IMAGE EVALUATION
 TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked beiow.

Coloured covers/
Couvertures de couleur

Coloured maps/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains défauts susceptibles de nuire à la qualité de la reproduction sont notés ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$

Coloured plates/ Planches en couleur

Show through/ Transparence

Pag6s damaged/
Pages endommagées

Bitsliographic Notes / Notes bibliographiques

Only edition available/
Seule édition disponible

Bound with other material/
Relié avec d'autres documents

Cover title missing/
Le titre de couverture manque

Plates missing/
Des planches manquent

Additional comments/
Commentaires supplémentaires

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED'), or the symbol ∇ (meaning "END"), whichover applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

National Library of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the - ner left hand corner, leíi to right and top to .- tom, as many frames as required. The following diagrams illustrate the method:

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole V signifie "FIN".

L'exemplaire filmé fut reproduit gráce à la générosité de l'établissement prêteur suivant :

Bibliothèque nationale du Canada

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées á partir de l'angie supérieure gauche, de gauche à droits et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode:

4	2	3
4	5	6

K E Y
 I'O
 BAILLAIRGE'
 STEREOMETRICAL TABLEAU.

NEW SYSTEM OF MEASURING

AII.
Bodies,--Segmenis, Frusta and Unglla of Such Dodies
BY ONE AND TIIE SAME RULE.
FOR The LSE OF
architrots, faginginde, survetors, professors of matramatics, gemmptry, design, dirkotors of universities, dolleges, shminamias, oonvints and other rducaTIONALINATTTUTIONS, SCHOOLS OF ARTS, TRADRS AND INDUSTRIAL, DESIGN, MACHINISTS measurars, guagers, costom hulse and excise ofyioers, ship builderrs, contra orors, alttisans and others.

By CHS. BAILLAIRGÉ,

ARCIIITECT, NNGINEER, SURVEYOR,

HONORARY MEMBER

Of the society for the generalization of education in france AND OF OTHLR hiterary and sclentjeic societies.

Rccipicnt of scven Mederls in Gold, Silicr amd Bronze, aziarded him in Europe for his discovery and invention.

QUEBEC:
C. DARVEAU, EDITOR AND PUBLISHER, No. 8, Mountain Hill.
1874.

リAL TABLEAU:

by one and the same ruie.

$r c h, 1872$.
"rise and simple, and will greatly shorien the proweses of
 "comprixing ats it dens an areal varidy of emmanary mod"Hs, will sirve admimaty we shate the ege, and must "ervatly fiaciliate the sthdy ef solid mensmation." "Again," says. Mr. Wilkia, "ihe Govmoment would con"fier a low on sehouls of the midithe ame hiagher class ly

 applied to mere masmantan are awabe of the the that the modnls arr so mach more shangestive the pupil and the tearher than their mere represem tation on a harklobard or (101 paper. and who, in their wrillen opinions, hate alladed
 President of the Quehee bitand of the Montreal Schow of Aris and Dusixn, in a loter on the sulgett to Mr. Wianer, the l'residont of the Band, and alter having himself witwesed its adrambers on bure hath me oreasiom, says, in his oxpresise styte, "the diflemene is emmens." P'rofessur Tomsiaint, of the Nombal Sthoml, Dufresme, of the Mommangy Acalemy, Buivin, of St. Hyacinthe, and many whers, are of the same opiniom; amoms them MIS. R. S. M. Bemehelte, O'farrell, Fhteher, St. Anhin, Stemirl, Jumean, Vomer, Gallaghar, Laframee, and the late lerother Anthony, \&e., Sr. Nember will it be lomenten that the probescors of the haval liniversity, after reading the ammriation of Mr. B.'s formata, as given in his treate of IStifi, "xpersed themselves thas: "Un donte involomaire s'em-

 "mane" Mr. Fleteher, of the Crown Lamds Department, says: "I have "omparent, in the case of several solids, the "iesults ohtained by yom mode of computation with those "resilting from the ordinary amd more lengthy prowesses, "and rongratulate yon simerely on your enandiation of a " lommia so briaf and simple in its ehamater, and so pre"rise amil satisfactory in its results." Mr. Baillaingé also tow omasion during his lerture to allude, in other relations, to his treatise on geometry ami mensmation, in which he showed he has introluced many importam modilimations in the usual mode of treating the subine of phane and spherical gremetry and trigomometry. In conclasiom, we must and that the Commeit of Publie Instruetion, at its last merting, appointed a Committee, composed of the Lomb Bishop of (Qnehec, and of Bishops Langevin and Larmeque, to remert to the Comeil at its next general meeting in June, and who, it may la taken lor gramed, after the many flattering testimomials in relation to the utility and many advamtages of the steremetrical tablean for purposes of ednratiom, camot but reommend and direct is adoption in all the schoois of the Dominiou.

BATLEATRGESS SMEREOMH

New system of determining the solid contents of a body

(E.stract from the "Quchec Daily Mercur-

 all "hlorwise dry and abstrose suly ahly hamderd.
'ihe hernmer showed the mationship of exemmery to all the industrias of lifes Ita tamed its arimin fom remmo
 Inr showed hew it is the dasis af all ome puldir works, and

 ing amhanations so ramingly devised in their deximes for medte tratery, lawes and embmidery. Ito showend its. mhationshap to chemistry in erystallization and pulatzation;

 waters of the rath, ami the astrommer whe sweps ont his mighty cireuits amidst the stamy formsts of the hembens.
 throwine of propertiles of war, also ans a cedemed in jets of watre, the spaking trumper, the mirwe and the reflemer, which, in light-homser, gathers the rays of light, as it were, into a bundre, and sends them forth tomether on their orrand af hamanity. In traning of the ellipere, this athost magia curve wheh is trated ont in the havens he owey piane that revolues alome the sum, hy arery satellita abom its primary, he alluded to that mast lematiful of all waiks -the tiree of lowely soman. He showed how the w-appramere of a comet may now he prediend exen to the wery day it haves in sight, and thongh it has bean absent fin a wintury, and how in former ages, when thes phenomana
 mon ats, arrying tervo exerywore and giving rise to the h.tmost anxiety amd comstemation, as if the mad of all thines were at hand; in a word, Mt. Baillairge went wer the whole lidd of geometry amb mensuration, both phame and spherical; a ditlienlt leat within the limits of a single lecture ; and kept the andidere, so to saty, mitramed with interest fin two whole homs, which the president, Dr. An-
 it must have berm su to others, sine Mr. Wilkie, in seconding the vote of thanks proposed hy Capt. Ashe, alloded to the pleasime with which hee had listened to the lemere as is, he said, it were like pootry to him, instrad of the monpromising matter fineshatowed in the title. Mr. Baillainge bext explained in dotail his streometrimal tablem, which we hoper to see sem introducel into all the sehouls of this Dominion. He showed how amblarive it will he in shorit ening the time heretofine domoted to the study of solids and

 the the selopment of sumberes, shates :mad liks. Mr. Wilkice, su far as apprtmuity
 trombt in mition to the immense satia

 *hapes and ligume. It shawed how, to anginere, the midder and merelamis, the me tise of the liman and relation anomert
 droms, valts, caiske, thbe and other vessels Works of all kinds, romprising railouds an and umbankments, the shationt the (arerk man, splate and wimey timber, saw-lon

