pipe with a stopcock to admit the sterm from the boiler to an intermediate reservoir, in order to give to the machine the power of starting any crank This direct introduction may be employed to increase for a thane the power of the engine."

The writer then explains a method of modifying old engines by adding to a high-press are engin a low pressure eylinder; or, in the case of a marine engine, by aubstituting for one of the low-pressure cylinders a high-pressure cylinder.
In 1837, William Gilman patented an engine consisting of two cylinders placed one on the other, one of them having an annular piston with a single cut-off, with multiple ports disconnecting the two cylinders. This disposition lass been often reprodurcd, and is frequently employed nowadiss, especially in Sweden. Gilman also describes an engine of three cylinders in which the steam acts in succession.
In 1837 Jonathan Dickson patented (No. 7,439) engines in which the steam acis successively by means ot boilers with decreasiog pressure, or parts of boilers constituting a compound boiler. This contrivance has also been made use of since the time of the invention. In fact, it is nothing more than Woolfs patent; fur this proposed to re-heat the intermediate regervoir by a special fire-box, a process which constitutes in a cerasin way a low-pressure boiler. Dickson proposed the use of feed-pumps to serve as guides to the piston cranks, and to control the elide-valves of each engine by the other engine.
51

In the same yoar Jamen Blator, patented (No. 7,467) enp ines ecting in the eame way, with an intermediate reservoir, em. ploying a low-pressure boiler. He deacribes a regalating valve designed to teep the steam pressure at a fixed point, and also to start the cagines This is nothing mora than Woolfs in-reation-the valve, perhaps, excepted
William Whitman, in 1839, patented an engine which the piston has a trunk on one side only, so that the cylinder has two different capacitics. The steam first acta in the annular apace, then expands into the other portion of the cylinder This disposition, applied with some success by the inventor, has been frequently reproduced. It is probably the simplest way of applying the Woolf method of action.
In 1841 James Sims patented an enxine of two auperposed cylinders, with pistons on the same rad; with this upecial distinction, that the bottom of the smaller piston is in constant communication with the top of the larger.

In 1842 Hinrik Zander took ont a pater: No. 9,516) of an en. gine in which the steam acts in the first cylinder expansivels, to a certain extent, then passes into two others which are larger, and expan 1s. The three cylinders are connected to the same shaft, so that their motion may be as uniform as possible. Thin low-pressure cylinders are provided with jurkers which contain the steam from the boiler. Zander descricus intermediato reservoirs, and proposes to introduce into them, or into a com municating pipe sul ${ }_{2}$ olping their place, \& float-valve to allow the escape of condensed water.
Octavius Eenry Smith patented in 1844, an ongine acting on the Wooldisn principle, consisting of a high-pressure and a low-pressure cylinder, both oscillating and having their rods attached to the same crank. Afterwards we find many patpats of expansion engines. We mention only thase of Perkins. 1844; MoNaught, 1845, who modified old engines by the addition of a high-pressure oylindor; of Thomas Craddock,

1852 ; Daniel Adamson and Leonard Cooper, 1852, who superhented the stenm in its passage from the high to the low-pressure cylinder by means of tubes set in the smoke-box of a tubular boiler.

Wo shall not go further in our cxamination of these patents. It is perceived that, since 1852 , all the essential elements of the action of steam by expansion, in separate cylinders, have been pointed out, and that there remaing nothing to be invented even in perfecting dotails. We shall look further back for npplications.

The Cricket engine was built in 1847, by Joyce and Co., of Greenwich. It exploded the same year. Bramwell speaks of a boat built at about the same fime by Spiller, in which was placed an engine consisting of a high and low-pressurc cylinder. We have found no document concerning it.

According to the authority of "Zeitschrift des Ocsterreichische Ingenicur und Architektur," 1867, Ar. Hoetgen of Rotterdam, has built engines, since 1840, composed of cylinders inclined towards cach other, and acting on the same pair of cranke, the same steam being successively used in the two cylinders. We do not regard the date 1840 as exact. If, as is probably the case, these engines are those made according to the plans of Zander, they wero evideutly built after his patent of 1842 .

Engineerang of Scptember 9, 18\%0, contains a description and draving of an engine built in $18: 48$ by the Sterkerador Ilutto for tho Hhine boat Kron-Prtnz von Preussen. This engine had two cylinders, one 508 metie in diameter and 800 metre long; the other 914 metre in diameter, and 914 metre in length. Each acted on a crank, the two cranlis were counected so that theeffect was the same as if the cylinders acted at right angles upon the cranks, while the angle between the axes was 130^{n}. There was no special intermediate reservoir. The connectingpipe $\mathbf{- 2 5 4}$ metre in diameter, acted in its stead. 'There were no steam jackets, and, as no precaution was taken to prevent the condensation of steam in its passage from one cylinder to the other, economical results could not be expected.

Still it is a fact that Feyenoord's works at Rotterdam, where these engines were first constructed, have never given them up. We ourselves saw at lotterdam in 1860 a steamboat of 70 h.p. nominal, the Walnelem II., which has served as a pleasure boat fur the King of Holland. The engine, with low-pressure cy linder, has been moditied by the addition of a high-pressure cyliader inclined to the other, acting on the same crank, the same stiam working successively 10 the cylinders.

It would be unjust to omit mention of Carillon, a Paris builder, who succeeded (18\$2) m making a low-pressure engine worh with the discharged steam of one at higrb pressure. This was set up at the St. Louns Glass Works. The wsay seems not have been repeated, being abandoned, we think, because of the failure of a surface coudenser.

In 1852 James Samuel applicd the principle of continuous expansion to locomotive engines. This consists of a simultancous action of steam upon tho two pistons. Suppose two pistons whose rods i.w. at right angles to the crank. The steam Works at full pressure during half the stroke of the first. At this moment admission ceases, and the first cylinder is put into communication witl, tho second while its piston is at the begining of its stroke. Expansion occurs simultancously in the tro cylinders until near the ends of the stroke of the tirst, then in the second only till near the end ofits stroke.

This sybtem, related to that of Milner, has been agairs taken up liy Stewart and Necholson, and applice in the tugs on the Thames. I hough simple, it has the dasadvantage of not avoid. ing ircat depression of temperature so well as those of Woolf and Woolff, slnce the two cylnders communicate with the dis. charge ports or the condenser.

The experiments of sumucl, reported in the Memoirs of the Institution of Mechanical Enginecrs," 1852 , were made on a freight and a passenger engine on the Eastern Countics Railway. In the first there were two equal cylinders; in tho second the larger cylinder had in section twice as large as that of tho smaller. Though the results scemed quite favourable, the essays were abandoned until the time when they were again reimed by Stermart and Nicholson. This is inferior to the otner finds of compound engine.

The first noted applications of double-cylinder engines wero made at Glasgow, in 185G, by Randolf and Elder. A littlo after, Rowan and Horton constructed three-cylinder engines; one high-pressuro feeding two others. Thero were siz cylinders in tho machine. The steam was supplied ai a pressure of
cight atmosplanes by boilors of a special form. One of these engines, according to Rankine, should not consume more than -F bile of fuel per horse-potrer hourly. This would seem doubtful ; but it would be useless to discuss the point, for the engines have not stood the test of service. The bollers are rapidly destroyed, and the construction is too complicated The condonsars were surface condensers of a particular paitern.

In i861 Normand changed to the Woolf the engrine of the small steamer Le Furet built by Pean. T'he ongino worked at six atmospheres with intermediato roservoir re-heating, and monhydric condensation. The results wero excollent. Afterwards Normand altered in the same way soveral other engines and still constructs them.

The Imperial Jarine made essays moderately successful with three cylinders. The expansion was not great enough, the cylinders being of the same diameter, so that the economic advantage was not important.

Escher, Wy6s, and Co., of Zurich, have built, from the plans of their engineer, Murray Jackson, marine engines with a low and high-pressure cylinder, set side by side and actiug perpendicularly to the cranks. One of theso ongines was exhibited at Paris, in 1861, but it was out of sight under a shed. They have no special intermediate reservoir, the connecting pipe of the cylinders acting in its place. This firm have constructed a large number for the Swiss and Italian lakes, for the Danube, Mhine, and other rivers. Their engines ard of the Woolf system. Onv with four cylinders was exhibited at London in 1862 ; it is now upon a boat upon Lake Lucerns. The compound marine Woolff engine is at present built in many English shops; though some maintain the Woolf type, with superposed cylinders. In France all engines are of tho first kind.-English Hechanic.

bOILER BURSTING.

A series of experlments is being conducting by the Manchester Steam ['sers' Associalion, at Mr. Beeley's Works, Hyde Junction, with a view of determiaing, by experiments carried out on a large scale, the effect that cutting openings in the shells of cylindrical boilers has upon their strength. Sometimes these openings are introduced at the lase of steam domes, and sometimes for carryisg duwn ake flues through the outer fhell. In the French or "clephant" boiler these openings are inberent at tho conacuting necks, between the lower and upper cylinders. In other therefore to test the cffect of these openings a full-sized boiler of the Laneashare type, having a diameter of 7 ft . in the shell and 2 ft .9 in . in the furnace tubes, has been constructed, and is now undergong a series of tests, which it is intended to carry up to the lursting point, to ascertain the ultimate resistance of the boiler.

The first of these tests was made on Weduesday the uth instant, when the boilcr had rivetted to it a small wrought-iron stean dome of the same sizo and strength as many of the connecting necks now in use in the French or "elephant" and other types of boiler. In preparation for this, test the borler was very carefully gauged in overy direction, and six observers took measurements at various points of its movements, under the gradually increasing pressurc. It was found that the furnace tubes, which were strengthencd with flauged joints at each of the sesms of rivets, were quite immovatole, which is 8atisfactory, inasmuch as their sufficiency for high pressure was impugned at the recent explosion at Blackbura. The ends of the boiler breathed outwards very slightly, and resumed their original positions as nearly as may $b=$ upon tho pressure being releved. The longitudinal scams in the outer shell exhibited no movement. The steam dome or neck, howerer, burst when the pressure reached 250 lb . on the square inch, showing that it formed the weakest part of the boiler.

On the following day the boiler was again submitted to hydraulic pressure, the wrought-iron steam dome having been removed, tho opening blanked up, and a cast-iron manhole of very substantial pattern applied. At a pressare of 200 lb . on the squaro inch the cast-iron mouthpieco ripped asnoder, tho rent extending right across the plate at each side, and into those adjoining. A wrought-iron raised manhole mouthpiece, with which the boiler was fitted, reristed both tosts without tho slighest signs of distress, though apeatedly gauged.
'The tests show how weak tbose boilers must be in which manholes are altogether unguarded, while for high pressures,
mouthpicces made of cast iron must give place to wrought, and also that the openings at the base of steam domes havo a decidedly weakoning effect, so that they should always be dispensed with whenuver it is possible to do so. It is proposed to push the experiments still further under other conditions, 80 as to detect any weak points that may still lurk in the systems of construction now adopted for high-pressure boilers of the Lancashire type.

In addition to tho above a trial was made of the discharging power of 8 low water safety valvo. The importance of an investigation on this subject was suggested by tho recent explosion at Eull, which was attributed to shortness of water, though the boiler was fitted with a low water safety valve. I'he experiments seems to show that the discharging power of these valves is not so high as it is desirable it should be, that they will not reduce the pressure of the steam as rapidly as has beed supposed, so that their construction requires further consideration at the hands of the makers. It is intended to extend the experiments on this subject to low water safety valves of different constructions.

When the investigations aro finislıed, both as regards tho strength of the boiler and the operations of the safety valves, the particulars will be given to the public in detai' through the medium of the Association's monthly reports.

