The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endornmagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverfure manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/

Relié avec d'autres documents

\square
Tight binding may cause shadows of distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais. lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
\square Pages damaged/
Pages endommagèesPages restored and/or laminated/
Pages restaurèes et/ou pelliculeesPages discoloured. stained or foxed/
Pages décolorèes, tachetées ou piqueesPages detached/
Pages dèrachèes

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

\square
Includes supplementary material/
Comprend du matériel supplémentaıre

Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues, etc.. have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet derrata. une pelure. etc.. cn: été fi!mées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reciuction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

"The profit of the earth is for all; the King himself is seivel by the field."-Ecctess. v. 9.
GRORGE BUCKAANB,

WILLAAM MGBUUGALL, $\}$$\quad$| EDITOR, |
| :--- |
| ASSISTANT EVITOB. |

©̃je Tanadian Agiculturist:
Pablished Monthly, at Toronto, C. W. FERMS:
One Dolitar a-Year in Adtance.
Tiredve engien, for one year a' ${ }^{\prime}$ 3s. 9d. each. Tu Clubs and Societies.
Tweuty-flve copies and upwards Halfa dollar each
New Subscribers can be furnished with back numbers for 1818 and 1819.

- Hound Volumes; for 1849 , will be enpplie: for 5 s., de'ivered at our ollice.

All remittances should be forwarded to Withism MİcDovesth, Pripipietor, 'J'orinto.
Defters are expected to be poist-paid.

PROFESSORSHIP OF AGRICLLTURE IN THE UNIVERSITY OF TORONTO.
Farmers of Canada; you who have subdued the forest and by your indomitable indastry dotted over the country with comfortable homesteads and thriving settlements; you who are the main source of our wealth and prosperity, will soon, we are happy to lear, be directly represented in the lighest Educatiopal Institution in this Province. As iptimated in our last, the
authorities of the University are contemplating a plan for filling the chair of Agriculture, and converting a portion of the University grounds into au Experimental Furm; and by what fell from the Chancellor, at the meeting of Conrocation the other day, we are led to expect, that these valubble objects will be speedily carried into effiect. The press, as was to be expected, has favourably noticed the movement and we should hone, for the claracter and good of the country, tlaạ t.o. factious opposition would be ofiered to its progress and successful termination. We are not in 'possession of the fill particulars of the sclecten which is now before the Senate; but we u.h hrotand that it is proposed to place the whole of the Uuiversity grounds, consisting of about 150 acres, under the superintendence of the Professor of Agriculture; whose duties are not to be confined to the delivery of class lectures e: mere scientific, or eren practical subjects, eobaiceted with husbandry and rural affairs;
but a sufficient portion of those grounds that are already cleared of timber, a mising some 70 or so acres are to be deroted to the pmoposes of experimental and practical farming. The land is to be given up tor a term of years free of charge to the l'tofessor, sulject to the control of the Board of Agriculture ;-an important. and what it is hoped will prove, a most useful intrumentality, that is about being organised mader the provisions of an act of the Legislature, passed last session. We learn upon good authority that the (iovermment will recommend to Parliament a sullicient grant of money for carrying out the important objects of the Board, and for sustaining with increased vigor the Provincial Association. The country should distinetly understand that this is no mere political movement for party purposes; its object is purely patriotic, and it should culist the cympathies and support of all who sinecrely desire their country's welfare. We live in an age and are now placed in circumstmees, which imperatively demand, that the improvement of agriculture. the main sowre of our wealth, should receive the eamest attention and support of the Tegishature. irrespective of what party may control the hedm. Mamy other comtrics. our near and enterprising neighbors in particular are prosecuting this oliject with an earnestness and intelligence that camot fail of success; and amidst the increasing competition of the civilized world with the markets of the mother country equally drown open to all, it will not do for ('anadians to fold their arms in listessness, and to stand still, white the rest of the world is rapidly moving onwards. Not a moment ought to be lost. We must be up and doing; bringing willingly to our aid whatever science or exprience can suggest for increasing the fertility of our hedds, and for developing those great natural sowres of wealth and enjoyment, which a bouniful Provilence has placed within our reach.

The recognition of the claims of agriculture by the T'niversity, cannot fail to render that important Institution more popular and useful, in a country where four-fifths of its inlabitants are engaged in the cultivation of the soil. The social stathes ofour farmers will become elevated, by associating the Sicience and practice of their pursuits, with a fiberal course of academical learning; while existing systems of farm practice, will be necessarily improved, by imparting to the young, sound, practical knowledge, and the results of carefinly conducted experiments. We will now proceed to give our views of this matter a little more in detail.

In the first place, whaterer is attempted should
bear upon the face of th the stamp of prectical utility. The lectures of the Professor on the theory a:d practic of his art, ought to be fully illuntrated, not only by diagrams, specimens and models, but expecially by frequent reference to the daily operations of the farm. The merely pointing out the application of some of the laws and doctrines of chemistry, geology, animal and vegetalle physiology, \&e., to the pursuits of the farme:, however interesting and suggestive as many of these undoubtedly are, would be quite a different thing from the practical teaching of agriculture as an art. The principle on which a Professorship of agriculture should be founded in the present day, accorling to our notion, is that of I'ractice with Science.

This leads us to remark upon the advantages of an experimental farm, which without the most careful and elaborate teaching in the class room would loose the greater portion of its practical value. By an experimental fam, however, we do yot mean what is commonly understond, a model farm; two things that are very distinct but frequently confounded. 'The first is chielly designed for testing the adaptation of new kinds of agricultural productions to certain conditions of soil and climate; a number of experiments are being conducted at the same time, and erery thing of moment relating to them is carefully observed and recorded. Such investigations are in themselves extremely interesting, and open up broad views of the nature and relations of agriculture, both as a science and an art; and should only one experiment in a humdred, or even a thousind be successful, that is, be the means of introducing into general culture, some fresh production or improved variety, suitable to our soil and climate and the demands of the market, the benefit to the country might become positively immense. Besides, in experimenting there is froquently as much to be learnt from failure as success; fresh light is often thrown upon matters, which were before obscure; anomalies become reconciled, and the path of investigation, leading to future discoveries, is rendered more direct and easy.

Ilow different is it with a model farm, or in other words, a farm consisting of a specific soil, in a certain relative situation as to climate, markets, the price of labor \&c., and managed, in all its departments, solely with a view to the maximum of money profit. Such a farm might well be considered a model, that might be safely followed by all farmers, who happened to be placed under similar comelitions. But it must be plain at once, to the most ordinary reflection, that in an extensive country like Canada, possess-
ing great diversities of soil and climate;-some sections of which having already an exhausted soil, while others have scarcely yet been turned orer by the plough; with ge eat inequalitics as to markets and the pecuniary means of farmers; that what might very properly and safels be regarded as a model farm, in one township or county, might be altogether inapplicable to the situation and exigencies of another.
" Mol?cl farms, (observes Mr. Stephens) have been recommended to be established with a view to promote the teaching of practical agriculture. I do not comprehend what such a model farm is-for a farm which is laboured by pupils can show a model of farming to no one; and any farming practised by a body of men having the management of a school, will be greatly eclipsed by that of many a single farmer, and it, therefore, in justice to iarmers, cannot be recommended as a model. Schools established for teaching agriculture, should have attached to them what may be termed instructive, not model farms. . . * Were a pupil, trained on an ordinary farm, to have opportunities of witnessing varieties of experiments on an Experimental one, he might benefit by the numerous hints and suggestions he would receive; and, on the other hand, were an Experimental farm wrought only by inexperienced pupils it would be injured. So far from pupils being able to conduct experiments, the most experienced cultivators are bafled by unforeseen difficulties, and were it known that the experiments on such a farm were conducted by pupils, their results would inspire no confidence in farmers."

An Experimental farm, such as would benefit the country and afford the means of instruction to pupils, could not in itself be made a profitable concern. We would therefore suggest that it should be commenced on a small scale; fifty acres for mere experimental purposes would be sufficient for a beginning. The University grounds contain, we understand, about 180 acres; the greater portion of which consists of park and shrubbery. We would strongly urge that the ornamental portions be held sacred, that no vile brick and mortar should be permitted to mar those beautiful avenues, which ought to be the pride, as all strangers pronounce them to be the ornament of Toronto. If the park were improved by being levelled and drained; the young trees thinned and tastefully set out in groups, aud the whole seeded down with nutritions grasses, it would yield a considerable money return for pasturage ; and the University might boast of possessing grounds, which for extent and beauty, would be unsurpassed, if not wholly unapproached
by any similar institution on the contiacnt of America. Nor in our opinion would the picturespuc effect of the sene, ass a whoie, be at all lessened, by duoting some fifty or sixty acres which are already free from trees, to objects more in accordance with the utilitaian spirit of the age.

