The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur

Covers damaged/
Couvarture endommagéeCovers restored and/er laminated/
Couverture restaurée et/ou pelliculèe

Cover title missing/
 Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relid avec d'autres documents

Tight binding may cause shadows or distor tion along interior margin/
Lareliure serrèe peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutes lors dune restauration apparaissent dans ie texte. mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/

Pages de couleurPages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured. stained or foxed/
Pages décolorées, tachetéos ou piquèes

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du ma:ériel supplèmentaireOnly edition available/
Seule édition disponiblePages wholly or partially obscured by errata slips. tissues, etc.. have been refilmed to ensure the best possible image/
Les pages totalement ou partieilement obscurcies par un feuillet d'errata. une pelure etc., cr:: étè f!!meées à nouveau de façor à obtenir la meilleure image possible.

Additional comments:/
Continuous pagination.
Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de reduction indiqué ci-dessous.

THE

(anadian Antitultumist

 JOURNAL OF THE BOARD OF AGRICULTURE OE UPPER CANJADA. VOL. XV. TORONT®, JULY, $1863 . \quad$ No. 7.
AGRICULTURAL MUSEUM.

We agrain request the attention of our readers and all others interested in the promotion of agriculture in this Province to the proposed Agrieultural Museum, for the accommodation of which the Board has set apart a very extensive and suitable room in their new Fiall, on the corner of Yonge and Queen Streets, in this city. Some progress has already been made in procuring specimens of grain, \&c., chielly from abroad, with a few implements and machines:As it is most desirable that arrangements should be commenced in earnest this summer, for carrying into practical effect this interesting and important object, the earnest attention of our farming and meebanical friends is herein called to the following explanatory observations.
What is sought to be obtained by the establishment of a museum, which the statute appointing the Board lays down as one of its principal objects, is the collecting and arranging in a suitable building, the characteristic produc. tions of Canadian agriculture, including farm implements and machines, dairy utensils, and in fact whatever relates to, or illustrates our rural life in this country. Specimens of foreign growth or manufacture, whether from Great Pritain and our sister Colonies in all parts of the porld, the United States, or the continent of Brope, will be procured as opportunity may pfer; and the Board will always feel hapoy to make exchanges as far as practicable either with Idividuals or Societies in all countries. Cana-
dian productions, however, are those which are primarily desired, and with this view we make a direct appeal for co-operation and aid to Societies and enterprising indıviduals, who share a common feeling in promoting the important interests of ur native agricultural and mechanical industry. It is desirable also to bear in mind in conncection with this object, that the beautiful and truly valuable sister art of Horticulture, in all its branches, is associated.
It must be obvious upon a litlle reflection that in order to collect materials for a museum which will represent the state and result of the rural industry of Canada, in particular, and of our sister Colonies in British North America, in general, very much will depend upon the disposition of farmers, mechanics, and the lovers of gardening, however widely cast asunder, to aid the enterprise by forwarding suitable and characteristic specimens. With such aid, under proper and efficient management, a collection would in a few years be formed that would be lighly useful and instructive, and would give the visitor, whether a stranger or otherwise, a much clearer idea of the industrial condition and capabilities of this magnificient portion of Her Majesty's dominions, than could possibly be otherwise obtained, except by extensive travel and careful observation.
As the season for maturing the productions of the earth is at hand, the co-operation of all such as can aid this object is respectfully and earnestly solicited. The caltivated cereaile, both in the grain and straw, good characteristic
specimens carefully pulled up with the roots will be always acceptable. ' Also wild or cultivated grasses, uncommon weeds taken when in flowar, slowly dried in the shade or folded between sheets of soft paper. New varieties, or extraordinary vegetable productions are also requested, whether of the field or the garden. Fruits, nuts, \&c., will also be acceptable. Insects not generally well-known, injuriously affecting the cultivated crops, fruits or. forest trees are solicited. Specimens of remarkable soils with the underlying roeks, and in short, any natu: al or cultivated production illustrative of the climate and productive power 1 ' the country, will be welcome. We may also me tion the fur of wild animals, the wool of different breeds of sheep, stuffed specimens of remarkable domestic poultry, esgs, \&c. Each specimen should be correctly named, where, and by whom produced, with a statement of the particular facts of interest connected with it.

Manufacturers of Agricultural Implements, tools, \&c., are requested to send specimens, or in case of the larger machines, models, of what they consider not ordinary productions. The price of each article, and a statement of what are estimated its particular advantages, should accompany it. These productions will be kept on exhibition free of expense to the makers, and n this way it is believed a henefit will be con. ferred upon them. In case of farm or garden productions, sent by express, the Board will be at the expense of transit, addressed to H. C. Thomson, Secretary of the Board of Agriculture, who will be happy to furnish any additional information relative to this object that may be desired.

EARLY AND LATE SOWING OF WINTER WHEAT.

The following letter, published in the Country Gentleman, from John Johnston, of Geneva, N. Y., widely known as the "Great. Tile Drainer," will be found highly interesting to farmers, and from the reputation and long experience of the writer is deserving of attentuve consideration. We should not go so fàr as to endorse Mr. Johnston's views in all respecis, including exact dates, as applicable to this country. Some al. owance must be made for climate, soil, seasons; E. \cdot, but the general principle is worth noticing
that it may be pussible to sow too earily; and
where the Hessian fly is prevalent there canbe little doubt that very early sown whent suffen the most from its attacks. On the other hand forwardness in spring and early maturity is out of the great safeguards against the attacks o': the wheat Midge. The problem then is, to $80 r$ late enourg to avoid the fall atlacks of the H sian fly, ard yet early enough to get the plast well rooted befure winter, and thas s cure as ia as $!$ nssible forwardness. and early ripening th? following season, as a protection argainst th Midge. By a thorough tillage of the land, adequate drainage, and sowing early ripenin; varieties of seed, this result may in averase ses sons to a great extent le attained. For Upp Canada generally the period of sowing we shor ${ }^{\text {t }}$ recommend is from the 10 th to 20 th September or even as late as the 25 th in some localitip where the soil and situation are specially farr able to early maturity. And it happens tr within these dates is about the perod of soniv found most conducive to the vigorous: healthy growth of the wheat plant, indep dently of considerations connected with the ? predations of inse \cdot ts.

It is true that many farmers have been in ${ }^{4}$ habit of beginning and ending their sowi between about the 27th August'and the 16 Scptember, and as a general rule with not favorable results. But in this case, if the 1 . is in condition to promote immediate growth the seed, and a warm autumn ensucs, there danger of the plant attaining too great a lu riance before winter, and it is besides exph to the attacks of the fall brood of the Hess fly, where that insect exists. When wheat sown as late as the 20th September, and at wards, it is important that the land should in a condition favorable to quick and uniti germination of the seed, and that an early rif ing variety of seed should be selected. On whole, it is doubtless safer to sow a little. early than too late.

Messrs. Editors :-I notice there is is poor wheat around here. True, there are si fields.that are good, but I fear there are 2 had. I wrote you last autumn that I tho mine was ruined by the so-called Hessian it is a total failure, and all owing to too: sowing. I sowed the 5th and 6th of Septein and many sowed earlier. I knew better th. sow so early, as I had had failures before: early sowing. For a few years after It
here, I began sowing when my neighbori
but as 1 then did the plowin ${ }_{5}$ and sowing myselt I was oiten late in finishing, and I satw the wheat I so ved from the 18uh till 25th of Sep. tember was almost always the best crop. In 1831 I bad quite a loss by this same th, and determined so get all my land ready and not commence sowing until the 20ih September, or therealout. I contmued that course for about 20 yeus, and had almost no failures, with the exception of 1844 . In September of 1843 , as I intended going to the State As ricultural Show at R, chester, I sowed early, in order to sow my wheat before I went, and in consequence lost at least half me crop of 80 acres. Some time after the midge commenced to destroy the wheat crops along here, people got almost crazy to have their whe.tt early sown-some, indeed many, sowing in Angust, but I never began earlier than the Ilth or 12 ih of September, and had no failure.
I have proof positive that if I had sown about the 20th of last September, I would have had fine lookin, wheat now. By some imperfection on the drill it missed droppinf from one spout the whole lenrth of the field for several times; these rows I had drilled over about the 20 m or plittle liter. Now these rows are as houlthy poking wheat as any man can wish to see, thile the other is worthless. If farmers will bake heed to what I have waitten, it will do more good than the loss of 13 acres of wheat fill harm me, althourh I fully expected 500 fushels when I sowed it. It is folly sowing so parly. I never knew one day difference in compr in ear, or of ripeuin x, from that sowed on he 12 th or 2 th of September, if the condition f the land was equat, and I have no doubt if farmers renerally will make notes of their sowfoy and the ripening of different fields, they wi!! ond what I say is correct.
We now have very fine weather. My barley ooks very well, grass very good, clover ditto. have not heen from home to see the wheat, ut my friends tell ma much is bad. Mr. Foster, ho has as sood land for wheat as any in this puntry, says his is an enture failure. I presume e sowed early, as he keeps up his work gener-解
I should add that those who sow the end of eptember and in October, should sow more
Ped to the acre than those sowing earlier.
John Juhnston.
Near Geneva, May 14, 1863.

EDITORIAL NOTES.

lisit to the County of Wollington, Mrro Stone's Stock, the Crops, \&co
Having spent a few days in the County of ellington, it may not be uninteresting to our aders generally to bring under their notice, in concise way, some of the more prominent atters that we observed in connection with estate and progress of Agriculture.

The ride from Toronto to Guelph on the Grand Trunk is in many respects an interesting one, embracing a section of country considerably diversified, and possessing on the whole great agricultural capability. After leaving the sand drift which forms a sufface of some estent to the west of Toronto, comprising soils generally weak and of unsqual degrees of productiveness, the traveller passes over the strong, and-where properly cultivated - highly productive lands of West York and Peel. The soil over extensive and comparatively level tracts is a calcareous clay, more or less retentive, admirably adapted for raising the finer qualities of wheat clover, audindeed, the usual farm crops, which almost every where had a very promising appearance. Upon these strong, rich lands, espec ally when the surface is wet, arising from flatness, the advantages of draining, especially deep underdraining, are most obvious even to the travelling observer. Instances were pointed out to us while in the train, which clearly indicated the vast difference between the appearance of crops on drained and undrained land, all other conditions being equal.

We had the pleas ire and advantage of spending a day with Mr. F. W. Stone of Guelph, a gentleman too well known and respected both in Canada and the United States to need any eulogium from us. As an mporterand breeder of farm animals of every description, except the Horse, Mr. Stone has for several years occupied a first position on this Continent, and a quiet day with such a man increases one's knowledge as well as pleasure. We had time to go over has home farm only, and regretted our inability to see his other farm, some four miles distant, where his celebrated flock of Leicesters is chiefly to be suin. The homa farm consists of atoout 50) acres, most pleasautly situated within a mile of the flourishing town of Guelph. The farm buildings are new, quite extensive and -pparently arranged in a convenient manner to meet the varied requirements of horn cattle of various ages, sheep, pigs, \&c., as to ventilation, warmth, cleauliness, \&c. One cannot help feeling in surveying this extensive suite of bui.dings, which are finished in a very sunstantial manner, that the enterprising owner has been guided by an enlightened desire to profit, rather tha: a prodigal expenditure. While Mr. Stone is to be regarded as a enterprising farmer, in the highest and
best sense of the term, he must also le considered essentially practical, and no young farmer, in particu ar, of ordinary powers of observation, can visit his establishment, without carrying away with him much that will be of pratical value and application in the great business of life. It is this keeping of expenditure within what may be termed practical and profitable limits, that most decply impressed our mind in taking a general and afterwards a more detailed view of the arrangements and operations of this farm. We observed that a considerable portion of the cattle, especially the bulls, both Durhams and Herefords, a e kept, in the byres and yards during the summer and fed on green fAod, thereby making a large amount of valuable manner, and keepiny the animals cool and quiet It is Mr. Stone's intention, however, to allow more of his animals to roam abroad, within certain limits, as scon as the fields and fences will admit Few but such as have had practical experience can understand the time and expenditure, as also judgment and perseverance required in bringing ur an imperfectly cl ared Canadian farm to the degree of finish and productiveness as that which characterises the one to which we are now relerring. Mr. Stone adopts the prog essive pla', -which is the safest and most profitable, -of bringing his ground into a complete state of cultivation; allowing time for the operations or agencies of nature to produce their ameliorating effects. Many acres of low lying swamp have already beea partially drained by cutting deep and wide ditches as channels for the drainage, thereby preparing them for profitable pasturage; leaving more detailed operations to a subsequent opportunity. Mr. Stone is of opicion that the Italian and Pacey rye-grass may bs advantageously substituted for Timothy with clover; they mature with the latter more eve..ly. We observed heavy crops of this mixture, promising three tons to the acre. Cocksfoots has also been introduced, producing a very "heavy weight.

Of Mr. Stone's stock it is unnnecessary to speak in detail, its quality is well known and appreciated far and near, but the quantity we found greater than we expected Fis Durhams -and Herefords have been selected with much - care and judgment from. the best herds in.Eng. Cland, and imported at great expence; while those of his own breeding will sustain, on the whole, the superior character of their parentage.

We particularly admired some beautiful Here. fords which we saw as prize animals at the Royal English Society's show at Canterbury in 186'. It is not till within the last three or four years that we have had in Canadu anj worthy representative of this excellent breed, which deserves to be better known both here und in the siates. To make invidious com. panions between Shorthorns and Herefords, a some are wont to do, is alike discreditable to to good taste and correct judgment. White Mr. Stone duly appreciates the latter, wo find by the large number of fine animals which he ha of the former, that they continue to hold the same high place in his estimation In the flock of Cotswolds we observed many very superior animals, derived from the best blood from theit native hills, in Gloucestershire ; and of South. downs we noticed some perfect beauties, of the late Jonas Webb's world renowned stock Itif but bare justice to remark that although Nt : Stone has most of the modern appliances fof preparing food for live stock, such as chaff and root cutters, pulpers, \&c, he eschews the paw pering system, an 1 prefers keeping his animal in a good thriving condition In eed seven of the sheep were hardly up to this point durir the late spring months, in cunsequence of the great scarcity of hay and other produce, butw observed that they were fast picking up in py ture. Mr Stone continues to devote attentio to the improved breeds of swine, of which π nuticed some fine specimens; nor does he cos sider the poultry yard beneath his notice, havi. imported the most approved varieties of modet breeds. In this. department he regards \dot{k} operations as not proving particularly fortuna He is attempting to naturalize the Engli pheasant, with wha success remains to be see.

The depression of business in general whit for the last few years we have experienced: Canada, coupled with the lamentable occh rences which have taken place in the noighbu ing Repubic, must necessarily affect injurious enterprizes of this nature. Mr. Stone has nu. on hand a number of animals that otherai would have been profitably disposed of ; i choice being large, parties can readily acco. modate themselves, quality being duly a sidered, on moderate terms.
We spent a verv agreeable day or two in calli on several farmers in the townships of Gut. and Eramosa, and regretted our inability, want of time, to inspect the famed Leices sheep of Mr. Parkinson. We have long kno. Mr. Hogge as a successiul breeder of shorthot but hardly expected to find in his herd so gt. a number of really fine animals. Mr. H. Tol has a bull that is doing good service, and. general character of the stock throughout: greater part of this country, comprising sh. and pigs, as well as horses and cattle, is much improved character. It was in Gut. that the first importation into Upper, Cañai any: importance took place of pure Shortha. under Mr. Wingfield, and the, rapid inct: that has of late years been given to root cal
thronghout this section may be reganled both as a cause and a result of the continuous improvement of live stock, Every farm appears to hare more or less of turnips, manrels, carrots, \&c. We observed whole ficids, from five to a dozen acres, with a smooth, level suiface, and without a stump some with curnips in as good a style of workmanship as can anywhere be met with in the od country. The usual practice seems to be to make drills with the plough, cover the manure, principally farm fard dung, superphosphate, or ground bones, by the sam? implement, and drill on the ridge, after the manner of the Northumberland sysdem, so prevalent in most parts of Eng and and Scotland. It was truly peasing to observe frerever we went the original farm buildings, often constructed of 1 gs , giving way to more extensive and ducable structures, thereby clearlyindicating a state of social progress and prosperity. This being a limestone district most of the n w houses are built of stone, which is flso the case with many of the barns and other farm buildings. We must not omit to n, tice that in calling on Mr. Parsons we had an opbortunity of observing the dairy operations by fhich Mrs. Parsons manufactures the Stiltun ${ }^{1}$ heese, which t as now for a number of years been so deservedly esteemed for its superior fuality This business requires the exercise of bill and judgment, and involves no small pount of care and trouble, which few, perbaps, ould be willin r to undergo Mr Parsons' cows re mostly grades, well adapted for his purpose, everal of them buing two-thirds Durham. It : an important fact to bear in mind that "herver a number, however suall, of pure bred attle find a local habitation, the general charcter of the s ock of the district gradually imroves, yielding in a few years grade:s of superor quality, whether for the dairy or the shamles.

> Wherever we went the country presented a eantifu: apperance, and the crops universal y romising, which it is plecsing to be assured is enerally the case throughout the Province. he late rains have been of incalcu:able benefit, hd as yet few, if any, symptoms of disease, (expt here and there comp,aints of the grub or tworm, among the cereals. With settled cather and an increased temperature, of which tere ar now signs (June 25th), there is goo gason to anticipate a more bountiful harvest an has allen to our lot for many years
We would suggest to our readers the impornce of not delaying the commencement of ymaking and harvest operations; an error mmoaly committed Grass of all kinds lould be cut when in full flower, and grain as on as it is fairly out of the milky state, and e straw has a yellowish bue. In that stage ripeness plants possess the larg st amount of tritious ingredients: but by allowing them $g 0$ beyond that point before being cut, or in per words, to become what is termed dead e, a large amount of the starch and sugar ich they contain is converted iato woody te, an almost totally innutritious subs ance gides, a few days gained in the commencement
of haying or harvest in a forcing cimate like ours, where the season is brief and work must te hurried, present practical advantages whoh every reflecting farmer will be able to uaderstand.

THE GRUB.

Editors of tee Agmiculiturist,-Gentlem.n : Could you or any of your enlightened readers, through your widely circulated journal, give a remedy, or advise a scheme, to obstruct the ravages of the grub on our white crops. It is much to be regretted some remedy is not put forth for the destruction of this annual pest of the farm, for every one that is at all acquainted with rural affairs will agree that there is not a more formi lable enemy to the agricultuist. Last year it was very destructive in this neighbournood, whoe fields of wheat and barley were hardly worth reaping. I see it has commenced its campaign this year again on the bariey. In going into a fie.d you see patches cropped off just as though it had been done by sheep. Now could there not be a remedy got in the shape of top dressing to annihilate or even palliate the ruinous evil?

What say you scientific men, initiated in chemistry, physiology and natural history?
Yours, \&c., I. S. T.

Whitby, 10th June, 1863.
[Our correspondent does not state exactly what kind of grub he means. We presume it is what is commonly known as the Cut-worm, of which there are several varieties, all, however, resembling each other more or less in habits. We were not aware that any insect of this species was so destructive in the part of the country from which our correspondent writes. There has unfortunately been as yat no wholesale method discovered of getting rid of then. There is only one sure and reliable mode, namely, digging them out of their burrows, which may easily be detected in the morning by the freshly moved earth, and destroying them. But this plan, although it may be adopted successfully in a garden or śmall piece of corn, is hardly practicable in a large field. Some writers have suggested that they might be caught by puncturing the ground where they are committing depredations with holes with a sharp pointed stick. The grubs fall into the holes and cannot climb up the smooth sides, but loose their foothold and fall to the bottom, aud may thus be captured and destroyed. It has also been suggested that as the cut-worms are great travellers, and ramble from field to field in the night, they might bs kept out of ground. Where they have notals
ready appeared by ploughing a single decp furrow around. it, up the perpendicular side of which the grub could not climb this plan was stated to have been adopted with some success in some localities on the invasion of the Army-worm in 1561, the furrows in some instances being almost filled with the arrested worms, which were destroyed by dragging a heavy \log of timber, or some equally efficacions implement over them.-Lids.]

IS IN-AND-IN BREEDING ADMISSABLE.

Its advocates point with triamph, to the example of Rotert Bakewell with his Longhoms, and Col. Samuel Jaques with his Creampots; but it should be remembered that every man is not a bakewell or a Jaques; to prove which it is only necessary to state a well known fact, viz: that after the death of Bakewell, the Dishley Longhoins rapidly degenerated, and have now brcome extinct; and, since the death of Cul. Jaques, the Creampots arn going the satne way. No man has as yet, been tibud skilful enough to keep than up to the high standard the attained under the manarement of their liustrious originators. Chas. Colling tricd it with the Shorthorns, and the fact that Comet (155), the best bull of his day, was deenly m -and-in bred, wouid seem to be sufficient evidence that in-andin breedng was not only admissable, bat highty advantageous. But Cumet had a deformed shoulder, and he never siied so good an animal as he himself was. Colling bred from Favorite to the sixth generation. But Favorite 18 represented as a ! , ull of great size and substance, and rather coarse. For this reason, it was desirable to give his stock more fineness of form than he himself had, and in-and-in breeding would bave this effect. His great substance and stamita would admit of it, while at the same time the produce of an animal, with less substance and vigor, would have been utterly ruined. The Rev. Henry Berry tried it with good success, for 2 while, but many of his ammals beceme entirely impotent. and he was obliged to throw in a strong cruss to remedy the evil. Mr. Thomas Bates bred his Duchess tribe strictly among themselves for twenty years, and obtained What he most desired, viz: great uniformity. But many of his best heifers were hopelessly barren, and he was obliged much against his will, to resort to a new strain of blood, which he obtained in Belvidere, whom he purchased of Mr. Stephenson. As a result of this crces, his ar imals received new vigor, while at the same time ther peculiar firmness and styie was retained.
I he editor of the Albany Cultivator, writing
on the same subject, quotes the following r . marks from Mr. Berry: Close breedius impain the constitution and affects the procetalive powers. In m-and in breeding I believe that the procreative power faila first or chiefly on the part of the male.

