

IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.

Coloured covers/
Couvertures de couleur

Coloured maps/'
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Tight binding (may cause shadows or distortion along interior margin)/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Certains défauts susceptibles de nuire á la qualité de la reproduction sont notés ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$Coloured plates/
Planches en couleur

Show through/
Transparence

Pages damaged/ Pages endommagées

Additional comments/
Commentaires supplémentaires

Bibliographic Notes / Notes bibliographiques

Only edition available/ Seule édition disponible

Bound with other material/ Relié avec d'autres documents

Cover title missing/
Le titre de couverture manque

Plates missing/
Des plenches manquent

Additional comments/
Commentaires supplémentaires

The images appearing here are the best quality possible considering the condition and legibility of the original copy and In keeping with the filming contract specifications.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED"). or the symbol ∇ (meaning "END"), whichever applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

National Library of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie " F IN".

L'exemplaire filmé fut reproduit grâce à la générosité de l'établissement prêteur suivant :

Bibliothèque nationale du Canada

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées à partir de l'engle supérieure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode :

[Hrom the Quarterly Journal of the Geological Society for February 1879.]

Or a new Species of Loftusia from British Colunbia. By Georae M. Dawson, D.S., Assoc.R.S.M., F.G.S., of the Geological Survey of Canada.
[Plate VI.]
In 1869, Dr. W. B. Carpenter and Mr. H. B. Brady described, in the 'Iransactions' of the Royal Society, two remarkable types of gigantic arenaccous Foraminifera, under the generic names of Parkeria and Loftusia. For the description of the latter form Mr. Grady is more particularly responsible, and to tl. genus then created by him I have now te add another species, for which the name of Loftusia columbiance is proposed.

The original specimens of Loftusia were obtained many years ago by Mr. W. K. Loftus in Persia. They wero referred to in his paper on the geology of the Turco-Persian frontier and districts adjoining, published in the Quarterly Journal of the Geological Society in 1855, but remained undescribed till they came into Mr. Brady's hands. From the geological descriptions by Mr. Loftus, and other forms of Foraminifera found in the same stones, Mr. Brady believes the geological position of Loftusia persica to be in the oldest Tertiary rocks.

The specimens now to be described are from the interior of British Columbia, and their age is, I believe, Carboniferous. Examples of the form were first colleeted by Mr. J. Richardson, of the Geologieal Survey of Canada, in 1871, and are mentioned in the Report of Progress for 1871-72. About a year ago, I examined Mr. Riehardson's specimens with some care ; but during the past summer, having opportunity to visit the loeality from which they werc procured, the occasion was taken to collect a large number of additional speeimens, reprcsenting all varietios of appearance and preservation. Mr. Thomas C. Weston has prepared from these and Mr. Richardson's speeimens a number of transparent sections, from which the accompanying deseriptions and drawings have been made.

Most of the specimens are from Marble Cañon, a remarkable valley which runs through from the banks of the Fraser River to the bend of Hat Creck, with a direction nearly transverse to that of the main features of the country. For a distance over ten miles, the sides of the valley are formed almost continuously of mountains of limestone or marble. The first impression is that an immense thickness of limestono is represented in the exposures; but, although the dips are too obscure to allow the attitude of the beds to be worked out throughout the length of the Cañon, some small sections show that part at least of the beds have been sharply folded and the whole series of folds overturned. This being the case, it may be that a comparatively thin limestone or serics of limestones forming a succession of folds superimposed on a broad anticlinal Hexure account for the appearance presented. That the limestones have a very considerable thick-
ness, however, would appear from the fact that about serenteen miles to the north-west they are seen forming a range of mountains, which rise to altitudes of over 1500 feet above the level of the neighbouring valleys, and run from near Kelly's Lake to Canoe Creek. The piysical relations of the beds will, howerer, be described at greater length in the rext Report of the Geological Survey.

Though inclined to correlate these limestone beds, on stratigraphical and lithological evidence, with others from which C'arboniferous forms have been obtained, no iossils more characteristic than the joints of Crinoidal columens were for some time found in assoriation with the Foraminifer now described. After some search, howevor, specimens of Fusulina were discorered, thus bringing these into relation with the Fusulina-bearing limestones found elsewhere in the province, and also very widely over the western part of the North-American continent.

Many loose fragments and boulders of Loftusire-limestone wero also found at "The Fountain", on tho surface of a high terrace, there overlooking tho Fraser. This place is about nine miles southwestward from the nearest of the Marble-Canon exposures; and the specimens here may have been derived from a distinct outcrop not yot discorered.

