IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHiv/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy avallable for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.

Coloured covers/
Couvertures de couleur

Coloured maps/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains défauts susceptibles de nuire à la qualité de le reproduction sont notés ci-dessous.
\square Coloured pages/ Pages de couleur
\square Coloured plates/
Planches on couleur

Show through/
Transparence

Pages damaged/
Pages endommagées
\square Additional comments/
Commentaires supplémentaires

Bibliographic Notes / Notes bibliographiques

Only edition available/
Seule édition disponible

Pagination incorrect/ Erreurs de pagination

Bound with other material/ Relié avac d'autres documents

Covar title missing/
Le titre de couverture manque

Pages missing/ Des pages manquent

Maps missing/
Des cartes géographiques manquent

Plates missing/
Das planchas manquent

Additional comments/
Commentaires supplémentaires

The images eppearing here are the best quality possible considering the condition and leglbility of the original copy and in keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED"). or the symbol ∇ (meaning "END"), whichever applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

National Library of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les inneges suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la nerteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie " FIN^{\prime} ".

L'excmplaire filmé fut reproduit grâce à la générosité de l'établissement prêteur suivant :

Bibliothèque nationale du Canada

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées à partir de l'angle supérieure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode :

CANADIAN NATURALIST

A．ND
 GEOLOGIST，

$$
\text { (} 1 \text { I•MONTHICY ISSUE,) }
$$

COMPLETE IN ELEVEN VOLUMES S＊O；BOUND IN CLOTH，AND
IHI．U＇TRATED WITII MAPS，PLATES，AND WOOD－Cl＇T＇S．
PIRICE - - - - 皆TO,

OR BY SIN゙GLE VOLUMES，§3 PER VOLUME，ENCEPTIN゙G VOl．I．，WILICII IS NOT SOLD SEPARATVIC＇．

These volumes contain a mass of information－not to te met w＇th else－ where－relating to the Natural History and resourees of Camada．

May of the eontributions are of great practical value．All the chief Mining regions of the Dominion have been noticed，and the scientifie side of the chief manufactures of the Provinees has been dise：ssed．

The Fiuna of Canada is almost eomplete．Many valuable contribotions on the fur－bearing animals have been received from ollicers of the Iludson＇s Bay Company．Dr．Dawson has written many valuable artic＇es on the lower forms of animal life．

In Geology and Palacontclogy，Mr．B llings，Dr．Dawson and Sir William Logan have largely contributed．In Chemical Physies，Dr．Sterry IIunt has many valuable articles．In Botany there are many important contributions ly the late Dr．I urnston，Dr．Dawson and Mr．Watt．In Meteorolng；，by In．Smiallwood．

A glanee at the contents of these volumes will show that there are writers in Camade competent to treat of all the Natural sidences，as ilastrating or developing the natural resources of the conntry．

CANADIAN NATURALIST

(quaterly idamal of sciente

 LISTORY ROCHETY OF MONTREAL.

In eommenciny a new issue of this periodical, as a Quarterty Jourand of seience. the Publishers have much satisfaction in announcing that its hasis is now so extended as to include a larger field of popular interest, and a more general seientific seope than lerefotiore. Repecially with regard to the Tecinology of deological, Mining, Chemical and Agricultural Science, new materials are made available, and a general summary of seientifie facts and diseoveries forms an important feature. The publieation is still under the aluspes of the Natural History Soeiety of Montreal, which has apminted the following gentlemen to act as an Editing Committee, vi\%:-

Principal D.awsor, F.R.S.- Geolngy and Forsil Botany.
T. Sterry Must, F.R.S.--Chemistry, Mincralogy and Mining.
E. Bidinges, F.G.S.-P'alabontology.
C. Smatwoob, LL.D.-Meteorology and Astronoms.
J. Baker Enwams, Ph. D., E.C.S.-Chemical Technology : mul Mioroseony.
P. P. Campextrr, Ph. D.-Sueial and Simitary sicmere.
J. F. W'inteates, F.s.S.-Zoology.
B. A. P. Watt, Esq.-Botany.
A. S. Ritcins:, Esq,-Entomology.

Subjeets other than those mentioned will eone under the eognizance of the Chairman of the Committec.

The authors of gapers will be consibured alone responsible for the facts and opinions contaned in their respective eommmiontions, aml the severat editurs will be responsible only for eommmieations bearing their names or initials.

HANDBOOK

${ }^{o r}$

Z OO LO G Y :

TITI EXAMPLES FROM

CANADIAN SPECIES, RECEN'I AND POSH.

Br
J. W. DAWSON, LL.D., F.R.S., \&c.

Part J.-INVERTEBRATA.

WITH 275 ILLUSTRATIONS.

"DAWSON BROTHERS, ST. JAMES STREET'. 1870.

QL48
 D3

Entered according to tho Act of the Parliament of Canada, in the year one thousand eight hundred and seventy, by Dafson Brotiras, in the Cffice of the Minister of Agriculture.

$$
12360
$$

JOHN LOFELL, PRINTER.

In teaching Zoology nothing is of more importance than to have the means of dirceting the attention of the student to the animals of the country in which he lives. For this reason I have been in tho habit of preparing a synopsis of the subject for the use of my classes, with examples taken as far as possible from common native species. In preparing a new edition of this synopsis, I was advised by the publisher to give it greater extension, in the hope that it might be uscful to other teachers, and also to isolated students and collectors. The present manual is the result of this attempt; and the only merit which it claims is that of giving a skeleton of the subject, with illustrations taken from species which the student can collect for himself within the limits of British North America, or can roadily obtain access to in public or private collections.

Fossil animals are included as well as those which are recent, because many types not represented in our existing fauna, occur as fossils in our rock formations; and because one important use of the teaching of Zoology is that it may be made subsidiary to geological research.

I have avoided the modern doctrines of a "physical basis of life" and of "derivation," because I believe them to rest on grounds very different from those of true science, and therefore to be unsuitable for the pur poses of a text-book. I have also retained the Cuvicrian Provinces of the Animal Kingdom as amended by modern discoveries. I am quite aware that there are Zoologists whoaffirm that the Provineo liadiata has been "effectually abolished" and that other provinces should be broken up; but as I cannot help pereciving that the four types of the great French naturalist exist in nature, I have not scrupled to adhere to them, as the expression of a çrand and philosophical idea, essential to an accurate and enlarged conception of nature,

In the present chaos of synonymy in Zoology, I have often been perplesed as to the generic and speeifie names to be given to our most common animals ; but have endcavoured to take such a midalle way between the older names and the later innovatious, as seemed likely to be least perplesing to the student.

For many of the illustrations I am indebted to the memoirs of Mr. Billings in the publications of the Geological Survey, and also to the papers of Mr. D'Urbsin, Mr. Whitcaves and Mr. Packard in the "Canadian Naturalist." A number are from my own papers in the Naturalist and from "Acadian Gcology,' and many are original. I have to thank Dr. P. P. Carpenter and Mr. Whiteaves for some raluable hints toward the improve ment of the chapter on Mollusen.

Should this volume be well received, it may be followed by another on the Vertebrata. In the mean time I shall be much indebted to any of my fellow workers who may use this manual, if they will give me the benefit of such hints as may occur to them, either with reference to a new edition or to a second volume.

I may add that I have kept in view the possible utility of this manual to tourists and visitors to the sea-side, who will find it to contain figures or notices of most of the common animals they are likely to moet with, as well as directions for collecting and preserving specimens.
McGili College, Montreal, Dec. 1869.

$$
E R I A T A
$$

Page 7 line 5-for and recul each.
" 7 " 20-for very largoly present in all rowd also largely present in these.
" 10 " 2 from bottom-for Mollusous read Molluscous.
" 83 " 17-for anologies recul analogices.
" 46-for class 2, A salephe، reoul clase 3, Acalcphe; and for class 3, Anthozon, roul class 2, Anthozoa.

CONTENTS.

CILALTER 1.

Phymologhonl Zoology:

1. Goneral nature of the Animal. 8
2. Tlseues of the A nimal 6
? Functions of the Animal. 10
CHAITER 11.
Zoologionl Clabibiontion:
3. General considerations 20
4. The species in Zoology 23
5. Gonera and highor groupo 30
6. Division into Provinces 3
7. Division into Classos 39
8. Division into Familios and Orders. 42
CIIAPTER III.
Defcriptifh Zoology-Radiata:
Clasy 1. 1'rotozoa $4 i$
Class 2. Anthozon or Actinozoa. 61
Class 3. Acalepha or 1 ydrozon 76
class 4. Eichinodermata 88
CHALTER IV.
Deadifitive Zoology-Morlugoa:
Class 1. Hotorobranchiata. 102
Class 2. Lamelibranchiata 128
clase 3. Gasteropoda. 144
Clase 4. Cephalopoda. 165
Chapter V.
DrboriptiveZhologi-Articulata:
Clase 1. Annulata. 176
Class 2. Crustacea 192
Class 3. Insecta 209
Cinse 4. Arachnida 237
APRENDIX A.
Clagbipication of Vertebrata. 247
APPENDIX B.
Ingtrdutiong for Colleoting and Pbigerving Inverte- bhate animale, 253

IIANIDBOOK OF Y00L0GY.

Koology is the name under which we arrange our knowledge of animals, considered as oljects of natural history study-that is, as objects of observation, comparison, and classification. The clements of tho subject may be grouped under the following heads :

1. The general nature of the animal-its consti. tuent tissues and its functions.
2. The principles of classification as applied to the animal kingdom.
3. The detailed description of animals, in connection with their elassification.

The first of these subjects may be named Physiological Zoology; the second, Zoological Classification ; and the third, Descriptive Zoology.

We shall consider these in their order, devoting one chapter to each of the two first subjects, and entering at greater length into the third, which necessarily includes the lager rart of Zoology proper.

- Chapter I.
 PIIYSIOLOGICAL ZOOLOGY.

1. Geveral Nature of tie Animal.

In answer to the question-_"What is an animal?" -we may say, in the first place, that an animal is a being composed of certain organised tissues and possessing powers usually styled vital forces. The tissues of the animal are such as membrane, flesh, nerve-matter, bone; and these are built up, especially in the higher animals, into organs or more or less complex machines. The results of vital force acting in the animal, are such processes as digestion, nutrition, circulation, respiration, sensation, muscular action. The tissues and organs are necessary to the performance of these functions; but the tissues and organs themselves can only be produced under the influence of life. The tissues and organs may, however, continue to exist, or may be prescrved for a greater or less time after their vitality las departed. These statements are sufficient to distinguish animal organisms from mineral substances, though the constituent elements of the former are the same with a part of those occurring in the latter. It is further to be observed that since structure and peculiar chemical compounds pervade the animal organism, we can, by the aid of the mioroscope and of chemical tests, distinguish the smallest shred of animal matter from that which is merely mineral : and this even when the former, imperfectly preserved or partially min-
eralised, is imbedded in a fossil condition in the rocks of the earth.

Plants are organised and living, as well as ainmals, and contain the same organic compounds, though in different proportion from that in which they occur in the animal.

I'o distinguish the animal from the plant, we may affirm, 1st, that the former is reproductive by eggs or ova and not by seeds and spores, the latter being distinct in their origin, their structure, and their chemical composition; 2nd, that in its processes of nutrition it digests organic food in an internal cavity, subsequently consuming a part of this food at the expense of the oxygen of the atmosphere ; and that it builds up its tissues principally of nitrogenised matter ; 3rd, that the animal possesses the power of voluntary motion, and to subserve this, muscular tissue ; 4th, that it possesses sensation, and to subserve this and motion as well, a nervous system and external senses.

We thus find four general characteristics of the animal:

1. Sensation-by means of a nervous system and special senses.
2. Voluntary motion-by means of the muscular and nervous systems.
3. Nutrition-by means of a stomach and intestines, with absorptive, circulatory, and respiratory apparatus.
4. Reproduction-by ova and sperm-cells.

In every animal, even the simplest, these functions are in greater or less perfection performed; and it is the presence of the aggregate of these functions or the organs propor to them, that enables
us to call any organism an animal. It is important to carry with us this definition of the animal; first, as indicating the limits of the creatures which the zoologist has to classify; and secondly, as pointing out to us the nature of the characters on which we must rely in our classification. For the student, I hold it to be necessary, before proceeding further, to understand well these functions and structures, as they exist in some one of the higher animals. For this purpose it will be sufficient that he should read carefully any small elementary work on animal physiology, such as any of those mentioned below.* In this outline, I shall merely indicate in the following sections, the most important points to be known.

2. Tissues of the Animal.

The animal tissues are known to us principally by means of the mieroscope ; and animal histology or the study of animal tissues, has, in modern times, grown to be an extensive and most important branch of investigation, affording to the microscopist some of the most interesting as well as intricate subjects of observation, and yielding the most important results with reference to the principles of physiology. \dagger

The essential material of the animal tissues is albumen, a substance with which we are familiar as

[^0]white of egg, and which, with slight modifications and addition of mineral matter, is capable of furnishing the material of all the organs of animals. Albumen is a strictly organic substance, occurring only as a component of living beings, and produced in the first instance in the cells of plants. It is a compound of carbon, oxygen, hydrogen, and nitrogen, with a minute proportion of sulphur. In consequence of the prevalence of albumen and albuminoid substances in the animal tissues, the animal may be regarded, in a chemical point of view, as consisting of only four clements, carbon, oxygen, hydrogen, and nitrogen.

Fig. 1.-Cellular Tissuc-Showing Nucici and Nuce celi.
Fig. 2.-Young Rlood-Cell, (alter lseale).
Figg 3.-Vibrous Tissue and liat-ecdls.
Fig. 4.-Striaied Muscular Fibre with Norve-Fibres and Nuclear matter-(after Bealo.)
Piy. 5.-Cartilnge, slowing groups of cells with Nuclei.
Fig. 6.-Bone, slowing eells and Haverstan Canal ; (a) Young BoneCe'l; (b) Maturo Bone-Cell.
Fig. 7.-Nerve-Cell and Nerve-Fibres-(after Bea'e.)
Figs. 1 to 7 represent lissues highly magnified.

Cellabar Tissue. - The simplest kind of auimal tissue is that to which we give the name cellular. It consists of cells or sacs, with albuminous walls more or less firmly attache lorether, and containing a semi-fluid substance named sareode, with a central mass, usually granular in aspect, called the nucleus, and which is al:so albuminous. The nuclear matter would seem to be that which is most active in vital processes. It appears to prccede the formation of the complete cell, and is most abundant in young cells. Animal cells tend to increase in dimensions up to a certain point, but they are usually microscopic in size. 'Ihey also have the power of multiplying rapidly, new cells being produced from those previously existing. Large po:tions of the bodies of many of the lower animals are composed entirely of simple cellular tissue ; and it also exists in the higher animals, in the epidermis and other membranes, glands, cartilages, \&c. It is very largely present in all mimals in their earlier embryonic stages. (Figs. 1-2.)

Fibrous or Connective wisure.-This is composed cither of gelatine or of albumen, and presents the aspeet of fibres either parallel or interlaced. The dermis or true skin, and the finer membranes which pack and connect or give form to the different organs of the body, consist of it ; and it forms also the tendons or corls comnecting the muscles with the parts which they act upon, and the ligamonts which bind together the bones or other hard parts. The gelatinous form of fibrous tissue is white and inelastic, and can be boiled into glue or tanned into leather. The albuminous form is yellow and clas-
tic ; it constitutes the elastic liganents, and enters into the coats of the larger arteries. [Fig. 3.]

Muscular or Contractile Tissuc.-This, like the last, is fibrous, but it is composed of the animal substance fibrine, a member of the Albuminoid series. It is possessed of the power of shortening and thickening its fibres, and again lengthening them, in such a manner as to produce the effects of muscular contraction and relaxation, on which the greater part of anime 1 motions depend. The muscular fibres of the ordinary museles or flesh of the higher animals are transversely striated or divided into joints, which shorten when the fibre contracts. The ultimate fibrille are united into fibres, each enclosed ina delicate structureless membrane. These fibres are again bound up into larger bundles, enclosed in fibrous tissue; and these are collected into muscles of various form and size. Smooth muscular fibres occur in some involuntary muscles of the higher animals, and in the lower tribes of animals. (Fig. 4.)

Asscous or ERony rissue.--Bonc consists of gelatinous animal matter in which are imbedded granules of phosphate of lime. It is not absolutely solid, but filled with microscopic spaces or lacunce, from the sides of which ramify numerous canaliculi or minute tubes connecting the lacunæ with each other, and the whole with canals traversing the bone, (Haversian canals) which carry the bloodvessels that nourish the bone. Theso vessels open upon the surface of the bone, and unite with those of the periosteum, a strong membrane covering its surface. Bone in its young state is usually a
compact elastic substance known as cartilage or gristle. Under the microscope this presents a series of nucleated cells imbedded in a firm animal substance, and the whole mass grows by division of the cells, and development of intercellular substance between their separated parts. In the ossification of the cartilage, the intercellular matter is hardened by deposition of mineral granules, and the cells become the lacunre of the bone. In some animals the skeleton remains permanently cartilaginous; and in all, the extremities of many bones remain capped with cartilage. The substance of teeth is a modification of bone. In ivory the Haversian canals are absent, and the bone-cells drawn out into narrow contiguous tubes. Enamel, which is the hardest kind of bony tissue, consists of solid bony prisms placed side by side. (Figs. 5-6.)

Nervous Tissue.-This is of two kinds-nerve-cells and nerve-fibres. The former occur principally in the brain, the spinal cord and the organs of sense, and constitute what is sometimes called gray nerve matter. I'hey are the sources or storchouses of nervous power. They give off tubular prolongations of their walls, which connect the cells with each other, or form the roots of nerve fibres. . These last consist of a central cord, surrounded by a clear substance, and this by a more opaque coating enclosed in a structureless membrane, the Neurilemma. The animal matter constituting Nerve, contains phosphorous as one of its essential elements, but the relation of its composition and structure with its function is not known. This function is the most remarkable performed by any tissue, namely that of being the material medium of the
proper vitality of the animal, as exhibitod in sensation and voluntary motion. Without the action of nervous cells and fibres, we can have no perception of impressions from without, or of changes taking place within, the boty; and without this action no muscular fibre can contract, and consequently no motion can take place. For this reason, the amount and perfection of the nervous system, marks more than anything else, the rank of the animal in nature, and the plan of distribution of the nervous system, is the surest index of its type of structure. (Figs. 4 \& 7.)

The above tissues exist in their full development only in the higher animals ; but, under varions modifications and simplifications, they may be traced in all except the very lowest forms of animal life.

3. Functions of tie Animal.

In order to perform the functions of animal life, the tissues are built up into organs and systems of organs, to each of which certain functions are allotted. These functions may be roughly grouped under two heads. 1st. Those of the animal life proper, which are peculiar to the animal. 2nd. 'Those of the vegetative life, which are common to plants as well, though performed in these in a differenti way. The former are Sensation and Voluntary Motion. The latter are Nutrition and Reproduction. Of these functions we can give only a very general summary.*

[^1]\qquad .

The organs of sensation are the nervous system and special senses. The former consists of nervecentres and nerve-fibres, and these may be arranged in four different ways.
I. Wyelcuceplasions.-Consisting of a proper brain, placed over the gullet, with a dorsal spinal cord, from which all the nerves of the extremities branch off. The brain consists of several pairs of lobes ; viz.: the olfactory, presiding over the sense of smell, the optic, relating to the sense of sight, the cerebral hemispheres, relating to the general sensation and intelligence, and a single posterior lobe, tho cerebellum, presiding over voluntary motion. The parts of the brain are connected below with the spinal cord, by a mass of fibres and cells called the medulla oblongata. The spinal cord is divisible into four columns, two posterior, and two antero-lateral, the former devoted to sensation, and the latter to voluntary motion, and the nerve fibres taking their origin in part from each. The mammals, birds, reptiles and fishes have their nervous system constructed on this type. (Fig. 8 \& 9.)
2. WOanagandriate-In this type the principal nerve-centre consists of a ring surrounding the gullet, with a mass above giving off nerves of sensation, and a mass below giving off a double abdominal cord, having ganglia or subordinate masses of nerve-matter at intervals. This is the nervous system of spiders, insects, crustacea and worms.(Fig. 10.)
3. Heterogangiante. -In this type the principal nervous masses are distributed around a large
æsophageal ring, and in the course of nerve-cords irregularly distributed to the different organs. This is the nervous system of cuttle-fishes, land and water snails, bivalve shell-fishes and their allies.Fi g. 11.)
8. Nematomenarors or ERaniateal.-In this the centre of the nerve system consists of a simple ring, giving off radiating branches to the extremities of the body, and without distinct ganglia. This is the nervous system of star-fishes and their allies. (Fig. 12.)

In some of the lower animals the norvous system has not been made out; but there can be little doubt that, even in those of simplest organization, there must be at least scattered nervous cells and fibres.

The nervous fibres subserve the two-fold function of carrying to the muscles the impulse by which they are excited to action, and of conveying to tho brain sensational impressions from the extremities. Different fibres are supposed to be devoted to these scparate uses. The function relating to muscular movement is known as the efferent or out-going function; that relating to sensation as the afferent or in-going influence. It is the latter that concerns us under the present heading, and in performing it the nervous system is connected with organs of sense, the general nature of which can alone be referred to here.

The sense of rouelh is distributed generally over the outcr surface of the body, though with different degrees of intensity in different parts. In the higher animals this sense informs of resistance, character of surface and temperature, being acted on
not only by objects in contact with the skin, but by radiant heat from bodies at a distance. In some of the lower animals with transparent bodies, it is probably acted on by light as well, being in all animals the most truly general sense. The structures connected with the sense of touch are the extremities of minute nerve fibres, or loops of such fibres, disposed on the inner surface of a membrane, and thus protected from direct contact with external bodies. This sense is possessed by all animals.

The sense of waste resembles that of touch in the apparatus provided for its exereise ; but the nerves appropriated to this sense are distributed to the papillae or prominences on the surface of the tongue. These nerves, in addition to tactile properties and tomperature, take cognizance of the sapid properties of bodies, and, in conjunction with the sense of smell, of flavours also.

The sense of samell resides in the nerves distributed orer a delicate moist membrane in the nostrils. In .nimals breathing air, this membrane is affected by odorous particles difusible in that medium. In animals living in water, by particles in suspension or solution in the water, or in the free oxygen contained in it. There is reason to believe that this sense is possessed in some degree by all animals, but the character of the impressions which it conveys, must be very different in different creatures, and in many animals it is not connected with the organs of respiration.

The sense of Miearing relates to the vibrations of sonorous bodies; and in the higher animals the ear is a very complex" apparatus, giving very distinct impressions of different qualities of sound. In
animals of lower grade it is often simplified to a sac filled with fluid, and containing minute ramifications of the auditory nerve, in connection with small solid granules to concentrate the vibrations of the water or air.

The sense of sighte the highest and most important of all,requires very complicated arrangements. In addition to the optic lobes and nerves, the retina of the eye, where the minute ramifications of the latter terminatn, is the screen of a camera, provided with a highly perfect optical arrangement for throwing on it a minute picture of the objects without. The varied colours and lights of this picture, acting on the ramifications of the optic nerve, give the power of vision. In the higher animals the optical apparatus consists of a doubly convex or globular lens imbedded in humours of different refractive powers. In insects and some other creatures, there are great numbers of minute tubular cyes centering in a common point. In animals of still lower grade, the eye consists merely of a globular transparent sac filled with a clear refractive fluid, and having at the back, a retina or optic nerve, and a coat of pigment cells for absorbing the light after it has acted on the nerve.

VOLUNTARY MOTION AND SUPPORT.

With reference to the apparatus for voluntary motion and support, all animals may be arranged in four great groups, corresponding to those referred to under the last head. These types of structure are :

1. Vertelerate, in which the body is supported by a series of bones (vertebre), articulated
together, and having the principal nerve cord above their centres or surfaces of attachment, and the viscera below. The limbs do not exceed four. The whole skeleton is intermal, relatively to the muscles that act upon it. This group coincides with the myelenép puala, and ine.udes mammals, birds, reptiles, and fishes. (Eig. 13.)

Fig. 13.-Section of Skeleton of a Fisll (Vertebrate); (a) Spinal cord.
Fig. 14.-Section of Skeleton of Ω Crustacean (Articulate); (a) Abdominal nervous cord.

Fig.15.-Section of mantle of a Cuttie-fish (Saccato or Molluscous); (a) Internal shell.
lig. 16.-Secti in of Skeleton of a Coral, (Radinte.)
2. Articulate or Anmulose. - In this, support and locomotion are provided for by a scries of external rings, enclosing the body and limbs, and acted on by muscles placed within. This group coincides with homogangliata, and includes the spiders, insects, crustaceans, and worms. (Fig. 14.)
3. Whanimeras or Saccate. - In this there is no skeleton, but the body is enclosed in a muscuiar
sac or mantle, and the locomotive organs, when present, consist of layers of muscles without hard parts, but there are often shelly organs for support and protection. This coincides with heterogangliata, and includes cuttle fishes, snails, bivalve shellfishes, \&c. (Fig. 15.)
4. 1Radiate.-In this, the skeleton, when present, is internal with reference to the muscles, and consists of pieces disposed in radiating lines, or of a solid, stony, or corncous mass; but in many there are no hard parts, or only an external case - or tube. 'Ihis coincides with nematoneura, and includes star-fishes, sea-urchins, cural animals, seajellies, \&c. (Fig. 16.)

NUTRITION.

In the higher animals the process of digestion requires: (1.) Organs of prehension and mastication, which are often of the highest importance as means of zoological distinction. In connection with these, the salivary secretion affords the means of preparing the food for the processes to which it is subsequently subjected. (2.) Digestion proper, carried on in the stomach by the aid of the gastric juice, and completed in the small intestines by the action of the bile and pancreatic juice. (3.) Absorption by the villi or processes of the intestine, from which the fluid nutritive matters, the results of digestion, are removed from the intestinal canal and conveyed to the circulatory system. (4.) Exeretion of the matters not available for nutrition.

In animals lower in the scale, these arrangements are variously simplificd, until the_ whole of
thic apparatus and secreted fluids are concentrated in a simple sac ; and in the very simplest animals digestive cavities appear to be temporarily excavated in the soft substance of the body.

The process of circulation, wherely the blood, or corresponding fluid containing the products of digestion, is circulated throughout the body, is performed in the highest animals by a muscular heart of four cavities, with arteries for the outflowing, and veins for the inflowing blood. In animals lower in rank, the same purpose is served by a heart of two cavities, or even of one ; and finally the blood is circulated without the action of a heart, by a network of vessels similar in function to those called capillaries in the higher animals.

In all animals the vital fluid requires aeration, or exposure to the action of oxygen. This may take place directly in the air by means of lungs or similar contrivances, or indirectly in water containing free oxygen in solution, by means of gills. In either case the essential condition is that the blood shall be carried by minute vessels along a moist membrane, sparating it from the oxygen-bearing medium. In the higher animals there is a special circulation to the lungs or gills. In lower animals the respiration is often a mere incident in the general circulation, and in some of the lower forms of life the general surface of the exterior or interior of the body, is used as a means of respiration.

Nutrition proper is performed by the absorption of the materials required to form or repair the various tissues, from the blood or nutritive fluid; and in all animals these tissues, chemically changed
by use in the production of animal force, are removed from the body by excretory processes, to which, in the higher animals, complicated organs, as the kidneys, and perspiratory.glands of the skin, are devoted.

PEPRODUCTION.

In all animals new individuals arise from the formation of ovarian or embryo cells, the fertilization of these, by the introduction of the matter of another kind of cell, the sperm cell, and the subsequent development within and from the ovum of an embryo capable of advancing to the mature condition of its species. In some of the lower animals, however, in addition to this process of true sexual reproduction, we observe: (1.) Reproduction by spontaneous fission, or scparation of the body of the animal into two distinct parts, each of which nay become a complete animal. (2.) Reproduction by gemmation or budding, in which a process developed from the body of the parent becomes a separate individual. These modes, however, are usually characteristic of the immature or cmbryo stages of animals, but they include many of the most interesting and complicated phenomena in the reproductive and embryonic history of some of the more simple creatures.

CHAPTER II.

ZOOLOGICAL CLASSIFICATION.

1. General Considerations.

No subject is at present more perplexing to the practical zoologist or geologist, and to the educator, than that of zoological classification. The subject in itself is very intricate, in consequence of the vast number of species to be arranged; and tho views given as to certain groups by the most eminent naturalists are so conflicting, that the student is tempted to abandon it in despair, as incapable of being satisfactorily comprehended.

The reasons of this, it seems to the writer, are twofold. First, zoology is so extensive, that it has become divided into a number of subordinate branches, the cultivators of which attach an exaggerated value to their own specialties, and are unable to appreciate those of others. Thus we find naturalists subdividing one group more minutely than others, or raising one group to a position of equivalency with others, to which, in the opinion of the students of these others, it is quite subordinate. So also we have some zoologists basing classification wholly on embryology or on mere anatomical structure, or even on the functions of some one class of organs. Secondly, there is a failure to perceive that if there is any order in the animal kingdom, some one principle of arrangement must pervade the whole ; and that our arrangement must not be one merely of convenience, or of a desultory and uncertain character, but uniform and homogeneous.

The writer of these pages does not profess to be in a position to escape from these causes of failure; but as a teacher of some experience, and as a student of certain portions of the animal kingdom, he has endeavoured carefully to eliminate from his own views the prejudices incident to his specialties, and to take a general view of the subject; and is therefore not without hope that the results at which he has arrived may be found useful to the young naturalist. More especially we may hope to present to the student a mode of arranging animals which experience has shown to be woll suited to the purposes of the learner.

Classification in any department of Natural His. tory is the arranging of the oljects which we study in such a manner as to express their natural relationship. In other words, we endeavour in classification to present to our minds such a notion of the resemblances and differences of objects as may enable us to understand them, not merely as isolated units, but as parts of the system of nature. Without such arrangement, there could be no scientific knowledge of nature, and our natural history would be merely a mass of undigested facts.

At first sight, and to a person knowing only a fow objects, such arrangement may appear casy ; but in reality it is encompassed with difficulties, some of which have not been appreciated by the framers of systems. The more important of these difficulties we may shortly consider.

1. There are in the animal kingdom a vast number of kinds or species. To form a perfect classification it would be necessary to know the characters or distinctive marks of all these species. To
make even a tolerable approximation to a good system, requires an amount of preparatory labour which can be estimated only by those who have carefully worked up at least a few species in these respects.
2. So soon as we have ascertained the characters of a considerable number of species, we find that in their nearest resemblances these do not constitute a linear series, but arrange themselves in groups more or less separated from each other like constellations in the heavens, and having relationships tending with more or less force in different directions. This not only introduces complexity into our systems, but renders it impossible to represent them adequately in written or spoken discourse, or even by tables or diagrams. We think and speak of things in series, but nature's objects are not so arranged, but in groups radiating from each other like the branches of a tree; and our imperfect modes of thought and expression are severely tested in the attempt to understand nature, or to convey ideas of classification to the minds of others.
3. The considerations above stated oblige us to enquire what leading characters we may take as the principal guides in our arrangement, so as to make this as natural as possible and at the same time intelligible. It is simplest to take only one obvious character, as if for example we were to arrange all animals according to their colour or to the number of their limbs; but the greater the number of characters we can use, or the more completely we can represent the aggregate of resemblances and differences, the more natural will

2. The Species in Zoology.

We cannot consider the animals with which we are familiar, without perceiving that they constitute kinds or Species, which do not appear to graduate into each other, and which can be distinguished by certain characters. Yet simple though this at first sight appears, we shall find that many intricate questions are connected with it. Our idea of the species is based on the resomblance of the individuals composing it in all the characters which we consider essential. Ii, for instance, a number of sheep and goats are placed before us, we :earlily select the individuals of each species. In doing this we give no regard to differences of sex or age, but put the young and old, the male and female, of
each species together. Nor do we pay attention to merely accidental differences: a mutilated or deformed specimen is not on that account separated from its species. Nor do wo attach value to characters which experience has proved to vary according to circumstances, and in the same line of descent. Such, for example, are differences of colour, or fineness of the hair or wool. The remaining resemblances and differences aro those on which we rely for our determination of the species, and which we term essential. We shall find that these essential characters of the species are points of structure, proportion of parts, ornamentation, and habits.