The editor has the following remarks in 4 gard to the stock ol Mr. Robinson : Mr. Robir so: purchased a stuck of pure Shouthorns for his estate in Scotland, and pursued strictls the course of in-and in breedise ; the conseguence was his cattle yoon became feeble and delicalf, very bad breeders, and many died of consump tion. By resorting to Mr . Ceviling's stuck and the use of one of his bulls for a few joanh his stock was renovated and assumed their fo: mer beanty and vigor.

Mr. Stephens in the Farmer's Guide, hy some remarks on this subject so muck to the point, that I copy thern entire:

The immediate effeets of breeding in-andia or employing animals neanly all ed by tood to procreate their kind, are remarkable. It bone becomes very small, of condensed textur. and fine quality. The skin is so thin as to in ceive the appellation of papery so open of textr as to be seusible to the least chauge of temper ture; and hence animals bred in-andin ane ver susceptible of catarrhat affections, and on whil' acconnt are iiable to consumption. The cs ea3s is much reduced in size, and the disposis ion tu fatten increases to such a degree that 4 ammal may be said to be always in a conditi to be slaughtered. The hair is short, :mool and thin set. and the wool short, thin seta watery; and both hide and fleece lose a lar! proportion of weight. The body assumes change of form, the barrel being beautsol tounded, bat seems stuffed, as it were, with the skin. The extremities are very fine, 1 . head and hoofs snall, the ears thin and brus and the head of the sheep is almost bare of hi of a blue color, very liable to be sealded byl. beas of the sun, and attracted by the f.y. T. necks of cattle and sheep are thin, and dra with a downward curve between the head 101 top of the shoulder. The eyes are often aft: ed with wateriness. Lameness frequentiy ens. in one of the limbs. The constitution is er. entiy much weakened. I have seen marig. mals that were in andin bred, and they nt either small in size, or deficient in constitatio and these last died prematurels. In one: stance, although the animal escaped hoth these defects, be bad a nervous affection of. eyes.
From the above facts we may infer that and-in breeding may be punsued, where the mals have great substance and vigol-espet ly if they are somewhat course, or when as sometimes the case, the breeder wistres to celvtrate some particular strain of blood. En either case it must be pursued with great. tion, and must not be carried too far. Som:
the mont successful of breeders have adopted the strle of breeding in twice, and then breedang out.
Flually, the breeder should not attempt it unless be is possessed of rreat skill and judgment. Limerican Stock Journal.

SHOULD WE SOW THIN OR THICK.

The fullowng article translated from a recent number of the Journai D'Agrictalture Pratique, contaius much that is deserving the thoughtul attention of our readers. It relates ba mueh vexed question, and we sishll be hapPr to be mformed of the views and results of banadian farmers on the subject. The :mount f grain for seeding a given amount of land huyt doubtless, always in some measure, depend n the composition and state of the soil, the faracter of the season, time of sowing, varieties altivated, and other conditions that would ocIr to the minds of observing and practical

,

In general, agriculturists of rich countries dd well.cultivated lands say, "Sow thin, you ill always have sufficteat seed;" while, on the gatrary, those of poor soils say, "Cover the Id . th seed, you cannot put on too much." te not these opinions contrary to good sense? atturs a large number of plants into land bich abps not contaia nutritive principles, and Finto soil which contains much nourishment, bet be against all reason.
Iret us myuire from whence these notions ins, and be rin by establishing in pronciple a fem whica can but be beneficial to arricul. er nam sly thin sowing. Here we would rerk, in passing, that sowing in rows with a chine which dues not put turo grains where fre ou ght to be only one, nor leave onily two ere there ou ght to be four, is a true progress, a sroat step towards amelioration based n reisonable practice. Under the impresat that by sowing a large zuantity of seed the 0 would choke the weeds, we have sometimes In tempted to try the system; in fact, we e adspted it for some cultures, such as colza esample, but the results soon taught us a
iwe sow very thick upon a poor soil or thin each grain of wheat, harley, or oats only 33 one stem, which produces a single ear; again thicker, the cereal will he poorer , and the ears more miserable; but as all ls by an invariable law give some grain, pld the stems be still thicker and poorer, the stems still form themselves? Without ft the stems will be weaker in proportion as are numerous, because we shall have put plants upon a surface which cannot nourish f than ten. We shall then have a yield in
itverse proportion to the quantity sown, and the more we sow the less we gather in proportion, for this reasua: as soon as the roots are developed they get entanyled with one another, and in fact dispute the nourishment found in the soni; consequentiy they will always be poor and weak. Mifit we not compare the cultivator who suws theck, to hum who upun land where there is put poor fodder, keeps three times more cattle than is fed upon good pasture?

In some localities nearly three hectolitres per hectare of cereals are sown, and sometimes even more. I have tried these enormous quantities, then diminished them gradually, and, in proportion as I lessened the quantity, the pield increased. I now sow 125 litres (20 pints) per hectare (or nearly 90 pints per acre), and .t is that quantity well planted which gives me the best produce. I say we!l planted, because I think that every gram ought to be well buried.Thack sowing is, then, preparatory to a thin crop.

Let us inquire now what takes place upon a soil well prepared, where the bed of vegetable earth contains a large proportion of humus.The plants having room to extend their roots, strike them deeper and nourish them, obtain a stron r vigorous vegetation, and are in better condition. The stalks multiply in as great a number as the earth can nourish, while we shall be sure of having nothiny but healthy plants possessing all their faculties, and which will probably give a maximum produce.

Upon a surface of a metre ($11-5$ th of a square yaro), if I sow ten thousand grains of wheat, each plant will only have a centimetre (or $\frac{1}{3}$, f a square inch), and it w.ll be impossible that the plants can arrive at pertection. Again, if Isow upon that same surface only ten, each root, having space to extend itself, will tiller untal the suil is full; but it will not form one ear more than the earth can nourish.
In order, then, to have plenty of tillers, we must sow thin. We do not pretend to state the exact quantitus which will produce a good crop. We have meationed 125 litres for cereals; but a very fine harvest may be obtained from less seed. Fur this reason we do not approve of calculations of produce taking for their base the quaitity of grains sown. The quantity gathered per hectare appears to us more correct. In fact, if I sow some grains singly upon a large surface, the plants will develop themselves in an extraordinary manner, and I shall hive n enormous produce compared to the quantity of grain sown; but very little compared with the extent of ground. By this means we shall gather thirty or forty to one, being, however; a small return per hectare. It must therefore be left for the cultivator to judge the quantity of seed required, taking care not to diminish it beyond what is necessary for the stems to fill the-soil.
Colza, planted or sown very thick, throws up a long stem very accessible to frost; then, early in spring; the flowers become developed, and if
there is much damp, or frost, the grains cannot form, and the crop will be a'most, if not entirely, a failure. On the contrary, if sown thm the stems may lose their first flowers without injary, because the plants have other resources. They are vigorous, consequently the lateral branches soon form and give birth to flowers which produce good seed. There will then be two enances of success with thin seed plots or plantations, even when we do not reckon upon the vigour of the plants forming the greatest quantity of grain.
Buckwheat sown thick pushes out a stalk, which flowers and fructifies quickly, as if it felt its weakness; but, supposing the first flowers do not come to perfection, which is freguently the case, no lateral branches are formed, and the havest is next to nothing.

I have heard it remarked. that weeds develop most rapidly when seed is sown thin orin rows; but it appears to me that it would be better to destroy the weeds by second hoeing or cleaning than to run the risk of spoilng your crop, Which there is great donger of, if it is left to fight its way amongst the weeds.

This jear the seed is sown under very favourable circumstances. The winter having been mild, our wheats are as thick as meadow grass. The question is, Will the harvest be the better for it?

Why not sow early in good sound land, bury all the seed, and put in only the necessary quantity? What economy-what increase of produce may we not obtain for France? Doubtless numerous objections will be made by various cultivators-such as these: "My soil is so meagre, that in order to obtain sufficient stems I must cover it with seed." "What advantage can be gained from sowing three hectolitres of :seed in order to gather six or ten?" "Would it not be better to bestow upon one hectare the manure and labour we should have spent upon two? We should sow three times less, and gather double."

Some tinte ago it was remarked, with reason, "'The worst weed for the corn, is corn."
J. Romin.

Director of the School of Agriculture at Rennies.

THE FARMERS, THE ROOKS, AND SHALL BIRDS.

We find the following communication from án old ' sportsman and experienced agriculturist in a rècent number of Bell's' Weekly Messenger; (English). The reader will find in it something to gratify a rational curiosity. There can be no douibt but birds are often of the greatest-service to the farmer in all parts of the world 'by keeping in wholesome check the ravages of insects, and thus assist in thaintainlingithe balance of creation. In new
countries like Canada, where wood largely preponderates, birds as well as other wild cratures no doubt sometimes require to be kept down by human artifice; but no where can an indiscriminate slaughter of birds be caried out without inflicting irreparable injur to crops whether of the farm or the garden:

In the Royal. Agriculturai Journal, M. Spence quotes f om a provincial paper, $T \mathrm{Tk}$ West Briton. In The Weat Britore it wib stated that Mr. G. Pearce, of Pennave Gorah had saved an acre and a half of tumips, som to replace wheat destroyed by the wire worm and attacked by hosts of these larve, by sef ting boys to ceilect them, who, at the rate i $1 \frac{1}{2}$ d. the hundred, gathered 18,000 , as may as 50 having been taken from one turnip Thus at the expense of only $£ 12 \mathrm{~s} .6 \mathrm{~d} .$, " acre and a half of turnips, worth from fit $£ 7$ or more, were saved, while, as the ber could each collect 600 wireworms a-day: days' employment was given them, at 9d, day, which they would not otherwise hr had. To have earned that sum in 30 day one boy at 9 d . per day in 12 montbs; exclp ing Sundays, would carn $£ 1114 \mathrm{~s}$. 9 d. Fr hundred wireworms weigh about an ounc two hundred and two meal worns wei about an ounce; and I have estimated the th Thirty boys gathering 18,000 wireworms a 4 would be 531 years and 295 days collecti $468,000 \mathrm{lbs}$. or nearly 209 tons weight of π. worms, reckening 313 working days to a jh excluding Sundays.

Volume the 5 th of the Royal Agricullut. Journal, p. 208, Mr. Clitheroe, in the fiard er's Magazine so quoted, observes that: the county of York, in the neighbourhood his native place, there is a rookery belongi to W. Vavasour, Esq., of Weston-in- Wh. dale, in which it is estimated that there. 10,000 rooks. One pound of insect food week is a very moderate allowance for t. bird, nine-tenths of their food consisting worms, insects, and thëir larrè. Here, th there is the enormous quantity ef 468,000 . or 209 tons of worms, insects and their lai. destroyed by rooks of a single rooks ry in. yeur. Each rook in this calculation is gi. to have picked up 1 lb . of food per m ! nine-tecths of which was of insect matter, wireworm and lariex. I have kept n. tamé, and to my certain knowiedge they consume more than the quantity above sia In 12 months, then, 10,400 rooks deésth $468,000 \mathrm{lb}$. of the most destructive foe to farmer, and effected, at a trifing cost to farmer in grain taken at séed time and. vest. what it would havè taken 30 boj. $£ 11$ 14s. 9d. each per year, to háve dọ: 531 years and 297 days. One took collect $299 ; 820$ worms in óne year, and
boy would collect in 312 days $187,8: 0$ worms consequently one rook's work is nearly equal to one boy and six-tenths of another boy, which would make 11,000 rooks' work equal to that of 16,000 boys: and the wages of the latter. at the rate of 9 d . pe: day for each boy, would amount to $£ 60 \mathrm{~m}$ per ciay, or $£ 3,500$ per wrek of six days, or e $£ 187,8,50$ for 52 weeks. Tpon Mr. G. Pearec's caiciation, his acre and a half of turnips saved was woth from En to Ieb, say on avenge £6. According to this the produre suced by 10 unu ronks in a year would be worth £JJs,100, extending over 1,147, 140 acres.
What man in his senses, then, would destroy the rook?
There is another fact that agricultural obervers are apt to forget. When they see the fooks pulling the young turnips or the grain, If they will take the tronble to closely examthe the spot, they will tind that the rook has been working for the farmer, not against im, and that the turnips or grain so pulled pp were at the moment being devoured by a form or insect, and that the rook only pulled Pand exposed to the sight seed already gamaged or destroyed, and in laying bare the ne destruction he stopped the further ravage, nd by putting an end to the turnip or seed hat had been poisonously assailed, and would lave come to nothing, he found and exterfinated the progemtor ot legions of insects, fat would have damaged the soil in future ars. Let me, then, beseech the farmer to bstain from poison, and from the wanton estruction of the most usefal life. The rook retlly ihe cheapest servant that the far. ber has.

Grantley F. Berieley.

MANURES.

We subjoin an extended extract from a fcture recently delivered before the Ayrshira gricultural Association by Professor Andern, Chemist to the Eighland Society of Scotnd: -
Artificial manures differ from farm-yard anure in this respect-that, whereas the latfontained everytuing that the plant conined, the forner supplied only certein parts. tificial manures could never be put togethin the place of the farm yard manute. ney could never permanently cultivate the Iby their use alone, but merely employed em as valuable auxiliaries. Their use was incipally to supply the soil with phosphoric od and nitrogen; it was not necessary that ey should be employed to supply lime, mag. fia, \&cc., which could be easily supplied Berwise. They were used to supply these pogs which had been carrled away in more an their fair proportion. The most of the
artificiai manures were of this kind. Some of them had unly one ingredient, as, for example, nitrate of suda, which contained only nitrogen. Ordinary superphosphats and dissolved bones supplied both phosphoric acid and nitrogen. When they came to Peruvian guano they found that it supplied phos,horic acid, ammonia, potash, and certain other substances, such as maruesia, \&e. The lecturer referred to the difference between the mode of applying farm- \bar{y} rd and artificial manures. When they applied 20,40 , or 50 tons of farmyard manure to the soil they absolutely apphed a greater quantity of valuable substance than when they applied 5 or 6 cwt . of artificial manure. The priacipal difference in the action of the two species of manures was that farm-yard manure mighi be applied in great quantities, but it was sometumes, owing to its condition, a considerable time in the ground before it came available to the plant, while artificial manures had the advantage of being instantly available. This was preeminently the case with Peruvian guano. When they passed from this to bones they found that they were not immediately available, and, in point of fact, in the last century when bones were used in enormons qualities, they did not at once produce the effects which were expected. But a great step in advance was made when these bones were dissolved by means of acid, and brought into a state in which they were immeduately available to the plant. After this had been accomplished it was fourd that other substances could be employed in this manner as well as benos. Some years ago coprolities had been discovered, which were now of great importance as manures. They were firs found in Suffolk, then in Cambridge, and later in France. Enormous quantities of these had been found and turned to account in the manufacturing of manures. They owed their introduction as manures to Mr. Lawes, a very distinguished agriculturist. The nature of these coprolites was a subject of great importancr, and onc about which there was a great difference of opinion. It had been maintained that they were very inferior to superphosphates derived from bonez, and as the subject was one which had been somewhat warmly discussed, we hod been asked to say a word or two with reterence to it on the present occasion. The lec: turer then proceeded to state that one of the principal recommendations of farm-yard manure was that, besides being a source of food to the plants, it also served to promote decay in the suil, which was essential to their gruwth. A superphosphate made from bones also promoted decomposition of the soil, and it was here that bones had the advantage over the coprolite. So far as mere supply of food to the plants was concerned. they were equai, but there was a difference with regard to their agency on the soll. He would, however, be
the last person to say that coprolitics should not be employed. Nature had evidently in$t \in$ ded them for use. What he oljoreted to was making a manure from coprolites and calling it dissolved bones. The correct way was io tell exactly what the manure was composed of. Λ man could go into the market and buy bones at $£ 6$ a ton, and coprolities at \&), and it was not right to sell the cheap article for the dear one. The farmer, in his opirion, was not altogether free from blame in this matter. If he went into the market and asked for manures at a lower rate than could be made, he must make up his mind to receive coprolitics. The cheap manure was made up of coprolites. This was particularly the case in London, where manures were advertised so cheaply, bur the reason of this was that London manures were just coprolites. The whole thing lay in a nut-shell. If they wanted manures from bones alone. they must pay for them, and if they wished a cheap manure they must take coprolites. The question then came to be from which can you get the best result? Now, this was a question which only practical experience could solve. In some soils coprolities would produce as good an effect as bones, but this could only be solved by the actual experience of the tarmer. In conclusion, he would strongly impress on them the value of experiments, especially when they had arranged to hold neetings for the discussion of agricultural subjects. These, when carefully made, were of the utmost importance to the art of agriculture-an art which had now almost become one of the learned professions.

PREPARATION OF BONES.

Your letter in relation to the preparation of bones for plants, and their value for grape, is at hand. My other duties at present forbid my doing justice to this sulject; but hoping to be able to touch it again, 1 will, in all brevity, notice the points referred to.

First, then, as to preparing bones for plants, The process is partly mechanical and partly chemical. The bores must be first reduced to a greater or less degree of fineness, by meclenical means, and thin be operated upon by chemical agents to render them soluble.

The work of reducing bones to anything like powder is fraught with almost insuperable difficulties. No practicable method of doing it has yet been devised, and yet the success of the subsequent chemical process, is ofitn dependent upon a degree of fineness being attained that has not been reached in any rawbone superphosphate that I have seen. Ior reduce raw bones by hand without the aid of machinery, is a most laborious and unremuncrating operation.

Burned bones are very easily reduced to an
impalpable powder, but after reduction, could be farther reduced by fermentation, as ran bones may, and by burning they lonse about four per cent of nitrogen, which is very desint ble to preserve.

Raw bones are very easily burned by piling thers up with wood, and setting fire to the latter ; a good wheelbarrow load of wood will burn a ton of raw bones, and leave a luixed white and coally mass, which is very casily broken up with a mallet, flail, or other imple ment to beat them with.

The chemical part of the process is as vari ous as are the means that may be employed o perform the mecianical part.

Bones may be fermented in a great variety of ways. They may be kept moist and ware till they are broken up, under the decomposing action of the organic matter in them. Ortheg may be mixed with decomporing putresced matter, by constant contact with which the are gradually decomposed. In this way whoi bones may, in the course of a few months, b reduced, and thus the labour of breaking thep up, by mechanical means, be avoided; if; hor ever, they are first somewhat broken up : would be better, as the fermenting action: therety rendered more intense. Ihe bons either whole or after being broken into larg pieces, may be thrown minto a box, burel, ; hogrhead, and let down into the ground io: moist place, where the draining of the coi yard, the urine from a privy, the soapsu from a wash-tub, the slops of dish-water, any water containing orgaric matter, liable. become putrescent, may keep them constant moist. They should not be allowed to becois dry, nor should be constantly covered wi. water, nor should the water pass throug them and run away by soaking into the cart In filling the vessels with bones, dead anima spoiled meat, hair, wool, hoofs, horns, or at other similar matter may be thrown in wi. them. The whine should be pounded dor to a compact mass. It is by no means nea sary that the vessel containing the bones, sunk in the earth; if kept on its sumface, 2 the proper condition of moisture observed, . decomposition will go on, but when sut these conditions are more easily kept up.

Another indispensable condition is a prop temperature; that of a comfortably hat room in winter, or of the ordinary temp. ture in summer, is what is required. I only advontage of using warm liquids to. the lones, is the temperature thereby attiin It is best to carry out such experiments. summer time when the solar heat is suffici to secure the de:omposition. It is further, even necessary that the bones be put in a. sel at all; a hole or sink may be made in. ground and the bones thrown in and ira ar above; such a hole should not be of the ture of a grooce, narrow and dece, but 2 a
ispherical sink, twice or thrice as wide as deep, and if convenient, it should have a clay bottom.
In all the above cases, a coating of fresh stable manure, thrown over the top of the fermenting mass, to the depth of eight or ten inches, will accelerate the process, and help to maintain the conditions required. Imrnediately beneath this manure a thin layer of coal dust from the bottom of an old coal pit may be thrown; this will prevent the putrescent mass from evolving offensive gases, and at the stme time absorb what little ammonia may be evolved. After from four to six weeks it will be found that the hard bones will have been so far reduced that a spade can be forced down through them without difficulty. Bones; phich when fresh, would have required a twenty horse-power engme to crush them, now crumble beneath the foot of a man. Afer bout from two to three months they may be ghovelled out, cut, pounded, and mixed up sith a shovel, and applied to the land.
Another process is to make alternate layers fones and fresh stable minure in a sink. and to throw over them any of the liquids nentioned above, and to cover the whole with Ftable manure, and let them ferment from irht to ten weeks, when the bones can be pouded and mixed up for use. Still another rocess is to pack away the bones, as in the Mrst meclod above, in a ho shead, or box, and fix good unleached wood ashes with them, Tleast a bushel of ashes to a barrel of bones) fod pour water or soap-suds over them; in fis case they may be covered with water at st, and after tive or six weeks this water fay be allowed to evaporate, and a dec.ompoed, soapy mass will remain, which, on drypo may be pounded up. This mass is the pit possible manure for grapes, as it contains hosphate of potash, both the acid and base which are required in large quantities by his plait.
If the bones are burned, or if a phosph tic two, or a mineral phosphate be used, since bey contain no fermentable organic matter, ley cinnot be decumposed by the above thods, at least not by all of them, but the plication of sulphuric acid to them will con-. it them into superphosphates, in which Fed their phosphoric acid is readily asismifed by plants. Some minure makers have ked nonsense about phosphoric acid rendered puble fiom mineral plosphates, not being fuilable by plants; such vagaries are altother beneath criticism, and serve only to Hhyt the ignorance of heir authors.-Gurger's monthly.-Dr. Pugh.

PRE PLOUGH AND CULTIVATOR.

The plough is, after the spade, the most fient instrument of husbandry ext met; an 1 ferer rude and uncouth its original con-
struction may have been, as exlibibited on coins, medals, and other works of art handed down to us by all the nations of by-gine civilization, it was in any and in every form, a great saving of labour to the husbandman, to be able to extract from oxen that servico which the spade and the arm of man had previonsly execu'ed. So far as the forms of the ancient Egyptian, Grecian, and Roman ploughs are depicted on these vestiges of national art, they appear to have been calculated rather to seratch the soil to the depth of four or six inches, than to turn it over in a continuous aul unbroken furrow-slice. Yet, if we mey credit the historians of those countries, heary crops of wheat were obtained from the laud, especially in Egypt, where, 'vo are told. as much as from two-hundred to five-hundred-fold the seed sown was sometiaies reaped-a produce that would melke even an enlightend Eaglish farmer open his eyes to the widest extent possible.