It may, perhaps, be of interest to state that the last letter of Sir W. Fairbairn, the late President of the Asso: iation, addressed toit shortly before his death, has reference te the boiler tests doscribed above. He wrote warmly approving the idea of tho te-t and urging that it should be made at once. This letter shows how strong an interest he entertained to the last in the progress of the Association, of which he was one of the foremost founders an I warmest supporters.

FRANCE RUINED ON THE STAIRCASE.

The last paroxysm of that curious fever for reform that seized upon France at the end of tho war, is a determined Parisian morement against staircases. A legion of social doctors are using very strong inieroscopes to discover the causes of the naticnal degeneracy, and this is the last explanatiun of Sedan that has been found-the Frenchman mounts too many staircasce in his life The overcise has weakened the race, aut it is addured in proof of this statement that the health is better, the stature higher, in those departments where the houses are composed at most of three storics. Ar. Foussagrives, a popular scientific writer, is one of the chief promoters of the movemont, which is about to have an association, a committee, secreteries, officers, all the paraphernalia of a modera crusade. He has written three or four chapters on the subject, advocating the general adoption of mechanical lifts of a cheaper and cimpler pattern than those actually workins in many of the new houses in the western quarter of Paris, but giviog some practiral information concerning the danger and dissdvantages of the ordinary Parisian staircase. His remarks are not uncalled for Whoever is familiar with the interior of un-Haus. mannised Paris must have retained some vivid recollections of the prrilous ascents he has been compelled to undertak. Except in the most modern houses the staircase-whica is practirally the strect in Paris-appears to have been an afterthought of the architects. The space has been grudgingly ve stowe 1; acd as for light, some of the most aristocratic hotels of the Saint-Germain quarter are pierced by a narrow shaft, in which it is difficult to read a letter at noon. In tho best liowses of the Boulevards, the cscalier de scrvice, or servants staircase, is dark and narrow as a subterrancan spiral, and by this way furniture, luggage the heaviest and most cumbersome londs,-are introduced into the house. Consequently, scarcely a day passes without some accident happening to porters, Fater-carriere, or tradesmen. Tho movement of which M. Foussagrives is the head, has for object the generalisation of simplo lifts, and the procuring of Governmental intervention un the matter of staircases The crusaders d site that every lan llord and builder bo compolled to obscrvo certai 1 rules in the conotruction or alteration of stairmses. The landing-places should be spacions enough to admit of thrio or four steps bengr takin on their surface; the staircase should bo lighted Jaterally, a veitical light in most French houses being only advantageous to the topmost 0at. The height of cach step should never exceed sixteen contimetres, the width should bo of twenty-five at least. The length should never be less than one metro fifty. Metal and waxed vooden stairs should bo
carpoted. In the later portion of his programme, M. Fonssa. grives quotes a curious observation of Louis Lavor, a medieal writer and doctor to the King of 1673. Lavor considered that instead of a flat surface, or an outrard incline, thero should be in each stepa gentlo drop inwards, so that tha ball of the foot bo always lower than tho heal. This lessens the tension on the posterior muscles of the leg. The same author advises that the edge of each step be of a lighter colour than the step itself--The Juslder.

CEEANING WIII BENZINE.

Scouring with benzing has proved to be undonbtedly one of the very best methois, since the end is perf etty necomplished withont shrinkage or injurious effect upon the colour or finish, so that the most elcgant garments need not be taken apart, nor lace or velvet trimmings be taken off, while with men's clothing it is not noticcable that they have been washed. The articles, freed from 'st and dirt by beating them while dry, are first simply the righly moistened with benzino in a finned-copper or stot, ware vessel, and well squsezed in it with the hands, silk weces, ribbons, and henvier portions that may require it being brushed well ona zinccovered table supplied with a tube bencath for re collecting the benzine. Tho deepest stains are marked and trectel moro thoroughly. The articles are similarly treatelin a second bath of benzine, and then carefully dried in a centrifugal machane for ten to fifteen minutes, the binzine beiner re-collect-d in a vessel beneath 0.1 removal from it they aro smoothod ont and hung in a warm drying-room, with 'access of sir. It will require ten to twelve hours after they are dry to remove the odour completely. Since benzine acts principally upon fatty matter, stains of strect mud, meal, \&c., may remain, and must be removed by gently rubbing with a soft sponge dipped in cold water to which a littlo alcohol has been added, aud thon drying with 8 soft silk cloth. Sugar, champa;rac, and eigg stains aro also remuved wath cold water, and the colour ts bronsbt up again with a little auetic aud andalcuhol in water, thr spots being well rubbed out. Blood spots are treated sumblarly In all these casis the formation of inargiual stans around the spots must be prevented by thorough use of the soft syonse and soft silk cloth. Aa article that stall retains decided stains is brushed with a cold decoction of suap-bark, to which some alcohol has leen added, and is then rapidig pasied through water, ani then through water shoghty aciudated with acetic abid, and dred sapadiy. Kid gloves are well rubbed wath the hands, separately, in beazane, and each fioger then rubbed on a atretcher with a rag, and after being blown up are hung up to dry. Articles treated with beuzine nee 1 but littlo subsequent finishing, aud thes may be accomplisited by applying a sulution of gum-arabic in water, ada a little alcohol, uatformly with a rag, and roming. Portions of oats that have buen taken apart ued sumply to bo stretchei and moisteued uaif rmly with alcohol, and allowed to dry rapidly. Heavy cloth, velvets, de, after beiag well steame i, are treated on tho wrong sule with so hitle dressiag (best of tragacauth) that it does not go through an a are then placed on the fiaishing fiame or warm drurn. White furs aud angoratassols are passed immediately from the benzine torough pulverised chalk, an 1 allowed to dry, and are timen beaten out, when the leather will remain elastic and tho far look well. Beazine that das becomoturbid by usc may bo purified by stirring tea drops of oil of vitriol thoroughly into about two bucketfuls of it, and allowag it to setic. The operations must, of course, not be woducted near the lamp or fire, on account of the cumbustibility of benzac.

Tas scheme adrocatcd by AL. Lesseps for the construction In Algeria of an immease lake connected by a canal with the Mujiterrancan, was challenged lately by M. Fuchs, at a meeting of tho French Academy of Scionces. He asserts that tho two mountain passes threugh which a canal is supposed to havo formerly passed are ve considerahly above the level of the Mediterranesn, and con st of a bed of calcarcous rock; while the $60-c a l l e d$ basin is 3 so much above the sea level. IIs conclusion is that the Med.terrancan water; never reached the Chotis, and that tho scheme would involve a trench of $150,000,000$ cubic metres, half of it through hard rock, and costiog at least $300,000,000 \mathrm{f}$.

Mechanics' Magazine.

MONTREAL, AUGUST, 187.

Infustinations
Slemen's 10 ow steam motor 129
New form of kits-englne 132
Snow's standard water-
wheel governor......... 132
Snow's standard water.
wheel governor......... 133
Milltary balloonlng..... 136
Zigang rallway, Nesp
South wales............ 137
Carrick fergas Castle.... 1:0
Water-power on the
Magog.
111
Archat Ingersoll........ 144
Arch at Godertch...... 115
sevres viasc................. 11
Tossclin's wrecking ap.
paratus
Covered street in Mi.
lan...........................
Central avenuo bridge,
Newark........
Central avenue brldge,
Newark..................
Accumulator boller for
stenm tram ways...... 1
lhand saw for iron....... 157
New tubular boller with internal furbaco...... 100

Contwists:

Slemen's steam motor 130
Principles of Shop Manipulation................
Improved water-whee governor 131
New form of gas for engine.. 1
A. Now South Wales rail. way Instory of the componnd engine.. \qquad
Boller bursting \qquad 134

France rulned on the
stalreaso
raso
Cleanlng with benzine...... 130
The Iritish association.... 142
Milltary halloontug........
Water-power on the Ma.
gog
for tho Parls opera
lho Paris opera
house
Covered street In Milah. 110
Tritumphal arches.......... 14
Tosselli's wrecking ap.
paratus
The Moon's ilgure in the stereoscope.
Some of the uses of mlea. $1: 7$
The channel tunel.... 150
How to read the batomeer.
... 150
Central avenue brldge,
Newwark
Srethod of treating furs and sklus....................
Acenmulator bollers for steam tramways......... 15
Band-satw for Iron.......... 155
Economy offucl in furna-
ces.
The bamboo... is
Dominion 158
Rallway matters............ 150
New tubular boller with
internal furnacc.......... 15

'IUE BRITISU ASSOCIATION.

Tho forty-fourth annual mecting of the British Association for the advancement of science held last month at Belfast was very successful-more so, indeed, than had been anticipated. The attendance of men of science was large and most of the papers read were, as usual, of great interest.

The address of the President, Dr. Tyadall, excited much remark in the religious and scientific world. Me claimed that religious theories, schemes, aud systems, embracing notions of cosmogony, or which otherwise reached into its domain, must, in so far as they did so, submit to the coutrol of science, and reliaquish all thought of controlling it. Acting otherwise had proved disastrous in the past, and was simply fatuous to-day. Every system which would cscape the fate of an organism too rigid to adjust itself to itself to its environment must be plastic to the extent that the growth of knowicdge,demanded. In closing, l'rofessor Tyndall said he had touched on debatable questions, and gone over dangerousground, partly with a view of telling his audience, and through them the morld, that, as regarded those questions, science claimed unrestricted right of search. It was not to the point. to sav that the views of Lu. cretius and Bruno, Darwin and Spen er, wero mrong. With that statement he should agreed, deeming it indeed certain that those views would undergo modification. But the point was that, whether right or wrong, scientific men claimed freedom to discuss them. The ground which they covered was scjentific ground; and the right claimed was one made good through tribulation and anguish, inflicted and endured in harder times
than theire, but resulting in the immortal victories which science had won for tho human race.

One of the most interesting papers was that of Sir John Lub. bock on "Wild Flowers and Insects." Tho following extract serves to show how progress in the knowledge of the realms of nature is being made outside the realms of pure physics :-
"Many llowers close their petals during rain, which is ob. viously an advantage, since it prevents the honey pollen from being spoilt or washed away. Eqerybody, however, has observed that even in fine weather certain flowers close at particular hours. This habit of going to sleep is surely very curious. Why should flowers do so? In animals we can understand it; they are tired, and require rest. But why should flowers sleep? Why should some flowers do so and not others? Moreover, different flowers keep differer't hours. The daisy opens at sunrise and closes at sunset, whence its name-day's cye. The dandelion - leonted or taraxacum - opons at seven and closes at five ; arenani imbra is open from nino to three; nymphsa alba from about seven to four; the common mouse ear hawkweed is said to wake at eight and go to sleep at two; tho scarlet pimpernel-anayallis arvensis-to wake at seven and close soon after two ; while tro orojon pratensis opens at four in the morning and closes just before twelve, whence its English name, "John go to bed at noon." Farmers' boys in some parts are said to regulato their dinner hour by it. Other flowers, on the contrary open in the erening. Now it is obvious that flowers which are fritilised by night flying insects, would derive no advantaro from being open by day, and, on the other hand, that those which are fertilised by bees would gain nothing by being open ht night. Nay, it would be a distinct disadvantage, because it would render them liable to be robbed of their honey and pollen by insects which are not capable of fertilising them. I believe, then, that the closing of flowers has reference to the habits of insects, and it may be observed also in support of this, that some fertilized flowers never sleep, and that some of those nowers which attract insects by smell, emit their scent at warticular hours; thus, hespien matronalis and dychins vespertino, smell in the evening, and orchis bifolia is particuliarly sweet at night. I have been good-humouredly accused of at'acking the little busy bee, because I have attempted to show that it does not possess all the high qualities which have been popularly and yoatically ascribed to it. But ifscientific observations do not altogether support this intellectual eminence, which has been ascribed to bees, they have made known to us in the economy of the hive many curious peculiarities which no dolt had ever dreamt of, and have shown that bees and ether insects have an importance as regards flowers which had been previously unsuspected. 'To them we owo the beauties of our gardens, the sweetness of our fields. To them flowers are indubted for their scent and colour ; nay, their very existence in its present form. Not only have the brilliant colour, the sweet scent, and the honey of flowers been gradually developed by the unconscious selection of insects, but the very arravgement of the colours, the circular bands and radiating lines, the form, size, and position of the petals, the arrangement of the stamens and pistil are all arranged with reference to the visits of insects, and in such a manner as to insure the grand object which renders these vasits necessary. Thus, then, I havo attempted to point out some of the relations which exist between insects and our common wild llowers. The wholesubject is one, however, which will repay most careful attention: for, as Muller has truly said, there is no single species the whole history of which is yct by any means thoroughly known to us?"