We like the idea of placing the Lxperimental Farin under the mauagement of the Professor, in connection with the Board of Agriculture, which will be a popular and responsible body, chosen by the Directors of the County Societies; and which will also have the management of tle Prorincial Association. Besile an annual importation of grain, grass seeds, \&c., from abroad, for the purpose of testing their suitability to this country, it would be disitable to procure, in small quantities, most of those substauces which an advanced husbandry cmploys as manures, if it were only to afford pupils an opportunity of witnessing their effects and mode of action.

An agricultural museum would form a very desirable appendage to an illustrative farm; comprising a collection of improved implements and machines; roots and plants, both wild and cultivated,--thus illustrating the geology and botany of the country. Prize specimens of grain, \&c., would also be suitable for such a purpose. A museum of this kind might be formed gradually without incurring any very serious expense. Implements, \&c., might. doubtless be obtained of the different manufacturers, both in Canada and the States, for the purpose of exhibition; many of which weuld find a ready sale. Their merits should, as far as possible, be practically tested oa the farm, that farmers might have the benefit of the knowledge thus acquired, hefore they purchased. An agricultural Library would be a valua.ble auxiliary, and this likewise might be collected by degrees, without a great pecmiary outlay. Donations of books from various quarters would no doubt be received; and as the Board annually make their Report, to Parliament, a report embodying all that is interesting in relation to the various Agricultural Societies in the Province and the Experimental Farm,-it should be sent as socn as published to the principal Agricultural Associations, both in Europe and America, in exchange for their respective journals.

Upon the whole, then, we consider this to be an important move in the right direction; and that it will meet with the hearty approval of the intelligence and right feeling of the country. 'Without efforts to develop the productiveness of the soil, and to attract to our shores, scitlers having both means and industry, it will be mere folly to . attempt the construciiun of either ailinays or ca-
nals; which, without a tlourshing agriculture, srould be left without business; and consequently aithout prolits.

We camot do !etter than close these observations in the words of lrofessor Norton, of Yale College, a mame with which most of our readers are atready familiar.-['I/ne l'urmerss Guides, Editor"s notas, pege 2.]
"An :attendance of two or three months in each Year upon courses of lectures, relative to scientific :agrieulture, would espand and entivate the mind, would onיn new sonces of interest, and emible him to reason mpon the varions processes which he had obsensed during the summer. This would mat anure ham as a puactical man; on the contraTT, $\overline{\text { It }}$ woukt tema directly to his suceess. Lahor - diminy the nennal seazon of ocenpation in the open air weuld meiconate the frame, as a winter's study. roubl stepugghen the mind.
"xamers may write and tall about the elerattion of their clasis for centuries to come, as they have done in years that are past: but they may rel upon it, that education is the only true roait to that winielh hey desine. Trutil thes are ready to provide the mesus of regular instrie tion in the at of :uscuculture for their soms, mental instruction as well is physical, they will always be compedled, as horetofiore, to subinit to the leald of lavyeses. manufactarers, literary men, and members of oher pofessinns, th which a special ellucation is considered absolutely neevesary to thitiaguished succes.
"In institution which shomid unite practical with scientifie teaching, if properly organized, would be the best of all preparatory schinols; for thene the union of instruction with actual work would be complete. Sueh establishments have hithento, for the most part, been mere mamal labor schools, with only the name of science. We may hope that a better day is coming ; that we shal! soon see institulions capable of impauting asery description of knowledre that is to be desised by the pracieal man, and in addition to this so organized, that by means of extensive researeles, conducted by men of undoubted ability, they may at the same time adrance the range of our howledre, and command tho respect of every class in the community."

Tire Lectures on Agricultucul Chemisty;

By Menry Joure Mand, Mathematical Master, and Lecturer, in Chemistry and Natural Plilosophy, at the Normal, School for Trpper Camala, Toronto: Mugh Scobie, King Street, 1850. Price 1s. 3d.

This little work, we are informed in the preface. contains the sullstance of lectures on A gricultural Chemistry, delivered by the author during the past summer at preliminary meetings for the for-
mation of 'Teachers' Instifutes, in various County Towns of Upper Canada; and he now presents it to the Farmers andichoolmasters of this comnery, " with a hope that it may assist in calling forth a spirit of judicious enguiry, anong the many intelligent and enterpriaing members of those numerons eommmitien,"

The author's style is smooth and perspicuous, and he has been suceersful in comdensing a considerable amome of scientific information that is both iateresting and useful to the pracfical farmer. The work withoat making any pretension of being an introluctory, or systematic tratime, may be read with profit by persons laxing no previous acquantance with Chemistry; the leadng principles and doctrines of that beautiful and comprehensive science are expounded in a popular manner, and their applications pointed out to the cultivation of the soil, the raising of plants, and the management of amimats. There can be no doubt that chenistry is silently influencing and improving the practice of the enquiring agricultorist; but the sanguine expectations held out by amatew farmers, political economists and some scientific men, a few years since havo, as yet, fallen far short of realization. Although it may be dillicult to trace any great agricultural improvement directly to the suggestions or teachings of science, strictly so called ; yet it admits not of denial that both the theory and practice of agriculture have of late years been gieatly improved; and that the researches of the chemist have proved higly suggestive and beneficial to the farmer, particularly in reference to the composition and application of manures.

We feel much satisfaction in recommendinus to the notice of our readers Mr. Mind's Lectures, and quote for their perusal a few of the concluding paragraphs.

Let us in concluding, take a cursory view of tho several conditions of vogetable life and healti, which unite with tho operations of husbandry in establishing the results of which the Agricultuist is in quest. He can oxercise no control whatever over the air plants and animals brealhe; arid yet many of the most terrible visitations he fears are dependent upon the condition of air. irpon itz state, rests the appearance of Rust, Mikew and
many parasitical msects, all of which leal most eflectually to destroy the anticipated results of his industry. The condition of perfect humidity in a warm atmosphere, at remtain serisons of the year, will sulfiee to cause his erops to be elothed with the most destruetive of mictoscopic planis. This lumid state may occur in Mareh, April, Seppember, Sce., withoit bring the canse of projulicial results, if it happen in May or dume great damger is to be appreliended. From observation, we beam, that luxmiant wheat srown on rich moist soils is very liahle to be struck with Rast or Mildew. 'This is ofien the case on fentile river bot-toms-on the riel botoms of the Thanes Se. It is also remarked that in late seasons Rust is most destructive ; that the time when it strikes the plant is generally in the month of Jume-if late in that month, the straw only suffers, if early, straw and grain are beoth lost. Now, as the hamidity of the atmosphere is beyoul the control of mint, he must adapt his labours to the ciremmstances of the climate. He must endeavon to have an early crop-with a thin, strong, flinty stem. It has been beforeremarked, that the means for ensutine the ripening of wheat, from two to thee weeks earlier than the average perion, are to be found in draining and limiur, both operations, besides ensuring early maturity, improve the sample and strengthen the straw.
The agriculturist is dependent upon other meteorological phemomena, with the due otcourenee of which, the healh of his crops is most intimately associated; upon rain and temperature. He hats oxemisionally to dephore the occurrence of dry weather in the spring, and of wet weather in the harrest time. The seasons of the presem year were particularly distinguished by these dianbacks. Those artilices which are commenced by experience and suggested by the science of agriculture, present him with the only means capable of lessening the anome of evil flowing from such casuahiris. On drained soils, the routs of cultivated crops descend deep, and find in dry weather a supply of moisture. Their sarly maturity saves them from that destruction which is always more or less to be lamented in wet harvests. In backward and wet seasons, the errain crops lose mamy days of wam spring weather on undrained soils, betore they commence growing. The heat of the sum must first drive of the superfluous water, which is toldged in every hollow and depression, although it may not be visible at a superticial view. Cold rains invariably check the growth of vegetables, and a cold watery bottom (pain) to the soil in which the roots repose, cem never be expected to fator the growth of a healhy phant. The appearance of yellow leaves upoit wheat in the spring, is the result of disease, and may be produced by excess of moisture or by excess of drought. It has been already shown, under the head of draining, that that operation greatly increases the temperature of the soil, by alloxiug warm air to circulate throngh its pores. Yegetables do not necessarily thive when the surface of the soil is exposed to a sreat increase of temperature: it is when heat deseends to the
roots that they feel its inviaroratime inturner. The w:rm smo of ipil and May camut produce the same elliects in verectathe minuld, as upon one of a light, simuly, porous character.

