IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.

Coloured covers/
Couvertures de couleur

Coloured maps/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

Additional comments/
Commentaires supplémentaires

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains défauts susceptibles de nuire à la qualité de la reproduction sont notés ci-dessous.

Coloured pages/
 Pages de couleur

Coloured plates/
Planches en couleur

Show through/
Transparence

Pages damaged/
Pages endommagées

Bibliographic Notes / Notes bibliographiques

Only edition available/ Seule édition disponible

Bound with other material/
Relié avec d'autres documents

Cover title missing/
Le titre de couverture manque

Plates missing/
Des planches manquent

Additional comments/
Commentaires supplémentaires

Pagination incorrect/
Erreurs de pagination

Pages missing/
Des pages manquent

Maps missing/
Des cartes géographiques manquent
\square

The images appaaring here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

Canadian Institute for Scientific and Technical Information, National Research Council
Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les images suivantes ont Áté reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et an conformité avec les conditions du contrat de filmage.

Un des symboles suivents apparaitra sur la dernière image de chaque microficha, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

L'exemplaire filmé fut reproduit grâce à la générosité de l'établissement prêteur suivant :

Institut canadien de l'information scientifique et technique, Conseil national des recherches

Les cartes ou les planches trop grandes pour être reproduites on un seul cliché sont filmées à partir de l'engie supérisure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode :

1	2	3
4	5	6

Geolegical Scruet of Canada.
Vol. Vili., Pakt J.

plate i.-Contact of the anorthosite and grenville series, as seex from piedmont,

I:Y

FRANK D. ADAMS, Ph.D., F.G.S., F.R.S.C.

OTTA WA
PRINTED BY S. E. DAWSON, PRINTER TO THE QUEEN'S MOS' ENCELLENT MAJESTY 1896

To (ikonte M. Dawson, C.M.G.. LL.D., F.R.S.,
Dirertor of the Girologival sinvey of Cannda.

Sir,- I beg herewith to sabmit to you a licport upon the (icology and Economic Resources of that portion of the Laurentian region lying to the north of the Island of Montreal, together with a geological map of the same.

In the spring of $1 \times 85 \mathrm{~T}$ was instructed by Dr. A. R. C. Selwyn, then Director of the Survey, to undertake a detailed geological examination of this district, with a view to ascertaining the true character and relations of the great masses of anorthosi e which oecur in it and which had been supposed by sir William Logan to constitute an upper member of the Laurentian system. 'These rocks, which are also very extensively developed in several other parts of the lamentian, had attracted mech attention on aceount of the large deposits of iron ore which they con in, hat their true rolation it was believel could best be ascertained in this district, which is for the most part companatively easy of access, while forming as it does an eastward continuation of the (irenville district, previously mapped by sir William Logan, it also promised tw atford important additions to our knowledge of the Lamentian system as a whole. These expectations have, it is hoped, been in a measure realized.

The field work was carried out during portions of the summers of 1885, 1887, 188 severance of my connection with the (ieological Survey, to acept the Logan Protessorship of Geology in MeGill U'niversity.

The south-westarn comer of the area I here not studied, as no anorthosites oecur there, and that purtion of the sheet was carefully examined by Logan, being embaced in his map of the Grenville district, which ippears in the Atlas acrompanying the "(ieology of Canadia," and published in 1865. It has also quite recently been reexamined by Dr. Ell:, to whom 1 am indebted for information concerning the distribution of the erystalline limestones in this portion of the area.

The north west and south-west sheets of the "Eastern Townships" map, issued hy the Geological Survey, and the Sectional Map of the Province of Quelee, published in 1854 hy the Crown Lands Department of the province, have been taken as a basis for the topography of the accompmying map. It has, however, been corrected and 11
supplemented hy the more reent government surveys, as well as by extensive surveys of my own. The issue of a separate map to neconpany the present report, is nocessitated by the fact that the aren deseribed is unfortunately situnted at the meeting of four sheets of the geologieal map of thr Province of Quebee, now in eourse of pre!aration, two of which sheets cannot be completed for publieation for some years yet.

The petrographical work in comnection with the Report has been carried ont in part at the lonvorsity of Hedelberg and in part in the petrographical loboratory of Me(iill Iniversity,

Previous to the commencentent of my survey, a certain amomnt of work had been done in this distriet, by virious members of the Geologieal Survey, at different times. Short visits to efrtain parts of it had been male by Nir Willian Lagan, Dr. Sterry Munt and Mr. John Lowe, a number of lowatios being rafer od to by them in the early reports of the Survey. In the summer of Isso, Mr. R. (: HeConnell mapped in area of considerable size lying to the southern fortion of the counties of Berthier, Maskinongé and St. Maurice, a small portion of which is included in the present map. Mr. Il. (i. Vemor and Mr. Lewis R. Ord alsu examined fortions of the district in 1879.80. A short statement concerning the work of these threr gentlemen is contaned in the Summary Report of the Oprations of the (ieological Corps, by Dr. A. R. C. Selwyn, 1879.80, pl, :3-5.

My warmest thates are due to Prof. Rosenlmsch of lleidelberg for aid and ulvice on many points comneeted with the petrography of this district : also to Prof. Carlyle, formerly of Merill University, now l'rovincial Minemogist for British Columbia, who ably nssisted me during the seasons of 1085 and 1887 , as $w^{\prime} 1$ ats to Mr. Wialter C. Adams, B.A.Se., Mr. Nevil Norton Evans, M.A.Se., and Dr. B. .J. llarington, for chemical analyses of roeks, and to Mr. G. H. Garden, C.E., and several other gentlemen who have assisted me in various ways.

I have the honour to be, sit,
Your obedient servant,
FRANK D. ADAMS.
Montreal, 2yth June, lis96.

TABLE OF CONTENTS.

I'S.
Physiral Prathere. 7
Areluman Cíolaf,! Cioneral Statelacnt 111
Ther Lamrentirn lincissos atmet thrir Assumbltal Rocks. 11
Stratigraphical Relations. 11
Gromillo הr-ven 11
Fimblamenta) (ineins \because
Icid latrusions !!!
Potrography 31
Iimeinstes of lymesthe Origin 34
 $1!1$
 (i)
The Anorthosites....... Nis
The Dorin Amorthosite 5
Stratigraphical Relations. 8.
Petrography amb Structure !1 !1
()thw Anortusitu Masses 111i
lakelield Areat. 11%
St. Jimimate - Irea 11s
Kildare Steas. 10:
Catheart Areats. 123
Font des Ditles Sient 124
st. Jotan de Mathat Area. 12
Brandone Areas 1215
 Countries $1: 31$
Pont-Arehnanin Dukis.s. 13.4 13!
Eeomomic C'colot!!
Eeomomic C'colot!!
Stwmemr"! of Aicheran Cicolot!" 15\%
Appendix I.-Literature mhating to the Amothosites of ritnedu. 15
Ampentic II. The sumltin! of Titaniferoms Irom Oras. 161
 meridien.

IN＇IV：「い TIIF。

NORTH OF＇THE ISIAND OF MONTREAL．

Puysical، Featcing．

The comtinent of North America，as is well known，has been graulu－ ally built up by the accumulation of sediments，about certain very ancient land areas which now form the skeleton of the continent und are termed its Protaxes．Of these by far the largest and most im－ portant is the great Northern Protaxis，which forms the hilly and mountainous comutry bounding the plains of central Canalk on the north，its southerly limit extending from Lake Superior in a nor＇i． easterly direction to the coast of Latrador，whilo in a north westerly direction from that lake it runs nearly to the shores of the Arctic sea．

This great core or nucleus of the Ameriem continent，Jying almost Nurhern entirely within the Dominion of Canada and embracing as exposed an Pronaw． area of some $2,001,250$ spuare miles，＊eonstitutes what the dis． tinguished Austrian geologist Suess，has termed＂The Canadian Shield＂or＂hoss，＂of the earth＇s crust，as well as the more mountain－ ous stretch of eountry along the Labrador coast，and is eomposed ex－ clusively of very anciont crystalline rocks．

The district covered by the present B port forms a portion of this Protaxis，being situated at its southern edge，which here runs nearly parallel to the course of the River St．Lawrence and is about twenty miles north of the Island of Montreal，as shown in the accompanying map，which eomprises an area of 325 squate miles，situated in the counties of Argenteuil，Terrebonne，Montcallm，Joliette，L＇Assomption， Berthier and Maskinonge，in the province of Quebec．

[^0]Axpect of is rilif.

Flowation of plateats.

Trembling Nomentain.

In tho aspeet of its reliof, the district embraced hy the necompanying map presents a well marked division into a great plain which stretehes across its southern portion, ocenpying the valley of the st. Lawrence, and wheh is undorlatu by labeozoic strata of Cambro-Silurian nere, mad a hilly or monntamous district composed of Srehemu rocks to the north.

From the Nit. Lawrence the platingradually rises to the north-ans, uttaminer in the present area at its morthern limit, a licight of nbout 300 feet above the st. Lawrence at Montreal. It is usually covered with u beavy mantle of drift, so that oser large areas mo exposures dam be fumbl, and is well watered, fertile and thickly settled hy m industrious and thriving agricultural population.

Rising abruptly from this phan, the Acharan appears as a line of hills, stretchiag across the country and forming a very well moked topographic feature. These hills are distinctly visible form " Nount Royal," on the slopes of which lies the city of Montroal in tho coxtreme south-east corner of the sheet, as me looks to the north on a rlear day.

The apperance which they prosent when seen from the plain at a distance of a few miles is shown in the aceompanying sketel, taken from near the southern corner of the township of Bmadom (Plate II).

These hills really eonstitute the edige or southerly limit of a grent uneven platom, which, however, like the platin, rises gradually to the north-wost.

Roughly speaking it maty be said that, if a line le drawn across tho platean, parallel to the morthern edge of the plains, and about half way between the pain and the north-west corner of the sheet, tho district to the south of this line would have an avorage elevation of about 1000 feet, while to the north of it the eountry frequently attains an elevation of 1500 feet, or to the extreme north-west, of 1900 feet. Isolated hills rise still higher, as, for instance, Trembling Mountain (Plate II.), which is probably the highest point in the district, and which attains a height of 2380 feet ahove sealevel. Logan in 18 污 measured trigonometrically the height of Trembling Mountan above Trembling Lake and found it to be lil:s feet. A barometic determination by Dr. Lills and myself gave the height as 1720 feet Logan's estimate of the total height of this mountain as "about 2061 feet above Lake st. Peter," is, however, too low, as the railway at Chute aux Iroquois is $7 \geq 6$ feet above Montreal and Trembling Lake is 90 feet below Chute aux Iroquois.

The hills about Ste. Agricole also, on a morlerate computation, must attain a height of 2100 feet, the eentral portion of the township of

 conser of the 'lowsilhf of Bhashon.

Fig, 2.-Thembing Mocitaln, as seen from socth-west sime of Trembling Lake.
PLATE II.

Archambault, in which this phace is situated, being oceupied by the "Montagne Noire," which is so rugged that in laying out the township, it was left entirely unsurvered.

This Areheain plateau has a remarkable mammillated or undulating surfite, the thepressions being gencrally filled in with drift, forming extensive thats which are studded with mumerons lakes, great and smatl, tilled with clear water and forming one of the most chatacteristie features of the country. Rounded, ice wom besses or hills, proteme through the drift in every direction. These seddom rise to a height of mome than thee or four humded teet above the average level of the country, and present, especially where the distriet has been traversed by forest fires, weat taces or whole summits of bare rock. The lakes are drained by several rivers tributary to the st. bawrence, that rum thengh drifted valleys of which the sides are usually batutitully teratacel.

The landseape in this Laturentian country is of a very pronounced comater of type, which, while lacking on one hand the grandeur and sublimity of "onntry. the great mountain resions of the world, amb on the other, the tampuil beaty of well cultivated lowlands, has a certain rugged heanty of its own, and when clothed with the antumn foliage, a remarkable bit. liance. Although the slopes of the hills are often cultivated. it is principally the depresions and river-vallers that athent lamd capable of settlement and suitable for agricultaral purposes. The settlements therefore are, and must of necessity always be, more seatered than these on the platin, and the land although prodneing exeellent erops in many places, is gene ally sambly and less fertilu than that of the phains. The country, however, now supports a harly ant contented population of farmere, which, exept in the south-west conner of the district is almost exclusively of French extraction, and settlements are, year her sear, extending further back into the hitherto unreclamed forests of the north.

The following is a list of the heights of some of the more important meishtwif points in the area. These, with the exepption of that of Trembling important Iombain, betore referred to, have been detormined be instrumental levelling, earried out in connection with the construction of the ('anadian Pacitic, the Montreal and Western, and the Great Northern malways. The datum line adopted is that of the Camadian Pacitie Railway, which is 19 feet above the old loek-sill at the entrance of the Lachine Camal in Montreal Harbour. This datum line is $30 \cdot 6 \mathrm{~b}$ feet above steclel's mean level of the Gult of St. Lawrence. In the following table this onrection has been applied, 31 feet being added in wheh case to the height of the point as siven by the milways.

> Altitude of curtous I'mints on the lines of the Cunadian l'erific, the Moutreal and Westron, and the tireat Forthern Raihmigs ahore Sterket's mean treel of the Ocratn in the tiulf of St. Lanrence :--

Ginemal statement.

That portion of the area occupied by the Areham, is underlain for the most part by a series of gneisses, presenting great sariations in both structure and emporition, and with which are associated crystalline limestones, quartzites, de. These belong to the Gremill Series of Sir William Logan.* and are of Laurentian age. In certain parts of the area, however, there are great stretches of orthoolase-gniss much more uniform in character and without limestones and quartaites. These are referable, in some cases at least, to the l'undemental lineiss of Logan, which was by i.m believed to underlie the (irenville series and to form the basil member of the Laurentian system.

[^1]Breaking through these grneisses and in some cases interbanded or interstratified with them, are several anorthosite masses, by far the largest of these being that which for purposes of convenience may be termed the Morin anorthosite, and which comprives an area of 990 square miles. Two important intrusions of acid rocks, one of granite and the other of syenite also occur in the distriet.

In the present report the anorthosites are shown to be intrusions, and are separated from the Laurentian proper. The name Laturentian is therefore made to embrace the Fundamental Gneiss, which, although, so far ats can be ascertained at pre"ent, essentially igncous in origin, may possibly contnin some sedimet. "y material, and the Grenville Series, which is composed of altered sediments associated with much injected igneous matter.

The Ladrevtran Gnebses anb theme Assochted Rocks.

STIRATIGHAPHJCAL REIATIONS.
Girmille Suries.
The rocks composing the Laurentian in this portion of the Protaxis, usually possess a more or less distinct arrangement in the form of bands, layers or heds which alternate with one another. That a purely objective attitude may be preserved the term band rather than bed will be cmployed, the latter term being usually associated with the iden of a sedimentary origin which in the present case should mot thus be taken for granted.

This banding is frequently replaced by a foliation calused by the Banling of the parallel arrangement of the individual grains of the several constituents rack.. of the rock, without any distinct arrangement of these latter in bands. In any district where banding and foliation oceur together they usually coincide in direction, and are often found in the same rock.

In the astern portion of the area, in the townships of Ioliette, Brambon, Peterborough and Chapleau, as well as in the country to the north of these townships, theve Laurentian rocks lie flat or nearly so. Further west, as shown in the sections accompanying the map, a series of low undulations appear, while in the western portion of the area they are thrown into a series of shap folds with nearly vertical dips, the strike varying in different places from north-east to north-west. The eastern area of that-lying gneisses, with occasional intcralated Flat-lying bands of erystalline limestone and quartaite, extends far beyond the queisese. limits of the map to the north-east, occupying in this direction a very large district traversed by the River Mattawin, the Rivicre du Loup
and other smaller streams, which cut their way down these nearly horizontal rocks, and along whose banks, from time to time, as well as in the clifls hordering many of the little lakes dramed by these streams, grod sections, often representing a vertieal thickness of from two to three hundred feet, are obtained. On the more level surface of the country on the other hand, the rocks exposed are of course eomparatively uniform in character. Over this trate of comotry, embracing an area of at least 750 siquare miles, the gnoisses often lie quite that, while low dips seldom exceeding 30° everywhere prevail. In several localities the direction of dip varies rapidly from place to place, low undulations in the that gneisses being olserved, rumning now in one direction and now in another. The whole area gives the impression of a comparatively thin crust, which has rested upon or has heen sustained by an anderlying molten or tluid mass.

Figure 1.-Horizontal Gineine, near Cedar Rapids, River Matawin, due.
Granite batholite.

That this in all probability was really the case, is shown by the appearance from under the gneisses, in the southern part of this district, of a great area of granite, a portion of whiel is seen in the north-east corner of the map. This would scem to represent a very extensive batholitic mass of granite underiying the district in question at no very great depth beneath the surface, and here partially exposed ly erosion.

Figu e I. repressntsa sketch, showing a cliff of these nearly horizontal gneises just below the Cedar Rapids, on the River Mattawin, about 20 mites beyond the nothern linit of the acempmying mup.

Plate 111 . is a photograph of a other elill, ansisting in this cass of white garnetiforous prartzite, interbanded with garnetiferoms silli manite grei ses, within the limits of the map, about 2 miles nonthwest of st. Jean de Matha.

In the arpen embaced by the map. limestones have mut been found in the Laturentian to che east of Ste Bmilie or ste. Beatrix, but in the extension of this distriet to the burth beyond the limits of the mape hands of erestalline limestome hase been foumb at anmber wif widely separated printe in the hat-lying gncises abong the River Mattaw aul abme the head-wates of the liviare du Lap. At one loeality t^{1} ree miles morth-west of the Lamem Rapids, on the Matawin River, redish and grayish greisses with interstratified grartates oreur in horizontal layers .icil hands of white erystalline limestone, in swme phees quite pute and dsewhere holling grains of serpentine and seales of mica. It ome phace, in a cliff by the side of a lake, several limestome bathe were observel, one abow the other in the same exponare. Three of these hat thicknesses of there, four and eight teen, respectively. It another point half a mile distant, two hands of limestone were seen in a similar expone, the upper heing six feat thick, while the lower was exposed for a thickness of twenty fert, the lower limit not heing seem. These bands cond be traced horizontally in the face of the cliff for a distance of half a mile.

Betweenste. Builic, Ste. Beatrix and liadsteck on the east and the Mnin anorthosite on the west, the Samentian is thrown into a surbe of filds. Which towarl the south areoverturned, and in this district cystatline limestone is exposed at a number of points. Dost of the exposures, howere, seem to be parts of a single band repeatedly brought up hy the folding, and eoineiding in strikewith the surrounding gneiss. (See the sections accompanying the map). Some lats hamts of anorthosite also oceur in this district. Towatd its southern limit alons the edge of the Palawoic, in the townships of Rawdon and Kildare, strikn of the gneiss strikes nearly morth-ind-south, but going north atong the eastern limit of the Morin anorthosite, the strike gradually turns more and more to the west ; the gneiss wrapping itself around the anorthosite mass, until at Lae des Iles it strikes N. 75 W .

In the great block of gneiss which extends into the anorthosite from the north, and in which lie the valleys of Lake Archambult, Lake Cuareau and a number of smaller sheets of water, a similar, meidence
betwenn the strike of the gneiss and the direction of the anorthosite beundery is observed. North-east of Lako Croche and on the north-
 on the west side of Lake Onmean north of St. Bonat and noout Lake laftomay, which is situated ahout the middle of the township of Lussifr, it averuges about $N .55 \mathrm{~W}$. This strike to the east of morth is confined to the immedinte westerly marein of the anorthosite, as on the north-west of lake Croche it has alrealy veered around to the west again.
 ('8)l sit off ntroxtors.

Fuliation ithlucol by

The influence of the strike of the gneiss on the shape and pasition of the lakes and on the course of the streams is also wery marked in this district, boing especially well seen as determining the course of the liver Lidssomption and the shape of Lac des Iles, Lake Croche, Lake Lafromay and Lake lembina. Also in the forking of Lake Oumren, corresponding to a change of strike, in the comee of the liver Goarem between Lake Arehambult and Like Gumean and in the pusition of Lake Arehambalt itself.

In the north-west coner of the map the strike of the gneiss continues 2ofore the outline of the Monin anothosite mass, being N. 20 E . on the Devil's River, just north of the anorthosite contact, and N. 5° W. in expmanes alont two miles from the forks of the river, further somth in the township of Grandism.

Further sonth in the township of Wolfe, the gneiss is more masive, so that i is dillieult to ascertain the strike, hat at Late Gauthier, on the lime hetween Grandison and Wolfe, it is N. 20 K., still following the hine of eontact. Wer the greater portion of the Aumentation of Mille Tsles, further south, there is a genemal morth-easterly strike, which, howerer, in the vieinity of the Lakefieh anorthosite mass, veers around to the north-west, following the course of the mass in question.
leween St. Jérome and New Glasqow the strike, which is at tirst northonsterly, swings around to the moth as the latter place is appromed, while to the east of New tilasgow, a wedge of gneise striking to the north runs up into the Morin aurthasite for a distance of fifteen miles, splitting it in two just before it disippears bencath the Palarozoic strata of the plains.

In certain parts of the Morin anorthosite mass, as will he explained, a foliation has also been induced by pressure in the anorthosite itself, which can be shown to have been originally a coarse-grained massive rock. This foliation also runs parallel to the limits of the mass, except along its southern boundary ibwot St. Sauveur, where the anorthosite cuts across the gneisses and limestones of the firenville
series, the strike of the foliation heing continuoum across the bomatary from the greiss into the anorthosite.

It thas hecomes evident that, with the one exception just montioned, the foliation of che gneiss runs around the worthosite mass, following the windings of the boundary, and that it is not eatirely an origimal structure, in consequence of which the amorthosite mass tomk its present outline, but it is in part at least secomdary, having been caused by the great pressure to which both focks have been suljpected subsequent to the intrision of the anorthosite mass, which pressure has indured a certain moount of motion in both rocks. This motion has been aceompanied by a certain stretching, drugging, of thwing of the gneissic series along the elge of the anorthosite, as seen especi.lly well in the abropt change in strike of the gneisses along the immediate margin of the anorthosite mass about Lake Croche and to the northemst of lake Onareau.

That a stretching of the gorissic spries has taken phace is also eloarly proved in many places where the ordinary quartonse orthoclase-gneiss

Sitrtching of the gherixsic мит. alternates with bands of dark pyroxene-gtamulite or amphibolite. In such cases the dark bands are often seen tu have been palled apart, the disconnected pieces being arranged in lines following the strike of the rock, and can be platinly seen by the fact that the ends of adjacent pieces match one mother, to have originally fomed parts of the same hamal. 'The tecompanying sketh takenfrom an exposure on the Cypuess River, a short distance beyond the northerly limit of the map, shows this excellently. Hore there are large exposures of fine-grained red lish quartoonthochasegneiss, with bands of a dark pyrosene-amphibolite, the whole series being mach stretched owing to a great curve or sweep in the strike of the gneisses of this district, whereby thoy are bent back upon themselons. By this stretching the amphiholite hands have bern tom apart as seen in Figure 2, while the quartzorthoclase-gneiss possessing a certain degree of plastieity, not omly stretches, but fills up the spaces between the disconneted fragments of the amphibolite bands.

 hy the strathing of the sories. Cypuess Riser. Seale. 1 inch to two fore,
The same phenomenon hats been observed in hundreds of cases, not only in the areis at present under consideration, but elsewhere in widely separated parts of the Laurentian. If the pressure is so intense that any member of the series is torn apart, it is always the basic rock which
shows itself to be the lass plastic, whilo the highly guatzose rocks acemmanata themselses the stmin by plastie movements. Some-
 able anmont of stretching before they break. 'This stretching ean he

 losizontal didection as form a horizontal dispupting forer, such as might. bre exprised it the greisary hat beron stretehed ower tho whlerlying grathe batholite, rithor hes downwam pressore due to a geat weight
 rise of the granite mayma.
'lıarimg apart. of hawicl

In the folemp protion of the distriet further to the sout west, this

 fremt on twisted.
'The same phenomonom is very vell seen in the case of the thin lames of gavise, su frepuently follud interstratified with the lime-
 the more ghastie of the two rocks, ant the enorise, also plastic to n lasser extont, is bent intor corionsly complicated furms, but when the
 frogments, which, stambing but from the weathered surfince, give the

Fralle. It may aprear somewhat romakable, in view of the folding to which these rocks hase betol subjeeter, that fants we wot more momerous, They s.em, however, to be rare, although in such armas of contorted
 were moterl, atthough the existemer of others was eonjoctured. 'The
 of lake Oumpatu. Here, two masses of red orthotase-greiss, with interstratified guartate bands, eome together, one set striking N. 10 W. aml the whur N. 40 F., buth having a high south dip. 'This it will be moted is a protion of the area where the emmpession of the greiss must have been especially severe, the ordinary nerth-westerly strike of the comatry-rock heing changed to a mortheasterly strike along the margin of the amorthosite mass. The second fant which was noted is m the roal between Now Glasgow and Sit. Calixte de Kilkenny, abont six miles in it straight line from the former place, and at the contact betwen the gneiss amel the anorthosite, where a fant probality weeupies the hed of the River Achigan, one conspicuous land of gabbo romning uy to the river and there disappearing.

 sites, prohathly rontrilute to the samer resule.
 asul her is mapereially well displayed in the townahip of limatom where

 eromal strike. I'he townahip, theretore, merits a short, spereial Geseription.
 while tha last two banges are still larerely unter forest, the esuntry rising to the moth ansl beong there move rasiged. I'no fortumately murl of the sombleastern prot is heavily drifted
 striking fenture of the mato.n pate of tho townslif is the heantiful stroteh of wator known as lake Daskinomge, will its extensive valley of that drift extemding borthword thenght the sith and oth muges and inticating a mod grentro uxtonsion of the lake in this
 as sern in the presence of similag drifted valleys, berou vocla larger sheets of water in former times. 'The township is traversed by numer
 owing to the way in whel it is laid ont, the ranges romning north-ast abd sumth-west, while the rocks strike morth-west, tho maty rumbing
 the strike.

In eqeological stracture the township may be dis ided into two parts, Romatipnit ome consisting of the morth-west twothirds athel the other of the somtheast fortion comprising the remaining one-third. The morth-west portion is oceupied by at lat syacline, the rocks striking morth-west, those of the rastern halt of the township dipping at low athrles, weraging athent "En, the thenth-west, while those in the western half dip to the north-east at angles of nbout 15 (see aecompanying section, Fig. 3.) In the two upper ranges, the strata over consibrable areas are quite that, and mo dip exceeding 15 was anywhere observed. In athlition to tharegular mortheast and sonth-west dijs nlowe mentioned,

181 E, HR,

4

slight undulations of the strata in thr dimetion of the strike are ofern mern, so that in isolated exposures diges to the borth west or month-anst cotn ofeasionally be observerl.

 the dianetion of the striks, and the drited rharator of the hatill of
 \&
 lownerer, were nowhero ofserved ont this side, vhich indieates latt they
 and the expesines which nee spell whe the rastern balf of the seretion

 the wratem half of the suetion da bot renppear the the enst of the synclimat axis is dur th the series heing essentially a mollodout eomplex of igheous musser.
"The exact thickness of the "strata" represented in this north-west portion of the township is not known, but, is has been mentioned, the comatry gradually piese to the morth, mal it was ascertained by direct measurement (amoroid), that starting from the alge of the drift-lilled basin of lake Maskibongr, at lot 6 on the concession line between ranges IK. and X., nul qoing north to a point about the midulle of lot - of range X U. , the ascent is made wer 540 fert of nearly horizontal stinta; if the average dip of these be taken at lat this alone would reprosent a thickness of $5:-2$ fort.

The evdence here, ats in other parts of the area where the gueises are approximately horizontal, goes to show that although the bands are not flexed and contorted they hase been subject to great vertical compression. The various rocks are quite as highly erystalline as in
the mure contorted districts, the anorthosites show widence of very great crushing since they were injected, and the gncisses themselves under the microscope show very marked cataclastie structure.

Grante mans 'The sontheast portion of the township is quite diferent in structure At the extrome south-enst corner is a suatl area occupied by a portion of the great granite mass which oceurs along the eastern side of the sheet. It is comse in grain and sometimes possesses mindistinct folintioll.

Limiting this granite on the west is a band of finc-graned granite about a mile amd a half wide. It is quatzose mud reddish in colour, almost free from mica or other irom-mangesia siliontes, and nearly uniform in grain and composition.

In many places one ean olserve little local irregularities in grain such as are often seen in granite apophyses, and it freepuently bodds large orthoelase phenocrysts like the comase granite to the east. In many phaces an indistinct foliation can be seen, and it offen loolds little strings and mometimes apprent fogments of white quartaite and of a dark lasic rock, usually coinciding in direction with the indistinct foliation above mentioned, which is about $N . j W$. and paralkel to the limit of the coarsegramed granite. This fino-gramed granite is apparently a contact phase of the coarse granite, the transition, howevar, being very rapid, since on lot of mage [ll the two ean be seen within a few yards ot one another. An actual contact or passage betwetn then was nowhere ohserved. The westem limit of this finegrained granite, on the line between ranges I. and Il., is about the east halt of lot δ. To the west of this the time-graned granite is sucereded in the following lot by a well-banded grayish gneiss, striking N. 10 IV. and dipping to the east at an angle uf 6.5 . In this area are many dykes, veins or bands of gmate, oftea very coarsely graned as is so generally the ease in pegmatite apphyses, sometimes punning parallel wo the banting of the aneiss and elsewhere across it and anastomosing with one another. This gneiss is exposed at frequent intervals alonge the road for a di tance of rather wror ther miles from the fine-sraned granite, but is usually reddish in colour and holds bands of quartzose and homblendic gneiss, fregurntly broken up into fragments, whieh, although in many cases revdently having formed parts of the same inand, now lie in the reddish gneiss separated from one another. This roddish gneiss in many places resembles the fine-grained granite and is almost free from irmomagnesia minerals. The strike of the gneiss varies very much in ditlerent places, and even in the same exposure. It, however, always dips in an easterly direction or towards
the granite, and always at very hish angles of from Gis 5 to vertical. From the last exposure of the gneiss on lot 17 to the western limit of the township, there are no other exposures, the eountry heing heavily drifted.

In the south-east corner of the township, theretore, we have the edge of a great mass ot wrante thaked by a band of moll finer gramed granite, and beyom this a sories of highly tilted gneissos, which have been moch disturbed, and penetrated by granite veins or blykes rpparently apophyses from the man mass, the series being entirely different both in character and attituld tiom the well-banted ghe sems of the flat syntine arempine the noth-western portion of the township. Between these two areas the township is moler heary drift, so that the actual relation of the two sets of gurisses to one another is obsemed. It womld seem, however, that they must be separated by क we stratigraphionl hreak, withre a fitalt or in uneonformity. It may be noted that it a line be drawn from the most west "ry expesure of the a somtheastern gneisses, on lot 17 , to the northern point of Lake Maskinongri, it will divide the two series from one another, and sweh a line would also rom nearly parallel to the limits of the ${ }^{\text {gramite mass. }}$
 the south-eastern morisses shond be refered tor the "tundamental gneiss " or not is meertain.

Among the amod impurtant eonstituents of the (irensille series, not fryalline so murh on aternit of thoir velume as owing to their eronomic value amb the grenetic consideratioms attached to them, as well as tor the adid which they allome in working out the atratigraphical relations of the series, are the arstalline limeston's. The existence of bends of
 ern limit ot the map, has ahrody heen refermed to, but within the areaz emberad be the map, although not wherved in the neally horizontal smeisses of the nort astern district, erystalline limestone is repeatedly expersed elsewhere, as will be seen by consulting the map, being brought $\quad 11$, by the folding of the gheisses in the more contorted parts of the area.

The south-western prortion of the area embrased by the map, lusomene as has aheaty been mentiomed. Was incladed in a "Map, Showing phrtomof the Distribution of the Laurentian laseks in Parts of the Comnties of Ottawa, Terrebomes, Arenentruil and Two Mountains." by Sir Wiilison Logrn, published in the Athas accompanying the "Creology of Canala," which appenced in 186.5. In the map accompanying the present Reprot, the distribution of the linestones in Montealm,

Morin, the Angmentation of Mille Isles, and in the district to the south-west has been taken from this map. In the aren worked ont by Logan, which, howe, fo lay principally beyom the western limits of the present map, he believed that the existence of either three or *'ur distinct limestone hands of considerable size, at widely separated horizens, could he establisheol with tolerable eertainty. Dr. Ells, however, who has recently re-examined this district, and whose report will appear shortly, donbts the correctness of these viows, and believes that the linestones are concentrated towards the summit of the series. The character and distribution of the limestomes in this pertion of the areat being deseribed in the reports of Logan and Ells, need mot here be further reterred to.

In the north-wast comer of the area, the Laurentian is represented by reddish and gray gneisses, often rich in quart\% and well follated. which on the Devils River are oreasionally gametiterons and associated with quartzites. This distriet is a geot deal driftecovered, and no erystalline limestone was observed in place, but a large angular bloek of this rock fomed by the side of the bevil's River, about the morthern dimit of the map, indicates that bands of this reck do oecur here associated with the groeiss.
(ry-tallitu' linustonte of Trombling latio.
('rystallime fithestonit deat st. Jirime.

A heavy band of limestone runs through Trembling Lake, which lies immediately west of Trembling Mountain, being exposed on the islands in the lake as well as at its outlet. Crestalline limestome is also exposed at several points in the vicinity of st. Jovite, in the townslip of De Salabery, but the havy drift which mantles this portion of the country renlers it impossible to ascertain the extent and distribution of the rock.

In that portion of the district to the east of the Morin anorthosite. it was also believed at tirst that some live or six tifferent bands of limestone existed, but the result of a detailed study goes to show that the three principal bands at least are probably repetitions of one and the same horizon, being related to one another as shown in ti:e section: accompanying the map.

The course of the several hines of outcrop of these eastern limestones. may be brietly indieated.

There is firso a small and comparatively unimportant vecurrence on the west side of the North River, near St. Ahome. Exposures of the limestone are seen crossing the moul, and blocks of it may be found at intervals in the fields to the south of the roal. Logan states that it can be traced for about a mile and a half, running in a direetion
N. E. E. Although the sumomang comotry was carefully examinal, no netual exposures of this limestane could be found, except those above-mentioned. In the direction of its strike to the south, it would "ross the North River and be covered up hy the Cambro Silurian rocks within the next half mile. It does not appear on the banks of the river, however, neither could any continuation of it he foum to the nurth.

A more important oecurrence of limestone, although still compara- Now Now tively thin :und impure, is fomb a short distance to the west of the libsagow. village of New (Glasgow, heing exposed in the bed of the River Iordan and near the Cambro-Silnrian contact. From this peint it can he traced in a direction a little east of north, skirting atong the edge of the great anorthosite arm, as far as range III. of Kilkemy, a distance of about six miles, where it is lost sight of.

An isolater exposure of a pure white crystalline limestone oceurs (in lot 10, range VIJ., of Kilkenny, where it forms a low ridge about a humbred yards wide. This, however, is probably distinct from the New Glasgow band, which, if it hodds its course as above deseribed, would be cat ofl by the anorthosite a short distance to the north of the point where it is last cexposed. It certainly is cut off ly the anowthosite eventually, for the latter on the north passes across the strikn of the wneissic series. What may be a continuation of this same limestone band, however, appears on the other side of the anorthosite mass, at Lake Ouaream. The most northerly foint at which the limestone is here exposed, is a slight elevation rising above the drift on the Corture Roard, on lot $\because 0$, range II., of Lassier. Pollowing the prevailing strike, it appears again to the sonth-east, in Lake Ouarean, forming a series of little islands, which lie along the west shore of the lake. On one of these, which is composed exelusively of white erystalline limestone, with many little inclusions of gneiss produced by the Ar lake tearing apart of narrow bands in the manner abready deseribed, the strike is about $\mathrm{N} .75 \mathrm{~W}^{+}$, and the limestone is exposed for a width of 275 yards across the strike. This is not the whole width of the brad as the exposure is bounded ly the waters of the lakr on cither side. The band then appears on the eist shore of the lake, near its southern extremity, where it has a width of about 200 yards. The southern pertion of the lake is, in fact, excavated in a hand of limestome, interstratitiod with white quartzite and eertain gneisses which are al.....st invariably found associated with the limeston's, which lanol, being very near the border of the anorthosite mass is, at many places all alout the lake, invaded by and mixed up with anorthosite, which is
often intruded parallel the the fiation of the gheise, and aftem has a mone or less distinct foliation acompanied by excellent eatachastic structure (section 370), The face that it was prssible to print ont the existence of limestone in this remotr district was of ennsidnable importance to the settlers there, who had benn whiged proviously t, hatul all their lime from st, demme, a distance of forty miles wer rough made.

The strike, wherever this can be oherved, indicates a sharp berorling of the strata back upon themselves at the southern fortion of the lake, corresponding the outline of the lake. The foliation is probably lamely a secombary one, induced by prossure, as shown by the fiect that it is shamed by the intruded amonthsite. 'The limestome with its assuciated ?rmeisses is limited on three sides hy the atmothor site, amd her agial is widently ent off by it.
(rystalliz. limsstrman in Catheart.
 thasite, is seme in the bert of the Phack liver, on the line lset ween ranges VIIt. and IX. of the township of Rawlon: then in latro
 intu ranges 111 . and \mathbb{V}. of the Jugmentation of Kildare, on the western enmer of that bwoship. (abine still further morth, it is sem

 of the lownship ot ('atheart. 'los the month ot this point the comatre
 comtimuos thatimg out of at small hand of limestome is impossible. Continuing on the eanm strike, however, limestone was olserved on the tront of lot $2 \mathrm{~S}_{\mathrm{s}}$ of range 11 . at Cantier, on the line hetwern II. and III. of Cartier, ako about lot 2 s. and then at two puints on two little lakes lying a shert distance to the tase of Lie des llets on the stream issuing trom that lake. Limestone was alsoobsequed protruding through the dritt by the shore of the liver l: Asomption, about four males from Lake l. Asmontion. It is here expmed tom a widthof litwen feet acruss the strike, but the limit of the hand is seen only on one side, the water combaling its contate with the mensises on the other. 'The petrographical eharacter of this limestone is described on prite 66. This nemrener, however, is mot on the same strike and may mot belong to the bind above described.

It was impossible to follow this band with certanty in its southerly extemsion. This is wwing to the fact that the southern part of the township of Rawdon is heavily drifteovered, empatativoly lithe rock hring
exposel. Dr: Carlyle carefully examined the River Oumbata, form Raswion to the ('ambro-Silurian eontact, and was umable to tind any limestone. Nowe the village, the river rums through drift, until the exposme of atorthosite at the uper bridge is reathed. Small exposures of the limestome were, lowever, fond protruding though the dritt, on ratag IV. of lawdon, abont lot 13 , whel may possibly mark a continuation of the band in this direetion, but if so, the limestene band is Ereatly diminished in size to the somth.

Thas hand, which may he eathed the liawdon batal, is most exten- hawhon sively expmed on rature 1 . of hawdon, mad in the vieinity of st. hamb.
 harmed for lime, amb at the latter place it is now being burned at two different prints.

I motrworthy fint in comection with this limestome band, is that it are munes the summit of an anticline, the dip bering from it on rither side.

I third bumb is seen in considerathe expmanes about a mile and a half wast of st. Alphese on range l, of Catheart, where it is barmed fon limar. and to the wouth on the adjuining bage of the . Iugmentation
 of Catheart, and then at a mumber of places lying in at direction werst of buth firon the last expesure amblumbing thomgh ranges V'll, V'III. athl IX. of the same tow nship, it passes into the finest covered township of 'Tracy.
 to the sobth-west of sit. Ambsoise de Kildare may probady be refored to it, but it is well expered tirst, on range Vill. of Kiblar : hear the chese tatetery, then ahout the reare of this township, then in the villag of Ste. Butrix, and agian alout a mile further bonth, at the beom of the River L'dsomption. 'Then in the semoniory of the D' dillebont. about three miles south of Ste. Emilie, and again on the Mattawin road, about the line between ranges III, and IV, wf . Joliette.
 VII. of Kildare and is then eovered with dritt until it reappeats masher in
 east of the town-line of kildare.

These sesmad bands, together with those demrribed in the south- wher
 limestomes which oceur in it, with the exception of follo small isolated ocenrences. 'The first of these has been alroaly mentioned, and is
situated on lot lo of rampe VII, of Kilkenns. The secomel was foumd on lot 20 of range \mathcal{X}. of Rawdon. It is about twenty tert wide, and is associated with a band of nenty pure, coarsely gramular, pyroxeme rock, which is deseribed on page 85. Its monle of oreurrence is that of a lenticular mass. The third is on lat 20 of ramge V. of Rawdon. The fourth vecurrence is found near the lime between lots Fand 9 of mage V'1. of Catheart. This has heell opened as a murnhe quarry, and partakes rather of the nature of a vein deposit. It is described on page 1.52 , in the seetion treating of the Leonomic (ienlogy of the distriet.
('mutimuty of

The question as to whether the Larentian limestones form comtimuous bats or atre merely a series of discomected lenticular masors has been frequently disenssed. Their softness and the ease with which they are erofled makes these limestomes appar less continuoms than they really are, for ghatial and pre-glacial deaty and erowion acted fiur more vigorously on the limestone bands and the strata immediately associated with them than on the harder gneiss of the series, and as a result the former atmost invariably oceupy depressions, and very frequontly riwer-valleys or lake beds. In such places, of course, the drift is thickest and most presistent. When, therefore, the stratat underlying such a drifted weat are contorted and only protrude at intervals through the gneiss, or even when they are not contortel but expused only at considerable intervals, it becomes a matter of great difticulty t, deeide whether the oceurrences of limestome form a continuous band of limestone or a series of disconnected patches. It becomes, however, necessary in this comection to detine what is meant by the term "limestone batul." Pure erystalline limestone or marble, thin, wenty to sometimes 100 or more feet in thickness, is often fomm, hus in the majority of cases the bands consist of the limestone interstratilied with many thin bunds of gneiss. This was true of all the limentone bands described by sir William Lesan in the "Geology of ('amula," the gneiss often constituting half or more than halt of the whole thickness. When by squeezing or stretching these gneiss bands have been torn apart or pulled out into fragments, the greiss and limestone become irregularly minglefl together ; subordinate masses of limestone may disippear along the strike and gneiss may come in, to be succeeded again by limestones. The limestone also being very plastic under pressure, the relative amomats of the two rocks may vary in different parts of the bant.

The band as a whole may thas be continuous for a long distance. while its individual component mases may and do thin out, disappear,
and become succerded by others. It is thas by no mems uncommon to find a limestone band which, at one part of its course, is represented by a thick development of nearly pure limestone, further on represented by a number of thin hayes of limestone interstratified with bunds of gneis. I limestone band thus becomes a dertain horizon more or less Whick in which limestone is abundant, while it is nhsent from the rocks on rither side.

Accepting the term "limestone ban!" in this sense, investigations in this area go to show that when the country is favourable for study, limestone bands are found to bee continuons for long distances following the strike of the associated rocks, mad that they are at least as emotimous as the bands of tuy other kitul of row making up the series. But, as before mentioned, their very hature eanses them to be more easily hidden or drift-cosered, than the bands of the harder associated rocks, and they are thus sometimes aparently less continuous than these.

There is rason to beliewe that the limestone bands sometimes act as. Musement lines of least resistance along which motion is espeeially pronounced unfer the differential strains incident to tolding. An excellent example of this, on a small scale, was seen in an exposure about one mile south-east of a point two miles below the Ox-bow Rapids, on the River Mattawin, in the region or llat-lying gneisses beyond the northern limit of the map. Here the guciss is usually medium in grain and is to all appearance as well hedded as any sedimentary series. Several little bands of erystalline limestone, from a few inches to two feet in thickness, together with a few small bands of quartzite, are interstatified with the greiss. An excellent section is presented in the cliff by the side of a little brook, and the effects of a thrust in a direction parallel to the bedding, conseguent on the stretching to which the rocks in this district lave been subjected, is well displayed. 'lhe uppar beds can be plainly scen to have moved for a few feet over the lower beds, along the plane of a thin limestone band, which, with its interstratified gneiss layers, is quite undisturbed in the nothern eme of the section, while further south it has been broken off, folded on itself, and puckered up in a most complicated manner by the horizontal motion.

The thickest boty of limestone exposed in the area is probably that on the islands of Lake Ouarean, which, as above mentioned, has a width 275 yards across the strike, with neither wall seen. The largest oecurrence of pure limestone, ummixc! with gneiss, uncontorted and dipping regularly, so that its true thickness can be ascertsinet. is a portion of the Rawdon band, on lots 27 and 28 of range X. of Raw-
don, in the valley of a branch of the River Rouge. Hills of mueiss rise on cither side of the river at this point, those to the west also hokling some limestone, nul between them is a nearly level inturval through which the river runs. This strip or interval is 2.25 yards wide, and is in atl probability entirely oceupied by the limestone land, which, in that case, would here be about double its ardinary thickness, as it is hent hack on itself, ocopying, as it does, the summit of m a anticline (see Suction No. I, on the map). Over the greater purt of the that valley-hottom, howerer, the underlying rock is concealed hy drift, but on the east of the river emasely crestalline limestone, for the most part nearly pure but in some places rich in serpontime, lying in regular beds or bands striking $N: \geq 0 \quad W$ and dipping to the emst at an angle of about 60 , is exposed for a width of 15 s feet across the strike. This would give as a minimum an actual thickness of limestme umixed with gnciss of $13: 1$ feret, while the thickness is probably much greater.

linndinentel (imeises.