 צer sale, the mom, arth, sime allid phan lairgá, wa may ald, has recermen an ond from the Mabister of Liducation of Now I the virw of introluring it inter all the seln vince; and Mr. V'imbire, in writing to Mr Prancere on the lohh of Jablany last, to : gramine of his hefters-patem for that or Mesers. Humbert \& Nom, the President the Sumety fin the (Gemeatization al Eilue hase intinated their intentiom, at their we ing, of having some mark of distimetion on fier the lemetit which his insention and diar to contior on motuatiom. Mr. (iamb, in writ lairer, on the part of the Mon. Mo. Clians Publia Instruetion, salys: "II se fera mu de "mander l'adoption dians tontus les maison "dime tomtes les ceroles." From the Sem Vaiversity, Mr. Mangni writas: "Plus on "apmenmit cente formule dar cubage d "est comelamte (the nure ome marvels) de "sal rlarlé et sultout de sa grande géuérat Me(Quarrias, B. A. "shall he delighted to "todions proeesses suluerseded ly a formun "sorexim." Nowtom, of Yale College, "comsiders the tableram a most besfal "sluwing the varicty and extent of the al " limmba." The College l'dsomption" " Baillaiteros system as part of their comres Mr. Wilkie has writen to the author that

GOMHMATOA MABLEAU:

ints of a body of any shape, by one and the same rule.

Daily Mercury" of $26!/$ March, i872.)

- and rompes supertacies, spherieal tririal projortion praspertive drawine, Hfaces, shathes allil shambes, allil the

 - the imblemat salving in time, where

 almonials over thair own signatores, wh formala amd tableate be perlivend to saly mothing of the nae the models

 me rebative aroporions of baldings,

 abry timber, salw-lags, the calloping Mapad opming of a don of widatow,
 illiamol or the cimmon ball, or, an a lar, arth, silli alld ןlantets. Mr. Bailhats rucuival all arider for a table:m - Valncation of Nuw Brmaswick, with ine it into all the selhome of that l'roinr, in writur fo Mr baillatirer, fom ,f danary last, fo allvise him of tha w-patmint for that rombley, siss that
 - manlization of Ellueation in Framer, ntemtion, at their noxt cameral meetnark of distiuction romidered on him his invemtion and dineorery are likely

Dr. (Xiaml, in writue to Mr. Bailthe Mom. Mr. Cinamarall, Minister of
 fins tumtus les maisoms d'éducation et cs." From the Seminary amd $\mathrm{L}_{\text {alval }}$ Eni writes: "I'lus on étmile, phas on
 Or(one marvels) de s:a simplicité, do We sa grambe qúuéralité" Rés. Mr. faill be deligerited to see the old amd fersodell by a formala so simpla amd , of Yale Collenge, Uailen States:
 :amd extenh of the applieations of the Hese l'assmmption "will adopt Mr. is jart of their comrse of instrmetion." Ito the anthor that " the rule is pro-
"6ise ami simple, amd will greatly shorton the proeesses of

 "els, will sirvo admimbly to almente tho are, and mast "Erably facilitate tho stary of sulal momsumatom."

 on paper, alld wha, in theif writurn ophinions, have alladed "Spurially for this feathro of the promesel systern. II. Joly President of the (Qumbee Bratmeh af the Montreal Selmod of
 the President of the Buatd, amb alter having himself witmessed its alriamtames on mom than ome oerasiom, silys, in his expressive styb, "the diflerene is emormons." P'rofexson 'Iomssibut, of the Normal Sehoul, Infresme, of tho Montmagny Aramemy, Buivin, ol St. Hyacinthe, aml many whers, are of the sime arinion; mamer them MX. R. S.
 Smmen, Vamm, (fallasher, Latiamer, and the late Bather
 probessors of the Laval liniversity, alter readines the aman-
 (xpmessed themselves thas: " Ja donte involontaire s'em" pare d’aborid de l'esprit, lasian'on lit lo No. I5:3; mais " min exammen attratif des paragraphes smivans, dissipe hien" tot er donte et l'on reste étomoé ì la vie d'mar formole, si "rlaire, si aisćr ì retenir ut dont lappliation est si gráne " male". Mr. V'leteher, of the Crown Lambs Department, siys: " I have eompared, in the ease of several solids, the "results ahtained by your mode of eomputaion with thase "resmlting firon the ordinary and more lengthy proeresses, "and romsiatalate yon simerely on your ammeliation of at " fimmala so bridef amd simple in its character, and su pre"rise amil satisfactory in its results." Mr. Baillairgé also took oerasion dariag his lexture to allude, in other whe tions, to his treatise on gemmetry amd mensumation, in which he showed loe has introhlored many ingortant modilications in the nsual mote of treating the subjere of plano and spherixal geonntry and trigomometry. In eonclasion, wo must atd that the Comeil of Publie Instruction, it its last moteting, appointed a Committee, eomposad of the Lord Bishop of Quehere, and of Bishops Langevin and Latoeque, for repart to the Combil at its next general meeting in June, and who, it may be takm for granted, afier the many flattering tostimomials in reation to the ntility and many advantages of the stereometrieal tablean for jurposes of ednmalom, ammot hat reanmmemd and direct its adoption in all the schoois of the Dominion.

Honorary Member of the: Sochety ror the Genea
New system of measuring all Bodies, Segments, Frustums a (I'atented in Canada, in the Uniled St

This is a Case 5 fect long, 3 feet wide and 5 inches deep, with a hins exhibiting and affording free access to some 200 well-finished Hardwo fe:m, each of which being merely attached to the board, by means of a wi Student or Professor.

The use of the Tablean and aceompanying 'Treatise, reluces the whole science and art of Mcucuration from the study of " yeir to that of a day or two, and so simplifies the study and teaching of Solid Gcometry, the Nomenchaturo of Geometrical and other forms, the development of surfices, geometrical projection and per:pective, plane and curred areas and Spherical Geometry, and Trigonometry, and mensuration of surfaces and solids, that the several branches hereinbefore mentioned may now be taught even in the most elementary schools, and in convents, where such study could not even have been dreaued of herctoforc.

Each Tablean is accompanied by a Treatise explanatory of the mode of measurement by the " Prismoidal Formula, " and an explanation of the solid, its nature, shape, opposite bascs, and middle section.

Agents wanted for the sale of the Tableta in Canada, the United States, d'c.

For the use of Architects, Engineers, Surveyors, Students and App Mathematics, Universities, Colleges, Seminaries, Convents and other Ed Measurers, Gaugers, Ship-builders, Contractors Artizans and others in Ca

, Frustums and Ungulas of these bodios, by one and the same rule.
the United States of Ameriay, and in Iiurope.)
ep, with a hinged Glass Coyer, under Lock and Key, so as to exclude clust while ished Hardwood Models of erery conceivable Elementary, Ceometrical or other means of a wire-peg or mail, can be removed and replaced at pleasure, by the

que bimlanatie stereonetpleal Thbleal

To tived tha molld conlent of any bocy.

 in lintice.
 thi purallod rind wamid. suld forir times the: middle arelt, ulld wn!
 sixth purt al the hivish sif lathath wit the bosty.

