The Institute has attempted to obtain the best original copy avaslable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.
$\square$ Coloured covers/
Couverture de couleur
$\square$ Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurèe et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Castes géographiques en couleur

$\square$
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bieue ou noire)Coloured plates andior illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intërieure

$\square$
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omirted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela ètant possible. ces pages noont pas ėtė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées
$\square \begin{aligned} & \text { Pages detached/ } \\ & \text { Pages détachées }\end{aligned}$
$\sqrt{\text { Showthrough/ }}$ Transparence
Quality of print varies/
$\square$ Continuous pagination/Includes index(es)/
Comprend un (das) index

Title on header taken from:/ Le titre de l'en-téte provient:


Title page of issue/
Page de titre de la livraison

$\square$
Caption of issue/
Titre de départ de la livraison


Masthead/
Génėíique (périodiques) de la livraison

Additional comments:/
Commentares supplémentares:
This item is fimed at the reduction ratio checked below/ Ce document est fılmé au taux de réduction indiqué ci-dessous.



NEw SERIFS.]
TORONTO, JUNE, 1845.
[VoL. I.-No. 6.

WORK FOR THE MONTH.
The work to be exccuted this month will, in a large degree, depend upon the size and character of the farm sind the ability and intelligence of the proprietor in executing needful improvements;and theyefore any gencral directions that may be given, will only in certain cases be applicable; but it is to be hoped, from the many seasonable hints that are advanced, that each subscriber to this jourual will find a few that will be profitably practised. By the close of the first werk in this month, the potato planting will be completed, and the ruta baga and other root crops will be sown, and the majority of farmers will fancy that there is scarcely anything more oo be done upon the farm until the com mencement of hay-harrest ; now nothing is more preposterous then this, for any correctly observing farmer must be avare that many of the operations that can be better executed at this season of the year than any other, are of the sreatest importance upon a well-tilled ond properly organised farm. An out-
line of a few of such operations max prove interesting to a portion of the readers of the Cultivator.

The Summer-falloos, if not already broken up, should be ploughed forthwith; and wherever practicable, the manure should be ploughed in with the first furrow, which should not be deeper than four inches. By ploughing the first furrow as shallow as it can nossibly be turned, and at the same time neatly cor. ering under the manure, the decomposition of the manure, crude vegetable metter in the soil, root weeds, and especially couch or spear grass will be greatly promoted. The second ploughing should not take place until the inverted grasse. or weeds become thoroughly destroyed by fermentation, which is generally the case if the fallows be broken up in the autumn, or eren in the early part of this month, by the middle of July; and oa all soils, except a light drifing sand, great udvantage would result from crossploughing from ten to trolve inches in deph. This is a n..'. . . ter deptly d; and in
 ploughingtampleanexperiment in deep ploughing, while crossing their fallows in July.

Underdraining such portions of the fallows as are subject to a redundancy of water in the fall and spring, would be an improvement that would pay a heavy lonus upon invested capital and skill; and at no season of the year cau this labour be done to greater advantage than this. The drains should be carried to the depth of thirty inches, and the materials employed in their construction may be cedars, stones, or brushwood, as would best suit the views and circumstances of the operator.

Stones should be removed off the fallows, and all other obstacles that might be impediments to clean and neat culture.

The long manure in the barn-yard, that is not required or fit for the fallows, should be well turned in the yard, or drawn into the field where it may be required for use, and thrown up into large heaps to ferment; it would add greatly to the value of such manure, if layers of alluvial soil were laid through the heaps, which would not only improve the quality of both barn-yard manure and the mould, but would to a very great extent increase the amount of manure, which nay truly be said to be the farmer's mine, if skilfully applicd to the soil.

Canada thistles, and other nowious weeds, should be exterminated; and to do this effectually, on land that has been improvidently cultivated for a series of years, will require a large degree of skill and patience. On many farms, there are only patehes of those pests to the cultivator, and in such instances there need be but litte trouble in getting rid of the evil. The must simple and effectual plan is
to ploenth those patches as deep as the strength of the team will allow, as often as once per fortnight, during the months of June, July, and August, and if time would admit, more frequent ploughings would do no harm; wherever this plan is practised, the Canada thistle plants will be thoroughly eradicated. Where only a few plants are to be found, those may be removed directly after a heavy fall of rain, by pulling them up with a pair of forceps, or with the hand covered with a leather glove. But where whole fields, farms, and neighbourhoods are covered with this troublesome weed, it is a most difficult business to cultivate the land with any satisfaction, as it is almost a hopeless task to get rid of the pest, unless a united effort be made by every cultivator whose farm is in the least infested with it.In fact, nothing short of a vigorous and united effort, and a thorough system of culture will exterminate Canada thistles. when they have full possession of the soil. This however can be accomplished only by a better system of husbandry than is to be met with in any part of Conada. The leading features of this system is clean and deep ploughing, rowing, and horse-hoeing every crop grown upon the farm, except elover. The particular crops grown, and the rotation practiced may to a great extent be governed by the quality and richness of the soil, but so far as noxious weeds are concerned this is a. matter of no importance. It is useless to multiply suggestions upoit this branch of improvements, as but fer if any are prepared to practice what fare wilready beenurged upon their attertion. One thing is certain, that no system of husbandry can long be profitably carried on, unless a part of the systembe calcu?ated to destroy the weeds, which are injurians $t$ ) agriculture. This fact should be berae
in mind by all, and those whose farms are yearly getting more foul with noxious weeds, should lose no time in changing their mode of cultivation, and substituting theretor the one that is here recommended, or some other that will effect the same object.
Remöving stumps and logs fromi land.It is truly lamentable to see the neglect that is practiced in this particular in sections of country that have been cultivated for the last forty years. If only a few acres of this half cleared land were thoroughly cleared each year, the appearance and value of the farms that require this improvement would be greatly enhanced. This matter is of so much real importance, and would add so much to the respectability of the farm, that it is to be hoped the spare time will be employed in eradicating stumps and burning the same, as well as useless trunks of trees, brush, and other annoyances that encumber the pasture, fallow-fields, and timbered ground.

Garden grounds.-If any have been so unfortunate, or so indolent, as not to have erected a neat and substantial board or paling fence around their garden, orchard, and door yard, it is certainly a good time to begin to think seriousty of the matter. The expense of a few hundred yards of neat fence built with boards, and studded with fruit and ever-green trees, would be trifling indeed, compared with the benefit and comfort it would entail. Where suitable material, for posts and boards can be had at a reasonable price, a few hundred yards of neat post and board fence might be built each year on the boundary of the farm, and were this plan practiced a few years, an ordinary sized farm would be completely enolosed with this style of fence, which would add a'much greater value to the farm than
the trouble and cost of erecting it. These matters should not be passed over,slight: ly with those who are desirous of elevating the standard of Canadian agriculture.

The garden will require the closest attention during this month, and any farmer who neglects this department of husbandry, deserves the appellation of sluggard. It is to be hoped, that none will be so regardless of the comforts of their family, as well as their own personal and pecuniary interests, as to allow the weeds to overrun the garden and door yard.
A few suggestions upon roademaking, management of fruit trees, liming and marling land, and making compost heaps, as well as some other subjects of importance, would have been made in this place had time permitted; but as the first-mentioned topics have been liberally treated in former numbers of this magazine, therr absence in thisnumber will be a matter of minor importanoe.

To Sweeten Rancid Butter.-The Fcho du Monde Sevant, says-"An agriculturist in the neighborhood of Brussels, having succeeded in removing the bad smell and disagreeable taste from the butter by beating, or mixing in fresh water with chloride of lime, he was encouraged by this happy result, to continue his.experiments, by trying them on butter so. rancid as to be past use; and he has restored to butter, whose odor and tastewere insupportable, all the sweetness of frest. This operation is extremely simple and practicable to all; it consists in beating the butter in a sufficient quantity of water, in which, put 25 or 30 drops of chla ride of lime to two pounds of butter. After having mixed it till its parts come in contact with the water, it may beleft in it for an hour or two, afterwards withdrawn, and washed agewinfresh water. The chloride of lime having nothing injurious in it, oan, with safety, be aug. mented; but after having verified the experiment, it was found that 25 ar 30 drops to a kilogramme of butter were sufficient.

ROYAL AGRICULTURAL SOCIETY OF ENGLAND.
We notice in a late number of the Agricultural Gazelle, that the list of prizes of the above society, for agricultural imsplements, amount to the very liberal sum of $£ 300$ sterling. The amount of invested capital belonging to this asso©iation, equals $£ 8,200$, besides $£ 1,296$ in the banker's hands for the use of the ociety. The inducements held out to earry out improvements in agriculture, by the Royal Agricultural Sociery of Eingland, have had, and still will have a powerful influence upon the agricultural prosperity of that devoted country.

When district and township societies ase organized and in a healthy state of operation in Canada, a Provincial Association would havs the effect of producing similar results in favour of Canadian zroriculture to those that have been exprienced by the National Society of England. Our confidence is gaining ground that such an institution will be in operation in Canada before the close of the present year. But the whole matter will rest solely upon the success of the friends of agricultural improvement in organizing dis rict and township societies. A literal provision is now made for such institutions, and unless the people evince a desire to sustain local societies, it is fruitless to hope that they would exert their influence in favour of a general or Provincial Association. We hope to see an agricultural society in each township that is capable of sustaining such institurions, and it would be highly erecitable to Canzda, if a general movement in their organization could be made the preseat season. Recollect that each township society, under the new act, reQives a share of the one thousand dollars of government bounty granted to each
district, in proportion to the amount of its subsoription; and that by the societies collectively raising only two hundred dollars, they will be entitled to the full amount of bounty granted to each district.

We wish it to be understood that we are anxious to see a provincial society estabiished, but not until we can be made saisffied that a pretty general co-operation of the wealth and influence of Can. ada could be enlisted in the cause.

## TO CORRESPONDENTS.

The most interesting department of an agricultural journal is its original correspondence, provided that the contributors endeavor to make their papers useful, by reporting plain matter of fact experiments in agriculture, or such other branches as properly belong to such a journal. Up to this period there has been an unaccountable remissness on the part of the Canadian farmers in contributing the results of their experience for the benefit of their fellow-farmers; and we have almost concluded that it is useless to make further appeals to stimulate them to engage with us in endea. vouring to improve the condition of the industrial classes of this naturally highly favored country. But as the work on our part will be prosecuter with increased vigeur, and we trust a corresponding salutary effect upon the productive interests of the province, it is traly desira ble that such of the Eanadian farmers as are capable, should assist us in prepar. ing original and useful articles for the bencfit of the people. It might not be out of place to quote a paragraph from the leading article of the London Agricultural Gazette, to corronorate the assem tion just made respecting the imporiane
of an extensive corxespondence to enrich the columns of an agricultural journal:
> "In closing our first Volume, wa' take the opportunity of heartily thanking those who have contributed to its pages. It is on its practical Correspondents that an Agricultural Periodicai must depend for its real value. Its Editor may certainly speals authoritatively when he trents of the principles of the art ; but when be descends to any department of its practice, be can only state his personal experience, and the circumstances under which it was acquired, and then he only occupies the sisuation of one of his own correspondents. We say again-it is on the number and qualifications of these that the value of an Agricultaral Journal must depend. That periodical is necessarily the most usefal whoze pages are filled with commanications of the experience of its readers in all the varions circumstances of soil, climate, tc., to be met with in the district where it circulateg. We can say, without bonst, that we have readers on all the varying soils, and in all the different climates to be met with in the three kingdor, and if we could induce a greater number of thes to state the agricultural experience of their respective neighbourhoods, the usefulness of the Agricultural Gazette would be much incrensed. For, as we said at the begin. ning of the year-then only shall we consuder ourselves to have made muen progress in the course of usefulnes3 on which we have endeavoured to enter when our readers shall have been brought to consider themselves as the members of one large Farmers Clats for mutaal instraction, ourselves occupying the place of the mouth and the ear through which they may communicate with each other. We must contiane to solicit our readers theuselves to enter upon the great task of mutual instraction. Our columns are almays open to details of facto bearing upon Agricultural practice."

We lament that we eannot boast of having such an array of contributors as the Gazette has been favored with during. its first year's existence, but we tope the day is not far distant when the poople of this province will possess more espanded views of what belong to their indisidual and national velsare, and unite in promoting every enterprise that is calculated to increase the wealth and comforts of the community; and especially that of communicating to their fellow-men, the tesults of their experiments in agriculture and its sister arts, through such meduams as the Culliontor.

The Alhany, Culizatorstandannobably
at the head of the list of American agricultural periodicols in point of intrinsio merit or usefulness, and its superiority over other similar journals consists in the extent of its original correspondence the authors of which are principally practical farmers, and of course the matter contained in their communications savour of such things as they best understand. The ostensible editor of this val. uable journal knows, but little of agriculture practically, but owing to itss liberal patronage, has managed to compile a journal which would bear comparison with any similar journal published in the Enghish language. To give our readers some idea of the circulation of ${ }^{-}$ this valuable magazine, we would state; that in the month of January last, no lessthan 3000 subscribers were received. being an increase of 2,500 over the number in the same month for last year:With a circulation of probably 20,000 subscribers, and a hist of upwards of tovo hundred valuable contrbutors, the Albany Cultivator may well take the lead of its fellow cotemporaries. Although we can not boast of tensof thousands of subscribexs nor hundreds of contributors or helpmates to assist in consummating on agricultural reform worthy of so poble an agriculturab country as Canada, still we have confidence in looking: forward to the period that we shall have both supporters and contributors in abundance to eable us to improve the ebaracter of this journal, so that, when its price is. considered, it will bear a comparises in point of value, with that of any magazine published on tivis corinneat. We ermot, however, work bo any satisfactimn without means; and we trast that in fiture there will be no cocasion of complaint, either on the score of want of support. or practical correspondentor

THE CROPS.
The prospects of the Canadian farmers were never brighter than at present.Both winter and spring wheat look unusGally fine, and in all probability the wheat harvest will come in by the latter part of July. Much of the winter wheat appears too gross, the cause of which must be attributed to the very objectionable practice of heavily manuring for this crop, with crude vegetable matter, upon soils nat"rally too fertile with this substance. Scores of farmers, whose wheat crops promise them a return of forty bushels per acre, will be greatly disappointed at having to harvest a large crop of damaged straw, giving a yield of some ten or fifteen bushels of an inferior sample per acre; whereas their more skilful neighbours, who have practiced the sound, common sense directions that have been given in the Cultivator for the past four years, will have both straw and corm in perfection, simply because they have adapted their system of managing the soll to the natural reyuirements of the wheat plant. Although the wheat crop appears ranker upon the ground than is desirable, still the chance for a good crop is much greater than if the season had been unfavourable to vegetation. The growth of the wheat plants have not been checked, unless in very unfarourable situations, anu the result in a great number of cases will be, that the roots will strike sery deeply if the subsoil, and convey to the stems and leaves of the plants, silica, potash, lime, and other sukstances in the subsoil which are colentated to give a hard outer surface, which will eounteract the deleterious innuence of rust with which this class of plants is so subject. It therefore may te pretty fairly premised that the causes of rust will not operate so preju-
diciously upon tho wheat crops the present season as has been the case the past six years, and that a greater amount of good wheat will be harvested than usual. The prospects of the spring wheat crops could not be surpassed, where proper attention has been paid to the preparation of the soil, the selection of seed, and early sowing, as was recommended in the March Cultevator. If the harvest should come in favoradle, there will be a sufficient quantity of spring wheat in the country to bread the whole population of Canada, and a considerable surplus, which should be exportod across the Atlantic in wheat, instead of flour, as has been practiced of late years, to the prejudice of the Canada flour trade. There can scarcely be two opinions entertained respecting the great importance of the wheat crop to this colony, but it should be borne in mind, that it is a sure roark to ruin for an agricultural country tn depend upon only one great staple for ex-port-oats, peas, barley, and the various, other grains cultivated in Canada, promise a bountiful harvest.