These characters constitute our idea of the species, which we can readily separate from the Individuals composing it. The individuals are temporary, but the species is permanent, being continued through the succession of individuals. If all the adult individuals are alike and indistinguishable from each other, then any one may serve as a specimen of the species. If there are differences of sex, or Tarieties subordinate to the species, then a suite of specimens showing theso will represent the species. The species is thus an assemblage of powers and propertics manifested in certain portions of matter called individuals, and which are its temporary representatives. It follows that the species is the true unit of our classification, and that the indefinite multiplication of individuals leaves this unchanged.

Our idea of the species will however be imperfect if we do not distinctly place before our minds its continued existence in time. 'lhis depends on the
ention ted or arated lue to vary o line ces of The those of the shall pecies amenof the n the s are being duals. indismay e are 0 the theso us an ed in and llows tion, luals
rfect .s its the
power of reproduction, whereby the individuals now existing have descended from similar progenitors, and will give birth to successors like themselves. A moment's thought will suffice to show that, independently of this, species could have no real existence in naturc. If animals were not reproductive, the species would beenme extinct after the lapse oi a generation. If their reproduction followed no certain law, and the progeny might be different from the parents, then the characters of the species would specdily become changed, and it would practically cease to be the same. Again, it is necessary that the reproduction of species should be pure or unmixed ; for an indiscriminate hybridity would soon obliterate the boundaries of species. It is impossible, therefore, to separate the idea of species from the power of continuous unchanged reproduction, without depriving it of its essential characters.

In like manner it is obvious that we must assume a separate origin for each species, and that we need not assume more than one origin. Practically, species remain unchanged, and do not originate from one another; and if all the individuals of a species were destroyed except one pair, this would, under favourable circumstances, be sufficient to restoro the species in its original abundance.

The questions which have been raised as to the origin of species by descent with indefinite variation, and as to the possible creation of individuals of the same species in different places or at different times, are not of a practical character, at least in zoology proper, inasmuch as species are unchanged within the limits of time included in our observations of
nature ; and the whole burden of proof may be thrown on those who assert such views.

We are thus brought to the definition of specios, long ago proposed by Cuvier and De Candolle ; and may practically unite in one species all those individuals which so resemble each other that we may reasonablv infer that they have descended from a common ancestry. All our practical tests for the determination of species resolve themselves into this general consideration. The only modification of this statement on which even an advocate of the mutability of species can insist, is, that a sufficient time and great geological changes being given, one species may possibly split into two or more; and since this is an unproved hypothesis, we may practically noglect it, except as a warning to be very sure that we do not separate as distinct species any forms which may be merely varieties of a single species, an crror exceedingly prevalent, and which vitiates not a little of our reasoning on such subjects.

The origin of the first irdividuals of a species may be, and probably is, a problem not within the province of natural history. In the case of vital force it is the same as in the case of gravitation and other forces. We can observe its operation and ascertain the laws of its action, but of the force itself we know nothing, nor do we know to what extent it may be identical in its essence with other forces, since the interchange of forces observed in nature may be as different from the actual conversion of one force into another, as the substitution of one element for another in a chemical compound is different from the conversion of one element into another.

With regard to the properly creative force or
power, if we suppose this to be distinct from mere vital force, we are still more ignorant. We do not witness its operation. We know nothing, except by inference, of its laws ; and whatever we may succeed in ascertaining as to these, wo may be sure that in the last resort we shall, as in the case of all other natural effects, be obliged to pause at that line where what we call force resolves itself into the will of the Supreme spiritual power. The " miracle" of enactment must necessarily precede law ; the " miracle" of creation, the existence of matter or force. Those who deny this have no refuge but in a bald scepticism, discreditable to a scientific mind, or in metaphysical subtiltics, into which the zoologist need not enter.

We múst not suppose, however, that the species is absolutely invariable. Variability, in some species to a greater extent than in others, is a law of specific existence. It is the measure of the influence of disturbing forces from without, in their action on the specific unity. In some cases it is difficult to distinguish varieties from true species, and with many naturalists there has been a tendency to introduce new species on insufficient grounds. Such errors can be detected ordinarily by comparing large suites of specimens and ascertaining the gradations between them, which always occur in the case of varieties, but are absent in the case of species truly distinct. Such comparisons require much time and labour, and must be pursucd with much greater diligence than heretofore, in order to settle finally the question whether the varietal perturbations always tend to return to a state of equilibrium, or whether in any case they are capable of indefinite divergence from the specific unity.

The species is the only group which nature furnishes to us ready made. It is the only group in which the individuals must be bound together by a reproductive connection. There might or might not be affinities which would enable us to group species in larger aggregates, as genera and families; and the tie which binds these together is merely our perception of greater or less resemblance, not a genetic connection. We say for example, that all the individuals of the common Crew constitute one species, and we know that if all these birds were destroyed except one pair, the species would really exist, and might be renewed in all its previous numbers. We can make the some assertion with reference to the Raven or to the Blue Jay, considered as species. But if, because of resemblances between these species, we group them in the genus Corvus or in the family Corvidoe, we express merely our belief in accrtain structural resemblance, not in any genetic connection. Nor need we suppose that if any of the species of a genus were destroyed they would be reproduced from the others. Further, while all the individuals of any of the species may be precisely similar to each other and still be distinct individuals, all the species of the genus cannot be similar in all their characters, otherwise they would constitute but one species.

In other words, the species and the genus, considered as groups, differ, not in degree merely, but in kind. To make this very plain, let us take a familiar illustration. I have a number of maps, all uniform in size and in style of execution; but in the whole there are only two kinds,-maps of the eastern hemisphere, and maps of the western hemis-
nature sroup in cr by a ght not species s; and cly our not a that all ate one ls were 1 really revious on with considblances genus merely ce, not uppose stroyed urther, es may be discannot they considbut in famips, all in the c cast-homis-
phere. Now all of the maps of one kind constitute a species ; those of both kinds, a genus. The individuals of one species, say of the castern hemisphere, are all alike. They have all been struck from one plate, from which many similar maps may be produced. But the other map, though necessary to make up the set or genus, may be quite dissimilar in all its details from the first, and could not be produced from its plate. We have no difficulty here in understanding that the specific unity is of a different kind from the generic unity, and that the distinction is by no means one of mere grade of resemblance. A very little thought must convince any one that this applies to species and genera in zoology; and that those naturalists who affirm that species have no more real existchice in nature than genera, have overlooked one of the essential elements of classification. Nor would this distinction be invalidated by the assumption of a descent with modification, unless it could be shown that in actual nature species shade into each other ; and this is certainly not the case in those which are reckoned as guod species.

I have been thus careful to insist on the nature of the species in natural history; because I believe that loose views on this subject have caused a large proportion of the errors in classification.
Though tho groups higher than species do not exist in nature in tho same sense in which species exist, they are not arbitrary, but depend on our conception of resemblances and differences which actually exist. We go out into the forest and perceive different species of trees; but, at the same time, wo find that these species can be grouped in
genera, as Oaks, Birches, Maples, \&c., under each of which generic names there may be several species. It is cvidently not an arbitrary arrangement of ours thus to group species: they naturally arrange themselves in such groups, under the action of our comparing powers.
3. Genera and Higher Groups.

In comparing species with each other for purposes of classification, there are four distinct grounds on which such comparison can be made. These are : -1st. intimate structural or anatomical resemblance ; 2nd. Grade or rank ; 3rd. Use or function ; 4th. Plan or type. All of these may ve, indeed must be, used in classification, though in very different ways.

1. Intimate siructural relationship is the ground on which we frame Genera. Two or more species resemble each other structurally to such an extent that the same definition will in many important points apply to both. Such species we group in a yenus. It is most important to obscrve, as Agassiz has well pointed out, that this close resemblance in structure is really our main ground for the formation of genera. But for this very reason it is not to be expected in our higher groups.
2. Griude or rank refers to degree of complexity of structure, or to the degree of development of those functions that are the highest in the animal nature. A coral polyp is more simple in structure than a fish, and is therefore lower in rank. A fish is less highly endowed in brain, sensation, and intelligence, than a mammal, and is therefore of lower rank. An egg or an embryo is simpler than the adult of the species to which it belongs; and when
der each cral spoement of arrange on of our
purposes ounds on ese are :
resemunction ; indeed ry differ${ }^{3}$ ground species n extent nportant rup in a Agassiz lance in e formait is not ment of animal ructure A fish ad intelf lower an the d when
one animal resembles the embryo of another, it ranks lower in the scale. A worm ranks lower than an insect whose larva it resembles.

We use this difference of grade or rank in grouping genera in Orders; but it occupies a very subordinate place in the construction of other groups. Many grave errors have arisen from its indiscriminate application ; most heterogeneous assemblages being formed when we construct groups larger than orders merely on the ground of similar grade : and when, on the other hand, we separate the lower members of natural groups on the ground of simplicity of structure, we fall into an equal mistake of another kind. Of errors of these kinds still current, I may instance the attempt of some naturalists to establish a province or sub-kingdom of Protozoa, to include all the simplest members of the Animal Kingdon, and the separation of the Entozoa or intestinal worms from the other worms as a distinct class.

There arc two kinds of investigation much used in classification, which more especially develope the idea of grade or rank among animals. One is that of embryology, or the development of animals from the ovum. Another is that of cephalisation, or the development of the head and organs connected therewith. Both of these are of great importance, but, on the principles above stated, they aid us chiefly in referring animals to their Orders. Other limitations of the criterion of grade or rank will appear when we arrive at the consideration of Classes.
3. Function or Use. - In different animals we often find the same use served by different kinds of organs, as, for instance, the wing of a bird and
the wing of an insect, which, though both used for flying, are constructed in very different ways. It would lead us astray were we to arrange animals primarily on this ground: for instance, if we were to group together fishes and crustacca because both swim; or birds and insects, because both fly. Again, in different groups of animals, certain functions and the organs which subserve them, are greatly developed in comparison with others. For example, the enormous reproductive power of fishes, or the remarkable development of the locomotive organs in birds, as compared with other vertebrates. This consideration is not applicable in our primary division of animals, but it constitutes the principal ground on which naturalists have based the secondary divisions or Classes; and it serves also to indicate the anologies between the corresponding members of different primary groups, as, for instance, of the birds in one group to the insects in another.
4. Plan or Type.-Under this head we consider the similarity of construction in different animals or organs, without regard to uses. We say, for example, that the win. of the bird and the bat, the paddle of the whale, and the fore-leg of the dog, are similar in type or homologous to each other, because they are made up of similar sets of bones. They are modifications of one general plan of structure. Animals thus constructed on similar plans are said to have an affinity with each other.

It is evident that this consideration of homology or affinity, if we can really detect it in nature, should be a primary ground in our arrangement ; because, if we regard nature as an orderly system, and still
more if we regard it as the expression of an intelligent mind, this must be the aspect in which wo can best comprehend its schome or plan of construction.
As a simple illustration of this and the preceding heads, we may suppose that we are writing a treatise on architecture, or the art of building. We observo 1st, that there aro differences of material employed, as stone, brick, or wood ; 2nd, that thero are various grades of buildings, from the simplest hut to the most elaborato palace or temple ; 3rd, we find a gre.t variety of uses for which buildings are constructed, and to which they aro adapted; 4th, there aro different orders of architecture or styles, which indicate the various plans of construction adopted. It will, in studying such a subject, be the most logical order to consider, 1st, the several orders or architecture or plans or types adopted; 2nd, under each of these to classify the various kinds of buildings according to their uses; 3 rdly, under each of these secondary heads, to treat of buildings more or less elaborate or complex; and 4thly, to consider the materials of which the structures may be composed. This is precisely what the most successful formers of systems have done in natural history, in dividing the animal kingdom into provinces or branches, classes, orders, and genera. On the other hand, classifications produced by mere anatomists who content themselves with a close adherence to similarity of structure and rigid definitions based on these, may be compared to a system of architecture produced by a mere bricklayer, who regards only the materials used and the manner of putting them together.

4. Primary Division of Anmals into Provinces, Branches, or Sud-ijungdoms.

This, on the principles already stated, must be made solely on the ground of type or plan, taken in its most general aspects.

If we bring before us mentally the several members of the animal kingdom, we shall probably be struck in the first instance with the general prevalence of bilateral symmetry, or the arrangement of parts equally on the right and left sides. We may observe, however, that there is a largo group of animals to which this gencral style of construction does not apply, and which have, in the words of Agassiz, a "vertical axis around which the primary elements of their structure are symmetrically arranged," conforming in this respect, and also often in other points, to the symmetry of the plant, rather than to that of tho more perfect animals. We would thus obtain what is perhaps the most obvious of all primary divisions of animals,-that into those with bilateral symmetry and those that are radiated, or the Artiozoaria and the Actinozoaria of Blainville. We shall soon find, however, on more detailed examination, that this division is very unequal, since the first group includes by far the greater part of the animal kingdom, and its members are nearly as dissimilar among themselves as any of them are from the radiates.

Penetrating a little deeper into structural character, we find that one large group of the bilateral animals possesses an internal skcleton, arranged in such a way as to divide the body inta an upper
to Prooms.
must bo n, taken
several probably , general arrangeeft sides. 3 a large style of have, in s around cture aro in this to the at of the tain what divisions ymmetry baria and all soon ion, that st group e animal dissimilar from the
aral chabilateral anged in an upper
chamber holding the brain and nervous system, and an under chamber for holding the ordinary viscera; whereas in the greater number of the bilateral animals and all the radiates, there is but one chamber for containing the whole of the organs. The first of these groups, from the vertebre or joints of the back bone, peculiar to its members, we name Vertebrata, and all the other animals Inverte brata, as proposed by Lamarck: this division corresponds to the Enaima and Anaima of Aristotle. Here also, however, we have a very unequal division,- t the Invertebrata being a vast and heterogeneous assemblage.

If, however, after separating the Vertebrata on the one hand, and the Radiata on the other, we study the remainder of the animal kingdom, wo find that it readily resolves itself into two groups, known as the Articulata and the Mollusca. We thus reach the fourfold division of Cuvier ; which is by much the most natural and philosophical yet proposed. This system may be summarised as follows:

1. Vertebrata, including Mammals, Birds, Reptiles, and Fishes. All these animals are bilateral and symmetrical, have an internal vertebrated skeleton, a brain and a dorsal nerve-cord lodged in a special cavity of the skeleton. With reference to their general form, they may be termed doubly symmetrical animals; with reference to their nervous system, Myelencephatous.

Fig. 2.

Anticulate or Annulore Type.
2. Articulata, ${ }^{*}$ jncluding Arachnida, or spiders and scorpions; Insects; Crustaceans, and Worms. These animals are bilateral and symmetrical. They have an external annulose skeleton, and a nervous system consisting of a ring and ganglia around the gullet, connected with a double abdominal nerve-cord. They are otherwise named Annulosa, longitudinal animals, or Homogangliata.

[^2]Fiv. 21.

Molluscous or Saceate Type.
3. Mollusca, including Cuttle-fish and their allies; Gasteropods or univalve shell-fishes and their allies; Lamellibranchiates or bivalve shell-fishes, \&c.; Brachiopods and their allies. They are bilateral but not always symmetrical, have no skeleton, and an ocsophageal nervous ring with nerve-fibres and ganglia not symmetrically disposed. They are otherwise named Saccata, or enclosed in mantles, massive animals, or Heterogangliata.

Fig. 22.

Radiate Type.
4. IEadiata, including Sea-urehins and Starfishes; Sea-nettles and Hydras; Polyps and Coralanimals; and Sponges and their allies. These have the parts arranged radially around a central axis, and have the nerve-systen when discernible consisting of a central ring with radiating fibres. They may be otherwise named Actinozoaria, peripheric animals, or Nematoneura.

This fourfold division includes tho whole animal kingdom, and is the only rational one which can be based on type or plan of structure. Since the time of Cuvier, though modifications in detail have become necessary, it has been strengthened by the progress of discovery; and more especially Von Baer has proved that the study of embryology establishes Cuvier's branches, by showing that in their development, animals pass through a series of forms belonging to their own branch and to that only.

I'he attempts which have been male to introduce additional branches or provinces, I regard as retrograde steps. Such for example is the province Colenterata of Leuckart, including the Polyps and the Acalephs, both of them grood classes, but not together constituting a group equivalent to a province ; the province Protozoa of Siebold, which, to resume our architectural figure, includes merely the huts and cabins which it is difficult to refer to any style of architecture, but which do not, on that account, themselves constitute a now style; and the Provinces Molluscoida and Annuloida of Huxley, which, as their names indeed import, are in the main merely simple forms of Mollusca and Articulata.
and Starand CoralThese have entral axis, mible conpres. They peripheric
ole animal which can re. Since s in detail engthened especially mbryology 1 g that in h a scrics nd to that introduce d as retroprovince ?olyps and s, but not ent to a ld, which, es merely 0 refer to o not, on ow style ; innuloida d import, - Mollusea

5. Division of Provixelis into Chasses.

Having formed our Primary divisions or Frcvinces on the ground of type or plan, we must, in dividing these into classes, have regard either to subordinate details of plan, or to some other ground. In point of fact, parturalists seem to have tacitly agreed to form classes, on what Agassiz terms the " manner in which the plan of their respective great types is exccuted, and the means employed in their execution." In other words, they have, in forming classes, adopted, perhaps unconsciously, a functional system, similar to that employed by Oken in forming his primary groups. They have taken the relative development of the four great functional systems of the animal,-the seri. ive, the locomotive, the digestive, and the reproductive. This is very manifest in the ordinary and cortainly very natural sub-division of the vertebrates into the four classes of Mammals, Birds, Reptiles, ${ }^{*}$ and Fishes. Tho Mammals are the nerve or sensuous animals, representing the highest development of sensation and intelligence. The Birds are eminently the locomotive class. The Reptiles represent merely the alimentary or vegetative life. The Fishes are the eminently reproductive or embryonic class.

If this is a natural division of vertebrates into classes, and if the other threo Provinces are of

[^3]
40 DIVISION OF PROVINCES INTO CLASSES.

equivalent value, then there should be but four classes in each, one corresponding to each of the great functional systems. We may name the first of these the nervous class: the seconl, the motive class; the third, the nutritive class; the fourth, the reproductive or embryonic class. Let us then endeavour, as a test of the truth of this system, to make such an arrangement of the elasses of the amimal kingdom.
table of chasses of andmas.

Brovinces or Brancles.	Vertebrata	Articulata.	Mollusca.	Radiata.
1. Nervorrs class	Manemetia.	Arectunirlc*	Cephutopota...	Echinoder[mata.
2. Motive class..	Ales.	mesecte.	Gastoropodit(in cluding 1 'teroperle)..........	Acatepher.
3.Nutritive class	leptilia....	Crustacer.	Lamellibranchi[ata.	Anthozor.
4. Embryonic or	Disces	Ammbata..	Hetcrobranchia.	
Reproductive class.		(including Rotijerta).	ta including't'unicata. Bruchioperda, Bryo\%oa	Proto:oa.

* The rank given to ${ }^{1}$ naturalists ; but a co. animnts will show crustacea are sim the reptiles; and the the arachnidaus are nearer to the crustaceans than to the insects, an the ground of geneml structure, than it would be to do tia same in the ease of the mammals and the reptiles as comerred with the birds.

LASSES.
DIVISION OF PROVINCES INTO CLASSES.
be but four each of the ane the first , the motive e fourth, the uet us then is system, to asses of the

LS.

Radiata.
Echinoller[mata.

Acalephuc.

Autho:oa.
irotozoa.
mated by some ures of these ects and the the birds aul to say that an to the inwould be to e reptiles as

All of the above groups are recognized by common consent as classes, except a few which have been alkeady incitentally adverted to, and to which it is not necessary again to refer here.*

It will be observed that the order in deseending the columns is that of affinity; that in reading across the columns is the order of analogy. With reference to the analogies, it will be seen that the first class in each province includes animals remarkable for condensation of the head and body, where the former exists ; for high nervous energy, sensation, and intelligence; for prehensile apparatus, and for absence or simplicity of metamorphosis. The classes in the second line are characterized by the greatest locomotive powers in their respective provinces; those in the third line by the development of the mutritive apparatus and of vegetative growth; those in the fourth line by embryonic characters when mature, and by abundant reproductive energy.

It will be observed also as a necessary consequence of the system we have pursued, that each of our classes inchules animals of very various rank or grade. Indeed, most of them have, at their bases, forms so simple or imperfect that it is almost impossible to inchude them in the class-characters. This is no objection to our arrangement, but a proof of its correctness ; for we have now arrived at the point where we must form Orders based solely on this consideration of rank. Of these humbler mem-

[^4]bers of our clasises wa mey montion the Mersupials and the Monotremes anonc the mammals, the Amplibia among the reptiles, the Mites among the arachnidans, the Myriapods among the insects, the Entozoa among the worms. Indeed it is quite possible on this ground to divide each of our elasios into two or more Sub-clusses. This is sometimes convenient for the sake of mo accurate definition ; but it is not necessary, since the division into orders sufficiently expresies these grales of complexity or elevation.

6. Division of Classes ryto Orders and FamiLIES.

Orders, as alrealy stated, are based principally on rank or grade, to be determined by relative complexity, or by the developinent of the higher nature of the animal. The last section, however, obliges us to take this with sone limitation; for since we have four descriptions or sorts of classes, each of these must have the grade within it ascertained on special grounds. For example, the orders of birds, insocts, gasteropods, and acalephre, should be ascertained chicfly by reference to the locomotive organs, as being the system of organs most eminently represented in the class. If we glance for a moment at the systems which have been proposel, we shall see that this view has unconsciously commender itself to naturalists. The orders of insects, for example, are very plainly based on such characters, being founded mainly on the wing. 'lhis is nearly equally manifest in the ordinarily received orders of birds. It appears in the division into Pteropods,
supials lo, the ong the cts, the iite posclasses netimes inition ; orders exity or

Fami-
cipally elative higher wever, 4 since eac'l of ned on - birds, ascerrgans, ly reoment shall onded s, for cters, carly rders pods,

Heteropods, and Gasteropods proper among the Gasteropoda. It is also seen in the orders Ctenophora, Discophora, Siphonophora, among Acalephæ. It would bs easy to show by a detailed review of the orders in the animal kingdon, that, in so far as they have been distinctly defined, they have in most cases been firamed with a reference to the prevailing characteristics of the class; and also with the idea of grade or rank as a leading ground of arrangement. As previously observed, also, it is in the construction of orders, and in ascertaining rank in other divisions, that embryology and the doctrine of cephalisation are chiefly useful. For the present, however, we must leave this subject until we shall have an opportunity to enter into descriptive zoology.

In Botany, orders and families are identical. In Zoology we use the term Family for a group inferior to an order, and equivalent to the sub-order or tribe in botany. The family consists of an assemblage of genera resembling each other in general aspect. Most large orders are readily divisible into such assemblages, which, though in themselves somewhat vague, have the advantage of being formed on grounds which, being conspicuous and obvious at first sight, much aid the naturalist in the preliminary part of his work. For cxample, among the carnivorous mammalia such croups as the Mustelidec or weasels, the Canidae or dogs, the Felidue or cats, are so obvious that any me nber of one of these groups can be referred to that to which it belongs almost at first sight. Still I do not regard families as necessary divisions of the order. Some small orders may not admit of division into families; and
even where such division is admissible, the genora may be studied as nembers of the order, without being grouped in familics, thourg this grouping is often very usefu! and convenient.

It is important to observe, before leaving this part of the subject, that, in consequence of the great multiplication of species in some groups, and the close scrutiny of their structures, it is the tendency of specialists to form many small genera. This leads to the construction of numerous families, many of which would more properly remain as genera. A still worse consequence is, that, instead of forming sub-orders and sub-classes, such specialists often call sub-orders or even families orders, and raise sub-classes or orders to the rank of nominal classes, thus introducing a confusion which leads the student to suppose that these tems have no definite meaning. I would further observe here, that I do not so much insist on the use of one name for a group rather than another, as on the constant use of each term for groups truly equivalent in the system.

It may be necessary here to state that the formation of orders on the ground of rank, and of families on the ground of general aspect, does not exclude the ideas of rank and general aspect from the province or class. On the contrary, as a secondary ground, general aspect is a good character in the province and class, and a gradation of rank can be perceived in provinces and classes. In the provinces, the Vertebrata stand highest, and the Radiata lowest, the Articulata and the Mollusca being nearly equal, and their lower members not so
the genera der, without grouping is
leaving this ence of the groups, and it is the tennall genera. pus families, remain as hat, instead uch speciallies orders, nk of nomision which terms have serve here, f one name te constant lent in the
the formaof families ot exclude on the prosecondary ter in the nk can be the pro1 the $R a$ Mollusca ers not so
high as the highest Radiata ; so that they would stand in a diagram thus :

Vertebrates
 Articulates
 Mollusks
 Radiates.

So among classes, the nerve class in each province is the highest and the embryonic class the lowest, and the other two intermediate ; but the idea of rank is not here the primary one, as it is in forming the orders. It is also true that from the province downward the idea of type or plan is con-- stantly before us.

We have now, in descending from provinces, reached the genera and species, with the consideration of which we commenced; and if the preceding views have been understood, we shall be prepared to commence the study of Descriptive Zoology, or to enter upon the details which fill up the outline which has been sketched. In doing this we must take specimens of known species and study them in their structural and physiological peculiarities, and in their relation to the other species congeneric and co-ordinate with them.

Chapter III.

DESCRIPTIVE ZOOLOGY.

Province Radiata.

Parts arranged around a central axis-No distinction between neural and lucemal sides-Nervous system nematoneurous, or not discernible.

Class 1. Protozoa--Animaleule, Sponges.

" 2. Acalepha-Jelly-fishes, and Hydroid Polyps.
" 3. Anthozoa-Sea-anemones, Coral Animals.
" 4. Echinodermata-Sea-urchins, Star-fishes.
Fig. 23.

A
A

C

Diagrams of Radiates.
(A) Protozoan; (B) Hydroid; (C) Anthozoon; (D) Echinoderm; (a) Mouth; (o) Ovary.

Many naturalists lave abandoned the Cuvierian province of Radiata, and have proposed to constitute the Protozoa a distinct province, to include the Acalephoe and Anthozoa in another sub-kingdom to be named that of the Coclenterata, and to associate the Echinoderms with the Annelids. That this proposed improvement is founded on a misconception of the true plan of nature, I have no doubt; but as it
has been adopted in many recent works, the student should be acquainted with it. It docs not make any material change in the limits of the four groups above noted as classes.

> Class i.-Protozoa.

Body composed principally of gelatinous sarcode —destitute of distinct internal cavitirs and nervous system-Motions principally by cilia or pseudopodia.

The Protozoa are the simplest in structure of all animals. Their bodics are composed of a thin apparently structureless substance, which has been named "Sarcode," and the only proper tissues associated with these are of a cellular nature. They possess a reproductive organ of the nature of an embryo cell, and called the nucleus, and a circulating or excretory organ, styled the pulsating vesicle. The locomotive and prehensile apparatus, in some consists of extensions of the sarcode substance known as pseudopodia. In others locomotion is performed, or currents of water produced by microscopic vibratile threads (Cilia). These organs are seen in Figs. $25 \& 41$. Most of the Protozoa are of minute size, though some grow to large dinensions by indefinite multiplication of similar parts. Their reproduction takes place when immature by fission and gemmation, when mature in so far as known by germ-cells or granules, developed from the nucleus. Simple though the Protozoa are, they admit of subdivision into orders on the basis of relative rank, or degree of complexity. Those naturalists, however, who regard the Protozoa as constituting a distinct
province, elevate these orders to the position of classes. The orders of Protozoa are the following: -

Oraler L. Elaizobodia, including those Protozoa which are destitute of a mouth, and move and obtain their food by extensions of the sarcode of the body, or Pseudopodia. These are the Foraminifera and their allies.
 have the sarcode mass supported on a corneous, silicous or calcarcous skeleton of fibrous or spicular structure, and traversed by canals through which water is clrawn by cilia. This oider is that of the Sponges, at one time supposed to be plants, but now known to be truly animals.

Craler id. Infusorias, including those which have an oral aperture, and an integument of cellular tissue enclosing the sarcode mass, and provided with oxternal cilia.

To these are usually added the Thalassicolide, creatures of uncertain affinities and apparently allied to Rhizopods, and the Gregarinidee, a gromp of parasites, probably rudimentary Entozoa.

1. 跮hizobadia.

We may take as a type of this group the A mocba, a microscopic creature frequently found in ponds containing vegetable matter. It occurs in Canada, and may readily be procured by the microscopist. Different species have been described, but they are very similar to each other. When placed under the microscope, a living specimen appears as a flattened mass of transparent jelly; the front part moving forward with a sort of flowing motion, and
position of llowing : those ProI move and sarcode of Foramini-
ose which corneous, re spicular igh which hat of the s, but now
ose which ument of ailss, and ssicolide, pparently , a group

Amocua, in ponds Canada, oscopist. they are d under is as a ont part ion, and
jutting forth into pscudopodial prolongations ; the hinder part appearing to be drawn after it, and presenting fewer irregularities. In its interior are seen minute granules which flow freely within its substance, and one or more vesicles which alternately expand and become filled with a clear fluid, and contract and disappear. Often also there are certain spaces or vacuoles, in which may be seen minute one-celled plants or other particles of food which the creature has devoured, and which are in process of digestion. The outer portion of the substance of the Amoeba appears to be more transyarent and dense than the central portion. So soft is the tissue that the creature seems to flow forward like a drop of some semi-fluid substance moving down an inclined surface; but as the Amoeba can move forward on a horizontal plane or up an incline, it is obvious that its movement proceeds from a force act-

Fig. 24.

AxOEBA, (Montreal,) Magnified.

AOTINOPHRYS, (MOntreal,) Magnified.
ing from within, and probably of the nature of muscular contraction. Nor are there wanting indications that these motions are voluntary and prompted by the appetites and sensations of the animal. Fig. 24 represents one of the states of a specimen from a pond on the Montreal Mountain.

Another generic form found in the same situation is Actinophrys, the Sun-animalcule. In this the outer coat is more distinctly marked, and the body retains a globular form, while the pscudopodia are very slender and thread-like. Fig. 25 represents a specimen found with the preceding.

Amocba and Actinophrys belong to a family of Rhizopods, (the Amoebina), which either have no hard covering or a thin crust or lorica covering part or the whole of the body. The remainder of the Rhizopods are protected by calcareous shells, often of several chambers and perforated by pores for the emission of pseudopodia, (Foraminifera), or they are covered by a silicous shell or framework of one piece (Polycistina). The whole of the Rhizopods may thus be included in the following groups, which may be regarded as sub-orders or families:

1. Amoebina, without hard skeletons, and mostly fresh-water.
2. Foraminifera, with calcareous skeletons; marine.
3. Polycistina, with silicous skeletons; marine.*

The Foraminifera are the most important of these groups, since they occur in immense abundance in the waters of the ocean, and in its deeper parts

[^5]are of mus indications compted by 1. Fig. 24 nen from a
re situation is the outer ody retains very slena specimen
family of r have no ering part ider of the ells, often es for the r they are one piece pods may hich may
nd mostly
keletons ; marine.* t of these dance in er parts
or order
their calcareous shells accumulate in extensive beds. According to Messrs. Parker and Jones, from 80 to 90 per cent. of the matter taken up by the sounding lead in deeper parts of the Atlantic, is composed of their remains. In like manner, in the sea bottoms of former geological periods, were accumulated, by the growth and death of Fusaminifera, the greatbeds of chalk and of Nummulitic and Miliolite limestone. In the older formations also, these creatures are found to have attained gigantic dimensions as compared with living species. A Foraminiferal organism of dimensions unequalled in the modern seas (Eozoon Canadense, Fig 36) occurs in theLowerLaurentian, and is the oldest form of animal life known to us. The forms figured (Figs. 26 to 35), as seen under the microscope, are some of the most numerous in the Gulf of St. Lawrence ; in the deeper parts of which great numbers of these creatures occur.

