The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleus ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relía avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrėe peut causer de l'ombrs ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible. ces pages nont pas èté filméos.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculèes

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes

Pages detached/
Pages détachées

Showthrough,
Transparence

Quality of print varies/
Qualité inégale de l'impression

Includes supplementary material/ Comprend du maténol supplémentare
\square Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues, etc.. have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuiller d'errata. une pelure. etc.. cont été f!!mées à nouveau de facon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked ljelow/ Ce document est filmé au taux de réduction indiq'دé ci-dessous.

COULTIVATDR。

VOL: III.

TORONTO, JUL Y , 1844.
No. 7

TEE CLLTIVATOR.

"Agriculifure is the groat ort which overy government ought to protect evary proprietor of laudy tu government ericy inquirer linto natare improre."-Dr. Sohnson:

TORONTO, JULY, 1 S14.

MONTHLY CALENDAR

The eiaion for Haymaking is at hand: mot that your tools are in complete order.' If you havo not already prosured a^{\prime} horse hay-rake, loso no time in constructing or purchasing one. It will pay for itsolf in the item of labour alono in the course of otre season, if the bay-harvest be at all extensive; and the satisfaction of having the work executed with efficiency and despatch should be an abundant inducement for overy farmer to provide himself with such tools as would effectually secure that most desirable object.

Clover should be cut at that stage of its growth when just going out of fluwer. To make a good sample of cluver-hay, cut early in the morning, and when partially wilted in the swaith, it should be gathered, with a fork, into small cocks; the following day those cocks
should be turned bottom side upwards, and put into corapleto order, for immon and then it will shortly be in a fit state diate use when wanted. As the Wheat for stacking or housing.

It is extremely difficult to law down rules which may be implicitly fullowed in every instance, and ebpecially in the operations of hay-making; but whether the plan here recommended be adopted or not, wo trust that great care will be obscrved in not exposing too great a surfnce of grass, whilst undergoing the process of haymaking, to the action of the sun and dews.

Root crops require tho most vigilant care during this and the following monit. The weeds must be kept down, or rise a railuie of crop will ensue. Frequontly stirring the ground wili a hoe has been found to be one of the suicst pleventatives of their growth. Let it be remembered, in the culivation of rout crops, that one acre, by careful management, may be nade to produce as much as two acres rould civ under the ondinay modes of culivalioni. A hberal top-dressing of gypsum, salt, lime, or ashes would pro nute a leaithy growih of teaves, theteby giving strength and vigour to the plant. va experiment with any, or all of these substuacces, ithuagh it be cven on a sinall scale, wouid test their valuc, as fenthisers on root crops.

Harvest tools may now le repaired,
harvest will have commenced by the $\mathbf{2 5 1 h}$. instant, we would recommend the read ${ }^{2}$ ers of this Journal to make a few etperiments, in order to ascertain the most proper period for cutting whont It has been asserted, by a number of \dot{f} the most clever Agricultural writors of the age, that it should bo cut se morn. as the berry has passed ita milky anto Solect out the most promioing pertion of your wheat crop for soed; and if thore should be any plants of cookle, chess, of any other nosious weed, they should be separated from the standing gran, thereby securing a pure sample for seed. That portion of the crop titended for seed should not be harvesfed until it be quite ripe.
I. you have any Canada thistles on your cstates, cut them close to the suriace of the ground, and apply a small quantity of salt to each plant, whech will tutally annihilate every one that is suljected to this treatment, Wald mustard, pigeon weed, or red root, ought nut to lo suffered to ripen ti ar seed. Crops containing such weed should be thoroughly cleaned of them, wut rogarding the duarage which may be sustained by the crop during the operation.

TO OUR SUBSCRIBERL.

The readers and friends of this Journal will, no doubt, bo surprised, when wo announce to them that the Editor lias removed to his farm, in Whit church, a distance of thenty-six miles from this city. There can be no ques. tion bat that this change will have a highly fivourable influence upon the character of the work, inasmuch as many of the suggestions and improvements recornmended to others will be practised by ils Editor and Compiler.

We wish it to be distinctly understood, that tho British Ancrican Culsivator is now, beyond a doubt, established; and that it will contunue to improve, both in mitter and appearance, until it exceeds, in intrinsic excellence, any Magazine of a similar description published on this Continent. So far as the accomplishment of this object is concerned, no effort ihall be spared, on the part of the Edtor, to render this Journal worthy the patronage of an enlightened and liberal public; and the hope is confidently entertamed that all those who appreciate the enterprize will extend their aid, and exert their influence with their neighbours and friends, to increase the circulation of this useful periodıcal.

In future, all orders and communications must be sent to the addres.i of the Publisher, Mr. John Eastrood, Junr., Toronto.

MARL.

But few of the Canadian farmers have any correct knowledge of the benefits that would result, were they liberally ta nse calcarinus manures, as a dressing upon their land. In many sections of the country, where lime would be most efficacious to the crops, the absence of the limestone-rock would prevent the use of this substance in a caustic state. A bountiful Providence has, however, so wisoly distributed His blessings, that, in many instances, in those sections of country where calcarious manures are most wanted, and the limestone-rock most scarce, there are inexhaustible mines or beds of carbonate of lime deposited, for tho use of man, in a state that requires no further preparation or expence for the land further than the labour attendant upon leading it to their fields.

As somo of our readers may fancy this, above all othors, a dry and dny ro-
fitable sulject, wo we ald embrace this opportunity to inform them, that, to us, it was equally so, until we were convinced of the necessity of obtaining a knowledge of the science, as well as the practice of Agriculture. Upon inquiry and experiment, wo found, that, in order to carry out farming operations successfully, it was absolutely necessary that lime, in some shape or other, should bo mixed with vegetable matior. After conșiderable study and observation, we came to the conclusion, that, in a large proportion of cases, where lime was mosi wanted, it was abundantly intermixed wibh the subsoil, whinh lies directly below the surface mould, and only requires the operation of deep pioughing oo give as ample a dressing of lime to the soil as could be given were the most expensive sorts used.
It is only within a few years past that chemistry has been brought so bear upon Agriculture, with any degrec of certainty or proflt: but since the food necessary for maturing plants and vegetables has been correctly ascertained, by men of science and deep research, the farming community would give evidence of their wisdom, by adopling such a method of farming operations as would secure to them large returns for the capital and skill employed.

To ascertain whether the subsoil contains any considerable amount of carbonate of lime, we would recommend, that, when the ploughing operations are being carried on, specimens of the subsoil should the dried, and reduced into a powdered state, after which it should be put into a state of solution with water, and if, upon the application of a small quantity of muriatic acid (or strong vinegar will answer nearly the same purpuse), it produces a state of effervescence, or formentation, it is a sure indication that the subsoil may be brought to the surface, by the operation of deep ploughing, with favourable results to the following crops, and with permanent advantage in improving tho texture of the soil.
It should, therefore, bo a matter worthy the closest attention of the intelligent cultivator, to ascertain whether the peculiar soil which he cultivates is based upon a stratum of calcarious earth, or whether both soil and subsoll is deficient in this essental substance. If both be deficient, it is obvious that it must be brought to the soil iy artificial means. The expense of procuring kila-burn tlime, for Agricul-
tural purposes, is so great, that it is oniy under very favourable circumstances that its use could be recommended. Thare are, however, hundreds of cases within our knowledge where lime might be brouglit into very profitable use.
So sanguine are wo that great and permanent benefits will ultimately accruo ic the Cunadian farmers from the use of Marl alone, that no opportunity shall bo lost, or trouble spared, in bringing the subject before the Λ gricultural community, in such a style as will, we irust, ensure their attention.
Marl is found in a varicty of combinatoons, but that which may be brought into most gencral use is to be found in a decayed fossil state, at the bottom of marshy grounds, in the neighboushood of small lakes and atagnan: ponds of water, and in the bottoms of ash and cedar swamps. The purest kinds have a soapylike appearance, and are very unctious to the feel; others appear like a mass of leached ashes, with the exception of the colour, which is most generally white. or cream-coloured. Let its colour be what it may, its richness, in lime, will be most readily ascertained by applying the acids previously recommended; and it should be remembered, that its value as a fertiliser chiefly consists in the calcareous particles that it confains. So little value has been placed upon this the best of all fertilisers, that a scose of instances have come under our own observatior. where farmers have extensive beds upon their estates, and have not known its worth sufficient to value this kind of property at a farthing per acre more, than If no such substances were upon it; wherens, if only a single experiment had been made, upon either wheat or grass lands, it would have added one hundred per cent, to the value or the property, in the eyes of every discriminating individual.

In a part of the country which we lately passed through, and in which there has been a failure in the wheat crops for the past few years, owing to the baneful influence of mildew or rust ; we discovered a bed of marl, covering an area of iwenty acres; which to all appearance averaged a depth of fifteen feet : the owner of the property, as well as the surrounding neighbours, were no: aware that the substance, which we call carbonate of lime, was of any practical use, furthor than that of making a whitewash for plastered walls, for which purpose it is in very extensive requisition. Upon analysis this
marl was found to contain about 80 per cont. of carbonate of lime, a purer, and more extensive bed is seldom found in any country. If the farmer in the sursounding neighbourhood could be influenced to use it, as a dressing upon their innd, at the rale of about 80 bushels per acre, it would increase, especially their wheat, grass, and pea crops, to an extent equal to 100 per cent ; and, in fact would prove an invaluable dressing upon the land for any description of crops. This substance, unlike manurd, only requites to be added to the suil once in ten or twelve years. It is a sure preventative ot rust, in asmuch as the lime it contains acte upon the silica in the soil, and dissolves itinto small particles, so that the soapressels of the plant can convey it to the ataik, thereby forming a hard outer surface, which prevents the vessels from bursting, It also acts mechanically upon the soil, correcting any acidity it may contain, and changing the stiffest clays into comparatively light loams.

In the South-Eastern States; where this substance las been lately brought into extensive use, the farmers in that quarter set so high a valuo upon marls, that they pay from 30 to 40 cents per load, and dtaw it a distance of six or eight miles, and spread it upon their land at the rate of 100 bushels per acre-nolwithstanding the high: price which it costs them, and the expense which they are aubject to tn many instances, in drawing il so great a distance; still, through its use alone, has the land in tho whole country been doubled in valuo within the past four years: and those who were anxious to dispose of their lands only a few years since, upon any terms, to emigrate to the Far-West, have become quite satisfied with their situation; and as a means of improving their circumstances, have resolved upon improving their lands through the liberal use of calcareous manures.

In the belief that similar efforts will produce similar effects here, we now, with much confidence, recommend the Canadian farmers to make an experiment with Marl.

For tha Cultirators

FOURTH RIDING OF •YORK AGRICULTURAL SOCIETY.
 Whitchurch, June, 1844.

The Fourth Riding of York, Agricultural Society, held their Annual Ploughing Match on Saturday, the 15th inst., in a field of Mr. Garden Birnie's, neat Newmarket. The weather was very plessant, the attendance good, and, the pro:
ceedings throughout of a pature calculated to have a lavouralle impression on the minds of those it uttendince.

The Ploughmen were divided into three Classes. The First Class open to all; the Second Class open to all under twen-ty-ono years of nge; and the 'lhird Class open to all persons under seventeen yenrs of age. There werd six Ploughmen in the First Class, four in the Secolid Clazs, and five in the Third Class,-ill ull, fif. teen.
Abput siaty percines were nllotted to anch Pioughman, which was required to be compleed in three hours. The size of the furrow slace was nine inches wide, by four inches decp. After the ploughing was completed, the Judges Messrs. George Playter, David Jackson, and Jumes Galloway, proceeded to examine the work, and awarded the prizes as follows, viz:-

FIRST CLASS:

1st Prize, £2 0 Francia Hood, King. 2nd Prize, 150 G. Pearson, Whitchurch 3rd Prize, 0150 G. Datis, Whitchurch.

sECOND CLAAS.

 2nd Prize, $i 50$ Clinger Willson, do. 3rd P:ıze, 0150 P. Degear, Whitchurch,

thied class.

1dt Prize, AS $0 \quad 0$ J. Hacking, Jr. Whitc'b. 2nd Prize, 1 1 500 M . Cuny, J_{r} Gwillb y E . 3rd Prise, 0150 W. Willaon, Wbitchurcn.
Mr. John B. Lundy, of the Second Class, would probably have received the second prize for his Class, but, unfortunately, he was taken itl when he had nearly finished his lot, and was obliged to leare the field: his work, as far as it was done, was second in the Class, and well merited a prize; but the regulations required the work to be completed, therefore the committee thought it would be establishing a dangerous precedent to award Mr. Lundy a prize, notwithstanding his illness.

When the Judess had finished their exammation, the Ploughmen a number of the members of the Society, and several other gentlemen present fepaired to Mr. Hewetts's Hotel, Newmarket, and partook of a gnod and substantial dinner, such as farmers are partial to, and one that did much credit to our hostess.

After despatching dinner, in about as good a style as the ploughmen exccuted their work, each tuok up the line of march for home, apparently highly gratified with the whole proceedings of the day ; and I trust, fully resolved to make still further progress in this most ancient, most useful, and most healthy employ: ment-an employment which conduces, more than any other, to the welfare of our country. I would just state, that the Ploughing was, all of it, woll executed; and was in the opinion of the Judges, seldom equalled, in the accuracy with with which the furrow slice was proportioned.
The lads of the Third Clacs deserve especial notice, and great credit for the skill hey. cvinced in the ir work; some of
them nearly equaling those in the older cla

Yours respecifully, Josefh Hantwan, Secretary.

Frour ihe Southern Pladtors

BRILLIANT WHITEWABH.

Many have heard of the briliiant stucco

whitewash on the eass of the President's houte at Wablington. The following is the tecipe for making it, wilh someadaitional improvementa:-
"Ti ite halfa bubbel of tice analicked lime, alack it with builing water, çovering it during the process to keep in the steam. Strain the liquid lirough a fine sieve or strainer, and add to it a peck of clean salt, previously well disaol ved in warm water; three pounds of ground rice, hoiled to a thon paste, and atirred in bo ling hot: hali n pound ol powdered Spanleh wblting, and a pound of clean glue, which bds beten pretioualy diesolved by Gret soaking it dell, and then hanging it oter a slow fire; in a small keille, within a large one filled with water. Add five gullona of hot water to the whole mixlure ; atir it well, and let it atand a few days covered from the ditt, It should be put on quise hot : for this purpoese it can be kept in a kittle on a portable furnace. It is alid that one pint of this mixture will cover a aquare yard upon the outside of in house if properly applied. Brushes more or less amall may be need, according th the neathese of the jub required. It answers as well an oil paint for wood, brick, or stone, and ia cheapet. It rataina ita brilhancy for many yearsa
"There is nothing of the kind that will compare with it, either for inside or ounaide walle. Coloring matter may be put in, and made of any shade you like. Qpanish brown atirred in will make red or pink more or lese deep, according to the quality, A delicate tinge of this is very pretty torinside walls. Fine pilverized common clay, well ninixed wath this Spanith browa before if is stirred into the mixture, makes a lilas color. Lampblack in modetate ylanica mates a slate color, very anitable for the ounide of buildinge. Lampblack and Spaniah brown mixed togethes procitice a reddiah atcne color. Yollow ochro surred in maket a yellow wash : but chrome goes further, and make a color gonerally esteemed prettiet. In all these etwes, the darknest of the shade will on course be determined by the quantity of coloring matter used. It is dificult to make a rule, because tantes are very different ; it would be beat 10 iry experiments on a stungle, and let it dry. I have been told lijat green must not be mixed with lime. The lime destroys the color. and the color ham an effert on the whitewah, which makeatit crack and peel.
" When walls have been badly smoked, and you wisb to bave them a rlean white, it is well to squecze indgto plentifully through a bag into the water you tise, before it is limed in the whole mixture.
"Ifa larger quantity than five galloas is wanted the same proportions should be observod."
This is the third or fourth tima thint; by partfcular request, we have published the above recipe, which we have no donbt in an excellent one.' But afier all, we beliave that white lead, bepecially at the low price at which it can be purchaised at present, is the best and moti eronomicil pigment that can beiused. At any rate, this is the experience of our Northern friends, who are proverbial for their economy and manugement. Thíy paint crery thing, except the ladies' cheeks;and that nature does for them in a manner tósurpäes even the purity of their beautifal cottages.

We intend to furnisb directionis for the mixing and laying on of white paint, so that every fatmer may become hie own panter. It is an operation much anuso smple ; itan to eneruliy inagincd.

MANURES.

