The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/ Couverture de couleur

Covers damaged/
Couverture endommagée


Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée


Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajouties lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages noont pas èté filmèes.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmf le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuient exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/ Pages de couleurPages damaged/ Pages endommagiésPages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesQuality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:Title page of issue)
Page de titre de la livraison


Caption of issue/
Titre de départ de la livraison


Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.


Vol. 4-No. 8.

## ROCK DRILLS, AIR COMPRESSORS, Miller Bros. \& Mitchell,



## DIAMOND DRILL

BORING \& PROSPECTING CO.
P. O. Box II2, Pictou, Nova Scocia.

MJNING AREAS PROSPECTED.
The Existexce, Sizf, and Extest of Mineral. Veins Determinid.
"Cores" cut from the Solid Nock showing the Nature and Dip of the Strata. ALITESLAX" WEILLS IUT DOWS ASM DISTANCE TO 1,000 FEFT. ȧrF̣ull Information and References Given on Applicaion. Safcty Fuse, Elcetric Blastins Apparatus, © © $\%$.

OFFICE:-103 St. Frincois Xavier Street, Montreal.

EfBranch Officfs \& Magazinfs at all chicf distributing joints in Cinada.

GE0. G. BLACKWELL, 26 Chapel St., Liverpool.
Handles by purchase, or on salc, MANGANESE, PHOSPHATE,
Asbestos, Antimony ore, Mica and all Ores, Minerals, sic.

## corresmanesce sozicites.

Afica, Afinerals, Precious Stones.

[^0]The Harbert Telephone!


EDW HARIBERI ※CO.
2sp LaSalle St., Chicaga. In., U.S.A.
NEW YORK

- Mitallargical -:- Works--
sas Wisuss:том Sr., ix y.
E. N. RIOTTE, .... MaNagek.

Ores Sampled, Working Tect ly any Pro-
cess, Arsalx, Analuses of Ores Min. cescr, Axsay, Anallses of Ores, Min.
cral Waicrs and l'rolucts, Mines
Examined and Mills Startel.

## GRAPHITE

Wanted; fair average samples of about ilb each, with prices, F.O.B. Address: J.S. Merry, Assay Office,








MANUFACTURERS OF Steam Rock Drills, -asio
HOISTING ENGINES, Mining and Contractors' Plant, \&c., \&c. 110 TO 120 KIME ST., MONTREAL, QUE.

THE CANADA COMPAMY
Will issue Licenses to Prospect or to work Minerals, on any of their Mining lands and Mineral Reservations,

COVERING NEARESH A
Quarter of a Million Acres
In Eastern Ontario, and principally within the lelts containing,
Iron, Phosphate, Gold; Galena, Plumbago, Mica, Marbies, Building-stone, and other valuable minerals.
For list of lands and terms apply: the Company's Mining Inspector,
H. T. STICKLAND,

Pethel:oro', Ont.

## FOR SALE.


Township of Coleraine, P. Q., Onc Wile and a Half from Hack Iake Station, Quclece Central Railway. Addross JAMES REED,

Invemess, Megantic, I. Q.

Engine \& Boiler Works, fSo 5o tisz Maria Sh., Oftarix.
W. J. CAMPBELL \& CO.

Manufacturcts of Eingince, Hoilers, Hoisting Alachiners, Woorl or Iron Inamp Cars, Ore Rackets, Derrick Castings and Forging:,
Sicel Portable and Stationary Boilers:
Alrays on hand a full stock of all
kinds of steam-fittings, packing, \&ic.

|  | WA NTED: <br> тwo bennusctio <br> MICA CUTTERS <br> Steady cmployment and gronl wariss. Applyat oftice of <br>  linion Chamenen, i4 Metcalfe St., Otzawa. | PHOSPHATE PROPERTY <br> : In the downhin of Portand West, <br> ㅍ I SAAI |
| :---: | :---: | :---: |
| state buwest cowh price and pive hreadh of laws. diameter of puiley, |  | I.0:s $25,20,27$ and 25 , in the 3 rd mange. |
| dadress: |  | Some excellent surface shoms have been nuconered on these lots and only recpuire mapital for ilecelopinge l'rice and par- |
|  ? ortansi, "ont. |  | tientars given at the Office of the Misise kisvien: |

## ROCK AND ORE BREAKERS OR CRUSHERS.


"THE BLAKE STYLE."


GOLD AND SILVER ORES,

 k.milroan ballist and conckete.

 superintexh the contructivn of thio machine.
 A14ecintinu:

## ADDEESS =

## FARRELL FOUMDRY \& MACHINE CO,

SOLF: MANUFACTURERS,
ANSONTA, COINNT, U_E_A

## LIDGERWOOD'S HOISTING ENGINES. <br>  <br> - :1.SO- <br> IMPROVED BOILERS, <br> Slisclatid ADAMEEM FOR <br> MINING PURPOSES. <br> CONTRACTORS, <br>   <br> Suw casabrace now rady. <br>  <br> Lidgerwood M'fg. Co., 96 Liberty St., New York



## Notice to Contractors.





The engraving represents the Hartsfeld Transportable WaterJacketed Smelting Furnace, Metal Dust Condenser and a Separator Crucible, manufactured by the


HAKTSIFORD
Portable Smelting Furnace and Mining Co.,
NEW口окт, КENTUCKr, U.S.A., In ize from 5 to 60 ton capacisy, and by the fot. Liming icenwa manuracturen on hoyaliy
1MK.14 \& CO., London, ling, and Mel. - lournc: dustalia.
F.A. IUNTINCTON \& CO., Chihauhan 3lexico.
PARKE, İAC3 \& CO., Aukland and Chili, S.A.
W. T: GAkRI:TT \& CO, San Francisen, Cal., for the l’acific Const.
McllNAiN \& Silli: ikit, Cincinnati, Ohio.
Arater baterat have ixen secured in all priacipal.
 repunanswert siltiee meank no: Catalogue free.
 thin an uruinary team buiker, and can le turn ax
loie and withas limle tous of sime or expenc for repaite full information will le furnihed by the Fiartsfeld Portable Smelling Fiurnace S Mfining Co.
1.O. low 115 , Xev. pron, K.I., U.S. of A.


##  <br> MAIL CONTRACT.

SEMAFD TENDERS, addecect to the pou-

 Cuntrace for four yorr, shres sime ser veck cach way, les uern ASIITON and INOSI'E:CT; from
She si januage next, 10 cunditivos of gnogmed Conirace may le seen amd
 ixct, and at this offer J. 10. HRFiNCll,


Notice to Contractors.




 Forms of Tender and Specifintions can be had
at shiseffec, where all necerary infurmation can Phic offece,
le olsainet.
Sieparaie Terders will le requisell for each worio
 Kindeau thall," reprecively.
Fach iender muxs lee accompanied ly an arcepf-
 sofiry fer sexf, of alie amount of the emder, which will be forfected if the party declise to enter into a

 the loners or ans texder. Jy ofider. GOIIFIIt,
Degrartment of Tyshic Winthit

# Canadian Mining Review <br> OTIAWA. 

## !UH1,ISHIED MON'VH1.亡. <br> ANNUAL. SURSCRIPIION . . . . . . . . $\$ 1 . \infty$ <br>  orrsc: <br> UNION CHAMBERS. 14 Metcalfe Strect.

The Canaman Manng: Revine is deonted to the openiug up of the mineral atueath of the Dominuinn, and its puthishers suill be thandiful fur ang encouragement.dhey may rective at the hands of those apho are interested in its spedy direlop. .ment.
lititors from the mining distrites as zuell as -others interested in Camadian Mineral Lamds are ciordially intited to call at aur olfice.

Minings meas and riports of mez discorivies of mincral deposits are solititcad.

All maticr for publintion in the Re:naw should the rocieted at the afifice not hatio than the 20th of the menth.

Aditress all corvesponatence, ث-c., to the luh. dishers of the Casabas Manisg Rewine, Othara.

Many of our readers will recret to leam of the death of Mr. James IV. Iynch, superintendent of the Derry Phosphiate Mincs, near Buckingham. Que. The deceased gentheman. who was favorably regarded in mining circles, passed away at Derry; on Thursday, 25 th November, from an attack of infamation of the langs.

We learn that Mr. E. Gilpin, Inspector of Mines, succeeds the late Mr. John Kelly as Deputy Commissioncr of Mines for the I'rovince of Noua Scotia. The new appointment, and the amalgamation of the two offices thus provided, is very favorablyreceived in mining circles throughout the province.

At the meeting of the Iron and Steel Institute, held last month in London. Eng., it was stated in one of the papers read, that a small amount of chromium added to stecl renders that metal much harder and improves it for a varicty of purposes. If this important fact be universally recognised it will undoubtedly create an increased demand for cliromic iron, of which, as our readers know, there are large deposits in the Province of Quebec. Several large blocks of this metal were on exhibition at the Mineral Court of the Colonial and Indian Exhibition.

Messrs. Foster and Gregory, the gentlemen appointed by the Royal Commission to report on the mincrals and rocks shewn at the Colonial Exhibition, have completed their cxamination of the Canadian cxhibit. Mr. Foster, who is Her Majesty's inspector of mines for North Wales, reports particularly on the ores, building stones, and other
minerals of cconomic importance, and we learn that he expresses himself much pleased with the extent and excellence of the collection brought together by our geological survey: Particular mention is made of the larye series of silver ores from the Port Arthur district many of which are very rich, and he expresses the opinion that as that country is opened up, it will become one of the most important mining districts in the Dominion.