Fruits, especially apples, cherrips and plums, have partially escaped the frosts in this section of the province, and there is every reason to hope for a very liberal product of almost every variety of fruit grown in the country. The extreme southern or south-western townships have been visited with early frosts which destroyed the fruit, and the extreme northern with late frosts, which have done equally as much damage; but thr interior townships, extending nearly eight hundred miles in length; have escaped an: comparative injury from frosts at the period we are penning these remarls, and the prospeci is that of an abundant yield of apples, pears, and stone fruits.

## SCIENCE AND PRACTICE OF AGRICULTURE.

In this number will be seen a very sensible letter from the pen of Liebeg, which deserves a careful reading; and we trust that the Canadian husbandmen will not only read, but make it a point to investigate, understand, and practise the noble sentimentis it contains. It is fre. quently asserted by farmers, that their soil is not adapted for certain crops, and at the same time they may unknowingly be in possession of the very substance, at the bottom of some marsh, or in the subsoil within reach of the plough, and this want of knowledge not unfrequently entails the most ruinous consequences. No man deserves the esteem of the agriculturist more than Liebeg; as it is to his researches, and writings that the business of agriculture has been made a science. When the principles of vegetation becomes once well understood by the agriculturist, he may then with confdence engage in perfecting the improvements pointed out by the man of science; but when the whole matter appears wrapt up in mystery, and even the working of the most simple laws of nature, are attributed to chance or improper causes, it is useless, under such circumstances, to expect that persons thus blind and ignorant will engage with any considerable spirit, in the important work of effecting an agricultural reform.

It always was, and we suppose always will be the case, that a much greator amount of manual labor is expended in the production of the common necessaries of life than would be required if the operators understoxd the oauses und effects of their various operations. Science has very liberally lent her aid to art in thr numerous manufacturingbranches of the day; and at last she has lent her power-
ful arm to agriculture, in a manner which: does great credit to so usetul und noble a profession. Any far er who has thoroughly made himself acquainted with the science as well as the praotice of agriculture, will no longer feel that he is crgured in a mineal occupation, but that the cultivation of the soil is the most independent, ennobling, and instructive professions that a man of refined sensibility could possibly engage in. Plants, like living animals, require food to bring them to a state of perfection, and what would be adapted to cne class, might prove fatal if applied to othors. The seience of agriculture very beautifully points aut the kinds of food adapted to each; and the furmer who makes himself master of this science, is not only a wiser and better cultivator, but may fairly hope to abtain larger returns and greater profits, than the man who attributes the success and failures of his experiz ments to the operations of blind chance. A thoroughly clever farmer may man. age his soil so, that with one half of the labor usunlly expended in proparing the ground for a orop, he may obtain fully double the return that would be fiarvest. ed from the land expensively cultivated. But few would believe this doctrine, hut nevertheless it is a faot which has been proved to a olear demonstration in the preparation of tho soil for the winter wheat crop in the British Isles Tho limits for this article will not adarit of a detail of facts to prove the atove assertion, but from what we knosv of scientific agriculture, we would suppose it as rational to caloulate that the old fashioned mode of spining and weaving cotton couhd be made to compete with the moderia improved $n$ nethods, as readily as the old fashioned systems of hushandry could compote with those which the men of sei. ence have practiced.

The wolfare of this bighly favored colony in a great measure depends upon the amount of interost which the Canati. in farmers evince in the acquisition of a 'nowledge of the science of agrich'ure.

## IIAMILTON COUNTY AGRICUTURAL SOCIETY.

In a former number of the Cultivator notice was takon of the arricultural surpey that was instituted by the above society, which is propably the most efficient institution of the kind in the state of Ohio. That mode of collecting and dis. seminating agricultupal facts for the people, was highly applauded by us, and would have been a source of much gratification if the agricultural societies in Cenoda had followed the patriotic example set them by the farmers of Ohio. It gives us still further pleasure to have $i$. in our power to record the following proceedings of the above institution, in the hope that although no action hos been taken in instituting an agricultural survey in Canada, steps may be taken to appoint Honorary Professors whose busimess it will be to deliver periodico lectures upon such branches of scientific agriculture as may be understood, and profitably carried into practice, by the Canadian farmers. We copy the extract from the Duity Commercial :-
"In lookinge over the list of officers for the coming year, we see the Society has appointed sogeral Professors whose duty it is to deliver lectures before the members, upon subjects directly connected with their Professorships and Agriculture. 'There is uach wisdom and true policy in zrech appointarents, and we should be gratified to see every borticultural and agricultural socity rith ite professors. This, connecting scientific men; $2 y$ professionat identity, with institutions of such nature and objects, has a tendency to secure their active co-operation in the minutia and detal of all that is calculated to advance their interests, as well as to call forth their talents in the hlustration of those subjecs appertaining to agriculture of a puely scientific character. It whll be recollected, that the fizt regalar coarse of lectuce upon Agricultural Chemistay, was delivered by Sir Humphey Davy, before the Rristol Board of Agriculture; from which beganng, in rapad succosion, have sprang thees numerous othir tra ses of simitar eharacter, which hares so distingulished the ptesent century as the fostering era of enllghtcied hathandry. In the vimmty of every Agricultoral faciety in the oeuntry there azer fenclemen of sctentic aturments, who would fecl proud of receiying sinilar appoint-
menta, and whose pride of cheracter would induce them to fulfil the devolving duties, from motives emanating from that lofty ambition which teaches the virtuous and the honorable, that among the holiest of human ofinces is that of dong good. It may be said, that these would be profersorehips without emolument-true, they would be so ; for wre are no associations in the couatry able to ammex salaries to them-but they would not be without honor, and though pecuniary advantage would not directly ensue to the profersors, yet it would do so indirectly, as it wouid bring their acquirements within the knowledge of hundreds, nay, thousands, who would not otherwise have known that they had being.'
"The second discousse will be delivered by John A. Warder, the professor of Anatomy, Physiology und Putholosy of the Domestic Animals, to-morrow, the 15 th inst., at 2 o'clock P. M.. at ilt. Pleasant, at which the public are invited to attend."

## HAW-THORN FENCES.

We notice in the proceedings of the Botanical Society of Edinburgh, that a Vr. McNab, has lately made a tour through Canada, for the purpose of obtaining information respecting the indigenous plants, and other natural resources of the province. His remarks upon the native haw-thorn will no doubt be found interesting to the readers of the Cultivator, as they contain practical directions for the management of live fences,-a subject upon which but few Canadian farmers have had much experience. The pros. pects of this colony are craiently improv. ing; and there is scarcely a doubt but that the condition of the Canadian farmers will very shortly bear a favorable comparison with that of any other country in the world; it is therefore, but reasonable to suppose that those whose means will admit of the outlay, will turn their attentic. to the improvement of their farmbuildings and fences, as well as the general routine of their farming operations. But fiw ornamental inprovements upon the farm would show off to the same ad. vantage as enclosing the fields with thorn hodges. The English haw-Lharn, is
found to endure the Canada winters, but the growth is not so vigorous as the nalive varieties. Some of the latter are partially ornamental, and would be particularly so, if planted in hedges and reared under proper treatment. This subject is of such great importance in those seotions of the country where timber suitable for building fences is expensive or scarce, that it is desirable that a commencement should be made in propagating either the English or native thorn for finces. A few experiments in each township would lead in a few years to a gencral acquaintance with the mode of managing live fenc $s$, and we have no doubt but that by degrees, they would become general throur! out the country. Encouragement should be given to this branch of improvement by every agricultural society in Canada :-
"He was agreeably surprised to see such a variety of native haw-thorns, being convinced of their fitness for forming hedges, so very much wanted in this country, and which many of the inhabitants expressed a great desire to have, instead of the unsightly snake fences which at present separate the fields. But apparently they never thought that the mdigenous thorns would answer for this purposa, as they talked of importing haws and white-thorns form Britain. Mr. M'Nab gave instructions to those individuals with whom he bad an opportunity of conversing upon the subject, so that they may raise thorns for themselvec, as an abundant supply of seeds may be annually procured at no great distance from each settlement. As these instructions may be interesting to others, we here repeat them:- The fruit should be gathered about the end of October, care being taken to keep the seeds of the luxuriant growing sorts seperate from those of the dwarfer kinds. A pit should be prepared about $1 \frac{1}{2}$ feet deep, into which the frut is to be put with a mix: ture of earth or sand. It should be turned several times during the season, and if dry, a little water may be added; 1 or 2 ins. of soil being a sufficient covering to insure the decomposition of the pulp. During the following October a piece of good ground should be prepared, and the seed sown as it is taken from the pit, pretty thick in drills about 1 ft . distant from each cther, or in beds 3 ft . wide. In the succeeding spring the plants will begin to appear; at which time, and throughout the season, they must be kept clear of weeds. If properly attended to the seedilings will attain a height of from 7 ins. to 12 ins. the firsi year. The following spring the strongest plants
may be either transplanted into drills, or placed where they are intended to remain as a permanent ferte: The maller ones, should bo leftin the seed-drills or in beds for another year, when' they may be trented in the same manner. In formung a live fence, the ground ought to be prepared as soon as the snow disappears, by making a trench about 2 ft . broad, and a spade in depth. Along the centre of this trench the young plants should be put about to or 8 inches apart, and afterwards well watered and firmly trodden in, Care should be taken to protect the young plans from cattle, and to keep them cleas of weeds. The second year afeer planting, the thoms should be headed down to within 6 or 10 inches of the ground, and each year afterwards switched up on both sides to a certain ridge, so as to produce the shape generally termed sow-backed; hedges trained in this form, being less lin, ble to be destroyed by snow resti $g$ upon them than when cut flat at the top.' If the method here recommended be properly attended to, Mr. M'Nab has not the least hesitation in sayibg that an excellent hedge of native thorns may be acquired five or six years after planting. At several places hs saw the indigenous thorns employed as a fence; at least, they had beer planted with that intention, and had attained a considerable height, but from want of proper attention to proning and weeding, they were so slender that easy access might be obtamed between each slem. From such instances of mismanagement, an erreneous opinion seems generally to prepail that hedges will not succeed in America. 'But, he very properly remarked, 'if newly-planted bedges in Britain were equally neglected, there can be no doubt that they would soon dege erate, and become no better tha those which I observed in the United States and Canada.'"

Repairs and white-washing of Out-build-ings.-Submit every out-building on your place to a searching examination, repair every one which needs it. This done, make yourself a white-wash after thix fashion: dissolve two pounds of potash in five gallons of water, theu add 2 lbs . of alum, and when that is dissolyed, add 10 lbs. of wheat flour, make the whole into a paste by stirring in the flour a little at a time-then in another tub slack as much lime as you desire to use, and when cold incorporate it with the first, and apply it to all parts of your buildings, both inside and out, roofs and all, and you will not only have put on a beautiful and durable whitewash, but one, which will render your wood-work as nearly incombustible as is desirable.-Anc. Far.

## [for tias celetivator.]

When a farmer vrites upon any eranch of his profession, he shoald generilly keep in tiew his locality, because s system that might work well at the distance of four miles from Torohte, or any stanter city, would not work wo well at forty reies distance; and na the following is to be feand in the north-cast section of the towniship of Whitby, it may be inferred to suit that or even 2 greater distance from market.
The writer ofthis aricle dceupiez a very small farm ; but it will be found, that the sfetem which he submits for public consideration, may be applicable for those who occupy more numerous arres. The first thing to be done is, to cubdivide the farm into fields of which the one under notice is divided into seven, besides the one whach is broken with the farm buildings, garden, orchard, Ec., each field containing five acres, cultivated under the following mode of succession:-

No. 1. Is sown with fall wheat.
No. 2. Creen or hoeing crops.
No. 3. Sprinig wheat or barley, sotyr down with grass seeds.

No. 4. Hay.
No. 5, Pasture:
No. 6. Oate.
No. 7 Peas
Cpon the removal of the pea crop; No. 7 is sown with fall wheat, for which crop it is worked in the tollowing manaer:-Plough the yea ficld as early as possible, after the crop is gathered, and with the view of early ploughing, an early variety of peas are dezirable, harrow dowu immediately to make the weeds regetate, and alis to destroy any grase or deep-rooted weeds. The ground should then lay undisturbed uatil the last week in August, at which period it should be saficicatiy barromed to destroy every thing in the shape of weeds. Then lay out the ridges to the distance of one rod wide, and by ploughing the seed-fintow pretty wide, andinclinng the plough towards the land, so that the formows will not lap aron each other, the sead may be made to come ap in rotes, neariy as neatly as if sown with a drilling machine. The seed shoold be harrowed in the direction of the farrows, which operation zhould be done with a pair oflight seed harrows, as straight as the land was plonghed. A-soon as the seed is hamowed in, the farrows should ba cleaned out with a ploagh, and the angles made by the cross-farrors, shoald ke opened tith a spade.

There is another method which is preferable to the one described, where the land is perfectly clean from weeds, grasses, \&c., which is termed by some, ribbing. A ribbing-plough is much hatrover in the mould board than the common plough, and is in every resptet lighter, and may be drawn with ease with one horse. The land for ribbing should be previously made into ridges, and harrowed lengthwige to smooth the farrews. The difference between ribbing und common ploughing consists in operating upon two landsat the same time, instead of one, and in making the near side harse walk in the last farrow turned, mstead of upon the unploughed lanil, and the plough works apon the right side of the last tumed furrow instead of the left. When thas operation is neatly performed, it can be made to equal is appearance the most exact method of drill husbandry, and the crops may be horse or hand-hoed at the pleasure of the fatmer.

The crops thest in order, are the green or hoeitat crops, which of course follow the wheat. If practicable, the ground should be heavily manured in the Autumn upon the wheat stubble, which shoald be ploughed in with a deep winter furrow, so that it may lay dry. In the Spring, harrow well and cross plough deep, so as to thoroughly mix the dung with the soll. The potatoes should be planted in drills made wath a plough, which should be made as straight as possible, and not deeper than two inches, and the sets should be planted on the left side of the furrow or drill, the eye-side uppermost ; then the covering furrew may be made five or six incles. deep, by practicing this plen the potatoes whl lay three anches higher than the botom of the covening furrow, and conseqnemly are not so apt to rot 23 when all the furrows are of an equal depth. As soon as the poratc-s are to be seen in the rows, they should be vell harrowed aftera shower, uf possble, with a par of hight harrows. The writer has on implement which he colls an Eradicator, which can be worked whla one horee in any drill not less than iwelre, wor more than t. wenty-sis inches, with which he cleans most of his crops at a cheap rate. Aber heeing the potatoes, the rous shoold be cleaned oas with the plongh-one with a doable monld board casercrs best for this purpose.
Foz tumips and Indian com, the soil sholid be monaged in the saren way as for potatoes, except that the furrows should all be of one degth. Thes crops require great attention during tie Sommer
months, but the principal share of the work may be performed with horse-hoes. As soon as the root eropsare gathered, the land should be ploughed into ridges suited to the soil, that it may receive the action of the Winter and Spring frosts, and should be sown with spring wheat as soon as the ground becomes sufficiently dry and warm for the seed to vegetare. But if the ground be sown with barley, it should be crown and furrow ploughed in the Spring, which is done by making the furrow the crown of the new ridge. The grass seeds should be sown at the same time, and harrowed in with the spring wheat or barley.

No. 3, is now cropped, and the seeds sown for No. 4 and 5 ; and for No. 6, the clover lay is ploughed with a neat and well proportioned furrow, making the ridges over the old furrows, which will leave the land as level as a plane; and if the ploughing and harrowing be done neatly , the soil will be free from every species of weeds and wild grasses. For No. 7 the oat stubble should be ploughed as early in the fall as possible; and by harrowing the ground a number of times in the Spring, it may be made as fine as wellprepared garden mould. The peas shonld be ribbed in after the manner described in No. 1.

By the above rotation the condition of the soil will be constantly improving, and will pay the culuvator better than most of the systems of rotation practiced in this country.