F'u!danumald guroos,

Trombling Muntain (Plate II.), which was taken by Sir William Logan as the typieal development of the Fundamental Gemess, is composed of a finc-grained, pald red, orthoclase-meiss, with a foliation which is generally distinct and with oceasional lands differing slightly in thatater or marseness of grain. It contains a wry few thin bands of a narly batek pyoxene-mphiboli e. The petromphical et atater of these rocks will he considered in detail on pares 12 . . 7 , 7 . . where it will be shown that the gneiss is really a crushed or gramulated granite. The mountan is tlanked on the south-west by the limestones and their associated sedimentary goeisses, of the Gremille series, oceupying thro greater part of the bed of Trembling Lake, and described on page 49.1.

In the south-western portion of the map, to the west of the great Morin anorthosite, considerable masses of more or less indistinetly foliated gneiss, without handing and often passing into augen-gneiss, are scen. These are also in great part ernshed igneous rocks, and may be intrusive, but on account of the folding and spucezing to which the district has loen subjected, it is ditlicult to separate them from the limestone-bearing series.

Along the southern portion of the township of Brandon also, as has been mentioned, there occurs a somewhat similar set of gneisses quite distinct in chancter and attitude from those in the northern pertion of the same township (р. 20 נ.)

Whether all these garisses really form a portion of a floor on which the Grenville series was depasited, since brought up by folding and erosion, nud thus emitled to the aprellation "fundamental gneiss," on whether they are intrusive masses, foliated by the pressare to which the whole region has been submitted, cannot be determined.

> Arid Intrusions.

Two large and important intrusions of acid phomic rock break Imtrunis. through the gaeisses, one in the south-whstern and the wher in the notherastern comer of the area. The former, which was examined many yens ago by Sir William Kogan, is refered to by him as fol-lows:-"This mass of intrusive syenite occupies nut nea of abunt thirty-six spume miles in the townships of (irenville, Chathan and Wentworth. In its lithological character the rock is very uniform, being composed for the most part of orthechse, either of some tinge of flesh-red or a dull white with black hornbleme mod a rather sparing quantity of grayish vitreous quart\%. The red tinge prevails more on the west side, the whits on the rast. In the spur which rmens into Wentworth, miea is occasionally found acompanying the bornblende. The rock is rather comsegrained in the main tody, bat dykes of it are sometimes observed cutting the limestone and gneiss, in which the grain is finer. These have not been traced as yet to any great distance from the nuclens."*

The granite occurring in the north-east corner of the mat occupies a much larger area, but the mass lies for the most part outside the limits of the sheet. It is very coase in grain, red in colour, and usually contains but little quart\% and irom-manesia constituents. The orthochase usually wecurs in very lage individuals giving a porphyritic appearance to the rock, while in certain pats of the area, and especially towarls the outer limits of the mass, the rock takes the form of a well delined angen-gneiss. This variety is well seen about st. Didare, where a mieroscopical examination shows that some of the augen are magioclase and that the iron-magnesia constituent is biotite (section 35it). The felspar augen, both in the massive and ganissic varieties, usually have an approximation to a good crystalline form.

The relation of this granite to the gneissic series in the township of tiranite of Brandon, has already been deseribed (p. 20.1). Mr. R. (. Mc.Comelt who mapped a portion of it in 1880 , refers to it as cutting of the greissic series at one point where the direct contact could be secon. \dagger

[^2]In the distriet sonth-mast of Nt . Jidace, the errabite also appears to break through the greiss. An "xamination of dhat distriet shows that at the jutuetion thore is a zone of roeks which have been much censhed and twisted und which slow on distinet strike, while the strike of the
 having heenaphamuty subatited to great pressure, as if shovedngatust
 the maseron limit of tho shoet is rut liy amall area of amorthosites, so
 tho ermate was intrueled befote them.

 highly fossiliterous limentome of 'Trentomane as betwron New tiasgow

 intlier.
 abont two milas in dianeter, wemes nbout nime miles nort bit the edge of the I'rotaxis, of latuge I I , and IV. of the township of Jhererombie, showing that the Pabozair coworing once extembed at least as far north as this.
 and are evidently of mon more recent ture, being splatated from the
 leaval and erosion of the lamentian area.

How lang hefore L'pper Core ith time this fotling and rosion took place canmot be determin .rom a study of this area, hut further west along the abge of the Protaxis in the Lake superior district, we find that the Keweenawan and Animikie series also repose in that undisturbed beds on the evoded remnants of a series of erystalline rocks whieh have the petrographical character of the fundamental gheiss. This makes it at least very probable that in this eastern area also, the erosion took pace in pre-Cambrian times.
l'roC:mbrian rrowion.

It is a very remarkable fact that the roche montonne eharacter possessed by the eroded Laurentian rocks and which is usually attributed to the glaciation undergone by them in the Pleistocenc, was really

 of ' lootay and similate to that exposed over the mecovered pate of the

 but that they hat eriven to thom in pro (ambinn tints thoir pecoliar

 lus hamw, alsa presents the same hommorky charater. \dagger

'The owhochasegnoiswes proponderate largely and might, if the "rystallino schists were classified in the stame detail as intarive manses, bo suparated into at monber of peotrographical species, weh with its dinthetive: mame, representing the mineralogioal equivitonts, mot only of the granites and syenites, but also of all the varims transitimal forms standing botworn thase and the gablores and diorites, which batter find thoir equivalents in the tho phacioclase-gneisses and amphibolites. The one essential character of the gneisses is the prssesion of a certain banding on foliation, which on one haml maty ane ofton is as weli pronommed is the lamination in any solimentary rock or, on the other hand, maty be se indistinct that its existence can only he detected by the exmmination of large weathered surfaces.

It is not, however, alvisalbe in all eases to attempt to sepabate, Minmaturital elasuity and map these numerous variaties of gneiss, owind to the fiact varims. that they oceur in smaller masses and are much more intimately assoriated with one another than is the case with their intrusive erguivalents.

[^3]Thu chassifiention of these gherisses is further vempliented by the fact that ench minernhogical varinty may present great ami importnot diversities of structare in diflierent phates.
liseke of llow

Firom at mineralogioal stampoin, the rocks of the lamrentime in this rexion might be armgel in the following chases:

```
1:11:imurn-
```



```
(gnartaitr.
Giarmut linck,
Iymon+m link.
```


The greisws, especially in the basic variotios, wre often rich in gamets, pink of red in colour, and tregnently of lage size. Such ganetiterons gheisses we an inportant element in many parts of the serios, and aspecially in the vicinity of the limestome bumds. Wany of the phatioclase-pyroxenegneisses me of course clowely related to the foliated anorthosites. Iluscovite is seldom or never fomm, while in the pyonene-gnoisses, rhombie as well us monorlinic pyonenes frequmatly ocem. In addition to the cernan constitnents of the gucises, as given in the above table, acossary comstitnents are frequently pres, ant, athongh these are neither abmont now numerons. Of these accerssary constituents the most importan are, magnetite, imenite, pyrite, apatite, zircon, rutile, graphite, commaline, orthite, monazite and spind. In some parts of the district the gnciss over large arens is very uniform mad regular in structure and eomposition. This is especially true in those areas which may be referred th the lower or fundamental gneiss. Elsewhere, there is a great variation in composition and eharacter in different bames within comparatively limited areas. This is particularly marked in the vicinity of the limestone bands, where the gneisses are usmally gametiferous and more frequently contain sillimanite, graphite, rutile, pyrite am other accessary minerals.

A peculiar, very rusty-weathering gueiss usually, rather fine-grainel and often nearly white on the fresh fracture, seldom oecurs exeppt in associntion with the limestone bands, and it is the exception th find crystulline limestone umbeomprenied by this gueiss. It ocents not only in many purts of the arem at present ander disenssion, hat in esory wher part of Camada and the United States where the (imbille seriow with its charmeteristic limestones is fomble It in erpecially well dereloped in central Ontaris* and about bort Henry in the state of New York.
 with the limestones.

A soticenble beature in thove Lanrentian gneissem which has" quart\% and orthedane an the chief constitumes, is the small propertion of itromagnesia minerals which they contuin. It is rare to limel such a gomess rich in these constitmentw, and sery frepuently they are entirely abment. () the whole, hamblembe is more commen than bietite.

The: colour of the ordinary gneiss on a freshat tracture is reddish or groyish. Tha more basic watien are darkgy ge even brown in colour; while in the acil gucisen, woldish mad light.gmy tints prevail. The groisoms weather white, spay, reddish, or brown, acerding tothoir

 spre, un inch or more in dianeter. 'They aregenerally bowewer medinn in erain, wholl line-graned, hat seldom so the that the chiof emstitn"ats rammet be distinguishorl by the maided eye, respecially when the weathered surface is exmmined.

As has beren stated above, the distinctive rhamateristic of all these gheisses is the pussession of a more or less decided fulintion or bathed structure. liy foliation is moderstoned a laminated structure, produced in a bock bey the paralled armagement of certain or all of its constitumot mincrats. Thus a granite would becone foliated if atl the litthe biotite imlividuals were cansed to assmme a patallel position, and the folkation would become still mone pronomed if the other wonstituents were niso arranged in parallel strings. liy banding is understood the altermation in the fom of hands, of gneisses differing mure or less in composition on structure, which gueisses may or may not be foliated as well. The origin of this follated or banded structure in the case of the Archaran is one of the most dillicult problems presented in the study of these ancient rocks. It was formerly supposed to represent the

[^4]

(rushand ighernis ruels.
 making, have deally shown that perferdy foliated roves may be and are prodmed fom massive ismens rocks, hy stel prowsses, so that

 mation umder the inlluener of pressume, will tend to assmme at thliated
 will be erorespomdingly distinct: while, if the pressure has atetod on a

 of igneous rock whieh has malergone magmatie dillerentiation, a petm Eraphical sorites comporsed of altermation batiols of vory ditherent surfotios of encissie vecks maty mesult.
 bern shown torexish in many large armotive masses, make the intimate
 athither, much more intelligible than formerly, since such assoeditions

 this kind. Thas, in several districts of ancient crystallime roves which
 instance the eramblite region of sixmy and the senthern portion of the (imand Juchy of Bamen, a great weight of evidence has been

 while other gurisses in the same districts can be shown to be sifueqed or arushed moks of ignecous r "igin.

Tho separation and recognition of these two dasses of rocks will probably become more easy and eertain as investigation alvances, but it remains to be ascertathed wherher it will be jossible reventually to lning all geneisses meder one or other of these two heads.

[^5]The eriteria for the determination of smeisses which remsist of Grithia for
 tho following are thro lines of exidenee hy which it womld sean that sweh rucks maty be reonglized:

 prosent athl exhanst all pussible combinations of silata with the tammon hases prosent in them. Certain emoblations of silicatar and

 hatse a composition which is mot that of any ighoots rork but which is identieal with that, of the ombinary sediment laid down in the

 amount of the siliea and a purtion of the lime, the rock at the smane fime taking \quad "f eretain amount of wator. If the rock becomes thomonghly deednposid, as in the rase of the deeomposed granites from whid chanaclay, a matorial ahmost frer from alkali, is ohtained (but in the groat majonty of cases the doeompusition is wot swom plater), the partial deeompontion sorves to disintegrate the rock, Which. falling to a loose, earlhy mass, may then be wasiod away, and erentmally deposited as sediment. If the themical action has been but slig! , an arkose maty in this way he protured which will difler bont litho from the original wranite. It, on the other hand, the deromposition, abthough mot complote, is wall advamed, a time mixture of sand and clay will result, which will to distinetly diflerent in eompusition from the mixinal wranitu.
'This mixture, spaking gemerally, will be richer in alumina and poorer in alkalis than the granite, and will eontain proportionately mome magnesia and less lime than the miginal mock; ami, althomgh Embites diflering in composition noesssarily yield products having corresponding iaflerenors, yet when these chamical changes have gome heyond a certain point, a decomposition procluct results which porsesses a composition distinctly dillerent from that of any igneous roek, and the most intense baking or reerystallization eanmot again protuce a sranite from it. If, therofore, gneisses were produced by the meta-
morphism of such gratitic decmposition protucts, it might not be possible, from their comp sition, to recognize them as attered sethmente in all or perhaps even in the majority of cates, but in certan instances it would tre possible.
'Then again, the composition of certain other rocks, such as fuart sites and arystalline limestomes, mark them as of apoeons origin. Such mocks, if their mote of oecturence prectutes the possibility of their being of the Huture of vein depasits of residnal products, must be altered sediments, as sedimentation is the only other process with whieh we are acquainted by which such 1 oks are produced.

Again, the presence of free cathon in the form of graphite on any sraphitic mineral, fisseminated through a gumiss or sehist, prints to a sedimentary origin, as such substances to not occur in igneous rocks.

If several of these indications of a sedimentary origin are combined in the same series of pocks, as, for instance, if bands of limestome are found interstratified with bands of quartzite and with a gneiss having the compresition of a shate, some or all of the bands lobling graphite, the evidenee of a seflimentary origin becomesproportionately stronger.
 lifitare locer titetrocks.
\therefore The Resemblaner of such Giurisses to the Mrtamorphosed Rowhe af Coutcurt Zomes. - Condombed sedimentary rocks, such ss shales or slates, are in many coses invaled by great botios of molten gramite, which boing about certain alterations in these sedimentary rocks, which altorations consist essentially of a reerystallization of the sediment. This reerystallization becomes progressively more complete ats the eonbact with the granite is approached, until immediately along the contact a so-calted homstome is produced. This hornstone, the the mane implies, is asually fine in srain, but in other cases, as in the Gramulite region of Saxony, the most altered portion of the shale is represented by a coarsely crystalline rock resembling a gneiss, through which there rums an immene number of little string and streak of the granite. These products of intense metamorphism, although consisting essentially of quartz, hiotite, museovite, folspar and other minerals found in granite rocks, have these minerals arramged in quite a diflerent mamer, giving rise, espeeially in the case of the finer graned varieties, to what is known as a hornstone structure; while certain other minerals not fomd in granitic rocks but charateristic of these contact zones also oceur in them. If, therefore, in any gneissic serias, certain rocks are found which present the spotted and other structures of the less altered pertions of contact zones, or the hornstone structure of the more altered portions, with or without a swarm of little strings or streaks of granitic material passing through
them, the evidence ngain points to their being altered sediments. such mek haw been found extensively developed in eertain Areham districts, where these have been carefully examined, as, for instanee, in the Black Forest.*
\therefore Ther Surrizal in such Gimeisses of Struetures pecuterr to Sorlimemter!, Rocks.-Undoubtedly sedimentary products, as, for instance, romaded, water-worn pebbles, or angular elastic quart\% grains, when recognized in any crystalline roek, also determine it to have been of sedimentary migin. In this way, certain rocks in Norway and Saxony formorly chassed as Areham erystalline sehists have been recognized ats altered eonglomerates. Clastic quart\% grans are in some rases rendered possible of recognition by the fact that in the processes of altration secondary siliea is depositedabout them, and in this way the form of the original grain marked ly its coating of iron oxide or other adhering impurity, is preserved and can be recognized. notwithstanding the complete alteration and crystallization of the rock. This process is esperially well seen in the case of sambtomes changing into fuatzites, but cam also be reognized in the metamorhism of certain arkoses inter folspathie quartaites, which in composition would be identical with the mom acid gneisese of the Arebama.

Applying these tests in the district at present under consideration, it has been found possible to phace in one class certain ocks which all lines of evidence indicate as of sedimentary migin. Tor these belong the crystallime limestones, the quartaites, and certainassociated sueisses usually containing sillimanite, ganet, and graphite.

Another elass can be recognized as consisting of rocks of igneous Rownom orisin which have heen squeezed or ernshed. To this class, in addition donletiul to the anorthosites which are treated by themselves under another hearding, are a whole series of quartose orthoclace groesses, usually por in irom-magnesia constituents, and possessing a variety of structures.

A thimd lass consists of rocks whose origin is as yet doubtful. This is due in part th the fact that, it has been impossible to subjeet them to an exhaustive examination, including chemical amalysis. Possibly, however, thair origin combl wht in many eases be ascertained even if such an examination were made. This class includes a considerable propertion of the ordinary orthochase-rneisses of the district, as wetl as most of the pyroxenc-gneisses and amphibolites.

In the following pages these thee clases of rocks will be considired separately, hegiming with the gneisers of igneous origin.

Insteal of end anouring to describe every momber of the large suite of specimens which has been stuthed mievocopieally in the course of this investigation, which would entail the presentation and repertion of \quad in immense mass of petrographical detail, anmmber of typical occurrences trom each chass will be selected for deseription, as it is believed in this wity a knowledge of the petrography of the district may be more eleatly conveyed.

Class 1.- G'mminses of Igneoms Origim.

In these gncisses, orthoelase felspar preponderates largely, whirh is itself evidence against a sedimentary origin. Quarta is atmost always present, though irequently in small imount. Its presence and proportion can be best ascertained in the field, by an examination of the weathered surface of the rock, on wheh the contrast of the puart\% and orthochase is much more maked than on a fresh fracture. These two minerals trequently make up ahmost the entire rock (quarto-orthoclasegneisses), but they are usmally associated with small quantities of biotite and hornblende, ocurring either separately or together. Wiraphite, which is abondant in rocks of chass 2 , is never found in these gneisses. Three structural varietios are especially worthy of mention: ((1) Augen-gneiss ; (b) Ordinary gramulated gneiss ; (c) Leaf-gneiss.

These are connected by transitional forms.
 large exposures. In hand specimens, it shows a distinct foliation coused by the presence of slightly undulating but nearly parallel marrow black lines of homblente, altemating with thicker streaks and layers of redelish orthoclase.

Thase mincrals occur for the most part in the form of the grains, but in this fincly granular mass cores or remmants of large individuals of hornblende and orthoclase respectively are abumdant, from the granulation of which the finer gramed portion of the rock has been produced. These cores have not a good crystalline form, but wo rounded, lenticular, or tear-shaperl, with trails of the gramulated material running of from them in the ditection of the foliation on either sile, the foliation curving around them. The orthochase cores
are often large, sometimes over an inch in diameter, frequently presenting rurved or twisted faces, and ean lee seen to be in the very atet of breaking up into smaller fragments. The homblende remmants are identical in shape with these of the orthelase, but are sor ller in size.

Under the mieroserpe the rock is seen to be compo. .. . ssentially of tiramatent orthedase, quart\% and homblende. As accessary minerals, hiotite, diallage, apatite, yireot and irom ore are present in very small amount. Orthentase preponderates largely, partly as large augen and partly ns granulated material. The augen show an meven extinction, atthough this is not always sery pronounced, and between crossed nieols show a finely mottlat or spotted structure due to a fine misorperthitic integrowth. They have an irvegular whome often more or less rounded shape, amb lie with their longer asis in the direction of the foliation of the rock, or more or less inclined to it. When emsiderably magnified they can be sern to possess a finmly serpated edge as if jagged from the breaking away of little fragments. The angen can, in fiact, be observed in the very act of breaking down into the tinely gramular material which surrounts them by a process of peripheral grambation, as deseribed in the case of the anorthosites. The grommhass, so to speak, in which these orthochase augen are embedded, consists principally of small grains of the same mineral. Those generally show the same mottled appearance as the augen, and differ but little from one another in size. The larger ones often exhibit an meven extinction and am frequently be seen to be in the act of loreaking up into smaller grams. All these smaller orthoclase grains ase very irregular in shape. In one of the sections a very few small grains of plagioclase were present. The quart\% oceurs chiefly in more or less elongated grains. These are often greatly elongated, forming the "leaves" of quartz so aboudant in the "leaf-gnciss." These are distributed through the grambated orthorlase lying in the direction of, ind in fact in part cansing, the foliation of the rock. These gatas have an ahest mitorm extinction, and are not broken or granulated, even if they are many times as long as they are wide. On very careful examimation, however, they can usually be seen to exhibit a slighty uneven extinction suggestive, as will be shown in describing the "leaf gneisses" of a smoring of the mineral out in the plane. They sometimes tork at the extremities or at the sides. These quart\% individuals ean often be observel sweeping around the partially gromulated augen of orthochase in long eursed grains or lines of grains.

The hornblende, which is green in colour and is present in comparatively small amount, oecms as strings of very irregolar-shaped
grains, resulting from the granulaton of latge individuals the cores or remmants of which remain as small augen. A gratin or two of biotite is ocensionally associnted with the homblende. In one slifle a single grain of diallage was present, but in all the slides there are a few grains of a yellowish aggregate, which is ipparently a decomposition protuct of diathare. Buen if this be the true explanation of their origin, the diallage would he very subordinate to the homblende in ammont. There is no evidence that tha latter has been derived from the former, I few small irregnar-shaped individuals of apatite, and sumall zireon prisms, as well as a small amount of magnetite necurring in elongated gratins or long narrow strings like the grartz, complete the list of constiturnts.

Sixli-1ff eremiturne.
(Bínin,
This angen-gueiss oecurs ats a very irregular-shaped mass, in the township of Bradon, interealated in the gneissie series, with the strike of which its foliation eoincieles. (Fig. 3.) It forms large roche montomme exposures, very uniform in chatacter, and is smeereded to the east by a barge development of mealy black pyroxeme granulite. Angen-gneiss, itlentieal in character, was found in abont a dozen different localities in the same township, in long narmow masses rumbing parallel to the strike of the series. Augen-gneiss, elosely related in eharacter, oceurs ahundantly in many other parts of the area. It is found, for instance, in large exposures at a number of places along the southern alge of the area, between New diasgow and Nt. Jerome, and between the latter place and St. Canute, also to the nortls of this district towards Shawhridge and st. Sauveur, as well as in the extreme north-west corner of the area, on the Devil's River, the River Macaz:, and about the lakes lying to the north of Trembling Lake,

With regard to the origin of this agen-gneiss, there can be no donbt but that it is produced by the squeezing of a conse-grained, in some places perhaps porphyritic, granite. In the case of the Brandon roek, this aranite was a hasic hornhlende variety, probably with large porphyritically developerl orthochase crystals, similar in structure to the great granite mass on the east side of the township of Bandon, well seen about St. Jidace, a mass which at many parts of its periphery is developed as an augen-gneiss, elosely resembling the one in question. In other cases the original granite has been more acid in character and of the nature of a pegmatite, as in the township wi Wolfe, where the line hetween ranges VIIT, and IX. is erossed by the line betwenn lots $3 t$ and 35 . Here, the extremely concorted greiss is eut by a number of pegmatite veins, having a distinct augen-
gnciss structure. (Section 567.) In many other parts of the lamenlim, both in this district and in Centrol Ontario, pegmatite dykus have been ohserved cutting across the gneissic strata, in which dykis an augen-gneiss structure has been developed, which are in fact augen-gneisses in certain places, on throughout their whole mass. The foliation of this nugen-gneiss, moreover, eoncides with that of the surrounding gneisses, but is quite independent of the direction of the duke.

A frood cxample selected from many similar unes is seen on los 17 lematit. of range VI. of Rrandon, and is shown in the accompanying ansen-xumsw. ligure:-

 of "hich equcides with the foliation aml handing of the groisses therengh
 Township of Bramem.)

At this locality there is a series of large roche montome exposures made up of an alternation of finegrained, redlish, orthochase-gneiss, cuarse angen-goeiss, dark pyroxene-granulite, and vitrems quartite, the whole dipping to the east at a low angle. Although the several rocks seem at the lirst glance to succeed one another in pretty regular hands, careful examination shows that in certain places the augengneiss cuts across the other bands, as shown in the figure, the foliation in the transerse arm ruming parallel to the regular foliation and banding of the whole exposure, but not eoinciding with the direction of the arm itself. In the thinner apophyses the granulation is more advanced and the augen less abundant than in the heavier bands from which it proceeds.

 ailes with that of the Anorthosite throngh which it cuts. (hange VIII., Lat I!9, Townalip, of Bramelon.)

Figure 5 shows a similar ease where a pegmatite dye erushed to an augen-gneiss cuts obliquely across the foliation of the anorthosite in the township of Brandon.

It is thas evident that in these casses, and probably in the cases of all the auren-gneisses, we have to do with granitie intrusions into earlier wocks, which intrusions certainly date from a time before the develops tent of the foliation of the gneisses, or at lean before the toliating forers hatd eqused to act.

'This mometain, which, as is well known, is the highest print in the: whole Laumentan mage of this part of Camali, rises 2380 feet above sen-level and 1720 feet above the waters of Trembling Lake, which lie along its foot. (Plate II.) It is seulptured out of a great mass of gneise, unifom in character from base to summit, and has an especial interest in that it was cited by Sir Willian Lagin as the typical occurence of the Fomdamental Gumise, which he believed to be at the hase of the whole Lamentian system.

This gneiss is rather fine in grain, and has a distinct though not very striking foliation, maked by the presence of a series of thin, interrupted black lines, seen on surfaces broken at right angles to the folation. On bage weathered surfaces a slight varation in size of grain can ocasionally be seen in thin hands parallel to the foliation, and at long intervals, thin hands of a back pyroxenic amphibolite are met with. The gneiss has a pale reddish colour when fresh, and weathers brownish-gray.

Under the microscope it is seen to le compused essentially of or thoclase, ghartz and bomblende, the lirst-mentiond mineral preponderating largely. As accessary constitucnts, magnetite, probably contalining it certain amount of titanium as in ome case it was observed associated with a substance resembling lencoxene, and in some slites a few grans of plagiochase and hiotite, are foumd. A few little aircons and a few irregular grains of a mineral probably atatite are alvays present, and in one of the specimens a not inconsiderable quantity of a thombic pyroxene was associated with the homblende in little irregular grains, without however affording any evidence of having been derived trom this hatter mineral.

The structure of the rock is remarkable. (Plate IV., Fig. 1.) No more typical example of a cataclastic or "nörtel" structure could he found. Large, very incegular-shaped, often more or less rounded individuals of orthoclase, presenting a fibrous appearance, due to a very fine, microperthitic intergrowth and showing excelfent strain-shadows, lie

GmonomGa．Stavy of Canama．
Vor．o V＇lll．，I．SHT．

F゙ル， 1.

Fin：3．

ドル！－．

File． 4.

JLATに 心．

 manitr，${ }^{2}$ uart\％，Orthoelase and＇syite，$\times 10$ ．

imbedded in a very finely gromulated mass, making up the grenter part of the roek, compused also of orthochase, and whio. can he plainly seen to have been d rived foom the breaking down of the hager orthochases, the process being actually olserved in all its stages in the seet inns. The process consists partly in peripheral grmalation and partly in the subdivision of the larger individuals into smatler ones, ly the development of limes of this broken material across them in the direction of grentest stress.

The puarty, the larger individuals of which fropuently eomatin little rows of the minute dark inclusions often seen in the ghart\% of granite, though present in smaller amome, presents the same phemmema. This is also true of the hombleme, the lage individuals of which are for the most part laroken into fragments which are arranged in roulely paralled lines, forming the intermpted black lines above mentioned as marking the foliation of the rock. The orgign of the enneissie structure in the case of this rock almits of no question. It is not an originel structure, nor n survival of bedrling indicating a sedimentary origa, but it has been produced by movements in the roek brought ahout by crushing, the original wock having been a hormblendegramite.

In order to ascertain whether the chemical composition of this rock 'hamieal would bear out the conchasions derived from its stady in the fiedd ennnontion. and under the mieroseope, an amaly is of it was made for me ley Mr. Water C. Adams, B.A.sic. The resultes of this amalys are given helow under I., while under II. the results of the amalysis of a granite from the Carlingford District, in Ireland, by Hawhton, are presented for purposes of comparison:-

The composition is that of a typical granite, and is entirely different from that of the gneisses of Class II., of which the analyses are discussed
 it as of igneous origin, are high silica combined with low alumina, and high percentage of alkuties. The lime ulso, as is usinally the ease in granites, is in exeess of the magnesin.

For a deseription of the bands or stratitorm masses of pyroxenemimphitolite which are intorealated :n this gneises, see page ir it

As a typical locality for this important and interesting variety of gneiss, certain lage exposures protruding through the drift mear the somthern efge of the protuxis, and ahout $3 \frac{1}{2}$ miles from St. derome, hy the wide of the (ireat Nomthern Railway betwem this place and New thasgow, may bo tuken.

The rock is pink in colour, time in spain, excellently folinted, und praticolly free from all irom-magnesia constitments: In the land specimen it appears to consist of very thin alternate layers of phart\% and orthoetase. The quat\%, however, can semeely be said to oceur in layers, but mather in long murow lenves, presenting the appenance of layers, when the specimen is broken at right angles to the folintion in one direction, but apparing as much shorter hayers or dashes when the rock is broken in the other direction, at right angles to the foliation. When, on the wher hand, the rock is broken in a direction parallel to the foliation, the quarto presents the appeanance of having been smeared over the folspar surface, in long, narrow streaks, very much as butter might be thinly spread on bread.

Under the microscope, in a section cut at right angles to the foliation the rock (Plate IV., Fig. 2) is seen to be composed of a uniform mosaic of felspar grains, through which the guart\% runs in narrow, shaply detined bands. These guartz hands in polarized light resolve themselver into a series of individuals, each having a long rectanguhar seetion, and placed end to end, the bands being remarkably uniform in width and sharply defin d against the felspar mosaic on rither side. The puart\% imdividuals are sometimes as much as ten times as long as they are wide, and yet have an almost absolutely even extinction. The orthoclase which constitutes the greater part of the roek, forms, ns has been mentioned, a mosatic of mueh smaller grains, showing, as a general rule, between crossed mieols the wavy lines, due to fine microperthitic intergrowths, so often seen in gneisses. These grains tit into one another along very serrated boundaries: they do

Hot whow any very pronomaced stmin-shudews, meither are there may angen or remarnts of lager grains to be seens. Smaller abd larger grains are present, lout there is me distinet widence of the larger heraking up into the smaller. A grain on two of pagioclase is seen iln earla slicle, as well as mo or two very small sleromposed rembants of what may lave origimully beren minute mien seales.

The stracture suggeses a completely granulated meck, in which ther 'omplive.
 lizathon.

Gincisses presenting this leaf structure with its necompanying micerr- Mistrinuman
 parts of the wem embraced in this report. They are for instanes, wery extensively developed in the last range of the cownship of Cartier, being excellematy expmined on the shores and ixlands of the typienl litthe Lumentian lakes which lie between the twa banaches of tho Riser LiAssomption, one of which tons out of lace des llets, amil the ather out of Lake L'Assomption. Several of these lakes are rack basins which have beren exeavated out of this ghapis. The gneiss from this lowatity (sedion 318), closely resembles that above dascribed, mithomgh the guart\% leaves are mot sor shap and regular, athl phatorlase, in
 mumber of little seates of biotite scattered through the rock as well as a few very small isotropic red gamets. As lofore, the apmatace muler the microseope is sugedestive of gramulation with at lenst partial reecrystalization, although wion absolute proof of this can be whtained.
 interbanded with pyroxemegranulite, guatzite, dien, consisting as before of quat\% and orthoelase, dom-magersia constitarents being absent or representel by a few mrains of irm ores. One of these
 which crosse's this lot, where the gneiss is interbanded with jeymomegramule and often rut by irregularshand masses of augengmeis, rumning now with and mow neross the dierection of folliation an abme described.

On lots 18 of range V^{2}. and 15 of range $[\mathcal{N}$. (section 57li), of the same township, this same variety of gmiss is also woll expmed, the latter locality being at the westerly contact of the most cast wardly of the anorthosite masses which occur in this township. In the very finegrained felspar groundmass of these rocks, however, wcasional larger grains of orthoclase can be seen which are much iwisted. show a very uneven extinction, and can in some cases be seen to be undergoing a
process of peripheral granulation，giving rise to smalleq grains like those of the groundmass．In the rock from the later locality also，sections show distinetly that a movemont in the direction of the foliation has taken phate in the telspar mosaie，dman－or subsequent to its formation．

Transitional Fomme．

Botween angen－gneiss and leafgeiss all prosible intormediate varictire are fomal in various parts of the area．Nuon intermediate forms present leaves or thin layers of quart\％alternating with layers of tinely grambar orthoclase，in which the augen or remnants of large orthoclase individuals are more or less abumbant．When these augen are barge and abmabant the rock approacher an augen－gneiss on one hame ；when the granulating provess has so far alsanced that they have become greatly reduced in mumber and size，of have almost disappeared，the rock passes gradually ower into a leaf－ernoiss on the other．Gneisses are often found which would be classed ats leaf－ gneiss but which on caretul examination show a few minute twisterl remnants of orthoclase angen，here and there，indicating the true thameter of the rock．
＇Tといいーitional fげには，

Tha＇atrneture of uachanicat orưti．

The great granite mas occupying the eastern side of the township of Brandon，along its nort hem limits assumes first the form of an augen－ gneiss，and then passes over into such a leaf－gneiss（section（660），which， however，is por in fuarth，the transition being excellently serll on the shomes of Lake Nacacomic，which lies just beyond the eastern limits of the map．Many similar cases of pegmatites passing into augen－ gneiss and then into leaf－gneiss have been obsersed，and even when the transition cannot be seen，tramsitional forms are so common as to render the conclusion inesitable that many at least if not all the typieal leaf－gneisses have been derived from the erushing or foliation of coasse granite rocks，having passed through the intermediate stage of augen－ gneiss．In a similar maner those forms of leaf－gneiss in which the guartz individuals are smatler，becurring in the form of little dashes or scales rather than leaves，have probably been formed from finer graned rocks of similar character，passing through an intermediate stage such as that described in the Trembling Mountain gneiss，which，after all， is a species of microscopic augen－gneiss．In the movements which ave taken place in these rocks，resulting in the development of a foliated structure，the processes at work are，it is believed，chiefly mechanical．

In certain districts which have been made the subjects of careful study elsewhere，structures resembling closely those above described
have been thought to have been produced by the breaking down and re-crystallization of the origing' onstitnents. This dhes not seem to be trone in thesi Laurentian gieissés-for in the case of the felspar and homblende the gramuated material is exactly the same to all appearances as the larger augen. Bven when the latter consist of micoperthite the granulated material has also the same character, which would hardly be expected if a re-erystallization had taken place. Sericite and the various other minerals so often produced during the reerystallization of rocks undier the infuence of pressure are also absent.

The effect of the pressure on the quartz is especially remarkable, for, as has been stated, the individuals of this mineral are not gramulated or broken "p intosmaller grains, but rake upon themselves the form of thin leaves or laths, often eight or ten times as long as they are wide, and in the case of the angen-gneiss often following curved courses.

Thase leaves do not show, as a gembal pole the intense strainshadows often observed in the felspar augen, but almost always siow evidences of strain at intervals along the length of the leaf, lividing the latter in this way into certain ill-defined areas with slightly different orientation. The leaves also, as has been statef, can be wherved to bend around large orthoclase remmants and sometimos to fork at their extremities. A very long lath of quartz will a: in some instances break across, giving several elongated fragments arranged in a line.

That these phenomena a:e the result of a purely mechanical rolling Like that of out of quartz individuals camot be positively asserted, but they we puart\% to all appeatance so produced. There is no evidence of any breaking Thal. with a restoration of continuity by the deposition of secondary quartz. The process therefore appears to be quite different from that described by Lehmann in the Saxon gramulites* but is identical with that seen in the syueezed dykes of quart\%-porphyry at Thal, near Eisenach, in 'Thuringia, \uparrow and elsewhere. These dykes, which cut through a series of mica-schists, have hard a well marked foliation induced in them parallel to that of the country-rock but often transverse to their own length. The phenocrysts consist of orthoclase, plagioclase and quartz, which are arranged in the groundinass with their longer axes in the direction of the foliation. The felspars and especially the plagioclases have broken into fragments under the pressure to

[^6]which the rock has been subjeeted，which framents are arranged in lines in the direction of the folintion resembling in that respect the belemmite fragments in the Bianduer shefer of the Aps．The gaces between the broken fragments are filled not with the groundmass spueered into the cavity but with grains of guart\％athl condimes folspar，coaser in grain than the gromamass，and which although probably secondary is not derived from the lmoken phemecrysts，since it can be secoll that the several portions of these of hrought together would fit chosely into one another．

The quart phenocrysts，on the other hand，are datw out into ，igat like forme，oflen cight times as long as they are wifle．＇These are mot broken or grambated but are sharply defined aganst the gro me：mass and sometimes have a eurved fom．Ocensionally lithe elongated strings resembling the grommass are seen within the prat\％pheno－ erysts，which were in all probability inclusions of the groumdinas in the orisinal phenocrysts that became rolled out with the phenorysts themselves．All these clongated guart\％phenoerysts present remarkable extinction phemomena，Bach individual extimguishes nearly simul－ taneously over its whole surface，but when carefully examined is seen to divide up into a number of little helds extinguishing in succession， not however shaply separated but merging into one another so hat the shatow sweeps over the field with it peentiar twinkling aflect．

Pla－1道 thefinturntem oif qual\％

This apparame is identical with that seen in the quath of many gneisses．There is no evidence of hraking and arementing，as there is no int rruption in nptical continnity in the indivitual as there must be if this hat taken flace．The phenomenon is protable the same ats that exhibited in the plastic defomation of ice eryatals recently studied by Mixge．＊It is thus evident that moder certain conditions when folspar is crushed or gramulated，quartz undergoes a rolling out or clongation without heaking，molecular mowem．nts taking place in some peculiar way，which result in an entire change in form while the individual still retains an approximately uniform extinction． In this way，in the Laurentian system，gramitie rocks became gneisses． It is extremely rare in these rocks to find quarty grains which have been broken or grambated，and althongh as insestigation proceeds it． may be found that the gramutation of the felipar and bisilicates is in part a chemical process，the evidence at present available tends to the belief that，as in the case of the anorthosites，to be referred tolater on， the process is chiefly mechanical．In other roeks of this system，how－

[^7] 5，11．3．1．212．
ever, as well as in other distriets of crystalline schists, re-crystallization and chemieal re-arrangement have undonbtedly phayed a chiof part.

Chass II.-Gimisses, Limestonex, Quartziles, dr., of Scdimentary Origin.

Another chass of gneisses, quite different in composition and structure Rowk of from those abovedescribed, oceurs aboudantly in many widdy separated sedimentary orimin. parts of the area at present under discussion, as well as in all other parts of Camadia where the (irenville series is found. Intimately associated with these greisses are other rocks whose composition also makes it impossible to class them with rocks of igneous origit: these are the crystalline limestones and guartzites which form such a prominent petrographical feature of the Grenville series.

The eriteria by which 'gneisses having a sedimentary origin may in many cases be recognized have already been indicated, and the very fact that the rocks just mentioned and ineluded in the present class are atmost invariably elosely associated with one another, is it itself aditional evidence of their common sedimentary origin.

The gneisses of lhis class, while under the mieroseope still seen to linninens. ct ain a certain amount of (quart\% and orthoclase, are made up very largely of garnet and sillimante, which are their most important constituents. These and other differences in their composition are accompanied by differences in structure as well. One set of these rocks is chamacterized by a mapid disintegration when exposed to the weather, giving rise to a sand-like produet very rusty in colour and which is very chanacteristic. A second set are very similar in composition, bat do not weather in the same rusty mamer.

As typical of these rusty-weathering gneisses, the following oceurrence may be taken :-

> Ciarnetifirons sillimanitr-meiss-Ahout one mile west of the Church of St. Jean de Matha, Seigniory of De Remsay. (Sections Giss, tifo).

This gneiss oceurs in thick bands, interstratified with and overlain by st. lem de. the white ganetiferous quartzite deseribed on page 620 , the whole lying very nearly horizontal. The gneiss weathers execedingly rusty, but on the fresh surface is seen to be tine in grain and dark-gray in colour, small garnets and graphite seales being readily recognized in it. It is more uniform in character than is usual in gneisses, the strike
being marked by bands somewhat richer or poorer in garnet, or by other slight differences in composition.

Under the microscope the rock is seen to consist of garnet, sillimmite and quarts in large amount, with some orthelase and iron pyrite, and a little biotite, rutile and graphite. (Plate IV., Fig. 3.)

The garnet individuals, which are usually large, are more or less rounded in form, but frequently elongated in the direction of the foliation, and, as is usually the case in these laturentian greisses, are perfectly isotr - 'They frequently hold inclusions of quartz, sillimanite and rutile, and present the apparamee of having grown in the rock and inelosed these other older constituents.
sillimanite.

Pyite and staphite.

The sillimanite occurs in colourless elougated prisms from 0.5 to $\cdot{ }^{2}$) millinetres in diameter, the longest individuals being somewhat over $1 \cdot 1$ millimetres in length, and often slightly cursed, apparently by pressure. It has a rather high index of refraction, as well as a rather high tlouble refration. The longitudinal sections show the cleavage parallel to the macropinatoid as a series of tine lines parallel to the longer axis, except when eut parallel to this face. They also show the transverse crucks usually seen in long and slender prisms. When tested by means of the quatz wedge it is found that $\mathbf{c}=\mathbf{c}$. Terminal faces camot be recognized. In transverse seetions the prisms are seen to have the nearly square cross section of the prism $\infty \mathrm{l}^{\mathrm{P}}{ }^{\prime 3}$. The clearage crosses these sections diagonally, and in the direction of this clavage lies the plane of the optic axes, the axial angle being small. These properties serve to identify the mineral and to distinguish it from wollastonite or andalusite, which in certain respects it resembles, (Plate IV., Fig. 4.)

The quartz, which is uniaxial and positive, contains, as is very frequentiy the case in these gneisses, many minute straight hair-fike inclusions, which are dark in colour. In the great mayority of cases, it shows a more or less pronounced uneven extinction, and the grains are often long and narrow, the longer axes lying in the direction of the foliation.

The orthoclase possesses the usual characters, and hetween crossed nicols sometimes has the faintly fibrous appearance often seen in the orthoclase of gneisses, the larger grains showing strain-shatows as in the case of the quartz. The biotite occurs in very small amount, and in stall individuals of a deep brown colour, here and there slightly twisted. The rutile appears as a few irregular-shaped, nearly oparque, little grains. The pyrite, the presence of which gives rise to
the rusty weathering of the rock, and which oceurs in considerable funomat, is in the form of little irregularshaped strings and masses scattered throngh the rock. It frequently oecupies little cracks raming through the various other minerab or surrounding them. It sometimes oceurs well erystallized, but is often very fine-grainerl and in little masses having a concentrie banded structure like thit seen in asate, the mineral having evidently been deposited in litule cavitios subsequent to the erystallization of the rock and luing frequently related to tha graphite in such a way as to suggest that the prite had been deposited owing to a reducing action on the part of the carbon. The maphite, which in the hand specimens seems to lw somewhat nhondint, is seen in the thin sections to oeemr in the form of smatl elongated individuals, black and quite oparue.

I study of the thin sections also shows the rock to be quite ditlerent from the 'fuart\%-orthochase-gneisses alreaty' described, not only in minemagical composition but also in structure. The elongated individuals of sillimanite, quartz, etc., lymg in one direction, mark the foliation of the reok, though this is not very promomeed.

No evidence of granulation, howarer, is to be seen, the pressure Nowirmace which granulated the gneisses of the last class, having, to all appear of trambiaances, crystallized these in situ, the constituents being, in the nomernchature of Milch, "elentheromorphic."* The uneven extinetion of the sillimanite, quatz, and orthoclase wonld, however, scem to indicate that the rock had been suhjected to some pressure since their development: but on the other hand, the ginnet, which was developed later being quite isotropic, would seem to have been produced during the final compression of the rock.

Another locality an which a gneiss almost identieal in ehmacter occus famet. is in the front of lot 4 of range X . of the township of Brandon. (Section 680). Where the road crosses this lot there we large exposures of gneiss consisting of aln alternation of small bands of augen-gneiss and leaf-gneiss holding little angen, with other rocks of the nature of anphibolite or pyroxene-granulites often holding quartz ; as well as with a few bands of this rusty garnetiferous sillimanite-gneiss and some calcareous gneiss or very impure limestone. Both the augengneiss and the amphiholitegneiss oceasionally hold garnets. The rusty-weathering gneiss is seen unter the microscope to be composed essentially of garnet, sillimanite, orthoclase and quart\%, with pyrite, rutile and biotite in very subordimate amount. The garnet, as before,

[^8]is in the form of irregular-shaped masses, having a sponge-like character owing to the numerous inclusions of biotite, felspm, sillimanite and rutile which it contains, it is as in tho roek last deseribed quite isotropic. The pyrite oceurs tilling little cracks and was appurently intiltrated after the crysullization of the rock. No graphite is to he seen in the specimen. or slide. This rock, like that from near st. Jean de Matha, shows no evidence of eatachastic strmeture, hut has appurently resulted from an entire ve-crystallization ion sitn under pressure. 'The same is true of the quartzone garnotiferous gneiss internanded with this rusty gneiss.