Very different in construction and operation is the mulern ploagh of the Ener h machinist. Science, art, judgment, and perseverance have been called into exercise to produce an implement that would fulfil the expectations and requirements of the R yal Agrie. 1 tural Society, as the assumed exponent of the opinions of the agricultural body. The desidurated perfection of the operation of the plough, as insisted upon by that institution, consises in turning over the furrow-slice in the most perfect unbroken manner, witanat even a crack in it, and laid at an angle of 45 degrees, and at the smallest expenditure of power, as determined by the dinamometer. Such being the law laid down for the guidance of the competing machinists, they have exerted their talents and skill to the utm:sest, and have produced instruments that may be justly termed works of art, so scientific. artistic, and elegant are they in their construction, and so cleverly do they ulfil the requirements of the jud ges of the Royal Agrieultural Sreicty. We can, in fact, conceive of no operation in husbandry more beautifal than that of a clover lay ploughed up by one of How ard's or Runsome s late et-coustructed implements. By them the flay is turned over so gradually and carefully that it ies recumbent like av elongated unburnt brick, without a crack, and exhibiting nothing of its previous covering except a thin streak of ve dure at the point of contact with the preceding fur-row-slice.

About the latter end of the last century a Mr . William Lester, of Northampton, M. P., invented an instrument which he terme i a grubber or scarifier: and so useful did it appear, that the Suciety of Arts awarded him one of their silver medials for the invention. In the first instance, the grubber appears to have been intended rather to scarify the sur-
face for the extirpation of weeds, than for the purpose of more serious and effectual cultivation; and this, ne believe, was the chief oljecet to which its employment was confired, until Mr. Smith, of Woolston, brought it into direct competition with the plough, by attaching it to lis steam apparatus, instead of that time honoured inplement. This operation being in direct contrast with that of its antagonist, he has quaintly termed it "the smashing-up system, in contradistinction to plougling. The success the implement has met with, in the increase of produce from thus stirring the soil, instead of turning it over, has led the machinists to effect improvements in the construction of the same implements worked by amimal power, so as to adapt it to the purpose of decp culture, instead of cofining the performance to sarifying the surface for the destruction of weeds. It has now become an impostant question, whether the principal olject of tillage-viz, the speedicst and most effectual preparation of a seed hed-is not better accomplished by the cultivator than by the plough, especially on the refined prineipal laid down by the Royal Agricultural Sucicties on the dicta of their appointed judges; and it certainly does appear, from the testimony of innumerable persons who have used Smith's steam-cultivator, that the turning-over of the sod is not a necessary part of tillage, and that the unbroken furrow-slice is not the most effective operation for preparing a speedy a desirable seed bed.

This question is now, in the opinion of many, the most momentous one before the agricultural public; and upon it, in connection with steam-culture, subsoiling, and thorough drainage, depend the future suceess of the husbandman. The late Mr. Pusey was, we believe, the first who foresaw the value of Lester's invention as as a cultivating implement, and he unreservedly gave his opiaion of it in public, and this expression brought it into general notice. "I may venture to say," as Mr. Pusey writes, "what may appear theoretical, that if ever steam be successfully employed by cultivation, i: will probably be less by ploughing and digging, than with an implement like one of these cultivators." Thus far the prophecy is in part accomplished. Smith invented the smashing-up system; and Fowler has also found it necessary to yield to public opinion, and apply the cultivator as well as the plough to his steam apparatus, in order to meet the wishes of his friencs and supporters.

It becomes an important questiou with the machinists, whether, in endeavouring in the race of competition to comply with the requirements of the Royal Agricultural Societs, they have not so much refined upon the construction of the plough as to lose sight of the main olject of tillage-the quickest and most
effectual preparation of a seed-led. It is nom universally agreed by all intelligent men that the more completely the pulverization of the soil is tfected, the greater are the chances of success; and cert:inly the upturned and un. broken furrow-slice is scarcely the fulfilment of that olject. If the soil is a strong clay, be the weather either wet or dry, it will require days, and sometimes wecks, to mellow the furnow elice so as to be able to reduce it toa comminuted state, fit for a seed-bed.

It is worthy of remark, too, that whils almost all who have used Smith's smashing. up) implement agree in ascriting to it a considerable increase of produce-and the same is the case with Fowler's steam plough, which also breaks up the furrow-slice instead of turning it over in an unbroken state-on the other hancl, we have never heard of an increas of prouluce effected by the operation of the ploughs constructed to produce the unbroken furrow-slice. The contrast in this respect is most striking, and of itself must lead the lhas bandman to inquire more minutely into the merits of the two systems.

The point we have raised has for some time engaged the attention of many of the m 'st intelligent of the agricultural body and the conviction is gaining ground that the cultivator is the quickest, the readiest, and the most effectual implement, whether worked tr animal or steam-poner-but especially if H the latter-for converting the soil into a pro per seed-bed. Both the Royal Agricuiturd Suciety and the machinists will have to met this question; and, at any rate, the unbroke and uncracked furrow-slice must be given of and the lesideratum substituted, of a pertectls comminuted and deeply cultivated sonl, cor stituting by one operation a well-prepara seed-bed.-Marí Lane Express.

CAMBRIDGESHIRE AND LIMCOLN. SHIRE FENS.

[We take the following interesting commar cation from a recent number of the Tinies, (E gland), written by Mr. John Algeznon Clard of Long Suttori. Evs.]
Every one knows that the great level of t Fens, more than a thousand squane miles area, is a tiact of alluvial deposits which bat filled up to one almost unitorm height at about six times larger than the Wash. Th original coast consisis of hlls of chalk, grem sand, gralt, Kimmeridge and Oxford cls oolite limestone, and drift beds of boulder ch and gravel, surrounding the district from Hat stanton and Lam nearly to Cambidge, therf to Peterburouyh and Lincoln, and towas. Wainfleet, leaving a belt of the flot along Nouth Lincolnshire coas: up to the Humbet while numerous island: of the same upla
ground rise up through the horizontal plain, as at E y, Chatteris, Whittlesey, and March. It is generally understood, also, that while the fat grazing and corn lands boidering the shore for several miles inland are salt marshes, reclaimed by embankments from the warpladen tides of the Wash, the black, vegetable soil of the interior and lager portion of the Level has been obtumed from the dainare and tillage of deep peat musses and shalluw lakes once existing as a woudland country. But receut excavations for lowering the gieat network of cuts which carry off the downifall waters and convey the bich land floods to sea have explored more deeply the structure of the Fen alluvials, and from a mass of sections and datia collected with a view to future publication, I can state in a few words the main facts by which the Fens interlace archeology with geology. In the Saxon and Nurman ages (according to the monkish chronicles) meres and pools alternated with immense bors, and turfinours with grazing and hay grounds, while some portious were clad with moisture-loving trees, and yert afforested by Kogalty. For though the entire plain would be plunged several feet deep under water were the present valvedoor sluices removed, the state of the region before the invention of sluices was not necessanily one of continual deluge : the peat being inflated with water like a sponge, its surfuce was elevated many feet above ifs mudern level. Stıll fuither back we find, in the Roman era, the Great Level had already become a fen, thourh some localities may have forme timber for the axes of the busy legions. A Reman crossing the entire breadth of the Fen country, from Downham in Norfolk to Whitlesey and Peterborough, consisis of a grarel causeway, three feet in thickness and 40 to 60 feet in breadth, with a foundation (in place) of oak timber and ragstone, resting upon the peat, which has become partially solidified by the weigh. At some remote date the Great Level was a furest. Prostrate timber is found flimost everywhere under the peaty soll-the goots of the trees generally standing as they brew, the trunks broken off, and in some disfricts lying in a certain durection, as if hurled Hown by some common catastrophe of storm or prundation. The remains testify that in some localitics oaks and firs attained a size and altigade now, perhaps, unknown in Eutland, while fother places only a more aquatic growth of Blders, birches, willows, and sallows prevailed; he wild boar devoured roots and mast in the feesses of the thick woods; the aurochs or bion, as well as the red deer and stag, herded on be grassy glades, and the beaver colonized upon the shady margin of streams and pouls. rom the low level of the clayes surface upon fich the woodland flourished (such that, were be clay now bared of its peaty covering, it sould be drowned by salt water 10 ft . to 20 ft . idepth) it is clear that a subsidence of the joutry has occurred since the growth of the
timber. This must have been long before the time of the Komans; for the marine alluvium occupying the "Marsh" districts betwecn the true (or peaty) "Fen" and the coast, and in places 20 ft . in thickness, rests upon the peat with its embedded timler and bones of animals, and Roman remains exist upon tbe surface of the alluvium. The peat, forming a subierranean forest" underncath the warp land of the marshes near Lron, appears as a "submarine forest" in the Ouse estuary seaward of Lynn. Again the surface peat of East Fen (north of Bostou) enters under the marsh allavium, and crops out on the shore. The submarine forest visible at low tude, appears for many miles along the Noith Lincolnshire coast, and, 60 years ago, extended a mile out to the sea. Much ground has there been eaten away by the waves within the historic period, and it is evident that the ruined forest with its thick covering of tidal warp once extended far out into what is now the German Ocean That this marine alluvium, or "old marsh" land, had been deposited before the Roman age is demonstrahle. Two centuries ago the outermost sea barrier was what is called the "Old Roman Bank." A document of the reign of Henry II. speaks of this immense engineerng work as "the Old Sea Bank." It is certain from the low level of the land that the many towns and villages contiguous to the bank could not have existed before it had barred out the ocean : and most of them are named in Domesdey Book as having existed (many with their salt pans) in the days of Edwand the Confessor. Wisbeach could not bave been out of the salt water had there been no embankments; yet Wisbeach and its river embouchure are distinctly spoken of in a Saxon charter of A.D. 664 Still further, some of the towns guarded by this baak have Roman names and Roman remains; the embankment communicates with several undoubted Roman sites, and while many Roman relics are discovered on the inland side, none have ever been found on the seaside of the bauk. The level of the courtry and the position of the bank show that no subsidence has occurred since the Roman age; while the fact of the bank standing upon the thick stratum of marine warp which overlies the peat forest confirms the inference from the Roman road, that the subsidence and flooding of the woodland terrain happened long before the Romans visited the scene. But the forest had been peopled by the aborugmes. Occasionally the buried timler is met with, bearing marks of human labour, snd stone celts have been met with near the trees. In Downham Fen were found under the peat, and resting upon the subjacent clay, pieces of wood, piled for making a fire, with the enibers still left in the centre. In Deeping Fen was exhumed a canoe 46 feet in length and nearly 6 feet in width, hollowed out of a single \log; itlay below the peat and above the clay. resting upon cross timbers, which had been broken by its weight.-

The history of the Fea alluvials dues not end here. The clay upon which the forest grew is a soft ailuvial deposit, with a surface slichtly undulating, like that of shoals in the Wash, and varsiug exceedimoly in deptu from a tew inc nes tu 20 feet, filling up a bay of irlegular bottom. It is guttered in many places with silted-up channels or creeks, ana it would appear that an elevation must have occurred before this wet mud couid have been cluthed with wood. Sinkug through this "blue buttery clay" is fuund sometimes the 0xfurd clay, or obler upland statum, or beds' of boulderclay, of sand or fravel. But over large purtions of the Great Livel the suft clay reposes upona second subterranean forest of oak, gew, and other timber, $100 t$ ed in difit clay, as at Bustun, 18 feet from the surface of the land Some of the trees are of enormous dimelisions, represcifting growths of several centures. There was plainly a depression of the country before this earliest forest was submerged for the disposition of the blae clay. The :are of this forest is fixed alter the dispersion of the boulder clay, but befure the yccumulation of the yellow dift gravel of Deeping, which has been fiund over lyng the lower peat and its embedded trees. A remarkable circumstance is that this forest may be seen far out in tie Wash Bay in particular states of this tide; and a stone axe has been discovered in the cleft of a blackened trunk, two miles from high-water mark, off Hunstanton. Certainiy the Gueat Level posiesses abundant writtentecords of its physical condi tin n in the Saxon times; it abounds with Roman and British antiquities; the relative levels of its alluvial strata and entombed forests, in juxtaposition with an ocean artifically barricaded trom the fiat, tell of elevations and depressions within the human period; and I believe that careful study of the various deposits (estumating the age of the warp beds by the rate of anccretion of modern inclusutes, and the age of the forsts by the season-rins of the thees) would go far to solve the question of the antiquity of man, and to throw a bridge of years across the chasm now sundering chronoloyy from the era of the stupendous slaciai convulsions.

HAY 娟AKING.

There is something beautiful in the operation of making hay when the weather suits. This is so with Timothy, with all kinds of grass, but especially with cluver. Cut it when in blossom, when stem and head are tender, and juicy and frasrant. The scythe-if you are so unmannerly as to cling to the old poetic usage-will "walk" throu sh with the greatest ease, showing what a tender thing you have. It is precious, and requires careful handling. Let the aun wilh it; though it would be better if the sun did not see it at all. His rass are too fierce, and will scorch it and hurt it. Better if in the old fashimed. winrow, than spre:ad with the machine. If mowed with the machine, and there
is time, put it in winrows, broad and somewha; thin, so that the air ann get in. This will measurably relieve it from the sun. Then, if there is wam, dry an suring, a few homs will sufficiently wilt the grass to fit it fur the cock. It shouldalways be cat when the dew is offi, Then throw it in samall cocis, say of half a hundred weight to the cock. Consult your baron eter, and if you are sure of your weather, leare your cocks untuached fon about thete days, or nealy that. It rain threatens, claj; on your hay culs, or you are sale in domr it in the start it jou lhe. Thy y will intenfere fittle with the curins process, and will shed rain. Theo, if your weather is wam, with a little air in mo. tivi, let a hand piecede the waron, and tura uner the cucks, lucsoniag up the hay a little. This, with the stir the hay will get in loading and unluadiné wili be sufficient. And sow yoo have hay that is hay-orcen, with in slieht touch of amber. You have every head enitie, not falling mito chaff. Ejery leaflet is thee, tenaclums of its stalk; the entire stem as the scythe left it, is there-phable, not brittle and dried to a crisn, with the heads and leaves u issing, or ludged on the barn floor, in the mow-seat, in your neck and vosom, and scattered on the field. But here you have neads wath the huc of the blossom stiil there-a flower "pressed"that is making hay. In this-"pressing your flower"-is the whole sectet. Wilt and cure, but dry not. Cure is the only word. The wet weather in many pants of the comatry duning the hay harvest has brought into requisition har. caps. We are rlad to see it. On the whole, they are a benefit. If the weather should cor tinue wet beyond the time aliotted for its cure, in with it the first moment it is dried off on the outside. Your hay is cured; bu there is still some moisture left; and you have no means to give this to the air, so sprinkle a little salt on e ch load, amount accordinir to molstare. Your hay, whea fed. comes out abuut the same; is as readily taken by the stuck. Even should it change a little in the mow, how much better so than a bulk of brittle sticks, with all the surar an'i the starch out, and all substance; Such "hay" will starve cattle, and is a pty to look at There is no poetry in such "hayy," neither in the making of it, nor the fecdiug There is less labour in making it in the rgbit way; and the wettest season will not spoil it, as in the other cases. Such hay-or gras cured-will fatten your stock. It will have tion summer effect upon your cattle, upon the hor els. They will eat it with avidity, and hishtee up over it. Roots may he dispensed with in tt: presence of such hay. 'Tis thus one may hari summer with his cattle. Such a man is a bent volent, as weli as an economical and wise man The sight of such hay shows the prosperity n a man. There is but little in the countio as je: but it is fast mereasing. It will suon be th only hay; and then a better era has dawned fi the cattle, horses included-and man also.Valley Farmer.

THE CROPS IN TGE U. STATES.

We are indebted to the courtesy of Mr. Grin[nell, chief clerk of the Agricultural departat Washington, D. C., for an abstract of the returns to the department of the amount and condition of the crops in twenty-two States reported from in May 1863, from which we give the following very condensed sumuary.
The number 11 represents an average of the crops, buth as to heir umount compared with the crops of 186', and their appearance in Hay, 1843. \AA number above or below 10, represents as many tenths as it is above or below it. Thus 8 is two-tenths below an average, and 14 is four-tenths a ${ }^{\text {loge }}$ it.
The table from which this statement is ex-trant-d, is prepared by first taking an average from the returns of each county, and from these an average of each State.

	- Average amosut of lamu kown comrared "nt. 1=62	Appearance crop at this thi- date.
Winter Wheat,	11	93
Spring Wheat,	10	10
Rye,	103	10
corn,	$1 \cdot \frac{1}{4}$	$9 \frac{1}{2}$
Oats,	13	$9 \frac{1}{2}$
Po atos,	11	$1{ }^{\prime \prime}$
Sorghum,	$15 \frac{1}{2}$	104
Cotton,	37	$219 \frac{1}{2}$

glvioultural thmelliynuct

THE ACTI IN OF SUPERPHOSPHATE 0 LINE.

[As this very valuable fertiiizer is now made Canada, and therefore available for use, we asert the following able and interesting paper from the last number of the British Farmers Magazine. Mr. Cox is manufacturing the Superphosphate at Montreal ; and his Arents in foronto are James Fleming \& Co., Agriculbual'Hall. Evs.]
It is ouly by slow degrees that we acquire Galuable information relating to the use of hanures. The suliject involves, in fact, all hose diff ulties which gather around the chem th when he is trying to unravel the mysteries of granic chpmistry. The unwillinguess of formAr generations to leave lony-beaten paths: their Fisilike to try newly-sugrested fertilizers, natually enou sh long discouraged such efforts to gecense our stock of kuowiedre. The way in thich tue introduction of artificial manures was Pposed apnears, indeed, to modern agriculturth to horder on the Judicrous. The Sheffield asllers were long obliged to pay for the r moval f heir waste bone dust from around their lathes瞥d worbshops. And when the Lincolnshire
faimers began cauticusly to use crushed lones with their turnipseed, they were of course, at first ridiculed; and then it was very gravely asserted by that class who seem born for opposition, that bones introduced the advent of a black grub or caterpillar; and then, changing their ground, the anti-bonemen contended that it was white ciover that the bones introduced. When the next move was made, after Liebig had surgested the use of superphosphate of lime, the opposition men as usual, came out in great force; the very idea of adding sulphuric acid to the land excited their anger and their ridi cule. The use of guano also was denounced very vir rously as "a mere stimulant," just as the use of sewage is now by the men who are ever constitutionally the opponents of every new fertilizer, and who complacently consider everythiug woithless which they do not happen to comprehend.

Then, again, it is only by very tardy advances that the most valuable improvements in the ap plication of excellent manures are adopted. It is now more tham fifteen years since the late Philip Pusey suggested the use of decomposed or fermented bones as a drill manure for roots (Jour. Koy. Ag. Soc., vol. viii., p. 417). He showed by various experiments of his own, and those of other considerable farmers, that crushed bones, when previously allowed to ferment, mixed with peat ashes, earth, or sand, were reduced to a state adapted for application by the drill. He next proved by varied trials that the tffect of this dressing was as great as that of an equal money value of superphos; hate of lime. This mixture was communly composed of two measures of bones and one of sand, allowed to ferment in a considerable heap. The resuis of his first trial was, per acre, as follows: 17 bushels crushed bunes, costing $£ 263$., produced 13 tous 5 ewt.; $4 \frac{1}{2}$ bushels superpliosphite, costing £1 2s 9d., produced 14 tons $\overline{3}$ ewt ; 8? hushels fermented bones and sand, costing $£ 1$ 0s 9d., produced 13 tons 5 cwt. Three bushels of the mixture were valued higher than the two busheis of bones, because the heap sunk during the pocess of fermentation one foot iu four showing from the shriuking of the hones, that there was more than two bushel of hones in three of the mixture. Two years afterwalds Pusey recurred to the questien (ibid vol. ix., p. 590). It was at the close of the year 1858 that he reported the results of his further investigations, and spoke of the precautions necessary to be taken to ensure a grood result.

In that year he mixed bones with peat ashes, coal ashes, sand, mould, and sawdust. The fermentation is equal where the size of the heap is the sime; hut ia small heap, unless carefully enclosed and covered. will not decompose so thoroughly as a large one-perhaps not even then. Whatever the suhstance employed, is should be in a free pulverized state-_should be moistened, and the bones thorourhly drenched. Finely-ground bones decay more than coarsely.
ground. Four carloads, in one heap, heat much better, he found, than four cartloads in separate heaps. As the heat does not maintain itself well within a foot of the surface, it is useful to ${ }^{\circ}$ ve the heap an external covering of the same material employed in the mixture. On the other hand, the quantity of ashes or sand employed may, perhaps, be reduced to one-half of the quantity of bones. The fullowing is the result, per acre, of two trials made at Pusey, on the stonebrash, in 1848, with late sown turnips : $5 \frac{1}{2}$ bushels superphosphate of lime, costing $£ 117 \mathrm{~s}$., produced 16 tons $12 \frac{3}{4}$ cwt.; 8 bushel of decayed bones, costi.ig $£ 12 s$, produced 13 tons 14 cwt . ; soil simple, less than 1 ton. These bones were from a small heap, and not well decomposed. On two other lots, where the bones employed had lain in a large heap, and been better fermented, the yield was just even, viz.: $5 \frac{1}{2}$ bushels superphosphate, costing $£ l 17 \mathrm{~s}$., produced 15 tons 13 cwt .67 lbs .; 8 bushels decayed bones, costing $£ 1$ 2s., produced 15 tons 12 cwt. The superphosphate alwars pushes on the turnips faster at first, and therefore is best for late sown tu:nips. For thuse that are sown early, though this mode of decomposition will not supersede the use of acid, I cannot but hope it will afford the farmer in many circumstances a useful choice. \&

Since the early efforts of Pussey, this mode of employing bones has heen slowly extending, the preparation of the dressing varied and accelerated by mixing the bones with a considerable amount of farmyard manure br some of the great Norfolk light land cultevators; and I am strongly inclined to helieve that they will hereafter make further improvements in preparing in a similar way a friable manure applicable by the drill. In a recent valuable paper by Professor Voelcker, to which I shall presently have occasion to refer, he observes: "Perhaps the be t manure for growing roots on light land is a n : z ture of bonedust and rotten dung. On several farms in Norfolk this mixture is now used, in preference to all other manures, with most sirnal benefit. The best way to make this mixture is to cart into a corner of the field the yord manuse about three montls before turnip sowing begins. At the same time the bonedust. calculating 6 to 8 bushels per acre, is carted next to the place where the manure is to be put up in a heap. In making the heap, first a thick layer of dung is placed upon the ground; a thin sprinkling of bonedust is put upon it, then a layer of dung:; again a sprinkling of benedust; and so on, until all the b.medust and dung are placed in alternate layers in a heap. About n month before sowing the turnins the heap should be turned over. Proceeding in this way, we shall find that the fermented dung disintegrates and partially dissolves the bonedust to such an extent that by the time the manure is ready to be distributed over the turnip-field nearly the whole of the bonedust will have be come decomposed and uniformly amalgamated
with the dung. This excellent plan appears to me by far the most economical mude of dissoly. ing and applying bonedust ou light lana, which, as has been st. ted, should, if possible, be man. ured with at least half a dressing of oldinary yard manure, in order that the deficiency of potush and organic matter in the sjil mas be be supplied."