Fig. 26.

Emtosolenia aloboba, (Gulf St. Lawrence.)

Pig. 27.

Eftogolenta costata, (Gulf St. Lawrence.)

Fig. 28.

Entosolenia squamosa, threo varieties, (Gulf St. Lawrence.

Quinquelooulina seminuldi, (Gulf st. Lawrence.)
Fig. 30.

Polymorpifina lactea, (Gulf St. Lawrence.)

Fig. 31.

Bulimina Prebli, (Gulf St. Lawrence.)

$$
F g \cdot 32
$$

Biloculina ringensSxCTIon, (Gu!f St. Lawrence.)
1.g. 33.

Polystomella crispa, (Gulf St. Lawrence.)

Fing. 85.

ThUnOATULINA LOBULATA, Gulf St. Lawronce.

Fig. 36.

Rozoox Canadinar-Dawson.-Laurentian System,Canada. Seetion of a small specimen natural size.

The Polycistina are almost equally widely diffused in the sea,though less abundant than the Foraminifera, and their silicious skeletons are often of great beauty and symmetry. Fig. 37 represents two species obtained from a depth of 313 fathoms in the Gulf of St. Lewrence, by Capt. Orlebar, R. N.

Fig. 37.

Ceratospyhis and Dictyocha aculeata? Gulf St. Lawrence, 313 Fathoms.

2. Worifera.

Of this order any of the sponges, whether those foreign ones used by us for washing purposes, or those occurring on our own coasts, rivers and lakes, may be taken as examples. In the Spongilla, or fresh-water sponge, as well as in the species often washed on shore on the sea coast, the skeleton consists of a network of corneous fibres, in which are inserted very numerous tubular spicules of silica, only visible under the microscope. In the living condition this skeleton supports a soft .'niry mass of sarcode, similar to that found in the Amoeba, but perforated by numerous canals and cavition
through which water freely percolates, and is kept in motion by cilia placed on the sides of the canals. The currents thus produced, entering by the smaller pores on the surface, and passing out by larger pores, carry into the organism the microscopic organic matters on which it feeds, and subserve also the purpose of respiration.

Of the numerous species of sponges found in this country few have been described. A species of Tethia, dredged in deep water at Portland, has been named by Dr. Bowerbank, T. Hispida. A closely alliea species from the Post-pliocene clays, and probably still living in deep water, has been named by the writer, T. Logani, in honour of the distinguished head of the Geological Survey, (Fig. 38.) One of the fresh-water sponges found in

Fizg. 38.

Tethea Logani, Post pliocene; (a) Specimen in clay; (b) (o) (d) \#picules. the canals. the smaller ; by larger microscopic bserve also
found in A species rtland, has spida. A ene clays, has been ur of the ey, (Fig. found in
b) (c) (d)
the St. Lawrence, has been described by Dr. Bowerbank as Spongilla Dawsoni, and is very closely allied to the British S. lacustris. Two of the most common species on our shores are the beautiful funnel-shaped or cup sponge of the lower St. Lawrence, (Isodictya) Fig. 39, and the pal-

Fig. 39.

Isodictya, Murray Bay; (a) general form-reduced; (b) Spicules highly magnified.
mate sponge of the Atlantic coast. Another very common species found attached to sea-weeds, is the close-grained and shapeless "crumb-of-bread sponge." Many other species have been collected, but they have not been named or described. It is difficult, in the present state of our knowledge, to form any natural classification of the sponges. A very convenient subdivision, proposed by Dr. Bowerbank, is based on the composition of the skeleton, and may serve for the present tha purposes of classification. He divides the order minto:
(1) Calcarea, or those supported by calcareous spicules; (2) silicen, or those supported by silicous spicules; and (3) Keratosa, or those having only horny fibres. All our common native sponges belong to the second of these groups.

Several kinds of Protozoa of affinities not quite certain, occur in the older Silurian rocks of Canada. Of these may be mentioned Receptaculites; (Fig. 40.) supposed by Salter to be a Foraminifer ; and the species of Archococyathus, Calathium, Trichospongia and Rhabdalia deseribed by Mr. Billings and supposed by him to be allied to Porifera.* A species of Dentalina occurs in the Lower Carboniferous of Nova Scotia. \dagger

Fig. 40.

Receptaculites Occidentalis, (Salter); (a) Portion of surfaco removed, showing interior structure.

3. Infisoria.

Examples of these creatures may be found in stagnant water, or in any vegetable infusion which

[^6]by calcareous upported by sa, or those mmon native groups. ies not quite s of Canada. clites; (Fig. ninifer; and em, TrichosMr. Billings orifera.* A Lower Car-
las been exposed to the air. They are all microcopic in size, though more complex in structure han the previous orders. Some are locomotive, thers fixed. As a type of the first, the genus Paramecium may be taken (Fig. 40.) The species

Fig. 41.

Fig. 42.

Parangecium-Magnified. Vorticella-Magnified.
of this genus are very common in infusions. They are oval in form, with a minute slit or depression at one side, which is the mouth. The surface is covered with vibratile cilia, by the motion of which the animals can swim rapidly. Within the ciliated cuticle is a cortical layer of dense sarcode, with the pulsating vesicles, and the interior is occupied with soft sarcode like that of an Amoeba, in which may be perceived a nucleus or reproductive organ, and vacuoles or cavities filled with food. The animals of the genus Vorticella afford an example of fixed or attached Infusoria. They are conical or cylindrical in form, with the uppor surface alone ciliated,
and attached at the base by a cord or stalk, in which is a spiral contractile thread, enabling the animals suddenly to retract themselves on the approach of danger. The Vorticellas are found in stagnant water, aquaria and similar places. (Fig. 42.)

The reproduction of the Infusoria takes place by spontaneous fission, by gemmation or budding, and by a process of encysting followed by subdivision into minute embryos. This last is probably a true reproductive process, and in some species reproduction takes place by the formation of embryos in the nucleus without encysting. By these various means of multiplication the Infusoria are enabled to increase with wonderful rapidity, and thus most efficiently perform their office of scavengers in places where organic matters are in process of decay. Their embryos also are not only present in all natural waters, but are able to float in the air, so that it is very difficult to prevent them from finding access to any infusion.

A great number of species of Infusoria have been described by microscopists, but it is possible that many of these are embryonic states of other animals, or even minute plants or spores of plants. The grouping of the species in families is, as yet, by no means certainly ascertained.
Green's Manual of Protozoa ; Carpenter on Foramxifera (Royal Soci. Trans.); Bowerbank on Sponges; and Pritchard's Infusoria, may be consulted with advantage on these creatures.

TABULAR VIEW OF PROTOZOA.

Body naked or in a corallum, with a distinct internal cavity divided by radiating partitions into chambers communicating with a central digestive sac. Tentacles with urticating organs. Reproductive organs internal. (Fig. 23c.)

The Anthozoa present a considerable advance in complexity beyond the Protozoa. Their parts are grouped around a central stomach or digestive sac, which is surrounded by a perivisceral space separating it from the outer body wall ; and this space is traversed by radiating membranous plates or mesenteries connecting the wall of the stomach with the body wall. The tissues constituting these organs are membranous and muscular. The body
of the individual Anthozoon thus presents in cross section the aspect of a wheel with radiating spokes. The stomach opens above in the centre of a disc, surrounded by hollow tentacles, provided with thread cells, capable of emitting spiral threads provided with sharp spicules and covered with a poisonous secretion, by means of which the animal prey of these creatures is paralyzed when seized. When the tentacles are expanded they present a beautiful flower-like appearance, whence the name, Anthozoa. The name Actinozoa is derived from their radiated structure, and that of Polypi or Polyps, from their numerous tentacles.

Fig. 43.

> Aotinia (Urticaria) crassicornis.

Some of these creatures are altogether soft (Malacodermata). Others secrete hard parts or corals, which may be calcareous or corneous in their composition, and are either produced from the base of the Polyp merely (sclerobasic), or from the substance of its body wall as well (sclerodermatous).

The Anthozoa multiply freely by gemmation and fission; and in the case of those which have hard corals, this produces complex structures consisting of many individuals, having their skelctons united directly or by a common substance (cœnœecium). The individuals of these communities, are to some extent nourished in common. The reproductive apparatus of Anthozoa is attached to the mesenteries of the perivisceral cavity. The individuals are either dioccious or monccious.

The existing Anthozoa may be divided into two orders.

1. Zoantharia or Actinoidly. These are either naked or provided with a sclerodermatous (rarely sclerobasic) corallum, and have the tentacles simple, usually numerous and in multiples of six or of five. When the corallum is developed, it has radiating septa corresponding to the soft mesenteries. In this group are the Sca-anemones and their allies, and the Madrepores or reef-building corals. (See Figs 43, and 47 to 50.)
2. Alcyonaria or Alcyonoids. These differ from the last in having the tentacles and mesenteries limited to eight in number, and the former fringed or provided with pinnate processes. The corallum is corneous or calcareous and sclerobasic, often with spicules of calcareous matter imbedded in the soft parts. In this group are the Alcyoniums, Seapens, Organ-pipe corals, Sea-fans, Red corals, \&c. (See Fig, 51.)

In addition to these there are two orders of extinct or fossil corals, found more especially in the older rocks of the earth's crust. These differ materially in their structures from modern corals,
and have been referred by some natuialists to the present class, by others to the next. I believe with Agassiz that some of these corals are closely allied to modern corals of the next class; but there are others which present characters indicating that the animals, if known to us, would prove to be similar to those of Zoantharia, or intermediate between these and the Alcyonaria. These extinct corals are included in the following orders:

1. Rugosa. In these the corallum is sclerodermic, with septa arranged in four and multiples of four, and often with horizontal floors or tabulae and a well developed external wall or theca. In some the septa and tabulae coalesce into a vesicular substance very unlike that of modern corals. (Fig. 44, 45.)

Fig. 44.

Zaphemetis prolifica-Billings-Detonian.

Fig. 45.

eystiphyllum sulcatum-Billings, Devonian-Section.
Count Pourtales has recently dredged from a depth of 324 fathoms off the Florida reef, a remarkable coral, Haplophyllia paradoxa,apparently closely allied to, if not a modern representative of the Rugosa. The animal was of a greenish colour, with a circle of about 16 tentacles, rather long and abruptly tuberculated at the tip; outside the tentacles was a membranous dise with radiating and coneentric folds. This is the first indication of the ocurrence of these remarkable corals in the modern seas.
2. Tabulata. In these the corallum consists of simple, often hexagonal, tubes, without septa or with rudiments of septa, and with well marked horizontal tabulæ. Some of these corals approach very closely in their characters the Millepore corals belonging to the next class. (Fig. 46.)

Fig. 40.

Favosites Gothlandica-Goldf.-Upper Silurian.
The orders Rugosa and Tabulata include nearly all the numerous fossil corals found in the limestones of Canada. (Sce Figs. 58 to 61.)

1. Zoantharia or Actinoidis.

The Actinias or Sea-anemones may be taken as the type of Zoantharia; and as an example of these the species named by Agassiz Rhodactinia Davisii, and which is the most common species on the north shore of the Gulf and River St. Lawrence, may be noticed here. It is probably a variety of Actinia crassicornis of the British Coast. Externally, when expanded, it presents a cylindrical body attached at the lower extremity to a rock or stone, and at the upper having a crown of thick worm-like tentacles arranged in several rows, in the centre of which is the mouth. The external surface of the body, the tentacles and dise are often gaily coloured in shades of purple, crimson and flesh colour, though different individuals differ very much among themselves in this respect, and also in the smoothness or tuberculated character of the body. When fully expanded, the animal has the appearance of an aster or other
stellate flower. When irritated or alarmed it withdraws its tentacles, contracts the body wall over the dise, and assumes the form of a flattened cone. Its food consists of such small animals as may be attracted by its gay colours, or may accidentally come within reach of its tentacles. 'To enable it to seize these it has in the substance of the tentacles an apparatus of extensile and retractile threadcells, by means of which it can hold with some tenacity any object which touches the tentacles, and can also exert a benumbing influence tending to paralyze and subdue the resistance of its prey. The specimens figured (Figs. 43 and 47,) were dredged in Gaspe, and referred to a new species, R. nitida, but may possibly be a variety of the above. Another variety found in the River St. Lawrence, is permanently tuberculated and cannot be distinguished from A. (Urticina) crassicornis, as ordinarily seen in Great Britain.

Fig. 47.

ACTINIA (Crticina) Crassicorsis, contracted, and smaller individual exianded.

A larger and often more beautiful representative of the Actinods is the Metridium marginatum, a species close'y allied to the Actinia dianthus of

Great Britain. It is found in great perfection at the mouth of Gaspe Basin, where the specimens represented in the following figures (Figs. 48, 49) were obtained. In this species the tentacles are in two series, the outer scries being very numerous and arranged on lobes of the edge of the dise.
rig. 48.

Metriditar marginatux, Edw. \& Haime, (Gaspe.)

Fig. 49.

M. mamginatum, contracted.

In some Actinix rudiments of a nerve system are believed to have been detected, but, though sensitive to light, they are not supposed to have organs of vision. They multiply by budding, and also by true ovarian reproduction, the ovaries being attached to the mesenteries.

The followinc, are the principal families of Zoantharia.

1. Actiniadae. No Corallum. Polyps usually independent, attached by a broad base, but locomotive at will. Examples, Actinia, Rhodactinia, Metridium.
2. Hyanthidae. No Corallum. Polyps independent, with rounded or tapering basc. Examples, Ilyanthes, Cerianthes.
3. Zoanthislae. Corallum spiculate. Polyps attached to a horizontal coenosarc or common soft basis. Example, Zoanthes.
4. Antipathidae. Corallum sclerobasic, having Polyps with six tentacles. Example, Antipathes.
5. Fungid:ze, Corallum calcareous, septiform. Individuals mostly distinct and large, with numerous tentacles.
6. Astreastae, Septa numerous, cells attached, without conenchyma.
\%. Poritidae, Corallum reticulate, cell-walls not distinct from surrounding coenenchyma.
7. ©eulinidae. Conenenchyma abundant, compact, calcarcous.
8. Niadreporifze. Corallum compact but porous, septa distinct.

The animals of the five last families are manly instrumental in the accumulation of the great coral reefs of the intertropical seas. Only a few small species of these coral-producing Anthozoa, are found in the Northern scas. Fig. 50, taken from Dana, shews the appearance of one of the tropical species.

Astrea rurpurea, with polyps expanded-after Dana.

2. Alcyonaria or Alcyonoids.

As a native example of this group, we may take the Alcyonium rubiforme Fig. 51, which is sometimes cast up in storms, on the shore of the Gulf of St. Lawrence, and may be obtained alive by dredging in deep water. It presents tuberculated yellowish or pinkish masses of a club-shaped form, from an inch to three inches in length, and of a spongy or firmly gelatinous structure. The surface is studded with round or star-shaped cells of small size, from which, when the creature is alive and undisturbed, delicate semi-transparent polyps protrude themselves and extend their tentacles. These little animals can be casily distinguished from those of the last group by their pinnate tentacles cight in number. The corallum or skeleton is of a corneous and fibrous nature, and the animals are connected by numerous canals traversing its substance.

Fig. 51.

Alcyonium rubiforme, Dana (Gafje), (a) r_{1} exyauded, (b Polyp contracted.

The families of Aleyonaria are the following:

1. Alcyonidac. The Alcyonia, which have a sclerodermic corallum, spiculous or fibrous, and when dry resemble sponges.
2. Tubiporialae. The Tube-corals. The corallum is composed of a number of distinct calcareous tubes connected by horizontal plates.
3. Pemantulialare. The Sea-pens. In these the corallum is fiee or with its base immersed in mud at the bottom of the sea. The cells are placed on pinnate branches.
4. Gorgonidae. The Sea-fans and true red corals. In these the corallum is sclerobasic and cither corneous or calcarcous, and the fleshy matter. enclosing it and in which the polyps are imbedded, is fortified with calcarcous spicules.

8. REugosa and Tabulata.

Tigs. 52 to 57 represent Canadian species of corals of the order Rugosa, and Figs. 58 to 61 represent corals of the order Tabulata. All of these are fossil.

Fig. 52.

Fig. 58.

Fig. 54.
Fig. 55.

have

 and - co-alcathese d in are red and atter Ided,

Strombodes simplex, Hall, Devonian.

Fig. 57.

Cybtipifyleum Americanum, E. \& II., Devonian.

Cfathophyelum rectum, Hall, Devonian.

F゙g. 58.

Meliolites speciosus, Dillings-Ǔpper Silurian.
rig. 69.
lig. 60.

Syringopora Machurei, billings-Devoniaia.

Columiamia alyeolata, Goldf.-
L. Silurian.

Fig. 61.

Halyouten catenolatus, Upper Silurian.

TADULAR VIEW OF ANTHOZOA.

Milne Edwards' Coralliaires in the "Suites à Buffon," Greenc's Manual of Coclenterata, and Verrill on American Polyps, (Memoirs of Boston Society of Natural History, may be consulted with advantage on this class. American fossil species will be found in the reports of the Palrontology of New York and Canada, by Prof. Hall and Mr. Billings.

Class III.-Acalepire or Hydrozoa.
Body naleed or in an external tube or sheath; locomotive or fixed; digestive cavity of an outcr and inner chamber, the latter communicating with a more or less complex vascular system-tentacles hollow with dart or thread cells; Reproductive organs external. (Fig. 23b.)

The Acalephr are by many naturalists regarded as of lower grade than the last class, in consequence of the apparently more complex internal structure of the latter. But to counterbalance this, we have in the present group a much higher development of locomotive and sensorial powers. In other words the Anthozoa excel in the complexity of the organs of vegetative life : the Acalephre, in those of locomotion and sensation. Hence, the same grounds which would in the vertebrates induce us to give the birds a higher place than the reptiles, should place the Acalephre higher than the Anthozoa. Still it must be admitted that the difference of rank is not great, and that the lower forms of Acalephe are of very simple structure in comparison with the higher members of the same group.

The Acalcphe resemble the animals of the last class in having a polyp-like form ; but they have the digestive sac turned outward instead of being folded inward; and instead of the perivisceral chambers, there is an internal chamber or tube, in the higher forms communicating with a system of nutritive canals excavated in the wall of the body. Some of these animals are altogether soft, others have horny or calcarcous skeletons, which are destitute of radiating septa and wholly sclerodermic. The lower Acalephe multiply frecly by gemmation and
form complex communities. In the higher groups such multiplication takes place only in the immature states.

This class contains three orders :

1. Mydroida, or Hydroid Polyps. Individual animals polyp-like, and either solitary or in communities. Body naked or inserted in a cell (Hydrotheca). Reproductive organs attached externally to individual polyps, or developed in separate capsules, and often attached to free bell-shaped individuals differing much in form from the ordinary Hydroids. These are the Hydroid Polyps of the fresh waters and of the sea, the Millepore corals, the Physalias, \&c. (Fig. 62.)
2. Discophora.-Individuals distinct and often of large size, free and oceanic, with the dise extending into a broad bell-shaped or umbrella-shaped swimming organ (Nectocalyx). Ova borne under the dise and developing into hydra-formed progeny. These are the Meduse or jelly-fishes and their allics. (Fig. 66.)
3. Ctenophorat-Dise closed at both poles, giving to the body a double appearance like that of the Anthozoa, though the parts are much more com. plex. Tentacles absent or reduced to two; when present, pinnate. External surface with eight bands of paddles (Ctenophores) which are the locomotive apparatus. (Fig. 67.)

1.-Mydroida.

The fresh-water Hydra of Europe, which is one of the simplest of these organisms, presents the appearance of a sac composed of an outer and inner layer. At the base is an adhesive disc or foot. At the summit is the proboscis or external stomach,
around the neck of which are the tentacles, which like those of Anthozoa, are furnished with urticating darts. The Hydra, though sol't and gelatinous in texture, is carnivorous and very voracious; and though it usually remains fixed, it can move at will. Its ova are borne on the external surface of the body, and are hatched into ciliated embryos like animalcules. These creatures also increase by gemmation and have remarkable powers of repairing injuries.

Fig. 62.

IIrdroida, Gulf St. Lawrence, Nat. size and magnified.
(a) Sertularia (Dynamena) pumia. Lamx.
(b) Tubularia (1'arypha) crocea Ag.
(c) Campanularia (Laomedea) amphora Ag.

The type of structure exhibited by the Hydra is capable of a vast variety of modifications in its kindred inhabiting the sea. These modifications
depend principally on the possession of hard investing organs, on aggregation of the cells into complex structures (hydrozoary), and on the production of different kinds of Polyps or Polypites; some being stomach-bearing, others tentacle-bearing, others ovarian. By such modifications are produced the families noticed below.

Another remarkable point in the history of these oceanic forms, connecting them with the next group, is that many of them develop, by a process of gemmation, individuals provided with a swimming dise and not attached, and it is in these locomotive individuals that the ova are produced. This locomotive progeny of the hydroids constitutes the group of Naked-cyed-Medusic, at one time regarded as a distinct order. Fig. 63 shows these two forms as they exist in one of our American species.

Figg. 63.
dra is in its ations

Corpme mirabilus, (after Agassiz.) (a) Young Medusoid. (८) The same detached.

1. Hydridae.-Polyps independent, locomotive, naked. Example, Hydra viridis.
2. Corynidae.- Polyps independent or in communities. Animals enclosed in tubular corneous cells. Example, Coryno mirabilis (Fig. 63).
3. Tubulariadae.-Polyps solitary: in elongated corneous tubes, and with two rows of tentacles. Example, Tubularia crocea. (Fig. 62).
4. Lucopidiac.-Polyps in corneous conical cells at the extremities of the branches. Example, Laomedea amphora. (Fig. 62).
5. Sertulariadar.-Polyps arranged in corneous cells on the sides of branching tubular stems. Example, Sertularia pumila. (Fig. 62).
6. Phumulariadie.-Polyps in single rows on one side of corncous branches. Example, Plumul ria falcata.
7. Hydractiniadae.-Polyps sessile, with a spinous skeleton, attached to shells, \&c., and of two sorts. Example, Hydractinia echinata.
8. Willeporidae.-Polyps of different kinds, in cells in a stony coral. The cells divided by transverse tabule. Example, Millepora.

In or near this group may probably be placed the fossil tabulate corals referred to under the Anthozoa. The recent Milleporas are tropical animals.
D. Calycophoriclae. - Polyps of different kinds attached to a common stem moved by swimming bells, and supported near the surface by a float at its extremity. Example, Nanomia cara.
10. Physophoridac.-Polyps of different kinds supported on the lower surface of a floating vesicle or pneumatophore. Example, Physalia arethusa.

The Physalias and their allies are tropical ; but one species, P. arethusa, is occasionally found on the coast of Nova Scotia.
11. To these may be added the fossil family of Graptolitidae, characteristic of some portions of the Lower Silurian rocks. They are regarded by Professor Hall as allied to Sertulariadic. (Figs. 64 and 65.)

Fig. 65.

Dictronema Webateri, Dawson-UpperjSilurian; (a Portion maguified showing the cells.

Graptolithus biconvis,

 Hall-L. Silari\&n.
2.- IDiscophora.

One of the best representatives of this order on our coast is the great blue Jelly-fish, Cyanea Arctica, (Fig. 66), which is often found in the Gulf of St.

IMAGE EVALUATION TEST TARGET (MT-3)

Fig. 66.

Cfanea Arctica, Per, and Les. reduced.
(a) Hydroid progemy.
(b) Strobila.

Lawrence and on the Atlantic coast of Nova Scotia, a foot or more in diameter, and is said sometimes to attain the enormous diameter of seven feet. The most conspicuous part of this creature, as it floats in the sea, is its great violet-coloured disc, the edges of which are moved slowly up and down as it swims along. In the centre of this disc below, projects the proboscis or external stomach, furnished with a
profusion of filmy fringes hanging at the extremities of the four lateral processes into which its free end is divided. From the margins of the dise float backward innumerable long reddish tentacles armed. with urticating thread cells, which paralyze any little animal they may touch, and enable it to be drawn into the mouth. These tentacles are often several feet in length. Between the tentacles and the base of the proboscis, when the creature is mature, may be seen four great ovaries loaded with yellowish eggs. The eyes and ear-vesicles, each cight in number, are placed in notches in the margin of the dise, while circulation and respiration are provided for by a network of vessels ramifying through the disc. Though these animals are as tenuous as jelly, and contain very little solid matter, their organs are of singular complexity, and the body consists of several layers of cellular and fibrous tissues. The reproduction of the Cyanea, as described by A gassiz, forms an interesting example of the changes through which animals of this type pass in attaining to maturity. The eggs are hatched into ciliated embryos which swim frecly. These attach themselves to the bottom, and are developed into little hydroids, with tentacles in fours and multiples of four (Fig. 66 a), and which have the power of increasing by gemmation. From this stage the young animal passes by a transverse fission into a sort of jointed form (the Strobila. Fig. 66 b), and this, breaking up into separate segments, produces free swimming discigerous animals, formerly known by the name of Ephyra, and which are the young of the Cyanca. Thus each animal passes through four definite stages, before attaining the perfect form, and one ovum may produce several adult Cyaneas.

Another very common species on our coasts is the white or colourless Jelly-fish, Aurelia flavidula. It has four white or milky spots (the ovaries) seen conspicuously through its transparent body, and has short marginal tentacles.

The Discophora are divided into the following sub-orders or families:

1. EShizostomea,--in which the proboscis is divided into a series of ramifying tubes, through which nutriment is absurbed. Some very large tropical Meduse belong to this group, but none are known on our coasts.
2. Semacostomate,--in which the proboscis is divided into labial processes or oral tentacles. This group includes our commoner species above mentioned.
3. Haplostomeae. - Are simple-mouthed Meduse, including the curious animals known as Lucernaria, a specios of which is found in the Gulf of St. Lawrence, adhering to sea-weeds or floating freely. It forms a curious link between the Polyp and Medusa forms, having a stalk for attachment developed in the middle of the dise.

3. Ctenophora.

Pleurobrachia rhododactyla of Agassiz (Fig. 67) may be taken as a type of this group. As it occurs on the Atlantic coast of New Englana, it is thus described by Madame Agassiz :-

[^7]lig. 67.

Pleurobraciila miododactila, (after Agassiz.)

globular form, so slight in Pleurobrachia as to be hardly perceptible to the casual observer, establishing two diameters of diflerent lengths at right angles with each other, is equally true of the other genera. It is interesting and important, as showing the tendency in this highest group of Acalephs to assume a bilateral character. This bilaterality becomes still more marked in the highest class of Radiates, the Echinoderms. Such structural tendencies in the lower animals hinting at laws to be more developed in the higher forms, are always significant, as sbewing the intimate relation between all parts of the plan of creation. This inequality of the diameters is connected with the disposition of parts in the whole structure, the locomotive fringes and the vertical tubes connected with them being arranged in sets of four on either side of a plane passing through the longer diameter, shewing thus a tendency toward the establishment of a right and left side of the body, instead of the perfectly equal disposition of parts around a common centre, as in the lower Radiates.
"The Pleurobrachie are so transparent, that, with some preparatory explanation of their structure, the most unscientific observer may trace the relation of parts in them. At one end of the sphere is the transverse slit that serves them as a mouth; at the opposite pole is a small circumscribed area,
in the centre of which is a dark eye-speck. The eight rows of locomotive fringes run from pole to pole, dividing the whole surface of the body like the ribs on a melon. Hanging from either side of the body, a little above the area in which the eye-speck is placed, are two most extraordinary appendages in the shape of long tentacles, possessing such wonderful power of extension and contraction that, while at one moment they may be knotted into alittle compact mass no bigger than a pin's head, drawn up close against the side of the body, or hidden within it, the next instant they may be floating behind it in various positions to a distance of half a yard and more, putting out at the same time soft plumy fringes along one side, like the beard of a feather. One who has never seen these animals may well be pardoied for doubting even the most literal and matter-of-fact account of these singular tentacles. There is no variety of curve or spiral that does net seem to be represented in their evolutions. Sometimes they unfold gradually, creeping out softly and slowly from a state of contraction, or again the little ball, hardly perceptible against the side of the body, drops suddenly to the bottom of the tank in which the animal is floating, and one thinks for a moment, so slight is the thread-like attachment, that it has actually fallen from the body; but watch a little longer, and all the filaments spread out along the side of the thread, it expands to its full length and breadth, and resumes all its graceful evolutions."*

Agassiz divides these animals into the following families:

1. Eurystomeae, -with large mouth, and no tentacles or lobes. Example, Idyia roseola Ag.
2. Saccatae,-with body more or less globular and long pinnate tentacles. Example, Pleurobrachia rhododacty!a, Ag.
3. Taeniatae,-with the body produced at the sides into two wide appendages. Example, Cestum Veneris.

[^8]4. Lobatre,-having the oral end of the body divided into two wide lobes. Example, Bolina alata, Ag.

Some European naturalists have proposed to separate the Ctenophora from the Acalephæ, and place them with the Anthozoa; but this docs not seem to be a natural arrangement.

In the Acalephre generally, the radiated arrangement of parts is very regular; but in the highest group, the Ctenophora, there is an obvious tendency to bilateral symmetry.
tabular view of acalepire.

Acalephes OR Hydrozoa.	Hydroida. Discophora. Ctenophora.	$\left\{\begin{array}{l}\text { Hydridæ. } \\ \text { Corynidæ. } \\ \text { Tubulariadæ. } \\ \text { Eucopidæ. } \\ \text { Sertulariadæ. } \\ \text { Plumulariadæ. } \\ \text { Hydractiniadæ. } \\ \text { Milleporidæ.* } \\ \text { Calycophorid. } \\ \text { Physophoridæ. } \\ \text { Graptolitidæ. }\end{array}\right.$ $\left\{\begin{array}{l}\text { Rhizostomeæ. } \\ \text { Semaeostomex. } \\ \text { Haplostomeæ. }\end{array}\right.$ $\left\{\begin{array}{l}\text { Eurystomeæ. } \\ \text { Saccatæ. } \\ \text { Taeniatæ. } \\ \text { Lobatæ. }\end{array}\right.$

[^9]The best descriptions and figures of the North American Acalephe are to be found in Agassiz' Contributions to the Natural History of America, vols. 3 and 4. There is a good summary of the species in the Illustrated Catalogue of the Harvard Museum, by A. Agassiz, and the student will find the general characters of this and the previous class well stated in Greene's Manual of Coclenterata, London.

Class iv.-Eciinodermata.

Animals usually free and repent; nervous system nematoneurous; alimentary canal in a distinct internal cavity; circulation by a vascular system; respiratory organs in some. Integument hardened by calcareous plates or spines, and with erectils tube feet. (Fig. 23 d .)

These creatures are the highest in rank of the Radiata, and in their adult state and in their more typical forms, present very admirable examples of radial arrangement, though in some of the more aberrant forms we cannot fail to perceive an approach to bilateral symmetry. With the exception of the lowest group, these animals are all free-moving, but not swimmers like the higher Acalephs. They have a nervous system, consisting of an esophageal ring and radiating fibres. Organs of sense exist in some of the species. The alimentary canal is contained in a proper visceral cavity, and in some is tubular and convoluted. They have also a complex vascular system, including blood-vessels and aquiferous canals. Distinct respiratory organs
exist only in the highest group. All of these animals have a complex skeleton, quite distinct in character from that of any other animals, and consisting of numerous calcareous pieces articulated together, and composed of carbonate of lime arranged in a loose cellular manner, so as to combine great strength with lightness. 'This skeleton is properly internal to the muscles, but there are often added toit external spines or plates. The organs of locomotion are crectile thread-like organs with suctorial dises at their extremities (tube feet). There are also in many species minute stalked pincers for cleaning the surface of the body (pedicellarize).