We have aerol that mentivated verofahles derive a wiy larere pontion of the in substane from the admictures of air, earbonic acis and amnoniat. Cultivated erops obtain these chenems of fored, not only from air and dee:ying vegretable matter, but alsio from mannes. Thatide parturent of hasbandy which involves the production.preservation and application of mamure, necossatily calls for the carefal attention of ihe agriculturist. Chemistry and experience both set their mark upon firris-e ard manure, as constituting the most usefinl means of improving the fertility of the soil: and of tam-yard manne, the liquid portion, the mine of amimals, is mumestionably the most valuable. The solution of inineral ingredients in water, previonsly to their cutrance into the roots and system of vorgetables, directs partienlar observation of the soils, and the properties possessed by their compotemt parts. It appears that the same kind of vegetable growing fon a suceersion of years upon the same soil, abstracts certain soluble mineral ingredients, faster than the great agents, heat, air and mosisture, can create at supply from the vait stone which evists in an insoluble state in the soil. Hence the vegetable cultivated under such circhnstances, becomes detariorated in ynaliay, and approaches nearer and tuarer to that primitive, wild state, in which its kind existed before cultivation pronluced the wondrons developement of its organs which fit it for the fool of man. (Witness the wild potato, the plam, widd rice, widd wheat, wild oats, Sc:) To avoid this deterioration, experience and arricultnal chemisby point to rotation of crops, fallowing under certiin circumstances, farm-gand manure, mineral mannes, aะ lime, worai-inhes, sypsum, sc.
The growth of weeds anong cultivated crops, is :an increasimg and serious evil. Nomishmeat which, in their absemee, would bind its way into farming produce, feeds them into a laxariant and truitful habis, which at once suppresses the growh diminishes the yield, and impairs the sample of those vegenables for whose bemelit all the artilices of hashandy are expressly pacticed. The nse of clean seed, the practice of clean cultivation, of dranining, and of totation of erops. can atone eradrcate those huttul weretabies, which, from past neglect, seem how to be successfully strugerling to grain excluive possession of many fertile tracts of country:

The cold of winter is sometimes so severe, that the wheat plaut loses its vit. 1 lity, even on drained soils. This happens when there is a deliciency of show. A cosering of sumw prevents radiation of heat from the eirth into the clear expaise above. The temperature of two plants, one exposed to air on a fine clear cold night, the other covered with a very lonse conting of straw, differs by mony dearees. A few loads of hong dung or liter strew ${ }^{\text {d }}$ over the wheat in the month of December, will retard tadiation, and prevent the temperature of when plants from simking so low
during eqvere winter nights, as to emdnage heir vitality. Lastly, the economy of a firmi cannot in general tee preserved wibhout a due pi bistion of stoch for the production of mants c , ind the preservation of a judicious rotation of chop"."

VILLAGE LEC'TTHES.-Ñ. 1.

We bisert from the London Agricultural Gazette, the following and sacceeding leatiares on Scientific and Practical Agrichathe, which, from the simplicity of the languare in wheli they are expressed, and heir general miliay to the farmer, we trust will be acceiptable to a large proportion of our realers:-

Thic Suil and the Air.-Tles soil and the air, in connection with agaiculture, have no inimediate bearing upon their daily parsitis; and whether the influences which hais athect the practice of the farmers be capable of satistactory explanation or not, the practice and profit of their own indiridual occupations will remain precisely as they hitherto have been-undisturbed by those particulatiar truthis which our subject includes. This subject, however, I ampersuaded is not the leas appropriate on that account for general consideration. It is one of general interest. not only because the air we all breathe and the soil we all tread camnot, but in some measurc, affect us all alike, but because the usefulness of knowledge of this, as on erery other subject, is not ineasurable by the pounds-shillingsand pence scale; which would confine it to those cases exclusively where a money result depends upion the possession of it. There is a usefulness besides that which immediate profit measures; and though the agriculturist should not, and others could not, earn the more becanse they know the more of the air and the sjil in connection with the art of cultivation, yet such knowledge is beneficial to all as addition to mental if not to material weallh-as food for the mind, which, like the body, can live only by.appropriate nourishment-as matter for pleasurable thought, from which, as from all cther topics, we may usefully draw the unfalling inference regarding the wisdom, skill and power, and goodness which creation everywhere exhibits.

But if the soil and the air, in connection with agriculture, may reasenably claim the attention of all, it scems to force itself upon that of the farmer, and it is in that aspect of the subject, almost exclusively, in which it appears to him, that I have now to ask your attention. It certainly must have sometimes occurred to those who cultivate the ground and superintend the growth of crops, to ask where these crops all
come from. Do you think that they come out of the land-from the soil on which they grow? Let us just consider this question in detail. Thake the case of a forest of trees. Did all that wood come out of the soil? Suppose a man to plant an acorn in a piece of clay land and watch its growth. He sees the shoot and the young tree increasing in size, and if he should live long enough, he would ultimately see the old tree with its trunk, its branches, and its twigs, containing perlaps 40 or 50 tons' weight of wooda result of the life which was resident in that litIle acorn. Where did it get that wood? The roots of the onk grow downwards in the carth to a great depth-do they find its wooily matter there? They also spread on the surface to some extent, but do you think that there is enongh of the woody charcoally matter to furnish the inaterial of that great tree? It was a poor clay when the acorn was planted, and no one has been near the place since to supply the growing plant with the matter it wanted. We may suppose the trede to have stood in a forcst near which no datag cart ever went, so that no supply of lood for the phant could have reached it beyond what existed when the seed was planted, and then the soil was rery poor, and contained none of the material which has since appeared in the stem and leaves, and branches of that great tree. How did they obtain it? The thing certainly appears diflicult of explanation.
' I ' : the case, too, of any of . tr common crop:-of our grass lands, for ir .ance. .sot us imagine the case of a dairy from of 100 acres; we may suppose it to be able to maintain a herit of 30 cows. What will such a farm produce in a year? Suppose it to be good land, able to keep a stock of good sort. Perhaps I shall not be far wrong if 1 put the produce of a cow at something like 31 cwt . of cheese, and 30 or 40 lbs. of whey butter every year; and besides this there may be some bacon made from the waste of the dairy. Wells then, a farm of 30 dairy cows will yield nearly five tons of cheese, and eight cwt. of butter in the year, besides this bacon. That quantity of butter and cheese are exparted annually from that extent of grass land, Now, where did that butter and cheese come from? Have they been made ont of the substance of the coms? They are as heary now as they were. It has not been made at the expense of the cows-any more, indeed; than the wheat or the barley, which comes from the threshing machine, is made, at the expenise of the machine. The cows are merely the machines by which the cheese is made out of the food they eat, and just as the wheat is in the rick that is being threshed, so the cheese resides in the grass that is being
eaten. Well, then, where does the grass get it ? From the soil, do you think ? Juas consider; take a humdred years-what has been added to the soil of that farm during that period? Hardly anything; the farmer may perhaps have bought some bran and some meal every season for the pigs; but then he has sold the bacon made by his purchases, so that the farm has lost as much as it has gained, in that respect. He has bought no manure. It will aot do to say the farm continues to field the grass because of the manure that is added, for none has beep added to farm. Manure, has, no doubt, boen added ts the field, but none has been imported from without the farm, and yet, five toms of cheese have been exported every year; and how has that great draught upon the farm been maintained without loss? The manure that is applied to the field helps the grass greaily; but it chomot supply the cheese I speak of ; for you must acknowlédge that the meaure in just what remains of the grase after the cows have taken the buitter and cheese out of it, so that every your, the land is robbed of so much cheese; that is, if the cheese be in the soil. But can you beliere that it is? Can you believe that every jear, the soil of this farm is the poorer by five tons of cheese than it was? Why, how long had it stood this waste? If we suppose that it has been yielding at that rate during 1,000 jears, there must have heen 5,000 tons of cheese in the sonl of that farm- 50 tons of cheese in every acre of it, at the beginning, and if any thing, the farm is more fertile now than it was then-fuller of cheese, no doubt; than ever.; so that for all we know, there must be thousands upon thousands of toas of cheese in it atill. Ah! but that explanation cannot stand; we cannot believe that the wood of our trees, or the cheese, or the butter of our dairy farms comes out of the soil. Where do they come from then?

Now, before attempting to answer this question; let us take the case of an arable fariu. Suppose we tike our own; at - for instance. It contains about 272 aeres of land-off 120 or 130 acres of it, every year, we cut a crop of wheat, which may average from 32 to 36 bieshels of wheat per acre; and besides these, 4,500 or 4,600 bushels of wheat, we sell anpuially, proba. bhy, ten or eleven tons' : weight of beef, mutton, and bacoin ; that is, the animals. we sell off, are, on the whole; heavier by that weight, than they were when brought on: We buy some 100 or 300 bags of meal and linseed as food for the live stock ejery jear, so that much is dided to the soil every year, and that may account for 500 or 600 bushels of wheat we sell off; but where do we get the 4,000 , and where does all the beef
and mutton that we sell, come from? It will not do to say that it comes from the manure; for set a watch upon the entrance gate of the farm, and count what goes ins and what comes out of it in a year; bardly any manure gocs in, and you will find that 1,000 busbels of grain go off the farm in a year, and you will find that ten or cleven ton's weight of meat go of the farm more than comes on it in the year. Where does all that food come from? The question is, whether or not it can be smpposed to come from the soil.

