IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

23 WEST MAIN STREET WEBSTER,N.Y. 14580

CIHM/ICMH Microfiche Series.

CIHM/ICMH
 Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture menque
Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le lang de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors ócune restauration apparaissent dens le texte, mais, lorsque cela était possible, ces pages n'ont pas sté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lula été possible de se prccurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibllographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de tilmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showihrough/
TransparenceQuality of print varies/
Qualitá inégale de l'impression
Includes supplementary material/
Comprend du matérial supplémentaire
Only edition available/
Seule édition disponíble

Pages wholly or partially obscured by errata slips, tissues, etc., have been refinhed to ensure the best possible image/ Les pages totalement ou pritiellement ubscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recorded frame ori each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, stc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

MacOdrum Library
 Carleton University

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la ciernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

THE NERVOUS SYSTEM
 AND ITS CONSTITUENT NEURONES

DESTG.VED FOR
THE USE OF PRACTITHONERS OF ME円ICIVE ANY OF STUDE゙VTS OF MEDICKVE AVY PSYCHOLOGY

By
LEWELLYS F. BARKER, M. B., Tor.
A:SOCLATE IROFESSOK OF ANATOMY IS
THE JOHNS HOPKINS INIVERSTG
ANI ASSISTANT RESHENT I'ATHOLOMES TO THE JOHNS HOHKLNS HOSPMFAI.

WITH TWO COIORED PLATES AND SIX HUNDRED AND SEVENTY-SIX
ILIUSTRATIONS IN THE TEXT

NEW YORK
D. APPLETON AND COMPANY
1899

Copyriaht, 1×99,
BY D. APPLETON AND COMPANY

WILLIAM OSLER, WHLLAAM II. WELCH AND FRANKLIN 1' MALL

SUCCESANELY MY TEACILER IN BALTHMORE
ANH TO MY FRIENI
JOHN HEWETSON
OF RIVERSIDE, CALIFORNIA
THIS VOLUME
IS GRATEFULAY AND RESPEOTFULAY HEDICATED

PREFACE.

In 1897 a series of articles was begm in the New York Medical dournal in which the attempt was made to present in as simple and concise a form as possible the main facts concerning the newer investigations into some phases of the anatomy and physiology of the nervons system. These articles were contimed at intervals for two years, but the mass of material proved to be too great, and neurological publications increased so rapidly during this time that it soon became obvious that any adequate presentation of the subject must exceed the limits which could be allotted to it in a medieal journal. The pmblication of a volume was aceordingly decided upon, the introductory chapters of which consist of the articles (revised and bronght up to date) which have appeared in the New York Medical Journal. The body of the book, however, dealing with the groups of neurones whose axones constitute the principal known tracts in the nervous system-centripetal, centrifugal, and associative-is now published for the first time.

In the first part of the volume the newer conceptions of the histology of the central and peripheral nervons organs are reviewed. In the succeeding chapters the attempt has been made to :pply the neurone conception-that is, the cell doc-trine-as consistently as possible, in the explanation and deseription of the complex architectonics of the nervous system. The term ncurone is used thronghont in the widest sense to mean "cell belonging to the nervons system with all its parts, not in the more restricted sense in which many anthors employ it and to which objection has in many quarters quite properly been taken.

No apology is necessary for the rather profuse illustration of the volume, for all experience teaches that, in morphological studies especially, the form relations are more easily graspet from the examination of gool pictures and models than in any
other way, amd that one well-rhown illustation with a satisfactory legend is often of greater vabue to the student that many pages of lathorions and exact deseription. Comvineed of this fact, especial pains have been taken in the seleetion of the "uts. The bibliography has heron extemsively explored in order that the most instruetive pietures of the various amatomical features extant in original artides might be drawn mpon, and it i.: hoperl that the bringing together in one volme of the results of rerent investigators and skilled artists of many hands may be of serviee to nemological students, aspecially in Eing-lish-spaking combtries. For the original drawings and diagrams the anthor is deeply indehted to Mr. Misx Broedel, Mr. II. Beeker, and Mr. L. Shemidt. The two lithographic phates at the end of the rolnme are from Mr. Broedel's hathd, ats are also a large mmber of the original diagrams of combluction paths which illnstrate different portions of seetion V'l. The series of drawings of tramserse and hori\%ontal sections through the medulta, pons, and midhain have been prepared by Mr. I. Schmidt from expuisite serial sertions kindly placed at the writer's disposal hy his friend Dr. dohn Inewetson. 'The other original drawings are from preparations made in the anatomi(al laboratory of the .lohns Itopkins ('niversity.

Of the illustrations borrowed from original artides, a few have been taken, by kind permission, from Ameriean and binglish publications. The majority are, however, derived from foreign someces-Freneh, (iermam, ltalim, Rossian, Dutel, Spanish, ind swedish. In erery case credit has been given to the author of the original article containing the illastration, and in a majority of instances the title of and exat reference to the monograph or jommal whene the figure has been derived have been appended.

Especial thanks are due to the publishers, Messrs. D. Appleton and Compary, for their liberality in defmying the expense of the illustrations, (esperially of those in which several colors had to be employed, and for the faithinl reproduction of the originals by the most modern methods.

The nomenelature employed thronghont the book is almost exclusively that of the BNA. A few exepptions have heen made-notably the use of the terms dorsal and rentrol instead of posterion and anterion respectively, an obvionsly necessary deviation, and one which has been urged for a long time by
prominent American anatomists. Every effort has been made to maintain a miform nomenelature thronghont, and where descriptions or illustrations have been borrowed from other books or original articles, the author, for the sake of miformity, has taken the liberty of translating the terms originally employed into those of the new nomemplature. A feature of the book, which has been responsible for the telay in publication and for greatly incrased cost to the publishers, is the printing at the side of many of the conts of the aetual names of the objects illustrated, instead of reference letters and figures to be explained in legends. The adrantage to the rader is obvions, and the author regrets that the method, despite the time and cost involved, has not been still more widely employed in the making of this book.

The soures of knowledge examined are sufliciently indieated in the nmmerous footnotes. There has been no attempt, however, to exhanst the bibliography, and only the more important references consulted have heen dited. The student, and especially the begimer, will doubtless be helped more by a few references to masters and to recognized anthors and speetial workers than by a full bibliograplity of the various topies taken up. Care hats been taken to verify the varions references at the different libnaries in Baltimore, and especially at the sur-geor-general's libnary in Washington. The writer has been so frequently delayed by errors in bibliographie references in neurological text-books and in medieal jommals that he will be particularly obliged to any realer who, deteeting such errors in the present volume, will inform him of them, that they may be corrected.

It is an especial pleasure to acknowledge the heip and stimulus in nenrological work which the writer has received from varions somces. The lectures of Professors Fleehsig, von Prey, His, and Wmalt in Leipsic in 1895; the admirable text-books of E. A. Sehaefer, Foster and Sherrington, C. L. Dama, C. K. Mills, I. Dejerine, W. R. Gowers, S. Ramón y Cajal, W. von Beehterew, P. Marie, II. Oberstemer, A. vain Gehnchten, A. von Kölliker, (' Wemicke, L. Edinger, and C. von Monakow; the various publieations of Apaithy, Bastian, Beevor, Bethe, Bolk, Berkley, Broadbent, Dogiel, II. II. Donaldson, Ewing, Flatan, Ferrier and 'Turner, Flechsig, von Frey, Goldscheider, Golgi, Held, Heuschen, ITerriek, vim Gieson, Ilughlings Jitekson,

Horsley and Sehaefer, J. Loeh, Lagaro, Aldolph Meyer, Mellus, Marimesco, Nissl, F. IV. Mott, Patrick, Retzius, J. S. Risien Russell, Samo, Sherrington, Starr, Ramón y Cajal, Tartuferi, T'schermak, Warrington, and others, have been especially helpful. 'The author is particularly indebted to Dr. Franklin 1'. Mall, Professor of Anatomy in the Johns Hopkins University, for aid and ancouragement in manifold ways in comection with the proparation of the text and illustrations. Thanks are also due to Drs. Flexner, Thomas, Berkley, Paton, Harrison, and Bardeen, and to various students in the Johns Hopkins Medical School, especially to those who have undertaken original researeh. Ir. Frank R. Smith has been kind enough to thoronghly revise the text, and also to read the final proofs. Miss lemmore H. Watts has prepared the careful index of authors, and has been most holpful in the preparation of the manuscript and the legends for the figures. It is hoped that by the use of two varieties of type (one referring to the pages, the other to the numbers of the figures), the value of the indices will be increased.

The Johns Itomkins Hospitala,
Baltimore, Md., Metch 18, 18:99.

CONTENTS.

SECTION 1.

The Ifstory of the Development of the Neurone (oncept
PAOR
PAOR
Char. I. Intmonectome.
1I. The stumes of Ibs, (iondi, and forma, 9
 (iolats abtion) 20
IV. The vical staling of the nerve blemexts 31
V. The teism "neurone" and the neurone conceplion 39
VI. The beameg of reseabches singe 18 gh upon the valad- hiv of the neurone moctmane. 43
SEC'TION II
The External Morbiology of Nevones 66
VII. The external form of the cell boby and of the Dendrites 66
V'li. The bexternal form of the axis-cylindel phocesses or INONES 78
1.․ Collatemals. side fibibls, and interneveonal, sub- stances 90
SECTION $1 I I$.
The Internal، Morphology of Neurones 101
X. Studies by methons whicil reveal the inthrior of nelroones 101
XI. Varleties of nerve cells metingelisifable by Nissl's METHOD 115
XlI. Tile nature of tie tigroid maseen on "stainable sub- stance" of Nissla 127
XIII. The ground substance or "unstainable sibstante" of Nissi 135
XIV. Summary of onr kowledge remarmig the internal sthuctule of neurones 154
SECTION IV.PAGE158158

170
 MEDGLA OBhomgata.
179
NVIL. The bevelopmext of the plapheral sexsory seu- RoNES ANH of THE GMPATHETIC NeURONE
SECTION V.
 915
Processes .215
KIN. INTRomerone. 223
XX. ON THE DEGETGRTGON AND REG
248
248
 257

266
The: theory of phear meabig polarity
XXIN. The behatose of trophe to nervous fonetons in $2 \pi 5$
THE NETRONE
THE NETRONE
The achos of pobsors. AND a combarison of thestwhet the bfferts of tradeates282
SECTION VI.

Os the Grol pixg and Chanive togember of Netmones in a Complex Neroots Stistem boke phat of Man and llegher Animals.

For summaty of this section see page 313 .

LIST OF ILLUSTRATIONS.

Plates I and II. S'hematif mepresentation of some of the prin-

fhitres Page

1. Multipolar ganglion cells from ventral horm of ox 4
2. (ierlachis net work 6
3. Connections of dorsal and ventral roots of spinal eord aceording to a discarded theory 8
4. (rolgi cell of TYpe I 11
5. Golgi cell of 'lype 11 from cerebellim of at 13
6. (Golgi cell of 'lype 11 from cerebrum of eat 14
7. Diffuse nerve net work formerly supposed to be formed by the side fibrils of eell Trye I and the axomes of cell Trye II 16
8. Longitudinal sagittal section of dorsal funiculus of cat fifteen days ohd 22
9. 'Transwerse section of the spinal cord of a chick at the ninth day of incubation 2.3
10. Schematic representation of dorsal fumiculus cut longitudinally parallel to entrane of dorsal roots 24
11. Cross section of the eervical spinal cord of a chidd two years old, showing medulated collaterals. 25
12, 13. Cell intermeliate in form between that of (iolgi cell Type I and that of Golgi cell TYpe 11 27.29
12. Nerve fibres from a frog injected with methylene blue 32
13. Sensory nerve ending stained with methylene blue 33
14. Left half of brain ganglion of Nereis disersicolor with the nerves connected with it, seen from the dorsal surfuee 35
15. Scheme of lower motor neurone 41
16. Cell from nuclens corporis trupeoidei of newhom ent, showing txones 48
17. Cells from undens eorporis trapezoide of an adult rabhit 48
18. Cell from the nuclens corporis traperoidei of an adult rabbit, showing axis cylinder 49
19. Gilmorulas olfuctorins from alult rabbit showing dendrites of mitral cells and terminals ${ }^{5}$ nervio olfactorii 50
20. A portion of the molecular zone of the cerehellum from an mult rabhit showing terminal peridendritic axones. 51
21. Motor-merve spindle in longitudinal section of the right anterior nerve stem from the lereh 53

Figure

Figure
24. Large phapipolar ganglion eell of the ventral paramedian field of page
the abdominal cord of Lumbrieus 54
25. The plexus of neuro-fibrils in some retinal cells of the third right
eye of the leech 55
26. A subepidermal sense cell, retinul cell from Isewlo-bremchellion . 55
27. The distribution of the neuro-tibrils in the circular muscle fibre
of the intestimal wall of Pontobdelle 56
28. Colossal ganglion cell ('Type G) from the leech 57
29. Three pear-shaped ganglion cells of Type K, in longitudimul sec-
tion, from the leech 59
30. The course and connections of the conducting paths in a trans-
verse section of the somite of the leech 61
31. Spinal ganglion of a newborn white mouse 68
32. Motor cell of ventral horn of spinal cord from the human foetus,
thirty ecmtimetres long 69
33. Pyrimidal cell of cerebral cortex of monse 30
34. Multipolar nerve cell from the cord of the embryo calf showing
varicosities of the dendrites 71
35. Neurones from the hippocampus of a puppy two days old . . 73
36. Unipolar cell from a ganglion of Lambricus it
37. Photomicrograph of a normal pramidal cell from the cerebral
cortex of a guinea-pig i4
38. Photomicrograph of a normal lorkinje cell from the human cere-
bellar cortex $\% 5$
39. Photomicrograph of the apical dendrite of a large pyramidnl cell
of the cerebral cortex showing the arrangement of the hateral
buds or gemmules. .
40. Neurone from the optic lobe of the embryo chick - . .
41. Golgi eell of Type Il from the dorsal horn of the gray mater of the spinal cord of the newborn monse80