It will be cenembered that several specimens of chromic Iron, from the Canadian Mineral Court, at the Colonial Exhibition, were recently tested by an English firm with a view to importation. The report on these samples, says the Canadian Gazithe, "shows that some of the ore is sufficiently rich to suit the requirements of mamufacturers in Great Britain, while in the case of other samples it is expected that cither by a process of carcful selection, or by striking new ground, an ore may be obtained of sufficient richuess to be profitably exported.
The chromic iron ore occurs in the same districts as the asbestos, which of hate years has been so extensively mined. The Qucbec Central railuay hats recently made the deposits much more accessible than formerly: It mav be remembered that mamy years ago a trial shipment, consisting of ten tons lof the ore. was made to England, but it was then found to be too poor in chromic oxide te be profitably handled."

The action of coal dust in bringing about colliery cxplosions, was very clearly: cxplained by Herr Nasse in his address to a recent meeting of German mining cagincers at Ditseld. From experiments it appears that risk of explosion depends upon four circumstances and conditions, cach of which affect the explosiveness of the air in a large desree. These are (1) the quantity and degree of firmnces of the dust, circumstances that depend upon the hardness and the structure of the coal; (2) its chemical constitution; (3) the quantity of carbonated hydrosen present: and (4) the degree of moisture in the dust. The last is a matter of great importance, and demands careful attention. It is a variable condition in the same mine; for dust may be very dry in one part of the workings and saturated with moisture in another. Also, the moisture contained in the coal-seam may be much less in one mine, or in one locality, than in another; so that great variations in the dryness of the dust at the working faces may be obsenced. Gencrally; the seams that do not reach the surface are much drier than those that crop out. The former usually contain about 4 per cent. of water; the latter, from 9 to 15 per cent. Herr Nasse belictes watering tu be desirable, and where shot-firing is carried on, necessary. But he admits that practical difficultics have hitherto stopped the way against a gencral adoption of this precautionary measure. He thinks that the subject should receive more attention trom mining enginecrs.
The following interesting item, on the state of the Nova Scotian coal trade, appears
in a recent issue of the Canation Trade: Reaitace. "When we had a reciprocity treaty with the United States, the Americans were the principal purchasers of Nova Scotia coal. In 1865 and 1866 , out of an average of 595,000 tons mined, about threc-fourths of the entire product went across the border. After the abrogation of the treaty, the American import duty upon bituminous conl of course interfered with the sales to the United States, and gradually those sales have decreased, until last jear the Americans took but 34,000 tons, only a thirtyeighth part of the entire product. We then protected our coal miners, and the manufacturing industrics. The first movement gave the miners an extended home market. the second increased the con amption and consequently the demand for coal. Now; instead of mining only 395,000 tons amually as in $1 S 86$, or 700,000 tons as between 1571 and 1850 , the Noom Scotia output had reached $1,352,000$ tons, at which it stood in the year isSy. Of this quantity Nova Scotia, owing in part to the increased demand for manufacturing parposes, used 450,000 tons, while New- Brunswick took 150,000 . The Upper Provinces took . $493,-$ ooo, and the remainder was taken by Prince Edward Ishand, Newfoundland atad the Wesit Indice: The total salles of Noua Scotia coal in 1590 reached 685,624 tons. The totat sales in 1855 reached $1,250,000$. and the output $1,350.000$. Thus the businees has doubled since 1579 . The total sales to Ontario and Quebec in 1SS1, two years after the introduction of the National policy, were 265.000 tons. The total sales to the same provinces in is 55 were 493,000 tons, an increasic of not quite one hundred per cent. in five gears.

At the present time, writes the Chicaso Mining Rionioc, there is occasional enquiry concerning the probable cerhaustion of our coal, oil and gas ficlds. The assumption generally being that these supplies were created ages ago, and stored up in reservoirs, in which they are now discovered to meet the requirements of the present time. Some years aso the problem of the future supply of coal assumed large proportions and was considered with much ansicty: The discovery of petrolcum and its adaptation to use as fuel, remored and destroyed much of the interest connceted with the discussion of the question of supply. As attention was turned to the supply of oil, and its outlines were begiming to be definitely established in the minds of speculative investigators, the value and importance of the wide-spread discoverics of natural gas still farther removed the date of the exhaustion of our fucl supply. At the present time there is much difference of opinion concerning the permanence of the supply of natural gas; many holding that it has been collected in reserviois, which, when depleted can never be refilled, hence predict a short scason of spasmodic activity in the life of this new agent, which is already becoming an important factor in the industrial history and advancement of the present time. As we have stated, much of the difficulty and confusion comes from a lack of definite
knowledge concerning the productive causes or the creative forces which, by their action, gave these important productions as a result and until this can be more positively estadlisl. 'd and is better understood, all discussion and conclusions in regard to the marsnitude or permanence of the supply must be problematical and unsatisfactory. Our own opinion, in regard to this matter, is that the creative forces of nature are ever present and ever active; that the creative period is never ending, and wherever fatorable circumstances exist the union of chemical elements, according to established laws and affinitics, will unite and produce their diversified product and results.
"Since the days of " 49 ," writes an authority; "prospectors have mistaken mica, or 'fool's grold,' for grold itself. Mica, in nature, is very abundant; it is met with in every camp; we are brought face to face with it in ciery mountain range as its forms are of three constituents of which granite is composed (mica, quartz and felspar). It is also a prominent constituent in granite, graciss, and mica-schist. We find it again in our soil, formed from the disintegration of the above named rocks. From a mineralogical standpoint, common mica is called 'botite,' Which ir a magnesia-iron mica, part of the alumina being replaced by sesquiosyd of iron, and protoxyd of iron and magnesia existing amones the protonyd bases. Black is the prevailing color, but brown, grecn, yellow to white also occur. Prisms, commonly tabular; often in desseminated scales, sometimes in massive agrsegations of clearable scales. The hardness is 2.5 to 3 . Now note the specific gravity, which ranges between 2.7 and 3.1 : while that of gold raises from 15.5 to 19.5 : according to its purity. In countric: where mica-schist abounds, yellow mica in the sand is very abundant, and often deccives the ere of the prospector in his search for sold. This siluery and solden mica in scales is the cat-sihere and 'cat-isold' of Medizeal Europe. Others mistake iron and copper purrites for gold and arsenical protics are mistaken for siher, this last, in fact. is a very common mistake, even in old camps. Gold is sometimes found in a fincly divided condition in prot rites, bus bast masies, or perhaps it would be better to say aroutains, of it in California and Colorado do not carry a trace of sold. P'urite or bi-sulphuret of iron is very brittle: its hardmess is about 6.5 , while that
of gold is 2.5 . It occur ; commonly in cubes of gold is 2.5 . It occur ; commonly in cubes
usually of a brass color. The cubic fates are often stricted, with strictions of adjoining faces at right angles. Chalcoprrite is a double sulphurate of copper and iron of a brass-ycllow color and metallic lustre: on exposure to moist air it becomes irideseent on its surface. It is ceasily seratched with a knife, giving a greenish black powder. It is the principal ore of copper at the Cornwall mines tsenoprite or mispiclio has a harducess of 5.6 , and is very brittle; of a lhistory of this great industry--Chicare inctallic lustre and a silvery-white to sted AIming Reatiac.
gray color. This metal occurs in small particles in the partly oxidized ores of this camp, and is very often mistaken for silver. ' B.C., report a very unfavomble season there l'yrites, being brittle, are readily reduced to ;owing to the continued high water.
powder before the blow of the hammer, white gold and silver in their native state will flatten."

As much as the miner may oppose the scientist and the school-taught expert, there is much reason for a larger increase in knowledge in every branch of mineralogy and metallurgy. The history of the loss and waste in connection with mining operations and ore treatment during the past few years, when its immense magnitude is fully comprehended, will not prove to be a very strong support in favor of the methods that have prevailed, or the management and skill of those directing them. Those who more fully comprehend the question, clearly understand that a union of practical and theoretical knowledge is most to be desired; and that neither the theorist and student, or the practical miner or mill man, can afford to ignore the other. Every increment of knowledge, from whatever source, or however gained, is an additional element of power to be used in the accomplishment of any purpose. The wider the range of information, the more comprehensive the understanding, the decper the insight and investigation, so much better fitted and more valuable is the possessor to accomplish the best results in the most economical manner. It is more than probable that some mistakes and some losses have accrucd from the inexperience of scientists and experts, but the mining territory from Alaskia to Mexico is covered with the monuments of incexperience and ignorance, crected at a vast ceppenditure of time and moncy, by men claiming to be practical. Practically, notwithstanding the wonderful results, the mining territory has been one vast seene of cosily experiments; and to day even the present methods, as great as is their improvement over those of the past, are by no means creditable to the intelligence and adrancement of this century, as shown in the activitics of every other industry. We stand. as yet. upon the threshold of improvement in this direction, where such methods and appliances preval that would ruin any other business not so prolific in resources. The bleaching bones of thousands of enter-1 prises lost in this desolate descri, and the stagnation that hangs like a gloom ouer so many promising localities, the indafference of capial to the most allurinir storics of glitering weath, the lamquishing camps that appeal in vain for assistance to open the treasure-houses within their limits, all show the uselessness of attempting to proceed by old methods; and the imperative necessity for a wiser management. a more ' comprehensite knowledge, and the inaugration of new methods in developing the rast mineral resources of our comatry; which will some day; when these questions are it practically met, give results that will astonish and outshine the most flattering and
wonderful statements yet recorded in the history of this great industry.-Chicago

Miners feturning from the lorne Creek mines,

Phosphate Shipments from Montreal for
Season of 1886 .