## Expermenter.

The most effectual remedy for flies. is a strong infusion of Souchong tee, sweetened with surar-as fatal a solution as arsenic. The skin of potatoes boiled in water for some time, and the water afterwards boiled down to a small portion, also yields a deadly poison.-Selected.

Shecp jrotected from Wolves ly Sulphur The Southport (IT. T.) Telegraph says, Mr. Marsh of that town has kept wolves from his sheep by puting on the back ofeach a small quantity of the sulphur mised with lard. "Since the tur that he made this application to his sheep, che we 'ons have at several times been seen to approach his flock ; but on coming wihin a given distance, or near enough to take the scent of the exphur, they invariably retrented."

This is a simple remedy, and we should be glad to hear further of its trial and suceses. The "smell of brimstone," we have before heard was a pretty effectual remedy, bat it was produced in a litle difieren manner.

STATISTICS OF CANALS AND RAILROADS IN THE U.S.

| Miles of canals completed, Miles of rairoads completed, | $\begin{aligned} & 380^{\circ} 0 \\ & 4800^{\circ} \end{aligned}$ |
| :---: | :---: |
| Total miles, | - 8600 |
| Estimated cost of c |  |

Total, - - - $\$ 200,000,000$
First canal completed in the United States in 1808: the Mrddesex, in Mass., 27 miles long, ccst 5528,000.

Erie and Champlain canals, completed in 1826. cost $\$ 9,000,000$.

First railroad completed in the United Statcs, viz: the Quincy, (four miles,) in 1827.

Of course the conals and railroads in the United States have been principally the work of the last twenty years.

The average cost of transportation on canals, including tolls to the State, or incorporated companies is about two cents per ton per mile, and on railroads about the same.

The cost of transporting agricultural produce on good gravelled roads is at least 25 cents per ion per mile-consequently the saving in transportation by the construction of canals and railroads is 23 cents per ton per mil-.

The average number of tons of agricultural produce transported annually on the caials of the State of N. Y., is over 300,000 tons; arcrage distance transported, 120 miles. The saving on this amount of produce is $\$ 8,280,000$.

If we estimate the agricultural produce which passes on the canals of this State as ameuating to one-third of the total amount of the same produce carried on all the canals and railroads in the Unitcd States, we find that the farmers and planters of this country receive a direct benefitcf $\$ 24,8.50$, 000 annualls by the use of the canals and railroads now in operation in the United Slates.

The indirect and ineidental benefits accrumg to the agricultural class are numerous, but not casily estimated-sych as the saring of transportation on merchandize and mannulacturcs required for the use of the farmer, as well as the saving of time und expense by the convenience of traveling on rairozes and canale-NT. Y. Fan mer.

Cure for Founder.-The seeds of sunflower are the best remedy known for the cure of founder in horses. Immediately on discovering that your lorse is foundered, mix about a pint of whole seed in his feed, and it will give a perfect care.
Freseroing Fruat Trees from Rabbits.-The editor of the Peorle's Miscellang sass he found ceveral of his frait trees girded by rabibisimmediately after the first fall of snow. Thereupon he mised pulverized brimsione with an equal quanuty of lard, and applied it freely to the trees azd twigs, and not one of them had afferwards tesn melested.

## MANUFACTURE OF CORN STALK SUGAR.

We copy the following from the Transactions of the New York State Agricultural Society, which embodies a very ptin wad interesting detailed description of the entire process of manufacturing sugar from the Indian corn stalls.

The Canadian people should at least manufacure all the sugar, molasses, and vinegar they require for home consumption; this they may do without any insonvenience, and at the same time, be a saving of an immense sum annsually to the country.

The manufacture of corn-stalk sugar is a branch of business with which we have not had the slightest experience, and therefore can only speak from the practice of others. From the accounts Te have read, reporting the vious experiments made in $t$ ' is new business in the United States, we are led to conclude that it will prove highly remunerating if conducted with a large degree of judgment and skill. The trial betore us clearly proves this to be the case; because every item of labour expended in producing 600 lls ., the produce of the acre, has been charged against the crop at higher rates than the farming fopulation of this colony generally calculate apon receiving; and besides the net profits to the manufacturer cannot be rated less than two cents per lb. or $\$ 12$ per acre. If a wheat-grower would charge the same high rent for his land, lay out of its use two years, and pay himscif for summer-fallowing, manuring, seed, harvesting, thrashing, and delivering to markot, at the same rates that is charged against Mr. Adams' crop of sugar, in an average of cases, instead of their being a surplas in the shape of liberal profits. the espenditure would be actually greattr that the receipte. This by no means
is a necessary consequence, as by skilful farming the wheat crop ma; be made to pay as heavy profits as almostany other, but in a large froportion of eases it does not pay more than the costs of production. Any crop that will pay for the costs of production and leave a nett profit of $£ 2$ per aure, is well worthy of cultivation. This we are about confident may be done ky converting the Indian corn crop into sugar or molasses, as described. It is certainly worth while to give this new branch of industry a fair trial, and we see no good reason why it may not be done as well this summer as at any other time. Agricultural societies would do well to look to this matter.
One acre of ground was selected of a sandy loan, culifated last year to ruta-baga; this was manured with thirty loads of the best stable manure, well mised in with the soil by twice ploughing and harrowing. Corn planted the 13 th of May, with eight-rowed northern corn; the rows taree feet apart one way, and kills erghteen inches the other, with six to eight kemels in a hill. It came up finely, and was plastered the 31 st of May; hoed the first time the 9 th and 10 th of June, the second time the 9 -ith of Tone. Cuitiwior run through in three times. The corn beg.an to taseel the 18th of July, and was in fall ta sel the list of August.

Up to this time the crop had looked uncommonly well, but from the firist of August a severe draught commenced, and continued until the crop ras ery materially injurd. Some spots where the corn had grown most luxurianty, wibered and dried up ; other partsof the feld suffered less, so that on the whole there was some more than balfof a gooderop, or what there would hare been if the senson had continued farorable.
Covting, Grinding, and Bniling.-Cut the frst salks, and make the first experinent at grinding and iniling, the 25 :h of Augost. The stalks at hiss time were quiet green, but the produce was salisfactory, and appeared quite favorable for erysalizing. The juce was very abundant, of a greenish cclor, very rick, thich and beary, yet retaining all the flaveur of the com-stalk, until atier cleansing and boiling.
Avgust 30th, made the second batch. This was belkd in a challor sheet-iron pan, clarified ond strained according to the dircetions given in WT. Ellsworth's Report. From this batch was tason the specimen of sugar cxhibited to the comnittee at the State Fair in Rocheser.
 ofScetember.

The object of these succeszive experiments was mainly to determine at what time the saccharine matter was sufficiently matured to make crysullized sugar.

On the 11th of September the stalks appeared in the right stage, and the cutuing, grinding and boiling were commenced, and continued with little intermission until the whole was completed. The method pursued in this operation, was to keep a sufficient number of hands in the firld to strip the leaves or blades, and cut off the tops as fast as the stalles were wanted for use; this labor was generally performed by boys. The corn-field being at a little distance from the mill, the horse used for grinding was put before a light waggon, driven to the field, the stalks were then cut and placed upon the waggon,--taking care to keep them straight and in order-driven to the mill and ground without delay. A lond of this kind in a light waggon, with lumber bex, will make a batch of fifteen to twenty gallons; this would be ground in about thirty minutes. Lime water was mixed with the juice while it was running from the mill. The juice is then strained through a flannel cloth into the pan, and heated, rather moderately, to the boiling point, when the scum is removed with a skimmer; then bolled rapily for a few munutes. The syrup is then removed from the fire, and again passed through the flannel strainer, when the boiling is finstad as rapudly as possible.

This process, from the cutting of the stalk to taking the sugar from the fire, could not possbly be performed in less than two hours; and if the batch was larger, would often exceed three. Five batches were made in one day, frora which one hundred pounds of sugar were produced,

The Boiler. -The boiler or pan, 1 made of a sheet of Russian iron, turned up at the sides and ends, lapped and rivetted at the corners; would hold about twenty-five gallons, fire and a halt inches deep, but from fifteen to twenty grllons $1 s$ as much as rould boil to adrantage. The pan is placed upon an arch of brick, so that the fire comes in contact with only the bottom.

Mill.-To construet ths was matter of much more difficulty. Some drawingsand descriptions are given by Mr. Ellsworth, but intle more could be known from them than that there nast be shree rollers, so placed and pat in motion that the etalks in passing between them should receive tro crusaings.

To plan and construct a mill, with the proper dimensions and with the strength required, so bat the work of crushing the stalksshould be performed with certainty and despatch, was no easy task. I diater myself that I have in this been tolerably succesful. The rellers and iron-work, patterns, \&c., formy mull, were made by J. A. Langworthy, of Rochester, at a cost of sixty-five dollars. The shole reight of iron is about nine hundred pounds.

A bout one-half of the expense of the mill is in the horen-power. The iron rollers being placed berigental, is was necessary to have a hores-pow-
er wheel and gearing in order to give them motion. If the more simple, and it would seern at hizso view, less expensive forms, given in Mr. Ellsworth's Report, had been adopted, placing the rollers perpendicular, the hore passing arouad them, the rollers must have been of large diameter in order to take through the length of cormstalk at one revolution of the horse. These large rollers, when made of iron, would have been very expensive, and probably not work as fast as the small one I use, giving them a quicker motion by gearing. In my miil the circunference of the rollers has such a proportion to their motion, thas therr velocity is equal to about one-sixth the volocity of the horse; or in other words, a comstall six feetlong, will pass through between the rollers in the sume time that the horse will walls thirty six fect. The grinding is a beavififul operation, the amount of juice contained in the stalk is surprising to every one. The stalks in passing through the mill are crnshed very fine, and the juice entirely separated from them by the pressure of the rollers.

Clarifying.-This has been to me a difficalt, and to some extent an unsuccessful operation. All the various methods recommended by different persons who have madesome experiments on cors-stalk sugar, and all that my own experienee in clanfying maple suyar could suggest, failed of producing fully the desired effect. In all the failures which have been experienced to produes crystallized sugar. The cause should be sought here. Unless the juice of corn-stalls can be clarified, it is rain to espect a pare article of erysta3lized sugar. All the obstacles to the complete success of this enterprise are met at this point; but that they will be completely overcome, there cannot be the least doubt. Lime water applied to the juice as soon as it comes forth from the mill, one gill to fffeen gallons, was thought to produce the best cfect. But experiments vere made with various ather thinge, such as milk, eggs, charcoai, \&e. ; these were used separatcly and combined, but nothing appeared to raise the scum as well and render the juice as clear and well-flavored as the lime water. One experinamt was made by filtering the juice through sand and charcoal. This rendered it rery iransparent and inproved the taste, but there are very many objections to this process-the length of time recuired for the operation is a sufficient one.

Ntraiaius.-This operation is performed both before and after clarifying. The strainer used was a square yard of good new fanmel, of noe textare; so great is the amount of mucilage, or very minute particles of the corn-stalk contained in the juice, that the strainer has to be rineed in water once or twice in straming a batch. The second time straining is rendered more difficoli by the juice being hor, as the hands have to to used in forcing it tarough the cloth. As nowIedge and expertence are gained on tho subjecs of clarifying, the straining vill be dispenesd witis, except to pass the juice through a coarse strainer w yenove sone of the larger impurities. Some
method will be discovered by which all this fo reign matter will be removed in the operation of skimuing.

Eoiling.-This operation requires care and close attention, particularly when about ready to shim, and when the juice is concentrated to about the point desired. The more rapidly this operation is perlormed, the more peffect will be the crystalization. But, however necessary it may be, it is scareely possible, with any apparatus that I have any knowledge of, to perform the whole labour of cutting, grinding, straining, shimmmg, and boiling, in the short space of one hour, as recommended by Professor Mapes, of New York. If this is ever done, it must be in very small quantities, or some very improved method must be adopted.

In boiling, as soon as the scum begins to rise, the fire must be regulated with care, that time may be had for removing the scum before it shall be boiled in. It the operation of boiling and skimming be well performed, about one gallon of thich heavy scum will be obtained from a batch of fifteen gallons. The syrup, when it becomes thlck and nearly done, has a very beautiful appearance, in every respect equalling the best of naple syrap. To boil to the crystallizing point, -which is a very uncertain one,-requires considerable care and diserimination. The same tests that are used for maple syrup are equally applicable to corn-stalk; as for instance, when it will Hake off, breaking short, from a dipper or stickor string out between the thumb and finger, from half an inch to an inch in length, is perhaps the safest test. Very great care is necessary here, that it be brought to the right point and no more; and also in rranaging the fire, as s little blaze, or too strong a heat, is most sure to scorch, and this is fatal to crystallization.
Crystallization.-Difficulty has been found here by all that have made experiments with corn-stalk sugar; but perhaps every one has obtained a sufficient quantity that was well grained, to satiefy him that the dificulty was somewhere in the process of manulacture.

From recent observation I am inclined to think that I have kept my sugar in too cool a place. Two small parcels, left partly by accident where bey received the warmth of a fire, were found viell grained. But there is another difficuly after it is well errystallized, to make the molasses separate, or drain, as it is called: alhough the crystal appears to be as fine as was ever formed, still the molasses will not separate by any common methods ased for maple sugar. As jet, I have not been able to procure any better epecimen than that exhibited at the State Fair.
Atrount from the acre.-Although the grantity of stalle? was so much diminashed by the drought, yet sir hundred prunds were obtained; idiz, is chould be understood, is weighed when takea from the fire and before graining tas commenced. If it were well grained and the molasies separated, the weight of sugar would pro-
bably not be more than five hundred, and melasses one hundred.

In order more fully to determine the amouns that might be produced from an acre of good corm, I measured twosquare rods of the best corn I had; the stalks were then cut, and the weight was 150 pounds; after grinding, the juice weighed 69 pounds and measured nine gallons; from this I obtained tweive and a half pounds of sugar. By this it would appear, that had the whole acre been as good as the two rods sabmitted to the test, one thousand pounds would have been the produce. And it would seem that thisznust be a safe calculation, as the stalks on the two rods were not as large as would be grown in a good season.
An equal amount by weight of large stalks of rank growth, and small ones that were grown thick, were ground separately; but as no material difference was found in the produce, my opinion is that the corn should be cultivated so thich that no ears will be produced.

## EDPENSE.

| For the rent of land. | 8300 |
| :---: | :---: |
| rry loads of manure 1s. per load, | 375 |
|  |  |
| load, |  |
| wing, harrowing and |  |
| " planting, plastering, cultivating and |  |
| eing, |  |
| seed-corn and plaster, |  |
| spreading manure, - |  |

The whole expense of raising 1 cornstalk
$\$ 1952$
There is no part of the business that is so tedious as plucking the ears, stripping the leares and cutting off the tasse!. A part of this labour was performed for the fodder that might be obtained from it, but it was not sufficient to pay; as the labour of plucking the ears wasperformed for this consideration, I am umable to say what it woud cost; but this much is certain, it is needless for the most part, as no ears of any amount need be raised, if the corn is sufficiently thick. From the best estimate that I can make of the expense of strippin, itqves aud cutting the rassel, I think that a s.mart hand would perform the work on an acre in sis days; therefore,

The amount brought formard,
To six days strupping leaves, de.
450
This is the whole expense up to the cuting of the stalles, $\$ 2402$
$I_{t}$ is comewhat difficult to come at the expense I was at in manufactaring the acre of stalks into sugar, so much was done by way of experimeni. But as one hundred pounds yyere made one day, I shall take that 23 my guide, and call it a day's work for two hands to make one hundred reight.

The amount above brought down.
To 12 day's work making sugar at ©s. a perdiem,
To uss of horeses and waggon, six days at 3 s . per diem,
To
The whole expense of manufacturing 660 lbs. , is
$\$ 3640$
Or a fraction more than six cents per pound.
Some credit may be given for fodder, as a large amount of leaves or blades might be saved with a little extra labour while stripping them. The stalks, after being ground, are worth something, horses and cattle eat them very greedily when they are fresh from the mill.
Remarks and Suggestions, by way of Recapitulation.