A firgt mssay, bT g. h. DANA. Esction first.
Clearing and Breaking up, and Muthing Conzposh.
There is one thing sethed in termung, ststble manure never fath It ulways iths. Itwre hir no two wass about it. Thice iv lire wemters thenry, nor speculation, nor doubr, bur momiving "Aluck it well, master, and it will come ribu? is an old proverb. It ls comsutesed a fart as well eablished, that nobsdy thats of diapoating at There is alvantage in noktur why bare-jard manure never fails. The nartier is ensy. I, conains all that plants need for thergrowin. II wriknow then what plants comein, wo call eatils tell what is in manure. Tho whole dnetno of manures, then, falls into two plain pribcipley, on whirh hang all the law and the "profts" of ng riculture:-

1. I'ante contain and need certain substances
which are essential to their growh.
2 Manure contains all those substances, wheb planis want.
If, then, we find out what it is which manure containg, that makes plants grow, we must find nus what a grown plant contains. Tha cannot be done wlthout some Jitlo a very lutie hnowledgo of chemistry. Do not he starthed, reater, I fuppose that you may know nothing of chemestry, no, not even its terms. As a very senable man, who wroto letters on B tany to a joung lady, sald to encourage his pupil, it was pussibie tu be a rery good Botaniat without knowing one plant by name, so is it possule to becomergood agrizutural chemist, without knowng lhate more toan the chemical names of a vety fuw subatances You know nothing of chemistry it may be, nud an litule of law ; yet you will go to law, and learn eunne of its terms by a dear bought expertence The law terma are harder to Learn than the che mical terms. Nuw I fear that some prorsons, who have followed mo thus far will shut up the book. It is, way they, all stuff, book-farening, stand beyond us. If one may not understand what manure is without this learning, wo may as woll begin where our fathers ended, and thint was where oun forefathers began ages ngo. By a litte lail, howover, picked up as a juryman, or witness, selectmen, town clest, justice of the peace, jea, perhape, hearive an indictnent read, men como to understand what a lawyer means when loo valks. So too, by a litle chemical talk, a man may learn what a chomist means when he talks of oxygen, h)drogen; nitrogen, chlori - andcarbon; porath, soda, lifie, (ah, these are old friends, che very name makes us feal at home again, alumina, magnesia, iron, manganese, and silex, sulphur. and phosphorus. Here is a long list. Lorg as It is, perhaps it will bo thought worth learning. Whenyou aro told, that there are the names of all the aubstances found in plants, every substance
which they want. Out of these is made every which they want. Out of these is made every
plant. Every part of every plant, from the hyssup on the wall to the moumtain cednr, contains some or all of these. Bo not disheartened. Look over, read the list again carefuily ; szo how many are old names of things which you know. Of the fifteen you know nearly one balf by name and by nature: Theseare polash, soda, lime, magnealo,
fron, sulpher. Perhaps yon will add, that yas iron, sulpher. Perhass you will add, that yos
know carbon ls coal, or rather coal carben. You hive heatd from onme travelliog lecturer at your mwn Lyceum, that oxygen and hydrogen togothor Farm wator, Thatoxygon and nitrogen form the at wo broath; that iltrogen and bydrogen form ammen the ermolling botile. Booides the thing has bees caid so affan tbat you muat have heard th, thet ehlorime, the subutanot whioh bleaches in mater er Clulocloe is wnied to ammosio, sal am. atione amoog there fiftoen thingt, nature makise orery ching we figd in planta, Many of these are jovlible as is tho air. The substance calied chlorine, periapi you have never seon, but if you ever smelt is you will never forget it. It is ofied smalt ic a piece of bleacbed cotion, when opened in the shope. It gives the smell to bleacbing powothor diseases. If yuu ohould during cholera it would apo
$\left\lvert\, \begin{aligned} & \text { pear mesoly u faint yellowiah groen eif. It is all- } \\ & \text { powntul un regetation. As is forme a part of }\end{aligned}\right.$ powniful un refetative. As is forme a part of
common ash, say hulf of its weight, wo may dise inias tho further consideration of it, by seyink, That in some shapeor other, chlorino is univerasily difused in agh ond planis.

The line nheve may ba disided as frllows:-
 and thopata: 1 hirdit, the whaltes Fourthly, the

 halow, Ting nie soid to have nitholime penperties I'mphyon tonche with a bit wit quek lime, it has a
 power of combining with and tahang the sour out of all smala hinids or achl that is, the acid and the
 of Aratic urigin; ita sery namo shows one "f the noparties. "Kali," Is the Arabic word for bitter. nnd " nl." is lkin our word super, we say fine and anpulime ; so halh is bitter; alksh, auperlanve If hitter, or truly athali means, the dings of blt cerness I wislt, reader, for your own sike, ag
well as my own, hat yous should fix in your mind what I sadd about alkali and alkaline properties. thatl ian general term. It includes all those abbeances which have an arii in liko tho ley of wood asher, which you ues for soap-making. If thes ley is homed down dry, ynu know it forms potash Nay line fresh slacked, has the alkahro proparthes of potash, but weaker, and so has the calcimed ing geevia of the shops, but in less degiee than lime Here we havn trosubstancea, arthy in thom lawk, having nikaline properties Thing are ralted, therefore alhaline earths But "hat wo underutand cbunly by the torm alkalien, midana pomanh, anda, and anmonia. Potath is the ghthale of lond plames sedu is the alkali of spa plants; and ummons is the allalit of animal sub. atances. Potanh and suda are fixed, that is, not ensily raised in vapor by fire. Ammonia always exista as vapar unlest fixed by somothing else Hence ve haven distmerion among alkoles which is casily romeniered. Thig diatinction is founded on the source from which they are procured, and upon thrir naturo when beated. I'olash is vegeanble alknh, denved from land plants; soda is marthe alkain denved from sea plants; ammonia is arimal alkah, derived from animal substances l'orash and soda are ficed alkaltes; ammonia is a volatite athali Potash makes suft soap, with grease, and soda forms hard s?sp. Ammonia froms neibher hard nor soft; it makes, with oil, a kind of omment used torub a soar throat with, under the name of volatile litiemont. But though there bo these three alhalies, and two alkaline eartha, I want to fix in your miad, reader, thet they all linve common properties, called alkahne, and which will cnabto you 10 understand their nction, without more oid about their chrmistry. The inflammaties, or our fourth addition, are sulpher and phosphorus; both used in making friction matchers. The phoaphorus firar takes fire in rubbing, and this sets tho sulphur burning Now the smoke orraing from these is anly the sulphur and phosphorus united to the vital part of tho commonalr. This onmpound of vital air or oxygra, as it is called, and trhatemables, forms acids, ralled sulphuilo and phosphoric aclds. So if you burn casl, or cailon, is is well known you form ixed alt, or carboalc acid. This is, by berning, the coal or carbon unites with the oxygen or vital part of cominon alr, which arises from burniog now letus ses what these properties are. Allacids unte or combine rith the alkallos, alkine earibs, snd the metals. When acide and alkalies do thns unite, they each lose their distinguisking proper tles. Thay form a new subetanes, called a salt It is very important you should fix in your mind this definition of a sall. You are to confind your idee of a sale to conmon salc. Chat is a capital example of the whole class. It is sods, and alkali, united to an aeid, or cilorine, or to speak interms the most in aligibre, to muriatic acid. acqua-furis. Yet in saltpitro you yerceive neliher patauh nor aqua-furtis. Theso have usited, their characters are neutralized by each other. They have formed a neutral salc. Out list of suhatances found in phants is thus re
duced from things which you did not know, to
thinge which you so hnow; and so mo hare sared tho rrouble of loarning more of their chomistry.
We bave reduced the airy or volatilininto wates, fromed of oxycen and carbon-as the sulphuric, formed of oxyenen and phosphorum; and haverg dhus zot water at il acids, these unte with all itho aldaline, curlhy atal metalice beghes, and form - alf Turive job neve axamplea of thoso 1 mag mantion Gualmis alet and Epsomates, Glauwei's sute it lenmad of suda mad nutphurie acid; "hite vituol, of zhe and zulphurte netd; phates of paria, of lime and sulphurie achd, bonoe, of lime and phosphoric ncid; clatik and limeatone.
 pl- of ralls ; that in an aed, or a rubotance acting the part of an acid, unsted to an aldali, metal, of eath.
We hevo this gone over, in a very general way, nough of chemetry for any onoman to understaid the chemical nature of manure. Yua sen, reade, hat with common attention bestowed fornn evet In 's reading one nay learn these chenical arms and their meaning. And now, havinglearned thes first lesson, let us resiew the ground gone over, fix, once and for all, these lirst principles in our mands. Let us do this, us a practical npplication of the knowledge we have gained. Cei us ansIyzo a plant. Do not be startled at the word. To analyzo, menns to soparato a compound substance Into the several subitances which form lt. This may bo done by a very particular and minute, or by a moro general division. It may bo done for our present purpose, by separating the several aubstances of a plant into classes of compounds. You are already chemist enough to underta, o this modo of annlysis ; in truth you have already done it egain end agaill. For our purpose the ancents had u very grod division of all matter furo four elements. You are reader hough perhep; you do nit hnow it, semewhat of a practical chomist. Whenever you have burned a charcoal-pit, what did you 1 You seprated the wood into atr water, and earh.
You drove off by heat or fire the aity or rela. tile parts of the plant, you leftits cabbon, or coal; if gou had burne this, you would have left abhes. Now these ashes are earily parts of plants. If you burn a graen sticd of wood, you dijive off first its water and volatlle parts, which form soot. You burn its carbon, and leavo tis ashes or salt. So that by simply burning, sou reduce the subspance or ciements of flant to water, carbon, salts. All plants then without exception, contain the soveral substances in our list above, as water, carbon, and zalts. To apply this knowledge to manure, we must say a word on the form in which some of those, which we call the elements of plants exist in them. The sap is water; it holds diasolved in it somo salts of the plant. This sap or juice, forms a pretty large proportion of tho roota, say seventy five to egghty parts in one hundred, of potatoes, turnips, bpets, \&c. This may bocalled the water of vegetation. If we dry bect rook, ar any other plant, we merely drive off this water of vegctation. Now what have we left? To go bach to our process of anulysis, let us char the dricd root We drive off more water and vot inule parts. This water did not exist, as such, in the plant. It existed there as hydrogen and oxys gon gas. Now thit mord gas la a chemical torm, and it meana any gubstance in tavour, which cannot be condensed Into a liquid or solid, at common tem peratures. Different gasses may unito, and sobe4 comesolids or liquilds. Steam is not gas, for it is the vapor of waier, and lmmedinaly return to the state of water, bolow 212 degrees. Perfect ateam in invinolble, en art most gases. The air wo breath in composed of two gases, oxjgen and nitro gen. We do not seo them ; we cannot, by coolling or compression, mako air tako other shape than invisiblo air. This is the general property of gas, as diotinguishod from vapor or steam. Oxygen and Hydrogen, in planis exists in just the pruportions to form water, but we do not know that they are united in thee proporions. We have compelled Them to uolte, by heating the substance or root. Thocarbon is by this sune process consumed, and you know, has thas formed carbonic acid. Beaides this, a portion of tho carbon unites with some of dubydiogen of the plant. This forms lightinflammablo air. Now you may recollect this light, in flammable alr, in any stagnant walcr where planis are decaying. Decay gives eqnctly the same products, as performed in makuig ciarcoal. Decay
in only slow combustion, or burning i no mattor whether we char the plant or leavo it to decay, we obtin axatly the anme produote an wo dul by aur analyais, thas is carbun and atis.
Bnt becanse thase is not heat enougb, We bare hy docay! 2 portion of the Dydrogen and exyesn still uaited to the cosl. A slow monloriag fite leares products mare liko thase of doeay. Deeay ie a slow mouldesine firo, henoe the producta of thedey of plants, afe very apily umed mould. It is the product of a mouldering Are, that is an on impercoptible nnion of the osigen of the sir, with the carbon of the plant. A nnion ie slow, that is gives out neither bent nor light. And yet it is in its results. the same as If fise had actually beon scen and tht. Mnuld contains, then, epart of the car Loa, oxygen and hydrogen, or, if yon liko tho erane botter, mould and gonl consists of the of tho wateriand coal and salts of tho plants Mould istruly manure. If tho Mould of conl, so ithat thus beon defined, were separsted from ts: eariby portions of soil, it would deptive that noil of tho powes of zrowing crops, flero than, wo come to a broad distinction bot.. een ail and manurs. The soil is the earth on whinh plente grow. The mould is the manure of that poit. The soil is the oarthy ; the mould that is, the carbon and salte, togcther with the elemente of water, are the regetable part of arable land. Buthough the earthy part, the soll as it is usually onlied, octs as a eupport, on which plants erow, it does not play microly a mechanical part. It was a distinot, decidsd and important action upon the manure. Thisaction is chiefly chem. cal ; and the fact that soi's and manures do mu tually affoct the growing plant, is proved by the citcumstance, that the first plants which grow denvad their eqite from the earth.
But the chemical action of sonl does not belong to the prenent discussion. We can under tand what manures are, without deciding how they act. We can theorize and guess abousthe how of their action, when we havolearned what they are. That is chielly what tho farmer wants 0know. He wants to know what manure is, and what is likely to act as a manure. To these points we shall confine our prosent remarke. Pointing ovt the great pruncyiles, ap pheable to all manures, the nature of soils, and the mannor in which thoy affect manures, must bo left for another essay. The vegetable or moure part of soil alone, is now to ho const dered. Consider now, reader, the gecot results 10 whinh our analyeis has led us; that a slow. mouldoring fire gives us the same products as are formed by decay; that this is only a slow, mouldering fire, and that mould its product, is the netural manure of plants it follows, that whatover ubstance produces mould, that 18 , wator, carbon, and salte. may bo used metend of this natural nanure, Among tbosalis found in monld, sume are volatile, and aro easily discolved by water. Othors aro fixed, that is not craporating earily or not at all. and are quite insoluble in wntor. Now the firat, or volatile and woluble, first act when in manure. Thoy et quick, and are quickly done. Tho fixde ond insoluble ate slower, they last longer. The vo atiln net in the early slages of groveth, the fixed A the latior periods. The great differondo in to action of manures 'apends almosiontirely ipon the salts which they contan. These ate he most importatit a dideeential. It is not so moch the vegetable mulld of manure whish ynu yant, as the nsits whirh it contane. This a sellsethed principle. Land which has undershe the skinniag process, old, wornout, and an out land, sill contains a very large portion of vegetable matter: the conl or carbon of monld without ite saite. Give this wornomt and salis, and you may, by these alone hring it ark not only $t 0$ its virgin frosbness, but 3011 miy even by enats alone make at fater and richrthar it was befote man ever cultivated it.
Too much slress has been all nlong lnid unon ha kind of soll. Go now to "Flob;" in West Cambidge, no batter farms or farmp"s lunk the pand throngh. Ask any of these practienlimen. ahethor the sandy or grovelle soul of old Cunbridge Common, or even of Seckonk Plan, tan be made to bear an rich crops as their hand ? Hloy will t.ll yon vra. If yonr land will hold manure, muck it well, and it will boas goont.

Now, this holding of ajanure belongs to the aub. jeot of sul, and throwing that out of coneidera ion, it is found thet evon lands which de no hold manure, whish have ben worn out and exhauated by oropping, hold yat a great deal of nsoluble oonl of wood. They wint selis, and something whoh will make this inert, dead vezetablo matter of the soil, notiro. Tbe mould anstive in proportion, as it is moro or leas diecolvad by water. Mould cinstate or two parts: one 18 dintolved, though only in a blight decree, by weter: the oiber as not diasolvod by waser. Some enbstences, howeres, do render mould very casily dissolved by watcr. Henco if you rellect a moment on these facts it will be soen thet mould atself, being valuable in proportion to the ease with which water dissolves is, that whatover substanco so ensbles mould to dissolve, may be added to $i t$, and thas incroase its valuo. Now the things which do thes, are the alkalies, soda, patash nind ammonia. Tliese prineiples being well settled. wo may enter on the consdoration of each diffirent manure. They will ba valuablo in proportion to tho quantity and kind of ealts, ctech contnmes, added to the powor they may hare by producing thor decny, eubstances which make their mould somble. Now the last property, that is, the property of producing a substance which makes mould soluble, depends wholly upon the nitrogen of the manure. This nitrogen in the process of decay, becomes volatife nlkali or nommo nua. The word ammonta, will occur ko often in the present disenssinn, that we shonlt endenvour to fix eome definte iden to it. Yon need not, reader, bo nequainted wath all its chemical properties, I eupposo cvery man who will be likels to read these remarka, has smollod ammo ma. It has been alresdy said, that it gives the peculiar pungent smell to the conmon smelling botlle.
Thes is volatile ammonia. It is alwaye formed when ammal or vegotnbto bodies decny.
It has been already said, nnd is now repented in ordor that it may never be forgoten, the ammonin is formed by the umon of hydrngen and nitrogen. Hydrogen nad nitrogen, two aira, mitrogen forming four fifibs of the air wo breathe lat that beborne in mind, and witbont gonng into the chemistry of ammonia fur her, or the mede of calculating how much ammonia a pound of nitrogen will make, it may be loid down, and must be remembered too, that every pound of ntrogen must be called two and a half pounds of sal volatile, or smelling salis of the smelling bntile Two and a half pounds of volatilo ammonia formed from one pound of mitrogen. If then we can determine, as chpinistry may, how much mitrogen exists or forms n port of manure, two and a halt umes that will be the ammoma of that manuire. If then the vegetable part of mamure is as we sad. valurble and active, in proportion to the degrea of beng dissoled by water, then, as ammomn goves it thiseasy solnbility, we may zofuly sny, that the quantity of atsogen in manure, 18 tho measure of the vaue of us vegetablo part. One thing must bs guarded acainss not to placa from the viow the whole of the value of manuro upon ths ammoma [R- member that manure consist of carbon, waicr, and salts. The whole are equally essenial oats action. There is no ove, nor ear, nor oot, nor hond in manure, which may ray to the oher membes, "I bave no need of thee." tho whole act tigether; but it is not to be doubted, that ammonin is the heart of manure, and kecps up the healiny c.rculation among the other members."

Good Farmeng.-It may be laid down as a sianding rile. and ne a guide to direct our exprione, that all gnod farming, the wholo of that process by which bad land 28 to be converten into good, or land narurally good and productive is in be contunued in that sfate, is comprised in the threo following operations of husbandy. 1. T'o carry off all stingnant and supprfluous water by means of judicious diaimog. 2. To return lircugh the medum of manure, the Etrengit nod frtility wheh has heen extracted from the
land lyy roppi g. 3. To eradicate all noxions wreds, luat the stiength of the manure may be drown into the crope and not into the weed Ravolonces Remarlis on Lancashirc Furming.

From the Albas Culurates.

hay making.