There can be no doubt in the case of these "xpusures, that the augengheiss and the leaf-sneiss prodnced from it, are of igneons origin.
'Two other ocemrences of this peenliar rusty-wouthering gneiss may also be refered to ; in these, however, the orthoclase has a grambated "pparmare, although no aboblute poot ot its cataclastic origin can be ohtained.
and Laher Rocher-Spiguiory of D'Argenteril. (Srefion.iol...)

Kidars. At this locality there are a series of exposures represmang a very considerable thickness of strata made up of an altemation of grayish quartzoe gneiss, with thick bands of white gametiferous quatzite and of this rusty-weathering gneiss. There is also in one place a bund of white erystalline limestone, holding grains of dark-green serpontine. This is exposed for a width of twenty feet, and necu's interstratified between a band of white quart zite and one of the rusty gneiss. All these rocks frequently hold a little graphite. The rusty-weathering gueiss as before consists of garnet, orthoclase, quart\% and sillimanite with pyrite and a little rotie and graphite. The contrast between the very rusty weathered surface of this gneiss and the pale-gray almost white eolour of its surface on a fresh fracture is very striking.

Gurnetiferons Sillimanite-frneiss-Toumsip of hildare, near the line betreen Renges XI. and XII. (Section दुot.)

This loeality is just to the west of Lake Français, and on a continuation of the same section as that in which the last-mentioned rock occurs, but about three miles further west. It is the first exposure on
the road, to the west of the anorthosite band which passes under the lake. The rock comsints essentially of qamet, sillimanite, quart\% and orthoclase, the garnet ofton inclosing the sillimanite. It is almost identien in character with the rusty-weathering gneiss of the other localities described above.

As examples of the secomd set of these rocks beforo mentioned, which, while wey simihar to those just deseribed, do not contain pyrite, and consequently are not distinguished in the field by the rusty sand-like disintegration product, the following may be solected:-

This rock oecurs three miles in a straight line north-west of St. North-west of Jem do Matha, at the bridge where the road from this plaee to Ste. Na, Jeand de Emilie crosses the Black River. The gneisses here lie practically horizontal. The roek is red in colour, and highly garnetiferous.

Under the microscope the rock is seen to be composed of garnet, sillimanite, quart\% and ortholase, with sumaller amounts of rutile, serpentine, pyrite, graphite and biotite. The general characters of these minerals are the same as those which they present in the rocks of the last set just deseribed.

The garnet is perfectly isotropic. The sillimanite is present in considerable amount, in prisms whose long axes lie parallel to the foliation of the rock. The quartz contains a qreat abundance of minute, black, hair-like inclusions, quite straight and arranged in several interseeting'series. The orthoelase has a distinetly fibrous appearance, owing, in part at least, to the presence of little, rol-like inclusions, some black and nearly opaque, others transparent and nearly colourless. The rutile is present in deep brown, nearly oparue grains, sometimes having a tolerably good jrismatic form, but generally more or less rounded. The serpentine aceurs in a few large grains derived from the alteration of some mineral, which has now entirely disappeared. Graphite is scattered through the rock in numerons little tlakes. The biotite occurs in very small amomat, often inclosed in the garnet. Only a very few small grains of pyrite are present.

The rock, as has been stated, is very highly garnetiferous, the garnet occurring in lumps of a pink colour, making up a large
part of the rock, the other constituents of the roek being much more fine in grain and flowing romut the large garnet lumps, thas giving rise to an indistinet foliation in the direction of the motion. The structure, however, is ;uite different from that of angen- in leatgneiss, for the study of the thin sections affords mo indication of granulation. The large garnet lumps crystallized in sifn und are mocrushed. They are not remnants of larger masses which have escaped eomplete granulation. The sillimanite appears to be somewhat broken in pheces, but this is not certain, and a study of the thin sections proves that at least some, if not all, the constituents of the rock have been produced by a process of re-crystallization.

Sillimanite-lineiss.-West shore of Trembling Lake. (Section ithl.)

Trembling
Lake gheins

The geology of Trembling Lake, which large sheet of water lies aran the north-west corner of the accompanying map, is of especial interest. Along the eastern shore of the lake rises Trembling Mountain, the highest point in this part of the Dominion, and whieh, as already stated, is cited by Logan as the typical oceurrence of his fundamental gneiss. The gneiss composing Trembling Mountain is very uniform in character and, as has been shown on page 43 J , consists of a great mass of spueezed igncous rock. Running up through the lake, and expored at its southern extremity, as well as on the islands in the lake, is a heavy band of white crystalline limestone. Associated with this, and well exposed on the shores of the southern portion of the lake, especiatly on the westem side, are garnetifcrous and sillimanite gneisses in eonsiderable varicty. On the eastern side these form a narrow border, in some places graphitic and holding interstratified bands of quartaite, which is sueceeded by the Trembling Mountain guciss a short distance inland. At the north-western end of the lake eoarse granite-gneiss, with searcely perceptible foliation and no banding, comes in.

One variety of the gneiss, oceurring on the west shore of the lake and about a cyarter of the way up the lake from the southern extremity, was selected for examination.

The rock, which weathers somewhat rusty, is fine-grained and dark purplish-gray in colour on fresh fracture, looking somewhat like a fine mixture of pepper and salt. It consists essentially of orthoclase and quartz with a large amount of biotite in little flakes. Rumning through the rock are little interrupted wavy streaks, white in colour, and apparently parts of what were onee continuous little bands. These
consist essentially of sillimanite in minute ncieular crystals (Plate IV., ligg. 4) mul, ha ang a rudely parallel direction, give to the rock, which is otherwise massive, an indistinctly folinted appearance.

 Wharelisw, liontw and lyrite: *3k.

The accompanying figure (No. 6) shows the appearanee of the rock under the microsedpe, pertions of two bands rich in sillimanite with an interening band rich in hiotite being shown. As accessary constituents present in small mount, the rock contains garnet, titaniferous iron ore, " few grains of pyrite and of a mineral which has the characters of allanite, pleochocic in pale brownish ant wreen tints and deeper in colour in the interior of the grain. 'These constituents are boumted by well detined, sharp lines ; there is no gramulation, and wo twisting of the grains. The rock has the apparance of having been entirely re(mystallizel, and resembles certain altered rocks found in the contact \%Mmes ahout great granite masses.

If hears as strong a resemblame to a metamorphosed sediment on Restumbance one hand ats the rock of 'Trembling Mountain does to an igneous mass serlimentary on the other-resemblances which in each case are emphasized by the rocks. chemical compusition of the rock.

Giarnetiferous Sillimanitr-ineiss-Duminis Fulls on Riror Onarean,
 (i,S'.)

At Darwin's Falls, which are about a quarter of a mile below the tower bridge at Rawdon, the river cuts its way through a gorge of Laurentian rocks which are well banded and dip to the west at a high
angle, the attitule being bearly vertias. The gnoiss is in most plates highly garnetiforous, the pink garmets onemring in lomps sematimes as much as mineh in dimmeter, mud is intorstratifent with hames of white quartaite (deseribest on page fix,), some of which are highly gatmetiferons, while others ame nomy free from ghonet. There are also hame of felspathe guatrate. The bands of these varias meke, which have all the appearance of beds, are from a few inches to soweral fore in thickness.
 wide was foumd, but no hager baded combld be diseovered: to the now th, howeror, mearly on the strike of these expentres, a heaty bath of arystal. lime limestome apmens, which may posibly aros the diver just above the villaye, where the banks are lavily driftemered. I'his lowatity has already beron referred to in deseribing the distribulion of the lime
 interbambed with the gneiss, is deseribed on pare for or
 gmeisses of the chass brefore deseribed, in that it is muld more highly ynartyose.

Thu garme wedrs in numerons irregulareshand grains with the peculiar atm-like extensions ruming out into the wel, of the revek in all dirertions and inclosing individuals of the other constiturnts. Wrthoclase, quarty, sillimanite, biotite, rutile and irm ore hawe heen ohserver thus inclosed in the garnet, so that the lather mineral would appear to

 Sillimanite-4indix Ibawin's Falls, mat Rawdom.

Garmet with inclusionx.
have leem developed later than any of the other constituents of the rock. This peculiar mote of growth on the part of the ganet is seen almost invariably in the garnetiferous gneiss of the Laurentian, as well as in the highly altered sedimentary stratat folded into the Aps

 lo mhl to its sulstance in all directions in whinl matrerial whish will
 or in shane why gething rite of moans of the most diverse minerat
 of theme aloner matining in the interion of the garme imbivinals, whil:

 metamophice prorosses grow in sthlid roves, 1 hero is much which is as

 nhmmlant, while himitr, lutile, ironore, pyrite, and zirems(?) are prestat in small amomat, all these minerats pressenting the mormal eharactors of the several specios.

Thar rock has an indistinct tulation, the in part to the armanemont of the various minmals with their longer axes in one phane, and in part forerotan variation in relative ahmolane of the ditheront minerals in

 sern in the slides, beithor aro there any anem. The gatmet and
 1.0 show that the robk as n whole has resulted from this process. It
 of pressure, for althongh in sombe ases tha quart\% and orthoelase show shight avidences of prossume his has mot aftereted the garmet at ill.

Chemicel Compmition of the fimmisses of ('leas $1 /$.

In order to ascetain wherther the gheisses of Class J., whieh dilfor chamal so distinctly in mineralogical composition ant strmeturg from ebose empnsitimn
 as a whohe, three of the most typical aneisses of the elass were selected from those described aml were amiyael. The results of these analyses are given below. No. III. was male tior me by Mr. Nevil Norton Evans, of McGill University, aml Nos. IV. ami VII. by Mrs.

Wiather C．Ahams，B．D．Se＇Tos hoth gentlemen I desirg to neknow－ lonlgen my meat indeliterlnems．

	$\begin{aligned} & \text { III, } \\ & \text { Iisitins. } \\ & \text { Nt. Inyil } \\ & \text { If. II. } \end{aligned}$	fiskism． T＇rumbling lathe．	Sintr：， Willtno	VI. SI,ATE: ． 1.1. 	$\begin{aligned} & \text { 111. } \\ & \text { list:10n. } \\ & \text { l:awlon. } \end{aligned}$	VII． S．．．）TE： ＇I＇in»ッ！．	
Siliers．	$1 i^{\text {d }}$ Ini	$0 \% \cdot(4)$	lill fill	lif ${ }^{2}$	717	$7!17$	
T＇itanic avila，	1 til						
Vlanima	11178	28983 $\times 1$	11971	11181	Ass	＊1ig	
10°－wide．					！ $\mathrm{l} \\|$	（i） 13.3	
	1 （th	93	7×1	123			
Fiorrio malphids．	136						
	tmen，	＇пи＂：	＇rimes，		［11		
l $11 \ldots \ldots$	125	1 lt	$1 \cdot 11$	73	110	71	
Nagruxia	1 NJ	：1 ini	： 31	： 111	1 N－	1 \％	
Sinlia	＇！	1814	2－3，	$3 \cdot 0 \%$	\because	til	
	\％in	6） 1	\％1．	3 3i	4．1	$\because: 11$	
Iamen ont ighition	1 ベご	1 itl	： 1 ： 11	312	1105		
	1915	lime $\%$	1010） 11%	！ 14110	IH1 1N	164 11	
＇I＇unal alkaliom	$3: 31$	4，\％	5． 5	11.3	$1: 3$	：！！	

W：Wr．

 Ind of＇Tombling lake（sere pigu it ot．
 （Hhil．Mag．，18：4，p．2lis．）

 hande interstratified with gourtaite，which is often highly garnotiferons，the

1111．Red whte from near Tharn，in the district moth of the Eingaline，Switar－

1Blfarint 11 （01mprosition from any igheoms rack

It will be seen，on comparing the analyses of these thre gneisses （III．，IV．inal VII．）with the inalysis of the Trembling Mountain gneiss， given on page 43 ，that they are quite diflerent in composition． They are，in fict，quite different in composition from any igneous rock，On the other hand，the high content in alumina（in III，and
IV.), the low precentuge of alkalips, and the gront prepondernnee of nuguesin over lime, characteristic of shalos und shates, will he motrel. Tho rocks thas present ahemical evidence of having undergone a leaching process. (See paye 35) ו.)

The high percentage of alumina with low atkalies is due to the presence of sillimanite, a minernl very common in the arystalline whiste, bat seldow or never found in large mount in umaltered igneons rocks.

The marked elifferance in eomposition between granites mad shates Gomprition or slates is distinely seen on comparing the analyses of a series of "f pranitomand gronites with those of a series of slates, as, for imtance, those given in Roth's "(iesteins Amalyren." The latter we seen to be on "In average considnably higher in alumima mad much lower in alkalies, while at the sume time they we lawer in silicn, which has bern apmated both as samd and in combination with the alkalies wheh have gone into solution, and in most cases contain mere magnesia thim lime instead of mere lime than mugnesia, as is uswal in granitus.

The merage percentage of alkalies in the thirty-seven amblysen of granites from various parts of the world given by Roth in his work above montioned is $7 \cdot 35$ per eent, while twenty-three frimitive clayshates (Urthonsehirfer) contain on a averate only +70 per cont and twenty-five shates of Silurian age $4 \cdot 82$ per ent of alkaties. The shates
 present in the arerage granite.

The changes which a granite malergoes when it is decompened by the biffect of action of the weather have been well bought out by an excellent study dif grannitew. of the chemical composition of the ivesh and the decomposed granite of the district of Cohumbia, by Prof. Merrill, in which the decomposed roek was found to have last $25 \cdot 21$ per cent of lime, $2 \boldsymbol{2} \cdot 62 \mathrm{z}$ per cent of sondi, $31 \cdot 98$ per cent of potassat tud $14 \cdot 89$ per cont of silica, but only $3 \cdot 23$ per cent of alumim, and 1.49 per cent of magnesia.* A result which, so far as the alkalies are concerned, anee very closely with the average loss indicated in the case of the forije eight slates referred to alowe.

A typieal shate is thus distinctly different in chemical composition from an ordinary granite, whough sediments having an intermediate composition are frequently proluced by the disintegration of granite

[^9]without complete decay, giving rise to such rocks a4 arkose, gramwacke felspathie sandstomes athal so om.

The strongly manked resemblance in composition to shates on the part of the gheisses from St. Jean de Mathat amd Trembling lake is swom when their analises are compared with those of the 1 wo slates Nos. I^{\prime}. and $\mathrm{V}^{\prime} \mathrm{I}$. They have, in fact, the composition of ordinary rombine shate.

No. VIl., which is a gueiss so highly fuartanse that it might almost be termed an impure quatzite, also has a compusition diflering fom that of any ignoms roek, but one whirlo is infontioal with many silionous shates. No. V'lll. is the andysis wi such a shate from the limardine district in switaerlam, amd is, as will be semp, almost identioal with No. Vil. Nilicoonc bands from some of the Camalian slate praneries, also bave a similar composition. The almmina in this rase is law on arcount ot the preponderane of quartz, which alsu lowers the alkalies. The magnesia, as before, preponderates over the lime. Nor. V'Ill. last 1-9: per ent on ignition infore analysis, and these ligures do not, therefore, appear in the analysis as given abowe.

Analyse of slaters.

Amollit of catlum Hesent.

That there is nothang mankable in the interstratiteation of bands of gheiss dillering greatly in eomposition in the same series of (xposimes ats at Dawin's Palls, supposing them to be highly altered sediments, is well shown by the following analyses of two varieties of wate taken from different bands in the same quarry, in rocks of t'an brian age, at the Dambille shate Quarry, in the provine of Quebece, south of the St. Lawrence. 'They were made by De. I. B. Itarington, and have not hitherto been publishod.

	$\begin{gathered} \text { IN. } \\ \text { SI..ITE。 } \end{gathered}$	$\begin{gathered} \text { S. } \\ \text { si..tre. } \end{gathered}$
Silica,		
Almmina.	178	1111
Frorrous oxitu..	9%	$11 \cdot 14$
Mangatoms oxicle..	'71	$7!$
Jimu'.......	$1 \cdot 14$	- !
Margesia	5. S]	3. 23
Soula..	$1 \cdot 13$	$1 \cdot \mathrm{So}$
Iotassic.	$\because 96$	$\cdot 44$
Less un ignitioll. .	5 20	4.6
	919 4, 6	191) 8
Total alkalion.	1-10!	$\because \cdot 24$

'The : monont of carbon present was determined in No. LS. and found to be 26 per cent; all the iron was found to he present in the ferrous state. These two slates, as will be seen, contain the proprer rolative
propertion of constituents for the formation of ghoisses like these just deseribed. No. IS. might, if sulmitted to the proper comditions for its metamophasis, produce a gueiss similar, in a gencral way, to that from 'rambling Lake, but perer in sillimante, while No. N. wenile arystallize into a gheiss like that fom Darwin's Fialls (No. VII.), but leses quart\%ose.

In these gneisses which have been classed as of sedimentary origin, we have therefere rocks which have the chemical compensition of shates on shatess, a minematogical composition quite diflement from that of the gueisses of Class 1 ., and a structure which shows that they have been predured essentially by a process of rearystallization. These facts, it is believed, taken tugether, "stablish the right of these rowks tw he considered ats altered sediments. The afferte produced by the
 Farim in the A pes, the same fore which ermshes the highly arystalline rows intu timely grankershists, werystallizes the sedimentary rocks, often developing lange individuals of varions now minerals in them. It is not, however, elaimed that all grambated rows in the hamen-

 thensited with the shabes, these being very similar themate in chametor would probably the altered by ernshing am! grambation to
 those prowlomed from eramites: futher starly may inded slow this tw he the origin of some of the ghartans ortherlash-gheisses atswhiand with the grametiferons sillimante gheisses ahme deseribed. It is also pese
 tallization during metamophism. It is desired in the present remtribution to our knowlectge of these rocks merely to slow that certain of these groisses hater had a sedimentary wigin, and that errtain
 remata when ortion is, as yed, undotermined.

Distinet from the little strings and veins of quart\% which are of ten ghartzits, found cutting the rocks of this as of all other great distriets of erystalline strata, are the well detined and oftom very thick bands of guartaite which aceur regularly interbanded or interst matitied with the gneiss and erystalline limestones of the district. Of these the following thee oceurrences may be selected as typical :-

[^10]

Batmotifomix

si. . Itesin de Mithit.

This rock occurs interstratibed with nod orerlying the gametiferous silhmanite-gnciss described on page 49 J , forming great exposures extencling ofl to the north-west. One great cliff of these rocks, interstratified with gametiferous quartone goeiss, is represented in the photograph reprotuced in Plate III. The heds, as will be seell in the photugraph, are practically horizontal.

The quartzite is of medium grain and bownish-gray colour, and hodels momerous garmots, often as much as an inch in diametre. Bands richer or porer in gamet or showing othe slight ditferences in charactor alternate with ome another. Under the microseope the rock is seen to consist essentably of quart\% and gamet. Sillimante is pesent in considerable amomt with accessary onthondase, plagioclase, biotite, and rutile. The indistinct foliation of the rock is caused by the arrangement of the various contituents with their long ases in one direction.

The quartz consists of larger grains with streams of little ones running between them, almost wery large gran showing well marked strain shatows. It presents the apperance of having been erushed or gramatater, the lnoken material often sweeping in curves aromod the large gunets. The garnets are isotropic and hold many inclusions of quartz, sillimanite, and rutile. The sillimanite oceurs in the long and slenter individuals, with parallel extinction and small axial angle alvenly described from the associated gneisses. The rutile is brown in colour, a single clongated individual often penetrating several grains of quart\% The felspars and biotite to not wecur in all sections.

Althengh mo angen of guart\% are seen, for this minomal, as has been shown, does mot usually develop augen on crushing-the rock presents the appearance of having been greatly erushed.

1男win's Falls.

The rork occurs in beds or bands, from a few inehes to several feet in thickness, regularly interstratified with the garnetiferous sillimanitegneiss described on page je.s. Some of the bands are highly garnetifcrous, others are free from garnet, while others again contain a considerable amount of felspar. Under the microseope the rock closely resembles that just described from west of St. Jean de Matha. It
consists of quart/, with small quantities of orthochase and gamet and accessary hiotite, rutile, aireon, ilmenite, leucoxene and pyrite. The rock is seen to be foliated owing to the presence of a fow little lines of felspar grains ruming through it in one direction, and it may be eonsiderol an a very quartzose variety of the associated gheiss ahove referved to.

The quart\% eonsists of larger grains, surrounding whichand roming into them in irregular hays and arms, are areas consisting of much smatler guart\% grains, 'The large grains show strongly marked pressure phenomema when examined hetween crossed nicols, being divided into areas differing slighty in orientation, although the comtinuty of the grains is preserved. It eontains great numbers of minute blatek lairifke and dust-like bodies, the former 'fuite straight, which traverse the rock in somewhat wavy lines and in a direction nomy at right angles to the foliation, passing from one grain into another without deviating from their course, and were evilently developed after the rock had its present texture. The orthodase is present in small amount, and fremuently shows strain shadews. Its appearance suagests wramulation, althoug there are mo augh remaining to prove this. The gimet is present in the form of nowe or less rounder grains, often somewhat elongated in the direction of the foliation. It is isotropice and as usual holds a few inclusions romsisting of the other minerals of the roek. The other constituents possess the usmal characters. On the whole the avidence, white not eonclusive, goes to show that the rock has mulergone a gramulation previous to the erystallization of the garnet, or in which the garnet was not breken. Professor Rosenbuseh believes that in some of these Rawion quartaites original clastie quart\% grains with enlargements due to the deposition of secondary silica can be detected.

> (!uartzite-l'or. de Dalles, River L'Assemption (Section bfis).

This locality is rather over a mile to the east of Ste. Beatrix. The Pom de rock oecurs interstratified with several varioties of gneiss, some of billa. them holding rasplerry-red garnets as much as two inches in diameter. It is composed ilmost exclusively of quart\% in elongated grains, giving a foliation to the rock. A few grains of garnet and a few scales of graphite can be detected hy the unaided eye. White under the microseope, orthoclase, sillimanite, rutile and \%ireon are seen to be present in small amount as accessary constituents. The weathered surface exhibits numerous scolithus-like holes, which, however, are not eon tibuous for any considerable distance, and are found on examination to be due to the weathering out of garnets. The flattened quart\%
grains have ns a general role an extinction making an angle of to 10 to 45° with their long nxes, and contain the same dark inclusions deseribed in the guartaite from Darwin's Falle, similarly arranged, The grains come together atong irregular servated lines and show a matred uneven extinetion, although little or mothing in the way of aetual gramulation can be detected.
(rystalline Jinust(hll.

15:ffer of Watrlaring

Aswociated sedimentary gncisits.

The petregraphy of the lamentian limestones, so far as these can be studied macrescopically, has been exhaustively treated by sterry Hunt in his Report on the Latrentian Limestones of North America,* The limestones of the distriet at present under ronsideration differ in no way from these of other Latmentian districts deseribed in the report in question. They are usually eomparatively pure and only a few of the lifty-four minerals deseribed by Hont as oceuring in the Laurentian limestomes have been reeggnizel in them. Of these graphite, misa, pyroxme, serpontine and tuartz are most fiequently sem. They are usially rather coase ingrain, never very fine-grained or compact and where exposed to the weather disimtegrate into masses of calcite grains resembling conse white salt in apparace, or else are disselved away by the ain leaving smooth umblating surtaces. Comsideraile quantities of the di-integrated hemestone oceurs an some of the islands in Trembling Lake. Athough white or nearly white on a fresh fracture, these limestones. like those of wher pats of the Causentim, often weather black, apparenty owing to the growth upon exposed surtaces of a very minute black lichen,

The limestone nsually possess a more or less distinct lamding due to the presence in sarying guantities of one or more of the aceessary minerals present, and are, as hats been before montioned, usually associated or interstratified with bands of rusty-weathering gametifeross or sillimanite-gniss having the composition of ordinary argillaceous sediments, or with bands of quartrite.

Serpentine is not usually abundant in the limestones of this area, and no trace of Eozon has been fount.

The limestone from two loealities was submitted to microseopical examination.

[^11]

These exposures are among the lagest in the whole area ath hawe hawdom. already bern referred to on page 27.0 . The rock is well handod, som. bands consisting of a white and almost pure limestone contaniner only a few scales of mian, while other bands are fillod with grains of datkgreen serpentine. In some of these serpentimus bands the serpentine is present in the form of large lumps, and on breaking oren a mumber. of these some were fomm to contain rounded wores of white buroxene. These eores are readily detached from the inchesing serpentine ly the tap of a hammer and fall out leaving hemisphereal depressions. They hipmember are precisely like thase described by llemill* in the sempentine of aldrender. Montville, New olersey, and clearly show that the serpentine in the limestone has orginated from the alteration of grains and lump of pyroxene originally present in it. 'The vexed guestion of the origin of the Laturentian serpentines is, therefore, so fiar as this oreurrence is concerned, eloarly answerd.

Under the mieroseope (Plate V., Fig, 4) the rock is seen to consist of calcite, with serpentine in rounted grains, sarying in amome in the different sections, and a fow scalles of mica. Tho calcite forms a mosaic of grains of uniform size, having sharp well defineal bumblarice, with no intervening lines of smatler grains or other evidences of granulation. It presents the usual optical characters of the species, with the rhombehedral deavage and often the twiming according to - $\frac{1}{2}$ li. The grains possess a uniform extinetion. The serpentine is rey pate green, almost colourless, in the sentions, and oweurs in rounded forms showing uggrgate polarization. It contains, howerar, no cores of pyoxene, the alturation being comph ad in the case of these smatl grains. The serpentine is shaply lounded aspianst the calcite, but the serpentine grains do mot possess crystalline outlines, their homders heing always curved and their outline sometimes nearly circular. A serpen Mieroceptic tine grain is often completrly inclosed in a single calcite individual. characher. In No. 6,30 , the serpentine grains are for the most part small and are arranged in the form of little rings embedted in the caleite and tilled with grains of the same mineral. These evilently result from the alteration of groups of pyroxene grains smilar to those described below in the limestone from the River Lidsomption. The mica, which does not "ppear in all the seetions and is never abundant, wecurs in rather harge lowes, which are ahoost colourtess, the light passing

[^12]through parallel to the cleavage having a faint brown tint it is uninxinl and negative and polarizes in brilliant colours, resembling closely the blenched biotites often seen in altered rocks. The extinetion is oceasionally slightly uneven. One striking fact in eonnection with the sections is that some of the encite grains are elear and quite trasparent while others are somewhat turhid owing to the presence of very minute dust-like inclusions. The same calcite individual is even in some eases clear in some parts and more or less turbid in others. This turbidity, when studiad in connection with that exhibited by the calcite of comparatively unaltured limestones, such as certain beds of the Trenton, in which it is clearly seen to be derived from frugments of cunoids and other fossils about which clear catcite has heen deposited in optical continuity, the outlines of the fossil fragments being frequently by mo means sharp, is very suggestive of the derivation of this limestone from fossil fragments also. Against this supposition is the fact that the clearness or turbility is usually confined to the special grain which exhihits it, instead of the grain possessing a turbid core with a clear margin, but it is nevertheless a phenomenon which merits a much more extended study than it has been possible to give it at this time.

Crystalline Limestone, River L'Assomption, alout \& miles from Lake L'issomption. (Section 6ing.)

This oreurence which is exposed by the side of the River L'AssompLiAssmption tion near the northern limit of the map has atready been referred to on price -4. . L'nder the microscope it closely resembles the limestone just deseribed and consists of ealcite in large grains showing no evidence of breaking, twisting of grambation, with a little pyroxene, serpentine and mica. While in phaes somewhat turbid, the calcite shows hut little of that suggestive arrangement of the turbidity referred to in the ease of the Rawdon rock. The pyroxene, which is colourless in the thin seetions and pale green in the specimens, is arranged in little irresular groups or strings of small grains, much smaller than the calcite grains and which oecasionally show erystalline outlines but are usually romaded in form. These groups are often completely inelosed in a single caleite individual. The pyroxene is biaxial, and shows the usual cleavages, and inclined extinction and is frequently partially altered to serpentine.

C'hoss III.-Cineiswes, dic., of doubtjul origin.

In addition to the gneisses, etc., of classes I . and II., whose origin Cimeinsers of ean be determined with a high degree of probability, there is a third drinultinut elass, comprising a large proportion of all the gneisses of the area whose origin is doubtfil. Some of these resemble more or less closely the rocks of chass I., while others bear a marked resemblance to those of clas II. Chemical amalysis would in the case of many of these gneisses. de., throw mueh light on the question of the origin of the rock.

I few of these rocks, representative of extendel and widespromd foenrences in various parts of the area, have been selected for description.

(inurtz-Orthochase-Bioite-Gneiss.-Tounship of Kildaro, frout of Ratuge VII. (Sertion Lo. ©.;....)

This is a gneiss, gray in colour weathering white, which possesses a distinct foliation and occurs interstratified or interbanded with reddish orthochase-gneiss, often in thin layers, forming large exposures where the road, ruming south-west from st. Ambroise de Kildare, erosses range VII. lt is a very common varicty of gneiss, occurring extensively in many parts of the area embraced by the present report.

Ender the microscope, the rock is seen to consist chiedy of quart\% kiddare. and orthoclase. Biotite in small amount and a few grains of phat giochase are akso present in each section. The orthoclase, which is present in large amount, is in the form of large grains separated by little strings of streatms of smaller grains of orthoclase, all of which, instead of coming together along straight lines, have a crenulated outline. The large grains almost invariably show strain shatows, and the parallel position of the lines of smaller grame, is one of the clements which gives rise to the foliation of the rock. The fuarty, in its mode of occurrenee strongly resembles that described in the leat-gneiss and in some augen-gucisses of class I., having for the most part the form of long and narrow leaves or laths much larger than the felspar grains, and whose position leing parallel to that of the strings of small orthoclase grains above mentioned also serves to mark the foliation of the rock. These quartz lathe, although ruming through the granulated orthoclase, show no signs of granulation, but consist of single individuals, occasionally broken across but showing no signs of pressure other than a slightly uneven extinction. Some of
them are as much na sixteen times as long tes they the wite, full sweep in curves around the larger felspars, while others consisting of single individuals have emionsly indeghat uml exon forked motlines. The leaves or laths are not rlongated parallel to the vertical axis, their extinction gonerally making ou magle of about 30^{\prime} or 10 with the direction of their gratest length. The biotite weenrs in the forms of small leaves, usimally associated with the felspar, but sometimes embededed in tho clear quart\% laths, now arranged parallel to the foliation. It is the only irom-magnowin constituent present, with the exception of a lithe chlorite which in places results fom its decomposition.

Viniatlue

The rock is thas a species of miniature angen-gheiss, and has evidently masulted from movements in a rock having the mineralogical comprosition of a granite or arkose.

Brambon.
The rock is rather lime graned and way in eolour, contaning numerous rounded pink girncts up to n pea in size, prety maiformly seattered thronsh it. Under the microscope, it is seen tobe eomposed essontially of quart\%, orthoclase, hotite and gamet, the biotite being suborlimate in amount, with plagiochase, phene, iom ore and perite as aceessary constiturnts. The feriation is dure to the parallel mansement of the littlo liotite lanos and to the exintene of little strings of quart\% lumning through the roek in a direction prabllel to these.

The guaty has the form of irregnlar-shaped individuals, witen in leaves, mone or less curved aml ruming with the foliation. These leaves sometimes consist of a single individual, sometines of several individuals, hut never of granmbated material. Some smatl grans of quat\% are alsu seen embededed it the felspar. The orthoelase, which is atmudant, never exhibits more ponomeed evidence of pressure than a slightly uneven extinction, even this is often alsent, aml the extinetion is quite unitorm. No evidrnee of grambation is sern, the several individuals coming tugether as in a mosaic, surgestive of re-erystallization. The biotite is in little leases or mather large bunches. It does not sreep around the gitmets, as is so often the case in similar roeks, but is oftern inelosed in grains of this minoral, which is evidently younger. It is deep brown in colour and pretty miformly distributed throughont the rock.

Microseopical
The garnet, which is rather abundant, oreurs in grains which are chamactir.

It holds inclusions not only of the hiotite, hut nlso of orthochase, quart\%, sphene and other constituents, und presents the appenrance of hatving grown around and inclosed them. The phagoclase is pressut in small smount, the twin lines not being bent or twisted. The roek shows meatachastic strocture or other marked evidence of pressure, rither in the land specimen or in the section, with the exception of a small age of felspar associated with some apmarently granulated material, indistinctly seen in the hand speeimen, mad which seems to be comected with a little pegmatite vein ruming parallel to the foliation.

Asmociated with this graeiss in the sime series of exposures, which Asweinten occur along the road between mages \mathcal{X}. and \mathcal{N}., are a variety of weks. other encissess and allied rocks, interbmed with one mother and lying nomly ilat, some of these gheisses are highly quartmose, others aro more bisic, having the composition of a gametiferons homblentegheiss. Shme are the typical garnetiferons sillimante-gmeisses (rection (680) describeton pase ill. Others again resemble amphilolites, while a fow thin bats of a calcareous geiss or very impure limestone, ats well ay a fow of gurvitu, ure also present.

These rocks, like that of section 662, while free from catachastic stracture and presenting an apparame suggestive of a highly attered sedimentary series, have nevertheless heen sulmitted to great pressure, and lave been rolled out like a plastic mass, for associated and interealated with them are many small bands of angen-gnciss, and leatgneis occasionally holding little augen, which holong to the lirst class of gneisses already described and whiel are undoubtedly shueened mad crushed, posibly intrusive, granitos,

This gneise, which is dark in colour and contains an abundance of hamentifrons rombed pink gamets seatered through it, ocemes in large exposures theins. interstratified or interbatmed with a series of pyritiferous gncisses rieh in garnet and often holding graphite, which, having heen supposed to contain whld, are refored to in the section treating of boonomic Geolngy, on page litis.

Under the microseope, the rock is seen to consist essemtially of kawdon. hombleme, gamet, orthoclase and plagiochase, with acerssary pyroxene, biotite, prrite, iron ore and apatite.
':'he hornblemte, which with the garnet makes up most of the rock, is brown in colour and pleochroic in brown and yellow tints. The garnet is quite isotropic and holds inclusions of the homblende, plagioelase, pyroxene, pyrite, iron are and apatite. The orthochast ond plagioclase are present in alout equal nomont, and taken tonether are present in about the same propertion as the hornblende. The palegreen pyroxene accurs in small quantities associated with the homblente, and is in part monoclinic and apmarently in part rhmbic. The dombic pyroxene is partially altered to serpentine.

The felspar individuals are smatler than tho of most of the other constituenta, and often form a mosaic showing mo very promonced pressure effects, but elsewhere oceur as lines of smaller grains ahout and between larger ones, in a way suggestive of gramulation, actual "nugen," however, aro not seen. It is difficult to determine whether the homblende and pyroxene have heen protued by re-erystallization or not: they certainly have not undergone mueh granulation, while the garnet which makes up a large part of the roek is certainly a product of re-crystallization. The comparative absence of pressure effects, in the case of the iron magnesia constituents, as compared with the felspars, may indicate that the former in their present form originated during the pressure, or that during the movements induced ly the pressure, the felspars gave way more readily, allowing the movements to lee effected chiefly through their disruption. (ineisses containing such a large propurtion of homblende are not common in the Laurentian of this area.

Another variety of gneiss which is very common in this region, and which is seen in many parts of the township of Brandon and cleewhere, resembles in many respects eertain of the Saxon gramulites, heing reddish, fine-graned and nearly free from iron-magnesia constituents. It is, however, as a gencral rule, free from garnet, which is so characteristic as an aecessary eonstituent to the Saxom granulites. The minute structure is different from, lut perhaps related to, that of the Bramdor. gneiss of Trembling Mountain deseribed on page 4.2. As a typical tocality, lot 22 of mange VIII. of Brandon, may be selected.

The rock here oecurs in bed like masses interstratified with thin bands of quartzite and with some thick bands of the pyroxene. amphibolite described on pager 73 r . The exposures are large and the beds or bands lie nearly flat. The rock is tine in grain and of a pale
reddish or piakish colour. It has a somewhat indistinct foliation and is uniform in chatater over large expesures.

Under the micrescope it is found to consist, for the most part, if microperthite, the individuals of whieh are somet imes seen to be t wisted, but not in a very marked mamer. Qumt 2, sometimes in laf-like forms, is present in smaller amount and shows similar thongh less marked evidences of pressure. A fow grains of back iron ore, probably magnetite, a small amount of a chloritic docomposition-product derived from some bisilicate which has eatirely disappented, with a few little colourless rombled grains of aircom or possibly momaite, we the only other constituents of the rock. The minnte structure differs from that of the 'Trembling Momtain rock in being fine in grain throughout, the Inrger individuals deseribed in that rock heing absent. It I'robably a resembles, in fact, the tine groundmass of the 'Trembling Mometain crustited. rock, consisting of minute angular and more or less rounded fragments indiseriminately mixed together.

From a study of the sections, no decided proof can be obtatined that this is eataclastic structure, hat it is just the structure which would be produced if the process of granulation, doscribed in the case of the Trembling Momntain gneiss as in progress, were completed, the origimal stracture loing entiroly destroyed. If the banded character of the rocks of the district has been produced by a process of streteling or rolling out, the movemonts and concomitant granulation must hase been very much more intense than was necessary to produce merely an indistinct foliation as in the Trembling Momntain rock; or the original rock may have been tiner in gatin. The evidence of pressure in the case of the orthoelase would, as has been shown in the case of the Trembling Momntain rock, be less marked in the finely gramulated material than in the harger remants, if any remaned.

Therefore, althongh the rock may have been proxuced in some other mamer, its minute structure is just such as would be caused by the intense erushing of a gramite rock, and Professor Rosenluasch believes it to be merely a crushed granite.

Another class of rocks formd associated with the orthoglase-gneisses Pronemer in all parts of the area, but very abundantly in the township of pasiswenend Broudon and the adjacent parts of the castern portion of the area, granulites. are pyroxenc-gneisses and pyroxene-gramulites.

These rocks ditter from the orthoclase-gneiss in colour, being usually yellowish, brownish or back on the fresh fracture. Athough usually indistinctly foliated, they are frequently nearly massive and uniform
in character over large exposures, in this way lithering from the usual run of the nssociated moidgueisses. Their constitume minerals commet ns ageneral rule be determinel from the stmily of a hand specimen, bat under the microscepre the rocks we fombed to have ot compasition which varies but little.
[14ntulhio and]

f'hatactoro of therwek.

Pymoxeme is alwas present as un essential eonstituent, both thombine and monoclinie varieties usually oceuring together. Ilombleme, anally green but sometime brown in colour, is sometimes lut by no metns always present. Biotite when present at all is wery subordimate in mmont. Plagiovelase is usually the predomionting folspar, but orthoclase is very often present as well, mad is sometimes ns aboudant ts the plagiodase. Magnetite, apatite and afew other meressury comstiturnts ereme in small amome.

Thesa moks are very seldom conse in grain, boing gemorally ruther tine-grainel to nearly compact. They may he separated into t wo chasses
 by impersptible gradations. One class would embace the consee gramed varieties, which are usually sum what poomer in the iron magnesin comstituents and owene in lage bendies, and which may be called proxempondisses. The other class comprises the line gratined and nearly back varieties, which ocenr very frequently interbanded with granulite and othor foms of onthoclase gneise, in all parts of the areat, and which from their resemblane in charater amd monde of we wrrence to the "trap-grambites "or "pyroxme-gramulites" of the Sixam grambita ghenge may be callod pyroxene-grambites.

Enite liartinet from nurmal grabuliten.

This lattur name has certain disalvantages," mong others the fact that the rexk bears no resemblance to trae gramulite, but as the nume abreaty. has a status in petrographical nomenclature from the thorough thectiption which hat been given of the petrographical chamater and moxde of securrenere of the rock in the Sixom granulite gelinge, as well asowing the circmastance that every other mome alrealy in use and which might he applied is attented with equally great objections, it will here he employed to designate the rocks in question. These pyroxem-grambites when they beme rich in homblembe and pan in orthodise might be termed pyoxene-amphibolitus.

As typical examples of these pyroxene granulites and pyoxene amphinolites the following rooks may he taken.

[^13] (sioclion ii:\%)

In the fund specimen, the rock is seen to bre rather find in grain, prowsume
 sional narmow bands in which one of other constitnent predominates.

It oceurs in thick hands interbmuled or interstratilied with the gramulite deseriberd on page 70 ..

I'nder the microseoper, the rock is fommi to consint essentially of hornblende, pisoxeme ump plaginclase felypur, with a small amoment of urthoelase folspar and a little magnetite, apatite, and probably a few grains of 'gatt \% The homblemde is deep brown in endour and strongly pleocharois, and is present in furge momat. There is no aridence that it has bern derived from the pyroxpm and it offen aceurs in comparutisely lage individuals. The pyomene, which is atse present in lage amomat. is in part hypersthme, showing the usual pleachoism in yollow, red and grent tints and a parallel extinction. Some momoclinic pyrox. ene is also present. Nome of the constituents have aren an aproximately idiomosphic development. All me in irregular-shaped grains.

The foliation, which is parallel to the banding, is indistinctly seen in Miernecopical the thin seetions, but there is a developmant all thongh the seretions of gramulated material in little strings on streak raming in one direetion. This is composes largely of phagiodase, but hornblemble and proxeme are also sern in a grambated condition, mixed with the phaginelase. Amost arery one of the largor graine of plagiodase shems the effecte of intense pressure, in well burked strain shadows, twisting of twin hanclar and breaking into smaller grains. It is a faet of interest that, in this as in many similar cases, the hornhlonde amb pyroxene, although in phaces gramataterd, for not when in lange grains show uneven axtinction, while what in ordinary light ippras to be grains of phagiochase of similar size, insariably, when examined betwen crossed nicols, we sem to be erushal argragite of small phagioclase grains.

The examination of this rove under the mierosompe makes it certain that whatever the origin of the banding may be the foliated structure is not original, but has been produced by movements in the roek which were accompanied by a gramutation of its constituents. The homblende mity posibly be a secondary product.
('hemical comamition.

A specimen of the rock analysed for me by Mr. Walter C. Adams, B.A.Sc., was found th have the iollowing eomposition :-

NI.

I'yrore:r-al" phibrtite-Torrwship of Brandon.

	Perectut
Nilicat...	$4!170$
Alumuia	$17 \cdot 53$
Ferric oxide*.	10.16
Manganms oxida.	3
Linu.	$10 \cdot 5$
Magnesial...	7 516
Sirsla..	30
P'otassa.	sil
Lows on ignition.	34
	$1100: 19$

Tt is thus ilentical in composition with many gabbros and diabases.
This tu ek passes over on lot 19 of range VII. intoa F, roxene-granulite (section $\overline{6} 6 \mathrm{l}$) free from hornblende, and consisting of pyroxene, plagioclase and orthoclase, with a consiflerable amount of iron ore seattered through the roek, and usually assoeiated with the pyroxene. It is nearly massive, a foliation being merely indieated by the presence of a few parallel strings somewhat coarser in grain than the rest of the roek. In this rock also the constituents show evidence of mueh twisting and present an meven extinction. The felspar has undergone a certain amount of grambation. The sections show that the rock has buen subjected to a certain amount of motion as a result of pressure ; but whether this motion has becn very great, cannot be decided from their study alone.

> Pyroweme-Giremble-Range Il., Lot 1.), Tomonship of Bremelon. (Sertion (is.\%.)

Occurs interstratified with granulite, the whole being eut transversely
by pegmatite masses whieh have been crushed to an augen-gneis, the foliatic of which coincilles with the landing of the series (see Figs. 4 und 5).

The rock has an indistinet foliation when seen in large exposures, but no foliation ean be noticed in hand speeme ss. It is dark in colour and rather the-grained.

[^14]Geobuifal. Sumey of Cavaba.

Fli. 1.

FHi, 3.

Fig. シ.

Frt. 4.

PL.ITEV.
 and low (her $\times 2 ?$.
 from Ore $\times \geq$?

Fig. 4-- Serbentinelamestone, range X., lot 27, township of Rawbon-Cabeite (in places twime ung serpentine. $\times 11$.

It is composed of prroxene, which is for the most part angite, palegreen in ce'our and with barely pereftible pleochroism, together with plaginclase and a good deal of iron ore. There are also a very few grains of pyrite. The rock contains no homblende, biotite or orthoclase. The structure is allotriomorphic, and although the felspar shows faint indications of strain the pyroxene is never sranulated, and the rock looks as if it had heen crystallized in situ (Plate V., Fig. 1).