## Iron Amnong the Ancients.

Iron was first used in Western. Isin, the birthplace of the hmman noce, and in the northern parts of Africa, which are near to Asia. The Esypians, whose existence as a mation probably dates from the second sencration after Noah, and whose civilization is the most ancient of which we have any knowledye, were at an early period familar with the use and manufacture of iron. Iron tools are mentioned bey Herodotus as having been used in the construction of the pyranids. In the sepulchres at Thebes and Memphis cities of such great antiguity that their origin is lost, butchers are represented as using tools which antiquarians decide to have been made of iron. and stecl. Iron sickles are also pictured in the tombs at Memphis, and at Thebes various articles of iron have been found which are preserved by the Historical Society at Nev York, and are probably three thousand years old. Thothmes the First, who is supposed to have reigned about seventeen centuries before Christ, is said in a long inscription at Karnak, to have received from the chiefs, tributory nings, or all ad
sovereigns of lower Figjpt, presents of silver and gold, "hars of wrought metal and vessels of copper, and of bronze, and of iron." Ali expedition which the same king sent against Chadasha, re turned bringing among the spoil "iron of the mountains, 40 cubes." Helzoni found an iron sickle under the feet of one of the sphinses at Karnak, which is supposed to have been placed there at least six hundred years before Christ. A piece of iron was taken from an inmer joint of the great pyramid at Gizch in 1837 . Both of these relics are in the lbritish Museum. The reference to iron in Deuteronomy; iv, 20, ap. parently indicates that in the time of Noses, the Egyptians were engaged in its manufacture, and that the Israelites, if they did not make iron for their taskmasters, were, at least, familiar with the art of manufacturing it: "but the Lord hath taken, you, and brought jou forth out of the iron furnace, even out of Egypt." This expression is repeated in ist Kings, viii, 5 I . A small piect of very pure iron was found under the obelisk which was removed in iSSO, from Nexandria to New York. The country which lies to the south of Eyplit is supposed to have produced iron in large guantities in prehistoric times. Iron was known to the Chaldeans, Habylonians, and the Assyrians, who were contempomries of the early jegypians. Some writers suppose that the logyptians derived their supply of iron principally from these Asiatic neighbors, and from the Aratians. Among the articles dissove.ed by layard, at Nineveh, were iron seales of armour from two to three inches in length. He also found a perfect helmet of iron, inlaid with copper bands. The Old Testament teems with in. cidents in which iron is mentioned. In the wanderings of the children of Israel, iron is frequenty mentioned. When they smote the King of lhashan, they found him within an iron bedstead. Canaan, the land of promise, is described in Deuteronomy as "a land whose stones are iron." ihe liedes and leersians, India, and China, and ather castern commeries appear to have been açuainted with its manufacture from a very carly period. It is wortiny of mention that the mythologies of hoth (ireece and Kome attributed the invention of the art of manufacturings $\cdot n$, to. the gods, a fact which of itself may be regarded as establishing the great antiquity of the art in both centuries. Homer, who is supposed to have lived about $\$ 50$ years before the Christian era, and, therefores before the era of authentic Grecian history, makes frequent mention of it in his proms. Some vi the swords and javelins of the Konmans we:e made of iron and steel in fourth century before the Christian era, but their agricultural implements, were nade of iron at an earlier period. The Romans used a battering ram, which had a head of iron, at the siege of Syracuse, in the ycar 213 before Christ. In the Acts of the Apostles, a statement is made which indicates that iron was used at this period for architectural purposes, "when they were past the first and the second ward they came unto the iron gate that leadeth into the city:" Pliny says that iron ores are to be found almost everywhere. Iron has also been found in the ruins of Pompeii, about the time the Coliseum was built.

## New Jersey Cedar lines.

Among the strange productions of Cape May are the "Cedar Mines"-swamps of dark miry stuf, in which are buried immense trees of White Cedar, Cypressus Thjoides of the botanists. These mines contain enormous trees buried to a depth varying from three to tofeet. The logs lie one across the other, and there is abundant evi-
dence to show that they are the growth of different successive forests. Indeed in these very swamps forests of the same trees are now growing. The miners become very skillful at their work. An iron rod is thrust mothe soft mud, over which often the water lies. In striking a buried tree, the workman will by several soundings, at last tell how it lies, which is its root end, and how thick it is. He then manages to get a chip off the tree, and by its smell determines at once whether it is worlh the labor of mining-that is, the workman will tell unerringly whether the tree be a alindfall or a brealdoten. If a breakdown, it was so because it was decayed when standing; if a windfall, the tree fell while sound, and has been preserved ever since by the antiseptic nature of the peat marsh in which it was buried. The soft earth is then removed. l'nis makes a pit in the swamps. Into this the water soon tlows and fills up. The saw is now introduced, and at regular mentervals a cut is made through the tree. It is curious that the log of a sound tree will stre to turn ower when it floats up, the lower side thus becomes uppermost. I'rees in this way are sometimes obtained, which yield 10,000 shmgles worth $\$ 20$ per thousind, thus one tree will yield \$200. The age of many such trecs, as the season rings have been counted, has been made out to be from ten to twelve hundred years, and even more. A layer of such trees is often found covered by another layer, and these again by another, and even a third, while even living trees may still be grosarg over ail. It is evocent, indeed, that New Jersey has experienced what the geologists call "osilatons." Cape May contains abundant
cridence of having been lifted out of a modern evidence of having been lifted out of a modern sea. The recent oyster and clam are found in natural beds, just as they did in the ocean, but now in positions many fect higher then the contiguous osster beds; while buried trees exist at depths lower than the beds of mollusks.

## POSPECTING.

Indications that will Facilitate the Search for Minerals.

## (sel.ected.)

The search for minerals in my given district should not be undertaken unless there is some previous indication as a reason for it; because, save the most ordinary building materials, the mineml substances to which the art of mining is applied are sparingly distributed in nature: and in any given point of the earth's surface we ase authorized to suppose a priori that these substances do not exist.
More or less proximate indications of their existence may be deduced:

1st. From a knowledge of the geological structure of the country.
and. Firom the presence at the surface of the ground of frygments of veinstone or of ore.

3rd. From the presence of the outcrops.
It is advisable to give a few details on the value which should be altached to each of those indications.
The geological structure of the ground sometimes furnishes positive, sometimes ngalize iñdications.

It is evident, for instance, that the existence of an igneous rock, such as granite, shuts out the possibility of there being coal at the same poinf; but this conclusion only holds good for the very point under consideration; and it is known, for instance, that á large number of more or less developed coal mines in France are scattered over the primitive central plateau, and thus rest either upon granite itsclf or upon such ancient
rocks as gneiss or mica-schist. As an example of a posifiev indication it may be said, on the contrary, the presence of the Coal Mcasures, properly siocallid, may fairly lead us to suppose that coal is present also. It is rare, in fact, unless in the case of a mere insignificant patch of the rocks, that the coal measures do not contain some workatile seam of coal, and we have seen from the examples of the Belgian coalfields that they sometimes contain a very large number. It may also be said that the existence of l'ermian rocks may lead us to conjecture the presence of copper; that of the Trias, and more especially of the variegated Marls, the presence of rock salt (at all events in the north cast of 1 France); that of the supraliassic Marls the proximity of iron ore.
The presence at the surface of the ground of fragments of useful substances (shoad-stones), or cren of sterile, substances known to be often associated with the first, is an indication which deserves to attract attention. In prospecting a country, an examination should be made of all denuded parts, escarpments, sides of valle es, etc., and particularly of ravines and beds of the different water courses. Standing in the bed of a torrent we find everywhere, in some measure, a collection of mineralogical specimens derived from all the region higher up. Jiach mineral species has its own value from the point of view under consideration. Among rocks consisting of mica-schist, for instance, we shall attach very little importance to fragments of cquartz with a simply resinous or even saccharine fracture, as this substance frequently occurs interposed in reinform lumps between the folia of the schist. Well crystallised quarta will deserve moreatention. Substances that are foreign to the composition of the rock and known to be pretty commonl: reinstones of lodes, such as calcspar, flor spar, harytes, etc., will deserve still more attention. The sance thing will be the case i forfiori, if spots of pyrites, or galena, er any traces of a green coloring due to the deconiposition of copper ore, etc., are found on breaking these fragments.

In carrying out observations of this kind it is necessary to ascend the beds of the torrents step by step, examining the sand and pebbles carefully and minutely in order to ascertain how high up the fragments which awakened attention by their special nature, are found, and thus to discover the point whence they are derived. An iden of the distance of this point may be formed from the more or less rounded shape of the fragments, due consideration being paid to their hardness. When this point has been discovered it will onily remain to examine whether the substances noticed haye a purely adventitious chameter of the rock, or whether they belong to a deposit apparently of some extent. This verification is fuite essential, for the first case is perhaps that which presents itself most frequently to the observer.

Mineral springs furnish us with indications with regard to soluble substances, analagous to those obtained from fragments of rock concerning insoluble substances. It is thus that brine iprings, or springs charged with chloride of sedium, have led to the discovery in the east of France, and especially in the department of Mewithe, of thick beds of rock salt, which are being actively worked at the present day:
If by direct observation, or by proceeding in the manner described in the preceeding paragraphs, we have ascertained the presence of anoutcrop, this outcrop should be made the subject of a special examination. As the lode is of a differcent nature to the enclosing rocks and:has been exposed to the action of the same atbeen exposed to the action of the sats, it will not have resisted in the
same way. It will often appear at the surface, either as a hollow or in relief, according as its harduess is greater or less, than that of the enclosing rucks. It is in this mamer that hard guartio ore lodes are seen standing out abowe the surface of the ground in the form of prominent malls, many feet hish, roming sometimes for a distance of several hamded yards. These otacrops are a certain indication of the presence of a lode: but as a rule they do not give any information about its richuess, since the metallisubstances have generally been ovodized and remored in the state of soluble salts, often learing behind nothing but an ochreons precipitate, $f$ on the amount of which, in certain cases, mos be inferred the quantity of certain metallic sulphides, such as iron or copper pyrites, which the eleposit originally comaned. This ochreous precpinite itself is often absem, and the outcrop only shows by a slight accidental discoloration any sign of its original richness in ore. Exen if an outcrop contains no ore whatever, it is still worthy of investigation if it exhibits a certain continuous character. Therefore, the first care, after having hit upon some point of an outcrop, should be to make sure whether this continuity exists. In case it is not apparent at the surface, a fer pits may le sunk to endeavor to ascertain the strike and dip of the deposit and to infer from these, allowing for the outhe of the ground, the approximate position of the line of outcrop. This line should be staked out, and efforts should be made to discover other points of the outcrop by disging trenches at intervals at right angles to its presumed strke, and then down till rock in place is met with. When at least three points of the outcrop, not very far apart, and situated at different levels, have been determined in this way, a phane passing through these three points. in case of a lode.or hed, mav be taken provisionally: on account of possible disturbances of the deposit between these three points, as re- presentint the position of the deposit of the bosom of the earth; it will also serveas a lasis for settling upon the best mamer of exploring the depooit in depelh. If it is a massive deposit with two comparable horizontal dimensions the preliminary excarations should be carried on so as to circumscribe it in every was.