The Association will mect nextyear at Bristol under the prosidency of Sir John Ifarkshaw.

Among other places of interest visited by the members at Belfast was the ancient castle of Carrickfergus situated about nine miles from Belfast on the north side of Belfast Lough. It stands upon a bold rock projecting into the sea, elevated about 30 fectabove tise water level. The rampart walls and turrets following exactly the natural irregalar outline of the rock.

The erection of this castle hns been ascribed to somo of the English settlers who came over to Ireland during the reign of Henry II., or John; most probably John De Courcy, as be it was who established a colony here, and sccured his conquests by building many sastles and forts throughout, Uister.

MILITARY BALLOONING.

Some experiments wore made the other day at Woolwich to test a new balloon-stcering apparatus, tho invention of Mr. Bowlder. The apparatus consists of a rudder and two fans or propellers and will be easily understood by reference io our illustration on page 136. The rudder is of canvas with strengthening bands and is worked like any ordinary rudder. The fans or propellers are of very light shect-iron; ono is vertical and the other horizontal, and they aro made to rotate by multiplying gear at tho rate of from 600 to 720 revolutions per minute. The horizontal propeller is, of course, to propel the balloon and the vertical to raise or lower it without loss of gas or ballast. The balloon used on the occasion was lent by Mr. Coxwell and was regarded by Mrr. Bowldler as too large to suit the apparatus tried.
The experiment was carried out under the personal direction and orders of Major Beaumont, R.E. The official programme was as follows:-(1) The balloon to be balanced carefully, and when in a captive condition to be raised to about 150 ft ., and lowered repeatedly by the vertical propeller in order to testits efficiency. (2) The balloon to be releasod, and as soon as the course be shown to be steady and the dinection ascertained by zucans of Mr. Croxwell's indicator, maps, \&c., the horizontal propeller to be worked at right angles to the course of the balloon, and its maximum effect thus obtained carefully noted. (3) The balloon then to be raised and lowered by the vertical propeller, without throwing out ballast or discharging gas. After attaching the gear to the side-as shown in the engrav-ing-Major Beaumont, Mr. Coxwell, Mr. Bowldler, and a sergeant of the Royal Engineers entered tho car, and the first part of the programme was commenced, a serics of small pilot balloons being sent off in succession to ascertain the direction of the wind and probable course of the balloon when liberated.

The balloon was fairly balanced and the vertical propeller rorked, and tho balloon raised to a height of about 40 ft . and lowered again. The vertical propeller when worked hard produce a decided effect; probably the maximum rate of ascent did not exceed 50 ft . per minute, but it was not far short of it. There was no great accuracy, speaking critically, in the arrangement of the conditions. For example the line which held the balloon captive was held by hand, and thus overy foot the balloon rose it had an additional foot of line to carry. This would tell on a height of 40 ft , although the line was slight; and had 150 feet laid down in the programme been adbeced to the effect would have been very considerable. A mean rate of ascent and descent might correct the error. After a few trials, however, the gear broke, and the vertical propellor became for the time disabled. Shortiy after this the balloon was liberated for the trial of the horizontal propeller and the remainder of the trip was visible oniy to those in the balloon. The result of the experiments must be left to Major Beaumont's report, but they are hardly considered generally to have been satisfactory. It is difficult to imari- how a hand apparatus of this kind can give power enough, wectually move a large balloon which moves in a moving medium, especially when tre consider that it may at any moment find itself in a current of air moving at ten miles an hour or faster.

WATER-POWER ON THE MAGOG.

On the 3rd inst. a number of merchants and manuiacturers visited the Magog River at the invitation of Mr. Knight, a largo proprietor in the nejghbourhood, to inspect the water privileges owned by him at the outlet of Lako Memphromagog. The
buildings at this spot consist of two saw-mills, one grist-mill with three run of stones, tro lathe machines, two shingle machines, one plaining-mill, ono clapboard machino, and ono door and sash fact jry. . All of theseare in working order. Tho water-powi smployed upon them, however, is but a part of that whic a belongs to the property, which extends down the stream fol " distance of nearly three miles. In three-quarters of a mile 3 ! this distance the fall is thirty-five feet. It nppears from calct letions made by Mr. Francie, the ominent hydraulic engineer ol Lowell, Mass., that the average flow of the Magog River, dediced from the water-shed, is 816 cubic feet per second. 1't the flow will be much above the average in spring, and below during tho dry seasons. Tho variations are, however, leis than on ordinary streams, on account of the equalizing effect of the lake; and if the dam could be raised nearly to the usual level of the lake this equalizing effect would bo far greater. His present opinion is, that it would be safe to take it one half the usual flow, or at 408 cubic fect per second. He goes on the say that as most manufacturing establishments are run only during the daytime, the flow of water during the night can be retained, onabling a quantity equal to double or more of the uniform flow to be used during the working hours. Raising the present dam permanently would probably be objected to by some of the shore owners on the lake, but the main advantage of raising it could be obtained without affecting them, by means of flash-boards put on top of the dam during the dry season, to be removed during the high water. With this arrangement the night flow could be retained, and double the uniform fiow, or say 16 cubic per feet second, bo used during the working hours. The entire fall from the usual level of the lake to the foot of the rapids is about 35 feet. As to the precise fall that can be made use of below the existing mills he is not informed, but has no doubt that fifteen feet at loast can bo economically used by means of another dam. At the present dam the fall used on the north side is about eight feet on the average, the power during the dry season, with good arrangements, being 246 horse-power, night and day, or double during the day-time only, the night flow being retained. At a fall of fifteen feet at a new dam below the present dame the power would be 462 horse-power, night and day, or double if used during the day only, which would drive 50,000 cotton spindles with all the accompanying machinery, or about 100 sets of woollen machinery. The advantages of this power are, obviously, freedom from ice and great floods, and the purity of the water. Ice, in most waterpowers, is a serious drawback. In some the difficulties arising from it untit them for regular operations. Here interruption from ice is almost unknown. This is a rare advantage in this latitude and adds largely to the value. Floods are often the causefof loss to mill property, and on most rivers the works required to guard against their disastrous effects aro expensive, and not always effectual. The great area of the lake effectually prevents disastrous floods here, and of courso prevents the necessity of expensive works to guard aganst affect the amount of power, but it obviously fits the locality in this effects. The purity of the water, of course, does not affect the amount of power, but it obviously fits the locality in a high degree for manufactures requiring uniformly pure water. Apart from tho inability to retain the night flow, which can be remedied, the only disadvantage that occurs to 3 Ir. Francis is to distance from railroad communication, which will probably bo remedied at no distant day, inasmuch as a road of nine miles to the Passumpsic Road would put the place in connection with Boston at a distance of 209 miles, and one of ton milos with tho Stanstead and Chambly Railvay, and so

with Montreal at a distance of 87 miles. The skotch of the proposed mill-nond, on page 141 is by Mr. Eenry Sandham who accompanied the visitors.

VASE FOR THE PARIS OPERA HOUSE.

Tne Sopres Vabe represented by tho engraving on page 148 Is in the Exposition of National Manufactores now open in the Palace of Industry, Paris. It was designed by M. Garnier, architect, and is intended to stand in the saloon of the now Opera-house.

COVFRFD S'TREET IN MILAN.

The Victor Emmanuel Gallery, represented in our illustra. tion on page 149 is, as is plainly seen, merely a covered strect. These covered strcetsare somewhat common in the cities of Eu. rope but none are equal in magnificence to the one illustrated. It is a broad, lofty, glask ronfed street, transected by a similar glazed street, a huge cupola cruwaing the place of junction. These places are, as one would expect, generally the fashionable promenades of the towns, forming rain-proof lounging places where those who can afford the time are sure of mecting similarly favoured uncs in spite of rain and storm. In our inclement climate such places would be doubly valuable. Oar strects are, it is true, well crowded oven in the coldest weather, but there are two periods whan walking becones a veritable passage of the "slourh of despund viz, just before the snow has determined tu stay and just before it has gonr. In Montreal for instance wero St. James and Notre Dame streets thus covered in and joined by envered passages thoy would form a splondid covered promenade-the uuly one accessible at certain seasons and, as a consequence, the shops sn situated muuld rommand an enormous rental. It would undoubtedly be difficult to accomplish this satisfactorily in a climato where threo or four feet of snow may fall at any time, but once accom. plished tho benefit rould be greater in proportion to the difficulty.

During the recont progress of the Governor General through the towns of Ontario, the loyalty of the inhabitants of some towns, expeessed itself in a very happy and characteristi. manner The triumphal arches, a seemingly indispensable featuro on these oucasions, wore not conatructed as usual of evergreens but served in themselves as indexes of the industry on which the prosperity of the places depended. We illustrate two of theso-that at Goderich constructed of salt-barrels and that at Ingersoll, of cheese-boxes. The effect produced was very good in both cases and the sentiment-so far as sentiment can bo associated with such crude material-very natural and correct. There is no butter way of saying God Save the Queen than by loyally building up flourishing industries which cannot fail to extend and pro'ong the infuence of our empire.

On page 148 we illustrate a very useful new instrument, the invention of MIr Toselli. This instrument, whose construction and application are casily seen from the engraving, is a wreck. ing machine and is eapable of seizing and raising to the surface of the water barrels, cases \&c., in fact anything it can grasp up to the weight of ten tons. When the weight exceeds its capacity it instantly relaxes its hold upon the exertion of the maximum power. One of the most importauts feats yet accomplished by this instrument was the raising of a skiff loaded with pig lead which had sunk in tho harbour of Marseilles.

The skiff had sunk about 300 feet from the wharf. M. Tusell! was sent for and bringing one of his machines he succeededio gripping tho skiff on the first trial and in raising it and the lead bodily to the surface.

THE MOON'S FIGURE AS OB'PAINED IN THE NTERE. OSCOPE.*

In a paper published some time since in the Cornhell J_{2}. gazane, entitled "News from the dioon," a singular argameat, and to my mind a singularly fallacious one, is put forth in confirmation of the figure of the moon as deduced from the calculations of the Continental astronnmer Gussew, of Wilna The article referred to is without signature, but, as the at. thor alludes to his correspondence with Sir Joha Eurschel, be no doubt speaks ex-cathedra (Our readers will, wo think. experience little difficulty in guessing tho name of the author alluded to.)

The figure of the moon shonld be, as proved by Newton, an ollipsoid, her shortest diameter being her polar one, her tong. est diameter that turned towards the earth, and her third dia. meter lying nearly east and wrast, a diameter intermediate to the other two. Newton further found that her shortest diameter would not differ more then 52 yards from her longestan insignificant difference, surcly, in a body whose mean diameter is about 2,100 iniles.

