The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.


Coloured covers/
Couverture de couleurCover3 damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurie et/ou peliiculieCover title mi"zing/
Le titre de couverture manque

$\square$
Coloured maps/
Cartes géographiques en couleur

$\square$
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interio: margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure


Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanciles ajouties lors d'une restaurazion apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiques ci-dessous.


Coloured pages/
Pages de couleur


Pages damaged/
Pages endommagées


Pages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées


Pages detached/
Pages détachées


Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continue


Includes index(es)/
Comprend un (des) index

Title on header taken from: $i$
Le titre de l'en-tête provient:


Title page of issue/
Page de titee de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires: Various pagings.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.



OLD SERIES, VOL. XV.-NO. 4.
NEW SEIIES, VOL IV.-NO.
JANUARY, 1894
PRICE 10 CENTS
\$1.00 P'RKYKAR.


High-speed Engine, Dunamo, Rolling-Mill, Steamshíp, Railroad, Saw-Mill, Gotion-Mill, Paper-Mill, Woolen-Mill, Silk-Mill, Jute-Mill, Rubber-Mill, Sugar-Mill. Fiour-Mill and all Machinery Bearings.

## MAAGINOIIA $M$ OTIAI, CO.

# JOHN LANGTON \& CO. <br> Canada Life Building; Toronto 

ELEGTRIGAL•ENGINEERS - RND - GONTRAGTORS
Complete Plants installed. $-\cdots=$
Plants requiring special combinations of Electrical Machinery a Specialty. conrespondence solactitid.
"DIREGT-DRIVEN" DYNAMOS for large and small plants. SLOW SPEED GENERRTORS AND MOTORS.
Sole Canadian Agents for the Waddell-Entz Alkaline Storage Batteries.


(Canadian Core)
We beg to draw attention to the merits of our

## Solid Core Rubber Covered Wire

This wire has the purest and most homogencous insulation of amy rubber covered wire in the market.
We du not aim to produce a cheap and consequemby an inferior insulation. but we hate spared no expense towards the production of a high grade of wire at a low price. We use no "recovered" rubber or other refuse stock, but only pure rubber compornd. Send s.umple order and test the insulation. Drices lower than for any thee grade.

## THE CANADIAN CENERAL ELECTRIC CO., LIMITED.

Heud Office-6;s to 71 Front Street West, TORONTO, ONT.


Montreal LIsslLated Wire Works.

## J. ROSS, SON \& CO.

mandracturikg op

## INSULATED ELECTRICWIRES

And Wires for Annumiators, Officen, Murmets and Intmermos.

Factorl: $413 /$ Whinam St.,

## MONTREAL.

Orders solicited and carefully executed. J. O. Hur. $180 \pi$.

## E. Oarl Breithaupi

 consulting;Electrical Engineer Graduate in IElecincal linginecring at Johns Hopkms I'nuversty. Raltumore.
. . . . . . . Aftirens : HE:H7,IN: (0NT.


Protected by Canadian farent No. $\mathbf{3}^{8,011}$.
E. C. MOUNT \& CO. 768 Cralg Street, -- MONTREAL.
JOHH A. BURMS, B.A.Sc. Aechanical Encinecer and Mianufacturers' Agent. POWET HARK-SMM-Cuts off any size or inches. This is the moss practical of metal up to $4 \%$ to sthe trade. No slill sequired to run it. When the bas is cut ofilie machine automatikally- lifis the sumfrom the wort and stopx Write for photograph and price.


MDTORS Sole isent for the Ray Electric Works, mUFUS of hamilton, Oazaria
ENGINES Soic Agent for the Arminctoon isima and Brown s.agiber, of liamainos, Oni
Sproahs! in mating foiler maporation and

686 Craig St. - MONTREAL.

## Edeene F. Phillups Elbctrical Works



## ELEGTRIC LICHT WIRE,

Magnet Wire, office and Annunciator Wire, Rubber Covered Wire, Lead Encased Wire, telephone and incandescent cords.
FARADAY GABLES.
RAILWAY FEEDER AND TROLLEY WIRE.
OFFICE AND FACTORY:


## Do you Want

A 30 OR 40 CENT LAMP?

If so, we cannot supply you; but should you prefer a higher priced article, cheaper in the end, and guaranteed for an average life of Soo hours, call upon or address the

## Pagkaro Lamp Coo, Lto. <br> 06 to 100 King Street,

 MOINTEREAI

STEAM USERS
Heniring the aprelces of COMPETENT RNGINEFikS of any rlass, con ohtain sober, intelligent andi mpliable men, by applying to

## camadiar association

stationary encimeers.
Gea. Ilicit. President. 625 Dorchester Sireet Montreal.
J. J. York. Sceretary Montreal Branch, Band of Trade Ruilding, Montreal.

## UsE Something Good PEERLESS OILS

TARE NO OTHER.
MADE. SPECIALI, FOR YOUR USE TIf: peerless trasd is Sfcured iv letters IATENT.
Best Oj! in the matite?. Does better work and mare of it. Saves the Machifery and lasts looger. Try it.
12 GOLD. IEDALSIN 6 YEARS.
Solx Mancyactyrers:
SAMIURY ROGTER d CO. 30 Front Street East, Toronto, Ont.

## CANADIAN

## ELECTRICAL NEWS

Stema lixgnembing Jotrana

## Whe <br> VOL. IV. <br> 潮箱

## INDEX



FIRSTBROOK BROS. Kine st. ETAR, - TOHONTO. manuractimaile or
TOPPIME, BIDE-BLOCKS añ OROBS-ARMB. with for particillaks.


## Columbia Metal

the best anti-friction metal on the market!
Less Friction; Lekss Weak; Lhess Ifatinti in Journal.s: and Le's Dil. Uskit than with Any Othek Metal.
As liquid as water when melted. Once used, always used. Irices right. A TKIAI. SOLICITED.
W. 8. BATE 8 - MEAFORD, ONT.

The F. E. Dixyon Belting Co.
Manuyactukeks or

# LEATHER BELTING 

70 KING STREET EAST, TORONTO.

Headquarters for Electric and Dynamo Belting.

Please mention the Electrical. News when corresponding with advertisers.

STEAM BOILER IMBPECTIOM
AND IMSURAMCE DEPARTMENT

## Steam Boiler du Plate Glass

## Insurance Company

JAMES LAUT, Manager.

- DIRECTORS
E. JONES PARK, Q. C.
. . . President.
F. A. FITZGERALD, ESQ., l'resident Imperial Oil Co. - Vice-President. HON. DAVID MILLS, Q. C., M. P., Ex-Minister of the Interior.
JOHN MORRISON, ESQ., Ex.-Got. British Aimerica Assurance Co., Toronto.
T. H. PURDOM, ESQ., Barrister, London.
J. H. KILLEY, Consulting Engineor.

Jobn Fairgrieve Chief Engineer.

When were your Boilers last inspecied by a comperent engineer? Do you know what pressure your ㅁoilers can safely stand? Is your Steam Gauge registering the correct pressure?
Are your Water (;auges free and in good working order? Is your Safely Valve working properly?
 calamity of an explotion. Prodect iffe and prupeny by inking out one of our Inspection and Insurance lolicies.


FOLL GOVENNMEWT DEPOBIT

## Kay Electric Works

No. 263 James Street N., Hamilton, Ont.

. . . MAAUEACTURERS OF . .

## DYNAMOS

For Arc and . . . . . . Incandescent Lighting.

## MOTORS

From 3s H. P. to 50 H. P. Electro Pating Machines and General Electrical Appliances. Special attention to Mill and Factory Lighting. . . . .


WRITE FOR CIRCULARS.

## NORTHEY MFC. CO.

ETMTICNED and Fire Protection.

## BOILER FEED PUMPS AND PUMPS FOR ALL DUTIES

 CONDINNEERE, BTC.

We also manufacture Horse and Trail Cars of every description.

PATTERSON \& GORBIN.



# ELECTRICAL NEWS 

## STEAM ENGINEERING JOURNAL.

Vol. IV.
JANUARY, 1894
No. 1.

THE OLDEST STEA ERGINE IN THE UNITED STATES.
The steam engine shown in the accompanying drawing was built in 1815 , by James Watt, of Lancashire, England, according to the information furnished us. This probatbly means that it was built by the firm of Boulton \& Watt, formed by the sons of the great inventor and his partner to succeed the original and famous firm of Boulton \& Watt, which terminated its existence in the first year of the present century. The engine illustrated was brought to Savamnah in 1815, and was set un in the rice mill of Messrs. Mcalpin \& McInnis. It has been at work regularly ever since and is still doing daily duty, having been put in good repair two years ago by the Novelty Iron Works, of Savannah.
The engine runs at about 18 revs. per minute and develops about 90 H. P. Its cylinder is 3 : $\times 72$ ins. and it uses steam at 8 lbs . pres. sure. The air pump and boiler feed pumpare each worked from the beam of the enkine. The crank, the shaft and the connecting rod are made of cast iron.
There is good reason to believe that this engine is the oldest stenm engine in the United States that is still doing regular service, and it is quite possible that it is as old as any of those which are still preserved as curiosities. In $1803^{\circ}$ (see Jour. Franklin Inst., October, 1876) there were only five steam engines in the United States, of which two were at Philadelphia, two in New York and one in Boston. Three of these were pumping engines.

Remembering that in 1815 manufacturing industries were still confined to the thirteen original States, and that in any of the Northern States an old machine would be much more likely to be replaced by a new one than in the South, it seems altogether likely the uldest engine at work in the United States, or, for that matter, anywhere in the world, save in Europe. If there be an older one in existence we shall be pleased to make record of it. We are in:debted to Messrs. John Rourke \& Son, proprictors of the Novelty Iron Works, of Savannah, for the drail: -6 from which our illustration is made and information given above. Engincering News.

## QUESTIONS AND ANSWFRS

D. W. M., Drumbo, Ont., writes: I. Where would you advise one to go in order to receive a thorough practical electrical education? 2 What would be the cost of such an education? 3. What time would be required, and what would be the necessary qualifications? 4. Do you know of any college in Canada where they have a special course in Electrical Engineerings?

Answer-1. We cannot undertake to advise you as to where you should go in order to receive such an education as you mention. That is a matier which you must decide for yourself

Some are of the opinion that such an education can le obtained apart altogether from scientific schools. Others believe that a scientific school education in electrical theory is what is tequired; and others, again, that such an education should combine a term in a scientific school with a year or two devoted to practical work in an electrical manufacturing establishment. We rather incline to agree with the latter opinion, and believe further, that an electrical education should be founded upon a thorough knowledke of cogineering and mechanics. An eminent electrical arathority recently made the somewhat startling statemen that an electrical engineer should be one-tenth clectrical and nine-tenths me chanical. We would advise our correspondent to read the paper read by Mir. Merrill before the Canadian Electrical Association at its last meeting, to gether with the discussion thereon. By this means he will learn the views of a number of persons prominently identified with the electri cal business. 2 There is a course in Me chanical and Electrical Enginecring at the School of Prac tical Science Toronto, and at MicGill Univer sity, Montreal. At Toronto the course extends over a period of three years, and the cost to the stulent, including the neces. sary books and
instruments, is $\$ 250$. 3. In order to enter upon this course students must have passed a University matriculation examination or a junior leaving examination at the High School. In case the student has had a year's experience at mechanical work in a manufactory, he will be admitted on passing a special examination in Mathematics and English.

## MONTREAL ELECTRIC CLUB.

Dec. 4 th. - At the regular meeting on this date, Mr. John Smillie read an entertaining paper on "P'ioneer Electric Lighting in Montreal" for which he was given a vote of thanks. At the suggestion of a member, it was decided to tarie a question box in which the members could deposit questions which they desired to be answered.

Dec. 8 $_{\text {th. }}$-Mr. J. Gough delivered another of his series of papers on the "Philosophy, Application, Construction and Improvement of the Steam Engine, for which a vote of thanks was given him, debate was then held on "Alternate versus Continuous Current for Transmission for Power and Lighting a distance of Nine Miles." Messrs. H. W. Wondman and H. Ritchie supported the aliernate current, and Messrs. W. 13. Shaw and C. Iesrand, continuous current. After an interesting debate in which the merits of each system were well set forth, the question was put to the meeting and was decided in favor of the altemate current by a small majority.

## ON LIGHT AND OTHER HIOH FREQUENCY PHENOMENA.

## If Nikola Trat.A.

(Continart.)
ON EL.FCTRICAL K\&्SONANCF...
The effects of resonance are being more and more noted by enginects, atha are becoming of gieat importance in the practical operation of apparatus of all kinds with ailiemating currents. A few general remarks anay thetefore be made concerning these cfiects it is clear, that if we succeed in employink the effects of resonance practically in the operation of electric devices, the return wire will, as a matter of course, become unnecessary, for the electelc vibration may be conveyed with one wire just as well,

fig: :\%
ÜIliting the Heatince Effect of Conduction CUKRENT AND gON AARHMENT.
and sometimes even better, than with two. The question first $t 0$ answer is, then, whether pure se.onance effects are producible. Theory and experiment both show that such is impessible in Nature, for as the oscillation becomes more and more vigorous the losses in vibrating hodies and environing media rapidly increase and necessarily chect the vibration whick otherwise would go on increasing forever. It is a fortunate circumstance that pure resonance is not producible, for if it were there is no telling what dangers might not lie in wait for the innocent experimenter. But in a certain degree resonance is producible, the magnitude of the effects being limited by the imperfect conductivity and imperfect elasticity of the medin, or generally stated, by frictional losses. The smaller these losses, the more striking are the effects. The same is the case in mechanical vibration. A stout steel bar may be set in vibration bv drops of water falling upon it at proper intervals; and with glass, which
attributed, but are seluom due, to true resonance, tor 3 error is quite easily made in this respect. This may be undoubtedly demonstrated by the following experiment. Takc, for instance, two large insulated inetallic plates or sphetes, which I shall designate $A$ and B, place them at a cerain small distance apart, and charge them from a frictional or influence machine to a potential so high that just a slight increase of the difference of potential between thent will cause the small air or insulating space to break down. This is easily reached by making a few preliminary trials If, now, another plate-fastened on an insulating handic, and connected by a wire to one of the terminals of a high tension secondary of an induction coil, which is maintained in action by an alternator (preferably high frequency)-is ap. proached to one of the charged bodies $A$ or $B$, so as to be nearer to either one of them, the discharge will invariably occur between them; at least it will if the polential of the coil in connection with this plate is sufficiently high. But the explana. tion of this will soon be found in the fact shat the approached plate acts inductively upon the bodies $A$ and 13 , and causes a spark to pass belween them. When this spark occurs, the charges which were previously imparted to these bodies from the influence machine must needs be lost, since the bodies are brought in electrical connection through the are formed. Now, this arc is formed whether there be resonance or not. But even if the spirk would nok be produced, still there is an alternating E.M.F. set up between the bodies when the platr is brought near one of them; therefore, the approach of the plate, if it does not always, actually will, at any rate tend to break down the air space by inductive action. Instead of the spheres or plates A and B we may take the contings of a Leyden jar with the same result, and in place of the machine, rhich is a high frequency alternator preferably, because it is more suitable for the experithent, and also for the argunient, we may take another Leyden jar or battery of jars. When such jars are discharging througb a circuit of low resistance the same is traversed by currents of very high frequency. The plate may now be connected to one of the coatings of tie second jar, and when it is brought near to the first jar just previous!'y charged to a high potential from an influence machine the result is the same as before, and the first jar will discharge through a small air space upon the second being caused to discharge. But both jars and their circuits need not be tuned any closer than a basso profundo is to the note produced by a mosquito, as small sparks will be produced thoough the air space, or at least the latter will be considerably tnore strained owing to the setting up ot an alternating E.M.F.by induction, which takes place when one of the jars begins to discharge. Again, another ermor of similar nature is quite easily made. If the circuits of the two jars are run parallel and close toxether, and the experiment has been performed of discharging one by the other, and now a coil of wire be added to one of the circuits whereupon the experiment does not succeed, the conciusion that this is due to the fact that the circuits are now not tuned would be far trom being safe. For the swo circuits act as condense! coatinks, and the addition of the coil to one of them is equivalent to bridging them, at the point where the coil is placed, by a small condenser, and the effect of the latter might

## FOL'R KINDS CF IIGHT EFFEÇTS BY HIGH FREQUENCY CURRENTS OF HIGH POTENTIAL.

is more perfectly elastic, the resonance effect is still more remarkable, for a gollet may be burst by singing into it a note of the projer pitch. The electrical zesonamee is the more perfectly attained, the smaller the resistance or the impedance of the conducting path, and the more perfect the dielectric In a Leyden jar discharging through a short, stranded cable of thin wires these requirements are probably best fulfilled, and the resonance effects are, therefore, very prominent. Such is not the case with dynamo machines, transformers and their circuits, or with commercial apparatus in general in which the presence of iron cores complicaies or renilers impossible the action. In regand to Leyden jars with with resonance effects are fiequenlly demonstrated, I would say that the effects observed are often

be to prevent the spark frum jumping through the discharge space by diminisbing the alternating E. M. F. acting across the sime. All these remarks, and many more which might be added but for fear of wandering too fat from the subject, are made with the pardonabic intention of cautioning :he unsuspect ing student, who might gain an entirel; unwarranted opinion of his skill when seeing every experiment succeed; but they are in no way thrust upon the experienced as novel observations.