1. If good crystallized sugar of pleasant favor shall be produced from the corn-stalk, I can see no good reason why its manufacture shall not become as universal as the raising of corn. Every neighbourhood can as easily be supplied with its apparatus to make sagar as to make cider.
2. Corn should be grown so thick as to produce no ears. Some variety of corn that grows very large, like the "Ohio" or "Rocky Mountain," might be best; this latter is w slladapted in some respects, as it is very little inclined to ears or leaves; curting the tassel will not prevent earing. unless they are all cat and kept cut. The sutting of the stalk may commence as soon as the tassel is ripe. If the weather is warm, $g^{-}, a \mathrm{dim}$ mediatels; but if caol, or early in the morning, a little delay is not thought to be injurious.
3. Lime water is perhaps the best for charifying of ansthing yet discovered; but eome agent that will more effectually cleanse from all deleterious or foreign matter, is necessary. Science, with persevering experiments, will no dosbr produce this result.
4. The less time occupied in boiling, the more perfect is crystallization. This is true of the maple miee, and probably more so of the corn-stall. To boil to advantage, two pans should be provided
5. Any man of very ordinary ingenuity can make a pan in two hours, with no tools but cold chisel, punch, hammer and six cents worth of rivets.
6. I make no doubt that a mill with wooden rollers would answer a good purpose for a small operation, and small operations are what is wanted; let no man go into this business largely until there is more knowledge on the subject.

A simple mill with two rollers, that might be built for five dollars, would crush the stalk and save most of the juice. No cog-wheels can be necessary ; for if you turn one, the other must go. When experience has taught how to clarify, so that we may be sure of a good article, then will be time for more perfect and expensive machnery
7. If the result of this enterprise depended on the amount of gaccharine matter contained in the corn-stalk, its supeess would be certain. Esti-
$\$ 2402$
900
might be made from an ncre, have probably never peen too high. Improvements in cultivation, and in finding the variety of corn best adapted, will 225 no doubt greatly exceed these estimates.
\& The expense, as compared with meple, mua. be much in favour of corn-stalk. Of the expense of growing un acre of corn-stalks, every farmer way judge correctly; then compare the amount of fuel, the amount produced in a day, the expense of fixtures, and it is all vastly in favour of the corn-stalk. Only let the corn-stalk sugar have the delicious flavor and the beautiful crystallization of the improved maple, and no longer will that pride of the forest be hacked and bored by "wicked hands" to obtain its sap.

May we not hope that Mr. Ellsworth's forthcoming report will throw much light on the subject? The collected experience of all that have been engaged in the business the past season, will soon be laid before Congress and the people. If Professor Mapes shall fulfil his pledge made in the last report, some scientific and practical information will no doubt be the result.
With these remarks I submit this report. I have endeavoured to give a faithful and full account of my experiment. I mm aware that on some parts of this business I cannot speak as favorably as might be desired; but for myeelf, I have no fear of tha result of the enterprise. I wou'd beg leave to suggest, that a liberal premium be offered next year, for a given amount of cornstalk sugar of the best quality. This might stimulate, not only a greater amount, but mora rareful experiment.-N. Y. State Agricultural Society's Transactions.

Lime against the Curculio.-Professor Cleveland, in the American Farmer states, that having. tried salt without suecess, as a remedy for the ravages of the Curculio, on his fruit trees, he made the following experiment:
"Previons to 1541 , seveml of my plum trees had bern so attacked by these insects that Is:arerly obtained a ripe plum. Early in the spring of that year, as soon as the blossom buds began to swell, I removed the soil around the tree to the depth of two or three inches, and as far on all sides as the limbs extended. I then deposited in the opening a layer of lime, recently slacked, and still warm, about half an inch in thickness. The coil was immediately restored to its place over the lime, and closely pressed down npon it. I had an abondant crop of well ripened piums. In the spring of 1840, I again applied lime in a similer manner, and with the same success.

Cure for Sore Teats.-Some of our neighbors inform us that molasses is the very bast article to bathe a cow's teats, after milking, to cure chops and cracks: they are very apt to be troublesome at this season of the year.-Mross. Plough.

SMUT, RUST, AND CHESS.
The April number of the Michigan Farmer contains a Correspondence betroen Mr. Charles Fox, of that state, and Protessor Johnston, of Edinburgh; in Which the subjects above are liberally discussed by the learned Professor. The following quotations are to the point, and deserve to be understood and practised by the Canadian farmers:
"Steeping in a solution of salt that will foat an egg, and then drying the wet seed with quick lime; fermented urine, blue vitriol, (sulphate of copper,) and arsenic, are also used as steeps, for the same purpose of killing the fungus, with greater ar less effect.
"The rust arises from the over-lunuriance of the growth of your wheat, which will diminish as the vegetable matter in your soil becomes exhausted by frequent cropping ; but more especially from the wetness of your soil, or the rains and mists, to which, in the midst of so much water, your land may be subject. A good dose of lime might help this disease ; but it will lessen as your land is, better drained, and rendered drier.
"But it is your chess in wheat that has amused me. The chess is a Bromus -a kind of grass, which resembles in its strav the young wheat, but which branches out in the head like the oat. Assume, with all botanists, that species cannot be transmuted, and the production of wheat from a Bromus is impossible. If it be impossible, then how are yrour facts to be explained? You mention two cases.

Ist. That of new land, when broken up and sown with wheat, chess comes up. This means, when correctly interpreted, that the seed of the chess was more abundently in the soil naturally, than the grass y.ou added artificially ; and parhaps, also
that more or less of your wheat was thrown out by the frost and destroyea.

2nd. On old land, where wheat is sown, if the wheat comes up thick and early, it will keep down the chess perhaps; if it is thrown out, or destroyed by frost, the blank spaces will be filled up by the sprouting of those seeds which are most abundant in the soil, which with you seems to be chess, as in the flats of Yorkshire it is the wild mustard. The error with the American farmers is, that they start from the felse assumption, that the change of wheat is possible, and thus come to see proofs-just as our forefathers saw ghosts-where only natural appearances present themselves. Believe it to be impossible, and the explanation of appearances may cost a little more thought, but the expenditure of that thought, will lead to the truth."

If the wheat-growers of this country could, by any means, prevent the three diseases here described, it would be a means of doubling the products of this important staple crop. It is not going too far to assert, that one half of the wheat crop is annually destroyed by these three agents. So far as the two former are concerned, the only difficulty in obviating the evil is, to remove the cause, the means for doing which are within the reach of every cultivator. Destroy the fungus on the berry, by the mixtures mentioned by the Professor, and the first evil will be remeved; and to remove the second, thoroughly clean the ground, and sow no chess with the seed wheat, and by practicing the system of sowing clean seed for a series of years, aind allowing none to ripen upon the land, it will be good for sore eges to see a single plant of this grass growing under this treatment. The total removal of rust from the wheat crop, is a far mase difficuth bu-
siness than that of smut and chess, becruse the disease is frequently promoted by some radical defect in the soil, which would cost a heavy outlay of capital to oounteract. But in the great majority of cases where rust is most prevalent, it is encouraged by a too luxuriant growth of the plant, stimulated by an excessive amount of vegetable, over mineral matter, which occesions the bursting of the sap-vessels. Some may accuse us of presumption, when we state that we have every confidence that smut, chess, and rust, may be prevented, and that we shall not be troubled with either upon our growing crops of wheat. If we should be mistaken in our calculations, we shall in due time publish the result, for the information of those who may have had the opportunity of reading these predictions.

## SHOULD THE AGRICULTURALIST BE EDUCATED?

It has been too often thought that little or no education was requisite to prepare the mind to perform the duties of a husbandman-that his natural instincts, together with a "little reading, a little writing, and a little cyphering," were anply sufficient to direct him in the performance of all his duties. And though this false view of human improvement is loosing ground, and the great mass of the people are beginniny to learn the real object to be attained in Education, yet it is now far from being an obsolete idea. A man should be educated, not because he is to follow a particular trade or occupation-not because he is to fill a particular place or position in societynot because he is to follow a certain profession, but because he is a man. The incentives to mental cultivation are higher than the trades they follow, or the profesions they practice. More elevated than the mere dollarsand cents, the end too often to be attained by Education. He is to be Educated because he possesses a mind whose energies, when developed, are capable of elerating him above the brutal nature of the untutored world-multiplies infinitely his sources of enjoy-ment-prepares him to act his part upon the stage of life-enables him to turn the instruments God has given him to his use-gives him power tc appreciate the grand, the beautiful, and the sublime in nature, and finally, to promote the grea' endz to be attained by civilization. But if there ere no inducements to mental cultivation in the
naiure of man, there would still be other, and wide grounds for its importance. They are in the nature of the farmer's occupation. While the theolugian spends years of toil in preparing himself for the duties to be performed in the practice of his protession, while the physician wastes his energies in college classes, to learn the nature of the human system and human disease-while the lawyer spends years in the study of the common law-while the mechanic musi learn by a slow and weary process the art of making goode-to the farmer, whose trade is infinitely more com-plex-whose profession is infinitely more scientific, no preliminary preparation-no developement of the mind-no perfecting of the reasoning powers is deemed necessary. This is an erroneous notion-a fallacy which the sunlight of truth and improvement will ere long dispel. The farmer daly performs operations involving the prineiples of mechanics-of natural philosophy-of chemis-try-of the germination and growth of plantsand trees-of hydraulics and hydrostatics, of geology, zoology, minerology, und botany - of the changes of climate-and of the influence of winds and rains. And all experience has shown, that the farmer whose mind is most enlightened upon these departments of science-whose knowledge of the laws governing their operations is most extensive, has ever been most successful in drawing from the teeming bosom of the fruitful earth the exhaustless treasures it is capable of yielding. It is all important, then, that upon the ground of utility alone, the mind of the agriculturalist should be irradiated with the beams of science.

Parsnip Wine.-Wine made of parsnips approaches closely to the malmsey of Madeira, and is made with very little trouble or expense, and is wholesome and palatable.

To every 4 pounds of parsnips, clean and quartered, put os e gallon of water; boil till quite tender; drain them over a scive, but do not bruise them, as no process will clear the liquor afterwards. Pour the liquor into an open vessel, and to each gallon add 3 lbs. of sugar, and half an ounce of cream of tartar. When cooled to about blood heat, add a litite new yeast, or emptyings: let it stand 4 or 5 days in a warm room, then put it into a cask, and when the fermentation has subsided, bung tight, and let it stand 5 to 12 months before using.

The months of April and May are the hest for getting a groad ermentation; and on these temperance times it is an ex perinent worth trying.-Gen. Farmer.

## GREATEST AMOUNT OF PRODUCE FROM A GIVEN SURFACE.

Having occupied several letters with the attempt to enravel, by means of chemistry, some of she mest curious functions of the animal body, andras I hope, made clear the distinctions between the two kinds of constituent elements in food, znd the purposes they severally subserve in Exstraining life, let me now direct attention to a scarcely less interesting and equally important cabject-the means of obtaining from a given surface of the earth, the largest amount of produce adapted to the food of man and animals.

Agriculture is both a science and an art. The knowledge of all the conditions of the life of vegetables, the origin of their elements, and the sources of their nourishment, forms its scientific
basis.

From this knowledge wn derive certain rules for the exercises of the ort, the principles upon Which the mechanical operations of tarming depend, the usefulness or necessity of these for preparing the soil to support the growth of plants, and for removing every obnoxious influence. No experience, drawn from the exercise of the art, can be opposed to true scientific principles, because the latter should include all the results of practical operations, and are in some instances solely derived therefrom. Theory must correspond with experience, because it is nothing more than the reduction of a scries of phenomena to their last cause

A field in which we cultivate the same plant for several sucessive years, becomes barren, for that plant in a period varying with the nature of the soil: in one field it will be in three, in anoother in seven, in a third in twenty, in a fourth in a hundred years. One fieid bears wheat, and no peas; another beans and turnips, but no tobacco: a third gives a plentiful crop of turnips, but will not bear clover. What is the reason that a field loses its fertility for one plant, the same which at first flourished there? What is the reason one kind of plant succeeds in a field where another fails ?

## These questions belong tc science.

What means are necessary to preserve to a field its fertility for one and the same "plant \}-what to render one field fertile for two, for three, for all plants?

These last questions are put by art, but they cannot be answered bsy art.
If a farmer, without the guidance of just scientific pronciples, is trying experiments to render a field fertule for a plant which it otherwise will not bear, his prospect of success is very small. Thousands of farmers try such experiments in various directions, the result of which is a mass of practical experience forming a method of cultivation which accomplishes the desired end for certain places; but the same method frequently does not succeed-it indeed ceases to be applicable to a second or third place in the immediate neighborhood. How large a capital, and how much power, aie wasted in these experiments!

Very different, and far more eccure, is the path indicated by science ; it exposes us to no danser of failing, but, on the contrary, it fumisties us with every guarantee of success. If the caus of failure-of barrenness in the soil for one or two plants-has been discovered, means to remedy ia may readily be found.
The most exact observations prove that the method of cultivation must vary with the grognostical condition of the subsoil. In basult, greywacke, porphyry, sandstone, limestone, \&c., wre certain elements indispensable to the growth of plants, and the presence of which renders them fertile. This fully explains the difference in the necessary methods of culture for different places; since it is obvious that the essential elements of the soil must vary with the varieties of compostion of the rocks, from the disintegration of which they originated.
Wheat, clover, turnips, for example, each require certain elements from the soil; they will not flourish where the appropriate elements are absent. Science teaches us what element are essential to every species of plants b" an analysis of their ashes. If, therefore, a soil is found wantmg in any of those elements, we discover at once the cause of its barrenness, and its removal may now be readily accomplished.

The empinc attributes all his success to the mechanical operations of agriculture: he expenences and recognises their value, without inquiring what are the causes of their utility, their mode of action : and yet this scientific knowledge is of the lughest importance for regulating the application of power ond the expenditure of capitalfor insuring its economical expenditure and the prevention of waste. Can it be imagined that the mere passing of the ploughshare or the harrow through the soil-the mere contact of the ironcan impart fertility miraculously? Nobody, perhaps, seriously entertans such an opinion. Nevertheless, the modus operandi of these mechanical operations is by no means generally nuderstood. The fact is quite certain, that careful ploughing exerts the most favorable influence; the surface is thus mechanically divided, changed, incrensed, and renovated, but the ploughing is only auxiliary to the end sought.
In the effects of time, in what in agriculture are technically called fallows-the repose of the fields -we recombse by science certain chemical actions, which are continually exercised by the elements of the atmosphere upon the whole surface of our globe. By the action of its oxygen and its carbonic arid, aided by water, rain, changes of temperature, \&c., certain elementary constituents of rocks, or of their ruins, which form the soil capable of cultivation, are rendered soluble in water, and consequently become separable from all their insoluble parts.
These chemical actions, poetically denominated "the tooth of time," destroy all the works of man, and gradually reduce the hardest rocks to the condition of dust. By their influesce the necessary elements of the soii become fitted for assimilation by plants; and it is precisely the end
which is obtained by the mechanical operations of 薙的ing. They accelerate the decomposition of the soil, in order to provide a new generation of plants wath the necessary elements in a conditon favorable to their assimilation. It is obvivus that the rapidity of the decomposition of a solid body must increase with the extention of its surface ; the more points of contact we offer in a given time to the external chemical agent, the more rapid will be its action.