42. Special cells (polyaxones) of molecular hayer of cerebral cortex of
a dog one duy old
43. Ramon y Cajal's cell from the sumerficial hayer of the cerebral
cortex of a fortal cat
44. Nerve elements from the retina of the ox 82
45. Anaxhe from the basket of a Purkinje cell of the cerebellar
cortex 82
46. Y-shmed division of sensory root fibres after entrance into spinal
cord in a six-months human embryo 83
47. End ramificutions forming a basketwork about two Purkinje cells
of the cerebellar cortex 83
48. The relations in the olfactory glomeruli of the axones of the
olfactory nenrones of the first order to the dendrites of the
mitrul cells in birds 84
49. Nucleas of termination of the sensory part of the nervus trigemi-
50. A much-brunched fibre from the optic thalamus of a mouse . . 85
flaune 51. Three end arborizations of optic fibres from the optic lohe of an embryo chick 86
51. The so-called "climbing fibres" of the cerebethr cortex from the brain of a child a month and a half old 87
52. Disc-shaped expansions on nerve fibrillir of the pig's shont and their relation to eertain of the epithelial cells. 87
53. Developing myelin shenths of different uges as seen through the polarization mieroscope 88
54. Scheme showing the elements of the gray matter of the spina' cord 91
55. Endings of collaterals from the dorsal funieuli in the gray matter of the spinal cord of the newborn rabbit 92
5\%. Side fibril of Golgi on the axone of a motor cell of the ventral horn of the spinal cord 93
56. Perice!!ular net works believed by Hehal to be formed by the termi- nals of axones 95
57. Reproduction of a photogram of a perpendicular section through the tip of the head of the gyrus centralis anterior of a healthy adult man elose to the falx 97
58. Reproduction of a $p^{\boldsymbol{h}}$ gram from a perpendicular cortical sec- tion through the summit of the gyrus just in front of the sulcus crucintus of an adult dog close to the falx 98
59. Reproduction of a photogram of a perpendieular section through the cerebral cortex of a mole, 1 mm . in front of the crucial suture close to the falx 99
60. Ganglion cell from the electric lobe of the brain of the torpedo 103
61. Nerve cell from the region of the ventral column of gray matter of the spimal eord of Gadus 105
62. Large motor ganglion cell from the ventral horn of spinal cord of ox 109
63. Spinnl ganglion cell from the ox showing clear spaces (Vacuolen) 112
64. Spinal ganglion cell of Rana Catesbiana 113
65. Nerve cell from olfactory bulb of rabbit 116
66. Nerve cell from dorsal nuclens of proximal portion of mechalla of rabbit. 117
67. Motor nerve cell from ventral horn of gray mater of spinal cord of rabbit 118
68. Large cell from Ammon's horn of rabbit 119
69. Nerve cell from ganglion on dorsal roct of a cervical nerve of a rabbit. 119
拖. Purkinge cell from the cerebellar cortex of the rabbit 120
\%. Nerve cell from the spimal cord of the doy in the so-called " chromophite" condition 124
i4. Notor nerve cell from the ventral horn of the gray matter of the spinal cord of the dog showing tigroid boolies 125
7.9. Cell of ventral horin of gray matter of human spimal cord 130
70. Nerve cell from Deiters' muclens in the rabbit 131xiii
Figure PACR
71. Nerve eell from the gray matter of the lumbar cord of on 132
72. The endocellular network within a lorkinje cell of the cercbellam of strix flemmea 140
73. Cross sections of two axones from the nervis trigeminus of IPtromyzon fluciatitis 142
74. Longitudinal and transerse section of medullated nerve fibres from the sciatic se of the frog showing one node of Ran- 8 Vier abd two of Lantermana's segmentations 143
75. Axis oylinder in long and eross section from a spinal ganglion in the hombar region of an adult dog, showing neurosomes and asosponginm 144
76. Axone hillock of a spinal gatuglion cell of the dog. 144
77. Cell from the ventral horn of the lumbar cord of an alult rabbit showing the axome and sevemal dendrites. 146
78. Centrosome aul attraction sphere inside a spinal gatuglion cell of the frog 148
8is. Nerve cell showing reticular investment 150
79. Pericelluhar networks helieved by lled to be formed by the ter- minals of axones 151
80. Networks about perikaryon and dembrites demonstrable by the method of Bethe 152
81. Anterior portion of the borly of a chick, the head distinctly differ- entiated: seen from the surface 159
82. Median section through embryo hamman bian at the end of the lirst mont| 160
83. Model of develuping luman brain 161
84. Median seetion " rial human brain during the third montl 162
85. Median section through adult human brain 16き
86. Section throngh medullary phate of rabbit showing germinal eell 165
87. Section through nemal tulo which is begiming to close 165
88. Section throngh wall of nemral tute at a later stage 166
89. Photomicrograph from a specimen throngh the neural tube of Ambtystome 168
90. Section of spinal cord of a chick at the third day of inenbation 169
91. Seetion throngh half of nemral thbe showing the pear-shaped neuroblasts 171
92. Transterse section of the spimal cord of at chirk 172
93. Transverse section through the upper thoracie cord of the human embryo 173
94. Commissural eell or heteromeric neurone from the spinal eord of a Pristiurtes embryo 30 mm . long 174
102,103 . Transerse section through the modulla of the human em- bryo showing N. hypoglossus, N. vagus, and tractus soli- tirits.s. $174,1 \%$
95. Section through a portion of the wall of the medulla of a human embryo showing nemoblasts wandering from the rhomboilal lif townd the middle line 176

figere

105. Seheme of one half of the embryonic medula at a later stage . 176
106. Transverse section throngh one half of the mednlat oblongata of
a human embryo at the eighth month 177
107. Longitudimal seetion of the cerebral hemispheres of Necturus . 178
108. Reconstruction of humu embryo at end of fonth weck showing
development of sensory ganglia 180
109. Three stages of tevelopment in the early history of the spinal
ganglia of the homan cmbryo 181
110. Transverse section of the eminyonic cord of the chick . . . 180
111. Bipolar cell from the spinal ganglion of the pike 182
112. Bipolar ganglion cell from the ganglion spirate of the jig . . 182
113. Wehematic representation of the gradual tamsition of the bipolar
cells of the spinal graglia to the so-mbled mijolar type
114. Transformation of bipolar cells into nuipolar eells in the (iasserimu
ganglion of the pig 183
115. Feltwork about spinal gamylion cells of the cat formed by division
of the axones of spimal ganglion cells of Type II . . . 184
116. Scheme of the reciprocal relations of the elements within the
spinal ganglion, atecording to Dogiel 185

11\%. Left anditory vesicle with the neustieo-facial complex of a mamun
embryo at the fifth week 186

118. Ophthalmic vesiele showing stalk and groove in stalk from a
human embryo of the fonth week, seen from below \quad.

119. Developing eye of hman embryo 10.2 mm . long 18%
120. Composite diagramatic transerse section of the head of a human
embryo to show the growing point in the nervous system, and
the direction of the growth of the fibre 188
121. Transverse section through the anterior part of the trunk of an
embryo of Scyllium 189
122. Photomierograph of seetion through a nerve in the side of a
hnman tongue
123. Schematie representation of the nerve plexis of a heart of a
human embryo atice llis Jr. 191
124. Diagram showing successive jositions of the diaphragm during
the develophent of the human embren 194
125. Schemes of transverse sections of younger mud older Sedachian
embryos to illustrate the development of the chicf products
of the middle terminal hyer 106