During the past ten years, we must have sent of the farm 30,000 or 40,000 bushels of wheat, and 100 tons of meat. I take our own case as it is, the oaly one I am perfectly acquainted with; but any cultirator of the soil will, if he lootrs back a few years, have to acknowledge the sime remarkable truths in the case of his owa farm. Do you think that all that bread and beef came out of the land! Why, the land is richer and better after all that has been taken out of it than it was before; and if it be kept in cultivation for jears to come, it may jield huadreds of thousands of bushels of wheat jet; they are not there now, most certainly,-where will they come from? Neither the wood of our trees, nor the dairy produce of our grass lands, nor the grain and meat of our arable lands can be supposed to come from the soll. If all the wheat, oats, rye, barley, beans, peas, hacon, butter, cheese, beef, mutton, and so on, that Eagland has produced since it was first cultivated, were piled upon the land now, it would be more then a foot deep over the whole island. Deeper than the soil itself is, on the average, over the country. And should things remain as they are for another 1,000 jears, the land will have yielded another such lot; that is, more food in point of bulk and of weight, than the soil itself actually is. Where has it, where will it all come from? That is the question. (The answer will appear in our next number.)

TRIAL OF SUB-SOIL PLOUGHS.

On last Tueaday, 124 h inst., 2 trial was made of the comparative merits of a sub-soil Plough manufactured by the firm of Rapelje \& Co., of Rochester, in the State of Now York, and one of English manufacture, made by Read. The trial took place on the farmo of J. B. Marke. Esiq, mear Barriefietd, Read's. Plough is the property of Charles Penner, Eeqi; of lacinine, the one which was exhibited at: the Provincial. Show, held in this Cuy in 1849, on whioh occasion the first prize wai awarded to one of the Rooheiter :made ploughs. Read's plough. carries the palm in England, as makiag by far the best work of. all
the sub-soid plaughs brought into competition with it there.

The modermeatimed practical degiculturists were present by invitation of Mr. Miosks, to wituess the trial, vix;-Charles Pemuer, Eisu. Dr. Vomer, of the Garrison, W. Fergnson, Lisip, WV. Hohlich, Esi., A. Gimerom, lisu., W. Wilsom, Eis!, Thomas Brigez, berg. Mr. Wi. Starks, Mr. A. Laidlaw, Mr. Jimes Cowan, and Mr. Johm Dum, who umamonsly decided in favor of Mr. Pemer's Plongh,as beiner lieghter of draft, ensier to hold, and more thoronghly breaking up the soil, without bringing too much twards the surfine. It is to be hoped sume of our plough manufacturers will embace the present oppotunity of making application to Mr. Pember for this plough, to take patterns by, and thereby supply their customers With the best articless as get linown of has most vahable farm implement. The day was highly favourable, and no pains were spared to do every justice te, investigations. The approved Plough while cesting to the depth or six in-hes under the bottom of the previonsly ent furrow, was drawn its our horse, and that a light one, while the other pluargh was drawn by four yoke of oxea and one horse in front. The business of the day was closed at the hospitable board of Mr. Marks, who on this, as on every other occasion, evinced his zaal in the improvement of the agrientural aflairs of this country:-1tgus.

WHY IS THE G.IRDEN MORE FERTILE THAN TIIE FIELD?

The umitersai ansitier to this question, is, because it is more highly ananured, and therefore has a richer soil. Thise is- not always the case. But it is owing to the dinely podrerised condition of the beds, that gives it a highly absorbient power to attract moisture from the atmospherea source of fertility that many farmers scarcely seom aware that they possess. If the soil of the field were as carefilly worked, and fresh earth constimutly cexposed to the atmospliere, as in the well-tented garden, the land would increase, rather than deteriorate in fertility. Let the rule be, : plow deep, cultivate well, pulverise lumps and sods, and return the straw to the soil," and you may cary ofl an immense puantity of human food, and still have a fertile soil remaining.

Plants, in their nature, are organised beings. By means of their roots they take up food from the soil-and often, the very food which the soil has taken up by its power of absorption from the atmosphere, and which power is increased to ant almost indefinite extent, hy disintegrating the particles of which it is composed. The very act of plowing and harrowing, is an act of manuring. The act of stirring the earth, in times of drouth, serves as a watering of the plants. The moisture thus absorbed is loaded with a fertilising power that is lost upon a hard surface, for it lacks the povis: of aibsorntion.

If, theran you woudd hare your fichld as fertile
as a garden, you must not depend alone upon manure, hat pulverise freely, not upon the surlace alone, but deep below it.

WATIRR OXEN.

We nusice the arrival from Genstantinogle, per bank New Word, via Liverpool, of wor pair of Asiatic buffalo cades, or as they are genemally called in the books " water oxen."

These animals have been imported by Dr. Davis, for Mr. Williams Middleton, whom we understand, some time since adapted, (by wire feneing,) a large extent of land for the rearing of catile, amb in which he has abont one thossenul head, sustained entirely by the mathral iesourctes of the land, not only suiving him a large revenne, but adding greaty to the supplis of real, butter and beef markets in our city:

A pair of these water oxen lironght out iy Dr. Davis over a year since, ave really objects of curiosity, (and of course of corresponding pronise,) from their remabiable fatness; and this from feeding on the anarsh grass of the Doctor's fanm. Mr. Alidhteton has, in lis enclosmes, a sreat deal of this marsh land, now valueless, which, we believe, he is now about to turn to grood accome with these animals.

The water oven distregard mud or bogs, and are hence well adlaptect, as work:ng onamy wach lands. A great part of the day thes spend in Ashley River and an artificiad pond on the Doutor's farm, with only the nose out of water. They grow to an enormous si\%e, the cows, tolerable milkers, and very fair as beef cattle.

We are thus particular in this notice, hopins that the planters on our extensive marshes and rivers, where the freshets are so destructive to cattle, will examine into the capabilities of these animals, and avail themselves of this facility of importation.-CharLeston Devecury.

CERTIIN CLTRF FOR FOOTAII IN SHGEP.

The following reccipt was handed to me by Mr. Thomas Wilkinson of England. I tried it successfully myself, and feel confident in recommending it to others as an efliectual cure for thas troublesome disease.

Take of quicksilver, one ounce, afgafortis, (niitric acid) twa ounces, and put them together in a glass bottle; place it in the sun, orin a warm place, with the cork outtill dissolved, when it is ready for nse; cut the hoof away, as far as diseased : dip a feather in thre mixture, and be carefal to amoint the diseased part all over. After this, keep the sheep in a dry place tor eight or tan hours.-They seldom require more than one dressing if properly done. It will be necessary, also, to wet the feet of the sheep not diseased, with turpentine, to prevent it speading further amongst the flock.
N. J., Scpl.,. 1850.

Hugh Eator.

THEMS 以ENUTENG THE KXTIMN.E PARFG OF TIE HOLSSE.

1. Muzzle.
2. Face.
3. Forehead.
4. Soll.
5. Crest.
6. Jowl.
7. Gitllet.
8. Windpipe.
9. Point of the Shoulders.
10. Breast
11. Arin.
12. Fibon.

F3. Givift.
14. Flank.
1.5. Sheath.
16. Stifles.
17. Withers.

I8. Bach.
19. Loins.
20. Hip.
'21. (roup)
22. i)ock.
23. (unarter
2.2 Fhigle or Gavkion

此 Haustring.
26. Joint oi the nock.
27. Ham or Hock.
28. Common.
29. Fellock.
30. Large Pastern.
31. Small Pastern.
32. Coronet.
(33. Hoos
34. Knec.
35. Common.
36. Fetlock.
37. Heel.
38. I.arge Pastern.
39. Smaill l'antern.
40. Hook