We think it beat to cut grase for hays as rear ns possible to the time when ith in fot lost bloom. Of course if it it cut when most of it is In this ataie, coms may be Jltife pant, am some may not have quite rosched full blooms Wi know thero has therofure been aome differanee of opinion as to the stage grass should bo whan it in cut, but wo belleve the experience of the bex farmora is in ogreement with the ponition abovo nenumed. Those who are in the halift of curine heibs, cut thom when in this stage, becanse fit known that they contain at that time the moat of that peculiar principlo fiom which they derive thoir efficacy aud value. Ite saccharine of sugar principle, which conntintites one of the chidef eourcos of nutimeat in herboge, fo found in tho zrentoat quantity at the period of bloom. It may samelimes be expedient to cut grats befone it ha cuched this slate; particularly whero it fulla down, and is in danger of sourling or polting. When this hoppens, it should be cut, whatevar state it may lo in, berause if it rembins on tho ground it will spoil, and the fermentation whid takes place, will destroy the roote. Another gieat advantage in cutting grass before the sced forma is that the roots are not so much exbausted, and the after growth in much more vigorous.
In some parts of the country, it is the prectico to mow the grase and let it lie untouched on the ground, "thro' sunshine and shower," fur noveral days befure it is stacked or put in tho barn. It is quito cumman to begin Monday and conitinue in how till Salurday, when with hand-rakee and horsohorse, all turn in, take it up and a ack it ; and this is dono to0, without much regard to tha state of the weather at the time it la raked, or to what it may have been after it was cut. Tho apprarance of tho animale which are fed on hay thus managed, is evidence enough of its worthlessness.
After grass is cut and partly diied, it onglit never to be expused to daw or wet. The bort way ia to apread out the mexin grass evenly, as noon as the wot has dried off from the apaces betueen the swathee, and befure the dew falls in the evening, rake it ond put it in cock. Where the crop is heavy considerable time will be gained in making, by this plan. If it is only wilted whon it is put in cock, it will in a short cime undergo a stecut, which will much facilltate its making when it is again opened to tho sun. Many good farmers brlieve that it will make more in two days, if it is kept in cock twelve hours, than it will mako in three days wilhntit being put in cock.
In making clover hay, we are decidedly in favour of not exposing it much to the sun after it is first wilted. We epeak from experience, having practised various modes, and we are certain that it may be mado with leas lahour, and that it in of far superior quality when cured in cock, than in any other way When the swathes are a litils wiled, pitch them into cock--layingit up in *urls a manner tbat it will stand the weather, which is easily done by the exercise of a little care. Examine the hay from day to day to sec how the prscess of curing advances, and when it seems to be so well made that with what at will deg in hat dling, it will do to put in the barn or stack, tirn over the cocks, loonen up the bottoms a litto with a furk, and proceed to load it. Clover hay hus cured is not likely to heat in the mow or stack, and from having every leaf and head saved; will be found to be very nutricious end mich relished by all onimals. In fact; we beleve that clover hay properly cured, will make move flesh, milk, or buttor, than any other hay. pound for pound. The prejudice against clover hins arisen from the bad manner of curing it. Knocked about as it irequently-is, wet and dripd by turns, it lofes its leaves and lisads, and becomes fittle else than a mass of tasteless atems, which no animal will cat,

Looss of Time in Ploughing.- When ridges aro 78 yards in length, no less a sapace of time than 4 hours and 39 minates is apent in turnings in a journey of 8 hours, whereas when ridges are 274 yards long! I hour and 19 minute is sufficient in the same length of time.-Code of igriculture.

From the Albauy Cultivator,

CHEESE MAKING.

A subseriber who makes a large quan tity of cheeare, has requested to the ularmed luw some of the celebrated Eughish chicese is made. After having lioked over all the prin cipal papers on the rubject with in our reach. we have curcluded we cannot give the miormation sought, ia a better furm, uan by preepnting an extract fium the "Report of a Goucesarershite Vale Futm," puthithedby the - British Sucicty for the Diffuslon, ol Cs :tui Knowle, ${ }^{\text {Mes }}$, in the third volume of "Hushands.:" The occupant of the tarm is Mr. Drinkwater S. Hay ward, whoe mamagement generally, we thould thrik fivin the Report, fis of the hest character:-
Managencht of the Dairy.- It ts arknowledged liy evcry one at all acquanted with the subject, that the quality of cheese does not depend ungon the superfor richuess of the sail or the fineness of the herbage; for checse of the first quality is oltien made from land of luferion desoription, and fram heibage of a coarce na1ure. Nor looe the quality of the oheese depend on the breed of the cows, for cheese of the beat quatisy is madelrem the malk of cows of all the different breeds in the country; we think it principally depends on the manageof the cows as to their lood, \&c. of the milk in converung it into cheese, and ol the cheese, till it is fit for market.
The tollow:ng circumstances are injurions to the quality of checes: allowing the cows 10 get rank or ill flavoured grasa or hav, these conveying a had flavour to the milk and cheese; allowing the cows to run and heat themselves; driving them far to be milked, which makes the milk froth much in milking; carrymg the nulk from the place of mulkug to the dairy ; and allowing the malk to rem ut long afier it is mithed, before it is set with the reniret.

The greatent dependence is upon the darry maid: and the chic! art of mahniter cheese of the Ginest qualty, lies it her management. The superintendence of the dary nvarably devolves upin the farmer's wife. MIs. $\mathrm{HI}_{\text {is }}$ Ward allends to every minute circumstance in this dejpartment, and the following is a re poot of the information she has obligingly furhisherd respecting the whole economy of the dairy of this farm:-
The management of a dary should be conducted with the areateat re fularity. Ever; operation should beperformed precisely at the proper timae, Euther lastening or delayng the execution ol it, will uause chicese of an in'erior quality to be made ol mulk from which the hest may be obtained. A dauy maid is eciected for sk ll, cleauliness, and otrict attention to her businese. Her wask commences at four 0° clock in the mornmg, and cont.nate Without intermission till bed tiane.
The dairy house should be kept at a temperature of belween 50 and 60 degrees; and tiedryer it is, the better, as buth the milk and cream reain ther sweetness much longer il a dry chan in a damp air. Every tume therefore, the dairy is washed, it is dreed ae qui :kly ae possible,
The milkings should be as near as poesible at equal divisons of the day, commenpme at abjut four o'olock in the morning and thre in the afiernoon The milking should be finithed in an hour. The darry mabl sees that the nulkera do therr duty, and utat all the cows are milked clean; for the milk that cones last is riaheat and besides, it the cowe are not clean milked, there will be a gradual dununtion of the milk, perceptible datly; for these reisons, the grea'est care is tuken illat the cows are clean milied.
The checes tuh heing put in its p'acs in the diary, the latder in put across it, und a large thin panvaes cloth rovers the whole tub and ladder,fy catch any of the milk that may droj Ir th the pail, and to prevent dirt from falling into the tub. Atrova this, and upon the laif der, is placed a hair cloth sieve, thongh
which the mulk is miratued. Ir he mik should not be of the temperature of 85 .ieg, ces, a por-
tion of it is put into a deep lin kept for the purpose, and placed in a furnace of hot water in the wash house, by which means the whole is warmed to the propar degree. It 19 of the utmost moment to nitend to this. for if the milk is not wifrm enough when the rennet is put into th, the cheese will be 'tender.' and will bulge vut in tho edge, which spoils its appearance, and a great quanity of sediment of
smaill curd will be fonnd in the whey, which smatl curd will be found in the whey, which
is much of the curd lost. If, on the other hand, the milk is too warm, it will cause the chese to heave' or ferment, which injures both its appearance and quality. When the ruilk 18 sulficiently warm, the culuuring mat ter, (if any is used) and the rennet are put into it, afier whach, the tub is covered with a woolen cloth for at least an liour. lenuet or runnet is made from the stomaches of calves herecalled 'vells.' Are. Hayward never uses them till they are twelve montha old; for il they are not old, the rennet made trom them causes the chcese to 'heave' and become fuli of 'cyes' or holea. She prepares the renne from them by adding to every six velle, two tallone of brine and two lemons. The lemon do away with any disagreeable smell, and give the rennet sweetness and ngreeable flavour. Twenty or thirty gallous of it are made at a time, as it islound to be much better when mado in large quantities. Is should never be uped till it has stood for at least two monthe
When the curd is sufficiently firm for break ing, it is gently and slowly cut with a three bladed knife down to the boitom of the tub (the knife being about lourteen inches long, borh waje, or at roght angles and around the sides of the tub. The cuts should be about an inch apart. When it has stood five or ten minutes, to allow it to sink a litile, and the whey to come out as clear as possible, some of the whey is dippod out of it with a bowl, and the curd is cut a second time with the ihrec bladed knife, very slowly to begrin with; for of the cutting is done hurriedly, a great guan Ity of sedunent of very small cuid wili pas through the sevve and be found in the whey, and there will also be an increase in the quan uty of whey butter, which should have been in the cheerc. and the value of the butter thus obtatned will not compensate for the los: of credit the cheese will sustain from the abstraction of the butter from it. The cutimg beng therefore performed very slowly anfirst and with the strokes of the knife at consider able distances Irom each other, is graduxily quackened, and the strokes are taken neare and nearer every time. At last,one hand, with the skimming dish, keeps the whole in motion curning up the lomps suanended in the whey while the other, with the knite, is in coustan motion, cuttug ihem as small as possble; and this operation is continued itl to more lamps re hrught to the surface, and the whole mas as reduged to one degree ol fineness. Thi process may vocppy a quarter of an hour.
The curd is new allpwed to stand a quarter of an hour, and behg tquo sufficienlly eetled the whey is taten from it with ihe howl, and noured through a very fine hair eeve, placed over the whiry leade. When the greatest part of the whey has been separated from it tha dary maid, folding over a portion of il,and begnning at one corner. goes around the tub cutting the curd into lumps, and laying them un the primenal mase, by suluch operation the mass is carried all round the tuh, and most of he remaming whey escapes between the cut Iraginents as they lie and press upon cach other. From thme to time the whey is take from the lub, and put through the setve into the whey leads,
The curd is then cut into vi's (hroops) and piesed down will) the hands; the vais beng covered with cheese rloths about one yard and a quarter long of finc canvass, are placed is the presis for haif an hour, when they are takenout and the curd cut moto than shices, and put into a mill fixed on the top of the tub, which tears it into very small crumhsas smali as vetches. This mill, which is ul Mr. Hay ward'e sonstruction, is a great iniprovement II the makin' of checse, not only as it saves he dairy maid the mget laborious part of the procest, that of equ ezing and rabbing the
curd into small crumbs with her hande, butns it allows the fat to remain in the cheese which he hands equecze out.
In its pulverized state it is customary with muet dairy maids to ecald the curd with liut whey; but Mro. Hayward considers checese richer when made without scalding the brokencird, this washung the lit uut of it. She, dierelure, without scalding it, puss it mio the vatsand presess it clusely together with the hand in filling them. In nakum the double Gloucester cheere, particular care is taken 10 aress any remammer whey from the curil as the vata are bemg filled, and they are flled as compactly as ca:s be done with the hani, being rounled up in the mudlle, but just fo much so that lie wholo can lie presed into the vate. Cheere cloths ate then apread into the vais, and a litte liot water is thrown over the rheese clothe, which iends to harden the outside of the cheese and prevent it lrom cracking. I'he curd is now turned out of the vals into the clothy, and the vats being dipped in the whey to wash away any ci umbs or curd that may cling to them, the cord is inve.t. ed, and with the cloth around it, is again put into them. The cloths are then folded over and tucked in, and the vats, as they are filled, are put into the press one upon another. The bottoms of the vats are smooth and a little rounded so as to ansuser the puspose ol cheefe boards, which, therefore, are only wanted for the uppermost vate, or when the other vate are not quite (ull. The vate are allowed to remain under the press about two hours, when they are taken out and dry cloths are applied, which with double Gloucester cheeres, should be repeated some time in the day.
Salting, and Salling Presses.-T he vats,when the clean clothe are given, as just mentioned, are changed from the single prexs to the ono next to it, anil placed in it, one upon another, as before. They reman in this press till the cheeses aresalted, when those made in the evening, take the place in the prese of thore made n the mornmis, and those manu in the evening, are in their turn dieplaced by thosa made the tollowing mornug; the cheercs of the last making, being always placed lowest in the press, and those of the other makinga, rising in it according to the prioriy of making. [From this, we infer that a beam gress is used, into which several cheeses may he put at once, the older ones which require the greatest preseure being put riearest the lilcrum.] Thes order salss ohserved in the orlier wo areases, the last, or newest mating in caoh, heing lowest, and cach mahing hireug d.extabove It that which was made last The cheeses pass thr urh the three prespes in this order, advancing a step in their prow gress at earh 'meal or makug, till, at last, in four or five days, they come out o! the presses and are put on the shelves. They are generally salted at the end ot twenty four hours after they are made, thoush thes is done by some at the end of twelve hours. Tho calung shouhd never be begru, till the skin is all clued, for tf there be any crack in the shia of the checes at the lime of salting, it will never close afterwards. The ealting is performed by rubbung y ith the hand bath the andea and the edge of the cheese with fluely irowlered salt. The ch.eeze, alier this, is returned to the vats and put under the press, care bemp always taken according to what has been ead, to put the newest cheese lowest in the press, and the oldest uppermost. The saltug is rereated three times with the single
and four times with the double Glouccster and foly times with the double Gloucester
uventy four hours being allowed to intervene between cach saltung. After the eecond faltmp, the pheeses are returned to the vals without the plothe, that the marks of the cloth may be entirely cflaced, and the cheese may get a smoothness of surface and keenness of edge, which is a peculariy of Gloucesterahre chcere. The ,louble Gloucester remanh in the presacs five days, and tho single, four; but in damp wealier, they should reman longer, The quantity of ealt gener. ally ueed is about tiree peundsand a halif to a hundred weight of cheese. I'ie size of the double Gloucester checses is commonly ahout five to the humbed, or twemts pounde oach,
and that of the single, nhout eight to the lumbred, or twelve and a hall pounds cach.
The Cheese Room.-When tho cheeses are tuken from the eatting preses, they are put on the shell in the dairy for a day or livo, where they are turned ouce in tuelve hours. They are then taken to the cheese lof to make way for the nevvones. In the cheese room either on the fluor or on the "cliecec rach, they are turned once every diny, nod in en' eral, in a month from the time they were taken out ol the vat, they are readvfor clean ing, which is done by ecraping them with a commcn knife. The cheese, if intended lor the London market, as is generally the cuse. is rubbed, after being cleaned, with a paini of Indian red or Spanish brown, ar a mixu ure of both and small beer. It is rubhed on with a woollen cloth. Alfer being painted, it is turned over twice a week, and ofiener if the weather is damp; and as enon as lhe state of the paint will permit, the edge of the rheese and aboul ant inch ol each side, is rubbed hard with a cloth, at least once a wreb.

Characteristics of the true Gloucester.-The marks of. True Gluucester cheeses, are 'the blue coat which arises through the paiat on their sides, and which is a sure sign of their richners atd sweetness ; the yellow, golden huc of ther edges, a emooth, cluse and waxfike terture; a very mild and rich flavor, wot crumblug when cut into thin elicep, nor parti'g when toisten, with tho ouly matler they contain, but euflening, wathuut buaniug. If cheese has been eoured in the making either from heing soo lung in hand, or fron want of nttenton in scalding the utensils, nothang will eavee it to assume the blue cuat If the curd is salted when grounillown before being put into the vate, has the effect of giving a chin to eatch of theparticles of curd it comen incontart with, which prevents ibem from intimately uniting; and although the curd may be preaed together and make good clicere, yet it never hcuomes a smonth, close, solid natss, like that which is salted after it is made; butis of a lonse texture, and crumblea when cut ; and a'though it may be equally fat, jet in todstlug, the fat melts out of it, and the cheesy part hurns. The skin of the cheese, too, to not tough and solid, but hard and britule, and when examused, seems to be furmed ol mauy arregular portions.

From the Boston Cultivator.

DESTROYING LICE ON

CATTLE.

Messes Eililors:-About a year ago if I righty rumember, I read in your paper an articla on the incans of destruying these truablesome insects. by npplying a mixiure of lune and ashes to the floor on which the catle etauds and rests. My catle dunbtess like all others. have ever been more or less infested with this hateful apecies of verman. I lave tricd variuus expedienis for theit extermanation, such as Scotch, or yellow snuff, lard, decoction of tohace $0, \& c$., none of which have ever proved sufficiently adequate to effect the olyect intender.
Last foll when my catlle came to the barn, 1 resolved upon trying lime $\&$ ashes, as prever. tative of lice amongat them. Accord ngly 1 mixed them in about equal quaniues, ond spread them upon my suble floors; directly under my catile's fure feet. When what I had applied at first was exhausted, I then mado another application of the mixture, and so contunued to do daring the winter.
As to the effect this practice has had in preventing lice amangst my catule, I now candidly atate that they wero never more free from them, than they are this spring.
I will mention one fact in confirmation of the uulity of thes application for deatroying lice.

In Febuary last I purchased a parr of four vear old cattle that were exceedungly lousy. I was parucuinr to krep the floor very well strewed wilh these ligicdisnts, and upon examnng

Hiem sercral wecks afier. I could nit discover a solitary individual of the numerous hont remaining.
The lime of which I made une, hand linin open to the action of the atmorphere until it was reduced to a powder, or nearly so, befne using.
M.

motrontale rimakk.

The above seems to bo a very simple and effectual remedy, and u may be pracused without the lenat injury to the catile, which tanot the case with some remedics ured, such as mercurinl oiniments, a decoction of tobacco, oil, \&c. In cold weather of bas a bad offect, as It keeps the linde moist for along tume, readily conducung off the animal heat and producing a chill. As vermin aro so darruciuse to the pence, comiont, and tbrift of catic, no pans should be spared ill gyarding against them, and applying a semedy wherever they make their appearance.

REMEDIES FOR DISEASES.

 UF CATTLE.Sting of the Adler, or Slow-worm.Apply immediately atrong spuits of harchioin. For atung of beca, epply chalk or whitening mixed widh vinegar.
To tahe Filin from a ITorsc's Lye-Blow lonf sugar and a hate salt into the inflatiod pye, and ir. most cases it will be relieved. Sassufras buty pounded, and put in water, to atand till it bre men nearly as thich as cream, applied to the eyc, is an oxcellent remedy for it, $\mathrm{h}_{\text {tmmation }}$ n.
Tu reliere Colic in Horses.-Rub epirits of turpenune on the brest of the lorse ; and if he be drenclied with is ho will bo reliceved. Horsen should never to pus to severe waik on a fuil so nach, more horses are hurt by hatd drivine after a fult teed, than by a full fred after harddriv ing -Enghash Farners' Journal.
Redizaler.- Bieed first, and then give a dose of 1 lb . Epsom salts, and a half pound dose rrpeated uvery eleght houis, until tho bowela aro octed upon. In Himpstiro they give $4, z$ of spirts of curpen tine in a pint of gruel. Blackwater is the conclud ing and commonly fatul stage of redwater.
Cleansing Drinh -1 oz. of basberry powdered, $10 z$ of b i.nstone poudered, 1,2 . of cummin seed pou ered, 1 oz. of diapente; buil theye tegether fur ion minuter. Give when cold in a gruel.

Colic - The best remedy is one pint of linsced 0il, maxed with his oz. of laudarium.
A good cordial is 1 oz . of carraway seed, 1 uz . annis secd, \ddagger uz of ginger puwdered, 2 oz. fericegreek serd powdered. Boul these in a pint and a half of beer for ten minutes, and admmaster when cold.
Diarrhca.-Give \ddagger oz of piwilared earet.echu and 10 grains of puwiterel opium, in a litleg gruel Dysentery - The same as fur datricia.
Fcrer-Bleed: and then, if tha bowe's are - o stipated, give balf a pound of Eprons salis in 3 ato of water daly, in guvel.
Hoorc or Horen.-Usa the elss ic tube. As a proventuve, Iel them be well suppled with commen ealt, and seatrained from saphd leeding when first turned to grans.