1E6. Human embryo fourteen to sixteen hays ohl showing developing
myotome 197
127. Inman embryo at the end of the third welk showing developing
myotome and sclerotome 198
128. Seleme of bobr and musele segment 199
129. Trunk segment of hman embryo wath one pait of newes and the
rudiment of the maseulature of one extromity at the sisth
werk. 200
130. Reconstruction of a y ymg limman ambryo entarged five times,
xviTHE NERVOUS SYSTEM.
fiocre PAOR
ilnstrating the position of the N. rectus abominis und its polymerice nature 202
131. Fields on the extermil surface of the os inmominatum eorrespond- ing to the attachuent of the various museles 203
132. Outer surface of os mominatum showing attachments of the muscle masses derived from the myotomes innervated by the twelfth to the ninetenth thoraco-lumbo-sucral nerves 204
133. Reconstructed form of pelvi of humm fietus, illust rating skeletal areas corresponding to the myotomes innervated by the 12 th to the nineteenth thoraco-lumbo-sinernl nerves 205
134. Arrangement of the metazonal dorsal nerves for the Mm.glatai 207
135. Arrangement of the metazomal ventral nerves for the Mm. finxores 207
136. Arrangement of the prozonal dorsal N. femornlis 208
13\%. Arrungement of the elinzonal ventral N. . ${ }^{\text {tituratorins }}$ 209
138. Arrangement of the ventral and dorsal prozonal, diazonal, and metazonal nerves 210
139. Six transverse sections through a right upper arm showing the relation of the (dark) ventroplanm to the (colorless) dorso- planmm, as well as the position of the fourth to the sixth cervical sclerozones 211
140. Transverse section through the musculature of the shoulder and chest showing the limits between rentral and dorsal deriva- tives of the myomeres 212
141. Transverse section through the proximal portion of the humerus. 213
142. Transverse section through the distal part of the humerns 213
143. Wallerian degeneration of nerve fibres after section 224
144. Section through the eervical cord of a woman showing secondary degenerations following compression of the cord at the level of the second thoracie segment. 200
145. Section through the lumbar corl of a womm showing secondary degenerations following compression of the cord at the level of the second thoracic segment 227
146. Section through human spinal cord in the upper thorncie region showing marked atrophy of right half of cord following ampu- tation of right : :m 230
147. Transverse section through the medulla oblongata of a rabbit showing degeneration from injury to facial nerve on the right side 232
148. Cross section through the medulla oblougata of a rabbit showing degeneration from injuy to facial nerve on left side 233
149. Cells from the nuclei of the oculomotor nerves of the cat thir- teen days after section of the root fibres of the nerve on one side 235
150. Four nerve cells from the nucleas nervi facialis of a rabibit fifteen days after section of the nerve root 236
151. Ventral horn cells from the spinal cord of a case of multiple nenritis 237
micre
page
152. Nerve cell from cerebral cortex of log showing alterutions chiefly it: the dendrites thrned toward a thromboned ressel 238
153. Latger pyramidal cells from the secomil layer of the verebral enr- tex showing advanced stages of degeneration following riem poisoming of fourteen hours' duration 289
154. Strong apieal dendrites of pramidal eells from the hmman cere- bral cortex 240
155. Frontal section through the mesencephaton showing vaseubar supply 242
106. ('aryocinctic figures in nerve cells in bran of dog three days after introtuction of foreign borly 蛝
155. Scheme of the olfactory apparat of of mamals 96
158. Section through the optie lobe of the embryo chick 明
159, 160. spinal eord of Amphiorus 268,290
161. Portion of spinal cord of new-born rubhit stained by the chrome- silver method 231
16\%. Schematic drawing to illustrate the comse of the primitive fibrils of the receptive mal motor elements of the secoml antema of Carcinus , Maenas 20
163. Section through ganglion on dorsal root of first thoracie nerve of cat 276
164. Section throngh ganglion on dorsal root of first thomeie nerve of cat after intermittent electrical stimulation during five hours 27%
165. Camera-Incida drawing of oceipital (rortex of pigeon to show rested nerve cells. 278
166. Camera-lucida drawing of cortex of pigeon to show thanges in cells indicating normal daily fatigne 378
167. Sections through the superior cervical ganglion of the rabbit stamed by Nissl's methon 279
168. 'lwo motor cells from Immbar region of spinal cord of dog fixed in sublimate and stained in toluidin bhe 280
169. Fiffects of arsenic non the nerve afll 283
170. The effects of phosphorus poisoning upon the nemrones 284
171. The elfects of veratrin poisoning upon the nenrones 285
1i2. 'l'wo spinal ganglion eells showing peripheral chromatolysis in arsenical poisoning 286
173. A nerve cell from a part of the spinal eord deprived of blood for six hours through ligature of the abilominal aorta 288
1rt. Cells from the nuclei of the oculomotor nerves of the cat thirteen days after section of the root fibres of the nerve on one side 294
175 . Cells from the human spimal eord in epidemic cerebro-spinal meningitis 296
176. Four nerve cells from the meleus nervi facialis of a rabbit fifteen days after section of the nerve root 2971\%\%. Similarity of changes produced in cell bodies of lower motor nen-rones (1) by cutling the axone and (?) by eutting the corre-sponding dorsal roots298
FHu'ue PACik
1is. Biffects of poisoning with malon-uitril
1is. Biffects of poisoning with malon-uitril 800 800
 301
 incraise of horly teanperatore :30:3
1s1. Eiffects of tetans loxine upen the lower motor nemenes $3 t 4$
182. Dowe mbanere stages of perisoning with tetanus toxine 805
18:3. Spinal ganglion cell showing marked alterations following section of the selatie nerve : 110
181. Spinal gatgrion cell forty days after section of corresponding dorsial root. 311
185. ('ross section of the central and peripheral nervons system of a math, illust ming the nembal segment 323
186. Plexns cervico-brachialis. 391
187. Plexus hmbosacralis 326
188. The areas supplied by the cataneous nerves of the heme 32%
189. Areas supplied by the cutamons nerves of the upper extremity 328
190. The areas of the skin supplied by the contaneons nerves of the lower extremity 329
191. Diagran of the position of the nipple in the sensory skin fields of the fomith, third, and fifth thoracie spinal roots 331
192. ('utaneons fields of dorsal roots of spinal nerves ot monkey. Dor- sall view 334
193. C'utimeons ficlds of dorsal roots of spinal nerves of monkey. Virn- fro-hateral view :335
194. Mode of distritution of the dorsal roon ditres of the lower cervial and thoracie nerves 336
195. Mode of dist ritmen of the dorsal root fibres of the lower cervieal nerves and of the thoracic nerves 837
i90. Node of distribution of the dorsal root fibres of the lumbar and sacral nerves 340
197, 198. Referred pain in visecen disturbances 349, :34:
199, 200. Areas of pain sensation in visceral disease 844. 345
201. Types of matesthesia 346
202, 203. Regiones corporis humani 347, 348
204. Spimal cord in eomection above with the medula oblongata and pons 351
205. Portions of the pars cervicalis of the spinal cord with nerve roots 351
206. Seheme of priphemal spinal sensory neuromes 35%
207. Sagittal section through seven spinal ganglia of embryo monse 10 mm . long. (Cervical region 355
208. Peripheral eontripetal nenrones of various animals 357
209. Large spinal ganglion eell from a heallhy man with connective- tissue capsule 358
210. Several types of spinal ganglion (c)lls 8559
211. Nerve fibrils in the epithelial lining of the cesophagers 362
212. Nerve fibrils in the epithelimm of a vertical section of the rabbit's bladder 363
pratise pagk
213．Tremimation in the form of trefoil end platelets on the rilinted rolls of the＇rog＇s palate $36: 1$
214．Vertial sertion through the cormen 36.1
215．Transurnse setion thomgh the skin of the ear of white monse three days old 36.4
26t， 21% ．Nowes and nerve emings in the haman cornem 366t，：367
218．Nednlated nerve fibse from the eonjunctiva of man ：368
219．Nerve endings in epithelium of frog＇s palate ． 369
200．A perpemdicular sertion of the lower purt of the epidermis be tween two papillia which shows a large group of Merkel＇s Trislzellen 369
Sel．A perpendicutar section through the lower part of the epidermis hetween two papillis，from a fortus 30 cm ．long，to show the development of the norve endings about Merkels Tastzellen ． 369
20：．（irmadry＇s terminal nerve corpuseles from the chek＇s bill ：30
203．Fhat preparation from the macons membane of the patate of a duck showing nerve fibers and nerve entings． 371
Qe4．＇Tactile dises from two（irambrys corpasdes in comnertion with the nxis eylinders of the nere tibrils comected with them 372
只京．Nerve endings about a large hair trom the dog 372
206．Frectile bocly of a hair of the rat 373
29\％．Nerves and nerve endings in the skin mul har wollicles ． 35
2．s．Nerve embings in the form of tactile dises beneath the glasty mem－ brame of the hairs 376
29．Longitudinal riew of tooth of（iohios showing nerve torminals 376
$2: 50$ ．Nerve endings in the liver 37
231．Periacinons plexns of nerve fibrils in the pancreas． 338
Q39．Nerve cells mud norve fibres in the villi and nmong the ghads of the intestiman terme of the granem－pig ：39
23m．Nerve endiugs in the stlivary ghands 380
284．Section throngh the caput epididymidis of a young tomeat 380
285．Nerve terminals an transuerse section of the tubuli seminiferi of the rablit 380
236．Nerve codings in the mammary gland 381
237．Two corpheles containing nerve endings from the extrmal em－ nective－tissue sheath of the dog＇s prostate 382
Qis．Free nerve entings in the basal membrame at the junction of the epidermis with the subentaneons tissue 383
280．Thetile corpusele of Moissmer from a section through the skin of the human toe 384
240．Section through the skin of the toe． 385
241 ．Mcissmer＇s eorpuscle ． 385
242．Tactile eorpucte from the skin of the volar surface of the index finger of a man twenty－five years old is6
243．Peripheral pat of conjunctiva palpebrarmo of man 387
244．Terminal nerve corpmsele＇s in the eyelids of man 387
245．Semi－schematie section of the skin of the pulp of the fingers in
FIGUKE reatip.
 3KK
24b. Rullinits norve chulings ? $3 \times!$
24\%. 'Terminal nuve conpusele of Raflai $: 310$
 3! 1
 :3:11
250. A norve fibre divjeling into seven secondary fibres to whioh aro 3012
 3!):
 39:3
25:3. Ilerfost's corpusches 30.1
25t. Corjuscdo of lacini of the mesentery of an adnt eat 3! !
 $33!\%$
250, (ienital nerve corpuschas from the mucoms mombrane of the rli- (oris of the mblit 398
 penis of the rabbit 39!!
258. (Tross section of ganital nerve forpusele from tha clitoris of tho rutsbit. 399
259, 260. (Genital nerve corpustles from haman grans peuis 400,401
261. Fime bulb from glans penis of a white momse $40^{\prime 2}$
 40:3
268. Nusenlo-temtimous nerve ambing uf (iolgi 404
264. 'Jendinons expansion of ore of the museles of man 406
*(0.). A terminal musculo-tendinoms organ in which a terminal norve phapue ocenpies notrly the length of the tendon 407
206. Jluman temio caleanems (Ahillis) 408
26%. Tendinons expansion of one of the motor museles of the eye of H11 (1) $40!$
268. A sensory nerve emding from exomminn of "prer hatf of left atrium of the heart of the gray rat 410
269. Nerve enlings in the Jung of the lrog 411
2\%0. Sensory nerve radings in the ciliary forly of birls. 412
2\%1. Nerve maliags in ciliary booly demonstrated ly the method of Golgri 41:
 414
2\%3. Niddle thim of a temuinal platue in the masele spimble of mat arlult cat 416
274. A spiped muscle fibre in a human muscle spindle with termimui- sons it flours 41%
2i5. Nuscle spindla from intrinsic phantar museles of a dog. 418
276. Surface view of cardiate muscle rells witlo urrve cmings 419
2\%\%. Jntormaseular chat arborization from the left wall of tho trachat of the dog. 420
278. Longitudinal section of involunhary muscle showing nerve end- ings 430
279. Nerve ending on the vas afferons in the cortex of the kidney 421
pionhe HAGR
2s0. Figures illustrating the dersal funionli in the ereviond, thoracia, and lumber regions of the spimal cord 420
28t. Upper hat of lumbar enlargement of a futus 3 3 em. long 428
2s: Cross section through the spimal cord at the lowed of the third lum- har nerve 420
283-290. The libre systems in the spinal cord of the fortus 431-434
291. The nerve tracts in a case of hombar tabes (Trepinski). 436
202. Secominey degenerations in the spinal cord after experimental sore
tion of dorsal roots 440
D93. Transwerse section of the human spina cord showing secondary derenerations following isoluted lesion of the sixth thomede spinal nerve 445
2at. Seheme of the conrse and termimation of the diberes of the dorsal roots 48
295. Secomary degeneration in the dorsad funiculi below atranswerse lesion due to (rompression of the cord 449
996. Longitudinul section in un almost sagittal direction at the level of the eighth theracice nerve showing degenerated tibres in the dorsal fundeuli after transverse lesion 451
297. Descending degencration below a transerse lesion at the lewel of the seventh thomeic segment 454
298. Descemding degenerations below a lesion (compression) of the spinal cord at the level of the eighth cervieal nerve 455
299. Sagittal longitndinal section at the level of the tilth saeral nerve from a case of eompression of the cord at the level of C. viii 456
300. C'ross section through the spimal cord of a rabbit eleven days after compression of the norta lor one homer 460
301. Transverse section through the medulla ablongata in the region of the denssatio lemniseormm. 462
302. Cross section through the medulla oblongata at the level of the lower half of the muelens olivaris in ferior 462
303. Entrance of the fibres of the dorsal roots into the dorsal funimbus of the spinal eord of an embryo ealf 467
304. Seheme indicating the eourse followed by the central axones of the peripheral spinal ementripetal neurones in the dorsal funie- uli of the spinal eord 469
305. Cross section through the spinal eord of a newborn babe, to show the eollaterals 471
306. Scheme of the structure of the spimal cord 472
307. The developing cerehtal nerves 478
308. Transverse seetion through medulla oblongata of newborn chila at level of decussatio lemniscorum 479
309. Transverse section of medulla oblongata of newhorn ehild passing through the nuelens olivaris inferior $4 i 9$
310. Transverse seetion of the medula oblongata and cerebellum of new-born child showing nucleus dentatus 480
matike 311. Transverse section through the mulnhla oblongata and eerelellamof newhorm child: regiun of conhlena melei N1
31D. 'Trusverse sertion through the cerebellum and mednla oblougata at the junction of the latter with the pons $4 N^{\circ}$
313. 'T'masprese sedion, throngh the poiss and cerebellam the the lal of the principal motor melens of the trigemimal nerve (18:)
314. 'Transverse sertion through the isthmus rhombencephati of new- born tules 18.4
315. 'fransverse sedion at the lavel of the collievlas inferine of con- pora ghadrigemina of newhorn bale: 4×5
314. 'Iranswrse section through mescucephaton of newhorn babe: lavel of sujurior collicmhs. 186
31\%. Trunswerse section throngh superion colliati and cerehral pe- dancle of newborn babe 187
318, 319. Horizontal section through medula, pons, and midhrain of newherot talse: level of melems nervi abducentis . 4×8. $18: 1$
330. Horizontal sertion thangh mombenepphaton abd mesencephalon of newborn babe; level of faseiculas hagitadinalis mos dialis. 190
321. Horizontal settion throngh mednlla, pons, und midhrain of new- bonn babe; level of the nuclens nervi aenlomotoria mad melens nervi trochlemis 491
322. Iforizontal seetion through the mednlla, pons, and midhrain of newhorn bahe ; level of denssation hachii conjunctivi 492
323. Itorizonala section through medula. jons, mad midbonin of new- borm later ; level of corpus trapezoideura. 493
sist. Horizontal section throngh medulla, pous, and midhrain ol new- horn babe: leval of melens oliamis and moleus ruber 49.4
325. Dingram of melei of ecrebral beres 495
326. lindings of axomes of N. vagus mad N. glossopharyugeus 406
3:\%. I'ractus solitarias of six-day-old eat 496
398. Horizontal section throngh medulla, pons, and midhrain of new- born babe: level of mulens nervi abducentis 407
829. ('russ section throngh thombencephaton of fonmetay-old monse: level of muclenes N. hypoglossi 498
330. Sympathicus and N. vagus of human cubbero. 499
331. Left anditory vesicle withacustico-facial comples: human embryo, fiftls week 500
339. Scheme of peripheral termination of N. vestibnli 501
333. Isolated impregnated inter-epithelial end arborization from the macula arostien surnion 502
334. Lateral sagittal section through the N. vestibuli of futal monse 503
3:5. Diagram of mulei of eorhlenr amb vestibular nerves 508
:36. 'Transverse section of medula ohlongata and cerebellom of new- born babe showing nuelens dentatus 508
3:3\%. Transwerse seetion thre, oh medulla oblongatia at the jumetion of the later with the pens 510
vin'us.buli in the muclens nervi vestibuti loteralin512
ibe9. Cianglion groniendi of newhorn monse i1:
Bill. Vabalal view of corelamm with pertion of spimal cord itis
:H1. Iranswerse sertion through the pens mat cerpleflum at the lavel of the primeipal motor nuchens of the 1 rigemimal murve 56
34. Scheme of motor mul semsery nemromes, the nxomes of which enter into the formation of N . trigeminus. 817
343. Lateral sugital section through pons mut cerebethom of fatal monse showing sensury fortion of mervus trigeminus 318
344. I'rmaserse section throngh medulla ohbongata mad ierehellum of newhern chitat at hevel of ventral cochlene nuchass. 519
345. Sume as Fig. :30l 婞 1
 born rathit. 02
3.4\%. 'Taste-bud. 526
34. 'Taste-huds. 52%
 gitstus. 528
350), scheme of rourse of nerve impulses in offactory mphatus of mammals 5030
351. Glomerulus olfactorins from a young cat 530
352. Nasul mueous membrane imervatml by N. olfactorii 531
353. Transverse section through retinn of man in35
354 . Scheme of structure of retima 5: 13
355 . Scheme of visual eembetion puth 8i3\%
356. Kpithelial cells of the retim 5038
357. Section through retim of an adalt dog 1838
358. Nerve cells of ratima of mox i:3!)
359). Perpendicular section through retime of an ox 540
360. Structure of retina amd vismal lobe of Elpdone 542
361. Labyrinthus membramecus in humur embryo at the filth month. 544
362. Section through cochlear region of habyrinthus osseus mad men- bramecens of guinea-pig 545
3633. Bipohar cells from ganglion spirnte cochlear of young monse 546
364. Sjiral organ of Corti 54%
36.5. Sime as Fig. 310 4
366. Sime as Fig. 310 is4)
367. Diagram of nuclei N. coehlear and corp's trapezoideum 230)
368. Entrance of N . cochlet into centml ne:vons system in 1
369. 'Termimation of axones of N. cochlear 05is
370. Sugittal section showing entrmee of N. cochlear in fartal mouse inis
371. Mole of termination of axones of N. cochlear in newhern ant in 4
372. Floor of fourth ventricle 5037
373. Transverse section at the junction of the medulla spimatis with the medula oblongata 558

xxiy

Flicile PaCle
374. I'ransverse setion through mednlla ohlongata at the leved of de-enssatio pyramidum5.9
375. 'lransverse sedion through medula whongata showing morvas lyymghassss. 560
376. 'Trmaserse stetion of madula whongrata at level of camdal end of maclens olivaris inferior 361
35:. Transverse sertion of medulla oblongata, level of the mithtle of the nelens oliwatis inferion int
3is. Transverse section throngh medulta ohtomgate at the level of the decussatio lemuiseormm 563
379. Vibur arouata 50.4
 T66
381. Name as ligy 湿t 018
38:. ('ourse of axomes from numei of dorsal funiouli to lemnisens and forphes restifurme 5.1
383. 'Transrase section of' medulla showing degeneration following de- struction of unchens funieuli gracilis 5%
38.4. 'Transverse section of madna showing degenation following do- struction of uncleus funiculi gracilis at a higher level 573
385. Frontal seetion through rhmbenacephaton of monkey after de- struction of muchens funculi cmunati and of corpus resti- forme. 574
386. 'Transverse sections through posterior halt of pons and through midbrain 578
387. Cross sections through hman spimal cord $58:$
388. Nerve edl from muclens dorsalis, haman embryo 583
389. Frontal section at junction of pars thotacalis and pars hambatis of spimal corel 584
390. Transwerse sedion thought pars eervicatis of the cord 585
391. Transwerse section through upper third of medulta oblongata of homman fotus: 586
392. lיrontal section of medulla ohlongata tand cerebellom of seven monthes fotus: bew of melens vestibuli i87
393. Frontal seetion of molulla oblongata and erembellum of seven months' foet us at the level of melets dentatus 588
394. Frontal section through rhomhencephaton of monkey after de- struction of made as funiculi cuncati and corpus restiforme 589
395. Trmasverse soction of apinal word at the level of fourth cervieal seguent to show degeneration of Gowers tract 591
396. Scheme of remese of thers of the two prineipal tracts from spinal corel to er mebllam 593
397. Degencration of Gowers t ract above medulla oblongata 505
398. Ascomding degremeration of (howers' tract 596
399. ('entral sensory conduction paths in the spinal cord (i05)
400. 'Tuntomerie, heteromerie, and hecateromeric nemones in pars lumhalis of human spimal cord 607
401. Transverse section through gosterior part of pens. 610

NXV

FIGMRE:

(10). Sertion through mednlla ohongata at level of N. vagus and N. hypoglasits

61:

40.I. Cross serotion throngh istlomas rhombencephati
01.5

40\%. Sume as loig. itol 610
406. Sigriltal section ol mednlla, pons, and midhanin in rhilil ared flree months

617
407. Same as loig. 30. 0.