The veteran clemist and mineralogist, Dr. T. Sterry Hunt, presents as Chapter Vill, of his Mineral phisiolow and Phosiugraph (a second series of "Chemical and (ieological Essays,") a treatise on A Natural Sivstom of Mineralug; ruith a Classification of Niatice Silicates. This treatise has been published in full in the Transactions of the Royal Snciety of Camada, and in abstracts more or less extended in other phaces. We cannot undertake, within the limits of an article, to give it an adeguate critical examination. The best that we can hope to do is to impart to our readers a seneral notion of its contents.
The essay is in three parts. In the first, which is an historical introduction, the author outlines the syatems of classification in the mincral kingdom proposed by Werner, Mohs, Dana, lerzelius, Rammelsbery, and others, and shows that the "matural history" systems of Werner and Mohs (followed with more or less modification by Haidinger, lameson, Shepard, and, in his earlicr editions, Danal were founded on external haracers awh as (chemical) speces to another is its equivacharacters, such as hardness, specific gravity; 1 ent weight, and the chemical species, until it
and crystalline form, independent of composition, as revealed by chemical amalysis. Sudents of mincralogy under the eminent teachers of the last generation will remember that they taughe determinative minerolosy without reconse to chemistry, and crien looked upon the blow-pipe, as almost an evil a thang which the metallurgist might need, but the mineralogist had better do without, save in the last resort. We can bear withess to such a feeling in the case of the venerable Breithaup, the successor of Mohs at Freibers; and under his successor, Weisbach, it has not ceased to exist.
Indeed, for certain purposes of instruction, it, is the right feeling. Determinative minerales! should be so taught that the student may become able, in the great majority of instances, to recognise minerals from their physical characters.
And since the practical freld-mineralogist has And since the practical field-mineralogist has
more to do with determinative than with analytic more to do with determinative than with analetic
mineralogy, it is matural that he should retain the tendency received at school, and that he should become more familiar with hardness, streak, and crystalline than with molecular equivalents. Morcooer, the mineralogist is usually a collector, and, as 1)r. Hunt acutely remarks, the divorce between physical and chemical characters maintained in the study of mineral cpecies by Werner, Mohs, and their followers, produced a system available for the purposes of determina. :ion without the destruction of the individual specimen. The artificial system of linnxus in botany possessed the same advantage; and that it is for many purposes a practical advantage, the tenacious life of that system, in spite of its scientific absurdity, bears witness. The same will probably contimue to be the case with the mineralogical systems which science has more or less outgrown. They will survive in tables and in practice, long after they are shown to be less truly natural than those which take into account the chemical amalysis as of paramount importance.
There is, in fact, a geaeral consent among mineralogists that the chemical system, proposed by Beraelins, and perfected by Rammelsberg, Naumann, Dana, and others, presents the truly natural classification. Hardness, specific gravity; crystalline form, optical chamaters, etc., are rated as secondary in value, and important chicfly as means of determination. But this is to go to the other extecuse. A truly natural system should be based on both physical and chemical grounds - if such a thing be possible: and possible it can become only when, to use Dr. Hunt's words, "inherent and necessary relations between the physical characters and the chemical constitution of inorganic bodies" are made known. That such relations exist, our author declares; and in this essay he seeks to estab)lish at least some of them.

The second part of the paper before us reviews at some length the author's progressive treatment of this subject since ${ }_{1553}$, when he first declared the possibillity of a physico-chemi-, cal classification. We shall not follow this review in detail, but content ourselves with quoting from a paper pullished in 8867 , the following admirable statement of guiding principles:
"In approaching this great problem of classi|fication, we have to examine, flrst, the physical conditions and relations of each species. considered with relation to gravity; cohesion, light, heat electricity, and magnetism; secondly, the chemical history of the species, in which are to be considered its nature, as elemental or compound, its chemical relation to other species, and these relations as modified by physical conditions and orces. The quantitative relation of one min-
attains to individuality in the crystal, is essentially guati, cative. It is from all the alove data, which would include the whole physical and chemical history of inorganic bodies, that a matural system of mineralogical classification is to be busile up.

The variable relations to. space of the empirical equivalents of non gaseous species, or, in other words, the varying equisalent volumes (obtained by dividing their empirical equivalent weights be their specifie gravity) show that there exist in different species very unlike degrees of condensation. At the samic time, we are led to the conclusion that the molecular constitution of gems, spars, and ores is. such that those bodies must be represented by formuias not less complex, and with equivalent weights far more elevated, than those usually assigned to the polycyanides, the alkaloids, and the provimate principles of plants."

Following the line thus indicated, Dr. Hunt began by secking to find in the realm of inorganic chemistry the laws progressive or homologous series and polymerism, already recognized in the chemistry of the hydrocarbons. Already in 1853, he had suggested that "all species. crystalizing in the same shape have the sameequivalent volume, so that their equivalent weights (as in the case of vapors) are directiy as their densities, and the equivalents of similar species are as much nore elevated than those of the carbon series as the speciie gravities are higher." And this suggestion he had illustrated with instances drawn chiefly from the carbonate spars and the polysilicates. In these and later essays in the same direction, Dr. Hunt indicated, as the principal evidence and measure of the connection between the chemical and the physical characters of species, the relation of cquivalent weeight to specific gravity.
The complete statement of the principles adopted as a basis of classification is now given substantially as follows:

1. The extension to all mineral compounds of the conception of high equivalent or molecular weights like those of the carbon series in socalled organic chemistry.
z. The similar extension of the laws of progressive or homologous series.
2. The attribution of minor variations in the chemical composition of a mineral species not only to its polyhasic character (that is, to the replacement of one base by another in varying degrees), bat also in certain cases to indefinite admixtures of hombeomorphous species.

+ The assumption that for homemorphons solids, and probably for all solids, the molecular volumes are identical; and the attempt to fix the molecular weights of such compounds as the polysilicates and polycarbonates from their densities, as comprared with those of species the minimum molecular weights of which are otherwise determined.

5. The adoption of atomic formulas to represent the composition of mineral species, and the comparision of the volumes of complex species by neans of numbers deduced from these formwhas. The term atomic here used, is distinguished from molectular; and Dr. Hunts atomic weights are derived from the ordinary chemical equivalents, or molecular weights, by multiphing the latter by the numbers representing the atomicities of the respective elements. His symbols are distinguished by the use of small leters instead of capitals. Thus, for the monad elements like sodium, chlorine, and fluorine, the atomic symbols represent the same numbers as the received molecular weights: $\mathrm{Na}=\mathrm{na}=23$; $\mathrm{Cl}=$ cl $=: 35 \cdot 5$; etc. For dyad elements, like oxygen, calcium, and ferrosum (that is, iron in ierrou' salis), the molecular weights are divided by ${ }^{2} s$
$O=16,0=8 . \quad C_{i}=.10, c_{i}=20 ; V_{c}=5 G, f e=28$. For triads, like aluminium, boron, and ferricum (iron in ferric salts), the divisor is $3: A l=27$,
 tetrads, like silicon and titamium, the divisor is 4: $\mathrm{Si}=2 \mathrm{~S}, \mathrm{si}=7 ; \quad \mathrm{Ti}=50, \quad \mathrm{i}=12.5$. Finally, the pentad, niobium, requires 5 as divisor: $\mathrm{N} b=$ $9.4, n b=1$ S.S.