It is at the end of this month that the use of phosphatic dressings will be the most general throughout our island At such a time the results of the labours of Professor Voelcker, but recently published, will be of no mean value to the agriculturist (Jour. Roy. Ag. Soc., vol,, xxiv., p. 37). It is indeed of the highest value to the cultivator to understand the chemistry of his noble profession. and he will ever be thank. ful for any such additions to our linited stock of knowledge. The Professor proceeded with his. usual caution, step by step. The primary effort was to show by the analysis of the plant that phosphate of lime is an essential ingredient in its composition; nexl, that the Creator of its marvellous seed has bestowed an adequate supply in that seea for the earliest requirements of the plant; then, that the soil of our culturated lands does not usually cuntain an amount of phos phate of lime sufficient to promote the mest luxuriant growth of the plant; and lastly that. there is much to be yet generally accomplished in the mode of applying superphosphate of lime to our root crops.

Now, to begin with the seed. The Professor notices the care which was taken by its Divine Architect to provide plants at the earliest periods of their existence with a coustituent which possesses so remarkeble an effect in pushing on the young plant, but is seldom prescnt in soils in larger proportions than a mere fraction of a per cent. (commonly not more than from one to two tenths of a per cent.). "On examining thy ashes of the seeds of all plants, it will be found that all contain much phosphoric acid, either in combination with alkalies, or with lime or mag. nesia. During the germination of the seeds the phosphates contained in them appear to be ret dered soluble. The most important mineral food constituent is thus provided ly the seed itself, and placed within easy reach of the infant plant just at a time when an amount of phos phoric acid in all soils would be inadequate to induce a virorous development of the whole vegetab'e organism.
"In England the application of purely phos phatic manures is confined aimost excluslvely to root crops: why is it that these manu:es, as i rule, benefit root crops more than cereals and other crops? The idea naturally suguests itseff that turnips or swedes require more phosphonit acid to bring them to perlection than wheat, barley, and oats; and an examination of the ashes of these several crops confinms this iim pression. A given quantity of ash of tuinips; ; is true. contains less phosphoric acid than the same quantity of wheat ash; butsince the totm
amount of mineral matters or ash in a crop of turnips is very much larger than that in a crop of wheat, the amount of phosphoric acid which is removed from the sail by the one is very much more considerable than that taken up by the uther.
"Taking the average composition of the ash of turnips, bulbs and tops, deduced from the recorded results of numerous ex stmenters, we have in 100 parts

Bulbs. Tops.
Potash $42 \cdot 0 \quad 20 \cdot 0$
Sodß.................................. $2 \cdot 0 \quad 3 \cdot 0$
Magnesia $2 \cdot 0$ 1.0

Lume... $11 \cdot 5 \quad 30 \cdot 0$
Phosphoric acid................... $\quad 9 \cdot 0 \quad 5 \cdot 0$
Sulphuric acid. 11.5 11.0
Wilica 1.0 1.0
Chloride of sodium....................... $6.0 \quad 8.0$
Charide of pottassium............ - $5 \cdot 0$
(arbonic acid........................... $15.0 \quad 16.0$
$100 \cdot 0100.0$
"The average composition of the ash of the grain and straw of wheat is as follows :

Wheat. Straw.
Phosphoric acid.................. $50 \cdot 0 \quad 5 \cdot 0$

"If we suppose the crop of bulbs of the tur-䭗 to weigh 20 tons per acre and the tops 6
${ }^{2}$ nos $_{5}$ and take tne average percentage of ash in
e bulbs at $\cdot 70$, and that in the tops at $1 \cdot 7$, we
move from each acre, is round numberslbs.
the bulbs............. 314 mineral matter.
the tops.
228 "
542
An average crop of turnips in fact removes on the soil $28 \frac{1}{4} \mathrm{lbs}$. of phosphoric acid in the llbs and $11 \frac{1}{2} 1 \mathrm{bs}$. in the tops- $39 \frac{3}{4} 1 \mathrm{lbs}$., or, in and numbers, 401 bs . in all.
"The grain of wheat. on an average, contains per cent. of ash, and wheat straw 5 per cent. e mean produce of wheat per acre, taken at quarters- 32 bushels at 601 bs . the bushel, is 201bs. of wheat; and as straw, being generFtwice the weight of grain, would weigh 401bs.,

al mineral matter per
acre
$223 \frac{1}{1}$

A fair average crop of wheat indeed removes from the soil $16 \frac{1}{4}$ lbs. of phosphoric acid in the the grain, and 913 ibs. in the straw-together $25 \frac{3}{4} \mathrm{lbs}$., or, in round numbers, 26 lbs . Therefore a turnip crop weighing 20 tons per acre takes l4lbs. more phosphoric acid out of the soil than 32 bushels of wheat and the straw belonging to it."

Next let us travel with the Professor, while he farther inquires on the important question, for although the amount of phosphate of line in the turnip crop is considerably more than in that of wheat, yet there are other reasons why the application of soluble phosphate of lime is so much more beneficial to the root than to the cereal. Here, again, to use the words of the Professor: "If we suppose the turnips to have been grown with 3cwt of superphosphate, containing 2θ per cent. of soluble, and an inappreciable amount of available insoluble phosphate; the manure will supply 31lbs. of phosphoric acid and the remaining yibs. must be derived from the soil. Yet although the larger amount of phosphoric acid contained in a crop of turnips accounts to some extent for this crop being more benefited by phosphatic manires than wheat,I beheve the principal cause of the more energetic aLd striking effect which such manures produce on root crops than on cereals, will be found in the different mode in which green and white crops take up food from the soil, and the different duration of their period of growth. The roots of wheat, as is well known, penetrate the soil to a much greater deptr, than the more delicate feeding fibres of the roots of a turnip. Wheat, remaining on the ground two or three months longer than turnips, can avail itself of a longer period of the resources of the soil; there fore in most cases the phosphoric acid dissem inated through the soil is amply sufficient to meet the requirements of the wheat crop; whilst turnips, depending on a thinner depth of soil daring their shorter pericd of growth, cannot assimilate sufficient phosphoric acid to come to perfection. This is, I believe the main reason why the direct supply of readily-available phosphate is so beneficial to root crops, and not to wheat.
"This view of the matter, if I am not mistaken, gains strength by the fact that barley, a crop which in many parts of England is often sown late in the season, and geuerally later than any other white crop, is much more improved by the superphosphate of lime than oats or wheat. On late sown barley this fertilizer has a strikingly beneficial effect. When the land has not been well done before, or is naturally poor, and the barley backward, a top dressing of 3cwts. of superphosphate will be found nost useful. In that case a still better manure will be a mixture of superphospbate and guano in equal proportion, applied at the rate of 3 to 4 cwits. as a top-dressing. A crop of barley does not contain more phosphoric acid than a wheat crop; and yet I have repeatedly noticed the
effects produced on it by the application to the preceding crop of 3 to 4 cwts . of auperphos, hate made entirely from mineral phosphates, and containing no ammonia whatever. Althongh the superphosphate was applied to the preceding root-crop, and no other manure with 11, and the tumips were carried off by the land, it, nevertheless produced on the succceeding larley an effect as plainly visible as is the case when barley is ton-dressed with nitrate of soda, or sulphate of ammonia.:'

I have on several previous occasions adrocated the employment of the water drill for roos, and it is highly satisfactory to find its employ ment steadily increasing. . It certainly conomizes the use of superphosphate: it accelerates its action upon the joung plant. Again let us hear the Professor on this branch of our important inquiry (and the reader will do well to read over and over the paper from which I have here taken so mu(h). It is when applying himself to the scientific explanation of the action of superphosphate as a mannre that he remarks that "the whole secret of the energetic action of superphosphate thus depends upon the production of most minutely subdivided or precipitated insoluble phosphates within the soil itself, not, as is erroneously supposed, on the direct absorption of solubie phosphates lof Ilants; and it is not desirable to effect the precipitation before the manure is put on the land, fur by so doing we should lose all the advantages resulting from equal distribution of the phosphates and their incorporation with the soil.
"The more rapidly the soluble phosphates in superphosphates are precipitated or rendered insoluble in the soil, and the more uniformly these highly-divided insoluble phosphates are distributed in that portion of the surface soil which is just under the foung turnip plant, the more energetic their elfects. Superphosphate acts a great deal more energetically when applicd with the liquid than with the dry drill; to practical men, 2 ewts. of superphosphate applied with water, fretuently produce as good an effect as 3 or 4 cwts. in a dry state.
"A little consideration will explain this difference. In the first place, superphosphate, in the shape of powder, cannot be so uniformly distributed on the land as it can in a liquid condition. In the next place, the acid or soluble phosphate may, and often does, remain unchanged in the soil for a long time, when superphosphate is applied in a dry state, and no rain falls for some time, or the manure is badly prepared. In dry weather the soluble phos phate remains as such where it has been deposited; when rain falls, as is frequently the case, in insufficient quantity to dissolve the soluble phosphate and to produce at once a dilute solution, a proper distribution in the soil is nct effected. In other words there vill be too much phosphate in one place, and none in another; and, besides this, more or less acid phosphate will be left that cannot exert any beneficial
effect on the young turnips. I have frequently picked up on fields bits of superphosphate, a month or six weeks after us application, srd found in them still a considerable portion of acib or soluble phosphate of lime, notwithstandura that some rain had fallen during that time There camnot, therefore, he much doubt that is superphosphate applicd in a dry state, frequenly a larse proportion of the phosphates remara inactive in the soil, just at the period whea phosphates are most needed by the young plants."

It will be well if the goung farmer studiu arain and again facts like these. The diffectot results produced by the use of fresh and fir mented bones, is by no means an exhaustd question, and the comparative value of dissoled bones, and the dissolved coprolite, or the mine: al phosphate of lime, has been as little inre tigated, from the preference shown by th farmers of many districts to the dissolved bons (a fact which I learn from the London Manom Company). I ars inclined to think that ve might with advantage examine the question it more closely than has hitherto been done. And am not disposed to rerard the present chemic explanation of the action of superphosphater lime, as one that appears satisfactory. West then, that there are still to be examined vergi? portant practical questions-inquiries that mi 2 long employ the chemical philosopher in hisls boratory, and the enlightered agriculturst inf: more difficult explorations on our hill-sid: amid many and ever varying disturbing i. fluences.

BY-LAWS OF THE AGRICULTURA ASSOCIATION.

In accordarce with a resolution of the Ag cultural Association, passed at the Annual Ma ing at Toronto, in September last, we pubil for the consideration of the Directors of t. County Agricultural Societies, the followi draft of a code of Rules and Regulations for . goverument of the Association, submitted the Board of Agriculture for the considerati of the Delegates at the last Annual Mectii and by them referred to the Anaual Heeti of 1863 :

Rules and Regulations

Of the Agricultural Association of Ups Canada, under authority of the Statule Vic., cup. 32, sec. 33.

Whereas by the Act of the Legislatare Canada, 20 Vic, cap 32, sec. 33, it is enac: that "The Directors of the Agricultural A. ciation shall hold a meeting during the wee. the Exhibition, and may make Rules and Bt lations for the management of said Exh tion;" and whereas, by section 34 of the : Act, a Corporation is established, entitled,". Council of the Association," with full pont
act fur and on behalf of the Association, between the Annuad Meeings thereof; and as it is expedient that Rules and Regulations for the management of the affairs of the Association be adopted; Be it ther fore enneted:

1. The Council of the Association, of whom for this purpose three shall form a quorum, shall, auriug the Lxhibition, hold daily meetings, and in the absence of the President and Vice-Presidents, a Chairman pro tem. may be appointed, and all questions of importance requiring immediate adjudization shall be decided by said Council, and such decision shall be tinal
2. The Council of the Association shall attend at an early period in cach summer, and at successive times, as may be necessary, with the Secretaries and Treasurer of the Association, at the place appointed for the next exhibition, and may appoint a Local Committee (if such ε eppointment has not been previously made), and thall make all such preliminary artangements tis may be deemed requisite for the ensuing Eshibition; determininis when necessary the plans, dimensions, and capacity of the buildings, oftices and fixtures, suitable for the proper accommodation of the Exhibition, and every thing relating thereto. And in case of anything foccurrag to prevent the Exhibition being held tat the place appointed by the Annual Meeting, sach as the tallure of the local authorities to fprovide the necessary buildings, or such like flause, then the Council shall have full power to determine where the Exhibition shall be gheid for that year, and shall give the carliest possible notice of such change.
3. All contracts, and all lawful proccedings, by, with or concerning the Association, shali be made and had with the Council of the same, ard no other contracts, agreements, actions or proceedings shall bind or aftect the Association.
4. The Secretaries of the Association shall Feep proper records of all transactions and proceeciugs at the Annual Mecting and Exhibition, and also of the Council of the Association from time to time; and shall, under the direction of the Council, prepare and publish in due time, a Premium List for the Anulal Exhibition, with such regulations and information for the guidance of the public as may from time to time be doppted. All entries in the Departments of Agripulture and Horticulture shali be made with the Secretary of the Beard of Agriculture; and all entries in the Department of Arts and Manufactures shall be made with the secretary of the Board of Arts and Manufactures; and they shall prepare suitable books, and insert therein all sticles entered for exhibition in their respective Departments, and unver their appropiate Hlasses; and shall make whatever other arrangements may be necessary to secure the fair and impartial exlibition of every article; and, if deemed expedient by the Council, shall prepare and publish, previous to the Exhibition, a Catalogue of all articles entered.
5. The Council shall use great care and adopt :uch measures as may seem best calculated to btain the services of competent and disinterestdJudges; and to secure these essential ends.
shall have full power at any period of the Exhibition to change or annul any appointment made.

6 The Judges shall, in the execution of their duties, le careful to act with the most rigid impartiality ; shall make their entries in a clear and consplcuous manuer, in all cases of doubt or difticu.ty referring freely to the Secretary, to any member of the Council, or to the Superintendent; and when they have completed their reports, shall sign and deliver their Books to the Secretary of the Department to which they belong, who shall cause the awards wade by the Judges, to be transferred to Ledgers prepared fur the purpose ; giving parties entitled to the premiums orders upon the Treasurer for the payment thereof.
7 At the Annual Mecting, which shall be held at 10 A. M., on Friday of the week of Exhibition, the Directors shall decide the place of holding the next Exhibition; such decision, however, shall be in accordance with the provision of the Rule adopted at the Annual Meeting of the year, 1858
8. The 'Ireasurer shall take charge of and duly account for all monejs adivanced by the Government for the benctit of Agriculture, all subscriptions and donations made to the Association by Countics, Townships, Cities, Towns, or Societies; all funds arising from the sale of Members' Badges or Tickets, and for entrance at the gates, and otherwise, enteriag the same under their respective heads in his general account; shall pay all accounts and expenses under instructions of the Council. The payment of premiums, and of all authorized contingent expenses of the Exhibition, shall be made so far as practicable on the spot where the same is held.
9. The Treasurer and Secretaries, under approval of the council, shall employ a proper number of experienced assistants in their several ofinces, so as to secure the most pro ipt and perfect despatch of business; and, with due regard to economy, there shall be employed such a number of constables and ticket receivers as shall be necessary for the best accommodation of the public, and for keeping order and protecting the articles in every department of the Exhibition,
10. The Treasurer shall make up and close the accounts of the Association, upon the 31st December of each year, attaching thereto a list of all claims unpaid; and the Council shall direct the same to be audited and published. All balances of cash and all other moneys received on behalf of the Association, shall be placed to the credit of the same in such Bank as the Council may from time to time direct.
11. All stures and properties, of whatever kind, belonging to the Association and used for exhibition puryoses, shall be in charge of the Treasurer ; and he shall have the same properly protected and cared for from year to year, and shall have such as may be required conveyed to the pace where the Exhibition shall be held.
12. The Local Committee may appoint a Chairman, and such Sub-Committees as may be
deemed necessary, and sha!l assist the Council of the Association in everything concerning which their assistance may be necessary in relation to the Annual Exhibition
13. The Council of the Association may appoint General Superintendents of the several Depariments, and also, so far as necessary, competent persons may be placed in charge of each class, who shall see that every possible facility is afforded to the Judges in the examination of the same.

14 A sufficient number of Refreshment Booths may be leased under direction of the Council, within the ExLibition grounds, and shall be so constructed as to afford suitable accommodation to the public, and so as to secure the due maintenance of sobricty and good order ; and any infringement of this regulation shall subject the offender to Ω forfeiture of his lease and the consideration paid therefor, and the Boo h may be immediately closed by order of the President of the Association.
15. The Members of the Agricultural and Horticultural Societies of the cities, towns and townships, and the Members of the Electoral Division Societies within the Electoral Division in which the Exhibition may be held, or immediately contiguous thereto, shall be Members of the Association and shall have free entrance to the Exhibition for that year; provided that the said Societies shall devote their whole funds for the year, including the government grant, in aid of the Association; provided also that the sum paid shall not be less than one dollar for each Member of the said Societies.
16. Upon the discovery of any frand, deception, or dishonest practice, cither in the preparation, ownership, or of any representation concerning any article exhibited, which may have affected, or have been intended to affect, the decision of the Judges, the Council shall have power to withhold the payment of any prise awarded, and may prohibit any such party or parties from exhibiting in any class for one or more years, and may also pub ish the names of such, or not, as may be deemed most expedien:-
17. No Member of the Council or of the Local Committee shall be concerned in any contra:t or work of profit, directly or indirectly, ordered to be performed for the use of the Association, either ${ }^{\text {s }}$ principal or surety.
18. These Rules may be altered or amended at any annual meting of the Assaciation; notice of the intended alteration or amendment being published in the Agriculturist, and in the Fournal of the Board of Arts and Manufactures, for three months prior to the day of the Annual Meeting, when the same shall be decided by a vote of two-thirds of the Dizectors present,

WOOL GROWING.

The care of sheep, and the condition and quality of the food upon which they subsist, whether in barn or pasture, has a great infuence upon the quality of the wool, and its value for manufacturing purposes. Sudden and unfavorable changes in the pasture and
food, whether the effect is to fatten the sheep or make them poorer, will affect the quality of the wool for good or evil. There are two immediate changes in the fibre at such times. One is making a joint where the new growth commences, which often separate in carding on account of its brittlencss, thereby shortening the wool, which is often very injurious to the kind of goods in which the wool is being worked; and the other is in the change of the oily or fluid substances, within and without the tube of the fibre, and which, to a certain extent, govern the softness of the fibre and its adaptability to receive color.

Wool taken from a sheep which has died from exposure to cold and change, or which has been for a long time diseased, is always found very hard to take a good color. This is in consequence of the coagulated character of the oily substances of the tube of the wool, which become very hard to remove under such circumstances, and will resist the dye.

Where changes take place in the pasture, which are very striking, the joints before men. tioned are not often produced as often as such changes are made, but the substances pervad. ing the interior of the tube will be found to be different between cach joint thus made, and will require different solving powers befure they will take the color uniformly through the whole length of the fibre. This effect has been demonstrated the past year very fully in indigo colors, and has worked great damage; at first attributed to the indigo, but subsequently found to be in the wool.

The theory of the influence of climate upon sheep, as well as pasturage and feed upon their wool, is by no means new ; though some of your correspondents seem to ridicule the idea. Such persons must be sadly ignorant. of the sheep literature of the past, as wellas of practical manufacturing of the present day, or they would not treat an idea of such importance lightly. The first requisite of wool. is fineness, which is produced under and governed by all the laws of stock raising, such as good bloodor breed, to start with, and feed; pasturage, climate and careful keeping.

The second is softness, which is almost en. tirely governed by the character of feed, par turage, and care, which will fix the character of the "yolk" or oily matter which surroundo and penetrates the tube of the fibre. This suhstance coagulates and crystalizes around and within the fibre in clearing, and renden it harsh and brittle, or soft and silky, accor: ding to the influences which have governed its growth.

The third is the length of the fibre, which is not of so much consequence when its red length can be estimated by the manufactures. But for ages it has been well known that the clunge of climate and condition of the sheq
has offected and almost governed the length of wool.
Wool comes to us in various states, each country gives it a certain character for our market, all affected by locality as well as by the different breeds of sheep from which the wool is taken. Australian wool is divided into several varieties. German wool is the inest usually used for broadcioths, in connection with the Aitstralian and Cape wool. The great magnitude of the worsted trade is of comparative late interest, though very ancient in its introduction, and uses long wool. Spain, Portugal, Denmark, Sweden, Prussia, and in fact all Europe, have changed the whole character of their wool, by changes fof breed, climate and keeping, and it only remains for America to do what she can do, to produce as good wool and as much of it as any country on the face of the globe. What, in fact, may not Massachussetts do? She can raise the wool for her whole manufactures. She can raise flax as a partial substitute for cotton; and when she does this, the will find her home product more valuable to her from the fact that the capital thus saved will fill up a gap now open, and growing wider and deeper, dangerously so, by imporations from other States of products she might do without, and which carry off her filver and gold, as well as much of her best tnergies, without a proper return.-N. E. Farner.

WOOL GROWERS' CONVENTION.