409. Stume as loig. Be! Bely

411. Sume as lig. 335\% 1028
412. Section through rhombencephandon below the gemu intrimum radiceis N. facialis

1029

414. Satue as loig. 315 bi3l
415. Simme as lig. $3 \geq 33$. biz3
416. Sume at Jig. :312 634
417. 'Transverse suetion throngh rhomhencephalon of monse showing
Deitor'molens .
418. Oblique section through brain stem of mewhorn at showing path
from I beiturs'muchs to the rord 636
419. 'Iransverse secetion thromgh Deiters' mulems in the monse . . ABP8
420. LIorizontal section thringh modnlla, jons, und midhrain of newborn babe, level of deenssation brachii eonjunctivi and motens reticularis tegmenti

639
421. Same as Fig. 346 642
42.) 'Irmaverse sertion throngh hanin stem of yonng rat showing de-
cassation from the muche N. trigomini
423. Ilorizontal seetion of cerobelhm showing marginal thickenings
of the linghla $\quad . \quad 68$
424. Transverse sertion throngla verobellam and modnla of human embryo showing muchens dentatus

649
425. Sime us Hig .310 65̃0
426. Sume as Fig. 314 (i.51
427. Sume as Fig. 318 • 6ĩ̃
428. Stilling's large and smull "scissor's" of the brain . . Gह̈"
420. Same as Fig. 316 654
430. Same us lig. 420 (ind
431. Nume ns Fig. 404 6.58
432. Sime us Fig. 386 660
433. Frontal section throngh cerchellum and pons of fatal monse
showing N. trigeminus $\quad . \quad 66 \boldsymbol{Q}$
434. Lafernl stgital sertion fhrongh pons and cerobellam of fatal monse showing sensory part of N. trigeminns.

```(i6i)
```

Figure Patie
435. Transverse section through middle of superior colliculus 669)
436. l'rontal seetion thromgh hmman brain stem showing Forel's Feld II und the corpus Laysi 1370
437. Frontal section throngh hypothamanie region, haman brain $6 i 2$
438. Frontal section through binin stem showing forel's fish I_{1} und I_{2} 673
439. Fruatal secion through brain stem of man showing rorpus Laysi $6 ; 6$
440. Frontal section l!rough decussatio brachii conjunctivi 681
441. Frontal section through normal human brain at level of corpus geniculatum mediale 68^{2}
442. Fronalal section through human brain at level of nuelens hypo- thalamicus. 683
443. Frontal section through haman brain ut level al ansa lenifenla- ris 684
444. Frontal seation through haman brain at level ol thatamus 685
445. Isthmus rhombencephali in protile 687
446. Scheme of fibres in superior colliculas 688
447. Name as lig. 378 689
448. Sume as Fig. :314 690
449. Same as $\mathrm{F} \mathbf{i g}$. 323 691
450. Sagittal section of babes brain slowing capsula interna 692
4ij). Same us preceding 603
452. Same as Fig. 316 69\%
453. Nunc as Fig. :30? 696
454. Schenes of course of lemnise medialis 698
45\%. Scheme of degeneration in a case ol Iloesel and Flechsig 703
456. Weheme ol contral paths 706
457. Degeneration after destruction of dorsal funiculi 710
458. Cortionl area of termination of lemnisens fibres in the cat 719
4is). Sitme as Fig. 406 719
460. Sagital seetion through lirain of liotal monse showing laseioulus longitndinalis 7\%0
461. Same as Fig. 323 722
46:. Same as Fig. :3 4 203
463. Same as Fig. 317 724
46.1. Same as Fig 409) 798
46\%. Sume as lig. 41\% 799
466. Sagittal section through human bmin 735
467. Frontal section throngh human brain 736
46s. Horizontal section throngh human brain $7: 37$
469, 470. Seheme of general somasthetic paths 742, 744
471. Scheme of neurones superimposed in general somast het ic paths 745
 750
47\%. [Basa] surface of haman fortus, fifth month 7\%1
4\%. [Basal surface of hrain of man fort y-three yous ald 759
47\%. Khinecephalon of a man forly-three yours old 753
FIG17R patik
4\%is. Lower part of grixis hipperampus 75:3
4\%. Inferior anterior extremity of gyrus hipporampus 7.74
4i8. l'rontal section of bulbus olfactorius of young rabbit T56
479. 'Irmaserse section of haman bulbus olfactorius 957
480. Llorizontal section thromgh bulbus and tractus olfactorius of man 7.88
481. Nitral cells from monse twenty-four days old 759
48.2. Bulbus olfinctorins of monse twenty-fonr days old. 760
483. Same as Fig, 3FI 761
484. [3ulhus et lobus olfiterorins of mbhit in horizontal section 763
485. Thure olfactory irmanes from a cat 763
486. Ventral part of frontal section of rabhit's brain showing basal gangrlion 764
48\%. Istands of pyramidal cells in tubcreulum olfactorinm of rabbit 96i5
48 K . One of Calleja's ishands in the ollactory tuberele of the rabbit 766
485. Section throngh hase of brain and hippocampus 167
490. Cells from nuclens corporis mammillaris of a ehild 769
Sagitab section throngh corpus manmallare of newhorn monse 7.0Frontal section throngh melous ruber and nucleas N. oculo-motorii of fortal monse$7 \% 1$
403. Ohtique section throngh bran stem of ent four days old showing tormatio reticularis 773
494. Oblique section through brain stem of cat fom days old showing the decnssationes tegmenti 713
49\%. Oblique section through brain stem of cat cleven days old showing origin of fibres of fasciculus longitudimalis medialis 774
496. Transverse section through tela chopioidea vontrienli tertii 7.5
49\%. Sagital section of brain of a mbhat with bonds of fibres in three planes. 776
498. Golgi preparation from peduncular region of monse 377
499. Dingram of Meynert's humdle 977
500. Horizontal section of brain of Cyprimus carpio 778
501. 50:. Principal neumone systems of olfactory comduction path, 779,780
50:3. Nerve cells from the retina of the chick 785
504. Brains illastrating atrophy following removal of eye in newhorn rablit. 787
505. Removal of left half of chinsma optienm with the commissura inferior Gudteni in the rabbit TR8
506. Chintmon optienm and tractus opticus in human lurain 789
50%. Scheme showing Jensehen's investigations on relntions of bundles in optic nerve atr 794
508. Absence of optic chiasm 795
509. A portion of the right corobral hemisphere to illustrate the hasis cerchili 797
510. Frontal sections throngh eorphs geniculatum laterale of dog 799
511. Morizontal section throngh cerebral preduncle und hypothalamas 801
512. Corpus qeniculatum laterab of newhorn eat 802
513. Pulvinar of monse five days old $8(0) 3$
Fluthe Pher
514. 'Transwerse sedion of momal human optice chiasm 806
515. Sedion of bata of ehided three montha old showing optice chasm 806
516. Ratan of rabbit after removal of one ay and seremater of tractas optiens 807
51\%. Frontal section through human hevothatamus 808
518. Hrontal section throngh conliculas suprior of the rabbit 810
519. 'Trmsverse section throagh colliculus superion of mboit 811
500. Frontal section throngh oeceipital lobe 813
521. Frontal section of haman brain illast mating visual comduction path 814
52?. Frontal section of human batan illustrating oecipito-thalamic radiation 815
523. Frontal section of human brain illus rating oceipito-thatamid radi- ation. cte. 816
5:4. Posterior part of left cerobral hemisphere, medial surfice 817
50:5. Horizontal section from brain of chith in serond werek of life 818
520. Normal and degenerated corpus geniculatum haterale 819
52\%. Frontal section throngh moclens habemile and thanmas of new- born mouse 820
528. Section throgh rortex of the gyrus oceipitalis superior 829
529. Scheme of vismal conduction paths 8.4
530. Sheme of hypothetical decussmion of axones from eorpus genich- hatum laterate to lobus vecipitalis 825
581. Optic central paths illustrating von Monakows view of represen- tation of the retima in the cortex 897
532. Scheme of optic paths illostrating cortical and subeotical hemi- aropsia 809
533. Visual conduetion path $8: 33$
534. Visual comduction puths 834
535. Section of bran stem of newhern cat illastrating the separation of the fasciculas longitudinalis from the fibre system from the colliculus superior to the ventro-hateral funiculi and the relation of the hateral lemmisens to the colliculas inferior 838
536. 'Transverse section of medulla oblongata showing cochlem nuclei. 842
537. Name as Fig. 313 844
5i38. Sime as Fig. 32:3 845
539. Same as Fig. 314 846
540. Sume as Fig. 440 847
541. Nuclens nervi cochlea ventralis of newhorn cat 848
542. Naclei terminales of nervis cochlear of four-day-old rablit 850
643. Cross section of pons showing molens nervi cochlen ventralis $8 i 3$
544. Transwetse section through muclens olivaris suberior 8.5
545. 'Terminals of axones it the mulens corporis trapezoidei. 8.4
546. Cell from mueleus corporis trapezoidei of newborn cat 85%
54i. Cell from muclens corporis trapeaodei of alult rabbit 858
548. Tramserse section through eorpus trapezoidenm of newborn monse. 8.99
549. Nucleus semilumaris of newhorn cat 860

LIST OF HALS'TRA!TONS.