Gussew, however, comes in at this point with at assertion based upon measurements of De la Rue's photographic copies of the moon at her extreme librations, and upon ocular demuostration derived from viewing thesu different perspectives of the toon's image, combined by the aid of the stereoscepe. undertakes to subvert his great predecessur's theory, ant to substitute one of his own, foundied on t^{2} is vory uurehable testimony. He asserts not only that the moon is egg-shaped, its smaller end being turned eartbward, but that the point of thas colossal egg sises 70 milos above the mean level of its surface. Now, it is to the proof of this as derived from stereoscope evidence that I take exception, for reasons hereinafter set forth.
The stercoscopic views of the moon are, as already stated, taken in the opposite stages of her librations, in order to ob. tain greater differences of perspective than would be obtained if taken in the ordinary way, whero the separation of the two pictures corresponds with the averago distance between the eyes of adults- $4 \frac{1}{2}$ in. ; for this, it is avident, would give no more spheroidal appearance when viewed through spectroscopic glasses than is obtained by viewing her by unassisted vision, in which cases she appears as a disc only, and not as a sphere. With the same oliject-that of increasing the stereoscopic illuston (for illusion only it is)-it is not uncommon for photographers, when taking stercoscopic views of distant scenery, to avail themselves of the same means-that of u-naturally increasing the base of operations-and thus effecting a much greater apparent separation of the various planes of distance than really exists. The effect of this is to distort the picture painfully, advancing the middle distance boldly into the fureground--similar points being combined by the sterco. scope much nearer the eyes than if the pictures had been taken in the normal way-whilst the foreground is seen so aear that one feels it in his power almost to reach it with his hand. Another and more objectionable frature of this exnggerated perspective effect is that all near objects are dwarfed; men become pigmes; imposing mansions are reduced to baby-houses, and lofty trees become insignificant bushes-the reason being that those objects, though seen at points mnch nearer the cye, subtend, nevertheless, the same visual angles as those seen at more distant points-points corresponding with their true position in the landscape-for the photographic representations of them are no larger, and thereforo fappearing nearer, and subtending no greater visual angles, the impression apon tho mind is that of smallor objects. Every ono, I think, who has viowed stereoscopic picture: of distant objects, combining middle distanceand foreground, must havo witaessed this distortion.

Now let us apply this prizciple of optics to De la Rue's exaggerated stereoscopic perspectives of the monn, and what is the result?

- Bra. J. Wister, in tho Journal of the Franklin Instituto.

Sir William Herschel sase, in illustration of the effect of stereoscopically combining images of our satellito taken atopposite stages of her librations, "it appears just as a glant might see it, the interval between whose cyes is equal to the distance between the jlace where tho carth stood when one view was taken, and the place to which it would have been removed (the moon boing regarded as fixed) to get the other." Now, this would be very well, provided the picture produced wero for the use of giants formed after the pattern proposed, for they would ece the stercoscopic image under oxactly the same circumstanecs as they would scen tho moon herself in the natural way with their widely separated orgaus-no great chango being required in the direction of the optic axis in combining simalar points of the two perspectives than is required in viewng corresponding points of the moon's surface by unassisted vision ; but when these exaggerated perspectives are presented in a stereoscopo to finite beings like ourselvce the effect 18 magical indeced. Then do near points of tho moon protrade in a most alarming manner, threatening to punch us in the eyes, the whole presenting the appearance of an unasually elongated turkey's egg. Neither the modest 62 yards of the immortal Nowton, nor the more pretentious 70 miles of Guessew, would eatiafy her claims now : nothiag, inderd, less than several thonsand miles would represent the difference between her longest and shortest diameters thus distorted.
Indeed, for a pretty scientific toy, with which De la Ruehas supplied us, this distortion of the moon's image is of lit.le moment. The curious are, no doubt, more pleased with it than it it appeared in its true proportions-for figures gentraily are more admired the less nearly they conform to nature's linesbat that men of ecieuce, even great men, should accept this deluove and distorted image as a basis tor serious investigatun of the figure of our fatellite, conscious of the manner in wheh pittures producing this image are taken-and, though forwarned, should not bo furearmed-passeth ing understand10g. It is but another instance of the too great avidity with which world-renuwned phinlosophers seize upon the most unreliable evidence from which to draw conclusions most important to science, thus shaking the faith of those who have bitherto looised up to them as infallible.

SOME OF THE USES OF MICA.

The increased demand for gas stoves has naturally introduced to a wider notice the really valunble and useful mineral kDown under the name of mica. Evtry schoolboy can pick out the mica in a lump of granite, but it is not so well known that the "glass" forming the front of many kinds of gas stoves is also mics. The minerals which form the group of micas divide readuy into tro divisions: those which are silicates of allumina and an alkall, and those which are sllicates of magnesis. They are all notable for their lustre and for their distinct cleavage, which permits of their being separated into thin sheets. In granite, the plates are rarely feen of a usefor si fe, although in the coarser descriptions of that ror k plates are occasionally found a foot and more in width; but, in limestone formations, it is often found in masses of considerable size, plates having been met with in Siberia several feet in diameter. The micas chrefly met with in rommerce are Muscovite and Lepidolite (or hithia mica) of the first division, and Phlogopite (ihombic mica) and Biohto of the latter division, or magnesian micas. Ot these, the most extensively used in the arts are Muscorite and Phlogopite. The former is manly a silicate of alomina and potash, with traces of iron, fuorine, chromium, etc., which impart colour to the otherwise gray or silver-while plates of mica. The crystals of Muscovite are usually six-sided-the colour varying from black through gray to green, chromium being invariably present in the crystal of the last-mentioned tunt. This variety of mica is proof agannst acids, is very refractory, the thin edge only fasing before an ordınary blowpipe, while the lamine are very tough and flexible. Phlogopite or rhombic mica, as it is sometimes called, is mostly found in limestono, and is composed mainly of silica, alumina, and magnesia, with traces of iron, potash, or soda, and fluorine. Its colour varies from br vn, through brownish yellow, to gray. If it is previously red ied to fine powder, it is attacked by hot sulphuric acid, but like Muscovite, elthough it whitens in the blow-pipe flame and fuses on the thin edges, it is virtually re-

[^1]fractory to anything short of an intense heat. These extraordinary propertios, combined with toughness and elasticity, and the peculiar facility with which it splits into thin shoets, somo of which approach closely to transparency, Ied naturally to the use of mica for windows, and especially to its employment in lanterns. For many years it has bcen used in Russia for windows, and is some parts is still to bo found, though it is of course rapidly giving way to the moro transparent glass. So common, hoivever, was its omployment for this purpose at one time in Russia, that it was freq antly called "Muscovy glass." It is found in Siberia, Sw(den, and Moravis, which also supply the Lepidolite, or littia mica In America it is found in various parts, as North Carolina, New Jer.ey, and Canada. In some coarse granite rocks of the first-named State the mica is found in considerable abundance, and there aro unmistaknble evidences that it was woiked many years ago. The commercial value of mica varies through a wide beale. the large, eound, and clear shects being naturally the highest priced, fetching as much as 40 d . a pound. In the luit d States, where larg: quantitics aro use. 1 for what is called "stove glass," that is, fur the fronte of gas and othergatoves, the utilisation of mica has Leen carried further than in this coont y. The small and waste stuff is there made into a cuarse powder and sprinkled over tar in roof making, fincly ground, it is use I as a lubricant, and is sometimes used in packing deed-loxes and safes to render them fi eproof. The finer shiets aro used for such purposes as the dials of compasses, for the lett rs of fancy signs and the very finest and thinnest pieces are sometimes omployed in lieu of enamel for covering photographs, but one of the principal uses to which the bethe quallies are put is the construction of shades for lamps, the nature of the material rendering its decoration a comparatively cais process :chromolithography ueing extensively employed in this manufacture The preparation of the mica is very easy. When first obtained it is in plates and crystals of varinus sizes, from a quarter of an inch to even occasionally a fuot in thickness, and from aix inches to a fout and upwards in diameter. These plates are dull and opaqne, and when taken to the Wurkshop they are split sufficiently thin to render them seini-t ansparent, when thoy are examined for flaws, and sorted into different qualities. The comparatively thick plates are then taken by the workman and split into the thinnest sheets, a stout knife and skill being all that is required for the purpose. These thin laminw are easily cut with a pair of shears into any desired torm, and are then ready for any further process necessary to fit thom tor the purpose for which they are intended.

The facility with which they can bo bent into various shapts, and the power they possess of rasisting heat, together with their transparency and naturally brautiful appearance, make these thin sheets of mica of pecunia, value in many situations. They have been used as reflectors for some years, and a patent has recently been obtained in the country for an improved process of silvering plates cf mica, the inventor being a resident of Philadelphia. The flexible nature of the material to bo silvered will prohably insuie its introduction into the arts and industrier to a greater or lesses extent, and it is perhaps not impossible that it may be emploged in the manufacture of telegcopes, although it must be confossed that its utilisation for that purpose is rather improbable. In the process recently patented, shects of mica, as free from metallic deposit as can be oblsined, are thoroughly washed in nitric acid, and then rissed in water. They are then placed upright in suitable vats or bath-, being arranged in pairs, back to back, 80 as to expose only one side to the coating solution. This latter is tolerably well known, and is made by dissolving loz. of nitrate of silver in a quart of distilled water, and in a separate vessel 10z. of glucose in a quart of distilled water. When the"silver has dissolved, a small quantity of liquor ammonix is added, and the solution becomes cloudy, the cloudiness disappearing on the additicn of a little more ammonia. When this stage has been arrived at, the two solutions are mised together and poured into the bath containing the mica piates, the bath being placed in a warm room, to facilitate the deposition of the silver. When the mica plates are sufficiently coated they are withdrawn from the bath, thorougl ly rinse 1 in water and stood away to dry, after which they may, if deemed necessary, be coated with spirit vataish.
The mica plates thus prepared may be mounted on frames of tin, shect iron, paper, or plastic composition. Many other applications of these mica reflectors will suggest themselves to our readers though their principal use is undoubtedly for

the victor emmanoel gallery-the great covered street in milan.
illaminating purposes. The inventor of the process claims the right of constructing reflectors and shades in the manner described, but, in asmuch ns the method of silvering is certainly old, and reflectors mado of mica havo been known for yeare, we doubt whether he could succeed in upholding the vallity of hie patent.

TRE CHANNEL TONNEL

The Standard says that the actual position of this scheme at the present time is that the projet de loi has been prepared, and will be presented on the re-assembling of the French Chamber in November by 3. Caillnux, now Mifnister of Public Works, and formerly a member of the Channol Tunnel Committecthe aspect of this Channol Tunn. 1 scheme having thus changed from adverse under the Goversment of M. Thiers to conditions not nnfavourable under that of Marshal MncMahon. Nothing further can bo dono until then to advance matters beynnd their present position.