The orders of Echinodermata are:

1. Crinoidea. - These have a central body or disc, with or without articulated rays, and covered with an inflexible shelly case. The arms or rays when present are furnished with pinnate processes. Some of the species are attached for life by an articulated stem. Others are attached when young, free when adult. These are the Feather-stars. Encrinites, Cystideans. (Fig. 68.)
2. Ophicuridea.-These have a central disc protected by plates and furnished with tube-feet. The rays are simple or forked, and are supported, internally by a series of articulated pieces, and protected externally by plates or by plates and spines. Serpent-stars, Brittlc-stars. (Fig. 72.)
3. Asteroidea.-These have the disc and rays confluent, and the latter thick and traversed by ramifications of the digestive apparatus, and furnished with rows of tube-feet along their lower sides. Ordinary Star-fishes. (Fig. 74.)
4. Wehinoidea.-In these the rays are obsolete, and the skeleton becomes a case or box enclosing the viscera, with spines articulated upon it, and tube-feet projected through rows of ambulacral pores. Sea-urchins or Sea-eggs. (Fig. 76.)
5. Molothurialea. - In these the body becomes elongated and horizontal, and is covered above with spines or irregular plates. Though aberrant in form, some of these creatures are very complex in organization, and are the only radiates furnished with special respiratory tubes. Some of the species simulate worms in their external form. (Fig. 77.)

1. Crinoidea.

In the absence of any known species of this group in our waters, the rosy Feather-star (Antedon rosaceus) of the European seas, may be taken as a type. In its earliest state it is an oval, gelatinous, locomotive creature, moving by bands of cilia. It then fixes itself and developes a jointed stem below, and a series of jointed and pinnated rays above, while the body becomes encased in delicate calcareous plates. After existing for some time in this state, it becomes loosed from its attachment, and appears as a locomotive Feather-star, with five pairs of beautiful pinnate arms, on which are borne the reproductive organs in the form of small brownish spots; and which are also locomotive and prehensile organs.

In the tropical seas there are a few larger species belonging to the genus Pentacrinus, which are attached when adult; and Sars has recently described a small species of a different genus (Rhizocrinus)
from the coast of Norway (Fig. 68). These are the only living representatives of vast numbers of species of stalked crinoids, found abundantly as fossils in the rocks of the earth's crust, and sometimes constituting a great part of the substance of crinoidal limestones. Fig. 69, is a species of Glyptocrinus, from the Lower Silurian. Fig. 69 a, shows parts of the same enlarged.

Fig. es.

Rhizocrinus Lofotengis, (after Sars!.

Fig. 69.

Beside the typical crinoids, there occur as fossils two other groups, known to us only by their skeletons, but included in this order. They are :

1. Cystidece.-Not divided in a quinate manner, but sac-like. Oral opening with valves. Arms few, and free or attached. The Cystideans are, as a whole, extinct, and belong to the Palæozoic rocks, (Fig. 70), but a living species from Torres Strait has recently been described by Prof. Loven, under the name of Hyponome Sarsii.
2. Blastoidece.-Body divided in a quinate manner, but without arms. These are the Pentremites. These creatures are all extinct, and are especially characteristic of the Carboniferous rocks in Western America. (Fig. 71.)

3. Pleuroctatites elealns, L. Silurian, (after Billings.)
4. Pentremites fymiforms, carboniferous, U. States, (after Dana.)

2. Dphinaidea.

Fig. 72.

Ormorholis aculeata, Lutken, Gaspé-reduced.
This order is represented on our coasts by several beautiful species. Ophiopholis aculeata, the Daisy Brittle-star, (Fig. 72), Ophioglypha robusta, and 0 . Sarsii, may be obtained by dredging in many parts of the Gulf and River St. Lawrence, and the Astrophyton, of which two species are found in Canadian waters, is one of our finest Star-fishes, being. sometimes cighteen inches in diametcr, and its cight arms subdividing into many thousands of filaments, each consisting of a series of curiously formed joints. This creature is known as the Sea-basket. A. Agassizii is our most common species.

Fig. 73 represents two of the calcareous joints of Ophioglypha Sarsii, a species found living at Gaspé and fossil in the Post-pliocene clays.

Fig. 73.

oints of Rat of Ophioglypita Sarsif, Post-pliocene.

3. Asteroidea.

As the type of this order may be taken Asteracanthion (Uraster) Vulgaris. Fig. 74. It is the

Fig. 74.

Arteracanthion vulgaris, Stimpson, Λ tlantic Coast, reduced, and section of a ray showing tuoe feet.
representative on our coasts of the European A. Rubens, if not merely a variety of it. It is the common Star-fish, Sea-star, or Five-finger. Its upper surface is covered with calcareous spincs, around the bases of which are little moveable pincers or pedicellarix, useful in cleaning and defending the skin. On the upper surface of the dise, but a little to one side, is a perforated plate, the madreporic plate, acting as a filter for enabling pure sea-water to enter the aquiferous system of the animal. At the end of the rays are minute purple specks, supposed to be organs of vision. On the under side, the mouth is situated in the centre, and is furnished with an extensile proboscis, which the creature use 3
to suck out the soft parts of the animals on which it feeds. Extending outward from the mouth, along the under sides of the rays, are the ambulacral grooves, each containing four rows of tube-feet and bordered by spines. In the interior, the centre of the dise is occupied by the stomach, which sends forth complicated ramifications into each ray. Below these are rows of sacks connected with the bases of the tube-feet without, and with the aquiferous system within. Around the mouth is the annular nerve-cord, and also the arterial ring, the principal organ of the circulation. The ovaries are placed around the oral opening. The eggs are hatched into oval ciliated swimming pro-embryos, which become developed in the first instance into bilateral gelatinous creatures with long ciliated processes, and totally unlike the adult, which is developed within the pro-embryo and subsequently es apes. The Star-fishes are slow in their movements, and destitute of offensive weapons. They are, however, carnivorous, and devour shell-fishes and other animals which come within their reach.

Several species of Star-fishes occur in Canada. The Asteracanthion polaris is the six-rayed Starfish of the Lower St. Lawrence and Labrador. 'The Sun-star, Solaster papposa is a fine species, with a large dise and twelve to fourteen short rays. Solaster endeca has longer and less spinous rays, from nine to twelve in number. Hippaster phrygiana and Ctenodiscus crispatus are two pentagonal star-fishes found on the coast of Nova Scotia. Another common species is the smooth red star-fish, Oribrella oculata, C. sanguinolenta of Muller.

A few species of fossil star-fishes occur in the
and tube
little

Silurian rocks of Canada. Fig. 75 represents one of these.

Fig. 75,

Palaaster ntagarengis, hollUpper Silurian.

4. Echinoidea.

The most common Sea-urehin of our coast is Echinus (Toxopneustes*) Drobachiensis, so called from the port of Drobach in Norway, where it was first observed. (Fig. 76.) A second species or wellmarked variety, E. granulatus of Lutken, is, however, also found on the coast of Nova Scotia. The first mentioned presents externally the appearance of a flattened sphere covered with sharp greenish spines, beyond which it can extend rows of long thread-like suckers or tube-feet, by means of which it drags itself along. Every spine of the hundreds which clothe the creature is articulated on a ball and socket joint, and moved by muscles in every direction, and the tube-feet are provided with complicated chains of little hooked bones, and with plates to extend the

[^10]Fig. 76.

Echinus Drobachiensis,-Tadousac-reduced.
(a) Portion of Jaw.
(b) Spine.
(c) Tube-foot, enlarged.
(d) Pedicellaria, enlarged.
suckers at their extremities. There are also intermixed with the spines numerous three-pointed pedicellariæ. The mouth is at the base of the sphere, and is furnished with a singular apparatus of five jaws, each with a chisel-shaped tooth, the whole meeting in a point and worked by numerous muscles. The creature uses these teeth in browsing on the small sea-weeds that clothe the rocks and stones on the bottoms on which it feeds. In the common European species this dental apparatus is the so-called " Lantern of Aristotle," or more correctly the "Cresset" of the great Greek naturalist, who described it in his Zoology. In our species it is smaller bui of similar structure. The anus, the five eye-specks, and the openings of the ovaries, are situated at the upper pole. The shell is composed of pentagonal plates which grow by
additions to their edges. In the interior of the shell the principal organs visible are the intestinal canal, curved in a series of loops, and usually filled wi h pellets of comminuted sea-weed; and the five large yellow avaries, at certain seasons distended with ova. The ouly other species found on our coast is the Cake-urchin, flat 0 : disc-like in form, and with very small spines. It is the Echinarachnius parma.

5. Molothuridea.

One of the best known representatives of this order on our coasts is the Psolus (Cuvieria) Fabricii. (Fig. 75.) It is of a bright red colour and

Fiy. 77.

Psolus Fabricit,-Gaspé,-reduced.
oval form, and covered above with flat irregular scales, and when alive, can extend anteriorly a large proboscis divided into numerous processes. It creeps along the bottom by tube-feet protruding from the lower side, which is covered with a tough membrane. Specimens, from three to five inches in length, may be dredged in the Lower St. Lawrence and at Gaspe. It is called "Sea Orange" by the fishermen.

Another representative of this order is the Seacucumber (\boldsymbol{P}^{2} entactes frondosa). It has spines
instead of scales, and has five rows of tube-feet, so that it may be compared to a rayless Star-fish greatly lengthened out.

To this group belong the great Sea-slugs of the Indian Ocean, eaten by the Malays under the name of Trepang.

TABULAR VIEW OF ECHINODERMATA.

Crinoidea. \(\left\{\begin{array}{l}Cystideæ.
Blastoideæ.
Crinoideæ.\end{array}\right.\)
Ophiuridea. Ophiuridæ.
Asteroidea. Asteriadæ.
Echinoidea. \(\left\{\begin{array}{l}Echinidæ.
Clypeasteridæ.
Spatangidæ.\end{array}\right.\)
Holothuridea \(\left\{\begin{array}{l}Holothuridæ.
Synaptidæ.\end{array}\right.\)

CHAPTER IV.

DESCRIPTIVE ZOOLOGY-Continued.

Province II.-Mollusca, or Saccata.
Parts bilaterally arranged,-often unsymmetrical ; no Skeleton; Nerve system heterogangliate, consisting of an cesophayeal ring and ganglia, with nerves unsymmetrically disposed. Heart compact; blood colourless or not red; respiratory organs opening laterally or posteriorly.

Class 1.-Heterobranchiata*_Polyzoans, Brachiopods, Tunicates.
" 2.-Lamellibranchiata-Ordinary bivalve shell-fish.
" 3.-Gasteropoda-Univalve shell-fish and Sea Snails.
" 4.-Cephalopoda-Cuttle-fish, Nautili.
It is usual with Zoologists to regard the three groups constituting the first class above mentioned, as distinct classes. Without, however, denying their great importance and distinctness, I believe that, if we understand the class in the sense explained in chapter second, however 'extensive and important the groups of Polyzoa, Brachiopods and Tunicates, the differences between them are those of orders rather than of classes; and that

[^11]they form a series parallel with the three orders of Protozoa among the Radiates. The names and subdivisions, ho rev:r, remain the same under either view. T'he Pteropods are also regarded by some as a distinct class from Gasteropods, but they seem more properly to constitute the lowest order of that class, which without them would not be complete.

Class 1.-Heterobranchiata.

Animal3 mostly attached, a: d often angregative in communities; desticute of o: tns o, specicl sense. Heart simple or at once systemic and branchicl. No special respiratory organs. Food obtained by ciliated tintacular organs.

Fiy. 78.

Diagrams of Heterobranchiates.
(A) Polyzoon; (B) Tunicate; (C) Brachiopod. (a) Mouth; (8) Stomach; (o) Ovaries.

The simplest of these Moliuscoids, the moss animals or Bryozoa or Polyzoa, are as far removed in grade of complexity from the more typical Mollusks as the Rhizopods are from typical Radiates. Yet naturalists have long been convinced that they must be reckoned as humble Mollusks. The other groups
of this class, the Tunicates and Brachiopods, seem to connect the Bryozoans with the typical Mollusks, but along two different lines of development. The Tunicates present the greatest development of the merely nuiritive organs, the Brachiopods that of the mascular and circulating systems ; but both, as the position of the class would imply, are deficient in nervous and seniory anparatus, thougn in the forn er the Brechiopods appear to be decidedly superior. The orders of Heterobranchiata may be dafined as follows :-
Order 1. Polyzoa or Bryozoa.-Nutrition by means of ciliated tentacles-animals of ien aggregated and enclosed in a Polyzoary. These are the Sea-mats and their allies; creatures popularly confounded with Sea-weeds and with Sertularians, \&c. They are principally marine, but some live in fresh water. (Fig. 78 A .)
Order 2. Tunicata.-Body unsymn etrical ; inte gument an uncr'cified turic having two openings and lined by the mantle; Cilia for producing currents of water disposed on an in uer tunic or band representing the tentacles. These are the Ascidians and their allies, sac-shaped or bottle shaped Mollusks. The Tunicates are all marine. (Fig. 78 B .)
Order 3. Brachiopoda.- Body symmetrical ; shell dorso-ventral ; mantle in two lobes adhering to the shell. Tentacles two, fringed, usually spiral. Shell usually with supports for the arms or tentacles. These are the Lamp-shells.and their allies, curous little bivalves differing wuch from the ordinary bivalve shell-fish, and few in species in the modern seas, but very abundant as fossils. Their name is derived from the two long ciliated arms
attached to the sides of the mouth, and serving to bring within reach of the animal the minute organisms on which it feeds. The Brachiopods are all marine. (Fig. 78 C.)

1.-Polyzoa or Bryozoa.

Any one who has visited the sea-coast must have observed, attached to sea-weeds, thin whitish crusts, which, when carefully examined, are seen to consist of little oval cells often with delicate spines at their extremities. These are the skeletons of Bryozoa of the genus Membranipora. If taken from the sea alive and kept in a glass of sea-water, the microscope will show that each cell is inhabited by a separate animal of somewhat complex structure.

Fig. 79.

Membranipora bolida, Packard, Gulf St. Lawrence. (Magnified.)
The cell is lined by a thin inner membrane. Within this is seen a clear fluid having minute granules floating in it, and in the centre is seen the stomach, floating frecly, except that it is attached below to the bottom of the cavity by muscular bands. The stomach is usually of a dark
brownish colour, and is bent upon itself; one arm, the osophagus, opening in the centre of a disc (lophophore) surrounded by processes provided with cilia; the other arm, the intestine, opening outside the disc. In the upper part of the stomach is seen a muscular gizzard for the trituration of the food. Each of these little animals can extend its tentacles and create brisk currents of water, or retract itself wholly into its cell. The ovaries are contained within, in the perigastric space, and the germs are either ciliated or covered with a crust. In the Membranipora they are hatched in a sort of hood or ovicapsule attached to the cell. The animals multiply by gemmation so as to spread in a crust over the surface, and there is a communication between the perigastric spaces of the individuals, so that nutriment may be conveyed from one to another.

Fig. 80.

Fig. 81.

79. Lepralia pertusa Johnston-Gulf St. Lawrence, 80. L hyalina Lin-Gulf St. Lawrenco.

The Membranipora above referred to is only one of many forms of Bryozoa found in our waters. On stones and dead shells other encrusting forms, (Lepralia, Hippothoa, Figs. 80 to 85) may be
fig. 82.

L. Producta, Packaid-Gulf St. Lawrence.

Fig. 83.

Fig. 84.
Fig. 8 .
83. Hippothoa ca "enulata, Fleming.
84. H. divaricata, Lm.

85, Tubulipora flabellaris, Fabricius. (All magnified.)
found ; other species build up their cells in slender brarches or broad leaves, either soft and flexible (Figs. 86 and 87) or hard and stony; (Fig. 88.) Some of the latter have the aspect of small corals. Oher species (Halodactylus) are imbedded in a dense mucilaginous substance arranged in thick branches, in which the coloured stomachs of

Fig. 86.
Fig. 87.

86. Menipea frutidosa, Packard, Gulf St. Lawrenco.
87. Halophila bonealis, Yackard, Gulf St. Lawrence. (Both magnified.)
the animals are seen as little specks. In the fresh water there are other species, several of which have been described by Leidy and Hyatt. In the limestones of the Silurian, Devonian and Carboniferous periods, many species are found fossil, of the genera Ptilodictya, Fenestella, \&c, \&c. (Figs. 89
and 90 .) Several species are also fossil in the Post-pliocene clays (Fig. 91.)

Fig. 88.

Mrmozoum s \ddagger bgracile, D'Orbigny, Gulf St. Lawrence, Natural size. (a) Cells of the same magnified.

The animals of this order, while minute in size and very similar in the structure of the individuals, present a vast number of specific and generic forms, distinguishable from each other by the shapes and arrangements of the cells, and are consequently very curious objects of microscopic investigation.

The simplest mode of classification divides them into sub-orders, in accordance with the forms of the cells and the material of which they are composed,
and ${ }_{d}$ with reference also to the habitat of the animal and the structure of its dise or Lophophore.

Fig. 89.

Ptilodictya acuta, Hall,--L. Silurian.
Sub-order 1. Cheilostomata, or those with the mouth of the horny or calcareous cell in two lips, includes a great number of marine species belonging to the genera Lepralia, Hippothoa, Membranipora, Flustra, Cellularia, \&c.

Sub-order 2. Cyclostomata, or those with circular mouths, includes the marine genera Tubulipora, Crisia, Idmonea, \&c.

Sub-crder 3. Ctenostomnta contains species with the mouth of the cell protected by a cirele of moveable spines. Example, Bowerbankia.

Sub-order 4-1Pedicellinea. In these the cells are supported on a stalk or pedicel. Example, Pedicellina.

Sub-order 5. Lophophea.-These are freshwater species having the disc or Lophophore divided

Fig. 90.

90. Fenestella Lyelli, Dawson,--Carboniferous. (b, c,) Parts enlarged to shew the colls.
into two branches like a horse-shoe, and the investing substance gelatinous. Example, Fredericella, Pectinatella, Cristatella.

Sub-order 6. Paludicellea- These are freshwater species like the above, but with the dise circular. Example, Paludicella.

Fig. 91.

91. Lepralia quadricornuta, Dawson, Post-pliocene, Montreal.

The curious Uinatc?la gracilis of Leidy, is by some regarded as the type of a separate groap. It is a fresh-water species found in the Sehuylkil River.

The first four groups are the Phylactolamata of Allman, having an epistome at the \mathbf{r} outh. The two last are Gymnol.mata, having no epistome.

2. Tunicata.

Externally these creatures are among the most unints "rting of the Mollasks; their whole bodies being enclosed in a uniorm sac-like coat. A species of $\boldsymbol{B o}^{\prime}$ 'enia, (\boldsymbol{B}. Bolteni, Lin,) presenting externally the appenrance of a leathery sac, supported on a sta'k, 's not uncoummon on our coasts. (Fig. 92.)

Fig. 92.

Boltenia Bolteni, Lin., Gulf St. Lawrence-reduced.
The sac has tro apertures, and when the animal is alive, the sea-water is drawn into one of these and expelled from the other by the alternate contraction and expansion of the sac. On dissecting the outer tunic, this is found to be lined with a muscular sac, which is the true mantle, and by the contraction of which water is expelled from the interior, while it is re-admitted by the elastic expansion of the oater tunic. Within the muscular sac is a delicate membranous ciliated organ, the respiratory sac, along the surface of which the water entering by the entrant aperture is carried by the motion of the cilia, and the nutritive matter which it contains wafted toward the mouth which lies near the bottom of the sac. The intestine doubles round and empties at the excurrent aperture, toward which also the opening of the ovarian ducts is directed. The creature, thus constituted, remains attached at the bottom of the sea, and its actions are limited to the rhythmical contraction and expansion of the tunic, by which water is continually introduced, and brings with it microscopic organisms on which the tunicate feeds.

The same action subserves the function of respiration.
In addition to the Boltenia, we have several species of Cynthia and Ascidia, one of which, Cynthia echinata, is remarkable for its covering of stiff branching bristles. Another species, Didemnium roseum, exists in compound communities, encrusting sponges and sea-weeds. Eackard his dredged it at Hopedale, Labrador ; and at Eastport, Maine ; and Whiteaves has found it at Gaspé.

There are other species of smaller size, some of them highly coloured, and others perfectly pellucid, so that the internal organs are distinctly visible through the tunic, but all may be distinguished by the sac-like tunic and the two apertures.

All the species found on our coast belong to the first sub-order of Tunicates, that of the Ascidiae, which also includes the remarkable Pyrosomidae of the warmer seas, freely moving forms in which the animals are grouped in radiating series in the walls of a hollow cylinder closed at one end, and said to be impelled by the reaction of the water sent forth from the excurrent apertures.

A second sub-order, Biphora, includes the Salpidce, also inhabitants of the warmer seas, and floating in chain-like bands of individuals, which, however, produce ova from which solitary individuals are hatched, and these in turn develope within their bodies colonics of banded Salpac. The Salpas and the Pyrosomas are gifted with that luminosity in the dark which is the property of so many marine animals.

B. Brachiopotia.

Of these curious and rare bivalve shell-fish, only a few species are found on our coasts. The most common is Rhynconella psittacea, the parrot'sbill Rhynconella. (Fig. 93.) It is a little horny

Fig. 93.

linyiconella psittacea, Lin. Gulf St. Lawrence.
bivalve shell, with one valve, the dorsal, smaller than the other, the beak of which projects and has a notch (foramen) below, through which passes a stalk or pedicel for attachment. The interior of the shell is lined with the two va! res of the mantle, and is occupied principally with the two fringed and ciliated arms coiled like cork-screws. (Fig.94.)

Fig. 94.

Bhynconella pegtacea ${ }^{\text {P }}$ Intelior of dorsal valve, showing (a) adductor museles, and (b) spirf' arms; diawn isom a specimen dredged at Gaspe-Natural size.

At the base of these is the mouth leading to a small stomach and short intestinc. It has a more complicated nervous and circulating system than that of the Tunicates, and has several pairs of muscles placed near the hinge for opening and closing the shell and regulating the movements of the creature to stones and dead shells in moderately deep water. Terebratulina septentrionalis, of more elongated form than the above-named species, ribbed longitudinally, with a round perforation at the beak, Other species found on our coasts are Waldheimia cranium, and Terehratella Spitzbergensis, a northern form found in Labrador, and also fossil in the post-pliocene clay of Rivière du Loup. Waldheimia cranium has as yet been found only on the coast of Nova Scotia, by Willis. It has been ascertained that the young of some Brachiopods much resemble Polyzoa in form and structure. (Morse).
Though recent Brachiopods are few in species, vast numbers are found fossil. Mr. Billings's catalogues include nearly 100 species, from the lower Silurian alone, in Canada; and Dr. Bigsby in his Thesaurus Siluricus, enumerates 429 species from the Silurian of America, whereas species from living species are known whereas less than 100 present.

Many of the fossil Brachiopods differ considerably from those that are recent, and are placed in different families. We can recognize their general of the mantle and muscles on the valves. Fig.

95 represents the interior of the dorsal and ventral valves of an Orthis, showing the muscular and mantle impressions, teeth and foramen.

Fig. 95.

Oi mits striatulan, after Woodward,
(A) Dormal value, showing the inuscular impressions at (d); also the vascular impressions of the mantle, and the notch, tooth and brachial processes in the hinge.
(13) Ventral valve, showing the impressions of the hinge and pedicel muscles.

The families of Brachiopoda are the following; the greater part being now extinct:

1. Terebratulidae.-Shell minutely punctate ; ventral valve perforated and with two curved
hinge teeth, dorsal valve with a cardinal process between the dental sockets and a shelly loop supporting the arms. Recent and fossil. Examples, -'Terebratula, Waldheimia, 'Terebratella, Rensellaria. (Figs. 96, 97.)
fig. 96.

Terebratela sacculus, Martin,-Carboniferous, with interior showing the loop.

Fï. 97.

Rensellaria ovalis, IIall,-Devonian.
2. Spiriferidse.-Shell with two spiral shelly supports in the interior. Dorsal valve with a Examples.-Spirifer, Athyris. (Figg. 98, 101.)

Fi!! 98.

Spirifer mucronatus, Hall,-Deronian.
rig 99.

Spirifer varicosa, Hall,-Devonian,
Fig. 100.

Spirifer qlaber, Mertin,-Carboniferous.
riiy, 101.

Atifyris subthita, Hull,-Carboniferous, with interior (c) fhowing spiral supports for the arms.
3. Khynconcliadae. - Shell not punctate, hinge line curved, Foramen under beak. Supports short or rarely spiral, Recent and fossil. Exam-ples.-Rhynconella, Atrypa, Pentamerus. (Figs. 102, to 106, also Figs. 93, 94.)

Fig. 102.

Rifyconelda increbresoens, Hall,-L. Silurian.
Fig. 103.

Rhynconella acadinnsis, Davidson,-Carboniferous,

Fig． 104.

Ruyaconelda Dawsoniana，Davideom，－Carbonifirong． ノ゙̈\％．10

ATHYPA RETICULARIS，Lin，－U，Silurian．
ドig． 106.

Pentamerus galeatus，Dalman，－U．Silurian．
4. Orthidae.-Shell usually punctate. Hinge line wide and straight, with an area. Internal supports small or wanting. Fossil. Examples.-Orthis, Strophomena, Leptaena. (Figs. 107 to 112.)

Fig. 107.
fig. 108.
Ri!., 10%.

100. Orthis testudinaria, Dalman,-L. Silurion. 101. O. lnyx, Eich,-L. Silurian.
102. 0, pectinella, Comrad,-1. Silurlan.

Fïg. 110。

Leptaena sericea, Sow,-L. Silurlan.

Fïg. 111.

Orthis Billingesi, Hartt-Primordial.

Fig. 112.

-

Strophomena filitexta, Hall, L. Silurian, interior and exterior,
5. Productidae. - Shell concavo-convex. Hinge line straight. Tubular spines on the surface. Fiossil. Examples.-Productus, Chonetes. (Figs. $113,116$.

Fi!! 118.

Prondetes semineticelatus, Martin,-Carboniferous.
Fig. 114.

Productus Cora, D'Orbigny,-Carboniferous.
Fig. 110.
vex.
ace.
igs.

Fig. 116.

6. Craniadze.- Shell rounded, hingeless, usually attached by the ventral valve. Dorsal valve shaped like a limpet. Nowent and fossil. Example.-Crania. (Fig. 117.)
rig 117.

Crania Acadiensis, Hall,-U. Silurian. Ventral valve, nat. size and mag.
7. Discinidec.-Resembling Crania, but attached by a peduncle passing through a foramen in the ventral valve. Recent and fossil. Examples. -Discina, Trematis. (Figs. 118, 119.)

Fig. 118.

Dibcina oirce, Billings,-L. Silurian.
D. Acadiae, Hartt,-Primordial.
8. Lingulidre.-Shell sub-equivalve with a long peduncle passing between the valves. Texture horny, minutely tubular. Material, phosphate of
lime. Recent and fossil. Examples.-Lingula, Obolus, Obolella. (Figs. 120, 121.)

Fig. 120.

Fig. 121

120. Lingula quadrata, Fich.-L. Silurian.
121. L. Mathewi, Martt,-l'rimordial.

Tabular view of Heterobranchiata.

HeterobranCHIATA.

Cheilostomata.
Cyclostomata.
Polyzoa or Ctenostmata.
Bryozoa. \quad Pedicellinea.
Lophophea.
Paludicellea.
Tunicata. $\left\{\begin{array}{l}\text { Ascidiæ. } \\ \text { Biphora, }\end{array}\right.$
(Terebratulidæ. Spiriferidæ. Rhynconellidx.
Brachiopoda. $\left\{\begin{array}{l}\text { Orthidæ. } \\ \text { Productidæ. }\end{array}\right.$
Craniadæ.
Discinide. Lingulidæ.

On Brachiopoda the student may consult Woodward's Manual of Mollusca; Davidson's Fossil Brachiopoda in Pubs. of Palæont. Society. For Canadian Fossil Brachiopods, Billings, in Reports of Canadian Survey ; Hall's Palæontology of New York ; Dawson's Acadian Geology.

The following figures represent additional species of Fossil Brachiopoda from the Palæozoic rocks of Canada: (Figs. 122 to 128.)

Fi!!. 124.

Strophomena magnifica, Hall,-Devoman, Interiur.
Fig. 125.

Leptocoelia intermedia, Hall,-Up. Silurian.

Fig. 124.
Fig. 125.
Fig. 126.

12. Rhynconella plena, Hall,-L. Silurian.
125. Camalella, hemplicata, Hall, I.-Silurian.
126. Strophomena altehnata Con.--L. Silurian.

Fiy. 127.

Strofhomena analoga, Phil,-Carboniferous.
Fig. 128.

Streptoruyncus crenistria, Phillips,-Carboniferous.

Class it.-Lamellibranchifata.

Body with a dextro-sinistral bivalve shell; mantle more or less closed; tentacles four ; gills lamelliform, in two pairs.

The Lamellibranchiates are the ordinary Bivalve Shell-fish, as the Oyster, Clam, Cockle, \&c. Their shells are not dorso-ventral, as in the Brachiopods, but placed on the sides of the body. Hence they are usually equivalve, and not equilateral; though there are not'a few exceptions to this. They have no orifice at the beak for attachment, and very rarely any internal processes.

The animal has the two leaves of the mantle more or less closed. The mouth is furnished with four labial processes not ciliated. The gills are arranged in four lamelle or plates, and not only serve for respiration, but, by the currents of water produced by their cilia, to waft food to the mouth. They also serve as a convenient hatching-place for the ova. The heart consists either of one auricle and one ventricle or of two auricles and one ventricle, and is systemic, that is, it drives the blood into the general circulation and receives it back from the gills. The nervous system consists of three pairs of ganglia-one pair at the sides of the mouth, another at the base of the foot and a third at the posterior adductor muscle. These are connected by nervous fibres. The foot, above mentioned, is a fleshy or muscular organ capable of being used for locomotion or for burrowing. In some genera it is absent. The adductor muscles
are strong bands of muscular fibre serving to close the shell, which is opened, not by muscular effort, but by the elasticity of a pad or internal ligament placed in the hinge. The general arrangement of parts in a lamellibranchiate may be represented by a diagram of the cross section. (Fig. 129.)

Fig. 129.

The shell of animals of this class is composed of three coats or layers. (1) The Epidermis, of a horny consistency, and serving as an exiernal coating or varnish. (2) Prismatic shell, composed of sixsided prisms of carbonate of lime, placed at right angles to the plane of the shell, and cemented with animal matter. (3) Lamellar. shell, composed of laminæ of carbonate of lime and animal matter, and lining the interior. This last kind of shell, when the laminæ are very thin, becomes pearly; and the lustre is sometimes enhanced by the corrugation of the laminæ. Pearls are concretions of lamellar shell formed in the mantle in consequence of injury or disease. The mantle not only lines the interior of the shell but is.the organ by which it is
deposited. The Lamellibranchiates are sometimes named Conchifera.

The parts recognised in the shell of a Lamellibranchiate, and the terms used in their description, are indicated in the diagram. (Fig. 130.)

Fig. 130.

Interior of ghell of mactra.
(x) Umbo. (b) Exterior Ligament. (c) Interior ligament. (d) Hinge tooth. (e) Lateral teeth. (f) Anterior adductor. (g) Posterior adductor. (h) Pallial impression, with sinus between it and posterior adductor. In this figure the hinge is somewhat exaggerated for the sake of distinctness.

The Lamellibranchiates may be conveniently divided into (1) Asiphonida, or those which have no tubes or siphons. (2) Siphonida, or those which have two tubes or siphons serving for the entrance and emission of water. These last are the most numerous, and usually burrow in sand or other substances, using their siphons, which are sometimes very long, to admit water to the gills. Figs. 131, 132 show the appearance of a siphonide and asiphonide species.