xxix

Fharre PAME
50. O. C'at's brain after seetion of homnsens lateralis 861
sis. Transition of corpus traperoideum into lemusens lateralis 84:3)
35:. Same ats Fig. 314 865
553. 'Transerse seftion of eollioulns inferion of eat 866
5ht. Termination of axones of nervis coehlede in the emont mervons sritem. 867
575. Nemrones with desermbing axones in the central aronstie pathe 869
5.56. Ledations of lemnise us lateralis to corporm duadrigemina 8.0
55\%. Optic and aconstie reflex puthes 8.1
5is. Corpus trapezoidenm in bran of rabhit 8.2
509. Frontal section of human brain in which there was a lesion cans- ing degremeration of eorpus genienlatum mediale, mulens ruber, substantia nigra, zom incerta, and colliculas inlertur $8: 4$
560. Sagittal section of habe's brain shortly after birth 8.6
561. Sagital section throngh brain of a babe at the emb of the seconel month of life 87%
562. Frontal section through hemisphere of a child four and a hall months old 8.7
563. Nerve cells in the cortex of gyrus temporalis superior sis
564. Morizontal section throtgh brain showing relations of muditory sense area to the speech centres 879
56.5, 566. Scheme of maditory combluetion path 880, 881
56π. Seheme of strueture of spinal eord 886
568. Cells in a frontal longitudian section though thoracie spinal cord of newborn babe 889
569. Motor eell from ventral hom of spimal cord of rabbit $8: 0$
5\%0. Ventral horn eell from lumbar cord of ox 891
571. 'Trmoserse section of spinal cord of Laterter mgitis 891
57a. Spinal cord in comection with medulla oblongata and pons. $8: 3$
5i3. Nerve plexuses and teminals from musele of lizard 894
5it. Motor telodendrion from Laterta ayilis 895
575. Motor nerve ending on the M. gastromemins of the frog 896
5\%6. Nerve ending on an intereostal masele of the rabbit 896
57\%. Seheme of lower motor nemrone 808
in8. Mnsele nuclei of human cervical eord 005
nia. Spinal cord of adult man showing grouping of nerve eells: level ol' (. . II 906
580. Transerse section of hman spinal cord at level of C . V^{-} 907
581 . Transverse section of hmman spimal cord at level of C. VIII 908
580 . 'Trmenserse section of human fotal cord. 909
583. Gronping of cell bodies of lower motor neurones imervating rarions muscles 910
544. Dingram of human spinal com at level of (c. 111, from a ense of poliomyelitis 911
is.5. Columns of groy matter and motor melei of intumescentia cervi- calis 912
586. Columns of gray matter mad motor nuclei of intumescentia lumbalis 913
FlititerPAARE
58:. Brain showing tho origin and termination of mervi verebrales, ha- man embryo 916
588. Cobebrm with portion of spimal cord, ventral surface 918
58!. First cephalic cavity, preeordial part of skall from Larerta rirdis 920
590. Development of museles of mastication 9:1
59). Bmingo of Leterta viridis to show origin of museles of tongue 920
5!2. Diagram of somsory eomponents of ceromal merses of Mrmidia 923
593. Same as loig. 32: 925
594. Same as Fig. 410 927
595. 'Iransverse section at the junction of pars cervicalis of the cord with modula oblongnta showing nem vis aceresorins 928
596. Same us Fig. 312 931
597. Same ns lig. 313 934
598. Sagittal section through rhombencephaton of faths 935
599. Scheme showing motor and sensory nemrones of nervas trigeminns 936
600. Frontal section throngh brain stem of fotal monse showing anelei of nervos trigemini 937
601. Same as Fig. 3:1 $0: 39$
602. Sime as Fig. 314 941
603. Same as Fig. 317 941
604. Scheme of the nuclei nervormm oenlo-motorinm 0.44
605. Nudens originis et tila radionaria N. ocmlo-motori of embryo duck 946
606. Siune as lig. 5 nit 948
607, 608. Schemes of rellex mechanism of spinal cord 953
609. Section through medulla oblongata and upper cervical cord show- ing non-medullated olivo-spinal fasciculus 955
610. Dorso-lateral view of muclens olivaris inferior 057
611. Ventral view of nucleus olivaris inferior. 958
612. Same as Fig. 311 961
613. Desending degeneration in spinal cord after seetion of corpus restiforme 96:)
614. Degeneration following section of corpus restiforme 966
615. Cross section of cervical cord showing degeneration after section of corphe restiforme of dog 967
616. Section showing relation of mucleas lateralis superior through faseienhus longitudimalis medialis 970
617. Sedtion through pons showing degeneration after removal of kelt hemisphere. 971
618. Section showing degeneration of decussatio pramidum after ro- moval of left hemisphere 972
619. Section through cervieal cord showing degeneration after removal of left hemisphere 973
620. Large pyramidal cells of cortex 977
621. Diagram of giant pyramidal rells in gyrus centralis materior in a man forty-three years old 978
622. Normal Betz cell from human paracentral lohale 979
683. Scetion through gyrus centralis anterior. 980
fifine l'AgE
62. 4 . Scheme of decossatio pramidum 953
(6). Horizontal section through glohas pallithes in uewhorn babe 085
f:26. Horizontal section through muclens tentitormis in newborn bube 987
fiaz. Horizontul section through mucleus lentiformis in newhorn babe 088
62s. Horizontal section through uncleus lentiformis in newborn labe 989
(i39. Section at right angles to the lougitulinal tibres of the basis pe- (lunenti (junction of upper with middle third); newhoru bathe, 50 to 51 cm . long 990
030. Transwerse section through the spinal cord of a newborn babe, abont 50 cm . long: level of sixth cervieal nerve 991
631. Transverse section through the spinal cord of a newhorn labe, about 50 em . long; level of fouth lumbar nerve 092
632. Narly experiments of Beevor and Horsley ut motor cerebral loeali- zation. 996
633, 634. Notor cerebral localization in the monkey 4988, 909
635. Comparison of motor representation in the bonnet monkey and inthe orming-outang1001
636. Sngittal section throngh the bran of the monkey, illustratiog the internal capsule 1004
637. Position of fibres at various levels in the eapsula interm of the monkey 1005
638. Ilorizontal section through the right cerebral hemisphere cut at a distance of 61 mm . below its superior border 1006
639. Drawn from a photograph (magnilied twice) of the onter surface of a monkey's left hemisphere 1009
640. Experimental stimulation of freshly cut substantia alba of dog's spinal cord 1011
641. Degencration following hamormage of six months' duration in the bucleus lateralis thalami and in the lentienlo-optic por- tion of the capsula interna 1013
642. Portion of pyramidal tract in cross sertion which has umbergone sceondary degeneration 1015
643. Sceondary degencration of motor fibres from the pallinm after extensive cerebral lesion 1018, 1019
644. Non-mednllated fibres in the lemniscus at birth eorresponding to the centrifugal bundles of the lemnisens 1021
645. Brain of monkey showing eortical area extirpated 1094
646. Horizontal section of monkey's brain showing area of degenera- tion in internal eapsule, following lesion of hallux centre 1025
647. Degenerated nrea in Fig. 646, enlarged 1025
648. Deeussatio pyramidum, hallux lesion, showing degenerated fibres pussing to fascieulus cerebro-spinalis luteralis of both sides 1026
649. Spinal cord at the level of the cleventh thoracic root, hallux lesion. Bilateral degeneration 1027
650. Section of spinal cord at the level of first cervical root; degen- eration in riglit faseienlus cerebro-spinalis lateralis after ex- rision of thumb centre of left hemisphere 1028
xxxii
FIGOLE
6is. Horizontat section of momkeys brain showing location of degen-
1.Ati(ration following lesion of the fincial aren
1029
(ios. Degenerated wren in Fig. bisl enlarged 1030
Anis. Horizontal seetion of monkeys brain throngh basis petunculi showing heration of degenemation lollowing exedision of an arya matked F in loig. 6.5 $10: 31$
 1034
6in. Schome showing the probable conrse of impulses and the inter- nemonat eonnections in the contex cerebri 1034
6iaf. Inagram of the cells of the cerehat cortex 10:35
6.5\%, bis. s. shemes of upper and lower motor nenones. 110:3\%, 10:3
6.5!. Scheme of fontal (ermore-cotitopontal path 1041
 10.12
66i. Serondary degeneration following lesion in the left midnle and inferion fromal givi $10-43$
 of all the libres of the basis perdumenti 1046
6ita. Cortex of homan brath illastrating the systems and plexnses of newor tibres 1050
fiff. Siaritat sedion through the brain of a babe shortly nfter birth ilhas rating the projection fibres to the somasthetice aren 10.51
685. Seheme af a tramserse seetion though the bmin showing the promble dispusition of the ermmissmal and projection fibres 10.54
B6ta. Scheme of the commissura anterior erebri 1056
B6i. Seheme of an minero-posterion setion throngh the cerebrum showing the disposition of the axomes of association momones which comect the lobus fromalis with the lobus arcipitalis. 1059
bisis. Vertical transerse seetion of the lalt ocecipital lobe to show the origin and course of the short assoreiation tibres of the lobus oceipitalis. 1060
6if9. Fates medialis hemispherii sinistri showing the ringulum, th faseiculas longitudinalis inferior. and other buntles of asso- ciation tibres 1062
650. Marehi preparation showing degencration in dog's brain after destruction of the lobus frontalis 106:3
bia. Lateral surface of the left cerebral hemisphere 1064
6is. Vertical transerse setion passing thromgh the posterior part of the pracumens, the fissura parioto-oceipitalis, the fissum eat- carinit, we. 1066
673. Two vertical transwere sections from it erebral hemisphere, with agenesis of the eorpus callosum 1068
674. Fiscienlus oceipito-frontalis. Aamia semicireularis, am faseiculus uncinalus. 1069
6\%is. View of lateral surface of right werohal hemisphere showing sense centres and association centres $10 \% 2$
676. View of the medial surfince of the left cerebral hemisphere show- ing sense centres and association centres 11073

TIIE NERVOUS SYS'TEM AND ITS CONSTITUENT NEURONES.

SECTION 1.
THE HISTORY OF THE DEVELOPMENT OF THE NEURONE CONCEPT.

CHADTER I.

INTRODCOTORY.

"The stuly of nenology-Ohler views regarding nerve cells mod berse tibres -Deiter's stadies-l'rocesses of nerve cells-l'rotophasmie mal axisrevinter processes-von (iechach's stmbies-Jden of a diffuse nerve network.

Is face of the many questions conceming baterial toxifology, internal secretion, self-intoxication, serothorapy, and organotherapy, suljeets all franght with practical import suffia ant to explain the absorbing interest in medical circles regarding them, one might have had some hesitation in choosing as a subject the title given above, were it not that this topie is the one which more than any other since the begiming of seientific records has ocempied and mast ever ocempy the minds of thonghtful physicians in all combtries of the work. Amb one camot but feel that when these burning fuestions of to-day shall have been settled or supplanted by others, subsequently thonght to be more important, the problems comected with the nerrons system, that portion of man's organism which in the main is accomatable for the high position he has assmmed among the animals, by means of which, in addition to the advantages of reflexes and instinctive reations, he is able not ouly to gather multiple experiences, bat to commmicate them to his fellows and to utilize them in bettering his comdition, to stmby, to investigate, and to speenlate-these problems will
still remain the most attrmetive mud aborbing. At the end of a decade which has witnessed an umprecedented activity in this domain, the results of which have led to a complete revolution monr ideas concerning the elements of the nervons organs and their arehitectural relations, and have supplied us with a host of new methods of investigation, the stuly of neurology, espeeially of the haman nervons system in health and in disease, is particularly alluring. Entirely new aventes of research have been opened up, and problems hitherto thought to be situated almost outside the limits of scientific inguiry now seem at least within human possibility.

It may be staved in the begimning that it has seemed to me advisable to gather together in ans simple a manner as possible some of the more general results of modern neurological investigation and to hint rather at the ontlook for the future than to detail at length the results of any single original research. Nor would it be possible in the space at my disposal to cite even the man results obtained in all the different directions in which neurological inquiry has been pursued. I shall have to be content with reviewing some of the main achievements in the departments with which I am most familiar, leaving it, however, to be distinctly moderstood that in the others miny just as important conclusions have been arrived at and much fundamental experimentation is still in progress.

Entertaining as it could be made, it is not my purpose to give a review of the evolation of the various doctrines held at different times regarding the structure and function of the central and peripheral nervons system, nor to deseribe the gradual modifications and inventions in anatomical and histological technique which have been evolved with each new theory and which have opened up new fields for stady. It will be necessary, however, in order to make clar the phenomenal advance represented by the ideas which at present prevail, to speak briefly of the unsatisfactory state of the views which immediately preceded them.

Considering the remarkable activity manifested during the epoch-making period of 1838-'40, when, incited by the publications of Schleiden and Schwann, anatomists busied themselves in ransacking all regions of the borly, hunting for "cells," it is not surprising that a number of them turned their attention to the nervons organs, concerning the finer structure of which
little was then known. Ehronberg, as carly as 183:3, in studying the spinal ganglin and the central nervons system, had undoultedly seen the ganglion cells in the former and the medullated fibres in the latter, although he deseribed them as capillary tubes. After him, Valentine and Purkinjo gave better descriptions, the former of the spinal ganglion cells, the hatter of the ganglion cells in the bain. Emmert, Henle, and Rosenthal studied the differences in size and mumber of the fibres in the rentral and dorsal roots of the spimal nerves.* Bat to Remak und Helmholtz helongs the eredit of showing that a portion, at least, of the processes of the nerve cells of vertebrates go directly over to form nerve fibres, at may rate in the sympathetie system. Vou Källiker in $184+$ described the mipolarity of the cells in the ganglia of the dorsal roots, and the origin of medullated nerve fibres from them, although it was mot watil 1875 that Ranvier demonstrated the T-shaped division of the process at a distance from the eell, while the real explanation of the mipolarity and its relation to the bipolar condition in fishes was first worked out in the embryologieal staties of llis.

With regard to the connection of the nerve cells, within the central nervous system itself, with conduction paths, the first observation is that of Wagner, \dagger who in 1847, while studying the clectric lobe of the torpedo's brain, fomed that of the numerous processes possessed by the nerve cells only one or rarely two remained unbranched and became connected with a nerve fibre, a finding which Remak in 1854 asserted also for the cord and brain of the ox, and which in the following year he stated was true in general of all motor cells. The most important obser-

[^0]vations and generalizations of this period were, however, made by Deiters, the distinguished investigator at Bomn, who, like many others who have surecssfully pursued seientifie studies, died at a eomparatively early are.*

Deiters made an extremely caroful study of the varions proeesses of nerve cells with the best technicul mothods ut his disposal and classed them all in two great gronps: (1) Protoplasmie processes which were branched and the intermal structure of

 10plasimid procersises.
which corresponded elosely to that of the boily of the nerve cell, the protoplasm of the process being gramular, and sometimes eren pigmented; and (2) axis-rylinder or nervons processes consisting of a rigid hyaline, more resistant substance which at a short distance from its origin in the nerve cell passed direetly over into a medullated nerve fibre (Fig. 1). \dagger

* Otto Deiters' book, Untorsuchungen ibher Gehirn und Rhekenumrk has Mensehen und der Singethiore. Bransehweir, 1865, was issomed by Max sehultze, I wo years alter the nuthor's death.
\dagger In renlity, beiters describes two kinds of axis-eylinder prueesses, coarse and fine, the deseriplion in the text applying to the former. He thought that the finer asis-cylinder processes could he present in large numbers on single nerve efls, arising from the protophamie processes and going over into the fine metallated fibres of the central nervonsorgans. 'These finer axiseylinder processes have heren mend ly provel hy the delieate histologienl methods of Iledd to be the termimals of axis-eylimber processes of ather cells thens ending on, not arising from, the cell with which they seem to be connected.

Wialdeyer, in his excellent review of the more recent inves. ligations into the anatomy of the nervons system,* lays emphasis 11 fon the point that clespite the enormons valne of his researehes Deiters did not netmally demonstrate the commection of a ganglion cell of the central nervons system with a periphwal nerve tibre, a fact to which kialliker and Gerlach had previously made reference. The conncetions of the axis-eylimer processes of the cells of the ventral horns with the axis cylinders of the fibres of the motor roots of the spimal nerves were first absolutely established by the use of Weigert's mordant methods of staining the myelin sheath. \dagger The comnting experiments of Birge \ddagger in Ladwig's lahoratory showed a remarkable areordance in the number of ventral horn cells and that of the fibres in the ventral roots, and led many physiologists and matamists to the belief that each motor fibre in the rentral root is comneeted with a corresponding cell within the gray matter of the cord.