To ascertain the nature of the chalk and other rocks through which the tunnel is proposed to be constructed, numerous soundings and borings of the sen.bed have been made in a most ingenious manner by means of an iron tube, over which a hollow shot, fitting looso!s, is raised and let fall upon a flango attached to the tube, the end of which is in this way driven Into the substance of the sea-bottom, the core thus obtained giving the required sample of the rock perforated Some hundreds of these borings bave been made, nat a complete geological chart of the Channel constructed from the data. Thesa accurato detals of the stma and their outcrops have enabled the most promirsing line of route to be selected, and wbich is acci lentally very nearly of the Dover and Calais Submarine Telegraph Cable The plan and construction of the proposed tunnel has the joint approval also of M. Duroich, M. Bergeron, M. Lavallay, and other as ociated engineers of eminence. The line of the main tunnel, which i. to be large enough for a double line of railway, is drawn straight from St. Margaret's Bay, South Foreland, to a print viry nearly midway between Calais and Sangatte. In longitudinal section the proposed tunnel presents a slight fall of 1 in 2,640 from the centre towarde either extremilty, and the vertical depth of the highest points of its floor is $\mathbf{4 3 6}$ feet from Trinity high-water mark, and 200 feet beneath the sea buttom itself. From the land levels of the cristing railways the two approaches make loug descents of over 4 nilles, each with gradients of 1 in 80, into the tunnel ends, over 2 miles being under the sea, the total of the whole amount of tunnelling amounting to 30 miles. The grological section given by the engineers 18 made to show white or upper chalk above the gray chalk, unbroken and horizontal, for the whole distanc e, anil the cunnel boring rather above the meridian line of the grey chalk beds. The greatest depth of water over the sea-bed abuve the tonnel is stated to be 180 feet.
Below the railway approaches, and continuous with the floor of the submarine tunnel itself, there will be at each end a drift way leading to vertical shafts ashore for drainage and ventilation. These terminal rhafts and driftings are the preliminary works which it is intended to make as tests for the practicability of the gineral undertaking, and of which, when completed, they will form essential portions The drawings and specifications for them have been duly prepared, but the tenders will not be let until the financial arrangements are completci. The shafts will be 19 feel in diameter, built round with 24 inches of brick laid in cement, and the headings, Which will be driven by maclire, probably Brunton's, will be lined with 14 inches of brickwork, and have interal diameters of 4 fect. 'I'heir form will be horseshoe, with straight sides, and a flat inverted arch below the floor. The estimate for the entire preliminary works-which, to satisfy the amour propre of both nations, will be carried on simultaneously in both counties-is, with all expenses contingent on their execution, someting less than 160,0001 , including the two pamping engines, of 2,000 -horse power each. The total cost of the whole tunnel and itz accessorics is, for the present, put at 10,000, 0001.; but there are those among the engineers who think the prelimiuary works will afford dsta for a much lower estimate.

Fine go'd is found in the bars of Little Salmon liver, about 25 miles from Fort Shepherd, where from $\$ 10$ to $\$ 15$ a day to the hand is being made with rockers. Quite a number of claims have been taken up.

HOW TO READ TIE BAROAETEER.

The barometer, says M. Henzi de Barvilic, in the Journ: des netiats, is only on extremely sensitivo balance, or a mana meter showing the variations of atmospheric pressure. The early makers of one form of the instrument had tho unforto. nate idea of making certain points ≈ 0 the dial with the words " fair," "rain," " storm," \&c.; their e xamplo has been followed blindly, and hence the bad reputati, in of the barometer. The passage of dry winds over our tude naturally causes tho barometer to riso, while dam; winds have the roverse effect; bot it must not be rorgotten that rainy winds in Europe come from the south aest, and are ascondant in latitude-thev rais the air, and in the same degree lighton the barometer: on the contrary, dry winds como from the north and east, are cold and descendant in latitude-they drive the air towards thr surface of the earth, and cause the barometer to fall. He protests against the dictum to bo found in modern books that the barometer is not made to indicate the coming weather, doclares that it shows very well the great atmospheric pertur. bations-the only condition being that wo should learn hor to use it The diurnal course of the sur above the horizon er. ercises its influence on the barometer, it heats the atmosphere, causing ascending currents of air, whith create a fall in the level of the mercury in the afternoon, and a return towards the former level in the ovening. It is evident that the barometer may vary from three distinct causes, by change of alt. tude, under the influence of dry and moist winds, and under the action of the solar rays dependent on the hour of the day These premises being stated, it is not astonishing that two excellent instruments, one placed, for mastance, on the lower and the other on the upper part of a house, should nover agree, Proprietors of certain instruments declare that theirs are tht only barometers to be trusted, ol 1 friends will dispute aboue them-M. de Barville tries to set the matter right. With the present mode of graduation it is rare to find two barometera in the same house marking even the same division of thedial, the instrument which ma ks "variable" on the ground-floor will incline to "rain" on the fifth story, for in a house siof high the difference in the herght of the column of air is aloat 2 mfa Take a small aneroid wheel barometer in your hand says M. de l'arville, and walk up or down a street with a sharp ascent, and sou will find the needie deflect towards "nne" as you descend, and fall as you rise, every 3 uft. representing about a millimetre in the baiometric variation.

French barometers are generally graduated for Paris, acd cannot possibly be correct in places of different altitudps The position of the index 18 altered. The barometer is affected much by latitude, and a little by longitude; the oscillation is altered, aud no change in the index will correct the error.

Suppress the deceptive indications on the dial, and the barometer may be consulted angwhere with profit. When the mercury is rising or talling, the indication of the sama fortells faithfully the probablo weather to be esoected. The only erception occurs when two opposing currents are strugglag against cach other; in such a case the barometer will be scarcely affected, yet the rain may fall suddenly.

Generally, rapid variations of the ins rument indicate change, whon the fall is rapid, rain may be expected; when very rapid, storms. The importance of the atmospheric pertuibe tion is in proportion to the rapidity of the fall of the merculy, but the duration of bad weather is in general long in prupui tion as the fall has been gradual and continuous. If the mer. cury mount very rapidly, the weather is not completely changed; it mounts caore rapidly than it falls, but still there are differences to be observed. In testing the cundition of the mercury by tapping gently with the finger, it is not 8 .fe to acrept the rising of the index as a sign of fine wrathur, 18 must be remembered that the barometer, unless acted upon by à tolerably energetic current, has a marked tendency to rise between 5 o'clock in the afternoon and midnight, w fall between midnight and 5 o'clock in the morning, and to rise again between 5 am . and mid-day.

Importation or Cars.-Railmay carriages to the value of 260,568 dols. were imported into Canada from tha United States during the ifteen mnaths previous to April, 1874 Imports. tion of horse cars during the same period amounted to 21,448 dols. To these sums a duty of 15 per cent. must be added to ive the total cost.

SCIENTIFIC NEWS.

To dissolve india-rubber, no bettur agent can bo employed than sulphuret of carbon, to which must beadded 6 per cent. of andydrous alcohol, 4 product is thins formed which, when sub. jected to evaporation, leavesa residuum of rubber possessing all its primitivo qualitics. It may also be dissolvod by nny of the essental oils, hut the material which resulte from thodr ovaporation is oily and viscuus, so that thoir use has boen ontirely alandoned.
Tus new product of petroleum to which tho name "Vascline" has been given promises to come into use as a vohicle for varions emollient preparntiude, fur whinh it uppears to pose ses. some prculiar advalitages. It is a solid, sumi-transparent jellf, ncutral and free fron tastro or udur, aud it is and to uridurgo no change by keeping. It becumas liyuid ta tumpera. ture of 93 deg. Fuh. The manufactur ss state that it is prepared sinu ly by the evaporation of crude petrolume, and altur. ing the resi luo through \approx nimal harvoal.
Mr. T. Sterry Huac of Boston, introluces improvements in tho precipitation of metallic copper from solutions, so as to obtain a utiliseable material from the agent used. Compound solutions of the protochloride of copper, with sodic sulphate or othor base, are treated rith tin-plate scrap or wasto, whereby the copper is precipated; the allh.ring tin being saved and recovered by a methud of sulution and prectpitation in the form of an oxide of tin.
Froy careful experiments, Dr Richardson concludes that since the red blond globules of the pig, ox, red deer, cat, horse, sheep and gat "are all so mi h smaller than oven the ordinary minimum size of the human red disu, as computed in my investigations, we are now ablo, by tho ald of high powers of the miscroscope and under favourable circumstauceos, positively to distingulsh stains prouluced by human blood from those caused ly the blood of any one of the atimals just enumerated; and this oven after a lapse of five jears-at leastfrom the date "of their primery production." This will ho lmportant in criminal trials.
Hrizinges opposes the opinions of Burdun Saulerson as to epnitancons geaeration. He objucts to hicmetically nealed tubes, whicb, ho fays, contain but a small yuantity of air, and are, ronseqnently, not in a condition favourablo fur the duvelopmont of life Ue prefers to use porous earthunware stoppe.s, or plates fitted closely to the tubes T - a mixtu e of potassium di'rate, maguesium sul, hate, calcium phosphato, starch, pop. tones, and grape sugar, exposed to a temperature of 212 Fahr., barterla appeared; but when a similar mixture was expose to $22^{n o}$ and $23^{n o}$ Falir, no organisms mado their appearanco.
Two plants have recently been found possessed of usoful medicmai qualities. One is a plant of Brazil, named Jaborandi It has a sudorific virtue unequalled by any medicament hitherto known. It is very suitable for those maladies which are treated by cutancous exhulations, such as rheumatism, sciatica, chills, and virulent diseases like small pox and measles. The second plaut is tuberous Ailaatus, which is capablo of checking stubborm diarrhoea, and especially dyaentery. It is the bark of the root which has this virtue in the highest degree. T'nis is bruised in a mortar, with a hittle hot water, and after sifting, the extract is administrated in teaspoonfuls.
It has been proved by M. Paul Bert (bays Les Mondes) that meat does not oxidise and putrefy in compressed air, it only undergoes a change of colour, consistency, and taste. But, on the other hand, muscular and nervous excitability disappear very rapidly in compressed air. Thus the conditions of the two phenomena are different. Again, certain fermentations may be arrosted by oxygen at nigh pressare, the mycoderm of vinegar is destroyed or killed by the action of compressed air. Wine may be preserved from acetous fermentation by submit. ing it to compressed air. It, is necessary, then, to distinguish in fermentation various phenomena belonging to chemical actions, and those belonging to the action of ferments propurly so. called. ML. Bert adds thatcompressed air stops the putrefaction of meat even whero the latter has been impregnated with putrid germe.
Mr. Ateriss, of the Cambridge Strect Works, Birmingham, has invented a process which admits of the filling of articlos of brass with molten iron. I'he balance weights for chan-
dollers, pillars, columns and imperial weights may bo made, advantago boing takon of this process, at a uuch diminiahed cost. It is simply necessary to immerse the brass sholle in water, and the molten fron is then poured in. The sluell cannot of course attain a higher temperature than 212 deg., the boiling polnt of water, while the tomperature of its contente may be about 3000 deg In making imperial weights tho shells are ombedted in iron filinge, the hish conductleg power of which is thus turned to account. This process, simple though it be, is, from a commercial point of view, ono of very great importance, as will be readily understood

Bpactroncopic oliservations of the recent comet appear to have ahown that the tail is furmed of stratified lagers of solid particles, and the nucleus seomed partly surrounded by seversi concentric layers of cometary mattur. Aprupus of these phonomena, M. Barthelomy haso alled attention to what occurs Whin a sphirical body is moved along the sarface of a stall liquid. In front of it there are several concentric felds, behind, arcs of waves tangent to the body at its anterior part, sinu these arcs are limited at the sides by stmight waves converging in the direction of motion Thn presence of a retarding medlum in space may, ho thinks, oxplain the formation of the comot's tall and its stratified arrangement.