TIIE GIORSE.
The Anutomy of the Muselces.-The hones of the whole body constitute a frame-work to which the numerous muscles (which are concerned in, and are the means of the various motions of the animal) are attached. The bones are not smic oth, but have an uneven surfice, and present depressions and elevations; these elerations are like nipples, and are calted niplite-shaped processes, or tubercles, the mescles are attachech. The bones are hevers, and the power of their motion is the muscles.
In our discussions we propose to direct attention mainly to those bones and muscles only which are concerned chietly in the travelling, carrying, and drawing motions of the horse. These bones
and muscless are mostly those of the bedy and legs, and consequently the hody and legs, in their bony and muscular anatomy, will be treated of. We content ourselves with an cmumeration of the bones of the head, as the leead is ouly in a small way employed in motion of draft. The power it has over cither arises from its efevation or depression. When the horse increases lis pace he lowers his head, if it be free; when he is called on for greater exertion in draft, he alse lowers his head. Without this depression of the head, and that to the level of the body, he cannot reach the height of his speed, nor the utmost of his paser or draft. In orlinary motion or draft, the heal is not so low as the Ievel of the body, it is only in lis higher and more powerful exertion, in either speed or daaft, that the horse brings his head to the level. It is then the position of the kead, and not its yower, which is concerned in snotion or draft. Consequently, in animal meclanics, it is relatively of small consequence. The head is not even held up in its natural position by the masele, but by a strong ligamest or cord called the prek-wax, which is attached to the head at one end, and ou the withers at the other, and hence into the muscle of the back. When, however, the head is to be depressed, the museles of the neck and shoulders: are called on to do it. Thes the bones and muscles of the neek, as well from their shape as from their size, are of importance in the power af the horse for motion.
MInseles of the Teck.-We shall irst consider the muscles of the neek. They lie chiefly in the lower part of the neck, and end in tenclons at or near the head. Thoss concerned in the
raising and lowering of the head and turning it in larious directions, make a complicated system. 'Two of the most important of them are the splintlike muele and the large complicated muscle. The splint-like muscle constitutes the bulk of the neek on it upper side and is attached to all the bones of the neck except the upper one, called the atlus, nearest the head. From this muscle a tendon goes to and attaches itself to the atlas and the bomes of the temples. Its ,ffice is to elevate the head and neck, and for this it is very powerful, as it must needs be; upon it depends the beauty of the neck. As it is more or less arched, but it should be light above, and large belov and at the junction of the neck with the shoulder. From it arises the thickness and muscularity of the nerk, and if full at the lower part and light at the upper part of the neck, the neck itself when joined well to the head, will be perfect. Clunsy necks arise from too much cellular substance or fat, and not from this muscle, as also do lofty crests. Niares and geldings rarely lave clumsy necks or lofty crests.
'I he large complicated muscle is the largest and most powerful in the neck. It arises from the five lower bones of the neck, $c l, e$, at its upper part, as it nears the head, it lessens its bulk and unites in part with the same tendon as the splint-like muscle, but is principally joined to the bone of the back of the head. It assists to raise the head and neck, and it is particularly concerned in raising and thrusting forward the nose. Whien too powerful, it makes the nose stick out, and deforms the horse. The martingale is used to counteract the force of this muscle. When this muscle is very large and the splint-like one quite small, the horse will be ewe-necked hollowed (or at least straight) above and projecting below. In such a neck the nose protudes and can hardly be got down.

The Muscles of the Neck.-The small complicated muscle, the struight, and the oblique muscles of the upper part of the neek, attached mainly to the two ujpe" bones of the neck, are also employed in raising the head.

One of the muscles used to lower the head is attached to the breast bone, and lies next to the skin; it proceeds up the neck, and near the head changes into a tendon, and is inserted into the lower jaw near its angle, b. It is used to bend the head towards the chest. Another muscle concerned in lowering the neck, springs from the back of the bead, and the first or four upper bones of the neck, and the pack-wax proceeds downward, mixes with the muscles of the shoulder, and attaches itself to the lower shoulder bone; it also assists in raising the shoulder.

The muscles of the neciz are all double (in pairs,) one on each side of the neck. To raise or depress the head they must act together. 'To turn the head and neck to one side, one only must act, on the side to which the head and neck are te be turned; if an elevating muscle, then they will be turned at the same time; if a depressing muscle then lowered and turned. Thus is provision made for every kind of motion of the head and neck.

MLuscles of the Breast.-The muscles of the breast are very important. They are largely concerned in the expansion of the chest; and are the power by which the arm in rapid motion is confined to the side, and thus leeep the leg in a straight line before the horse. The chief of these is the pair of transverse muscles of the breast, They form two full points in the front of the upper and front part of the breast, consistng of the four first bones of the breast and are attached to the lower end of the lower bone of the shoulder, extend backward between the legs, pass across the inside of the arm, and reach from the clbow almost to the knee. These muscles act to place the fore legs in that position, which will allow them to receive the weight of the body in the casiest manner, and with the least shock.

The great and smatl muscles of the breast lie above and behind the transverse muscles; they extend from the breast bone to the arm of the shoulder. Their office is to draw back the point of the shoulder and lring it into the upright position. There is still another muscle which goes from the breast bone to the shoulder blade. It assists in the same office as the great and small breast muscles. It is less in size than either of the others. A horse not well developed in the muscles of the breast will be deficient in power. He will not have the power to expand perfectly the chest, so that the lungs must suffer, taxed by
riolent motion to increased action; and this cven if the lungs be large enough. Nor will the horse be able to use his fore leg to advantage. Their breast muscles must be large to allow the horse to avail himself of the full power of the muscles which are used to propel forward his carcase. The progressive muscles have enough work of their own to do, and will not long last if called on to do that of other parts. These breast muscles have more to do in supporting the weight of the body and giving direction to motion than in creating motion; if they be not competent to their office, other muscles are called upon to overwork themselves to supply the deficiency, viz; the muscles of the shoulder and haunch in motion, and the muscles of the belly (abdominal muscles) in breathing. 'Then the breast muscles should be large to prodace and preserve a proper balance both in action and breathing.

FRENCH CONTRACT FOR ENGLISH CAVALRY HORSES.

For the last few weeks a great number of English horses lave been exported to France, on account of the French grovermment. There are several agents at present in this country for the purpose of mahing some very large purchases of chargers for the remounting of the French cavalry regiments, both heavy :und light. The contract is for 12,000 , at the price of $£ 25$ per horse, for the light cavalry, and $x: 3$ per horse for the heavy troops-Cuirassiers, Carbineers, dragoons, attillers:

The above paragraph we cut from one of our English papers. It teaches the farmer the advantage of rearing an improved stock. Here is France with a much larger and more fertile country, and get she is tributary to her great rival, England, for the well mounting of her cavalry troops. What a disgrace to France this is, and what honor to England.

At the famous battle of Waterloo, one regiment of English cavalry was so superior to any in the French lines, that in every charge, they easily rode right over the French horses, completely discomifiting them with searec the necessity of pulling a triggor or drawing a sword. It was the superior breed of tho English horsos, alone, that cuabled them to accomplish this.

There is nothing superior to a first-rate American herse; and if onr farmers will only breed from the bost animals, we should soon have such a numorous stock in thecountry as the world never yet saw, out of Arabia.-Am. Agricul'arist.

To Measure May in Stacks,-"More than twenty years since," says an old farmer "I copied the following method of measuring hay, from some publication, and having verifed its accu-
racy, I have both bought and sold by it, and believe it may be useful to many farmers, where the means of weighing are not at hand. Multiply the length, bleadth, and height into each other, and if the hay is somewhat settled, ten solid yards will make a tun. Clover will take from ten to twelve yards per ton."

Portabje: Steam Engina for Farm Purposes. -This engine is a beautiful piece of mechanism of half-horse power, working 10 a cham. It was operated in the hall, and attracted great attention. It propelled a grindstone, lathe, straw cutter, \&e., wohking with case at from 500 to 800 revolutions perminute. With it, a farmer might saw his wool, cut his straw and hay, grind his tonks, steam his potatoes and other feed with the surplus steam, and while thus operating, sare the labor and board of two or three men. It is well wothy of careful attention, and if durable, of general encouragemen. It requires from 1 to $1 \frac{1}{2}$ cents' woth of fuel per hour, to propel it, and costs only \$75.-Trans. N. Y. Ag. Soc.

Stornag winter Cabbages.-Such cabbages, at the extreme north, as you wish to keep though the winter and early sping, may be pulled up by the roots, and arranged in compact rows, with their heads downward, resting on the surface of the ground, so that their stalks will stand upright in the air; then, they may be covared with straw and earth, and treated in every other respect as directed for root crops. Should the weather be unusually warm, the cauth and strave should be opeacd to let in air.

STORM GLASS.

This instrumemt consists of a glass tube sealed at one end, aind furnished with a brass cap at the other end, through which the air is admitted by a very small aperture. The tube is nearly filled with the following solntion, which may be obtained of any apothecary or chemist :-

Camphor, 2. drachams; nitrate of potash, 38 grains; muriate of ammenia, 38 grains; water, 3 drachams; rectifed spirit, 11 drachams. Dissolve with heat. At the ordinary temperature of the atmosphere, plumose chrystals are formed.

On the approach of stormy weather, these crystals are often observed to occupy only the holtom of the tube, whare they appear to be compressed into a compact mass; while on the other hanl. during th: fine weather, they assumed theit plumose character, and extend a considerable way up the glass.-These results depend upon the condition of the air, but they are not considered to allord any indication that can be relied upon of the approaching state of the weather. When cxposed to a very low temperature, the compound camphor limiment botile aflonds the same appearance and indication as these storm ghasses. -Phaermaceu'ical Journal.

PROFENSOR MITCHELI, ON BHBLICML ASTRONOMD.