The gramulito (Scetion 685), which is interstratified with it does not ferm continuous bands, but thins away when followed alotig the strike. It is composed of quart\% and orthoclase, and has an appearance which is highly suggestive of extensive gramulation, for although all the grans are small, there are oftro smaller ones which appear to have heen formed by the breaking down of the larger, and in a few places the peripheral gramulation of the orthoclase could be observed. That both rocks must have undergone a deeided rolling out under pressure, in the direction of the bands, is proved by the conversion of the inclosed pegmatite veins into an angen-gneiss with a foliation in this direction.
 (Scention Gs.'),

Forms a large mass which is the northerly continuation of the occurrence last described. It shows, however, distinct differences in mineralogical chamacter, proving that the roeks of this class vary somewhat in their mature from place to place, even in the same masses. The augen-gneiss and granulite are here alsent.

The pyroxene is pale-green in colour as before, but most of it is rhombie in character, with strong plenehroism in reddish and greenish tints and parallel extinction. An untwinned felspar which is probably orthoclase is also present, and is more abundant than the plagioclase. Very small amounts of homblende, biotite, pyrite and aireon are also found, as well as a considerable amount of apatite in lather large individuals. Iron ore oceurs in rather lage amount, often partly inchsing the pyroxene, as is frequent in these rocks. The appearance of the rock under the microserpe, is suggestive of granulation.
 /low (Sertion -i.2/).

This rock forms large exposures about one mile to the east of the other occurrence last deseribed. The rock is here fine grained, very uniform dronme. and nearly massive. It is never banderd, and in places no froliation frombrambon.
can be detected, Butween these exposures and those last deseribed the pyroxene aranulite is associated with granulite plainly derived from a granite hy croshing, as it frequently contains remmants or angen of as yot mermshed orthoclase. The rock is composed of thombie pyroxene and plagioclase with some orthoelase (untwinned), but also contains moch homblenfle and botite. A small amount of augitemay also be present. Iron ore, pyrite and apatite are aceessary constituents. The hormblende, which is green in colour, is about eriail to the pyoxene in amount, and the biotite to about one-half the amount of cither. All three minerals are intimately associaterl. There is no evidence that the hornblente or mica are secondary, athough the morde of occurrence of the latter suggests that sern in ecreain contact rocks such as homstones. The phatioelase is broken and twisted in places and the rock looks like a gramulated one, but if so there are no large vemnants left.
(Sertion 1es:).

Other proxemopramulitos frombliranlon.

This rock, which in the field closely resembles the last two, ocours rather over a mile to the west of No. 683 , which it closely resembles alsa in comperition and microscopical character, and from which it is separated by bands of gramulite and other varieties of gnoiss. It contains large intercalated masses of angen gneiss, whose foliation coinciles in direction with the banding of the whole series.

The proxene is chiefly phombic, but monolinic proxene is also present. Both minerals are pherreen in colour, and cam be distinguished only by their optical properties. The thombic pyrosene (probably hypersthene) show the regular pyroxene cleavages with paralled extraction in sections parallel th the vertical axis. Prismatic sections exhibiting the cleavage parallel to o PY, when examinet in convergent light show this to be the plane of the optic axes. The mineral is distinetly trichroic. $\mathfrak{a}=$ red, $\mathrm{b}=$ yellow, $\mathrm{r}=$ green. The monoclinic pyroxene is not pleachroic, has a higher double retration and shows an inclined extinction.

The phagioclase athe an untwimed felspar, probahly ortheclase, are presput in alout equal mumat. Biotite and green homblente ocer in very small guantity, assoriated with the pyrosenes. A few grains of prote and apatite are present in each section, as well as some iron ore, which ustally incloses grains of pyroxene-a peculam mode of occurvence often found, howerer, in these rocks. (Sice page i9 ...)

None of the constitnents have grod erystalline form. The folintion wigin of is prodnced by the armagement of the pyoxene grains with their structur* longer axes in one direction. Amost every grain of telspar shows strain-shalows or factures. It is dithent to say whether the peenliar gramular ehameter of the rock has been proxluced by movements or mot. The pyrox'me does not show nny evidence of ganalation alhough it oceasionally shows strain-shadows. Undor a low power, however, the sectoms exhibit an apparance of extonsive gramulation mol sugerestive of the prssibility of the mok having heen doformed by the gramulation of the felspar with a rertain movement of the proxene individuats through the grambited mass.

Separated from the proxene gramlite on the east by a mas of very rusty-wathering ghoiss, and associated with granulite proper, is another rock resembling the one here dessibed in appearance, hut which is, in places, rich in gamet. A section (No. 686) of the garnetiferous varicty, however, showed the rock to be composed exsentially of red gamet and dark green loonbleme with some pyroxeme. The gamet is quite isotropic amd felspar is absent.

Tn deseribing the geology of 'Trembling Momtan (see page fo. It it proxm.
 a black pyroxeneamphibulite at long intervals intermpted the uni- Momatin. fomnity of this great mountain-mass ot gramulated gneiss.

This pyoxene-mmphomite is idential in character with some of the pyroxere gramulites just described. It consints essentially of hornblombe, proxene and platioclase, with very small imomots of iron ore, aptite and hotite as areessary eonstituents. The homblemte is srem or sometimes brownish-green in colour and strongy pleothoic, as in the associatorl greiss. The pyoxene, whieh is ehiefly rhombie in erystallization, is not quite so abuntant as the homblende. The phagichase is present in large amomet and in woll twinned grains. There is no evidence that the bomblende has been derived from the pyroxene.

Athough in the hand specmons the rock looks more massive than Momonpmeal the associated groiss, when examined in thin stections umder the micor-charactor. seope it is sern to possess a distinetly foliated struoture (Plate Vr. Fig. 2). None of the constituents have any approximation to an idiomorphic form, the rocks consisting of a mosaic of irreqular-shaped grains. The felspar grain, while inegnlar in shape are about equal
i_{n} all dimensions, and form a sort of groundmass, in which the hornblende aul pyoxene, which luve a tendency to assume elongated forms, are distributed at irregular, discontinnous, amastomosing strings.

This rock, althongh, from its existence in the foliated gneiss shown to have been submitted to enormous pressure and probably squeezed out by this into its present band-like fom, athords no absolute proof of the granulation so well seen in the gneiss which incloses it. The felspar grans, nevertheless, may have been produced by gramulation. The hisilicates often oreur in little granules like thase seen in the gromulated anorthosites, although they usually assume the mather elongated forms, above referred to. It is in fact in all probability a gramulated rock, although the alsence of large remontats makes proof of this impossible.

It is probable that these occasional interrupted hands or elongated masses of pyroxene-amplibolite in the erushed granite represent basic secretions in the original rock, such as are found in gramites in all parts. of the world.

Pyroxam-
 St. Jean do Matha.

The rock is dark-graty in colour and while distinctly foliated has in pretty uniform chameter over lame exposmes. In the thin sections it is seen to consist essentiatly of pyroxene, felspar and iron ore. Biotite and homblende are present, hat in very subordinate amount, together with a few grains of pyrite and apmate.

The pyroxene is in part hypersthene and in part augite, the relative proportion of the two varying in different sections, but the hypersthene on the whole preponderating. The hypersthene shows the usuad trichroism in reddish, greenish and yellowish tints and is free from all schillerization inchsions. The augite elosely resembles the hypersthene in appeanace, but has an inclined extinction and is not pleoclroic. The two pyroxenes are intimately associated.

Twofalmatr.
Two felspars are present in about equal amount. One is a weil twinned plagioclase, presenting the nsmal characters; the other is an untwinned felspar, which is frequently observed in these rocks and which is in all probability orthochase, its most noticeable characteristic being the appearance of pale bluish and brownish tints respectively, when between crossed nicols the section is turned. slightly on either side foom the direction of maximum extinction. The phenomenon appears to result from a slight disprersion of the bisectrices.

The irou ore, which is, after the pyroxenes and telspars, the most Intrgrowth aboudant constituent, is back and oparque, and when examined by of irm ofes, retlected light often presents certain bands and spots diflering slightly in lustre from the rest of the grain, which indicates the intergrowth of two sorts of iron ore probably dillering in content of titanium, as deseribed in the case of the Morion anorthosite. Its mode of oecurrance, however, is very peenliar, being fond in betwem the bisilicates genemtly in long, murow grains, and often mearly of completely surrounding the hatter (see Plate V ., Fig, 3). It was in one case obserwed to have the form of a narow band cutting acoss a pyroxene grain and continuons with a mass of iron ore on either side. It was evidently formed after the bisilicates had crystallized. The same phenomenon was observed in the ease of certan anorthosites very rich in iron ore (see page 100). Distinct evidencr of crushing, in the existence of tronre angen or marked twisting of constituents, is absent, but the rock haturn han nevertheless looks as if it might have undergone a thorough s, manala- hinilicates, tion. 'Traces of this are, as usual, much more marked in the felspars than in the pyroxezes.

A pyroxene-gnciss (Section 305), almost identical with that just deseribed, forms large exposures in lot 16 of range N . of the township of Brandon, between the Lac Corbean and the secomd anorthosite band.

> P'yronmedintiss-Seipnion'y of D'Aillehout, whout nue mile I.E. " Range III. of the T'ounship) of Cathecer\%. (soction :99.)

This rock wats chosen is a typical representative, not only of large byrusuch exposures in the immediate district, but of the basie gneiss, intimately furisw ansociated and interbandel with the red guartzone orthoclase gneiss, in very many widely separated parts of the area covered hy this report. The rock is bluish on the fresh fracture, but weathers gray, and has an indistinet foliation coinciding with that of the associated quartzose orthochase gneis.

Inder the microscope it is found to consist usentially of pyroxene and plagioclase. A comsiderable amount of untwimed felspar, some of it probably ortheclase, is also present, as well as a little hornblende, biotite, iron ore, prite, apatite and calcite. The pyroxene is for the most part hypersthene, identical with that in the rock last desmibed. The homblende, which is green in colour, is apparently derived, in part at least, from tho alteration of this pyoxene. The iron ore, as before, in often found partially inclosing the pyroxpre. The occasional presence of leucoxene as an alration product indicates that it
is a titaniferons varioty. The ealeite is secomary. In addition to the plagiodase, presenting the odinary chameters as seen in those gneisses, there are a mumber of individuals which are very clear and [marize brighty, resembling the seondary phagelase often devel"jeed in ernshod moeks.

As in the case of the pyruxime-gneiss just deseribed from sit. dean An Matha, although there is no absolute proof of gramulation, it is almost certain that the reke has been subjected to this process; strings of time grans are everywher seen in and about the harger grains, and the apparance is that of a grambated row. Here again the eridence is principally seen in the felspars.

Pyroxene-gneisses identical in charactor with those just described, as has beem montioned, are very alundant in the arom embaced hy the acompanying map, hat especially in that part of it lyine to the mast of the Morin Amothosite. They are also fomad widely distributed in the Laurnatian elsewhere, as, for instance, in the Sumenay district. They differ from the assueiated acid gneisses not only in composition but in laving in darker colour (never red like the orthoclase gneissess), a mow uniom character, and more massive apparance. They never contain quartz.

These proxen--gneisses and byroxene-granulites, formerly thought

Connmon in Law? Archazan.
1)rigin of pyroxime.
livilenter of gramalation.
l'ywnentgriters in in Sagmemay rygion.
a great number of localities in all parts of the word, and will probably be found to be one of the ronstant elements of the lower Arehiesh wherever that is extensively developed. A brief rexime of these various ocurrences, with fall references to theid literature, is given in a recent paper lo, Professor Juthe.*

The argin of these podss is a question concernigy which, even in the localitios where they have been most thoroughly investigated, there have been great diversities of ophinion. In the distriet in which pyroxeme gramulites were origimally deseribed, for instance, the gramulite region of Saxony, Naman believed them to be eruptive, Stelzner and others comsider them to he metamophic prodncts, white Lehmam, who has mado a more reed at and very thorough stuly of them, considers the question of their origin as still an open one. The mode of oceurence of the pyroxene-graulite in Saxmy and the intimate rela-

[^15] neced by a compliste serios of intermediate varieties, proints very kranlitue. strongly, in the case of the saxm acenrences, th the origination of both rocks in thediflerentiation of ma miginal igneons anagna. 'I he chiof difliculty in considering the pyroxenegranulites of suxony as differontiation prenlacts from the same magma that gave rise to the mimal mpanalite, is the fact that they are proctically massive and have bern considered to show an avidener of crushing, while the arompanying grmulite is seen th have been crushed mud gramulated in a wary marked mamer.

The pyroxene-gramulites of the distriet rmhated in the present Report, difler from thase of samony chielly in being a little coarser in grain and in fussessing, as a gameral rule, 1 more or less indistinct schistuse structure Garnet ilso is a less frefuent constituent.

That thase Camadian rocks, whatever be their origin, have heen 'romboul meggreatly compressed and molled ont like plastie masses (although ${ }^{\text {natitw }}$ mawow mo emehnse evidence of the fitet can be seen in the minute structure of the roek) is pacend beyont a doubt by the presenee in them of sharply folded, crushed and foliated masses of pegmatite conserted into augen-gneiss and leat-gneiss by the presure, the folintion ruming in one plane through the whole body of the rock and being guite independent of the position of the pegmatite masses. That the preseat attitude of the rocks was not their original one, is also plainly shown in Eigure 8, where a dark-coloured pyroxene-gneiss, containing a seod deal of guarty, is seen to lie as a series of slarpl folds in a mass of leat-gneiss. The axis of these folds is mow the strike of the rock, but it is evident that the pyrovene-gneiss originally formed a band, dyke or am in the lighter coloured quart\%ose orthoclase rock, ruming

in a direction highly inclined or possilhy at right angles to the present strike. This is by no means an isolated case or confined to this lowality; the same phenomenon ean be observed in very many places in this as well as in other Lamentian arcas in varions parts of the Dominion, and when the folds we longer and more compressed their
resemblance to intoratmatifed bands, especially in small exposmers, is much more marked.

Micronerppical chamater muliher 1hat of githn*

The microscopic structure of the pyroxene-granulites, as a class, is guite distinct from that of the andoubted igneous rocks having the same mineralogical compresition (the gablaros), but after the stmly of a large number of sections of these rocks from virious parts of Canada, as well as from the Saxon granulite region, 1 am unable to see that their structure precludes them from being considered as granulated rocks, although no direct ovidence of erushing may he athorded by them. The indieations of granulation in the ease of the Camalian rocks have atrady bean rofermed to in the description of the sections,

Mach light might be thrown on the origin of these peculiar rocks by a thorough study of their chemical composition, with a view to ascertaning whether they all, like the pyroxene-amphitolite from
 whether some of them have a composition diflerent from that of igneous rocks.

At present the origin of these Canalinn occurrences must remain n matter of dombt, although the argument in favour of a metamorphic origin in the case of the Saxm rocks, from alleged absence of gramulation and other pressure phomena, does not, as has been slown, "pply with ergual fore to the pyroxene-granulites of Camada.
ITI., Lot : O. (Sections stid, lisio.)

Scapulit. Hatis.

Lawston.

This gneiss, which weathers to an exceedingly rusty coloar, occurs in bands interstratified with a grayish weathering, gametiferons gneiss, traversed by many little veins of quartz. Aeross the road on the same lot is the band of garnet rock described on page 84.1 . It is finegrained. greenish-white in colour, and on a fresh fracture presents a finely-sprekled appearance. As has been mentioned, it weathers very rusty and disintegrates so readily that it is difficult to oltain specimens which are really fresh. It has a verv indistinct foliation.

Under the microscope, it is seen to be composed essentially of orthoclase, pyroxene and scapolite, with accessary pyrite, pyrrhotite, graphite and sphene. The pyroxene, which is very pate green in colour, has the eharacters of malamolite. The seapolite is colourless, uniaxial and negative, with cleavages crossing at right angles on busal section, and parallel extinction in sections in the plane of the vertical axis. The sulphur, if ealculated as pyrite, would show the presence of nearly
four and "half per cent of that mineral, but, nithough mach pyrite is prosent, there is a good deat of pyrrhotite present as well, the two minerals being intimately assoeated. These two minerals ahmost eertainly represent a later impregnation, oceuring, ns they do, in little irreguhar-shuped masses, with minutely handed structure purallel to their sides, as if filling eavities. They are sometimes deromposed to hamatite, the psenelomorphs being often remarkahbe in that they eonsist of a single individual. The ferric hydrate which stains the weathered surface of the rack is also derived from their decomposition.

The graphite ocems as little thakes, and is often intimately anso- Mispompreal ciated with the pyrite, suggesting some genotic comaction in the case chatacter. of the two minerals: as, for instance, the formation of the sulphides from the rednetion of irm-bearing solutions through the agency of organic matter, a portion of which still momans as graphite. The spheme, which is seen in every slide, is pale brownish in colour, aud occurs in more or less elongated grains lying in the direction of the foliation. It has the usual high index of reflaction and high double refraction, with an extinction generally inclined at a small angle to the longer axis of the grain, and is often twinned. The rock presents the appatance of having borm produced by a complete aystallization or re-erystallization of the various constituonts in sitt, the gratus of felspar having shap polygomat outlines, and the individuals of the several minerals fitting together likn the pieces of a mosaic, no signs of gramulation being visible.

A specimen of this gneiss was amalysed by Mr. Walter C. Adams, 'lumuen B.A.fe., and was found to have the following cemposition:- ""munition.
Ritugi VII., Lot ! !

$6 \frac{1}{2}$

IM :GE EVALUATION TEST TARGET (MT-3)

This gneiss, as will be seen, differs entirely in composition from any of those of which the analyses have already been given. The low cuntent of alumina, combined with low silica, the high alkalies and the prenonderance of lime over magnesia, mark it oll as quite distinct from the slates and sedimentary gneisses before considered. If it be an altered sediment, it is one which has sufferel very little leaehing during deposition, and must have been of the nature of a tuffaceous deposit, or one formed from the rapid disintegration of an igneous rock having the composition of a basic traclyyto or syenite. It is, therefore, a rock which, so far as its composition is concerned, might be either an altered sediment or an altered igneous rock; and it is impossible, consequently, to draw from its chemical composition any definite conclusions as to its origin. The graphite, however, points to a sedimentary origin.

Specimens of another band of gneiss (Section 385) similar in general appearance to that just described, and occurring near it, were found upon misroscopic examination to differ from it in holding a considerable amount of garnet and plagiochase, as well as some quartz, but no seapolite. The pyroxene is very pale brown in colour, and the garnet, which as usual in the Laurentian gneisses is quite isotropie, holds as inclusions grains of the various other constitnents of the rock.

Bamet mek
Intimately associat d with the garnetiferous gneisses, and probably representing an extremely garnetiferous variety of them, are the bands of garnet rock described from two localities under the heading of Economie Geology (p. 150 J.)

At the first of these localities-the rear of lot 20 of Range VII. of the township of Rawdon-several bands of the garnet rock are found, the widest being about two feet thick. They occur interstratified with fine grained garnetiferous gneiss and white quartzite. In some parts of the bed the garnet rock is almost pure, while in others it is seen to contain a little duarta, biotite or felspar. The purer portions (Seetions 440,654) when examined under the microscope are seen to consist almost exclusively of pink garnet. Some iron ore, with a little biotite, and in one section a grain of green spinel, are the only other constituents. The garnet occurs in very large individuals, which are isotropic and almost free from inclusions, with the exeeption of a few grains of biotite. The iron ore is black and opaque and oceurs chiefly in the form of large angular grains. The surfaces of the garnet grains are ciften stained with a little ferric hydrate. The biotite and iron ore are inclosed in the garnet and have the appearance of having originated contemporaneously with it. In some sections (No. 654) a little plagioclase is present.

On lot 22, of range $\mathbf{L X}$., of the township of lawdon, a heary band lymane of gramular brown pyroxene rock ocenrs, nssociated with garnetiferous rek. graphitic gneiss and erystalline limestone. Owing to the fact that the exposures are not continuous, it is impossible to ascertain the precise width of the hand, but it is probably alout twenty feet wide.

Under the microseope (Section 3G6) the rock is seen to be made up ahmost exclusively of a pyroxene, very pale pinkish brown in thin sections. The cleavage is imperfect and the mineral shows a very faint pleochooism, and in sections at right angles to an optic axis is seen to be biaxia!, the axial angle being large. With this pyroxene is associated a colourless uniaxial and negative mineral. probably a scapolite, and a very few grains of pyrrhotite.

An analysis of the pyroxene gave the following results:-
XIHI.-I!yrorene-Ravedon, Range I.L., Lou ㅅ...

Silica...	
Alunina.	8 8:3sis
	$4 \cdot 611$
Mamgamens	mulet.
time.	25 36
Magnesia	$12 \cdot 72$
	$100 \cdot 387$

The Avorthosites.

TIIE MORIN ANOHTIIOSITE.

Stratigraphical Relations.

As shown in the accompanying inap, there is, in the region under con- Morin sideration, one large area of anorthosite, constituting its chief geologi- amorthosite. cal feature, and several smaller oecurrences of the same rock puite subordinate in extent. This large area will he referred to as the Morin anorthosite mass, from the township of Morin, which for the most part lies within it, while the smaller areas will be distinguished by similes local names, as the Lakefield area, the St. Jerome area and so on.

The Morin area consists of an almost creular mass of anorthosite, Size. from the south-western side of whiels the e proceeds a long arm-like extension. The mass has a diameter of about 37 miles, and, with the arm-like extension just mentioned, an area of 990 square miles. It is surrounded on all sides by the gneisses and associated rocks of
«U EnEC.
Latrentian age, with the exception of the extremity of the arm, which extending much farther to the south than the rest of the area, rums underneath and becomes covered up by mueh more recent strata of Cambro Nilurian age (Potsdam and Calciferous) bounding the protaxis in this direction. The limits of the mass have been carefully traced out by myself, excent where it crosses the townshijs of Howart and Montcalm, where the boundary had alrealy been determined by Sir Wilhiam Logan (See Atlas necompanying Geology of Canada, 1865), and in the soathern part of Wolfe, where it had been traced out by Mr. Vennor. Along this portion of its course the boundary is a well marked topogrophic feature, the anorthosite rising as a clifl or abrupt line of hills

Chatacter of atnorthosito coluntry.

Am-like "xtenision of anorthosite. from the rolling country underlain by the Grenville serics. (See Plate I.) The exact course of the boundary acrosi the very wild, unsurveyed and unsettled township lying to the norch-west of the township of Lussier is uneertain. Its direction as hid down or the map, however, must be a near approximation to the correct one, as the country ímmediately to the north of it has been examined and found to lee undertain entirely by gueiss.

The country underlain by this anorthosite, leaving out of consideration the arm-like extension above mentioned, is very billy, the hills seldon rising to such height as to be properly designated as mountains, and while often rugged and precipitous still preserving the smooth flowing contours seen everywhere in the Laurentian in this part of Canada. Between these hills are valleys or plains, generally of no great size, occupied by drift, which valleys as well as the hill sides are year by year being cleared of their forest growth and converted into farms supporting a hardy population.

Scattered through these valleys are a great number of lakes, some of considerable size, where the North River and other streams take their rise, the waters of whieh eventually find their way int the Ottawa or St. Lawrence.

The highest hills in the area are those about Duck Lake in the township of Cartier, and those in the district about the Montagne Noire in the township of Archambault. On the whole, this anorthosite area is mather more rugged than that underlain by the surrounding gneiss.

As has been shown on page 13 , , and as will be seen by consulting the map, the gneissic series through which this anorthosite bas been intruded, is, so to speak, closely wrapped around the anorthosite mass, its strike for the most part following the sinuosities and eurves of the contact; the most notable exception to this being along a portion of the southern vondary. Its foliation is thus evidently, in part at
least, a secondary structure, induced subsequent to the intrusion of the anorthosite by great pressure, which pressure has affected the unorthosite as well-for the anorthosite, especially near the contact on the eastern side, possesses a distinet foliatioa coinciding in direction with that of the graciss. The amm-like extension of the anorthosite through the gneiss to the south-east becomes somewhat wider as the plains underlain by the Palarozoic are approached, being divided Iongitudinally hy a wedge of gneiss which runs into it from the south, and which with the anorthosite beeomes coverel up by the overlying Palhozoic rocks. The anorthosite of this arm, like the groiss itself, dips to the west, being therefore on the western side overlain by gneiss. The angle oi dip, however, varies much in different places.

Although in many parts of the circumference of the area, the comtact anorthosite comes against the gneiss without producing any pereeptible phase: alteration, yet in some places, and especially between Shawbridge and Chertsey, a dark heavy rather massive roek, rich in bisilicates and often holding a little quartz and some untwinned felspar, borders the area and maty possibly be a contact product of some kind. The boundary of the typieal anorthosite against this intervening roek is usually pretty sharp, while the latter passes over gradually into the gneiss of the district. It is, however, diflieult to deeide whether this rock is to be considered as a peculiar and abnormal (possithy altered) variety of gneiss, or as a contact phase of the anorthosite. What is apparently the same rock, or a very similar one, occurs largely developed at the north-west corner of the area, between the typical anorthosite and the gneiss. Stratigraphical as well as microseopical evidence indicates that here it is a peculiar variety of gabbro, nearly or quite massive, but sometimes showing a schlieren structure. This breaks through the gneiss, but is apparently continuous with the rest of the anorthosite mass. Continuous exposures from one roek into the other, enabling the relations to be determined, have, however, nowhere been found, but the evidence goes to show that this gabbro forms part of the anorthosite area and is not it separate intrusion, although the transition is rather abrupt.

At a number of places near the limits of the area, especially about fineiss the dividing line between the rear ranges of Wexiord and Chertsey, inchusims. near the road to St. Donat, very large masses of orthoelase gneiss oceur inclosed in the anorthosite, and afford additional proof, if any be required, of the intrusive character of the latter. Those occurring about the line between Wexford and Chertsey, lie approximately in the direction of the prolongation of the strike of the great tongue of gneiss which runs
up between the main mass of the anorthosite and the arm-like protrusion from it, and probably represent a former extension of the gueiss in this direction, shatered and invaded by the anorthosite.

Similar inclnsions of gneiss are also seen near the margin of the Morin area in the rear of the township of Doneaster, being exposed on the road rumning south from Lake Arehambault to Ste. Lueie, and along tho River Ouarean where it erosses range VIII. of Chilton.

Pregmatite veins.

Sir Willian Logan's views.

A very large mass of gneiss, some live miles long and two miles wide, is also inclosed by the anorthosite nem the east side-line of the township of Chertsey.

The anorthosite is in many paces penetrated by eoase pegmatite veins. These are expecially abundant near the edge of the area, cutting both gneiss and anorthosite, so much so, that an mproach to the boundary may often be surmised from their appearance in large numbers. These pegmatite veins, however, are by no means restricted to the margins of the area but are abundant in plaees near its centre. They are composed of fuart\% and orthoelase, often with a little iron ore, and are thus quite diflerent from and apparestly uniniluenced by, the composition of the anorthosite through which they eat. A number of other occurrences in the township of Wexford, whieh are probably of the same nature, were found to hold the same bisilicates a; the anorthosite. None of the marer minerals frequently found in such veins were observed, except one which oceurs in the thin sections of a single specimen, and which resembles alianite

In the township of Wexford, along the road which runs south-west from Lae des Iles between ranges VIII, and IX., there is a great body of highly quartzose rock, mueh of it an almost pure quartzite, inelosed in the anorthosite. It extends along the road for ahout two miles, varying considerably in wilth, but near the lake being over i guarter of a mile wide. This mass may be an inelusion of gneiss, such as those referred to ahove, bur much of the guartzite has an appearance suggestive rather of vein origin (Scetion 4\%7).

Both the anorthosite and the gneiss are eut by numerous dykes of diabase and augite porphyrite.

In order to understand why Logan, and other good observers following him, regarded these anorthosites as constituting a distinct overlying series, a brief review of the grounds on which he based this view may here be presented.

On working out the geological structure of the Grenvi!'e district, whiel district lies immediately to the west of that embraced in the pre-
sent repost, the two overlapping somewhat, Lagan recognized three principal bands of crystalline limestone which he ealled the Trembling Lake band, the Green Lake band, and the Grenville band respectively. The limestone above mentioned as abutting against the anorthosite at St. Sauveur, was lelieved to be a portion of the Green Lake band, Sir William referring to the hand as having been "interrupted" by the Morin anorthosite. Further to the north, in the township of DeSalaberry, he found that two of the limestome bands again came in contact with this anorthosite mass, one of them being this same Green Lake band and the other the Trembling Lake baml. Sir Willian refers to this oceurrence as follows (Geology of Canada, 1863, p. S38) : "The higher of the two bands * * * is interrupted by a mass of anorthosite or labradorite rock which apmarently covers it up. A similar phenomenon appears to oceur in Morin (St. Sauseur), where the limit of the labmalorice rock * * * immediately llanks the limestone band on the north," and goes on to $\begin{gathered}\text { by } \\ \text { : "If, on exploration }\end{gathered}$ to the eastward of the Trembling Mountain, it should he farther ascertained that the two inferior limestone bands of the Grenville series disappear on reaching the margin of the anorthosite, it may be considered as conclusive evidence of the existence in the taurentian system of two immense sedimentary formations, the one superimposed unconformably on the other, with probably a great diflerence in time between them."

A careful examination of this distriet in eompany with Dr. Ells, of Limustones the Geological Survey, has since shown, however, that one of the sup- ine cut off hy posed interruptions really is not seen, the anorthosite mass mapped co sitr at sit. the first range of the township of Grandison, atad which was probably reported to Sir William by one of his assistants, having no existenee, and that the drift is so heavy in this region that even if the other limestone bands did eome against the anorthosite the contact could not be observed. A eareful examination of the contact on the south-west corner of the area in the neighbourhond of the village of St. Sanveur; leaves little doubt that the limestone is really eut off by the anorthosite at this point. The limestone underlies a plain, protruding here and there in large exposures through the drift, whilst the anorthosite rises from this plain as a steep wall or eliff. The limestone is exposed 200 yards from the foot of the imorthosite wall, but the drift covering then becomes so thick that the character of the contact itself eannot be determined. Both to the east and to the west the associated gneiss is cut off in n similar manner.

On the north east side of the anorthosite area there was found, more- At Lak. over, another limestone band which runs through Lake Ouareau, and "harean.
forms in it a number of small islames. It is also well exposed on the south shore of this sheet of water. This bed disappears at the edge of the anorthosite a short distance from the south end of the lake, and no further th wes of it are seen until what is probably its continmation appears again interstratified with the gneiss at the semthemst corner of the anorthosite area.

In order to understand why Lagan regarded the unorthosites as belonging to a sedimentary series, a tact must be borne in minal which will be referred to at greater length in considering the strmeture of these roeks, namely, that in phaces the anorthosite shows a more or less distinetly foliated structure, which structure was believed in aecordance with the views gemorally necepted at that time to represent a purtivily obliterated betding.

Sections from St. dirombe to

This is especially true of the morthosite near its contact with the gneiss and is especially well marked in the long arm-like protrosion from the southeast comer of the area, which, as above mentioned, runs into the greiss in the direction of its foliation, and timally, with it. hecomes covered in, by the overlying Pahrozoic to the south. There is, moreover, at Nt. Jerôme a smaller isolated area of a more or less foliated anorthosite intercalated in the gueiss, and this was supposed by Logan, wh, from lack of tine was unable to examine the whole area carcfully, to form part of the great Morin area, which really terminates many miles to the north. Starting from a point to the west of St. Jerome and going in an easterly direction across the strike of the rocks to New Glasgow, he passed from guciss over the St. Jurome anorthosite and then over a series of gneisses interstratified with quartaites and a band of erystalline !imestone to the aro-like protrusion of the Morin anorthosite referred to ahove, which has a foliation parallel to the strike of the gneiss, and over it to gneiss once more. Misled hy this section, which is here a most deceptive one, he concluded that the whole consisted of a great sedimentary series of anorthosites with interstratified quartzites limestones and gneisses, which series formed the southerly development of the anorthosites that he had observed interrupting the Grenville series in DeSalaberry and the other townships to the north. Aecordingly, in Section No. 6 of the Atlas accompanying the Geology of Canadia, this "Upper Laurentian" is made to include the limestone at St. Jerome and to underlie the whole streteh of country from the supposed contact with the Grenville series at the River Gagnon to the west of St. Jérome, south-eastward to the state of Vermont, although for the most part covered by newer strata. Instead or this we really have the

Grenville series with certain mreas of the fundamental grieiss, con- lanan* tinuous throughout the whole district embrnerl by the mat acom- "I IM, ganying the present leport, exerpt where it is intermpted by intrusive his mon int masses of thorthosite. 'The foliation of the anorthosite, therefore, being now recomized as a distincty dyamic phemomemon, und ther" bring no evidence of any series of gneisses except the dienville series und the fumdmental gneiss in the district, this "Upprer lamrentian" series of login phsses out of existence.

Petrography of the Morin Aumthwite.

The eadier geologists who first explored the great stretches of formarapy fanrentian rocks molerlying vorious parts of the Dominion, in many if Momin wiflely separated disulets met with romomons mases of a rock diflering entirely from the common orthoclase roeks which make up the greater part of tha Laurentian system. 'Jhis rock was eompued principally and sometimes exclusively of plagioclase felspar, but of ten varied considerably in structure from place th place, being sometimes massive, sometimes sehistose, sometimes conrse and sometimes tine in grain.

These rocks they called morthosite. In the Geology of Cunda, The mane (p. 22) Ntery Hunt rofers to the rack in the following words: "Since ${ }^{\text {annthmitu. }}$ all these varying trichaic felspars are anorthic in erystablization, and ifproach more or less to anorthite in their composition, Delesse thus proposed to designate them by the common name of anorthose, as distinguished from orthose or orthoclase, and the rocks characterized by their presence as anorthosite. In accordance with this we have mopted the generie name of anorthosita for these rueks."

This term anorthosite has often been misunderstood, having been confused with anorthite and supposed to designate a roek consisting of anorthite, a felspar which rarely occurs in these rocks. The word "anorthose" suggested by Delesse, is synonymous with the word plitgioelase, which hats now supphanted it in common usags, and consequently the term anorthosite simply means "plagioelase rock," n designation which serves both to define its composition and to emphasize the difference between these anorthosites and the predominating orthoclase rocks of the rest of the laturentian region.

The place of this anorthosite is in the family of the gabbros, where compenitiom oceupies a position at one extremity of the serjes corresponding to of anorthothat of the pyroxenites at the other extremity. An ordinary gabbro when it becomes very rich in felspar passes into an morthosite ; when, on the other hand, the felspar decreases in amount, so that the
pyroxem predominates largely, a proxenite results, while if in the case of an olivine gabhro the pyroxene dreceases in amount, leaving plagioelase and olivine as the essential constituents, a troctulite resulty.

Ahunst prime phapiochas.

Minerals necurving in Murin aburthonite.

Hunt has estimated that three-quartors of the anorthosites of Canada do not contain over fise per cont of minerals other than plagioclase.
'Ihis unorthosite, whieh occurs not only in Cammin, but in Norway, Russia and other countries, constitutes a well defined rock type, and one which, not onlv on aceount of its peeuliar conposition, hat also owing to the poomous size of the masses in which it oecurs and the constamey of its character, occupies an important position in the petrographical serjes.

The anorthosite of this Morin area exhilits a great variation in strueture and eolour and in certain places even a considerable variation in composition, but is in mineralogieal composition a gabbro or norite free from olivine and very rieh in phagiochse. Hand specimens from about tifty different places in the area have been sliced and microscopically ammed, and the following description of these rocks is hased on the rosults thas obtained. The number of minemals which the rock contains is not large, the variations in composition resulting principally from their irregular distribution. The following minerals have been ohserved in the rock:-

Plagioclase	Muscovite and Paragonite	Epidote
Augite	Bastite	Zoisite
Hypersthene	Chlorite	Grnct
Ilmenite	Quartz	Zircon
Orthoelase	Magnetite	-
Hornblende	Apatite	
Biotite	Calcite	

Of these plagiolase, augite, hypersthene and ilmenite are by far the most important.

As above mentioned, Hunt adopted the name anorthosite for these
Pliagiordass. rocks on account of the great preponderance in them of plagioclase or anorthose. He considered the type which contains only felspar as the true anorthosite and estimated that three-fourths of the anorthosites in the Dominion did not contain over five per cent of other minerals.*

Like the other constituents of the rock, the plagioclase is quite fresh, showing but very rarely any traces of decomposition, and when it is not granulated (that is protoclastic or eateclastic in structure) presents

[^16]in hand specimens, almost without exception, a dark violen, hut more ravely a reddish colour. 'This colour is still plainly visible in thin sections, although maturally much fainter, and is seen to be eansed by the presence of an immenso quatity of minute opapue hack rents and extromely small opapue dark points, which give the mineral in thin sections a prealiar turhid uppearance. The latter probahly represent in part erosssections of the rofls, hat are more nsailly round or slightly elongated individuals of the same suhstance as the rods and oceurring with $t^{\text {b }}$ em. Vogelsang* estianted, in eonnection with his studies of the marthosite of Labralor, that these inclusions momont to from one to three per cent of the volume of the mineral, and goes so far as to say: "Le nombre des mierolites contenus dans un volume détermine est susceptible dritre apprecié avec plus de précision; les résultats toutefois s'écarteront beaucoup entre eux, suivant l'ephantillon qu'on aura choisi et le point dans lequel on l'aura examiné. Dans le labadorito violat figuré lo nombre de microlites s'éleve au minimum i 10,000 par millimetre cube ; mais pour autres variétés james et gris foncées le caleul m'a donmé un nombre au moins dix fois plus considérable de sorte qu'il y avait iei, dans l'espace borné d'un centimetre eube plus de cent millions de petits eristaux étrongers." The larger rods are surrounded by n zone of elear felspar. Some inclusions are tramsparent, and have a reddishbrown colour resembling hematite ; these appear in small seales which often show a somewhat distorted hexagonal outline. Objects which closely resemble the above mentioned robls are often seen, when very highly mognified, to be cavities, partly fillet up by the dark material of the roks. These inclusions are pretty uniformly seattered theough the felspar individuals, and not confined to certain places, nor present more abundantly in some places than in others, as is the case with the gabbros described by Williams or by Judd \ddagger Minute fluid inclusions may often be observed arranged in rows; in these there appears now and then a booving labble. In one or two eases small cubes were pereeived in them, and in one case it was thought that a double bubble conld be recognized. In two or three loealities the otherwise normal felspar contained but few of these inelusions, and consequently was ahmost white in colour. The nature and origin of these dark inelusions, which oceur so frequently in the felspar and

[^17]Th+ir 'harater.

I'vof. Jumlix 'xambination.
other constituents of the gabbro, in the most widely separated loealitios of the globe, lawe been frequently disenssed.

The inelusions are so minute that they cmant be isolated and chemically examined. Their form is not defined with sutlicient sharpness and constancy to emable their erystallographic character to be determined. Some investigators have endeavoured to gain somas information as to the nature of these minute bodies by observing their deportment when treated with concentrated aeids, but the resulte obs. tained are contradictory, Jadd (I. e.) fomm that they resist concentrated hydrochloric mid. Vogelsang (l. e.) treated a small piece of felspar from Paul's Island, Labrador, which contained them, with hot hydrochlorice mid for four days. He found that the acid lud strongly attacked the felspar, but could perceive bo alteration in the werdles, except that they had become slightly paler. Hapge,* however, found that in the same rock from Latmador all the brown scales were dissolved when trated with the acid for a time tow short to effect a decomposition of the felspur. He eomsidered that they were probably göthite,

They ne evidently some iron compound, and the peculiar colour of the transparent individuals, taken in comection with the fret that, as will be s. swn under certatil conditions, they muite to form small massee of titmic iron, leals to the belief that the view of Professor Rosenbusch is correct, namely, that they consist principally of titanic iron ore or ilmenite. The transparent ones have the form of the mineral known as micacoous titanic iron ore, which Lattermann \dagger found intergrown with magnetite in the nephelinite or the Katzenbuckel. The peculiar colour of this mineral, moreover, resembles perfectly that of these inclusions. The diverse results which the several investigators have obtained in the matter of the solubility of these inclusions may perhaps be explatined by the titaniferous iron ore in some hand specimens being richer in titanic acid than in that of others.

In this commection it must be mentioned that titanic iron wre is ; mineral which is constantly found in these anorthosites in Camada, often in enormous quantities, so that it is considered as particularly characteristic of them, while in the Laurentian proper the iron ores, in the greater number of cases, contain no titanic acid. Lateroix, \ddagger

[^18]who has investigated somewhat similar inclusions in cortain Norwegian gabbros, which, however, are double refracting, thinks that they are pyroxene, espeeially as they frequently appear to he grouped together, ferming larger grains which mus the determined as helonging to this species: "Las grains en question semblent avoir attioé it eux les particules pyroxéniques en suspension daus le feldspath at les avoir incorpories a leur masse." It is quite possible that these inclusions so often found in gabbros and allied rocks, consist of the hearier minerals of the rock, in somo cases pyoxene and in wthers iron ore, which were finely disseminated through the magma while the rock was erystallizing, or which, perhaps, separated, but as the several constituents crystallized. My best thanks aredue to Professme I udd for a small collection of thin sections of typical gabloros mat peridotites from the north of Scotland, which he has described and on which he has principally established his theory of "sehillerisation." An examination of somillerisa these revealed the fact that nowhere in them are the inchasions in the ${ }^{\text {timb }}$ plagioclase so munerous and well defined as in the Camadian morthosites. The peculiar arangement of these inchusions in the Seotish rocks along cracks, fissures, ife, which Professor Judd has described, and "'ich especially supports his theory of their secomdary origin, is not woserved in these Canadian rocks. Their inclusions are on the eontrary distributed thickly and pretty uniformly through the whole felspar individua, generally indeed throghont the felspar of the whole rock. They disappear, as above mentioned, only when it !....s been granulated. This remarkahle fact will be referred to again.

The uniform distribution of these inclusions does not prove that they are not schillerization products, for if the rock were completely schillerized these prolucts might be quite evenly distributed in it. Only in a few places in this sinfin area does the plagioclase exhibit that play of colours which is produced by these inclusions in the felspar from Labrador and elsewhere.

The plagioclase is almost invariably excellently twimed, according to both the a!bite and pericline laws, the two sets of twin lamellar crossing one mother at right angles in the thin sections. This twinning is apparently sometimes secondary and profluced by pressure, as for instance when the lamelle appear along a certain line or crack, or when they appear in places where the plagiochase individual is twisted.

In mosat cases, however, they are of primary origin. Frequently in 'rwiming the sections there are a few untwinned individuals of plagioclase which plakioclate. are probably cut parallel to $\infty \mathrm{P} x(010)$. But in certain handspecimens there is a considerable percentage of untwinned felspar,
resembling in all other respects the plagioclase which shows a well definell twin structure. In order to determir: whether in these cases two felspars were really present, separations by means of heavy solutions were made, on material from three hand soecimens from different localities, in the thin sections of which these untwimed felspars necurred in considemble puantity. Since, however, in a solution having a specifie gravity of $\mathscr{2} \cdot 67$ nll the constituents sank, these untwinned individuals camot be mere acid than labradorite, to which varicty the remaining felspar likewise belongs. Similar occurrences of untwinned plagiochase have been often ohserved. Huwes*, who investigated some of them, gives an analysis \dagger of an ordinary specimen of typical habradorite of St. Paul's Island and aulds: "Some of the anorthosites deseribed by T. Sterry Hunt in the Geology of Canada, 1863, were proved by his analyses to be eomposed of pure habradorite, and some sections of the same which he submitted me for examination were found to be composed of a multitude of small grains, none of which were twinned."

Cinmmition of the platioclian:

An examination was made of the well twinned plagioclase from two other localities. The first was a hand specimen of a typical anorthosite which is found five miles north-west of Ste. Adide in the Morin district. Its speeific gravity was between $2 \cdot 65$ and 267 , and it had, therefore, ulso the composition of an acid labrudorite, a fact confirmed by the values of the extinction-angle measured on a small fragment separated hy means of Thoulet's solution. The second was from the village of Ste. Adele itself, which lies at the corner of the Morin area. Heve the anorthosite is porphyritically developed with large plagioclase erystals which are sometimes as much at four inches long. These had the following extinction angles : on $\infty \mathrm{P} \bar{\infty}(010) 24 \hat{1}^{\circ}$ to 26°, on O P $(001)=6^{\circ}$. An analysis of the bluish opalescent plagioclase from the Morin distriet will be found in the table of analyses given on page 130 , ו; here again the felspar is n labradorite.

The phagioclase of the anerthosite from these six different localities is, therefore, in all cases labradorite, and there is every reason to believe that the felspar throughout the whole area helongs to this variety. Although it is generally quite fresh, yet a partial decomposition was observed in one or two cases, where it is altered to a mixture of ealcite, epidote and woisite, as mentioned in the description of these minerals. A peculiar variety of the rock, having a saussuritic habitus, was observed at New (Alasgow. This is an entirely local

[^19]oceurrence coimected with the small zones of disturbnnce which here run through the anorthosite. In thin sections of this rock, which is nhmost entirely composed of plagioclase, mixed only with in few small Alteration grains of iron ore, the plagiochse is seen to have undergone a peculiar prodict. alteration. The alteration proluct is a mineral usually having a fibrous structure, and oceurs in the plagiolase in little spots. It has the optical character of a bastite or pseutophite, and the decomposed felspar resembles, thercfore, to a certain extent that of Waldheim in Saxony, deseribed as pyknotrope ly Breithupt. In another hand specimen of the same rock from New Glosgow, the felspar is changed into a colourless minernl which forms small feather-like clusters. It shows magnificent polarization-colours and has a distinct cleavage to which the extinction is parallel. The mineral possesses the optica! properties of muscovite but may be pragonite, which cannot he distinguished from muscovite under the microscone, and is a more probable alteration product of plagiochase.