In order to make reliabie observations of electric resonance eflects it is very desirable, if not necessary, to employ an alternator giving currents which rise and fall harmonically, as in working with make and break currents the observations are not always trustworthy, since many phenomena, which depend on
the rate of change, may be produced with frequencies widely different. Even when making such obseivations wilh an alternator one is apt to be mistaken. When a circuit is connected to an alternator cliere are an infinite number of values for capacity and self-induction which, in conjunction, will satisty the condition of resonance. So there are in mechanics an infinite number of tuning forks which will respond to a note of a certan pitch, or loaded springs which have a definite period of vibration. But the resonance will be most perfectly atiained in that case in which the motion is effected with the greatest freedom. Now in mechanics, considering the vibration in the commun medium-thit is, air-it is of comparatively litele imporance whether one tuning fork ie somewhat larger than another, because the losses in the air are not very considerable. One may, of course, inclore a tuning fork in an exhausted vessel, and by thus reducing the air resistance to a minimum obtain better resonant action. Still the difference woulit not be very great. But it would make a great difference if the tuning for kwere itmmersed in mercury. In the electrical vibration it is of enormous importance to arrange the condition so that the vibration is effected with the greatest freedom. The magnitude of the resonance effect depends, uncler othewise equal conditions, on the quantity of electricity set in motion or on the strength of the current driven through the circuit. But the circuit opposes the passage of the currents by reason of its impedance, and, therefore, to secure the best action it is necessary to reduce the impedance to a minimun. It is impossible to overcome it entirely, but merely in part, for ohmic resistance cannot be overcome. But when the frequency of the impulses is very great, the flow of the current is practically determined by selfinduction. Now self-induction can be overcome by combining it with capacity. If the relation between these is such that at the frequency used they annul each other, that is, have such values as to satisfy the condition of resonance, and the greatest quantity of electricity is made to flow through the external circuit, then the best result is obtained. It is simpler and sefer to join the condenser in series with the self-induction. It is clear that in such combinations there will be, for a given frequency, and considering only the fundamental vibration, values which will give the best resull, with the condenser in shunt to the self-induction coil; of course, more such values than with the condenser in series. But practical conditions determine the selection. In the latter case in performing tine experiments one may take a small self-induction and a large capacity or a small capacity and a large self-induction, but the latter is preferable, because, it is convenient to adjust a large capacity by small steps. By taking a coil with a very large selfinduction, the critical capacity is reduced to a very small value and the capacity of the coil itself may be sufficient. It is easy, especially by observing certain artifices to wind a coil through which the impedance will be reduced to the value of the obmic resistance only, and for any coil there is, of course, a frequency at which the maximum cursent will be made to pass through the coil. The observation of the relation between self-induction, capacity and frequency is becoming important in the operation of alternate current apparatus, such as transformers or motors, because by a judicious deiermination of the elenients the.employment of an expensive condienser becomes unnecesary. Thus it is possible to pass through the coils of an alternating current motor under the normal working conditions the required current with a low E. M. F. and do away entirely with the false current, and the larger the motor the easier such a plan becomes practicable; but it is necessary for this to employ currents of very high porential or high frequency.
In Fig. 20 I is shown a plan which has been followed in the study of the rezsonance effects by means of a high frequency alternator. $C$ is a coil of many turns, which is divided in small separate sections for the purposes of adjustment. The final adjustment was made sometimes withafew thin iron wires (though this is not always advisable), or with a closed secondary. The coil $C$ is connected with one of its ends to the line $L$ from the alternator $G$, and with the other end to one of the plates $c$ of a condenser c ct, the plate (c') of the latter buing connected to a much larger plate $\mathrm{Y}_{\mathrm{s}}$. In this manner both capacity and selfinduction were alljusted to suit the dynamo frequency.

As regards the rise of potential through resonant action, of course, theoretically, it may amount to anything since it depends on self induction and resistance, and since these may have any value. But in practice one is limited in the selection of these values, and besides these, there are other limiting causes. One may start with, say, 1,000 volts, and raise the E. M. F. to 50 times that voiue, but one cannot start with 100,000 and raise it to to times that value, because of the losses in the media, which are great, especially if the frequency is high. It should be possible to start with, for instance, two volts from a high or low frequency circuit of a dynamo, and raise the E. M. 5. is many hundrect times that value. Thus coils of the proper dimensions might be connected each with only one of its ends to the mains from a machine of low E. M. F., and though the circutt of the machine would not be closed in the ordinary acceptance of the term, yet the machine might be burned out if a proper resonance effect would be obta ned. I have not been able to produce nor have I obscrved with currents from the dynamo machine, such great rises of potential. It is possible, if not probable, that with currents obtained from apparatus containing iron, the dis-
turbnting infinence of the latter is the cause that these theoretical possibilities cannos be realized. lut if such is the case, I attribute it sotely to the hysteresis and Foucault current losses in the core. Generally it was necessary to transform upwad, when the E. M. F. was very low, und usually an ostinary form of induction coil was employed, but sonietimes the arrangement illustrated in Fig. 20 II has been found to be convenient. In this case a coil $\mathbf{C}$ is made in a great many sections, a faw of these being used as the primary. In this manner both grimary and secondary are ndjustable. One end of the coil is connected to the line $L_{1}$ from the alternator, and the other line, $I_{n}$ is connected to the intermediate point of the coil. Such a coil with adjustable primary and secondary will be found also convenient in experments with the distuptive discharge. When true resonance is obtained, the top of the wave must, of course, ve on the free end of the coil, as, for instance, at the terminal of the phosphorescence bulb B . This is easily recosnized by observing the potential on a point on the wire $w$ nearer to the coil.

In conncction with resonance effects and the problem of transmission of energy over a sinkle conductor, which was previously considered, ! would say a few words on a subject which constantly fills my thoughts, and which concems the welfare of all. I mean the transmission of intelligible signals, or perhaps even power, to any distance without the use of wires. I imb becoming daily more continced of the practicability of the scheme; and though I know full well that the great majority of scientific men will not believe that such results can be practically and immediately realized, yet I think that all consider the developments in recent years by a number of workers to have been such as to encourage thought and experiment in this direction. My convirtion has grown so strong that 1 no longer look upon this plan of energy or intelligence transmission as a mere theoretical possibility, but as a serious problem in electrical engineering, which must be carried out some day. The idea of transmilting intelligence without wires is the natural outcome of the most

recent results of electrical investigations. Some enthusiasts have expressed their belief that telephony to any distance by induction through the air is possible. I cannot stietch my imapination so far, but I do firmly believe that it is practicable to disturb by means of powerful machines the electrostatic condition of the earth and thus transmit intelligible signals and perhaps power. In fact, what is there against the carrying out of such a scheme? We now know that electric vibration may be transmitted through a single conductor. Why then not try to avail ourselves of the earth for this purpose? We need not be frightened by the idea of distance. To the weaty wandeter counting the mile posts the earth may appear very larke, but to that happiest of all men, the astronomer, who gazes at the heavens and by their standard judges the magnitude of uur globe it appears very small. And so Ithink it must seem to the electrician, for when he considers the speed with which an electric disturbance is propagated through the earth all his ideas of distance mus: completely vanish.
A point of great importance would be, first, to know what is the capacity of the earth and what charge does it contain if electrified? Though we have no positive evidence of a charged body existing in space without other oppositely electrified bodies being near, there is a fair probabili!y that the earth is such a a body, for by whatever proress it was separated from other bodies-and this is the accepted view of its origin-it must have retained a charge, as occurs in all processes of mechanical separation. If it be a charged body insulated in space its capacity should be extremely small, less than one-thousandth of a farad. But the upper strata of the air are conductung, and so, perbaps, is the medium in free space beyond the atmosphere, and these may contain an opposite charge. Then the capacity might be incompaıably greater. In any case it is of the greatest importance to get an idea of what quantity of electricity the earth contains. It is difficult to say whether we shall ever acquire this aeceswif; knowledge, but there is hope that we may; and, that is, by means of electrical resonance. If ever we can ascertain at what priod the earth's charge, when disturbed, oscillates with respect to an oppositely clectrified system or known circuit, we shall know a fact possibly of the greatest im-
portance to the welfare of the human race. I propose to seek for the period by means of an electric oscillator, or a source of electric altermating currents. One of the teminals of the source would be conected to earth as, for instance, to large surface.
(Tode Continuat.)

## CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.

ruad tis matser for publication in this ibepantanem not later llan atse ash of each mooth.

ONTARIO ASSOCIATION OF STATIONARY ENGINEFRS.
A mecting of the Executive Board of the above Association was held a fortnight ago in Shaftesbury Hall, Toronto. There were present: A. E. Edkins and A. M. Wickens, Toronto; Robert Dickenson and K. Mackie, Hamilion: A. Anses, Brant ford; James Devlin, Kingston; Fred. Mitchell, London, and S. Poltet, l'eterboro'. It was decided that in view of the feeling existing throughout the Province, an effort should be made to induce the Legisl ture at its next session to amend the present Engineers' Lacense Act in such a way as to make it compulsory on all persons in chatre of steam plants, other than farm enjines or very small plants, to guve proof of their ability to safely manase the same.

MONTREAI. NO. 1.
At the last regular meeting of the above Association a resolu. tion of condolence with the family of the late Mr. W. Wilson, a member of the Association, who was recently killed at the rolling mills, was passed.

Mr. P'eter H. Cowper, mechanical superintendent of the Canadian Kubber Co., recently presented to Nuntreal Assocration No. 1 a model of at steim pumping enkine made by himself, the rylinder of which has i small glass window through which the action of the water can be seen. liews of the engines of the Steamship Lucana, were also presented to the Association by Mr. Hugh Vallance.
hamble tos assoctation so. 2.
The meetings of this Association of late have been of a particularly interesting and instructive character, espectally the one held on the 1 th of December, on which occasion Liro. l'eter Stott read a valuable japer on "Ceninfugal Force", illustrating the same in an able manner. The Assoctation has appointed a committee to provide papers and subjects for discussion at the monthly open meetings throughout the winter, and I think other Associations would find it to their adsantage to do the same.
W.a. Norris, Rec.-Sec.
ottalla no. 7.
A member of the above Association, under the nom de plume of "1'rogress," writes On December 12 th Ottawa No. 7 held its regular neeting, with the l'resident, Bre. ]. H. Thompson, in the chair. Althoush a smatl number of engmeers wete present, It tumed out to be one of the most interesting and instructive meeting's since organization. The mutine business is generally over in a short time, as every member is anxiously waiting for "Good of the Order," cither to take part or get information from discussions on engineenns.

The subject taken up was "The best methods of finng coal." At first the question did not recelve much attention, but when some expenenced hands stirred it up, it was clear to everyone to be of the most vital anportance to engineers and steam users-for the employer should appreciate the services of the man that will run his plant the most cconomically-and as the fuel bill plays at prominemt part in connection with the expenses of an engincer's department, it was elaborately demonstrated that every engineer should necessanily be thoroughly acquainted with different kinds of fuel and how to treat them during combustion.

Some veleran firemen drew attention to the large amount of fuel wasted in cleaning out a fire, when one made a sughestion to that effect. He said the general way is to shove the good coals off the clinkers to the back of the fumace, and rake the front ou:, and then pull the good coals from the back on the uncovered bars to the front. At this point he explained the advantage of having a laver of green coal on the fromt of the bars before draning over the hot coals: it prevental a vast amount of ccmbustible from dropping into the ash pit, to be atierwards thrown away as refuse.

After this question had been made as explict as possible under the circumstances, lbro. Peters sad he had experienced some difficulty in keeprng up sicam, and wanted to know if the cause should be attributed to some alterations made in the furnace. In ansuer to questions is to the grate and heatung surfaces, and the consinuction of the badere-wall, he sind the latter wras $7^{\circ}$ or $\mathfrak{S}$ from bmiler, when it was sugiested that he should put in another course of bncks to make $144^{\circ}$ or $5^{\circ}$. which would keep the thanes in cleser contact with the boiler.
At this point Hm. Neinll went to the blackboard to make a rou;h sketch of boiler setting, showing the bndge wall, and that the fimonng should be bu.lt parallel to the bosler or closed in touards the back end.
To this lira Rubert took an opposite tricu, saying that from the brudge wall the thoar should be sloping down to t. abick, so as $t 0$ form a good combustion chamber, and more espectally: when soft coal is used: and the distance between bndje wall and boiler should in no case beless than ien inches. In his
opinion a bridge wall was never intended to steer the gases against the boiler, but simply to form the back of the furnace, and retain the coal upon the grate. In support of bis contenton he quoted some pood authorities.

Bro. Wensley endorsed this view, but as there is a wide dif. ference of opinton, some thought it should be left open to a fair criticisin by engineers of other Associations or by any one interested in engineering.

Before the meeting was closed the P'resident gave notice of a special meeting on December 14th, at which Mr. Thomas Stewart, Chief Mechanical Engineer for Messrs. McLaughlin Bros., of Amprior, was admitted to membership. Ottawa No. 7 feels proud to be able to boast of such an acquisition, as Mr. Stewart is widely known to be an indefatigable worker for the caluse and welfare of engineers.

At our next and last meeting in December there will be two more initiattons, and we wall also elect our officers for 1894.

The Londen Association will in future hold its meetings on the first Thursday and last Frday of each month. Mr. Wiltiam Mieaden, 533 Kichmond Street, has been elected secretary, wice Mr. George Taylor.

## ENGINES FOR ELECTRICAL WORK

## Editor Caxadiax electuat Nexs.

Dear Sik -Ms. W. T. Brown's letier of the 35 th November on the subject of engines gives one the impression that be considers the long stroke engine challenged, and feels called upon to defend $n$, as opposed to the short stroke engine. 1 am sorry if Mr. Hrown orothers of your readers have construci my letter, in your November number, as edther condemning the long stroke engine in a general sense, or advocating the bigh speed engine as superior to it for all ercumstances. Ifrankly staited that the loog stroke engine will give somewhat beter comnomy than the hagh speed engine under best canditions as to the amoant and regularity of load, but you will remember that my letter was called forth by your articie treating of engines for Elec. tnc Rallway work, and 1 atternpted to discuss the spectal features of the high speed engine, particularly with refereace to this kind of work. In regird to the lang stroke engide. I will go furber, in order to leave no doubl as 10 mig position tn the matter. and say that i believe there are circumstan. ces where, the work being steady and regular in amount, speed of the dnven gearing slow and space unlimited, the slow speed engine may be better 2dapted to the work than the high speed engine, as at present constructed. But 1 think it is now pretty penerally, if not univenially conceded by the best authorities on stom engroecring that the best higb speed engines bave reacted a state of perfection where they may be selected for such circum. stances as they are adapted to. withous fear of tailure cither from excessive wear or breakege In confirmation of this, I will make only one of two references, although a great many more could be given.
1sk. 1 would reler your readers to a report, read at the Milwaukee Coovention of the Strect kaitway Association, by a committee consisting of $E$ G. Condeale, L H. Mclayyre, 20d F.S. Pearson. appointed to report on power bouse engines, an abstract of which may be found in the Electrical Worid of Oecobei asih. 1893 . These gentlemen have all bad extensive expencoco in engines for clectric work and are apparently unbused, as therr reports show. They say "for small plants to ren from ten to fiftern cars, simple high spoed engines, belted direct to generators, are unqueshonably the proper chotec for iwenty to fifty cur plauts, compound engines, with condensing appuratus where it is possible , with tandem compound engines for the smaller plants, and cross-compound engines for the larger ones. geared direct to pencrators. will probably be found most economial ; whle for the larger s) stems compound and tmple expansion condensing engines. using steam al a high intial pressure, and enther driting a connicrshant of coupled direct to generator. whichever the conditions of the ase will warrant. will belound 2 proprt selection." It will be noted that white bigb spoed engiber are distinctly recommeoded for stall planis. and for medium site plants. engires geared direct $\mathbf{i o g e n c r a t o r . ~ w h i c h ~ m u s s ~ n e c e s s a r i l y ~ b e ~}$ cuther high speed or medrum spoed. and cren for rery barge plants a choice is teft open to engines either beited to countershaft, wbich presumably would be low speed, or durect connected to xenerator, which wonla be bigh or modium speed.
2ad. 1 would refer to a paper read by Mr. Charles H. Emery. Pth.D. be Tore the seventy-fift meening of the American lostitute of Electrical En. gineers on "Tbe Cost of Steam Powe Prodaced with Fiogines of Differens Types Under Practical Condituons." and a lecture by the sanre aunthor before the Sibley College on ". The Cost of Stesm Power," 20 atstract of which may be found in the Eladrical World of April ast. 1893 This paper is a very complete estimate, based on practical experience, of producing 500 H . P. for oce year with deven differeal types of engraes, embraeing sumple. corppound, and unple expansion. cosdensing ans non-condensing. both high speed ant low speed, and iacludes ibe firs cost of engimes, boiters. and foundations, cort of fuel with rerious grades of coal, and repairs, inssrapre and interest. In regard to ithe itern of repairs Dr. Emery makes ibe dificrence in coss between high and low sperd engines 43 cents per horse powrer pet jear in faror of the low speed, or aot quite $x$ pet cent on he ioral coss per borse poner per Jear for jos days. ior erults are dot taked from the best trigh speed engines as there are trany inferior opes in tose probably more high speed eagines, 25 ibere are many inferior obes in tase, probably more
ithan of the The total cost of producing a borse powter for one year to the ranous classes of engines. including first cost, weis and tear, fuel, altendance and other items, while 11 shons ihat cost wear and rear. luel. allenasse. and other items. while ti shows that the low speed engine in each class till produce a harse power stikhty chexper than ine high spere cngine of the satme casss, also shows that a high speed non-condensinf compound is cheaper in trss
cosi and total oox per horse power, includirg wast and tear. fued, etc., thia a low spoed simple engine; and 2 bigh speed comprond ropdensing engine 2 low spoed simpte engine: and 2 aigh sperd comprand condensing engine is cheaper in ifrs cost and ruaninf expenses ihan a low spped simple conin firs cost and toral cenning expenses than a stow speed compound conin firs cost and toxal cenning expenses than a stow speed compound condensing engine. so ithink 11 is sate to say that the choire of engine should be entarely regulated by the concitions of the case as it is crident that under
some creumatances it may be cheaper and betier to use bigh speot engipes, somae creamsances it may be cheaper and better 10 use bigh $s$
Now jost a few woids in reference to scme of the arguments used by 315. Brown in criticasm of ray premoes letier. He admits: ${ }^{-1}$ it is troe that the bigh speded enginc tas more opporianities to corret the diftrence of speed caused of vanous lands. tbem a: or aceosns of the lighiness of its parts inen al a ioss to under siand just what be means by thrs Does he mean that the pistoo, cross-