The chemist, in order to prepare a mineral for analysis, to decompose it, or to increase the solubility of its elements, proceedsin the same way as the farmer deals with his fields-lie spares no labor in order to reduce it to the finest powder; he separates the inpalpable from the coarser parts by washing, and repeats his mechanical bruising and trituration, being assured his whole process will fail if he is inattentive to this essential and preliminary part of it.
The influence which the increase of surface exercises upon the disintegration of rocks, and upon the chemical action of air and moisture, is strikingly illustrated upon a large scale in the operations pursued in the gold mines of Yaquil, in Chili. These are deseribed in a very interesting manner by Darwin. The rock containing the gold ore is pounded by mills into the finest powder ; this is subjected to washung, which separates the lighter particles from the metallic. the gold sinks to the bottom, while a stream of water carries away the lighter earthy parts into ponds, where it subsides to the bottom as mud. When this deposit has gradually filled up the pond, this mud is taken out and piled in heaps, and left exposed to the action of the atmosphere and moisture. The washing completely removes all the soluble part of the disintegrated rock; the insoluble part, moreover, cannot undergo any further change while it $2 s$ covered with water, and so excluded from tise induence of the atmosphere at the bottom of the pond. But being exposed at once to the air and moisture, a powerful chemical action takes place in the whole mass, which becomes indicated by an effervescence of salts covering the whole surface of the heaps in considerable quantity. After being exposed fr two or three years, the mud is again subjected to the same process of washing, and a considerable quantity of gold is obtained, this having been separated by the chemical process of decomposition in the mass. The exposure and washing of the same mud is repeated cix or seven times, and at every washing it furn'shes a new quantity of gold, although its amount diminishes every time.

Precisely similar is the chemical action which takes place in the soil of our fields; and we accelerate and increase it by the mechanical operation of agriculture. By these we sever and extend the surface, and endeavour to make every atom of the soil accessible to the action of the carbonic acid and oxygen of the atmosphere.We thus produce a stock of soluble mineral substances, which serve as nourishment to a new generation of plants, and which are indispensable
to their growth and prosperity.-Liebes's Familiar Letters on Chamisiry.

Chemical Analysis.-Red Rust.-As an instance of the benefit of analysis, I may here briefly mention, that on a recent chemical examination of the soil of several of our fields at Flowston, Mr. Haywood, the analytic chemist whom we employed, discovered in it an appreciable antity of phosphate of iron, and traced this substance to be the cause of the red rust (3) which so frequently attacks the wheat. To satisfy himself that the presence of this substance was the cause of that disease, he collected a quantity of this rust, which he minutely analysed, and he satisfactorily proved that it was composed of phosphoric acid and iron, a combination which, it appears, is injurious; but to sscertain a mode of correctung or decomposing this injurious compound, he subjected it to the action of quick lime, when he discovered that two fertilizing substances were immediately formed, namely, phosphate of lime, which is the chief ingredient of bone, and peroside of iron, which also is a substance possessing fertilizing properties, both from its being an ingredient in many cultivated plants, and from its having the power of fixing anmonia. Theknown fertility of many of the red soils is owing to the presence of this latter compound, and the efficacy of burat clay, as a tillage, is, in a great measure, due to the conversion of the protoxide inte the peroxide of iron, by the operation of burningOn afterwards examining fields of wheat which had been lately limed, and oihers which had not been so treated for many years, in the former we did not discover the rust, but in the latter it was prevalent.-Eng. Ag. Gaz.

A nice and wholesome Sweeimeat for Family Use.-Pare or not, as you choose, a quantity of sweet apples to fill an earthen or stone jar; add a little sugar and molasses, and if the apples are not sufficiently juicy, a little water; cover with a thick paste of flour and water, and put into a brick oven with your bread. Let them stand till morning. They will have the flavor of baked pears, and can be had fresh at all seasons.-Am. Ag.

Valuable Mecipe for Whitewash.-Take about a peek of unslacked lime, and slake it in hot water; add to this, while hot, aboutsix pounds of lard, or any house grease; then put in about two pounds of glue, and if for nice inside painting a pound of Spanish whiting, and a few handfuls of salt. Apply it on while hot. This recipe was obtained from Mr. John Noble, of the Dennison House, who has been very successful with this on his buildings. No rain or dampness has any effect to darken this whitewash at any time.-Wcst. Far. and Ger.

## ON COMMON SALT AS MANURE.

This salt has been used as a manure since the remotest antiquity; and although its value as a fertilizer has beca generally put too high (especislly in England,) it is nevertheless true that it merita attention, producing, on some soils, a most beneficial effect. This would be still grenter if the rain-water did not annually carry off a good quantity from the soil, as it will not act but in coses where the soil is deficient in it.

Common salt (once erroneously calleć chlorate of sodu) consists of 60.3 parts of chlorine and 39.7 of sodium, and belongs to the class of subsubstances called chlorides. It is soluble in two parts of water, and thus is easily taken up by plants. On account of its great salubrity, it also soon disappears from the soil, being ether absorbed by the plants or dissolved by rain-water. We have before said that it is one of the component parts of dung; it is to be found in all plants and in every spring-water; bat the common salt afforded by the dung is not sufficient in quantuty for plants, and therefore an application of it by itself is very teneficial. The effects, however, are seldom very striking, because it nether forces the plants, nor do they obtain afier its use a dark green color, as is the case after the use of several other salts. Common salt will merely invigorate them, and (which is of the greatest importance) the plants manared with it are good food for cattle. In the soil it is only liable to decomposition if it remains long in contact with caroonate of lime, in which case cabonate of soda and chloride of calciam will be formed; both salts, however, will be again decomposed by the suumic acid. It would, by-the-bye, be worth While to make a series of experiments on the repeated exchange whieh takes place in the soil between acids and basis, as thereby many interesting results would be ascertaned. On the humus or humic acid salt exercises no direct influence. A substance which, like common salt, consists only of two elments, does not so easily undergo any change, and as id.se are netther an oxide as base, nor an acid, it will not easily conbine chemically either with an acid or a base of the sol, and consequently passes anchanged and undecomposed into the plants. In these, however, it is partly decomposed, beeause whilst the leaves evaporate the chlorne, ve find the sodium changed into soda, in therr sap; truly a remarkable process, showing that often what is beyond the reach of chemical powers, is at once accomplished by vital process. Those who do not consider mineral substances as food of plants, ascribe to common sult merely excitative properties.

To the manuring with common salt, many things are ascribed which do not really take place; still, it affords many advantages, which are so important that it ought to be resorted to oftener than is the case. We stall auw state some experizneats on that score, and cunsider what has been eaid in fasor of this mineral manure.
It is said that the crops, after a manuring with common sait, are lesa liable to disease. This I
have not found to be the cese, because, although I have often applied this manure both in mell and large doses, I still saw that the plents wers not free from the smut or blight. It is also said that plahts grown with common salt are moro relished by the cattle. I can assert that this is really the case. I had often occasion to see pastures where there were spots the herbage of which wns not touched by the cattle except when in the greatest need, but as soon as they were manured with common salt the cattle preferred the very same plants which had previously been rejected. If potatoes, cabbages, \&c., are manured with ccmmon salt, they will have a far better taste.

Common salts makes plants more wholesome for the cattle. That this is really the case may be learnt from the fact that spoilt fodder will injure cattle much less if much common salt is given to them at the same time. On the sea-coast the half putrid hay of the marshes (Poa maritima, which contains much common salt, is given to the cattle without the least injury; and sheep will never over-eat themselves on pasiures where many salt plants are to be met with, Plants grawn after common salt are also more nutritious, the jeason of which has been already stated.
It is farther stated that the crops grown after comm in salt, suffer less from cold. I have not had any experience on that subject, and can, therefore, not decide it; as, however, cattle which get much common salt can better support cold than without it, we may suppose the same to be the case with plants.

Aga n , it is said that salt will destroy worms, iusects, and other vermin. This, also, I have not experimented upon, but I believe, judging from the small quanity used per acre, that it cannot produce this effect. It requires a good quantity of common salt to kill one enail.
Another assertion is, that certain cultivated plants will succeed best, only if manured with cummon salt. To these, it is said, belongs flax, rape, hops, clover, peas, beans, carrots, potatoes, celery, horse-radish, mustard, and cabbage. I can vouch for this, partly from my own experience, and partly from the fact that much chlorine and sodum are required for the chemical constitution of these plants.
Finally, fruit trees are much benefitted by a manure of common salt. If only part of these statements were true, it would suffice to induce us to use common salt as a manure. The price, however, in many countries, is so high, that its use can only be very limited. (No such excuse is admissible in England.) The quantity of common salt to be employed on one Magdeburg acre of land is differently stated. It partly depends, as it is with all manures (especially those easily soluble in water,) on the quality of the soil; the clayey soil can bear, and in fact requires mure than the loamy, and this again more than the sands. The late worthy Mr. Schubler has found that Bariey ought to receive, on loamy soils, oniy 75 lles. per Magdeburg acre, as 5 lbs . mora or less did not produce cach a good resols. It is
to be regretted that Mr . Schubler did not aseertain how much salt the soil contained originally, as this necessarily determines the quantity to be used. It is easy to take too much; and I once manured (for the sake of experiment) an acre of heath soil with 60 lbs . of common salt, it was, even after two years, still so sterile as to neither produce Oats nor Potatoes. In England, where the manuring with common salt has been most regorted to, a much larger quantity per acre is used, which may be ascribed to the rains in that country, which will soon extract a great part of the easily soluble salts.

In England it is strewed, some weeks previous to the sowing of the corn, over the fields; and this is a good plan, as it will thus gradually spread through the furrow-slice, and then be easter taken up ty the roots. Generally spraking, it is well to sow it in the early spring over the fields, as at will then be carried by the water in the soil, and better avail the plants during the summer.

In some countries the common salt intended for manure is strewed from time to time over the dung-sink, which must have beers usual in antiquity, as we find it mentioned in the Scripture. It is asserted that the common salt brings the dung to speedier decomposition; but this is not probable. That, however, dung will act more powerfully if muxed with common salt is easier to be believed, especially of the plants given for fodder, as well as those given to the cattle as litter, be deficient in this salt.

If the crops are manured with common salt, the feeding of the cattle with common salt (utherwise useful) will be superfluous, as they will then receive it in their fond. If plants which are rich in common salt, are given to the cattle, we shall always see that they will reject the salt given to them in its natural state, as the want of this substance is otherwise satisfied. It may be also that food saturated with a vegetable acid, which has been formed by the decomposition of the common salt, if more advautageous to cattle; on which account experiments with acetate of soda might be made. If I mistake not, even carbonate of soda (soda) has been of late years mixed with the fudder of cattle with advantage.-Sprengel. -Ag. Gazettc.

## DISEASES OF SHEEP.

Treatment of Rot.-As reason and experience bare taught us that tathy herbage is a common cause of this complaint, we should, when it shows itcelf, at once remove the animals to a better pasture, where they should be exempted from teazing of every kind.

Salt appears, after every trial, to be the best medicine, and to this they should have, at all times, ready access. Should the disease be rather far advanced, the breathing hurried, and the cough amoying, occastonal doses of the following infusion will be of service, in enabling the farmer to keep down the diseese, till such time as he can coarenently dispose of the ammal. Take of
leaves of fox-glove two ounces, boiling water two English pints: pour the water on the leaves, cover up the vessel, and keep it in a warm placo for six or eight hours, then straia.

Two tea-spoonfuls morning and evening may be given to a sheep, but as the plant is an active posion, and the strength of its infusion liable to to vary, a couple of days should always interveno between every six doses.

About the year 1800, a notion prevailed in this country, that an effectual remedy for rot had been discovered by the Dutch, but this was quite unfounded, no cure ever having been hit upon for this sweeping malady; indeed, a cure is fairly out of the question: its prevention end paliation. but not its eradication, being all that we can hope for. Sundry plausible plans of treatment have, however, at one time or another been contrived. some of them in all conscience harmless enough, but others again as well adapted for the destruction of the animal as the removal of the disease.

As fluke-worms have usually been reckoned the cause of rot, so the treatment has principally consisted in attempts to effect their extermination. With this view, Sir George Stewart Mackenzie, of Coule, in defiance of all preconceived medical upinion, advocated, in his work on Sheep, published in 1809, the employment of mercury to stay the progress of rot, and in the same woik, or one very like it, as lately publisked anonymously by the Society for the diffusion of useful knowledge, under the title of the Moumtain Shepherd's Manual, the utility of this dangerous procedure is as firaly maintained. At the same time Sir George, though rether in the dark as to the real nature of the disease, admils, in both edilions, that tubercles exist in rot, especially in the lungs. Now, if he had inquired of any medical person what drug ought, when tubercles are present, of all others to be avoided, he would have found that medicine to be mercury. The administration of it therefore in rot, nn matter what nay be the form or mode in which it is exhibited, will to a ceitainty aggravate the symptoms and shorten life. If, for the sake of doing something, you will endeavour to remove the worms, Chabet's animal oil will be found a safe and efficacious remedy; but, if my opinion can have any weight, I would recommend the farmer to allow them to remain.
Sheep, when displaying symptoms of rot, should always be kept dry and warm. If they must be retained throughout the winter, good sound solid food, such as well-made hay or oats, should be afforded them, and the shelter of a straw yard should if possible be obtained. A liberal supply of salt should be given with all their provender; and if they do not seem to relish it, give them oceasionally a small quantity in water asa drench. -Praita Farmer.

Value of Irrigation.-A small field of poor and almosi valueless land in Scetland being irrigated, the second year the burthen on an impenal acre being weighed, it was found to have yielded 9,680 lbs. of well dried hay.-Am. $A E$.

## CULTIVATION OF CELERY.

New York, Dec. 12, 1944.
Dear Sir: The cultivation and growh of celery, that most excellent and wholesome winter vegetable, requires close attention of the gardener to bring it to perfection.

A practical gardener will soon learn the art ; and for the benefit of those who have yet to learn it, I beg to hand you the result of my own experience for the last 25 years.
In this country, it is n "necessary to sow the seed $b$ core the month of May, and then in the open ;round, well manured with stable dung thor ughly cured, and not less than a year old The color, whether white or red, is a matter of taste. I generally mix my seed, and thus have both species. The seed is slow of vegetation, but, if good, never fails to germinate. Whether the seed be sown broadcast or in drills, is a matter of no consequence; as the seed being very small, the plants are sure to shoot up thick. So soon as the sprouts have attained the height of an inch, they should be pricked out in a bed of rich mould, at a distance of about three inches each way from each other. You cannot have good strong stocky plants without pursuing this method. If left standing in the seedling bed, they will grow spindling, weak, and consumptive. No more attention is required, excepting that of keeping the plants perfectly free from weeds, until August, when you will find the plants strong, healthy, and vigorous. Any time in this month, dig your trenches 18 inches deep and as many wide. For this purpose, I generally occupy the ground that has been used for early peas.

The quality of the celery, and chiefly its growth, depend entarely upon stable manure. I have found the manure used for early hot-beds the best. If never fails of success. The increased fermentation of the manure, by the repeated waterings of the beds, the escape of ammonia and noxious qualities of the manure, renders it sweat, and capable of imparting the mildest and richest flavor to the plant. If fresh manare from the yard, of whatever kind, is used, the celery will invariably grow strong and rank, with as little delicacy of flavor as there is in the manure. With a garden fork of four tine, strike through the manure in the trench into the earth beneath, and bring it up fresh, carefully mixing it with the manure as you proceed from one end of the trench to the other. Attention to this point is indispensable to the growth of good celery.
The plants taken up should be trimmed about the crown, just at the top of the root; all the young suckers taken off leaving the plant trim and nent, with all its main stocks. With a dibble, which should be as large as the handle of a spade, as the roots will new be of considerable size, begin at one end of the trench with your fnce towards the other, and set in a single fow of planis in the middle of the trench, and not less than ein inches asunder; water them
well. No teetotaller loves water better than celery. It cannot bave too much. The rontsof this plant requirc more room than is generally allowed them, ass any one may see when they are taken up for the table.