The augite is, with a few exceptions, gacrally present in much Augite: smaller quantity than the plagiechse, but is next to it the most ahmadant constituent. Rhombic pyroxene is present, however, in nearly, if not quite equal amount. The augite occurs in irregularly shaped grains of a light-green colour, which are either non-pleochroic or exhibit a scarcely perceptible pleochroism in greenish tints. In sections whieh are nearly parallel to the base, the typical eleavages characteristic of pyroxene are seen cutting each other almost at right angles. They are often intersected by a third more perfect rleavage which is parallel to $\infty \mathrm{P} \infty(100)$ us shown by its position relative to the plane of the optical axes. In the prismatic zone the mineral shows an extinction-angle from 0° to 45°.

In many sections of the pyroxene, there are brownish-black tables or small blaek reds which resemble very much the inclusions in the plagioclase, above deseribed. Where these occur they are frequently parallel to $\infty \mathrm{P}$ (100) ; in other cases insteal of being seatered throughout the whole individual they are contined to certain spots. The augite can often be observed to have grown around grains of iron ore. It is generally quite fresh, but in many hand speeimens is decomposed. The prolucts of decomposition consist sometines of a finely granular mixture of chlorite, and a rhombohedral carbonate with occasional quartz grains, the whole constituting a gray almost opaque mass. In other specimens, the augite is changed into a yellowish hastite, which then fills up not only the space originally occupied by the augite, but also penetrates into the small fissures of the
rock and forms thread-like veins and scales even in the felspar grains. In some specimens again it is converted into a mineral resembling serpentine. When both pyroxenes occur together in the rock, the nugite is generally intimately associated with the rhombic pyroxene.

Rhombie proxalie. Hypersthene

The rhombic pyroxene, which occurs so often in association with the augite, does not essentially differ from the latter as faras can be ascertained from its thin sections, either in index of refraction, in double refraction or in colour. It is however strongly pleochroic with the following colours:

$$
\mathfrak{a}=\text { red }, \quad \mathfrak{b}=\text { yellowish green, } \mathfrak{r}=\text { green } .
$$

The absorption is $\mathfrak{a}>\mathbf{0}>\boldsymbol{r}$, the difference between \mathfrak{a} and \mathfrak{b} being very sr:all.

Its rhombic character, was established by the following observations in the case of a hand specimen from the township of Chilton, in which the mincral occurred in fresh condition and in larger quantity than usual. Sections parallel to the base showed the two cleavages of the, prism which intersected almost at right angles, as well as a third more perfect set of eleavages, to which small black rods were often paralle!. Since the direction of the extinction was also parallel to this latter cleavage, it must be in the direction of a pinacoid. In convergent light, there was seen on the basal section a bisectrix, but not an optic axis as n the case of a monoclinic pyroxene. When a section in which an optic axis appears was examined, the above-mentioncd pinacoidal cleavage was found to be parallel to the plane of the optic axes. The pinacoid in question was therefore $\infty \mathrm{P}$, that is to say it cuts off the acute prismatic angle as $\infty \mathrm{P} \bar{\infty}$ does in the case of diallage. In sections which showed an optic axis and only one set of cleavages to which the small rods lay parallel, the cleavage was seen to be parallel to the plane of the optic axes.

In all sections which contain the mineral, many grains are found which show only one good cleavage to which the extinction is parallel.

In general it is like the augite quite fresh, in a few sections it appears, however, changed into hastite, and in a few others into a serpentine-like mineral. It sometimes contains the dark scales and rods so often found in hypersthene, but very often these are entirely absent. It is indeed a remarkable fact that in these Canadian rocks, the iron-magnesia minerals contain but a lew of these inclusions, while the associated felspar is filled with them, the exact opposite being true in the case of the gabbros and associated rocks of the Scottish Highlands, which have been described by Prof. Judd.

Hornblende does not occur in the anorthosite of Morin exeept in a Hornhtemde few places near the contact with the gneiss. In these cnses it is always found in intimate associntion with the pyroxenes, in the form of irregularly defined grains generally about the border of the gramulated masses of the pyroxene. It occurs ns a general rule only in very small quantity. It is usually green in colour, lut is often brown. It s^{5} ws the clearages, the small extinction angle, and the characteristic peochroism of the species. In a hand specimen from the neighbourhood of the contact on Lake l'Aehigan, the maximum extinction-angle was found to be 15° and the following pleochroism was observed:

$$
\mathfrak{a}=\text { greenish yellow, } \mathfrak{b}=\text { yellowish green, } \mathfrak{r}=\text { green. }
$$

The absorption was $\mathfrak{r}>\mathrm{b}>\mathbf{a}$.
In another hand speeimen, quite close to the contact, about six miles anth of New Glasgow, a brown hornblende was likewise found in small amount. The extinetion-angle was 18 , with the following pleoe noism :
$\mathfrak{a}=$ light brownish yellow, $\mathbf{b}=$ deep brown, $\mathrm{r}=$ deep brown, with the absorption us before, $\mathbf{r}>\mathfrak{b}>\mathbf{a}$.

It also oceurs in the peculiar roek whieh has been referred to above as a gabbro, whiel was found in a number of places between the true anorthosite and the gneiss.

Biotite never oceurs in large amount, but is present rather Biotite. frequently in very small awount as an accessary constituent. It is usually found with the iron ore or with the hypersthene, and shows characteristic brown colour, strong pleochroism and parallel extinction.

The occurrence of muscovite or paragonite has been referred to in muscovite or describing the plagiochise. paragonit"

Chlorite oecurs oceasionally in small quantity as a decomposition Chlorite. product of pyroxene or biotite.

It is doubtful whether quartz ever occurs in the anorthosite as Quartz. a primary constituent. It oecurs, however, in small amount in the form of little grains scattered through the anorthosite on lot 36 of range VI. of the township of Wolfe, near the contact of the anorthosite with the surrounding gneiss. Again on the west side of the Achigan River, near New Glasgow, it is oceasionally found in the anorthosite, and has the appearance of a primary constituent. Here again, however, the oecurrence is near the contact with the gneiss, and it is ecrtain that some secondary quartz is , resent as a decomposition pro$7 \frac{1}{2}$
duct of the pyroxene, so that the quartz which has the appearance of a primary constituent may alse, be of secondary origin.

In the gabbro which occurs as above stated in many phaces between the typieal asorthosite and the gueiss, quartz is quite freguent. But in this rock many facts point to the secondary origin of the quart\%. It often occurs, for instance, in more or less sharply defined veins, made up of large individuats. When it aceurs in the form of separate irregular grains, those extinguish uniformly, although they are often more or less fissured, but they are by no means so mueh broken as might be expected if they were primary ingredients in view of the extremely broken condition of the felspar and the other constituents of the ruek.

Ihmenite and magnetile:

In nearly every seetion of anorthesite, some irregularly shaped grains of an opaque black iron ore are seen. These are usually few in number. The quantity of iron ore is considerable only in a few places, and as in these the percentage of pyroxenc in reases in the same proportion, the rock here assumes a very dark colon". so that it is often taken for an iron ore. These portions of the anom site rieh in iron ores are only few and local, and they pass over into the normal gabbro of the area. which, as above mentioned, is very poor in iron ore.

If these iron ore grains are examined by reflected light, they are found to be black, and in a few cases they ean be seen to be partly ehanged into a gray decomposition product, evidently a variety of leueoxene. This circumstance proves that the mineral contains titanic acid in comsiderable amount.

In three hand specimens from widely separated parts of the area, an intermingling of two iron ores was distinctly seen. In that from the township of Wexford, lot 7, muge I., one of the above-mentioned localities where the anorthosite is rich in iron ore (Section No. 398), careful observation in reflected lieht showed the iron ore to oceur partly as in bluish-black coarsegrained variety, and partly as a brownish black finely granular variety, both being irregularly intermingled and distinguishable only by reflected light.

When the section was treated for about half an hour on a water-bath with warm concentrated hydrochloric acid, the coarsely granular variety was entirely dissolved and the acid became strongly coloured with iron, while the finely granular variety was apparently not at all affected. There is here evidently an intergrowth of magnetite with ilmenite or at least with a titaniferous iron ore.

In another hand specimen (from the neighbourhood of Lake Ouareau) a simihar intergrowth was observed ; the grains had a landed appearance in reflected light, one variety crossing the other in a single or double set of interrupted bands. When the section was treated with cold concentrated hydrochloric neid for 48 hours, no effect was produced; but when treated with warm concentrated acid in a water-bath, one variety of iron ore was dissolved as before, while the other again remained undissolved. In this case the intergrowth is probably parallel to the face of an octahedron or rhombohedron. A similar intergrowth has been described in the iron ore of the Carrock Fell

Intcryrowth of different gablro, and in the nephelinite of the Katzenbuckel,* except that in the latter ease, the titunic iron ore occurs in the form of micaceons titanic iron ore, not as the coarse and opaque variety found in the above-mentioned rocks.

It has been the invariable experience in Canada, that the large iron oro depasits common in these anorthosite roeks, contain so much titanic acid, that it has been impossible hitherto to work them profitably, Recent experiments, however, lead to the hope that in the future some of them at least may be smelted with profit. (Appendix II.) In order to determine whether the iron ore which is disseminated in small grains throughout the whole rock was also rich in titanic acid, the iron ore of three hand specimens of the anorthosite from ditferent parts of the area was separated and tested. In every case the mineral was but faintly magnetic and gave a strong titanit acid reaction.

Two speeimens of iron ore from the pegmatite veins, which cut Titanimu in through the anorthosite and the gneiss at the contact of the two formations, west of St. Fitustin, and therefore do not helong to the anorthosite, showed strong magnetism and gave only a faint reaction for titanie acid. The iron ore bed, a short distance west of St. Jérôme, in the orthoelase gneiss, also consists of magnetite and contains no titanic aeid. We therefore find that these investigations confirm the conelusion that the iron ore of the anorthosite is very rich in titanic acid, while the iron ore of the Laurentian gneiss generally contains no notable quantity of this substance.

In the variety of anorthosite very rich in iron ore from lot 7, range Jron ores of I., of Wexford, the evidence obtained from the thin sections, shows that the iron ore crystallized later than the pyroxene, as it can be observed frequently completely inclosing individuals of this mineral. The same fact was noted in the case of the pyroxene granulites. (Seo page 79 r.).

[^20]Pyrite A tew small grains of pyrite often occur in the thin sections of the anorthosite. They are genemlly found associated with the iron ore.

Apatitn. Apatite is seldom observed in the morthosite. When it does occur it is in the form of more or less rounded grains. It is more frequently found in the varieties rich in iron ore in the township of Wexford and other localities, than in the normal anorthosite.

Caleite was found in but two hand specinens. One of these wis fresh, and contained a small mmount of calcite which might possibly be a primnry constituent. The other was from New Glasgow, and in this the calcite appears together with zoisite, epidote, etc., as a decomposition product of the plagioclase.

The only Iocality where epidote occurs is also near the village of New Glasgow. It is found in several sections of the northosite from this place, along with chlorite and quartz, as a product of the alteration of the pyroxenc, and as above mentioned with calcite and zoisite as a product of alteration of the plagiochase. In one or two places it also occurs in small bands, cutting diagonally across the anorthosite, following the line of small faults. The epidote is everywhere secondary.

Garnet does not occur as a constituent of the normal anorthosite, but is often found near its contact witl the surrounding gneiss. It has a pinkish colour, and is seen under the microscope in small irregular masses, which are often mixed with or completely surround the grains of iron ore. In the sections of the variety of anorthosite rich in iron ore from the township of Wexford, lot 7 , range I. (and from other places above mentioned), a pale-pink garnet occurs forming a small zone of uniform breadth around every grain of iron ore or pyroxene where these would otherwise come in contact with the plagioclase. Between the pyroxene and the iron ore there is however no garnet. It is quite isotropic and has grc wn out from the iron ore or pyroxene into the felspar, against which it is bounded by sharp crystalline outlines. These zones of garnet are analogous to the zones of actinolite and hypersthene around the olivine of the anorthosite from the Saguenay River, and those which have also been described in olivine gabbros of many other localities.

Zircon is not fic and in the normal anorthosite, but it occasionally occurs in this rock near its contact with the gneiss. It is seen only in small quantity, and especially in the peculiar contact variety which occurs, as above mentioned, in some places between the anorthosite and the gneiss. It was observed in this in many localities. It

F is the form of small stout prisms, always with more or less rounded efges, which are churncterized hy a parallel extinction, high refractive index and strong double refraction.

Spinel was observed in a single hand specimen, in the form of small spinel. rounded isotropis grains, deep green in colour, occurring as inclusions in plagioelase and pyroxene.

The Strurture the Morin Anorthosite.

The macroscopie structure of these anorthosites, as well as that of most structure of of the crystalline rocks forming the Laurentian system, is best sturlied on the great glaciated surfaces of the roches moutonnées, which protrude through the drift in all directions. On a freshly fractured surface, or even on a smoothly ghaciated surface which has been protected from the weather, comparatively little of the structure may be seen ; but when the glaciated surface has been exposed, during the interval which has elapsed since the disuppearance of the ice, to the etching action of the weather and the dilute selution of carbonic acid known as rain water, the structure of the rock is brought out in in wonderfully clear and striking manner, just as the structure of wrought iron or of various alloys is brought out by the treatment of their polished surfaces with the stronger acids. Such weathered surfaces, moreover, being many square yards in extent, enable the structure of considerable masses of the rock to be determined and the relations of different structures to one another to be clearly seen.

If any large weathered surface of the anorthosite, such as is found (ilaciated in the roches montonnes anywhere within the Morin area, be surfaces. examined (leaving out of consideration for the present the arm-like extension and that part of the main area adjoining it), it will be noticed that the rock, which is eoarse-grained and of a deep violet colour, has not that regularity of structure which we see in a typieal granite, hut presents a more or less irregular structure. This irregularity is sometimes scarcely noticeable, but is at other times striking, and is due to the presence of the bisilicates and iron ore in larger amount in some parts of the rock than in other parts. The portions richer in bisilicates may take the form of large irregular-shaped patches occurring at intervals through the rock, or of many sinall patehes occurring abundantly in certain parts of the rock which elsewhere is nearly free from them. In some cases these are arranged structure so as to form irregular wavy streaks instead of patehes, which sometimes take a rudely parallel direction, giving a sort of strike to the rock, but which in other places are quite irregular in
arrangement. Between thase patches or streaks rich in bisilicates, and rather batly detined against them, are portions ia the roch which are very poor in or often quite free from bisilieates. The structure is well represented in Plate VI., which is a photograph of a large anorthosite boulder on lat 5 of the uinth range of Chertsey. Here the iron ore and bisilicates are nggregated twgether in invegular-shaped more or less rombled portions of the rock, while the remainter of the rock is uhost absolutely free from iron-magnesia constituents. Of these portions containing the bisilicates and iron ore, these constituents form about one-third of the rock, the rest being plagioclase. Large individuats of phgioclase, irregular in shape and which will be referved to again, oceur quite abundutly in the parts of the rock free from bisilicates, but are very rarely fomm in the patches containing the hisilieates. With the exception of the larger individuals of phagiochase, the rock is uniform in grain throughout. The pertions containing the bisilicates weather more radily than the rest of the roek, and thas leave hollows on the wathered surfaces, while when the patches are elongated, as is usually the ease, irregular samsage-shaped cavities result. In the occurrence represented on Plate VI. it will be noticed that one of the masses rich in bisilicates and much larger than the others, forms a rude band aeross the lower portion of the boulder. In such eases, the hisilicate individuals are arranged with their larger axes in a direction rude' y parallel to the band.

Variation in relative molount of constiturnts

Often in connection with this irregularity in the relative proportion of the several constituents present in the rock, bot often quite independent of it, there is a rapid and frequently abrupt variation in size of grain from place to place, certain spots or streaks being, ats before, tiner on coarser than the mass of the rock. More on less well pronomeed irregnlarities, due to one or both of the causes above mentioned, are met with in all the anorthosite areas of Canada which have been examined, but are not peculiar to them, being found in gabbros and allied basic plutonic rocks in various other parts of the world. Thus Dr. George H. Williams in his paper entitled The Gabbros and Associated Hornblende Rocks oceurring in the neighbourhood of Baltimore, Md., says on page 25: "The most striking feature in the texture of the unaltered gabbro is the repeated and abrupt change in the coasseness of the grain which is seen at some localities. It was undoubtedly caused lyy some irregularity in the cooling of the original magma from a molten state, for which it is now difticult to find a satisfactory explanation. The coarsest grained varieties of the Baltimore gabbro oceur in the neighbourhood of Wetheredville and there these sudden changes in texture are most apparent. Irregular patehes of the coarsest

Plate Vi--ANorthosite, showing segrefiation of the dark coloured constitleats in
sinds lie emhedded in those of the finest grain without any regard to order. In other cases a mory or less promonnced banded structure is proluced by an alteration of hyers of different grain or by such as have one constituent developed more abumantly than the others. Such bands, are not, lowever, purallel, but vary considerably in direction and show a tendency to marge into ome another as though they had been produced by a motion in a liquid or phastic mass."*

Similar coarsegrained patches are sometimes seen in the gabbro diorite quaried at kihhengromd, near Liberstadt, in Hessen, in a rock which is othorwise perfectly massive and pretty regular in grain. Other similar cases might he eited.

One of the most remarkable occurrences, mad one especially notewortly as showing how a transition takes phace from a perfectly normal and massive rock, through one in which these irregular coarse-grained patches are developed, into one showing an imperfect banding such as is sometimes seen in anorthosite, was observed in the great Sagnemay anorthosite area, along the comrse of the River Shipshaw, which runs River into the suguenay from the north about soven miles above the shiphaw. town of Chicoutimi. Along the stremn there are at frequent intervals immense smooth roche moutomme exposures of nnorthosite, etched by the weather and lmrnt clear of all vegetation by forest tires, thas presenting excellent surfaces for the study of the rock. The series of exposures in question is bounded on the north by a great dyke of gubho, about a half a mile wide, which cuts across the morthosite, and extemls down the shipshaw a distance of eight miles in a straight line to n point three miles from its union with the River Siguenay.

At the inst-mentioned point the rock is comsegrained, absolutely massive over large exposures and regular in grain. This continucs for about half a mile, when ill defined patches which are very coarse in grain appear in the rock. In the coarse-grainel portions the individuals composing the rock measure an inch or even more neross, while in the mass of the rock they are much smaller. Both show a well ma. ked ophitic or diabase structure, in which the plagiochase occurs in lath-shaped individunls, the augite filling in the intervening spaces, a Change in structure which is occasionally seen, but is very unusual, in the anor- structire. thosite. This continues for rather over four miles, with in places a further irregularity due to a great variation in the amount of the several constituents present in different parts of the rock, the rock over considerable exposures being all plagiochse, while elsewhere it is

[^21]rich in diallage, which sometimes oecurs in masses an much as a toot and a half it diameter. Large masses of almost pure plagioclase or diallage :"e thus fomed in the rock.

After an "ntorval of a mile, where the rock is concealed, there is

Nimatenlor
hamlendrowhe another series of expmares, extending over a mile along the river, in which, as before, the ophitic strocture is well developed, but in which the roek is irregularly strenked or londed owing to the faet that the want of uniformity in grain und somposition, deseribed above, is no longer displayed in the shmpe of irrgular patehes, these having been pulled out into long wasy strenks, sibular to those described above by Dr. Williams. Fiurther down the river these streaks hegin to nssume a rudely paralkel direetion, giving the rock a determinable strike, while the ophitic structure gradually disappenrs. I anse is thus presented, where an undoubtediy eruptive roek, fuite massive and with well pronounced ophitie structure, gradually passes over into one whieh is bunded, the lnmels being morked by great variations in size of grain and in relative proportions af constituents; and it thas becones "vident, that the rude banding which is a common strueture in certain anorthosite areas, and which was formerly supposed to represent a more or less obliterated stratification, is really a structure developed by movemeats in a truly igneoms and massive rock.
 any of the anorthosites in the men embraced by the present report are carefully exmmined, this streaked or inegularly hatud structure is seen to be necompanied in most, if mot in all eases, by a peculiar breaking or granulation of the constituent mincrals of the rock. This is often heautifully dispheed by the large weathered surfaces. The accompanying sketch (Figure 9), taken from m exposure in the Morin area near Ste. Marguerite, shows the appearance presented in one of these cases. Here the banding is distinct, but in many parts of the area, even where no banding is seen, the rock presents this peculiar brecciated structure, fraghents of plagioclase and of other constituents of the rock being imbed ed in a speeies of groundunss made up of smaller grains. As plagiolase in most cases preponderntes almost to the exclusion of the other sonstituents, the fragments are usually of this mineral, and, although occasionally showing an approximation to good crystalline form, they we almost invariably quite irregular in shape, often nossessing absolutely tnttered outlines. The groundmass of smaller grains also consist; of plagioclase. In some places these fragments constitute the greater part of the rock; elsewhere they are present very sparingly and the groundmass preponderates. The farger individuals can, moreover, be frequently seen in the very act of
breaking up, the several fragments having shifted their position but very slightly; and in such cuses it is often evident that the breaking is not of the nature of a simple crushing, for from the same individual pieces will he found breaking off in varions direetions quitos at haphuzard.

Figure !. - Anorthosite showing a hereciated structure, near Ste, Margaerite, Township of Wexford. Fragments of Plagioclane and Hypersthene in a gromuluasw of the sathe minerals in a granhlated condition. The sketch reprenents a wideh of $!$ fect.

When examined under the microscope in thin seetions, hardly a Miernsempal specimen of amy coarse-grained variety can be obtained from any part tharacter. of the area which does not show at least traces of this elastic or granulated structure ; and if a series of specimens is studied, every step can be traced in the passage from the massive rock, showing the merest traces of this strueture through intermediate breccia-like stages, to morthosite consisting entirely of broken grains, perhaps with mere remmants of the original largu individuals. The three aceompanying mior r-i hotographs illustrate suceessive stages in this granulation. (Plate VII.) They are taken from three thin sections of anorthosite from different parts of the Morin area, photographed in polarized light between erossel nicols and equally magnified, the enlargement in each ease being 22 diameters.
(A.) This section, from the large exposures about five miles north. Photugra, ix west of the village of Ste. Adele, in the township of Morin, tefore of thin sections of anorthosite.
referred to (p. 96), represents the massive anorthosite, showing only the merest traces of gramulation on the left of the field. The size and shape of the constituent individuals of plagioclase and their polysyuthetic twinning are well seen. The rock is composed ahnost exclusively of this mineral, the individuals of which are neither bent nor twisted, and no strain shadows are to be observed.
(B.) 'In this section, which was prepared from a specimen eollected about three and a half miles north-east of White Lake, in the front of the township of Chilton, a distinct breaking or gramulation of the plagioclase can be observed, especially in the lower portion of the slide, white the same process can be elsewhere seen, though less well marked. The large plagioclase individuals no longer meet along clear well defined boundary lines, but are irregular in shape, eracked, and separateal from one nunther by a mosaic of broken graius. Strainshadows, t wisted twin lamelle and other evidences of pressure are well shown. The roek shows no distinct foliation or banding.
(C.) The third section shows the appearance presented by a highly granulated variety of the anorthosite under the mieroscope. This specimen was obtained from the arm-like extension of the anorthosite mass before mentioned, near its western eontact with the gneiss, on range XI. of the township of Rawdon. In this section, about onehalf of the field is occupied by broken grains of plagioclase, while in the middle is a large plagioclase individual in process of destruction. A line of granulated material is being developed in a longitudinal direction through the large crystal, making, as is usual, an angle of about 20 with the lines of twinning, and which would, if continued, cut it in two; while about its edge little fragments of the ; lagioelase can be seen in the very aet of breaking oft-first a strain-shadow

Nhow stage. of granulation. (excellently seen on the upper edge of the large individuai) appearing, then a curved cack extending in from the edge of the crystal, and finally the breaking away of a small piece of the mineral, leaving an irregular indentation. The appearance is precisely that which the mineral would present if by means of a pair of small pincers little pieces were being broken off the edge. The strain having been relieved by fracture, all evidence of pressure disappears in the broken grain. And if a thin section were composed of broken grains alone, it would in most cases be impossible to determine that these had resulted from the breaking down of larger individuals. This rock is excellently foliated, owing to the finely granulated material, resulting from the breaking up of each large individual, arranging itself in the shape of a very flat lens about the erystal remnant from which it

PI.ATE VII.-MICROPHOTOGRAPHS, SHOWING THE PROGRESSIVE GRANVLATION OF TIE MORIN ANORTIOSITE ENHER THE INFLUENCE OF PRESSURE. $\times 22$.
was derived, which lens, of course, lies in aplane at right angles to the pressure, and in section appears as a long slender tail of broken grains extending from tho remnant in either direction. (Fig. 10.)

The pyroxenes, rhombic or monoclinic, when present in the rock, undergo a precisely similar process of granulation with the formation of similar tails of broken grains.

Figure 10.
metimes large individuals can be observed which have broken into two or more pieces during the process of granulation, the lens of lroken grains thus inclosing severnl fragments more or less separated from one another, which from their respective outlines can be seen to have been originally one. (Fig. 10.)

A very remurkable fact in this connection, which has already been briefly referred to in deseribing the mineralogical composition of the anorthosite, is that the large erystal fragments of plagroclase have a deep violet colour, while the gramulated plagioclase is white. This contrast is excellently seen cit ier on the weathered surface (Plate VIII.) or when a thin section is placed on a sheet of white paper, and is due to the fact that the minute dark-coloured or ' lack inclusions, which abound in the large individuals, are absent in the broken material. They seem to have aggregated themselves together into little grains of titanic iron ore, which oecur in the granulated plagioclase, but which on the other hand are absent in the large individuals. So distinctive is this contrast of colour, that when a thin section containing plagioclase in both forms is placed under the microscope, it is possible at once to predict from the colour alone, just what portions will show granulation and what portions will not, before the atetual structure has been revealed by the agency of polarized light. This might seem at first sight to indicate a reerystallization in the case of the granulated portions of the plagioclase, but the facts do not seem to support this supposition. The felspar, during the process of granulation, does not at any rate alter in composition, but merely breaks, and t^{\prime} arough the loss of the dark inclusious becomes lighter in colour.

No investigations searing on this particular point have been made on the anorthositr, of the Morin area, but the farthas been established

Norcharge in compmition of che • 1 m plagioclas. whon ynamblater.

White

 anorthowitr.Gramulated varifties on vides of intrusion.
by the study of precisely similar anorthosites from several other areas. 'Thus it was found in the case of the northosite of Mount Williams, on the River Shipshaw, in the Siguenay area, that the large darkcoloured individuals and the white gramulated plagiuclase, were both labradorite, rliffering in specilic gravity by only 015 , the dark felspar heing maturally a trille heavier on aceount of the inelusions. Again, iuanalyses NIV., XV.. NVI. (see p. 130,1 are given the results of an examination hy Dr. Sterry Hunt, of the large plagigelase individuals and the finely qranulated hase of an morthosite from tho Chatean Richer area. lboth are in this case more acid, appronching andesine in composition; but here again in emmosition the are identical. The same ciromostance has been contirmed by Leeds in the atse of the anorthosite of lissex County, New York, and by Sachsse in a thasergabloro tron Rosswein in saxony*, although in these two latter cases the material analyzed was not quite pure.

Frepuently, is has been stated, the production of the granulated material from the arge individuals can be actually observed; and in such cases it ean be seen that so soon as the fragment is separated from the large individual its colour disappears. The granulation, it would ajpear, in some way gives freer play to the forces which bring about the concentration of the material of the dark inclusions. When the anorthosite is composed entirely of the finely gramularmaterial, if it be almost entirely plagioclase as is usually the case, the rock ean hardly be distinguished, especially on the weathered surface, from it white erystalline limestone.

This peculiar varicty of white granular anorthosite, with comparatively few of the large itadividuals remaining, is also largely developed in the Saguenay and other of the anorthosite areas in the province of Quehee, and is desciised from the area in Essex County, New York, by Leeds, and from Labrador, by Vogelsang, as well as by other observers, it being found apparently to some extent, in most of the localities where anorthosite is largely developed.

In the Morin anorthosite, and the same is true of the Saguenay area, the most granulated varicties are found near the sides of the intrusion, especially on the east side, as if the pressure had been exerted from that direction, but more or less distinct evidences of granulation can be seen throughout the entire area. The white granulated anorthosite forms the greater part of the arm-like extension of the Morin mass,

[^22]

Phate VIII－（iRANULATED ANORTHOSITE，W＇ITH INCLUDED RENANANT＇S OF＇THE ORIGINAL，ROCK，RIWIERE AUX SABLES，TOWN゙SHIP OF JON゙』UIERE，りUE．
（HEOL＇CEO ONE－IT．SI．F．）
protruding through the drift in all directions in the form of hundred of smooth white hummoeks giving a striking appearmee to the landscape, as for instance, thont the village of New Glasgow; und this district being easily accessible by ronds and milways, the structure and character of the rock can here be studied with comparative ease. Further, it ean be observed that every where in this arm-like extension and in almost all its occurrences elsewhere, this white granulated anorthosite is more or less distinctly foliated, owing to the arrangement of the bisilicates and iron ores in more or less distinetly paatlel lines or streaks. It is often quite evident that these are nothing more than the rounded patehes, ricl. in bisilicates, descrithed on p. 104 , as occurring in the massive anorthosite and represented in Plate VI., which, owing to a movement in the rock, have been drawn out in one direction. The irregular-shaped patehes, differing greatly in size of grain, deseribed as oceurring in the massive roek, are also here represented by elongated streaks of similar character. This foliation is best seen where bisilicates and iron ore are comparatively abundant. When, as is sometimes the case, the rock is almost free from these constituents and all the plagioelase fragments havo been destroyed, it assumes a nearly uniform granular eharacter, and no trace of foliation can be observed. The foliation, however, is usually distinctly seen, and in the arm-like extension runs parallel to the direction of the arm itself, that is to the strike of the gneiss, which it penetrates. Along the western border of the arm, the strike is exceedingly regular and remarkably well developed, as at New Glasgow, but is especially well seen along the same contact further north on range XI. of the township of Rawdon, on the road between the anorthosite. villages of Chertsey and Rawdon. Here the rock is seen to have a remarkably regular schistose structure, due to the alternation of thin layers of pure plagioelase with still thinner ones of pyroxene. The pyroxene bands inight more properly be called leaves, as they are very thin, being frequently represented by mere parallel lines in transverse sections. When examined under tue microseope, in thin sections or weathered surfaces, both they and the plagioclase layers are found to contain small cores or remnants of large individuals with trails of grains extending from them in either clirection as before described. These give rise to the perfect foliation and the progress of the granulation is seen in a most astonishingly perfect manner, the cores being in the very act of breaking up (Plate VII.). These cores, ean occasionally be seen to be the remmants of very large individuals, which have sheared almost in the direction of the foliation. They are thus often long and narrow, some having been observed as much as twelve times as long as they are wide.

Origin of several structures.

The question of the origin of the several structures described next prosents itself. There is every reason to believe that those structures which have been described as oceuring in the massive morthosite, mamely the irregular:ty in size of grain and the more or less irregular distribution of the several constituents through the rock, are original structures produced before or during its solidification. These irregnlarities, frequently sem in intrusive rocks, are certainly not the results of pressure : and the circumstance that the streaks or irregular bands, when present in the otherwise massive rock, assume no definite direetion, hut twist about as if owing to tho movements in the roek while in a pasty condition, indieates that they have been produced by movements before the rock beemme solid. The unequal distribution of the constituent minerals in the rock, must have resultel either from irregularities in the composition of the original nagma, or from processes of segregation at work in the magma during cooling and erystallization. The irregularities in the size of grain may be due to differences in the rate of cooling, differences in amount of mineralizer present, or to other causes with which we are at present unacquainterl. The angular character of certain of the coarse-grained portions of the rock which are found embedded in the anorthosite of normal grain, would seem to indicate that these hat erystallized where cireumstances were favourable to the development of coarseness of grain, and had been subsequently broken up and imbedded in a portion of the magma which crystallized in more tine-grained torm.

Noverments sulnsequent to soliditication.

On the other hatad, the granulation of the coarsely erystalline massive anorthosite, usually with the coneomitant development of a more or less distinctly foliated or sehistose structure in the way deseribed, is undoubtedly due to movements in the rock, resulting from pressure which aeted subsequent to its solidifieation, for, as has been shown, the granulation begins to make its appearance in the massive erystaline rock itself. Under the influence of pressure, the massive rock gradually gave way, and, in the movements which resulted, attrition gave rise to granulation. Moreover, wherever these movements continued longest this granulation beame most complete, until finally the last remnants of the larger individuals disappeared, and in the case of a pure anorthesite, a more or less evenly gramular rock resulted. In the anorthosite, however, the remnants of larger individuals are seldom or never entirely absent, and in the great majority of cases the amount of interstitial material is quite small. Even when the granulation was most complete, the roek did not erumble into an incoherent powder, but remained as hard and tough as ever, the grains, being unable to separate from one another on account of the great pressure to which
they were subjectef, rolled over one another, remaining ulway within the sphere of eohesion.

In this way, any portions of the origimally massive roek differing in grain or composition from the rest, would be represented by bauds, streaks or even lines in the resulting granulnted morthosite; very coarse-grained portions heing represented by bands or streaks contuining large phagiolase remanats, fine-grnined portions being represented by hatads or streaks where these are very small or even absent, while corresponding differences would appear in the ense of areas differing in mineralogical composition.

These foliated or sehistose anorthosites then, were produced by move- schimane ment in a massive igneous roek, and are not altered sediments, the murthwite structure which they present being, as has been shown, n eataelastic sumbimetors. structure.

But although this granulation and its aceompanying phenomema are rertainly the results of pressure to which the rock has been subjected, the effects of this pressure are in certain respeets quite diflerent from those usually observed. As a general rule, in the case of schistose structures produced by shearing, of which so many excellent examples have been describet by Lehmann and others, the breaking up of the constituents takes place principally along certain definite lines. Along these lines or bands, whiel are sometimes quite wide but which at other times sink to almost microseopic dimensions, the rock is reduced to a comminuted state, formmg, if not subsequently compacted, the so-ealled "rutschmehl" of Heim, Betwern these shearing planes the rock presents comparatively little evidence of pressure. Where, moreover, great movements accompany dynamic oetion, and especially along lines of motion, or if these be not present, then throughout the whole rock, certain peeuliar alterations in the minerals constituting the rock are found. Of these may be especially mentioned the alteration of pyroxene to hormblende, and of plagioclase into a mixture of zoisite, albite and other minerals known by the name of sanssurite.

So far as can be ascertained, no undoubted oceurrence of a sheared gebbro or allied rock has been recorled, where hornblende either compact or in the form of uralite and saussurite have not been formed. In a paper on the sheared gabbros of the Lizard in Cornwall,* in which a perfect foliation has been induced by pressure, giving rise to rocks closely resembling the foliated anorthosites of the Morin area, except that the mineralogical changes above mentioned have taken

[^23]place, Toall says "there is wo reason to believe that foliation of the kind referced to in this communication ean take place without molecular re-arrangement."

Pranliariaiom ill atriction of grabilatell nunthositus.

On the other land, the anorthosites possessing this cutaelastic strincture present the following peculiarities:-

1. The cataclastic structure is not developer along certain lines, but may be observed more or less distinctly throughout the roek, heing, however, most marked towads the sides of the area, and esperially toward the eastern side.
\therefore. Where it occurs there is neither sanssurite nor uralite. However granulat the plagioclase may be, bo trace of saussurite can be seen. In like manner, no uralite is detected, even thongh the grannlation of the pyroxene is so far alvaneed that only the smallest remmants of the original individuals remain. Now and then some small grains of compact hornblende occur with the pyroxene in the neightrourhood of the contact with the gneiss, exactly as in many normal gabbros. Bat even these are ly no means invariably present; the tinely folinted rock, consisting of altermate layers of umaltered pyroxene and plagioelase, while remnants of the large individuals of both constituents, from which the gramulated portion has originated, are still seen. The only place in which saussurite occurs is, as before mentioned, near New Glasgow. It forms here, like epidete, strings atud veins which have no relation with the foliation of the rocks, but represent small crushed zones, which have originated at another much later period. These very occurrences show most distinctly how different the products of the nomal dymanic agencies are from the structure now under consideration.
2. In the main portion of the area, the granul. is not accompanied by foliation, and in the large weathered surfaces plagioclase individuals can be observed which are in the att of breaking in every possible direction. In the arm-like extension from the south-east part of the area, where the rock, as already mentioned, is often listinctly foliated, this foliated structure originated, as shown by a careful study, from the movement in one direction, of a mass whose ironmagnesia constituents were irregularly distributed, being especially concentrated in some places. (Plate VI.) The more or less rounded spots where the iron-magnesia constituents are abundant, became pulled out into irregular, ill-detined streaks, and parallel to these run portions of the rock, which still contain in large numbers fragments of plagioclase individuals.

These phenomena have been ansed by movements in the mek. These movements probably took phace under the following eonditions:-

Hmiler w hicels fluwerlionts

1. When the roek was still so far hementh the surface of the earth and so weighted down by the overlying roeks that hroaking and shear. ing with the movement of the resulting masses was impossible. 'The altomions in the character of the mass were probalily induced very slowly, the constituents beeame gramulat and the small broken parts moved ome wer another. The granulation progressed with the duration and intensity of this movement up to a certain point. Such a motion would present certain resemblances to that of a very tough pasty mass.
\therefore While the rock was still very hot nut perhaps even nem its melting point. This would explain why the pyroxene, which, according to the experiments of Fonque and Michol-Lay, represents the stable form of the molecule at a high temperature, is not changed into amphibole, which represents the more stable fema at a low tomperature, Whit vers as is usuatly the case in erushed amd pulverized moks. It is perhaps hot. owing to the same cause that monssurite is formed ; still, the conditions necessary to the formation of these minerals are so little understood that opinions on this point cannot he ventured upon as yet.

A clastic structure in many respects similar to that atove deseribed, in which plagieclase grains are twisted and broken or even suffer peripheral granulation, oceurs in certain speimens of the theralite of the Montreal Mountain, which alse present a streaked appearance marked by variations in size of grain. Here it must also be regarded as evidence of motion, but of motion which in all probability took place before the complete solidification of the rock, being an instance of what Brögger has termed "protoclastic structure," for the field relations of this old volcanic plug show that it has not been submitted to any great pressure since the mass solidified. This structure, however, is only developed very locally in the rock, and in many sections no trace of it can be found ; nevertheless its oscurrence here is of interest showing as it does that the mere detection of such a structure prosemastic here and there in an igneous rock is not indubitable proof that the strueture. rock has been submitted to great pressure and has been crushed.

It would thus seem that the clastic structure described as occurring in these anorthosites occupies, in a way, a position intermediate between the protoclastic structure of Brögger and the cataclastic structure commonly observed in sheared rocks.

In the Morin area, then, we have a great intrusive mass of anortho- Risumi: site, or gabbro very rich in plagioclase, breaking through the Laur81
cutinn，cutting off successive horizons，inchading pertions of the gneiss， sending an apophysis into it，and in pome places bounded by a zono of rock which exhihits many characteristies of n erontate product．This mass in most places shown irregularitios in size of grain and in seme places a sereaked or irregularly banded atructure，while in one part of the above－mentioned nuophysis it is wall folinted，which foliaten structure there is remson to belinve is a neemdary ome．It certainly domes met represent a partially obliterated bedding ay tho ontier observers seen to have believed，while the other supposed evidences of the existnnce of a great overlyi：g sedimentary series，of which it was mupposed to form part，are also wating；the gnoiss and limestone with which it was thought to be interstratified，really belonging th，the Grenville serien，while the apparent interstratificatien of the murthosite is due to int＂usion．

Amorlomitr gamannatil ita ｜rrex．int
Chatsertate in
（＇mblivin！
tillo＇x．

The whole is forthermore unconformably werlain by tlat matered st mata of Potedam and Calciferous age，and thas possessed in Cambrian times the characters which it now presents，while：the mature of the man thosite and its relation to the Laurentian，lead us to suppose that it is much nenrer in oge to the latter than to the overlying Canhro－silu－ rinn prombly not much more recent thm the Gronville servies itself．

Other Anohthoste Masere．

Strotigraphical Relatious and P＇etrographiy．

（3）lies ：はいいllıait． matantom．

In uddition th the Morin northosite，there are in the district． embraced by the present report twelve other oceurrenees of anorthosite lying to the south and enst of the Morin area mat mueh smaller in size．

These are－commencing the ennmeration from the west：－
（1．）The Lakefiek aren－an area lying to the enst of the village of Labefield，situated party in the Gore of the township of Chathmand partly in the parish of St．Colmman．
（2．）The St．Jirmme area，on which is situated the town of that name．
（3．）Three elongated and approximately parallel areas in the town－ ship of Kildare and its Augmentation．
（t．）Two rather larger areas on the east side of the township，of Catheart．
（5．）Two nccurrences，much smaller than the rest－one by the side of the River L＇Assomption near the Pont des Dalles and to the cast of
the village of Ste. Beatrix, the other a short distance to the west of the village of St. Jean de Matha.
(6.) Three buts of anorthosito intercalated in the nearly horizontal gueisses of the township of Brandon.

These anorthosite masses are from one hundred to several humdred yards in width, the greatest length of any one area being about seven miles. They rum parallel to the strike of the gneiss, in which they are intercalated, and are nsually well defined against it, the most notable exception being the St. Jérome necurrene. 'The gneiss, however, sometime: 'ppears the more basic near the contact.

The morthosite varies somewhat in character in the aliferent arens. It is usually consely crystalline, frequently showing a great variation in size of grain and resembling that of the Morin area, but it is purhaps on the whole richer in iron-magnesia constituents, and often contains minerals such as hornbleude, biotite and ia one case scupolite, which orour very sparingly, or are ontirely wating, in the Morin anorthosite. The anorthosite of these several areas also frequently contains gamet near its contnet with the gueiss. It frequently exhilits in an eminent degree the gramulated structure deseribed in the Morin anorthosite, and has a more or less well marked arrnigement of the constituent minerals parallel to the longer axis of the areas.

As the several areas present certain differences, they will be considered separately.

The Lakefield A wers.

This is four and a half miles long and about a mile wide. The anor- The Lahertied thosite of the peripheral portions is fine grained, foliated, very poor in anortheme. bisilieates and weathers white. In the imer part of the aren it is more massive and appars on the whole to be rather richer in ironmagnesia minerals, which vary in amount from place to place, often giving to the rock an irregularly banded structure. It is crossed, as shown on the map, by two roads, while a third passes inmmediately to the north of it.

In this area in rapid change in strike is observable, the anorthosite and its accompanying gneiss in the southern part striking, on an average, N. 45° W., while all nbout the northern extremity both rocks strike N. $20^{\circ}-50$ E.

A thin section from a specimen collected near the eastern side of the uren, on the most sotetherly of the ronds nbove mentioned, shows the rock at this point to be a typical morthosite, the phogioclase preponderating very largely, while the iron-magnesia constituents are represented chiefly by augite, in addition to which there are very small quantities of green homblembend brown biotite. Lass than a mile south of the southers edge of this area, at the very edge of the lamentian esearpuent, a diabase dyke cuts though the greiss which is here the country roek. The diabose, however, contains a great number of angular frugments of white, anorthosite, which in many places are so abmadmet that they make up the greater part of the dyke. Under the microseope this anorthosite is seen to be a mather finegrained variety composed almost exclusively of plagioclase, with a few grains of iron orr. The phagoelase, is however, latgely attored inte mica, the little miea seabes being arranged principally in two divectiona parallel to the cleavage of the felspar (Seetion 415). These fragments, which were bromght up by the molten diabase, probably mank an interground extension of the Lakefield area to the south.

The St. Jirime Arat.

Thes.
वтви. : Horthomit.

Unly a protion of his area, situated, as it is, immediately at the edge of the Lamrentian region, is exposed to view. The southern part of it is covered up by the that-lying Palanoobir stratat, which come in a short distance to the sonth of the town. What propertion of the whole mass is represented by that portion exposed to view, it is impossible to saty. It differs considerably from the other areas, not only in the fact that the anorthosite composing it is not so typical in character, but also in that there intervenes between it and the aneiss a zone of rocks of intermediate character.