Ine power? If so I would rencind him that it is not simply the weight but of an engine while in moction. Inertialis a resuls of both weigh or steadiness
of sperds of an engine while in motion. Inertialis a resuls of both weighe and speerds the balance belancing qualities than a slow speed engine. Does be mean the balance wheel? If so, the high speed engine has that in its favor too, because, while the wheel or wheels, of a high speed engine are much smaller and lighter than inaslow speed engipe, their higher rate of speed gives them more balancing power. If he will take the trouble to make the calculation. he will find, that a wheel or wheels six feet in diameter, we ghing say 4000 lbbs . running at 250 revolutions per minute, will have considerable more balancing power than a wheel thirteen teet in diameter, weighing say 9000 Jbs . running 60 revolutions per minute.
Mr. Brown next advises me to make proper enquiries and 1 " will find
that there are slow speed engines which have very that there are slow speed engines which have very sensitive sovernor atlarge number of long wery clowely." etc. I am pleased to say I have seen a closely as long stroke eagines are capable of requluting, but ithavating as seen any that, when calied upon to run strect raitway zenerators, where yet oad varies from 100 to 500 per cent. in less than one revolution of the en cine, as it frequently does in small plants, would resulate closely at all : and $t$ is self-evident that an ensine runningsiy 60 to 80 revolutions per minute with trip cut-ofi cannot be made to do it. The wrnter next adviens per minute trip to the United States to find "that in t errett many caees the high sped engines have been removed to make room for the low speed ones. it is not uncommon to find electric light and powe stations where they remored ito and even three high speed engines to put in one low speed, and hy doing so have saved nearly one-half of their boiler capacity " speed, and he concludes that the change is made that they may have bettrer econcmy and fewerer repairs I think he is perfectly rieht in his conclusion, so far as economy is repairs. d, and I do not think it will be necescary to so far as economy is concernexamples of the same procedure, with the same result, because it is perfectl well known that one large engive, of either the liesh or slow speed it perfectlr do better than a number of small engines, if the load is fairly unifpe, wal suited to the larger engine, and there are many cad is fairly uniform and plants but for other purpoes, and there are many cases, not only in electric plants bat ior other purpoaes, where small engines have been replaced by larger engines, as the work increased and the requirements became better that each class of engine has special. This zoes to support my contention inat each class of engine has special advantages for certain cases. I have in my mind a case where a competent expert. after making careful tests of high speed ones, althout laying aside a long stroke engine and using two high speed ones, although this is perhaps exceptional, because when the chande is made it is usually in the direction of using larger units of power ander more uniform lond
Mr. Brown stales that excessive clearance is the cause of considerable loes in the high speed engine, and he is probably correct in regard to many of the high speed engines in use, but it may not be out of place to say that this is overcose to a considerable extent by a higber compression than is possible in the slow speed engine, and the latter designers of high speed engines have managed to lessen the clearance to a very small amount without contracting the port area. I have in mind a high speed engine which hos less than 5 per cent. of cicarance, and the compression reaches very close to the initual pressure, so that the loss from this source cannot be very creat.
Mr. Brown, in this connection, finds fault with the excessive compression becessary to insure quiet rubning in a high speed enginc. Now ist, I do Int see how be makes out that hith compression aftects economy adversely. I think it is zencrally understood that high compression fills the clearance spaces with steam which otherwise would be wasted; and tends to equalize the temperature in the cylinder. In repard to its being necessary to insure quite running, I believe that is generally thought to be a good feature. It cushions the piston and reciprocating parts, leasens the strain on the crank pin bearings white turning the centres, and I believe has exactly the same effect in the fong stroke engine as in the high speed one, and if. as Mr. Brown states farther on in his letter. the piston speed may be the same in both en. gines, the compression would require to be the same also, to balance the inertia of the reciprocating parts and to irsure quiet sunning in both en. simes: but, as a matter of fact, the piston speed is usually greater in the high speed engine than in the long stroke, Corliss type, and consequently in ecompression of stamy, and wear and tear of enght to be an adrantage both more neariy relieve the strain on the betrings while turning it is possible to
Mr. Brown next conctodes that the fast motion of the ${ }^{\text {a }}$.
must of nesessity cause more wear than there is on the sigh speed engine slow speed, and makes a short extract from Mr Chas 7 same parts of the the."Limitations of Ene ine Sped ${ }^{\circ}$ to a little consideration will conced. to back up his statement. Now I think in my previons letter, hish rotative spene is not, as I stater and explained and if Mr. Brown or any one else, will take the tronble its a cause of wear. and ir Mr. Brown or any one else, will take the trouble to read Mr. Potter's paper throughout he will find that Mr. Pocter states clearly in his first sen tence that, "the practical limitation to high rotative speed in stationsry re sive vear.: The cause of both of then is the dateger af heating or of exces. rove serstoo. The cause of both of ibere, be continues to saly "it is now well monaly both." Following the for in defects of design or construction, comare now both. Filly follomg the same line. Mr. Porter says "ccerrect desipns are now sencrally followed in both the fixed and movise parts of steam encines, ath a higher defree of truth is readily attained in their construction: at that hish copor to ce simpie maticr to make entibes which can be Jun at very high speeds quife free from either of these dificalties." In regard onnooth rchang and biy compression. Mr. Porter says, "again an ob. ection to very high speed is bot found in a tendency to knock on centers. a a properfy des gred and constructed engite, in which valves are correctly por, and which is run by steatm, high speed tends to silent running." Mr. orter takes pride in the finct that high speed has rewealed defects in design and construction, and has wronght an entire change in entine cou. struction not yet completed, and he says "even makkers of slow speed engines have profited from them." I am sorry in say that the mpeed Whigh speed engincs in Canada, with oue or two exceptions, have not pero Ned as largely by this experience as they mizht: I hope the jow speed proe wave. Now sisce I bave quofed so harety from Mr. Porter's ercellent paper which is quite in keeping with his past record, and is nudoubtedly, as Mr. Brown stys, "the matured opinion of one of the ablett consuiting engineers of she present day." I suppone it will only be fair to state what be considers the limitation to encine speed so be, if it is not wear. heating, etc. hish speed en jines may be tua at very moch hither apeeds then then at isht bar as what or beating is concerned, anviaes mithers nof to exceed toe are, so miante pioton speed Ior ordinary sises of engines, which, as be says, will give 300 revolotions per minute with ra inch stroter, and which I may say is quite as fast as the beth nakers of high speed engines care to tun thermat pnesent. and with which speed Mr. Porter ahinks purchasers ourht to be satisfied. Now at the clove we come to the sentence quoted by Mir. Bremn to prove
 lows:" I would ank buidive in their own interect so resift the temptation
to get the utmost out of a given engine and set their faces like flint against the demand. for short stroke engines which will occupy but litite room." How can this fit in after all that Mr. Porter has said in favor of high speed. so far as I have quoted? Well. Mr. Brown did nut quote the whole sentence; I will finish it. qis as foilows: "And from which the power can be pot by speeding up beyond the limit here propowed." The limit here proposed, ay you will observe from the quotation which I have given in' a proposed, paraordi, is 300 revolutions for an engine with 12 inch stroke, which is the ordinary speed of a high speed engine of that sise.

Yours truly.
D. W. Roan.

## ENGINES FOR ELECTRIOAL WORK.

Editor Einctatcal Naws.
SIR:-1 have read an article in your paper on the relative merits of high speed vs, slow speed engines, for مlectrical purposes. Although the article referred to appears to be a well reasoned one from the standpoint of those building and favoring high speed engines, I cannot agree with them, as my experience for some time past while following my business is the reverse of theirs. Having no interest in any engineering firm, and having no engine to dispose of, I might be expected to give an unbiassed opinion of what has come under my observation
Some two weeks ago, Mr. St. John, late Marine Engineering Inspector to the Dominion Government, Mr. Smeaton, Chief Engineer of the Steamship "Modjeska", holding a first-class enyineer's certificate, and the writer, conducted a test in the power house of the Hamiton Electric Street Railway, of a compound condensing tandem Corliss engine, built by John Inglis \& Son, Toronto. The cylinders are H. 1• $16^{2} \times 36^{\prime \prime} ;$ L. P. $30^{\prime \prime} \times 36^{\prime \prime}$; revolutions, 88; pressure of steam, 100 lbs .; vacuum, $25^{\prime \prime}$ to $26^{\prime \prime}$; (I may say that the Hamition Street Railway is one of the best equipped on the continent the company having spared no expense to have it so throughout). The test of this engine extended over ten hours, 88 diagrams having been taken during its continuance, showing a large and immediate change in the power as the work came on and off it, varying from 80 to 230 H . P. yet not the slightest variation could be detected in its speed from a friction load with current switched off, or the whole load of say 230 1. H. P. The average load taken from the cars figured up $10190 \mathrm{H} . \mathrm{P}$. The fuel burned in the ten hours of the test (equal quantities of hard and soft coal screenings) weighed 3,374 lbs. or rather less than 13/ lbs. per 1. H. P. per hour. Every care was :aken in this test, considering the fluctuation of the load, to arrive at a fair result. It can not but tee considered an excellent one; I know of nothing better, even with the best fuel.
There is another compound high pressure engine in this city running the Hamilton Colored Cotton Mills, and indicating 200 H. P. very nearly equally divided between each cylinder. This engine too has a very variable load, yet no difference can be detected in its motion. It also is fired with hard and soft coal saeenings, burning $21 / 3$ lbs. per H. P. per hour; yet the exhaust from the engine he:ats the whole of the large mill, heats the water in the dye house to $180^{\circ}$ Fr. and heats the large drying rooms also. I could mention many others, perhaps not so economical of fuel but as regular in their motion. I do not know of any high speeds that will approach this compound condensing or otherwise. 1 know of several Armington \& Sims engines taking $43 / 2$ lbs. per I H. P. per hour, and also of others of another make using up more than this; they also use up very much more oil than the long stroke engine and require to be much more carefully looked after. I know of several high speed engines that were taken out and replaced with long stioked automatic, but I never knew of the long stroke being superseded by the short stroke ones; in fact the whole tendency of electrical engineering at the present day is towards lager machines and slower speeds.

> Yours respectfully,

PERSONAL.
Mr. J. C. Gough has just received the appointment of Mechanical Supe. for the Richeliea and Ontario Navigation Co.,with headquarters at Sorel. P.Q. United States Crurts as claiminge hass of late figured prominently in the United States Crurts as claiming to be the original inveator of the incandescent lamp. died at his residence in New York City on the sth of Decernber. Henry Goebel was born in the viliage of Springer. near Hanover, Germany. an the zoth of April. 18:8, and arrived in New. York in the earlip
part of azila part of $2 \varepsilon .19$
Carson, manaser and at Placentia, Newfoundland. of Mfr. George M. Carson. manater and electrician of the cable bormeat that place. Mr. Carson was in Pictou. August 26 . 1847 . At the nge of 23 be entered the telegraph office in Pictou, later he worked in the Sickville office, Nova Plota; thence he went 10 Heart's Consent. Newfoundland, in 186 ; ; to Se .
Mr. F. E. Handy. who ahors a year ago was appointed superintendent of the New Westminster and Vancouver Tramway Company, is at present in Ontario, having been kranted three months leave of absence to enable the climate at Vanconver. We notice by the afircted by the dampirss of Mr. Handy has been eminently suce by the local press of Vancouler that Westminster and Vanesurer rond, sund it is the hoge of his friends in British Columbia as well is in Ontario that he may speedily regain his heallh.
Mr. Benjamin R. Toyc. Great North. Western Telegraph Superimendent, died at his residence in Toronto on the Gth of December. Mr. Toye wast, one of the oldest and best known telegraphers in America. More than forty years मgo, in company with Messrx H. P. Dwight, J. T. Towngend and R. Easton, he entered as a mesvenger boy the employ of the Montrenal Compuny with why; at Tronto. and continued his connection with the menitoned. To him is given the crediz of having, during the long pertiod to practice the receiving of messares hy sound tren the firse Capardian of Toye's Amomatic Reprater which found its way inio nse ahtourehout Canada and the United Stales. Mr. Toye suffered a lingering illiness due to palmooary trouble, which eventually culmiasied in his death.

fiblishied on the fikst of gyegy month by

## CHAS. M. MORTHER,

Office: Confederation Life Builiding, Corner Yange and Richmond Sircets.

OANADA.
64 Tempte Bulting.
Hell Teiephone 2299.

## Montreal.

## ADFERTISEMENTA

Advertising rates sent promptiy on applictition. Orders for adverising should resch the ofioce of publicution nol later than the 3 sit day of the month immediatety procoding dale of iessuc. Chapges io edrertiverwents will be made whemerer deairod. withont conet to the advertser, Nut to masure propory complianoen with the instructions Whe arvertiser, requeste for change abouid reach the ofice as extly as abe sand day
The Elscticical Nime sill be meniletions.
Tilted Sutces, poss foemz mill be mailed to subucribers in the Dominion, or the
 of subscriotion many be remittod by currency. In requstered letter, oo by portal order paynble to C. H. Kortimer. Please do nox send cheques on hocal banks unten 25 enders sisk. Sutweriptions from forcign countries embracod in the General Pounl Union, sis. So per annum. Subecripionan are payable in adrance. The paper will tre divconcinued as expuramon of zermp paid for por wo ripulated by the zubupriber, but Where no soch underxanding existh, will be continved snul inuructions to din continue ave reccirro and all arrearage: poid.
Subscribers may have the mailiaf addrean changed as ofien as desired. When The fobliaber uhould te solifed of the fuilure of sotecribers to roceive their papere promply and recrinily.

EDTTOR'S ANMOUNOEMENTE.
Correapondence is itrvited appo all topics comsag legititately within the soope of this ioumal
the "canaitan kikcthical news" has getn appointed the official fapri of the canadian gisctaical association.

CANADIAN ELEGTRICAL ASSOCIATION.

## OFFICERS:

President:
J. J. WRIGHT. Manzger Toronto Electric Lignt Company.
zst Vice-president:
K. J. DUNSTAN, Lecal Afanager Bell Telephone Company. Toronto. sND Vick-PuEsidest:
JOHN CARROL.1. Sec-Treas. Eugene Fhillips Electrical Works. Montreal. Sicketary-TuEasurez:
C. H. MORTIMER, Piblisher Elictaical News, Toronto. Executhe Commtter: D. THOMSON, Hamilton, Ont
D. A. STakR. Royal Electric Company, Montreal.
H. O. FiSk. Electrician Electric Light Compray, Peterborci, Ont. GEO. Bi_ACK. G. N. W. Telegraph Co. Hamilton.
A. B. SMITTH. Inspector Canadla: Board Fire Underwriters. Toronta.

1. R 'cFARI_ANE. Bell Telephone Company. Montreal.
T. R. ros 'tirugik. lecturet in Electncity, School of Practical Science. Toranta
EC BREITHAUPT, Berin. Ont.
JOIN YUL.E. . Zanager Guelph Gas and Electric Light Company. Guelph. Ont.
THOS AIIEARN. of Ahram \& Soper. Otawa. Ont.

## MONTREAL ELECTRIC CLUB.

President. W. R Suaw. ofricers:
Vioe Presidens. H. Woovean.
Secretary. Janks HurNETT.
Treaseret. L. M. Pinolety.
Montral Jectric Co Montreal Streer Kailway Co 9 Shuter Sireer isor Dorchester Sitrees.