HSUNS

Apmoved liv the Commil of Puhb: haswotion of he buvinu

 uni other Emablishimunt in (n -
 mation sud testimeminals aply 10
C. BAILLATRGE,

Q1 Bill:C,
CANADA.
Hommary Member of the Sorifty fion the Genevalizition of Eddtcation in France, de., dee.

SUBSCRIBERS:

'The Amphishop of' Quebere, the Bishop or Rimomski, we Bishop of
 cimbles, the Suminion Beard of Works. the Schools of Aat mai WeNign, lhe lamal luiversity, the
 wa, Nirolu, Rimmaki, Mombmghy, Si. Miclel. Ne.. l'bole Normaile laival, les licoles dea literes, The (Buad of Land Surveyors, ilar Deflatment of Eidneation. Naw IBranwwick, llat Corpomion of Qurber, R. Hamilom. Fisu.. IV. N. Martin, and (\%, Ray, Civil Engrineris. \& C, La Nox cécéponr la vilgaisation de I'Eикеідиепен d" l'enple, France Fr. Prachy, J. lapige, Aer, Architrota, N. Piton, I'. Magrire, J. Marooter, binilitrys. the Comedi of
 (Batier Normal Schmol, M. Jtom Mamitola, the (Oollenes of A yliner, LA:Asompion, Ste. Ame de la Io ratiere, St. Iymbinh he, he Iligh School, Q., the Morin College, Q., the Latrance Academy, (Q., Government, Boarda of Works, Q., the Uismlines Convent, the Convent of the Good Shepherd, Grey Nums, Somes de la Congrérmioni. Scenrs ite désus-Mntie, (2., and M. S. W. 'l'ownseml, Iamiltom, \&c., \&c.

\&c., \&c., \&c.

Ints and Apprentices, Customs and Excise Officers, Professors of Geometry and and other Educational Establishments, Schools of Art and Design, Mechanics, 1 others in Canada, and elsewhere.
ution in lrmance, \&e., \&e.
bodios, by one and the same rule.
(in Europe)
ler Lock and Key, so as to exclude clust while exh: conccivable Elementary, Geometrical or other fornbe removed and replaced at pleasure, by the Stur

Apporea by the Conmail of Publice Instruction of her Povine e of Gurbere, and alrealiy alopited and ondered by many Eilucanional and other Estiblisherments in ('nmada and reawlatre. For intormation and lostimomials apply 10
C. BAILIAAIRGE,

Qutable,
canada.
Homorary Member of the Suciety for the Generalizition of bidecation in Prance, de., dec.

SUBSCRIEERS:

'The Arrhbishop of Queber, the Bishop of Rimonski, the Bishop ot Kingston, we Bishop of st. Hyacinthe, the Hominion Board of Works the Schools of Art and 1 Sesign, hee Laval University, the Seminary, Q.. the Coilege ai Othawn, Nemilet, Remonski, Montmagus, St. Mishel, Ee., l'Bole Normale laval, les Eroles des Fiètes, the Commereial Aradray, the Bamid of Land Suryeyors, ihe lepatment of Eilueatini, Now Bramswick, he Corporation of (Qurber, R. Hamiltom, Viso.. F. N. Matin, and 6. Rey, Civil Engineres. \&e, Las Sociésépour la valgaination de F'Enseignentent du l'enple, Fisance F . Peacliy, J. Lapage, Ne: Archatects, N. Piton, I'. Maguire, J. Mareote, Imilders, the Comucil of
 (artier Normal School, M. Puon Manimba, hie Colleges of Aylmer, Lidssomption, ste. Anne de la l'otatiere, St. Hyacimhthe the Iligh School, Q., the Morin College. Q., the Lafrance Acmomy, Q., (rovermment Boards of Works, Q, , he Ursulines Comvent, the Convent of the Good Shepherd, Grey Nulls, Somra de la Congregntioni. Scenrs de Jésıs-Мйtie, Q., ani M. S. W. 'Iownsend, Haniltm, \&c., \&c.
\&c., \&c., \&c.
Mat Excise Officers, Professors of Geometry and
Mea.

KEY
 TO
 BAILLAIRGE'S
 STEREOMETRICAL TABLEAU.

NEW SYSTEM OF MEASURING

ALL

BY ONE AND THE SAME RULE:

FOR TLHE TSE OH

Allohitfots, englneers, survgyors, professors of mathmatics, grometry, dibion, direotons of universities, college's, seminarles, convents ayd other mocgatonal instivutions, schools of abts, thades and industrial design, machinista measurens, gcageles, custom hotse amd excise officers, ship buthders, contractors, artisaise and others

By CHS. BAILLAIRGÉ,

 ARCHITEOT, ENCINEER, SURVEYOR,
HONORARY MIEMBER

of the society for the generatization of edecation in francos and ob other leterary and selextifle societies.

Recifient of seven Medats in Gold, Silaner and Bronse, atomaled hisn in Eiurope for his afiscoary amd ina'ention.

QUEBEC :

(.) DARVEAU, EDITOR AND PUBLASHER, No. 8, Monutain Hill.
1874.

THE TABLEAU

Registered, conformably to the act of Parliament of canada, by f . P. F. Bahlamege, the surd February, 1871, in the Officer of the Minister of Agriculture, at Ottawa.

Parented in Canada, the United States of Europe.

TIE KEY TO THE TABLEAU

Registered according to the art of Parliament of Canada, in the sear the thousand eight homered and seventy four, (1874) by the author C. P. F. Bandamidi, Esq., in the Buran of the Minister of Agriculture, at Ottawa.

READ THE PREFACE.

The question may be asked "If the system be so simple, why so roluminous a "Kry"? Now, it will be immediately seen that the present work is in reality, for the most part, a mere "Mensuration of Areas" which might perhaps have heen omitted, since there are alrady many works which treat on that subject, and that the mode of measuring the surface or area of any solid is supposed to be known before its enhical contents ean be arived at. It is however more satisfactory for Teachers in general, Professors and Students to find thus brought together in a single vohme, all that they require, tham to hare to seek it elsewhere. The mensuration of areas is not at all superflnous, eren in the "Key"; since, in point of fact the whole dificulty and labor of computing the solid contents of any body, consists in determining the areas of certain of its component faces and sections.

That which also contributes largely to swell the dimensions of the "Key", is the great mmber of examples, fully worked out, of the authors system as applied to the computation of the most intricate solids, and the mumerons tables of which the great utility will become ipparent, when, having to compute the capacity of any boiler tulb, vat or cask-the volme of a cylinder, sphere, Spheroid, conoid or of any segment, tinstum or mgula of such bodies, the calentation will be fomul, so to say, fully worked out, since it will suffice to take out the requisite areas, add themand multiply their sum by the sixth part of the length or altitude of the body; after which a simple multiplication or division (as the case may be) of the units so obtained, will reduce them to inches, feet, mètres, gallons, litres, \&c., or to any other units greater or less than the first.

At page XXIX, however ; that is, after the testimonials, will be found an

ABRID̛̛ED OR SYNOPTICAL KEY TO THE TABLEAU

and, to any one who understands the nomenclature of solid forms and the mensuration of areas, this Abridged Key contains all that is essential to the fill and entire intelligener of the anthor's system.