Mange.-Half a pnund of block brimstone, $\frac{d}{d}$ pint of turpentine, 1 fint of trant oil ; mix them cogether, and rub the mixture well in ovet the affected parts.

Dilh fercr or Garget.-2 oz, brimstone, 9 oz diaperte, 1 czo cummin seed powdered, 1 oz powdered nure. Giso this dally in a intilo gruel, and nell rub the udder with a liule goose grease.
Murrain.-Half a pound ralk, 2 nz bruised coriander seed, 1 uz of gentian powdered, Give theso in zome water.

Poisons awallowed ty oxen are commonly the yow, the water drupuorth, and the cummon and atio water hemluck, 1 pint and a half uf linseed oil is tho best remedy,

Sprains.-Embrocation: 1 oz ofsueat wil, 4 . 2 of spinte of hartshorn, Fur the sting of becsapply

Horms-Dots.-Give half a pound Epsom nalta rith 2 ox. cotiander ased, bruicod, in a quart of water.

BOTS IN HORSES.

вY Joнk surejkr.

To the Silitors of the Prairic Farmer:
I send you a valuable recipe for the curo of bots in horses. I hato uied the preseription and scen it used in several cases, and with the bost success in crery case:-

Toke a piece of tin, say six inchea loqg and twa inches wide; punch one end full of small holes. the a grater; turn up tho uppertipof the animal's mouth, and scarify it well with this grater; then take gunpowder, wheat flour, and ant, in equal quancitice-say of each a tabloupoonful-and milx them togethor; then take some in your hand and rub it on the scarafied Ip Hub herd, frequently taking the mixture on jour hand, and continue the rubbing forfifteen minutes ; in fiftern minutes mor* the animal will go to eating, if the remedy is not applied too late. Iately I have heard it atated that salipetio brine will destroy a live bot 200 net than any other liquid medicine. Let the lacredx luatry it.

Oak Dale Farm, Iowa

April, 1844

To the Editors of the Prairic Firmer:

I herewith send you some items ex-racted from ume to amo from the Londom Magnet, Beirs Weehly Mensenger, tho Weekty Desputch, the Chelmsford Clironicle, andiths Noi which Mercury, which I hope jou wall find interosting for ynur readers.

Yours, \&c.
Jacarive.

CURCULIO.

Mr. John G. Kentick, of Newtown, in the mngnaine of Horticulture. gives the following remedy for the curculio. Wa observad that Mr. - exhibited at the Horticultural Rooms, very fine plumbe lat seaton:-
"Having heard salt recommended, as a protecrion againat the curculio, I concladed to tnake a trial of alt lye, having a quantity at command. The yatd contains aboni one eight of an acre, in wh.ch I lave about one hundred trees. In the spring. I had about two loade of meadös tnud, well saturated with lye, evenly sproad and spaded" in. (The year previous abouc the same quanity of dock niud was applied in the sance way.) About the first of une, i put in a load of about five hogsheade (salt lye) in addition, pomring is from a large watering pot, about two common sized pailstul to each trec, saturating the whole ground in the gard; and so powerful nas. the applicaition that there was nota weed to be found the height of two inches curing the teanoll: every irea bore well, and many of them were ω. completely loaded wah frait, that. 1, ras obliged to stake shem to prevent their Ireaking down. Chere were a very few curclious which feund therr way up the trees, but not a toontieth part enough to thin out the fruit as they ought to have been, which prevented their attaining the ave they otherwine would have done."

Soaking Corn in IIuriatcof Ammonia.

 -Dr. Sumual Webber gives an account in the New England Farmer of several experiments which ho mide last season with muriate of ammonia. He dissolved a mall pirce of the common sal amo moniac of the druggists, estimated it faur or five graing, in about half a coffeceup of water, and threw into the solutation a handful of corn, whiche ufer having remained four or five thours, was planted Ho planted this soaked corn in hilli, sido by vide with that which was not sosked. He murio four differert experimenta, which are reported in considerable dewil. In all cases, the sonked soed produced considerably the best yield-penerally at. least one-third raore. The land maslight and dry, and for several of the experimeote be purposely rook the poorer apots. The corn suffred with droushis but in all casen that from the samio.d -eed munifeated a deadéd suporiority; so müch, indeed, that it was notiord by pitangers, whas. knew of no difference in the seed.(Cominmed from tho Juns Niwher)
an sast methud uf maraging bees. IN THE MOST profitable manner ta their awner.
The above is the tith ofa neatly priated manual. which was lately presented to u4 liog Mr. Divi, Leflar, of Churchillie, Home Diatrict. Sir. I, informs us that he has followed ant In dotail the directions of the author, and his cffurts have been erawned with auccest.

1f the Cnnadian farmers would turn their attention largely to tho management of Bees, the article of bosey would yery shartly become a apnoiderable liem on our llst of exports to Engehad. Immense quantilies of toney is imported yeaply into the Mother Country from Holland and aher eentinental countries, all of which might bo eapplised from this country if the people would only -

mete 2.

All gresh atoeks sec are infested whith the moth, -ul manfort it so soon as warm weather com. ameas in the spring, by dropping some of the werme upon the hottom bourd. Lat the apiarian veen off the bottom board every other morning:
Wh ibe same time atrew on a tpoon full or two of frech, pulverised sulf.

Immediatoly afler a second awarm has come Borth frow a hive, the same netson, the old steck shomid be eximanined ; and if a warming has reduced utpir numbers so luw as to leave unocsuphed combs, the apiarian should take the Queens from the omarm, and let them return to the old atock.

Third and fourth swarms should always have their queens taken from cham and the bees returned to the pereat stock.

Remarks. --' This insect (the moth) is a native
of Europe; but has found its way into this coun-
try, and neturalized itcelf here." - Thatche $r_{\text {. }}$.
This onwolcome visitor has interested the attension and oalled forth all the energies of the most experienced apiariane of our country, and of many of the greatest naturatiate in the world. Their movementi have been olaseryed and acrutinized by vartoue experiments have been tried to prevent their dopredatione ; but, after all, the monster in gandy bue marchea onward, commiting the Greatent bavoc and devastation, whib but llitlo
molvetation. I have loat my whole atock at least molatation. I have lost my whole atock at least I tried all the experiments recommended in this and ocher ceuntries, that come to my knowledge; but, after all, I could not prevent their ravages.

In 1830, I constructed a bive (whleh was preated is 1836) which I supposed would afford all the fadlities for managing bees in every manner
that thoir naturo would admit of, and at the same vime render thosir cultivation most profitablo to shole owner. By constructing windows of glass, on every side of the hlve, nearly the site of tis sides, and darkening thetr by ciosing doors on the cittide of the wisdows, which may be opened at plonaure, I bave been able to diacover many impor-
rame facts, both in relation to the nature and economy of the boe, and ite onemy the moth; but, probebly, much yet remalus to he learned concernang both.
The moth, when frst disoovered hy the common obeerver, is a whits worm or maggot, with a sediath orvated hoed, and rarios in aize according 20 its living Thafe which bava full and unmo-
leated acooss to the contents of a hive, will freequatly graw ea large as a turkey-quill, and an inch and a half in loagth. Ochers are scarcely an inch In length whon full grown. They have sixteen ebort loge, and taper each way from the centre of thoir bodion

The werms, like the ailk-worm, wind thereselves iato a copocop; and pease tho dormant (chrysalis) stack of retr exiatence, and in a few dags come out féthefotiken casea perfect winged insecte or nilitraged are soon ready to deposit their ogge, inan thoh anecher crop will be raised.
nén millor or perfeot moth, is of a grayish color, fran thren-fourtio of an inch 10 an Inch in length. Thes weually lie perfectly still in the day dime,
whed th Ir head duwnwards, hakiog in nal nhowid the apinty Thny riter the lifve in the night, and dapoalt thole rgege in such plares na are uncovered hof course ungarded by the been. These cege stancen, prohably from tho or chree days to fout or fivn months At no carly staze of their cela. sempe whineseta a amall no m, they apin ans h, ntal cometruct a sthen format, or firiteve, in "herli they rnvelope themselves, and form a sort of path, or galley, as they pass ouwatd in their march; at the samo aime being perfectly sectre from tho bees In their silken coae, which they widen on thoy grow larger, with an opening in their front onls. near their licad, they commit the greateat linvoe and devalation on the rgas, young beca, and all that come in their wayas they pass.
When the moth has arrived to his full state of maturity, ho makes preparation to chango 10 a miller, by minding into acocoon, ss has been alroedy explained. The miller is surpriaingly quick in all its movemente, exoceding by far the agility of the quickest bee, either in Might or on lis lego. Hence the enemy becomes 10 formidable thit the beas are easlly overcome, ard won fall a sure prey to him.
Now, in order to rements the evils of the moths, and prevent their ravages, and at the enme time ald tho been in their prosperity, and mako them prefitable to their ouner, I found it neceseary to use a hive difforing materially from the old hox, and commenced operations in the ono already referred to, (called the Vermont Hive.) in a course of experiments which have produced resula perfectly satisfactory. From 9 seasons' experience in ite uno, I have not the least doubt that bees may be maneged to the best advantage, and without ever being materially injured by the moths.

A bee-hive should be made in a perfectly work. manlike manner, so as to have no open joints ; the boards should be free from shakes and crarks because the bees will maho their tenement perfectly tight, so as to exelude light and air, by plastering ip all such places as are lefi open by the work man, with a kind of mortar, of glue, of their own make, wheh is nelther honey nor wax, but is very concenial to the growth of worms, in the first stages of their larva state, and being secured from the bees by the timber, in a short tume they aro eolo to defend themselves by e silken shroud.
Now the miller enters the hive and makes an incision into the bee-glue, or cement, wath hes sting, and leaves her eggs "These esgs hatch ihere, and the broed aubsist on the glue until they have arrived so far towards maturity ss to enablo chem to encase chemselves in a suken shroud; and then they move onward.
Now, unless tho bees chance to catch him by the collor, or nape of his neck, while feeding, and drag him out of his place of concealment, they wilt be comptlled :o cat away the combs atl around his silken path, or gallery and drag out the worm and his fortress oll wogher. At ate same time. the bees are compelled to cut away the comba so far as to destroy many of their young broods in making room to remove tha annoyance. I have known them to cut away there combs from four to eight or ten inches to remuve this silken shroud, and have known them to cut and drag out their only remaining Queen befose she was transformed to a perfect fly, which occasioned the entire loss of the whole coleny.
Repeated experiments have demonstrated the fact, that placing bees on tho ground, or lagh in the air, is no security agninat the moths. I have lost s tne of my best storks by placing them on the ground, when those on the bonch were not njured by them. I have made a groove in the bottom board, much wider than the thickness of the boards to the hivo, and filled the same wutu loam. I then placed the hive on the same, in euch a manner as to provent any crack or vacancy for the worms ; and yet in raising tho bive four weeks afterwards, 1 found them apparently full grown all around the
hiva in the dirt. I hava found them very plentiful in a tree ninety freet from the ground.
The best method, in common vractice, to prevent the depredations of the moth, is, to suapend the bottom board so far below the lower edge of the hive as to give the bees free entranco and egresu all around the same dusing tho moth season, or to ratse the commoa hive, by placing under it little
blucks at ench corner, whith produers good efrech. But I know of but one rule, which is in Infnlilible one, to pervent their depredations, and that fo ihit: geep thin combs well guarded by bees. See Rule 10, and temarks on 12.
Large hwes that never awarm, are never dootrose i by tho moth, unless they tome their Queen, areft down or mert whth some ansuality, out of the odinary cuurse of managing thein. They are nat arten in the leas anunged by them, unless there ate bad joints, cracks, or shokes, no as to mord sume luiking places for the worms. The reason for thair prosperous condition is obvious. The stock of luces are so numerous that their combere all kept well guarded during the moth senson, wo Wat no milier can enter and deposit her offe.
Hives nade sn small te to awarm, are lieble ta reduco their colonles so amall na to kave curns ungardod, especially when they awarm three e four times the same spason. All swarme, afier then first, anlly forth to evold the batile of the Queese: conatantly making a greater draft, in propertion to the number lefh until the oombe are parts enpondy Which giret the miller fres acoese to the edpen The ceeds of rapline and plander are thivequaldily cown, and soon vegetne, and fortify themselios by thetr silisen fortress, before the hees are aware that their fronifiers ato invaded. While the moshe are thus angaged in catablising their poat, on the frontiers of the bees, the lattor are comatantly and indefatigably engaged in providing themeelves with another Queen, to supply the place of the old one, which has departed with a awarm, and raining young bees to replenish their reduced colony. Now as the moths lave got possestion of the ground on their frontiers, it requires a tremendous effort on the payt of the bees to nave their little colony from a complete overthrow.

If late, or second and third swarms ase alwaye returned immediately, according to the rule, the combs arekept so guarded the muths ale compelled to keep their distance, or be atung to death befure they can accomplish their porposes.
Hives made so large as not toewarm may lone heir Queen, and then they will absndon their habitation and emigrate into the adjoining hive, leaving all theirstores on their owner, which. unlesa immediately taken caro of, tho mothen will not fail to detroy.
The moths arcoften complained of when tbey are not guilly. Hives aro frequently abandoned hy t'cir occupants, in conwquence of the lose of heir Quren, unnoticed by any observer, and befure anything is known of eheir fate, ths bive ia destituto of bues, and filled with moths.
In the , nmmer of 1804 , one of my neighbora hat a very large hive that never swarmed, whleh lost their gueen; and in the course of a fow days tho bers entirely vacated their tenement, and emigrated into an adjoining bive, leaving the whole of their stores, which amounted to 515 lbs , of honey in the comb. No young beet or mothe wero discovered in the hive. Inatances of this kind frequently occur, and the true cause is wiz known, from inattention.
The Queen is much more tenacious of lifotben any oher bee, and may live much longer. It is belioved that the common bees do nos often live to exceed 18 months. The Queen is supposed to Ive several years. By cluping one wing of a Queen accompanying a zecond swarm, the has heen known to come out with the firct ewarme for seviral successive years. But ane Queen exiata in the same hivo any great length of time. When there are more than one, the peculiar sound of parh, as explained in remarka on Rule 2, is heard by the other, which ustally results in a battlo bewaen them, or the issue of a swarm in the courso of a day or two, unless the awarming reazon fif uearly at a close, then the common bees sometimed smuther them as explained in romarks on Rulo 2,
Beas, when placed in a dark room in the upper part of the house, or some out-house, are eadily sept (not cuhtivated) a while, and may be of some benefit to thoir owner; but as they are liable to most of the casualties that swarming hives are, they cannot be as profiable. It takes several yeers before much comfort, other than the amusen ment of seeing them work, csn be realized; besidew if they chance to encape the moth, the combare rondered excending dark coloured and filuhy where the bees locate in the winter ; and a disagresoble
mell, which is caused by their winter breath and other exhalations, is the rosuls. In a lew sears the bees aequiro habite of indolonce, and as anatoral consequence, soon manilest it by theirirritablity, unlike those Colomes which are indututriou* and in a healchyand prosperaus condution.
Largo colanios nover increaso their atock in froportion to tho swarming colonica. There is but one female in a large colony, and they can do but littlo more in raising young bees than to keep their, stock good by replenishing them as fast as thoy die off or aro deatrosed by tho birds, reptlies and insects, which are great admirers of them, and symoumes swallow them by dozens. Now if it requiren firo swarming colonies to be equal in number to the one firss described, is it not diffientt to imegino that five times as many beet may be ralued by tho swarming colonies; for oas Qoeod will probably lay at many cges as sathar.

The amarming hives are no more liable to be deatroyed by thit moth, during the nwarming seamon, then others, if tho hires aro kopt well reple. ahned whit bees aceording to Rule 10. ROLE It.

On Feeding Becs.

If it is found that a awarm need feeding, hiteh on the feeder, well stored with good honey, while the weather is warm in October; or place comb Gilled with strained honey in the chamber of the hive, or on the bottom board, or both at the same tim, without dripping,-and the bees will store tie honey in the lower apartment of the hive, if done while the westher is warm
The aplarian should use the samo precaution in feeding, as directed in Rule 4, to prevent robberies.

REXARKS.

The best time to feed is in the fall, before cold weather commences. All hives should be weighed and the weight matked on the hive before bees are hired in them. Then, by weighing a stock as soon as frost has killed tho blossoms in the fall, the apitarian will be ablo to form a just estimate of their necessitier. When bees are fed in the fall, they will carry up and deposit their food in auch a manner as will be cunvenient for them in the winter.
If feeding is neglected until cold weather, the bees must bo removed to a warm room, or dry cellar, and then they will carry up their food, generally no fanter than they consumo it.
A feeder should bs mado like a box with five siden closed, leaving a part of the sixth side open, to admit the bees from their common entrance with its foor level, when bitched on the front of the hive. Itshould te of sufficient depth to lay in broad comb, gilled with honey. If atrained honey without combs is used for feeding, a float, petforated with many holes, should be laid over tho whole of the honcy in the box, orfeeder, so as to provent any of the bees from drowning ; and at tho name time, this float should be so thin as to enable them to reach the honey. It should be made so small that it will settle down as fast as the honey fis removed by the bees, There should bo a zube inserted vertically through the float and mado fast tolt, oxtending upward through the top of the box in auch a manner as to receive the honey from a cunnell and convey the isamo directly under that float. A light of glass should be placed in the lack side, and a door to close and darken it at pleasure.
Great profite may be made in Iarge apiaries by feoding choap honey in the fall. The bees, being comprelled to carry up and deposit the cheap honey In tho Lower apartmont of the hive, (and they will live on that as well as any other, therr owner can compel them to carry os much puro white clover honoy into the drawers the following season, thero, boing no room to storo it below. Swarms will foed out and deposit ten pounds of honay a day and night, each hivo. Small drawers cannor be dopended on as feoders, except in the apring and summer unless they aro kept so.warm that the vapor of the becs will not freeze in thom. It would be extremoly hazardous for the becs to anter a frosty drawor. They will sooner starve than attempt the experiment. Drapers may te ysed wilhout danger fram robbers, but when thr feeder in used, robbors must be guarded against as diracted la Rulo 4.
Beos should not be fed in the epring unlexs they ato acanly, destitute of honey, becauso clicy fill up
the brood comb too much with honey; when fully ted in the fati, the hees more up the honey in auch a manner as will bo convanuent for thern in the winter, and notwithatanding the cells for raning young bees are filled up with hones at that timo, the bees consline tho honey and enter tho breeding calls in the course of tho winter, so that the Queen is not interrupted in depositing her eggs to rasse young leas in the spring following.