Employing these weights, I)r. Hunt translates the empirical formalas of the received notation into atomic formulas, and these formalas he affects with a modulus or multiplier, to represent the law of polymerism. 'lhus, the formula of lime-magnesia proxene given in Damas texthook is CallgSi. O.. Calcium, magnesimm, and oxygen, being dyads, and silicon a tetrad, the atomic formula for this waricte would be ca, mign si $0_{12}$ or, using the sjublol in to represent the interchangeable metallic elements, $\mathrm{m}_{4} \mathrm{si}_{8} \mathrm{o}_{1_{3}}$ Thes is the same in proportion as $\mathrm{m}_{1} \mathrm{si}_{2} \mathrm{O}_{3}$; while, as to the molecular weight of the body as a whole, that is, of the species, it can not be detcrmined from an empirical formula derived solely from chemical analysis. It must be cither the weight directly shown lys the formula, or some multiple of it; that is all we can say so far. Hence, the general atomic formula for the molecular zueight of pyroxene is written by I)r. Hunt $n\left(\mathrm{si}_{2} \mathrm{~m}_{1} \mathrm{O}_{3}\right), n$ being the undetermined multiplier. But it is not necessary to know the value of $n$ in order to obtain a number representing the volume of the atomic unit. In the case taken for illustration, the empirical atomic formula $\mathrm{si}_{2} \mathrm{~m}_{1} \mathrm{o}_{3}$, in which the one atom of $m$ is one half $\mathrm{ca}_{\text {a }}$ and one hald ing; we have a total weight of $(2 \times 7)+(0.5 \times 20)$ $+(0.5 \times 12)+3(8)=54$. 1)ividing this by 3 , the number of oxygen atoms, we have 18 , which represents the weight of the atomic unit of the species, this atomic unit in this case being an oxide: For other combinations than silicates, this atomic weight (the general symbol for which is $P^{P}$ ) is obtained in a slightly different manner, which we will not here stopl to consider. 1 , being once obtained, is divided by 1 , the ascertained specific gravity of the species (water $=$ r.), and the guotient, $V$, is a number representing the volume of the atomic unit.
5. The fifth principle is that, in related and homologous species, the hardness and the chemical indifference are inversely as the value of $V$ or, in other works, that they increase with the condensation which has attended the chemical combination. This, we presume, is a sort of check on the foregoing assumptions and calculations. If the values of $V$ are really more closely connected with the characters of hardness and indifference than are the values of 1); that is to say, if, by manipulation of the atomic formula after lo. Hunts fashion, a scries of numbers can be obtained which will tell us more, or tell it more accurately, than the simple series representing specific gravities, then the introduction of chemical elements into the calculation is more or less perfectly vindicated. Otherwise, we might just as well throw it all away (so far as this use is concerned), and content ourselves with the simple old notion that among similar minerals lardness and chemical indifference vary as the specific gravity:

It is difficult to apply a precise test in this case; for we have no numerical measure of chemical indifference, and only a very loose and vague measure of hardness. A casual inspection of 1)r. Hunt's taibles of the silicates shows that $P$ does not vary greatly aimong nearly allied minerals, and hence that $\frac{P}{D}=V$ varies on the whole inversely as $D$.

The third part of the esn preme daily more petroleum than all the other
cation of silicates. Here, the first division is on chemical lines. According as the minerals contain protoxide bases, sesquioxide bases, or both, ' the order Silicate is divided into three sub-orders: Protosilicate, Protopersilicate, and Persiliate. An ingenions and forcible argument is offered, to show that this division is really fundamental in ' nature-that it lies in the the processes of mineral genesis and subramerial decay. In cach of these sub-orders, five "tribes" are distinguished on physical and chemical grounds, which correspond in a general way, though not precisely; to the classes of spars, gems, and micas established by Mohs, with the addition of a separate class of anorphous or colloid species, and a further division of the spars into hydrous and anhydrous. The five tribes of lir. Hunt thus become Hydro-
spathoid, Spathoid, Adamantoid, Mhylloid, and spathoid, Spathoid, Adamantoid, 1hylloid, and appropriate prefix. Thus, we have under the t'rotosilicates, Hydroprotospathoids, I'rotospathoids, etc:; under the Protopersilicates, Hydroprotoperspathoids, Protoperspathoids, etc. The longest of these names are replaced in practice by others, referring to typical species. Thus, the Hydroprotoperspathoids are Zeolitoids, comprising the zeolites which do not contain persalts exclusively: The latter (Perzeolithoids) constitute the Hydropersipathoid tribe of the Persilicate order.
Compared with the reigning system of classification; as found in I ana's text-hook, this is anparently more sys:metrical, logical, and compre. hensive. The fundamental division of the former is based on the presence or absence of combined water; and the next rank of subdivision, namely, into bisilicates, unsilicates, and subsilicates, involves a chemical distinction only | -a distinction, moreover, which becomes somewhat hazy among the hydrous silicates, which are divided into a "general" section, a "feolite" section, and a "margarophylite" section. Of course, minerals of very different physical characters are thrown together under this purely chemical classification.

Another scientific advantage in Dr. Hunt's method is, that it is independent of complicated theories as to the arrangemem and relations of the atoms or the molecules in chemical combina. tion. The terms atom and molcule, as employed, by him, represent imaginary units, and do not involve the hypothesis of hard jarticles with roid,
spaces, of bonds and links, to explain chemical spaces, of bonds and links, to explain chemical|
affinities. Whether such be or be not the actual, constitution of inorganic bodies, is a question which does not affect the relations he has sought to establish.

We have no space to consider his brief suggestion of a scheme covering all mineral species,' or his striking discussion of the question of molecular weights. In the latter field, indeed, we feel both least inclined to adopt, and least com- I petent to criticise, his conclusions. Their correctness does not seem to be necessarily implied in his classification of the silicates.-Enyincering and diuing Journal.
"Mr. Charles Marvin," writes a prominent English aluthority whose name of late ycars has, by reason of his writings on Russian affairs, become very faniliar to the public, sends us a pamphlet, "The Coming Deluge of Russian Petroleum." On this occasion Mr. Marvin writes on a commercial subject, and he has put together a number of astounding facts as to the wealth of the petroleum springs of laku. He tells us at the outset that a single well in Russia yields daily more petroleum than all the other

25,000 wells in America. Three jears since a well was reported at laku to be spouting 3,400 tons of petroleum daily, and the world wondered; but Mr. Marvin tells us that this autumn one well has been spouting 18,000 tons of peroleum daily: The object of Mr. Marsin is to again call the attention of linglish capitalisits to the rich lichd for enterprise in the development of these Russian oil wells. Development is hardly the word applicable to the wells, for they have a manner of dereloping themselves, and innmedating the surroundmg district with oil. Mr. Marvin told of the vast extent and practically inexhaustible character of the wells some years since, but he complams that liritish capitalists have not come forward to claim their sinare of the trade. There are 120 firms at loaku having oil refineries and they produced nearly 120 million gallons of refined jectroleum. Eight years ago the output was but one and a quarter million gallons, and this marvellous development is attributed to im proved means of transport. Formerly the oil had to be barrelled on the spot. In 1879 , a steamer fitted wirh oil tanks for conveying petroleum in bulk commenced working on the Caspian sea, and now thete are upwards of 100 Kussian steamers carrying on the trade. Mr. Marvin explains that the Baku crude petroleum vields, but 30 per cent of "lamp oil," as compared with 70 per cent. in America, but 60 per cent. of the residue called astatki can te treated to yield valuable products particularly for lubricating purposes. One well-known london firm Sir Charles Price © Co., is regularly receiving large shipments of this residue, and it is asserted that lubricating oil made from it is of extraordinary quality. As the price at baku ranges from 4 d. to 15.4 d. per ton, there must be plenty of money to be made in this branch of the trade. Nearly $31 / 2$ million gallons of lubricating oil were sent from Haku up the Volga last year, and upwards of 2 迷 million gallons were despatched by the Batoum railway: Owing to the low cost of the oil refuse it is heing largely used for steam generation in the steamers ruming from Bhatoum tat Odessa; the Russian flect on the Caspian has used nothing else since 1874 ; and the black Sea Company, owning 76 steamships, will shortly adopt it exclusively. Messrs. Rothchild are largely interested in the trade, and to facilitate transport have placed 250 tank ca $s$ on the Transcaucasian Kailway. By this line So,000 tons of maganese ore were carried from the Cancasus last year. Mr. Martin proses that the great need of the district is a cheap means of bringing the oil to a shipping port. Messrs. Rothschild have applied for a concession to construct a pipe line from Baku to Poti or Batoum, six hundred miles; hut they have been refused because they are working oil refincries, and the Russian government stipulates that the bige line shall be controlled by a company not interested in the advancement of any particular refinery. The estimated cost of the pipe line is £ $2,000,000$, and alieady at least one English firm has sent representatives to l3aku and Batoum to investigate the scheme, and examine into the work necessary: Two of the directors of Messrs. John Kussell and Co., limited, of Walsall and Wednesbury, were out last year, and Mr. Marvin states that a representative of the firm is now on the spot. Quite apart from the illuminating oils, the lyaku oil wells seem likely to have an important bearing on the "liquid fucl" question which is now being discussed by some of our scientific societics. As to the permanency of the Cancasian o.l wells. Mr. Marvin says that the oil bearing character of the district was known 2,500. years ago, and oil has probably been flowing on uninterruptedly ever since.