More widely rewhing in influence, for some time at least, were the studies of Gerlach ${ }^{\#}$ with the gold metiod and the lypotheses which he based upon them, hypotheses which were responsible for an immense amount of polemical writing during the fifteen years which followed their introduction. Gerach, by mems of methods of isolation and treatment with chloride of gold, obtained pistures surpassing by far, in extent and deliaicy, any obtainable with the older methods, and atfording an entireiy new concept of the complexity of the structure of the

[^1]gray matter of the spinal cord and brain. In addition to the bodies of the nerve cells and their main processes, protophasmic

Fig. 2.-Network supposed ly fierlach to be formed of the protoplasinic processes of the merse eells. I brinching nerse fibre from the eome of the ox is shown Whase two bramehes are eombered with a tibre metwork which is in melation with two nerve colls. (Altor (ierlath.) 'ihis eomblion has been shown by (iongi's method mof to acrord with the fincts.
and nervons, the new method revealed the most intricate and involved appearances, which led Gerlach to believe that he had discovered a most extensive and delicate diffuse network within
the gray matter (Fig. D). Not satisfied with the simple deseription of his findings, he proceeded to set up an interesting hypothesis, hased largely non the physiological ideas whieh prevailed at the time, regaring protoplamie contimity.* He concluded that he had to deal with a complex nerve network, \dagger consisting of a gemuine reticulum of delieate fibrils resulting from the fusion of the ultimate dendritic branchings of the protoplasmic processes of the nerve cells of the central orgams. From the far side of this network, through gradaal fusion and concentration of the threads belonging to it, broader fibres slowly appeared, which finally were to be recognized as genuine nerve fibres, becoming medullated and forming the fibres of the dorsal roots (sensory fibres) and in part the white fiascienli of the spinal cord. Gerlach's view, therefore, was that the axis cylinders of motor nerve fibres represent nervous processes coming off directly from nerve cells, while the sensory fibres of the dorsal roots are to be looked upon as nerve fibres arising from nerve cells only indirectly throngh the intervention of a diffuse nerve network made up of their protoplasmic processes. Thus, according to his scheme, with which Boll and Italler essentially agreed, the whole nervous system represents a protoplasmie romtimmum-a veritable rete mirabile (Fig. 3). Such was the state of alfairs at the time when what we are acenstomed to call the "newer investigations" were begm. A more musatisfactory condition of knowledge or a more prohibitive hypothesis can seareely be conceived; all ideas of tracing out

[^2]definite conduction paths or of localization of function within the central nervous system seemed well-nigh hopeless; in the

Figi. 3.--scheme of eomenetions of dorsal and ventral roots of spinal cowl aceording to a disameded theory. (After kamom y cijal.) ", tibne of doral root supposed to have its origin in ('larke's nurlens; h, mipolar ecells; of spinal ganglion ; d, termination of a donsal roon fibre in the refienlun of the dorsal horn ; e, root fibre going to pass longitudinally in the lateral columus ; fibre from Clarke's muelens direfted toward the lateral colume ; 9 , late rad column; h, motor cell commeeted with tibre of vent mal root, $i ; j$, tibre of ventral root. foming from a rell in vental horn of oposite side: k, colum of Clarke ; m, ventral median fissure; $"$, column of Tïrek; p, eell of ventral horn, the protoplasmic proeesse's uniting to form a metwork, q, in which the fibres of the dorsal roo terminate : re cells of dorsal horns, the protoplasmic processes of Whieh are mited to the network, $q ; s$, ascembing fasciculus of lateral eolumn ; tateral pramidal tract ; n, r, tibres of dorsal root terminating in the network : r, fasicienlas chamatus of Burdach; y, fasciculas gracilis of coll; z, median domsal suldens.
general diffuse network investigators were halted by what appeared to be an insuperable barrier.

CHAPTER II.

THE STUDIES OF HIS, (iOLGI, AND FOREL.

The newer investigations-Golgi's method-Types of nerve cells described by Golgi-C'ell of Type I and cell of 'Type II-Golgi's hypotheses-Conrributions of His and Forel-Opposition to the idea of a nerve network -Origin of the idea of a nerve feltwork or neuropilem-Doctrine of the individuality of the nerve elements-The prineiple of contact formulated.

Tinen followed a series of researches, the majority of which date since the year 1880, and with which the names of Golgi, His, Forel, Kölliker, Ramón y Cajal, van Gehuchten, Retzius, and von Lenhossék are inseparably connected. These investigations led to a complete revolution in the ideas regarding the elements of which the nervous system is constructed and the mode in which these elements are put together in its architecture. It may surprise many to learn that the now world-famed Golgi's method was first deseribed by its inventor, Camillo Golgi, of Pavia, as early as 1873.* But little attention was paid to it by investigators in other comntries, however, until more than twelve years later, when he published his voluminous article, Concerning the Finer Anatomy of the Central Organs of the Nervons System. \dagger The method is now so well known that it is unnecessary to describe it here in detail. It will be recalled that it depends upon the treatment with a solntion of nitrate of silver after previons immersion of the perfeetly fresh tissue for a longer or shorter time in a solution of

[^3]bichromate of potassimm.* The nerve cells and their processes stain intensely bata and stand ont prominently on the white or yellow ground. The pictures obtained are in extent, clearness, and sharphess, at least as far as the external form of the element is concerned, incomparably superior to those obtainable ly any other known technical method. \dagger As a rule, cer-

[^4]tain only of the nerve struetures present are found to be impregnated in a successful preparation. Whether this effect is dependent or not upon functional conditions of the tissues at

Fig. 4.- (holgi's cell of Type I. (ell from the optic tract of the eat lateral from the lateral genienlate body. (After Källiker.) Radiating from the ecell bouly are to be seen very many protoplasmic proeesses which show a broad wedge of origin and branch chatacteristically; the single nxis-cylinder process n has a smonh surface and tolderaly even calibre, which is maintained for a considerable distance from the eell. It givesotria few delieate lateral hrameles or emblaterals, c.
the moment of immersion we do not as yet know ; certain it is that a distinet advantage is gained, inasmuch as the elements are represented, as it were, in a diagrammatic manner, and the study of them is in a high degree facilitated.*

New York. 1896, and the photographs by Hoen illustrating Berkley's publications.

* A valuable eritique of the Golgi method, its mature and results, is that of A. Hill, The Chrome-Silver Method, Bruin, Lond., vol. xix, 1896, pp.

Golgi, by the application of these silver methods to the gray matter of the rerebro-spinal nervous system, recognized nerve structures varying in character, which he grouped into two main categories of nerve cells-cells of Type I and eells of Type II. The cell Type I (Fig. 4), as described by Golgi, agrees in the main with the general deseription of a central nerve cell given by Deiters, being eharacterized by muehbranched protophasmic processes (usually multiple) and a single axis-eylinder process. That the latter was mbramehed, however, as Deiters maintained, Golgi denied, and his diseovery of "side branches" upon the axis-cylinder processes, first of the pyramidal cells of the cerebral cortex, and later upon those of the Purkinje cells of the cerebellum, represents an advance of a degree of importance utterly beyond Golgi's conception at that time.*

These side branches given off by the axis-cylinder process of ecll Type I are usually delicate, and exercise a hardly pereeptible inflnence upon the calibre of the main fibre, which retains its individuality at least for a long distance from the cell. Golgi noted that these side branches exist also upon the motor fibres arising from the cells of the ventral horns, and that similar ones are given off by the fibres of the white fasciculi of the spinal cord, whence they run into the gray matter.

The bramehing of the axis-cylinder process shows quite a different behavior, however, in the cell of Type II (Fig. 5), and indeed it is the axis cylinder whieh is morphologically characteristic in the two classes of cells rather than the protoplasmic processes. The axis cylinder of a cell of Type II begins to divide almost immediately after its departure from the cell body which gives it origin, breaking up in a dendritic manner into a large number of fine branches, the main process retaining its individuality and being distinguishable for a comparatively short distance (Fig. 6), and never appearing to leave the gray matter.

Not taking into account certain observations upon neuroglia, it may be said that the most important contributions

[^5]of Colgi in the domain of neuro-histology* consist in (1) the invention of the silver method of staining ; (*) the reeognition within the central regions of cells of different types ('Type I and Type II) ; (3) the diseovery of lateral branches from the axis-cylinder processes and the fact that the majority at any rate of the nerve cells possess only one axiscylinder process ; (4) the demonstration that the protoplasmic processes branch manifoldly without amastomosing, all rumuing ont to ultimately terminate blindly.

Unfortmately, (iolgi, not contentel with descrihing these objective findings, gave utterance to a nomber of hypotheses, particularly with regard to certain funetional relations and to the ultimate fate of the side fibrils given off by the axis-cylinder processes, which led him and many after him into a

Fig. 5.-Nurve cell with short hanehed axis rylinder (pr. cyl.) from the granular hayer of the cerelnellam of t eat aged eight days. Golgi's well Type II. (After Vam Gohmelhten.) whole labyrinth of errors. Concerning these I shall have something to say further on. For the present, it will suffice to state that Golgi believed that the cells of Type I were motor cells, and the cells of 'Type II sensory cells; that Cerlach's diffuse nerve network,

[^6]arising from the antstomosis of protoplasmic processes and connected with sensory fibres on the distal side of the net-

Fig. 6.-Golgi's cell of Type II or dendraxone from the cerebrum of a cat. (After Kölliker.) The eorrse protophasmic processes, x, are easily distingaishable from the axis-eylinder process, ", thongh the later soom loses its identity, exhansting itself by miltiple division at a short distance from the cell.
work, had no existence in fact, but that there did exist a diffuse nerv ${ }^{\prime}$ zetwork (intreccio) within the gray matter* made up of

[^7]the many branches of the axis eylinders of the cells of Type II and the side fibrils of the axis cylinders of the cells of Type I. Protoplasmie processes, in his opinion, possess no nervons function, but represent simply portions of the protoplasm of the nerve cell which rim out to be comnected with the bloodvessels or neuroglia cells in urder to gather nourishment from them. Golgi believed that the dorsal root fibres on entering the cord branch freely and terminate by becoming a part of the diffuse nerve network in the gray matter, the sensory impulses reaching the axones of the motor fibres through their side fibrils, which, he thought, are connected with the distal side of the general network. In this way the dendrites and the cell borly are excluded from the reflex are (Fig. 7). Epoch-making as were his attual discoveries, the admixture with facts of such hypotheses was indeed mofortmate.

The credit, I think with justice, has been given by both van Gehuchten and von Lenhossék to IHis, of Leipsic, and to Forel, of Zïrieh, for having directed the first telling blows against the doctrine of a diffuse nerve network and in favor of the independence of the individual nerve elements. The distinguished anatomist * has since the year 1881 busied himself, in the main, with the study of the morphology and histogenesis of the nerve organs, and his results in this field may justly be classed among the most striking achievements of a life of indefatigable activity.
voso, Milano, 1886, p. 31, he says: "Ont of all these branchings of the different nerve processes there arises, of course, an extremely complicated texture which extends throughout the whole of the gray substance. 'That out of the innumerable further subdivisions by means of complicated anastomoscs there arises a network, in the strict sense, and not simply a feltwork, is very probable; indeed, one would be inclined from some of my preparations to believe in it, but the extraordinary complication of the texture does not permit this to be deelared as certain." In a later article, La rete nervosa diffusu degli organi centrali del sistema nervoso; suo signifieato fisiologico (Rendiconti del R. Istituto Lombardo, ser, ii, vol. xxiv, 1891, pp. 595, 656 ; 'Trunsl. in Areh. ital. de biol., Turin. 1891, t. xv. pp. 434463), Golgi has dealt with this topic at length, replying to the objections whieh have been urged against the existence of the diffuse nerve network and commenting upon its physiological signifieance.

* The monographs of Ilis upon the chick and his researehes upon the anatomy of human embryos contain results of personal work which represent a goodly proportion of what is reliable in modern embryolory.

His investigations led him early to the conclusion that from the begimning the forermmers of the nerve cells-the nemro-blasts-are entirely distinct from and independent of one another. They appear at first as ovalo or pear-shaped eells with smooth cell bodies entirely devoid of processes; later, at tho end of the eell originally direeted away from the ontside of the

Fig. 7.-Schematic represe otation of the ilifhse nerve network supposed hy some invertigaturs on the formed by means of the side tibris of eell tye 1 and the axomes of eell Trye 11 . The semsory libres of the darsal root ure shown entering into combertion with this dithise nerve network, and the course of impulses concerned in simple rellexes aceording to this virw is shown by the direetion of the arrows. By this means the cell bouly and probophamice proresses were supposed to be cixelnded from the redex are. The dendrites were supposed to be parely mutritive in funetion, passing ont, to be comered with the walls of blood-vessels, whence the mutrient supply was derived, as shown in the tigure. Ah the cevdener goes to show that this view is ineorref. r. h., ventrad hom of gray mather ; r. h., dotsal hom; s. f., side libril from asis

 hom passing thromgh white mather to bown apillary of the pia; b. copp, bood eapilaries (1) in the gray matter, (2) in the pia, with which the protophasmic proesses were stipmesel to be comberod or related; d. re f., fibre of dorsal root sending banches into the gray matter to terminate in the dif-
 bramelned axis-eylinder prowess helping to form the difflise network; spe. !.,
 face; r. m., voluntary nuside inurvated by fibere of vent mal root.
body, there arises a projection which corresponds to the subsequent axis cylinder of a nerve fibre. The protoplasmic processes do not develop till afterward and branch soon after their appearance. The fibres of the dorsal roots of the spinal nerves represent processes of cells sitnated in the spinal ganglia and their terminations lie free inside the spinal cord. In these early stages there is no anastomosis between the different processes of a single nerve element, nor conld lis make ont in the later

Ancolopmental periods my evidence of the fusion of the processes of one cell with those of another.* His, thercfore, oppaserl the iden of a diffuse network, attributing the appearances which surgested it to the existence of a most complex feltwork (Nomropilem) composed of the fimer subdivisions of the processes of the nerve cells.

It was in 185\% that Nimsen published his comprehensive article on the structure of the nervous system, t in which he attempted to show that the axis-cylinder processes of the nerve cells are made up of multiple tubes of minute size. It is of no litile interest that the celebrated Aretie explorer at this early period recognized the high importance of the discoverices of (iolgi. On page 71 of his article he says:
"I think it is indeed also very strange that neither Rawit\% nor Haller (nor most modern writers) are aequainted with the excellent papers on the central nervons system of vortebrates by (iotgi. They puote a great many other and less important writers, but they do not seem to know this eminent histologist who, in my opinion, has really introdued a new epoch in our researches into the structure of the nervons system." Nansen pictures distinctly, in Figs. 111 and 112 atcompanying his report, the bifurcation of the fihres of the dorsat roots of the spinal nerves.