The anorthosite, or gabloro, as it should more moperly be callod, is best seen in the large exposures on either side of the Ct . .dian Paeitic mailway trek a few hundred yards south of the railway station at st. Jírome. These we situated mbout the middle of the arem as exposed, and wwards its sonthern limit, and probally present the anorthosite in its most typieal develoment, freest from roment, effects, and nearest to the actual eentre of the mass.

Here the rock is fine gramed, usmally foliateal in structure, and weathers hrownish-gray. In some phaces it pussesses a more or less distinctly banded strueture, due to the ilternation of portions rather rich in bisilicates with others consisting almost entirely of plagi, chase, Individuals of dark-coloured plagioclase, uswally small in size, but

Flatine 11.
sometines as much as six inches in length, are abundant in places. They are frequently seen to be curved or twisted, and are usually without good crystalline outlines.
 charaster.

Under the microscope, the rock is seen to be composed essentially of plagioclase and pyroxene, the former preponderating largely, with hormblende, biotite, garnet, iron ore and pyrite as acce-sary constituents, and with a few grains of quartz, calcite, chlorite and apatite. The pyroxene is light-green in colour, and is for the most part augite, which is often decomposed to calcite and chlorite. Some of it, however, is trichroic, in red, yellow and green tints, and is probably hypersthene. The hornblende, which is green in colour, and the biotite are present in but very small amounts. The garnet is pink and perfectly isotropic; it is often well crystallized, and usually has some approximation to goorl crystalline form. It is generally associated with the iron ore, but often occurs in little strings through the rocks. The iron ore is black and opaque, and is often present in considerable amount. As in certain parts of the Morin anorthosite, there are probably two kinds of iron ore associated with one another, one rich in titanium and one poor in, or free from, that element. A portion of it is titanic iron ore, for leucoxene often appars as a decomposition product. The calcite is always present as a decomposition product, and the quartz, which is found in very small anount, is associated with the bisilicates, and may also be secondary.

Little strings an inch or less in thickness, consisting of quartz and orthoclase felspar, and which run through the rock sometimes parallel to the stratification and sometimes across it, are rather abundant in places, and are evidently distinct from the anorthosite and of later origin.

The rock in its present form probably represents an advanced stage of granulation, for although but little is seen in the way of twisted grains and strain-shadows, these, as has been shown in describing the Morin anorthosite, are not distinct when the granulation is complete. The large remnants of plagioclase, on the other hand, which occur abundantly in many places, in view of the light thrown on their origin by the study of the Morin anorthosite, point very strongly to an advanced stage of crushing.

Cataclantic structure.

At the bridge over the North River at St. Jérome, at the western edge of the area, as well as at a point about a mile and a quarter north of the above-mentioned exposures and near the northern end of the area, the same anorthosite is well exposed. At the latter place, how-
, ever, an exceedingly well marked catachastic structure is seen when the rock is examined under the mieroscope, the large individuals of plagioclase being twisted in a marked manner, broken upart, und embedded in a mass of granulated material rerived from them.

This anorthosite mass is surrounded by a zone of rocks of varied character, many of which strongly resemble the anorthosite in appearance but which are quite different in composition. They are well exposed back from the North River to the west of Sit. Jérôme, and by the side of the river to the north of the town.

This zone includes a large amount of ordinary orthoclase gneiss, and in it occurs the band of crystalline limestone to the south-west of the village, but it consists chiefly of rocks whieh in addition to augite and plagioclase eontain variable amounts of homblende, orthoclase and quarts, and which are thas intermediate in character between the gneiss and the anorthosite, some of the many varieties represented approaehing more nearly to gneiss and others more nearly to the anorthosite in character and composition. It is thus a matter of great difficulty to trace upon a map the exact limits of this zone. In the map (Fig. 11), however, this has been done as accurately as possible, with the aid of a mieroseopal examination of the roeks from a number of points, which served to detemine the actual character of such speeimens.

This zone surrounding the anorthosite probably represents a peculiar hordry facinborder facies of the latter, which, in many places, has been intruded "f anthonitt. into the gneiss parallel to its foliation, giving an appearance of interstraification, while movements induced by pressure sulsequent to the intrusion, have served to render this appearance more pronounced. Like the anorthosite, the rocks of this zone frequently present evidence of a more or less eomplete granulation, while the appearance of a certain amount of quarty in the anorthosite near its contaet with the gneiss, is a phenomenon observed in several of the other anorthosite bands described helow.

About eight miles to the north-easc of St. Jérôme, cutting the Morin Naw diatenw anorthosite elose to its western contaet at New Glasgow, and running gathbr. north for whout six miles in a direction very nearly parallel to that of the limesto re band in the gneiss just west of the contact, is a band of peeuliar gabb. 7 , nearly black in colour, which protrudes through the drift in a ser: : of great roche moutonnée bosses, contrasting in a marked manner with the white anorthosite through which it cuts. The band is narrow, and immediately to the north of New Glasgow
sends out un arm about a quarter of a mile long from its eastern side, which cuts across the folintion of the morthosite. To the north this gabbro disappears on reaching the Beauport River, being exposed between the gneiss and anorthosite, and apparently cut ofl by a fault. It is seen again about a mile in a northeasterly direction from the point where it disappears, by the side of the road running from St . Calixte to St. Lin, and is then lost. Under the microscope the rock presents an extremely well marked cataelastic structure, the constituent mine rals having been completely granulated under the great pressure so which they have been subjected.

Arras in the Tomrnship of Kildure and its Angmentetion.

Kildare ancrithoxites.

These areas, three in number, are long and narow, running with the strike of the gneiss, and might be referred to as bands. They are parallel to one another in position, and two westerly bands averaging a little over a quarter of a mile in width, while the most easterly is somewhat wider, being on an average rather over half a mile wide. They have lengths of six, five and seven miles respectively. Although in plaees covered with drift, they are generally well exposed, and being crossed by a number of roads are easily accessible. The three bands resemble one another closely in petrographical character. The rock is on the whole richer in bisilicates than the Morin morthosite, approaching more nearly a normal gabbro or norite in composition. A specimen from the most westerly band, collected on lot t of range I. of the Augmentation of Kildare, proved when examined microscopieally to be a typical norite, being made up of plagioclase and pyroxene in about equal amount. The latter is chiefly hypersthene, though a certain amount of augite is also present as well as a very small amount of biotite. Uuder the mieroscope the rock shows a very distinct granulation. Toward the middle of each hand it is coarsely erystalline and sometimes shows but little foliation; usuially, however, in this position, a more or less distinct foliation, parallel to the length of the band and conforming to the strike of the surrounding gneiss, is to be observed. This is sometimes accompanied by an indistinct banding of fine and coarser grained portions of the rock coinciding in direction with the foliation, and identical in eharacter with the banding deseribed in the Morin area.

At their borders the bands become finer in grain, distinetly foliated and richer in bisilicates. The finer grained character of the marginal portions may, however. be due, not to more rapid cooling, but to more intense granulation. Garnet is very frequently seen. Quart\%
also makes its appearance near the contact, and the rock having thus altered its character considembly, it is often difficult to determine its exnct limits ngainst the gneiss where the latter has been shattered and penetrated by the gabbro in a direction parallel to the strike.

It is especially diflicult to determine the exact position of the extremities of the several bands, these not only consisting of basic dovelopments of the rock, but running into the gnciss for long distances parallel to its foliation. Such basic rocks composed essentially of hypersthene, hornblende, phgioclase, and probably some orthochse, and which may be a contact facies of the gabbro, occurring intimately associated with the ordinary orthoclase gneiss, are found as much as two miles to the south of the limit of the mast westerly of the three gabbro areas as represented on the map. In the most casterly of the three bands also, no exposures are seen on the line between ranges VI. and VIII. of Kildare, the country being drift-covered, but to the south of the road there are large exposures of certain basic rocks in line with the strike of this area, which are supposed to belong to the gabbro, and the area has accordingly been represented on the map as extending southward as far as range VI.

Areas in the Tournship of Catheart.

On the eastern side of this township are two areas of the anorthosite separated by a narrow band of gneiss. They extend southward a short distime into the Seigniory of D'Aillebout, but how far they extend to the north-west beyond the ninth range of Catheart has not been determinel, the country in that direction being eovered with heavy forest and very difficult of access. Judging from the dimensions of the areas, as measured on the two roads which cross them transversely, as well as from the position of their southern limits and the shape of the other areas on the same strike further to the south, the northern limits assigned to them on the map are believed to be substantially correct.

The rocks constituting these areas are well exposed on the two roads above mentioned, which roads run approximately on the lines between ranges VI. and VII., and VIII. and IX., respectively, as well as on a road connecting these two and running through the western anorthosite area in the direction of its longer axis. The gneiss band separating the two areas, as exposed on the more northerly of the two roads, consists of a finely folinted quartzose orthoclase-gneiss, with some bands of quartaite, while on the southerly road it takes the form of a coarse-grained basic gneiss, often resembling augen-gneiss in structure
and frequently holding pyroxene and some plagioclase as well as intercalated masses of the anorthosite.

Variation in Ni\%. of grain.

The anorthosite varies considerably in character from place to place, and is most typically developed in the western area. Here it is often vary coarsely grained, nlmost massive, and shows the great variation in size of grain even in different parts of the same exposure, described in the Morin aret. In other parts of the area, it shows the indistinct handing, so common in morthosites, and often a more or less pronounced foliation. The proportion of bisilicates varies eonsiderably ; hypersthene and titanic iron ore are readily recognized on the weathered surface nnd in certain places many large broken individuals of plagioclase are also seen.

The anorthosite thus strongly resembles that of the Morin area, though probably on the average richer in bisilicates and thus approaching more nearly in composition to an ordinary gabbro. It is, however, in the caseof the easterly band more intermixed with the surrounding gneiss, the two rocks being in some places appareatly interbanded, owing to the intrusion of the anorthosite into the shattered gneiss about the contact, and the development of a more or less distinctly foliated or banded structure in the whole by subsequent squeezing.

Specimens of this rock which were examined microscopically, resembled very closely that of the anorthosite bands in the township of Brandon, described later on. Hypersthene is the chief iron-magnesia constituent, a few grains of augite and biotite being also present. Plagioclase is the most abundant constituent.

The rock in a great majority of cases is in an advanced state of granulation, the whole process being exhibited in a striking manuer by the thin sections.

Area near l'ont des Dalles on the River L'Assomption.

Pont dow Dalles anorthosite.

This comparatively small occurrence is situated on the River L'Assomption at a point rather over one mile in a straight line east of the village of Ste. Beatrix. It is well exposed about a quarter of a mile west of the Pont des Dalles on a road which runs close to the river, but is still better seen where the river cuts through the mass in a high cliff on the south bank. The rock is coarsely crystalline and shows the usual variation in size of grain with here and there large masses of augite and hypersthene, and an indistinct parallel arrangement of the constituents in the direction of the prevailing strike of the surrounding gneiss.

When examined on the face of the cliff nbove referred the the rock seannitio. often presents an upproximately horizontal foliation, hy apprently following lines of motion. A specimen of this horizontal foliated variety which was colleeted and examined microscopically, was found to present a feature of interest in the presence of a large amount of seapolite, a mineral which has not been found in any of the other Canadian noorthosites. The iron-magnesia constituents were found to be represented by angite and hypersthene in large amount, with a good deal of hiotite and a little hornbleade. The non-ferruginoms constituents consist of plagiochase and seapolite, which are both present in abundance. Iron ore and pyrite, present in very small amount, complete the list of constituents. The seapolite is uninxial and negative, polarizes in brillinnt colours and presents the usual prismatic cleavages with parallel extinction. The augite and plagiochse present the appearance of having been subjected to a process of granulation, but the grains do not show emin-shadows or twisted lamella. This, as has been shown, is usumly the case in the plagioclase of thoroughly granuinted anorthosite. The biotite does not show such distinct evidence of granulation, while the seapolite occurs in large, elear, unbroken grains with unifom extinction, which like the other constituents run in strings, sometimes in the plagioclase but usually between the plagioclase and the bisilicates. It is possible that the biotite may be a secondary mineral, and it is highly probable that the seapolite is an alteration product of the plagioclase, as in the case of the "spotted gabbre" of Norway and certain allied rocks in Canadia and elsewhere.*

Aunrthoxitr near St. Jean de Muthrt-Seigniory of De Rumsuy.

About half a mile south-west of the village of St. Jean de Matha, on sit. Itan dthe road running toward the Riwer LiAssomption, large exposures of garnetiterons quartzose gneiss are succeeded by others of anorthosite. The latter rock is exposed for a width of ahout one hundred yards along the roid and is succeeded by drift. It shows considerable variation in spe of grain, weathers white, and is without foliation.

When examined under the microscope, it is found to be a typical anorthosite composed almost entirely of plagiolase. The iron-magnesia constituent is augite. Biotite and apatite, both in very smallquanti-

[^24]quEhec.
ties, with a little titaniferous iron ore and pyrite complete the list of constituents. The rock has undergone a certain amount of gromulation.

Anorthosite Bands in the T'ownship af Brandon.

Anorthusite in Branding.

In the western half of this township there are three important arens of amorthosite, which occur interbanded with the nearly horizontal gneisses of this district. The most easterly of these, which is also the smallest, forms a hill on lot 14, range IX., by the side of the road which erosses near the front of the let. It disappears benenth the drift to the south of the road, and is not mot with on the concession roads further south, nor is it again seen to the north, the township along its strike in that direction being so heavily mantled with drift that rery few exposures are met with. The associated gncisses strike N. 25 W . and dip at low angles to the enst, the gneiss immediately to the east of the anorthosite being a basie variety poor in quart\%, while that to the west is rather fine in grain and highly quart\%ose. The anorthosite has the appearance of an interbanded or interstratified mass, an apparance probably due te the relling out of the whole complex under the great prossure to which it has been subjected. The rock is in seme places massive, but elsewhere shows great irregularities in size of grain, or is distinctly foliated, with strings of bisilicates arranged in a direction rudely parallel to the longer axis of the band and to the strike of the adjacent gneiss. On weathered surfaces large
Three handw. crystals of plagioclase, much cracked and broken, ean occasionally be seen, but the rock usually presents the appearance of having been subjected to such prolonged movements that the large plagioclase individuals have been entirely destroyed.

Like most of the small anerthosite hands described in this Report, these from the township of Brandon are usually rieher in bisilicates than a true anerthesite should be, and resemble in this respect certain varieties of anorthosite rich in bisilicates which oecur in the eastern portion of the Morin area.

The central of these three anerthesite bands in Brandon, seldom attaining and never exceeding a width of half a mile, runs through the township in a north-westerly direction, cenforming to the strike of the gneiss, from let 19 of range V. to lot 17 on the front of range XII., a distance of six and a half miles. It pinches out on range V., being bounded by almost centinuous exposures of gneiss to the south, while on range XII., where but small exposures are seen, it disappears under the drift about Lake Mattabon. It closely resembles, both in stratigraphical relations and petrographical charac-

[^25]ter, the more ensterly land above described, like it being apparently interhanded with the gneiss, the whole series as before dipging to the mast at a low angle. At the contact near Lake Mattabon, elongated fragments of the nomorthosite or gathore were observed in the greciss, having been apparently detached from the main mass by the movements which induced the foliation. The rock is comseregrained, mud as betore the proportion of bisilicates, chietly hyperstheme, is rather barge, and the rock should be termed a norite rather than an morthosite. Townal the middle of the hand the temdency of the comstitnents to armage themselses in strings or lands is very obscure, and the rock is nhmist massive. It is frequently very irregular in grain, disphaying coarser or finer graned patches, the former often containing masses of hypersthene, sometimes measuring from five to six inches mevess. The usual irregularshaped remants of large plazioclase individunds indicate that the rock has suffered an intense granulation. Townd the side of the band, a parallel armongement of the hypersthene masses usually bakes its appearnow, comeding in direction with that of the adjacent greiss. (Plate IN.)

The most westerly of the three bumbs, is first seen ahout the middle of low $2 \underline{2}$ of range III., in the line of hills which forms the northern houndary of the drift platin occupying the southern comer of the township. [t then russ in a north-westerly direction to the side-line of the township, which it meets on lot 22 of range V., where it attains a width of about a third of a mile, apparing in large exposures, and is tlanked on either side by gneiss. It was not observed, however, beyond the limits of the township, the country in the line of its strike in that direction being ngain drift-covered. In character and composition it is identien with the other two bands just referred (1), under the microseope thin sections of the anorthosite eomposing the several bands resembling one another so closely that they cannot he distinguished apart. The iron-magne n constituent is pyroxene, occurring in the foliated specimens as lohes strings of grains marking the foliation of the rock. It is for the most part a rhombic pyroxene (hypersthene), with strong trichroism in reddish, greenish and yellowish tints, but in most cases a certain amount of monoclinic pyroxene, intimately associated with the hypersthene and resembling it in appearance, but having an inclined extinction and no pleochroism, is also present. In every slide, a small amount of biotite and a few grains of iron ore are found. The felspathic constituent of the rock is essentially plagioclase, well twinned, and presenting the usual characteristics. An untwinned felspar is also present, usually in comparatively small amount, with rather strong dispersion of the
hivectrices，giving rise to phle haish and brownish tints respectively on either side of the line of maximmo extinction．This may he orthelase，A few grans of pyrite and a few more or less roundeal individuals of apatite are the only wher eonstitnente found in these rooks．

The thin sections nlso affiod indubitable evidence that these rocks have sulfered great intemnl movements．The large grains of felspar can be seen to lanve been twisted and fractured，and are often dearly secon to he in the sery act of lwenking up into maller grains．The same is true，thongh less noticerably se，in the case of the pyoxene，giving rise to n mosaic of grains of varions sizes and shapes，which grains are seen to have mowed over and aromed one another，but in one plane，that，manely，of the foliation of the rock， which folintion in fact results from this mevement．All the evidence goes to show that this gramulation of the roek is a purely mechanical process．The pyroxemes are quite unatered，and there is no evitence of any re－crystallization or alteration in the case of the felypur：The resulting foliated rock differs from the origimal massive one only in being fine in grain and in the possession of a foliated stemeture，due to the gramulation as above deseribed．

Another fact before referred to in connection with the Morin anorthosite，and exemptified hy all these granulated rocks－ordinary gneiss as wefl as anorthosites－is that in those portions of the sections where the gramulation is complete，but little in the way uf rumclusive evidence of any gramulation could be obtained were these to to studicd atone．In such enses mosaics of little angular grains are seen，each individal of which has an even or atmost even extinction． That this must（ is realized when a large grain in process of breaking up is studied，＇microseope ；for the strain to which such a grain is sulijeet to cause it to become resolved into a number of optical anded by strain－shadows，but within such areas little or no st．is developed，so that when the next step is reached and the

Norvidener of centaclastic Noructure when gramulation is contulete． large grainactually breaks along the lines of maximum strain thr result－ ing grains，representing the areas in question，never show more than very faint strain－shadows while most of them，the strain being relieved， have a uniform extinction．A mosaic thus results，which while pro－ duced by intense granulation bears，when studied apart from its sur－ roundings，little or no evidence of its origin，and might be considered to have originated in other ways．It thus becomes evident that if the whole rock had reached the final stage of granulation，which stage would be reached much sooner in the ease of rocks fine in grain than
in those composed of large individunls, but little conclusive evidences as to its trme origin might bo obtained from a study of thin sections. The very thoroughness of the granulation would mask its existence, and it might be concluded that the rock had crystallized in its present form. 'This fact is an important one to bear in mind when studying rocks such is those at present under eonsideration. In this process of granulation, the pyroxenes while presenting all the phenomem abowe refered to, hsually matain their form much better than the felspars.

The examination of the sections shows, furthermore, that the move- Rosk erys. ments in question must have taken place when the rock, if not con talline when pletelv crystalline, was almost so. All the minorals are granulated wechrred. ami mist, therefore, have been crystallized ont hefore the movement took plece, and if any residual magma whatever was present when the movement took place, no sign of it can now ho detected.

Occasionally in a section a little line of faulting or shearing can bes olserved traversing the foliation obliquely and apparentiy developed at a later date. Along such lines the granulation is exceedingly fine, differing in a marked manner from that of the rest of the rock and heing in many cases accompanied by the development of calcite in large anount, thus showing that the combitions under which the original grunulation took phace were fuite diflerent from those under which the faulting originated.

A table of amalyses of anorthosites and of certain of the.r constituent minere's is subjoined:-
nalysers of innorthosites.

NMV, \& NV. Large fragmente of reddish phagiochase : : Mn the dnorthosite of Notes th Chitemu Richer. (T. S. Ilunt, (ieology of Cumala, 186i3),
XVI, Fine-grained plagioclase grounchass, in which the former are imbedded. (Ihintem.)
XVII. \& XVIII. Hypersthene from the same ack. (Ihidem.)
XIX. Imanite from the same rock, with 4 ' 9 pes of insoluble malter, quart\%, ette. (Ubidem.)
X.X. Bhish plagioclase in large fragments from another hamd neecimen of the Chatem Richer anorthosite necurring imbedded in a fine gramular groundmasx of plagioclase. (Itidem.)
XXI. Similar phagioclase from an anorthosite batder from the neigh. bouring parish of St, Joachim. (Ibidem.)
XXII. Very fine-grained, amost white anorthosite, from Rawdon (Ahorin areat. (Ibitem.)
NXIll. Bhe opalesernt phagiolase from the Morin anorthosite. (Ihirdem.)
XXIV. Bhish opalescent plagiondase from the smmit of Mome Marey in the sitate of New York, U.S.A. (A. K, Laeds, 13th Am. Reph. New York State Musemm of Natural ITistory, 1876.)
NXV. Very tinegraned yellowish anorthosite from the State of New York, I.S.A. (Ibitem.)
XXV1. Hypersthene from the anorthosite of Moment Marcy in the State of New Fork, U.S.S. (Ibidem.)
XXV11. Diallage from anothosite, New York State, ('.S.A. (Ibidem.)
XXVIII. Labrador felkpar, Pral's Island, Latmador. (Gi, 'Pschermak, in Rammelnberg's Mincratelsemien.
NXIX. Labrador felspar, Paul's Mlant, Labrador. (It,idem.)
SNX. Plaginglase from a fine-grained, whitish anothowito from Labrader (bramular gromomass). (II. Vogelsmg, tre ives Néerlandaises, T. III., 18(is).
 Hawes, Proc. Nat. Mus., Washingtom, 1881).
XXXII. Latuatorrock. 'The chief rock of the vicinity of Nain, Labrader'. (A. Wichmam, Z. d. 1). (i. (i., 1ssi).
 lent on ignition. (.lamasch, Nome bahrb. fiir Min., 18si, II., 43).

XXXIV', Labraderite, Paul's INamd. The part soluble in HCl. With traces of $\mathrm{Li} \mathrm{g}_{2} \mathrm{O}$ and Srt). (Ihidem, p. 43.)
SXNV. Labradorite, pralis Isham. The part insoluble in IICH. (Ibideme, 1.43.)
 Chem. ties., ts! 1, NXIV., 2ä.)

Notes on the Anorthosites occurbing in other parts of Canaba and in Forbign Countries.

In addia:on to the anorthosites described in the present Report, a Anorthosites. number of other similar occurrences, some of them of much greater Alsewhere in extent, occur in other parts of Canada. A noteworthy fact in connection with these anorthosites is that they are distributed along the

Redation w, Arehean I'ro taxis.

Amorthoniten in Norway
southerly und easterly limits of the main Archam protaxis bordering the great ocean basin in which the Cambrian rocks were deposited later on, showing that in these ancient times the eruptive rocks apparently followed the same law that now obtains in the distribution of volcanocs : mamely, that they oceur along the borders of the continents as belts around great oceanic depressions. By far the largest of these is the great northosite area about the upper waters of the River Saguenay, whieh is known to occupy not less than 5800 square miles, and which may stretch across the headwaters of the River Betsiamites and connect with the area lying about the headwaters of the Moisie, in which case the area of the mass will be probably double that just given. Over this great area, the rock consists almost entirely of plagioclase.

The other areas which lie chiefly nlong the north shore of the River and Gulf of St. Lawrence are described in my paper entitled "Ueber das Norian oder Ober Laurentian von Canadn," and in other papers to which references are given in Appendix I.

The largest developments of anorthosite with which we are acquainted outside of Canada, excepting those of Minnesota and the State of New York, deseribed by Enmons, Kemp, Lawson and others, are probably found in Norway.

The rock ealled by the Norwegian geologists Labrador rock, as well as some of Esmark's norites and many of the so-ealled gabbros of that country, are anorthosites.

These rocks have been described by Kjerulf,* Reusch, \dagger and othris. They form enormous mountain-masses, and are, as in Canada, sometimes violet or brown in colour, and sometimes as white as marble. They are sometimes massive and sometimes banded or foliated. Many of them in hand speeimens can not be distinguished from the corresponding varieties of Canadian anorthosite.

They are intrusive rocks, and generally break through the gneiss. But in Laerdal and Vos-Kirchspeil, according to Kjerulf, they cut through beds of Primordial age, and are therefore probably somewhat more recent thin the Canadian anorthosites. An aceurate comparison of the rocks cannot yet be made since the Norwegian oceurrences have not as yet been investigated in detail. But so far as we know at present, the rocks of the two countries are identical.

[^26]In southern Russia, near Kamenoi-Brod, in the (iovernment of Amorthenitex Kiew, and in many other places in the governments of Volhynia Podolien and Cherson, large areas of anorthosite also occur. In these the labradorite predominates almost to the entire exclusion of other constituents. The rock occurs in some places in a coarsoly granular form, which is dark violet or almost black in colour, and elsewhere as a porphyritic varicty with large dark-coloured individuals of plagioelase in a light-gray groundmass. These varieties are said to pass into one another. Where the coarsely granular variety contains pyroxene, it shows ophitical structure like that observed in some parts of the Saguenay area. According to the description of these rocks by several authors,* they must resimble in a remarkable manner the anorthosites deseribed in this paper, and also exhibit the same varietics. They are found in the great district of granitic rocks whieh ocenpy this portion of the Russian Empire, which rocks, where they occur in the Govermment of Volhynin are classified by Ossowski as Laurentian. The magniticent pillars of labradorito in the Chureh of Our Saviour in Moseow, are from auarries in these rocks.

Another occurrence of anorthosite of pirticular interest is found in Egypt. Sir William De ion, while on a visit to that country in the year 1883 , olserved a rock that resembles exactly the banded variety of the Morin anorthosite, and which had been ased for a magnificent statue of Kephren, the builder of the second pyramid. This statue now stands in the Gizoh Museum, with a few other fragments of statues of the same material. Through the kindness of the curator of the Muscum, Sir William obtaned a few small pieces of the roek for examination. In the hand-specimen the rock camot be distinguished from the granular anorthosite which is found in the neighbourhood of New Glasgow in the Morim area. It is fresh, \dagger bright grity in colour and almost entirely comprosed of plagioclase, with a little hornblende, which mineral is occasionally intergrown with pyroxene. It is the foliated variety of the anorthosite, and the dark lines which are caused by the presence of homblende can plainly he distinguished in the statue, especially on the right side. Sir Willian did not find the rock in place, but Newbold appears to have found it among the very

[^27]ancient rocks which form the mountainous comntry to the east of the Nile, where it appears to have the same geognostical relations as in Canada. It was probably prized by the Egyptian seulptors for the reason that it possesses a pleasing colomr, similar to marble, while at the smme time taking a better polish and being considerably harder.

These anorthosites, therefore, are found in five of the countries where the Archam has an extensive development: in Canada, in the United States, in Norway, in Russia and in Egypt. They are found in enormous masses in the first four en tries, and their extent is not yet known in the last mentioned. To these oecurrences others will probably be added as the Archean of other parts of the world is carefully studied.

Post-archeman bukes.

I'owt-Architiall lyk!.

Here and there throughout the area, but especially in its southem portion, dykes of fine-grained black rock, allied to diabase in eomposition, occur eutting across hoth the gneisses and morthosites. As these have not been observed traversing the Palaraie strata of the plains they are probably pre-Potsdan in age.

In mode of occurrence they present the characters commonly seen in trap dykes. The walls are well delined and approximately parallel to one another, their attitude being nearly vertical. They frequently hold fragments of the country-rock, caught up by the dyke-rock while yet in a molten condition, and can occasionally be observed to send off lateral apophyses into the survounding roek. The dykes can frequently be seen to be much tiner in grain toward the margins of the dykes, indicating that the country-rock was comparatively cold at the time of their intrusion. Chere is no evidence whatever to show that these dykes have been subjected to tho folding and deforming forees which have so profoundly affected the Areham roeks of the region. They have been practically undisturbed since the time of their solidifieation.

The prevailing course of the dykes is approximately east-and-west, but many of them run in direetions ahmost at right angles to this.

They differ greatly in width, ranging from five or six feet to over 300 feet-several over 100 tcet wide having been ohserved-and are usually traversed by several sets of well marked joint plains.

The rock is black on fresh fracture and usually weathers brownish.
In the south-west corner of the district, Sir William Logan nowd the occurrence of black dykes in a numbier of localities, and considered
them to be portions of three large dykes running neross the country in an approximately east-and-west direction, all of which were interrupted by the syenite intrusion mentioned on page 29 J .

The most northerly of these dykes was traced by Sir Willian Logan bykes moned as far east as lot f of range V'I. of Chatham Gore, and whet is in all by logan probability its continuation was found on the line separating St. Columban from the Augmentation of Mille Isles, near the north-west comer of the former. It erosses the road at this point, and has a width of 300 feet. On the same course further enst, what is probably the same dyke is exposed at the foot of the falls on the North River, at the pulp mill, about three miles above St. Jerone. It is exposed for a width of 105 feet, but only one wall is seen. The course of this wall is east-and- th, Jirme. west. Further east still, it short distance north of N'te. Sophie, a whole series of parallel dykes, thirteen in number, and aggregating 69 feet in thickness, is seen within a distance of 200 yards. These also strike east-and-west. They possess a llow structure in some cases, and hold fragments of gneiss and quartzite as well as some of white anorthosite, indieating an extension of the arm of the Morin anorthosite under this locality, as might be expectet.

Athough it is quite possible that these several oecmrenees do not represent one continuous crack or tissure, they evidently mark the same line of weakness, which may be represented by a series of shorter parallel fissures approximately in the same lime, as is often seen in the cave in such dykes. The line of womess has been now traced in a direction almost parallel to the efge of the protaxis, from, the eastem side of the seigniory of Pretite Nation, a dista e of fifty-five miles, and in all probability continues still further to the west. The other dykes represented on the map in the district between St. Jerome and Ste. Sophie are much smaller in size.

One of the two more southerly dykes traced out by Sir Willian Logan, may find its eastward continuation in a dyke exposed at the immediate edge of the protaxis to the sonth of the Lakefield anorthosite and rumning N. 50° E. This dyke is tilled with angular fragments of white anorthosite (although that rock does not occur in the immediate vicinity) which fragments must have been derived from an underground extension of the Lakefield anorthosite in this direction.

Two other important dykes occur further north, eutting the Morin Wykes entting anorthosite. The first of these is exposed on lot 16 of range VII. annrthusite. of the township of Rawdon. It is seventy-five feet wide, and runs N. 47° W., having been followed for a distance of a mile and a half.

The other occurs on the third, fourth and fifth ranges of the township of Chilton, and runs parallel to the River Ouareau, near its eastern bank, for n distance of about two and n half miles, having a width of 120 feet.

Another smaller dyke, ten fect wide and ruming N. $87^{\circ} \mathrm{W}$., is exposed on the first range of the Augmentution of Kildare, near the line between lots I and 5 on the road.

St. Lin dyke. A number of other smaller dykes which were olserved do not here merit especial mention, with the exception of one which is quite different from thoso already referred to both in composition and mode of occurrence. This is found on the plains about one mile from St. Lin, being exposed in the bed of the Little River. The exposures, however, are not very good, so that the precise relations of the rock cannot be determined. It euts the Clinzy limestone apparently in the form of an intercalated sheet, converting it into a highly crystalline red marble, which has here been quarried. The river is paved with this trap for a distance of ahout fifty yards, a thickness of about ten feet of the trap appearing in a cascade which occurs at this point. The marble is referred to on page 153, , in the section treating of economic geology.

The great dykes traced out by Sir William Logan in the sonth-east corner of the area are referred to by him as dolerites,* and would bo. classed as diabases in the modern petrographical system. The St. Columban dyke when examined microscopically (Section 361) is seen to possess n typical diabase or ophitic structure consisting essentially of plagioclase and augite, the former rumning in lath-shaped individuals through the latter. A small amount of green hornblende, which may be either primary or secondary, and a small quantity of iron ore are present as accessary constituents. The rock also contains another mineral which is not commonly found in fresh diabases, namely, quartz, which occurs in considerable amount in micropegmatitic intergrowths with felspar, in the little corners between the other constituents. The supposed continuation of the dyke crossing the North River above St. Jérôme (Sections 273,342) is almost identical in character and composition, the hornblende, however, being replaced by a small amount of biotite. The augite, which is of the common variety usually found in rocks of this class, often occurs in long narrow forms of irregular shape, and is twinned according to both the base and the orthopinacoid, and with it a lighter coloured malacolite is frequently associated in parallel intergrowths, as in the Konga diabase of Sweden

[^28]Quartz in small anount, in clear grains or micropegmatite intergrowths, is present as before.

The dyke (Section 338) occurring at the edge of the Laurentian protaxis to the south of the Lakefield anorthosite, and which may represent in easterly continuation of another of Sir William Logan's dykes, is ulso a diabase of the suse type, consisting of plagioclase, angite and iron ore, with a very little biotite, and the same micropegmatite intergrowth of quart\% and felspar in the corners between the other constituents. It is, however, much decomprosed.

This quart\% diabase with typical ophitic structure, occasionally holding malacolite, is apparently the normal rock of the great east and west dykes of the district. The quartz occurs in mieropegmatitic intergrowths with the plariochase and is in all probability primary, as it is found in the rock even where it is perfectly fresh. It helougs to the Konga type of this rock described by Törnebohn in Sweden.

Some of the smaller dykes in the district about Ste. Sophie and New flasgow, which closely resemble these diabases in appearance, and probably have essentially the same chemical composition, possess a minutely porphyritie character, phenocrysts of plagioclase and augite being imbedded in a fine groundmass composed of the same minerals with iron ore and a little hotite. This groundmass probably cooled as glass, and has since taken on a crystalline character through a process of devitrification. They belong to the spilite type of the angite porphyrites, and in one or two instances show an amygdaloidal structure. One of these dykes, twenty-five feet wide, was observed on the road about one mile nortli-west of Ste. Sophie, and another forty feet wide in the bed of the River Achigan on lot 16 of range IV. of Kilkenny. The two dykes above mentioned is eutting the Morin anorthosite, one on lot 16 of range VII. of the township of Rawdon (Sections 626, 427), and the other on the third, fourth and fiftly ranges of Chilton (Section 364), are identical with one another in all respects, and as they have almost the same course were probably intruded at the same time. Although having the same general composition, they , are distinctly different in structure from both the quartz diabase and augite porphyrite above described. The rock is of medium grain, becoming fine-grained at the margins, and is black in colour but weathers brown. Under the microscope, the Rawdon rock is seen Dyke in to consist of large phenocrysts of well twinned plagioclase, having hawdon perfect crystalline forms and filled with minute dark dust-like inclu- micropergsions, giving it a dark colour, with large phenocrysts of pyroxene, also having a good crystalline form, embedded in a species of ground-
mass composed of a most heatiful micropegmatitic or granophyric intergrowth of quart\% and plagioclase. This latter plagioclase is free from dust inclusions, the granophyric intergrowth being thus colourless. A small amount of hombleade and biotive as well as a considerable mount of iron ore and apatite, the latter in large and well formed elongated hexugomal prisms, are also present in the rock.

The plagiochase often occurs in beautiful Bareno twins, and a careful examination of the sections, combined with the evidence ohtained from a crystallographic examination of the pulverized roek after separation by heavy solutions, shows that two pyroxenes oceur intimately intergrown with one mother, one a monoclinic nugite of the ordinary type found in diabases, and the other a rhombic pyroxene having the parallel extinction, pleochoism and other optical properties characteristic of hypersthene.

Gisamophym *tilleture.

The granophyre constitutes a very comsiderable proportion of the whole rock, and makes the sections beantiful objects when examined between erossed nicols in polarized light. The intergrowth of the quart\% and plagioclase is in some places very tine but elsewhere rather conrse, and the polysynthetic twiming of the plagioclase in it can be plainly seen. The granophyre can often be seen to have started its growth outward from phenocryste of dark plagischase or of augite, as shown in Plate $\boldsymbol{\lambda}$. reproluced from a micro-photugraph of a thin section of the dyke, showing the granophyre growing about a crystal of plagioclase. The hexagonal erystal included in the plagioelase phenocryst is apatite, while the angite with grod erystal forn is seen on the right. It is doubtful whether any rock of this character hitherto deseribed contains so large a proportion of granophyre. The roek is neither it diabase nor a gablor, laving neither the ophitic structure of the former nor the hypidiomorphic granular structure of the latter. The structure is rather a porphyritic one and exactly like that sometimes seen in the Konga occurrence hefore referred to. The constituents of the rock have separated out in the following orler:-Apatite and iron ore, augite, plagioclase-the series concluding with the simultaneous crystallization of the quart\% and plagioclase of the granophyre, which. has all the characters of a primary structure. The rock contains $49 \cdot 66$ per cent of silica.

This micro-pegmatitic or granophyric intergrowth of quartz and felspar will probably be found to be very widespread in its occurrence in the dykes cutting the Archean in Canada, as it is known also in diabases of the township of Templeton, in the county of Ottawa, in

 ABOU'I A PHENOCRY'S OF PLAGHOCLASF--1)'RE OX RANGE VII., LOT 16, 'TOWNSHIJ' OF RAWJON. $\times 38$.
the province of Quebec, while Dr. Lawson deseribes it as aceuring abundantly in the dykes of the Rainy Lake district to the west of Lake Superior.*

The dyke near St. Lin which, unlike the others, is fomd cutting bymenar rocks of Camborsilurian uge, is nlso entirely different in composition. Ni. Dim. Its origimal character cannot he determined, as the rock is exceodingly decomposed, but it probubly belongs to the chass of nepheline or melilit. dykerocks like those found associated with the nepheline syonites nhout Montreal and elsewhere. Hydrochoric acid dissolves ahout twenty five per cent of the pulverized rock, which effervesces fredy. Inder the microseope (Section 389), nearly colourless augite, with rhombic pyoxene for the most part altered to a mixture of bastite and iron oxids, and hiotite in large erystals blenched nearts white, can be recognized. Also in the groundmass is a colourless mineral, miaxinl and negntive and readily attached by acids, which is probably nepheline. A mineral which is probably perowskite is also present, as woll as a harge quantity of light yellow garnet, often having good crystalline form, together with much caleite or other mombohealral carbomates, the proxlucts of decomposition.

While therefore the dykes occurring in the area are not very mumerous, their study brings ont a number of foints of consularable interest,

Fonome (exolory.

Minerals and roeks of considerable economic value of cor at anme ber of points in the aren embraced by this report.

The following sceurrences are refermed to, cither on account of their actual economic importance, or because they have been supposed to be of value and have attracted, or are likely to attract, more or less attention. Those deposits situated in the county of Argentenil, to the southwest of the Morin anorthosite area, are not here referved to, as they have been examined by Dr. R. W. Ells, and will be described by him in a forthcoming report.

Iroul Ore mar St. Jirome, County of Trerthom.
Two and :chalf miles south-west of st. Jerrome, on the road which follows the northem bank of the North River, there is a depowit of st. Nerime. magnetic iron ore. This oecurs as several thin bands interstratified

[^29]with a dark hornblende rock and with the red orthelase-gneise of this prot of the area, the whole dipping toward the river at n very high mugle. Se the time of my visit, in 1886, the ore bail been expased by the removal of the drift at a number of points along its strike, and a smatl oproning had been mado at one place. Subsequently, from Getoher, 1891, mutil March, 1892, it was worked by the Canula Irom F'urunce Co., during which time shout $36{ }^{5}$ toms of ore was taken out and shipped to the companys furmace at Radnor, and there smeltex. The following information has been kindly supplied to we by Mr. Arthur Cole, B. A. Se 'ow was onguged in carrying out the work:-
"Most of the ore wis taken ont of a pit which, when abmadoned, was about 35 feet deep, 10 teet broal and 12 feet long. The orehed saried from two and a half to three fret in width, and was for the most patt frem from gangue. At a depth of 35 feet the bed marowed down to "few inches, and was then entirely lost. A dritt was driven from the west and of the pit along the bed for about 40 feet, the thoor of the drift being about 15 feet from the surface.
"Work was then diseomtinued, but was resmed in Angust, Ls:3", but this then at a point abme 100 ynuls further west nlong the outerop of the bed. The ore here was in herls varying from n foot to a font and π half in width. 'Thess heds often widened, but then they would separate into two beds with an intervening bed of roch.
"In some phaces the walls of tha beds were very clearly defmed. white in others the ore gradually faded away into the surrounding rock. Ahout 50 toms was taken out of this opening, about ten fret deep and thirty feet loug.
"Work was finally discontinued early in September, ns it was found that two much rock was being handled."

A smuple of the ore was amlysed by me rad was found to have the following eomposition :-

Prerie axite	I er crith $\text { . } 5!\cdot(0,4!$
Fertoras oxile	$21 ; 807$
Titanic acid.	п1\%
Phomphorie acid.	015
Sulpluw..	0011
Insoluhle matter	
Metallic irm	$62 \cdot 1: 11$
Phomplorns...	[1017
Sulphur.	1001

This namysis brings out in a striking manner the distine inn between the iron ores of the orthoclase-gneiss and those of the namothosite, the former being usually free from titanim, while the latter is rich in this deleterions constituent. This ore, Althongh so nene the anorthosite, is quite fre from titanium, while the similar ores in the meighomring anorthosite aross contain a hage percentage of this element.

Most of the other iron ores of this arm, with the exception of the hog ores, which belong to the superficial dequsits, unfortunatoly oceur in or associated with the Morin anorthosite mass, and are, therefore, highly titaniferous. To these belong the following deposits :-

Tounship ef Rendou-Rauge II., Lat \therefore

This deposit is near the village of ste. Julieme, and although it has Rawlom never been worked has attraeted a grod deal if attention. It oceurs in the Morin anorthosite, near the eastern elge of the arm-like extenwion hefore referred to. The ore is found in a foliated white-weathoring variety of the anorthosite rather rich in bisilicates. with a strike varying from N. $8^{\circ} \mathrm{W}$. to N . 25 W . and a nearly vertical dip. Soveral black dykes, appurently of diahase, neeur in the vicinity. The ore varies a great deal in character, being much purer in some places than others, and often nevers in the form of bands, from a few inches to several feet in width, generally conformable, or nearly so, to the foliation of the anorthosite, but in a few cases cutting across it. Both the anorthosite and iron ore are much t wisted and faulted, and it is diticult to determine whether the ore has been erupted through the anorthosite or whether the cases where it cuts across the morthosite are to be attributed to faulting. It, however, has a general trend in the direction of the strike of the anorthosite, the principal mass being exposed for about 200 fuet at right angles to this direction. Thas "ore " appears to be in reality a variety of the anorthosite, and in most places too poor in iron to constitute an ore in the proper sense of the term.

It is also highly titaniferous and contans iron-pyrites as a frequent constituent. A specimen collected by me and assayed by Dr. Hoffmam was found to contain :-

qUEARC.
'Two samples examined by Dr. B. J. Harrington*, formerly Chemist. to the Geologieal survey, gave the following results :-

	I.	11.
Metallic iron	38.27 per cent.	$110.711^{\text {maremen }}$
Titanic acil	$33 \cdot 6$	33.64

while a third specimen, in which the iron was not determined, was found to contain:

> Tormship of Weatord-Range I., Lot i.

Nexfurd. On this lot a small opening has been mate in a dark-coloured, heavy massive rock containing a efrtain amount of iron ore. The field relations indicate that this is marely a local variety of the Morin anorthosite, exceptionally rich in the darker coloured constituents of the rock, and a microscopic examination proves this to be the case.

When thin sections are examined, the rock is seen to be compused essentially of a dark-coloured pyroxene, with plagioclase and iron ore. A not inconsiderable amount of apatite, with a few grains of pyrite, garnet and biotite, are also present. The proportion of iron ore is comparatively small, this mineral being entirely absent from some thin sections.

A specimen collected to represent the richest portion of the mass was examined by Dr. Hoflmam, with the following result :-

Not very far from this locality, a remarkable case of local magnetic variation was observed in surveying the road between Ste. Adele and sit. Sanveur, where it runs on the side-line between the township of Abercrombie and the Augmentation of Mille Isles, on range \boldsymbol{N}. of the former township, and thus near the margin of the Morin anorthosite. At one point on the road the needle suffers a deflection of 44° in a distance of 200 yards, returning again, further on, to its normal position. The road runs up a drifted valley and there are no rock exposures on it, the nearest exposures to the position of maximum deflection being 430 yards to the south-west and 70 yards to the north-cast respectively, the rocks in both cases being the ordinary

[^30]northosite of the district. Whether the variation is caused by a body of iron ore, and if so the position of the hatter, can only be deter mined by a mannetic survey of the locality.