## CANADIAN ASSOCIATION OF STATIONARY ENGINEERS

President. G. He'st.
rioe-prosident, W's. Sutros.
Serretary. Ji, Y Yoxi. $^{\text {J }}$
Treasuret. W. G. Plicackove.
Condoctor, T. Kinc.
Dosr Kecper, F. Ronerts.
cutive noaso:

Tosonto branci No. r. -Mects and and sit Friday each month in Room D. Shatesbury Hall. Wison Phillips, Fresudent: H. E Terry. Secretary, z9 Hapser atreet.
Hamil.tuy branch No. 2-Meets ser ard 3rd friday cach month, in Marcabre's Hail W. Sweet. Presodent: Wm. Norris, Secretary. 218 Wellagton Strees North
Stratrond fanach Na 3-Joho Hoy. President : Sampel H. Wcir. Serretary.
Beaniforo Rresich Na 4-Meets and and ath Friday eech month Thon Pilgrim President: John Oxic. Secertary. Ikantford Cordage Ca

London Branch No. s-Meets in Sherwood Hill Girst Thursday and last Fridav in each month. F. Mitchell. President ; William Meaden, Secretary Trrasurer. 533 Richmond Streel.
Montreal. Branci No. 1.-Meets ist and 3rd Thursday ench month. in Engineers Hall, Craik street. President. Jol Robinson: firs vico president. H. Nuttall; second vice-president. Jos Badger: secretary. J. J. York, Boand of Trade Bualding: treasurer, Thos. Rynn.
St. Laurent Exanch No. 2.-Meets $2 s t$ and 3 m Tuesday each month. in Mechanics Institute, zo4 Si. James street. Alathias Guimond. Presj. in Mechanice Institute, 204 St . James sirret. AMathias Guimond.
brandon. Man. Branch No. 8.-Meets ist and 3rd Friday each month, in City Hall. A. R. Crawford. President: Arthur Flening. Secretary.
Guilph Brancu No. 6.-Meets ist and 3 rd Wednesday each nonth at 7:30. p.m. C. Jorden, fresidens; H. T. Flewelling, Secretary, Box No 8. Ottawa Brancil. No 7. - Meets and and 4th Tuesday. each month. corner Bank and Sparks streets : J. H. Thompson, President ; Wm. O'Brien, Secretary.

Dresozn Bxanci No. 8.-Meets every and week in each month; Thos. Merrill. Secretary.
Bexlin branch No. g-Meets and and 4 ih Saturday each month at
8 p. n. W. J. Rhodes, President; G. Steinmetz. Secretary. Beriin Ont.
Kingston Bxancia No. 10-Meets wice each month over Na. a Fire Station. J. Devlin, President ; A. Strong. Secretary.

## ONTARIO ASSOCIATION OF STATIONARY ENGINEERS

President. A. E. Edxins.
President, A. E. Edilis.
Vioe.President, R. Dickinson, - Electric Light Co, Hamilton.
Vice. President, R. Dickinson, - Electric Light Co, Hamilton.
Registrar, A. M1. WickRns,
 Salicuor, J. A. McAndienvis. - Toranio.
Toxonto-A. E Edkins, A. M. Wickens, E. J. Pbillips, F. Danaldson. Hamil.ton-P. Stolt, R. Mackic. R. Dickinson.
Peterbiano-S. Polter, care General Electric Co
BRAvtrond-A Ames, care Patterson \& Sons
Kingston-J. Vevlin (Chref Engincer Penctentiary). J. Camplell.
LONGON-F. Mitchell.
Information regarding examiaktions will be furnished on application to tay member of the Board.

## VOL. IV.

The Electrical. News enters with the present number, upon its fourth year. Its development, though not rapid, has been steady and substantial, which, after all, is the kind which is most satisfactory. We extend our shanks to all who have in any way assisted us in the past, and in our continued striving towards improvement in the future, we hope to have the co-operation of every reader. We take advantage also of the present opportunity to extend to all our best wishes for a Happy ahd l'rosperous New Year.

The runaway car on St. Denis st, Montreal, will piobably sesult in a great outcry for brakes, and more than likely some bright genius will want an electric brake, possibly after some design of his own. Evidently something better is required than the usual hand-brake for extraordinary grades, but of what use would an electric brake be when the trolley is off.

A surr was lately brought against the Bell Telephone Co. in Toronto by the proprictor of a livery stable, who claimed damages on the ground that his name and telephone number had been omitted by the defendants from one issuc of their telephone book. In his evidence the plaintiff made the somewiat remarkable statement that the omission of his name and telephone number had resulted in a falling off of 50 per cent. in his business. In the light of such testimony as this, and of the enhanced appreciation of the value of the telephone by the company's subscribers since the efficiency of its system was impaired by the recent storm, the present would seem to be an opportune time to increase rates.

The experiment tried on the Erie Canal, near Rochester, of towing by means of an ciectrically-propelied boat connected with a double trolley, is one which might be repeated with profit on several of our Canadian canals. Take for instance tha Lachine Canal near Montreal; an extension from the Streel Railway Company's trolley wire at 500 volis could readily be carried up there. Kingstou again would probably give service at the mouth of the Rideau; the same would apply to Ottawa. This trolley wire could also be used rogether with "step domn" motor dynamos 10 charge the storage batteries of electic skiff, iaunches, \&cThe great drawback to anyone putling such a boat on our present cruising waters is the trouble of getting the cells recharged.

Perhaps no more starting proof of the mapid stndes made by electricity can be tound than taking a city directory of to-day and comparing it with one of a few years ago ; in the latter the term "Electrician" is not to be found, whereas to-day their name appears to be legion. This suggests the enquiry, "What is an Electrician?" On making an analysis of the aspitants who glibly dub themselves with this designation, we are of opinion that many of them are about its much entitled to do so as a man who ties up an injured finger is to style himself "M.D." Let those who would be electricians study and study hard, that they may so qualify themselves as to be known as such, not only nominally, but in reality.

Referring to our former remarks re varying candle powers on arc lamps, keeping the watts constant, as found by Irof. Cahart durne his experiments, Crompton does not agree with him, but states that in his experiments he finds 42 volts give the best effect. He uses a larger carbon for the upper than for the lower, also has the upper one soft cored. Crompion states that pio bably Prof. Cahart's carbons were to blame. There is one thing certain, viz, that if anyone who uses an arc lamp on a constant potential circuit will try the effert of soft cored carbons in comparison with the usual hard variety he will simply be astonished at the result. This is especially the case in 52 volt aiternating current arc lamps, which, with soft cored carbons, give a steady, pure white light.

We publish elsewhere in this issuc a report of a m.ecting of Otuma Association No. 7, C. A. S. E., kindly sent to us by one of its members. This report is a model of what we would like to receive regularly from the Serretary or some member of ever; association. It indicates what subjects came up for discussion and what were the views which were expressed upon them, thus showing to the officers and members of other associations what matters are engaging the attention of engineers in Ottama, and possibly suggesting to them subjects for discussion. There is also a hint given that the members of the Ottawa Association would be pleased to read the opinions of their fellow engineers in other places on the question which they bave been considering. We have on one or two former ocassions pointed out that the columns of this journal might with advantage be used for the interchange of reports of the proceedings of the various associations, as well as the individual opinions of their members on points of interest to engineers.

I:d the present issue is painted further correspondence on the subject of the relative values of high versus slow speed engines. for electrical work. The preponderance of opinion expressed thus far seems to be in favor of the slow speed engine but no doubt the arguments on the opposite side are not all exhausted. The high speed engine is not without its friends. Only a few days ago we heard its praises being sound, $A$ by an engineet in charge of a street railway power plant, who, pointing with pride to the high speed engine by which the power was furnished, stated that it had been in constant operation ig hours per day for nearly two years, and that during this period there had never been a break doun, while the repair bill had not amounted to $\$ 5.00$. This must certainly be considered a good record. It may be mentioned that on this road there are some heavy grajes, thus imposing upon the engine great fluctuations of load. We shall be pleased to publish all further jnformation obtainable on this interesting subject.

It would seem that there is a great lacis of information on the part of the public with regard to the amount of profit to be derived from the operation of electric lighting planss. It is only on this supposition that we are able to understand the action of business men in investing their money in lighting plant and entering into comperition in small towns with those already in the business. In some of the towns in Eastern Ontario this competition has been carried to the extreme limit, especially as regards incandescent lighting, which in some localities is being furnished at or below cost of production. The citizens in these towns are congratulating themselice, as well they may, upon the existing condition of affairs, while the rate at which light is being supplied to them is being used as the means of forcing
down prices in adjoining municipalities. The state of things is affecting so seriously the owners of clectric machisery that meetings of those interested have lately been held to consider what steps should be taken to plate the business on a more satisfactory and equitable basis. It is to be hoped that the statement of facts above set forth will suffice to deter others from entering into competition with existing lighung companics in localities where there is barely sufficient business to warrant the existence of a single plant.

The paper by Mr. (i. C. Mooring on the value of different kinds of fuel for steam purposes, which we publish in the present number of the Elimctricias. News, opens upa subject of much interest both to engineers and owners of steam plants. Its imporance, we believe, has not been as fully ippreciated as it is desirable that it should be. While every effort has been made by engine makers to produce machines which can be operated with the greatest economy, and while high prices are being paid by steam users fot machinery of this character, with the object of seducing the expense for power, it frequently is the case that firemen and engineers are employed whodo not understand how to manage economically the platnts entrusted to their care, and thus the advantages derived from the burchase of high class machinery, are uffset by lark of skill on the part of fremen and engineers. "The best fireman l cuer saw," said one of the ablest enginecrs in Canada to the writer recently; "was a man in charge of a battery of boilers who, instead of loading up his furnaces at long intervals with a coal shovel, went constantly from one furnace door to another and threw in upon the grate a small quantity of coal with a hand shovel. He seemed to know exactly where the fiesh coal was needed, and had the ability to place it exactly on the right spot. 13) this methot he secured the highest efficiency of which the boiiers were capatble with the least consumption of fucl." The fact is too little appreciated by steam users that it is economy to pay a man of this class a much higher salary than the one who does his work unthinkingly and at the expense of hundreds of dollars per year in wasted fuel.

A Stkanger, riding on a Montreal Street Railway car on one of the hill routes, would be apt to notice an individual standing beside the motor man. holding in his hands a massive ueapon closely resembling a siedue hammer, the only difference being that the head is of wood. If he were of an enquing turn of mind and ventured to ask the use of the aforesaid instrument he would be surprised to learn that it is the only safety ippliance at present used by the street railway company in the leading city of Canada, in the event of the hand brakes sefusing to work, as has occasionally happened. In emergencies where it h.ss been called upon, the result has proven that as regards efficiency it is compantively useless, the heavy car cither pushing it aside or crushing it to matchwood. The effect on the nerves of the passengers sitting in a car over which the brakes have lost control, descen:ling at an inereasingly rapid rate, on suddenly coming into contact with this block of wood, may be mote easily imagined than described; and the effect on one of the unfortunates handling it was such that he was not likely to repeat the expenment. There seems no reason why the Weslinghouse or similar air brake system as used by steam railways could not and should not be used as an emergency brake on clectric cars. The only question would be that of expense, and comoidering the danger to cars, to say nothing of lives, this should not stand in the wiay of the improvement. To equip an electric car with such brakes it would the necessary for each station to be provided with an air compresser and each car to carry a cylinder of sufficient capacity. As they would only be used in case of emergency the expense of charging would be infinitesimal, and the first cost would really represent the whole outiay. If a trolley wheel could be had which would stay on the wire, or rather climb back on to it should it get off, a suitable electric brake might be found.

As we go to press two very impmant matters are engaging the attention of the County Judge at Toronto. These relate to the attempt which is beins made by the Assessment Commissioner of Toronto to fasten an assessment upon the personal property of the electric light and ielephone companies, as well
as upon the mains, retorts, etc., of the Consumer's Gias Co. In the case of the latter an assessment of half a million dollars is sought to be imposed. The gas and clectric companies have carried the matter to the only source of appeal. the County Judge, before whom the question is being argued, and whose decision may be looked for very shortly. The Gas Company's property, is to be assessed not as personalty, as in the case of the electric companies, but as realty, on the ground that case of the clectric companes, buttached to the earth. As the decision in these cases will establish a precedent, and may effect very seriously the electric and gas interests of Canada, the outcome of the arguments now being presented will be looked for with unusual inicrest.

We publish in the present issue a description and illustration of what is believed to be the oldest steam engine at present in operation in the United States. We would like to obtain a deserption of the oldest engine at work in this country. A comparison of the old engine which we publish with the latest improved types being manufactured in Canada affords an instructive lesson to those who feel an interest in the improvements which have taken place in steam engineering during the tast half century. Will our readers, who may be expected to be interested in this subject, kindly send us any information which they may possess along the line indicated?

The stockholders and managers of electric companies may well hope that storms of the character of the one which caused such havoc to their property a week or two ago, may not be of frequent occurrence. It is to be hoped also that the public will now be able to realize that a fiir margin of profit is necessary in lines of business which are thus subject to their property being suddenly and seriously damaged. Neither should :he lesson be lost upon the managers of clectric lighting companies, some of whom, as elsewhera stated, have been engayed in a ruinous competition. In Toronto and Montreal the inability of the street railway companies to grapple with a storm of this character was ciearly demonstrated, but no doubt the expernence ganed will lead them so make preparations which will enable them to cope more successfully with such conditions in al efuture. In Toronto lack of sufficient power and a failure to make an early attempt to keep the wires free of ice, appear to have been the defeating causes. In storms of a less severe character the advan!ages of first-class construction have been manifest, but in this case the tremendous weight of ice upon the wires wias sufficient to break down construction work of the best character, and the Great North-Western Telegraph Company's system, which suffered but slightly from the severe wind storms of last autumn, has been badly shattered in all parts of the country. The heavy loss which the various companies have sustamed is not to be wondered $3 t$ in view of the estimate which has been made that on a pole carrying one hundred wires the weight of ice during the recent stom would be about five tons.

## NOTES FOR ERGINEERS.

It is sometimes necessary to test the truth of the fitting of an engine by lining it up and every engineer ought to know how 20 do it. In order that an engine shall run truly; it is necessary that the guides shall be exactly parallel with the cylinder, and that the crank pin shaft be exactly square to cylinder, and that the crank pin when revolving shall renian exactly in the plane of the centre line of the cylinder. By way of a simple example, take the case of an ordinary horizontal engine, in a mill, and consider how it may be proved that above conditions are complied with. First, have cylinder opened up, and piston ind connecting rod removed. Fix securely a stick arross back end of cylinder, and another in the sland for the piston rod. Find centre of cylinder and of gland, and stretch a cord thmugh these centres and produce it, beyond crank shaft. If engine is right, this cord will be paralle to sides of cylinder and to guides, and will pass exactly in line with centre of crank shaft. Then turn crank over till crank pin touches the line on one side, and the cord should be in centre of width of crank pin and exactly square 10 it . Then turn crank over to the other side, and if shaft and crank are true, the pin uill still be square to the line, and the line will be in middle of the length of pin. If all these conditions are complied with, then one may conclude that engine is fair and tace A large Corliss condensing engine of five feet stroke was found to be rery hard on the packing used for the piston rod, and to require frequent tightening up to prevent the racuum from being spoiled by air passing in at the sides of the rod. On lining it up, it was found that the guides were in the five feet, over $1 / 4$ of an inch out of parallel with the sides of the cylinder. and as the piston travelled back and forth the rod rose and fell over one eighth of an inch, or bent, and so destroyed the packing. The cylinder was re-bored, so as to make it parallel with the guide frame, and the trouble has cured

When a crank shaft is heating something must be done at once in order to carry off the extra heat produced and prevent the babbit from melting. Sometimes slackening the bearing a little to let oil run more freely through it is sufficient. Adding thowers of sulphur to the oil is sometimes sticcessful, but in other cases it is necessary to get a stream of water to play on it. It
is better to stop engine at first chance and cxamine bearing to find out the cause and remove it.

Some are puzzled to understand why a steam puup driven by steam at to lbs. pressure can force water into the boiler from which the steam is taken. It the steam cylinder were of the saune diameter and stroke as the water cylinder, it would not be able to do it, but by making the steam cylinder larger in diameter or longer in the stroke, sufficient power may be got to overcome all the friction, and force the water into the boiler. If the steam cylinder be six inches in diameter and the steam 60 lus. pressure, then the steam has a force of nearly 1700 pounds to move it. If the water cylinder be four inches diameter then the resistance to be overcome is 750 pounds, leaving about 900 pounds to overcome friction and to produce motion and give the water velocity.

*     *         * 

Readers of these Notes who are advanced in experience and knowledge, please remernber the day when you did not know as much as you do now, and think of others who are younger, and who know row no more than you did long ago. Help the younger and less experienced to avoid the dangers and difficulties you had to fight your way through. Encourage the young fellows to tell out their difficultits and to ask questions. What a wonderful word "why" is when it has a big ? after it, and is followed by "because," spelt with a " 3 ." What is a horse power? Why is the power of an engine measured by horse power? Because the first steam engines made for general sale were made to do work that had been tone by horses, and the makers of the engine said that it would do as much work as ten horses, or twelve horses as the case might be. Later on some began to think the engine builders meant very small horses, when they sold an engine as of twelve horse power. James Watt went to London and got the biggest horses to be had, and tested what amount of work they could do, and concluded that 33000 pounds raised one foot high, in one minute of time, was a horse power. Then he made his engines to do that amount of work for each horse power he called them, and to do it without getting tired out as the horses did. In our day the term has not the sharp, definte meaning it ought to have cven when applied to steant engines, and many are decejed thereby. To make matters worse, the same term "horse power" is applied to boilers. All the boiler can do is to produce steam, and an engine is needed to use that steam and produce power. Why; then, should horse power be applied to builers? It originally meant, the size of boiler that should be used to make steam for an engine of that horse power. A horse power of boiler meant that the boiler could make into steam one cubic foot of water in an hour for each horse power it was called, that is, a ten horse power boiler was one that used ten cubic fect of water in an hour, or about $62 \$$ gallons. This standard was fixed, because it was observed that the engine required about sixty pounds weight of steam in an hour for each horse power. As engines were improved, less steim was required, and now 30 lbs . of water per hour made into steam, is a boiler horse power. Some specify the temperature of the water, and the pressure of steam into which it is to be made, but all are not agreed on these points.