A good avarm of lires in tho Vermont Ilive should woigh at lenst 25 pounds tho lst of deecmber, in addition to the weiglit of tho hive.
Care should be exercised, in fall-feeding, to supply thein with good honay, otherwiso tho colony may bo lost befors Spring by diseaso. Poor honey may be given them in tho epting, at the time when they can obtain and provido thomselves with medicine, which they ouly best understand.
Sugar disuolved or molanseg, may be used in the apring to some advantogo but rught not to bo aubstituted for boncy, whon it can bo obtaimed.

nele xif.

On Wintering Bees.
Turn nver tho drawers so as to prevent the enrance of tho becs, or their breath, in Sepiember, or fore part of October. When cold weather commences, suspend the bottom loard half an inch, and open the ventilator.

reanarks.

The watery substance which is caused by the brenth and other exhaltations of the bees, and collects in tho drawers in cold weather, should be kept out of them; because frost forms in them, and runs down through the apertures c itho bees as often as it melte, and makes the bees damp and the combs mould; bexides, this vapor penctrates and fills tho timber (drawers and chamber) and causes a disagrecablo smell the following scason, and is the cause of introducing the little ants into the chamber.

There are thres p incipal causes of death among bees in the winter, to wit: want of honty, (not bread never cat it except when in the larva state) want of air, and freczing.

Bees remetimes die of starvation, with plenty of honey in the hiva at the same time. Incold weather they erowd together in a small compass in order to keep warm: and then their breath, and vapour collect in frost in all parts of the hive, pxcept in tho region they occupy. Now unless the weather moderates so ns to thaw the ice, the wees will be compelled to remain where they are located until their stores are all consumed that are within their reach. One winter we had cold weather ninety-four days in succession, during which time tho bees could not move from one part of the hive to onother. I examired all my hives on the eighty-third doy, and on the ninetieth day I found four awarms dead. I immediately examined the cause, which.was as already stated. I then carried all my haves into a warm room and thawed them, so that the bees could move.
Too much swarming frequently occasions the loss of the old stock the winter following, because their companions are 80 roduced in nuriber that the necessary animal heat cannot be kept op in tho hwo to prevent them from perishing by cold. All weh stocks should he stored in a dry cellar or some warm room, where they can be kopt comfortably during cold woather. It is believed that bees mas be kopt through the winter without losing them, if the apiarian is attentiva to thor wants. If destitute ofhoney, he will feed them. If suffering for want of air, (which is the most frequent cause of desth,) he will ventilate bem. If freezing, ho will thaw them out, in hort, if thoy are apparently dead, he will resurcicate and bring them to life and activity, which may be done in all cases (except when amothered) If attended to in scason. In February 1833, 1 had a swarm that werd starved by design. in resuscitated them three times without feeding in threo successivo days before lifo was-extinct. The life of bees many times is in a state of suspension considerablo timo before their death, and may be resuscitated by human aid, when otherwise life would becomo extinct. I have zesuscitated them repeatedly undor various circumstances for myself and neighbours. Some of the best
stocks I now own werc once apparentiy dead. A stocks I now own werc once apparently dead. A ucreen bottom board should be usod so the samo up the warm arr into the hive, and at the sama
time enable the apiacian. to control and keep the
bers in the hive duing the orocest of resuacilall. on. Tho feciler shutld be used in every case, to give the bocs exerciso, and reatore activity.
A collar made in tho aide of a dry hili secovered ns to keep out wnter, in a good atarage for wintering bees, There should bo 2 wo ventilators at the two most extreme parts of the cellar-one near tho bottom and on its side, to admit pure air, tho other through the top or covering to let the had air escapo.
rut. x xitt.
On Transfcring Swarms.
This operation should nover be effected by ompulaion.
First Afethod.-Intert drawer No. 1 Into the chamber of tho hive to be tramererred, as early as the first of Miny. If the bees fill tho diawer, they will recede from tho Lower apartment and winter in thedrawer. As eariy in spring as the bees oarry in bread plentifully on their lega, remove the drawer, which will contaln the prinelpal part of the bes to an empty hiro. Now remove the old hivo $\frac{1}{\text { few fect in frent, and place the now one }}$ containing the drawer where the old one atood. Now turn the old hivo bottom up. If there are noy bees left in the old hive, they will soon return and take passession of their new habitation.

Sccond Mfelhol.-Take drawer No. 1, well filled by any hive tho samo sesson-insert tho same into the Chamber of the hive to be transferren, in Soptomber, (Augu't would bo better.) If the bees need transferring, they will repair to the draver and make the same their winter quarter. Then proceed in the apring as directed in the firat method.

Remarxs:
This managoment ahould excito a deep interest in every cultivator, both in a temporal and moral point of view. Temporal, because the lives of all the bees are preserved;-moral, because wo aro accountable to God for all our acts. We are not to bo justiffed in taking the lives of animala or insects, which aro but lent blessings, unleas aome benefit to the owner can be derived from their death, which will outrvergh the evile resalting from such a sacrifice. Duty compela mato protest in the strongest terms and feelings againat tho inhuman practice of taking the lives of the most industrius and comforting insects to the wants of the human family by fire and brimstone.

When beas have occupied ore tenement for soveral years, the combs become thick and filthy, by being filled up with old bread and cocoons, mado by young bees when tranaformed from a larva to the parfect fly. Bees always wind themnelves in their cells, in a silken cocoon, or shroud to pass their torpid and defencelos: [chryanlis] state. These cocoons are very thin, and aro never removed by the becs. They are always cleaned immediately after the escape of the young beef. and others are raised in the same cells: Thus a number of bees are raised, which leaves an additional cocoon as often as the transformation of ono succeeds that of another, which ofton ocours in the course of the season. Now in the course of a few years the cells become so contracted, in consequence of being thus filled up, that the bees come forth but mere dwarfs, and cense to awarm Combs are rendered useless by being filled vp with old bread, which is never used except for feeding young bees. A greater quantity of this bread is stored up ycarly than is ased by them, and in a few years they have but fittle room to perform their ordinary labours. Hence the necessity of transforring them, or the inhúman sentence of death must be passed ypon them, not by being bung by the neck until they aro dead, but =by being tortured to death by fire and brimstone.
It is obvious to every cultivator that old stocks should be trensferred. I have repeatedly transferred them in the most approved manner, by means of an npparatus constructed for ihat purpose; but the operation slways resulted in the: loss of the colony afterwards, on a awarm which would have come from them.
When it is necessay to transfar a swarm from one Vermont Hive to another of the same kind, insert drawer No. 1 into their chamber in the spring, say the first of may. If they fill the drawer, let it remain there; if they need to be changed to a new hive, they will recede from the lower apartroent and make the drawer their winter quaresrs, which should remain until warm wea-

THE BRITISH AMERICAN CULTIVATOR.

ther has so iar advanced as to affurd th ma bead Then they mas be removed in an empty live, ad dirented in the rule. Now the drawer cantains no bread, and should remain in the uld stock unti bees can provide themselves wilh a sulfi-ient q mantity of that article to fred their younz b es with for bread is not cullected early enough and in sufficient quantitiea to feed their young at much a naturo requires. If the bees fall in fillug the drawer, one should bo used thot is filted by another swarm. Thus the aged and nfinm stock is chenged into the full vigor of south by theit orn free act, witisut any compulstion of their owner.

If bees are tranaferred from the old box live. or fiom anj other to tho Vermont Hive, ixcopt as desc ibed in the furrgoing remarhs, it should be dono immediately befure, or forihwith after the second 5 warm has latt the hive. Then bothold and young should be colonized sogather. If the operation is performed beforo first swarming, her owner will be eute to lose one swarm in the wanton destruction of eges, larva and chrysalises, Bind if ftio done after the firat swarm leaves, before a Q ereen ie leard, he will get the bees wihout a Quen, becaum the old Q reen leaves the hive with diefires awerm, and anuther is nut usually hat hed sounet than seven, eight, or nine dass after In st sharming and if transferring is deleged until the awarming geamon is througl; the bees nill not make a nut ficient quantity of comb to cluster in; nor boney enough to sustain them through tho following winter.
I would not he understood to approvo of tranderring from the old bax uhd die cumbs are so old as to produce dnaris

Ta be Continued.
EXPERIMENTS IN THE MANUFACTURE OF CORNSTALK SUGAR, BY MARCUS ADAMS, ESQ., OGDEN, MONROE CO.
Our readers have been already informed, that a premium of $\$ 100$ was award. ed by the State Agricultural Society to Marcus Adams, of this county, for experiments in the manufacture of sugal frum corn stalks. This subject is of so much general interest, that we copy from the recent wol. of T'ransactions, with slight abridgement, Mr. Adams full report of his experiments, with the important suggestions and inferences deduced there-from:-
Raising the Corn.-One acre of ground was selected of a eaudy loam, cultivated last year to rutabaga; this was manured with thirty loads of the best etable manure, weli mixed in the eoil by ploughing and harrowing Corn planted the 13 th of Slay, with cight: rowed northern corn; the rows three feet apart one way, and hills eigliteen inches the other, with from six to cight srnals in a hill. Corn came up fine and was plastercd the 31s! May; hoed the first ume the 9 lh and 10 h of June, ulie pecoad ume 2tio June. Cultwator run throunh it three umes. The corn began to tarsel the 18th of July, and was sa lol tasel the first or August.
Up to this time the crop had looked uncom monly well, thut Irom the lst of Auguet a evevere drought commenced, and conitmued until the cron was very materially mjured. Some spote where the corn had grown inore luxurtantly, withered and dried un; other pmrte of the field suffered less, so that on the whole there was some moie than hatr of a good crop, or what dhere would have been il the reason had conturucd lavorable.
Gutting, Grinding and Boiling.-Cut the first stalks, and made the firm experimint at grinding and boiling, the esth of August The stalks at this time wrre quite green, hu' the produce was quite fatisfactory; and ajr prored quite favamhle for cryatalizump. The juice wis very abundant, of a arectuch color, very tich thet and licary, set ictanamn al
the flavor of the corn stalk, until after clemes ing aud boilug.
August 30th, made the fecond batch. This was boiled in a fhallow sheet-iron path, chart fied and etramed accordtur to the directione given in Mr. Elleworth's report. From His hatch was taken the enecmen of engrar exnibited to the Comminte at the State Fair in Rochester.

Other experiments were made the 1 ih and 7th of Seplember.

The object of these successive experiments was mainly to determine at what time the saceharine matteriwate sufficientl; matured to make crystailized eugar.

On the 11th Sejtember the staiks sppeared in the right stage, and cutting, granding and boiling were commenced, and continued with littlointermission until the whole was completed. I'he method pursued in this operation, was to keep a sulficient number of hande in the field to strip the leaves or blades, and cut ofl the tous as fast as the elucks weite wauted for use, the litbourí was generady perfurmed bs boys. The cornfield beary at a litle dislance fiom the mill, the horse used for grinding was put before a light waron, driven to the fied, the stalhs were then cut ard jlaced ajon the wagon, (takins care to keep them stiaight and in order.) Sriven io the mill and gromid withoat delay. A load of this kind on a light wagon, with lumber box, will make a basch of from fifteen to twenty gallone; this would be ground taatoon thity minutes. Lime water was miaed will - he juice while it was running from the mill The juce is then strained throush a flamel cloth into a pan, and heated, rather moderatu ly, to the boiliner point, when the seam ts re moved with a skimmer, then boted rathills for a few minntes. The syrup is then re moved Irom the fire, and agrainpassed through It.e flannel etrainer, when the boiling is finisit ed as rapidly as joestble.

Thiefrocess from the cutting of the rtall to taking the sugar lion the fire, could not pirsibly be jerformed in less than two hous, and if the batch was larger, would ulten excecdlhree. Fwe batches were made m one day.from which one hundred panais of sugas Were moduced.

The Boiler - The boder or pan, I made of a shect of Russan Iron, turned upat the endes and ends, mpped and rivetted at the comers, wouh hold about twenty-five gallone, five and a hall"mehes deep, lut from filteen 10 twenty gallons is as much ats would bual t", atvamage. Thas pan is placed upon an arch of brich, so that the firecomes in contact with only the botom.
Mill.-To construct this was a matier of much more difficulty. Some drawings and lescripions are given by Mr. Ellsworth, but little more could be koown from them than that there must be taree rollers, so placed and put in motion that the staths in fusing between them should iecenve two crushings.
To plan and construct a mill with the proper dimensions and with the trength rcquired so that the work of crushing the stalks should be performed with certain'y and despatch, wat noeacy task. 1 flatier myself that I have in this been tolerably zucceeslul. The rulless and iron work, patterns, \&c., for my mill, were made by M. J. Langworthy, of Kocheter, at a cost of sixty-five dollars. The whole weight of iron is about nine huatired pounde-
About one half of the mill is in thic horsenower. I'lic iron rollers being placed horizonwh, it was neceseary to have a l.orsc-power wheel and gearing in order to give them thotion. If the more simple, and it would scem It hirst view, lers cxpensive forms, given in Vir. Eilsweorth's rejort liad been adoried. wacing the sollers perpendicular, the horec maseing around them, the rollers must have been of large diameter in order to take through tie leagth of a corn statk ath one, re
volution of the horec. These large rollere. volution of the horec These liuge rollere, when made of ion, would liavebeen very expensive, and probahly not work ate fast as inc elma'l oncs I wec, giving them a quasker
mution by gearing. In my mill the circumference of the mollers has such a projoition th their motion that therr veloesty in equal to about oue sixth the velucity of ilie horse; or in other worda, a corn-stallinax feet loma, will pass thmugh between the rollers in the frme lime that the horse will walk thirty-six leet. The grindiner is a beautiful operation, the amount of juicg contained in the stitk is sur prising to every onc. The stalke in pasaing through the mill are cruilied very fine, nim the juice entirely separated from then by the premsure of the rollere.
Clarifying.-'Mus has been to me a difficult and to sonce extent an usuccerstul operation. All the various methods recommended by d.fferent persons who have made fome experimente on cormetalk sugir, and all that, $m y$ own experience in clarifying maple sugar roul 1 suggest, finled of producing lully the desired effect. In all the finlutes which have been experienced to produce cryemalized - Hgar, the caluse should le sousht here. Unless the juice of curastalhe can be clarified. it is valin to expect a pure artide of crystalizad sugar. All the obsticles to the complete sue-ce-s of this enterprize are met at thas jonnt ; but that they will be completely overcome. there cannot be the least dunbt. Lime water upliced to the juce as soon as th comes from the mill, onegill to fificengallone, was thought to produce the bere offect. But experimenta were made with various other thinge, such as milk, entre, charcoal, sc. ; these were used coparatcly tut holling apicared to raise tho count as well and render the juice as clear and well flavored as the lume water. One experiment was bade by filtering the juice thoongh sand and charcoal, this rendered it very tramsparent and inproced ilie faste, hut there are very mans ohjectione to this process -ihe lengili of time required for the operation is a eulfierent oue.
Sitraining.-This nperition is performed both belore and after clarifymg. The stranes used was a equare gard of gearl nev glamet, of fine texture ; eogreat is the amount of mucilase, or very nimute garicles of the cornstalk contained in the juice, that the stranter hits in be ratised in water once or iwice in ethaniag a batch. The second wane etramange is remdered more dilficull by the juice beinr hot, as the hanis have th he u-ch ii forciars at through the cloth. As knew'edge atud experience so graned on the sulyject of charifyins: the stratining will be derensed wuth, excent to pass the juice through it coarie strainerio remave sonte of the larger unpuritics. S une method wall be discovered by wheh all that foremp matter will be removed in the operitthon of skinmmis.
Boiling.-This operation requires care and closeatention, paticularly when about ready on kkim, and when the juice is concentrated to about the point desired. The more rapidly liss operation 18 pertormed, the more perfect will be the crystalization. Dut, however necersary it may be, ut ie ecatcely posible, witl amy apparitus that I have any knowiedge of, to perform the whole labour ol' cutting, srindng, stramme, skmming, and bolling, in the holsepace of one hour, ate recommended by Profexeor Maper, ul New York. Il liss is ever done, th must be in very small quantues, or sonic very improved method inust bo adopted.
In boiling as soon as the ecum begins to rand, the fire must be regulated with care, that tme unay be ind for removing the ecum before at shall be buled in. If the operation of boilug and shammung be well performed, about one gallon of thack lieavy ecum willice obtained from a batch of fificen gallone. I'he syrup, when it becomes thick and nearly done. has a vois beandiful appearance, in every respect equalhaz the best of maple syrup. To boil to the crystalizug point, (whinch is a very uncertain one.) iequres conmerablecare and discrimnation. Thesame festa that are uscd for masje eyrup are rqually aphlicable to corustatk, as for inelance, when it wall fiake of, beahitur short. liow a dipper or suck-or strug out be'wan the thumb and fluger,

haps the eafest teat. Very great cara is ne cemary here, that it be brourht to the right point and no suore: and also in managing the fire, as a litle biaze, or too strong a heat is most sure to scorch, and thia is latal to cryetallization.

Crystallization.-Dificuly has been found here by all that have made experiments with cornstalk sugar, but perhaps every one has obtained a sufficient quantify that was well grained to gatery them, that the difficulty was somewhere in the process of manufacture.

From recent obscrvation Iam inclined to thank that I have kept my surar in too cold a place. Two smail parcels left party by acculent where they received the warnith of a fire, were found well grained. But there is another difficully atier it is well crystalized, to make the nolagees separate, or drain, ne it is called : although the crystal appears to be soffic as wan ever formed, still the molasses will not eeparate hy any common rnethods ued tor maple sugar. Asyet 1 have notbeen atite to procure any better epecimen than that exhbited at the State Farr.

Amount from the Acre.