The eriticism which appared at this period from the pen of Forel, the celchrated Zïrich psyehiatrist, \ddagger is of extreme value from a historical standpoint. Well versed in the results of pathological anatomy and exporimental pathology, and acquanted with the carlier work of His, Forel, in a short essay, discussed the status of nemro-histology at the time, including in his criticism the results and hypotheses of Golgi. He recogaized fully the importance of Golgi's oljective findings, but

[^8]with perenliar kermuess of pereeption sifted out the facts from the hypotheses. He entered a strong protest against the metwork theory and spoke for the maintemane of the individuality of the nerve chements. Forel reognized the importance of the "eaprice" of the (iolgi method in stuining in clement only here and there as bouring upon the independence of the nerve muits, hat it is his ntilization of the stadies of secondary degenerations which makes his communication of the deepest signifiamee. He pointed out that not only does the distal end of a divided motor fibre undergo rapid disintegration after section (Wallerian degemeration), but that also, in contradiction to the doctrine of Waller, the proximal end undergoes cellulipetal degeneration, thongh often much more slowly (vom (indden's law), when the division of the fibre has occurred at the point of exit of the motor nerve from the central system. Forel further emphasized the fact that when degeneration involves a tract of nerve fibres it extends only as far as the termination of the tract. If atrophy of nerve cells and nerve fibres oceurs beyond the termination of the tract, it is of a fundamentally different charaeter from that which affects the tract madergoing typieal seeondary degeneration. Whereas in the latter process a rapid and complete disintegration with absorption occurs, in the other ease there is, as a rule, only a diminution in the calibre of the nerve filtres and a shrinking in size of the nerve cells (so-called indirect atrophy).
'To illustrate this point, Forel, happily it would scem, chose the experimental degencrations produced by von Gudden and von Monakow in the domain of the sensory conduction path leading from the retina to the cerehral cortex. Whereas if, on the one hand, in an animal like the rabbit in which the decussation of the fibres in the optic chiasm is almost total, one eye be -+ iunated, there results almost total degeneration of the corr ng optic nerve, and of the opposite optic tract, together considerable diminution in size of the lateral geniculate
sy, owing to the disappearance not of its nerve cells but of the gelatinous substance between the cells (consisting of the terminal ramifieations of the optic fibres which have entered it); on the other hand, if the visual area of the cerebral cortex be extirpated, the lateral geniculate body of the same side degencrates, but in an entirely different way. In the latter instance it is not the gelatinous substance which disappears, but the nerve cells
themselves ranish. The obvions deduction from the pathologican findings is that between the retimand the orecipital cortex at least two norve units are interposed, one extending from the retina to the optic centres at the base of the brin, and the second from the latter centres to the cortex of the cerebrim. The limits of a given degeneration mader pathological conditions correspond in extent to those of the unit or mits involved in the lesion. Finally, for the first time do we find stated clearly in this article the principle of contact as an explanation of the correlations of the nervecells and their processes within the gray matter, a principle the formulation of wheh has been of considerable influence in the development of neurolegical knowledge, but one which, as we shall see later, is not wholly in accord with the facts.

ClLAITER III.

THE STMOES OF RAMON Y CAJAL ANO OTHERS WITH GOHGI'S

 nerve elements-The collateral branches of the axis-eylinder proensses -'lembey to extermal morphohgical miformity among the nepre dements-'Transition forms belwen cells of Trype I and cells of Type II -The erdls in sensory and motor regions-Simies of other investigators.

TIuE rontribut:ons of Forel and Ifis, well supported and convinumber as t^{13} ay were, did not, however, suffice to eradicate the odder ideas of a retienlum from minds in which they were as fimly established as are most prejudices and preconceived ideas taken in with mother's milk. 'To appreeciate diseoveries hased partly upon pathologioal experienere, bat largely upon studies in histogenesis, a field whose fruits had not yet attained the appreciation they deserved, a conservative medical word required, for its awakening, influences still more arousing. These were soon fortheoming and from an mexpected quarter.

If we may believe a popular romor, something more than ten years ago a yomg doctor in Spain, a comentry remarkable from a medical standpoint up to his time for its harremess in original researeh, appled for a position in microscopy, which was refnsed him. His pride wombed keremb, he remounced his social relations, purchased a small library on histological smbjerts, paid special attention to eertain techmical methods, worked like a slave at his subject, and a decade later foumd himsolf famous. Santiago hamón y Cajal has left Barceloma hehind him and is now professor at Mandid, has bectured before international amblienees, and has won the admimation and resperet of the whole seientitic word; he is a medical immortel. The story, even if it be not true, is certainly well invented. Beginning with two articles in the year 1888 , one upon the retina of
birds* and the other upon the nerve fibres of the molecular hayer of the earebellum, \dagger Ramon y Cajal exhibited during the next few years a most astomishing prodnctive activity, \ddagger whinh, jutging from the mature of his articles in current journals, is by no means yet exhansted.

A brief inquiry into the contributions of hamon y Cajal ram not fail to make clear why they almost immediately attracted elose attention in widely distant quarters. Laving ont of consideration the immense mass of detailed diseoveries with which Ramon y Cajal has emiched the finer anatomy of the spinal cord and brain, the salient features of his work, those which make io so signiticmit as regards our present concept of the elementary structure, are (1) the demonstration (apparently detinite at the time) of the complete independence of at keast the majority of the nerve elements, the bramehes of the axis cylinders forming amastomoses more than those of the dendrites; (*) the appreciation of the widespread ocourence and significamee of the lateral bramehes (eollaterals) of the axis-cylinder prowesses; and (3) the demonstration of the striking uniformity in general structure of the majority of the nerve elements in all parts despite multiple minor morphological variations.
(iolgi, as I have said, hat denied the existence of a network made up of anastomosing protoplasmia processes, but believed in a diffuse nerve retienlum composed of the united fibrils resulting from the complicated sublivisions of the axis cylinders of cells of Type II and the lateral fibrils of the axis cylinders of eells of 'Type I. The Spanish investigator emphatieally denied

[^9]the existence of any such diffuse nerve network. Ite maintained that in the eerebro-spinal nervons system the axis-eylin-

Fut, s.-Lemgitudinal sagittal section of dursal fimientus of the spinat cord of a cat fitterendays old. (Metheod of (iolgi.) A, tibres ot domal funiculi ; I, collateme ; (', gromp of collaterals rmaning ventralward; I, , add arborization of shme collaterals in the gray matere of the domsal hern ; E, axis cylimer of at aremern. (. Dher Ramón y Cajal.) der processes and their lateral homehes, belonging to no matter what nerve cell, always run out to and free within the gray matter.* They often enter into closes proximity to other nerve cells and interlace with their protoplasmie processes, bit nowhere could any evidence, hy means of the method he employed, be foumd of actual mion-the interrelations of the nerve elements depending entirely upon contaet or contiguity, not upon organic connection. This was proved, he beliaved, to be true not only of embryonie strnctures, but also of the tissues of the adult, so that the neuropilem of His and the contaet prineiple of Forel met with full confirmation in the researches of Ramon y Caijal.
The side fibrils diseovered by Golgi upon some of the axiscylinder processes were mate hy Ramón y Cajal an object of speeial study. Particularly fortmate in this regard was his application of the silver staining to the embryonic cord. \dagger He found that in embryo chicks after the difth day of incubation it was casy to stain many of the axis cylinders of the white fascienli, but was astomished to find coming off from each

[^10]fibre, with a slightly wedge-shaped origin at right angles or almost at right angles, a considerable number of fine collateral branches (Figs. 8 and 9). These collateral branches penetrated deeply into the gray matter of the cord and terminated in free end arborizations among the nerve cells and their protoplasmic processes. The fine nerve plexus, tleseribed in the bibliography as oceurring about the ganglion cells, was attributed by Ramon y ('ajal largely to the interlacing of great numbers of the fibrils constituting these end arborizations of the collaterals. Such

Fati. 9.-Tmaswerse sertion of the spinal ford of a rhick at the ninth day of in-
 the dorsal mot tibues ; follaterats from the ventral funiculi; h, collatemats belping to form the vent ral commissure ; d, whe arborizations of eonlaterals; o, collaterals going to form the dorsal commisure. (Aftor latmón y (ajat.)
collateral branches occur in all the white faseiculi, and further, they show a tolerably eonstant disposition in all regions of the vertebrate spinal cord.* On the ventral ront fibres of

[^11]

Fiti. 10.-Schematio representation of section of domsal tuniculas cut lomgidadimally paralle] to entrathere of dorsal rools. (After Ramón y (ajall.) A, dorsal root ; s, white suthstituce; (1 , gray subsimere; r: rell of gray matler sembing fis asisaylinder prowess uphard in dorsal finuiculus; I, another cell siculting all axis rybinder into the white matter ; this process hifmerates, yieleling an ascouling and ateserouling tibre; E, another erell semding an axis rylinder downward in the donsal funiculus: I, I; athe (i, terminal arlmergations of axis-cylinder proveses; D, termimal arborizations in the gray matter of collaterals from the white substance; a, collateral from one of the divisions of a dorsal rowt filere; b, collateral from the main trunk of a dorsal root tilue leffore its Y-shatped division.
the chick and the calf he could find no collaterals, but concerning the fibres of the dorsal roots the most interesting relations came to light. In preparations of the cord and dorsal roots of chicks from the seventh to the twelfth lay of incubation he showed that the filbre representing the central process of a cell in the spinal ganglion rums throngh the dorsal root as fiar as the surface of the corl, into the sulstance of which it penetratos ohliquely. Inside the corl* the axis cylinder modergoes a distinct Y -shaped division into two strong teminal branches, one ascending, the other deseending, both soon assuming a longitudinal direction, evidently constituents of the dorsal fascienti of the cord. Fine collateral branchings conld be seen coming off not only from the main axis cylinder, but also from its two branches of division at different levels on their way up or down the cord (Fig. 10). These passed forward through or medial to the substantial gelatinosa of Rolando to end, some among the cells of the dorsal horns, many of them among the cells of the ventral horn. As to the ultimate fate of the ascending and descending fibres resulting from the Y-shaped

[^12]division, Ramon y Cajal conld not at the time make any definite statement.*

The great numbers of mednllated fibres passing more or less in bundles from the dorsal faseiculi into the gray substance had been genemally recognized and could not indeed have very well been overlooked, so prominent a part of the picture du they form in sections of the medullated spinal cord stained by Weigert's method (vide Fig. 11). The observers thought them to he (1) medulated axis cylinders passing from the eells of

 modulated eollaterals passing in from the dorsal fase

the gray matter into the white fasciculi, and (\%) fibres of the dorsal roots or of the dorsal white fasciculi turning in to terminate in the gray matter. Ramon y Cajal proved that the

[^13]majority of these do not represent main axis cylinders at all, but are eollateral branches, a finding which has been ronfirmed over and over again hy smbsequent investigators in all comtries.* They represent structures of enormons importance, a large portion of them (heflexrollateralen of Kölliker) representing the most direet path of nerve communication between the sensory surfices of the body and the ventral horn cells governing the volmatary mascles. We find in the sensory fibres, with their subdivisions and collaterals given off at different levels of the cord amd mednlla, \dagger the amatomical mechanism concerned in the simple and more complex reflexes, and probably in many of the instinetive rametions, and we have finther, as His says, not firl to go to find the explamation of the wellknown fact that the same sensory impulses which permit ronseionsness to be affected also account for the setting free of reflexes.

Amid manifold variations in type, Golgi had been struck with the wonderfnl similarity of the nerve cells thronghout the whole of the central nervous system. He had even, it will be remembered, attempted to reduce all nerve cells to the two types before mentioned, and from his studies regarding the mote of distribution of eells of these types he had conchaded that the first type of nerve cells belonged to the motor or psycho-motor, the second type to the sensory or psycho-sensory regions. \ddagger With the advent of Forel's critique and of Ramom y

[^14]C'ajal's demonstrations the distinctions between these two types lost, in the main, the signifieance which had been attached to them. The only essential difference between cell Type 1 and eell Type II was shown to lie in the length and mode of branching of the axis cylinder. Whereas that of the first type first

Fus. 12.- ('oll from the gray matter of the spinal cord representing a form inter-

showed an end arborization at a considerable distance from the cell, that of the second type broke up almost immediately after leaving its cell of origin into its terminal filaments. While a cell of 'Type I, throngh its long axis-cylinder process going directly over into a nerve fibre, is put into position to affect other cells in widely distant domains,* the cells of Type II, the axis-cylinder processes of which rarely, if ever, leave the gray matter, are destined to influence other cells in the immediate neighborhood. These latter in all probability do not always act as servants of main conduction, but are to be looked upon

[^15]as having a definite local function, probably of no mean significance.* 'They ocemr in motor as well as in sensory meas, and there is no gromod at all for attribating to them, as Golgi did, an exelusively sensory function. Fiurther evidence has recently been fortheoming in that transitional forms between the cells of 'Type I and those of 'Iype II, the hypothetical existenee of which von Monakow postulated, have artually been deseribed. Von Kölliker and von Lenhossék, for example, have deseribed eells in the spinal cord (Fig. te) with axis eylinders which, in addition to manifold branching, give off one main stem which ats quite like the axis-eylinder process of a cell of 'Jype 1 , and recently von Beehterew \dagger has referred to similar forms among the stellate cells of the molecular layer of the cerebellam (Fig. 13).

It has become obvious, therefore, from the striking general morphological agreement, that if we are to seek for data regarding the functional characteristies of nerve cells, we must look for them elsewhere tham simply in the external form relations which they manifest; even the direction assumed by an axis-cylinder process does not always permit a decision as to the motor or sensory function of the cell to which it belongs. While perhaps the majority of sensory axones in the central nervons system run upward and of motor axones downwarl, there are plenty of exceptions to this, among them the descending limbs of the bifureated fibres of the dorsal roots.