Earthing up the plants should be defayed until they have attained a good size; and them it requires care, esperially the first time. I always get into the trench myself, and, holding the plant with all its stalks firmly in my left hand, with a short-handled small hoe draw the earth up round the plant, without allowing it to come in between the stalks. When this is done, and the plants thus protected, you may with a spade, strike off the edges of the trench, and partially fill it. As the plant grows, (as it now will, if well' watered in dry weather, with great vigor,) continue to earth up, and by the first of November the plants will be two feet above the level of the earth, with a main stalk the size of a man's arm.
Sometimes, particularly if the season be dry, celery is liable to be attacked by a tly. In chat case, you will see the tops of the celery turn brown and wither. The moment that symptom appears, no time is to be lost in calling in the doctor; for the whole stock is at stake. The cause of this disease is the sting of a fly upon the leaves of the celery. The egg is deposited between the integuments of the leaf, and soon hatches a smell white worm-sometimes visible on opening the leaf to the naked eye, always by the aid of a microscope. If nol attended to the disease gradually descends to the root, and the whole plant falls a sacrifice. Amputate every defective and diseased leaf; and early in the moming, whilst the dew is on, sift on the whole of the plants fresh slacked lime. One such powdering is generally sufficient ; but if not, give them another dose, and the first rain that falls will wash the plints clean, and you will probably see them fresh, green, and stretching away towards maturity.

With regard to the mode of securing the crop for winter use, gentlemen have their fancies. I prefer leaving the plants in their original trenches, earthing up to the top of the plants, and covering with straw litte: and boards, so as to protect them sufficiently from the frost, to be able to take them up as wanted; and this always fresh and sweet. I do not fancy disturbing the roots, and transplanting into nurrow quarters.

Finally, any one in this coantry who wishes to have "first rate" celery must cultivate it himself. Common laborers are sure to spoll it. Professional gardeners are seldom found , and generally too expensive when they are.-Far \& Mec.

## MAXING FOTASH.

We have been asked what kinds of rood rill produce the most potash. The following table exhibits the average product is potassa in several plants, pecording to the researches of Vanquelin, Petuis, zirwan, and De Saucsuce:


We are of opinion that this table is a pretty cair criterion of the amount of potassa to be found in American trees. It is well known among these practically engaged in the manufacture, that the sugar mapie is among the rost valuable we liave for making potash, and this tree, till transplanted from America, was unkrown in Europe. We have no doubt there are several others highly valuable, and we hope what we have now said on this head will induce some one to give us full particulars on the whole subject. But it is not of much importance to the manuiacturer of potash to know what kind of wood will make the mest, unless he is a purchaser of ashes solely for this purpcse. Those who make potash, usually do it from the ashes of the forest cut down to clear up the land for cultivation; the potash, therefore, is only a secondary consideration with them. They will see from the above table, that the ashes of elm and maple are the most valuable to make potash, and pine the least so. We wish some capable parson could be induced to experiment on the ashes of American trees. It would be a matter of considerable importance to the country to do so. Of the manner of making potash, a friend thus writes us:

Forly years ago I was engaged in this business. My ashery building was forty feet square, with a deep underground story without a floor, ten or twelve feet from the ground to the timbers overhoad, with an attic story to receive the ashes. My vais were both square and round (the shape being immaterial,) with sliding deors in the floor of the attic, through which the ashes passed into the vats: the water was brought in pipes, and conducted into them as needed. The ley was conducted by small troughs from the vats into the boilers, which were large potash kettles, and set three in a furnace, one behind the oher. The back kettle always bcils iirst, and evaporates faster than he one next the mouth of the furnace. This boiling was continued until all the watery particles were evaporated, and a thick, dark substance formed, called salts. A very hot tire was still kept up, until the whole mass was melted; when it was dipped out with an iron ladle with a ling handle, into iron kettles, to cool. Here it becomes a solid mass like a rock, and is then broken in pieces and put into strong air-tight easks for shipment. Lime ought always to be used in extracting the ley. This may be done by laying it over the stras at the bottom of the leach; or by laying it upon the top of the ashes after the leach is filled, and filtering the water through it; or it may be mised in very small quantities with the sshes as they are put into the leach. I have used it in all these ways, and have found it to answer equally well in each, When the ley be-
comes so weak that it will not bear up an egg or potatoc, it ought then to pass through a fresh leach of ashes, until there le litte or no strength to it, thus saving all that is valuable.

All cannot have a side hill on which to erectan ashery; some must, consequently, build on Iexeli ground; but it is not as convenient.

The ashes ought all to be drawn armar and spread upon lund, as they are emptied from the leach. I have seen hills of leached ashes lying about an old ashery, when the lasd contiguous would have been doubled in value by having theme spread upon it. Being about to embark in maising potash again, I shall anxiously wait before doing so, to hear from some manulacturer, through your columns, on this ubject, before I commence. 1 am dessrous of availing myself of any improvements on this old method.-Am. As.

To get Rid of Rats.-Several papers say, put plenty of fresh lime about all their haunts.

The Mississippi Valley Farmer recommends to besmear their dens with tar, as they in common with all other rogues distike a coat of this material.

These are ways to drive them off; but if you wish to catch them, fill a barrel two thirds full of water, and cover the water with oats or bran, and fix a run by putting a board with one end over the barrel.

Colic in Horses.-Messrs. Editors: In loaking over an old file of the Praire Farmer I saw an inquiry from one of your readers wishing to know the best remedy for colic in horses, caused by eating corn. If the following will be any use to your correspondent, you are welcome to it.

Three years ago $I$ bad a valuable mare seized with the colhe, cansed by eating new corn, and heating by driving immediately after. Her symptoms were of the worst character; and as we had lost several valuable horses from the same cause, I considered her case almost hopeless. I however bled her freely from the mouth. I then dissolved a piece of opium, about twothirds the size of a hazle nut (say about 20 grains,) in half a pint of brandy and poured it down her; I then put her into a buggy, and started inmediately bome. Before I had gone three miles she was perfectly well.
Another excellent remedy for flatulent (wind) colic in horses is 1 oz . laudanum and 1 oz . essence peppermint mixed and poured down the horse. This, if 'taken early, will seldom if ever fail. In bad cases, however, bleeding from the mouth would greatly assist the remedy.
w. A sanger.

Shationzs Grove, De Kalb co. 111.
-Piaire Farmer.

## CEMENT AND WHITEWASH.

Quick lime, or lime deprived of its carbonic acid gas, and water of crystulization by heat, does not readily recrystalize when not in immediate contact with other crystaline substances, of which clean silicious sand appears to be the best, but if it is left a sufficient length of time atter being calcined to become saturated with a return of the carbonic acid gas and water, from the water and also from the atmosphore, it will gradually harden to the solidity of chalk, of which nature's laboratory has produced an abundance, and time has not effected any greater result, for but a short time hence it may be seadily perceived that when quick lime has been with air or water slaked for a period sufficient to have become carbonized to any considerable amount it is no longer capable of making a durable cement, and time seems to produce but a small effect in its cementing properties as may readily be perceived by examining the mortar in any of the old buildings that are continually tuking down in this city. I have examined the moriar in a great many of them and have never found any that had become hard that was made from the bulk lime, or was slacked before it was brough: to market, and the lnmps of dry lime found unmised with the sand would pulserize between the fingers like a lump of dry flour, and the small particles of lime when in contact with the sand after being detached would be found but a little better; to produce a good cement, hat will continae to grow harder by tme, the lime shouid be used after being calcined, the ssoner the better, if while being slacked and in a fluid state clean, sharp sand should be well incorporated with it, in the proportion of from one of lime to five or six of sand and applied to immediate use the cement will continue to harden for ages to come, as may be seen by exmmining any of the mortar from the remains of the ancemt ruins of the oid world, hence the frequemt observation that the ancients made their mortar in a better manner, or from better materials than the moderns; but chould the lime bucone partially carbonized, or what is commonly termel air slacked, orshould it be incorporated with common earth or earthy zand, the above result coted not be expected, as lime will not crystalize on a soft substance. The eane benrficial effects may be obtained for a lime wash for out buildings, stone walls, fences, \&e., by slacking quick lime to a fluid stare and stirring in clean sund with a small quantity of sifted roud ashes, and a litte rock salt to hasten the crystalization, and applied to immediate use with a white wach or paint brush, will last for gears, no paint can be made to last so bong; there are specimens on this island of wash pat on in the manerer above described of more than twenty years standing, and which appears to be nearly as fresh and fair as when first applied.-Farmer and Mechanic.

To destroy Rats.-The following recipe fipr the destruction of rats, has been communicated by Lr. Upe, to the council of the English Agricultural Society, and is bighly recommended as the best known means of getung rid of those most obnoxious and destructuve vermin. It has been tred by several melligent percons, and found perfectly effectual.
" Melt hog's lard in a bottle, plunged in water heated to about 150 Farenheit; introduce into it half an ounce of phosphorus for every pound of lard, then add a pint of proof spinit or whiskey; cork the botule firmly after its contents have been heated to 150 , taking at the same time out of the water-bath, and agitate smartly till the phosphorus becomes uniformly diffused, forming a milks looking hquid. This mixture being cooled, occasional agitation, at first, will afford a white compound of phosphorus and lard, from which the spirt spontaneously seperates, and may be poured off to be used agan, for none of it enters into the combination, but it merely serves to commianate the phosphorus, and to diffuse it in very fine partucles through the lard. This fatty compound, on being warmed rery gently, may be poured out into a maxture of wheut flour and sugar incorporated therewith, and then flavored with oil of rhodium, or not, at pleasure. The flavor may be vaned with oul of anseed, \&c. This dough being made into pellets, is is to be laid in rat holss. By 1 ts luminousness in the dark, it attracts their notice, and being agreeable to their palates and noses, it is readily eaten, and proves certainly fa1al. They soon are seen issueing from their lurking places to seek for water to quench their burning thirst and bowels; and they commonly die near the water. They continue to eat it as long as it is offered to them, without being deterred by the fate of their fellows, $n$ is known to be the case whth arsenical doses. It may be an easy guide for those who are desirous of following Dr Ure's prescription, and may not have a thermometer at hand, to know that a temperature of 150 of Farenhent is equivalent to a degree of heat, midway between that at which white of eggs covgalates, and wisite wax meits."

To make Tines Grow.-Some farmers complain that they cannot raise any meions or cucumbers. The vines will not grow, and if they do will not bear. It such farmers have any fowls, let them roost where the manure can be easily collected, and when the vines are planted next spring, apply a small quantity of this manure in each hill. There is nothing else like it. It is the best guano that can be had. In planting, however, be careful and not put the seeds in contact with it, or they will not vegetate-Prairc Farmer.

Roses.-I beg to mention a mode of managing Standard Rose trees, differing widely from the one formerly in vogae, and one which is very mach admured here. I never prune or cut back the head of the tree, but merely thin out the very small weak wood, leaving all the strong and medium sized shoots to grow to their full extent. I heve observed that in most varieties, the mediumsized wood bloums most fretely, and treated in this way my trees are literally covered with Howers resembling in their profusion and laxuriance the wild Dog Roses of the hedge-row. I do not recommend this plan where Standard Roses are planted among beds of American plants, although, in my opmion, sneh is a most desirable situation for them; in such circuiftances, however, the size of their heads would of course greatly depend on the nature and growth of the planis among which they were placed. When Standard Roses are planted singly on lawnsor in avenues, nothing in my estimation can be more unsightly than the manatural looking mop heads into which they are generally pruned, and which will not produce a hundreth part of the bloom as when managed as above described. I remove the suil over the roots once in three years without disturbing the trees, and I replace the old soil by a little loam and nonare, which I find very much invigorates the trees and renders them capable of bcaring their large heads, which almost conceal their naked stems.-J. L. Sasw, Swinton Gardens, Beadle.-Gard. Chron.

Culture of Fruit Trees.-Mr. Allan Coffin, of Edgartown, in a letter to the editor of the Albany Cultioator, says:
"In the New England Furmer, of May 11, 1842, page 355 , there is a letter I wrote, which differs a trife irom the following statement:-

Our istand is surrounded by the ceean; it is twenty-one mites long and five wide. But litte frut has ever been raized on it, and that little very inferior. It has often been said, it is impossible to raise good fruit on this island. Eleven years ago I hired a man to set oat seventeen apple trees. He dug very smail holes, and set them out in a very short time. The spring followisg. I sut out one apple tree. I dug the inde ten ieet in diamcter and threa feet deep. The subsoil (yellow earth) was carried away, and the whole filled with sods inverted and rich earih. That tree has borne nore apples than ail the others. This spring it measured thirty-four and three-quarten inches in circumerence near the ground. The largest of the others is twenty-hree and onequarter inches. Had I given ten dollhrs a piece to have had them set oat as thes should have been. instead of having them set out as they ware, I believe it would heve been money well laid net.
"One of my trees has borne no frait. This spring (1844) I examiard it, and instrad of haring the roote to extend herizontally, of dearly ev, ahey tarmod dircely down."

Fellow Water in Horsss.-You have published a series of articles on the diseases of sheep, and I, for one, an anxious to learn more about the diseases to which stock of all kinds are liable. I was forcibly struck with the artucle on colic in horses by T. N. Welles in your January number. and consider it worth twenty times the price of your paper. The only fault I find with it is, it dun't suificiently describe the symptoms which distingaish colic frorn bots.
I have lately had to treat a sick horse-a valuable brood mare-and being entirely in the dark as to her ailment, labored ander the greatest embarressment. All who saw her said she weuld die. 1 bled, drenci- d with ealts, and gave a variety of remedies by the advice of my neighbors, but all to no puupose-the more got worse and worse. Finally I gave her up and quit doctoring her.

Meeting with an old farmer who had great knowledge of the disease of horses, I deseribed her syntoms to him and he told me she had the yellozo water, and to sive a gill of spirits of torpentine and a gill of spirits of camphor, shook tagether in a pint of warm water every morning for a week, and it would cure her. I did so and the mare got well and is now fattening up with astonishing rapidity and in as good spirits as ever. I consider the remedy worth a hundred dollars to me.
Her symptoms were, a breaking out on the skin, the sores running together and forming large scabs of matted hair the size of the hand-drooding-swelling and'stiffiness of the legs-emaciation-normous appetite-reeling and staguering in walkiug-great reluctance to moving about; \&c.

Hoping this will call forth other valcable information on veterinary subjects, I remain, \&e.Praire Farmer.

Colic in Horses. Quarter dil in Catile.-I am satisfied colic is :ot as common as many imagine. Horses are frequently daven so long withou: being permitted to sop, that the great amount of water secreted in the badder causes excessive pain and is fregnenly dis harged with great difficulty, and sornctimes cannot be discharged at all. I relieved a mare a short time since from all the symptoms of a severe colic by caciting a drsre to aroid the water by pouring water slowly on the ground near ber; the efect woold te arcater to pour from one bocket to another. Ferhaps come nedical genteman, or one experienced in such matiers, could suggest a more effecinal mode of relicf.
R. L. Sargent, of Warrenville, recormanis copinus bleding for the guarter ail in catle, the diense of last season. If it appear in one of a Bock of catth, bierd the whole. He is satisfed that be has saved many by this means. I suved ne caif by mring a piat of soap and milk when firet attacked.
A. Csugsitis.

## produce of different states.

From the annual report of the commissioner of patents, of which we are glad to see Congress has ordered some 50,000 conies to be printed, we compile the following fincts, founded upon estimates about the agricultural preduce of 1844 .
Of wheat there were produced ninety.five million bushels, worth, perhaps, on an average, 75 cents per bushel, equal to $\$ 71,250,000$. of this quantity Ohio produced the largest, say about 16,000,000 bushels; New York cames nert wih .about 15,010,000; Yirginia and Penngylvania raised about the same quantity each-between 10,$.000,000$ and $11,000,000$. Tennessee comes next with near 7,000,000, and then Indiana with 5,500,000 . Michigan is next, $4,250,000$, being more than Maryland by nearly 2001,000

Of oats there were raised $172,250,000$ bushels. In this grain New York takes the lead considerably, producing over $31,000,000$, Penasylvania 24,000,000 , Ohio, 2J,000,000, Virginia, 14,000,000, Kentucky, Indiana and Iilinois, each between 10 and 12,000,001. The vaiue of this crop at an .average of 20 cents per bushel wouid be $\$ 34,000-$ 000.