Fig. 131.

131. Mytilus edulis, Lin. (a) Foot. (b) Byssus. (c) Margin of mantle.
132. Tellina groenlandica, Beck. (a) Siphons. (d) Foot.

The Lamellibranchiates may be arranged in the following families:

(Siphonida, sinu-pallialia.)

Pholadidr-ex. Pholas, Teredo.-The shells of the genus Pholas are remarkable as burrowers in stone and hard clay. Our species is P. crispata. The species of Teredo burrow in sunken timber and are very destructive to piles and shipping. The animal is worm-like and the valves appear to be constructed for boring rather than for protection.

Gastrochaenidre-ex. Gastrochaena.-Burrowers, with the valves sometimes united into a shelly tube. No Canadian species.

Anatinidse-cx. Anatina, Pandora.-Shell thin, nacreous, often inequivalve, with a small free ossicle connected with the internal cartilage, Pandora trilineata, P. glacialis, Thracia Conradi, Pandorina arenosa, are Canadian species.

Mysteidse-ex. Mya, Saxicava, Glycimeris.Shell coarse and wrinkled, gaping posteriorly. Animal with closed mantle, small foot and united siphons. Mya arenaria is the common sand clam, Mya truncata is more rare and in deeper water, Saxicava rugosa abounds on rocky coasts, and burrows in limestonc. Fig. 133 to 135.

Fig. 133.

Saxicava mugosa, lim.
rig. 131.

Mratruncata, Lin.

Solenidre-ex. Solen, Machaera.--Shells clon ${ }^{*}$ gated, gaping at both ends. The common " razor" fish." Solen ensis, is a typical example.

Tellinidae-ex. 'Tellina, Sanguinolaria, Do-nax.-Shell compressed, usually closed and equivalve. Animal with mantle widely open in front, foot tongue-shaped, siphons long and separate. (Fig. 132.) 'T'. Groenlandica and T'. proxima are common species. Iig. 136, 137.

Mactridae-ex. Mactra, Gnathodon.-Shell equivalve, triangular. Internal ligament in a deep triangular pit. Two diverging cardinal teeth, and two lateral. (Fig. 130). Mactra solidissima, the great clam, is the largest bivalve found on our coasts.

Fig. 130.

Mya freviaria, Lin, (a) process for internal ligament.

Fig. 136.

Fig. 137.

Tellina proxima (sabulosa, Spengl.) mát. Groenlandica, Beck.
Veneridae - ex. Venus,! Cytherea, Petri-cola.--Shell regular, closed, sub-orbicular or oblong, ligament external ; hinge with usually three diverging teeth in each valve. The most common species on the Atlantic coast is Venus [Mercenaria] violacea, the Quahaug or Wampum shell. Venus gemma abounds at Gaspe.

(Siphonida, integro-pallialia.)

Cyprinidan-ex. Cyprina, Astarte, Cardita.Shell regular valve, oval, solid; epidermis thick and - ardinal teeth one to three, and usually a ror lateral tooth, Cyprina lslandica is our largest species; and we have several species of Astarter ${ }^{\text {and }}$ and Cardita borealis. [Figs. 138, 139.]

Fig. 188.

Astart ${ }^{\text {E }}$ mbiata, Leach.

Fig. 1 e9.

A, Ladrentlana-Pont-pliooone,

Cycladidae-ex. Cyclas, Cyrena, Pisidium.Fresh and brackish-water shells, sub-orbicular, closed, with thick horny epidermis and cardinal and lateral teeth. Several small shells of the genera Sphcerium and Pisidium are found in our streams and ponds. Fig. 140 to 146.

Fig. 140.

Spharriun rhomboideun, Say. - Fig. 142.

Fig. 141.

S. Solidulum, Prime. Fig. 143.

S. Transverbum, Say-

Fig. 144.

Fig. 145.
a.rmis and dica ecies 39.]

S. Sulcatum, Lam,(Cyclas simiiis) Say.

Sphafiluy Securis, Prime.

Pisidium Virginicuar, Brongt.

Fig. 146.

P. Altile, Anthony.

Lucinidac-ex. Lucina, Corbis, Kellia.-Shell orbicular, elosed, interior dull, obliquely furrowed. Thyasira Gouldii, a pretty little rounded shell with a flexure on the margin, is our most common species.

Cardiadac-ex Cardium, Serripes.-Shell regular, equivalve, cordate, with radiating ribs, and peculiar sculpture on posterior side. Two cardinal and two lateral teeth in each valve. Cardium 1slandicum is the common cockle of the Gulf St. Lawrence, and Serripes Groenlandica is also frequent. Fig. 147.

Fig. 147.

Cardium islandicum, Lin.
Tridachidac-ex. Tridacna, Hippopus.Shell regular, equivalve, truncated in front. Tridacna gigas is the largest of bivalves. No species occur in Canada.

Hippuritidac-ex. Hippurites, Radiolites.Fossil in the Cretaceous rocks; remarkable for the great and abnormal thickness of the right valve.

Chamidae-ex. Chama, Diceras.--Shell inequivalve, attached, with spiral beaks. We have one species.

(Asiphonida.)

Unioniata-ex. Unio, Anodon, Alasmodon.-Fresh-water shells, regular, equivalve, closed. Epidermis thick, shell nacreous within, ligament large, external. These are the fresh-water mussels, and are very abundant in our streams and lakes. Unio complanatus is the most common species, Alasmodon (Margaritana) margaritifera is the Pearl-mussel, and affords pearls sometimes of considerable beauty and value. Fig. 148.

Fig. 148.

Alasmodon, (Margaritana) marganitifera.

Trigeniatae-ex. Trigonia.-Shell equivalve, trigonal, with umi jones directed backward ; ligament external, with few diverging teeth, interior pearly. No living species in Canada; but the genus Lyrodesma of the Silurian is supposed to belong to this family.

Arcadae - ex. Arca, Cucullaea, Nucula, Leda.-Shell regular, equivalve, with a long row
of teeth in each valve. Several species of Nu cula and Leda occur in vur seas. (Figs. 149, 150.)

Fig. 149.

Lida minuta, Mull.

Fig. 150.

Leda (roldia) truncata, Post-pliocene.

Mytilidae-ex. Mytilus, Modiola, Lithodo-mus.-Shell equivalve, edentulous, oval or elongated, closed, umbones anterior, epidermis thick, attached by a byssus. The common mussel is Mytilus edulis. (Fig. 151.) The horse mussel is M. modiolus.

Fig. 151.

My'tilu's edulis, Lin.
Aviculidae-ex. Avicula, Meleagrina, Pinna.Shell inequivalve, very oblique, hinge-line straight and eared or winged posteriorly ; attached by a byssus. We have no modern species, but several in the Palaeozoic rocks. (Figs. 152, 153.)

Ostreadae-ex. Ostrea, Anomia, Pecten, Spondylus, Plicatula.-Shell inequivalve, free or adherent, resting on one valve. Beaks central, straight, ligament internal, adductor impression single, hinge usually edentulous. The common oyster, Ostrea

Fig 152.

Fig. 153.

152. Avicula flabella, Vanuxem, Devonian. 153. A. Honeymani, Hall, Up. Silurian.

Virginica, and the Pectens or Scallops are wellknown examples. (Fig. 154.)

Fig. 151.

Peoten Iblandicun, Chomnitz.

The following figures represent fossil Lamellibranchiates found in Canadian rocks, but which, for the most part, can be only doubtfully referred to any of the above families. (Figs. 155 to 166.)

Fig. 155.

Ambonychia superba, Hall-M. Silurian.

Fig. 157.

151. Cyrtodonta sigmoides, Billings,-m. Silurian. 152. Cyrtodonta ungulata, Billings,-M. Silurian.

Fig. 158.

Megambonia nitida, Billings,-M. Silurian.
Fig. 159.

Conocardium acadiandm, Hartt.-Carboniforsus.

Fig. 160.

Cfpriqardia insecta, Dawson.-Carboniferous.
Fig. 161.

Edmondia Martti, Dn.-Carboniferous.
Fig. 162.

Aviculopecten Lyelli, Dn.- (a, b) 8 sculpture-Carboniferous.

- Fig. 163,

Fig. 164.

163. Naiadites Carbonarius, Dn.-Carboniforous.
164. N. elongatus, Dn.-Carb.

Fig. 165.

N. LaEvis, Dn,-Carb.

Fig. 166.

Macrodon Hardingi, Dn.-Carboniferous. (a) cast. (b) exterior Tabular View of Lamellibranchiata.

Lamellibranchiata.
 \&c.

Siphonida, (Cardiadæ.
Integro- $\left\{\begin{array}{l}\text { Lucinidæ. }\end{array}\right.$ pallialia. $\left\{\begin{array}{l}\text { Cyprinidæ. } \\ \text { \&c. }\end{array}\right.$

Asiphonida. $\left\{\begin{array}{c}\text { Ostreadæ. } \\ \text { Mytilidæ. } \\ \text { Unionidæ. } \\ \text { \&c. }\end{array}\right.$
The student will find the families of Lamellibranchiata admirably described in Woodward's

Manual of the Mollusca. For Canadian species reference may be made to Gould's Invertebrates of Massachussets, and to Papers by Packard, Whiteaves, Bell, and others, published in the Canadian Naturalist. Fossil species will be found in Memoirs by Billings in Reports of Canadian Survey, and in Dawson's Acadian Geology.

Class ini.-Gasteropoda.

Encephalous; body symmetrical or spiral; foot along the ventral aspect of the body.

A typical Gasteropod, such as one of the whelks, periwinkles or snails, has a manifest head, in which are grouped its organs of sensation. Its locomotion is performed by a muscular organ placed on the ventral aspect of the body, and termed its foot. The body is usually elongated, and generally spiral, and the most common covering is a univalve calcareous shell. The nervous system and circulating apparatus are more compact and highly developed than in the last class, and the locomotive energies are greater. Respiration is performed either by gills or by a pulmonary sac. The mouth is destitute of tentacles, but is furnished with a tongue or lingual ribbon beset with teeth, which, in the herbivorous species, serves to rasp vegetable substances, and in those that are carnivorous, to abrade holes in the shells of other mollusks. The following figure shows the arrangement of the principal organs in a fresh-water snail of the genus Paludina. (Fig. 167.)

The shell of the Gasteropods is constructed of the same materials with that of the last class, and is deposited by the mantle. It ${ }^{\text {ts }}$ never bivalve,

Animal of Paludina, after Woodward.
(a) Mouth. (b) 'Tentacles and Eyes. (c) Foot, (d) Gills. (e) Intestine. $\left(f^{\prime}\right)$ Ovary. but is often provided with a horny or calcareous operculum or lid developed from the foot, and which closes the shell when the animal is retracted. The different parts of a univalve shell are indicated in Figure 168.

Fig. 168.

Univalve shell, (Buccinofusue) to show its parts.
(a) Apex. (b) Spire, showing sutures at union of the turns, also ribs or varices and revolving lines. (c) Outer lip and aperture (d) Anterior canal. (e) Body whirl. (f) Inner lip or columella.

The Gasteropods present a greater variety of organisation than the Lamellibranchiata, and may therefore be somewhat minutely divided into orders.

The following are the orders genclally received; but there are good grounds for considering that the Dentalia or tooth-shells and the Chitons should be separated from order 5th to form separate orders. A new classification has also been proposed on the ground of the forms and arrangements of the teeth on the lingual ribbon; but this seems a ground too limited to give a natural arrange ment.

Order 1. Pteropoda-These are oceanic and free-swimming, and are distinguished by iwo fins or swimming organs developed from the sides of the neck or head. Some have shells, others aro naked. The latter only have distinct heads.

Order 2. Heteropoda, or Nueleobran-chiata.-These are also pelagic animals, and swimmers; but their swimming organ is a fin-like tail, furnished with a sucker for attachment, and represents the foot of other Gasteropods. The greater part have shells, which are, however, in many of the typical forms, as Carinaria, too small to cover more than a few of the more important organs.

Order 3. Opisthobranchiata. -Some of these can swim, but all are furnished with an ample foot for creeping. They derive their name from the position of the gills, which are placed toward the posterior part of the body, and are either covered by the mantle (Tectibranchiata) or naked (Nudibranchiata.) A few of thi, former have shells.

Drder 4. Pulmonifera. - These are land and fresh-water snails and slugs, and are distinguished by the possession of an internal pulmonary
borealis of Brugière.] It is aboais an inch in length, semi-transparent, and of a roseat 3 hue ; moving through the water by the flapping of its ample fins, and preying on minute crustaceans and other creatures by means of a formidable apparatus of suckers and shear-like jaws, in front of its head. This little creature is so abundant in some perts of the Greenland seas that is said to form a considerable part of the food of the great whalebone whales. Another still more beautiful Pteropod has been
procured by Mr. Packard on the same coasts. It is the Limacina helicina, a little creature contained in a small snail-like spiral shell of almost inconceivable thinness, and extending from the front of its body two delicate and beautiful fins, which may almost be compared to the wings of an insect, with which it moves gaily through the water. These are the only Pteropods of which I have seen specimens from Canadian waters. The genus Conularia of our Carboniferous and Silurian limestones, and the genera ITheca, Pterotheca and Salterella of the Silurian, are suppesed to belong to this order. Fig. 170.

Conularia planicostata, Daweon-Carboniferous.

Order in.-Heteropoda.

In the modern world, these are for the most part inhabitants of the warmer seas ; and the only species as yet known to us in Canada are those found fossil in our limestones. Of these, the most characteristic are those of the genera Bellerophon and

It is ed in rable body most hich the mens $i a$ of 1 the f the Fig.

Cyrtolites, species of which are found from the Lower Silurian to the Carboniferous inelusive. Figs. 171, 172. The curious and somewhat anomalous shells of the genera Maclurea and Ecculiomphalus, are also supposed by some palaeontologists to belong to this order.

Rig. 171.

Bellerophon canadensis, Billings,-M. Silurian.
The Ianthince or violet snails are regarded as an aberrant family of this order. They have spiral
shells and float by means of a modified cellular operculum which buoys them up. They are mostly tropica'; but shells of Ianthina fragilis are sometimes cast on or Atlantic coast.

Fi! 172.

Bellerophon sulcatines,-Billings, L. Silurian.

Oraler : $2 .-$ Dpistholbranchiatia.

The Nudibranchiate, or naked-gilled division of this order, is represented on our coasts by many species of sea-slugs with soft slimy bodies and destitute of shells. Many of them are curious and beautiful when alive, but they lose all their charms when seen as museum specimens. I figure as an illustration Doris planulata (Stimpson), from the Bay of Fundy. It is a little creature about half an. inch long, with a broad depressed body, covered with minute tubercles, and white, with a row of yellow spots along each side. Its gills, composed of delicate radiating plumes, are seen behind, and its two serew-like tentacles in front. (Fig. 173).

Doris planulata, Stimpson.
The most interesting of the Tectibranchiates are the Bullae or bubble-shells and their allies. These have, enclosed in the mantle, a delicate and beautiful spiral shell. Several species, all of small size, occur on our coasts. (Fig. 174.)

Fig. 174.

Cylicifa alba, Brown.

(Briter 4.-Pnimonifera.

Though, from the dryness of its summers and the coldness of its winters, Canada is by no means favourable to the land and fresh-water snails, yet we have numerous species, some of which are very common. They belong to the following families:

1. Auriculidae.-The siells of the genus Auricula (sub-geners Melamnus, Alexia) have the aperture guarded by processes, and inhabit salt marshes and similar places, thus connecting in their habitat the fresh-water and sea snails.
lig. 175.

Limnea stagnalis, Lin, Shell and Animal,-(b) Mass of Eggs magnified.
2. Limnacadae.-Here we have the Limneas and Physas or spiral fresh-water snails, and the discoid snails belonging to the genus Planorbis. Allied to the former is the curious genus Ancylus. with a conical shell, like that of a limpet. Figs. 175 to 187 show some common species. All these crea-

Fig. 176.

Limnea stagnalis, Lin.

Fig. $17 \overline{7}$.

1iz. 1is.

Limnea ampla, Mighels.
Limnea elones, Say.
tures, though living in water, breathe air ; and they are especially interesting to students residing in inland regions remote from the sea. Specimens

I'lanoribis machostomus, Whiteavcs.
may be found in nearly all ponds and streams, and if kept in an aquarium, afford a convenient opportunity of studying the forms and habits of gasteropods.

Fig. 180.

180. Planorbis trivolvis, Say. 181. P'. Lentus, Say.
fig, 153.

189. Pirsa ieterostropha, Say. 183. Ancylus rivulamis, Say. 184. A. fuscus, Adams.

Fig. 185.
Fi!g, 186.
Fig. 187.

185. Planorbis campanulatus, Say.
186. 1'. defleotus, Say.
187. P. Armigerus, Say.
3. Limacidae.-Our most common--gardeners may suppose too common-representative of this family, is the slimy garden slug, protected only by its membranous mantle, though it has a concealed rudimentary shell. Several species occur in this country. The common one in gardens is Limax
agrestis. These creatures are remarkable for the large quantity of tenacious mucus secreted from glands in the mantle, and which greatly coniributes to their protection.
4. Helicidae.-Here we have the-ordinary land snails of the ge is Helix, the Amber-snails of the genus Succirea, and the long land snails of the gencra $P u$ pa and Bulimus, and their allies. Figs. 188 to 190.

Fi゙!. 188.

helix albolabris, sigy.
Fig. 189.
Fig. 190

189. Helix alternata, Say.
190. Helix monodon, Kackett.

The oldest known Pulmonates are Pupa vetusta and Conulus priscus from the Coal-formation of Nova Scotia. Figs. 191, 192.

Fig. 191.

Pupa vetusta. Daweon.-Carboniferous. (a) nat size. (b) magnified. (c) apex. (d) sculpture.

Contreds priscus, Carpenter.-Carboniferous. (a) magnified. (b) sculpture.
5. Siphonariae. - These are marine snails, breathing air and with limpet-like shells.

Order 5.--1Prosoloranchiatar.

These are represented by very numerous species in our salt and fresh watcrs. For convenience they may be divided into two sections:-(1.) Holostomata, or those which have the shell usually spiral and univalve, sometimes tubular or conical or multivalve, and have the aperture of the shell entire. They have no siphon, or the organ is very rudimentary. They are mostly vegetable feeders, though some are carnivorous. (2.) Siphonostomata, with the shell spiral and notched or produced into a canal in front, to accommodate the respiratory tube or siphon.

In the first named of the above sections are the following families:

Chitonidae.--Having the body covered with a multivalve shell in eight pieces, glving the creature the aspect of an articulated animal, though truly a mollusk. Chiton marmoreus, the spotted or marbled Chiton, is the most common species. (Fig. 193.

Fig. 193.

Cmiton limersonif, two of the valves.
Dentaliadae.-Long tubular shells, living in deep water in muddy bottoms. Dentalium (Entalis) striatum is found on our coasts.

Patellidate.-Shells conical, animals clinging to or creeping on stoncs. Tectura testudinalis, the common limpet of our coasts, is an example. Lepeta cecca. (Fig. 194) is less common.

Lepeta cacca, Mull,
Fissurellialse. - The "Key-hole" or perforated limpets. One little species, Cemoria Noachina, is found on our coasts.

Maliotidae.--The Sea-ears are beautiful pearly shells not represented in this country.

Turbinidae.-These are the Top.shells ard " silver willies." Their shell: are turbirated, or short, conical and pearly withir . Trochus occidentalis is found in our seas, and several species of $M a$;garita.

The genus Platyschisma of the carboniferous limestone perhaps belongs to this family. Fig. 195.

Fig. 195.

P atyschisma dubia, Dn.--Carboniferous.
Neritidae.-The Nerites are not represented in our seas.
Calyptracaaiac.-The Slipper Limpets and the "Cup and Saucer Limpets." Crepidula fornicata is our common Slipper Limpet.

Turmiellidne.-'These, as their name imports, are long turreted shells with rounded aperture, and
$0^{\text {onten }}$ of very graceful form. They are marine.Turritella erosa is not uncommon, and Scalaria Gro "landica, (Fig. 196), though rare, is one of ous most beautiful shells.

Fig. 190.

Littorinidae.-These are the most common little univalves of the sea-beach, swarming on stones, and feeding on sea-weeds. Littorina rudis and L. palliata are our most common species. The little banded sea-snail, Lacuna vincta, also belongs here, as do the almost microscopic shells of the genus Rissoa.

Paludinidae.-These are fresh-water shellfish, with conical or globular sholls, having a rounded entire aperture. Paludina decisa is common in our larger rivers, as also are certain curious little sholls of the genus Valvata. (Figs. 198, 199.)

Fig. 197.

©
Fig. 193.
Fig. 199.

197. Amnicola porata, Say. 198. Valvata tricarinata, Say. 199. V. pupoidea, Say.

Melaniadae.--These, like the Paludinas, are fresh-water shells, common in our rivers. They differ from Paludina in their more clongated forms and tendency to a channel or notch in the front of the aperture. The most abundant species in the St. Lawrence is Melania depygis. The little shells of the genus Amnicola belong to this family: (Fig.197.)

Cerithiadre.-These differ from other members of this group in having a canal in front of the shell, and when adult the lip is often expanded. Our finest species is the Western "Spout-shell," Aporrhais occidentalis.
Pyramidellidae.-These are long shells like the Turritellas, with small aperture, and often plaits on the Columella. Menestho albula is a very pretty little species
Naticidac. - These have globular few whirled shells. The animal has a very large rounded foot. Natica heros is one of our largest univalves, and very common on sandy shores, where it deposits its spawn in a flat sandy ribbon moulded on the foot.

We have several smaller species of Natica and two of Velutina. (Figs. 200 to 202.)

Fig. 200.

Fig. 201.
Fig. 202.

200. Natica helicoides, Johmston.
201. N. clausa, Brod and Sow.
202. Velutina zonata, Gould.

The second section (Siphonostomata) includes the following families:

Cyprreadie.--The Cowric shells are inhabitants of the warmer seas and not represented with us.

Volutidee.-The Volutes are also tropical and sub-tropical shells, often of great beauty.

Conidide.-The proper Cone-shells belong to the warmer latitudes; but several beautiful little shells of the genus Bela are found in deep water on our coasts. They have the aperture long and narrow, with a noteh in the back or upper end.

IBuccinidae.-These are the whelks and their allies, represented on our coast by the common whelk, Buccinum undatum, (undulatum, Stimpson,) and several other shells of this genus and of the genera Nassa, Purpura, \&c. The masses of tough leathery egg-cases of the Buccinum are very common on our shores. (Fig. 203.)

Muricida.-These have a straight inferior eanal, often of considerable length. They are

203. Búcinum undatum, Lin, Variety.
represented on our coast by species of Fusus, Trophon, and Trichotropis, mostly deep water shells. (Figs. 205, 206

Fig 205.

205. Fusus tornatus, Gould.
206. ADMETE VIRIDULA, O. Fabricils.

Strombidse-These are tropical and subtropical shells. The great Strombus gigas, or conch of the West Indies, is ell known everywhere, and is used in the manufacture of the commoner kinds of cameos.

The eight families last mentioned are carnivorous and have a retractile proboscis, often with a prehensile spinous collar.

The fossils of the genera Murchisonia and Pleurotomaria, (Figs. 207) are abundant in our Palæozoic rocks, but are of uncertain affinities. These shells may be distinguished by a notch in front of the lip.

Fig, 207

184. Pleurotomaria gybillina, Billinge,-M. Silurian,
(a) Sculpture and notch.

The genera Loxonema and Euomphalus also inlude fossils of uncertain affinities. Figs. 208, 209.

Fiy. 208.

Fig. 209.

Tabular View of Gasteropods.
$\left\{\begin{array}{c}\text { Order } \\ \text { Pteropoda. }\end{array}\left\{\begin{array}{l}\text { Hyaleidx. } \\ \text { Limacinidx. } \\ \text { Cliidæ. }\end{array}\right.\right.$
Order Heteropoda $\left\{\begin{array}{l}\text { Firolidx. } \\ \text { Atlantide. } \\ \text { Ianthinidæ. }\end{array}\right.$
Elysiadic. Plillyrhoidæ. Acolida. Tritoniada.
Order
opistho- $\left\{\begin{array}{l}\text { Doridæ. } \\ \text { Phyllidiadx. }\end{array}\right.$ branchiata. \quad Pleurobranchidx. Aplysiadæ. Bullidx. 'Iornatellidx. Order
Pulmoni-
fera. $\left\{\begin{array}{l}\text { Aciculidæ. } \\ \text { Auriculidæ. } \\ \text { Limnaeidæ. } \\ \text { Oncidiadæ. } \\ \text { Limacide. } \\ \text { Helicidæ. }\end{array}\right.$ Order
Prosobran-
cliatata. $\begin{aligned} & \text { Chitonidæ. } \\ & \text { Dentaliadæ. } \\ & \text { Patellidæ. } \\ & \text { Fissurellide. } \\ & \text { Haliotide. } \\ & \text { Turbindæ. } \\ & \text { Neritidæ. }\end{aligned}$

Tablear View of Gasteropods.-Contimued.

For the Gasteropods the student may be referred to the works mentioned under the last class.

> Class iv.---Cepifalopoda.

Encephalous; body symmetrical; locomotive and prehensile organs attached to the head; a rudiment of a skeleton in some; dioecious and ametabolian.

The Cephalopods cecupy the highest piace in the Province Mollusca. The foot is brought to the front of the body, and is divided into a number of arms furnished with an apparatus of suckers, and sometimes with hooks also. The mouth is provided with a horny beak, and the organs of sense are higily developed, whis? the circulation and respiration are vary com te and vigorous. Locomotion is performed by the arms, or by the
re-action of the water ejected from the respuratory chamber through the "fumnel," from which also can be ejected in some species a pigment for darkening the water, secreted in a glandular apparatus, the "ink-bag." Some are protected by an external shell. In others, the shell, or its rudimentary representative, is intermal. These creatures are active and predaccous, and in the seas of warm climates some of them attain to gigantic dimensions and are formidable to man and to the larger fishes.

They are divided into two crders.

1. Tetrabiranchiata.-In which there are four gills, numerous arms, and an external chambered shell, the inner chambers of which are empty, and serve as a float to render the animal independent of gravity, by accommodating its weight to the specific gravity of the sea-water. These are the Nautili and their allies.
2. Dibranchiata.-In which there are two gills, eight or ten arms, an ink-gland, and no external shell, except in a few species. These are the Cuttle-fishes and their allies.

©ricr 1.-Tetrabranchiata.

No living species of this order belongs to our country. The modern Nautili inhabit warmer regions, and are limited to a very few species, of which the Pearly Nautilus, $N_{\text {. }}$ pompilius, is the most common. Its shell is distinguished by its numerous partitions, dividing it into air chambers through which passes a siphon or tube, communicating with the body of the animal. But though we have no modern shells of this order, numerous
species are found fossil in our limestones ; and it is in the rocks of the earth that we must seek for the greater number of species of Tetrabranchiates, which seem to have attained to their highest development in number, size and complexity, in former geological periods. The species are usually arranged in three families, though from our ignorance of the animals of the fossil species, it is not always possible to be certain that our arrangements are natural.

Fig. 211.

Lituites, (6), armoceras (5), nadtilus, (7.)
Nautilidae.-The type of this family is the Nautilus pompilius. In our Silurian and Devonian rocks we have species of the allied genera

Lituites and Clymenia, and a fine Notetilus occurs in the Carboniferous. (Fig. 211.)

Fig. 211.

Nautilus a yonexsis, Dawson,-Carboniferoms. (b) Seetion show" ing position of Siphuncle.

Fig. 212.

Grroceras II. min, Dn.-Carboniferous.

Orthoceratidee.-These are all extinct. They differ from the Nautili in having the shell often straight, or merely curved; in the smallness of the last chamber for containing the body of the animal, and in the aperture being contracted. Many of them have the siphuncle or tube leading through the chambers singularly complicated. Some of the species were of very great size, the shells being several feet in length. Several genera of this family are represented on the Palaeozoic rocks of Canada. (Fig. 213.)
fig. 213.

Orthoceras (a). Gomplocteras (1). Afcocfras (2). Cybtoceras (3) - Elter Dillangs.

F゙ig. 211.

Orthoceras polatum Dn.-Comboniferous.
O. Vindobonense,
O. perstrietem,
do.
do.
do. do.
3. Ammonitidise.-In these the body-chamber is elongated and guarded by processes and closed with an opereulum or lid. 'The partitions of the chambers are waved or lobed, and the siphuncle is at the back or outer curve of the shell. They are all extinct ; but most of them belong to formations less ancient than those of Canada. (Fig. 215.) The genus Goniatites is, however, represented in the Devonian and Carboniferous.

Fig. 215.

Ammonites Jasox, Reinecke,-Oxford Clay, England.

The common squids, of which two species occur in our seas, are our only known Canadian repre-
sentatives of this order, if we except the curious little Spirula fragilis of which the shells have been found by Mr. Willis on Sable Island.

The Dibranchiates may be conveniently divided into two groups or sub-orders, the Decapode or ten-armed, and the Octapoda or cight-armed. The four first of the following families belong to the first sub-order, the two last to the second.

Teuthide. - This family includes several genera, two at least of which are found in our seas. Loligo includes theCalamaries or pen-bearing squids, so named from their having a rudimentary internal shell of cartilaginous consistency and shaped like a pen or feather. A species of Loligo is found in the Fig. 216.

Ommastrepues Bartramif, LeSueur.

Bay of Fundy. Ommastrephes includes those which have an elongated narrow pen, with a conical hollow extremity. O Burtramii? occurs in the Gulf of St. Lawrence and is known as the Squid. (Fig. 216.) Our sfuids are of small size and are much used as bait by fishermen ; but some of the largest and most formidable cephalopods of the tropics belong to this family.

Belennitidae. - These are extinct Cephalopods belonging to the Mesozoic period of geology. They were allied to the last family, but possessed a curious and complicated internal shell, in part chambered. Fig. 217. No Camadian species are known.

BeLemntteg, section, after Phillips
se which conical in the Squid. and are of the of the
ephalocology. ;essed a in part cies are

Sepiarlice.-'These are the Cuttle-fishes. They have a more compact form than the squids, and the internal shell (cuttle-bone) is hard and calcarous. No Canadian species are known.

Spirulialse.-'These are small cephalopods with an internal spiral chambered shell. S'. fragilis is sometimes cairied northward by the gulf stream, and cast on our shores.

Detoporidide.-The Octopus or Poulpe of the Mediterrancan is the type of this family, in which the shell is entirely rudimentary, the arms eight in number and connected by a web at the base, and the body usually short and compact. We have no known Canadian species, though there are Northern species which might occur on our coasts.

Argonautidie.--These are Octopods, of which the females are protected by a delicate shell, not divided into chambers, and enclosed in two of the arms, which are flattened at the extremity. The "Paper Nautilus," Argonauta argo, is the most common representative of this family in collections. These animals swim by ejecting water from the funnel, and creep on the bottom by means of the arms. The poetical fancy of their using their shells as boats has no foundation in fact.

For the Cephalopoda the student may be referred to the works already mentioned under the Lamellibranchiates. Many fossil Canadian species have been described and figured by Mr. Billings in the Reports of the Geological Survey.

Cephalopoda.	Order Tetrabranchiata	$\left\{\begin{array}{l} \text { Nautilidx. } \\ \text { Orthoceratide. } \\ \text { Ammonitidæ. } \end{array}\right.$
		$\left(\begin{array}{l}\text { Teuthidx. } \\ \text { Belemnitidx. }\end{array}\right.$
	Order	Sepiadx.
	Dilranchiata.	Spirulidæ.
		Octopodidæ. Argonautide.

CIIAP'IER V.

DESCRIPTIVE ZOOLOGY-Contimued.

Province Articlelata.