## PIONEER BLECTRIC LIGRTING IN MONTREAL. by joins Smillie.

Mr. Chairman and Gentiemen :-The paper I have the honor of bringing before you 10 -nigh, is not of the class you have been accustomed to receive, judging by those 1 have listened to at your meetings and read in the printed reports in the Canamai El.ectrical News.
Knowing as I do from the above sources of information the advanced knowledge this association has in all mauters relating so electricity and magnetism, and that anything which tends to increase that store of knowledige is received with respectful attention, all due allowance will, I am sure, be made for the shortcomings of anyone who undertakes to bring any matter before this body in the form of a paper.
This, gentemen, is an apolosy for carrying you back to the dark ages of electric lighting in this city, for when one considers the development of electricity, I think I am quite in order in speaking thus of the becinning of a period of 13 years in the history of electric arc and incandescent lighting in the city of Montreal.
In the year 188 t electric arc lighting was creating quite in agitation among those who were inferested in the betternent of street lighting and the lighting of large halls for public assem?:lies all over the northem part of the continent of America. The city of Montreal was not behird the rest of the country in watching for the success of the ner: light, and no wonder, for it would have been hard to have found a city that was worse served with gas, than the city of 3iontreal at that time.
I cannot say whether the Brush arc machine placed in the Custom :ifouse to light up the wharves, or the crude attempts of the Craig people, who had one going at the Exhibution, and also on one or more of the Richelicu and Ontario Navigation Company's boats at that time, were the first to go into operation here, but the successful plant was the Brush, which went very well from the start.
The next plant to be put in was at the Quebec, Montreal and

Occidental Railway Works at Hochelaga, and the St. Lawrence Hall, by the United States Electric Light Co., for a local company of which the late Mr. Senecal was president. The plants at Hocehlaga and at 5t. Lawrence Hall were being put up at the same time, but the one at Hochelaga was in advance of the one at the Hall, and was therefore finished first ; and it was at that station the first public exhibition of electric incandescent lighting was made in Canada. I believe it was in July, 1881, when the formal starting of the incandescent plant tonk place, and it was made the occasion of a grand luncheon given at the Hochelaga works, at which vo less a personage was present than his Grace the late Duke of Sutherland, who upon that occasion predicted a great future for incandescent liphting. Who would be bold enough to say that his prediction had not been fulfilled at the present tine? and further, who would be rash enough to say we had reached the limit of improvement in incandescent lighting ? none at least I am sure of ihose at this meeting.

1 will now try to give you an idea of the machines we used at the St. Lawrence Hall. The incandescent machine was a 65 lighter, the arc machine a 5 lighter.

The arc machine was a five light Maxum supplied by the United States Electric Light Co The armature was on the Gramme ring principle. There were 14 sections in the armature with four layers of No. 14 imperial pauge wire to each. The wire was double cotton covered. The core was made of sheet iron plates, one sixteenth of an inch thick. There wr re 114 of these pieces in the armature; thev were placed together in pairs with spaces of one sixteenth of an inch between each pair ; these plates had raised points at intervals for the layers of wise to lay in, forming 14 spaces in the armature.

The one sixteenth of an inch space, I need not say to you, was for the air to have free access to the coils to keep them cool, and I can assure you, it was all required, for after running five or six hours it would get so hot you could hardly lay your hand upon it.
The diameter of the armature wat $8 \%$ inches; length 12 inches; the length of ammature shaft between bearings was 16 inches, and the diameter one and one quarter inches. This was one of the troubles we suffered from; the spring of shatt was sometimes so great, that it would graze the field, therebv stripping the insulation off the armature wire, with a consequent short circuit.
The commutator had 60 strips in it, one of which I have now before you. There was a saw drift cut into it for about a 4 of an inch, and the ends of the two wires soldered into it, thus to make the connection between the armature coil.
Those strips were fastened by two brass collars, one with a centre hollow prece for fitting on the shaft, and screwed on one end. two vulcanite bushes slipped on, and the commutator strips placed around resting on the pieces of vulcanite, with thin strips of leather board put between for insulation. When this was done I bad a thin iron band with two knees nuelted shereto, and a bolt for drawing them tight tosether for turning the outsides; when this was done, the flanges were screwed topether, and the commutator was turned and wires soldered in their places.
But 1 need not tell you that leather board made a very poor commutator insulation; short circuiting between the segments of the commutator was no uncommen event; sparking soon carbonized the leather board, and then my troubles began.
About this time Mr. Fred. Thomson came to Montreal to take charge of the Royal Electric Light Co, then in its infancy. One day I was telling him of my troubles with the commutator insulation, and be suggested asbestos paper. I tried it, but my troubies were not much lessened, for the fine particles of copyer would get into the soft pape; and in a short time make contac between the segments; then my work was to scratch out all the copper dust from the asbestos.

The line wire is about five and one-half imperial wire gauge. This was a naked wire; we stapled it to the woodwork and when we came into contact with gas, water or steam pipes, we would put a piece of rubber tube over the wire at those points.

When we wired this machine first, we grounded the return wire upon the main gas pipe, but it ran very unsatisfactorily, and later we returned to the machine.
The lamps were very good, and indeed the lamps in use in the city to-day are not much in advance of those we used then, except in mechanical detail and insulation. The body of our lamps was not insulated; the clutch for lifing the carbon rod was worked on ibe same principle as at present with fine wound magnets for regulating the liff of carbon, and 1 must say the candle power of them was very much in excess of the lamps now in use in this city, although they were designated 2000 candie power, as the ones in use are at present.
The carbons used were the Wallace diamond carbon; the cost of them was about ten cents each.
The bearings of this machine were at times very hard to keep cool; somelimes we had to keep ice on the journals for two and three hours at 2 time. As to measuring current, we had no means of doing so: if a machine gave current enough for a given number of lamps without burning or overheating that was enough for us, and the only means we had of ascertaining its lond; the number of revolations this machine turned per minute was 1200
The incandescent machine, as 1 have already stated, was 265 light machine, also a Maxum type. This machine had a commu-
tator on each side of the armature. Each commutator had 60 segments, and they were insulated with leather-board. The ron core of the armature was made in same manner as are machines, with this difference that there were 30 sections, and in each section there were two coils connected with four segments of comnutator, and each alternate coil was connected to opposite commutator.

The length of armature was 18 inches; diameter 13t mehes. The wire used in armature was No. 10 imperial pituge, with four layers of wire in each coil. Field coils were 18 inches long by $7 \frac{1}{2}$ inches hixh, with eight layers of wire on each, of No. $5 \%$ imperial gauge.

The length of shaft inside bearing to inside bearing was 30 inches; dameter of shaft $1 / 5$ inches: the bearings were of the sleeve form, and were adjusted witt. set screws from sides, much as an adjustable hanger for shafting.

The diameter of line wire was No. if imperial wire gauge, and the branch wires to lamps were 161 imperial wire sallege, run on the multiple principle: we had the lamps screwed upon the gas fixtures, and used the gas pipes for our return wire.

You will see by the lamp and switch before you, the method we adopted for connection; it was no uncommon thing for a wire to short circuit by making contact with the gas lamp, and in a moment we had the covering on fire for as much as 30 feet at times. This wire was double covered cotton, dipped in paraffine, and when it caught fire it made quite a blaze and smell. Indeed it required the closest waithing, and even then we had two or three insipid fires which vigilance alone prevented from being of a dangerous character.
One of those fires, I will describe, which will be enough to show to you what troubles were in store for the unfortunate who had to look after an electric plant in those early days of electric lighting. In the refreshment room of the St. Lawrence Hall hotel we fitted up an old lamp; its form was a stem with three rings, one very large and the other two below, each about 12 inches smaller than the one above; on those rings ue hung about 25 lamps, and the wire came through the ceiling and down the stem, and branches were taken to lamps of the small stze wire, the return wires being clustered and carried up between the floors, then a large size wire carried down to main gas pipe and grounded. One of those small return wires made contact with positive wire and shor circuited, aud when it got very hot it bent down, unable when hot to support its own weight; unfortunately lying directly under it was a 3 inch composition lead pipe (kas) ; the heat very soon melted it, and you know what would follow. I was in the refreshment room at the time, and the lights gave a bad flicker. The room above had been left with carpet loose also part of flooring, so that we might easily get at the wire. When the room was reached and tloonng lifted there was a 3 inch gas pipe burning and lead melting, and the wire at almost a white heat. It was quite a long distance to where the engine was; the gas main was in another building and the joists and flooring on fire. Gentiemen, it was one of those dilemmas that a man does not want to be placed in very often in his lifetime. I had the gas shut off as quickly as possible, then the belt off the incandescent macbine, then fire in the woodwork pat out. The damage done amounted to vely little, but it would have been bad enough had we not caught it in time
As a matter of fact all our pipes were charged more or less with electricity. The drinking fountain in the office at times was so charged that when you took hold of the pull to draw water, you would get such a shock that you felt disinclined in try it any more. The surprise to me to-day is, that we did not succeed in burning down the hotel.
We had this plant going for two years, and the incandescent machine is in good working order yet. I had no trouble with this machine ; it ran smoothly and had no repairs done to it whatever ; it had a separaic machine for exciting its magnets. The workman ship on this machine was first-class. The mechanism for increasing or diminishing the curremt was of a complex character; this I will not attempt to explain at this time.
At the junior conservative ball held in St. Lawrence Hall in 1882, at which Lady Macdonald was Lady Patroness, we had placed upon the banquet tables a number of fish bowls, some with different coloured waters in them, and others with clear water, and gold and silver fish therein. We had incandescent lamps placed in them, and when the guests sat down to the tables, we switched in the current, and I can assure you it had a very beautiful effect. We had to keep ice constantly in the water to keep it from over heating. I mention this circumstance because it was considered quite novel at that time.
The engine we used was an old slide valve, with cut-off valve; it was 11 inches by 22 inches; we carried 60 lbs. stcami pressure. We allowed four incandescent lamps per h. p., this give us $141 /$ h. p. for incandescent machine, and about $61 / \mathrm{h} . \mathrm{p}$. for arc machine, or $20 \pm \mathrm{h}$. p., not speaking of friction of engine or shaft ing. Our average run per day was 5 hours and the consumption was 925 lbs . of Scotch coal, or in other words 8.6 lbs . per bour per h . p.

This, gentlemen was what we did in the year 188 s .

The Dodge Wiood Split Palley Company, of Toronto, recently shipped a Itis is believed so be the largest split jullicy yet manufactured in Canade

## A feW points on the calorific value of fuplu*

## ib G. C. Mooring.

Ma. Parsibknt, Brathaen anis faiemis: When the Educational Committee was appointed. each one promised to do his beer to get up a paper: this is my excuse for standing before you to-night. The figures I may quote are from trooks and nirchanical papers in my posserssion, and I shall endeavot to pive the papper uuthoritues dus credit. I will, however. leave out most of the unversuty terms, for the very good reason that Ido not undersintid one half of then myself.
Fcunoray in fuel is of vital iniponance to our employers here in Toronto. the price leeng high and competution in manufactured goods very close. It is calsulater thit theie are four hundret miltion tons of conl burned every year. and more than batf of this is used to generate steam for power purposss. There is imported into Toronto five huadred thousand tons. including all grales. nid thousands of cords of wood, besides all the refuse from ous ghamex mills. Fully one-half of this is used to generste steam. Now, it we as working engineers can combine a little theory with our duily practice and therehy save a litte of this vast coal pile, I consider it no more than our duty to do so. and this can best be done tiy talking over and discussing the matter hree in our association meetungs. for shere is none of us that knows it all.

To determine the quantity of heat that may be obtained from various combustibles is an importunt branch of Applied Chemistry. Before heat can be measurad, however, it is easential to establish some unit standard of meisurement. The British thermal unit commonly used in England and this country is that quantity of heat necessary to rause the temperature of one mund of water from sixty to sixty-one degrees Fahrenhert. Each firtish thermal unit. or. as we will call it, heat unit, has the mechanical energy equal to raising one pound seven hundred and seventy-two feet. Water was selected as the standard "or thermal comparisons lecause it can be readily nad easily obrained in a state of purity, and because its capacty for atsurling heat is greater than that of any other known substance. This capacty to atsorb heat as its temperature rises is technically called specific heat, consequently the specific hoat of other bories can readily be obtained wih water as a standari.

CADCMIFIC POWER.
The amount of heat to be ohtained by the combustion of a definite weight of any fuel is called calorific power. The earliest and perhaps most extersive researches to determine the calorific power of combustibles were undertaken by Favte and Silberman. Their method of operation consisted in burning 2 very carefully weigbed quantity of the substance in question enclosed in a small metallic vessel which cculd be immersed in a receptacie containing a wetghed quantity of water, which was protected against radiation by a jacket of non-conducting material. The inner ressel containiag the substance under test was provided with an inlet tube for supplying a sufficient amount of pure oxygen, and an outlet pipe coiled back and forth through the water, which formed an outlet for the products of conbustion. By thus burning in the inner chamber a weighed quantity of fuel and ascertaining ty means of $a$ thermometer the rise of temperature of the water. the calor, fic power of the substance was immediately determined. The instrument thus used to determine calorific power is denominated a calorimeter. Othes forms of calorimeters have been invented. hut neasly all agree on the calorific power assigned to carton, hydrogen and such of their com. pounds as form the great bulk of combustibles. When the gas hydrogen is burnt in pure oxygen the same authorities found by direct experiment that sixty-iwo thousand five hundred heat anits were evolved for every pound ot hydrogen consumed. Ther also fcund that for every pound of carbon consumed founteen thousand five toundred beat units were abtained. The calorific power of a fuet or the quantity of hest developed during the burning ol a defimte amount of any combustible is always the same, and is enutely independent $\alpha$ the rate at which combustion takes place. Every pound of carbon consunned with the proper amoant of air yields fourteen thousand five hundred heat units. Whether combustion occurs as in the discharge of a gun. or whether it occupies years, as in the decay of a tree srunk. sugnifies little in the total amount menifested.
Now, zccordiag to the thireenth edition of Reed's Engineers' Hand-Hook-a book of sery reliathe and practical information for engineers, and wh.ch is authonzed by the fritish Board of Trade-we find that in practise every pound of coal we bum requires three hundred cabie feet of air, or one pound of carbon requires inelve pounds of air : and so are pound of hydrogen we require thriy-six pounds of ait. Now, we have already seen thas hydroren is about four and a quater times the value of carbon, but we have very much more carbon in the fuel than hydrogen.
After looking tnto the method of testing fuel and finding the priscipal components for giving heat to be carbon and hydrogen when properly mixed with the oxygen of the atmosphere. we will now lock into the calorific value of the differen: fuels. Commercial foels may be classed as natural and antificial. Natural fucls are wood. coal. mineral oil and natural gat. Artificial fuels are obtained from natural fuels by certain processes of manofacture: for exampie. from wood we gee charcoal. and from coal coke is manufacsured.

Dr. Percy classes the natural fuels as follows: Wood, peat, lignite. metuminous or soft coml, anthracite or hart coal, petrokeum oil and nalural gas: but no doubt the first fued used by man was a,ied sticks gathered in the wilderness. kindiat by rubbing two sticks rogether in the old Indian style. and to this day 1 believe wood is tbe most widely used foel, owing to its almost universal distribution. Takıng the averoge wood wien fresh cut.

[^0]it contains about fifty per cent. of moisture, but when thorougbly air dried this falls to about twenty per cent. According to C. Williams Siemens, D.C.L. the average calorific value of wood as far as its henting quality goes, is: carbon, fifty per cent.; hydrogen, six per cent. ; oxygen, forty per cent.
Next comes peat. which is found in swampy, or what may have been swampy places; the largest thed I have read of in America is near Soulth Bend, Indiana, which is three miles wide, sixty miles long, and from five to fifty feet deep. I have a'so hrard that there are large beds in our own country. Peat is not much used in this country, but in Ireland, Germany and Sweden is is used entensively. Peat is totally unfit for use as a fuel until dried; according to Sir Robert Kane the aterage calortic value of Irish peat is - catbon, fifty per cent. ; hyUrogen, six per cent. ; oxygen, thirty-one per cent.
fly far the most important fuel is coal. The first variety is lignite, which is generally brown in color; sometimes leoks very much like true coal, but is not worth as much as the poorest kind of cesul. In America it is only used in the localtits where it is found, namely. Kentucky. Colorado, and west of the Mississippi river. Its calorific value according to Arthur V. Abbott, C.E. is carbon, forty per cent. ; volntile combustible matter, twenty-three per cent.
Next comes bituminous or soft coal, which is used most ta this city for steani purposes. There are many kinds of soft coal imported into Toronto, but for my part 1 much prefer the Renelliville Soldier Kun: I believe that almoct as much steam can be gencrated from a ton of this coal as from a ton of the best hard coal. There is coking and con-coking soft coal. From the coking conal a great deal of coke is made in the minine regions and is used extensively, being light to transport. This caal is also valuabie for gas manuficture. Did you ever make gas in a small way? Get a long clay pipe, fill the bowl with powdered soft coal, cover over with blue clay. place it in the fire with the stem projecting cut, and in a few minutes the gas will come out of the stem ; then light and it will burn for some time 1 have always understood that illuminating gas was invented in this way.