> Tornship of Chertsey--Raug, I'II., Lots it and if.

This deposit is also situated in the Morin anorthosite area, near its Chertses. edge. It is, as in the case of tho oecurrence above mentioned, a variety of the anorthosite rich in iron. The anorthosite at this locality is rudely banded, some of the bands being poor in iron ore while others consist of a nearly pure ore. Large exposures which are very rich in ore occur all over the sonthern part of lot 6 . The ore, although it his not been examined chemically, is in all probability, like the other iron ores ocenring in the anorthosite, rich in titanic acid.

$$
\text { Torewship of Chertsey-Renge I., Lot } 9 .
$$

This deposit occurs in anorthosite which is associated with quartzose greiss at the edge of the Morin area. Although containingr a good deal of disseminated non ore and locally considered to be of value, in no part of the deposit was the ore found to be suthiciently concentrated to be of economic importance.

This deposit is an impure ochre or limonite, oceuring near the edge kilkrms. of the Morin anorthosite and apparently derived from the alteration of iron-pyrites, which occur as an impregnation in a band of anorthosite intercolated in the gneiss near the limits of the main area. The band of rock through which this limonite is distributed has a considerable width, but could not be examins? everywhere at the time of my visit, owing to the fact that the forest covering the hill wiss on fire. No mass of the iron ore over one foot in thickness eonld be found, and the deposit, I should judge, is valueless as a somre of iron.

A specimen of the limomite collected by mo was examined by Dr. Hoffmann, and wats tound to contain:-


```
lusoluble matrer.............................. Sarge ammumt.
```

It also contaned a considerable amount of manginese, but no titanium.

Kidare. On this lot a deposit of hog iron ore was exposed in digging a drain.
A trench three feed deep was ent through the iron ore withont reaching the bottom of the deposit, nud it was exposed in the drain for a distance of about thirty fret. 'The deposit is probably of consiterahte size and the ore is similar in character to that so extensively worked and smelted further east in the district of 'Three Rivers.

Byy
Inliette.

I large deposit of bog ore also oceurs on the line of the Canalian Pacific Ralway between Joliette and St. Gabriel do Brandon, in the County of Joliette. This has been examined by Mr. (iironx.* The Canadian Tron Furnnce Co. has worked this deposit and expected to take out abont 200 cal loads in 1891 .

This company has also worked a deposit on ranges III, and IV. of the township of Joliette. That on range III. is considered to be one of the hest hitherte opened up hy the eompany. It varies from twelve to eighteen inches in thickness ame is nbout three chains wide by five long.

All through the oliette district, at intervals from the Lamentians to the St. Lawrence, dejusits of bog ore have been diseovered, and more or less has been taken out at a great many different points. The quality and richness of the ore is found to vary greatly from place to place. The Canada Tron Firnace Co. received from this district during the years 1893,1894 and 1895 ahout fio00 tons of this ore.

The occurence of bog iron ore at other points in the drift of the south-mastern portion of the area is refored to in the Geology of Camala (1863), p. 685, as follows :-
"Within four or five miles of the village of Industry (Joliette), there are several phaces in which bog iron ore is mot with. One of these is partly in the township of Kildare, and partly in the Aumentation of the seigniories of Lanoraie and Datratye, comprising a superficies of about mine spluare miles ; and it exhilhits patehes of we in so many of the parts which have heen cleared of forest, as to lead to the hope that it may hecome profitahle. Among uther lowalities in this region, the ore is found on the line between the first and secom ranges of Kildare,

[^31]on the seventh and righth lots; and int the seventh lor, om the rout betweon the fourth and fifth manes. Other lomation where the
 these portions beitig still in prirt covered with womel, it is ditticult t. determine the extent of the ore, although it apratss to be comsidere able. Further to the east, this ore was ako met with lietwern the rivers Site. Marie and Achoman and the Soligniory of Lachenaye."
orlure-
A depmit of irom ewhere of a diaksellow cheme, was observed on whe. the road betweon ranges II. and 11 S . of the townshig of liblare, abome tio0 yards burth east of the pmint where the rat from the village of St. Amborise de kildare crosses this runge-line. It oneurs in tho sandy drift which moners this district, and was rexpesed in an examation atow threw fret deep. For at foot from the surfice
 this, as far as expmest, it was of a purer chatater.

riodl.-

 hase been taken up at varions paints in this distriat and womed for gold. These, which are situated peineipally in the township: of Chersey and Kildare, were visited and examined. Nome of them were promising in apparaner, but with a viow of denemining rom-
 selected specimens from sexpral of them were collecterl and hatded to Dr. Hollinam to assay. They were fomul to be miturmly harem, As these deposits, however, have attracted mach attention in the lowality, and are still refermel to as "gold mines," a fow shom motes concerming them maty be of value.

The first ermp of these lamions is in the towanhip of kildare, at or mear the eontact of the Morin anorthosite with the Lamemtian gheiss, which hatere here rms up as atongue inter the atherthoxite, and is surmomed on thre sides ly the latter. The following tour oeruremers belong to it:

The eomety-rok is anerthosite, which here protudes through the chortwy drift as a knoll. This anothosite is traversed by small qualto weins, and both ther anothosite and the quart\% wins in places contain a comsiderable anome of prite, giving the the wathered surface of the rock a very ronty apmazace. A soud deal of work was dom here about forty yars ago by a local company, and tho lowation was then ahambored. Two sthe of specimens sidected, one tor represent the
more pyritiferous and the other dion lume phathase pertions of the deposit, were, when assayed, found to contain neither inhld nor silver.

The country-rock is tine-gratined northosite, in which there are a great number of bands and strings of a coarse-grained anorthosite. varying from an inch to two feet in width, and containing in many places disseminated iron pyrites. This latter constitutes the "ore." The location was worked for three years, about thirty years ago, and some eleven thomsand dollars are stated to have been expended. The principal working consists of a shaft 35 feet deep. A certain amount of surface work was aloo done on the face of a clitl of the anorthowite.

The rock, having been raised, was carted a distance of about a mile to the bank of the River Ouarea, where it was treated in a mill erected at that point. This, at the time of my visit, was fast going to decay. It contained a battery of five stamps as well as ten amalgamating pans. Some gold is stated to have been obtained, although the quantity was insuthicient to pay expenses. A series of specimens were collected from the various parts of the exposure worked, with a view to representing ath arerage of the "ore" which could with care be obtained. These were assayed by Dr. Hoffmann, and were found to contain neither grold nor silver.

On the south-western portion of this lot there is a cliff of huish gray quartzite with interstratified bands of white quartzite, both roeks containing in phaces a little pyrite. This rock has not been assayed, but is very lean in appearace.

$$
\text { Tournship of Chertary-Runge IM., Lot } 9 .
$$

Near the northern end of the lot the morthosite is traversed by many veins of white and bluish quart, the largest seen heing three feet in width. One of these veins has been opened up bui there are no indications of the presence of gold to warant further expenditure.

$$
\text { T'menship of hildure-Runge LX., Lot } 9 .
$$

Kildare. On this lot a pit 25 feet deep was sumk about thirty years ago.
The rock worked for gold consists of white and grayish quart\%, cceurring as veins in the red and gray gneiss of the district, and conform-
ing in a general way to the direction of their foliation. These sometimes attain a width of two feet but present no indication of the presence of any precious metal.
Al"ymentation of hildure-Range I'., Loot i.

The rock here consists of a more or less impure crystalline limestone Augneminassomiated with a gray quartzose gneiss. Both contain in places little kion of specks of pyrite or pyrrhotite. A grood deal of work has beon carried on at different times. This was commenced by Mr. Dupuis, of Joliette, whomany years ago formed a company and put up a battery of five stamps, with amalgamators and other appliances. He worked the pyrititerous gneiss and states that he obtained gold from it but not in paying quantities.

At the time of my visit in 1888 , operations had been resumed and were being carried on hy a small toral company. The workings consisted of a shaft about 2.5 feet deep and two short tumels, the second of these, in a band of crystalline limestone thanked on either side by gneiss. Three sets of specimens were collected for assay ; the lirst being some of the gnciss originally worked by Mr. Dupuis; the sceond from the roof near the entrance to the seeond tumel above mentioned, from a spot from which samples assayed in Chicago were stated to have yielded si60 of gold to the ton : the third from the east wall of the same tumnel at its end.

These three sets of specimens we:e separately assayed by Dr. Hoffmamn, and were found to contain neither gold nor silver.

The rocks worked at this locality are not such as either from their character or mode of oceurrence wight be supposed to contain gold in paying quantities, and the result of the assays as given above shows the correctness of these negative indications.

Township of Ramdm-Renye V'II., Lat S7.

A small excavation has here been made in rusty-weathering garneti- Rawdon. ferous gneiss, which in some cases is micaceous and holds small strings of pyrite. The rock was stated to have been assayed and to have yiekled gold in varying proportions.

Specimens collected, however, were assayed by Dr. Hoflimann, and found to contain neither gold nor silver.

A similar rusty-weathering garnetiferous gneiss often holding a little graphite and some pyrite. The latter minemal is sometimes present in considerable mmount. A series of specimens representing the average of a band of this roek ahout six feet in width were collected, but were found by Dr. Hofhama, as hefore, to contain nether gold nor silver.

$$
\text { Tomeship af Catherri-Reen!r I'., Lot. } 8 .
$$

Catheart. A gneiss, white on the fresh fracture, bat for the most part su decomposed that excavations for foundations and other purposes several feet in depth have been chopped in it by means of an axe. The decomposed tock looks like a hard ochre and contains in places disseminated graphite. It was found lyy Dr. Hoffmamn to contain neither gold nor silver.

> "La Barrirpe"-Touruship af Courcelles.

La Barriote Near the sonth corner of the township, of Courcelles, on the Mattawin road, a few hundred yards not th of the line between Tracy and Courcelles, there is another "gold mine" at a place called "La barrieve." A goorl deal of work has been dome here by the "Compagnie des mines d'or de Mattawin." A simall quartz sein from six to eight inches wide and holding a little pyrrhotite was first worked, but subsequently a trench was excavated down the face of the gneiss eliff, in which the above-mentioned vein oceurved, but without following any well defined vein. The gneiss is gray or sometimes white, often garnetiferous, and sometimes holds a little pyrrhotite and pyrite. It is stated that some specimens fiom this locality, assayed in the United States, have been returued as containing gold to t'e calue of 8434 to the tom. Others holding less gold are stated to have contained several ounces of silver to the ton. Samples collected by Mr. Giroux at the mine, and others of the quartz assayed in the United States and returned as containing considerable quantities of both gold and silver, were assayed by Dr. Hoffmann in the laboratory of the Survey and were found to contain only a trace of gold and no silver.*

Girephite.-

(iraphite.
This mincral often occurs in considerable amount, in the rustywenthering gnciss of certain parts of the area, especially in the eastern

[^32]portion of the township of Rawdon, N.N.E. of the village of Rawdon, and on the continuation of the strike of these roeks to the north in the township of Cathent, as well as still further north on the River Assomption. At none of the localities in this part of the area, however, was the sraphite found in suflicient abundance to make the fleposit of comomic importance, thongh the geological eonditions are such as to reuder the diseovery of valuable deposits of graphite in this district highly promble.

On the western side of the area, graphitic gneiss was observed (1n the Devil's River, in the western corner of the township of Arehamhault, while extensive deposits of graphite are known in the extreme south-west portion of the area mubaced by the accompanying map, in Gronville and the adjacent townships. These latter are referred to in previous reports of the Geological survey (See Geology of Camada, ING:3, p. 794), but were not visited by me since, ns has been mentioned, tho survey of this corner of the area was carried out by Dr. Ells. Further reference to them will be found in his report.

Apretite.-

Deposits of this mineral are also known to exist in the south-western Apatite. corner of the area, and will be referred to in Dr. Ells's report. The only oecurrence of apatite known in the remaining portion of the area is that on range I., lot 33, of the township of Cartier. Here two openings, each about eight feet deep, have been made, on a coarsegrained gramite vein six feet ..ide, cutting grayish garnetiferous gneiss. This vein consists essentially of quartz, white to dark-brown in colour, with white orthoclase, biotite and muscovite, the largest crystals of the latter being four inches in diameter. Apatite, tourmaline and garnet nceur in smaller amount. One small crystal of pale-green beryl was also observed. The apatite is found in small erystals, hut not in sutlieient abundance to enable the vein to be profitably worked, and the hopes entertained that the quantity of the mineral would increase on going down on the vein were not realized. The black tourmaline has all through the district been mistaken for coal, and the deposit is commonly referred to as a "eoal mine."

Mice. -
Lat: Onarrate.
Mica in large sheets is found at a number of places in the parish of Mica. sit. D nist about Lake Ouareau. At the time of my visit, in 1887 , it hatd
not been found in phee, but was turned up in considerable quantities by the farmers when ploughing in certain tields. Specimens obtained from one of these localities, where the roul running down the west shore of Lac Ouareau crosses the 11 th ringe of the township of Chilton, when examined proved to le phlogopi e.

> Kildure, Range VIl., Lat lis.

Phlogropite necurs on this lot, seattered through a pyroxene rock constaining quart\%, felspar, and a little tommaline. Sheets six by eight inches in size luwe bern obtained. An opening has been mate in the deprosit and a small amount of miea shipped.

Infusomial Eath -

Infusurial nitreth.

A small deposit is mentioned by Mr. Giroux as oceurring mome a small hake a few miles north of Chertsey, where the tarmers use it for whitewashing their buildings.

Giornet Rowk:-
Bands of highly garnetiferous gneiss are found at many localities within this aren, associnted with rusty-weathering goeiss, quartrite, and crystalline limestone. At two localities these are associated with bunds of gramuar garnet rock, sulliciently thick to be of economic value.

The first of these localities is on the rear of tot 20 of ramg VII. of the township of Rawdon, where several beds of a rock composed very largely of a red garnet, oceur interstratified with a tine-grained graruetiferous gneiss and white quartzite, the largest of the garnet beds being about two feet thick, some portions of these beds consist of ahost pure garnet, while in oihers this mineral is mixed with a little quart\%, felspar and dark miea. A few blasts have been put in at this locality, hat the deposit his not been worked as yert, although an abundance of garnet is to be obtained. The microscopic characters of the rock are described on page 84.r. A still purer variety of the garnet rock in beds of consideratble thickness oceurs on the arjacent lot, No. 21 of range VII. of Rawdon, but these have not been opened up as yet. The othor loality is one mentioned many years ag by sir Wiltian Lugan (Report of Progress, 1853-56, p. 43), and referred to by him as follows :-
"On the west side of the crystalline limestone at St. Jérome, beds of garnet-roek are interstratified among the quartzite of the locality.

They vary in their compusition, and sometimes consist of a number of hyncinth refl garnets weathering pink, with yellowish white prisms of diopside, monng which are present small grains of greenish felspar wenthering oparme white, a few minute seales of graphite and still fewer and more brilliant haek grains supposed to be schorl. In stme layers the garnets almost exclude the other minerals, but many variations oceur in the propertions in which they are disseminated, in parallel undulating lmads, in the thi kness of the four or tive feet composing the esenrpment in which they are exposed, the hathd heing separated by thin divisions of guartzite and felspar. On the whole the garnets greatly prevail, and wouhd appear to be in sullicient guantity for economic appliention."

Crysialline Limestome. -
The heary bands of erystalline limestone which oceur in many parts fryoonlinn
 very considerable ceonomic value as wall ats a high semontifie interest. Although tor eoarse ing grain to nfford a good quality of marble, and the local demand tor buiding stone be ng very limited, the limestone is in many paces burned for lime, the local sequirements being largely supplied in this way, especially in the remote districts in the rear of the area, which lie far from the Palamoic lime tomes bordering the st. Lawrence.

Near st. Samear, in the Augmentation of Mille Isles, the coarsely st, Sarome crystalline bluish-white limestone, which here appars in very large exposures, has been burnt at intervals for many years, the suitathility of the rock for the production of lime having been pointed out th the farmors in that settlenme be Sir Willian Logan in the early years of the Canatians surveg.

At Lake Oumean, about the rear-line of the townshe of Cbilton, as Lah. has been mentioned (p. 23.0), a heary hand of similar limestone was batrant. diseovered forming the greater part of two ishands situated alowt half way up the lake and neer its west showe, and also exposed elsewhere in the vicinity. The settlement here was, before this discovery, very remote from all known sources of lime, the necessary supplies of this material being drawn from St. Jerome, a distance of forty miles, over roads not always of the best. The inhabitants of the district will now build kilns and burn their own lime. To the west at St. Jovite. in st, dtrome. the township of De Nalabery, crystalline limestone is also burned, and in course of time the band wheh has been mentioned as passing down Trembling Lake will probably be similarly atilized.
H.awelon.

Fintrovl for
litu...

The limastones to the oant of the Marin anorthosite area are also burnal at a number of places. There are kilns ou lot 28 of range \mathcal{X}. of Kawion, and also on lot 28 of mage \mathbb{N}, of the same township, for Which the very extensive limestome depmesits of that lowality are utilized. The lime pronluced is and to be mather dark in colowr, but elem ant very strong, hardening into a sort of cement. On the nerthern continuation of the man band in the township of Catheart, the limetone is burnol at several puints in the vicinity of st. Come. Ono of the principal kilus is situated on lot 23 of range I X., and has a capneity of too bushels. 'Th, hum this clmuge, chmot six eords of wood is requirefl, which is tw he whtaned for lifty ernts a cond : firing being eontimeel fire threr days mad nights. The lime, which is pure, clem and stromes, sells for sol.00 pre harac (six hashols). Amether kiln is situaten on lot 27 of mago $\mathcal{C L}$. of the same township.

The limestones at many wher points above refered to in describing their distributiom, would also aflomi abomant supphies of excellent lime. It may be mentioned, howewer, that the lime yieded by these Laturentian limestomes is not as a general rule so suitable for the tiner phasters used in interior work as it is for mortar for lorick and masonry, laning usally darker in colour than that whatad from the Paboonic limestmes of the plains, and often somewhat "sandy," on mevount of impurities contained in the rock.

A/romb....

In addition to the limestomes atove mentioned, which have been burnt fin lime, two deemrences of limentone hase bern worked as marble.

The first of these is situated in the township of Catheart, mear the line bre ween hots 8 and $!$ of range V'J., and was opened for mable in 1881 by Messrs. (iuibault and Dupuis of éoliette amd Mr. Willians Burns of Rawdon. An examation about 30 feet hy 40 feet was made, and work was then suspended. Some specimens of marble of a good yunlity and tuking a good polish are said to have been obtained. An examination of the location, however, shows that the marble, whieh is metium to rather coarse in grain, is mixed up with hands and strings of a green serpentine and of a gray pyroxene rock, the latter seriously impairing its value as a marble. The quantity also appears to be limited. The pyroxene, which oecurs in the form of a granular aggregate somewhat resembling marble in appearance, is a malacolite haviug a specific gravity of $3 \cdot 228$ and containing 52.48 per cent of
siliea, with a little alumimand traces of iron and mangatese. The serpentine is derived from the altoration of this pyroxene, and ent be seen to gradually pass into it in may phaces. It is sometimes light. green and sometimes thepgreen in eolour, und frequently rmis thromgh tho pyroxeme, dividing it up into reetangular arens separated lig marrow serpentine seams, giving the mock a somowhat striking nppenrance. A little brown mich, tommalino and iron-pyritos are seron in some specimens.

Another marble, quite different in character and age, securs abont a mild from St, Lin, on the mat to Now Glasgow. The mock belonge to the Clazy formation nud is exposed where a small stremn tributary to lidehigan River ents throngh the drift and has bave the maderlying roek. The matble is produced by the alteration of the Chazy limestone by an intercolated sheet of trap which necupies the bed of the stream. It is red in eolour and forms a thin layer over the trates. The marble has been guaried to a limited extent, but work hat been suspeneled at the time of my visit. The trap, which las a somewhat musual eompation, has abrady been refermed to in describing the dyken of the area (p. 139, 1).

almorlhowir..-

Ihis rock, although it has been but little ased for building purposes, Aminthitu. might in many cases be employed with advantare for decorative construction. It may bo dhtained in unlimited amount in the Morin area, of any colour from deep violet to white. The opalescent varieties oeeur but sparingly in this district. To judge of its appearance when eut and polished, two large blocks, one of the violet mad one of the white variety were collected, and six-inch cubes were prepared from then. These were exhibited in the Colonial and Iudian Exhibition held in London in 1886. The violet, variety was collected on the eastrem site of range [1, of the township of Morin, and when polished presented a handsome appearance, but was rather dark in colour. The white variety, which was taken from the lage exposures at New Glasgow, took a high polish, and in this state was found to bear a striking resemblance to marble. It is more ditticult to work than marble, but would he more durable and would retain its polish better, especially in exposed situations, and might well be employed for many purposes in construction.

On account of its toughess and dumbility, this white anorthosite paring stome from New Glasgow has been extensively used for paving stones in the
city of Momtren), expecially on wtreen where there is a heary tortlic. A number of small guncrios have beell "peoded in the vicinsty of New dilangow, while a larger one is operated about two milos to the north of the village. The stons is bhasted out in hage blocks and is then dressed to the repuirel size bye mens of harge hmmers. The industry which hus thus sprong up is somewhat extensive: \quad up to the time of my last visit in Angust, $18 \times 1,541,000$ morthosite pmang hocks having been shippeil to Montrenl liy mal,

NI'MMARY OF AHCHADAN GROHAGY.

1. The Aroham rocks in this area are of Latentian age, and are in part referable to the drenville Series and in part to the Fimodamental Gneiss.
\because The Grenville series contains gacissons, as well as limestomes and quartaites, which are of muenus origin, having the chomicnl composition and the strotigraphical attitude of sedimontary rooks. With these mo intimately assosinted, however, other gomisses which are of igneous origin.
2. The Funlamental Comes comsists largely, if mot exclusively, of ignenus rocks in which a lmading on foliation has been induced hy movements consed by pressure.
3. Both series are penetrated by various igneous masses, of which the most important are great intrusions of amorthosite, a rock of the gabbor family, chatacto ized by a great prownterance of phagiochase. This rock is in phass perfectly massive, hut generally exhihits the inwgular structure which is so often observed in grablions and which is bromght abunt ly a variation in the size of the grain or the relative propertion of the constiturnts from place to place. In adition to this original structure, the rock almost always shows a peculia proterlastic, cataclatio or gramlated stroture which is esprecially well seen in the foliated varieties. This differs from the structure chameneristic of dynamic metamophism in the great mountainous distriets of the world, having been proluced by movenents in the rock-mass while this wasstill decply buriod in the comst of the earth and probably wery hot-perhaps near the melting point.
4. The same gramulated structure is also seen in all those gneisses which hawe ben formed from massive igneous recks by dymanc movements.
5. The fine-praned agueons ricks of the laurentian, on the other hand, have been alte ed chiotly by a process of recy-tallization.
6. The "Uplur Laurentian" or "Anorthosite tiroup" of Nir William Logan does not exist as an independent geological serfes-the anorthosite, which was consislered to be its principal constiturnt,
befng an introsise wek, and its remathing members belomging to the Creswile sering.
 Inasite upen the lanrentian gueisses, which have Ineen carefully investifated, the uncomfomability is fond to be due to intrusion.
7. Tha : anothowites are prohably of pre Cambian ase, and sean to have been introded about the clase of the Laterntian.
8. The Camatian anorthosites are identical in ehameter with the amorthositer associated with ther Areharan rows of the lenited
 howerer, are probably more recent in : ig than those of Chada.

APPENHIX I

 dis. Mav. Sc, 18 ski .
On the I'resenere of Zones of Certan Nilientes almot the (Olivine aecurring in the Amothosite Rocks from the River Namenay. Am. Naturalisi. Nove, 18sit,
 Canadia on Anothesiterof Signemay and Morin mems. Rep. of the Grol, Surve of Comata, 188.1, 1885, 1887.

 Translaterl in Canalian lineord of Semence, thete, Is9f, Ian., 1895, July, 18! \% \%
 : mat Hist. Soce of (? whec, 18:3).

Bailey and Nathew: Geology of New bimuswick. liep. wit the (ieol, Surve of Camulat, 1870-71,
Baylielt: Notos on the fieology of the Nomeh Const of the st. Lawrence. 'Trans. (ieol. Soe. Latorlon, Yol. V., INB:3,
Bell, Robert: Report on the (arology of lake Ilumon. Rop. of the

- Ohsorvations on the Geolegy, Minoralogy, Zooldgy and lionany of the Labmador ('uast, Judson liay and Strat. liap. of the

 Quebere, Vol. V., ING:.

Davies, W. II. A.: Notes on lisigumamx bay and the sumomblinef

Fimmons, lils: Rebort or the (ieolugy of the second Wist viet of the Nlate of New York, Whatny, J8It.

Ferpior, W, F': Notes on tho Mieroseopic Chapoter of some Roeks fiom tho ('omaties of Quebee and Montmominey, eollected by Mr. A. I'. Iow, 188!-! 1. Rep. of the (iool. Simey of Canala, 1890-91, 1.

Hall, Jmare: Notes on the Cienlogrieal Position of the Norpentine Limestume of Northern New York, ete. Am. Journ. Sei. (III), Vıl. Xil., I8:̈.

Hawrs, (i. W.: On the Determination of Fithdepar in thin sometions of Roske. Proce National Musemm, Washingtom, ISKI.

- Explomations in the Interiar of the labrador leninsula. Jamem, Istiis.
 Didinh. and Onhlin Phil. Mag., May, I8.tio.

On Norite or Lalmalorite lock. Am. Jomm. Sci., 1870.
I'lar Iawhey of lout Ilemry, New York. Camation Naturalist, Matill, IN8.

- Comprorison of Camadian Anorthosites with Gablame fom Skyt.

 villia. 1878.

 fombillimel, 18:39-40. Lamolom, Istis.

Kimp, J. F': C'ystalline limestones, Ophicaldites amd associaterl
 Vol. V'I. 189\%.

- Cablores of the Wistorn Shore of lake Champlain. Binll. Geod. Sor. Atu., V'ol. V. 1891.
- Illusta ations of the Iymamic Metamorjhism of Inonthosites and related lacks in the Adimondacks. Bull. Geol. Soes. Am, Vos. V'll. p. Iss, Isor.

Lathame: Anorthosite at Chatem Richers. Report of the Directer of the Cheol. Surve of Canada, 1885.

- Report or deological observations in the Shamemy Rugion. Repe of the Geol. Nurve of Camada, I8St.

Lawsm, A. C.: 'The Amorthoytes of the Minnesota Coast of Lake Simperior. Lieol. abl Nat. Hist. Surv. of Mimesota. Ball. No. 8, 1893,

Areds, Albert Ri: Notes upon the Lithology of the Adirondacks. $1: 3 \mathrm{~h}$ Amm. Rep. of the Now York Ritate Mnsemm of Nat, Ilist, 1876 ; also American Chemist, Mareh, 18 ã.

Liehor, O. M.: Die anerikanisehe astrommische Wxpelition woh Labrador ine Juli, 1sis0. I'rterm. Mittho, I86t.

- On the Owempace of Organic limatiss in the dammatian Rocke of Camada. Q.J.d.s., Nos., 18ti.I.

Low, A. 1': Gn the Mistassini Bxpedition. Licp of the Ceol. Surv. of (Camala, lssta, I).

- Notes on Amorthosite of it. IMam, Lat liver, de. Nmmary

- 'The Lerent Lixplemation of the Latmator L'eninsula. Canadian Recorl of Sidner, Vol. VI., No. 3.
- Lipport on the cookng and botomic Minerals of the roublern Part of Powthonf, Queher and Montomerncy Cometes, Po. Rap. of the theol. surs. of ' 'thada, 1890-91, 1.
Mccomell, IS. G.: Notes on the Amothosite of the 'Township of Brandon. Nummay liop. of the lamo. Surve of Canadi, 1s79.80.

Olmaki, d.: Nomes om the Gewormen of Amothasite on the River SHyenay. Report of the Commissiman of Crown Lands for the Jrovine of Quelree, 1883.

- Ohservabons on the Glacia! Phemomenon of Labador and

4. - Ohsirvations on the Deift Phemmenom of Labmater. Cabat dian Naturalist, New Serios, Vol. 11.

Puyjaton, H. de: Notes on Ocenrrence of Anorthosite on (inlf of St, Lawrence. lipport of the Commissioner of Crown Lamds, Province of Quebee, 1883-8.4.
Reichel, L. T.: Labrador; Bemerkugen iiber fand und Lante. Peterm. Mitth., 1863.
Richardson, J.: The Geology of the ricinity of Lakent. John. Riep. of the Geol. Survo of Camada, 1857.

- The (ieology of the Lower St. Lawrence. Rep. of the Geol. Surs, of Canada, 1866-69.
Rosenhasch, II.: Mikroskopische Physiographe der massigen (iesteine, 1886, p. 151.
Ruhh, J.: Allgemeine und chemisehe Geolegic, Bd. Il., p. 195.
- Uber das Vorkmmen von Labrader. Sit\% Berlin. Akad. NXVIII. p. 697, 1883.
Selwyn, A. R. C.: Report on the Quebee (iroup and the Older Crysstalline Rocks of Canada. Rej, of the Geol. Nurv. of Canala, 1877.78.
-- Summary reports of the Geol. Surv. of Canalit, 1879-80. 1889.
Selwyn, A. R. C., and Dawson, (x. M.: Descriptive sketeh of the Dominion of Canada. Published by (ieol. Surv. of Canada, 1882.

Simyth, C. H., Jr': ©n Gabbros in the South-western Adiromdate Region. Am. Jown. sici., July, 1894.

- Crystalline Limestones and Asoociated Rocks of North-wentem Adirondaek Region. Bull. Geol. Suc. Am., Vol. VI. 1895.
Steinhauer, M.: Note relative to the Geology of the Const of Lahmador. Trans. Geol. Noc. Lomdon, Vol. 11. 181t.
Van Hise, C. R.: Comelation Papers, Areham and Amonkian. Bull. I. S. Geal. Survey, No. \&6, 398.

Vemor, II, G. : Notes on the Oceurrence of Anorthosite. Summary Rep. of the Geol. Surv. of Camada, 1879-80; also Rep. of the Geol. Surv. of Camada, $1876.77, ~ p p . ~ 256-268$.
Vogelsing, H.: Sur le Labradorite Colore de la Cote du Labrador. Archives Néerhandaises, T. III. 1868.
Van Werveke, L.: Eigenthiumbehe Zwillingsbildungen am Feldspath und Diallag. Neues Jahrb, fïr Min. 1883, II. p. 97.
Wichman, A. : Uber Gesteine von Labrador. Ze ts. d. d. (ieol Ges. 1884.

Wilkins, D. J.: Notes on the Geology of the Labrador Const. Camadian Naturalist, 1878.

APPENDIX It.

The Smeltint of Thenafemous Iron Ones.
As the anorthosites in different parts of the lamentian frefuently contain great borlies of iron ore which atre invariably rich in titanimm, the gnestion of the presibility of smelting such ores is one of great pratical importance in the Dominion.

Soveral attempts to snelt these ores having proved unsuceessinl the depnsits in question have been looked upon as of but little value. Some recent investigations into the conditions under whifh titaniantons irom ores may be protitably smeltefl, hy Mr. A. I. Rossi, hawe howeser an important bearing on the subject, ant Mr. Rossi's paper presenting the results of his investigation, which appeared in "The" Tren Age" for Fohnury 6th and $20 t h, 1896$, is aceordingly here presented in a slightly abridged form. It is possible that some of the less highly titaniterous of these Canadian anorthosite iron ores might be workerl if the practice remmmended by Mr. Rossi were followed.

THE SMELTHNG OF 'THANHFEROL'S IRON ORBS.

11Y A. A. ROSSI, NEW YORK゙.
General Comsidrmations
In a paper read at the Montreal meeting of the American Institute of Mining Engineers in Fehruary, 189:, " we have had oceasion to treat a subject which has heen the eanse of much controversy - v\%., the smelting of titaniferons ores. In this paper, to which we will refer in what follows, we have placed ourselves as the champion of these much almased ores, and it was our good fortune in the discussion, short as it was, we sed our efforts to rehabilitate these ores sustained by persons who oceupy a prominent place in the metallurgieal ant scientific world. It that time we called attention to the faet that these ores had been smelted successfully in England in 1N68, for a few years, at Norton-on-Tyne, by Dr. Forbes, guoting the able paper of Wim. M. Bowron, then the chemist in charge of the wonks. In it he explains in detail the metallurgical treatment, giving the composition of all the materials charged in the furnace (16 feet diameter at homes and in feet high),

[^33]and that of the resulting slay. He says: "'The uncertainty of the importation of the wres" which came from Norway-" thair leanness " (35 to 36 per eent of iron), "and the chormons ! flantity of titanic acid they contnined" (3s to 10 per cemt), "having militated serionly ngainst the commereial economy of the process after a few sears" working :" but, as he :udds, "the process, regadel ats a process, was " perfeet suecress,"

It was brought out in the discussion of our paper that: "' 'litaniterous ores trom 'Taberg (sweden) had heen readily swekted for yams:" "that thene ores are of spectal value, heing usually entirely free from phospherus:" "that ores containing is to 6 per cent of titanium ($8 \cdot 33$ to 10 per cent Tion.) have been regularly used for a long time in a large establishment in Pemsylvania with very great advantage:" "that there were furnaces using fitaniferous ores, without being aware of it , with beneficial results."* These ores ocenr in barge deposits in this combtry, "sonne of these deposits having been placed providentially where they would prove the most invitins." Dr. Forbes has stated emphatically that whenever the amount of titanium did not exceed nboust $\&$ per cent (13 to 1.1 per cent TiO.) "no diflieulty was found in working the ores elemly and protitably."

In the same discussion Dr. W. B. Phillips of Birmingham, Ala., summarized very clearly and tersely our own tiews on the subject when he said: "How long will Amerian metallurgists eling to their opinion that these ores camot be profitably treated "" "That the vertiet recorded against them was unjust, based entirely on insullieient gromals and far fro n creditable to the progressive spirit of American metallurgy:" "that he, for one, believes that in the smelting of titaniferous ores there is abundant promise of success."

As to the special qualities of the metal whataed from them, to whatever catuse it might he attributed, the absence of phosphorus or some sececitic action, there serms to be a sort of comsensws omminm, and the results of our own experiments on a large seale on the resistance, properties of chill, \&e., of mixtures in which enteret the pig metal, afford amother contribution to the truth of this assertion. "These ores yieded in Eingland a forge iron which has brought double the market price of common iron. For use as a mixture to iupart the properties of cold touglness to other irons, for making an iron to the mixed with other irons that are not quite up to the mark for boiler plates, sheets of cold stamping and the like, and for extra good iron generally these ores are most valuable." \dagger

[^34]We have had oceasion to mention the eontinuons sumelting for yat's in this country, somse 40 or is years agn, of similar ores that oecur in large deposits in the Alirondacks. * We have given even the pans of a furnice of seme 15 tons capacity which is standing there yet, and was erected after the successful rumning of two smaller stacks. Latek of railroul communientions, the denth of the principal interested parties and the civil war eaused alone the abmadomment of the anterprise at the time, but in this ame also the extra qualities of the product were attested by many official government tests. The fact that specimens of iron amt sted mate from the pig metal obtained from these ores receised the "rewart of a prize medat" at the World's fan in London, in 18is, affords noothur evidener of this superiority, heferences could be multiplied.

Brisely, we find:-

1. That these ores have been certamly smelted in sumen for yours without any diftieulty.
2. That their metallurgical treatment for a cortain numbor of years in longland by Dr. Forbes, in a lare furnace, has proved a perfect success.
3. That famaces wore run for years in the Adirondacks with these ores with excellent results.
4. 'That the metal they yiehl, either as pig metal, iron on steel, possesses special valuable yualities.
5. That these ores, which ocenr in large masses in many States of the Union, ar" almost invariably "Bessemer ores," and as such it is asserted have been used in Pemnsylvania furnetes with great alvantage.
6. That when contaning very large percentares of titaic acitl (as much as 38 to 10 per cent and even 18.60 per cent, like the ilmenite of Camala), aml consequently a very small amount of iron (32 to 3 J per cent, or less), their treatment though perfectly successful, metallurgically spaking, has not proved ecomomical as to fuet.

Obvious as this last observation may appear and applicable as it may be to any kind of non-titaniferous ores, it has been put forward for a long time as a serious ohjection against the smelting of these ores on the score of comomy! But, as was ably brought out in the disenssion of our paper ly Prot. B. J. Marrington of Montreal, "there are titan.

[^35]iferous ores mad titnaiferons ores，and when speaking of smelting them we shonk keep the distinction in mind．There is a great denl of dif－ ference between an ore containing 40 per cent of titanic ned and one containing 10 on even 20 per cent．＂It would twe more proper indeed to call an ore like the st．Urbain ore（Canada），which was smelten in Canala and which contains $48 \cdot 60$ per cent of titanic acid，cimpopond－ ing to 2910 per cent titanium and only $28 \cdot 19$ per cent iron，a titanium ore than to enll it an iron ore．

Such was the stan of the guestion when we took it up in 189：3． Contident，from the work of others，that titanierons iron wes had heron and could be worked shecessiflly，what we have done in the mat－ Per in opropuse a new process of smelting them，suggested to us ley a protadeted study of the eompounds of titanium，which we boliswe to he more economial than those followed previously．We experimented with it in 1892 in a rery small hast furnate，an apparatus harilly worth the name，but at least reprenlucing the eonditions of working aud of reduction of a blast furmace as to the charging of materials， ore，stonce and fuel，in lumps and in layers and blowing hot air under pressure through the mass，with the ordinary and distinct outlets for slags ant pig metal．Suecessiut as this experiment was，as we obt tained seremal hondred pounds of very gool metal，there could not be any attempt to seeure or demonstrate conomy under these circum－ stances．Since then wo have operated om a much litrger seake，in a tumace of a practical eapacity，with results whech will be deseribed in this article．But betore proceeting further，and in order to enable one to judge of the prossible ecomoms，it may be necessaty to reatl briedly eertain properties of the titaniom compounds and to explain what the different methods of treatment to be compared consist of．

Dr．Forlmss theatment to all apparances，antiepated by thoe who smolted these orrob befure him，in sweden or in this country，consists in adding to the titaniferms ores，as fluxes，limestone and fuart\％or silica learing materials in such guantities as to form，with the titamic acid．compunds reprotucing appoximately a natural mineral of titanium，known to be fusible at a moxlerate temperature（ $\%$ of the seale of Danal），the sphene or titanite，a silicotitamate of lime contain ing about 35 per cent of TiO $, \ldots, 25$ to 33 per cent of lime and es to 35 per went of silica．＇The silica being generally defieiont in titaniter－ ons ores，often not execeding 1 to 2 per cent and ravely going above is or 6 per eent，a large amount of quart\％or silica bearing material has
to be added besides the limeston in order to supply the desired amb supposedly indispensable percentage of silien in the slag. This taxed the furnace as to productive capacity, netund amome and cost of fluxes required and conseguently greater consumption of foel for melting the excess of shlus.

Gur experiments have shown us that matimy satisfactory mesults can beremed without this mdition of silica, and that titano-silicates, so to spak- that is, compommls in which in a gemeral mamer the titanic aded is predominat or constitutes an resential aced alement for the shag sometimes to the extont of muking the substaner pationlly a titmite-are fusible and quite duid, at the tomperature obtainable in a blat fumber in which owen tho blast is but very modemtely heated. when the basic elements of the compond are almman, lime and magnosia. Those slags are the more fusible in which the ratin of the axygen of the acial to the oxygen of the bases daes mat rath wer $t: 3$ appoximately ($1: 0 \pi 5)$. The fusibility inereases coteris puribons, iss the acid cloment predominates until certmon limits are attaned. It diminisho (it not the lluidity) as the basie dement increases abowe this matio, although the rompound may prove pertectly admissible still as a slag in a hast farmace. In this respert titanosilieates, on ren titanites, behave like silicates, but the difference lies in the fact that titanites deededly mere basic than those corresponding to the wxyen ratio $+: 3$ are apprently less fusible than the corvesponding vilicates : or more strietly speaking, the diminution in the fusibility seems to increase more rapidly for the titanates tham for the silicaters with the same increase in tha basie element. This is directly in fivour of dionic acid as far as bast furnace pratice is conermed. since its presence in a certain quantity in an ore will require the addition of less Huxes than the same guantity of siliea would demand in order to chatain an equally fusible compound, if not one of the same exygen matio. On these expriments we hate based our proposed method of treatment of titaniferons or s, which consists in introducing magnesia to at good moment into the slay by using a magnesian limestone, a dolomite. The alumina from the stone and ash of fuel and that very generally present as principal basic constituent of these ores furnished all the amount which is reguired to form the tribasie compoum with the magnesia and lime of the stone and the titanic acid of the ore. In the same manner as magnesia introduced in certain proportions into an alumina lime silicate rembers the latter more llud and fusible, the addition of magnesia to a titanosilicate of lime and alumina considerably increases its fusibility and especially its fluidity. This olservation is of importance inasmuch as it has been clamed
sometmes that when minerals contain both magnesin mud titmic mit they are rembered more refractory. True ns this may be in a general manmer ats regards the compounds of titanic acid anl mugnesin, the prosence of magnesia in a titaniferous ore would prove an advantige when properly tlaxed with ulumina and lime. Silien, which is a factor not neessary or depended npon th insure the fusibility in a titmosilicate, is to he fonmed in the later in such variable quantities as the silion of the ores, stome and ash of fuel will make it in ench ease, without extran addition of 'funt\% or the like to bring it to a detinite percentage eomsidered indiapensable.

In the very small furbace refierel to abowe, with a blast at a telle perature not wer 250 or 300 degrees F , at the most, we ban withon any difliculty slang of the following composition: Sion, $14 \cdot 63$; THO_{2},
 ratio, $1: 3$ practically; actually, $1: 3 \cdot 1$.

The ore smolted in this small furmee contaned only $1 \cdot 50$ to \geq per cent siliea and 20 per cent titanice acid, and still the moment of vilica derived only from fuel, thuses and ores renched about 15 per cent of the total.

Let us apply now the two methods just dessribed to ores, fuel and flaxes of the same comprosition nes those used by Dre Forthes in Eingland in his large farnace, the only difference boing that in our ease the stome will be a dolomite, in his a calcite with an axtem llax of guartz or silica-baring materials. Dr. Bowron in his paper gives the folkowing analysis of all the materials actually used in the furmee: -

(1\%0			C'alcite.		(Mr) lricko.	
Sil),	531	人iO. $\quad \therefore$,	Sid.	0 ! 111	Sil)	-19 (i)
'J"it,	3480	- $\mathrm{ln}_{10} \mathrm{O}_{5}$	(Al)	Illin		24 - 3
- $\mathrm{ll}_{62} \mathrm{l}_{5}$	$2 \cdot 8!$. $\mathrm{IV}_{2}()_{3}$	1) 411	(it)	$\because 38$
$\mathrm{MH}_{\text {H }}$	$0 \cdot \mathrm{So}$		$\mathrm{H}_{\mathrm{H}}(\mathrm{s}$	11.43		
MnO	0 (in)					

As will be observerl, the amount of silica present could not in this case, in any manner, form with the bases, omitting the titanic acid, a slag of a composition admissible in a blast furnace. It wonld corres. pond to a percentage of $\mathrm{SiO}_{2}, 21 \cdot 11$; CaO, $42.74 ; \mathrm{Ml}_{2} \mathrm{O}_{i j}, 16 \cdot 00$, aml $\mathrm{MgO}, 20 \cdot 00$, with an oxgen ratio of $4: 980$. The most extreme slags we ha'e seen reeorded excptionally reached an oxygen ratio of 4: 6 (or 2: 3) of oxygen of acid to oxygrn of bases. The use of a dolomite containing $\overline{7}$ ons per cent silica would alone mise the NiO . in the slay to about 13 per cent, diminishing the titanic aeirl proportionally. We give the above merely as an illastation of the possi-
bilitios, as wo would mot certsinty smolt such poor wres when an aboudane of titaniterons ores can le found emtaining at lemst in per cent of irom and up to fit per cent and more, with obly If to 10 per cent on less of titmic meid.

Such as it is, we lave fomm the precorling componal preteoty fusible. It melted in a crucible, pla ed in charomb, through whieh we blew collt nir at a pressure of 3 on t ounces. It was distinctly erystallized in bluish black ate dles, W'e may mark here in passing that such a small amomut of silien could hardly tre expected in a thase turnace. With ores emtaining 20 per rent of thanie acid and 50 to
 summer, the shay still contained about la per ernt of sitica and maly $3 \overline{0}$ per cent of titanic ache. With richer ores, of an average of fio per cent of irm and 10 per cent of titanic acid, mot less than to for cent silica could be expected in the slug, with about 32 to 31 per cent of titanie acid. If the presence of silica were to be consideren as an important element for the fusibility, these two latter shgs onght to he still more finsible.