SUBSCRIBERS TO THE STRREOMETRICAL TABLRAUS

The Arehbishopric of Quebec. The Trewlines Conrent.
The Bishopris of Rimonki. The Bi-heprie of Kingston.
The Bishopric of St. Myacinthe.
The Laval University, Quebee.
The Laval Normal School, Qucbec.
The Seminary, quebec.
The Society for the valgarization of education, France.
The Conlege, Ottaw:
The Collere, Rimanki.
The College, Ste. Anne Lapocatière.
The school of Arts \& Design, Quebec.
The Board of Land Surveyors, Quebec.
The College, l'Asmmption.
The Dept. of Public Works, Ottaw:
The College, N:colet.
The Collere, St. Hyarinthe.
Dufreene's Actulemy, Montmagny.
The Acalemy, St. Slichel.
J. F. Peachy, Archt., Quebec.
J. Lepage, Areht., Quebec.

The Education Ontice, New Brunswick
R. Hamilton, Esq. Quebee, for a sehool

The City IIall, Quebec, for the Dept. of Works.
Godin \& Devareunes, builders.
N. Piton, builder.
F. N. Martin, Surveyor, Rimonski.

The Govermment, Province of Quebec, for Model Schools \& Academies.
C. Roy, Surveyor \& Engineer.
J. Magnire, Phmber, de., Quebec.
J. Marcotte, iron fumder, Clietec.

The Jacques Cartier Nomal School, Montreal,
M. Piton, Mauitoba.

The Ministry of Public Inatruction, Beldium.
The Convent of the Good Shephert, Quebee.
The Convent of the Sisters of Charity, The Convent of Jesus-Marie, Cap Ronge.
The Dejt. of Public Works, Quebec. The Board of Arts \& Trades, Montreal.
J. II. Clint, Lmmber Mercht. Quebec.
O. Beanbien, Lamber Merc. Quebec.
P. Coté, builder, Quebec.

The College, Aylmer, Ottawa.
S. W. Towneend, IIamilom, C. W.

The Frères Schools, Canada.
The Freres Schools, lranec.
G. Bisset, iron fommer, machinist, Quchec.
T. Areher, Lamber Merchant, Quebee
R. Steckel, Civil Engineer, Otiawa.
V. Vannier, Paris \& Canada.

The Commercial Academy, Quebec. G. R. Bahdwin, Civil Engr. Boston.

The Litterary \& Hist. Society, Quebec
The Worcester Free Insitute, Mass.
P. V. Du Tremblay, Surveyor \& Engrincer, Baie St. Paul.
C. Johin, ship Unilder, Quebec.
J. Racine, iron smith, Quebec.
A. Réaume, Lumber Mercht. Queljec.

Le College Melbrin, Hante Pyrennées France.
A. Humbert, artiste, Paris, France. The Academy of Science, Paris, lir. The Conservatory of Arts \& Trades, Paris, France.
\&c., \&c., \&c.

SYNOPTICAL OR ABRIDGED K EY

TO TIE AUTIIOR'S NEW SYSTEM

OF MEASURING ANY SOLID,
 segient, frustuir or unguta of such solid,

BY ONE AND THE SAME RULE.

(1.) To the sum of the areas of the opposite and parallel ends or bases of the botly to be measured, alll four tomes the area of a seetion thereof parallel to these bases and equidistant from each of them, and multiply the whole by the sixth part of the height or length of the solid.
($\boldsymbol{\otimes}$) To be brief, we will call "intermediate or half-way section" the section in question in the formula; or again, and at will; "centresection" " midule section," and we shall always designate this section ly the letter M, initial letter of the word middle as we designate by B and B^{\prime} the opposite bases or ends of the solid, and by L or Hits length or height.
(3) The leugth or height of the solid nuder consideration, shall always be the distance between its parallel bases or ends, that is the perpendicular drawn from one of these bases to the other o. to the plane of this base, produced if necessary.

Then the formula will write :
Volume $=\left(\right.$ area $B+4$ area $M+$ area $\left.B^{\prime}\right) \times \frac{1}{6} \mathrm{~L}$ or I.
or :
$\mathrm{V} .=\left(\mathrm{B}+4 \mathrm{M}+\mathrm{B}^{\prime}\right) \frac{1}{6} \mathrm{~L}$ or H .
or',
to dispose the areas so as to facilitate their addition:

$$
V=\left\{\begin{array}{l}
+ \text { area } B \\
+4 \text { area } M \\
+ \text { area } B
\end{array}\right\} \times \frac{1}{8} \mathrm{~L} \text { or } \mathrm{H}, \quad \text { or }\left\{\begin{array}{c}
+\mathrm{B} \\
+4 M \\
+13^{\prime}
\end{array}\right\}
$$

Sum of the areas
$\times \frac{1}{8} \mathrm{~L}$ or H .

Nature and value of the bases B, B'.

(4) Sometimes one of the ends or hases of the solid, as with the pyramid, cone, conoid, segment or ungula of a sphere, spheroits, or spindle, \&c., will be but a point and its area, conserpuently, mull or equal to zero (0). Sometimes, each of the bases will he mull as to area or $=0$, as in the case of the sphre and spheroill now, one of the bases will he a simple line, as for the wedge and certain prismoids and mgule, and its surface again mull ; at other times, earh of the bases, as with certain prismoids, will be but a line and the surfaces null, as before ; hat in all cases, the anthor alvises the pupil to maintain entire the formula and to write, as the case may be :

(5) REN. It is clear from what preceles that the respective surfaces in question are all phane surfaces, or must he comsidered as such, and that, with the anthor's system, every surface is mull, to which a plane surface or a plane can touch but in one point, as in the sphere, spheroid and conoid; which does not prevent one from measuring in the same manner by the formula, and with the same accuracy, a spherical cone or pyramin, or any frostom of such a body comprised between paralled or concentric hases, one of which is consequently concave and the other convex.
(6) These emmatitions would he quite sufficient to give a perfect maderstanding of the author's system, hat some ohservatious concening more particulany, if not cach of the solids of the tablem, at least every eategory or class thereof will perhaps not be useless.
(7) We say "elass" or "category" amd in fiact it is proper to obsere that the solids are disposed, on the tablean, ly iromes or fakatas, each in one or several vertial rows. 'These rows are 20 in number ath the horizontal rows 10 in mumber, forming 900 pieces.

The first row to the right (it would be indifferent to reverse the order and begin at the left) comprises the prism under some of its varicel forms.
(8) The four following ranges ofter the prismoid, inder several diversified aspects (sere introduction, page (i) including the regular or phatmic solids, (dodecahedron, icosahedron, \&e., and certain ungule of prisms.
(${ }^{(1)}$) The sixtl: row, still going towards the left, is the pyramid and the frustmm of that solid.
(10) Rows 7 and 8 show the right, inelined, trmeated eylinder, and the numerons mugule, and finsta of ungula, of this solid, with also some eylindroids.
(11) 9 and 10 are the right and inclined cones, their frusta and ungule.
(12) 11 is the concave cone with its varieties and sections. 12 and 13 are the right and inclined parabolic and hyperbolic conoids, with their finsta, migule and truncated ungula.
(1:B) 14,15 and 16 , the flattened and elongated spindles with their decomposed parts and varieties.
(14) 17 and 18 are the sphere and its segments, frusta, ungulæ, \&c., spherical cone and pyramid and frusta of these bodies between parallel bases. These solids offer also to the appreciation the spherical, tri-rectangular, tri-acutangular, tri-obtusangular, \&e., triangle, and facilitate to the pupil, the understanding of spherical geometry and trigonometry, and to the professor, the teaching of these sciences.
(15) 19 and 20 , finally, are the flattened and elongated spheroid with the decomposed parts of these bodies.