The difficulty with soft coal is that it is diry to handic and blocks up the tubes of a boiler with soot and emits a black smoke. There are over three hundred patent smoke consumers, so called, some of which may assist to burn the smoke. but I have yet to see a perfect one, and even in Chicago, where a smoke by law is in force, one cannot see beyoud a few blocks from the roof of any high buulding for the dense smoke, soft coal being uned for steam purposes. I believe that most of our grate bars are set 200 close to the boilers for burning soft conl, tbere not being room enough for combrastion. I think this is one of the reasons why a water tube boter gives better duty than the tubulur boiler, there beung more room for the mechanical combunations of the difierent gases of the coal with the oxygen of the atmosphere. Then agnin, the tubes must be hotter than the shell of a boiler on acocunt of the very rapid circulation which must be going on in a water tube boiler, for it is a well known fact that the hotter the surfaces with which the gases come into contact, the better the combustion. But these water tube boilers do not evaporate as moch water per pound of coal as is sometimes claimed. One of the professors of the Engineering Department of McGill University, Montreal, told us this summer that nine to one was the best they could ever reach under test. The ealorific ralue of soft coal averages eighty per cens. carbon and five per cent. bydrogen.

Anthracite or bard coal is the oldest of the conal family, pnd is generally the lowest of the coal strata. It is very hard, which makes it the best of all conls for :ransportation. It is hurd to ignite, but when kindled burns with a high temperature and steady glow, emutting no flame or smoke and does not coke. In density hard ceal is superior to all other fuels. It is used in all our government buildings-Dominion, Local and Municipaland even in our water works pumping stations, 1 suppose for the reason that it is cleaner to handle and that there is considerably less work attached 10 it: certainly not because it is the cbeapest. With the present prices of coal at least iwenty per cent. could be saved at our main pumping station by using a good soft coal instead of hard. The average composition of Fennsyivania hard coal according to the sarne autbor, C. William Siemens. DC.L., is : carbon, ninety per cent. ; volat ie matter, five per cent.

Probably no discovery of the prescn! century has brought a more widely extended change in manufactaring operations than that of natural eas. Already in Pittstiargh there are thousands of miles of pipe lines, and it is fast taking the place of coal in the favored localitics. Natural gas is found in many piaces in Canada, and bas been pal to practical use in the county of Welland and at the new asylum near Tomonto, but the quantity appears to be limited: it is also found that manufactured gas can be used to adrantage for steam purposes. but cot in Toroato. chiefly owing to the higb coas of conl.
The only natural liguid fuel is crade petroleum. which is found in the United States, Russia and Cannda. Since its discovery many atuempes bave beed made to use it for power porposes, bot it is only of bate years that the attempts have proved successfit One great point in its favor is that it has ninetech to tweaty-one thousund beat units, sgainst thirteen to fourteen thousand for coml, and it ooly requires the price to come down a little when it would become a dangeroos comperitor of conl. While our President. Bra Wilson Phillips, and 1 wert in Chicafo visituge the Fair, we had an opportunity of seeing cil used in a practical way for power purposes. as the main battery of boilers in the World's Fair buildings, consissing of twenty-seven thousand b. p., all water tube boilers and of many different makes, were all fred with oil fuel. We also visited three of the maic cable rond power stations; tbey also ased oil frel. Al the North Clark

Street Station the chief entinerr, Mr. O'Connor, who is an old Toronto boy, told us that oil fuel was not much, if any, cheaper than coal, and certainly not us cheap with a small power plant, but it is by a long way the cleanest-the boilers and everything about them being easily kept ciean and in good order.
Perhaps a word or two on the latest mithod of burning oll to generate steam would not be out of place. There are iwo furms of very similar appamius. one using compressed air, the other steam. The object seems to be to spray $o r$ atomize the oil as finely as possible. The appanatus for onl firing is first a large cank or reservoir at a sare distance. etther sunk into the ground or bricked around to protect it as far as possible from fire. In the rase of the steam system, the oil is conducted to a smaller tank, near the furnace. The oil from the main tank is allowed to flow by gravity, but at the Fair it was pumped by large duplex pumps. Fron this smaller tank, which is only supposed to bold enough oll for a few hours' run, the oil flows to the burner, which is practically a steam siphon. The oil jcts are within the large pipe containing the air, so that by the force of the steam and air the oil enters the furnace in a very fine spray. The oll, aur and steam san be separately regulated, and when properly adjusted almost perfeet combustion is obtained. It makes a roaring neise, and on looking into the furnace nothing but 2 mass of white flame can be seet. The ash pit doors and all other intets are cloed, and no smok comr, from the stack. The only drawback about this systens is that an auxiliary boiler in neceesary. or steam must be raised with other fuel, as it cannot be started without stram. Crude oil contains 84 per cent. carbon and fourteen per cent. hydrogen.
From an average of thirteen experiments with rood soft coal, Dr. Brunt found out of a possible fourteen thousans's fuur bundred and thirteen heat units, only eight thousand four hundred and thirteen were inducted into the water in the boiler-so it is quite likely that we very seldom get more than onehalf of the beat of our fuel: and the engine is still more wasteful, as nevet more than twenty-five per cent., and not very often more than ten per cent., of the heat units are taken out of the steam : but in this country for abnut seven months of the year we make good use of this waste steam by warming our buildings with it. look from the top of any of our buildings on a cold morning and you will not see very much exhaust steam going to waste-with one exception, and that is, the Terauley Street Electric Light and Power Station; there clouds of steam from a very large exhaust pipe may be seen any time. Now. I am satisfied that had this station been siluated among some of our large buidings. every pound of that steam could have been sold for heating purposes. for ut least seven months of the year, and the revenue from this source would have paid at least half the coal bill. One electrical manager said in convention-I think it was in Philadelphia-that the revenue from the sale of their exhaust steam almost paid their coal bill during the winter months. and tbey never carried mure than three pounds back pressure on their engines.

There is a fortune awaiting the man who can give us power straight from the fuel. I lately read of a man in Germany who is working with this objece in view. He grinds the coal to a very fine powder and explodes it in the end of the cyitnder, after the style of the gas engine. but he could not get nd of the ashes and soot. Ithink there is a great field for inventors along the line of the internal combustion engine. An efficiency of twenty per cent. has been realized, with bright prospects of doing better.
Just a word now on patent fuch. The earliest patent we have mention of was granted by the British patent office in Apr:", 1773, and there have been hundreds of patents granted since then; nearly all of them have been direeted towards utilizing the mine w: te. whirh is calculated to be fifty million tons per annum for the whole world. This field for inventors still exists. Surely some way can be found to save this annual waste of energy !
The sawdust of our saw mills used to be a burden to the owners, and I have known them to move the mill rather than the piles of sawdust around it. bus all that has changed now : their power is generated with the sawdust automatically fed to the furnaces, and ther now sell the slabs which they used to bum. Have you seen anything of the patent coal compound agent? 1 think tim a pretty good agent who will go to any intelligent engineer and try to make him believe that he can save twenty.five per cent. by mining a few pounds of rock salt, or whatever it is, with the coal. There are seven million heat units in five hundied pounds of coal-l am sure there is not in five pounds of compound-neither can we get any more out of the coal than there is in it, and to wet the coal the very best authorities agree is detrimental.
Then as working enginfers it is our duty to keep our boikers clean both in. side and out, watch our fires closely and keep the grate and bars covered. for I believe with the coal we get, which is coking, the danger is in admittir.g 100 much air instead of not enouzh. We should make the best use of the appliances given in our charge, whatever they may be.
Toronto is situated so that we might save a large amonnt of our coal bill by utilizing the rast water power which nature has placed at our service. Thirty-eight miles north of us we have Lake Simeoe, three hundred square miles in extens, with a bead of four hundred and seventy feet, and with a thousend square miles of water shed. If that would not be enough, we have Georkian Bay, an arm of the great lakes, witb three bundred and fity feet head, and if we were to draw five bundred million gallons per day the people of Niagara Falls would never mist it.

Messrs O. Kartzmatk a Bra, of Hamilton, have assumed control of the basiness of the late Mr. Geiss, and will engage in all kinds of mechanical and electrical work.

DESCRIPTION OF THE KINGSTON LIGHT, HEAT AND POWER COMPANY'S PLANT.

## (Hy a Correspondent.)

A short time ago I had the pleasure of looking over the plant of the Kingston Light, Heat and Power Co., a description of which I have much pleasure in forwarding to you for publication.
The officials of the company are as follows : Mr. IS. W. Folper, Superintendent; Mr. J Campleell, Electrician ; Mr. Kobt. King, Chief Engineet ; Messrs. S. Ionnelly and J. Cidlavin, Assistiant Engineers. The station itself is a substantial stone buhlding on Queen street, near the water front. The plant consists of three horizontal cylinder tubular boilers, $66^{\prime \prime} \times 14^{\prime} \times 78^{\prime \prime}$ steel plate, built to carry 125 pounds pressure pr. square inch. These boilers are fed by a Northey Implovel Compound l'lunger i'ump, $6^{\prime \prime} \times 11^{\prime \prime} \times 10^{\circ} \times 5$, the cylinters of which are nicely lasted, making it a very handsome pump. There are two tanden Cumpound Corliss Engines, built by Messrs. J. Inglis 太 Sons, of the following dimensions: $16^{\circ}$ and $30^{\prime \prime} \times 42^{\prime \prime}$.
These engines run at 85 tevolutions per minute and have fly wheels $16^{\prime}$ diameter and $36^{\circ}$ face. The ensines run "under" and beit back from fly wheel to a counter shaft, which is fitted with Waterous Patent Grip Pulleys.

The engines are condensing; a Northey independent condenser and air pump being in use. These enpines are a credit to the builders, Messrs. J. Inglis $\&$ Sons and also to the Chief Engineer, Mr. Robert King, who erected them. They are substantially built and the finish and workmanship leave nothing for the most fastidious engineer in the country to desire.
The electrical part of the plant consists of two No. 201000 light 16 c. p. 230 volt Edison Cienerators on the 3 wire system used for incandescent lighting; one T. \& H. 35 light 2000 volt arc dynamos; two Wood 50 light 2000 volt arc dynamos; one T. \& H. 1,500 light 2,080 volt alternator, with an Edison excitet for long distance lighting ; one T. \& H. power senerator for street railway work.
The dbove machines were wired to one of the finest switchboards in Canada, which is elaborately fitted with all the necessary recording instruments to be found in any first-class station. I was shown some indicator cards taken from the engines which ploved beyond it doubt that they were running economiratly. I was also informed that during a test made a few weeks ago, these engines developed a h. p. per $21 / 8$ lbs. of hard and soft screenings, with a proportion of 3 of hard $10: 1$ of sott.

A distinguishing feature about this plant is its cleanliness. There is apparently a place for everyhing and everything is kept in its place. Taking it all in all, it is one of the best kept plants which it has been my fortune to visit, and is a credit to Chief Engineer King and his assistants. If any engineer should be visiting Kingston, I would advise him to call in and see this plant, and he will receive a hearty welcome from th:ose in charge, and will see something to interest him.

## THREE TERRIBLE BOILER EXPLOSIONS.

On the and of November there appeared in the daily papers accounts of three boiler explosions, attended by great loss of life and property.
The most serious of these took place in the stables of the Diy Dock, East Broadway and Batlery Surface Railroad Company, at Fourteenth street and Avenue E, New York City, and tore out the building, causing death and destruction. The section of the buitding in which the boiler was located collapsed. The boiler flew across the street and struck the double tenement No. 534 East Fourteenth street, just below the first story. The side of the building was crushed in. Three men were instantly killed and nearly a score were injured, sercral of whom have since died.
The second explosion took plare on the steamer City of Alexandria, while on her way from Matanzas for Havana and New York. As a result the vessel icok fire and was destroyed, and a number of persons on board were drowned.
The third explosion took place in a flour mill at Windfall, Ind., and occasioned the death of the fireman and the serious injury of some other persons.

In the light of such terrible occurrences as these, the action of the Quebec Lexislature in incorporating into the new Factory Act of that province a clause making compulsory the proper inspection of boilers in manufactorics, is well-timed.

## ELEGTRIG RAILWAY DEPARTMENT.

## LONDON STREET RAILWAY CO. VS. CORPORATION OF CITY OF LONDON, ONT.

In July. s8ya the $1.0 n t o n$ Street Raluay Company conunenced to build herf tracks on Dundas sireet west, in accordaner with the provisions of their apreement with the City, when the City applied for an Injunction to restrain them from bulding the said tracks on the grounds that the Company forferted its rights to the use of the street by not constructing the minl-
way sooner. was wed at Ionitun on Oct. 7th, 18yz, before Hon. Mr. Jusite Hose, who pave judginent as follows.
" 1 find that there is no tine limit by implication, that there is no express limit fixed uy the by. law : that there was a right given to the london Stret Kalway Co. with respect to the streets named; that the Company hall the tight to exercise itt frajchise With reference to those stiects subject to the provisions of clause 33 biving
the ten days notice : thine the faying of a proposition before the City Council did not the tend the tight that had Iteen gransed to the Street Hailway Company, by clause 2 of its liy.law, giving tt the exclusive sight, and that as long as the Sireet Kailway Company; was proceeding in a cordance with the frovikions of the agree. ment to occupy thir strets, it had the right to do so unobstructed by the City or it (Section 2s of the by law provaion of sec. ar thatright mas suspended. construct a ralway in the City of Iondon, the London Street Rulway Cons construct a rallway the city of lomion. the Lonlon Slreet Ruway Coni pathy stall ire given the option to construct the ralway, and in the case of a
efusal, the Cis to have the right to give the privilege to the sald persons.) The julfoment was given sn late in the seison that the consiruction of the ootlion of track in question was delayed until 8893 . When in July the Com. potion of track in question was delayed until i8g3. When in July the Company akan commenced to bulld their track on bundas streer west. and the leen laid! (alsumt 120 ff. of street.) This the Company refused to do, where reen lain (alxuut $i z o f t$. of street.) This the Company relused to do, where.
upon the City ordered their workmen to :ear up the tracks under police upon the City ordered their worknien to sear up the tracks under police prolection. on the ground thatit was a a dongle track with the necesciary switches and turn outs. the fornjany titen entered an action against the city for damages, and the Company tien entered an action against the city for damages. and 893. who delivered judgnient as follows:
derendants that the bylaw and agreement are ultra vires, at set forth in the first paragragh of the statempat of defense, is res judicata, having
ucen disposed of by the judgunent of Asr. Jutuice Rose in the su: of the present defeadants against the plaintifi, in the cliancery division. And no new facts were hown karink on larazraph 3, which sets up that the platatiffs have no night now to construct track: on Dundas street, weit of Richmond streer, and that issue is also er judicata by the same judmanent.
possible to tell an the ground whether the two ultch, and the defendants had therefore no tight to assumme that work which hadi a, a in fact attually become a nuisence would do so. (Garrett on "A Nuisances," page 31 s . Enaton, etc. Passenker Railway Company vs. City of Easton. Pa. St. ses, is strong uthoritr in plaintiffs favor.