## Mineral Products of the United States.

Admanee sheets of the report of the Enited States (ieological Survey hase just heen recerved, which show the total produrtuon of minerals in this country during is 5 . as compared with previous years. Oi the metallie monerals produced pis iron appears to have been the most valuable! in total production, and platmum appears to have been the searcest. The total production of pis iron in 1855 was $+0.015 \cdot 525$ lows tons, valued at $\$ 64,712,400$ against $4,097$. S6 tons valued at $\$ 7.3761,62+$ in 185.1 . The total consumption of iron ore was placed at $7,990,786$ tons, of which only 390, 7 S of tons were imported. Silver was next to iren in total production. being 39,910 . 279 ounces, of a coining value of $\$ 51,000,000$, asainst $37,774,005$ munces in 1854 , valued at $\$ 45,500,000$. The total gold production was $1,535.376$ ounces, valued at $531,801.000$ against $1,459,9+9$ ounces, whed 10 , $\$ 30,500,200$ in 185.4 . Copper showed a slight increase over the preceeding year, as a $70.962,617$ pounds, valued at $\$ 15.292,999$ in lew York, were produred in 1355 , agnims: 147.005.107 prombly valued at $\$ 15.105 .162$ in isS.4. Jeatd was produred to the exteat of $129: 412$ short tons, wallued at $\$ 10$.
 $\$ 10.3$ 37.0.is. The gumety of man mined thow ed an increase, $\ddagger 0,6$ SS shomt ton, valuel at $\$ 3.539 .556$. being produred in 1555 , aginst 3 3, 544 tons, valued at $\$ 3: 422,707$ in isst. The raluations above given for copper. lead and me are those carrem at New York. The paick ilver production was valned at San Framesorn at \$9zo. SSy, againt \$936.327 the year before, and the production was 32.073 flasks, against 31.91 .3 thasks in 4 SS. The production of nickle was much heavier than in $18 S_{4}$, as $277.90+$ pounds. valued at sogr.753. were mined in iss 5 , against 6.550 pounds, valued at $\$ .48 .412$ in iSS. 4 . Crude platinum was produced to the extem of 250 troy ounces, vained at (Ne: Vork) at
 Aluminum was produced to the amome of 3.400 troy ounces, valued at Pialadelphia at $\$ 2,550$ against 1.500 ounces, valued at $\$ 1,350$ in 158.4 . Of the non-metallic minemls, coal was the mosi important production, the vield of all kinds of this fuel being $99,969.26$ lows tons, valued at $\$ 159,019.590$, againit $106,1, y 06,295$ tons, valued at $\$ 1+3,765,575$, in iSS.4. It will be seen from the above figures that while the total production of coal fe!l off $7,537,079$ tons, the value increased $\$ 15251.01$, showing an aterage increase in price of 25 pper ton. The above flgures include: the colliery consumption. The bituminious coal, produced amounted to $64,540,608$ tons, valued; at $\$ 52,3+7,6+8$, against $73,730,539$ tons, valued at $\$ 77,417,066$, while of anthracite $3+, 288,548$ tons were mined, valued at $\$ 76,671,9+8$ against $33.175,756$ tons, valued at $\$ 66,351,512$ in 1884 . Of petroleum $21, S_{4}, 0,04$ barrels, valued at $\$ 19$, 193,694 were produced, against $2,4,089,758$ barrels, valued $\$ 30,476,294$ in $18 \mathrm{~S}_{4}$. Lime was an important production, $40,000,000$ barrels, valued at $\$ 20,000,000$. being made in 1885 . against $37,000,000$ barrels, walued at $\$ 18,500,000$ in $188_{4}$. The salt industry was also an important one, $7,038,6,6,3$ barrels, valued at $\$ 4,825,3+5$, being made in i835, against $6,514,937$ barrels, valued at $\$_{4}, 197,734$ in 1884 . The production of buildingstone was about the same as in 1884 , the total value being $\$ 19,000,000$. It is worthy of note that 200 tons of "hlock tin" ore were mined in 1855 at the Etta mine in Dakota. The total value of all the mineral products of the United States in 1885 was $\$+28,511,356$, agninst $\$ 413,214,7+8$ in 1884 . Of this the value of the metailic products was placed at $\$ 18 \mathrm{~s}, 589,365$,
against $\$ 186,414,074$ in $18 S_{4}$, w!ile the nonmetallic products were valued at $\$ 2,39,431,991$ in 1885. against $\mathbf{j} 219,500,67,4$ in 188.4 .

Dishonesty and. incompetency, writes the Critic, have done much to throw diseredit on mining, and this distrust will hardly be removed matil our leading business men take hold of it anci give mining the position it deserves. A few of our merchants dabble in mines, but their money is too often invested secretly and through the agency of some "cute" operator, who often is an adept in all the practices that throw discredit on mining. They shut their eyes and open their mouths, and receive their share of the protits, with no desire to know the details of the tramsaction, which they easily surmise cannot bear an honest investigation. "Ihere is nothing like a mining specolation to bring the dirt out of a man," said a leading barrister of our city, and the remark is unfortunately too true. Men who woald shrink from the slightest suspicion of dishonesty in their usialal business tranactions, sem to think that, like in love and war, all is fair in mining. The manipulator of a dewer mining swindle who spends his money ireely, and jokes openty at the expense of his dupes, is pronounced "a jolly good fellow," while his vietims are condemned tor their folly in ghens mato mining ypeculation. Whate swind lers in any otiner husiness woold be forced into court, the mining swindler generally gess free; mal his immanin from punishament encourages voores of imitators, who flood the marhet with wotheses sthe:nes. These men are the curse of honest miners, who see capital culisted in puffed and worthess mines, while their modest statemeats of facts are passed over. We would echo and reecho these sentiments.


An interesting exhibit from the rerently discovered deposits of copper and uron or in Niorth Sydney was on vew durng the last weeks of the Colonial and Indian Exhibition.

From the Candian Gazefte we learn that: "A company in England has, within the last few days, made arrangements with the owners of a number of the Nova Scotian gold mines for the purchase of their 'tailings.' These will be concentrated in Nova Scotia to a certain richness and then shipped to Englaud for further treatment. The Company has had a number of essays of the 'tailngs' made, and has found that they contain quite enough gold to warrant treatment in this way:"

The owners of the Carton gold mine, Yarmouth county, have decided to place a Wiswell Crusher to be run by water power, and have made a contract for the erection of steam hoisting and pumping machinery on their property. The lead has been opened in three places in a distance of 750 feet and the ore has been found equally rich in each shaft.
An exchange reports the sanitary condition of Springhill as deplorable, the water bad, and epidemic deseases very prevalent. A great many accidents, some of them fatal, have recently occurred at these coal mines.

The Clementsport Courier announces the discovery of gold by prospectors at a place about five miles from that town. Specimens shown to a Conrrier representative are said to indicate a rich find.

Mr. A. A. Hayward, has purchased the Cochrane lill property, lucated about eleven miles from Sherlurooke, Enysboro' County. The property; which was sold by the Sheriff, contains a fiteen stamp mill, large boilers, and is also well eyuipped with hoisting and mining gear.
The same genteman is also the proprictor of Empress Mine, where he is meeting with great success. The foliowing particulars of the work being done there are gleaned from the Critic:
"The main slaft is now down to a depth of $3=0$ feet, and as soon as the large plunger pump, whick is now being put up, is in working order, it (the main shaft) will be rapidly sunk upon. There is now over 36,000 feet of stoping ground open, and ore enough at hand to last a 15 stamp mill wo years. All the latest haborsaving ap. pliances hate been introduced into the mine, and the mining is conducted on scientific princtiples, guided by great practical experience. No. 5 shaft to the north of the main shaft, has been sunh to a depth of 200 feet and comected with the main shaft and shaft No. 2 b! two cross cuts, one at 100 and the other at 200 feet in depth. Good pay ore has been found in the cross cuts and shats. The Harding minc in eraging $712 / 3$ cents a foot. Shaft No. 5 and drifts to the north, areraging $\$ 1.50$ per foot. Shaft No. $3,5=1 / 4$ cents, and No. 2 level west from shaft No. 3 , 50 cents per foot. Orerhead stoping is the rule, the detached ore dropping by its own gravity into receptacles, from which it is loaded on the ore cars and raised to the surface without handling. At the surface the ore is dumped automatically, and is soon being crushed under the ponderous stamps of :'xe mill."

We learn that as a result of enquiries made at the Colonial Exhibition, regarding the eahihits of briquettes, a prominent English consulting engineer has been placed in communication with Cape Briton manufacturers, and if sutficient slack coal can be obtained at the different colcries of the province, there seems to be good prospects of extensive works for the manufacture this fuel heing erected there. These briquetts contain about nine per cent. of coal tar pitch, and are said to be admirably adapted for steam purposes, particularly for locomotivies.

We learn from the Eusinecring and Miningr fournal, that negotiations are in progress at Halifax between the representatives of a New York company and John Grenier for the purchasefrom the latter of two coal and copper mining properties in Cape Breton; $\$ 200,000$ is asked. The copper areas begin at (icorge River Mountain, and extend westerly ten milesalong the southern side of litule Bras d'Or, being divided into four blocks of five square miles. The coal areas cover fourteen square miles, and are situated between Lingan and Sydney, near the General Mining Association's property.

The Critic is our authority for the following item from the Oldham district: "Mr. E. C. McDonnell brought into town a brick of 140 ozs. of gold, the product of 65 tons of quartz, being the result of six weeks' work by 20 men. The ore was taken from the Dumbrack lead, which avernges about six inches in thickness, and was mined from a tunnel at the depth of 250 feet. The main shaft has reached a depth of 315 fect,
the quality of the ore steadily improving as the lead is sunk upon. Mr. Mcloonnell has been mining for over 23 years, 14 of them on his own account, and has probably paid as much money in royalties as any mines in the Province. The mine is equipped with one of Mumford's patent boilers and a good hoisting engine, and has proved a most profitable investment for its owner."

## Quebec.

The phosphate property at High Falls has been sold by its owner, Captain Bowie. for $\$ 10$, 000.

Mica is reported to have been discovered on the property of Mr. Lemires at St. Ambroise de Kildares.

Dr. C. Le Neve Foster, H. M., Inspector of Mines for North Wales, who was appointed by the Royal Commission to reportupori the mine:als and rocks shown at the Colonial Dxhibition, has expressed a most favourable opinion of the slate exhibited by the Rockland Siate Co. of Montreal. This gentleman has had under his supervision many of the celebrated Weish slate quarries and he states that although the slate exhibited does not split as smoothly as the Welsh slates, and therefore does not look as well in a rough state, it is fully equal to the best Welsh slate when planed or otherwise worked. The slabs exhibited by the company are very large and the slate is free from iron pyrites, which are often present in the Welsh shates, and by its decomposition, stains them with spots of iron rust. Dr. Foster, like a number of other gentlemen interested in the slate business who have visited the Canadian section, spoke very highly of the manner in wh: . the slate washtubs sent from Montreal were put togetizer, and thinks that the slate workers of Wales might, in this manner, very profitably take a lesson from their Canadian brethren.

## Ontario.

Specimens of copper from the deposits at Sudbury were forwarded to the Colonial and Indian Exhibition.

Copper from this mine is being shipped at the rate of ten cars per week to the smetting works in New Jersey:

The rush of miners and speculators into Sudbury has become so great that prices for food and lodging at that place are exoribitant.