Of Indian corn there were raised $422,000,000$ bushels, equal, at 25 cents per hushel, to $\$ 165$,500,000 . Tennessee is by far the largest raiser of this grain-being down in the table $61,000,000$ bushels; Kentucky and Ohio each raise about $48,000,000$, and Virginia $38,000,000$, Indiana, $24,000,000$, North Carolina, Georgia and Alabaman about $22,000,000$ each, New Ycrk, Pennsyivania end Illinois about 19,(100,000 each, Scuth Carclina and Missouri about 13,000,000 each. It is mainly, therefore, a product of the South and South-west.

Of potatoes the crop is but at $100,000,000$ bushels, worth at 20 cents, $\$ 20,000,000$. New York zaises 17,000,000, Mane 12,500,000, Pennsylvania 7,000,000, Vermunt 6,000,000, Michigan 5,500,000 , Massachusetts, iv. Hampshire and Ohic nearly $5,000,000$ each.

Of hay, there were 17,000,900 tons, werth at $\$ 6$ per ton, $\$ 102,000,000$ : the second mest valnable prcduct of American agriculture, doubing that of cotton, as will bc scen belor. New York raises abcut 5,000, 000 tons; Pemssylvania, Indiana, and Ohio about 2,000,000 each; Maine and Fermonl, 1,250,000 each; Miassachuscits, Nen Hampshire and Cenncclicut, from sis to suen hundred thousand tons cach; New Jersty and Illinois about 275 theusand cach, and Virginia 444 thousand.

Of cotton the crop is but at 872 millicn lhs., equal, at s:x cents per lb ., to jifty-two millien tho handred and twenty-six theusand dollars. Georgia raises the largest quantity- 213 miliin Jbs; Mississippi 195 millicn; Louisiana 154 mil. Lion; Alabama 140 millien; Nierth Carclina 51 million; Scuth Carolina 49 millicn, and Tennessee 39 millicn; Arkansas 14 milion; Flrida 9 millicn.

Or sugar the estimate is 201 million lbs. equal. at $2 \frac{1}{2}$ cents per fb. to $\$ 5,000,100$. Lcuisiana produces 160 million ils.s, and the next highest is

Indiann, with her maple sugar, $7,: 50,000$; Ohio and Vermont each produce about $4,250,000$.
Of rice there are grown 111 millien lbs.
South Carolina has aimost a monopoly of this staple, rasing about 84 milhon lbs. Uicorgia raisces between 17 and 18 million, and Louisiana abou: 5 million.

Of tobuceo, there are grown about 152 million lbs.

Kentucky takes the lead in this article, raising about 58 mulion; Tennessee and Yirgima cacli raises about 33 million; Missouri 12 millich, Ohio 6 milicn, and Maryland not muek mure over five hundred thousand lbs.
From this estimate of the quantity and value of the chief agricultural crops of the United States, it results that Indian corn is the most valuable of ail cur products. Hay comes next, and only just below. Its value exceeds that of wheat, which comes third, about fifty per cent., and doubles that of cotton, which stands fcurth. Oats stand fifth, and potatoes sixth.-N. F. Courier and Enquirer.

Cement.-The diamond cement for uniting broken pieces of china, glass, \&c. which is sold as a secret at an absurdly dear price, is composed of isinglass soaked in wrater till it becomes soft, and then dissolved in proof spint, to which a litule gan resin, ammoniac, or galbanum, and resin mastic are added, each previozsly dissolved in a minimum of alcohol. When to be applied, it mast be gently heated, to liquefy it; and it should be kept fc use in a well-corked vial. A glass stopper did be apt to fix so as not to be removeable. This is the cement employed by the Armenian jewellers in Turkey for glueing the ornamental stonts to trinkets of various kinds. When well made it resists moistare.
Shellac, dissolved in alcohol, or in a solutiou of horax, forms a pretty good cement. White of egg alone, or maxed uith finely sifed quichlime, will answer for uxiting objects which are not exposed to moisture.
A cement which gradually indurates to a stony consisience may be made by mixing 20 parts of clean nver sand, two of hitharge, and cne of quiehlime, into a thin puty with linsced oil. The quichlime may be replaced with litharge. When this cement is applied to nend broken pieces of stome, as steps of stare, at acquaes ather sene time a sony hardness. A sambiar comprethen tas leen apphed to ceat over brich walls cadh: the name of mast $c$.

The iron-rust cement is made of ficm 30 :c 100 pans of firon borings, pounded und sifted, unized wath one pars of sal-ammoninc, and what it is to be applied nowistened with as much waier is will geve lt a pasy consiszency.

Black Ball for Lectier.-Dees-wax, 2 pounnorallow. $\frac{1}{2}$ prund; pum arabic, it pound; lanqbleck, $\frac{1}{4}$ pound. Melt the tallow and was, thelt cool a hitte nad stir in the black and $\mathrm{g} \cdot \mathrm{n}$, prec.. vuily s.ake into a sbick mucilage,

Cure for Distempor in Cattle.-The Eariof Essex says, that this first showed itseit in one of my cattle by discharging abundant saliva from the mouth, with sore and inflamed tongue and gums, very dull, no appetite, confined bowels and very bot horns. I then desired the bailiff to give the animal one-half pint of the spirits of turpentine, with one pint linseed oil: repeating the oil in twenty-four Thours, and again repeating it according to the state of the evacuations. At the end of twenty-four hours more, the bowels not having been well moved, I repeated both turpentine and oil. In two days the beast showed symptoms of amendment, and in three or four took to his food again, and did perfectly well. All the yard beasts, and two of the fattening beasts, have had it (five others I had sent to London before the disease appeared.) and all have been treated in the same manner with perfect success. Half a pint of turpentine is the smallest, and one pint the largest dose, during three or four days. Little food, besides oatmeal gruel was given.-Am. Ag.

Yeast from Potatoes.-Is it is sometumes convenient to know more than one mode of making an article, wo will give you an old method of making potato yeast, which we have somewhere met with. Boll potatoes, of the best and most mealy sort, (for poor, heavy, wayy potatoes are good for nothing for this business,) till they are thoroughly done and their skins begin to peel off. Strip off the skins, and mash them up very smooth, and put as much hot water to them as will make the mash of the consistency of common thick cream. Then add to every pound of potates two ounces of coarse brown sugar, or molasses will answer, and when blood warm, stir in for every pound of potatoes two spoonsful of old or common yeast. Let this ferment for twenty-four hours.

A pound of potatoes will make in this way very nearly a quart of yeast, and which will keep well for three monthsso the cook says. She also says you must lay your bread eight hours before you bake it.-MlWaine Farmer.

Mildew has been shown by naturalists: to be a minute fungus, whose germs are floating in the atmosphere, and only require for their development, a particular condition of the surface of whatever plant they attack. Thus, their growth is, doubtless, favored-perhaps insured-by the exudation of sap from the ruptured vessels of the wheat plant, on which they may alight. This rupture may be caused by a plethoric state of those vesselsperhaps, also by a deficiency of silex inthe epidermis of the straw; and this condition is brought on by whatever oceasions a great flow of sap, or causes it to continue too long; and the indications or it are a deep green color in the leaves and straw, and the continuance of this dark green color a few inches below the ear after the chaff has begun to turn off. When this symptom appears, a bad case of mildew is inevitable.
That the excessive use of nitrogenous manures will produce this disease is evident, from the mildew which follows the use of nitrate of soda and guanos, on rich soils and in growing seasons, as a dressing for wheat-from that, also, which attacks the wheat growing en the sites of dung-heaps, when other parts of the field are free from it-and also from the usually diseased state of wheat grown in highly cultivated gardens. A continrance of warni and humid weather, which produces a rapid and Iuxariant growh of leaf and straw, and Keeps the plant in this state when the growth ought to be approaching maturity, is highly favorable to the development of millew.- $A n$. $A g$.

Indian Slap Jacks.-Scaid a quart of Indian meal-when luke-warm, turn. stir in half a pint of flour, half a tea cup of yeast, and a little salt. When light, fry them in just fat enough to prevent them sticking to the frying pan. Another method of making them rety nice, is to turn boiling milh, and wateron the Indiin meal, in the proportion of a quart of the former to a pint of the latter-stir in three table spoonsful of flour, three eggs well beater, add a couple of teasfoonsfil of salt.

Tea Wheat or Siberian Bald-This is a spring wheat, one of the most valuable of the spring varieties. It is extensively cultivated in New England and in the north part of this State. Straw not long. very bright, the heads bald, and with a beautiful white berry producing flour of good quality. The straw is not so large as the Italian, ripening earlier; the berry sits more close in its chamber, not subject to rust. I have cultivated it for several years.
Black Sea Wheat was first introduced into the State of Maine, and has been successfully cultivated there for several years, as well as in some of the other New England States. It has succeeded the best of any of the spring varieties in Vermont; being earher in maturing, is lessaffected with the grain worm-seflom rusts or mildews. This is a white chaff, bearded; straw sofi, very subject to get down, which does not injure it in filling; berry long and red, weighs well, bran thick, producing flour of an inferior quality. Its early ripening gives it the preference to othersGen. Harmon, in the Transuctions N. Y. State Agricultural Society.

Relief of Choked Cattle.-It is not. I belicre, known among farmers that an or or cow may be relieved in one minute from the danger of death and anguish of pain prodaced by a potatce or any other body lodged in the cesophagus or passage to the stomach, by an operation so simple that any boy in his teens may perform it, without the least danger to the patient. Take a common carriage whip, the butt or handle end of which is an inch or an inch and a quarter ia diameter, and smooth; let an assistant raise the head of the beast to be operated on, so high that the lower jaw will be parallel with the lower part of the neck; thrust the butt into the muath and push forward boldy but steadily, till sou have pushed the patatoe or sabstance into the stomach. I fred my cows with potatoes without cuting them, as I have no fears of their being injured ty choking, the remedy in that event being so simple. I have peformed it several times.-Alb. Cult.

Manure versus Good Cultivation.-I am convinced that it is much mere important to attend Wo the latter than to the former of these two means of improvement; and that national, as well as individual wealth, may be more increased by the Latter of the two; for I am convinced, that noshing like the full extent of the inherent powers of the eoil is taken hold of ty our generally too saperficial method of cultivation.

Ist. Thorough draining, which soon changes the nature and texture of the soil for the better, so double the depth that is ploughed.
end. Deep caltavation sith the plough, and not omiting satsoil-plounthing, if it be butfoar or sis sinches in depth; a litile is better than none.

3rd. Maving the sob, or fallowing wedl; girng anremiting dilugenee to more and pulverize the 303 on every cipprtanty, tut more especialy io aummer and in dry weather; zaking care to have Egood depth of soil as the finish-4 L:ivaster Fsarmer-Ag. Gsx.

Agriculture.-What is actually known, ever by the most learned, is atill greatly leme than that which remains to be acquired. How many quentions are there which the practical man may ask, and which the professor of all our present theoretical lnowledge cannot satisfactorily answer! How many questions suggest themselves to the mind of the student in theoretical agriculture, which he records as sabjects of future experimental investigation, for which, if time present, be may wish himself to find solutions, or to which he may anxieusly wish to persuade others to seek for answers by laborions chemical researeh!Jour. of Agriculture.

A good Compost for Sandy Land.Take 10 loads of stable or barn-yard manure, 5 loads of clay, 10 bushels of ashes, and 20 buchels of lime, mix the whole well together, let it remain in a pile a few days, turn it over, when it will be fit to apply to the land.

The above quantity will make a better dressing for an acre of sand than twenty, or even twenty-five loads of stable or barn-yard manure alone, and will last longer. Let any one who may doubt, try it, and they will be convinced of the truth of what we say.-Am. Far-

Larc.-The oeparation of the two proximate constitaents of lasd, viz: elaine and stearine, or, in common phraseology, lard oil and candle-staff, has been for several years an objeet of pursurt, and $1 s$ now accomplished in a very perfect manner. The chemical processes descnbed in my last report for separating these sabstances, seem to have been, in a great neasure, superseded by meckanical agency ; pressure, when applied in a certain manner, being found fully to answer the parpose The most valuable improvencent, and one for which a patent has been granted, is the application of pressure to the solid tissues containing fat, befere they have been barned, (or, rather, overheated in the process of trying ont, as it is called. The lard and oil prodaced in this way, are purer, sweeter, keep moch better in the wamm chnates, and are rendered in large quantinies. A foreign patent has been granted for purifying oild, pasricalariy for zoap oils, by furcing air through them When in a heated state.-Elisicorth.

Good Butter Cono.-We notice in the Maseschasetts Ploughnan that a three-jear old native cow belenging to Bifr. George Jewett, suc̈kisul her calf hive weeks, supplied one fanuly with railit during the season, and made in one year, 573 jlm . 12 oz . butrer. Her feed was lag and grassatone. If this be so, she is an extramechary heifer, and We woud lile tasuca nucre paricular cisexption Qif $h=r$
T.ampblack.-A mode of making lampblack has been patented; which, it is asserted, produces a much larger quantity from a given weight of resin than the old method, in which the smoke from the burning resin was carried through long chimaeys, and condensed upon bags or mats-that portion of the smoke passing out of the chimney which would have made the finest carbon or lampblack. In the new process, the smoke is received in a very large apartment, and condensed upon the walls and floor, from which it is brushed off when sufficientiy accumulated. The apartment is made tight, and without ventilation; and the calculation is so made, that the amount of oxygen in the air of the room will be more than sufficient to consume ail the resin which is put into the furnace. As soon as one burning is over, and the smoke all condensed, the windows are opened, a fresh supply of air admitted, and the operation again repeated.-Ellsworth Report, 1844.

Stick to it.-Yes, stick to your business, if it is small; it may soon increase. But if you do no more than you have for the past few months, it is much better than nothing. If you change your business every year, you will always be poor. The only way to be successful is, to engage in business, and stick to it.

Remedy for Worms and Insects in the Stomach of Calves.-Take 1 pint of spirits of turpentine, 1 pint train oil, 2 oz . spirits of vitriol, 2 oz . asaffetida, 2 oz . hartshorn. Mix the whole together in a bottle, and shake it well before it is used. Pour a table-spoonful of the mixture down each nostril of every calf, for three successive mornings ; the calves must be kept fasting -the night previous to giving the dose. Should the first trial not succeed, repeat the dose in the course of a week.

Tanners' Burk is slow of decomposition. On this account it is generally neglected as a mavare. The best way of employ ing it is, undoubtedly, in the form of compost with lime and earth, or with hquid or solid farm yard manure, by which procedure decay is speedily effected. Tanners very frequently burn their syent bark, and apply the ashes to their ground.

Cure for Poll Evil.-Take a lump of pearlash half an inch in diameter and force it into the core of the sore, once in ten days for two or three times; which will in all probability effectan entirecure. 1 have seen several cases of the worst ever known to me, cured in this way, without anr other application. -Praire Farmer. J. H. Powex.

Smoking Hams.-We are assured by an intelligent farmer that hams are very effectually preserved from the attacks of the fly, while their quality is not all injured, by throwing red pepper upon the fire in the smoke house, during the latter part of the operation.

It is no honor to be rich, and no disgrace to be poor; therefore it is exceedingly foolish to strive after the appearance of wealth if :ye are poor, and be ashamed of the poverty which circamstance. have brought upon us. This folly is a source of continual misery, and is seldom productive of any good.

The modest deportment of those who are truly wise, when contrasted with the assuming air of the ignornnt may be compared to the differens appearance of wheat, which, while its ear is empty, holds up its head proudly, but as soon as filled with grain, bends modestly dowa, and withdraws from observation.