True, the plainties were assuming to work on defendanta' property-an element of distinction from some cases on this subject-but plaintifis were no: there as tres.
passers, but of ngh, as Mr. Juatice Roue has found, provided they are in other re specta within the byitw and apreement.
"The argument that 'single track'.in section a of the bylaw means just a single line of rails, and that the company cannot even have a switch on Dundas stree of Richmond, is 200 refined and suble for me, and 1 cannot give effect to it.
Nor do ithink tection of (which deals with what in street railway parlance is loth ends.
noth ends read the whole of section four together, and hold that the supervision and atiafaction of the city engineer have relation to the 'substantial manner and accord ing to the tiest modern practice. as to $u$ hich there is no real complaint, but the complaint is fulnded on a zupposed construction of the bylaw and agreenent. Section cate in writing that the road is in cood condition and has been constructed in all
respects conformably to the provisions of the bylaw. That is another matter. ence as to damakes, in which reference the master is to have regard to the agreemen
of Aug. $7_{0}: 89$, fild before meant the argument. or Aus. ${ }^{\text {P }}$ : 2893 , filed before meant the argument.
cot to plaintififs to issuing of this judgment. Further directions and costs re
[As we go to press it is leamed that the above decision has been reversed by Chef Justices Armour and Street in the High Court at Toronto ]

## THE DUTY ON STEEL RAILS FOR ELECTRIC RAILROADS.

Under a ruling of the Customs Department at Ottana, steel rails for use on ateam railroads may be imported into Canada duty free. while on steel rails for use on clectric railroads. a duty of $\$ 6.00$ per ion is imposed. A tepu:ation of gentiemen interested in electric railroads in various parts of the country, waited upon the Prentier and members of the Dominion Cabi net a few days ago, and urged that the ruling of the Department he changed and the import duty on rails for electric ronds removed. Sir john Thompson in reply to the deputation stated, that while personally he was of the opinion that the Act providm or the imposition of the duty. the was free to admi that the clause in tbe tarift was oper to two consiructions. and this being the case. the torernment would leave the question to $x$ decided by the courts. We have some recullection of a decision having been given agains The Government on this point in one of the inferior courts some months ago There is reason therefore for the hope that the ultimate deciston will be lavorathe to doing awiny with the present anomalous interpretation of the tariff by the Customs Department. The Canadion Mfanufceturer unges the Government. instead ofrenoving the duty from rails for stree: railroads to impose it upon rails of all kinds. With the object of developing the manu facture of steel rails in Canada. Our contemporary, in pointing to the advan axges which uould accrue to the col'niry from a steel rall manufactory a lurden must te imposed upon electric milroad development and indirectly a burden musi ie imposer upon electre ralroad developmem and indirecty upon manufacturers of electrs milwiy applianers. We contend that the a manufactory of stexl rails, and the government in dealing with the matter. should legislate in the interests of the many rather than the few.

The City Council of london Ont.. bave finally decided not to submit the Uestion of changing the street rallway system from horses to electricity to guesion of changing the strect rallway system from horses to electric
the electors at the coming elections as was talked of some :ime ago.

The American Sireet Railwisy Association has under consideration an invitation extended ty the Canadian delegates to the recent convention at Millwankec. Wis. to hold its convention in s895 in the Cify of Montreal.
The City Enginecr of Halifax has recommended the Council to accept the plans and specifications submitted by the Ilalifax Sireet Railwiay and Miotor Co. for operatung by the trolley system the street railwiy of that city. A charter empowering the company to use electricity was granted by the
I Legishature iwo years ago, but owing to internal dissens
ment of the company. the change was not camed out.

## THE PHILOSPHY, APPLICATION, CONSTRUCTION AND IMPROVEMENT OF THE STEAM ENGINE.

I have much pleasure to-mght in reading to you the first of a series of papers on the philosophy, application, construction and iulprovement of the sterni engine. which, arringed in my simple way, may be of some momens to you in the pursurt of your daily avocillon as electrical engineers. It is a question that interests us all. and one that cannot be too often repeated and studied with interest.
The philusophy of the steam engine presents an interesting study, as well as that of the successive changes in its mech.umsni. In the operation of the steam engine, we find matny of the important principles which constitute the physical sciences. The steann englase is an ingensous. bilt not yet a petfect macthane for transfurming the heat-energy obtuinet by the chemical combination of a combustible with the suppoter of combnstion into mechnnical energy. But the original source of allth is enerky is found far anck of its first appearance in the steaniengine. It had its origin nt the be ginning, when all nature came inte existence. After the solar system had been formed frum the vapory chaos of creation, the glowing mass which is now called the sun was the depositury of a vast store of heat energy, which
was thence madiated into space with unmensured mensity.
The heat enetgy received fiom the sun, during the past life of the globe, uoon the earth's surface, wass partly expended in the production of great forests, and the storage, in the trunks, branches and leaves of the trees of which thry were composed, of an immense quantity of catbon, which must have preste"'y existed in the alnosphere. combined with oxygen, as carbonic acid. The preat reological changes which buried these forests under superincumbent strata of rock and eirih resulted in the formation of coalbeds, and the storage during many succeeding ages, of a matt amount of carbon, of which the affinity tor oxygen remained unsatisfied until finally uncovered by the hand of nan. Thus we owe to the heat and light of the 3un, the incalculable store of potential energy upon which we depend so much for life and all its necescaries and comforts.
This coal thrown upon the gmte in a stam boiker, takes fire, and, unitung again with the oxygen, sets free the heat in prectsely the same quantity that it was received from the sun and uppropriated during the growth of the tree. The acfua/ energy thus ret lered available is ransferred. by conduction and radiation, to the water in the steam boiler. is converted into steant, and its mechanical effect is seers in the expansion of the liquid into vapor agair.st the superincumbent pressure. Transferred from the builer to the engine. the stam is there permitted to expand in doing work, and the heat energy with which it is charged becomes partly converted into mechanical energy and is applied to useful work in the electrical power house or in driving locomotwes or steamboats. Thus we may trace the store of energì recxived from the sun until th is finially set a! work (thanks to science fot the light thrown on this dark subject).
The tmansformation which takes place in the furnace is a chemical change: and we might still go furtinet and observe how, in each case, it is again usually retransformed and again set free as heat energy; the trausfer of heat to the waler and the subsequent phenomena accompanying its pastage through the engine. are physical changes. scme of which require very amnute mathematical operations. Therefore we will be content with revieiv ing the different points of interest attached to the phenomena of physical science at we encounter them from time to time in these papers, in a simple and prictical sense
As has been already stated, the steam engine is a machine which is es. pecially detgned to transform energy, originally dormant or potential, into active and usefully availabie kinetic energy. When. mitlons of years ago in that early period refersed to in this papers and which geologists call the car boniferous. the kinetic energy of the sun's rays. and of the glowing inteno of the earth. was expended in the decon, position of the vast volumes of cat onic acid. with which arr was then charged, and in the production of in mense furests which then covered the earth with their almost inconceivably uxuriant vegetation. there, was stored up for our benpfit. then uncreated. an nconceivably great treasure of potential energy. which we are now utilizing to an extent. This potential energy becomes kinetic and available wherever and whenever the powerful chemical affinity of oxygen for mirbon is per mitted to come in:- play and the fossil fuel stored in our coal-beds or the wood of the existing forests is, by the familiar process of combustion, per mitted to return to the state of combination with oxygen in which it existed in the carly feological periods.
The philosophy of the steam engine. therefore. traces the changes which occur from this first step. by which in the furnace of a steam boiler, this potential energy, which exists in the tendency of carbon and oxygen to com bine to form carbenic acid is taken advantage of, and the utilizable kinetic energy of heat is producen in equivalent amount to the final application of mechanical energy to machinery of transmission, through which it is usefully applied to driving machinery of all kinds.
The kinetic heat energy developed in the furnace of the steam boiler is partly trinsmitted through the plotes which enclose the steam and water within the boiler, there to evaporate watrr, und to assume that form of energy hich exists in steam confined under pressure, and is parly carried away into the atmosphere in the discharged gaseous products of combustion. serving, however, a useful purpose on its way, by producing the draught neeled to keep up combusion.
The steam with its store of heat energy passes through winding pipes and passages to the steam cylinder of the enkine. losing more or less heat on the way, and there expands, drving the piston before it and losing heat by the transformation of that energy while doing mechanical work of equiva lent amount. But this steam cylnder is made of metal, a material which is ne of the best coaductors of heat, and therefore one of the very wors possible substances with which to enclose anything so subtie and diffecult of control as the beat pervading 2 condensible tapor like steam. The process of condensation and recvaporation. which is the great enemy of economical working. thus has full play, and is only partly checked by the heal from the steam jacket, if there be any, which, petetrating the cylinder, assists in keeping up the temperature of the internal surface and checking the first step, condensution, which is an essential preliminary :o the final waste by reverap otation. The piston is also of metal. affording a most excellent exit for the heat escaping to the exhaust side.
Finally, all unutilized heat rejested from the steam cylinder is carried amay from the machine, either by the witer of condensation, or in the noo condensing engine, by the atmosphere into which it is discharged. Review ing the operations which go on in thes machine during the process of trans formation of energy which has ben outlined, and studyng it more in detail, we may deduce the principles which guven its design and construction. guide us in its management and determine ins efficiency.
My next paper will be more in detail, coupled with ealentations by way of illustration. etc.

- Paper read befare the Moatreal Electric Clal

CAPITAL, $\$ 1,500,000$.

# ....TREX . . . <br> FACTORIES: <br> General Electric <br> Peterborough, Ont. <br> Branch Offices and Warerooms : <br> 124 11ollis Strect <br> HAL.IVAX, - N.S. <br> 180z Notre Datue St., MONTREAL, - OUE:. 350 Main Strect, WINNIIEC; - ALAN. Cranville Sircet, VANCOUVEK, • B.C. 

# Thomson-Houston Street Railway Generators and Motors 

(Same as built by us for Niagara Falls Park \& River Railway.)

## Thomson-Houston Systems of Alternating Current Apparatus for Incandescent Lighting.

## Edison-Systems of Low-Tension Direct Current Apparatus

 for Incandescent Lighting.Electric Arc Lighting Apparatus. Electric Mining Apparatus. Apparatus for Long Distance Transmission of Power.

We Manufacture in Gavada Everi Description of Electrical Machinery ano electrical Supplies. $\begin{array}{lllllllllllll}x & x & x & x & x & x & x & x & x & x & x & x\end{array}$

## INSULATED

## WIRES

## FOR ELECTRICAL USES

Our wire factory is one of the best equipped on the continent.

We manufacture every description of insulated wires and cables, and our large production enables us to offer special values.

We desire at this season to call attention to our

Standard Weatherproof Wires,
White Weatherproof Wires, Rubber Covered Wires,
Magnet Wires,
Office and Anrmaciator Wires,
Flexible Incandescent Light Cords.
Our solid core Rubber Covered Wire has the best insulation resistance, best quality of rubber, and gives the most general satisfaction to users.

## TRANSFORMERS

To no other class of appamitus can the axiom that "the best is the cheapest" be more truly applied than to electrical machinery and appliances. To transformers does this especially apply. It will pay you to buy the best in the market, and we now offer you the very best at such a reduced price that the essentials of quality and efficiency are combined with extremely low prices, which is rendered possible only by the introdertion of jmproved laborsaving machinery, added to a large increase in our output.

The Transformer we offer is the improved t $\}$ pe $F$. Thomson. Houston design, ceiebrited for its high efficiency and perfect regulation.
The following points in a Transformer are all essential: ( 1 ) l'erfect safety ; (2) high efficiency ; (3) good repulation; (4) smaull core loss; (5) convenience in installation.
These are attained in the New Type F. Oil Insulated Transformers (which we are now manufacturing at our works at P'eterborough, Ont.), in a greater degree than any other upon the market.

Writo to cearest office for prices

INCANDESGENT
LAMPS

We have, during the past two months made such changes and improvements in our methods of manufacture, and in the general appearance of our lamps, that we offer you, with confidence, : lamp that we are assured is now supetior to any other in the market.

We have adopted an entirely new method of treating and handling our carbons, and have so improved our methods of inspecting and testing throughout each depariment and pro. cess that all inherent defects are eliminated before the lamps are passed for shipment.

Price list and diacountn finminifod on applfcation.
rIIE ART OF SUCCESAFL'L ADVERTISING
By limikt il. Hikinkichs.
Advertisug has fecourne senetally recognized as a necessary and mportant aljumet tes every business, trate, profession and mareantile or comner cat enterphise. The colbiber miliertises liss handiwurk on the wimbow.ledge the grower pats his brest stoxk of vegetalites on the stidewalk, the clother
 the actor seeks to atirita the uttention of the public in flaming prosters, and the manimatiurer advethises lins spectalites in the trade papers and maga zines. The athe worn axime that gued hools do not need advertising is now retegated ato the deryest recesses ot the business mans visult contatn ong mentiores of the past. and is brough out only to set ve as a dampener upsin it two jersenermp ativerhising solicitor. in mis age of keen competi tiun. it is not lihely thitt any man will have at purch.iser fer his goods sumply because they have the chardeterisic of execilence. He nust promulgate their disthictive advanhinges or their stuperiority.
$t o$ do this successfully. he must adterlise. There are as many ways of advertising as there are roads leading to Rome, and the question is how to find the rikhe one.
lo the writer it seems that the first point to be consulered is, how much money will ther capntal of the busiress to be ndvertised permit to be used for this purpose? This point. once disposed of, will immediately suggest another one. - how may this sum be expended to the best advantage, or, hou can the busturss ln advernsed most effectually with this stipulated sum
The thorough study of these point- is of the umost importance. There mast le methoul pursued in the suanner of adverising. If it is to be profit abie eise there will be aboolute thilury One who decides to embuek in any enterpirise invariatily makes it hits first business to find out how much it will cost him to make a start. Ithe same pinciple applies to advertistag. is is it busuness in usself, the managenient of whech requires the greitest care nuld mitemtion.
Some people suy that they give the papers an advertisement occosionally Just to get on the good sute of them; others, that they give some man from the papers an advertisement. beciuse he is a" jolly. good fellow." In fact, one gentleman remurked to the writer some ume ago that "there is a goord deal of senmaent connected with advertising! Now there is much trubh in what this 'gentieman s.int. and more is the pity. It is this kind of advetusing which is dangerous, masmuch as it rethects upon advertising as a lexitimate business, iee iuse it deterionites to a form of bnbery, and it dis. henrtens as well as disgusts both the reputable publisher and the honest advertiser.
Having decided how much money may be spent in advertising, the next question is, how and where is tt to be done? To sette this question is ver ditficult, for the reason that the mediums for advertising are legion. Many old advertisers believe that advertising by circular letter affords the sures and lest way to reach n customer. They argue that if they send out a stamped envelope with a tyje-written page or two of matter inside, the recipient will surcly read these paiges. Then there are otbers, who are no pirticular nlout thiving the matter even type-written; they are satisfied to get up an elegomt adverisenment, have a printer strike of as many cupies as they liave custometi on their books. and then they send these circulars to thear customers. Again, there net those who now and again get up a catalogue. it which are set forth descriptions in general and in detail o everytuing they sell. and they send these catalogues wherever they hope to catch a probable purchaser. Then there are firms who rely entirely upon
their agents and representatives to advertise their goods by word of mouth. Most nidvertisers, however, consider all these methods auxiliary; they hrlp a little, but they do not do much good nlone. It may lee sanely nsserted that newspapers, magatines, and trade papers, are now recognizel as the standard advertising mellums.
The objert of adierising is to make certan stntements known to the public at harge. Hence the thore people see the advertisement the more thoroughly does it fulfil its mission. Of course this opinion may le ques. thorod by the adveriser of speriallics, who desires to rench a certain class of people only, tut li's statement is means to noply to melverusing in ceneral people only, but th's sinement is meant to nppily to miverissing in generai, hough it would require merely a shght modificalion to nyphy ionit cisess. Nevertheless, one fact, borne out by the most successful ndvertisers in advertising is the besi nred cheapest advertusing that can be had newspanp "newspanper" includes of coi:rse periodicals of every class.
In choosing a publication some people have very pecular ideas; if they see a paper with $n$ large number of advertising pages, they take it for granted that an advertisement in such a paper means nuoney thrown away. The best padersisememt wit be crowded out of sigh. This is a mistake The best papers, as a rule, have the largest amount of advertising; hence they must be the hest advertusug mediunis. The best papers are app to be come widely circulated which is the great objet of aius orsecessly be come winely creulated. whis is geat objer of aiverisng. To this reasoningly may be repled hat theus not follow. that because an naver isenient is circulared hinong en housind peopie. ten thonssind people will
 people slands a better chance or beng read ten housand wimes than an this deduction of simped logens onlys not be fortot op thate, Apan from are renui with os much ineress as any other porton of na ndrerriseryents are real whas mued meres as any ouher porion of a newspetper. This that the lusy ban will melesly 1 ss over the adverusing coium nay be hail the ausy man wiln clessly pass over hae adverising columns of the fory hewspare, bur heusew was or his neglect. Bur take the popular magazines of to day, the adtertising pares or wich ine cruly renirnable, nol Mone ther niperance. bu issoment plased anywhere in these piges is a lost invesserinit an idver lising page of these periedicals remges is a lor investmenif the adver suing pes of aione periocicals reperen al shiking rehection of the commercal, the malustraa, and the financial. as
 isines pabs as of ising pages as of the essays, stories and other features.
A busmess man, having decided to advertise, and ladving set apart a cerlain sum for this purpore, should go to that publication which is read by the largest number of people interested in his business, which most probably will be that publication which has the most advertisements and pays the most attention to the mannet cisetting up and arranging the advertising pages.

隹 people, and even some advertisers of experience, will doubt this statement but that does reot detract from its correctness. The trouble is we expec $t 00$ mush from thadvertisement. It must not be supposed that a single advertisement, for which perluaps $\$ 50$ has been paid. is going 10 fill a store with customers for a year to come., thus bringing a profit on the investment of probably ten hundred per cent. Most peopi- are satisfied, if they make one hundred per cent. on their invested capmal, and everybody should

THE . . . .

## Reliance <br> Automatic <br> Alternating Current

PERFECTLY AUTOMATIC,
FROM ONE LIGHT TO FULL LOAD.