Professor Mitahell delivered another of his series of lectures on libiblical istronomy, in the Hope Chapel, last cuening. As was the case on funter oceasions, his andience was lanse, and he "ast listened to thoughout with great athention-
 from the book of Job, and commented upon them in his pecalianly elopurnt style. In reference to the allasion to the tomadations of the eath, the lecturer inquined where are its foundations-hy whose power is it suided-who supports it? Whe is it that heens it stady in its cateer, and cathes it to subserve the great whenets for which it was designed? We bnow not-it is imposible for us to alswer. If we ascribe it to the power of gravit-what is it? It is the expression of the will of Gerd. We cen't go beyond that, amb Javing reached a certain limit, we find that the human mind c:an't go beyond it. Again, "Hast thou commanded the morning since thy days, and caused the day-spriter to kitow its place" Se. Hast thouso constituted the earth that it shatl sevolve for ever and erer with perfect enitormity, and callese the day to hnow its place with absolate certainty? Ifere he said, we have a temarkable allision to the most womle fulf facts cumected with the history of the world. If the axio of the eath was uot pertectly stable, then the day.ipring fiom on high could not know its place, nor would there be any certainty in regand to the rising and setting of the sum, nor any unifornity in the seasons. Of the nillims of athis which may 1.0 drawn throweh the earth, there is but one of them all on which it can sutate, so that it will preserve its pusitun and catuse that muiformity which we puoseso. Su unifonn is that lutation, that fers two thesesend years, it has nut valied the one handedth part of a second. But is it necessary that his motion should be unitorm? Ife slurild say no. There is no planet which moves with perfert milomity, but in the motion of the eath on its avis, there is alsolotely no change. Suppose that in lamehing the eath inte pace, it had been ertablished as a law that it would be perpothally losine a a mastl anumut of its velocity in its totatimes, what would be the tesult? It wonhd Juse fiom time to time, and in the emb, its desturtom with that of all hee, on its surface would be: the consequence. It on the ohber hand the veloenty of ths rotation was increased, what would he the result? The whole mase would disintergate and protions be thrown off at the, egnator. But God has given us a gamantee that these changes will nut fahe place-lhe has suataneed as on ihe bight io well ats on the left.-s: I: Paper.

Ture Romonas Stove Gamers No Moss.- 1 very sensible litue jtem against the universald all-pervading disposition of Ameican farmers to mierrate-a disease that is ofter destractive to
life, very often to health, mote ofien to comport and happiness, aud still more often to a sy:tematic counse of imponement, by which the "old homestead, " that is abamduned on acconnt of its unprodustiveness, would become tertile agrain, and fielff a sereater prosit than some of the heh bands of the west.

remillation.

We copy from the Gilobe a biet outline of a Iecefore on the impertant sulyect of Ventihtion, delivered at the Mechanie's Intritate of this city, on litiday the 3uthult., by H. Ruttan, Bext. =-
There wats an andicnece of upnards of filu perxoren incledtus at crood many ladies. Ar. M. becan by describing what pure air is, and then proceeded to show the menitiold canses of impure air, wheh consists not only in that expelled from our lungs in breathing. but is senerated also by exhatations fom every animal or yegelable matter. decaged or otherwise, which is fomd in our honses. streets or fields. Bu, if it is said we masti take the air as it comes to u, that is sheer nonsense. for the same thing might be sand regarding water. There is prote and impure of both, and as nosane persion would drink of filthy water merely becanse it
 as insane for people to take no heed as to the quralities of the air they breathe. The Leeturer after readines extracts from Liebig inf other anthors, showing how impure air was generatel and what were its pernicious effeets if breathed. procecded to -peak of the different mems which have heem emplojed to disperse this impare ant, and to snpply is pres, in olfer words. zentilatiom. Whe blamed architects for their total inattention to this mose important part of their duts. As medieal men are reguired to have a knowledse of the anatomy of the human body, so ought architects with respect to the amatomy of houses; but in this so-called militarian age there are very few honses built that can be inhalited with comprit. Architecture has heen retiogradine these last 3000 ycars. limy of our Canadian churches are proots of it. Large sums ate expendad on fine Eiothe charehes, with roobs on on bu feet high, and whith can never be made comtontable (nist to speak of the minor inconvenicnces of not heaning the prachar). Whale by having a thet and at the same tias is lower ceilinge with a proper system of ventiation, these defeets wonld lie remedied and less debt burden the congregstions. Then in duceling houses, brd rooms are so placed and limished, that it is wonderfal how we escape the bad efieets "ith so much imponity. They are put at the top of the hemidime towands which all the mapure berated air tron hitcleus and sithins rooms asceud. The caure's and cuthins, dud such like hurniture: collect nowous darticles of all suts that do them shate in vitiating the ain. Bed iouns ought to be as hare as possible, and eepecially sich bediomeIndeed, carpets should be used in no toom in any house. They are uncleanly, and consequently mhealihy. Kitchens ought not to be mader sitting ot belrooms, but in out buldings; neither ousht segetable on animal food to be kejt in any cellar under the lowse. By his plan the meonenieace of the present methorl is obs inted, whelh by admittins the current from Delon, difinoses aut little at any different trom that which it expels. LLe did not enter into the details of his new plan, nor show how the natural direction of heated air upwads Was to he orereone, citing as a hason that it would be too day for a mised andience. The lecturer was much applanded during the reading of his very interesting lecture; which ocenpied upwards of au liour.

Gonden leces or hirf.-All the air and the exerrise in the uniserse, and the most generous and livenal table, but pooly suffice to maintain human stamina, if we neylect their cu-operatives - manely, the obedience to the lans of abstinence, and those of ordinaty gratincation. We rise with a head-ache, and we set about puraliner ourselves to find out the cause. We then recollech that we had a hand day's fag, or that we feasted over homiteonsly, or that we stayed up vely late; at all events we are inclined to find out the fanlt, and then we arcuse ouselves of folly for falling into it. Let any one indivilual sesiew his past life, how instimanennsly the blash will cover his check when he thinks of the eqregions ervore he tan umknowingly committed-say inknowingly, because it never ocenired to hin thail they were ergors, milil the offects followed that betayed the callsc. All our sickness and ailments mainly depend upon ouselves. There aue thousands who practise ervors day after day, and whose periadias thostigh in, that every thing which is agrecabe and pleasant cannot be latitial. The alothitul man loves his bed, the toper his drink, because is throwe him into an cxhilarative and exquisite moorl; the gourmand makes his stomach his grod; and the senstalist thinks his delights imperishable. So we go on, and at last we stumble and break down. We then berin to retlect, and the truth stares us right in the fiace how much we are to blame.

Fanamas: Sceves in the West.-About eight Yeans ago a Dutchman, whose only English was a roombinatued "yes" to every possible question, got cinployment here as a stable-nan. Mis wayes, sia dulfars and hand; that was thirtysi. dollars in sis months. for not one cent did he spemil. He washed his own shint and stochings, mended and patched his own breeches, paid for his Iobacco by odd jobs: and laid by Jis wares. The next six months. being now able to tatk good English, he obtained cight dullars a month, und at the end of six prore had forty-eight dollare, The second year, by vary ing his employment-satwing wood in the winter, worhing for the corporation in the summer, and making gudens in the sping - he lain by a lumbred dollais; suat the neat year one hamdeed ind fifto-fise dullate, With this he buught 80 actes of land. It was as wild as when the deed fled over it and the Indians pursud him. How should he get a living while clearmer it.-Thus lae did it; he hires a man to clear and fence ten acres; he himself emains in town to eam the money to jay for the clearims. Behold him already risen a degree-he is an employer! In two years' time he has twenty acres well cleared, a log house and money enough to bny stock and tools. He now rises mother step) in the woild, for he gets marised, and with his amply bread-faced good mitured wife, he gives up the town, and is now a regular farmer. In Germany he owned muthing, and never could; his wages were mominai, dis dict chinfly vegetables, and his praxpect yas, that he swoml be obliged to labor as a mesuial for life bacoly carning a subsistance, and not leaslug cuough to bury him, In fise years he has beembe the owner in fee simple of a good farm, with comioriaple fistures, a prospect of rurail wealth, an independent life, and, by the blessing of heaven and his sifie, of an endess posterity. Ifro words tell the story -industry and economy. These twowords will mate any man rieds in the Wext. -Indiana Furmer.
1)etcre Womer.-Coleman, in his is European Jife and Manners," gives the following description of the Dutch women:
i: I ghink some of them the fitirest and handsomest
creatures : ever looked upon, and made of the finest mmixed porcelain clay. Jetore 1 lefi Fingland. I thought the English women the finest lad ei er sem -I now consider them as belonging to the colored races. The Dutch women muh eaceat thein. 'iahus the fiarest roae shat wase er phached, witi tlue glit. tering dewdrops hanging among its petals; take the fairest peach liant eyo bung upon the tree, with its chaming bembing tints of red and white, and they are eclipsed by the transparency and beaty of complexion of the fairest of the Dhtel woment as I katy them at Boech and Sardam. If their minds are as fair, and their mamers as wiminer is their faces, thet I can easily understand the history of Adam's fall. It was impossible, poor iollow. that he should resist. Then their costaiae is 20 pretiy aml elegant. A sort of thin erold helnet fitting close to the head, leavinge enough of the hair to part gracelally over the brow: a thin, but wide band of highly wrought and bunished gold, with aplemdid eathofs of grold or of diamonds set in gold, withathantiful cap of the fines Brysels hace, con einge, hus not concealing, the whole head, and all the rest of the dress of vestal purity; white, tastefill, thansparent: with short coats, shoes as bright as mincors, and stockings of the purest white, and hting the ankle as if they were kinit upon the limb; with no drabbling train to sweep the pavement, and no oversized.shara, an! lowec and i!l-fitting slecses and skirts, hanging alout the person like clothes upon an ohd tree. ona washing day, and you'll have some faint notion of what one of these creatures is."