See again on this subject " The Introduction " page 7.
Let us first consider the

PRISM OR CYLINDER,

Right, Inclined, Twisted. ${ }^{1}$
(16) The prism is a body whose breadth or size is every where equal or uniform ; it is, in other terms, a solid which throughout its whole length or height is of invariable diameter or thickness, and the opposite and parallel bases or ends of which, as well as each

[^0]section parallel to these bises, are consequently, similar and equal phane figures; these figues may indifierently be reetilinear, emrvilinear or mixtilinear.

We will then ohain the soliaity or volume by making

$$
\begin{aligned}
& V .=\left\{\begin{array}{cc}
\left.+\begin{array}{cc}
\text { area } & 13 \\
+4 & \text { mrea } \\
+ \\
\text { inrea } & 1,
\end{array}\right\} & \begin{array}{c}
\text { and, supposing } \\
\text { the lnse }
\end{array} \\
=1,
\end{array}=\left\{\begin{array}{c}
+1 \\
+4 \\
+1
\end{array}\right\}\right. \\
& \text { Sum of areas } \times \frac{1}{6} \mathrm{~L} \text { or II. Sum of areas } \times \frac{1}{6} \mathrm{~L} \text {. or H. }
\end{aligned}
$$

(17) That is : in the ease of the prism, the general fommatis reduced to the simplitied expression: B or B^{\prime} or $\mathrm{ML} \times \mathrm{I}_{2}$; but we advise the pupil not to endeavour to remember this formula, simplifiod though it be, since he will always (see the introdnction, page 9) return to it of himself; for one soon sees that it is the same thing to multiply any number by another number, or to multiply 6 times the first by the sixth part of the second.

PRISMOID

Right, Inclined, Twisted.

(18) The prismoid of which we treat at length, from page 161 to 167 of this work, has for its opposite and paralled bases or ends, amy plane tigures, equal or unequal, similar or dissimilar, rectilineal, curvilineal, or mixtilineal, and one of which, as in the case of the pyramid or the wedge, may be a simple point or a line, or each of the bases a mere line as already stated (4).

We must then write, according to the case:

$$
\begin{aligned}
& V=\left\{\begin{array}{l}
+a \cdot B \\
+4 a, M \\
+a \cdot B^{\prime}
\end{array}\right\} \quad \text { or }\left\{\begin{array}{l}
+0 \\
+4 M \\
+B B^{\prime}
\end{array}\right\} \quad \text { or }\left\{\begin{array}{c}
+B \\
+4 M \\
+0
\end{array}\right\} \quad \text { or }\left\{\begin{array}{c}
+0 \\
+ \\
+ \\
+
\end{array}\right\} \\
& \text { Sim of the a. } \\
& \times \frac{1}{3} \mathrm{~L} \text { or } \mathrm{H} \text {. } \\
& \text { Sum of the a. } \\
& \times \frac{7}{6} \mathrm{~L} \text { or } \mathrm{H} \text {. } \\
& \text { Sime of the a. } \\
& \times \frac{1}{6} \mathrm{~L} \text { or } \mathrm{H} \text {. } \\
& \text { Sum of the a. } \\
& \times \frac{1}{6} \mathrm{~L} \text { or } \mathrm{H} \text {. }
\end{aligned}
$$

PYRAMID, CONE

Regular, Irregular. Right, Inclined.

(19) In the pyramid, the base, or one of the ends is any plane figure and the intermediate section a figure similar to the base and equal in area to the fourth part of the base (95, \mathbf{T}.).

The seetion of the rome, as of the prymind, hey phame passing throngh its axis and apex, is a trianghe, and the beradh of this triangle, taken ot the half of its altitude is (page x.o, reme) half that of the has Now, this same half-way beredth of the triangle fimmases the comesponding diameter ot the pyramid or of the cone ; that is, the diameter of the half way sere! ion of the solid by a phane pamallel to the pane of its base. 'The come, if right, has for hase a direle; if inclimed, an ellipse, and for its middle section patallel to the base a ciare or allipse similar to this hase and efual in surtace to the fometh part of it ; the other base or end of the come or pyramid, is a mere point, and its area in conserpance is mull $\mathrm{or}^{-}=0$.

Which gives us:

$$
\begin{aligned}
& \mathrm{V} .=\left\{\begin{array}{lll}
+ & a & 13 \\
+4 & 1 & 11 \\
+ & i & 1: \\
\hline
\end{array}\right\} \\
& =\left\{\begin{array}{rr}
+ & 0 \\
+ & 41 \\
+ & 13
\end{array}\right\}
\end{aligned}
$$

That is : for the pyramid, the cone, the fommataredices to multiplying the smetace or area of the base by the $\frac{1}{3}$ of the height.

PARABOLIC, HYPERBOLIC CONOID Right, Inclined.

(造) Here the hase is a circla or and ellipse, aceording as the solid is right or inclined, and the half-way section hetweren the base and the apex or the opposite ends, is, as any other sertion parallel to the base, a figure similar to such base amb in the paraboloid, equal (7) in area to the half of it ; or, which is the same thing, the diameter of this section is equal to the sequine root (see the tables) of hatf the squate of the comerponding diameter of the base. The other base or end of the solid is but a point, since we have agreed to consider as such every eurved surfice which a plane surface or a plane can tonch, at a time, but on an infinitely small extent; that is, a point.

Wheme:

$$
\mathrm{V} .=\left\{\begin{array}{r}
+\quad \text { area } \\
+4 \\
+\quad \text { arra } \\
+\quad \text { arcal } \\
\hline
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6} \mathrm{~L}$ or Il .
$=\left\{\begin{array}{rr}+ & 0 \\ +4 & 11 \\ + & 13\end{array}\right\}$
smu of the areas $\times \frac{1}{6} \mathrm{~L}$ or H .
(21) So that for the pamboloid, the genemal formalat is redtered to that of multiplying the mera of the hase by halt the height; but as this expression, simplitied thongh it be, differs from the general formula and may continse the memory, (Intooduction page ?) the pupil will do well not to emdeavom to retain it : but instem of that, and to remove all donht conceming the simplified formons, to resont immediately-althongh, it is the, with a few idditionall th-gures-to the solle amb miversal formula of the anthor; for, it cannot be denied that a longer prowess under a less temsion of the mind, is less foilsome, and canses less anxicty as to the accuracy of the result, than a shorter but more meduous operation.

SPHERE, SPHEROID

Flattened, Elongated.

(2) In the sphere and spheroid, the only area to be computed is that of the central or half-way section, each of the two other areas being, as that for the top of the conoid, null or $=0$. The central section is cither a circle or an ellipis.