A raport from the Burcau of Statistics, Washiagton, gives an nccuunt uf the popalation of the vanous countries of the worl. I. Amoung other detaite, it gives the following as the populations of the 25 largest cities of the world :-London 3, 254.200 ; Sutchan (china), 2,000,000, Paris, 1,851,792; Pokin, 1,300,000, Tschants-chau-fu, 1,000,000; Hangtsckau-fu,1,500, 000 , suagtan, $1,000,0 u \cdot$. Singuan-fu, 1,000,000; Canton, 1. 000,000 , New Y urk, 942,292 ; Tientsin, 900,000 ; Vienna, 834, 284, Beilia, 826,3ł1, Hangкau, 800,000; Tschuntu-fu, 800,000; Calcutta, 794,645; Tokio, (Yeddu). 674,477; Pniladelphia, 674,022, St. Petersburg, 667,963; Bombay, 644,405: Moscov, 611,9iv, Constantinople, 600,000; Liverpool, 493,405; and $s 110$ du Janeiro, 420,000.
A faiend of the late Dr. Priestley (Mr. Hagh Bellas) wrote: "In the summer of 1800 I called on Dr. Priestley to return some bo oks I had borrowed, when ho told mo he hail just received a very curious present from Europo, which he would show me. He took me into his laboratory and pointed to a small pilu of plates of silver and zinc, in alternate layers, with pieces of wet flanncl interspersed, each plate about the size and form of a common playing card. A piece of sraall wiru was ingerted at the top, and another piece near the buttom, and the other ends of th.' wire wore brought together, and there underwont decomposition. 'Now, this is called the pllu of Volta' said the Doctor, 'and here is the electric fluid destruying the onds of the wires. Put the jnint of your thumb to these points and you will feel a slight clectric shock. You need not be afraid; it will not be severe.' I did as he directed, and recoived suceessive slight shocks upon repeated applications to the points." This was the first electric machine brought to America.

Secritiun or tears.-According to Darwin, the phenomenon of weeping is probably the result of some such chain of events as follows:-When manting food, or suffering in any way, children cry out londly, Wike the young of most other animals, partly as a call to therr parents for aid and cartly from any great excrtion serving as a relief. Prolong vi screaming inevitably leads to the gorging of the blood-vessels of the eyc, and this will have lead, at first consciously and a ${ }^{+}$last habitually, to the contraction of the muscles round the eyes in order to protect them. At the same time, the spasmodic pressure on the surface of the eye und the distention of the vessels within the oyc, without necessarily entailing any conscious sensation, will have effected through reflex action, the lachrymal glands. Finally, through the principles of nerve force readily passing alcng accustoned chanuels, association, which is so widely extonded in its power, and of certain actions being more under the control of the will than others, it has come to pass that suffering readily causes the secretion of tears, without being necessarily accompanted by any other action.
A sew machine, which, by the uso of artificial heat, turns out peat fuel in forty cight hours, has for some months been in successful operation in Connecticut, and a contract with a ralroad company for one lot of 5,000 tons is in process of fulfilment.

central avenuf bringr, Newark.
The engravings on page 152 \& 153 illuitrate a bridge recently complete 1 at Newark, Now Jersey, U. S. A., somewhat remarkable, not for any novel features of construction, but on secount of the peculiar conditions which wetinvolved by the site. The engravings are from Enginecring.
Contral Arenue, one of the main new apenues leading out of Newark, is intersected bo the Morris Canal, which, following the crest of the hill west of Newark, to a point north of the avenue, takes a sudden bend and passes through the city, on its way to the Passaic river. It is at this bend that the avenue intersects the canal, and at such an angle, that the boundary lines of the avenue at the point of crossing, measures 270 ft . in length on the south, and 113 ft . on the north side.
The avenue is 8oft. wide, and one point of the commence ment of the bridge 8 is 50 ft is adrance of the other. Besides this at the point of crossing the canal, tro strects inter. sect the avenue.

No pier was permitted to be built in the canal, and a clear headway of loft. over the toning-path was prescribed as one of the necessary conditions. It was necessary, therefore, to construct an unbroken platf rm the foll ares of the streets to be carried, and to do this without interfering with the canal au thorities.
It was first propesed to eff ct this object by the erection of two large girders, but the cost of this plan placed it out of the question. A secund design was then prepared, and carries out as shown in the drawings, the mode being to erect on the longer sides girders resting on independent piers and to croploy these girders as bearings to carry the main truses on one side.
The perspective sketch, as well as the detailed engravinge, will clearly explain the mode of constrection. In the latter the sbatment walls on each side of the cadol are shown in parallel dotted lines, and iu the plan, Fig. 1 , the pusition of the two pi. ris and pier girders carrying the main truases of one side of the bridge are shown Fig 3 is an enlarged viers of one of these girders, which is 55 ft . in length, and 5 ft . 1 in . deep. Hoth are double Warren girders, aud 2ft. wide; the point were the main trusses B and C'take their bearing upon these pier girders is shuwn in Fig. 3. It will be seen that the widest opening across the canal is divided into three spans by trasses each $91,133 \mathrm{ft}$. in lesgib, whilst the smaller opening in traversed by one span of 113 ft . in length. Fig. 7 is a detall of one of the largest floor girders, which is 55 ft . long. It will be noticed that but few of these girders are of the same length, and that none of them are parallel. The llooring is carrid by I-rolled joists 6in. deep, placed about 3 ft . apart uuder the roudway, and 4 ft. apart uuder the side walks. To these joists the planking of yellow pine, 3in. thick, is secured.
Figs. 4, 5 and 6 are details of the main trasses; it will be seen that they are eutirdy of wrought iron, and that pin connexious are used at all the joints.

In conclusion we may stato that the deaign was prepared and carricd out by the Phillipsberg Manufacturing Company, and that the cont of the superstructuro was a littlo lese than $\$ 40,000$.

MEITHOD OFTREATING FURS AND SKINS.

Ata recent meeting of the Society of Arts Mr. Joseph Tuseaud read a paper on a method of Treating Furs and Skins, which enables him to utilise both fur and skin soparately, the furbsing stripped from tho skin and fastened to a propared backing, while the skin is left for use as leather. We give the description in the author's words:-My attention was first drawn to this iuvention in the course of my profession as modeller. It happened thus: I felt much annoyed that, owing to the egebrows of my models being altered from time to time in the process of recolouring, the artist sometimes varied them in a manner which affected both the expression and the liseness, and 1 became anxious to have the hair inserted in such a way that it could bu done under my own superintendence, and romain a fixture so long as the model lasted. In attempting this it was found that the operation was too delicate, aud I was foiled, but the difficulty only made me more anxtous than uver to succeea. In doing this, I little thought that my search would lead me, step by step, to tho discosory of a new trade

I noticed by chance in passing a butcher's shop that the hair on a calf s head was particuarly sleek, and I thought if I could take a piece of hair out bodily, with the roots attached, and place the roots in the wax, I sbould obtain the desired end, but how to do this was the puzzle, but the solution ultimately came. I noticed that the soap which dried on my razor after shaving held the stubble it had taken off somevnat firmly, and then it davened on me that all I required was to with sufficient firmuess place semething on tho hare which would imbed it to enable me to draw the hair out andexpose the roots. I succeeded in finding a means which would hold the hair whilst I poured hot wax on the roots. I then dissolved of the medium in which the hair was imbedded, and those pieces are now lying on thes tablo ior inspection, as the first specimens of hair trans-ferred to a foreign substanre, and yct held in its natural position.

My brother and co-inventor, Mr. Francis Tussaud, suggested indiarubber as a tlexible means to hold the roots and I then 8aw the advantage of u6n ${ }_{5}^{5}$ such a medium to hold the harr as would notiujure the skin, and thus to obtain two articles from one, viz., the furand the leather.

I'showed the result to tho lato Mr. Nicholay. Ho very generousy told me that 1 had opened a very wido door; but it has taken many years to find the cheapest means, as well as to simplify the process, and to mako the material a lasting one.
'line invention may be thus descrived. We introduce in a liquid form on the outside of tho skin a solution of some matter adanted, when the solvent thercof has evaporated, or the matter employed has solidified, to forman artificial skin close upon the natural one, by which to hold the feathers, or hair, or other coverimg thereof at or near the roots, aud in their desired relative position, in order that the skin may be removed without its necessarily beiog destroyed. We first lay the skin inside downwards upon a buard or other suitable surface, and th a apply thercou the solution of artter, which after the evaporation of the solvent, or the solidification of such matter, will, by acting as a temporary artificial skin, serve to hold the feathers, hair, or other coverngr in position during the remuval of the natural skin, takmg care that such matter 18 introduced among the feathers, hair, or other covering of the shan as near as possible to the roots. A solution of shollac in alcohol answers well for tho production of the artificial skia. When the shellac has become dry by the evaporation of the solvent, the skin may be drawn of the inner ends of the frathers, har, or other covering, leaving such held by the shellac. Wo then cleause the projecting roots of any remaining fatty or animal matter, and apply upon such inner cods a coating or solution of indiarubber, or otber suntable adhesive matter. A lining viany suitatule fabric is then laid over the projectiag roots, so as to occupy the place in which the pelt orizinally was. To facilitate the removal of the natural skin from the roots, wo prefer to steep it for a timo in lime water, as is practised by thaners. When shellac is used us the first holding medium, wo remove the same again for re-use, or otherwise, by applying thercto a suitable solvent.

Subsequently we improved on this process, not fundiag the shellac solution to answer commercially, and tro now use other means actiog first on the hair on the natural skin previous to the application of the temporary holding means, and use
glue, size, or gelatine applied in solution, so ns to forn, when cool, a body to hold the hair or other covering in position during the removal therefrom of the natural skiannd the application to the roots thereof of a substitute for such skin.

In carrying out our itr provements we operate upon the barr or other covering and natural skin provious to the application of such temporary holding meane, for the purpose of loosening the one from the other, by subjecting them to the action of lime water or other suitable means, as practised by tauners. If desired the skins may then be washed in water to free them of the superabundant lime or other means by which the hair or other covering has been loosened from the skin, and then, when required, they may be hung up for a time to drain of excess of moisture. The glue, size, or gelatino is then apphed to the hair or other material by pouring it thercon in a flyid or bemi-flud condition, and in sufficient quantity, or by im. mersion of the shin in a bath of such matter. When a sutticieat costing of the glu', size, or gelatine has been applied to the skin to hold the hair or other such covering thereof in correct relative position during the removal of the natural skin. such skin with this temporary holding means applied, is tten lard so as to prevent the holding means from running of until it has become sufficicatly cool or set to hold the hair or other such covering in position, when the natural skin may be pulled from the roots or the hair or other such coveriug, leaving the bair or other such covering held by the glue, size, or gelathe employed as the temporary holding manus with the roots of hair or other such covering projecting therefrom. The matt-r or composition with any suitable fabric to form the artificial skim, will then be applied in a liquid state to such roots of hair or other such covering whilst the hair or other such corering is being held by the glue, size, or gelatine.

The artificial skin may be formad of indiarubber, guttapercha, or compoun ts thercof (vulcanised or otherwise prepared), boiled or other oils capable of beitig rendered saitably dry; or other suitable adhesive matters which may bo strengthened if desired by woven fabrics. Wheu cmploying boiled linsee 1 or other oil, its adhesiveness may be increased by the combination therewith of a small quantity of litharge or other suitable drying or adhesive matter.

In order to render the caontchouc and guttaperchn more lasting and lass affected by changes of tomperature, we cumbine with them sulphur in any suitable manner capable of producing those results, preterriny to apply to the artifi dal skins of caoutchouc or guttapercha a solution of chloride or hypo. chloride of sulphar in bisulphurct of carbon (or other suitable solvent of caoutchouc or gattapercha.) When using bisulphuret of carbon, wo take 40 parts thercof, and add to it one part of chloride or hypochioride of sulphur prepared as neutral as possible, and we allor the solution to remaiu in contact with the artificial skin of caoutchouc or guttapercha a longor or shorter time, according to the thickcess or substance of the article, but wo find that for general purposes a thin sleet is georeall sufficiently charged in less than a minute.