Tine Ses.-In the wide sphere of bright creation, thee existo manght that hatin for man so dece a a tone" of meaning sethe ti. thombes, etemal sea-that sexplendent shield. gravdiug the veadant miverse. It hath smiles for him in his ghadness, when the glonions sun, dancing over the tameless wares, lights them indo beanty; it hath a gatb of monming for his womow, when it reflects the dark elond sailing over it, and nochs the shadow within its bosom; it hath notes of haghter for his hour of wassail an! of sons. when its free bright waters leap to shore with a sound of bounding mintin; and it hath a trampet for the viecor, "hen it jasecs its a wice amidet the stom, and semas ins hillows stcaming on high, tike mighty standards: Thon hast vithin thy depths, $O=$ ea ! gems to dech thebrow of the beautiful, wealh to lare the apprations of the asaricions, and sroves of the sich red comal to hamet the pret's dream. Thou hast, too, thy treasures amongst the dead, to tifd the soul of the moumer. Thonatt, 0 sea! ! : phe decp hart of earth, imaging its beantics: thonglts: and passions."

Revenge.- When the mind is in contemplation of revenge: all is thonghts must surely be kotured with the alleame pouts of rancour, enty, haticel, and indisnation; and ine who profess a sweet in the enjen ment of it. certainly uesea felt the comsmmate blise of teconciliation; at such an mustunt the fulso inleas we cm ceivalumavel: and the shyness, the dishemst, the metinat scorus, anulall the base satisfictions incal hal in each other'x fimalds and misfortumes, are diexueded, and their sonls appear in their natise uhiteness: without the least streak of that malice or distaste shich sullied them: auk perha!s those lery actions, which ("hen we looked at then in the oblique glance with which hatred doth alusys see things) wele honid and odious, when obsenved with honest and open eyc:, are beautions and ormamental.

Yaziness grows on people; it berins in colwebs, and ends in iron chains. The more bisinces a man has to do the more he is able to accomplish; for he learns to economise his time.

ELECTRO MAGNETISM, AS A MOTIVE
POVER.
Professor Page, in the lectures which he is now delivering before the Smithsonian Institute, states that there is no longer any doubt of the application of this power as a substitute for steam. He exhibited the most imposing experiments ever witnessed in this branch of science. An immense bar of iron, weighing 160 pounds, was made to spring up by magnefic action, and move rapidly up and down, dancing like a feather in the air, without any visible support. The force operating upon this bar, he stated to average 300 pounds through ten inches of its motion. He said he could raise this bar 100 feet as readily as through ten inches, and he expectel no difficulty in doing the same with a bar weighing one ton, or a hundred tons. Ife could make a pile driver, or a forge hanmer, with great simplicity, and could make an engine with a stroke of six, twelve, twenty, or any number of feet.

The most beautiful experiment we ever witnessed, was the loud sound and brilliant flash from the galvanic spark, when produced in a certain point in his great magnet. Each snap was as loud as a pistol, and when he produced the same spark at a little distance from this point, it made no noise at all. This recent discovery he stated to have a practical beaning upun the construction of an electro-magnetic engiue. Truly, a great power is here; and where is the limit to it?

He then exhibited his engine, of between four and five horse power, operated by a battery, contained within a space of three cubic feet. It looked very unlike a magnetic machine. It was a reciprocating engine of two feet stroke, and the Whole engine and battery weighed about one ton. When the power was thrown on by the motion of a lever, the engine started off magnificently, making 114 strokes per minute; though, when it drove a circular saw ten inclees in diameter, sawing up boards an inch and a quarter thich, into laths, the engine made but about eighty strokes per minnte. There was a great anciety on the part of the spectators to obtain specimens of these laths, to preserve as trophies of this great mechanicail triumph.

The force operating upon the magnetic cylinder throughout the whole motion of two fect, was stated to be 600 pounds, when the engine was moving very slowly, but Professor P. had not been able to ascertain what the force was when the engine was rumning at a working speed though it was considerably less. The most important and interesting point, however, is the expense of the power.

Professor Page stated that he had reduced the cost so far, that it was less than steam under many and most conditious, thoush not so low as the cheapeststeam engines. Wih all the imperfections of the engime, the consumpuion of three pounds of zink per day, would produce one horse power. The larger the engine, (contrary to what has been known before, the greater the economy: Ife was himself surprised at the result.

There were yet practical difficulties to be overcome; the battery had yet to be improved; and it remained yet to try the experiment on a grander scale, to make a power of 100 horses or more.

Truly, the are is fraught with wonders, and we can only now look forward with certainty to the time when coal will be pur to better uses than to burn, scald and destroy.- National Intelligencer.

IMPORTANTDISCOVERY-LARD RENDERED FLUID BY MIXING WITH ROSIN.

Professor Olmstead of New Haven has lately made the important discovery, that, by adding one pound of powdered rosin to three pounds of Lard, well stirred together the mass becomes semi-fluid at 720 F. and on being melted, which it does at 90° notwithstanding if melted alone the rosin requires 300° and the lard 97° of leat, the compound will remain transparent and limpid at that temperature. As it cools, a pellicle begins to form on the surface at 57°; and at 76°, it remains a dense simi-fluid.

The discovery of the? above named fact will be of great importance to those who use lard lamps, as the lard is renderal more fluid by the rosin, and the power of illamination increased two fifthe; yet, after two hours' burning, it luoses its briliancy on account of the wick becoming clogged. This will not be an important objection in families, while in point of economy the gain will be considerable; for lard is worth three or four times as much as rosin.

To machinists, this discovery is very importan, as it enables them to make use of lard, instead of vil, which is not only a saving in cost, but what is of far more importance, the addition of the rosin completely neutralises the quality of acidity in the lard, which corrodes metals, particularly brass and copper, to such a degree that it is unfit to apply to anything not in constant use. Professor Olmsted says, a thin coating of the compound laid upon a grate or sheet-iron stove with a brush, as thin as possible, will keep it free from rust all summer, although stored in a damp place.

To soap makers, the discovery is also important. If one pound of the compound is added to tro pounds of common Windsor soap, t.ie quality is greatly improved, and the tendency that soap has to grow rancid, when in use or kept moist, is thus entirely prevented. A shaving cream of an excellent quality, may be made by taking a cake of good shaving soap and steaming it soft in a close cup, and mixing half its weight with the compound, and working it well together; adding a little oil of almonds or any other agreeable flavor.

The same compound applicd to boots and shoes renders them nearly impervious to water, and if applied to the soles, will not soil the floor. The uppers will be soft and pliable, and not prevented from receiving a blacking polish.

For oiling carriages, the mixture of lard and
rosin will be valuable; and when wanted for heavy wheels, a proper consistency may be siven to at by adding wheat flour, or if grealy preferred, black lead.

No doubt the soap paste above deseribed would be a rood lubication for carriage wheels. We: hope this diseove, y will increase the consmmption of lard, and thereby sive an improved manket to the farmer, and thus enable him to turn land into hard, and lard inte light, and int the ineantime enlighten his mind and inaprove his condition.--ivi. Istictalusasl.

To Pament Fimmentation in C'men, Wine: on Beer.- idd a small quantity of sulphite of lime ; or braize mustari seed, 1 i chuces to 1 ounce of cloves, and add to the liguid when first put into the cask; or a small portion of each may be added. The autiele is sulph-ite and not sulph-ale of lime. It is auite innoonots in any quantits.

Arrack.-This is a spinitaous liquor produced from distillation of palat wine, and also from a fermented infusion of rice. It is a drimk much uned in the liast fardies, among sonte of the semibabluious nations. Opposed as we are 10 all intoxication beverages, we camot recommenil its introluction into flis country, mbless it were upon the some pinciple we would tolerate wine, cider, and beer, as less likely to produce dunkeomess than whiskey. I great fire is sometimes checked by a smaller one.