The C.P.R. have constructed a side track from the Algoma branch into the portion of the newly discovered copper mines at Sudbury. They are also laying for the owners of the mines another branch to run to a point at the mines about four miles distant.

## thunder bay mistrict.

The Silver Mountain mine has been sold to an English company for $\$ 175,000$. Work will be commenced at once under the supervision of Mr J. Tretheway. The chairman of the new company is Mr. J. A. Tobin, a director of the liverpool, London © Globe Insurance Co., and on the board of management is the name of Sir Alex. Galt. The capital is placed at $\$ 500,000$, all paid up, and it is stated that fully $\$ 200,000$ will be available at once for working expenses. The property was purchased from Messrs. Oliver Dounais, J. Thretheway, R. Thretheway and J. Gifford The yein, which is located on locations $\mathrm{R}_{53}$. $\mathrm{R}_{54}$, was discovered by an Indian in Sep:entrer, ieq4.

In addition to the cast end of Silver Mountain the Port Arthur Sentinel advises that the company have purchased other mining locations as well as about one thousand acres of land from the Ontario government, so that they now control absolutel; over fifteen hundred acres, all of which they expect to use in the development of their mine. I'wo of the locations purchased from private parties cost the original ownes about \$100 each, and were purchased by the company for $\$ 1,000$ and $\$ 2,00.0$ cash respectively, after being held only abou a year.

The Silver Islet mine is to be pumped out, with a vicw to again working it.

It is not improbable that work will be suspendedfor the winter at the leerless mine.

Valuable silver vein are reported to have been discovered on Arrow lake, a few miles from Whitefish.

Rice leaf silver is reprorted to have been struck at the Elgin mine. This property is located near the beaver mine, and is on the same range.

A fourteen foot shaft has been sunk at the Elgin mine. Four men are working the clam and the indications are said to be good.

Mr. C. J. Johnson has taken patents for a large tract of land some 35 miles east of Port Arthur which is said to contain rich deposits of silver lead.

Operations are temporarily suspended on account of the water at the Silver Falls property: After the water has been pumped out work wi!: be resumed.

Iron is said to have been discovered a shost distance west of lac des Mille lacs. Ance. change informs us that negotiations are now in progress with a Chicago company to operate this deposit.

Writing of those and other iron ore deposits in the Thunder lay District the Jfiner siys:
"We believe that we have some of the largest deposits of iron of any district in America; and if this is the case, we have no fear that we shall be alle to find a market for it; for the vast con sumption, and rapid!y increasing demand for the prodict: of iron ore in the Linited States, places us in such an advantageous position, that it will berome almost imperative that she United States draw their principal supply from us. It is almost pretty generally known that unlimited quantities of iron ore exist on Iake Winnipeg, and in the district between this lake and Hudson lay; and we have no doubt that in a short time, with proper railroad facilities, this vast district will become the great mineral reservoir, for the whole Dominion of Canada, and probably for the United States."

The Fort William Echo gives the following particulars concerning the iron deposit owned by the McKellar Bros. and Graham, Horne \& Co., on the Atic Okan river (near the Scine):-
"The rich iron ore occurs in a great lode or belt with one and in places two partings of silicious, chloritic and dioritic schist, 10 to 50 feet in thickness of 100 to 150 feet. The iron lode conforms with the associated strata and dips north at an angle of about So degrees to the horizon, and shows the rich body of ore along the strike for a distance of nearly a.mile and a
half, the ore holding its full size along the middle position for about half this distance. It forms a mountain range along the whole way, that rises to an elevation of about 100 feet above the level of the surrounding plain for a good portion of the distance; so that it presents excellent facilities for extensive and cheap mining."
The quality of the ore as shown by Professor Chapman, the great authority on iron ores in Canada, is second to none. He states, in the certificate of analysis, "so far as regards composition and physical charanters, a better ore could not be obtained." He shows the ore to contain 70.06 per cent. metallic iron, no titanic acid, and only a very esmall amount of sulphur, and phosphorus, practically none, the balance being alumina and silica.
bake or the woods mstrict.
A sixth interest in the Gold Hill location has been sold for $\$ 500$ to Mr. A. Gillis, of Belleville, Ont.

It is rumored that Mr. Dobie has refused $\$ 15$,000 for a one-sixth interest in the Pine Portage Mine.

The Gold Mining company have been contpelled to stop work on their property near Rat Portage by a Mr. Mather, who claims the mineral under his timber lease.

The miners in the vicinity of Rat Portage have taken steps to petition boti the Ontario and the Dominion Govermments anent the difficulty of securing valid titles to their properties, many of them have been waiting since 1879 for a title to their clams and their patience is becoming exhausted.

## Manitoba and N.W.T.

Sir Alexander Gall reports that the coal taken from the mines at lecthbridge improves in quality the further in operations are carried. It is now selling at $\$ 6.50$ on the cars, and $\$ 7.25$ delivered. He expects that the output for the winter will increase to +00 tons per day.

The first meeting of the Canadian Anthacite Coal Mining Company held at Winnipeg on the igth Ne :ember elected the fellowing as d.e tors: MeIecod Stewart, Ottawa, Ont., perside.u: Senator 'Thorp, Eau Chare, Wis; vice-president; 11. ingram, l'resident of the Siational ilank, Eau Chire, Wis., ircasurer: .l. I'uge, St. Paul, generalmanager. Messrs. Dennis liyan, John Stewart, W. 13. Scarthe, 1:. A. Bronson and Archibald Siewart are also mentioned as directors of the company: The subscribed capital of the new company is $\$ 500,000$.

This company has been formed to developy the deposit of anhtracite coal in the vicinity. of the Cascade mountain, 75 miles west of Calgary. It ownes 1,360 acres of land containing the whole of the available deposit. The seam or vein has been reported by Dr. (ico. M. Dawson, Assistant Director, Geological Survey, and others, as measurimes at the further opening four feet and eight inches in thickness, having incre.. ed from is. .etcrop to this width from four feet. It is five feet at. 1 two inches in thickness ${ }^{-}$ at the Black Diamond or Hughes mine, nearly three miles distant. The stratum may; therefore, be regarded as having an average thickness of 5 fect with: but litule, if any varation. From a calculation made by Mr. C. D. Wilher, Inspector of mining properties. In Chicago, it is estimated that cvery threc fect of stratum will give 7,392 tons; and 300 feet will give 1 ro times as much or 739;000 tons. Reasoning on this basis
the company calculate that at a crifle over yoe feet in depin that there are $8,000.000$ tons of ambincite cooal.

The Manitoha firce fress savs that with rareful management and having the conperation of the Candian Pacifie Kailway, whose desire it is to foster cuterntise, which will build up and develop the minerat resoarces of the far west, the fature of this company is of a promising character. The developmeat has heen goung ora for the past monah mader lemnoybania manasement, the promoters theing desirous that the lest seans be tumeded and dereloped, :and the esoal properly prepared loefore placing it on the marker.

## British Columbia.

$A$ onciouth interest in the old Chamel Company in the Granite creek district was recenty sodiliur Sizo.

There is a xital necessity for a masom read
 order that situditus and mach:acry mave le tsousfin: in.
 Ker biohey 1. II. Cameron inas stakeda large






 vicany of staic coeck. Fown hatsi regors


 struth fre diec liast wellingion Colliext. It is


 งu!





 able:



 by those wion fave seen it, sob ire one of the
 flec mistory ui minias-

At 2 macing of tize I. C. Minins Comjary: hech d: Victutio on Thuruday $=3$ st ult. arrance
 properiy kroxth as the Caniono bratoon The prexeat sbati will ixe stanhicacd and sunk loxer, crustruaing and dixiting in tive decremt. The extimated cise of the wotk is placed lice


Kumours of a rich siond na Vancouver Islarki are prevelais in Vicioria. A Colunisf reprecent. ative staics shat hec has leen shoon a specimen seamed with gold, which contains as much of the

than a mans: fist, weighs three pounds foul ounces, and is extimated worth over \$so in gold Some sumpicion exists as to the truth of the stary.

Specimens of quartz taken from the ledeses known as "Senator Jones" and "Governor l'er." kins." near lowhee creck, were recently forward. ed to the (owermant Assay offec and have netted from 555 to $\$ 150$ to the ton. The vein: is thenght to bea continuasion of the "Homama": ledse owned be the li. C. Minins Company:

As an instance of the recemt revival in quarta. rock in alle vicinity of Richtichd, it shond loe stated that nos feace than sy rexistrations of quanz were made during September at the (iovcrancat oftice of that phace: white applications for mining ground, uater privilenes, free miners certibicates, ne:s, and rencuals, ate of daily occutrence.

Keccat sexts made of the quarta ledge coms-

 so imbure :ibe larators to prexeced wat the work
 form thick on the satiace, and whens to swo fee as atepila of six fect: The lomon cmerain the bribici hat it will imporec as it is curlher develoinel.

M:- Mrfullume who has sken ior the jan: swicen muntios in the mines at the lige liend
 sito has arricel in Victoria. (imatie Crect, descrites it as the worst mining cany lac ias
 are only hating oa in tice hore ne an inapore meat if andi is ceatect in jatiag ypantities it


 Alaroitr that coni ミ. 500 wias sold for $\$ 15$ and cun into liserood. Gionls are loing sucrificel.
 onjs.

A critugmakent writing io the Colonisf re

 this year they had josi strack goxil jay when the
 ditich live miles, zand whea this is icaly is st en. jucted that a co:tinual hand of $=00$ indtes mill lx-fad. Amove this chaim is thas workerl by Plym hiow which almo sufex froma lack of
 engajed in cleanins upat the time of air visit
and we sax a compe of yans of dirt morked. $A$ couple of shovels of a mitture of mad and sravel rute placed in the yan amd then woiked with waict uniil notiling was leit but the yohe. It led almoxt all been washed away and we shosty thete mas nes a cologe hat a minute mare diselocel screral nuserers which weighed Sh in ail. The serond jon furmished $\mathbf{S}_{\mathbf{j}}$. No: womaler abcere is a resishexs charm almat the wash the giliterins gellow gold. 77 re zold of Munquito creck is oí the fincos character found in Cariloor, weighing Sig on the ounce.