A convention of wool growers was held at gleereand, Ohio, the other day, and was very arrgely attended. The principal topic discussed fias whether shearing should be done before or fler washing. After a careful consideration of he question, it was resolved that the practice i mashing sheep be abolishod, because:
lst. It permits of early shearing, which sewres a greater quantity of wool, a longer stale, and a better concuition of sheep and ewes, mrough the year.
2d. Of the exposure to contagious diseases, ach as scab, foot-root, \&c., in places frequented different flocks to be washed.
3d. It is an expensive, unpleasant job, and phealthy both for man aud sheep.
4th. That the manufacturer must cleanse the ool at all events, and he can do it cheaper ban the grower.
5th. That it is to the interest of the wool forers to put their unwashed wool in as good ondition as possible, by keeping their yaids fell littered, and by throwing away all filth an can be separated from the wool.
6th. Some lots of wool are more gross and pmmy than others, therefore no rate of deducon could be agreed upon, suitable to all grades pd classes, but that each lot should be bought pon its own merits for quality and condition.

7th. As generally practiced, washing is little or no improvement to the fleece. - [Ex.

A NEW FLAX DRESSING MACHINE.

Is there is any man who helieves that the days of invention are past, he could have thas betiet shaken in no better and more effective way than by thoroughly examining the new flax dressing machine, which has been patented by Messris. Mallory \& Sandford, and which may te seen at their olfice, comer of White and Ceutre strects. This fas breakmy and deessim, machme is, as au improvement, of inestimaine value to tlax growing farmers. It cunsists of two duted rollers through which the straw passes, being completely bioken in is passarge, and entuely divested of all refuse. This is done in such a manner that the use of the scutchnt mill to free the lint of woody particles, is reudered almost unnecessary.

This machine, which may be classed among the scientitic curiosities of the day, occupies scarcely as much room as the belluws in a blacksmith's shop. It is made ('f four different sizes, the first weighing twenty five pounds, and capable of dressing three hundred pounds of straw in ten hours; the second measures two feet by two feet, capable of dressing six hundred pounds per day; the third is three fect by three feet, and can dress one thousand five hundred pounds per day, requiring less than one horse power; and the fourth is four leet by four feet, which ${ }^{2}$ will dress two thousand five hundred pounds per day requiring less than two horse power.

This machine makes one ton of fibre out of every four tons of straw, and so separates and mauls the flax that it is not required to ran the straw through the rollers more than once.

Unrotted flax passed through this machine is excellent stock for the manufacture of paper. At Dayton, Ohio, four dressers are at work making stock for the paper manufacturer, at a mere cost of $\$ 10$ per ton of lint.

It is estimated that this machine can prepare the flax for the paper manufacturer at a cost of two and a half cents per pound; a price less than that paid for rags before the rebellion began.

The portability and the great expedition of this new dresser in preparing flax for the manufacturer are entitled to the highest consideration by all who are interested in the cultivation of flax.-N. Y. Com. Advertiser.

NANKIN SHEEP.

I have recently noticed a request in your paper by J. B. S. of Montpelier, Vt., for information respecting "Chincse Sheep," their weight, quality of mutton, hardiness as compared with other hreeds, their wool, the pumber of lambs at birth, \&c. As I first introduced the Nankin sheep into this country
perhaps a few remarks about them may be interesting to sheep and wool-growers.

I shail go back to the commencement, when I only hatd three sheep of this breed, and none other of any kind. They had then just arrived from Nankin, China. These three were all ewes from which I had in twenty montns, a clear increase of more than 70, and raised them. 1 am aware that this statement will not be generally credited, and I will endeavor to make it plainer by further explanation.

These three ewes were all large with lamb when I took them from the ship, and in a month or less cach one had three lambs, making twelve old and young. Then, as I had no buck at first, I was compelled to wait four and a half monthe for a young buck; and in nine months both old and young were coming in -the old encs the stcond time-the young ewes with three lambs each, and of the old shecp, one had three lambs, one four, and the other had five lambs-the latter sheep raising the whole five, and grew to be large shecp, breeding twice a year. At this rate, it will not be dificicult to understind how I raised 70 shecp in twenty months. If we had taken the proper care of them, 80 or 90 might have been raised in that time, as quite it number died from the want of care, having no suitable stable, nor were they separated as they ought to have been.

I then sold the whole flock to R. L. Pell, Esq., of Esupus, Ulster couaty, N. Y., except one ewe, and frum it I have since raised a large tlock.

The live weight of bucks is from 175 to 200 lbs, and the ewes proportionately heavy.The quality of the mution is the finest I ever saw, being entirely free from the strong taste common with other breeds of sheep. The wool is coarse and long. They are easy keepers, and do not jump tences-a low stone wall is sullicient to turn them. They are quite hardy, and stand our northern winters equal to any sheep I eversaw. Their great recommendation lies in the quality and quantity of mutton that can be produced in a short time. I. have, abo made some valuable experiments by ex ossing Nankin with other breeds, which I will give you if desired.-Theodore Smith in Uountry Gentleman.

EXHIBITIONS TO TAKE PLACE THIS AU'TUMN.

provincial and state:
Upper Canada, at Kingston, September 21 to 25.

Lower Canada, at Montreal, September 15 to 18.

New York, at Utica, September 15 to 18.
Ohio, at September 15 to 18.
COUNTY AND TOWNSEIP:
Lanark County, at Almonte, September 15.

Wentworth and Hamilton, at Hamilton October 14 and 15.
'Toronto and West Riding York, at Toronto, October 6,7 and 8.
Durham West, at Newcastle, October 8 ande.
[Officers of Agricultural Societies will oblige by informing us of the days in which thers shows are to ta'e place.

HOW TO MAKE CHEESE.

by anson babtlett, geauga co., oulo.
The interests of the dairy are toose of a large majority of the farmers in Northesstem Uhio, and still our agricultural periodicals are comparatively silent on the subject of dairying. Now, I am aware that no party is so much to be blamed for this silence as the dairy farmers themselves; for who are so well qualified to speak, write, and give information as those who are practically engaged in the business? As no aticle can be published in an agricul. tural journal without first having been written by some person, and as the editors of sudi papers are not generally acquainted with the practical details of the dairy, I see no other way by which we can secure the publication of articles interesting to dairy farmers, unlesi dairy farmers themselves will write such articles, and send them for publication.

Cheese-making, like every other branch of manufacture, requires skill; and I claim that no persons can succeed in making a superior article of cheese, unless they devote their whote time and attention to the business-it bein: one of the nicest chemical, as well as a very nice mechanical process, it follows, as a matter of course, that any mistake, or anything wrong however smail it may be, in itself, is sufficien to injure the product, and lessen its value.

The almost universal practice of dairymenis, to allow as little time as possible for making their cheese, hurrying through with it se asio be about something else ; and the only que: tion they stop to ask is: "Will it sell?" With this answered in the affirmative, they ary content, caring little whether it is good, bai or indifferent. When I think how many thers are in Northeastern Ohio, who will persist, year after year, in taking good wholesom: milk, (for mind you, the cows don't give sow or stinking milk,) and work it up, or allowin: it to work itself up, into such hard, dry, sou and stinking stuff, as they do, I feel vese And then to have them pretend that such gr bage is fit for human beings, when a greatde. of it is already half decomposed and rotten, , is so dry and hard as to be almost indigestibl. is absurd.

Although I have long held the foregoif opinion of the importance of skill, care, at
the necessity of taking time in the manufacture of cheese, I was never so forcibly impressm with them, as during a visit which I marle among the tine dairies of New York, located in beidia and Herkimer counties.
The first of these dairies which I visited was that leelonging to Mr. Join O. Frazee, two mates north of the village of Rome, Oncida conty, where the mik from 400 cons was made into ciscese; and where I saw that every atene in his checse-house was as perfect in fiom as when taken from the press, and still wit as butter, and cuery one who is fosted murt see at once that such checse must be firm, mild and rich-the three essential points. of a superior cheese.
I next visited the dairy of Mr. Jeses Whe. mass, four miles from liome, where the milk from four hundred and fifty cows was manufartured into cheese. Here the same perfection of sirm appeared as at Mr. Finaze's; and after a eriacal examination of s a or seren hundred rheeses, weighing one hundred and fifty pmunds each, I failed to detect any, even the least, change of form in any of them, from what they possessed when taken from the press, and still they were perfectly soft and buttery.
I have at one time and another, visited orer no hundred of the best dairies in Northeastern Uhio, as well as a large number in Eastern and Western New York and Western Vermont, hut I never at any time, or in any place beiore, have seen a dairy of cheese so near what I considered perfect, as those of Mr. Whemass and Prazee; but when I show how perfectly every step of the process of manufacture is reduced to a system, all wonder at the uniformity of the product will cease.
The cows are owned by different individuals, lifing at various distances from the dairy house; some of them are even four or five miles away ; the owners draw the milk as soon as it is taken from the cows, directly to the dairy, where it is accurately measured, and an exact account kept, and the dairymen take it when it is thus delifered to them, manufacture it into cheese, keep it, and take care of it until sold. They then sell it, and aiter deducting the cost of salt, capping, rennet and anatto used in the manufacture, pay over to each farmer who 'irnishes milk, his pro rata share of the proweds, except one per cent. per pound on the ale weight of the cheese, which, and the whey the pay of the dairyman for all his labor, care, re of buildings, fixtures, \&c.
Evening Work.-As soon as the milk is delivered and put into the vats at night, they add one gallon of cold water for every ten of milk, which tieey will have in the vat when it is all in, and immediately set cold spring water to running around the milk vat, and reduce tae teroperature as quickly as possible to sixty degrees, when it is left for the night with the water still running around the vat, in order to
still further reduce the temperature, and keep it cool through the night, and prevent souring.

Monnag Woak.-In the momitug the milk is put in with the last night's milk, "as soon as deliyered, and when all is in, the heat is rased to cighty-two degrees in warm weather, and eighty fuur in cuol, and sufficient rennet added to produce perfect congulatation in one hour and fifteen minutes.
Tue Chesm.- Wefore heating to put in the remet, the cream which has risen on the last night's milk is dipped off and joured back tintough a cloth strainer, until it has become thoroughly incorporated with the mass cif the mill: ; and after the remnet is adhed. he nilk is kept frequently stired, dippiag off the top and pouring 'lhrough the straincr until the milk begins to thicken. This is to hew the cream from risins: When allowed to remain quiet, even for a fow moments, the crem separates, and rises to the top; and if the curd begins to form with the cream floating on top, it will work off in the whey; but if kept thoroughly mixed and incorporated with the milh until the milk thickens ard the curd berins to form, it is not very difficult to kerp it in the cheese, and not lose it in the whey. One great object in adding the water to the milk, is to reduce the milk so os to have the cream work in the more readily.
"'me Cud.--When the curd is sufficiently formed to go to work at-which may be known by its breaking with a clean, smooth fracture, in passing the fingers through it-break it up carefully with some instrument, so as to leave it in lumps about two inches square; but this instrument should have no sharp cd.ces so as to cut, for-take very particular notice-no cutting edge, of any kind, must be allowed in the curd at sny time during the process of manufacture. This is essential and important. The curd must be divided entirely by breaking, and not by cutting. As good a ay as any is to use the hands for breuking the curd fiom the first. After breaking, as above described, so that the lumps will be about the size of an eg, let it stand about ten minute, or until the curd begins to settle, and then begin to work and bre, k the curd with the hands. Let the motion be very slow and careful, so as not to work the cream off, or whiten the whey; meantime, raise the heat to eighty-aight degrees; when the temperature arrives at eighty-eight, cut off the heat, let the curd settle, and draw off the whey until there is barely enough left to cover the curd.
Pressing out the Whey.-Now comes the most difficult part of the process, that is, to break the curd thoroughly and finely, and at the same time preserve the green appearance of the whey. This is done by taking the curd betmeen the hands in small quantilies at a time, and bringing the hands flat and close together with a pretty strong pressure. Care must be taken, however, not to rub or mash
the curd so as to start the white whey. In fact I hardly think any written description of this part of the process will be intelligible, practical instruction being almost indispensable, but the result aimed at is to expel the whey from every particle of the curd, by thus pressing it belween the hands, as well as to break up the curd.

Cooking rue Ccad.-When you have completely broken up the curd, put on the heat; keep it stirred and broken until the temperature arrives at ninety-four, and then cut off the heat; keep the curd stirred with a lively motion fifteen minutes, and then draw off the whey again, leaving enough to cover and float the curd. Now go over the curd again, and brcak it ip as before, getting fine and even as possible, and then put on the heat again and heat to one hundred deg:ees. This is the greatest heat. Mcantime stir the curd with a brisk, lively motion, cat off the heat and keep stirring twenty minutes, and then cover the vat up with a blanket, and let it stand until the curd is thoroughly cooked, which will be about an hour or little longer. When the curd is completely cooked, which may be known by taking a smanl lump and pressing it firmly between the thumb and finger-if well cooked, on removing the pressure, the curd will spring out into its former position ; or select the softest lump you can readily find, break it open, and if it appears dry inside, and free from whey, it may ba considered done.

After Cooning. - Now let of the hot water from the vat, and rephace it with cold water ; cool the curd and whey to cighty-eight degrees, and then dip the whole out into a draining sink, or a cloth strainer, keep it st.rred so that it shall not pack together until thoroughly drained; and then add the salt and work it thoroughly.

Salting and Pressing. - int. Whanas' rule for salting is tro pounds and seven-tenths of a pound of silt to a cheese from one hundred gallons of milk-beer measure-and Mr. Fea ose's rule is two and five-eighths pounds of sait to one hundred pounds of pressed checse. -Either rule will do well enough I think, although I prefer Mr Whinams' rule. When the curd is saited, it is ready to be put into the press, and its subsequent treatment is much the same as is ordinarily pursued.

Rennet.-Nothing bat the skins of the rennets are used; the curd, if there should be any, being thrown away. The way to preserve them is to use salt enough to do it, and then add a little more sait; stretch on a bow end, hang, up in a close, dry place. In preparing the remnet take a gealion of water at the temperature of ninety degrees, for each rennet used, put the skins into the water, and add more salt than will dissolve; let them soak two or three days, rubbing them occasionally ; and then take out the skins and put them into another vessel, and add water and salt as be-
fore. Use of the first until that is gone, and by that time the other will be ready. A good rennet is sufficient to make from six to eight hundred pounds of cheese.

Anatro.-When the renaet is put into the milk, add a small quantity of anatto, just sufif. cient to give the cheese a bright straw color, or the color of good butter. The best way to prepare the anatto for coloring the milk, is to boil it in strong lye; white-ley is best. The quantity to be used must be determined by experience, as no very accurate iule can be given.-Ohio Cultivator.

CHEESE MAKING.

The following is the statement of Mr. Mugh McMillan, of Erin Township, of the mode of manufacturing the cheese exhibited by him at the Provincial Exhibition of 1862, to which was awarded the second prize:

Size of farm 200 acres. Mixed husbandry. Number of cows, 10. Breed, Durham grades. Pasture, clover and timethy mised Was made about the 20th June Night's milk is strained into pans, and 1 ft till morning, then the cream is skimmed off, and part of the mills put in a tin pail, putting the pail in a pot or liettle of boiling water, until it is sufficientify warm to raise the temperature of night and morning's milk to nearly that of new milk. If the cleam is heated it has a tendency to be greasy on the top, if the milk is heated in a pot or kettle it is apt to give it an unpleasant flavour. Rennct is prepared by steeping one or more in water until the strength is obtained, and then straining off the liquor, use a sufficient quantity to digest in about an hour, then carefully break or mix the curd; then putting the strainer over it, it is allowed time to settle, then the whey is dipped as it rises, (we neithef scald nor use colouring matter). When the whey is off cut the curd in slices which are piled in one side of the tub to drain. When it is drained it is broken with the lenife, and half an ounce of common salt used to every pound of curd. It is then put in the hoop allowing it a short time to drain before putting it to press. It is pressed lightly for the first three hours, after which the pressure is increased to 16 or $2^{n} \mathrm{cwt}$. It is changed two or three times a day till thoroughly pressed, after which it is taken to the cheese room, where it is bandaged and turned once a day.

Yours, \&c.,
Hugn Mcmillat.

LEIIH BUTTER REPORT, MAY 8; 1863.

For the Canadian Agriculturist.

The past month was one of great depres sion in the Butter Trade, and contrasts strong ly with the same period last ycar.

Holders of Danish and German Butten finding they could never realize their consignments without a loss, were directed by the
slippers to hold for higher prices than the dealers were disposed to pay; meanwhile, Joring to the American war, supplies confinned to flow in from the North Western states, on a scale quite unprecedented.
Last month the holders of Danish and German sorts became ansious sellers, and some large sales of these sorts were effected, from Hd to $5 d$, (equal to 9 and 10 cents per $1 b$.,) mad even at these low rates, a clearance of old bas not been effected. These sales will enLila a loss of from 43 tu 47 per cent.
The weather on the continent of Europe haring been very mild during winter and bping, the supply of new milk Datch Butter thas been abundant since the beginning of farch, and prices have been very low.

 Now Mik, Hollaid Buter as un the

Prices of cared butter generally decline Her the end of May; they are, however, glteady so moderate as to leave less margin fra fall, and the demand being very good, I Monot anticipate the decline will exceed $\frac{1}{3} d$ dold per lb. ; as with the advance of the seaon, the quality will improve and tend to fupport prices.
Xo new States or Canadian Butter has yet fached this country, neither is it likely much Will arrive for a time; as during the Summer Dast of the butter arrives in this cougtry in heated state, it becomes a question whether is advisable to run the risk of getting the futter o led, or hold it over on your side, here it may get stale before being shipped Autumn.
Holders of butter in Canarla, sloould enbearour to keep their stores cool with ice fring the heat of Summer; but the great oint is early and perfect curing, and unless is is attended ton, no after cure of the butter will protect it from rancidity.
There is a small work on Dairy Husbandry, FJ. C. Morton, Ediror of the Agricaltural bacte, London, published by Longmans of pondon, which it would be well for every Walian farmer to possess; the cost is moder \&, only is 6at Sterling, or 36 cents, and patains much valuable information.
Leith, Seotland.
MN.

第的ticulthre.

ON THE PEAR.

en befone tue Toronto Gameners' Tm ifemext Suchety on Jine lotif, by ma. A. Pontey.

Mr. Chairman and Gentlemen,-The subi whech it is proposed shall occupy our atten-
tion to-nigitit is the culture of the Pear. I am sorry that instead of listening to some one or uther of the many persons composing this society, who are m.se competent to deal with the matter tham I am, that I have to give you my limited ideas and experience on what I consider, next to the apple, one of the most important of truits.

I shall preface my remarks by saying that the subject of Horticulture, whech by our meeting here to night we are endewonting to adrance, is one which is becoming more and more popular every day, and the effects of wheh cinnot but be relinin, ${ }^{5}$ and exalting to the human mind. There is scarcely a man, no mutter what his circumstances are, but is desirous of in some derree em'rellishing his premises, be it a humble coutare or more stately m msua, with trees, and in tais speculative and commercial ase, he often wishes to com'ine the ormamental and useful, mre especially the m in of limited means, and it is on that account, namely, its adaptibility to a small garden, that I shall speak of the pear princip ilf as a dwarf, being in that shape more suited for a small garden than when grown as a ssandard.
In the first place, I may say, there are two ways in which pears or any othrr fruit may be proparated, namely, by seed, which is the natural way, and by devidm, the plants by suions or buds, w ich is the artiticinl way, - and the only way by which the same varie y can be produced with cert intry.

I have mentioned the growing of frut trees from seed, in order that I may call yoar attention to the fact that a great many of the maladies which the pear is salyect to when grown as a standard, are att:ibutuble I think, to the unhealihiness of the stock. No care is taken, is a general thing, by nurserymen to ascertain that the seed which t ey sow for stocks is produced by rood, healthy, virorous trees, or no heed is take.a as to whether it is the product of sorts which are well adapted to this climate or not. Now, how can we have a healthy tree, when the stock through which thas to draw the rreater portion of its nourisherent. and with whech it must become most intimately identified, is ot a sicely character? The thinf is so obvinus, that it is only necessary for me to allude to it, to convince every one of the imatance of bestowing more care and attention on that branch of pear culture.

Artificial proparation, with recard to the pear, may be divided into two wass, samely budding and grafting. The only stice' which can be used to any advantage are the pear seedlinr, and the quince; althou th they will do on some others, for instance the thorn and mountain ash-but it is only on very lirht soils where the nther stocks would not do. that the mounthin ash is used. The seeding near is he stock used when a standa'd tree is required, and the quince where it is wished to produce a dwarf tree.

The same care should be used in the selection of a quince for stocks, that I have pointed to in regard to the pear seedling. There are two or three kinds of quiuce grown, some of which, owing to their more vigorous growth, are much more to he desired than the others. In fact, now there is hat one that meets with cultivation by experienced murserymen, and that is a variety called the Angers.
It has been found that when pears are worked on the others, say the apple quince for instance, that they make a very poor union, and consequently the tree is often very short lived, frequently not living more than 5 or 6 years. This I believe is manly owing to the slow and feeble growth of the apple quince, and has done more towards throwing dwarf pears into bad repute than any other one cause.
A streng loam, having a tendence to clay, with a clayey sulsoii, is acknowledged to be the most suitable for the pear, both for giving fine fruit, and for preserving a healthy state of the tree for the lonrest time. This soil, and where it is attainable, a cousuderable proportion of lime in its composition, I believe is everywhere ackinowled eed to be the rery best that can be desired, and, m short, the soil for the pear.

By a clayey soll I do not want to be understood to mem a soil that will retdin wet too long, for no fruit tree can remain healthy tons in a soil that retains water so as to become cold and sour. It ought to be so thoroughly worked up with the ploush or spade, and so closely intersected with drams, that it will admit of being worked at once after a heavy fall of rain.
Before proceeding to speak of the hest kind of manure to be used for the pear, I would call your attention to the shameful want of economy and yood manarement as evinced by ahmost every one having amthing to do with a garden, in the collecting and taking care of material for manuse. It is well known that verctable matter decomposed is the best fertilizer that can be applied to veratable life, and yef we amost always find that when a garden is heing cleaned up, either in the spring or fall, that the weeds and refuse in ittrer, instead of heing carefully preseived, are either burned, or, worse still, thrown out into the rood or sume out of the way place, never more to be thought of.