Šus Sremenc: Whara.-This invention has been patented by Capt. Fayrer. 1h. N., for Earrland, Scotland, and France We have received a copy of the drawings, necessary for showing the construction of the apparatus, and will be happy to shew it to parties who may be desirous of patting it into their vessels. We should think it of peecaliar benefit to vessel;, whieh raming the rapids of theSt. Latronce reguise great micely and ereat power at the wheel.-MKontreal Cazelle.

Making Burs:-For the use of Young Housekecpers. -Dissolve fur pounds of yood salt in each gatlon of water. lidd a few haudfuls of small lomps of rock or coarse salt to each civt. of meat, as you pack it, before putting on the brine. This will maintain its strength. If the pieces of meat are smali and lean, they will absorb salt enough to be palatable, in three days. You may then lake it out, and if the weather is cool. keep it hung in a fry rom, or pack it diry in goarse salt.

Mocsenme:s Cur.am.-Tahe half a pint of good ceam, a quater of a piont of white wine, a teacupfil of pounded white sugar, and the rind and juice of one lemon. Put all into a large basin, and whisk till it becomes quite thick: then put into grasses, and let them remain in a cool place till required' ['this cream is better if made the diry before it is wanted; and it will keep good for sereral days, if the weather is hot too warm.]

Rice Frititess.-Slice the sind of at lemon, anid boil it in milk, with suyar enough an sweeten it and it cap of rice. When the rice is guite sott, take it out; beat up the rice with a rlass of brandy, shape it into fitters, bush them with solhs of eggs, cozen them with breal crumbs, fry them in butter, and gerse them up with lemon juice squeceel over them.

Rice Bar.re.- Pour upon half a pound of rice three pints of roiling milk, and boil it with a little cimamon, surat and lemon peel, matil it is quite tender: allow it to remain milit is cold, amdthen make it into balls. Beat up two (rexts, roll the lalls in it, and affernards in crate dhead crumbs: fey them iu lard dratin them ore a piece of paper, and serve theru tup with sifted sugats.

Th Bemaisar Brarinvia Wabe.-In hurkishinge Britannia wate, mb the surface wently, m the firit place, with at woolen eloth, dipped fin sweet oil ; then wash in tepid suds, mb with soft leather and whitiog. Anticles burnished in this way retain their fustre till the last, if carefully used.

Summetcre for Somp- 1 hate Fimbh author recommends potitues, three fourthe louiled, as a substitute for soxp in washing lamb. The use of this prevents chapping in cold weather, atal retains the skin soft and heathy.

Cnemicar Faces.-Suils may contain silica and alumina; a plant may contain silica, but no alumina. Animals contain neither silican nor alumina.

Trancmina; Orin Onchands.-If you have any ueglected old trees in sour orchands fini on trench np the earth all around their frunhs for a distance of fond or five feet, and pise to each tree at least a bushel of compost, mate of equal pats of stande manne and leaf mould ot swamp nuck. And at the top of this, spread hall a peck, to each tree. of charcoal dest, wool ashes, and oyster-shell lime.-Americun Agricullurist.

Specimens of beautiful black, white and variegated Marble lave been discovered at Fire liskands, Novit Scotia, which is said to be superior to Italian. A sumple has been sent to Enyghod by the Hon. Mr. Howe, who secently set out as a delergate from Nora Scotia on the railway ques-tion.-Moruing Chronide.

Innesrame Exmmixion- We have been requested se mention-and we have pleasure in dong so, for we think the ider is a good one-that the " Fiecutive Committe" " have determined, provided the sugsestion meet with the appocal of the nembers of the candian "Fourth listate"" to send to the Grand Industrial Exhibition in London, a handsomely bound volume, composed of copies of every Newspaper in the Colony: and, with this view, they have to request that the proprietors will forward to the Secretary of the Conmitter, Jom T ceming, Risq.. the first copy of each Joumal, is ued for the year 18:1. Now, gentemen, azend your pens, slarpun your cissors! - Montr Hírud.

EEitor's Notices, Nr.

Canada; Past, Phesent and Future. By W. H. Smirn, anthor of the "Canadian Gazellecr." Toronto: Thomas Maclear 45 Yonge-streer.
When we call to mind the fact, how little is really known of the condition and capabilitics of Canada, wotonly in the mother Country, but also to a large extent among ou:sches, we are ready to welcome any guide that is of a trust worthy character. The people of England commonly associate six or eight months of the Canalian year with biting frosts and overwhelming snows. Few understand the diference which obtains in climate, soils, aud their productions, as one travels from East to West in these extensive regions; and fewer still, accustomed to the fors and alternate rreezing and thawing incident to the winters of the old country, can form any adequate conception of the clearniss of our atmosphere, the brilliancy of our s.iles, the case and facilitics of travelling, during the severest portion of a Canadian winter.

And how little ganerally do those for example who inhabit the banks of the noble Ottawa, know of the inhabitants, soils and productions to be found in the ruch valley of the Thames! One principal ieason why we have so often adocated the amual publication, in an acesessule form, of a condensed agricultural report, compled from the repurts if all the sucieties in the Province, is that the people of one part might be made acquainted with what is coing in another. As the country becomes more thickly settled, and Education and Enterprise arouse the dormant powers of the mind, such knowledge will be cagerly sought and properly appreci:.ted.

The publication, whose title we have placed at the head of this article, judgring foom the finst pait that is now before us; secms admirably adapted to surply adisideratum which has long been felt in our Colonial literature. The author has already earned a reputation in this particular department, by his usetul Gazettecr, publeshed a few ycars ago, and which has been well ieceised by the public. The present woik, however, differs materially from that publicauon, not only in form, but more particularly in the extent aud completeness of its information, The first part contuins a neatly engraved map of the Comnties of Essex, Kent and Lamb.en, and 112 octavo pages in a clear, bold type; each part will contain a map, forming when the work is completed an accurate delineation uroa a sufficiently large scale, of the whole of Upper Canada. In the part lefore us, we have a copious account of the comties above mentioned, together with Middlesex and a portion of Oxford. The date of settlement of the s:veral townshins, cha:acter of the soil, valua of lavd, population retums, state of the industrial arts a a d manufacturing capabilities; with an amount of general statistical information, all so clearly set forth as to give the reader a correct and distinct idea of the subject. In works of this sort the correctness of the details is the must important and cssential quality, and in order to ensure this, Mr. Smith is again visiting in person, every portion of the Province; a fact which camot fuil to strengthen the confidence of the public in the trusiworthiress of his statements. A judicious use is made of Government and Custom Honse retu:ns and the reports of public bodics, not
omitting the very accurate and important information, which is well known to be contaned in our Geological Surveys; but although the writer very properly, we might say necessarily, has recourse to these authentic sousces of information, we think it only bare justice to state, that the work is not a mere compilation; but by far the large - portion, judging from the manner in which the subject is treated in the first number, will sonsist of original composition.
We have no space for extracts, and, in fact, no adequate notion of the work, as a whole, could be formed from selections that would come within reasonable bourds. We strongly 1 ecommend our readers to inspect it for themselves. The most important secular knowledge is that which relates to the country of one's birth or adoption. A few well selected books of high character, on subjects with which it is essential that every good and intelligent citizen should be conversa:nt, are worth a whole library of trash; in fact we should regard the possession of the latter as among the greatest misfortunes with which any family could be afficted. - We hope therefore for the good of our country, that the prosent work will be extensively circulated, not only in Canada, but in the British Isles, where full and correct information is so much needed; that people may learn what this country really is, and what industry, intelligence and integrity, with God's blessing are capable of making it through its futare developments.

We have only to observe further, that the work is published in numbers at 1s. 3d. each, and in parts of duuble size at 2 s . 6 d. : each part will be accompanied by a map and about ten parts will complete the whole. We heartily wish both the author and publisher, that success, which their labor and enterprise ought not to fail of securing.

A Plan of Settlement and Colonization Adap-

 ted to all thb Britisil North Americ.in Pro-vinces.-By James Fitzgerald, Esq.Just as we were going to press a Pamphlet bearing the above title has been put into our hands.. The author a resident of this city, has had an experience of nearly a quarter of a century in Canada; and from the interest which he manifests in his subject, his opinions and suggestions are fairly entitled to a respectful consideration. The worls consists of a series of letters addressed to a friend in Ireland, detailing the author's views on a sys:em of Colonization, adapted alike to the wants of these Provinces and the molher country. It also includes several letters addressed by the author, at different times, to the Governor General; the Commissioner of Crown Lands, and the office bearers of some of the Agricultural Societies. As the subject of Colonization and the beneficial occupation of our wild lands is of paramount importance to the best interest of the country, we doubt not but this pamphict will meet with an extensive reading. We may hereafter revert to it more at large. It may be procured of the booksellers in Torouto, and we presume, in other places; price, half-a-dollar.

Recrivid. The 12th number of the Farmer's Guide, completing the first volume, including Professor Norton's appeudix to Spring.