Thence:

Sum of the areatis $\times \frac{1}{3}$ Sum of the areas. diam. or II. or L . $\times \frac{1}{6} \mathrm{D}$ ($\mathrm{or}^{\frac{1}{3}} \mathrm{R}$.
(e:B) IS EXE. As for the spheroid or ellipsoid, it is indifferent under which aspect it be considered, respecting its half-way section and its height, length or diameter: but as it is more simple to tind, either by calculation or from the tables at the end of this treatise, the area of a cirele than that of an ellipse, matters can be managed so that its cental section be a circle, which will be done by performing the imaginary section of the solid by a plane perpendienar to the fixed axis. The solid would equally be measured in an inelined position (171, IR.) heing attentive however, as has been said (B) to take for the height or length a perpendientar to the plane of section and terminated on both sides by planes parallel to such a seetion and hoth of them on opposite sides tamgential to the solid muler consideration.

SEGMENT
 of Sphere, Spheroid. ${ }^{1}$

 to measure it does not difter in my way fom tiat of the reme or
 hase and that of its intermediate seciom vanios with the lacisht of the argment. The malims of this sedian in the segment oif a sphere "amall rime of the sphere" is cyual (ozf, (i.) bo the stlane root (see ihe table) of the prothet of the hall-vemad sine

 the base of the segment, hy its hegigt, to are the mamimber of the diancier.

$$
V=\left\{\begin{array}{rrr}
+ & \text { area } & B^{\prime} \\
+ & \text { areal } \\
+ & \text { arra } & 13
\end{array}\right\}
$$

$$
=\left\{\begin{array}{r}
+0 \\
+11 \\
13
\end{array}\right\}
$$

sum of the areas $\times \frac{1}{6}$ II.
SHIM of: lle alloas $\times 1 / 11$.

FRUSTUM

of Pyramid, Cone, Conoid, Sphere, Spheroid.
(e-9) In all these solids with iwo pathel hates, tine bases and hali-way aceion are similar figures : riaces, if the finsfom be that of a bight cone or conoid, sphere ow sumeroid ellt by planes perpondienlar to its fixed axis; simitar rexalar polygus, if
 simit:n rewilineal, mixtilineal or curvilinea! figures if the paramid is imegular.
(20) In eath of these cas's, the veribal suedion of the sold hy a plate parallel ots axis, presents a traprainn. Sow, tios mean brealth of the trapezion is obtained by taking the halt-simm of its pamilem sides, that is, their athanctical mean; and this mean is preefely the diameter of the frostum at hall-height boftern its wor bases: whence at is easy to arrive at the factors of the hali-wity section of the solid, and consequently at the ane: of sume: a oretion (see the tables.)

1. We do not adi: "egement of pyramid, cone ard conoid" simply because all sueh ecymen's, the' is, ull such parts cut off from the apiecs of the esolits by a piane pat rallel or not to lice base, is still a pyramid, a cone, a ccnoid und is volmme subject to the formula aleady given.

$$
V=\left\{\begin{array}{ccc}
+ & 14 \times a & 13 \\
+ & 1 & 11 r a i \\
+ & H & 1
\end{array}\right\}
$$

SIm of tha anvan + ! 11.

UNGULA

of Sphere, Spheroid, comprised between planes of section passing in any direction through the centre of the solid.

 in the suhare is a suetor of a ribele (a part of a cirele comprised hetwren an are and two maid whilst in the spheroid, the same section is cimolar, it the plates of sertion have their common intersection in the fixed axis of the sentid, ill the other case it is elliptieal.

Whence, the winic eontent is:

 may be dimedty measured, bye mens of a metallid sibhon or the like, or of a thin mod that dan he fitted to the "urve of the solid, to determine its cireular ar alljptieal direumferemer, or any part of such cismmfereme.

UNGULA

of any Prism, Prismoid, Cylinder, Cylindroid, Pyramid, Cone, Conoid, comprised between planes of section having their common intersection in the axis of the solid.
(29) It is clear that the magna of a prism or prismoid, cylinder or rymonoid is nothing else itself hat a solid of the same name ; that the ungula of a pramid or of a cone is simply a pramid having for base, in the case of the permail, any plane figure, and in the case of the cone, a cirman or elliptieal seetor, aremang as the cone of which the mgula fomes part, is right or ohligue. As for the ungula of a conoid, it will be considered, with respect to its measurement, as the segment
of an ungala of a sphere or spheroid (see the following paragraph). It is char that the apex or one of the bases of the ungula is but a line or point, as the case may he, and that

In all such cases the formula is:

SEGMENT, FRUSTUM OF AN UNGULA

in the conditions of the enunciation, par. 127, of the treatise; that is, in the conditions enumerated in the two last paragraphs (27 and 29).
(30) It is plain that if the segment in question be that of an ungula of a sphere or spheroid, this segment will have but one base of any value, the other base being a mere point. The base will be a circular or clliptical sector and the section at half-height an' matallel to the hase, will be a sector similar to the base. We will then have for the expression of the volume of the proposed segment :

$$
\mathrm{V} .=\left\{\begin{array}{l}
+\quad \text { area } B^{\prime} \\
+4 \text { area } \\
+\quad \text { area } \\
\hline
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6} \mathrm{H}$. or L.

$$
=\left\{\begin{array}{lr}
+ & 0 \\
+ & 4 M \\
+ & B
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6} \mathrm{H}$. or L .
(i,i) If it be a frustum of an ungula, sphere or spheroid between parallel bases, the expression will be:

$$
\begin{gathered}
\left.\mathrm{V}=\begin{array}{c}
+\begin{array}{c}
+ \\
+4 \text { area } B^{\prime} \\
+ \\
+ \\
\text { area } B
\end{array}
\end{array}\right\} \\
\text { Sum of the areas }+\frac{1}{6} \\
H .
\end{gathered}
$$

(32) Finally if it be a frustum of an ungula of a prism or prismoid, pyramid, cone or conoid (for the segment of an ungula of a pyramid, cone or conoid, is evidently a solid of the same
name as that of which the magula forms part) the formula will be, as always:

$$
V=\left\{\begin{array}{l}
+\quad \text { ara } \\
+4 \\
+ \\
+ \\
\\
\hline
\end{array}\right.
$$

Sum of areas $\times \frac{1}{6}$ II. or L.

SPHERICAL CONE OR SECTOR, SPHERICAL PYRAMID.

(333) To amive at the volume of these bodies, we must do preeisely as for the ordinary cone and prramid, save that the hase and middle section will be convex or concave suffaces which will be measmed aceording to the rules fomd ($\mathbf{1 6 5}, \mathbf{1 6 7}$), the volume being always:

$$
\mathrm{V} .=\left\{\begin{array}{r}
\text { area } B^{\prime} \\
4 \text { area } 1 \mathrm{~B} \\
\text { area } B
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6}$ II.

$$
=\left\{\begin{array}{r}
0 \\
+41 \\
+\quad 3
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6}$ II.

FRUSTUM

of a spherical cone or pyramid between parallel bases.
(34) Will be expressed as the finstmm of the ordinaty cone and pyramid by :

$$
V .=\left\{\begin{array}{r}
\text { area } B^{\prime} \\
+4 \text { area } 11 \\
+ \text { area } 13
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6}$ II.