When the caoutchouc, guthapercha, or compoun is thereof, with the fabric or backiog used to form the artificial skin, has become sufficiently set to hold the hair or other such covering firmly by the roots thercof, and the process of vulcanisation or preparing as above referted to has been effected, then the artificial skin with the hair or other such covering thereon is well washed in hot water, by which the glutinous or gelatinous matter which has been employed as the temporary holding medium may be readily r:moved, or it may be removed before the process of "vulcanisation" or "preparing" is cfected. We, however, prefer that the fabric forming the artit. cial akin should bo well washed in water aftor the vulcaniss. tion or preparing above referred to has been empleted
In some case we employ curbonate, sulphate, sulphite, phosphate, acetate, or hyposulphite of soda as a substitute for the animal glue or gelatine. In such cases the salt is employed in a state of fusion or as a saturated solutiou, such that when cool it will set to a sufticient degreo of solidity to hold the hair or other coveriog in correct relative position.

It is well known in the fur trade that large numbers of valuable furs are constantly lost by decay and decomposition of the skins, but by this invention all such may be preserved and utilised; besides this, the good pelts are thes rendered availablo for leather, whilst th. fur is as useful as before. A good neece, if such a term is allowable, may be made up by this mesas out of a number of imperfect ones; and there is a still further advantage, that the fur thus transferred to an artificial
backing is moth and mildow proof, a mattor of no small importa.at', as all fur dealers will admit. The result sives us a fur, withont the hard and thick and heavy leather, placed upon a teature in its nature pliable and impervious to damp, mildew, and to moth; and with flannel or other warm material for a lining, a great convenience is attained.

ACCUMELLATOR BOILERS FOR STEAM TRAMWAYS

l'he engraving on page 156 is explanatory of a system 0 boilers introdnced by hir. Todd. The engraving is from tho Engoneer. The principle upon which the boller is constructed is d_{1}, aribed as follows by Mr. 'lodd.

An easy way of making a furnace boiler which can take care of itself for a considerable time, is simply to givo it a great water capacity and water area. 'This water, in the most perfect and natural manner possible, acts the part of a heat accumulator, as during a long time it gocs on storing up heat within itself, and but very slowly raising the pressure gauge; and again during a lengthened period it gives of heat from its store, while yet only slowly reducing the pressure and water levels. Now, this invaluable action of water within a boiler is not carried to any great extent in ordinary locomotives, as there is in thom no particular uge for it, although on undulating lines it is well kuomn to be of great importance that a boler should contain a large amount of water. Now, locomotive boilers contain 5 cubic feet of water, and 3ft of water area for each foot of grate, and never require attention oftener, nor indced so often, as each ten minutes. It is cvident, then, that if we give six times as much water capacity and wator area, while still keeping the same size of grate, that then as far as gafety gocs we need only attend to the boiler once in sixty instead of ten minutes. For the given size of grate can only develope a certain amount of heat, and as the water is six times greater in one case than the other, it follows that this grate will take six times as long to raiso it to a certain pressure; or, again, that for a certain work the water level will take six times as long to fall as before. Now, the above conclusions are simply indisputable, and so we havo thus a certain meaus of constructing a boiler which, as far as its safety is concerned, shall only require attention each forty or sixty minutes; and yet which during this time will give off the most variable anounts of power. Of course this principle, even would it answer any useful purpose, cannot be applied to large locomotive boilers; but for the production of the very few horsepower required for astreet car, it can bo used with thegreatest ease and convenience.

The power required to propel a 44 seat car, including the Feight of the propelling mechanism with this large quantity of water, will not on level lines exceed 10 indicated hors -power, although more than this will be required to work heavy roads. Then small boilers and engines will give 10 horse power from each foot of grate, but we had better allow the grate of the car boller to contain 1.5 ft ., and with 30 cubic feet of water and 18 ft . of water area-both six times the ordinary l comothe allowanca-wo get 45 cubic feet as the water capacity, and $23 f t$ as the area of water level. The furnace should be of considerable depth, not less than 2ft. below fire-hole, so that before commencing a run it could bo filled with fuel, and then left to sink down as it burn, amay. There must be a water grate to provent chakers, as the bars of this narrow deep furance could not otherwise be cleaned, and as the steam car must work for fifteen or eighteen hours without ever stopping longer than, say, ten minutes at a time. The fuel must be coke or stone coal, to prevent smoke; and as such hard fuel gall not burn wathout a strong blast, a blowing fan must be used, as the ordinary funncl blast cannot bo allowed in a strect. This combination of a fan and hard fuel is also another reason for using a watergrate, as otherwise the firo bars would run together or burn out in a few hours.
This accumulator boiler will bo worked as follows-Before commencing a run the driver will pump his boiler full, and raise stcam well up, sey; to 130 jb ., till up the furnace, and then with the grestest confidence allow the boiler to look after itsclf during the half hour or so roquired to run his journey, during which it may hold its own, but, from its small ginte, will most probably and usually lose a little pressure durigg the run, 60 that at the terminus there will generally beonly, say, 110 lb . or 120 lb . of steam. AnI it is
impossible that the pressure of such a boilor can dangerously rise while running, as however intense the action of the $1 \frac{1}{2} f t$ of grate may be, yet it cannot supply heat both to drive the car and also dangerously to raise the temperature of the 45 cubic feet of water surrounding it. So also is the boiler saf. from danger arising from lowness of water while running, as suppose that not a singlo drop of water enters it duriog the journey, yet still the 27 ft . of water level area is so grent, that the totat ovaporation required for the ontire run will noly bring it down 2in. or Sin. For at 10 lb . of water per indicated horsepower per hour 3in. of evaporation 11.1 give moro than 20 horse power for half an hour, which i-an outside allowance. It might, and of course would, be a matter of convenience to keep the feed pump always partly on while running, yet this is not of the slightest consequence as regards safety, for without any feeding whatever this accomulator boiler will steam a whole run, and even two whole runs, and yet still be as safe from lowness of water as any ordinary boiler. In short, provided that the driver only starts cach run with his ace umulator boiler full of pure town water, it is almost absolutely impossible that accident can occur from either excess of pressure or lowness of water, and, of course, the inspecting engreer should see that this simple precaution is most rigidly adhered to. And thus we can have the very great convenien e of an always powerful furnace boiler, combined with a degree of safety which is practically equal to a fircless receiver

In the eagraving, Fig. 1 shows a boiler for a steam tramway ear, that is to say, a car the driving power of whichis self contamed. Figs 2, 3 and 4 represent a boiler such as mould be fitted to an engine, used for dmwing a train of cars.

BAND SAW FOR IMON.

On page 157 we illustrate from Engineering a band saw for cutting iron, constructed by Messrs. J and J. Rieter, engineers, of Winterthur.

The arrangement of the machine, whach is simplo, is clearly explained in the drawings. The saw band is maintained nt the desired tension by means of the vertical screw, turned by the hand wheel, and on waich is mounted the sliding block carryiag the upper wheel. A further adjustment is also provided at the back of the machine.

It will be seen that the saw is driven by gearing off a second shaft, to which motion is given by a strap and pulley.

ECONOMY OF FOEL IN FURNACES.

M. Foncanlt, in a report to the Industrial Soriety, at Hheims. combats the idea that the smokolessness of a fire can effect a notable saving in the amount of fuel burnt. He alleges also, on the other hand, that a considerable loss of economy is prorduced by smoke-consuming apparatus. He brings in support of his opinion th. long series of observations made by the Industial bociety of "lulhouse, which hare proved that, with the ordinary boiler furnaces, it is only necessary to consume from 125 to 150 cubic feet of air for cach pound of coal, while for the most part furnaces pass twice that quantity If the rraught be reduced in quantity much smoke is evolved, but tho products of combustion, circulating more slovely, part with their heat more readily to the boiler flues It is further proved that the best means of reducing the loss of heat by the chimncy is by the use of feed-heaters in the flue, so as finally to reduce to 200 deg. the products of combustion, which are often discharged as hot as 400 deg. Fecd-water heaters, well ect, will produce an cconomy of from 11 to 20 p. cent. with a reduced draught. The conclusion is that furnaces with large area and suitable feed-heaters are the most economical in all respects. But in urder to obtann the best results much care is needed in stoking. A little at a time and often should the coal bo spread over the front of the fire, and the bright coal pushed back to the briage. At the same time, tho least possible quantity of cold air should be admitted.

Tus works of the Uuited States Iron and Tin Plate Company, Mckecsport, Pensylvania, are in successful operation, manufacturing tin and tern plate. They aro the only works of the Lind in America, and aro under the sriperintendenco of W. U. Davics, formerly manager of one of the largest tin-plate works in Eiorland.

THE BAMBOO.

Λ pamplilet has been bublished at Cairo by the Agricultural Department of Egypt, on the Indian Bamboo, which, it is esid, is being acclimatised there with great success. The tulluwing nutes are taken therefrom.-The gigantic bamboo, which is of colissal dimensions, growing to the height of 20 mitres, with a circumference of 40 to 50 centimutres at the lase (say 65 fect high and 15 to 18 feet in circumference), frum the joint of which, especially those of the middle and upper parto, grow numerous branches with loug leaves, is the must viguurous spectes of the arburescent plant. It was introduced bumu years ago into the gudens of tho Khedive of Egypt, at Ghéxireb, from whence it has been multiplied in two or three other gardens of Egypt. It was so much admired by the Emperor of Brazil, on his visit to the gardens of the Khedive Jast antumn, that he expressed his determination to import it into Brazil, and to cultevate it upon the Imperial estate as a shade for animals during the heat of summer. The gigantic bamboo originates in India and China, and is highly apprecated wherever it is cultivated, being used for posts in parplionsand the houses of the iuhabitants. The hollow joints are ntilised for carrying liquids, for flower-vases, \&c.; and in Chima, and especially India, for bottles and tobacco-boxes, highly wrought and polished, and sold at great pices. The larger stalks are also used for bridges, water pipes, and carts and other vehicles. In fine, the wood is employed in the arts, in a multitude of industries, and fur implements of agricultur This spectes of bamhoo vegetates with such rapidity that it cala almost be said that one can see it grow. Its progres; may be seen from day to day, aud at Ghezireh, it bas been known tu grow 5 inch s in a sindy niglit. In China, criminals, condemued to death ar. subjected to the atrocivun punishment of impalement by means of the bamboo. A humid soil, is congenial to the gigantic bamboo, although it suffers uuder a prolonged inundation. It is proposed in Egypt to cultivate it upon the borders of the canuls in the vast domains of the Khe dive. There is also in the gardens of Egypt another species of bamboo, believed to be the Bambuaa arundinacea of Wildenow. It presents the following characteristics:-The stalks are smaller and shorter than the gigantic bamboo of India; it attans about 12 metres (39 fect) in height; it forms larger tufts or clusters than the great bamboo, and throws out a greater number of stalks, which are furnished with numerons slender and flexuous iranches, bearing ordinarily tolerably large thoras, a little archid at the joints or articulations, and the leaves are smaller than those of the gigantie syecies, biog roundechat the base, Jance-shaped, tapering to a pornt, and a Iettle downy. There is also another spectes of bemboo whah it is proposed to cultrvate in Eggpt. It attains the height of 5 or 6 metres, produces enormous clusters of cancs, about the size of the finger, and makes eacellent props for use in horticulture. A plant of two or three yearis growth will furnish a huadred stalke, formiag a cluster of vast size. Chis species is the Bambsut eduls, so called from the fact that its young shoot, are ed ble, and in China regarded as very nourishing. There is still anotherspecies of bamboo to which the attention of the cultivators in Egypt is called. It is tho black bamboo (Bembus, ngra). It is distinguished principally by its slender branclies, which are of a fine black colour, and from which cancs are manufactured eatensively for exportation. Pins are made from the smaller stems, which are commonly used for writing in Egypt.