The- greatest devideratum next to a good soil for the pear is a rood manure, and antike a great mane other thinss, the manere which the pear, toyether with many other fruits, most revels in. is within the reach of every cultivator. Stable wamure, or in other words, animal manure, is the best fertilizer that can be used for trees, as it contains not only some but all the ingredients which plants require for their mutrition and for the fulle:t development of all their marts. This m nure, in order to he thonoughly effective. requires to go through a course of preparation, in order that it may be thoroughiv assimilated with the so:l, and that the roots of the trees may find
it in a condition suitable to be made use of by them.

If I was about to plant a pear orchard, one year before I mtended doing so 1 should accumb late a sulicient quantity of stable manure, leached ashes, crushed bones, and charcoalto rive the piece intended to be planted a liets co.uins, say 2 inches over the whole surfice, I should turn it over two or three times in order that the different material might get thurouphis incorporated to fother, taking great care that if anything in the shape of liquid ran away from it to have it thrown back ayain from time to time, and the whole heap occasionally spuiuliled witi gypsum to fix the ammonia and thereby allor none of the more volatile but not the less valo. able portion of the heap to escape before it mas reguned by the trees. This I should spread thics. ty over the gr und and plough in, taking care to have the furrows as narrow as possible to insure the more complete mixture of the manure will the soil. A portion ot this compost I shou!? mix with some virgin meadow loam, perhaps is the proportion of one half, and throw a fer spades full of it around the rocts of each trit after dejosited in the hole prepared to receire it, and previous to any of the other soil being thrown m .

The trees, I mean dwarfs, should be planted from 8 to 10 feet apart each way, and for tro or three years the intermediate spaces could be cropped with some vegetable crop, avoidingtbe plamis which are allowed to mature their seded, such as oats, wheat, \&c., and preferring thois wheh require cultivation with the hoe or culti vator, such as potatoes. cablage, \&c.

By this method not only does it nive a some of profit to the planter, but it benclits the trets - care should be iaken thounh when ploughins not to go near pough to the trees to distur. the roois. A dwarf pear comes into full bearipe the 2nd or 3rd year after planting, white th stanaard requires 10 or 12 years to cor into anf thing like a rood bearing condtion,by this you will see that the dwarf trees. suppo: they only hear ammaslly a small crop of fruit, mi have yintded a valuable series of crops whineth standind were coming into a bearing state.

Almost every kind of pear durs well on th quine, hat there are some slow growine kind: of which I will give a list at the close, whichd root, except by donible working, which is hy fir working a vigorous growing lind upon th quince, and then the slow grower upon that.

The proning of the tree comes next i course, and is by far the most importa operation connected with pear growing the quince.

It used to be considered in days goneh. that it was almost unnecessary to prune, th. what was required in some of the moist duller climates of Europe. in order to adrir. the sun and air sufficiently to the branch. and fr.it, was unnecessary to be done here: our brighter and clearer atmosphere; but
bore thorough knowledge of the subject has hewn that idea to be erroneons, and a glance t an unpruned dwarf pear will at once coner to any intelligent mind the necessity of sing the knife freely. Such a specimen rould he found to be a perfect mass of leaves ad wood at its extremities, and void of all purs and branches in the interior of the tree, mid the only well developed, properly flavour(and coloured fruit will be such as hy their fuation at the extremities of the branches are heen enabled to receive the full influence f the sun.
Pruning, when properly performed. is inended to induce and counteract different proms of the tree; thus we prune to induce duiffulness and to lessen it, we prone to throw more vigorous growth into a certain portion the ree, and we prune to prevent a too full erelopment of any particular branch or ranches.
Pruning, when applied to a dwarf tree, fould commence when the tree is one year on the bud, what is called in nursery parnee a maiden tree-which is simply a single ng shoot, varying in leng th according to the rength and robustness of the kind. This at fear old should be cut down to within 4 or good buds at the bottom, theus causing a fowth in diameter so to speak-that is to fow branchy and stocky at the bottom, and creby preventing the upper part from overlancing by keeping the height of the tree liject to the increase of the diameter. For esame reason and on the same principle an Hal growth of the branches is acquired thy fecking the growth of any particular branela hereon it is found to usurp more than its poper share of room in proportion to the hers. and by so doing allowing the weaker anches t : receive some of the extra nourishent it was absorbing.
Pruning generally should be performed bere the sipp has commenced to rise, say ahout arch, or any time after the severe frosts are er. and before any warm weather has exed the tree. In this pruning an eye should had to the general appeariance of the tree. aking it as bushy as possible at the botom, dapproaching in suape as nearly as is pracable to a pyramid. This style of tree, which called the pyramidal, is acknowledged to the best form for the flwarf pear, as every It of it then gets the fullest benefit of the D, 喿., there being no one part of it allowed ontgrow another, and therely abstract the fect rays of the sun from falling on each ot alike.
Sanule r prining or pinching with the funger fhumb is f uint to he of ereut importance rear culdore, not only to regalate any inequa iin He growth o. a tree nt the cime it. is bing suc' y rnowh. but t induce fra 'fulies: hen it is in eadd do tave the latter eff c c, it pald be periormed at a later period of the
$r \cdot w \cdot h$, ball tor the for +1 , hecause if s.npped to" soon. ins'ead of causing the hud. Jelit to throw out fruit spur:, :hey w.inld moni likely me k:nd frmshots fir wood grin. A thongh the peram dal is the thape in whel the dwart
 Lis a recomit number of the Colluge Gardener, I -aw mention made of a Friaria wak, 'y a Mons. Da Breail, in which the ar ther gis at length wito six dffrent methods of truibing the pear ; the ouly one which I recalle es bei g 'ik.ly to ome into use gererally. is what be rells the Duable Contra Espalier in Verical Cordo . It is disscrived as a touble row of trees s.x i unes apart, plant d ziwzag, tvelve inches from wee to Ir e. The trees are allawe to ger mine fert igh, (u) short back to spurs, a dn) al owed to get more than oue foot throwh in the hranches. Pos's are put in every twintr fer and connted 'ogether by fencing wire, th s wre s'eadies a nine f, math, to whe' each tr e is fas ened, making it nerfect, wail of fuliage and frun in the fall. The author claims that the m thod is twite as frai fullan the pyramid, and c mes $i \cdot s$ braliog in bulf the time It suruck me it migit be used in growite the pe r along ide the wak; of a gar en, iq the way that \mathbf{E} paler ures are now gruwn.
Pears which are sure to succeed well on Quince. EUMMER
Osiband's Summer. Dearborn's Seedling. Tyson Rostiser.
Beurre Giffard.
Belle Lucrative.
Ur: aniste. AUTUMN.

Beurre Deil.
Ducherse d'Angouleme. White Doyeleir. llowell.
Beurre d'Anjou.
Beure Superfin.
Louise boune diserseg. winthe.
Faster Beurre
Figue d'Alençon. Glont Morcean. Seckel.
Josephine de Malines. Vicar of Winkfield.

FÚR DOUBLE: W.मRKIVG.

Maria Louisa. Beurre d'Aremburg. Ananas d'Ete.

A gen deal more might be sad ab rut the
 -f ihe r-medies us-d ; als anome its cultare in or had h uses. Not having had anr exar rience
 h-rs will er-l ing vive as an ar' iclum on the \mathbf{c} Ilure of fiuits in ore'urd houges. and mik th p ar a spe:sality, comb ning its dis:as:s and orchard hourt c situr- in one article.

B-F., re raking my seat, Mr Chairmin and Geutlentn, [hava a Rew rema ks to miks in re erenc. 'o our S ciety. The avi ed paripose of our mestiar it th enlighten eash o'her as much as wasible oa the bist menthols of cultivating anyihig that co nes wi yin tne sphe e of ang oue of us. Now 1 thiuk that oliject cuald.
be betiter attained, or. in other words, 1 thit k more inf rm'tion could be 'e'icited, if our discussions took more the shane of a de'ate; it might porhaps be the means of causing a greater interess to be takin in the meetings, and canse a more parnest spitit geterally to pervade our racks. What I meno is, that when anv one has read an article, and $i n$ it has put forth anything that snme other member does not quite agre. with, if he would stand right up and noint ont those parts. and ad luce his own reasons for differing, I think it would give more zest to our meerings. and that we should be matually bene fited thereby.

Then ag in, without wishing to interfere with any es abbi. hed rule of the Scciety, I would sug. gest that by having one person c mstuntly in the ch iir, we luse to the S sciety the expurience of one win, from his long and intimate connexion with Firr iculur 1 S:ceties, could give us much and varied valatable information.

HAMILTON HORTICULTURAL SOCIETY.

Mr. Cdiror,-Monday, the 25th day of May last, the day set apart for the celebration of the Queen's birth day, a day which the loyal citizens of Hamilton highly appreciate and enjoy, as has been usual, the Horticultural Society held its first exhibition for the suason in the Mechanics' Hall; the day was favourab'e, and the attendance in the afternoon and evening very good. The Spring Shows of this society have hithertn been considered amongst the foremost in the Province, if not the best. The latter, in the opinion of competent judges, far exceeded any of the former in a fine display of plants. The entries by the practical gardeners and amateurs were more in numbers than on any former occasion at this time of the scason. The quality of the stove and greenhouse plants were good, ind showed a considerable improvement in their formation and growth. The display of foliage, greenhouse, and stove plants from the grardens of W. P. MeLaren and John Erown, Engs., was excellent; also the geraniums, fuchsias, and greenhouse plants from the gardens of I. Buchanan, John Young, and R. Juson, Esqs. The amateurs came out very well and produced some very good npecimens. We wish much more to be dene on their parts, and long to see the exerions made by the many that are now confined to the few. The vegetable and fruit department was, for this time of the year, well represented. The collection of apples may be said to be the largest and best we have seen for a long time at a May Show. The grapes from the orchard houses of W. P. McLaren, Esq., deserved the very highest commendation, His pot strawberrics were also good.

Mr. Fleming, from Toronto, exh:bited a collection of cut blooms of Pe'argonium, gerani. ums. The plants Mr. Fleming has lately im-
ported; the flowers were very fine and mum admired.

I shall not trouble you with the whole prise list, only the leadi..g things, as follows:-

Best Achimenes, in pots, Thomas Buchanag, gardener to W. P. McLaren, lisq. Best B. sams, W. W. Chapman, gardener to I. Bg. chanan, Esq., Auchmar House, Clairmoot Park. Best Calceolarias, in pots, Wm. Hih gardener to John Brown, Esq.; 2nd prize, R Murray, gardener to John Young, Esq.; 3m do., Hugh Shaw, gardener to R. Juson, Eq Best specimen Calccolpria, Wm. Hill. Bes Cinerarias, Thos. Buchanan. Best Carnation in pots, Wm. Chapman. Best four Fuchsisy R. Murray, (varielies --Lord Clyde, Guiding St:ax, Rose of Castille, Bank's Glory); 2nd prize, Hugh Shaw, varieties-Venus de Medifi Souvenir de Chiswick, Britisn Sailor, Arid Best three double Fuchsias, Hugh Shaw, (ry ictics-Sir Colin Campbell, Madam Cornellisos Leoline; best specimen dark, R. Murray ; be light, do. do.; 2nd do. dark, R. Murray; 2ndda light, H. Shaw. Socicty's prize for the bes six foliage plants, Wm. Hill, (varieties-aal dium Chantinii, Caladium Whytii, Paref Borbonica, Farfugium Grande, Dracena ta minalis, Colens Ver chaffelta, a new plant; it do., 'Thomas Buchanan, (varicties-Caladir Chantinii, Colens bloomii, Cisses discolor, لIa anta Zebrina, Maranta Regalis, Solanum Cuta Special-Best six, Thos. Buchanan, (varietir? -Calladium Bellymii, Cynophyllum magnii cum, Maranta Regalis, Maranta Zebrina, Cab dium Chantinii, Campylobertrys regalis; cou tested by Wm. Hill with Cisses discolor, On ton tricolor, Maranta Zebrina, Calladiu. Whytii, Cynophylum magnificum. Best i green-house plants, Wm. Hill, (varictiesCombretum purpureum, Pentes Carnea, Lech. naultia formosa, Ixora coccinia, Stephanoth floribunda, Calceolaria rugosa, Hydrang: Hortensis, Cuphea Platycentra, Euphort splendens, Centradenia floribunda); 2nd d R. Murray, (varieties-Cytisus racemosus, phorbia Splendens, Santana delicata, Santa: Rosea, Calceolaria rugosa, Calceolaria St phurea, Cuphea Platycentra, Solea Concol. Polygala dalmasina, Russalia Junca, Hydri gea, Hortensis, Merrosideros floribundus, 6 chidens; W. Hill, (varieties'-Epidendru Cauliflorum, Oncidium Flexuosum, Oncidin Papilia, Gongora atrőpurpurea. Special prí for green-house plants was taken by thom, Buchanan, (varieties-Stepnanotus Floribuni Hoya Carnusa, Hoya Bella, Cyetserius Refle um, Hydrangea Hortersis, Vinea Rosea, Vib Aloa, Erica Ventricona Rubra, Calceolaria. O'Connell, Azalea Chalsonii, Azalea Grenvil. Aralea Gem.) Best four P. Geraniums, Thi Buchanan, (varieties-Brunctta, Topinge, E gans, Butterfly, Sir Menry Smith; 2nd a R. Murray, (varieties-Elegans, Arnold's Virt Queen, Reine Debald, Alexandrina. Spec prize in this class taken by Thos. Buchan.
with varieties - Bridr, Miss Foster, Mrs. White, Arnold's Virgin Queen, Comtesse Bresson, Princess Matilda. Best specimens ly Thos. Buchanan and W. Chapman. Best four fancy Geraniums, Hugh Shaw, (varieties-Evening Star, Acma, Queen of the Valley, Mrs. Allan); end do. R. Murray, (varieties - Itloniskii, Louisa de Bellmont, John's Improved. Mis. Allan. Special prize in this class, Thos. Buchanan, with Acma, Formosum Negro, Mrs. Black, Modestium, Calaban. Best four Scarlet Geraniums, Wm. Chapman. B3est specimen, Thm. Chapman; 2nd do., R. Murray. Extra to Wm . Chapman for a pyramidial oak-leaved Gerarium. The plant small, but in good taste. Best Pot Roses, R.Murray. Best hardy Shrubs, John Freed. Best Tulips, Bruce and Murray. The successful competitors in the amateur Floral department were George Carlysle, W. Wichael, 'thos. Smith, and John Weatherston. Ladies' department, Mrs. C. Lee.
Successiul in the Fruit department, Wm. Chapman, Ihos. Lotrridge, Adolphus Case, John Stabins, Thos. Buchanan, and II. Colbeck, Esq.
the auccessful competitors in the Vegetable lepartment were $W \mathrm{~m}$. Jones, gardener to P . Grant, Esq., for the best Asparagus; Wm. Hill, for the best Early Cabbage; Hugh Shaw, for the best Seedling Onions; James Gor and S. Singfield, for Onions of 1862 ; Jas. Filds, for Curled Parsley ; Early Potatos, ITm. IIill and Singfield; Radishes, J. Wilds nd T. Buchanan; Rhubarb, J. Wildes, J. reed, and Wm. Harris; Sea Kale, W. Hill fnd W'm. Chapman. Mushrooms, 'I.'C. Fearn-番ide.
Amongst the extra prizes awarded was one to Anthony Copp, in this City, for a very handtome dquarium, which attracted much attenfion; and one to John Weatherstone for a colcction of Daisies.

George Laing.
Hamilton, 2nd June, 1863.

THE CURCULIO.

The Rhynchcenus nenuphar-"Plum W'eegh." 'lhis is the renowned "Curculio," of hhich so much has been said, surmised, and fritten; whose fame is as illy deserved as that fmany heroines embalmed in history. It bepongs to the Coieoptera order-the large fampr of weevils-the second division, Rhynchepus. This family is divided into the er great Birisions. Curculio Rhynchonnus, and CallanPa, by Linnæus, with inumerable genera and nd sub genera. This insect belongs to he tenus Conotrachelus. It is a native of this Pantry, and was first described by Herhert, 1799.' It has a numuer of synonyms. It is small dark, rough beetle resembling a withTed bud. When you touch it it draws up its presses its long antennæ and snout close painst its breast, and feigns death for any porth of time.

When the mother beetle is prepared to deposit her egge, she places herself on the p um, and with her strony proboscis cuts across the lower end, which is always softer than tuwards the stem. It has been for me many years of investigation whether she could do this: it was impossible, for the brittle mumgle must inevitably snap nft at the head in the effort of cutting the skin of a fruit which I could with difficulty indent with the strong nail of my thumb. I could not relinquish my supposition that it was ferformed with some sharp instrument at the end of the abdomen. But time and perseverance convinced me of my error, and I was both delighted and amazed when I found how beautiful her mcans are adapted to the end she has in new. At the extremity of the probocis are two small sharp tecth of horn. You percelve how tlbowed the antennw are, the long joints of which reach two small punctures near the cyes at the very top of the proboscis. When she is preparing to cut the skin the joints of the antenne are plased in these sockets, which strengthen and guide the proboscis as its teeth force upon the skin, giving it the needful purchase. This accomplished, sice turns round and widens it with two small plates at the end of the abdomen, and with their aid deposits a single egg, drawing the skin back over it, and the wound in a day or so is healed. A hole is made at the end of the cut to allow evaporation to take place around the egg. or the young worm would, when so very tender, be drowned or suffocated. This proboscis, when the insect is just dead, placed under a magnifier, shows one of the most marvelous complications of nerves, turning, twisting, and communicating with each other all the way up, until they are lost in three large main arteries which go through the whole body. As soon as the erg is hatched the worm works into the fruit, destroying it completely in time. It is a small white, footless grub, with a strong brown horny head. When ready to transform, the plum gencrally falls to the ground, and the worm issucs from the same path it made and enters the earth, where it rolls itself into an oval, making a loose pupa-case, a few grains of sand adhering to the coarse thread or paste it places around the limbs. It is a singular chrysalis, imbedded in sand, on one side, resembling grains of mouldy rice on the bark. Then if she accomplished this her larva would starve as its jaws are feeble, scarcely able upper, and can casily be detected reposing as close as possible to the main roots of the plum tree. If you turn up the soil carefully a few inches, you can relieve the tree of hundreds of this fruit-destroyer.

Often the plum does not f.ll, and the worm comes from it on the tree. la wandering along it must assuredly mect with some of those black, grainy warts made on this tree by insects belonging to the Hymenaptera order, Gallicole family (gall inspets.) Herc it often
remains oner the winter, curled up, not transforming to a chrysalis until the spring, if at all. I have often found these worms in these warts -a dozen and more in some; but never had them come to anything unless I shook them upon ci.e carth, when they would burrow immediately, and in a day or so would be discovered in il chrysalis state. But to conclude. as some puthors have done, that the weevil makes these wasts is simply absurd. She has no saw, no instrument which can perforate to consume the seft pulp of the plam. If it were not for detaching the stone, and allowing the air to enter and penetrate the interior, the worm itself would do very little harm to the plum. It is the air ahnitted, causing the dreay, and not that the wo,n consumes so much, that destroy. the fruit. Many suppose that his insect cannot fly; but this is an error. Because they can perceive no joimurg of the wing-cases they conclude there is none. But they fly weil; the under wings are full and strong. Like those of other beetles, these are beautifully maned on the edres with brown, while the wing covers are a light howy yellow on the lo, ‥er potions. This is really all that can be sata on written about this insect; and you can canily conceive yourself that it is all that is needed.

If you will examine the roots of a plum tree which has been infested, at the end of the season, you will see how utterly useless are washes, nets, etc., etc. Scrape the roots free of soil in tre fall, before frost. throwing around them line or ashes and this insect will gradually disappear:-Harper's Monthly.

FRUIT GRJWER'S ASSOCIATION OF U. C

Editor of the Aghicul urist,-Dear Sir: Will you please notice in the July number of the Agriculturist, that the next regular meeting of the U. C Fruit Growers' Associatio:wi.l be hadd in the "Agricultural Hal," in the City of foronto, on Wednesday the 15 th day of July, at 2 o'clock, p.m.

Your most obedient Servant, D. W. Beadle, Sec.

June 16th, 1863.

WHAT AILS MY GRAPE?

To the Edior of the Agriculiturist.The following csaversation will explain the oce tsion of che above enquiry, and perhaps account for it.

Mr, Janes. What ails my grapes! all my fine prosiects of weighty H unburghs, Chasselas's and Hrontigatas are no more.

Mr Richard: In leet, I am sorry to hear you say so, wint is the mutter?

Mr. J. The matter! I deckare my discouragement is great. I begin to think that we cannot raise grapes in a cold grapery. I am disappointed.

Mr. R. And perhaps unceasonably so. Do you fancy that grape growing under whas is woolly exempt from partial failure and oceas ional disappointment, can you name tho wall in life, the occupation or the seheme in which disappointment is not frequently met with? Yon camot. And are you to doom the cold grapery, which has hatd splendid success, for years, in orher cas s, becanse through some negligence of youts you are this one season balked of a great crop? But tell me what is the matter, and perhaps I may be abie to ace count for it.

Mr. J. The matter, I tell you I have lost my crop. Those fine stont canes, which were so well ripened, haven't a live bud for several feet. Only at the extremities are there a ferr. Now tell me why that is so.

Mr. R. Did you keep your cold graper closed the whole winter?

Mr. J. I did so.
Mr. R. Now for your comfort, for the old saying is, that miscry loves company, let we tell you that my grapes are just in its bads condition, one in paricalar. I left it last fall, after: pruning, about ten feet long. It was a thick well ripened cane. This spring the buds are all dead except for about two feetat the end farthest from the rost. I acrount of it thus: During March, and the first part of April I was from home, and the grapery was neglected. Thare were many tine ol :ar darg when it became so warm as to start the sap, and render the bud tender. Cold, sharp weather followed and froze them. The es. tremities being better covered escaped. So you see the matter is very simple.

Mr. J. Well I believe you are right, I am not alone in my misery, for other graperies have suffered in like manner. Bur would yos advise opening the house in winter.