Bilateral, symmetrical; skeleton ammelose, external ; nervous system homogangliate, consisting of an asophageal ring, and double abdominal nervecord and ganglia. Heart dorsal, usually vasiform ; blood not red except in some Ammulata; respiratory organs lateral; jaws move horizontally.

Class 1. Ammulata-Worms. " 2. Crustacea-Soft Shell-fish.
" 3. Insecta-Insects, and Myriapods.
" 4. Arachuida-Mites, Spiders, Scorpions.
The plan embodied in the skeleton of the Articulata is that of a scrics of rings, or somites as they have been called, articulated to each other and constituting a chain of segments. In the worms this structure is simple and nearly uniform, from front to rear of the animal. In the higher forms it becomes more complex and varied. In the cross section of the body, the alimentary canal occupies the centre ; above it is the elongated heart or dorsal vessel ; below is the principal nerve-cord. The bilateral symmetry is perfect, and there is sometimes also an indication of antero-posterior symmetry. The respiration is performed in the acrial species by air tubes (trachex) opening by

pores or stigmata at the sides, or by air-sacs. In the aquatic species it is effected by gills, usually placed at the sides of the body. In the smaller species the skeleton is composed of a tough clastic substance named chitine. In the larger species it is often hardened by calcareous matter. The number of species of Articulates far exceeds that in any other province.

Class I.-Annulata.

Body soft, vermiform, amulated; with suckers, setoe or setigerous feet. In most an alimentary canal with proper parietes, a vascular systern, respiratory organs and a double ganglionic nervous cord.

In the typical Annelids, like the sea-worms, earth-worms, \&c., we have a scries of nearly equal rings, in each of which an upper and under area and two side arcas are distinguishable, and to the latter, in the higher types, Setce or setigerous feet are attached. The intestinal canal, the circulating system and the nerve-cord, are arranged, as above stated, with regard to articulates in general ; but in all the members of this class the nutritive fluid appears to be.contained in the general visceral cavity, as well as in the vessels when these exist.

There are, however, a number of low forms of Annulates, in which the typical characters become obscure, and in some of which the organism descends almost to the level of the Protozoa. Of this character are the Entozoa or intestinal worms, the Rotifera or wheel animalcules, and the Turbellaria or ciliated worms.
cs. In usually smaller 1 elastic ecies it he numthat in mentary system, mic ner-
a-worms, rly equal d under e, and to etigerous the circumged, as general ; nutritive l visceral e exist. forms of s become descends this chaprms, the urbellaria

The link of connection between these low forms and the ordinary worms, is established only through the embryonic stages of the latter, which in the absence or slight development of the rings, and their movement by means of cilia at once recal some of the lower forms above mentioned. It must, however, be admitted that the group of Entozoa, as at present held by naturalists, is rather one of convenience, depending on the peculiar habits of these creatures, than of natural arrangement, since they differ very much among themselves both in plan and degree of complexity.

The above considerations lead us to divide the Annulata into two sub-classes, in the manner sug. gested by Prof. Huxley,--the one, including the Entozoa, Rotifera and Ciliated Worms, to be named Scoecida; the other, the Worms properly so called, or Annelida.

(1. Scolecida.)

Under the first of these sub-classes, the orders are:

1. Sterelminthat, comprehending those worms called by Cuvier parenchymatous, and by others sterelminthous, that is, worms having cellular bodies without distinct viscera. This will include the cestoid worms or Tape-worms, the Flukes, Planariz and other Turbellarians, and the Acanthocephala or spiny-headed Entozoa.
2. Coelelmintha, including those parasitic worms having distinct viscera and parietes of the body, and approaching in structure to the ordinary worms. This order includes the Round Intestinal Worms and the Hair-worms.
3. Rotifera, including certain microscopic worms, with ciliated organs at the head, and imperfectly annulated bodies; and which, while in some points resembling embryonic worms, also in some respects approach to the lower crustacea. These are the Wheel-animalcules and their allies.

1. Sterelmintha:

The internal worms belonging to this order may be represented by the common tape worm, Taenia solium, of the human intestines. (Fig 2u8). This creature in its adult state consists of a head or Scolex, having four suckers on the sides and a circle of sharp spines for attachment ; appended to this are very numerous quadrate flat joints, each containing an ovarian apparatus, so that these creatures are chiefly remarkable for the great development of their generative apparatus. Otherwise their structures are very simple, and they appear to feed by absorption into a series of tubes excavated in the cellular substance of the body. The eggs of the tape-worm, when discharged from the intestine of its host, may be taken by other animals along with their food. They are hatched in the stomach into a microscopic scolex, which penetrates into the tissues and is capable of multiplying by fission. This scolex finally establishes itself as a pupa or resting scolex, and assumes the form represented in Fig. 218a; in which state it is the kind of parasite termed Cysticercus, and which causes the disease known as "measles" in the domestic hog, an animal which, from its habits of life, is peculiarly liable to become the host of these parasites. The circle of change is

A third group of these parasites, the Acanthocephala, may be represented by the Echinorhyncus gigas of the intestines of the hog. Their general structures do not seem very dissimilar from those of tine last mentioned group, but they are of elongated form, and the anterior extremity is armed with a formidable proboscis furnished with hooked spines at the sides.

The last group of these worms may be represented by the Planarice, which are minute oval worms occurring both in fresh water and in the sea, resembling the Distomas in form, but having a more complex internal system of nutritive canals, and having the surface covered with cilia, by means of which they swim. They are not internal parasites.

The whole of these creatures may be grouped in the following families :

1. Tacniadre.-Head with suckers and spines; body jointed. These are the Iape-worms and their allies.
2. Trematoda.-Body depressed, butjointed, with suckers but no spines. These are the Distomas and their allies.
3. Acanthocephata. - Body saccular or cylindrical ; anterior end with an uncinated proboscis. Echinorhyncus and its allies.
4. Turbellaria.-Body flattened and provided with external cilia. These are the Planarie and their allies.

2. Colelmintha.

In these the alimentary canal is suspended in an abdominal cavity, and the sexes are distinct, which
is not the case in the previous group. The common round worms of the human intestines (Ascaris) belong to this order. A still more dangerous though microscopic parasite is the Trichina spiralis (Fig. 219), which inhabits the muscles of the

Fig:219.

Tricmina spiralis, in its cyst, magniticd; and specimen removed from its cyst, farther magnified.
domestic hog, and when transferred from these to the human stomach, multiplies rapidly, and penetrates the tissucs, causing great and sometimes fatal irritation. It finally forms a sac or cyst, in which it remains in a quiescent condition, unless transferred into the alimentary canal of some new host, where the same course is again pursued.

Another curious worm belonging to this group, is the hair-worm (Gordius.) These creatures are internal parasites in the larger aquatic insects, from which, when mature, they come forth as extremely long and slender worms, of a whitish or brown colour, which swim reely in the water of pools and there deposit their eggs. From their sudden appearance in great numbers in such places, arises the popular superstition that they are animated hairs. Our common species is probably G. lacustris, Fabr.

With reference to the relation of parasites to the animals on which they prey, it may be stated that these creatures are usually destructive only under circumstances of unnatural or unsuitable habits of life. In the human subject, their introduction is due in most cases to the use of imperfectly cooked food, of raw vegetables not properly cleansed, and of stagnant impure water; or to filthy habits in the keeping and preparation of food.

The Cælelminths may be divided into the following sub-orders or families :

1. Gordiacea.-Body slender. Alimentary canal without vent. Example, Gordius, Trichina.
2. Nematoidca.-Body elongated. Alimentary canal with both mouth and vent. Example, Ascaris.
3. Onchopliora.-Body depressed, sub-articulate, mouth with hooks, anus distinct. Example, Linguatula.

B. Rotifer:a.

These are microscopic animalcules, at one time included with the Infusoria, but now known to be of much more complex structure. They derive their name from ciliated lobes placed on the head, and which, in some species, from the motion of the cilia, have the appearance of rotating wheels. These ciliated lobes serve to create currents to bring food to the mouth, and also for locomotion. The alimentary canal has, in the better developed examples, an interior stomach or crop, a gizzard with apparatus for triturating the food, and a proper intestinal canal: There is also a vascular system, with a pulsating sac. In the body wall there are distinct muscular fibres, and the posterior part is more
or less articulated or jointed, and in many species furnished with claspers for attachment, while others are protected within a case or cell of gelatinous consistency. Though microscopic in size, the Rotifers are more highly organized than ary other members of this sub-class ; they are found in great numbers in stagnant water, aquaria, \&c. ; and form very interesting subjects of microscopic study.

The Rotifera are bisexual, and the males are of smaller size and more simple structure than the females. The young are produced from proper ova. Nervous ganglia have been observed in some species, and eyes are also believed to have been detected. The Rotifers are very tenacious of life, specimens havebeen desiccated andmoistened again, several times in succession, without perishing ; and after being kept dry for years, they have revived on being put into water.

The following division of the Rotifers, though probably not natural, is useful in distinguishing these creatures under the microscope :-

1. Monotrochar. - With a continuous single ring of cilia. Example, Conochilus.
2. Schizotrocha.--With the ciliary apparatus notched or lobed. Example, Floscularia.
3. Polvirochat.-With several wheel-like organs. Example, Hydatina.
4. Zygotrocha. - With two wheel-like organs. Example, Rotifor.

On intestinal worms the student may consult Von Beneden, "Vers Intestinaux," (Supplement to Comptes Rendus), and Cobbold on Entozoa; and the more common Rotifers will be found described and figured in Pritchard's Infusoria.

(2. Annclida.)

The second group of Annulata, the Annelids or worms proper, includes a vast number of species, the classification of many of which is difficult or uncertain. De Quatrefages divides the whole assemblage into three groups, which he regards as classes ; the Leeches, the Earthworms, and the Sea-worms; and the latter is subdivided into two groups or orders of vagrant worms (Errantes) and sedentary worms [Sedentaires]. For our present purpsoe we may conform sufficiently to this arrangement by adopting the older subdivision into four orders as follows:

1. Suctoria.-Body destitute of sete or feet. Locomotion by suckers at the extremities, alimentary canal attached to the integument. These are the leeches and their allies.
2. Terricola.-Body cylindrical, with setee or bristle-like organs on the rings ; alimentary canal attached by bands to the integument. Earth worms and their allies.

3, Tubicola.-Body rings with tubular setigerous feet, gills placed near the head. Marine worms inhabiting tubes. These are the Serpula and their allics.
4. Errantia.-Body with numerous setigerous feet ; external gills in most. These are the Vagrant Sea-worms or Sca-centipedes and their allies.

1. Suctoria.

Tl.e ordinary medicinal leceh, which is everywhere well known, is a typical worm of this group. Its anterior sucker is furnished with three
saw-like tecth, with which it punctures the integument of the animal on which it is to feed. It has an immense sacculated stomach, a dorsal, abdominal and two lateral circulating vessels, and a complex nervous system of the homogangliate type, with ten minute eyes on the front margin of the body. In each ring of the body there are two apertures leading to mucous glands, and serving also as openings for the discharge of the ova. The Medicinal Leech is Mirudo (Sanguisuga) medicinalis.

The Tortoise Leech of our creeks and ponds, (Clepsine parasitica) Say, is another example. It is oval and flat in form, with the posterior sucker very large and the body mottled with green and black. The ova are hatched under the body of the parent animal, and attach themselves to vessels in the abdomen, apparently obtaining nutriment in

$$
\text { Fig. } 220 .
$$

Clepsine parasitica-Young specimen maguified, showing Internal organs. (a) Anterior sucker and eyes. (b) Oesophagus and Salivary Gland. (c) Stomach. (d) l'osterior Sucker.
the first instance from the parent; but when still very small they swim freely and begin to suck the blood of other animals, sometimes of other species of leeche. Fig. 220 represents a very young tortoise leech, magnified, showing its sacculated stomach as it appears when distended with food, with its eyes and suckers, the anterior one in this genus being little developed.

2. 'rerricola.

The earth-worms of the genus Lumbricus are the most typical representatives of this order, though it also includes some aquatic worms [Nais and allied genera.] The common earth-worm, L. Terrestris, breathes by pores in the sides, and creeps and burrows by the aid of sete or bristles in the rings. It feeds on particles of organic matter present in the soil, and swallows with its food much fine earth, which it rejects in cylindrical castings at the mouth of its burrow. The earth worm is of value to the agriculturist in turning up the soil, especially in pasture lands, and it has been ascertained in some instances to have turned over more than a foot of soil in 80 years. Earth-worms also serve as food to many birds and other animals.

8. Tulicola.

These worms are inhabitants of the sea, forming tubes of various matcrial, from the opening of which they exsert their gills, which are often beautiful in form and colouring. The following may serve as examples of our tubicolous worms. Fig. 221 species young culated ll food, in this bristles organic with its indrical e earth ning up as been ed over -worms other

Fiy. 221.

Vermilia sembula, Stimpson. (a) Naturai size. (b) Magnified. (c) Aperture magnified.
represents the tube of Vermilia serrula, Stimpson, which is frequent on shells and stones. The anterior part, when complete, has two auriculate expansions at the sides, apparently to accommodate the ova. Serpula vermicularis, which has a round tube of similar size, is apparently less common. Several species of Spirorbis occur on shells, stones and sea-weeds, and are distinguished from the last mentioned species by their regularly spiral forms. S. spirillum is common on sea-weeds, and has a round tube. S. sinistrorsa is smaller and coiled in the opposite direction or reversed. S. vitrea, Fig. 224 , is also a reversed species, of a semi-transparent

Fig. 222.

Spirorbis vitrea, natural size and magnified.
texture. S. granulata has three sharp ridges on the upper side, and S. cancellata (Fig. 223) is our

a

Spiroribis cancellata, Fabr,-(a) natural size, $(b, c, d, e$,) magnified. most ornate species. It was first described by Fabricius, from Greenland, but is not uncommon on the coast of Labrador and of Gaspé. S. porrecta is loosely coiled and resembles a Serpula ; and our largest species, S. glomerata, also becomes somewhat irregular in its coils at the end. *

[^12]Another group of tube-dwellers, abundantly represented on our coast, construct their tubes of grains of sand neatly cemented together. Our common species seems to be Pectinaria Groenlandica, Grube. Lastly there are several species which inhabit membranous tubes, k uried in or coated with mud or fine sand. One of these dredged at Murray Bay is represented in Fig. 224 as it appeared when alive. It is a Sabella, probably S. zonalis, Stimpson. It extends from the mouth of its tube about sixteen beautifully pectinate fibres, which are its gills, and which it can expand and retract with a very graceful movement.

Fig. 224.

Sabella zonalis, Stimpson,-Upper part, natural size; and bramchial process mugntied.

4. Errantia.

It is difficult to select from the numerous species of naked sea-worms and sea-centipedes contained in this group. Perhaps the most typical species are those of the genus Nereis, in which the body is greatly elongated, with very numerous joints, having setaceous feet on each joint, to which are
added flattencd appendages for swinming. These also appear to serve as gills. The mouth is armed with a pair of strong mandibles. These worms abound under stones on muddy shores, and in similar places. N. pelagia, Lin., N. grandis, St., and other species, are found on our coast.

A less typical but very curious species is Aphrodite aculeata, an oval creature, sometimes five inches in length, and more than two broad. Its back is covered with wrinkled plates, which are its respiratory organs, and clothed with felt-like hair; and on its sides are great numbers of bristles, which shine with the colours of the rainbow. It is the Sea-mouse of the fishermen. Another very common worm of this group, Lepidonotus squamatus, Lin., may be recognized by its double row of rounded scales on the back.

The marine worms are of great geological antiquity; impressions of their tracks, and shells of tubicolous species, being found in very ancient rocks. Figs. 225 to 227 represent species of tubicolous worms from the Carboniferous of Nova Scotia.
rig. 225. Fig. 226.

Fiig. 22π.

[^13]These is armed a worms and in idis, St.,
s Apluomes five jad. Its ch are its ike hair ; bristles, ow. It is her very tus squable rôw of
gical antishells of y ancient pecies of of Nova

Fatural size,

TABULAR VIEW OF ANNULATA.

Class it.-Crustacea.

Body with articulated limbs, and divisible into cephalo-thorax and abdomen. Respiratory organs branchial. Head with jointed antenne.

The crustaccans are the soft shell-fishes, of which the Crab,Lobster,Crayfish and Shrimp, may be taken as examples. They are characterized by the division of the body into two portions, the ceplalo-thorax and abdomen, and by the possession of proper jointed limbs, and gills as organs of respiration. By these characters they may be distinguished from the worms on the one hand and the insects and arachnidans on the other. The front part of the cephalo-thorax corresponds to the head, and is furnished with jointed antennæ, cyes, and other organs of sense, and organs of mastication, usually in several pairs. The cephalo-thorax contains the stomach, heart and gills, arranged as in the diagram, (Fig 228.). 'Io the cephalo-thorax are also attached

Fig. 228.

Diagram of a Decapod Cbustacean. (s) Stomach. (h) Heart (g) Cills. (i) Intestine.
the proper feet. The abdomen is muscular, and usually furnished with swimming apparatus. Most
of the crustacea are aquatic, and those that live on land, nevertheless, breathe by means of gills.

The Crustacea may be divided primarily into three sub-classes:

1. Whtomostraca, including a great number of species, with various numbers of feet and without swfmming feet on the abdomen. The integument in these species is also composed of the substance named chitine, whereas in the higher groups it is often strengthened with calcareous matter. These are the King-crabs, Cyprids', Trilobites, \&c.
2. Tetradecapoda, or those with the feet in seven pairs, and appendayes on the abdomen. These are the Opossum-shrimps, Sand-fleas, Sow-bugs, \&c.
3. Decapoda, with five pairs of fect. These are the Lobsters, Crabs, Ecc.

Suld-Class, 1.-Entomostraca.

The orders in this group are the following :-

1. Xiphosura. - The King-crabs or Horse-shoe Crabs. Limulus polyphemus, the Amcrican Kingcrab, is found as far north as the coast of Mainc, but does not extend into British America. These creatures have the cephalo-thorax of semi-lunar form, and the abdomen reduced to two pieces, one of them being a sharp defensive appendage.
2. Trilobites.- These are extinct crustaceans oharacteristic of the Palmozoic rocks. The anterior segment of a trilobite is the largest, and is known as the buckler. It is divided by two longitudinal furrows into the side areas or cheeks, which bear the eyes, and a central area, the glabella. The body segments are usually numerous, and each

Paranoxides Micmac, Hart, frimondial.
divided into three lobes. The last segment which is usually similarly lobed, is named the pygidium. The feet of Trilobites appear to have been lamcllar and adapted for swimming, but they are not certainly known. The markings on rocks
known as Rusichnites, Protichnites, and Climactichinites, are supposed to be burrows and tracks of 'Irilobites or similar animals. Many species of 'Irilobites occur in Canadian rocks. [Figs. 229) to 233.]

Fig. 239.

Fi!!. 231.

Fig. 232.

Homalo iotus deliminogetimalus, Greef, Upper Siluriam.

Phildidsia llowi, Billings,-(Pygidium),-Carboniferous.
:8. Eurypteriala.-This order includes the largest known Entomostraca. The species all belong to the Palæozoic period of Geology, and are known to us only as fossils. In Canada and Nova Scotia, their remains are found in the Upper Silurian, Devonian and Carboniferous rocks. They resemble the Trilobites and King-crabs in the form of the short head or cephalo-thorax, but differ in the great development of the abdominal segments, which some authors regard as divisible into two series, one thoracic and the other abdominal. There are twelve of these segments with a telson or tail piece in addition. There are five pairs of appendages round the mouth, which appear to have combined, as in Limulus, the functions of jaws and
limbs. Fig. 234 represents a restoration, by Prof. Hall, of Erypterus remixes, a species found in the Upper Silurian of Western Canada. Other genera of this order are Pterygotus and Slimomia.
fig. 284.

Eurtpterds remipea, Dekry, (Restored),-Upper Silurian.

1. Dinylloporia.- Chese ate small crustaceans of shrimp-like form, with very numerous leaf-like feet, and elongated bodies. Some of the species swarm in fresh-water ponds in spring and summer. (Fig. 235b) represents a common species of Bran-

Entomostraca.
(a) A Nomolocelea, sp,-hagnibial.
(b) Biranchirua verinalis, Verrill.
(c) Crirres actilis, llaldeman.-magnified.
chipus, found in Canada, B. vernalis, Verrill. In these creatures the eyes are sometimes consolidated into one mass. The limbs serve for gills as well as for locomotive organs. To this group or the next are also referred a number of curious bivalve crustaceans of the Paleozoic rocks, belonging to the genera Leperditia, Beyrichia, Estheria, fe. (Figs. 236, 237.)

Fig. 230.
Fig. 287.

236. BeyRicitia Jonesif, Dn.-Carboniferous.
237. B. pustulosa, Hall,-Upper Silurian.
5. Cladoceerar. - In this order the body is usually short, and the carapace or covering of the cephalo-thorax is in two valves. The limbs are lamelliform and branchial, and the eyes usually confluent. The water fleas of the genus Daphnia belong to this order.
6. Datracodla. - In these the body is more completely covered with a bivalut carapace, which sometimes resembles the shell of a bivalve mollask. The limbs are suited for swimming and the cyes are confluent. Fig. 235 c. represents a species of Cypris common in fresh-water pools and ditches, and resembling, if not identical with, C. Agilis, Haldeman. Fig. 238 represents Cytheridea $\underset{\sim}{r}$ rul-

[^14]Fiy 7r
leri, one of several marine species found in the Gulf of St. Lawrence, and also in the Post-pliocene clays. Several species of Ostracods are found in the coal-formation rocks, and referred to genera Cythere, Cytherella and Baircia. (Fig. 239.)
7. Copeporla.-In these the body is shrimplike though minute, and distinctly articulated," with

Entomostraca,-Carbonisurous.
(ct) BaIRDIA,
(b) CvTHERELLA INFLATA.
(c) CyTHEME.
many pairs of swimming limbs. The females are remarkable for their large pendent ovisacs. Species of Cyclops are very common in the fresh-water, and many other forms occur in the sen. The species of Anomalocera represented in Fig. 235 a. is remarkable for its luminosity at night, often causing great breadths of the Gulf of St. Lawrence to be phosphorescent.
8. Cirripedia.-These are the Barnacles and Acorn-shells, creatures which in their young state resemble ordinary entomostracans, but when adult are included in peculiar shelly coverings, giving them a very anomalous appearance. The genus Balanus contains the common beach acorn-shell, B. crenatus, which appears abundantly on all rocky coasts. The genus Coronula includes the large whale-barnacies, which grow parasitically on the skins of whales. . C. dicudema is common on whales caught on the Labrador coast. The genus

Lepas includes stalked species, the barnacles proper. Fig. 240 represents L. dentata, a species

Piy. 249.

LEI'AS DENTATA, (iould.
common on the Atlantic coast, and which may be a variety of L. anatifera. The valves which cover' -water, The 35 a . is rausing to be
les and g state n adult giving genus n-shell, on all les the lly on ion on genus these creatures are five in number ; the two larger are the Scuta, the two smaller the Terga, and the single piece along the back the Carina. The latter is the only part corresponding to the conical case of the acorn-shells. The scuta and terga correspond to the " opercular valves" of the latter. Fig. 241 represents portions of our largest acornshell.
9. Epbizara.-The Epizoa are a group of depauperated and parasitic crustaccans, which in their young state swim freely and resemble the young of ordinary Entomostraca; but when adult they attach themselves, either by a suctorial mouth, by mandibles furnished with hooks, or by suckers attached to the limbs, to the skin, eyes or gills of fishes, and other aquatic animals. The females carry a pair of pendent ovisacs, and the males are animals of much smaller size and of different form. I'he Epizoa are curious objects for examination

Hig. 211.

Balanus hameri, Opercular an'res an 1 Body valve.
under the microscope, owing to their singular forms and the readiness with which their viscera can be seen through their transparent bodies. They have been divided into the following sub-orders or families:-1. Cephaluna, or those attached directly by the head-2. Bruchiuna, or those attached by suctorial arms-3. Onciuna, or those attached by hooks.

Nub-Class 2.-Tetradecaporla.

This group includes an immense number of species of the smaller crustaccans, agrecing in the number of thoracic limbs, though in some cases these are merely rudimentary, but differing verv much among themselves in details of structure.

The orders of 'l'etraducapoda are four, as follows:

1. Laemodipodia.-In these the abdomen is rudimentary, and the thorax is elongate, with limbs having hooks or claws, and others that are vesicular and branchial. A common species in the Gulf of St. Lawrence is Caprella Septentrionalis, the Squilla lobata of Fabricius, who describes it admirably. It is a grotesque looking creature, half an inch long, found on sea-weeds and zoophytes. It walks by bending and lengthening its body like a looper caterpillar, and when sceking for food attaches itself by its hind legs and bends and vibrates its body and antennæ with great agility, grappling with its fore limbs anything that may come within its reach.
2. Isopoda.--The Isopods have the abdomen somewhat similar to the cephalothorax, and the body usually flattened, the thoracic limbs subequal, the abdominal branchial, and in the female plates for sheltering the spawn on the abdomen. The genus Asellus (A.Communis, Say, Fig. 242) is

Fig. 242,

Asellus communis, Say
found in our fresh-water streams, muder stones and chips, and may be regarded as a typical isopod. On the sea corsts species of lidotea and other genera are found in sand and mud, and among sea weed. Species of Cymothea are found attached to cod and other sea fiskes, on which they are parasitic, and the little Limnoria terelrans is remarkable for the rapility with which its almost countless hosts burrow into and devour the woodwork of bridges and wharves. A species of Limnoria has been found in Gaspé by Mr. Whiteaves. The genus Oniscus includes the common sow-bug or slater, a terrestrial species, living in cellars and damp places, and is interesting as an example of a crustaccan capable of breathing in air, though by means of gills. It feeds on decaying vegetable matter, and is harmless to mar.
3. Amphimala.-These have the thoracic limbs unequal, and with vesicular branchial organs at their bases. The abdomen is terminated by appendages for swimming or leaping. The body is usually compressed laterally and curved. The Amplipods are the " beach-fleas," " sandhoppers," \&c., and are very numerous on the borders of the sea and also in some fresh-water streams. Gammarus locusta is found along the coast almost everywhere, among sea-weeds; and an allied species, G. Minor (Fig. 243 b) is an inhabitant of streams and ponds. The sand-fleas of the genera Orchestia and Talitrus are also common on sandy beaches. Diplostylus Dawsoni of the coal-formation of Nova Scotia is supposed to be an Amphipod. (Fig. 244.)
ones and isopod. nd other nong sea attached they are is is rets almost he wood; of Limhiteaves. w-bug or lars and nple of a hough by regetable
thoracie al organs pated by e body is d. The
"s sandthe bor-sh-water long the ; and an n inhabiis of the common i of the to be an

Diplostyits Dawsoni, Salter-Carboniferous. (a) Abdominal segments. (b) Tail magnitiod,

1. Stomapoalia.--In these the eyes are borne on stalks, the thoracic region is protected by a carapace, the gills are free and exposed, and the anterior feet are turned toward the head. The tail and abdominal feet are adapted for swimming. The larger species of Stomapods are found in the waters of the warmer regions of the world. Those of our coasts are small, though often in great numbers. Mysis spïnulosus (Fig. 293a) is abundant along the

Fig. 243.

Mysis spinulusus. (b) Gammarus minor.

Atlantic coast, and has been called "opossum shrimp," from a pouch under the thorax in which the young are carried for a time. M. oculatus is a second and more northern species, found on the north shore of the Gulf of St. Lawrence. Fossil crustaceans, supposed to be allied to Stomapods, are found in the coal formation and Devonian of Nova Scotia and New Brunswick. One of these is Amphipeltis paradoxus, Salter.*
The Stomapods closely connect the Tetradecap ods with the next sub-class.

Suboclans :B.-Hecappoalat.

This group includes the highest and most perfect crustaceans, characterized by having feet in five pairs and the eyes mounted on stalks, with the body definitely divided into cephalo-thoracic and abdominal regions. The gills are lamellar, attached to the sides of the thorax, and always enclosed in a special branchial cavity. Fig. 228 p. 192, illustrates the arrangement of the more important organs as seen in the common lobster. The Decapods may be divided into three groups, which are perhaps of ordinal value.

1. Macroura, or long-tailed crustaceans. These, have the abdomen long, with lamellar swimming feet, which also, in the female, serve to carry the spawn. The abdomen is terminated by a swimming organ, and is furnished with powerful muscles for striking the water with the caudal fin. The most

[^15]important representative of this group is the common lobster, Homarus Americanus. The freshwater cray-fish, Astacus Bartoni, also belongs to it, as well as great numbers of shrimp-like creatures found in the salt water. One of the most abundant of these is that represented in Fig. 245,

Fig. 215.

Crangon vulgaris, Fabr.
Cranyon vulyaris, a species very plentiful on both sides of the Atlantic. Other species, very abun.
dant in the Gulf of St. Lawrence, and distinguished by a dentated rostrum, belong to the genera Hippolyte and Pandalus.
2. Anomoura.-This group is characterised by a long abdomen destitute of natatory organs. The most remarkable representatives on our coasts are the hermit crabs, of which there appear to be several species, not as yet rery well distinguished from each other. Our most common species appears to be Eupagurus Bernluardus. It has a naked abdomen, furnished at the end with prehensile hooks, and shelters itself in the cast-off sholls of univalve mollusks.

To this group belong also the "soldier crabs," of the intertropical regions, which are capable of living on land.
:3. Brachyura. - In these the tail is rudimentary and bent under the thorax, and the antenne are short. These are the crabs proper. Cancer borealis is our common crab, which is very abundant on all sandy and muddy shores. The smaller "spider-crab," Hyas aranea, is found in water a little deeper; and the great spider crab, which is our largest species, sometimes measuring eighteen inches in extreme breadth, occurs in still deeper water. It is Chionectes opilio of Fabricius.

The tropical Land-crabs (Gecarcinus) and Treecrabs (Birgus) belong to this group. Their gills are furnished with a special apparatus for containing water to keep them moist in the air: some of these creatures are of large size, and of great strength and swiftness.

On the Crustacea the student may consult

Cancer ry abune smaller n water a which is eighteen 11 deeper is.
nd Tree hair gills conterimsome of of great consult

Milne Edwards" "Crustaces" in the "Suites a Buffon," and Owen's Lectures on the Invertebrata; and for American species, De Kay's Report on the Crustacea of New York, and papers by Stimpson and others in the proceedings of American societies.

Canadian species of Irrilobites and other fossil crustacea will be found deseribed by Billings and Jones in the Reports of the Geological survey. See also Hall's Palæontology of New York.

Class III.-Insecta.

Skeleton chitinous, with articulated limbs ; and, in the typical orders, a distinction into head, thorax and abdomen; head with jointed antenne. Respiration tracheal. Wings in most; limbs normally in three pairs.

In the typical Insecta the body is divided into three great regions, the head, thorax and abdomen. The rings of the body in the insects are more complex than in the previous classes, being each divided into a tergum or back piece, two side pieces and a sternum or head piece, and in the thoracic part at least, these portions are again subdivided.

The head in the typical insects is regarded by most entomologists as composed of several rings or segments eonsolidated together. Its appendages may be divided into sensory and oral. The first are the eycs, ears and tactile organs. The eyes in adult insects are in two masses, or compound eyes, consisting of nuncrous simple eyes, each
having a hexagonal or quadrangular cornea, a crystalline lens and a division of the optic nerve imbedded in pigment. Beside these there are separate ocelli, usually three in number, on the top of the head. Some uncertainty exists as to the hearing in insects, but this sense is generally believed to reside in the antenne or jointed organs attached to the front of the head, which are at least very delicate organs of touch, much employed by insects in directing their movements.

The oral organs are the labrum or upper lip, which forms the roof of the mouth, the two mandibles, which are often powerful hooks or jaws, the two maxille or inner jaws, and the labium or lower lip, which is furnished witlr palpi or feelers. In the suctorial insects the oral organs are variously modified into laneets or suckers, for obtaining liquid food.