As Ill-fated Boleer.-For the following narrative of a wasted lift we are indebted to an American contemporary. It is dificult to imagine a greater concatenation of woes than those whichalected this wretched steam generator. "In a steam. ship boiler worked with a surface-condenser, after a weeh's use, both firc-flues collap, ed cimultancously, although there was plenty of water present. New York engincers had attributed the accident to want of circulation in the water, and alcered the coustruction ot the boiler to that end; but on the return trip the very sume thing happened again. 'To help this soda has been employed, thereby preventing injury from the grease, but producing a violent priming over. Finally, gea water was principally used for feed, and the boiler was no longer injured by the deposit of grease, but was destroyed by incrustation."

DOMINION.

The Detroit Toxsisl.-Work has been discontinued upon the tunnel proposed to be carried under the Detroit river for the purpose of uniting the Michigan Central and the Great Western of Canala Railways. Difficulties which wero developnd by a small exper mental tunnel undertaken for the furpose of ascertaining wha obstacles were to be met with, have 1 ma found to be so yreat as to force upon the minds of the directirs of the Michigan Central a conviction that, if practicable at all, the tunncl would lie too expensive for a private com pany to undertake its construction. A bridge at Detroit a a_{2} pears to le the only alternative, if the business of the vari, ue railroads interested is to find its way across the river withuat a ferry.

Tue Northern Colouization work is to be commenced on the bridge over the Gatineau immediately. The right of why has been granted over the property of Mfr. Scott and Mr Leamy. There seems to be some trouble about the right of way between Hull and Aylmer, owing to the company nerlecting to deposit the plans of survoy. Only the plans to the township line of Templeton have as yut been haniled in, and it is said the county bonds will not bo signed until they are deposited.
A nuvemext is on fuot to sink an artesian well in the ut lage of Tiverton, and already some $\$ 700$ have been subscribd for the purpose. At a recent meeting a proposition was made to bure to the depth of five hundred fect, for $\$ 1,000$, and alter a yersonal canvass of the citizens and farmers, the w.rb will probably be pruceeded with. At present thy d mands tor water are great, as not only families suffer from the scarcity, but mills and factories cannot properly carry on ther work. The vallage is al so in immident danger from fire, haviog nothing in the shape of water-works.

A great improvement is taking placerin the galmon a \cdot herros of Quebec, and in some localities the yield has increased 309 per cent. This result, the Commissioner, Mr. Whitcher, attributes entirely to protecting the fish whilst breeding, and in reducing the number of nets used. The river Moisic has improved greatly, and the beneficial edects of decreasing the netting is proved by the fact, that with 15,000 fatho us of uets in 1859, the Dloisic yielded 75,000 pounds of saimon, whilt in 1873, with ouly 2,500 fathoms of nets, it yielded 204, inf pounds.

The Nanaimo Free I'rcss says:-Mr. Hazlewood, C E , has examined about tro thirds of the route b 'tween French River ane I'embruke, and has found aline very favourable for railmay purposes, offering vers few railway obstacles. The routc ex amined so far passes through a country well wooded rith hardwood, and well adapted for agricu'tural purposes. The opening un of this country by railways will render availab'e for settlement a district far superior to the free grani lands The examination of the balance of the country along this lite will be completed in a fers days.
Captann Benuett is expected to arrive from England shortls to take charge of the copper-works at Bruce Mines. The smelting-works formerly erected are to be put in operation and the mines worked u_{1},on a larger scale than heretofore. Some years ago an immense quantity of ecrap.iron and salt weto laken up for these smelting-works, but no use was made of them. Capt. Bunnett will utilize this material, and if the process proves successful it is expected Bruce Mines will hare s lively time next season. About ten miles from the Bruce, Jr. Leckie, of Montreal, has discovered an extensive mine of very rich iron ore. Mr. Leckic represents a Montreal compang who own 5,000 acres of mining land on the north shore, and the 1 ros mine will be thoroughly explored and tested at onue. Mr. Bell, of the steamer Cumberland, brought down a fine spe cimen of ron ore from the Silver Lake Mine, which is also to be opened and worked. They are down 180 feet in the shualat Mine, and the silver ore is richer than ever. This mint pro mises to eclipse even the Silver Istet.

Geological.-Mir. Richardsoa, geologist, returned to Vic. toria on the 5th inst., from Sooke. He diecovered indicatinns of coal deposits in several places. He visited the old ropper mines, fonnd the tunnel at Beechy Bay filled with water, st cured a few specimens and pronounces the vein of little or 50 value. He will go next to Burrard Inlet, Cowichsn, etc.

RAILWAY MATLEAS.

M. Giffamd, of injector fame, has invented a mothod of fitling railway carniages which eliminates oscillation. The carriago is suspended by powerful springs at each end; and at the trals recently made in the presence of some members of the French Association for the Advancement of Science, the carname was found to be so stendy that reading and writing could be eastly carried on.
Wb:thgholyz Braks.-Up to a recent date, the Westinghouse bruhe has leen under the exclusive control of the engiteer, nuw th can be agpled to the enture train by any person, in any car, while th. train, in case of derailment, also applies the brake to itself, adding an immense impeding force to the obstacles which it encounters.
As cagine on the New Jerbey Midland road has been fitted with a smoke-burning arrangement in the firc-bor. On one of the carly trips of the engino as the fireman opened the furnace door to throw in a shoveful of coal, the gas burst out with such volume and force as to throw him entirely of the engine. In falling the struck on his head in a culvert and was killed. Another fireman was put on in the dead man's place, and in a short time he had his face terribly burned. One would suppose it would now be rather difficult to had a fireman for that engine
Expeamexts recently mado by Mr Forney, of New York showed that the temperature in the smoke-box of a locoanotwe when first starting was 270 deg, and when working at us masmum capscity on a sterp grade and with a heavy train It was as hugh as 675 deg. The average temperature while runutag was, in chreo trinls on different parts of the soad, as folluw.-A verago steam pressure, 9481 lb ; average temperatore, 4998 deg. Average steam presiure, 106 lb .; average temperature, 535 l dex Average steam pressure, 1122 lb .; arerage temperature, 551 deg .

The Albany Express of recent date says:-"It may be noted as an extraordinary occurrence that no lese than 3050 tons of steel ralls for the New York Central tracks arrived here last Fetk. Tho rails are manufactured in Wales, and are of the liarrow and laudworth brands. The following is the order and load of each boat as they arrived: Barge Watson, 425 tons; Erertsen, 420 tons; Town, 200 tons; Freeman, 300 tons; Clay, 250 tons; Ogden, 300 tons; Thomaf, 480 tons; Austin, 600 t3ne, Vau Stautlord, 675 tons. Total 3650 tons." The Bulletn of the -1mertcan Iron and Steel Association adds, "Only a few milcs frum Albany the Troy Bessemer Steel_Works are standing idie fur want uf orders."
Aynva the various articles deposited in the corner stone of the New York New Coal and Iron Exchange, which was laid a few weeks ago, was a document containing the following cunous scrap of history.-"The first lucomotive that ran on a railroad on this Continent was imported from England by this company, was ordered in England by Huratio Allen, assistant eogneer, was shipped from Liverpool, April 3rd, 1829, on board the packet ship John Jay; arrived in New York 17th of Yay, 1829; was sent up the river to. Rondout, and arrived the th of July, 1829; from thence was transported by canal, and armed at Honesdale, July 23rd, 1829 , and on the 8th of August made the trial trip. This locomotivo was built at Etoorbridge, England, and the boiler is now in use at Carbondale, Penn'a."
Rohway accidents in Englandare tame affairs compared with those which occur in our Indian Empire. In Bombay a train tas latipy been driven into a river torrent. An up goods train which left Bir station shortly before midnight on July 25, arrivdabont half an hoar afterwards at the Sewjee Nullah bridge, nd rithout any warning of danger "the engino and thirtyone rehicles next to it went bodily into the Nullah." The oridge had lieen previously injured by the flood, and tho welght of the train caused its immediate desfruction. The driver Hiller and the guard Unaris were drowned, buta European firemas, Joy ce, managed to save himself by clinging for seven bours to the branches of a tree. It is scarcely to be expected bat a catastrophe of this kind could frequontly reward the egligence of English railway officials. Until tho interlocked gstem of signals is established companics must be satisticd filh collisions with luggage trains.

A NEW TUBULAR BOILER WITH INTERNAL FURNACE.

We are not aware of noother firm of boiler which so nearly fultuls the essential conditions of conomy that have beon latd down by our best fcientitic authorities, viz., that tho products of combustion should travel in oppo ite directivn to the current of the water, and combine at the same time the advantages of internal firing. There ran be no doubt that the tend. ency to priming to which vertical boilers as a type are given, is due to restricted evaporating surface. increased by the great distance of the hottert part-the furnace-from the eame, thas genernting the mass of tho steam below, and compelling it to travel a great distance before reaching the stemm space, and so dragging up with it a quantity of water. This is admirably obviated in tho internally fired horizontal boller, which, apart from avoiding the considerable loss of heat from an orternal furnaco, makes the formation of scale less injurlous, by presenting a convex surface to any deposit in minch places where the heat is most intense. The opposite effect is found in all externally fired boilers, and experience has tsught it to be a very scrious drawback. But the horizontal-Cornish or Lancashire-boiler is decidedly somewhat deficient in circhlation of the water, particularly when the fecd-water is iatroduced above the flues, near the evaporating surface, as is now recommended by the associations whose only object is the "security of boilers" from explosion Apart frum this, that type of boiler is dencient in effective heating surf wee when compared with the bulk of water it will hold, and therefore must be made of largo diameter, which is unsuited to high pressure. Multitubulars, however, which overcome this difficulty most completely, impose in many cases difir ulties to cleamag. By a combination of the four features, vie, the horizontal, the vertical and multitubular charactor, with tho internal furnaco, these difficulties are overcome, and we can readily believe that with the boiler of which we illustrate two types aboveand of which a number of various sizes are now working in France and Germany - a very marlsed ecouomy over the "elephant" boiler has been obtained.

With the very inferior coal used in Alsaco and its district an evaporation of nine or ten pounds of cold water per pound of coal is by no means an ordinary result, yet this is the ordinary working data which we'receive from reliable sourcers, not that of mero trials with careful stoking and clean surfaces, which are very apt to mislead. With good cual in a set trial, and the result reduced to evaporation at and trom atmospheric pressure, the above quantity would tut be far from being doubled. Our illustrations represent a view of one of the small boilers, and a section of another of larger size, and it will be scen that in the former no brickwork setting is required, whilo in the larger cae it is very much simplified. The latter also shows a superheating apparatus, E F G It will be seen that an important feature in the boiler is that the tup and bottom covers, R, have boited jnints, and are readily removed, thus affording access to the tubes, B, for cleaning by passing a brush, or something similar, through them. That the deposit in the-o tubes must be very insignificant from their position, and the current of the water, is fully borne out in practice, for most of the impurities are precipitated on the loose plate, L , when the water begins to rise and becomes heated. K and S are the blow-off and feeding pipes respectively, C is the outlet for the products of combustion, after having circulated round the tubes in their descent, and H is a manhole to facilitate examination and cleansing of the tubes outside.

We doubt the advisability of the present tendency to introduce the feed at the hottest part of the boiler, viz., close to the evaporating surface. This practice mast undoubtedly give riso to priming, and also check combustion to some extent by couling the furnace unnecessarily. In the Cornish type this is done to avoid risk of leaky back-pressure valves, and to equalise the differenco in expansion and contraction between the top and bottom in tuo boiler, which latter is, of course, a very good reason. But the type of boiler here illustrated rould not be affected in the same way, and, therefore, the entrance of the feed below its gradual rise, and the heated envelope of the internal flue through cold water being kept away from it, must act very boncficially in point of economy.-lrun.

Fic. :

Fic ${ }^{2}$.

[^0]: - This, and tho succooding articlos undor tho samo titlo, rere ishod simultsncously in the Journal of the Franklin Instituk, Ptir dolphia and in Enoincering.

[^1]: - English Mechanic.