Kecent crents, mrites an English financial rajor, have made it so thoonatghity manifest that the liritish invero: has a liking for gotd mines that it is much so be regrectical that enctige is lackins in the developacne of the gokjlloaring

rand splarsely populated region, rich in minera resources: who will take it in hand? Mr. Koch, from whos: reprort to the gold commissioner of the Carihon district we recemly quoted, points out that as yet there has been nothing like an adeguate ciamiantion of the gold quarta deposits in that part of Her Majestys dominioms. He makes sprerial referençe to Hixun ereek. where be superinemded operitions in the hope of finding a paychute of guarte "A shaft was sumk, and at a depth of 60 iect a drift was staned, and the vein was found at the eanct point where it was estmated to be, and mo vin in Califorma has truter or better defined walls." Mr. Koch proceeds to admit that it is guite possible a greater dequh mast be reached before payins quartz in large guantitios will be ohmaned. but he expresses hamself satisfied with the results: of recem prosipectins, and dechares his opinion that the gold quartz deposits of the district are not metely local, but that a regular and unbroken formation cevistis: that this continues for manymilos and thas true fissure, and even comanc, vems of bold and silver cans ix- found be intel-
 cil most poriphe will be of opinion that intelligemt prosinctior had le:tace set to work at once-anLisi indecd, they are afraid that the authoritics of British Columbin, followiag the exampic of the Egolverice of Quecosknd. nre only raiting unill :ngilish capiat has lnern intested in their mizee to give the whole basinesis a gratutious loat oricial black cyc.

Mri Ames bownan. M.F. of the lrowincial Guternment acological staff has catrosed at
 of the Carimo alistrict. He has just teiurnal from the werk of ocurpyine a darje ..umike of abldionall triamguiaion sit!ions for zersrayhy: and has ineer fellowing the formations and phacer mi:ex and guara ledses ia detail. The pramijal puana ledses in the obl phacer district wete sinied, io :race as iar as possible, tite connect:un ln-ixwea the fedjes and the phacene, and
 therocks ronainim: the anificrons defoisits. Inthis way the goid twit has leen tracel and searegatevi from one end of the comatit to the obter. Ilr. beproman states that to tiec nothecastmand incee is a newer iormation, difuring entitely from the slate country of Corilmos in which minins: bas lran pronality carrivi on. In this fossik inave lecen foand, showint it of the newer shan Cariboo, ha: oller tian any of the goldibaring conmry in Calitomia. - In the southeastern comer of she biedi work is a somnazion newer than the sold lo ar:ing Comary or Califomia. He adroxates the adopnion of ceatral chonization works or hedinat chahlishancre mhich would form a marker ior the protincts of she milks and to show the gecasity foe this descrilex the joocers as folloras: -There aie threc difiterent hinds oi roasting furnaces in sereral use: firs, the reterhatory in which the ore is shovelled from one cad to the othet as in a lake oven: the cylinder, where she same thing is doase mechanicilly: the Stetefels furnace in xhich it is dropised down a shari, falling from one shelf to another until tive sulphur is burked out. The roasied ore, which is now fince duss, is jhaced in a rank or tub, saturated with chlorine gas and leached out with waict: it now bxing in the form of a red mund is juaced in crucibles and conterted into beillion. Thiss if the roasling is not done juss right, much gold is laxt. It is crident these are all expensice appliances and requirc skill. An immense quantity of ores requiring shat sreatment are in the Caribon district and proyerly managed
chlorination works would prove a profitable in-
vestment to all concerned. In case silver oceurs with gold a different process of haching is required, ime the methodatoes not vary materialls: In the evem of chatorination or leaching works being amailable, people having ledges would merely: dress their ores in a form which would bear transportation to a comsidetable distance, occasionally on horselack with profitable-returnSuch a custom works would thus adow men of small cypital to successinflle work ledhes, as they would be in a simitar position to the farmer who lrought his wheat of at grist mill to be ground into flour.

Vertica! shafts are preferablet to inclined shafts when heavy pmang machineny has to he put up, for pumps and rods are more cesily ined and require fewer sepairs when they are anranged vertically. Ilowerer, many metallic mines may bed yuoted, especially in lingland, vase harge cescinc, work pumgs in inclioce stafts or in shafts whicia have lreen sumk vertically: when they intersected the deponit and hate then ineen carried on alonst its dip. This armanemeat of: inclined shafts is justifilb? in workins alone when the enclosing socks are very hard. In this case in fact.an inclined shatt illows the lode to be stadied in detail durisg the sinking itself. If, bowever, a large ourput is required the preference should certainie le given to :ertical shais, for, in order to ohtain such a result, great loads must ixe raised, at velocitics which are only admissible in tertical shates, furnished with the best system of quites.

## FOR SALE.

## - Ne. 1

## Prospecting Drill, <br> 


ROBERT GEE,


##  Barristers, Solicitors a Motaries Public. <br> tix <br>  

## WOIFF \& COTTON.

J'ncimizal Jared Sirmanor,

OFFICE, - 52 Elgin street, Ottawa.


## J. OBALSKI,

 -HIVIVG JEAGINEEER.
Onice, 63 Se Gabriel street, Moatreal. COSSUI.ration fRER:!

withHESE Kl:CUl.ATIONS shall be applicalle to all Dominion lands containing gold, silter, cinnalar, lead, tin, copler, jetroleum, iron, or other mineral deposits of economic valuc, with the cxception of caal.

Any person may explore mant Dominion Iands not apyropriated or reserved by (iovernment fot other purposes, and nay search thereis, cither by suface or subtermanean prosjectung, for mineral deposits, with a view to olotaining under the Kegulations a mining location for the same, but no mining location or mining cham shall ixe granted until the discovery of the vein, lode, or dejosit of mineral or metal within the limits of the location or claim.

## gUART/ MHN:NG.






 the ginami.




 enter iniogmensing of ithe lucationt apialian for.


















 joblicilltr atioctal.

## II_lCF:K M1NiNG:






The Krachinity apy













 loy levelhyment.
 Mininer Einsincor amat Mitallargisf. Will rejort on Mines and Mineral Propeniay 15 Toronto St, Tonomto, Ont.


## The Intercolonial Railway of Canada,

asu Fos:nar Rount mitwew
Canada and Great Britain
1)irect Kouse leinectuthe Wiet and all juinss on

 Jamaina.





Su;csion filctaior. Warcingere and lluch accuen.
 Feberal inctiturndiac.



 Gires: I:risata.
 cas be lunt ociajgricasive is
foidi:。
Intez izen:. -T Surh. sireez.
NOITT. 1: Mowintr.


12. MolT1Si:f.k.

*isilyas OXrce, N1,xoction, N.1\%.


## FOR SALE.

White Marble Quarry on Cilumet Island.

At thas quars these as an mexhawsible suppity of mus: beauiina White Marble: Santales to be seen and information ubsained at she outice of dhe Mrant: Krarmw.


## DEPARTMENT of INLAND REVENUE.

## An Act respecting Agricultural Fertilizers.

T
 TUkAt. Fikitimasks cam: into force on the int o! Jabsars: j8S6, and that all
 Increin containal -the atain features of which ate as folluns:-












 flacel axd a coort gis ea su canh gessituarr.
 of the 心: fiscouirs acimantiva lave lora cocridice math












 sicent
 get encer

15 I11.11.1.
Cracmisfivect:


Tenders for a License to Cut Timber on Dominion Lands in the Province of British Columbla.


#### Abstract

(FiAl.ł: TH:N1)FKS addressed to the umles  lferth." will be receited at shis Ofice until noon on Noumay she ins day or November next, for four titulice lieriho of zen wuyte miles exch, more or leak numberal reperzirely 4,5 . 8 and 9 , situated un Kikhity llore Kiver and Otertail Creck. an  tracific Kailway, in the I'rurime of Ifritish ColumSiz berelter showing the poition approximanely of there lartiss, together wath the condutuons ort witich they will te liensed, may le obeained at this the. garsment aras sheCruwn immert Otice, Winniper, Calsary:


A. M. B:LKGFSS,

Inzeuty wh the
Wianter of the Interior.
tryarmerts of she inserios,



Tenders for a License to Cut Timber on Dominion Lands in the Province of British Columbia.


 imber Eershe ou Efiy square mile Ench. sowe oe


 ci





A. M. Tidscifis

Winatery of the inertion


## MINES AND MINERALS.

## Developed and Undeveloped Mines and Minerals of Commercial Value BOCGETE ND SOLD.

Properticerevamined and analyses made of ore of eterl dencription. A comperent Expert is permanently engaged forthe purpose of making L'npreju lice.I Keports on all Mines phaced in our hands for Sale, such reports being at all times open to imtending purchasers for ceamination.

## Phosphatc, Iron, Iıon Pyrites, Coppor, -Asbestos, Mica, Plumbago, Gold and Silwer Mines, and Marble and Sandstone Quarries, for Sale.

Mineral Lands examined and reported on by our expert: also. analyses of Minerals of every description made by a Combitfat Assivist.

Correspondence with Owners of Mines and Capitalists desirous of investing is most respectfully solicited.
Address an Commanications to

E. G. POWELL,<br>14 Metcalfe Street, Union Chambers, Ottawa, Canada.


[^0]:    Richann Baxer S Co, Cenetal Proiace Brokers, 9 Mincing Lane. London, Eng land. Adrances made on Consignments
    Ereports Gratis on New Products. Bankers: Abra Bank, London.