$\longrightarrow$ MANUFACTURED BY $\longrightarrow \longrightarrow$
The Relange Elegtric Mfc. Co.
(LIMITED)

## WATHREORD, ONT.

Write for prices and investigate before

## BRANCH OFFICES:

106 King St. West, TORONTO, ONT. 749 Craig Street, MONTREAL, QUE.
connend them for their modesty. Why, then, should a larger profit be expected from an advertisement than from any other thvestment?
Advertising otice conmenced, nust tee kept up, and if combucted with the same thoughifulness. the same care, and the same business nuelibods exer cised in any other enterprise, an advertisement will always prove a profibable investmeit.
There is one other feature connected with the business of advertising, which, although the wriner has so far not minte mention of it. is neveritheless of no less importance than the others. Ihas is the nanner of composing an adverisement. It is impossible to form any set of stantard mies as a purite for the composition of adverisements, except in so far as that they should in all cases be so worted that they will it once altract attention and be read. To te turief. concise, clear, and to the point in writing an advertisement is undoubtedly commendable, and a plain statement is always more liable to carry weighe with the reader than a long string of ambiguous phrases. which
have no defined meaning when analyzed, -Emgincerigr Afagasine. have no defined meaning whetl analyzedi, EEngincersng Afakasime.

## SPARKS.

The capital stock of the Vankleck Hill, Ont., Electric L.ight Co., has been increased frolll $\$ 3,000$ to $\$ 10,000$
siteps are being taken to establish telephonic commumication between I Ienmark und Siweden. under the Sound.

Mr. A. J. Coriverau. of Montreal, has registered his business under the name of the (unadian Electic Manufacturing and Supply Co.
At the recent annual meeting of the Brantford Electric and Power Co.
Mr Williant leuten, the president. was re-elected, as were also the other directors of the company.
The new electric mall cars recently put in operation at Othawa, havegiven very satisfactory results, havirg reduced by 75 per cent. the tmo necessary for the delivety of the mails.

Messrs. Robin \& Sadler have reteiverl from the Einstern Townships Agr. cultural Association, a silver medal. for their display of leather beling at the Sherbrooke Exhibition, in Septeniber last

The Bell Telcphone Co. pives notice of its intention to apply to Parla ment at its next session for an Act to increase the horrowing powers of the company to the limit authortzed by the "The Companys' Act."

A limited foint stock company is being formed at New 1 I.tminurg Ont., composerd of leading citizens of shat town. will n cipplat of $\$ 50.000$, to tamatacture $n$ new mit motor and an electric dymamo. The cumpany ex pect in collimence operitions e.ifly in the new ye.ir.
Messrs. Doty [Bros. \& Co., of Toronto, recently removed from the lull of the stemmer "Sidie." ni Oakvile, Om. , what is temeved to tre the uldest marine engine in (anada. Jhe engine was bailt at liokenheat, Dinghati, In the year t80s, and pats of if have been in use constanty up to the present tine.

A correspondent fo the liekithicisi Nuws in london, Ont. advises chgineris, instend of marchasing ath meticator, to stady Heambediways of Pray's Indicator I'ractuce fle expresses the upunion that it wothl be beeter for them to possess themselves of the thiory of the indicator, than to hitve an indicator withnut the knowiedge which should precerle its tuse.
It is said to tre the minention of the Stontreal Siteert Railuity Co.. to have all its cars vesubuled. thus affording shelter to the motormen und conthictors. In a climate so severe as thit of canada in winter, the comfort of street In a elimate so severe as thit of cabadin in wimter. the conmort of street that this protection should tre affordet!. We observe that in some of the American Slates laws have been passed making it compulsory on sireei railway companies to place vestubules upon their cars.

Mesirs. F. Nicholls, general manager of the Canadan (icmer. liflertric ('o). and Sir. II. 1. Dwight, Rencral namager ol the lireat North-Western Ielegraph Co. Ilave iately relurned from a visit to bifitath culumbin. A Vant. couver dispatch intimates that sheir visit had sumething to do with the purchase by the enty of Vancouver of the Victoria and Westmaster Ir:imman: as well as the entrance into Braish Columbia of the Great North. Ves. tesn Telegraph Co, as a competitor of the Cimadian I'acife I Celegraph C'o.

At a recent meeting of the City Council of Ottawn. Ont., the following: resolution was adopled :-" That in view of the necessity of the city provid ing its own electric lighting plant for street lighting and other purposes, the caty clefk be instructed to wilte the Ottiwa Electrac Light compiny and ask On what termis they wuuld be willing to sell their plant. goving the details of the cost of the machinery on hand und the water power privileges they possess in approxiniate horse power with a view of opening negotminons for the purchase of the same, and that tho company be asked to return an answer before the 15 th December."

# THE HAWORTH BELTING $C O$. 

OFFICE AND FACTORY: 9 AND $\because$ JORDAN STREET,

## TORONTO

# English Liquid Vegéetable "Anti-Scale" BEST BOILER COMPOUND rox LOCOMOTIVE, MARINE and STATIONARY BOILERS. 

Efficient in its working without injury to the boiler plates and tubes.
Totaily Prevents Scale . . Remodes Incrustation, Corrosion and Pitting . . Preserves the Pidtys ani Tumes Prevents Leakage of Bed Taps, Whater Gaugfes, etc.
This compound is purely vegfetable, proves relirable, and worthy of use by all engineers. Used in Great Britain and the Colonies.
testimonials referring to its excellence, and every information cheerfuliny given on application to

(Agent for John C. Taylor \& Co., Ltd., Manufacturers, Bristol, England)

The Kellance Electnc Manufacturing Co., of Watertord, Ont., are seek Ing to obtain from the City Council of Toronto. permission to string wires and creat poles for the supply of electric light and power in the extreme western section of the city. They propose to use the ofd Parkdale water works putnping house as a power station, if it can be obtained for this purpose.
A halfinch three circuit metallic sub-marine cable of the best quality. upwards of 3.000 feet in length, was recemily laid under the Fraser Kiver by the llumatit infel Telephone Ca. The laying of the cable occupied about thice hours, and was Jone under the supervision of Mr. M. W. Kent. Mannger of the Compiny, and Mr. George C. Hoidge, the manazer of the locil system. The first mestage over the new line was sent by the presi. dent of the company. Mr. J. C. Armstrong.

The steam and electric power plant of the New Westminster and Vancouver Electric Iramway Compnny, as well as the cars with which their line is equipped, anounting in value to neatly a quarter of a million dollars. are housed in one large woolen building. Ar. F. E. Handy, on assuming the superintendency of the line, was forcibly inmpressed with the danger to which this valuable property was exposed from fire, and immediately set to work to devise ways and means for its protection. For this purpose he organized the employees into a volunteer fire company, and p'aced in position a steam whistle, to the sound of which they were to respond. The men were deilled at regular intervals, and so efficiently. that at a recentinspection of the works by representatives of the City Council, only ten seconds clapsed between the sounding of the whistle and the turning on of a strenm of water from the hose.

# PULLEYSI SHAFTING PERFEOTLY TRUE AND POLEHED KEY BEALED WHEN' DESIRED. 

## SPARKS.

It is reported that a strong company has been organized to buiddan elretric car line from Rat Portage to Keewatun.
The marted employees of the L-ondon Street Railway Company were each presinted with a Chnstinas $t=$ key by the company.
$\$ 70,000$ of stock of the Hamilton. Grimsby and Beamsville Electric Railway Co. has been sibscrited. and $\$ 10.000$ paid up. Only half the authorized captal stock of $\$ 200,000$ will at present be issued.
The 1 ontion West Electric Railway has been operated without much difficulty during the recent severe storms. but great difficulty has theen experienced in giving a good service with horses in the city.
As a result of a recent conference between the managers of the Toronto Street Railway and the Toronto Cuty and Suburkan Electne Railway, the Toronto company agreed to put electric cars as soon as positble on Hathurst street to connect with the suburban line.
The alanulacturers of the Novak incandescent laupp. th the suit brought against them in the Cinted Sitales courts by the Edison Electric Light Co. for infrngement of the Edison patent, admit the valkhty of that putent, and set up as therr sole defence the clam that the lanp which they manufacture is noin infnnging. The decision of the courts in this case will be looked for with very great interest in view of the contention upon which the defendants base their case.
The following tenders for the supply of an clectric and steam plant have been recelved by the City Council of London. Ont.

| Compray. | Electric Plant. | Stcam Plant. |
| :---: | :---: | :---: |
| Standard Co. | \$43.130 | \$15.565 |
| Conadaun (ien. Co. .. | 36.300 |  |
| Fort Wayne Co. | +2.224 |  |
| Relarnce Co ........ | 32.990 |  |
| Koyal (oo | 42.650 |  |
| Western (oo | 42.274 59 | ${ }^{5} 5.55_{5}$ |
| Sirmerss.13abke Cis | 056.90 complete. |  |
| Kolih Armsmang Co. |  | ${ }^{3} .7 .700$ |
| 1.. Leonard As sons. |  | 25.565 |
| lughs stion. |  | 17.000 |
| Mabcock \& Wilcox... |  | 10.979 |
| T. A. Giant S Co.... |  | 8.550 |
| The Canadan General proent cay phant meeting of the City consider the tet:ders. | Electric Co. the price of $\$ 32$ ouncl has been | fler the 670 A callod to | consider the tetiders.



Wm. Kennedy

\& Sons
Hydraulic and Mechanlćal Engineers.
Sole Maxwfacturcrs in Castade of

## The "Mem American" Turbine

(both vertiral and horisontal) which is the very best kind of Water Wheel for driving electric machinery by water power.
Special attention given to the arrangement and production of Superior Geirs, Shafting. \&c., for Electric Stations.

Fruen's
Water Wheel Govornor

# Thomas Ahearn. <br> Wirren Y. Soper. 

## Contracting Electrical Engineers

※ 世 ※

## AHEARN \& SOPER

## OTTAWA, ONT.

camadian representatives of the

## Westigghousse Beletric \& Mrig. Co.



Kailway Managers who have had practical experience with our Motors and Generators pronounce them the Best in the Market. They embody all the requirements demanded by electric railway practice.

Efficiency, Durability, Easy Operation,
Least Cost of Repairs, Noiseless in Use, and Perfect Mechanical and Electrical Construction.

NOTICF The Westinghouse Alternator is the only Alternator of its type in which the Armature Coils are removable and may be kept in stock. Coils are lathe wound, thereby securing the highest insulation. All armatures are iron clad.

## TRADE NOTES.



 nou ondetealiso gatlens.
 ta. of Betront. Mich. Ibay .dda that herr Sormber sales ate meatly
 on full ture an't with a full furce:
 al a contt tet firt tho 266 th. p. Cross-compount high speet engres for atreet ralwas and light for the Aubersthutg \& Sindmelt Street K.alluas

 toolers wril comblete a lantlets of fine Monareh tenters, makwig t.omo $h_{2}$ p. in all



 wise dasmened of 125 llorse whe rese.ting mathoes since the first of Janu
 stations ri. .


 tour angle wit of wiw arons, ten standard chopmang mills, thare targe under


 have also made arz mgements wath the W. E: Hill Co.. of 大.lhanazon, ta ma:uffuture the:r te the mall spect.olstes.

## SPARKS.

 the Snoll Nats Kurracks at Kryham.
A movement in on fool with the otyect of federating the variols untons of street raluay emphoyees throughout Canarda.
 compount rngine. manufactured by John Inghs $\& x$ Son, Toronio.
The sillige counctl of (inashly. Ont.. have refused to grant right of way
 Kalkiss
A triephone itne is to te constructed by the Bell Telephone Co. . from tomalle to Whatwolle. !!e . va St. Cieorge. Wotton, St. Canitle and Nuth Hant.

The new latory dat which :s up for consuteration lefore the lex:shathe
 :hert tedtu toolers and athachments have undergone proper inspection.
 ! 16 scolne agamst Messes. 11 A. Iohmon. Joronto. and lhulhps

 in theror compainem

Iher ratn ngy ot the tumato atere Ka:inay tor the mionth of Nowember


 whitives tha: whifet the hoar swsems whach grev.ulied prior to the adoption ot thirts, a pirch deal of ferr inding was coner.

# The Bell Telephone Co's OF CANADA, LTD. 

MONTERERE
hantyactukas anti has rok sat gevervingeciftion ur

## TELEPHOHIC $\underset{\text { ond }}{\substack{\text { and } \\ \text { ELEGTRICAL APPARATUS } \\ \hline}}$

## LIME MATERILL AMD SUPPLIES.

Will furnish trnders for supplying Warehouses. Pubhic Buadang. Hotels. and Dwellings with

PRIVATE AND J.OCAL TEI.EPHONE SYSTEMS
BLKGLAR ALARMS HOTEL, ELELAIOR ANII
OIHER ANNCNCIATORS. HOTEL ROOM ANI
FIRE CALL BELLS ELECTRIC MEI.LS PUSH - B'TIONS. ETC.

Will also furmsh tenders to Cilles. Towns and Diliuges for fikt. At.ans anti Pelice: lithol. Sustems.

Catalogues mill te furwisked on afphiation.


## Sales Deprrtuent:

MON1KEM.
Ikoll Telephone Bu:lhing:
.50) Agurcuat Street
TORONTU bell Telephone Bulling 37 temperance strest.

Hamll.ion
Bell Telephone bus!dus: Hughson Sticet.

OTTAWA
Hell Telephone liulding Queen Street.
(UCEHEC
thell Trelephone Buiding. St, John and Palace Siteets.

WIN.NIPEG
Forrest औliock, Minn Siret.



TORONTO ELECTRIC MOTORCO.

$$
\text { (4. } \frac{\text { Dynamos an: Motors }}{\text { 1wion wn }}
$$ 107 Adelaiue St. W. - Toromio. Ont.

## Special • Pulleys

## Split or Solid

## BELT PULLEYS IN ALL SIZES

From ${ }^{5}$ inch di:m. to 15 feet diam.
With irnn centres and wond rim.
(iuaranteed for any power required.
also soly: dancura.turfes
DODGE PATENT WDOD SPLIT YULLEIS
All sizes always in sinck.
WIRIE EOFR CATATOGUE.
Dodge Wood Split Pulley Co.
Offce: GS King St. West, TORONTO.

The Canadian Omece School Faruiture Co.


## BOILERS

FOR SALE.
Second Hand Beturn Tubular Brickset. One 80 H. P. Leonaic' make, nearly as good as new.
One 70 H. P. Leonard make, in faircondition.
Two 60 H. P. Goldie \& Mcfulloch make, in fair condition.
The above were replaced by "Monarch Eco. nomic: boilers, and may be inspected at London. Ont.

Apply for prices and pri...culars to
Robb Engineering Co. (I.IMITED)

Amherst," - Nova Scotia.

If you want to

## SELL ANYTHING

to the wholesale and retail hardware merchants and manufacturers

## ANYWHERE

in Canada, you can reach them through the

## camadian Hardware Menghant

J. 13. McLEAN CO, LTt).


## Hill Patent Friction Pulleys



## AND OUT OFF COUPLINES

For Electric Light Stations and all purposes where intermittent power is required.

## Miller Bros. \& Toms,

(Sincressors to Miller Rron at Mutchell)
Toronto Office: 14 York Street.
MONTREAL, QUE.
ESTABLISEED 1S6!.

THE CANADIAN LOCOMOTIVE \& ENGINE CO., Ltd. hingston, $\qquad$ ONTARIO. Locomotive, Marine and Stationary Engines


Axmington s Sins High Speed Engine for Elictric litght filast. Etc.
NOMECD.
The Canadian Locomorive E Engine Co. Limited, of Kingryon. Ontario, have the exclusive license for boilding our Improved Patent Figh Speed Engine for the Dominion of Canada, and are firnished by is with dawings of our latert improvements
Providence. R. 1., Nor. s8th, s8sg.
(Signed)
ARMINGTON


## G. W. HENDERSON Mambature in bontactor ELECTRICAL SUPPLIES

 . ESTIMATES FURNISAED FOK .
## Wiring and Installing Complete Electric Plants




El.f:cthic and (in Fisterfs.
BUCKFYE INCAN!FACI.N! l.andr.
Somoffis Fancy and Manatuke lncandracten lambs.

44 Bleury Street (corver junós)

# LONDON MACHINE TOOL CO., LONDON, 

 manufacturers of
## Machinist \& Brass Finishers' Tools <br> 

It is no longer necessary to import Carbon Points.

## THE PETERBOROUCH CARBON AND PORCELAIN CO. (IIDNITED)

. . . can furnish them equal to any In the world, as they are . . . . mantracturess of

CARBON POINTS for all Systems of Arc Light, BATTĖRY PLATES, CARBON BRUSHES, and all Lisule of Porrela.is for Elrctitenl and Hardinare linen.


TROEOENE
76 YQRE BTRFET

THE J. G. MCLAREN BELTING CO. MONTREAL

## 

SOLE MANUFACTURERS OF

In Shects, Tubes, Rods, Stirhs and special shotpes to order. Colors, Red, Black and Giey. SESI) FOR CATAl.OGUE A.DI PRICES.
the standard electrical insulating material of the world.
Factory: Wilmington, Del.
Offige: 14 Dey St., New York.

Plese menton the Eif:Ctrical. Nrws when corresponding with advertisers.

$$
\tilde{\pi}, 000 I N \text { USE. }
$$

Penberthy Injector Co. - Detroit, Mich.
Sand for circular and price list. Branch Factory at Hinulsor, Ont.


[^0]:    - Paper read before Toronto Aseociation No. s, C.A.S.E.