Although the quanuty of stalks was go much diminished by the drought, yet six hundred pounds were ohtanned; this it should the understood, is weaghed when taken from the fire and before grainugr has commenced If it wereall well graned and the molasses eeparated, the werght of rupar would probahly not be more than five hundred, and molasses one hundred.
In order morefully to determine the amount that might be produced from an acre of good eorn, I measured two square rods of the best corn I had: the stalks were then cut, and their weight was 195 pounds; after grinding. the juice weighed sixty-nine pound and measured nine gallons; from this I ohtained t welve and a hall nounds of sugar. By this it would anpear, that had the whole acre been as grod as the two rods submuted to the test, one thousand pounds would have been the produce. And it wonld seem that this mutt be a eafec calculation as the fincke on the two mils were not as large as would be grown in a good secenn.
An rqual amount by weight of large stalks of rank growith, and small ones that were grown thack. were ground eeparately, hut as no material differcnce was lound in the produce, my opiaion is that the corn shmuld be cultivated so thick that no ears will be pristugad.
[Here follows a list of iteme, which we omit, showing the expense of misitis one acre of corn stalks, including rent of land, to te $\$ 10$ 52.]

There ss no part of the businees that is 60 tedious as plucking the cars, stripping the leaves mod cuttury of the tased. A part of the lator was peiformell for the fodder that might be obtained from it, but it was not suff. cient to pay; as the lator of plucking the rars was perlormed for thas consideration, I am unable to say what it would cost; hut this much is certain, it is needless for the mins part, as no ears of any amount neci he raised. if the corn is eufficiently thich: Frmm the best estimate that I can make of the expense of etripping leaves and cutting the tased, 1 thunk that a emart hand would perform the work on an nere in six thys. or for Si 50 ; making the whole expense up to the cutting oi the etaik $\$ 3402$.
Itis zomewhat dufficult to come at the expenso I was at in manufacturng tie acre of otalks into sugxi, 80 mnuch wat done by way of experiment. But as one hundred pounds were mado ono daj. I anall takn that as my kurde. rind call it a day'e work for two han stomako ono hundred wcight.

The amount above brought down........\$24 02 To twelvo days work making sugar, at

Cs. per diem.
To use of horse and wagen 6 dnys at 3 s
per diem..................................
To \neq cord of wood at $12 s$. per eord....
112
The whole expenso of cultivating the
crop, and manufacturing the 610
pounds gugar.
$\$ 3640$
Ora fracuon more than aix cents per pound
Some credic may be given for fodder, as a arge amount of leavis or blades might be saved with a litile extra labor while siripping them. The stalks, atter being ground, are worth sume, ling, horses and cattle eat thein very greedily when they are fresh from the mill.

Nemarks and Suggestions ly way of Recapitulation.

1. If good cryatalized sugar of ploasant flavor shall bo produced from the cornstalk, I ace no good reason why its manufacture thall n it become as universal as the raising of corn. Every neighborhood can as casily be supplied with ats apparatus to make eugar as to make cider.
2. Corn should bo grown so thek as to produce no ears. Some vartety of corn that grows rery large, like the "Ohio" or "Kocky Mountain" might be-best ; tiss later is sell adopted in some respects, as it is very lutele inclined to ears or leaves: cuttry the unssel will not prevent earing, unless they are all cut and kept cut. Tho cuting of the stalk may commence as soon es the tassel 23 ripe. If the weather is warm, but if cool, or carly in the murning, a lit'lo detay 18 trotithonght to be sajurious.
3. Lime water is perhaps the best fur clarifying of any thing get discovered ; but come agent that will more effectually clcanse from all deleterious of forcign matter, is necessory. Science, with persevering experiment will no doubs produce this result.
4. The less time occupied in boiling, the more perfec: us crystalization. This is true of the maple juice, and probably more so ol the cornstaik. Toboil to advantage, tho pans should be provided.
5. Any man of ordinary ingenuity, can make a pan in two hours, wath no tools but cold chnel, punch, hammer, anủ six cents worth of ivets.
6. I make no doubt that a mill sith wooden rollers would answer a good purposo for a small operation, and small operations are what are wanted : let no man go into this business largely unthl there 18 more knowledge on the subject. A simple mill with two rollers, that migit be built for fire dollare, would crush the atalk and save most of thejuice. No cog-whecls can be necessary f for if youturn one the other must go. When experience has taught how to clarify, so that we may be sure of a goon sriticle, then will be the time for more pericet and expensiye machinery.
7. If the result of this enterprise depended on the amount of accharino matter contained in the cornstalk, tis success would be ecrtain. Esumates that bave been made of the amount that might be made from an acre, havo probally never been soo high. Improvements in culivatuon, and in finding the varioty of corn best adapied, will no doabt greatly exceed tiacse astimates.
8. The expense, of compared with maple, munt be much an favor of cornatalk. Of the expense of growiag an acre of cornstalkt, cucry farmer may judge correctly; then com pare the amounz of fucl, tho amount pro duced in a day, the expenso of fixtures, and it is all aatls in favor of the corn stalk. Onls let tho cornstalk asgar hafe the delicinus flavo and the beautitul crystallization of the improved maple, and no longer will shat pride of the toreat be hacked and bored "wath wicked hands," to oblain its sap.

May we not hopo that Mr. Elleworth'd forth. coming tepait will throw much light on the aulject: The collected caperience of all that
have been engaged in the business the past aea sun, will anom bo lard before Congreas and the people. If Profersor J. I. Mapes, shell fulfil his pledgo made in the lastreport, eomoscientific and pracical information will no doubt be the result.
[We shall give same extracts from Mir. Eilaworth's Report in our next.]

With these remarks I submit this report. I have endeavoured to give a fiuthful and fill account of my experiment. I an aware, that on some parts of thas businoss, I cannot speak at favorably as might be desired; but for myself. I have no fear of the zesult of the enterpriae. I would beg leave to euggest, that a liberal promum be offered nest year, for a given amount of cornstalk sugar of the beat quality. This might stamulate, not only a grehter amount, but more careful experiment.

TO PRESERVE TOMATOES.

Messrs. Editors,-As I am very fond of tomatoes, and have a way of preserving them to use, when the season for them is over, a way which I have never seen proposed, althnugh othert may have heard of it, I have concluded to aend it to you, that you may publish it if you think proper:-
Dip the rine tomatoex in sealding water, prol them, und divide them into two, or If very thick through, three silces, lay them on plates and put them into the oven after the bread is drawn; ifa good oven. by the umo it is cool, or in 43 hours, they will be perfectlydried; put them into paper bags and keep in a dry place; when wanted for use, dup ethem into cold water and lay thern on a dish to swell, and in a mince or stew, they are nlmost equal to the fresh fruit. If you wish to inake tomato sauce, add a littie water to cook them in. They are very good to eat out of hand in the dry stato.

A Fexaly Readze.

Broohlyn, May 6, 1844.

PRESERVING EGGS.

I have just read the mode of preserving egge in the tast number of the Cultivator, and a lady at my elbow, for whom I have the highetz csieem, informs me that sho preserves them at follows, and has never zaken up a bad eg5, wfier keeping them all winter:-
Put a layer of salt in tho botum of a jnr. and stick then egge into the salt, point doucnuerits, till a layer of eggs is made, when more salt is put in, and again a layer of cggn, and so on successivaiy all the jar is full. Having eften caten of the erga, I know the mode to bo a goud ore.

WEAK EYES.

Wash the cyes froquentiy in cold water
if they are in the least inclined to weaknese.
Make a wash by pouring mater over a jor full of rose leares: let it stand all night, and then strain the water. It will bo found excellont for the eyou, and should be uted frequently.
A pouktico made of roso leaves is good for sestyo upon the cye-lids.
If tho reses are very weak, foil a bandful of reahly gathered salad in a pint ot water, atrain it, and apply the liquor to the cges at intervals. It wall bo found very soothing. A puvlice of boiled anlad leaver will also relievo zevere pain in the oyes.-Sclected.

Cure for the Stretches.-Sheep sometumes stretch therr noses out on the ground and around by stherr side, wi in in seyere pain. This is frrquenity occasioned by an involation of a part of ahe intestine trithin anotber, called. when occuring in the haman subject, intersusceptio. Immediato relief is afforded, when thus last ia the case, by liftung toe animal by the hund legs. and shakine a few zimes, when the pain disappears.-Americen Agricnluris.

REPORT of the COMMISSIONERS OF PATENTS.

Wo are under high obligations to the Hon. II. L. Elsworth, Commissioner of Paten!s, Washongton, Umen States, for his adnimable Report for 18.43, containing 340 panges of closely-primed mater. The Roport in question contanns a vist nmount of Agricularal Information, of the most valuable character. For the benefit of our renders, we copy the following practical remarks upon the prodactions of the Dairy :-
The productions of the Dairy nre of great valne, and may betome sull more sn ne their cxportation is extened. Seience hins heen directed To the annalssis of amik, and principles having an impartant beasing on the sucecss of thes pur zuit have been develuped. Thus Dr. Mayfar any, reapecting a serics of expermirmts, that the milk of the evening contaned 3.7 pier cont. of butter, and, of the following mornuag 5.6 per cent. The deficiency in the first observation is refarred is a greater consumption ol butter, or ite constituenti, from tespiratory oxidation during the day, when the ammal was in the ticld, than during the night when it was at rest in the stall. When confined during the doy and fed with after grass in a shed, the proportion of butier rose to 5.1 per cent. When fed wath hay, the butter was 39 and 4.6 per cent ; when fed with portions of potatoes, hay and bran lour, the butter was 6.7 and 4.9 jier cent.; when with hay and potatoes, 4.6 and 19 per cent.
From the accomnt of the experiments of l'rofeseor Trall, contanod in the Iransactons af the Highland Agncultural Society, are denved the fullowing reaules:-

1. That the addition of come cold water factitates the procrss, or the spparation of butter, expecially when the crcam to thick and the weather hot.
2. That cream alone is more casily churn ed than a maxture of cream and malk.
3. That butter produced from sweet cream has the finest lavor when Ireall. nod appears to keep longest without negurmg raberdity. but the hutsermilk so obtaned is poor, and small in quanity.
4. That the ecalding ofthe crcam, arcording to the Devonebue method, yelds the largess quantity of butter, which, if intraded lur immediate use is ngrceable to the the palate and readily salenble; but if iniended to be asled, is most liable to acquare, by keepang, a rancid tiavor. The procesa of scalding is tronblesome, and the milk after the removal of the cream is poor, and often would be masaleable, from the raste it has ocquired from the heating.
5. That charning the milk and cream togeth. er, after they have become siughty aetu, seemst to be the most econnmical process, on the whole, becauso it yieldsa large quanuty of axcellent butter, and the buttermils of good quality.
6. That the keeping of butter in n sound siate appeare to depend on boing obitaned as free from uncombined albumen or casein and water as it can bo, by means of washung ond corking the butior when taken fiom the Churn.
That our couttry posecsses some fine mileh cows, cannot be donbied by any one who wit take the paina to run over the agrocultumal journale of the past ycar, A few specimens ot, these may be added:-In NLasachusmits we notice the meation of one cow which fed on pasiurage, and having also two or thizec quarta
of meal per day, on licing milked thece unes an the day yiclded milk sufficient for 18 lbs . oi butter in a week; also, nnother which gnvo it; lba. of butter in a week, besides sup,lsma o family of cour persons with milk: enollier alvo
is mentioned, wheh gave 2 an lbs yiething 19

threo times per day, $31 \frac{1}{2}$ quarts of malk for two weeks; the butier made nmounted to 14 f tho per week. Another, still, is mentioned in the State of Now York, which, 1 m 21 daje, gavo $6.2 \frac{1}{2}$ tbs. of butter, or at the rate of 1 lb . for 5 quarts of mik. The averago of 65 remarkable
cows, mention by Mtr. Colman in his repont, cowa, mentionod by Mr. Colman it his report,
1810 quarts lor a pound of butter and ndvernl cows whech have been tormeris noticed as dis ungustued tor the ruchness of thear milk, in one case, gavo milk which only yioled 1 lb . of butter or 18 quarta; and in another, 1 lb . fos 10 quarts.
In the appendix No. 18, will be found a net method of obtanning croam from milk, by a process sand to be well known in Devonshite, England, in which vesecle formed of rine plales aro used: and the effect in tho produchion of buter astated to be 40 oz , to 4 gallons of math -beng en merease of cream lat per cent., and of butter upwards of 11 per cent.
Much is sad to depend on the proper beatung or working of butuer, by which it may he depriv ed of sts bittermilk; rubbing with the ladie is not sulficient. In an English publication of high authority, $t 8$ is said that "the great point in making good butter, and that which will heep, is the freeng it from buttermik; and, thevery. thung elee is well done, if the promt is overlook. cd, good butter as imposible for ang length of tune. I he nuxture of malk in any degree with the butter ss suse to produce frowymess, or some unpleasent taste to the butter; and the entire Ircedom from this constitutes the grawd sectet of matung good butter. 'Ihere are many who thunk wassing butier compatable with retoining the rich flavor; bnt if the water is cold nimd pure it is scarcely possible anything shonld be washed nway, the buttermik (wheh destroye the flavor of all butter) excepted. beades. the best butter in the world, nind that wheh in all markets commands the best price, (viz. Dutch butter, is anvariably mada in thas way; nad when the example lins beer followed by others, thas rarely falled of success. I'cricetly frec from the substance that canses at to assume the putrd frowy taste of bad butter, 14 may be kept whih altuost as much ease se tallow: soihdty in paching, clean sweet vescele, and a low temperature, whll ensure $2 t 6$ kecping for nany reasontable line. Let no one expengood buiter, how cver, so hontr as contse mpare salt is ased, or a particle of ti.c buttermiti is remanung $1211 .{ }^{\text {." }}$
The allusson above made in the Butch butter, may be ajproprate'y tollowed wath same account of the mode of butter making in Ilollan's, whel is found in one of the ableat of our agricultural journals. It is and that, in 1630 , langlend imported no les then 116,233 cwt. of Dutch butter, and 167.317 cwt. of Dutch eliecne. In $1535,106,776$ cwt. of buther camo from Holland. It is a singulor fact, that the English consume bore cibesse than buticr: thus. the coneumption of cherse. in London alone, is stated in be $33,000,000 \mathrm{Jbs}$, while shat of butter is but $10,009,000 \mathrm{lbs}$. In France, the opposite proportion prevails. Tho pastures of Holland, It is and, " lic low and flat: and as the rater in the canale is always near the top, the snil must be molst:" The ground, instead or bering gloughed up," 18 kept in gaod condition by top dreasings, consisting chrelly of the solud, and especially liqud menares colleced in the cowhouses, mixed with the ecrapings of the emath "anals." The firot year after slich dreseing, the
 landres, harinike, "are careful mithe sclertion of ther cows, they are gencrally fattened and turne f
off to the bucher me empht yeare ohd, and the bulle
at lour of five. The cows are turned to pasine in htesch or Aprit, and are at Grst rovered Whth a vary thes cloth of tow coyrning the urper hale of the hode, from tho shouliers to bhe thil, pastured about thry works. Ifay as ther comimon food sn winter. though rape raion and hranera' rams are somntimes addrd. "The paved whls Intere aquerin birhs, and hapt perces cicnu. The rod is about 10 fact lazh.
 for 16 days, in May and June, on being makei placed in gutters, elwojs clean near their licads.

Gutters in the rearsorve to carry off the artme and dung, und these gutters are also kept oloan. The covs are always milked by men, and the butter and oliense made by wompn. Nasoty cowe aro managed by memen and two women. liwo women aro considered enough for any dairy."

Thiee kinds ni butter are made ; grass bntren whon the cows are at crats; whoy butter, front tho whey of sweet milk ohesen : and hay buther mado in winter. 'Jhe method of making graen butter ie thue deecribed:-
"The cows being thorougbly milked. the pitchors of milk aro put into coolers. When the cream hea gatherod and soured. if there ie onongh, they churn overy 24 houry, and the churn being half filled with sour eream. A litlo hot or boiling water is anded in wintor, to give the whole the requined heat : and, in very varm weather, the milk is fiter cooled in the coolers. In small derien, the milk is aometimen churned, when moured, with ut soparating the cream. The butter, ummediately after being taken out of the chuen, is put thto 2 shallow tub, and carcfully woshed wuh pure cold water. It is then worked with a slight aprinkling of fine eati wheiher for momedinte use or the borzel. II hen the cows have been three weeke nt grans. the butior is detictous, and is made in faneiful shopes of lambs aturk with finwerg of the polyanthus, and sells as high as 70 or 80 cente tho 17.t nunces, or Dutch pound. Ifintended for barreling, tho butter is worked up twice or thrice a day whil soft fue salt for 3 day in a fiat tub; there being aboute pounds of this alt allowed tor 14 pounds of butter. The butter is then hard packed by thin layers into caske, which casks are pevously seamoned and cleaned. They are alwnys of oak, well amoothed inside. Belore bene unced thog areallowed to stand threo or tiuar dnys filled with some whey, thereafter carcfully wathed out and dned. Each cow, aller being sun:e time at grass, yiolded about one Duch pound of butter per day."
Two points in this procoss are noet im portant :-
" lst. No snit is ueed but whatls incorpornted wath and disolved in tha buther, whish is neeon. sary :o give it flocor: Ond. The buttor iniendod for kecping is worked from six to ten times, so incorpornte the salt and in soparnto from it everyparticl. of liquid, which, if loft in it, would indace rancidity."
The hay butter undorgecs a like procens.
The whey huter is made by allowing the whey to atand three dayaor a weak "after being ecpaised from tho curd, when the croam is okumed of or the whey isedf put into the ciurn, and the butter is formed in about on honr. By thas procesn, in winter one pound of butter is obtamed trom cach cow in a week : or, in summer, one pound and a half," The relativo prices nre snid to befor grass butter 17 conta, fol hay butic: 13 cente, and for whey butier 12 cents per pound.
The Goshen butter in the State orNow Yorkz is clebsated all over the couniry, and the fol. towing accoum is given of ono of the mont celcbrated of daries thero:-
The cows are " segular'y salied and kept in gond pasture during the summer ; in the winter, anch cow is kept in a sall wuh a ecparate donr © 1t, in a bulding two sidos of a square raund a large yard; lie upper atory of tho bulding is appropriated for fodider and hay. The cows are braught up to the yard, maghtand morning, and regularly milked. The outer palang of the yard foll feet from the houec: bere opposito the arm house, is plared a sunnel, into whelz the mullt 18 paured as tinst as a pallfis is obtarned from tho caws. A short perpendicalar till p:po conneris the tannel whin h horizontal one wh ch is buriod 2 feet under ground, ont of the waty of he frost, ond leads into the cellar of tho house. When the mithing is golaz on, n wontan stands in the cellar uth supply-pons pinced under the chd of dias bortzonal tube. wheh, as fostar filled, she sets away on the rellar bottom. Here thic milk siande whlloppered and sourch, ase it is said to makn more butter in tois alnte than any wher. of abetter quality. In thas sate it is promer, cream and all, anto chatne which hoidn batel cach. It the whethes be cool, and
the milk not sufficiently warm to come readily, a can is filed wit' hot water, and this is placed in the milk in the churn, and otirred about till it reaches a temperature of 55 to 60 degrces." Water-power is preferred for churning to any nther, as it is more regular. "When the butter has come, the power is stopped, and a pump rigged into the churn; the handlo of whichis attached to the power, ond the buttermilk pumped into a reservorr just outside of the cellor, standing on a level with the ground: from this he buttermilk is conducted by a tur pipe of about 100 feet to another reservor close by the pisgery, from which it is dipped ont in buckets, and tod to the pigs. After being churned, tho butter is thoronghly washed off with cold water: if this be not done, it is difficult to get the buttermalk clean out of it. As soon as cool and sotud, the buter is taken on a marble or smooth stone table, properly silted with clean fine salt, and worked over thomugh ly with a wooden ladle or spatula-ihe hand nover allowod to touch the butter, as, from tis heat, it softens it." After benge thoroughly Torked, tho butter is packed in firkins of sensin cd white oalc. The firkin, prevous to yacking, is well washed with cold water, and thenrubbed all round with salt, to prevent the butter from adkering to its addes. It ti put duwn in layers as churned, 3 or 4 inchos deep.
When the firkIn is filled, a linen cloth is placed over the butter; on this, half an anch of salt ; to which is added a little water, to form a brine. The cellar is considered very imporinnt: it should be seven foet deep-cighteen ancines of which, it the top. should be allowed for ventslat on: the windows to be covered wath very fine wire gauze, to let in the nir and keep out the insects: the. walls to be of stone and pouted, the foor of slabs.
The best temperature at which butter may be procured from cream, as appoars by the experiments of Dr. Barclay and Mr. Allen, 19 in commencing churming from filty to fity-fivo degrees, and at to tume ought it to encerd staty. five degrees: while if it folls below fify degrecs, it will be more dificult and labourous to obtann the butter. It was found by Mr. Bnllantyne that the grealest quantity of buttor is obtained at sixty, and the best quality at fifty five degrees in the churn, just beforo it came. A mode of working butter is satd to be practised in! some parts of France, whel makes it exceedingly compact and hard. A trough is prepared of re. quisite width. Into it is placed a whecl, whech comes within the sixtecnth of an meh of the botom, and turning on a cronk. Tho space in the trough is filled. At one end, which ts left open, tho butter and brine are pressed in; the other end, being nearly closed, the wheel mate to revolve, and the butter comes out at the other, thoroughly ealted, and free from butiermilk, in plates of tho sixtcenth of an inch in thickxess. Groat importance is attachad to the kind of solt used in preparing buiter for the markef. Some or the kinds of salt have an injurous influencs on the batter, to prevent its kerping.