Mr. R. I certain'y would in all tine, moderate weather. So as to ler the heat escape William Cherlton says, only he ought to hare put it in large letters, "Let the house re main open through the winter, ex.ept in stormy, wet or very severe weather." Allen says, "As the spring andvances, ant the power of the sun increases, open the windows and doors of the house to let the heat escape, and to prevent the vines bursting their bucls, slaut -ting up again before night." You thought that all your labor and care were at an ond when last fall, you had pruned and laid dom. your vines, and covered them so niculy, buti. was a mistake. For your comfort sone litth attention is required rluring the long winte months, but especially towards the appract of spiring. I say, for your comfort, for hon would you feel, if you could bestow ao pain: on your beloved vines for so dreary a lengt of time?

Mr. J. That is all very well, but what as I to do now. What would you advise?

Mr. R. Fruit the large canes all you can
but let me hint, that owing to the injury they have reccived, they may very possibly fail to bring the fruit to maturity. Meanwhile you can srow another cane for the ensuing season, which I trust you will not destroy by carelessness i r inattention.

Clericus.

June, 1863.

BEST METHOD TO DESTROY APPLETREE WORMS.

Take three pints of soft soap in a pail, pour on hot water to dissolve the soap, and then fill the pail two thirds full of water; take a light pole eight or ten feet long, cut notches in the small end, then wind around a piece of thick coirse cloth. several times-let it project over the end of the pole five or six inches. Now tie it firmly with a large twine, so that it, will not slip off; thus you have the whole materials to commence warfare.
As soon as the worms appear in their webs, take the pail of soap suds and swab, dip into the suds and apply to the nest of worms, wipe pit all off, and thus proceed over the trees. This should be repeated at least every other day, as the egrs do not hatch at once. A little later, worms will appear on the body of the tree and large limbs, without any web, fout in cousters on the sun side of the tree. These miy be instantly killed by means of the srab, applying the soap-suds; it will kill them nearly as quick as fire. If the trees are large, have another pole sufficiently long to reach the top of the trees; but the short pole will be sufficiently long enough to do the most of the work. The best time to kill the worms fon the body of the tree is from ten in the morning to three in the afternoon; they are then sumning themselves in clusters.
Strict attention must be paid until the frorms wind up, as the eggs continue to hatch, fond sometimes the worms come from the froods, or a neighboring orchard that has not been attended to-they have eaten all the leaves from that, and then they will conie like marmy; but if attention is given they may be soon destroyed by the soap-suds. Some jersons. neglect to kill the worms; they have 10 fruit, and the trees soon die.
I hive found by many years' experience that his method to kill apple-tree worms is the heapent, quickest done, easiest, (no climbing he treer,) and most effectual, for all the soapuds wets are sure to die in a few moments. John I. Adams, in Country Gen.

A NICE METHOD OF PLANTING SIRAWBERRIES

Editor of Agriculiturist-Sir: Permit pe to detail for the benefit of your readers, a pethod of transplanting strawberries; which
thourh not new is rarely employed, lut which I followed last August with must ar titifing success. The strawherry was that nobse one, the 'Triomphe de Gand. When the iunuers were about forming, I took three and four inch pots, filled them with a mixture of sad and black mould, and stuck the runners in them. As soon as they were filled with roots t ty ware out oft from the parent plant. A hed was prepared for them. They were turned out nicely and planted in it, growth commenced immediately. And now at this spring, no wie could beheve that they had been so recently nlanted. Single plants have made three and fiur crowns, and are sending up maruificent stems crowned with blossoms. I feel tolerahly sure of having a fine crop of fruit. By the way let mes say, that out of eleven kianls, planted side by side, and with little treatment, the Brighton Pine gives the best promise. If the crop is equal to its fine appearance ot will be fine indeed. The soil is cray. The Brighton is a staminate, very early, similar to the huston Pime. In writing of it thus, I do not mean to prefer it to the Thomple, for the last is a late strawberry and the cfore can scancely bè brought into competimon with it. If the strawbarry season is very short at the best. it hehoves us aceordingly to lonsthen it, as much as we can. This may be d.me. by having the carly, the mid season, and the late kinds. The albuny is an early kind, so is Jenny Land. and McAvoy's Superior. The Huvey, the Sur Harry, and Triomphe being late.

This bids fair to be one of the most productive seasons, in the strawbery grower's calendar, in these parts. The only possible disappointment, is apprehended from severe frosts, which I fervently pray we may not experience.
The above was written yesterdav, this morning I have arain ex mined the dife.ent sorts and really the brightm is sure b, the blussoms so abundant as to throw the fuliare into the shade Should this apperance not be deceptwe I shall say the Brighton for me. But I have before been led away by the fine show of soze of our harren staminates, and you can't catch old birds with chaff, says the rude proveris, therefore I wi I not set intw, too exhilirated a state. You shall be faithfuily isioformed of the resuit. This hnuntiful rain is to us a wonderful blessing. How kind is the Great Crpatar to this land of ouss, and slan! how bisely ungrateful are we!!
C.

June 5th, 1863.

Large Drck Eger.-Lest weok a Rouwn Duck, the property of H. Elliont, jr., of Hampton, laid an eger which weighed seven and a half ounces: it measured over eisht and a quarter inches in circumference, and was nine and a quater inches in circumference the longest way.

givterimaxy glopartucent.

Conducted loy A, SMITHI, V. S.

THE HORSE.

(Continued from last number)

The bones of the hind extremities are composed of the sicrum, the ossa innominata which is formed of three bones, viz: the illium, the ischium, and publis. These bones have already been described in a previous number. The remaining bones are the femur (3 a), the patella, (s), the tibia (t), the fibula, (7) the bones of the hock (10 11), tine Metatarsal (1).

The femur is the largest bone in the body and is p!aced in an oblijue direction downwards and forwards, and presents a shaft and two extremities. The shaft is smooth and prominent in front and flat posteriorly. The posterior surface has near its middle a round rough ened portion to which is attached one of the heads of a larye muscle called the triceps abductor femoris. Rising from the upper thrd of the exteral lateral side is a sharp prominence called the trochinter externus, and from the internal lateral side rises a sumilar prominence called the intenal trochanter. Estending from the interanal trochs-ter is a rid re which receises the name of the trochantery riden, to which is attached the pectinous muscle. The lower half of the hone is constricted and has noteriorly a deep foisu cerled the suma condyloid tossa. The superior extremity is divided into two prertions, one smooth and hemispherical, known as head of the femiry, the other partion constricted. The herd of the fumar is lod sed in a cavity called the acetablum, forming the hip joint, on the inner s'de of the herd is a derp aotch into which is inserted the round lizament. On the outer
part of the superior extremity is a large irreg. lar promineuce called the trochanter major, which presents two parts, the part looking backwards is called the suamit, the other por tion the convexity.

The mferior extremits presents two condfles and a trochlea. The condyles are posterior and divided by a deep notch called the intra condyloid notch. The trochlea presents tro eminences divided by a veatical groove, the ir ternal is the larger, and rounded. With the trochlea articulates the patella; the internd condyle is the lary er and articulates with the tibia and semilunar cartilages. The Pateilu is an irregular bone, the anterior surface is con vex and rou ghened for the attarhment of ligar ments, the pusteriorsurface s smooth, articulat ing with the truchlea of the femur, and is divided by a prominence into two concavitus. When the patella is displaced the anmal is said to bt stifl d. Partial displacement of the patellai of common occurrence in foals of a weakly cons stitution, especially wheu ruming on hills grounds. Thus arises from intentitial alsorptio: of the trochlea of the femur, causing the pat ella to slip outwards almost at evely step.

Situated betwixt the femur and hock is th. thbia. This bone is larger superiorly than in feriorly, the outer anterior surface of the body is srooved, and in it is lodged the extensor pedi muscle, the i:mer anterior sufface is covere. simply by skin and faschia, the nosterior surfat is marked by numerous longtudinal furrows fo: the reception of muscles. I'he superior es tremity with the patella and femur form the slif. joint. Between this bone and the condyles o the femur are interposed the semilunar cartil
sge. Butween thes artioulatory facets is an em inence culled the tibial spine; in front of the spire is a tuberosity, from which extends the thial ridge; at the lateral sides is a projection for the attactment of the lateral ligaments of the stille. 'I he iuterior extremity is much smaller than the superior, and presents two smooth concavnties or grooves, ruming obliqueIf from before backwards; besides these concarties are three prominent ridges.
Extending down the postero-external part of the tibia is a small bone ealled the Fibula or clasp bone affixed to the former bone by cartilage and ligament This bone presents a body and head, the head is broad and flattened and somewhat circular in shape, the body is slender and tapering, reaching about two-thirds down the tibia.
The Hock Joint is formed of ten bones, viz: the lower end of the tibia, the astragalus, os. calcis, cuboid, three cuneform bones, magnum medium and parvum, and three metatarsal bones.
The Astragalus or knuckle bone is stuated immediately below the tibra, is somewhat pulley shaped and is the strongest bone in the hock. It presents three surfaces, superiur, inferior, and posterior ; the superior surface is smooth and wholly articulatory, the posterior surface is very irregular, presenting four articulatory facets for articulating with os calcis.
The O_{s} Calcis projects backwards and upmards from the hock, and is divided into body and tuberosity. The body is slightly convex esternally. The tuberosity is oblons, flattered from side to side, ending in a tuberosity to which is attached the tendon of the yastronomi extemus muscle. The internal side is smooth and grooved giving passage to the tendon of flexor pedis muscle. The superior part of the tuberosity is covered with fibro cartilage and forms a true synovial joint.
The Caboid occupies the outer part of the tock, is oblong in shape and has foir surfaces, and articulates with the cuniform magnum and medium, and also with the astragalus and large and external small metatarsal bones.
The Cuniform magnum, or wedge bone, has two surfaces and four bonders. The superior surface is smooth and wholls articulatory, except in the centre, where there is a groove. The inferior surface is slightly convex, and articulates with the medium and parvum. The esternal lateral border is in contact with the cuboid.
'The Cuniform medium is triangular in shape, and situated below magnum, its borders are rough anc irregular for the attachment of ligaments.
The Cuniform parvum is the smallest bone of the hock and is situa.ed at the posterior interal part of the joint. The Metatarsal and remaining bones of the extremities are the same 83 in the fore extremity, which has already been described.

ANSWERS IO CORRESPGNDENTS.

A. C, Mularcr.-Your horse in all probability is suffierins from some of the effects of distemper, which are so many, that it is useless for us to prescribe knowing nothing as to how he is anlected.
H. S., Drumondrille.-Tudgir.z from the description of your case, we consider it one of Uete-Sarcona, (a disease of frequent occurrence in cattle) that is a tumour on the jaw formed of osseous and soft tissues. The freatment will be to remove the tumour, and at the same time give plenty of nourishing and easily digested food.

THE GENTLI MAN FARMER.

Gentlemen must not hope to farm for profit. The duty of making experiments, and establishing models, in order to show others not only what to do, but what not to do, is that which may fairly be expected of the wealthy territorial magnate. Lo turn farmer. and to spend money patriotically for the good of the farming interest, is the only serious aim of a gentleman's agriculture. It may be followed as an agreeable occupation, and purchase pleasure far more cheaply and healthily than many of the other pursuits whereby the rich and idle seek to kill their time. Now and then, too, it may pay; but these latter examples are the rare exceptions to the rule. And when a gentleman does make his farming pay, it will be found that he devotes t, it an amount of personal care and labour which is by no means contemplated by the vast majurity of those who take to farning otherwise than as their sole means of winning a livelihood. There is an old proverb, which says that "the best manure is the master's foot." And it is because amateur farming is followed as a pursuit, and not as a daily toil, that it is almost invariably a source of serious loss rather than of any money profit whatsoever. Farming, moreover, is in itself a crade so comparatively unprofitable that its returns are singularly ill calculated for bearing any diminution. It leaves no margin by which a man can contrive to get his pleasure, and at any rate not to be a loser by the pastime. To all who have enquired into the subject it is well known that the profits yielded on invested capital even by successful agriculture, are very considerably lower than is the case in ordinary trade. The result is visible in the notorious fact that what we call "fortunes" are rarely made by farmers, except in times of war and artificial prices. Every other branch of trade and manufacture supplies a better investment for a man's capi-
tal and personal labour united. About ten per cent. on his capital is all that an active and inteilgent farmer can reasonably hope for as his return. From this must be deducted at the teist four per cent., as the interest which would acerue from the capital if invested in such a way as to demand no labour or attentention. Five per cent., indeed, is the deduction which is usually made in every case where risk is involved. But as we do not wish to overstate che case, let us allow six per cent. as the farmer's real profit on his chpital as an agricalturist. It will quackly appear from a few figures that if an amateur farmer simply fails of making this six per cent., and does not also posituvely lose the additional four per cent., he is a marvelously lucky fellow. The chances are that he will not only lose the interest on his capital, but the whole rent of the land he eultivated into the bargain. And the secret of his loss is this. He patys too much for almost everything he buys. It is not that he necessarily farms ill, or is cheated on all sides, or fails to sell his produce at the market price. These sources of failure doubtless help to empty his pockets, but they are comparatively minor evils. His account book presents a balance on the wrong side, chiefly because he rarely purchases in the cheapest market. Every gentleman is painfully aware that for every cow he gives a guinea more than he ought to give. When he buys sheep, he thinks it lithe matter if he pays guineas instead of pounds. An extra shilling on a little pig is a bagatelle. And as for horseflesh -he never dreams of not giving a matter of five guincas too maca for a tine teamster. In short, if we assume that our amateur pays only two shillings in the pound or ten per cent. more than the professional for his ballocks, his cows, his horses, and his sheep, we shall let him off more easily thian he deserves. But what dows thes extra ten per cent. mean? The whole of the live stock of a farm, on the average, from horses down to sheep and pigs, cannot be sapposed as remaining more than three years. In other words, about one third of it will have to be renewed every year. We have already got him to the point when all profits have more than disappeared, and his conscience tells a worse tale still. IIe is not only quite reddy with his humble confession that he hats haiitually expended his inevitable sixpence where his tenant only pays fivepence, but he p.einfuily shrugs his shoulders when he reflects on his weekly list of labourers, and the banker's checques which he has drawn on behalf ot his numervus and sleck-looking teams. He desires only to draw a curtain tenderly over the past, and loudly echoes the statement that he who would succeed as a farmer must live like a farmer; and, above all, must screw lik a farmer. If a man cannot do this, his consolation must be that he has ridden his hobby, and paid for it.-The Saturday Review

COMPARATIVE VALUE OF W00D FOR FUEL.

Messrs. Emitous, -The subject of obtaining and prep.aring woud for faet is one of cunsider. able importance, and although it wilt probabls receive but litule attention from those wh. ona land that has a sapply of wood on it, ye: there is a large class of persons who are unde the necessity of buying their fire-wood, and it seems desivabie that they should linow the comparatire - alse of the different kind; of wood for tuel, in order that they may be able to spend their momef to the best advantare in the parchuse of their fuet. From experiments uade to determine the comparative value of different kinds of whod fo: fuel, results have been obtained according to the following table:

Stuellbak Hickory. . . . 10	Yellow Ork
Pig 'ut Hictory. 05	Hatd Haple.
White Oak. 8t	White Eill.
White $1+1 / . .$. 77	R-d Cedar
Jonwwod 75	IVild
Scrub Uak 73	Yel!nw Pine
Wuite H zel.......... is	C est cut
tppla Pret. 71	Ye:l w Proplar
Kell Oak 69	Butteruut...
White Beech.......... 63	White Birc
Black W:atuut. ${ }^{\text {a }}$	White Pive.
Black Birch. 62	

"Sume woods are softer and lighter than others-the harder and heavier having their fibres more closely packed together. But the same species of wood may vary in density, ac co.ding to the conditions of its growth Thoie woods which grow in forests, or in rich wet grounds, are less consolidated than such a stiand in the open fields, or grow slowly upon dry barren soils. There are two stages in the burning of wood-in the first heat comes chietly frum flame; in the second, from red hot coals. Soft woods are much mure active in the firt stare thatu ard, and hard wood more active in the second than soft. I'he som woods bum with a voluminus flame, and leave but little coal; while the hard woods produce a less flame, and yield a larger mass of coal.
"'The purpose, however, for which it is need. ed must be cunsid red. Although white pine, compared to hickory, is only as 42 to 100 for heat, it a quick fire be needed for im nediate warmth, or kindling for coal or other wood, the pine, or other soft wood, is the most suitable."
The comparative value of hard and soft wood will depend very much on the purposes fo. which they are used. Where a steady and con tinuous heat is required, hard wood is much th. m.st valuable; but when a quick and activt heat with a steady tlame is wanted, suft wood seem to be preferable. In muking sugar I prt ter about equal proportions of hard and sof wood, as I can boil more sap in a given tim with this proportion than with either kind sepas ate. Un ruilruads soft woods are used excl. sively, as a quick and rapid flame of heat: wanted. On the other hand the steady and i . tense heat required for the furnace or forg needs hard wood or coal to produce it. E.
perience would seem to ndicate that for the ordinary use of the fumily a portion of both hard and soft wood was the must economical ; lut it shin d alw..ys he dry wood. C.T.anvond. Ilihlmington, Vt. Cultivutor.

Imphovemant in Soap Bubbles.-The soap babble is at great institution. It afferas to the mora. 131 an emblem of frailty, motahility, and the transtory character of many things in life and m human affairs. It affords some of the deghtitur amusements to childhood. It is also of great use is a philosophical instrument. By it, many of t'ee absitruse laws of natural philosophy an $b \cdot d e m o n s t r a t e d$, and it has been instrumenal in hringur about the dhacovery of some of be must miteresting phenomena of the rays of ight. The grea: Sur Isaac Newton used it for llis parpose, and was assisted by it in some of fis nivist britliant discoveries in this branch of failusurhy. It is useful also in demonstration Repressure of aerifo: m forces, and in exhibiting ot the cye. the fact that expansive forces which refiee tu act on every side, assume a spheroidal orm, or dicection. We have been in the babit f consdering the soap bubble as one of the effections that could not he improved upon-a hing whe h was always uniform in its tenuity of ubstance. and shortness of duration. and we ase olite:1 regretted this last character of it, rishins that it meght last a hattle longer, or give ssome way by which it could be modified in hape it in no other particular. It secms from he accuunt we glean from a foreign journal that this are of improvements, even the soap bublecomes in for its share of the improvements the day A mode has been devised by which is m.de to nut only last longer, hut to allow f its leeing thrown into different shapes and ormis almust at will.
We wall give an extract of these improverents. It will ititeres some of our readers who re fond of using the means of research which aure has given us, whereby to enlarge our thene of kinuwled ofe and uselulness, even :rom insi mificant an instrument as a buble.
3. Plateatu, an experimental phiosopher of aris, in Fiance, in pursuit of some of his invespations, was anxious to obtain liquid figures difierent forms and shapes, that should reain in a quescent state for some time. He. first, made a common mixture of alcohol and ater of the density he required. This was to mastitute the sphere in which the bubble profeed should remain By using oil, instead of lap suds, and the water and alcohol instead of zto fill it with, he obtained an oil bubble in palcohol mixture. These, of course, would maie is the mixture some little time. When out un in a vessel, they would remain some he honser that a common soap bubhle in the F. On turther search, he improved the bubble Ill further, which has bern of much advantage him in his investigations. He uses glycreine fibstren; soap suds, with which to make his
bubbles. These be tound to be capable of enduring much longer than any other kind. He next wanted to dbtim them of different shopes, or figures. This he accomplishes by the foltowing very ingenious arranzement. "ll" says he, "though an ordinary tubatco pipe; a hubble of this material be blown, and then cartilly deposited on a metal ring, one and a half iuches in dameter, pevoushy moistened with the same !iqud, this bubble, if not distubed, wil last thee hours, and if in a close vessel thre odays." We presume thas is the first instance of homping a bubtile to make it stronger. In order to make a cylindrical ligure of this bubile, Mr. Plateau adopts the followng method. Two rinizs of the same dianeter are made. One of them rests upon three legs, and the other slides up and duwn ou a perpendicular shaft, with a humb surew to fastell it to any height. Blow a bub. ble and place it carefully on the lower ring. Then let down the upper ring (both being moistened as before) untal it crowns the top of the bubble. The bubble then adheres to ?,oth; then by raising the ring carefully the butble will be drawn out into the cylinder. liy making figures of several angles, (pulyhedrons,) and dipping them into the liquor, a dilm of it will extend from wire to wire, and form the figare in question.

This is what we call an improvement in the soap bubble, and is hereby rendered more useful as an instrument of investiration and research, as well as more varied and ext nded in its applications to the sports of those "men of a smaller growth" called children.-Maine Faimer.
"Who is the Breeder?"-By long established custom, the party in whose possession a short-horn calf is born is said to be the breeder of that call, although the dam may have been the property of another person, even up to the very day of calving. All the credil of having bred the animal is claimed by the dam's new owner; but all the merit of having bred the animal is clearly due to another. An outlay of money avails to secure the former; but the latter is the result or care, thought, sagacity, anxiety, and experience. It is conceivable that a man or wealth should purchase fifty cows of great value, each in calf to some distinguished bull (a Booth bull, for instance), obtained, by hire, at a distinguished price; and all within a few weeks of bringing forth their off.pring. The cows in due time calve; and their produce, the consequence of another man's capilal andi judgment, are recorded in the Herd Book, not to his honour to whom, in fact, honour alone belongs, but as memoriaks of the breeding skill of one who may possibly possess no breeding shiil at all, and whose part in the transaction was simply that of arranging a pecuniary iuvestment. The real breeder of a calf is unquestionaby the person who brings the sire and dam together; and yet, according to orthodox usage: the piace of calving constitutes the criterion. We sug-
gest no alteration in the ordinary method of proceeding; it is perhaps as good as any other; but our readers will perceive that it renders the Herd Book a less fathful exponent of the history ot facts than it would otherwise be, and rery frequently imparts undeserved lustre to obscure names.-Bell's Messenger.