In certain beds of tho limestones of Marble Canon, the Loftusia occurs almost to the exclusion of other forms, characterizing the rock, and having been the agent in its productiou, just as Fusuliue occur in the best examples of rusulina-limestone or Crlobigorince in the Atlantic ooze. Other beds of a nearly white colour and almost porcellanous aspect on fracture-though purely calcareous-are found on microscopic examination to consist of the comminuted remains of smaller Foraminitera, tho mass resembling a thoroughly hardened chalk. Through these a few more or less perfect Loftusice may be scattered. Fusuline appear to be very scarco in the MarbleCañon limestones ; they are much more abundant in those of other parts of the country, composed principally of Crinoidal tragments. Thoy seem to havo preferred a bottom composed of the déloris of tho larger calcareous organisms to the fine oozy bed most congenial to the Loftusiu.

The typical and most abundunt form of Loftusia-limestono is a pale or dark grey cryptocrystalline rock, in which the more perfoct specimens of Loftusic appear thickly crowded together as paler spots, generally pretty sharply defined. The limestone breaks frecly in auy direction, the fracture passing equally through the matrix and inchuded organisms, which it is impossible to separate from the stonc. The matrix generally seems to be composed in great part of granular calcareous matter similar to that omployed in building ip the test of the Loftusia, but moro irregular in size of grain, and with an occasional fragment of a Crinoid or example of some smaller Foraminifer. When a Fusulina is found, even on the same thin section with a Loftusia, it differs totally from the latter in appearance. 'The fino tubulation of the walls has not been presersed; but the calcite is homogeneous and almost milky in appearauce, while tho frag-
mental character of the test of Loftusic is apparent eren unde a low power, and it has a peculiar sparkling aspect.

In form, the species bears a close resemblanco to L. persica, especially to tho stouter variety represonted in plato lxxvii. fig. 3 of Messrs. Carpenter and lirady's memoir. I have not observed any specimens to assume a form quite so much elongated in proportion to the breadth as that given in figure 3 of the same plato. It is a regular oval, with circular cross section, the ends varying from obtusely rounded to bluntly spindle-shaped. The Marble-Cañon form, however, is very much smaller than L. persice, both in its external dimensions and proportionally in all its structures. By measurement of a number of specimens, the average length of the shorter axis appears to be from 19 to 20 hundredths of an inch, that of tho longer axis about 30 handredths; one specimen measuring as much as $\frac{27}{100}$ in its lesser diameter has beon found. Some may attain a length of $\frac{35}{100}$ or even $\frac{40}{10}$ of an inch; a remarkably long and narnow example measured $\frac{166}{100}$ of an inch by $\frac{83}{106}$ of an inch. I have not been able to observe any regular furrowing of the outer surface of the test, though from the appearanco in cross sections, it is probable that a tendency to such marking exists in some specimens. Others must have become more or less rough and irrogular in form, from the acerruline mode of growth frequently assumed in the larger examples. Many specimens are, like those of the Persian form, moro or less oval or clliptical in the outline of the cross section. As, however, in sone specimens many examples may bo found in different stages of degradation towards absolute shapelessness, I beliove, as Mr. Brady dons of the Persian form*, that this is abnormal, and the result of changes after the death of the animal. In some cases, specimens of irregular form are seatterd among others of normal appeat nee, and seen to have decayed or collapsed more or less complet. , before the consolidation of the sediment. In other layers, the whole rock has very evidently been compressed during metamorphism, all the Foraminifera boing flattened parallel to one plane.

The structure of this form is in most respects strikingly similar to that of Loftusia persica, and, like it, extromely complicated. Without Mr. Brady's clalorate and lucid description of the former, it would have been a matter of no small difficulty to make out the plan of growth of this smaller species, which it is possible to examine in thin sections only.

In describing the structure, the same terms made uso of in the momoir already several times referred to will be employed. I would also call attention to the diagrammatic representation of the puan of the test of Loftusiu on page 743 of the memoir.

No central primordial chamber, or series of chambers, like that of Parkeria has been found. The nucleus of the test appears to he, as in L. persica, a loose-textured granulated mass, nearly circular in cross section. It has not been cbserved, howerer, to become so distinctly cancellated as appears to be the case in \bar{L}. persica.

In theory, this test may be said to consist, like that of the original

[^0]species, "primarily of a continuous lamina coiled upon itself, like a scroll coustricted at the ends. The space enclosed by this ' primary lamina' is divided into ehambers by longitudinal septa. The sopta are of 'secondary' growth ; that is to say, they are not continuous with the principal wall or 'spiral lamina,' but are rather offshoots from it"*. As seen in a transverse section of the test, these septa are not perpendicular to the spiral lamina, but very oblique to it; and on further examination they are found to lie nearly parallel to the surfaces of a supposed second scroll, concentric with the first, but not, like it, constrieted at the ends. The lines of intersection of the "secondary" septa and "primary" lamina make, therefore, curved or oblique outlines on the surfaces of the latter. The septa show, however, as straight or nearly straight lines in longitudinal and tangential scetions.