It besben discovered thal most kinds of wood tontain considorablo quantitics of pyroligncons acid, which decomposes salt in butter liept in such tubs. The lined, or bass wood, ts the only one whioh, as appeats by ceseful oxperiment, is frae from it ; others, it is stated, may be froed from it, and thas rendered surtablo, by boiling three or four hours, well pressed undor water. Much importanco has always boon altnched to the proparing of butter, so that it will keep on board of abipes at sem and in warm climotes. Λ sumple process is now practused, which is said to be affectual for this purpose ; winch is. 10 lave good butter well churned, and worked and packed bard and light in kege of seasoned white oak: the head is iben put in, leaving a small bolo into which brano is poured to fill up the yacant space; and of 60 much mportanec is it deemed, to prevent any bad taste, that the pluge for the hole mast not be made of cedar or pine, but of cypiess or bnss wood, as olherwise it would be inje:ed. Alter which, theso kegs
are placed in a hogebead well filled wheh brine of are placed in a hogsbead well filled whe brine of full solution, that will bear an "egs, which is then headed up tight and close. Iticumportanec
ol' this subject mny be estunatod from the fact thet, as it appears, the standing contracts for butter, in our navy, that will kecp a! sea, a! inenty-six cento per pound, and for checse iwenty cents per pound. It is now put up of pood daries in Orange county, and keeps per fectlv. An accouns of a mode of preparing butter for shipping, by a merchant in one of the citues onf
icw Eugland, corroboratung the above, may be New F.tgland, corroboratung
found in apprendix No. 19.

In the making of the best futter, rich pastures aro considered very desirable. 4 suficient diversity of grasses mined together, is usefinl. but thete are some weeds which do great injury to the mitlk. The species of ranunculus known by the ame of tho buttercup is sadd to have effected great injury to the butter in parts of England. An eprdeme bas also prevaled among catie in lingland, whach has been traced to the same cnuse. It it said to be now sprending throngh this country. 'the plant is degenb ed as beng of an acrid poisonous mature, and, by varions experiments, is has been proved to be very fatal to anmals; catto whll genemully avond 1t, but they sometames do not. Those which are confined to limited pastures, are more exposed to it: white those whech have a wider range, and can moke thoir choice of plante. suffor less. Greater care should be soken to eradicate it from the fields; and by the use of lime nmong the materials of con post, and fiequent tuming over the aecds, which are sometimes thus carried forth into the fields wath the manure, it should be destroyed. Houghing up also of the land may be necessary ; but, at all events, the buttercup, if possible, should be roosed out. Otaer weeds, too, of a simlar nature. and likely to injure the milk of cows, should be taken from the pasture on which theyterd; the effecting this object will be more then repaid by the benefit derived from the puser milk and more excellem butler which will be obtained.

The bone-dust manure used on certan pas urcs in Cogland, til whela the soil is not adnpted to thes kind of manere, ts sad to have caused the cheese to detciorate.

Mr. G. Davis, of New York, to whose enterprise in visuing the checse-making districts of Holland much ts due, and who supplies the Umied States navy with cheese wheh will keep on ship board nad in warm clamates, by whel thousands of dollars aro saved to the country, describes the cheese thus mide under the mapecton of a first-rate cheese-maker from Hollaud, as globular, weight about four pounds cach. 'He curd is worked by hand unalit is put into other moulds, and salicd-that is a sina'l quanity is put upon the ond of the cheese, and changed every fifieen days; then it gocs through a pro cess of saluag in warm salt whoy for forty-enght hours and is then taken out and wiped diy with a cloth: then put into other moulds for six
weeks to dry and cure: alter it becomes quite weeks to dry and cure: alter it becomes quite doy and hard, it is put on shelves to curo, so that t may be cased up. The loss in drying out is icry great, as the Government receives them
balif gearly in cach year. The expence of making is eaid to be much greater than of the common kind of cheese, fand the loss in drying it four times as much ; ber tho certanty of thear kecping las been farty rested, and they aro stated to keep equal to the best Holland checso. Ot the flat kind formerly used in the navy, more then one-half, it is sadd, proved to be unfit for use, and was thrown ovarboard.
Tho Dutch are said to be remarkably particular as to the quantity and quality of the salt they vec; and this is thought tho principal cause of tho sweot and delicious Raver of their butter, which, though well flavored, herdly tastes of tho salt, or at all acrid. She arorage quantity of mulk from llolstcin cows in Europe Is about two thonsend five hundred quarts per annum: and it 18 calculoted that every hundred pounds of milk will gre threc and nquarter lbs. of butler nad six polnds of fresh checse, fourteen pounds of bultermilk and seventy-six and three quarter pounds of whey, where checso is mado Fifteen quarts of milk ie, then, considered
a fair average for a pound of betier, thoughti sonct itnes the milk is so fich that twelve quarts make a pound. On the while, it le thoughi bat
and fifty pounds of cheose per annam, to ench cow, is a farr product.

Agreat yield of butter and checseiamentioned in olate ngrecultural joumal as having been obtaned in Onedia county. Fromitwenty cows (commencing 15th of April, and ending the ist of December) were made ten thousand pounds of cheese and one thousand pounds of buterbenganaverage of five hundred pounds cfeliecse ant: fifty pounds of butter from each cow. 'I'hoy were fed on whey from tho dairy and two quarts of vatmeal perdoy.

PRESERVATION OF CORN FROM FROS'I.

Mrs. S. V. Irences, of Shorcham, Ft., relates a remaskablo case of the exemption of a prece of conn fiom frost, wheh be thanks is to to auributa to the plemtifel use of long barn-jard manure, in connexion with the stalks of a crop of corn whech had gromn on the ground tho year before-the whole having been plowed into the soil. He say: ;

I plowed deep, strowing tho old crop of stalks in the furrows and covering the whole entire. I had a rank and extra growth of a large kind, which required a longer ume to mature; and some of the last ways of August or first of September, the earhest cars had comnenced hardemng, when wo had uno of die severest frosts I ever witnezeed at that seasun of tha year. I had much anxiety respecang my coan ctop, whinch I visited carly in the morning but the crachltigg of the frozen grass at every footstep, progared my mand to behold it in ruins. Fet decermined to know the worst, I presed on, moanted the fence, whach surrounded it, and tu my sarpise, not a particlo of frost was vistble upon x ! : looked around upon every side: all boro a wintry aspect. I loohed around again upon the crop befure me; it bors tho appearance of having been wri by a ger tle but profuse shower. aprang orar thin frire, determined to pass throughit; but ere I had reached halfa dozen rods "as glaid to rancat, and before I could effect it. was completely drenched I again remoumted the fence where I conld tako a vew of every side; it "as alike surrounded by a heavy frost."
" As I stood pondering upon the apparent phenomenon, the fact flashed ufion my mind, that the process of diccomposition from the extra guantity of long manure, particularly the old crop of stalks, was still going on to that degree that the heat completoly counteracted the action of tho frost Near the maddie of the day (which was extremely varmand clear, (travelled a mile in length, visiting every field en thesamo level with my own; and al!, whhout distrction, wero entirely dentroyed. Mine remared uainjured, and yielded an abundant rnp of remarkable sound, ripe corn."-Albany Cullizator.

Farming capital.

From a communication by Mr. I. Durand, wo make the following extracts :-
"I think it correct to say, that a liberal expenditure of capital in farming, will ultinately pay better than when laid out in any other business: Tho difference between capital laid out in farming, and that laid out in manufacturing, in, that all which is expended in tho later beyond the actua! profits of the goods manufactured, is a dead loas, while that which is laid out on the farm, undor sood management, causes it to improve and increase in volue from year to year. Inmsnufaccuring, the interest on tho capital may be reccived within six months or a ycar. In farming, it may nat bo so, but it will bo sure to give its return in a series of years. Another item which hais been much neglected by farmers, is that of purchating good umplements to carry on tbeir farming operaions. In this country, whero labur is'high, A farmer should otrain ìs many labor-saring implements as can be used to advantage. Alhough liese implements may cost more at first than common ones do, thry will fand their account in it at last. Get the best implements to be had, evenif ou havo to go out of tho Sinte for them, and you will thus be ablo to perforzn mono work in a beuter manner, besidoseaving much labor, and preventing groni deal uffrthing and all temper. Try and "ce."

ONASCERTAINING TIIE WEIGIIT
OF C.ITILE BY MEASURE. MENT.
The importance of proceding on correct primeples in the rearime and leeding of live-stock, whow so ge:meadly admetied, as to regure no iliustration. Wth the teeder it is eeppecially mportanh that a di-posithun to ar rive al early maturity phould be encour, ged and sccuted, so far as theaccelecathon of this desirable property is withon has reach. It this respert much has been done of late, but much esill remans to be done. Early maturity is not attainatle without high feeduis unimerruptedly, from the brth of the animat until they have attained to matuity, and the can only he attained where a superor sysem of cuthvaton is pracued, as it is here ouly that a proper supply of lood is avalathle at every period on the seazon. fa fernle distract the aid of caltivation is nut necesary to po duce the required supply dar.ng the sumnare reason, as this :s ootamed trom the pastures but even in these casez it ta by no medils rare to find etunted anmals, resulting fiom the winter treatment. The firest cattle are no hy any mrans umversally found m the mose lertile dierricts, ceppcially when carly maturity \rightarrow one of the besti testa of excellence-t thenen into account : so that mproved cultuvatuon is not only followed bp superior crops, but aloo by a superior description of heve-stork nnd in the mixed syetem of hu-bindry of the United Kingdom, it must be recollected that by far the greater portion of the proceeds o the farm is obtamed by natural products.
But, however desirable it may be to pospese a proper knowledge of the correct principles on the state nud treatment of live stock ohould be founded, it is also mportant to he able to ascertan their value when ready for market, or to ascertan their prozeress whte feeding. Experience and accurate observition are obviously the essential requithes for obtaning thus knowledge; but th to be kem in view that the opporiunties of the farmer in this repect do not bear a comparrion with those of the butcher, wath whom he has to deal. The latter has a never falling lest, by which he can try the accuracy of hls calculations, in having the anmals alterwards killed and weighed; and thus hom tune to time, he is enabled to modily his views, and correct his more imperfect e-tmates-opportunities which the larmer rarely or never poracsers. Long experience, mideed, will enable the farmer to form a tolerably correct es timate as to the value of his catie when slaughtered; but ceven with the and of thes, it in uill important to be able to test the correct news of opiniona thus fonnded. To the youns and inexperienced larmer it is atill moie mm^{-}portant to be able to do so. This kiowicdse may be obtained by measurement, and easy calculation; or from tables constructed for the porpose, for the bice of which the length and gith of the animal only are required.
The ascertaning of the weight of catde by measurement is not a recent invention, tables for that purpose having been long in use. It may not however, prove uninteresting to those who may not have turned their attention en the subject, to know on what data euch cal. culations are founded. This will also, by explaining the whole process, enable the larmer to deternme whih more confulence the value which he fhould attach to the recults thus oblained. Even in this case a certan amount of experience is receseary. It is ne ceseary for instance, to know whecther the animals are marketably fat or not, it se also neceseary to be able to form an opmon as to the effects of any neculiarity of conformation in the anmak, whech mughe aflect the results obtained by calculation. The kind of ant mais, too, must be taken nito account, the formute on whinch the calculatoons are foun ded being etrictly applicable to exen merely; sothat in the case ol bulle, or colvs whech have had eeveral calves, allowances are obvously to be made.
In calculating the net weight of catle, it may be mentioned that the weight of the
four quarters only is taken into consideration. the remanuder bempr usuatly considered as ohlish, including the bide, tailow, and varrous other matters; nud thes, tatien sogether, are conputel to be equal in value to one of the quaters, or to oue fith of that whole ammal. The proportion betwen the live and dead welght, sis the phimery olyect to ascertam in ureatculations: thos wad long catculated atone-hald the lue weight, but sut.equent - :pperments on the more improved breeds of the conitry, ehowed that thes was by much too mall a proportion, it bener more currently represented hy the fractonal quanti, '605. the weight of the entre atumal beng assum dias 1. Hiviug this datum, then, no difficolty 1 expertenced in atertainarg the net werght fium the gross weight; the later hemtr multiphed by' 605 w:ll give the rezult, in the eame denommation in which the fors wegghtisaven. Dy three me wis the appls.
 at once ellects the obrect, and thes apparatus ts accordingly frequenty employed by tumateur feeders to atertala the progress of the difierent manats whute fatiening, as well as ther value before bemer sold. In the case of expermants bemg made with the difleren kuds of tuod, thatr effects are easily tested in this manner ; audeven when only one desernp fiom of food is consumed, the progress of the different ammals 13 seen, when such as are not maknog a sutable return should be disposed of whiout delay
'I'the method of calculating the value or catle is smphe, and, were a werphos maclune found on every farm, it would be all that could he desired, but as these usetal apendares are not alvays availabie, the same olject may be obtained by measurement. The dimenmons required are the length from the pount of the shoudder to the hindermost puint of the rump, and the girth or circumfe
 Thot the e d memsuns may be taken accu rately, the ammal must be standiug in a na tural nosition, ia which case thiy bring the body mo die for on of a cyluder, the capacits or shlat content of whach is easily ascertamed, athd as in the former case, a certan proportoon s found, from experience, to exist between the cap city thus ohnained and the net weight. Stristy eqeaking, the form of most animats 3 such as to cause the girth to be rather elipacal than circulir, but this departure from the ch hader beng for the most part constant in all atmmals is, of cource, taken into account in the formule by which the calculations are made. The length and cracumference being then given, the rule to fi 1 the solad content is, to multiply the equare of the circumference by the decmal, 07958, the area of a circle whose circumference is unty, and this product arain muliphed by the length, will give the sold conteat in the same denomination in which the dimensions were taken, and being usually in feet and noches, their result will be ill rubic fect.
The capacity of the animal being ascertamed, the next consideration is the estmaton of the proportion between thand the net werght; and this is only obtamed by actual experiment, as in the case before under consideration, in reference to ascertaining the nett werght from the live weight, as obtaned by the use of the werghuy-machne. Suppose an Ox measure 7 leet in girth, and 6 teet 11 length, the capacily is fond an the foreromir rule as follons: -
$7 \times 7 \times 02050^{2} \times 6=49 \times .07058 \times 6=353042 \times 6$ $=533402$, which is the number of cubic leet in the anmal.
Now let it be furtier surposed that the weight of this $O x$, when slanghtered, was 70 stones, which alier repeated trale, is found to be the weyht consonamt with there dunenerons, then the wergit per cubre toot is of course found by divitung the cotal werghe hy the product lhue nhtamed. For exumple, 70 divided by 23.39632 . the quotient will te 2993.- the precise propoition by whela such calculatuns are usually ealmated, so that for cvery cubic loot in the aminal, ascertained as belore chrected, there will be 2993 etonce
to multiply the equare of the girth by 079rs, and the product thus obtaned by the length, wheh gives the capacity in cubic fect, which multiplied by 2993 , the number of stones toa cubic foot of the animal, gives the weight in imperial etones, as required. It will he observed however, that the numbers-07908 and 2993 are both constant multiphers in the operation, so that they may be multiplied together, sum ther pibduct only used, whech will materially shorten the operation. Thus $\cdot 07058-2993=\cdot 23318294$, but the number $\cdot 238$ only may be taken, without meurring an appreciableerror. Hence the rule for ascertainlug the weirht of an animal by measurement is to multrply the square of the girth by the lengtli. and this proluct again ty the decimal $\cdot 238$, wheh will give the weight of the uarters in imperial stones:
Such is the method of calculating the weght of catule by measurement, and such are the data on which it is founded. He before observed, these calculations refer only to unmals of the ordinary tlegree of hatuess, so liat in certancaseeallowancesinust he made. In the case of animals very fat. rerhaps oneerghteenth or onet wenticih should be added to the werght thus ohtaned ; and when helotr the ordmary state of tathees the eame proporton should be deducted. A bullfrom havmg more flesh upon the neck, ehoulid have probably oneatwents-filth added; and in the cate old milch cowe, for obvions reasons, onestenth or one twellth may be deducteds It will be apparent, however, that the precise amount of these additions and deductons is not sulsect to rule. The weight of the quaterd eng ascertaned, there yei remains the tallow, hise, and other offal, to be taken into consideration in estimating the entire value of he aumal. These or a certain portion of them, are allowed the butcher for his profit; but this is chefly regulated by the cuetom of the place-a circumstance which, of courze, the farmer will not lail to take into account.