Use of tue T'umisi Bath in Vetermary Pratione.-Sir,-Thoush the use of the Turkish bath in the treatment of disedse in che hatman subject hats made so much progress of late, we suduan hear of ats applatation in the case of quadrupects; and it may wot, theretore, be without use or merest if I give you a shot aceount of its elfeets an an instance in which it was lateIy tried under my directions. The anmal was a cart mare. Wnen I was first told she was ill, and saw her two or three hours after the first appearan"e was observed, she was shivering with her hind less straddled, continually lookins round at her flanks, first one side and then the other, and very unwilling to move at all. Her pulse was full, and 80 in the minute. The symptoms appeared to indicate inllammation is. the region of the kidneys. I had her removed to a loose box, and having the command of a cattle-bath, I had the fire at once lifhted; but as it would take some bours to heat, and the symptoms were urfent, I had the mare bled, a purgative of dissolved alues (t drachms) ad. ministered, and a mustard puultuce applied to the luins. Daring the bleeding the pulse varied from 80 to lu0, and when it became feeble, and the mare showed signs of weakiess, the bleeding was stopped. More than 7 quarts of blood had been taken by m:asure. At the end of $4 \frac{1}{2}$ hours atter the bleeding. the pulse was not re duced in frequency, ranging from 80 to 3.t, but it was softer than befure. The mare, however, was till suffering, lying at fall stretch in the loose box, occastonally strut:gling from pain, and raising hee head to look at her flanks. By this time the bath was heated to 100 degrees, and I was anxious to get the mare into it. It was with some difliculty th it she was got on her le.zs and up to the bath, but from the moment she entered she seemed to find relief, and after a short time showed no signs of pain. She was kept for 5 hours in the bath, the temperature increasing to 120 degrees, which it was not allowed to exceed. After washing in the outer chamber of the bath with tepid water, and sheetint, she was brought down to the stable and dried with cioths. Her pulse had come down to 60 degrees, and she appeared entirely free from pain, and took a little bran mash. She dunged, and passed a small quantity of urine without pain. She had drunk water freely while in the bath. After an interval of an hour and a-half she was put again in the bath for about three hours. The treatment of the bath twice a day and then once was continued for four or five days, at the end of which time she was quite recovered. The cattle bath can be so easily
constrncted, and at so moderate an expease, that it is much to be regretted it is not in more general use. I have scen as cow with hif,hly is Hamed udder atter calving speed,ly cured of it and for common colds and courhs in horsesi: is most effectual in arresting and removm; them -Yours, Sc. C. E. F., December 15, 1862.Murk Lane Express.

Tine Rural Seasox in ltaly.-The onlyga son of the year in which $t . e$ Italians are really loth to tear themselves frem the country is the latter cnd of Autumn-Octoler and Novembes -at least up to St. Martin's day. Lovely x the country is during spring and summer in Soril Italy, it seems to intensify all ite chans so as to clothe m ineftable lovelincss the fall of the sen: The air sharp and bracing as it is apt to bea the morning and evening. is never so bulms ad genial as it becones at this tume towands the noon, and continues to the cluse of the usualh bright, gorceous sunset. The stillmess of th landscape, g nerally prevalent in these mow tain-sercened regions, becomes infinitely nor striking, and, as it were, palpable in this seasr, of nature's repose. Nothing can be slower ar gentler and nure lin reriug than the decline o a North Italian year-the autumn tints sted over the foli tge by imperceptible degrees, ast crowsfoot over the countenance of a lovely wo man untouched by illness or sorrow; the lear drop one by one, circling and winding rons through the stirless air, like so many fldest undrufted snow; the first touch of decay seen rather to revive and enhance than to blighti even tone down and mellow the richness and la uriancy of this bountiful land; and the shy, o longer dazzliny with its eettled glare, no longe monotonnus in that cloudless blue which is aptit cloy us in settled summer or winter weather, , tertains us daily, in this period of transitio: now with vast masses of heavy vapours in 1 . shape of phantom clouds clinging to the Alpit summit, now with a thin white veil of mist floz ing orer the plain like a transparent ocean.

A Hint for our Sparrow Cicbs.-Tho: valiant members of the ayricultural communit who spend their time in killine birds, and the meet together to celebrate their folly, may 4 well to read the following prices, which the dut? land Acclimatisation Society offers for the intr duction of birds and animals in which New $2 e$ land is deficient: Hares, per couple, male a female, $£ 5$; red deer, ditto, $£ 15$; blackcock. grouse, cock and hen, $£ 10$; silver pheassan ditto, £5; niyhtingales, ditto, $£ 5$; Engl: partrid res, ditto, $£ 4$; cuckoos, ditto, $£ 3$; mis thrush, ditto, $£ 2$; common thrush, ditto, $£$ blackbirds, ditto, $£ 2$; starl'n!s, ditto, $£ 2 ; s_{2}$ $1^{\text {arks, }}$ ditto, $£ 2$; rooks, ditto, $£ 2$; crows, do. E jays, ditto, £l 103. ; robins, ditto, $£ 110 \mathrm{~s}$. ; wrt ditto, $£ 110 \mathrm{~s}$; ; bullfinches, ditto, $£ 1$; green grey linnets, ditto, 15 s .; sparrows, 5 s .; E . lish quails, ditto, £1. That distinguished or.
hologist, the Rev. F. O. Murris, says in his
 fave watched pairs of sparrows repeatedly feed. po their youns, and have found that they bring fog to the nest once in ten minutes during at fast sis hours of the 21 , and that each t me fon two to six caterpillars are brought-every aturalist will know this to be under the mark. our, suppose that the 3,500 sparrows destroyday an assocmation for killint sparrows were have neen allve the next sprinf, each pair to we huilt a nest, and reared successive broods f youns durin, three months, we have, at the se of 25.000 per day, the enormons multitude fill, 1;c.000 larve prevented from destroyms the products of the land, and from increasing heir nutubers from 50 to 500 folu!" (see 2ad d. of first edition, p. 279).

Discovery of a Forest of Nutmeg TrimsIntellifence hats been received by the Dutch overmment that Dr. Burnstein, while underting a scientitic expedition for account of the Donial Government of Netherlands, India, to Pe Molucca Istands, and New Guinea, has nde a discovery in the lsland of Batjau, which ag lead to impurtant results, aud cannot fail prove of the greatest interest to all grocers ad merchants engased in the spice trade. In sascent of the chain of mountains known by sme of the Sabella ranye-which, it appears, ss never been litherto visited, or at least, ientifically examued by any other European eriously-the learned doctor discovered, at an eration of from 2,600 to 3,000 feet above the rel of the sea, a very extensive forest of nut40 trees, laden with truit of unusual size and cellent quality-in fact, far superior to any therto seen in the European markets. In conpuence of the favorable nature of Dr. Burncin's ollicial communcation, reporting that is nutmer tree forest extends over a very large act of country, orders have been sent out from Hlland to the Governor General to obtain a apicals of this produce as a sample, and t., adit to Holtand, where its value will be pracgally tested by the price it fetches in the usual ice sales of the Netherlands Trading Com-ng.-The Grocer.

To Destrof Rats in Barn and Rick.elt hoys' lard in a bottle plunged in water of mpersture of 150° F'ahrenheit; introduce into to it half an ounce of phosphorus for every fand of lard. then add a pint of proof spirit or wshey; cork the bottle firmly after its conath have been to 150°, taking it out of the ter and agitating til' the phosphorus becomes iformly diffused, making a milky looking d. The spirit may be poured off on the vid cooling; and you have then a fatty compod, which. after being warmed gently, may ncorpurated with a mixture of wheat flour figar, flavored with oil of rhodium or oil of
anisee i, \&e.; and the dourh, on beinr made into pellets, should be laid at the rat holes; being lummous in the dark, and arreeable both to their palates and noses, it is readily eaten and proves certainly fatal. The rats issue from their holes and seek for water to fuench their burning thirst, and they commonly die near the water.-Dr. Uer.

Mediterranean Winds.

The physical history of the Meliterranean caorot be complete without some nutice of the winds, whech move this ureat mass of inland wate's. Wa do not find bere, nor c mid we exwect their existence, he cons'ant or strictly periodical atmosperic currents, whi hareap over the wider oce n of the globe in a landlocked basin, thus irregular in ou line, studded with anountain isles and girt round in great part by mountain chaics, local causes medify or preslomi -are over those general condilius to whit b the a'mosphere is subj cted by the rotation of the earth, and its annual revolution romed the san. T'o other iufl tences on the winds of this sea must be added tbat of the graat African desert, stretching for 2,000 miles in a dirction parallel to its suachern shore, and in parts toaching upon it-an enormons waste of bare sund or rock, vehemently r fflecting the rays of a southern sun, and acting as a furnace upon the atmos. phere abuve it. In effect of these and other circumstances, the wiuds of the Medi earanean, bough to a certai: ex'ent regg lar and periodical, yet abound in local characrers and lucal names; and we might readily earmerate more than a dozen, p rtaining to different coists or guls-as the Biraz mes of the south-east coast of spain ; the Vent de Biz^{2}. or Mistral, of the southern French coast ; the Reffiche of Corsica, and other moun'aioous islands; the Gregale of Sardinia and Malta; the Siffinto and Eora of the Adriatic ; the Tramontana generally over the Levant ; and the Levanters and Sirucco of the whole Mediterrauean. Of these several winds, the S'ro co, or south easterly wind, is by far the most remarkable; nut merely from its requency and wide prevalence, but yet more from its physical properties, and peculiar effects on the animal frame. These effects, mainly manifested on the nervcus and muscalar powere, are num become too familar to the traveller to need being dwelt apon in detaii. Fsery one who has felt this wind as it occurs at Haita or Palermo will remtmber that prostration both of body and mind, which is its iostant and continued effect-an effect certainly not owing to temperarure alone, since winds of greater heat may bluw from other quarters without producing the bike resalts. ∇ a ions circumstances make it probable that the atmospheric electrictity is concerned io these phenomena; but we need minute and prolonged observations, like those of Peltier and Quetelet, to satisfy the demands for
facts, bef re thit or mug uther hyputhesis eas stand grod. Siluh research might be readiiy carrite in at Mala; and with collateral ohere. vations as to bueprumrtion of a zone, and other propertios of this strange aud malignant .ind the local retatisn of which to the African and Arabian drents, and to the Samsel wiod of Egypt, wi 1 at ence ocear in ang spe ulations as to ins e us s. Tre freguent suddemess ano vilence of ald diteranean storms are well known to thase who have bren v yagers in the Guif of Lro:s and the Archipelago. Bur we nut add a few whind also us to be calms of the deen sea-ihe bonuccia of the Italian mari: er- house times then to watrse sleep under the sunfir days togesher, as of they had never been rufiled by wind or storm. The royager in the Med! terrarean in loter times loiterd leng anc weari ly utder tiese chms. The traveller of our own day presses foraad despite them; aith the aid of that ever ce mstan mot ve power, created by and subjected to human shill. Yet even he may well loug for bretzis \ddagger ostrr the still suface and give ite ani motwn to the stagnant air. T'se pumätōn anèithmon gelasma portrags, in language olinist pecuiar to the grat p et whi, nges it, ih it happier aspect of se:s which glad dens wihb move thent the eft of the stin-suc. as Caude so ofurn and so fondl; convers to his canvas, wilh accompabiments which the ile iterrane n alore cum fursish to the painter. - Dr Hollund's Scient:fic Essays.

Gblitatal elloticts, ire

Sneer Ilusbaydry.-We learn that there is now in preparation and to be pub.ish d ina few neeks by J B. Lipriscott \& Co., Philatelphia, and D. D. T. Moone, Rochestor, N. Y., a new and complete work on Sheep Husbandry, entitled The Practical Shepifrd, by the Hon. Heniy is. Randali, Ll.d.. author of "Sheep Husbandry in the South," "Life of Jefferson," "Finc Wool sheep Husbandry," ctc.; also Editor of the American Esition of "Younst on the Horse; of which over thirty thousand copics have been sold The author of "The Pactical Shepheru" is well kuown as the ablest and most valu:ble writer oal Sheep Inusbandry in this country, and the work cannot fail of becoming the staudard authority on the subjects discussed. It mast prove indispensable to every American flock-master who wishes to be thoroughly posted in ecgard to the History and Descriptions of the jopular breeds. of Sheep, their Breeding, Management, Diseases and remedies. The work is in ended to give that full and minute practical information on all suvjects
connected with Sheep Huslandry which auth r has derived from the . irect personal perience of thirty-five years with large floe together wi h that knowledge of different me and systems which has flowed from a very tensive correspondence during a long pe with leading flock-masters in every part of world.

The first six chapters of "The Pract Shepherd" will be devoted to a full descrip ot the best breeds of Sheep in the United st including the different varibties of the Her and the various English matton breeds, these will be illustrated generally with eng ings from original drawings from life. ' T will be fo lowed by Chapters on Cross-Breei on Breeding In-and-in ; on the Qualities Puints to be Sought in Sheep; on Yolk an Uses ; on the Theory and Practice of Bree: on the adaptation of different Breeds to D ent Soils and Circumstances; on the Prof Wool and Mutton Production and their pects in the United States; on the Spriag agement of Sheep; on Summer Manager (two chapters); on Fall Management; on ter Management, Food, \&e., (two chapt on Discases and their Management, (se chapters).

We bespeak for this work when it ap that amount of attention to which the it tance of the subjest and the ability of thea entille it.

Tire Britisir American, No. 2, June: ' to, Rollo \& Adam.
The second number of this Canadian me fully sustains the favourable opinion : pressed in our last. Its articles are vari interesting. If it is continued in the spirit and with similar ability, the I American cannot fail to prove a welco itor in every fam:ly possessing the leas and refinement throughout the whole of these Provinces. Ierms $\$ 3$ per ann.

Ther London Quabterly Review, May Tue Nomtu Britisi Review, May, li These standard British Quarterlies plete as usual with articles of substanti. on all the great questions or the day dimericun War in the former, and th tegration of Eupircs, and British Intes
foreign struggles, in the latter, will be read this moment with a peculiar interest on s side the Atlantic. The elaborate article Vegetable Epidemics should be carefully odied by farmers and gardeners in particular. actiuood for May, has as usual, several arles of great merit. Now is a convenient e to commence subscribing to these British riodicals, as new volumes commence this ath. All four Reviews with Blackwood's nthly magazine can be had at the extraorary low sum of $\$ 10$ per annum ; or each gly, for $\$ 3$. They can be ordered of Bookurs, or from the American publishers, nard Scott \& Co., Walker Street, New York.

TORONTO MARKET PRICES.

Toronto, July 1, 1863.

Wheat, per bu	\$0 85 to \$0 95
tig Wheat, "	80×87
ix,	60×70
;" "	50 " 55
"	45 " 50
"	56 6 60
"	400×500
fon,	400 " 450
tios, per bushel,	40 " 50
les, per barrel,	200 " 225
B Butter, per 1 b	11 " 12才
Butier, "	10 " 11
per doz.	10 " 12
iens,	3 3 " 40
:s, each,	300 "550
per tom,	1000 "1600
	900 "1000
\%, per 100 lhs .	450 " 500
bins, per lb.	8 "
iskins. each	50 "
1, per 17.	36 " 38
hr of Paris, per	95 " 100
per bbl.	145 " 147

OOD STALIION FOR SALE.

[^0]
THOROUGH-BRED SHORT H RN FOR AL_.

MORETON DUKE, oot hy Mr. Stune's Bull 3rd Grand Duke, 229:, calved 9th June, 3460.

William of Oxford, got by Mr. Stone's Bull 12th Duke o." Oxford, calved 19th November 1859.

David, got by Sir Charles, a son of 3 rd Grand Duke, ealved lat March 1861 .
Marquis of Osford, get by William of Oxford, calved 20th March 1863.

Warwick, gol by Moretin Duke, calved 26th March 1863.

Terms very reasonahle.

W. Whacoess Bamwin. Larchmere, Gak Ridges.
April, 1863.

tf.

THOROUGH BRED STOCK

\uparrow HREE yearling Durham Bull two Galloway Buil Calves, two inponted Ayshire Bulls, yearlings, for sale.

George Miner, Markham.
sipril, 1863.
tf.

THE CANADIAN AGRICULTURIST and Journal of the
 BOARD OF AGRICULTURE of upper canada.

T T HIS LONG ESTABLSHED PFRTODICAL is published in Toronto on the 1st of each month, making 12 numbers in the year.

Each number contains not less than 4" pages, the size of the page of this Prize List, occasionally illustrated by Wood Cuts, thus giving a large and handsome volume of about 5 ju pages.

TER正S:

Single copies, 5', cents a year.
Five to twenty copies, 11 per cent. discount.
Twenty to thirty-five copies, 15 per cent.
Thirty-five io Fifty copies, 20 per cent.
-Ffty copies and upwards, 25 per cent discount al owed.
Subscriptions payable always strictly in advance.

EDITORS:

Professor Buckland, University College, Toronto. Hugh C. Thomson, Secretary Board of Agriculture of Upper Canada. Andrew Smith, Licentiate of the Edinburgii Veterinary College and Consulting Surgeon to the Board of Agricuiture of Upper Canada.
All orders to be addyessed to the Secretary of the Board of Agriculture, Toronto.

The back numbers of the present volume can still be supplied at the above rates
Orders for the half volume, commencing 1st July, taken at 25 cts. per copy; di count for a number of copies in same proportion as above.

Agmiculturist Offick.
Toronto, June, 1863.$\}$

SEED.AND IMPLEMENT

WAREாこ!!SE.

ESTABLISHED, 1836.

THE SUDSCRIBERS beg to inform the Farming Community and the Public generally, thai they have now opened their new place of busines.: in the

AGRICULTURAL HALL,

at the
COR. OR YOAGE AND QUEEN STREETS,
Where they will keep an Extensive Stock of FIELD AND GARDEN SEEDS.
of the best quaitity ; and in connection with their
Wholesale \& Retail Seed Business,
They will keep in Stock a Large and Varied Assortment of the most Improved
AGRICULTURAL IMPLEMENTS, HORTI
CULTURAL TUOLS, and USGFUL BOOKS for FARMERS and GARDENERS.

JAMES FLEMMING \& CO.,
 Toronto, Dec. $16 \mathrm{th}, 1862$.

Agricultural Implements.

One Horse Ploughs $\$ 500$ to $\$ 7.00$ each, Two Horse Ploughs. . . Nos. 1, 2 \& 316.50 " " " iron beam...... 1200 " Patterson \& Brothers, Manufacturers, Belleville. " " wood Nos. 4 \& 5 . 0.00 " " " " No.6..... 16.50 " One Horse Hoes or Cultivators. . . . 800 " Straw Cutters, for horse or hand power......................... 30.00 "
Draining Tools of Superior Quality, Spades, Shoves, Manure Forks; Potato Forks, Hay Forks, Crad,es, Scythes, Snaiths, Iron Rakes, Hoes, Hand and Hurse Hay Rakes, \&c, \&c., \&c. JAMES FLEMING \& Co.
Toronto, Dec. 16th, 1862.

Miscellaneous Articles.

 FOR SSAIE BYZ. James Fleming \& Co.Rustic Iron Garden Chairs, P'ain and Ornamentcd Fiower Pots, Vases, Propagating-G:asses, Fish G:obes, Aquariums, Green-house Syringes, Consecrvatory Pumps, Water-pots with patent brass roses, Fumigatore, Saynor's celebrated Pruning and Budding Knives, Bass Mats, Hedge Shcars, Transplanting Troweis, Grass Shears with long handies, Thistle Spuds, Fancy Rakes and Hoes, Hatchets, Hammers, Sets of Garden Too:s for Boys, Large Pruning Shears, Gurden Lines and Rec̣s, Garadener's Gloves \&ic., de., \&c.

Contents of this Namber.

Agricultural Museum
E.rly anil hate Sowing of Wheat. 2 2;

Estitornal Notes, County Vellington. ע
The Grub.
In-and-ita Brecding.
Ghould ue sow the or thick.
Thi F we kow this or thick. 2 2
The Fa \cdot mers and Biads. .
Mannres.
Preparation of Boner.
The Piongla and Cultivator.
Cantiritge und lit, colushine Fens.
Hay Making.
AGricultural Intelligence:
Crops i , the U. States. .
Sisperiphosphate of Lime.
By-Lans, Aericuleural Association
Wool Growing.
Weol G:owers ioncention.
A new Fand-dressing Machine.
Nunku Sherp............
Exhbitions this Autumn.
Exhbitions this
The Dairy:
How to make Checse.
Leith Butter Keport.
Horticuetcrale:
On the Prar.
Hamilon H.rticultural Society
The Curculio.
Fruit Growers Association
What ails my Grajues.
How to destroy Apuli-qree Worms
Nice method of panting Strawberics.
Veterinary Departmert:
The Horst-Contziued,
Miseetolaneous :
The Gentleman Farmer
Comparative value of Wood for Fuel.
Inprovement in Soap Bubles.
Who is the Breeder.
The Turkish Bath in Veteriluary Pacise.
The kural seazon in lialy, Sparrow Clubs
Huw to destroy Rats, Sediteramean Winds.
Editorial Notices, Markets, \&c.

TORONTO NURSERIEi

GEORGE LESLIE, Proprietor,

0FFERS FOR SALE THIS SPRING, unusually large and well grown stock a FRUIT AND ORNAMENTAL TREES, of all sizes and varietics. Grape Vines--all. New, Hardy, and Forcign kinds. Strawh Piants of best sorts, lioses, Hardy Flowel Shrubs, Dahlias, all the first prize varie. Herbaceous Plants, \&c., \&c.

Special attention is called to his ima stock of

ITEDGE PIANTS

 Consisting of Buckthorn, the best of allsh Plants, from 1 to 3 years old, cheap. White: Rēd Cedar, Berberry, Privet, Norway Spric?The New Descriptive Priced Catalogae be sent to all applicants enclosing twol stamps to pay postage. Address,

George Lrbla
4-2ins:
Leslic P. O \mathbf{O}_{j} :

THOROUGH-BRED S OCK FOR:

THE SUBSCRIBER OFFERS EOR: three Durham and two Galloway Bail year old; and a few females of the above b
ITerms easy.
Edmonton, Feb. 13th, 1863:

[^0]: SALE, a Blood Stallion, "High Flyer" © years old, briyht bay, 15 hands $3 \frac{1}{2}$ iuch"fh. Sire "Sir Tation Sykes," dam hy tonocodrom"
 pos cash, or six months' credit on good
 IV. Apply to

 Geo. Cocper,
 Davenport P. O., near Toronto.
 ich 20th, 1863.