A scries of "tertiary" ingrowths further pass between the opposed surfaces of the "primary" lamina and these and the "secondary" septa. These processes are in the form of pillars, and are arranged in rows, longitudinally and transsersely, appearing most regular in a longitudinal section. They are at right angles, or nearly so, to the "primary" lamina. The structure is further complicated by the fact that the " tertiary" columns, where they attach themselves to the spiral lamine at their distal extremities, expand into a more or less regular cross-shaped form, the arms of which, uniting with those from the neighbouring pillars, form a reticulated framework. This, owing to the regularity of position of the columns, may almost, be considered as forming a system of crossed rafters supporting the "roof" of the space contained between each two consecutive folds of the "primary" lamina, while the columns do not show any such expansion on the "floor." The spaces between the expansions or rufters, constituting a series of imperfect chambers, are further filled with a loose cancellated growth, which sometimes depencis more than halfway to the "floor." This represents the system of "irregular anastomosing tubes" and "parallel columnar or tubular processes" occupying a like position in L. persica; but in the form now under consideration, probably owing to the greater size of the calcareous particles in proportion to that of the test, and its consequent rougher construction, no distinct tubulation is recognizable.

The greatost number of convolutions of the "primary" lamina actually observed is seventeen. Ten is a very common number in avcrage-sized specimens. The average breadth of the space enclosed between two successive convolutions of the lamina is one hundredth of an inch; and this is maintained with considerable regularity, though in young specimens the first two or three whorls are much less. The "tortiary" processes or pillars, and the bars of the reticulated framework connected with them, are generally in diameter from one four-hundredth to one three-hundredth of an inch, very rarely as much as one hundredth.

The "primary" lamina, as in L. persicc, is a thin and definite wall, generally appearing in microscopic sections as a well-defined, * Op. cit. p. 743.
though often somowhat flexmons dark linc. The "tertiary" ingrowths, or pillars, are composed of comparatively large particles, though these seareely ever attain a sizo of one thousandth of an inch. Though rough in outline when examined under a high power, they are well defined and compact-looking at their proximal extremities; where they are involved in the spongy growth from the roof, they becomo less definite and occasionally appear almost to vanish before uniting with the lamina.

The expansions of the pillars against the roof, or rafters as they have been called, are much deeper than wide, and though definite and clearly seen in tangential sections of the lamina, are generally not distinguishable from tho spongy ingrowth in transverse or longitudinal sections. Both the rafters and cancellated ingrowth appear to difier much in texture from, and to be much more trimsparent than, the columns. The sccondary ingrowths, or scpta, are of similar material, and in many eases are scarcely to be distinguished but for the expansion of the pillars upon them.

The separation of the primary lamina from the subsidiary cancellated growth, said to be common in L. persica, and represented in plate lxxix. fig. '2 (op. cit.), has not been observed in any of these specimcus, a circumstance probably in connexion with their smaller sizo and less complex structure. Many specimens show externally a layer of variable thickness of acerruline or irregular growth. This appears to occur chiefly in those examples which may bo supposed to have attained maturity, and to havo formed a stronger protecting crust round the delicate fabric of tho test. Iig. 2 (Pl. VI.) represents this feature, which does not appear to be found in L. persica. A layer of chambers without any definite external lamina appears to be formed, and theso chambers communicate outward, with still less regular openings, and degenerate eventually into a cancellated or spongy mass of calcaroous particles, which is gencrally limited by a firmer and darker outer layer. Smaller Foraminifera are occasionally included in the substance of the test of the Loftusic, though much larger than anv of the granular fragments usually composing it.

In the matrix of some of the specimens aro a few examples of a form which, though seen only in transparent section, from its precise resemblance in size and shape to that figured by Mr. Brady as Climacammeria untiqua* in his memoir on Carboniferous and Permian Foraminifera, I have no hesitation in referring to this species.

Mr. Brady says of the genus Loftusiu that it would "seem to find a natural place at the head of the A renaceous series of Foraminifera, a position corresponding to Alveolina in the Porcellanous gronp, and Fusulina among the Vitreous forms." It is indeed remarkable to find the Palæozoic forerunner of the more gigantic Tertiary Loftusia agreeing with it so precisely, even in many of tho more minute points of structure. The case is analogous to that of the discovery by Mr. Brady in Carbonifcrous rocks of Nummulina pristina, which in the
same way corresponds very closely with the 'lertiary and modern Nummulites.