The precediug observations haveoccupied more space than I originally intended, but I hope the munteness of detall will be excused. and that they will not a:together be uninteresting to those who have not hithrrto direcled their attention to the subject.-J. Sproule.

SPRING AND SUMMER BEER.

As yet I have seen nothing in your pages relative to making Beer. Therefore I will present a xecipe, and if you think it worthy of a place in the Farmer, please insert :-

A handful of hope and eome boughe of epruce boiled in 2 or 3 gallons of water. l'ut 3 quarts of molasses and $\ddagger \mathbf{l b}$. of ginger in a cask that will hold 15 gallons, and pour the liguid in and ehake hem well ; then fillup with cold and warm water so that when the cask is full it will be about blood Warm. Then pour in one quart of good yeact, and shnke it well together. It will be fit for use in about 12 hours.
Half of a smal: vial of essence of apruce may bo ised inatead of bows, and ehould be put in with the molasses and ginger. I have made beer by this recipe for a number of years, and know it to be good.-Michıgan Farmer.

YELLOW BUGS.

An intelligent friend, who declares that he has found ont how to savo his cucumbers, melons, squashes, \&e., from the depredations of the gellow bugs, has described to us the following method, which he declarcs will be found effectual. It has reason to recominend t, and so we give as to our readers, and shall try it untselves :-
For each hill cut, say a dn-en alder aticks about foot long, split one entl and insert a tuft of oheep's wool finoly spread out. Set these out nround the hill so that the wool from one will just neet that from its next neighbor on tho circle. The buge will alwaya alight on that before descending to the ground and the plant; the wool entanglea their legs and then tiney are unable to gn farther. He says this hedge will also keep off the litice black flear. Try it-thn costia nothang-the laboriatle.-Drcto's Ploughhay.

A POTATOE DIGGER.

In answer to the inquiry of our corres. pondent "Viator," wo give tho following extract from the Report of the Committeo or Agricuttural Implements, at the late Fair of the American Institut':-

A Putatoo Diggor, exhibited fra premium by Mri A, C. Ketchum of Schenectady, N. Y. This machine consist, of 2 parallel sides furnished with handlea resembling those of a plougli; they are about fifteen inctice in width and two feat apart In front is an iron plate which is intended to penetrace the paith to a depith just bulow the potatoes required to bo dug; behind this plate, near the bottom of the aides before doscribed, are two pullies, one on each aide; and on the upper edge of the sides, about three fect behind the others, aro two mare pullies, over which two endless chaine revalve when the machine is in motion These chains are connected by emall iron rods, about two or two and a half inches apart, and parallel tueach other. When this machine is put in motion, the earth with the potatoes is passed over the plate on to the parallel iron rods, through which the c ief part of the earth first fulls, end then follow the potatoes. It is clear that this machina will not act advantageously in e tough, rigid, very wet soil. Your committeo witnesced its operation in such a soil, and were not diasp. pointed at its partial success. Nevartheless they aro unanimously convinced, that the pilnciples devoloped in this machine are such as tomerit the enco :ragement of the I.stitute, on the ground that It will answer an excrllent purpose in a light dry soil; of which Mr. Ketchum presenced asatieSaetary certifi ate ; and they have no doubt is nany heimprnved so as to operate in orher soils.-Albrany Culcivator.

Cure for Burns.-After opening the veaticles, 11 they are formed the part is dipped in cold water, and then plunged, still wet, isto flour. keeping it there for a minute or two : by this meansa certain quantity adheres to the part and provents the nccess of the air. It is remarkable that the flour falls in the scales from the surrounding parts the next day, whulst on the burn it remains adherent.-Medical Times.

A Hint to Younr Married Women.Never tell your own attairs to any old gossiping housewife. Let ber appear ever so specioun, so sincere, so candid; be sure to avoid ber, and keep your own counsel: for the only reason stio has for prying into your secress, for insinuating herself into your confilenco, is to learn that some error, somo deformity exists in your family, on wheh she may feast with secret delight for a luxurious moment, and then share some of the choicest bits with her noighbours. Treasure this up, and act upon it, and it will save you years of mortification, if not of heare burning and sorrow.

CATTLE SHOW OF THE HOME

DISTRICT AGRICULTTRAL SO-
CIETY, undir the Patronage of
His Excellency the GovernorGeneral.
The Home District Agricultural So ciety will hold a Grand autumn Fair and Cattle Show, at the St. Leger Race Course, adjoining the NorthWestern extremity of 'Soronto, commencing on the morning of the second Wednesday of October next. The first day will be appropriated to the examination of Live Stock, Dairy Produce, Root Crops, and Grain. The sccond day will be devoted to the examination and trialof Agricultural Implements and the inspection of articles of Domestic Manufacture, the reading of Original Essays, and the sale and exchange of stock, \&c.

For the best Essay on the profcesion of Agriculturo as a Science,-A Gold Medal, to be worth E 300 . The Eosay to be sent in to a
committee to be appointed on the next regular day of tho ineoing of the District Soriety, to be heid on the accond Wednesday in August next.

Second begt do.-A Silver Medal, to be worth fe 00.
For the dest cultivated ond well managed farm, in the Home District, taking in view the tand, stock, and produce, with allithe appendages. A Gold Madal, to be worth t3 00
Second best do.-A Silver Miedal, to be worth £2 00.

CATTLE.
Best Bull 3 years old and upwards... Sccund best do. do do third best do do do f. s. ${ }^{\text {d. }}$ $\begin{array}{llllll}\text { Best cow } 3 \text { years old and upwards.... } & 2 & 0 & 0 \\ \text { Secund best do do do } & 10 & 0\end{array}$ Third best do do do do

YOUNG CATTLE.

Bulls of teco ycars old and under."
Best................. 1 0
Second best................................... 150
Heifers two years old and under.
Best....................................... 100
Second beet.
YOUNG IIORSES.

Best spring colt or filiy.................. $1 \begin{aligned} & 0 \\ & \text { do } \\ & \text { Second best do } \\ & \text { do }\end{aligned} \quad 10 \quad 0$
CATTLE.
Best yoke of fat catule.................. 20

Second best do do BROOD MARES.

Best Brood Mare
Second best du $\begin{array}{lll}2 & 0 & 0 \\ & 0 & 0\end{array}$

Best tup of any breed.................. 2100
Second best do do 1100
Best 3 Ewcs............................ 200
Second best do 1100
Best bix fed Shee $\begin{array}{rrr}2 & 10 & 0 \\ 2 & 0 & 0\end{array}$
Scond best do
$\begin{array}{lllll}\text { Best Boar.. } & 0 & 0 \\ \text { Secona best do } & 10 & 0\end{array}$

FARMING IMPLEMENTS

Best iron or wooden Scotch Plough
manufactured in the Home District. 1100 Sccond best do do do 200 Best subsoll Plough manufactured in the Province............................ Second best do do do
Home D.strict..........................
Best Cultivator or horse boc......... Best Drill Barrow.......................
Best portablo lhrashing Machne, not requring more than twohorse power and copablo of thrashing at least 100 bushels of wheat in a duy of 12
hours................................... 6 Second best do do do 3 o 0 Best Straw Cutter.................................... Best Clover Machino...................
(fiax and Hemp Dressing Machine
(portable,)... 00
Best Horse Rakc...

DAIRY.

Best sample of 50 lbs of Butter....... 2100 Second best do do do 150 Best 100 lbs of Cheese............... 2100

DUMESTIC MANUFACTURES.
Best pair ef Woolen Blankets manu.
factured in the District.c........... 100 Second best do do do 010 Beat 10 yords of Full Cloth......... 30 $\begin{array}{llll}\text { Second best do do } & \text { do } & 2 & 0 \\ \text { Best Woollen Carpet (} 50 \text { yards).... } & 3 & 0\end{array}$ Secund best Cape do yards). 0

AGRICULTURAL PRODUCE.

Best sample of Flax of not less than
112 lis.................................. 3 0
do 200
Best sample of Llemp not less than 112
pounds.................................. 3 o 00

Best pocket of Ilops.................... 210 0
Second best do dn 150
Greatest quanlity of Hops grown in
the I'royinec, and exhibited in the
City of Toronto for sale on the
second day of the Exhibiion....... 5
00
For the greatest quanity of Broom
Corn, grown in the District and ex-
hibited ns above...................... 210 . 0
GRAIN AND SEEDS.
Best 2 lushels of Fall Whent 100

FIELD CROPS.
Best acre of Fall Wheat
، " Spring Wheat............ 200

- Potatues....................... 2 2 00
${ }^{T}$ HUNPSONIAN HERBS AND
ROOT'S.-The Subscriber informs his Country Friends that he is now receiving a large Supply of these celcbrated and useful Medicines; and for their Satisfaction entumerates the followng, viz.:- Whito Ponel Lily Roat, Witch Hazel Lenveg, Squaw Weed, Bitter Herb, Poplar 13ak, Bayberry Bark, Golden Seals Burdock Loeaves and Roots, Skunh Canhage, Elm Bark, Solomnn's Scal, Dandelion, Cock Robin lioot, (Eold Thread, l'rickly Ash Bark, Coltsfoo', Comirey Root, \&ic. \&ic. \&ic. © Jikewise a- constant supply of all the Shnker's IIcrbs and Extracts, which hutherto havo been so difficult to procuro m this market; with a general Assortment of Druge, Medicines, \&d.

ROBERI' LOVE, Druggist,
Yonge Street.
Toronto, June, 1844.

0LSS, \&c-Raw and Boiled Linseed OIL, Fish and Scal Oil, Olive and Lard Oil : with Turpentinc, Varnishes, Tor, Pitch and Resin, and mixed Paints of all Coloure, For-Sale low, by

IROBERT LOVE.
Toronto, July, 1844.

\mathbf{T}HOROUGH-BRED DURHAM BULL FOR SALE.-The Subscriber offers for Sale a thorough-bred DURHAM BULL, five years old, which will bo disposed of on reasonable terms. His Dam and Sire were imported from England, in 1838, by Mir. Gcorge Simpson, of Newmarket Grange. The herd from which Mr. Simpson made his selechon were among the very best improved Durham Siock in Yorkshire. Any farmer or brecder who is drgirous of pur chasing a very supcrior animal, of this unryalled brecd. would do well to call uponthe subscraber before buying elscwhere, as the Bull in question has been pronounced, by competent judges, to be one of the very bcst in the coun. try.

Township of Toronto, May $30,1844$.
N.B. Application by I.etter to bo directed

I
HE BANK OF BRITISH NORTII AMERICA continue to grant Drafts, in Buma of any Amount that may be required, on the undor-mentioned Towns in Iscland and Scotland, viz. : -
On tho Prozincial Dank On tho National Bank
of Ircland, at
Cork,
Limerick,
Clonmel,
Jondonderry,
Sligo,
Wexford,
Belfast,
Waterford,
Galway
Armagh,
Athlone,
Coleraine,
Kilkenny,
Balline,
Traloe,
Yourhal,
Enuiskilion,
Monaghan,
Banbridge,
Ballymena,
P'arsonstown,
Downpatrick,
Cavan,
ILurgan,
Omagh,
Duagannon,
Bandon,
Ennia,
Ballyshannon,
Strabane,
Dungarvan,
Mallow,
Cootehill,
Kurush,
Skibbereen,
Enniscorthy.
They alno draw out the Parent Establishment In London, and on their Branches in the British North American Erovinces.
A. O. MEDLEY, Mannger.

April, 1844.
LAND SCRIP.-WANTED a small Quantity. Apply to
H. E. NICHOLLS, Toronto.

April 18th, 1844.

Flax Sced.

1,000
BUSHELS WANTED, for which the hughest Cash Price n, up to the 1 si Saptember, 1844. will be given, up to the 1 si September, 1844
Yonge Etreet, Toronto, April, 1844.

HENRY E. NICOLLS,

NOTARY PUBLIC, CONVEYANCER AND LAND AGENT, \&e.,
No. 1., Fictoria Row, King Strect, Toronto.

DEEDS, MEMORLALS, AND PETITIONS drawn with neatness and deaparch. Tulles to land searched and proved.
Mr. Nicolle havins more good land than the Government, requette all Emigrants and other, whe intend buying either Wild Linds or improxed Farms to give him a call. Lande purchased for persones at the Guvernment Sales, located and money paid on the Deeds procured at a moderate charge.
Laids claimed and prospcuted under the Heir and Fevisee Act, and Decds when out.
Militia Claims and U. E. Loyalista Mishts procured and bought. Bank Stock and Guverament Dobentures bought and sold. Petitions to the Governor and Council for pensions or lands prepared and prosecuted. Money advanced on letiors of credit upon Great Bntann, morigage or percional security.
N. B.-On all Government Latd businers or morignge, a fon of five shillinga will be requiried before the buainess is taken in hand.
Land Scrip, and Banx Stock ror Sale.
05 All Letters must be post paid.
Toronto, March, 1844.
of Scotlond, at Aberdeen,
Airdrie,
Anstruther,
Bunff,
Bathgate,
Canile Duuglas,
Dalkeith,
Dingwnll,
Dundees,
Falkirk,
Forres,
Fort William,
Gulashiels,
Grantowin,
Hawick,
Inverness,
inverary,
Iulay,
Jedburgh,
Kelso,
Kirkaldy,
Langlolm,
Leilh,
Montrose,
Nairn,
Oban,
Perti,
Portre,
Sturling,
Sitromoway,
Stromncss,
Edınburgh,
Glaggow.

 and that he is prenared to manufncture the above Hachunes to order, or dispose of the right to persons dearous of manufacharing or usiag the same.
CARDING MACHINES.

THE SUBSCRIBER begs learo to acquaine his fricads and the public in general, that in adduon to has Fuundry and Frenth Burr Mall Suone Factory, ho has engaged drchelaus Tupher, who is an expenenced Mechanist, to mathe all kinds of Candise Machises, of the latest and most approved construction, he has been engaged for twenty years in the United Statos, and aloo In Cenala, and has a choraugh knowledge of all kinds of Machinery, namely :-Double and Singla Carding Machines, Mickers, Condenser, Jacks, Billeys and Jinney. Also, Broad and Narrow Looms, Shearing Machines, and Giggs. Napping and Teazling ; Stoves for heating Press Plates, Press Screws. Also, Grinding Shearing Machne Blades ; Fulling Mill Cranks, \&e, and all kinds of Grist and Saw Mill Castirgs-made to order; Wrought and Cast Iron Couhing and PlateStoves, Fancy Stoves of all kinds: Also, Ploughs of dif ferent patterns, Mill Sciens of all kindu; and Damsall Irons; Bulting Clochs, of the best Dutch Anker Brand, warranted of the best qualty, M1/1 Stones of ell sizess, always on hand and to evider. Also, all tho other herem-mentioned arich s al ways on hand und for sato by the Sulmeriber, at has Foundry, on Yonere Strut, as cheay as they can be obtuined at ang oflari flace.
chiris rupuer elliot.
Toronto, August 7, 16.13.

B
RITISII, FOREIGN, and COLONIAL NDWSRAPER ADLERISANG AGENCY and COMMISSION OFFICE, 18 , Connhtle, London, Opmusite the hojal Eachange.
P. L. SIMNONDS, Comm'ssion Merchant, Newspaper and general agent, conumber to supply to order all the Lundun, liovinctal, and

Any further infurmation on the subject may bo had, by adiressing the Subsoriber. All commul nicatuns (post-pald) will bo immediately replived to.

hirai bigelow.

Tecumseth, Bond Head P. O., February 15 th, 1844.

DESCRIPTION.

Composed of a Cglinder about ten feet lomgi and ten inches in dameter, mado of Cast Iron, one-half of an inch in thickness, having an iron thaft passing through its centro, on which it revolves winh a pulley or wheel at one ond, by which it is put in motion. Tho Cylinder in placed in an oblique position, having about 18 inches fall, and is oncloued either in anetiar metal cylinder, or a brick arch, of thirteen inches diameter, leaving a space of one inch and a balf between tho two cylinders, through which space the firo is conducted from a fireplace or grate, at the lower end, and passes out by a chimney at the upper end. The grain is conduoted by a tube into the upper end of the inner cylinder.

Continental Newspapers and Periodicals, and attends to the several brancies of agency and commassion business. Goods and Merchandize of every descripten forwarded to the Colonies, upon the most reasonable terms. Ordera and Advertusements recenved formsertion in the Lordon ciazette, and every other Euzopean publisotion.
Consignments of Colonial Produce entruated to Mr. Simmonds for sale will reanve the mous promptantention: and, from his extenaive knowledge of the Home Markots, will be sure in all cases to sell to the beatadrantage.
Orders for goods of any desoription, or for Newspnpers, Stationery, de., must be adeompanied by a remitance, or a reference to anma Loudon Ilouse for payment, or thay will not be attended to. The postage of letters must aloo be paid.
simsonds Colontal Magazine, edited and published by Mr. Summonde, noonthly, price 38. ©d, is especially rccommended to the notice of Colonists.

Observe tho Address-18, Cornhull.

LESSLIE BROTHERS beg to inform thore Friends that they have just reeeived n large and elegnat Assortuent of PAPER HaNGiA GS, of Freneli and Enghish Manufacture, wh BORDCRLNE to matcl.

PUBLISUEI MONTHLY.

W. g i.DMCNDSUN, Edhtor and Proprietor; to whom all Oidets and Communcations must be addiossed, l'ost-paid.
Tefiss :-Ono Dullar per Annum, payable invariably in advance. TyRys to narnts:-15 Cuphes for $\$ 10 ; 10$ Copines for $\$ 20$.
Prinied for the Propricior, at the Exaxiner Gefich, by Thos. Clitall.