A Recipe for Housekeepers.-To make blos wash for walls-get a pound of blue vitriol from a drug store, and have it powdered in a mortar. Provide also two quarts of lime. Take six cents worth of glue, boil it in a quart of soft water till thoroughly disolved. Put the powdered vitrial in a wooden bucket, and when the glue water is cold, pour it on the virriol, mix and stir it well. When the vitriol is dissolved in the glae water, stir in by degrees the two quarts of lime. Then try the tint of the mixture by dipping a piece of white paper iuto it, and when it dries you can judge if it is the color you want. It should be a clear, beautiful blue. If too pale, stir iar a littlo more powdered vitriol. It is well to provide an extra quantity of each of the articles, in case a little more of one or the other should be required upon trial of the color.-American Farmer.

Sceb in Horses.-Sir,-In reply to K. L.e keeter of last week, the following recipe has invariably proved successful in curigg what he calls the abomnably cutaneous disorder, the scab in horzes; riz: take of

Mind mercurial ointment, 6 oz .
Subhmated sulphur, gowdered white hehope, of each 1 oz .
Palm oil, 4 oz.
Mix an ointment.
It is essential that it will be well rabled bo the affected paris.
$\$ \mathrm{am}, \mathrm{Sir}$, your obedient servan:, f. $\boldsymbol{I}$. Author of "The Hand-Book of Fwriens." Mark Lane, Ex. (Eng.)

Curc far Quingy - Simmer hops in vinegar 2 few minutes, until their streagh is extracted; strin the liquid, sweeter it with sugar, and gate it frequently to the chind or patient, in malyt parker tities, until reliered. This is said to be abe extollent asclicine.-Darenport Gazetto.

## FROM THE PRACTICAL FECEIPT BOOK

Tincture of Roser.-Take leaves of the common rose (centifolies,) place them, without pressing, in a bottle, pour good spirits upon them, close the bottle, and let it stand until it is required for use. This tincture will keep for years, and yield a perfume little inferior to otto of roses. A few drops of it will suffice to impregnate the atmosphere of a room with a delicious odour. Common vinegar is greatly improved by a very small quantity being added to it.

Rennet, or Wine Custard.--Very simple and prepared in five minutes. Cut a bit of rennet about four inches square into strips, which put into a bottle filled with wine. It will be fit for use in two or three weeks. To make your custard, first warm and sweeten the milk, then stir into it a teaspoonful or tablespoonful of the rennet wine, according to its strength, and pour immediately minto a pudding-dish, or cups, as you prefer; put away in a cool place for an hour, and grate nutmeg on them. The whey, of which you can make enough, by the addition of extza wine when you prepare 1 t , is a very nourishing drink for invalids.
Sausages, quite rich enough for an Epicure. Take 30 pounds of chopped meat, 8 ounces of fine salt, $2 \frac{3}{2}$ ounces of pepper, 2 teacups of sage, $1 \frac{1}{3}$ cups of sweet marjorum, passed throngh a fine sieve. For the latter, thyme and summer savory can be substituted if preferred.

Tomato Catsup. - To a gallon skinned tomatos edd 4 tablespoonful salt, 4 do. black pepper, half a spoonful alspice, 8 red peppers, and 3 spoonsful mustard. All these ingredients must be ground fine, and simmered slowly in sharp vinegar for three or four hours. As much vinegar is to be used as to leave half a gallon of liquor when the process is over. Strain through a wire sieve and bottle, and seal from the air. This may be used in two weeks, but improves by age, and will keep several years.

1. To preseroc Apples, Sc.-Take apples, and pack them in ciean, dry, chopped straw, so that they do not touch each other.
2. Dip each apple separately into melted wax, then pack as abowe.
To preserve Apples, Pears, \&c. Take apples or pears, and peel them, then cut them into eights, observing to extract the core; dry in a kiln until quiet hard.
In this way fruit is kept in the United States for two or three years.
For use, wash the fruit in water, then pour boiling water on it, let it stand for a few minutes and use it as fresh fruit. The water forms an excellent substitute for fresh juice.

Substitute for - 4 rrow-root.-Finest potatoestarch, ${ }^{3} \mathrm{cwt}$.; lump sugar 8 pounds; finely ground rice, 21 pounds. Mix and sift through lawn. Yields 1 cwt. of excellent arrow-root.

Dr. Bailey's Itch Ointment.-Sweet oil, 1 poond; suet 1 pound; root alkanet, 2 ounces Mielt and macerate untilsufficiently ollored, then add powdered nitre, 3 ounces; powdered alum,

3 ounces; powdered sulphate of zinc, 3 ounces; powdered vermillion, to color; oil of aniseed, to perfume ; oil of spike, to perfume ; oil of origarrum, to perfume.
Balsamic Vinegar for Sick Chambers, fc.Rue, sage, rosemary, lavender, cussia and cloves, of each, 1 ounce; camphor (powdered), 2 ounces; strong vinegar, $\frac{3}{2}$ gallon. Steep for one week.
Balls for removing Grease and Paiat Spots from Cloth, \$c.-Fuller's earth, 30 paris ; French chalk, 1 part; yellow soap, 20 parts; peathash, 15 parts. Make into a paste with spirits of turpentine, and give it a slight color with a little yellow ochre, then cut it into cakes. This form, omitting the French chalk, is that which is sold about the streets.
Blackberry IVine.-Ripe berries, bruised, 20 gallons; pour on then water, hat, 22 gallons. Let them stand three days, then add sugar, 40 pounds. Ferment, rack, and add ginger, bruised, 2 ounces; catechu powder, 2 ounces; red tartar 8 ounces; cloves $\frac{1}{2}$ ounce.
Black Currant Wine.-Cold soft water, 20 gallons; fruit, 50 gallons; sugar, 60 pounds; ferment, then add red tartar, dissolved, 8 ounces; cloves, $\frac{1}{3}$ ounce; dried orange-peel, $\frac{1}{3}$ ounce ; ginger, $\frac{1}{2}$ ounce.

Black Dye far Cotton.-Acetate of iron as a mordant; and dye in a bath of madder and logwood.

Black for Minnature Pa:nters.-Take camphor, and set it on the fire, and collect the soot by means of a saucer or paper-funnel inverted over it.

Blacking Balls for Leather.-Ivory black, 1 pound; lampblack, I poand; comman gum, $\frac{1}{2}$ pound; brown sugar, 6 ounces; isinglass or glue, tounce; water, 1 quast. Mix.

Paste Dlaching.-Oil of vitriol, 2 parts; sweet oil, 1 part ; treacle 3 parts; ivory black, 4 parts. Mix.

Black Ink Pornders.-Snlphate of iron, 2 parts; galls, 5 parts; gum, 1 part. Reduce to a powder and divide into one-ounce papers, each of which will make a half pint of ink.
To kill Borers in Trees. Stop up their holes with hard soap. It is a simple and a very good remedy.

To destroy Thistles, Fern, and Coltsfoot.-Run over your fields once or twice about the first of June, with a heavy cast-iron roller.
Cure for what is called Ran-roumd on the Finger.--The first symptom of the disease is a heat, from swellingand pain, and a redness at the top of the nail. To cure-first open with a pin; then, with the point of a penknife, scratch the whole surface of the nail, both lengthwise and across. This alone, it $3 s$ said, checks and cures the complaint.

Bleedins at the Nose-To cure it, apply to the neck behind and on each side, a cloth dipped in cold water; or, put the legs and arms in cold water: or, wash the temples, nose, and neck, with vinegar: or, snuff up vinegar and water.
To prevent Swelling from a Bruise.-Immon
diately apply a cloth, ive or aix folds, dipped in cold water, and new dipped when it grows warm.

A Burn or Scald.-If it be but skin deep, immedarely plunge the part in cold water; keep it in an hour, if nat well before. Perhaps longer.

A Deep Burn or Scald-Apply the inner rind of elder well mixed witk fresh batter. When .this is bound on with a rag, plunge the part into cold water. This will staspend the pain till the medicine heals. Or, mix lime-water and sweetooil to the thickress of cream, and apply it with a feacher several times a day. This is amost effectual application.

Chilblein:--Bathe the feet often in cold water, and when this is done, apply a turnip poultice.

Children.-To prevent the rickets, tenderness, and weakness, dip them in cold water every morning, at least till they are eight or nine months old. No roller shoula ever be put round their bodies, nor any stays ased. Instead of them, when they are put into short petticoats, put a waistcoat under their frocks. It is best to wean a child when seven months old, if it be disposed to rickets. It should lie in the cradle at least a year. No child should zouch any spirituous or fermented liquor. Their drink should be water. Tea, they should never taste till ten or twelve years old. Milk, milk-porridge, and water-gruel, are the proper breakfast for children.

Chin-cough or Whooping-cough.-Rub the feet thoroughly with hog's lard, before the fire, on going to bed, and keep the child warm therein. O-, rub the bach, at lying down, with old ram: it seldom fails. $\mathrm{Or}_{\mathrm{r}}$, give a spoonful of juice of pen-ny-royal, mixed with browr sugar candy, twice a day. Or, half a pint of milk, warm from the cow, with the quantity of a nutmeg of conserve of roses dissolved in it, every morring. In desperate cases, change of air will have a good effect.
Cholera Morbus, i. e. Flux and Vomiting of Bile.--Boil a cbicken an hour in two gallons of water, and drink of this till the vomiting ceases. Or, decoction of rice, or barley, or toasted oaten bread. If the pain is very severe, steep the belly with flannels dipped in spirits and water. The third day after tise care, take ten or fifteen grains of rhubarb.

Chops in Wonen's Nipples.-Apply balsam of :sugar. Or, apply batter of wax, which speedily heals them.

To prevent Chopped Hands.-Wash them with flour of inustard, or in bran and water boiled together.

To Cure.-Wash them with soft soap, mixed with red sand. Or, wash them in sugar and water.

To Rersone Warts on Cattle.-The common earrot with salc has proved effectual used as a poultice. The wild turnip (arrum tryphillum) has proved an efficient cure. it is nerid sabstance, and is applied fresh on cruing it in two.

The British Cultuvator says, a a strong wash made of pearlash and water, applied thrice a day, will remave tumors and warts:" Soda and yrater
is a wash that is highly rerommended. It mighs
be several times repeated.-Huss. Foughman. Goose"Oil for sore Teatis..-The smime paper above, rccommends this ay the best article to heal sore teats and chopped handi. Wasting the teats and hands in warm milk fresh from the cow, we have often found a gocd remedy, and rubbing them with creaun still better.

Yeast Cakes.-Put twor handsful of hops to three quarts of water, to which add, if you like, a couple of potatoes. When the potatcesiare done, mash them in a pan with a sufficient quantity of ${ }^{-}$ flour to form a thiek batter after the liquor is strainea on to it. When nearly cool, add a teacap of good home-made or brewer's yeast, and Keep warm till it becomes light. As soon as it is risen, add Indian meal till quite hard. Form into a roll of a few inches diameter, which cut in thin slices and put into a moderately warm place to dry. This yeast has the edvantage of all others inthis particular, it may be laid aside in bags and win keep sweet during warm. weather. When you wish them for use, soak them thoroughly in milk-warm water, and take three or four for two common sized Foares.-Am. Ag.

Marshall Flall's Alcoholic Cure for Con-sumption.-One part of pure alcohol mixed with three parto of water, made tepid at first, but af-. terwards of the temperature of the atmosphere. Apply it in small quantities at a lime, every five minutes, so that the application mayalway consist of alcohol and water. The application is thus made: $\varepsilon$ piece of soft linen is folded and re-folded to form six folds. Apply this acrose the chest, and high up on the neck. A sponge, the size of a valnut, is then filled with the lotion (the alcohol and water,) and pressed upon the linen along its whole course, the dress being opened icr the purpose, and immediately closed The operation must be repeated every five min-minutes.-N. F. Far. and Meck.

## J. CLELAND, BOOK AND JOB PRINTER,

 KING STREET, TORONTO,Adjoining Mr. Brewer's Book Store, landing to the Post Office.
TS Every detciption of Plain and Otarmentas Printing neatly executed on moderate torma

Torouto, Octoler, 1844

## The British American Cultivator, (New Series,)

Is published on the First Day of every Month, at Toronto, by EASTWOOD \& Co., to whom all orders must be addressed.
$\left.\begin{array}{l}\text { W. G. EDMUNDSON, } \\ \text { EASTWOOD \& Co }\end{array}\right\}$ Proprietors.

## W. G. EDMUNDSON, Editor

Each numuer of the Caltirator contains 32 pages, and 18 subject to one halfpeuny postage, when directed to any Pust Office in British America.

Advertisements will be inserted for One Dollar if not cxceeding Twelve lines, and in the same proportion, if exceeding that number.

Terms-One Dollar pur year; Four copies sor Three; Eight for Five; Twelve for Seven ; and Twenty for Ten Dollars.

All payments to be made invariably in advance, and frce of postage.

03 Editors of Piovincial newspapers will roblige the Proprietors, by giving this advertisement a few insertions.

Toronto, Jan, 1845.
PATENT WOOL PICKER.


## ESQUESING WOOLEN FACTORY.

1MMEDIATELY after Sheep-shearing, the Sub$1_{\text {scribers will be ready to take in exchange } 50,000}$ lbs. fine ciean zeno, frr Clcth, Fiamel, cr Blankets, on the usual terms, either "at the Esquesing Wcollen Factery, or at their werks near Siree'sville.
As we have now on hand some Thousand yards of assorted finished Cloth, our exchange Customers will experience litue or no de:oy in obtaining manufactured gecds for their Wecl.

Any of our Custemers who prefer to have their Wool manufactured into Flannel, or Cloth; plain or twilled; white or colcred; striped or chectied; Sunmer Tweed, Double Milled Tweed, Sattinet, Blankets or Carpets; will be accommodated as early as passible, at the customary rates.
Peoples, own Yarn Colored and; Wove into Coverlids of neat and superb Patterns.

They likewise beg leave to acquaint their Customers and the Pubic generally, that the Branch; of tincir business, established last year near Strectsville, is superintended by a resident partner of the Fizm, who will exchange upon the same terms as at their establishment in Esquesing.
W. BARBER \& BROTHERS.

Esquexive, April, 1845.

## TO WOOLLEN MANUFACTURERS.

THE Subscriber hegs leave to inform the publiz that he has been engaged with Mr. Christopher Elliot at the P'semin Foundry, Toronw, for the last two years past, in building Woollen Mro chinery, but in consequence of having suffered a serious loss by the late fire, he has been obliged to give up the business with Mr Ellot, and therefore does not hold himself accountable for the working of any of the machinery built at the Phanix Foundry after the first January last.

The Subseriber has now made arrangement with Mr. J. R. Armstrong, Proprietor of the new City Foundiry, to make and furnish all kinds of WOOLLEN MACHINERY
that may be required in manufucturing Woollea . Cloths in thas Province, such as follows, viz:-

P2ckers, Carding Machines, Condensors,Spit ning Jacks, Broal and Narrow Power Loumg, Fulling Mhll iranks, Napping and Teazling Mlachanes, Gigs, Shearing Machines, Jinnye, Stoves for Heatmg Press Plates, Cast Iron Dyse Kettles, together wath every other kind ot M. chinery required to manufacture Cloth.

The machnery will te made under his personas. supermtendence on the most approved plans, and the material and workmanship will be of the best description.
if All orders addressed to Archelaus Tupros; Cuty Foundry, Fouge Street, Toronto, will be promply and neatly executed on moderate terns.

ARCGELAUS TUPPER.
Toronto, March, 1845.

> EASTWOOD \& Co.

## Paper Manufacturers, Stationers, Sohool

 Book Publishers, \&c.HAVE constantly on hand an assortment of SCHOOL BOOKS, such as are in general use throughout the Province.

[^0]
[^0]:    $$
    : \quad \text {-ATSO,- }
    $$

    Writing, Wrapping, and Printing Paper, Blank Books, Stationery, \&e.
    N. B. Publeation Office of "The Britiandiansrican Culizator."
    Yonge \&reet, Toronto, 1845.