The appendages of the thorax are, in the most perfect forms, two pairs of wings above, and three pairs of legs below. The thorax is divided into three segments, the pro-meso- and meta-thorax. Each has a pair of foet, and the wings, when present, are attached to the meso and meta-thorax. The wings are each composed of a double membrane, strengthened by tubular nervures. The wings may be coriaceous or membranous, and naked or covered with scales, and their venation affords important characters for distinguishing the rders, families and genera. The abdomen is destitute of appendages, except the ovipositor, sting or other apparatus which may be attached to its extremity. Each thoracic leg consists of
a crys reve imre are the top to the ally be. organs are at mployed yper lip, wo mantjaws, the or lower

In the variously obtaining nd three ided into a-thorax. fs, when a-thorax. ble mem-
s. The ous, and venation hing the lomen is vipositor, attached onsists of
five joints :-(1) the Coxa, consisting in some orders of two pieces, (2) the Trochanter, (3) the Femur, (4) the 'Iibia, (5) the Tarsus, usually consisting of five sub-divisions, and terminated by a pair of claws, between which is a cushion-like sucker which aids the insect in walking on vertical and overhanging surfaces.

The insects are remarkable, among the invertebrates, for the perfect structure and arrangement and great energy of the muscular system. The muscles concerned in locomotion are chiefly concentrated in the thorax and its appendages. The nervous system consists of a double ablominal cord, with a ganglion at each segment, from which the

- nerves of that segment are given off. The abilominal cord consists of an upper series of fibres without ganglia, and an under series on which the ganglia are phaced. In the head the nerve cord expaids into an cosophageal ring, with a considerable mass of nerve matter above the gullet, giving off the norves of sense. The digestive organs consist of the cesophagus, crop, gizard, true digestive stomach and intestines. The heart is an clongated dorsal vessel with a series of valves, and propelling the blood from back to front. The respiration of insects is carried on by trachee or air-tubes, kept open by a delicate thread of chitine spirally coiled in their walls, and opening by spiracles or breathing pores in the thorax and abdomen. The trachere penetrate through all parts of the body, and bloodvessels are abundantly distributed on their surfaces. The expulsion and admission of air are effected by the alternate contraction and dilatation of the

Fig. 243.

Anatomy of sphinx Ligustri-after Newport.
(a) Maxillac or Tongue.
(b) Labial Palpi.
(c) Super-ocsophageal Ganglion or Brain.
(m, i, g.) Principnl Nerve-cord and Ganglia.
(d) Nerves of muscles of flight.
(n, o, p.) Nerves of muscles of the legs.
(h) Crep. ($(e, f$) Heart or Dorsal vessel.
(j) Digestive Stomach.
(y) Intestine and urinary vessels.
(k, l) Generative organs.
The numerals indicato the segments of the body, S to 10 keng thoracic, and 11 to 20 abdomlual.
abdominal segments. In larve and pupæ inhabiting water, the respiration is effected by gill-like expansions of the crust of the body, containing airtubes and apparently absorbing the air mechanically suspended in the water. (See Fig. 246.)

Insects are bisexual and reproductive by eggs, and many of their most curious instincts are connected with oviposition and provision for their young. The egg in the higher insects developes a worm-like Larva, and this passes into a torpid Pupa, within which the parts of the Imago or perfect insect are developed, until it emerges full grown from the pupa case. In some insects, however, this metamorphosis is imperfect, the larva and pupa resembling the perfect insect, except in the absence or rudimentary state of the wings ; and in some wingless insects there is no metamorphosis. Insects are thus Metabolian, IIemi-metabolian or Ametabolian.

Several kinds of peculiar organs of secretion are observed in insects. Of this kind are the silkglands for secreting that material, the odoriferous glands secreting pungent odoriferous substances, and poison glands connected with stings or lancets.

The above statements apply to the typical or six-footed insects ; and only partially to an aberrant group usually included in the class-the Myriapods, or centipedes and their allies.

If we include the myriapoda with the insects, it becomes necessary to divide the class into two sub-classes, Myriapoda and Mexapoda, the orders in which are as follows :-

Sulb-clase-Myriapocta.

Drder 1. Chilognatha.*-Head composod of one segment, two pairs of feet on each segment of the body. These are the Gallyworms, or Millepedes.
©rder : Nyngnatha. \dagger-Head composed of two segments, ono pair of legs on each segment of the body. These are the Centipedes.

These creatures differ so greatly from the typical insects that many naturalists regard them as a separate class. In their general form of body, and in their development by increase in the number of their segments, they resemble the worms; but in their internal structures and in the possession of limbs they approach to the insects, of which, on the principles of classification followed in this manual, they must necessarily form the lowest or most degraded group, corresponding to the scolecida among the worms. The chilognatha or gallyworms are represented in this country by several species, of which one of the most common is apparently lulus venustus, Wood. (Fig. 247.) It lives

lulus venuatus, Wood.

[^16]among decaying vegetable matter, on which it feeds, and when disturbed curls itself up. Of the other division one of our common representatives is Lithobius Americames. (Fig. 248). The centiRig. 248.

Lithomes Ambicanes, Newport,-Anterior segments enlarged.
pedes, of which this creature is an example, are carnivorous and active in their habits, and furnished Fig. 249.
with poisoned fangs. Some of the tropical species attain to a great size and inflict formidable bites.

The Carboniferous period seems to have been more favorable to the herbaccous myriapods than the modern time. In the coal-formation of Nova Scotia, six species have been found. One of these Xylobius sigillariae, is represented in Fig. 249. a and c , and another Archiulus xylobioides in Fig. 249 b.

Sulboclass Mexapoda.

Order 1. Aptera.-These are destitute of wings, and undergo no metamaphosis, or are ametabolian. They are the Lice and Spring-tails. By some modern systematists this order is abandoned-the Lice being placed with the order Hemiptera, and the Spring-tails and their allies in the Neuroptera.
Order 2. Aphaniptera.-These have rudiments of wings, and undergo a complete metamorphosis, or are metabolian. They are the Fleas and their allies. In some modern systems this order is united with the next.
Drder 8. Dipter:a.-The insects of this order have only two wings, on the meso-thorax ; the second or posterior pair being rudimentary and named halteres or poisers. They are metabolian and their larve are footless. These are the Flies and Gnats.
infaer 4, Hepidoptera.-These have four wings, usually of ample dimensions, clothed with coloured scales. They are metabolian, and the larve have rudimentary limbs. Theso are the Butterflies and Moths.

Order 5. Hymenoptera.-These have four wings, membranous and few veined, and the basal joint of the abdomen united with the thorax. They are the most perfectly metabolian of all insects. These are the Bees, Wasps and Ants.
Order 6. Hemiptera.-Thesc have four wings, the first pair wholly or partly leathery or coriaceous. They have an imperfect metamorphosis or are hemimetabolian, the larve having six feet and the thorax and abdomen distinct. These are the Bugs, Waterboatmen, Plant-lice, \&c.
Order 7. Neuroptera.-These have four membranous veiny wings. They are hemi-metabolian, the larver being hexapod and often aquatic. They are the Dragon-flies, May-flies, \&e.
Grder 8. Orthoptera.-These have four wings, the front pair coriaceous but nerved, the second pair folded longitudinally in the manner of a fan. They are hemi-metabolian, the larve being like the imago but without wings. These are the Grasshoppers and Cockroaches.
Order 9. Colcoptera.-'These have four wings, the first pair being hard elytra or covers to the under pair, which are folded transversely. These are intermediate between the hemi-metabolian and metabolian insects, the larve being worm-like but sixfooted. They are the Beetles.

Of the above orders the first six have their mouth organs for the most part adapted for suction (haustellate) the last three have the mouth adapted for biting (mandibulate).

The families and genera of insects are so numerous that it will be necessary in this manual merely
to illustrate each order by a few typical species, leaving the student to refer for further information to more detailed works, to be mertioned in the sequel.

1. Apteris.

We figure as an illustration of this order the too well-known Pediculus hamanus(Fig. 250) an exter-

Fig. 250.

Pediculus humanus oapitis, De Geer-magnified.
nal parasite on the human head, where it subsists by sucking blood by means of its minute beak or haustellum. It deposits its eggs upon the hair. The Podure or Spring-tails are remarkable for the presence of a moveable bifurcate organ at the extremity of the abdomen, by means of which they can leap with great agility. In the genus Lepisma the body is covered with shining scales which are interesting microscopic objects. These creatures are often found in damp lumber-rooms and similar places. formation ed in the laces.

2. Aphaniptera.

The Flens, of the genus Pulex, are remarkable for their leaping powers, and the highly irritating nature of the poison which they appear to inject into the wounds inflicted by their sharp lancet-like mandibles. The eggs of the fleas are deposited in dust and organic matters lying in dry places, and are hatched into worm-like larve. In some of the species the larver spin a silken cocoon in which they pass the pupa state. The largest species known is Pulex gigas, described by Kirby, found in the northern part of British America, in Lat. 65°. It is two lines in length.

B. Diptera.

The principal families of the two-winged insects are :-
The Hippoboscidce or Forest-flies, Sheep-ticks, and Bird-ticks, some of which are wingless.

The Oestrida or Bot-flies, whose larve inhabit the stomachs of horses and other animals, Oestrus, \&c.

The Muscidae or ordinary Iouse-flies, Musca domestica, \&c.
The Tabanida or biting Horse-flies, Tabanus, \&ce.
The Tipulidec or Harry-long-legs and Wheat-flies, Tipula, Cecidomyia, \&e.
The Culicide or Mosquitoes and Gnats, whose larve live in water, and the adult females are very troublesome by their irritating bites. Culex pipiens is the European species, and there are said to be thirty species known in North America.

As an illustration of the Diptera we may take the Cecidomyia tritici, Kirby, which under the name
of "wheat midge" and "weevil" * has been so destructive to the wheat crop in America. The imago and larve are shewn in (Fig. 251.) The

Fig. 251.

b
e

Cecldomyia tritici, Kirby, (a) Male, magnified. (b) Female, magnified. (c) Larva, magnificd. (d) Inago and Larva. natural size. (e) Kernel of whoat with farve.
animal deposits its eggs in the ears of the wheat when in blossom. The minute yellow larve hatched from these eggs feed on the juices of the young grain, and when mature drop to the ground, into which they burrow and remain torpid during winter,

[^17]has been so rica. The 251.) The

d. (b) Female, a. natural size.
the wheat væ hatched the young round, into ing winter,
reevils being
making their way to the surface in spring to assume the imago condition and to renew their depredations. The best remedy for their attacks is to cut and house the grain before the larve have dropped, and to destroy these when the grain is threshed. The "Hessin Fly," an allied species (C. des tructor) deposits its eggs on the straw of wheat, and the larve suck the juices of the stom. Two broods are produced in the year. This species is represented in Fig. 252. A proper rotation of erops is the surest remedy for the ravages of the Hessian fly.

Cecidomyin destructor, Say. (a) Male, maguified. (b) Fema'e, magnitied, (c) Larva, magnified, (d) Pupn, magnified, (e) Imago natural size. (f^{\prime}) Joint of wheat with larva.

4. Lepidoptera.

The Butterflies and Moths are the gayest of insects in the imago state, and their larve or caterpillars are among the most destructive of

Fig. 203.

l'apilio Turnue, Lin.
pests. They are remarkable for the perfection of the silken cocoons formed by some species, to which we owe the beautiful and useful material silk. The
seales of the wings are among the most interesting of microscopic objects. The Lepidoptera may conveniently be divided into three groups. (1) Butterflies, or diurnal species with knobbed antennæ (rhophalocera) and carrying the wings crect when at rest. (2) Hawk-moths, or sphinxes-crepuscular species, having the antenne thickened in the middle, and carrying the, often narrow, wings flat when at rest. (3) Moths or nocturnal species having the antenna filiform or pectinated (heterocera) and the wings carried flat when at rest.

One of our finest butterflics is Papilio T'urmus (Fig. 253) the Yellow Swallow-tail. The eggs are deposited on cherry, plum, and other trees, on the leaves of which the larva feeds. It is solitary,

Fig. 252.

and remains by day on a silken platform spun by itself and stretched between the edges of a leaf. It feeds at night. When ready to become a chrysalis, it suspends itself by a button of silk at the tail, and a loop supporting the back. (Fig. 254.) Another common and beautiful species is the "Camberwell Beauty" (Vanessa Antiopa) whose spiny caterpillars feed on elm and other trees. (Fig. 255.)

Fig. 255.

Vanessa antiora, Lin.
The "Clouded Sulphur" (Colias plitodice) is one of our most common butterflies by road-sides in summer. The caterpillar is greenish, with yellow and black markings, and feeds on clover. (Fig. 256.) The small white butterflies of the genus Pieris are more troublesome, the caterpillar of P. rapoe being very destructive to cabbages and similar plants. This is an introduced species. A native species (P. oleracea) has similar habits but is less destructive.
an by itleaf. It hrysalis, tail, and Another Camberpiny ca. 255.)

is one ides in yellow (Fig. genus r of P. d siminative but is

Fig. 256.

Colias philodice, Godart,-male and femal
Of the Sphingidæ and their allies one of the largest is the Sphinx quinquemaculatus, the larvæ of which feed on the potato plant. Species of smaller size, but of rich colouring, belong to the genus Smerinthus.

The species of proper moths are exceedingly numerous. The giants of the tribe are the great Emperor Moths of the genus Attacus. A. (Platysamia) ${ }^{\circ}$ cecropia is the largest species, and A.
luna is remarkable for its singular form and delicate green colour, as well as for its large size. Clisiocampa Americana is the tent-weaving moth, whose social caterpillars produce large silken webs in trees, and are very destructive. Several of these species are capable of yielding valuable silk. Fig. 257 represents a pretty little Alypia, described by Fig. 257.

Alypia Langtonii, Cooper.
Cooper in the "Canadian Naturalist," as a new species, under the name of A. Langtonii.

5. Hymenoptera.

This order includes three principal groups or sub-orders. (1) Securifera or the Horn-tails and their allies. These are furnished with a borer or awl, with which they makes holes in wood, in which their larve live, and on which they feed. Tremex columba is a large and common species very destructive to timber trees. The sub-order (2) $P u$ pivora, includes the Ichneumons and their allies, which deposit their eggs in the bodies of Larvæ, and are thus of great service in checking the Misiovhose bs in these Fig. ed by
ravages of many herbivorous species. I figure as an illustration a somewhat abnormal species, $E u$ rytoma hordei, which bears the name of Joint-worm, as it infests the stems of wheat and barley, and is supposed to cause much damage to the crop. (Fig. 258). More typical examples are furnished by

Fiy. 258.

d

Eurftoma hordei, Harris. (a) Male, magniffed. (b) Female, magnified. (c) Larva, magnified. (d) Pupa, magnified. (e) Injured stalk of grain.
the minute insects of the genera Platygaster and Macroglenes, whose larvæ prey upon those of the wheat midges and similar insects. Figs. 259 and 260.

Fig. 259.

Ilatygaster tipulae, Kiiby. (a) natural sizo.
Fig. 260.

Macroalenes penetrana, Kirby,-male and female magnifien.
Sub-order (3) Aculeata. or those possessing stings, of which the Bees (Apiario) and Wasps (Vespiariae) are the typical examples. The Ants (Formicariae) are an aberrant group. Fig. 261 represents one of the smaller species of Sand-wasps, (Pompilidoe) which make burrows in the ground, in which they deposit the bodies of spiders and caterpillars, as food for their young.

Fig. 261.

Sand-wasp, Pompila?

C. Memiptera.

The Hemiptera include two great groups or sub-orders, the Heteroptera which have the wings coriaceous at the base, and the Homoptera which have the wings membranous throughout. In the former group are the Water-boatmen and Squashbugs and their allies, and in the latter the Cicadas or singing locusts, and the Aphides or plant-lice. The squash-bug (Cereus tristis,) De Geer, (Fig. 162) may be taken as an example of a large group of these insects living on plants and sucking their juices. Notonecta undulata, Say, (Fig. 263) is an

Fig. 262.

Fig. 253.

262. Crbrus tristis, De Geer.
263. Notonecta undulata, Say.
example of the active water-boatmen, which may be seen swimming and diving in pools by rueans of their oar-like hind feet. The beautiful little species Erythroneura vitis (Fig. 264) is very destructive

Fig. 264.

Erytironeura vitis, Harris,-magnified.
to vine leaves. In winter they shelter themselves under fallen leaves and in litter, and come forth in spring to deposit their eggs on the leaves, the juices of which they suck, both in the wingless larval state and in that of the mature insect. In this group are also placed the troublesome Aphidæ or Plant-lice, and the Coccidæ or scale-insects of our fruit trees. In these groups the females are wingless.

7. Neuroptera.

Among the most common insects of this order are the Ephemeridae, "May-flies" or "Shadflies;" the larvæ of which live in water, and in summer emerge in countless swarms on our lakes and rivers, to fly for a few hours or days, and deposit the eggs of a new brood in the water. Fig. 265.

Fig. 265.

Ephemertd (Baetis.)
represents one of our species. The larvæ of these creatures feed on vegetable matters in the bottom of the water, and themselves furnish much food to fresh-water fishes. To the same order belong the Dragon-flies, (Libellula, \&c.) which are highly carnivorous and predaceous, catching other insects on the wing. Their larve and pupe live in water. The Corydalids or horned May-flies are iange broadwinged insects, remarkable for their long jaws or mandibles. To this order also belong the curious Caddice-flies (Plryganidoe) whose larve construct tubes in which they live in the bottom of pools and streams. In the same family is the genus Helicopsyche, whose larve construct spiral cases of sand, resembling small snail-shells.

Several insects found in the Devonian and Carboniferous of New Brunswick and Nova Scotia, belong to this order. (Figs. 266 to 268.)

Fig. 266.

Xinenecha antiquortm, Scudder, -Devonian,

Fig. 267^{1}

- I'latephemelia anthqua, Scudder,-Devohian

Fig. 24.

- Haplophlemium bannesi, Scudder,-Carboniferous, Wing in ale, with a fern leaf.

8. Orthoptera.

The Locusts, Grasshoppers and Crickets are wellknown representatives of this order. One example is the familiar red-legged grasshopper, Caloptenus femur-rubum of Harris (Fig. 269), but there are

Fig. 269.

268. Caloptenus femuld-Rubrum
numerous species of these insects, belonging to different genera. One of the most curious and anomalous is the "Walking-stick," Diapheromera femorata, Say; a sluggish creature, living in the woods and altogether wingless, and depending for its safety on its resemblance to a dead twig. The noises produced by the insects of this order depend on a membrane or drum on the wings, or on the friction of the hind legs on the margin of the wings.

To this family belong the cockroaches of the genera Blatta and Ectobia, which infest houses; and species of the same group have been found fossil in the coal formation. (Fig. 270.)
rig. 270.

269. Akchimulacris acadicus, Scudder,-Carboniferous.

9. Coleoptera.

The beetles are the most numerous of insects in regard to species, and very varied in their habits of life; but with the exception of a few aberrant types, they may all be recognized by the horny upper wings or elytra, which give them a very distinct appearance from other insects. To the family of the Cicindelida belong the beautiful green and spotted Tiger-beetles, so common in sandy places, and so brilliant in colour and swift in motion. The family of the Carabidoe includes hunter-beetles, of which Calosoma calidum (Fig. 271) is one of the most common species, and very serviceable as a destroyer of noxious insects. The Dytiscidoe are the water-beetles, one of which is, perhaps, our largest species. The larve of the species of Dytiscus are very active and carnivorous, and are known as "Water-tigers." The black-and-yellow carrion beetles belong to the family Silphidoe; and the bacon beetle of larders, which also devours specimens of natural history, to the Dermestidoe. The Scarabaeidoc are the "Shard-beetles" or ground beetles, the larve of many of which are injurious to plants. The Lampyridoe are the curious fire-flies, so brilliant in summer evenings, emitting a phosphorescent light from the joints of the abdomen. The Meloidee are the blistering beetles, including the blue oil beetles of our woods, which are remarkable for the rudimentary condition of the wings. The Curculionidce are a troublesome family, including the Pea-weevil, Plum-weevil, and other species, which commit depredations on cultivated plants. The Cerambicidoe, or capricorn-beetles, also include
destructive species, one of which, the Saperda candida (Fig. 272) is, in its larval state, the " Apple-
insects in eir habits aberrant the horny very disthe family green and dy places, otion. The -beetles, of one of the eable as a tiscidoe are rhaps, our species of us, and are -and-yellow phidoe ; and vours specitidos. The , or ground re injurious us fire-flics, ling a phose abdomen. s , including are remarkthe wings. nily, includher species, ated plants. also include

Fig. 271.

270. Calasoma calidum.
271. Saperda candida, Fab. (1) Imago. (2) Larva.
tree-borer," and another Stenocorus villosus, is the "Oak-pruner," whose name indicates its work in breaking off the twigs of trees by the boring action of its larvæ. Monohammus confusor* (Fig. 273), the Pine-boring Beetle, is also a very destructive species; its larve destroying great quantities of pine timber. The Chrysomelid x, notwithstanding the golden colour of some species, are also devourers of our crops. The yellow-striped cucumberbeetle is a well-known example, and a similar species is often injurious to potatoes. Lastly, the Coccinellido, or " Lady-bugs," are not only pretty little creatures, but very useful as devourers of plant-lice, on which they subsist both in the larval and perfect state.

[^18]Fig, 273.

Monohammus confusor.
Important catalogues of several orders of American insects have been published by the Smith-
sonian Institution ; Packard's Guide to the Study of Insects, just published, is a valuable introduction to the subject of Entomology, and contains notices of nsarly all the common American species. Harris' "Insects Injurious to Vegetation," and Fitch's " Reports on the Insects of New York," are also very valuable.

Tabular View of insecta.
Insecta. $\begin{cases}\text { Myriapoda. } & \begin{array}{ll}\text { Ohilognatha } \\ \text { Syngnatha. }\end{array} \\ & \begin{array}{l}\text { Aptera. } \\ \text { Aphaniptera. } \\ \text { Diptera. } \\ \text { Dexapoda. }\end{array} \\ \begin{array}{l}\text { Lepidoptera. } \\ \text { Hymenoptera. } \\ \text { Homoptera. }\end{array} \\ \begin{array}{ll}\text { Neuroptera. } \\ \text { Orthoptera. } \\ \text { Coleoptera. }\end{array}\end{cases}$

For the families of insects the student must refer to special works on Entomology.

Class iv.-Arachnida.

Head usually confluent with thorax; respiration tracheal or pulmonary; antennce rudimentary or mandibuliform. No wings; legs infour pairs. Ametabolian.

In the Arachnidans the body is divided into two distinct regions, the one (cephalo-thorax) corres-
ponding to the head and thorax in insects, the other to the abdomen. The eyes are simple and two to eight in number, the tentacles are short and often modified for prehension as well as for tactile uses. The nervous system and the dorsal vessel are more condensed than in the insects, and in the higher groups there is more varied adaptability and instinct. None of the Arachnidans have wings, and, like the cephalopods among the mollusks, they undergo no metamorphosis. In the union of the head and thorax, they resemble crustaceans, but differ in their respiration, which is never by gills. Ihey are at once separated from insects, not only by the union of the head and thorax but also by the possession of four pairs of limbs.

The Arachnidans may be divided into the follow. ing orders, which, whether absolutely natural or not, with reference to their limits of separation, no doubt express pretty accurately the grades of complexity of the group.

Order 1. Dermophysa.-These are degraded or depauperated species, without distinct respiratory organs, and with the limbs or abdomen rudimentary.

Order 2. Trachearia-These have the cephalo-thorax in one or two joints, and respire by tracheæ. They are the Mites and Ticks.

Order :3. Pulmo-trachearia--These have the cephalo-thorax and abdomen unarticulated and separate. They breathe by lamellated pulmonary sacs, in some aided by tracher. They are the Spiders.
©rder 4. Pulmonaria.-These have the abdomen and cephalo-thorax separate, and the
sects, the imple and short and for tactile sal vessel end in the bility and c wings, mollusks, union of ceans, but by gills. , not only t also by
he follow. al or not, ation, no rades of are dedistinct abdomen
ave the spire by ese have ated and lmonary are the ave the and the
former articulated. They respire by pulmonary sacs furnised with lamellæ. They are the Scorpions and their allies.

1. Dermophysar.

As an example of these creatures, we may take the Demodex folliculorum, belonging to the family Nulligrada, which burrows in the hair follicles of the skin of the human face. It is of elongated form with eight very short legs. Its mouth is suctorial, and it appears to subsist on the fatty and other matters secreted by the follicles in which it lives. Similar creatures have been found in the skin of mangy dogs. In the same group are placed a mumber of other minute and rudimentary mites, living in mosses and damp places, to which little attention has yet been given in this country. They constitute the family of the I'ardigrada. In this order are also usually arranged certain marine species resembling spiders, found among weeds on the shores, and sometimes in moderately deep water. A small species found in the River St. Lawrence at Murray Bay, and also on the Labrador coast, is appropriately called the "Sea Spider." It is the Nymphon grossipes of Fabricius, and has a slender body, sometimes half an inch in length, and very long slender limbs. These marine species constitute the family Levigrada of some authors. By others they are regarded as crustaceans.

2. 'rrachearia.

The animals of this order are very diverse in form and habits, but the greater part of them be-
long to the group of Acarina or Mites proper, of which the flour and cheese mites are examples, and which have the cephalo-thorax and abdomen condensed into one mass. As an example of this ordinary type of mite, the sugar mite, Acarus sacchari, may be taken (Fig. 274). It abounds

Fig. 274.

Acari-after Puckard. (1) Ixopes novis, Riley. (2) Acarus (Tyroglyphus) saccilari.-Magnified.
in the more impure varietics of raw sugar, on the foreign organic matters present in which it feeds. It is capable, like some other species, of burrowing into the skin, and is supposed to produce the disease known as grocers' itch in the skin of persons who handle sugar containing these animals. A species of the genus Sarcoptes (S. galei) is the immediate cause of the common itch. The mites of the genus Ixodes are the ticks which infest the skin of many animals. They are furnished with a pair of serrated or hooked mandibles which they bury firmly in the skin, and suck its juices by their

2. Pulniomtrachearia.

The true spiders differ from the mites in the distinct separation of the thorax and abdomen, and also in the possession of pulmonary sacs. They are provided with strong fangs perforated at the point, and secreting a highly poisonous fluid, which is injected into the wound which they produce. The fangs are regarded not as proper mandibles but as modified antennæ, being placed above the mouth. I'he abdomen, in most of the species, has two breathing pores or spiracles, leading to the pulmonary sacs, and in some species there is a second pair of spiracles leading to tracher. The pulmonary sacs are opened and closed by the muscles of the pericardium or membrane covering the dorsal
vessel. In the abdomen are also the glands which secrete the silken material of the web. This is poured out in a liquid state through numerous pores pierced in cylindrical or conical spinnerets, at the extremity of the abdomen. As an example of a typical spider we figure Epeira vulyaris, the common geometrical spider of Eastern America, with some of its organs. (Fig. 275). The spiders of this coun-

Fig. 2:5.

Hpeiba vulgaris, Hentz-after Emerton, (1) Eyes and Maudibles, magnified--c First Joint of Mandible, a Point of do.
(2) Uuderside.-a Legs, b P'alpi, a Mandibles, e Spinnerets and above these the Stigmata.
try lave as yet keen little studied; but though not generally liked, these animals present many of the
ls which This is us pores s , at the ple of a common some of is coun-
most curious traits of instinet and habit to be observed among the lower anima'a, and their structures are very inter ting objects of microscopic investigation. With reference to their habits the spiders may be divided into three groups. 1.The water-spiders, which live in pools, carrying down a bubble of air on the abdomen for respiration, and constructing sub-aquatic webs. 2.-The sedentary spiders, constructing webs and watching on them for their prey. 3-The vagrant, leaping and hunting spiders, which pursue or dart upon the insects on which they feed. : It is at present, however, usual to arrange them primarily, according to the number of the eyes, into Octinoculina or eighteyed ; Sexoculina or six-cyed, and Binoculina or two-eyed, the greater number of spiders belonging to the two former groups, and especially to the first, which includes all the ordinary spiders. Those of the second group are small spiders with elongated bodies, and most of them hunting their prey and making little silken cells in crevices of rocks and the bark of trees.

3. Pilmonaria.

This group includes the Scorpions and the Phrynidæ, a group resembling spiders in form, but having chelicers or prehensile arms in front, like the scorpions. The chelicers are enlarged palps, and in the scorpions they are strong and of formidable power. In the scorpions the cephalo-thorax consists of several joints, and graduates into the abdomen, which is long and slender, and terminates in a sting which discharges a highly poisonous fluid. They use
this weapon both for attack and defence ; and the larger species inflict painful wounds, even on man. Like the spiders, these animals are carnivorous and prey on insects. They are not represented in the fauna of Canada.

Thabular view of Arachnida.

Blackwell's "British Spiders" gives a very full account of this class; and there is a very interesting work on British spiders by Miss Stavely. The only descriptions of A merican species known to me, are those of Hentz in the Journal of the Boston
and the on man. ous and I in the

Natural History Society. A very good summary of American forms is given by Packard in the end of his " Guide to the study of Insects."

Pafilio-asterias-male and larva.

APPENDIX A.

As the Vertebrata cannot be included in this volume, the following summary is given to represent this subkingdom until the work can be completed.

Province IV-VERTEBRATA.

Bilateral, symmetrical ; skeleton internal, vertebrate; nerve system myelencephalous, and based on a brain and dorsal nervous chord lodged in a special vertebral cavity. Hear't compact, muscular, with 2 or 4 chambers; blood red; respiratory organs connected with pharynx. Extremities normally four in number; jaws moving vertically.

Class 1. Pisces-Fishes.
" $\stackrel{2}{ }$ Reptilia-Reptiles and Batrachians.
" 3. Aves-Birds.
"4. Mammalia-Mammals.
Class I.-Pisces.-Heart in two cavities; respiration by gills; locomotion by the movement of the vertebral column, with the aid of fins; body naked or covered with scales or plates. Reproduction oviparous, rarely ovc-viviparous. (Reference, Owen's Lectures on the Vertebrata.)
Order 1. Dermopteri-ex. Amphioxus, Petromyzon.
". .2. Malacopteri, or Physostomata.
(a) Apodes.

Muraenids-ex. Muraena.
Gymnotida-ex. Gymnotus.
(b) Abdominales.

Clupeiads-ex. Clupea.
Salmonide-ex. Salmo.
Cyprinido-ex. Cyprinus, Leuciscus, Catastomus.
Esocido-ex. Esox.
Silurida-ex. Pimelodus.
Order 3. Pharyngognathi.
S'comber-escocide-ex. Scomber-esox, Exocetus.
Cteno-Labrida-ex. Ctcnolabrus, Tautoga.
Cyclo-Labrida-ex. Labrus.

Order 4. Anacanthini.
Ophidido-ex. Ophidium, Ammodytes.
Gadidce-ex Morrhua, Merlangus.
Pleuronectide-ex. Hypoglossus, Platessa.
Order 5. Acanthopteri.
Percidee-ex. Perca, Lucio-Perca, Centrarchus, Pomotis.
Sclerogenido - ex. Trigla, Cottus, Gasterosteus.
Scomberidce-ex. Scomber, Thynnus. Labyrinthobranchidcc-ex. Anabas. Blenniidce-ex. Anarrhicas.
Lophiidar- ex. Lophius, Malthea.
Order 6. Plectognathi.
Balistide-ex. Balistes.
Ostracionide-ex. Ostracion.
Order 7. Lophobranchii.
Syngnathidee-ex. Syngnathus, Hip. pocampus.
Order 8. Ganoidei.
Lepidosteidc-ex. Lepidesteus.
Polypterida-ex. Polypterus.
Amïdce-ex. Amia.
Sturionide-ex. Accipenser.
Order 9. l'rotopteri.
Sirenoildci-ex. Lepidosiren. Order 10. Holocephali.