FRUSTUM OF A TRIANGULAR PRISM

that is, having its opposite bases or ends not parallel to one another.
(35) The frustum of a triangular prism, considering any of its lateral faces as one of its bases, and the enge or opposed side as the other base, is nothing else but a prisinoid ; such is the wedge when the edge of that solid is of mequal breadth with the head. Under this view, the edge or side in question being but a mere line and consequently uull as to area, we will have as an expression of the volume :

$$
\mathrm{V}=\left\{\begin{array}{r}
\text { area } \mathrm{B}^{\prime} \\
+4 \text { area } \mathrm{M} \\
+ \text { area } B
\end{array}\right\} \quad \text { that is } \mathrm{V} .=\left\{\begin{array}{r}
0 \\
+4 M \\
+\quad 13
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6} \mathrm{H}$.
Sumt of the areas $\times \frac{7}{6}$ II.

SFHEROID WITH THREE AXES.

(:B6) This solid, as also my segment, frnstum, or ungnla thereof, segment or firustum of such mgula, is exactly measured by the formula, whatever the direction of the planes of section may be. Therefore, as the case may be:

$$
\begin{aligned}
& \mathrm{V} .=\left\{\begin{array}{c}
\left.+\begin{array}{r}
0 \\
4 \mathrm{a} . M \\
+\mathrm{a} . \\
\hline
\end{array}\right\}
\end{array}\right\} \text { or }\left\{\begin{array}{r}
0 \\
+4 M \\
+\quad B
\end{array}\right\} \text { or }\left\{\begin{array}{r}
B \\
+4 M \\
+\quad B
\end{array}\right\} \\
& \text { Sum of the a. } \\
& \times \frac{1}{6} \mathrm{HI} \text { or } \mathrm{L} \text {. } \\
& \text { Sume of thea. } \\
& \times \frac{1}{6} \mathrm{~L} \text { or II. } \\
& \text { Sum of thea. } \\
& \times \frac{1}{6} \mathrm{~L} \text { or } \mathrm{H} \text {. }
\end{aligned}
$$

COMPOUND BODIES.

(:87) The tableat presents a certain number of these bodies; for instance a eylinder terminated at one end by a segment of a sphere or spheroid (such would be a mortar) ; a frostan of a cone ending in the same way (a gun for instance) ; a cylinder or frnstum of a cone crowned with a cone (a hay-stack or circular tower with a conical roof) ; a cone ending at its base ly a segment of a sphere or spheroid, like certain kinds c° buoys. It is plain that to measure these compound bodies or any other forms tha can be decomposed into elements of the kind already treated on, the composing parts thereof must be separately computed, in order to make up, afterwards the sum of such parts, according to the rules which lave just been given

APPROXIMATELY.

(Sce the general expression, par. 127).
(38) Aud very nearly, say generally at .005 or at about ($\frac{1}{2}$) one half per cent, more or less, often (see the detailed problems of the treatise) with perfect accuraey or very near an exact result; is the volume obtained of

ANY FRUSTUM

of a Prism or Prismoid, Cylinder or Cylindroid, Pyramid, Cone or Conoid, Sphere or Spheroid, comprised betweel. $10 n$ parallel bases.

(39) By decomposing it, by an imaginary section parallel to one of its bases and passing through the nemerst point of the other base into a frustum with parallel bases (the exact volume of which is obtained by the rules alrealy given) and an mugula.

ANY UNGUiLA

of a Prism or Prismoid, Cylinder or Cylindroid, Pyramid, Cone or Conoid, Sphere or Spheroid.

(40) In this solid, as in the regular ungula of paragraphs (27 and 29) the apex or one of the bases or ends, is but a anere line or point, and its volume is very nearly.
(See the detailed ungule of the treatise).

$$
\mathrm{V} .=\left\{\begin{array}{r}
\text { area } \\
+4 \\
+ \text { area } \\
+ \text { areal } \\
\hline
\end{array}\right\} \quad \text { That } \mathrm{V} .=\left\{\begin{array}{r}
0 \\
4 \\
\hline
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{d} \mathrm{H}$. Sum of tice areas $\times \frac{1}{6} \mathrm{I}$.
REM. As will be seen (120) if the lase of the cylindrical ungula be not trmeated, that is, if this base is a circle or an ellipsis, the formula gives the exact volume of the solid, and in the same manner under the same conditions, the exact volume of auggula of ${ }^{\circ}$ a prism will be arrived at.

FRUSTUM OF AN UNGULA.

If the ungula of the last paragraph is cut off by a plane parallel to its base, of which the tablean offers examples, the volume will not the less be, as usual :

$$
\mathrm{V} .=\left\{\begin{array}{r}
\text { area } B^{\prime} \\
+4 \text { area } M \\
+\quad \text { area } 13
\end{array}\right\}
$$

Sum of the areas $\times \frac{1}{6} \mathrm{H}$.

ELONGATED SPINDLE, FLATTENED SPINDLE.

(41) The spindle considered, as a whole, is not a usual solid ; it has little importance, and to be convinced that it cammot he measured at once, as with the elongated or flattened spheroid, it is suffieient to compare it in one's mind to an exact spleroid having
the same axes or dimmeters. It is then seem how much its volumes is less than that of the corresponding spherond whidh is more swollen towards the chds of its axis in dhe clomgated spheroid, and in the opposite dimetion, if it he a thattened pherod.
(48) but if it be impossible to arive at oner at the volume of the spindle, one suceerls almost immediatels, hy measuring the half of this solid, and aterwats dombling the result, since then, by taking its section hati-wis between the eentre of the spindle and its aprex or end, the very mament which eontributes especially to make its volume vary, is considered, and this process applied to the thaterned spindle, will give the exart volnme if the perimeter of a section of the half-spindle by alane passing throngh $\mathrm{i}^{\text {th }}$ fixed axis, is an are of a conic section, as will genemally be the case, the thatemed spindle being then comsidered as two equal seqments of a sphere or spherod, mited by their hases or plates per"ne cular to the tixed axis • "the solid, of which the compooing -. aents of the spimdle fom part.

It will be sem (prob. LI) that it is sufficient to divide the halfspinalle into two parts which will be measured separately and the sum of which will he aftemands taken, to arre at a mesult which shatl differ from the trath bint by the ?日l part to the quarter of one per cent.

CENTRAL FRUSTUM OF ELONGATED SPINDLE.

(Cask).
(43) This solid which gives its form to the thousand and one varieties and dimensions of casks, throbghont the whole wordd, is, respecting the measument of its capacity of rolmme, of great impor-
 as will be seen (prob. LII), it is sutiticent to measure at once the half-ensk to arive at the exact volme within the guarter to the fortieth part of one per cent; maximmerm of one guat on a hamded gallons or of one litre on 400 litres and which does not exceed genemally $\frac{1}{10}$ to 2^{2} of a gatlon or litre for every 100 galloms or 100 litres, and cam, hesides, hy that itselt, be rectibed, that the eror is known to be always in excess and that consequently the result may be diminished by so much, if required.

$$
\begin{aligned}
& \text { S.an of the arais } \times \frac{1}{6} \mathrm{~L} \text { or } \mathrm{H} \text {. }
\end{aligned}
$$

CONCAVE CONE.