The results of the experiments which we inve published in 1×93, mate either in erneibles or in our very small furmace, have been confirmed by the subsequent mes and by the protated test wo have made this summer in a blast furnace of a practical capacity.

Titano-silicates of lime, magnesia and alumima of an oxygen matio of aed to basic elcment of $4: 3$, or still mone acid, or slighty more basic, melt reatity and prowe more thaid at the temperature reathed in a hast furnace working unter unfaworable conditions as thent. We will gronte the following examples:-

That the fusilility of a titanic compound does not nerensarily depend upon the smaller amount of silica ant the high percentage of titanic acid. but bears a more direct relation to the oxygen ratio, was proved by the following experiments:-

IMAGE EVALUATION TEST TARGET (MT-3)

\square

1. By proper mixture of titanic acid (rutile) and bases we formed the following compound: $\mathrm{SiO}_{2}, 061 ; \mathrm{TiO}_{2}, 44.05 ; \mathrm{CaO}, 25 \cdot 24$; $\mathrm{Al}_{2} \mathrm{O}_{3}, 1440 ; \mathrm{MgO}, 10 \cdot 50$, and $\mathrm{FeO}, 530$, with an oxygen ratio of 4: 4.78. It melted in the crucible. The fusibility, however, was decidedly atlected ; the appearance was stony and hampy. We repeated the experiment with practically the same results, the only difference being that there was increased thidity and the fusibility was better when the temperature in the crucible could reach a good white heat.
2. We mixel together in a graphite crucible impure titanic acid, common rutile containing about 10 per cent of ferric oxide and 0.90 of silica, with ime, alumina und magnesia in such proportions as to form a deededly acid titamate. Heated in charcoal, under a blast of 3 or 4 ounces of cold air, the mass (500 grams) melted completely. The componnd was beautifnlly crystallized throughout in fine bluish black needles. We repeated this experiment several times, and have obtained several pounds of this curious substance, of which we have given specimens to the School of Mines of Paris and New York (Columbia College). Its composition, on an average, was: SiO_{2}, 072 ; $\mathrm{TiO}_{2}, 65 \cdot 53: \mathrm{Al}_{2} \mathrm{O}_{2}, 10.92$; $\mathrm{CaO}, 14 \cdot 60$; $\mathrm{HgO}, 7 \cdot 30$, and FeO , 0.90 . What is characteristic and of great importance is that practically all the iron of the oxide of iron of the rutile separated cleanly at the bottom in the shape of a metallie button, a very small fercentage of the iron only firding its way into the slag. The button was decidedly gray iron, No. 3, if not higher yet, in grade. There were no signs of the formation of cyano-nitride of titanium where the button tonched at the hottom the graphite of the crucible. The oxygen ratio in this case was prac.ically $4: 2$ (exactly $4: 1.86$).

In another experiment we tried to reproduce the mineral orthoclase, on a titanic base, by mixing together proper propertions of rutile, freed from iron as much as possible, and alumina and potash. Orthoclase has a composition of $\mathrm{SiO}_{2}, 6+6 ; A I_{2} \mathrm{O}_{2}, 18 \cdot 5 ; \mathrm{K}, \mathrm{O}, 16 \cdot 9$. It melts at 6 (Dana) and has been found occasionally in crystals in some furnace scorie in Germany. Its oxygen ratio is $4: 1 \cdot 33$ (3: 1). By replacing the $6 t \cdot 6$ of silica by such an amount of titanic acid as woukd contain as much oxygen (85.4 THO) we have oltatined a compound of the following composition: $\mathrm{TiO}_{2}, 67$ to $70 ; \mathrm{Al}_{2} \mathrm{O}_{:}, 14 \cdot 30$, and $\mathrm{K}_{2} \mathrm{O}, 17 \cdot 00$. It melted and crystallized, but hot as perfectly as the preceding compound. Its fusibility was certainly less. Hagnosia, alumina and lime appear to form with titanic acid connounds more fusible than others containing, with alumina, evea such a percentage of potash as 17 per cent.

Briefly, the presence of titanic acid, even in large excess and without silica, in a substance, is fur from being a cause of infusibility a priari if it is judiciously combined with the proper bases in suitable proportions.

Within the limit which we have briefly indicated there are, of course, many internediary mixtures which, according to circumstmoces and the materials available, could form the basis of very fusible nod fluid slags.

In our blast furnace experiments of last summer the temperature of the blast was not wer 400 degrees F., and its pressure not more than 1 to 1_{4}^{1} pounds, and still we had no trouble whatever to run from ordinary ores non-titaniferous slags of a ratio of oxygen of silica to oxygen of bases of $1: 6(2: 3)$-that is, of such a type as corresponds to the hottest working with blast at 1400 degrees F. under a pressure of s to 10 pounds, and to the darkest grades of iron most charged with silicon and graphitic carbon. The iron was white, and contained but a few tenths of 1 per cent of silicon. Though high enough to melt the more refractory silicates admissible in a bast furnace, the temperature was not sutficient to reduce the silica. This has a direct bearing on the smelting of titaniferous ores as corroborating the observations of Dr. Forbes in his practice and showing that such conditions can be made to prevail in a furnace as will melt the most refractory slags admissible and reduce the oxides of iron, and still they will not be such as to reduce the silica, and still less the titanic acid. Under these circumstances the furnace camot be troubled with "titanium deposits," as it has heen claimed.

These deposits consist of cyano-nitride of titanium, which supposes for its formation not only the reduction in the furnace of titamic acid to titanium, but the highest temperatures and other conditions. We have experimented considerably on this particular point, and ina:- wuch as under certain conditions, of which we may have to speak at some future time, and which were intended to secure the formation of this cyano-nitride which we wanted to produce, we failed to obtain it, we hate reasons which justify us in taking exception to the too sweeping assertion in regard to the formation of these deposits. Some of the slags run in our furnace last summer contained as much as 32 to 35 per cent of TiO_{2}, and 16 to 14 per cent of silica, with ahmina, lime and raignesia as bases; their oxygen ratio was 4: 3. We made a number of analyses of such slags and in all cases we found them to dissolve completely, without any residue, in hydrochloric acid in the cold if very finely pulverized or under a gentle heat. The silica and
titanic acid separated in a gelations state as the substance was heated. Had the titanic acid been merely carried mechanically, even partially, hy the slag as so much infusible samb, it would have separated as an insoluble residue. This was never observed, and certainly furnishes the best proot that we had to deal with a detinite compound, a titanosilicate. It explitins why compounds containing a large amount of a substance infusille per se, the titanic acid, may prove quite fusible when this titanic acid can be carried into a definite combination with the proper bnses, and also explains the tendency of these compounds to erystallize.

It may be argned that circumstances may so oeer in the runoing of a blast furnace smelting any kind of non-titaniferous ores that they wouk lead to an obsturtion whoss removal would require forcing the heat and the pressure of ti.e blast, and that these circumstances in the special case of titaniferons ores would be fatrourable to the formation of titanium deposits by the reduction of the titanic acid. The tendeney of our days is to have in charge of the furnace competent persons capable of judicionsly proportioning their charges fiom analyses made from day to day of the materials used, and such accidents have become certainly much more rare.

At all events this objection has been anticipated by Dr. Forbes, and, in the paper of Mr. Bowron referred to, a ready mode of relief is indicated. He says: "Throw off the titanic ore, and using nontitaniferous ore for a while, raise the heat and pressure of the blast and run the furnace on easily fusible slatrs until obstruction is removed ; then resume the ase of titaniferons ores."

The charges of the furnace were as follows: Coke, 2240 lbs . ore, 2240 lhs .; calcite, 1200 lbs ; old hricks, 500 . Making the proper calculations, he finds that from ores, coke and tluxes there could be expected a total amount of cinder-making materials of $2347 \cdot 66 \mathrm{lbs}$ for every ton of ore used in the charges, $\because 75$ tons of ore heing refuired per ton of pig metal with an ore carrying 36 per cent of iron. Assuming for convenience sake, and which is practically sufficient, that all the iron goes into the pig metal, this gives per ton of pis 6456 lbs . of slag, and a consumption of 4675 lbs . of tluxes. The resulting slag, as run from the furnace, had a composition from nalysis by Mr. Bowron of: $\mathrm{SiO}_{2}, 27 \cdot 83 ; \mathrm{TiO}_{2}, 36 \cdot 18 ; \mathrm{CaO}, 24 \cdot 36 ; \mathrm{Al}_{2} \mathrm{O}_{3}$, $9 \cdot 18$; Mgo, $0 \cdot 60$. As will be seen, the amount of silica present, $-7 \cdot 8: 3$, is still high enough to form with the $9 \cdot 18$ alumina and $94 \cdot 36$ of lime (independently of any titanic acid as an acid element) a perfectly fusible slag. It would correspond, reduced to a percentage and omit,
ting the titanie acid, to a composition of : $\mathrm{SiO} ., 44.88 ; \mathrm{CaO}, 39 \cdot 29$; A1., $\mathrm{O}_{3}, 14 \cdot 80 ; \mathrm{MgO}, 1 \cdot 00$, with an oxygen ratio of $4: 3 \cdot 10$, nearly. This is a very fusible blast furnace slag, not very basic, not even corresponding to the darkest grades of iron.

Let us apply exaetly the same mode of caleulation in our cnse, assmming the same ore and fuel and the same quantities of each in the eharges, hut using a magnesian limestone not any more siliceous than Forbes's culcite, for fairness of eomparison. The dolomite chosen has a composition similar to that of the oro we have used this summer in our larger furnace (exeept for amont of silica). It contained $\mathrm{SiO} \mathrm{O}_{2}, 0.90$; $\mathrm{CaO}, 39.00$; $\mathrm{MgO}, 12 \cdot 00$, and $\mathrm{Al}_{2} \mathrm{O}_{3}, 2$ to 3 . It is easy to ealculate that for every ton of ore and fuel in the charges 1000 lls. of such dolomite stone would be suffieient to obtain a slag of the composition $\mathrm{SiO}_{2}, 10.78$; $\mathrm{TiO}_{2}, 49.08 ; \mathrm{Al}_{2} \mathrm{O}_{3}, 8 \cdot 10 ; \mathrm{CaO}$, 21.80 , and $\mathrm{MgO}, 10 \cdot 21$. The total amount of slag from the materinls of the charges per ton of ore would be found to be $1788 \cdot 78 \mathrm{lhs}$. Per ton of pig metal we would have $4919 \cdot 3+\mathrm{lbs}$. slag, as against 6456 lbs as before, a saving of 23.80 per cent on the amount of cinder to melt, and consequent saving of fuel, and 2750 lbs . of magnesian stone, as against 4675 lbs. of fluxes, calcite and bricks, a saving of 41.30 per eent on the amount of tluxes added, although wo have assumed the same guantity of coke to be required in both eases.

Of eourse it is not in our provinee, within the limits of this article, to discuss all that could be done in sueh cases. It would certainly depend on the eircumstances which would have been likely to cause the obstruction, and others which could be only judged on the spot, and which might oecur with any kind of ores. The eanse may be the use of an excess of limestone. It is a recorded fact that furnaces smelting non-titaniferous ores have been thus choked up by such an excess of lime in the slag, so that it was too pasty to tap, and intusible blocks weighing thirty tons were formed, the removal of which required blasting. But the throwing off of the titaniferous ores for a while and the use of ordinary ores in their stead would at once create the ordinary conditions of practice. Furthermore, in the special case considered we could suggest several means which could prove efficaeinus.

Blast Firmare 'Tpsts.

When we had to make a practical test of these titmiferous ores last summer, conditions of economy imposed upon us the necessity of adopting a smaller scale than we would have desired. We decided on build-
ing a furnace of about three tons dai'y capacity, a size sulliciently large already to judge practically of the advantages of a certain treatment and to furnish valunble information, convincel that, if we were successful in these conditions as to running of slags, reduction of the ores, \&e., we would be certain to obtain mueh more satisfactory and especially more economical results in a larger furnace provided with modern improvements.

For the same reasons we did not judge it necessary to complicate the construction by using a cup and eone, and for simplicity and economy sake we built our furnace open top. We could not in sueh eircumstances expect to obtain a very high temperature of blast; in short, we placed ourselves in conditions of running rather unfavourable. But as it was important also to determine as much as possible the relative economy, if any, of the melting of titaniferous and non-titaniferous ores, we deeided to run the furnace for a certain time first on ordinary ores, such as Lake Superior hamatites, in order to study its working and ascertain what we could expect from it as to production, quality of pigmetal and amount of fuel required per ton of pig-metal before we should hegin to use the titmiferous ores. liy sodoing we secured, we believe, a ceasonable basis f ir aseful comparison of the economy of smelting the two classes of cres, or of the different treatment of the same ores, whatever might be the size of the furnace, since in both eases we were placing ourselves in exactly the same conditions as to apparatus used, temperature, pressure and volume of blast.

We qive below the composition of the materials which entered the furnace from actual analyses made by the chemist in charge, supplementing them by such others as we have had made by different analysts in New lork, or which have been furnished to us by outside parties.

Son-titaniferous Ores.-Lake E.perior Ihrmatites.

	Chemist in chatge.		From parties furnishing the ere	
SiO_{2}	4.58	$5 \cdot 4$	$5 \cdot 60$	$4 \cdot 66$
Ala O_{3}.	$9 \cdot 16$	7-19	\ldots	
CaO .	$0 \cdot 29$	\ldots	
Mg')	$0 \cdot 42$	182	\ldots	
S.	$0 \cdot 03$	$0 \cdot 04$	002	0.04
1 '	0.08	$0 \cdot 10$	007	$0 \cdot 116$
Fe	64-20	64.76	$54 \cdot 0$	1i2.00

Culvite (fissuilifcrons).
Commellscille Cokic.
($7 \cdot 38$ per cent ash.)
Cluemist
in clarge.

SiO_{2}.	2.8!
Cat	5:010
$\mathrm{Al}_{12} \mathrm{O}$	0 \%
Mg)	Little.

Chemint
ill clarge,

S	0 -
SiO	3 319
$\mathrm{Al}_{2} \mathrm{O}$	1 192
CaO_{2}	
Mgo	

Macheltstowen, İ.J., Dulomite.

T'itumiferous Ores of the Adirondachs (Esserr County).

The Cheney ore was also used, but sparingly, one-tifth to one-sixth monly being added to the charge, and none but the poorer ore, this list ore, whieh oceurs in the gneissoid gabbow in decidedly stratified rocks, differing in this respect from the preceding. It has almost identically the sume composition as certain ores from Split laok and Lake Champhan, distant some 50 miles from each other and amalysed by Professor Maynard some years ago. They oceur in the same formation, if we quote rightly Professor Kemp, Professor of Geology at Columbia College, who, we understand, intends to publish at an early date the results of his investigations on the genesis of the titnniferous ores of this distriet.

The furnace as built stands 20 feet from the lottom of the hearth to the charging platiom, the diameter of cmoible is 2 feet 6 incles, its height 2 feet 3 inches, boshes 3 feet high, dimneter 1 feet 6 inches at tup. The stack is 1 f feet 9 inches high, with a diameter of 1 feet 6 inches at its junction witl: the lushes, and \geq feet 10 inches to 3 feet at top, the inside capacity of the furmee being then very nearly 200 cuhic feet. The lining proper was made of B. furnace fire-bricks 9 inches bong, with a baek lining of bricks $1 \frac{1}{2}$ inches, making the cotal thickness nealy 14 inches. The stack rests on six enst iron pillars bearing et the bottom on a cost iron ring resting on the masomry of the foundations, and which heats the upper ring supporting the stack. The circle pipe is 6 inches in dianeter, taking the blast from a system of two paraltel rows of 6 -inch diameter irom siphon-pipes arranged in an oven heated by a coke fire on a grate at one end. With this arrangement we have not heen able to obtain practically more than $400^{\circ} \mathrm{F}$. as temperature of blast measured at the thyere's nozale. The tuyeres, three in number, take the blast from the circle pipe through 3 -inch diameter drop pipes harving a diameter of 2 inches at the nozale, which could be reduced by means of proper loushings, if found alvisable, to all dimensions from 2 inches to 1 inch.

The thyeres are provided with iron coils fitting them loosely, and where this coil passes through the back lining the latter was replaced by a apecial cast iron hollow box taking the circular slape of the furnace, and allowing the coil hearing the tuyeres to pass freely through a circular opening in the box, this opening and the space between the coil and tuyere being rammed in with fire-elay during the run. An independent circulation of water through the coils and boxes insured the cooling. In order to protect the boshes we resorted to a mple special device which proved very satisfactory. I used thick sl iron plates made to fit snugly the curve and slant of the boshes between
the pillars. These phates were upset at the bottom so as to form n shallow collector for water, closed at buth ends. The water, supplied by a circular pipe mound the furnace, sprayed throgh pin-hole openings provided for the purpose on the inside of this ferd pipe and trickled down in fine streams on the inclined surface of the plates to the collector at the bottom, to be there wasted

The blast was supplied by a positive rotary blower capable of delivering at a mormal speed at least 1000 feet per mimute; more or less could be ohtained according to the speed of the small stam engine driving it. The delivery pipe was 6 inches in dianter. Where it entered the hot blast oven it wats provided with a release gate value control the volume and press ure ot air admitted in the furanee. In an case was the volume above 500 cubic feet per minute ; generally from 350 to 400 enbic feet under a pressure of 16 to 20 ounces (1 to 1 ! pounds). In order to meat p ssible contingencies n by-pass with special arrmgement of valves comected the admision pipe and delivery pipe of eold and hot ail, so that in case of accidents happening to the oven we would have been able to blow in with cold air during the repairs; but we did not have oceasion to use it.

It was soon fombl that by driving the furnace fast the best results were obtained. The slags, to our surprise, considering the suall hoight of the furmace, did not contain much iron, mo mater whether the ores used were Lake Superior hamatites or titmiferons ores, By driving slowly the perentage of iron in the sligg conld be kept below 2 per cent ($2 \cdot 66$ per cent FeO at most), a wery small amount indeed. The slags of the large Dowlais funates, as stated h: Perey, earried, in his time, 2.50 FeO, and not unfrequently $450,5 \cdot 50$ per cent FeO, and even 7 and s per cent in rumning as white irom. At the Ebbw Vale and Bacma Iron Works, says the same writer, the regular amount of iron carried by the slag reaches 5 per cent or more or $6 \cdot 50$ to 7 per cent FeO ; it was exceptionally that we had more than this, and we may say that practically, in our condition of ruming, the reduction of the oxides of iron was quite satisfictory.

As could be expected, the furnace was extremely sensitive to any sudden changes in the burden, as well as to disturbances or irregularities in the amount or pressure of blast. On the other hand, it answered quickly to any such changes, and some 15 hours after the charges had been modified, sometimes less, the expected slag was tapped. Numerous analyses proved this to he the case. This feature of the apparatus was very advantageous for our purpose, as it allowed us to experiment on almost any composition of slag desired and aseertain rapidly the effect on the running of the furnace.

It could be cosily observed also that，thongh the hent in the furmace were sullicient for a satisfactory reduction of the oxides of iron and ti． melting of almost my slag，it was not high enough to reduce the silien and canse the metal to charge iteeff with silien and graphite carbon．The iron obtained from hoth kinds of ores，titaniferous or not，was invariabiy white，and still during our rum with lake Superior hamatites，not contrining any titmic ncid，we so proportioned our charges purposely to oltain slages so basic and so alaminous that some of them would have＂ppeared，＂priari，to be only almissible in fur－ maces in which the greatest heat prevails．Their composition corres－ ponded to that of slags acempanying the darkest grables of irom，most charged with silicon and graphite，obtaned in furnaces in which the temperature of the bast reaches．as high as 1400 degrees \mathfrak{F} ．and its pressure 8 to 10 pounds．Under these conditions of working，no titanic acid could be reduced．We made a great many malyses of slags during this run，No．1，with nom－titaniferons hamatites，their average oxygen ratio heing over $1: 4(1: 1)$ ，and we ran slage strat basie of a ratio of $t: 6\left(1: 1 \frac{1}{2}\right)$ ，and still the iron whe white．We quote as types the following：

Sif）${ }_{2}$ ．	$319 \cdot 10$	33： 11	361036
A19	\％	ㄹ．7110	20：50
（al）	$36 \cdot 5$	$30 \cdot 810$	－${ }_{\text {人 }}$
Mgn	138	1.9	＋ちゃい
Fic）．	$3 \cdot 80$	$10 \cdot 60$	$\bigcirc{ }^{-20}$ So
Oxyg	4：1i	1：\％	1：14101044

In this run we used as limestone the calcite of which the analysis has been given above，adding generally a little dobomite，of which we had a large stock．

The greatest rmm made in 24 hours with these ores，which contained an average of 62 per cent of iron，was 4600 pounds．These hamatites were not ruluced as fast in the furnace as we expeeted they would be； driving fast inereased the production but not to the extent looked for． The blast was kept at a pressure of an average of 16 to 18 ounces，its volume fluctuated between 0.50 and 450 enbic feet．

When we had ascertained what we could expect from our furnace with ordinary ores，we began to add the titaniferous ores mentioned above in the proportion of four－fifths to five－sixths of Mill Pond or San－ ford，and one－fifth to one－sixth of Cheney．It had not been the in－ tention to use this Cheney ore at all at first，but owing to some mistake at the mines we harl to dispose of some 40 or 45 tons of it．We pro－ ceeded by gradual increases of one－eighth titaniferons ores in the
charges, keeping the furnte n certain time on each new mixture, until the burden of ore was all in titaniferous ores.

During this run, N_{0} : , the mixture averaged 5is to 56 per cent of iron. Our best run in 24 hours was 503 i pounds. As will be noticed, as soon as we hegan to charge the titaniferous ores the yield of the: finmace increased to a decided extent. It apperred as if these ores were more readily rednced than the hamatites, made iron faster, at least under the conditions under which we were working. lange lumps not leing admissible with a tunnel head "f feet 10 inches :o 3 feet in diameter, we broke all our stook, ores nud tlukes, from beginning to the end of the tests, to pieces of the size of the fist or a very large egg. The pressure of this blast during this run-No. 2 -was about the same, 17 onnces on an average, and its volume varied, ass before, between 350 and 400 cubic feet.

During this run we changed our stone from a catcite to a dolomite, or rather a dolomite to which wo added enough calcite to bring the percentage of magnesia in the mixture of stones to wont 1: to 14 per cent. Wogive helow the principal analyses of the slags rmas types:

SiO_{2}	At luginning. 3.111	Middle of rmi. 2! ! 10	$\begin{aligned} & \text { Tow:art emol } \\ & \text { of mim. } \\ & 27 \times 2! \end{aligned}$
'Til1,	4.6	!1:119	$17 \cdot 18$
. $\mathrm{la}_{3} \mathrm{O}_{5}$	29	1803	14.43
(a).	$23 \cdot 63$	$\because 4.12$	207 71
M ${ }^{\text {(}}$) 。	10.00	1\%	11 \% ${ }^{\text {\% }}$
Fid	$3 \times$	$1 \cdot 610$	4311
Wyygen	1:1910	1: +111	1:370

When the furnace was fully on titaniferous ores, the ore minture averaged about 52 per cent of iron. It was soon noticed that the furnace coukd be driven fast with great advantage. A charge woukl reach the bottom in less than 15 hours; 12 to 15 hours was the rule. The yield inereased considerably. We had runs of 4800 , 4900 and 5600 pounds in 24 hours, and our best run in any single day reached as high as 6735 pounds, fully 3 gross tons. The blast was kept at very nearly 18 ounces thronghout ; it did not vary to any extent, and the only changes observel were independent of our control. They were due to the irregulanities in the blowing apparatus, which, owing to the exigencies of the works where these experiments were made, had to be loeated at a considerable distance from the hot blast oven. The economy of rumning the fumace fast was clearly apparent and confirmed our views in this respect, views corroborated by A. Pourcel, late technicat director of the steel works at Bilbao, Terre Noire,

France, and Port Clarence, Bingland, in a letter, from which we extract the following :
". Mr. Rossi's ideas concerning the treatment of titaniferous ares in the blast furmaces have struck me from the start, is you are aware, as eminently logical. Furthermore, they seem to me to be sutliciently justified by the trinl, on a smati seale (in 1893), which Mr. Rossi has described in detail. * * * The ensy reduction of the titaniferous ores justifies the expectution t?at with a blast furnace of 300 ccm . (10,500 cubic feet) eapacity, for instance, it will be persible to reach easily a production of 100 tons of pig irm in 24 hours with ores containing 52 to 56 jer cent metallie iron. * * * In conclusion I will say that the formula of sling and of modernte tempernture of blast (300 to 100 degrees C.) recommended-with proof to sustain his opinion - by Mr. Rossi, ought to ensure the success of the treatment of titaniferous ores from the start, but there is nothing to exclude, a priori, the hypothesis that, with a rapil driving, by forcing somowhat the production, it may be possible to produce the same forge iron or pig iron for open hearth steel (Siemens-Martin furnace) with a temperature of blast higher-that is, in the conditions of running economical as to fuel. * * *"

In order to judge of the relative ecomomy of these three runs, under as nearly as possible similar conditions, we will compare the cmounts of fuel and stone reguired per unit of pig metal whon the fumace gave the greatest production in each case. This supposes indeed, for the kind of ores or mixtures of ores considered, the most favourable conditions of ruming for each. By making precisely the same ample allowance of time in each case for stone and coke before each maximum cast of 24 hours as clargeable to that cast, we found the figures given below.

We feel justified in doing so by the fact that with titaniferous ores we had two successive casts of 12 hours ench of 3325 and 3410 pounds (in all 6735 pounds in 24 hours) followed by a cast of 3200 pounds, and in other runs a cast of 2100 perncle in 12 hours followed by one of 2635 pounds (in all 5035 pounds in 24 hours), for the mixture of titaniferous ores and hamatites, and a cast of 2200 pounds followed by one of 2400 pounds (in 12 hours), in all 4600 pounds in 24 hourv, for the non-titaniferous hirmatites smelted alone.

[^36]

... . 1 (N$)$	
Slohir.	

Pig irom. ...l 1 ml	
Ston4. 010 !	
Cokrr 1 !!!	

Hence, to say the least, the titaniferons ores, muder the same conditions of iurnace running, did not require any more fuel per unit of pigg metal than excellent non-titaniforous ores; really, they require decidedly less, and the production of the furmen was increased comsiderably. We should remark here that run No. 1 was made with ores containing 62 per cent of iron, while in run No. 3 the amount of iron was not over 52 per cent.

We purposely chose the titaniferous ores not too rich and high in titanic acid. Hal we used ores such as are found in very large quantities in that same distriat, averaging 60 to 62 per cent of iron and reaching even 61 pre cent, with only 13 to 10 per cent of titaniucid, the saving on both fuel and stone, especially the latter, would have been much mote in favour of titaniferous ores. If we make the ealculation for such richer titaniferous ores containing 60 to 64 per ceat of iron, of which we have given the amalysis above, it is easy to seo that, even in assuming 100 coke to 100 ore, in this ease some $0 \cdot 50$ to $0 \cdot 60$ ton only of dolomitic s e would have been required per ton of pig metal to obtain n slag containing some 22 per cent of silica and 30 per cent of titanic aeid with time 24 per cent, alumina 14 per cent and nagnesia 10 per cent as bases. With such a reduction in the amount of resulting slag to melt and of fluxes to add the economy as t. fuel by rapid driving would have uppeared of considerable importance.

We should remark also that if 2 tons of coke for 1 ton of pig metal would certainly he considered excessive in a modern furmace, we must not lose sight of the fact that the furnace was small and had an open top ; that the temperature of the blast was not over 400 degrees F ., and that we were wasting the gases which if utilized could have raised the temperature of the air easily to 800 or 900 degreess F . We would have desired to obtain the latter figure, and even 1400 degrees F . We have seen open top furnaces 65 to 70 feet high, of a capacity of 35 to 40 tons per day, not making a better showing as to amount of fuel per ton of iron, with ores richer yet than our titaniferous ores were. At any rate, we required even more than 2 tons of cole for 1
tom of pig metal with non-titaniforous ores, under the same conditions of furnace work.

We kept the furmace rimuing until we exhansted our supply ol one, and we were able to rmpty it to within I font of the tuyeres. When we opene it wo fomal, as usmal, in the erneible a small salamander, but no traces of eyano-nitride of titaniom were visible either in the crucible, the boshes of any part of the furmee. This could be expected. The conditions of running of our furnace were not such as to reduce the silica, and still loss the titanic acid. 'Jhough much inferior as to heat to those which could be adopted (a temperaturo of 800 degrees F , being perfertly almissible with these ores), they wero reproducing in a general manore those whieh, with these ores, havo given very satisfactory results. The iron contained but $0 \cdot 1$ to $0 \cdot 2$ per cent of silicon and only traces, pratically, of titanium. liar from huikling, the ores had cot the lining several inches, and the latter was covered with a grood protecting glazing material. Wo made a great number of analyses of the slags during this last run : others have beon made since in New York. We give below the most characteristic ones as types:

Sios.	20.59	$15 \cdot 3$	$1+82$	15: 41
'tios.	$26 \cdot 81$:1906	3119	:31: 3
A, $\mathrm{H}_{\text {: }}$	$10 \cdot 17$	1.1 : 1	$12 \cdot 13$	$11 \cdot 23$
(3a)	23 (i)	20:0\%	$2 \cdot 104$	29 10
Mg1	$10 \cdot 4$:10:	4	980
Prel	$6!6$	(1) 12	1 inl	$11 \cdot 10$

An examination of these ligures shows that the only varing elements of the analyses are the proportions of $\mathrm{SiO} \mathrm{A}_{2}$ to TiO .. In the last shags run the general composition was, in round numbers, 15 per cent $\mathrm{SiO} ., 35$ per cent of $\mathrm{TiO} ., 10$ to 12 per cent of alumina, 20 to 95 per cent of lime, and some 10 pre cent of magnesia. In all the titanie reid is predominant.

These furmace tests, on a practical sale, have demonstrated, we helieve, that under the conditions in which they were eomducted:-

1. In a fumace only 20 teet high, with blast at only 100 degrees li., under average pressure of 16 to 18 annces, titaniferons orrs containing 20 per rent of titanic acirl and 52 to 53 per cent iron man be perfectly reduced, making iron faster and with a consmmption of fuel (coke) not nny greater, or even less, per tom of pig motal than wher ores free from titamium, with ath economy as to quantity of floxes used.
\therefore. The titaniferous ores did mot build. The lines of the furnace wero fumbl cut just as murl ats is the case with any other ores, non-titaniferous, after a limited lun. No titaniferous deposits were observed.
2. Slags very high in titanie acid, containing 30 to 35 per cent of 'TiO, and bot it per cent of silica, with almana, lime and magnesia as bases, were found perfectly fusible under these conditions of low hatat. I'lory were thid, ruming lignid to feet from the furmee on a sunke-like comse. Chemically, they were soluble withont residue in hydrochorice acid ; physieally, they arystallized in a distinct manner.
d. With richer ores containing less titanie ncid, with a greater temperature of the blast, at least 800 degrees l., as it has been dome, much more commaical results might be legitimately expected.
3. It is pussible io form thid and fusible componds with titanic aced hy the addition of the proper quantities and nature of thases, such ats a dolomitie stome introducing magnesia. The latter, combined with almmima and lime, will contribute to render the titanosilicate or titanate much more fluid and fusible: ambarily to what has heen asserted as to the difliculty or impossibility of tapping slags comtaining af few per cont of titmin ateid (1 to 2 per cent).
ti. There is mothing in the premises which could leal to suppose that a furnace could wot be kept rmoning under these comditions for in indelinite period.

Properties of the Irow Ohmined from T'ikniferous Ores.

Whatever may lave heen the opinion of many metallurgists as to the advantages, or aren the possibility, of smelting these ores, the refactory chanteter of slags containing titanic acid, there is one point on which they seem all to agree, the exeellent qualities of the irom and stoed obtatimed from hamie pig metal and the special value of the later. We refer the reader for more details on this subject th the authority quated in our Montreal paper and a preceding one read before the American Chemical Saciety in 1890.*

Spaking of the irm made at Norton-om-Tyme, J. Deby, late foreign secretary of the .J. I. and S. Lnst., says: \dagger "It went to the armome plates of Sheflield on accomt of the tonghess which this iron not ouly possesses but imparts to others in admixture." Mr. Bowrom, atluding to the same irom, states flat "it commanded double the priee of ordinary irom." \ddagger Such expressions as "womderfully good" are found in the secentific press in Cugland, relang to this titanie irom. It is

[^37]not our intention in this article to examine the causes of this superiority. In a general manner we may say that if it is due to the presence of titanium in the pigg metal, very small quantities of this substance are then sullicient to secure such results. In our blastfurnace tests we have not been able to obtain more than a few hundredths to one tenth of one per cent of titanium. It is met in quantities varying from 0.2 to 1 per cent in many pigs here and in Enghand, to which it seems to impurt a "greater tenneity."* The higher the grale of the iron the more titanium it is likely to contain. On the other hand, titanie pig made from ores from St. Urhain, Canada, containing as much as 41 to 48 per cent of titanic acid, smelted by the Forles trentment under low temporature and pressure of hast, contained only traces- 0.03 to 0.05 , exceptionally 0.26 titanium-and still the quatities of the pig metal and iron were "exceptionally good" (anulyses made at the Paris Sehool of Mines).

But, if but omparatively very smail amounts of titanium and silicon are found in the pig metal from a cold furmace, the percentage of carbon, mostly in the combined state, is often very high. Anaiysis of the metal from our small coke furnace of 1893 gave :-

Silicom	36	traces to $0 \cdot 16$
Titanimm	None:	0.07
Comb, earkm.	$2 \cdot 835$	2.90
Graphitie carton	0.253	02

Even the salamander contained only $\mathrm{Si}, 1 \cdot 05$; $\mathrm{Ti}, 0 \cdot 054$. The metal, though "white," has not the ordinary characters of white iron. Its grain is generally very close and fine, its fracture mere stecl-like in colour and appearance and it is remarkably tough and hard. Under special conditions we have obtained pig metal containing:-

It was so hard that it could hardly be broken on an anvil with a sledge hammer. It blunted the hardest drills and we had difliculty in obtaining samples for analysis.

Having been called upon by a large manufacturing firm to make tests on the chill, strength and resistance of mixtures of cast iron into which eniered small percentages of different metallic elements, we had oceasion to test, on the machine, our white cast iron obtnined from titaniferous ores. Square bars of I inch section and 12 inches long between supports, broke under a load at the centre of 2700 to 2900

[^38]pounds, which corresponds to a modulus of rupture, in eross breaking, of 48,600 to 52,200 pounds per square inch.

Cast in chilled molds, this iron olfered a remarkable depth of chill on the test blocks. It layd become so hard that drills or ehisels of the hardest steel would not touch it. Its ressistance to attrition was exceptional. For mmy obvious applicatious these properties would open a very extensive use for this iron as pig metal. Pieces of machinery requiring specia 'hurdness were enst from this material and were sub. jected to particuarly hard and trying conditions of wear. They lave been found, after a year's service, in gook order yet.

By mixing with irons showing a breaking load of 3350 pounds per square inch and a chill on the test pieces of $1 \cdot 125$ inches small per centages of this titanic pig metal, we increased the resistance to breaking to 3900 pounds and more, corresponding to a modulus of 70,000 prounds per square inch. The depth of the chill was increased to 1.375 inches. It compned favourably for resistance with other mixtures into which entered certain metallic elements, mixtures much more costly, and with which the chill dropped to 0.81 inch, and in some cases to 0.062 inch, making them unfit for the purposes for which they wore intended, strong though they were. Hence the simple addition of this titnaie pig metal, mot more oxpensive, pratically, that any other east iron, to orlinary mixtures used for specilic purposes, though increasing the hadness mad the chill of the produet in a remarkable manner, considerubly inereased also its resistance to cross brenking, bringing it to equal the strength obtained by much more expensive mixtures of which the cost would industrially exclude the use, and which, to all purposes, destroys the chill, an essential factor in the ense considererl. Industrial products were manufatured from these titanic metal mixtures to be submitted to the regular tests for strength, which they stool with very satisfactory results. The experiments were repeated many times and under different conditions. They dealt with a number of different mixtures. but they are of a more private character, and what we luve guoted from them is suticent, we lelieve, for the purpose of this present article.

Feferring main to the two papers mentioned nhove for qualities of the iron and steel obtained from this pig metal, we see that either as such, or as a transformed product, the metal obtnined from titaniferous ores could command numerous and important applications owing to its speceial qualities.

Conclusion.

In conclusion we may repeat what Wm. B. Phillips suid in the discussion of our Montreal paper: "The verdiet against titaniferous ores has beea based on insuflicient ground."

1. As anyboty who may desire to make the experiment can verify, titanic acid can form definite compounds, perfectly fusible, if properly fluxed, containing as much as 35 to 40 to 50 per cent of titanic aeid, with olumina, lime and magnesia as bases, and admissible as slags in blast furnace work. Larger percentages still, such as 65 per cent can enter into a compound, and it remains fusible. The objections to the smelting of titaniferons ores on account of the refractory character of the slags are not sustained hy our practice, or that of others, or by direct experiments on the properties of these compounds.
2. In running a furnace under special conditions of temperature und pressure of blast, no tronble has been experienced from titanium deposits. We never observed any in our blast furnace tests, and none are mentioned by Dr. Forbes in his practice in England and Norway.

3 If these special conditions of the lower heat, considered more favou ble in smelting these ores, are held to imply against them a waste of fuel, it is a question whether this is not oflset by the smaller anount of cinder to melt, the lesser quantity of fluxes necessary and their indirect effeet on the productive capaeity of the furnace, as well as the greater value of the pig metal obtained for specific and numerous applications. This is without taking into account the possibility of not submitting to it by a rapid driving and forcing the production, conditions which, to judge from our tests, could be easily realized with these ores.

The most economicai results are obtained by the introduction of maguesia to an important extent into the composition of the slag, with alumina and lime. Many objections raised against the use of these ores have proved, when practically examined, of as little value as those brought forward against the use of magnesia in a blast furnace.

We have tried in the above to present the facts as we have observed them, and to state, as near as possible, the conditions in which we have conducted our experiments. We hope that enough has been accomplished to induce others to help us in our efforts to rehabilitate a class of ore, Bessemer in character, whieh could furnish to the metallurgists materials of excellent quality, and available in many districts where others prove costly.

Legend

Cambru Silurian

daurentan
\qquad
\square

Igиения

\square

Anarthasite

\square canhory
\square Sienite, and (irumith
\square Rophyry

0 DOH

Strike and lip
(1) Vfive
of Iron

Druen for whoto lithourmpher br L. A' Kicharit.

[^0]: ＊＇This does mot inchude the contlying and separated Areheran areas，oceuring in Sewfoundland，and in the States of New York and Nichigan，and i－hased on the suppasition that the limits assigned to the nuclens in the imprefectly explored regions of the far north by br．（i．M．Diwson are correct．Sor Ii．M．Dawson，Notes to accompany a lieological Map of the Noethern Portion of the lominion of Comala， Anmal Repnert，deol．Surv．Cand，vol．II．（N．s．），1ssut．

[^1]: * (ievology of Canarlia, IN6is, j. *3:

[^2]: * Geology of C'antada, 1N63, 1. 3:4.
 theport of Progress, (ieol. Surv. Can., 1859-s0, p, \%).

[^3]: ('amadi Pull. (inol. Suc. Am., wol. I., 18!m.

[^4]: *F'. D. Adans, Report on the (ieology of a portion of Central Ontario, Ameal Liepert, tieol. Siuv. Can., Vol. V't. (N.s.), 1s:u2-!3.

 3

[^5]:

 and many whars.

[^6]: * Eintstelumg ther alikrystallinem Schicfer Gesteine, S. 250.
 + Futterel.- Die Ganggrante vem Grossachsen u. d. (bartaphorphyre ven Thal im 'Thuringen. (Inang Diss, Heidellerg, 18:0.)

[^7]:

[^8]: * Beitrage anr Lehre von der Regionahuetamorphose-Nenes sahehnch fuir Mincralogin, IN Beilagn Band. S. 10%.
 $4 \frac{1}{2}$

[^9]: * Referred to in a paber entitled bisintegration and tremmpmition of Diahase at Medford, Mass., Bull, (ienl. Soc. of Ameriea, 189th, b, 357.

[^10]: ('omity, N. Y. Am. Jour. Sici, April, isti, p. 2sio.

[^11]: Regents of the L'uiversity on the New York State Cahinet of Natural listory for 1stin, Aprendix t:

[^12]: *'rownelings of the: I'nited Naters Natiomat Musem, 1ssis, p. 10.5.
 $\overline{5}$

[^13]:

[^14]: *. Ill fhe irm is calculated as fri "ic oxide,

[^15]: and met:anmpheme. Phil. Tra s., that, p. 192.
 France, Anil, 1ss:

[^16]: "T. Sterry Hunt-On Nonite or Labradorite Rock, Am. Journ. Sc., Nov., 1869 .

[^17]: * Vogelsang-Archives Némelandaise, T. III., 1868.
 +(i. H. Willians-Gabhro and associated Homblende Rocks in the neighionmond of Baltimore, Mal.--Bull. U. S. (ieol. Surs, 2s, p. 21.
 $\ddagger+J$. Judd- Gahbros, Dolorites and Basalts of Tertary age in Scotlaml amol Ireland-(2. J. G. S., 18*6, p. se.

[^18]: * Hagge, Microskopiche Untemenchung iber Gabhro and varwandte Gesteine, Kiel, 1871, S. 46.
 \dagger Lattermam in Rosenbusel Mass. (Rest, p. Tisti.
 \ddagger Lacroix-Contributions ì l'étude des gueiss à Pyroxene, pr 1\&1-Bull. Soc. Min. France, April, 1839.

[^19]: * Hawes- On the determination of Felspar in thin Soctions of Rocks. Proc. Nat Mus., Washington, 18s1, p. 134.
 t See table of amalyses, 1. 130 .s.

[^20]: * Latterman, in Rosenhusch, Physiographio der Massigtin (iesteine, p. $\mathbf{Z 8 6}$.

[^21]: *G, H. Willianw, Bulletin Nu. es, U. S. Geol. Survey.

[^22]: * Cebre den Feldispathgemengtheil des Flasergabbros von Rosswein i. S.--Ber, d. naturf. Ges. i. Leiprig, 1 Rs 3.

[^23]: "(ieological Magazine, November, 1886t.
 8

[^24]: * Michel Levy-sur me roche a sphene, amphiwle et wernérite gramulitigue de Bamle-Norvige. Bull. Soc. Min. France, No. 3, 187s.
 Michel Lévy-Sur le givement de lamphibolite à wemérite gramulitique doodeyaard près Bamle-Norvige. Bull. Soc. Min. France, No. it, 1×78.
 F. D. Adams,-On nome Canadian Rocks containing Scapolite. Can. Rece of Sciener, Oct., 1888.

[^25]: PLITE IN.-ANORTHOSITE, SHOWIN: PARALLEL ARRANGENFNT OF HYPERSTHENE MASSFK, BETWEEN LAC NOIR ANH LAC CORBEAL, TOWNSHIP OF BRANION.

[^26]: "Kjerulf, Die Geologie des siidl. und mittleren Norwegen, p. 261.
 +Reusch, Die fossilien fülırenden krystall. Schiefer von Bergen, p. S4.

[^27]: *Schrauf, Studien an der Minerahopecies Labradorit. Sit\%ungsher Wiener Akad. 1869, p. !96.-- W. Tarrasenko, Ther den Labradorfels von Kamenoi-Brod. Ahandl. I, Naturw, Ges, in Kiew, 1886, p. 1-28.-M. K. We Chronstehoft, Notes pour scuvir a létude lithologique de la Volhynia. Bull. Soc. Min. Frunce, IX., p. 251 (containing further references).

 * Dawson, Notes on Useful and Omamental Stomes of Anciont Egypt. -Trans. Victoria Institute, London, 18!11.

[^28]: * (ieology of Canada, 1863, p. 3s.

[^29]: Can., Vol. Ill. (NS.), 1. List \&

[^30]:

[^31]: *Sinmary Report of the Oprations of the liendogical Survey for the your Rent. 1. 43 A.

 Summary Report of the Oproations of the tanogical Survey for the your 1892. f. 41 A.

[^32]:

[^33]: * Vod. XXI., B, 43:.

 1A.I.M.E., Vol. XI., 1. 15!

[^34]: * A.I.M.E.-H. B. Netae, 1an'r, Baltimore Meeting, Fob. !
 + W. M. Bowron, paper.

[^35]: * A.B.M.L. - Montreal Moeting, 3.
 \dagger Ithithe.
 $11 \frac{1}{2}$

[^36]: Rum No. 1.-Nom-tatanferous hematiten from Lake Superior :
 Pig iron............ 1 14
 Stome............... $1 \cdot 1$ in

[^37]: " 'Titanimm in th. F'unater, Vol. sii. No. I.
 fonmal I. \& A. Inst., \because p. I! , INTA.

[^38]: *Rivat Decimasió, p. 10ti.