Chimaeroide-ex. Chimaera.
Order 11. Plagiostomi.
Cestracionida-ex. Cestracion.
Carcharida:-ex. Carcharias.
Lamnide-ex. Lamna. Selache.
Galeidee-ex. Mustelus.
Spinacide-ex. Spinax.
Scymnide-ex. Scymnus.
Zygaenida-ex. Zygaena
Pristida-ex. Pristis.
Raiidce-ex Raia, Pastinaca, Cephaloptera.

Ammoangus. sssus, Plaerca, CenCottus,「hynnus. nabas.
lthea.

The fishes may also be arranged in the following manner, which is very useful for geological purposes: (1.) Dermopteri, cartilaginous fishes without scales, (Lampreys, \&c.) (2.) Teliosts, or ordinary Bony Fishes, having for the most part horny scales. (3.) Ganoids, Fishes with bony plates or scales, often shining or enamelled. The numerous fossil fishes of the Palaeozoic rocks belong principally to this group, and may be divided into Placo-ganoids or those covered with plates, and Lepido-ganoids, or those covered with imbricated scales. (4.) Selachians, or sharks, rays and their allies. These have a cartilaginous skeleton, and usually have Placoid scales, or rough bony points as a protection to the skin.
Class II.-Reptila. Heart ordinarily in three cavities (two auricles and one ventricle); respiration by lungs, or by gills and lungs; limbs, when present, usual!y adlapted for motion on land. Skin protected by scales or plates, or naked. Reproduction oviparous or ovo-viviparous.
Sub-Class 1. Batrachia or Amphibia.
Order 1. Apoda-ex. Caecilia.
". 2. Amphipneusta-ex. Siren; Proteus, Menobranchus, Menopoma.
" 3. Urodela-ex. Salamandra, Triton.
" 4. Anura-ex. Rana, Bufo, Hyla.
Extinct Batrachians furnish two additional groups, probably of ordinal value:Ganocephala, Labyrinthodontia.
Sub-Class 2. Reptilia, proper.
Order 1. Chelonia.
Chelonide-ex. Chelonia.
Trionycida-ex. Aspidonectes.
Chelydrida-ex. Chelydra.
Emyda-ex. Chysemys, Emys, Cistudo, Glyptemys.
Testudinide-ex. 'Testudo.
Order $\stackrel{2}{2}$ Ophidia.
Crotalide-ex. Crotalus, Pelias.
Coluberida-ex. Coluber, Tropidonotus, Calamaria, Heterodon.
Boiida-ex. Boa, Wenona.
Typhlopidce-ex. Rena.

Order 3. Sauria.
Scincide-ex. Scincus, Anguis.
Lacertinide-ex. Lacerta, Zootoca.
Monitorida-ex. Monitor.
Geckotide-ex. Platydactylus.
Chameleonide-ex. Chameleon.
Igranide-ez. Iguana, Phrynosoma, Amblyrhyncus.
Agamide-ex. Draco.
Order 4. (Loricata)-ex. Gavialis, Crocodilus, Alligator.
Extinct genera. - Teleosaurus, Stenosaurus.
Additional orders have been proposed to include extinct reptiles. 'I'hese are,
Ord. Ichthyopterygia-ex. Ichthyosaurus.
Ord. Samropteryiga-ex. Plesiosaurus.
Ord. Anomodontia-ex. Dicynodon.
Ord. I'terosauria-ex. Pterodactylus.
Ord. Dinosanria-ex. Megalosaurus.
The animals of the last group were probably the highest of Reptiles in point of rank.
Class III.-Aves.-Heart in four cavities; respiration by lungs; anterior limbs modified for flight; clothing, feathers ; reproduction, oviparous. Order 1. (Natatores.)

Fam. Anatide-ex. Mergus, Fuligula, Anas, Anser.
" Laride-ex. Sterna, Larus.
"Procellarida-ex. Thalassidroma
" Pelecanide-ex. Phalacracorax.
"Colymbide-ex. Colymbus.
". Alcida-ex. Uria.
" Podocepida-ex. Podiceps, Fulica.
Order 2. (Grallatores.)
Fam. Phalaropide-ex. Phalaropus.
"Recurvirostride-ex. Himantopus.
" Charadriade-ex. Charadrius.
" Rallide-ex. Rallus, Gallinula.
" Scolopacide-ex. Numenius, Tringa Scolopax.
" Ardeida-ex. Ardea.

Order 3. (Cursores.)

Fam. Struthionida-ex. Struthio.
"Apterygida-ex. Apteryx. Extinct genera-Epiornis, Dinornis.
Order 4. (Rasores.)
Fam. Tetraonida-ex. Tetrao, Ortyx. " Cracide-ex. Crax, Penelope. " Phasimido-ex. Meleagris. " Columbide-ex. Ectopistes, Columba.
Order 5. (Insessores.)
(a) Conirostres.

Corvide--ex. Corvus.
Fringillida-ex. Fringilla, Emberiza. Ampelide-ex. Bombycilla.
(b) Dentirostres.

Laniidee--ex. Lanius.
Muscicapidee--ex. Muscicapa.
Merulida-ex. Turdus.
Sylviade-ex. Sylvia, Syalia, Regulus.
Vireonide-ex. Vireo.
Certhiade-ex. Certhia.
(c) Fissirostres.

Hinmdinide-ex. Hirundo, Cotyle.
Caprimulgide-ex. Caprimulgus.
Malcyonida--ex. Alcedo.
(d) Scansores.

Picide--ex. Picus. Cuculide-ex. Coccyzus. Psittacide--ex. Conurus.
(e) Temirostres.

Trochilidec-ex. Trochilus.
Order 6. (Raptores.)
Vulturida--ex. Cathartes, Gypactos. Strigid $w-$ ex. Bubo, Surnia. Falconida-ex. Aquila, Buteo, Falco.
Class IV.-Mammala.--Heart in four cavities; respiration by lungs ; limbs formed for walking or prehension or both; skin usually protected by hair. Reproduction viviparous; young nourished by milk.
(Sub-Class Lycncephala.)
Order 1. Monotremata--ex. Ornithorhyncus, Echidna.
(6 2. Marsupialia.
(a) (Phytopha(gous)--ox. Phascolomys,Macropus, Phascolarctos, Petaurus.
(b) (Sarcophagous)-ex. Didelphys, Chironectes, Myrmecobius, Peracyon.
(Sub-Class Lissencephala.)
Order 3. Rodentia-cx. Mus, Arctomys, Arvicola, Sciurus, Tamias, Jaculus, Lepus, Hystryx, Castor.
:4 4. Insectivora-ex. Sorex, Condylura.
" 5. Cheiroptera-ex. Vespertilio.
" 6. Bruta-ex. Myrmecophaga, Dasypus, Manis, Bradypus. Extinct Genera-Megatherium, Mylodon. (Sub-Class Gyroncephula.) noptera, Physeter, Monodon, Beluga, Phocrena.
" 8. Sirenia-ex. Manatus.
" 9. Pachydermata.
(a) Proboscider-ex. Elephas.
(b) Perissodactyla - ex. Rhinoceros, Tapirus, Equus.
(c) Artiodactyla-ex. Sus, Hippopotamus, Extinct Pachydorms. Palæotherium, \&c.
" 10. Ruminantia-ex. Bos, Ovis, Capra, Camelus.
" 11. Carnivora-ex. Felis, Ursus, Mustela.
" 12. Quadrumana-ex. Lemur, Pithecia, Hylobates, Simia, Troglodytes.
-Order 13. Bimana-ex. Homo.
us, Echid.

Lacropus, ironectes,

Alvicola, pus, Hys-

ra.

ypus, Ma.
lodon. 1a, Balıer, Mono. rena.
us.
-ex. Ele.

Tapirus,
ex. Sus, us,
brms. n, \&c.
os, Uvis,
Ursus, mur, Pi. 3, Simia,

APPENDIX B.

DIRECTIONS FOR COLLECTING AND PRESERVING INVERTEBRATE ANIMALS.

An excellent Manual for Collectors is "The Practical Naturalist's Guide," by J. B. Davies, (Maclachan \& Stewart, "Edinhurgh). The "Directions" published by the Smithsonian Institute, Washington, are also very valuable. The following hints have been compiled chiefly from these works, to which the reader is referred for further information on the subject.

The beginner in the study of Zoology, should collect and study such animals as may be within his reach, forming, at first, a miscellaneous collection. He may subsequently direct his attention specially to some one group of animals; and, after making this decision, he should provide himself with the special works necessary to the prosecution of the particular branch selected. General knowledge is necessary as a foundation, but the animal kinglom is too extensive to permit any one to attain to thoroughness in more than one limited depart. ment.

1. General directions for collecting Marine Animals.

"Where the retreat of the tide is sufficient, the seashore always affords the best field for the collector, and the specimens generally increase in number and interest in proportion as we approximate to low-water-mark. Nevertheless the whole area should be saarehed, as each species has its peculiar range, and many forms can live only where they are exposed to the air for the greater part of the time each day. The ground may be either muddy, sandy, weedy, gravelly, stony or rocky, and the animals inhabiting each kind of ground will be found more or less peculiar to it, and rarely to occur on the
others. Sund and mud are, however, so similar in charaster that their denizens are nearly the same, though some prefer the clearer waters which flow over sand, to the turbid tide which deposits mud. But few specimens will be found on the surface of such ground, although the little pools lying on it should be scooped with the dip net for shrimps, etc., but it is only by the spade that its true riches can be developed. By dig. ging in spots indicated by small holes, a great number of worms, boring crustaceans, and bivalves may always be found. Weedy ground is so called from the abundance of eel-grass and sea-weed which covers it. These weeds should be examined carefully for small shells and crustaceans: perhaps the best method of doing this being to wash quantities of the weed in a bucket of water and examine the sediment. Gravelly ground is not generally very rich in animal life, but will repay an examination, as small crabs are fond of lurking among the pebbles. Stony ground is by far the richest of all. Wherever there are stones, particularly flat ones, about large enough to afford a moderate degree of exercise to a common sized man in turning them over, there the zoologist can never fail to fill his basket and bottles; for beneath these stones myriads of rare and beautiful species retire for moisture and protection during the retreat of the tide. Rocky ground should be searched chiefly in the pools and crevices.
"Littoral or sea-shore investigations should be carried on not only in the bays, harbours, and creeks, but on the ocean beach, in each locality, to get at a true idea of its fauna, as the respective animals will be found different."-Smithsonian Directions.

2. Dredying.

"A large proportion of the maxine invertebrates never approach the shore closely enough to be left by the tide, and these can only be obtained with certainty and facility by means of the diedge. This consists of a rectangular frame of iron, the longer sides of which are sharpened in front and beveled outward a little. Along the bark of the fre ne holes are perfo
ilar in chane, though er sand, to few specich ground, be scooped only by the d. By dig. at number may always the abundit. These mall shells l of doing n a bucket elly ground ; will repay of lurking the richest cularly flat rate degree ming them his basket ads of rare protection ind should
ald be carcreeks, but at a true 11 be found
ertebrates to be left with cerThis coner sides of butward a are perfo
rated for the attachment of a fine meshed net, and to the short sides handles are hinged, which may be folded down in packing. There should be a ring at the end of' each handle, and through these rings the rope may be passed when the handles are raised, which will be found a simple and sufliciently safe method of fastening the dredge for use. A weight should be attached to the rope two or three feet in front of the dredge, which is useful in sinking and keeping it in proper position when operating in deep water. On each of the longer sides of the fiame there should be a leather flap attached for the protection of the net. 'The following are convenient dimensions for the apparatus: Frame, a, a, 20 inches long by 10 inches broad, of bar-iron, $1 \frac{1}{2}$ inches wide and eone-fifth of an inch thick. Handles, b, b, each 17 inches long, of half inch rod-iron. Bag, e, three fect long, of mesh as fine as can be got, and strong twine; size of aperture rather larger than that of the frame. Riope, $c, 20$ to 200 fathoms to suit the depth of water. Weight, d, 5 lbs ; an iron window-
weight answers the purpose, and is much cheaper than lead.
"The dredge should be carefully east mouth downward, that the tail of the net may not foul the handles or scythes. No precise directions can be given as to the amount of scope of warp to be let out; about twice the depth of water is generally sufficient, but this should be diminished or increased in proportion as the dredge nips too hard or slides too easily over the ground, which may be readily determined by feeling the rope. The dredge is liable to be caught on rocky bottoms. When the check is felt, it is usually only necessary to heave in a portion of the warp, but sometimes the boat must be put abo' ' and run in an opposite direction.
" All bottoms should be searched with the dredge, but gravelly and shelly ground will be found most productive. The boat may be propelled by sails if sufficient care be taken to graduate the amount of canvas to the strength of the wind, in order that the dredge may move slor over the bottom. Oars are safer, if the force is at command; and in a tide-way, the tide alone may move the boat with suflicient power, the rope being made fast amidships, or towards the bows, according to the strength of the current."-Smithson an Directions.

3. Foraminifera.

These occur in almost every specimen of mud or sand, obtained by dredging or sounding in deep water, and also in sponges and among hydroids, \&c. The specimens of such materials should be wrapped in parcels and labelled. When quite dry the earthy matter may be thrown into a vessel of water and thoroughly stirred. The lighter Foraminifera will float to the surface, ard may be skimmed off or collected in a filter of fine muslin. Larger specios may be shaken up to the surface of the sediment, and collected with a camel hair pencil. They should be mounted for the microscope either as opaque objects, or immersed in balsam as truns. parent objects.

Liying Foraminifera can be obtained from recent marine mud and attached to shells, sponges and Hydroids.

1. Sponges.

These are easily preserved, by simple drying; but if it is desired to 'eep them in their natural state, they should be imme..ed in spirits immediately after being taken from the sea. The spicules may be obtained for microscopic examination by boiling a fragment of the snonge in nitric acid until all the animal matter is decomposed.

5. Infusorix.

These may be readily collected from stagnant pools, d.c., by means of a wide-mouthed bottle attached to a stick. They occur in all waters in which living or dead vegetablo matters are present. Different species may be found at the top and bottom of the water, or attiched to different kinds of aquatic plants. Rhizopods, Rotifers, minuto Crustaceans and Worms, and onecelled plants (Desmids and Diatoms) will generally be found in the stme places with Infusoria.

6. Hydrozoa and Anthozoa.

"Sea pens, Alcyoniums, and other allied animals, must be put up as wet preparations. This remark also applies to Actinie, though the means usually adopted, -i.e., spirit or saline solutions,-so destroy the colour and appearance of the specimens, that it is hardly pos. sible to distinguish one species from another when presorved. The writer, as the result of his own experiments, proposes tho following method of preserving something of the natural form and colour of these ani-mals:-'The Actinia is allowed to remain an sea-water until nearly dead. While the tentacles are completely distended with sea-water, the animal is gently lifted into a smaller vessel, and the end of a glass tube of suitable size, and previously filled with glycerine, is pushed in at the mouth, and the contents forced into the body by blowing. The tube is again and again filled and applied, until the fluid which exudes at the points of the tentacles has lost its saline taste: the surrounding fluid is then removed, and replaced with
glycerine. Large specimons will require to have the glycerine again changed before fastening up the preparation, which may be done in a month.
"The Hydroid Polyps may all, with tho exception of the solter specios, be easily dried. They are preserved in exactly the samo mamer as Polyzon, with which they are often confoundod, by drying them in blotting paper, under slight pressure ; when it is desired to preserve tho animals as well as the colls, they must be placed in spirit.
"Jelly-fishes (Acalepha) are variable in form; but the most conspicuous kinds in this country resemble a fiattoned hemisphere, and are familiarly known is seablubbers or sea-nettles, the latter name being conferred on them from the stinging properties which some of them possess. The term Meduse is also applied to them. The more minute species oocur plentifully in sheltered places, and have either the form of the larger kinds or are spherical or cylindrical.
"The larger species are frequently east on shore, or may be caught with a sieve held over the edge of a small boat. The smaller kinds are caught in a towing net. Being extromely fragile, they all require to be handled with the greatest care.
"Meduse are preserved with difficulty. Spirit, diluted vinegar, and other preparations have been tried, but with very little success; until Mr. Goadby proposed a modification of his solution. (Reduce a saturated solution of Bay Salt, to the strength indicatod by a bead marked 1148. Dilute to half strength and add 2 os alum to the quart. Soak the specimens in this for 24 hours or more, according to size, changing the solution daily. Then immerse in a solution of Bay galt of strength 1148.) This certainly surpasses anything previorsly in use, although it is open to the same objections as ε^{\prime} l other saline solutions. Where these objcctions are not deemed important, the collector cannot do better than use his methol."-Davies.

7. Eehinodermata.

1: Echini and star-fishes may be preserved dry. With the former it is necessary to cut a slit in the mombrane
have the the prepa-
exception y are preyzoa, with g them in is desired they must
a; but the able a siatvn as sea. conferred li some of epplied to ntifully in the larger
shore, or of a small owing net. so handled

it, diluted

 triod, but roposed a "ated soluy a bead add 2 or is for 24 o solution y Salt of anything the same ere these collector lavies.y. With aembrane
which surrounds the dental apparatus (where such exists), on the lower part of the sphere, and thence remove the viscera. In drying it is well to suspend in a place where there is a thorough draught of air. Some collectors, with a view to keoping the spines erect, fasten a hook in the soft skin at the mouth, and without removing ihe viscera, hang the Echinus to dry, either exposed to the heat of the sun or to artiticial heat.
"The larger star-fishes (Solaster', Uraster, de.), may be elther plunged in hot water, and laid out to dry, or may be first cleaned in the following maner:-A hooked wire is passed in at the mouth, on the under surface, and into each limb, from which so much as possible of the soft matter is removed; the mouth is then held close to a waterppe, and the force of water carries out what cannot be extracted with the wire. A little of the corrosive sublimate solution in alcohol may be poured in at the mouth with advantage.

Slender armed star-fishes (Ophiocoma, Ophiura, \&c.), merely require to be steeped for a short time, say twenty-four hours, in spirit, and laid in a situation where they will dry rapidly. The same treatment will answer equally well for the Medusa-head star-fish. These forms are all extremely brittle, but with tolerable care need not be injured either in capturing or preparing.
"Sea-cucumbers (Holothuroid(t) being destitute of the dense bony plates which cover the other orders of Echinoderms, camot be successfully dried. The chiof thing to bo attended to in putting up as wet proparations is to let them die in sea-water, so as to preserve their branched tentacles in an extendod condition."Davies.

8. Mollusca.

"Like the true Polypi, many of the Polyzon may be preserved dry by washing in fresh-water, and pressing between sheets of absorbent paper; but in this state they are fir less valuable than as wet preparations." The tunientes slould be preserved in spirits; but some of the inds may be stufled with cotton and dried.
" l'resh water Mollusea may be gathered with a hand net, or, still better, by using the shell-spoon. This consists of a homispherical cup of white iron, about four inches in diameter, with a half lid soldered on the top, and an oblique socket for the insertion of the point of $\{$ walking-stick. The whole cup is perforated with holes. When, say, a Limnous is obtained from the pool, the cup is raised until the stick is nearly horizontal, and slightly turned over on the side on which the covering is, so that the creature lodges securely between the side of the cup and the partial lid. Bivalves seldom float; therefore they must be sought for either by lifting some of the mud in the spoon, and washing, or by pulling u_{p} the reeds and other plants, and examining the roots. Fresh-water mussels stick in the mud at the bottom of ponds and rivers: an iron rake is very useful in capturing them.
" Land Mollusca must be hand-picked among leaves, roots, or the decaying stones of old walls. For collecting land-shells, a few wide mouthed bottles or pill-boxes should be carried.
"By far the greater number of collectors content themselves with the cleaned and dried shells of Mollusea, withoutattempting to preserve their softer parts. Indeed, a moderately-sizod private cabinet will not admit of anything more. It is extremely desirable, however, that not only should the soft parts inhabiting shells be preserved, but more especially the mollusks, which either are destitute of a sholl altogether, or have only a small rudimentary one inside the mantle. This, though applicable to tho well-known species of our own country, applios with far greater force to those of littlo. known regions.
"Cephalopods or cuttle-fishes should always be preserved in fluid. Two genera-Spirula and Nautilus, inhabiting the southern seas-are much wanted in a perfect condition in all public museums. In the case of the latter, it will be well timake a small perforation in the first chamber of the shell to allow the preservative fluid to enter.
"Naked Mollusca should be allowed to dic in sea-water before being placed in the spirit or other fluid. The
a a hand n. This n, about soldered ortion of is perfoobtained stick is the side 3 lodges o partial nust bo in the eds and h-wator nds and them. leaves, llecting 11 -boxes of Molr parts. vill not sirable, abiting llusks, or have
This, ur own little.
po preutilus, d in a e case ration serva-
same remark applios to shell-bearing Mollusca, especially the univalved. Shells may be cleaned out either by pouring hot water over the living creatures, or allowing them to die in the water. A bent pin will be found useful in extracting the animal from the smallor shells. The chief thing to be attended to is to have the shells well cleaned and dried bofore being packed.
"The operculum, which covers the opening in many spiral shells, must be preserved, and if of a hard, cal. careous substance, simply placed within the mouth of the shell : but if thin and horny, a littlo cotton should be put into the shell, and the operculum fastened to this with gum.
"In cleaning bivalve shells care must bo taken not to break the hinge, as otherwise the valves are apt to bo separated and lost. They should be tied together while yet the hinge is soft.
"No attempt should be made to remove the adherent shells of Worms, Crustacea, \&c. It ought especially to be kept in mind that the application of acids will injure the specimen far moro than the presence of scores of serpulæ and barnacles.
"The epidermis which covers the shell is, so far as colour is concerned, the most characteristic feature in all species; therefore it follows that this must be carefully preserved. An application of oil has been often recommended; and, more recently, Gen. Totten has proposed the use of cloride of calcium for the purpose of keeping the epidermis moist and clear. In the majo. rity of instances no such application will be necessary, provided the shells are carofully dried and preserved." -Davies.

9. Worms and Crustacea.

"In the case of Worms, the first thing to be attended to is killing. This is an easy matter with moderatelysized worms, but with the more elongated genera, as Nemertis and Phyllodoce, it requires some nicety. The plan which the writer pursues is as follows:-The worm is allowed to remain in a jar with sea-water, until, by the vitiation of the latter, the creature begins to lose
its irritability. 'This can bo easily put to the test by touching it, and watching the effect. The water is then to be nealy all poured off, and weak spirit slowly added. The Nemertis will endeavour to throw itsolf in pieces by producing sudden bends in its body. When these are observod, the finger is gently prossed against the outside of the curvo to reduce it until the worm dies. By adopting this plan, any worm may be preservod without a single break. Thore is another advantage gainod by allowing the worm to become enfoebled in the sea-water, i.e., that it generally throws out its proboseis, an organ of much value in distinguishing genera. Serpulay and other shell-inhabiting worms should be proserved with the shell attachod, and, if possible, another spocimen removed from the shell should be placed in the same jar. Flat marine worms (Planaridæ) can scurcely with safety be allowed to linger in the water, owing to their extreme liability to decay, but should at once be plunged into the preserving fluid.
"Fresh water worms, as well as tape-worms, may be placed in spirits immediatoly after being caught."
"Crustaceans should be allowed to chie in cold fresh water. On no account whatever should hot water bo employed, as it immediately changes the colour. In the case of a crab the carapace or largo shell should first be removed, leaving the limbs attached to the under portion. No much as possible of the flesh of the body and claws is then to be taken out, in the latter case employing a hooked wire. Except in large crabs it is not advisable to disarticulato the claws in ordor to clean them; but, when neoossary, it may be done without materially injuring the specimen. Sometimes a piece is removed from the shell of the claw to facilitate the extraction of the muscle, and afterwards replaced and fastened in with cement. The whole of the inside is washed with corrosive sublimate, by means of a camel's hair brush, the limbs put in the desired position, and the shell is haid aside to dry, after which the parts are united with cement. Should the specimen be a female, the false limbs on which the eggs are borne require to be preserved. Lobsters should have the carapace
test by r is then slowly itsolf in
When against 10 worm be proa advanfoebled out its guishing worms and, if ne shell e worms o linger o docay, escrving
romoved, and tho limbs treated in tho same way as erabs; the abdomen is then removed, and the contents of it extracted ly means of a hooked wire. Chemical preservative may then bo applied, and a littlo cotton pushed into the abdomen. In drying, care must be taken to give a proper set to the small limbs on the abdomen, and the tail ; this will best be accomplished by laying it upside down on a board, and propping such of the limbs as require it with pieces of cork.
" Hermit crabs should have the soft abdomen slit opon, the contents extracted, and the space filled with cotton. A little gum on the cotton will secure the edges of the slit. When dry they may be replawed in the shells in whish they were found.
" All Crustaccans, but especiolly the smaller species, are better preserved in fluid than in any other way. Nevertheless, it may be thought desirable to dry the smaller crabs, shrimps, sand-hoppers, and wood-lice. When the carapace is not too hard, a pin is passed through it into a flat piece of cork, and the Crustacean is set in the same way as an insect, with this exception, that slips of paper are not required, tho limbs and feelers being kept in their places by pins bent obliquely over them. The chief thing to be attended to in setting is symmetry of parts. Nothing looks worso than a shrimp or crab with its limbs twisted about in every direction but the right one. Cirripeds or barnacles may be either dried or put up as wet preparations. They should be kept attached to the pioce of stone or wood on which they aro found."-1nwies.

10. Insents.

"The harder kinds may be put in liquor, as above, but the vessel or bottle should not bo very large. Butterflies, wasps, thies, \&c., should be pinned in boxes, or packed in layers with soft paper or cotton. Minute species should be carefully sought under stones, bark, dung, or flowers, or swept with a small net from grass or leaves. They may be put in quills, small cones of paper, or in glass vials. They can be readily killed by immersing the bottles, \&c., in which they are collected,
in hot water, or exposing them to the vapour of ether. Large beetles, however, can generally only be killed by piercing with some poisonous solution, as strychnine.
"It will frequently be found convenient to preserve or transport insects pinned down in boxes. The bottoms of these are best lined with cork or soft wood. Attention should bo paid to the particular part of different kinds of insects through which the pin is to be thrust; beetles being pinned through the right wing cover or elytron; all others through the middle of the thorax.
"The traveller will find it very convenient to carry about him a vial having a broad mouth, closed by a tight cork. In this should be contained a piece of camplor, or, still better, of sponge soaked in ether, to kill the insects collected. From this the specimens should be transferred to other bottlos. They may, if not hairy, be killed by immersing direetly in alcohol.
"A lump of camphor may be placed in a pieco of cotton eloth and pinned firmly in the corner of the box containing dried insects, for the purpose of preventing the ravages of larve. A few drops of kreosote oceasionally introduced will also answer the same purpose." —Smithsonian Directions.
of' ether. killed by chnine. preservo 3 bottoms Attendifferent e thrust; covior or thorax.
to carry sed by 3 of camr , to kill is should ot hairy,
piece of the box eventing te occaurpose."
GEU!OGLOAL SURYRE OF OANADA.

an athas on maps to acconpiny the mepont of the \&WhVEI. Pree 82.50.

Abstract

"'ilhe stylo in wheh this wok has heen unot the meetision of the draw- the excention of sinilur probetions on this side of the Athmic: 'There has ahn alike th the she essive (iwemments that have encouraged it, and to the Sot asamed the same truly national elamater; and the day may eome-if hondon 家therdeyl lecienc.

 of now or little known specios of Oremat Romains fanm the siburan

 W. Sidter, Pabemalngist to the (iengraphical Smvey of dreat Britam.

 Sillines.
 in the rery hest stylo, besides many Woulents. Deeade II. containa, bevides Iformbite, twenty-three linl-page Plates, of which twenty-one are engraven

 This is the only one of this valuble series remainine in !rint. It entains derintinn ut the li msay and deton Mizes.

WMINTT TO 18:

ROLT OF THE

One rol. Lame
ision of the drawe combrinison with limile. There hats le surves, homomir sed it, man to the 1 sarrey has ever lay may cemme-il ndence-when the ertier dawnimes of ive lown. with the
 1):1:1 1:..1......

Itows amb figumos

NIC REMAINS. iton (iroup, by... fr (ireat Britain. :S Hatl!. Decade yeloresstoides, loy ost rac:i, ly T. K . Silutim. by E.

Man's, excentol Contalius, berides ne are engraved hato in i's $1 \mathrm{l}:-$ tio.

Price 管 ecnts. int. It er ntains

Any violation of these rules may deprive the borrower of any further privileges of the Library.
Department of Education, Toronto.

It i: : alty
it is mu? meed
luit mimatue
Pusern maswat sen mondoalstr Ithatrately on fand at the - - thatice do millo de 17
 ilmstrations, well-writ n, ul'Acui:

It rognim in the mast it lugual butar

The enono anplited to lom it : ! la! fill 1 statistics

THE AIR-I Aceonent
If Novil

This card is to be kept in this pocket and returned with the book.

No book will be loaned without presentation of the borrower's card.

This book must be returned on
or before the last date stamped on the card.
If not requested by another borrower the loan may, on application, be renewed.
This book must not be marked or mutilated in any way. or mutilated in any way. paid to the Librarian.
(140! ! Ma!
cro is bote ane

1 íme, al: wombert on its ral मe los in'
 n. life in seras. geld. Hinnev:al bartor, it met shbivet , ans 12: atisflelory. gi at resontros

 A fow copies have been mhlahed with a Mienowern'e Photornath, rom-

> DAWSON IBMOMEDRS, Publishers.

[^0]: * Agassiz and Gould's Principles of Physiology. Huxley's Elements of Physiology.
 \dagger The teacher should if possible illustrate the several tissues by specimens seen under the microscope. If this cannot be done, by as good drawings or plates as can be procured. Those of Marshall, issued by the Department of Sceence and Art, England, are very useful.

[^1]: * These functions should be illustrated to the class, either by actual specimens of the organs referred to, or by models or good figures: the engravings already mentioned will be found very useful.

[^2]: * I prefer this term to "Annulosa," as being Cuvier's original name-a fact which should overrule merely verbal objections.

[^3]: * The Amphibia, as Dana well argnes on the principle of cephalisation, are clearly Reptiles, because we arrange arimals in their mature and not in their embryonic condition, and because the points of reproduction in which Amphibia differ from ordinary reptiles, have relation to an aquatic habitat, and are ordinal or rank characters merely.

[^4]: - Before reading the paragraphs following this table, the student should turn to the pages in the descriptive zoology referring to the several classes, beginning with Protozon, and familiarize themself with the forms of the creatures included in them.

[^5]: * Some naturalists form for these a separate class or order (Radiolaria).

[^6]: * Palæozoic Fossils of Canada, Vol. I.
 \dagger Acadian Geology, 2nd Edition.

[^7]: "The body of the Pleurobrachia cousists of a transparent sphere, varying, however, from the perfect sphere in being somewhat oblong, and also by a slight compression on two opposite sides, so as to render its borizontal diameter longer in one direction than in the other. This divergence from the

[^8]: * Agassiz, Seaside Studies, p. 27.

[^9]: * Near these should perbaps be phaced the Favositile and other Tabulata.

[^10]: * Aureshinus of some authors.

[^11]: *This term was applied by Blainville to the Tunicates; and is, I think, a very appropriate name for the whole class.

[^12]: * See a paper on these shells by the author, Canadian Naturalist, iol, V.

[^13]: 225. Serpulites annolatua, Dn.-Carboniferous.
 226. S. Horto nensig, Dn,-Carboniferous.
 227. Spirorbis carbonarius.-Carboniferous. 'Natural size, and magbitied.
[^14]: fig. 238.

[^15]: * Acadian Geology, second edition,

[^16]: * Diplopoda, Blainville.
 \dagger Chilopoda, Latreille.

[^17]: * The latter name is incorrect, the true weevils being Coleoptera.

[^18]: * See a paper by Billings, Canadian Nuturalist, vol. vii.