(11) The commere come is amalogons, is to its volume, to the dongated halfespindle, which maty abo be called a comvex come ; and in the same way as we very nealy arive at the volmo of the hallspindte, bey manding it in two slices; so, if the hollow or comex come is decomposed into two parts, bey phate parallel to that of its base, to measure sepanately carla of these parts and add them together afterwards, the vohme will be obtained at less than one hadi per cent loss. ${ }^{1}$

FRUSTUM OF CONCAVE CONE

between parallel bases.

(15) A great many vesichs of caparity assmme the form of this solid and as the hollow or concave come is amalogoms to the half-spinde or comsex come, so the finstum of the comeare cone may be considered as analogents to the contral halffirnstmen of the chongated spindle or halt-eask. Then hemenming it at onere, provided its enve be unitom thromghont its height and especially if this come is not considemable, the volmme or desired content will be very memby armed at, and it this calvature of the lateral fiace of the solid or ressel of capacity in question, is considerable or of mequal radia in varions parts of the laight of the finstm, a nearly perfect acemang cambe secured, by decomposing it mentally with a viow to its meat surement, into two or at most into thre parts or slices by planes of section parallel to the bases.

The volme of each of the eomponent sliees will he:

Sum of the areas $\times \frac{1}{6} 11$ or L .

COMPOUND BODIES.

(46) These bodies may assme many vatied forms. The tablean presents some of them: for instance, a central or eccentric frustum of a shere or spheroid smomont by a concave cone (kind of

[^1]dome or minaret) ; sexment of a sphere or spheroid smmomated by
ime, to the : cone; and of the hallfwor comex o that of its (1) together me hall per
orm of this e half-xpintay be collclongated rovided its his curve is very worly the solid or anl radii in rt accorary to its menty planes ot be:
lhe tablean ic timstum e (kind of cybodies the
a segment of in chongated spindle or convex cone, of of a hollow or comence come; two firnstat of right comes mited by their hoarler bases; two others, ly thoir smaller bases ; two tirtsta of coneave comes and two others in the same comditions. And it is clear that other forms may be conerived, in almost infinite varicty, but of which the rules alronly given are suthicient to determine the respective and composing volmmes.

SUNDRY.

(47) Besides the solids which have just bem emmmated, it is proper to say a worl of certain forms which the tablean presents and of which the oritin or the whole solid of which the body mader consideration forms a part, might mot at one suggest themselves to the mind. Thas, the eccentrice solid ring may be considered as the central finstmm of a very flomgated spindle bent on itself. Then will it be measured by ading to the sum of the areas of both its less and greater seetions, 4 times the area of the half-way section between these first, to multiply the whole be the length of the half-ciremmetence nsed as the imagimary axis of the ring.
(4s) The bent cone or hinffespinatie in form of the hom of an ox is measured like the inclined cone, considering as its height, the perpendicular dhaw from its apex to the phane of its base.
(49) There is the eccentric frit an of an elongated spindle, which may represent the shatif of the roman cohnme, swollen as it is, about the third part of its height, and the rohme of which may be had by taking separately that of each of its composing halfffinsta.
(50) The regular polyhedrons, as it is sen, may be decomposed into as many regular and equal promids as the solin has faces and be easily meanome in this mamer, each pramid having for hase one of the faces of the polyedrom and for height the halfheight of the polysedron, that is the half-diameter or radius of the inscribed sphere.
(bi) The decomposed parts of the flatiencaland elongated spindles and of certain other solides furnish the idea and in consequence the manner of measuring, ne ganging any sailing vessel, steamer or other, by decomposing it, ifncessiny, into elements of the kind atready treated of.
(5.3) IE Wh. The regular polyhedrons could equally be at oneo mensured, by takine the tronble of linding the arom of the eebitral section of ench of them. All these solids have two parallel bases, one of the bases being, for the tetrahedon, a pointfor the tetrathelron is nothing but apyramid. - The octabedron may be considered as a double pyramid or a compound of two pyramids, base to base, and be monsured in this manner. As to the dodeeahedron, it will bo soen that while each of its paraliel bases is a regular pentagon, ita balf-way soction between these bases, is a regular decagon or a ten sided regular polygon, and each side of whieh is equal in longth to the half-diagonal if the pentaron. As to the midale section of the exabedron, if it be tuken paralled to two cpposite and paralled sides of the solid, it will be a twelve sided regular polygon, the perimeter of which it would be too long to determine here. If on the contrary the half-way section is supposed parablel to or equidistant from two oplosite vortices of the solid, that is, perpendieular to the axis or diameter uniting two opposite points or extremitios of the solid, this section will be a regular tecagon each side of which will be equal to the half-side ol the trimgle forming the face of the polyhedron, Finally, if any two opposite sides or odges be taken for the paraltel bases of the icesahedron, the halfway seetion paralel to these edges nad perpendicular to the plane which unitos them will be a six sided symmetrieal polygin, two opposite nod paralled sides of which, each equal to the side of the triangle forming the face of the polyhedron and being one of these sides, and the other sides of tho exagon, parallel, two and two, and respectively equal to the height or right radius of the said component face.

REDUCED TABLEAU.

(DB) RENI. It is hardly necessary to say that, in this treatise and in the abridged key, every thing which relates to the so ealled tableau of 200 models, is equalled applicablo to the reduced tablenn of 105 models which the author is preparing for elementary sehools nud with a view to reduce the price of it in order to phace it within the means of j ersons less eapable of ordering it.

In the redued tablenu the models wilt be 105 in number, disposed in 15 vertical rows and on 7 horizontal rows $(15 \times 7=105)$. Then berginning for instance by the left, the

1st vertical row would be the prism, its frustums and ungulas.
$2 \mathrm{nd}, 3 \mathrm{rd}, 4 \mathrm{th}$ row, the prismoid and vaious frusta and ungulw.
5th row, the pyramid, its frusta and ungula.
6th row, the eylinder, its frusta and ungulx.
7th row, the cone, its frusta and ungula.
8th row, the eonoid, its frusta and ungule.
9th row, tho flattened spindle, its segmonts, frista and ungulæ.
10th row, the elongated spindle, its segments, frustia and ungula.
11th, 12th and 13th row, the sphere, its segments, frusta and ungulæ.
14th row, the flattened spheroid, its segments, frusta and ungula.
15th row, the elongated sphervid, segments, frusta and ungulw.
And if in the tablean any segment, frustum or ungula is wanting to complete the number of these ineluded in the nomenelature of the solids to which the formula relates, it can ensily be mentally supplied in the same way, ns, if required, nny comfeund solid may equally be decomposed by im:ginary planes of section, into elementary forms, to submit its volume to the requirde computation.

LEAU.

co measured, by hem. All theso edon, a pointconsiderod us a netrsured in this prarallel bases is ular decagon or to the half-diaif it bo taken e sided rogular on the contrary osite verticos of te points or exwhich will bo rally, if any two ren, tho halfh unites them of which, each a being one of d respectively
se and in tho 00 modols, is r is prepuring or to place it
od in 15 verr instanco by

[^0]: 1. See the Iutroduction, page 11, last paragraph, letter of the Revd. M. Billion mathemutician of the St. Sulpice Seminury, Montreal.
[^1]: 1. For forms with concave sides tho volune is less; as for convex bodies the volume te more.