In the arrangement of the pillars uniting the folds of the lamina, the spongy ingrowth filling the chambers, and in other points, this Loftusia bears a striking resemblance to some forms of Stromatopora. It differs, however, in its regularly spiral character, and in the fact that no pores have been observed to traverse the "primury" lamina. It is scarcely probable, however, that tho organic connexion between the different parts of the Loftusicu was maintained only in directions parallel to the circuitous course of the lamina.

Genus Lofrusia, Brady.

Loftesia colomblana, sp. nov.
Test oral ; circular in transverse section ; the ends rounded or rery obtusely spindlo-shaped; chambers many, narrow ; septa very oblique, moro nearly parallel to the sides of a cylinder than is the prinary lamina; primary lamina and septa, or "secondary" ingrowths, supported by pillars or "6 tertiary" ingrowths ; pillars uumerons, arranged in parallel lines transversely and longitudinally, expanding laterally at their distal extremities to form imperfect chanbers, which are filled with a loose, granular, cancellated growih. Exterior of test frequently beconing irregular and acervoline. Length of test about $\frac{30}{100}$ of an inch, width of test about $\frac{18}{100}$ of an inch; intervals between successive folds of the adult primary lamina about $\frac{1}{10} \sigma$ of an inch.

Carboniferous Limestone, Marble Cañon, British Columbıu

DESCRIPTION OF PLATE VI.

Fig. 1 represents portion of a transparent section, nearly at right angles to the longer axis of the Foraminifer. The test is represented by the darker shading, while more transparent caleite fills the chambers. The primary lamina is designated by a, and is seen to be thickened by the spongy ingrowth. b designates one of the more perfect secondary growthe or septa. Many of the tertiary ingrowths end proximally before reaching the inner lamina; this may arise in some cases from the slight obliquity of the plane of section to the direetion of their axes. That the section is not truly througis the centre of the form is seen at d, where it becomes tangentiul to the inner layer, and exhibits a portion of the primary lamina in plan. ($\times 25$.)
Fig. $\boldsymbol{2}$ is a portion of a longitudinal section of the outer part of the test. a designates the primary lamina; c the teriary processes or pillars. e, f, \& ? refer to the acersuline or irregular exterior portion, well developed in this specimen. At e an irregular tier of chambers has been formed, which pass outwards in some places almost imperceptibly into d, a spongy or cancellated mass, which is generally limited externally by a more or less definite wall, g. The sceondary growths, or septi, are not seen in this section, and this is very frequently the case in longitudinal sections. It arises partly from the greater transparency of these as compared with the thickened floors and ihe pillarss and apparently partly also from the cireumstance that they are in reality more fragile. ($\times 25$.)
Fig. 3 represents a portion of a longitudinal tangential seption, which is very instructive, as showing nearly all parts of the test. This may profi-
tably be compared with that given on plate lxxix. fig. 1 of Messers. Curpenter and lbrady's memoir. a indicates a part of the primary lumina, which is thickened, us before described, and may consequently be seen as a scries of rather brond dark zones, indefinite on their inner edges, and ruming parallel to each other. 4 points ont ono of the secondary growths on septa; these may be seen rumuing parallel to the longitmblmat axis of the form. They appear wide, from being eat oblicpuely, but also, in many cases, from the identilication with them of the longitudinal rods or rifters formed by the expansion of the pillars. At right angles to these, at i, are seen iods formed by the union, trans. verse to the axis, of the distal ends of the pillars. At c the section becomes nearly radial, and the pillars are seen as in figure 2 . At d part of the thickened primary limima is shown in plat, ($\times 2.0$.)
Fig. 4 is nearly longitudinal mad radial, represeating part of three folds of the brimary lamina (a) and the pillars uniting them (c). The irregularities of these are shown, and the cancellated growth from the inner side of the lamina is indiented by h. (\times 75.)
Fig. 5. Portion of the thichened primajy lamina shown in plam. At d the greater part of the spongy thichening has been remored in grinding down the section. The miter-like thickenings from the intersections of which the cohmms spring are here clearly seen. The darker zone surr sunding this part represents the pimary lamina and its thiekening (h) obliguely ent. Where, at tho edges, the section becomes moro nearly at right angles to the curved lamina, the pillars may be seen running out. ($\times 75$.)
Fig. 6. Transverse section throngh the nucleus of a rery young specimen, showing the first comvolutions. ($x+4$.)
Fig. 7 represents the external form of the organism of actual size. The figure on the right is of an unusually long variety.
1.

[^0]: * Op, cit. p. 742.