Ramon y Cajal's application of the Golgi staining, ahmost of the nature of a redisoovery, attracted the most widespread attention, and anatomists everywhere, casting other problems temporarily aside, set to work with the silver stain. In Ger-

[^16]many, yon Källiker,* yon Lenhossík, Waldeyer, and Slinger; in Belgium, van (iehuchten; in Sweden, Retzius; in England, Shaffer and Ambic\%zen; in America, Barkley and Strong, to say nothing of a whole host of other investigators in this and other comntries, went busily to work with the osmo-bichromate mixture and silver nitrate, and within a surprisingly short period we have been supplied with information regarding the

 Il from the molerolat haver of the cerebellum. (Alter vol Bequterew.) The

 "and its protoplasmic processes.
form and local reciprocal relations of the nerve mats in the most various portions of the cerebrospinal and sympathetic nervous system. The views aldaneed by Golgi and Ramon y

[^17]Cajal have been most thoronghly sifted, have undergone manifold confirmation and certain necessary corrections, until at present we are in a position to form a concept of the organization of the nervons system, clearer, sharper, simpler, and more pleasing than conld have been even imagined by the most fanciful dreamer of two decades ago.

CHAP'TER IV.

TIIE VITAL STAINING OF TIE NERVE ELENENTS.
The method of vital staining introlued by Ehrlich-The results afforded by it.

Sarispactory and comvincing as were these results with the silver method obtained by all who tried for them, the new ideas received important support, indeed, were in part estab lished, through another method invented by one who fairly deserves the name of "chemical magician"-Whrlich, of Berlin. 'To have worked out from a chemical basis and lahoratory experiment a method for the differential color analysis of the lencocytes whieh has revolutionized our ideas of the blood and elevated hamatology almost to a special branch of medical science; to have inaugurated with experiments with riein and abrin a new era in investigations on immunty and antitoxine therapy; to have illustrated by the methods of staining living nerve cells and their processes with methylene blne the possibilities of in experimental pharmacology of which we conld scarcely have dared hope, would surely have been enongh in days less liberal than ours to have convicted their anthor of witcheraft and of being a menace to the common weal. Ehrlich realized that the ordinary histological methods of fixing and subsequent staining, though yied ding important anatomical conclusions regarding the structure of the tissues, fail to give us very exact information regarding the properties of the living cells. Concerning pharmacology, it is his idea that a definite toxic substance can affeet only those elements primarily to which it actually arrives and by which it is taken up in a specific manner. If such be the case, the determination of the laws governing the distribution of the substance are of prime importance, and the physiological action of the drug should be brought into accord with these.* On account of our poverty in miero-

[^18]chemieal reations it was impossible for him at the time to exproment satisfactorily in this way with the alkaloids, but with cerain amiline dyes the problem could more easily be approached. Experimenting along these lines, Ehrlich fommd that ly injection intra vilam of a solution of methylene bhe dissolved in salt sohtion into the hood-vessels of an animat, the axis cylinders of many of the nerve fibres (Fig. 14) as well

Fle. 14.-Norve tibres from a frog injected with methyleme bhe. (Method of
 sheath is somewhat stamed. The nodes of Ranvier amd the divisions of the fibres at some of the notes are woll shown. (After vorn Räliker.)
as mumerous (particularly sensory) nerve endings (Fig. 15) were stained after a time, when the amimal was killed and the tissues exposed to the air, of an intense blue color, the other tissue elements remaining little or not at all affeeted. The staining was of only short duration, the color gradually fading, and with
the fading, us a rule, more or less diffuse stanining of the other tissues oremred.

Ehrlich made some interesting comparative tests with dyes closely allied to methyleme blue in order to abtain if possible a ehmuical explanation of the staning. Thus, he fomed that while fuchsin, methyl violet, and salfumin, which comtain me sulphur, would not stain the merves, thionin tuml dimethythiomin as well as methylene viohot yirdded a mactionsimitar to that obtained with methylene blue, so that the presence of one basic group) (of one ammonimm residue) in the molecule (instend of two, as in methylene blue) appeared to sulfice for the reation. He further experimented with the expensive sulphon of mothylene blue (Methylemezur') and fomend that he could ohtain with it the nerve stathing, so that it appurars to be a matter of inditherence whether

Fit: 15, - Sidsory urve odding stained with turthylome blue (methon of bhelich) in the "xarivilum of the left andele of a gray mit. (Afler Suiruow.) the sulphur in the molt:cule exists as a phonytsulphide or as a pinenylsulphon. Finally, he made tests with Bindscheidler's green (Dimethylphenglengriin), which diflers from methytene blue only in lacking suphur. This substance, which is distinetly poisonons, will not stain the nerves, so that Elarieh emolules that it is the entrance of sulphur into the moleenle which determines the nerve coloring, althongh he resorves his judgment as to the exant role phayd hy this element. The comditions in the nerve strurtures essential to the methyleneblue reaction he thonght were (1) oxygen-satuation ; (2) alkalinity. Whether or not he still holds to these ideas expressed in ISSG, I am mable to sity.

It was soon lemonstrated by Arnstein that injection intra vitam was unnecessary for the reaction, he having shown that as long as the tissues remained alive injection into the dead
animal gave results equally good. Mayer asserts that even several days after death the reation is sometimes obtainable, and combats the idea of a" vital" staining. Certain it is that sections of tissue ent with a Yalentin's knife soon after removal from the body and laid in a weak solution of the dye, stain beautifully. This fact I can assert from my own experience with human as well as with animal tissues.

One serious objection to the methylene-blue method was the transieney of the staining. Attempts were made to overcome this, Pal using iodide of potassimm, Smirnow iodine and iodide of potassiam, Dogid a an aqueous solution of ammonimm pierate, Mayer and Retzius ammonimm pierate and glycerin as a fixing agent, but no one of these methods was entirely satisfactory,* and the preparation of thin sections of the stained and imperfectly fixed tissues remained an impossibility. Through the fortmate introduction of a fixing agent, which we owe to Bethe, \dagger this diftienlty has been almost entirely overcome, and

[^19]

Fiti. 16.-Left half of brain gangion of Nireis diersiedor with the nerves commeded with it seen from the dorsal surfiace. Methylene-blue staining. tixation by Bethe's methon. (After (i. Retzins, 1sim, taken from Ramber's Anatomic des Menschen, 5. Anfl., BII, ii, s. s5ici.) g, anterior gromp of ganglion cells; g^{2}, lateral promp of hamglion cells; $!^{3}$, posterior gromp of gamgion erells; sm, hipmar cells of sensory type, the peripheral processes of which go to a spot in the skin (s), to cuil there : pr, anterior aggregation of eoarse
 beve libre (muscult rev) : k, werve branches, branching of coarsely
 going to subusophageal ganglion; an, pigmented eyes.
it is now possible not only to fix heantifully the strnetures at the height of the staining, lig. If, but also to imbed the tissues thus fixed in paraffin, which permits of the preparation of sections of any tesired thimess and so to eometer-staining by means of suitahle dyes, for example, ahm-cochineal.*

I have laid some stress upon the introluction of the methy-lene-hlue method, but mot more, perhaps, than its importance warants. As ron Lenhossék has said, mutil the introduction of the (iolgi stain, no one probably had seen a nerve cell with all its processes-a complete nerve unit in its totality. But eren with the (iolgi stain not every element impregnated ain he followed throughont its whole extent. Indeed, it is perhaps the rule that where the medullary shath begins the silver impregnation of the axis-eylinder process ceases. The staining of nerve endings in alult structures with the dolgi method, even with donble and triple impregnations, suereeds only rarely. But just here lies the great value of Ehrlich's method. With a little care and a grood sample of methylene bhe the nerve emdings and the axis eylinders of medulated fibres, with which they are continnoms, ean be stained in a way far surpassing in constancy and empleteness the best results of the uncertain gold ehborite procedure. Ahrealy most important contributions have been made with this method by Ehrlich, Dogiel, Retzius, Staimow, Ramón y Cajal, von Lenhossék, Symonowioz, Huber, Bethe, and others, amol it may safely be predicted that with the recent improvements it will be much more widely and suceesstully applied. That the method is also applicalbe to the study of pathological tissues removed by operation from human heings has been shown by

[^20]the researches of Young, in which by means of it he has been able to demonstrate the presence of nerves in certain tumors.*

The results hitherto attaned with Ehrlich's methods have confirmed and elaborated those of the Golgi methods, exeept, perhaps, in one particular. Some observers, notably Dogiel, the distinguished Russian histologist, have maintained that in the methylene-blne specimens an anastomosis of the protoplasmie processes of one and of neighboring nerve cells can be demonstrated. Indeed, if his illustrations represent the actual conditions, it becomes necessary to somewhat modify the ideas regarling the relations of nerve cells foumded on observations made with Golgi's method, for he has pictured not only the anastomosis in the retina of the dendrites of the nerve cells, but also a network formed by the mion of axiseylinder processes as well as the origin of nerve fibres from axiscylinder networks and from networks of dendrites. Masias \dagger also maintains that the dendritic processes amastomose with one amother. This view, at first thonght apparently inimical to the doctrine of the morphological and physiological independence of the nerve mits, has been stontly denied by Ramon y Cajal, von Lenhossék, and others, who have studied specimens stained both with Golgi's aml Ehrlich's method, and it has been subjected to an especial searching eriticism recently by Bonin. The denies the existence of anastomoses among the retinal elements, except the branchings of the cells which possess no axis-cylinder processes. I have myself, in a considerable experience with specimens stained by the methylencblue method, been convinced that many of the appearanees which closely resemble anastomosis, especially in specimens stained in bulk or in small pieres and fixed by Dogidls method, are really optical illnsions, since after long and tedions seareh with oil-immersion lenses in paraffin sections of methylene-blne preparations, fixed by Bethe's methon, I have seldom been able to find any evidence of definite anastomosis. That amastomoses artally do necasionally ocrour can not, howerer, be longer

[^21]dounted; for not only have they been seen by investigators working with the methylene-blee method, but Tartuferi and others have found them in tissues impregnated by the chromesilver procedure. The work of Bela Haller, (ioeppert, and Edinger speaks also for the occurrence now and then of anastomoses even of a coarser sort between the processes of neighboring muits. The much-used simile, however, that the processes (and their divisione) of nerve cells maintain, in the vast majority of instances, their identity thronghout, interlacing perhaps with one another or with similar processes from other nerve cells, just as the bramehes of the trees in a dense forest may intermingle but remain independent of one aisother, the nerve elements being as separate and as indebendent as the trees and their branches and leaves, has apparcialy, at least son fiar as embryonic tissues ure comerorned, hat its eomplete anatomical justification. Should oceasional anastomoses between the processes of nerve eells be even proved to occur, or should it be true, as seems likely from the work of Held, Apaithy, ant Bethe (aide infru), that in adult life reciprocal relations exist of a far more intimate sort than those that ohtain in the embryo, the general validity of the doctrine of the individuality of the nenrones would not be affeeted.

CHAPTER V.

THE TERM "NELRONE" AND THE NELRONE CONCEPTION.
Waldeyer's review, in 1891, of the newer investigations-The term newrone applied to the whole nerve unit-The neurone conception of the nerv. ous system.

Is 1891 Waldeyer did great service to the new doctrine by bringing together within a brief compass and in a clear and convineing mamer the results up to that time attained, comparing the experiments of the different investigators with one another and submitting all to his keen and critical judyment. IIis article* perhaps has done more than any other single publieation to make generally popular the doctrine of the individuality of the nerve elements for other reasons, but more espeeially from the fact that-and this is a point upon which ron Lenhossék lays emphasis-besides his clear presentation of the established discoveries he introduced a term for the histological unit in the nervons system (ineluding the whole element-cell body, protoplasmic processes, axis-eylinder processes, end arborization, and collaterals), dubbing it enphonionsly in German Jeurión (Greek, ò vevpóv ; English, neuröne), a term which has been almost miversally adopted by anatomists, physiologists, pathologists, and elinicians in varions cometries. Objections to the use of the word neurone as a designation for the nerve unit have been offered by Kölliker, Schäfer, and others. It is, however, so much more convenient a term than any other which has so far been suggested, and, moreover, has already entered so thoronghly into common usage, permeating the bibliography of all specialties, that I think it must be accepted; if so, the use of the term "neuron" as a name for the axis-eylinder process, as advocated by Schafer in his admirable essay The Nerve Cell Considered as the Basis of Nenrology, \dagger is to be deprecated, and more particularly because a

[^22]few distiuguished teachers have been induced to continne the use of the term in this way, thas leading at times to considerable confusion. Since the word "neuron" has been employed by Sehafer to mean the axis cylinder (axone or neurite) and by Wilder to indicate the central nervons axis, and since the origin of the one term is the Greek vevpor and the origin of that suggested hy Waldeyer is the Greek vevpouv, the desirability of spelling the latter in English "neurone," and of pronomeing it neurone, is all the more obvions.* In the aceompanying illustration (Fig. 17) a typical example of a lower motor neurone is shown in diagram. The eell body with all its processes, including that extending to the mucele fibres, makes up the total mass of one neurone.

Enough has been said, I hope, to make clear what is meant by the " neurone concept" of the nervons system. To sum it up in a few words: The nervous system, aside from its neuroglia, ependymal cells, blood-vessels, and lymphatics, consists of an enormons number of individual elements or neurones. Each neurone in its entirety represents a single body cell. These units are at first eutirely (if protoplasmic bridges be excepted) and continue throughout life relaticely to be mor-

[^23]

Fig. 17.-siheme of lower motor menrone. The motor cell body, thgether with all its protoplasmie processes, its axis-eylimder process, side bhrils, or cobbaterals, and end momiliations, represent parts of a single eell ar menrome. a. h., axome-hillock devoid of Nissl budies, amd showing tibrilhation ; ar.,
 by myedin, m., amd a cellaher sheath, the nedrilemma, the latter mot being an integral pirt of the nemrone ; a. 'ytophasm showing Nissh bordies and lighter

 drion; m', strifed musele tibre ; s. L.., segmentation of Lantermatno.
phologieally, and in part, at least, physiologieally, independent of one another.

There is no evidence of the existence of a diffuse nerve network either in the sense in which von Gerlach or in that in which (iolgi used the term, though should it be fortheoming, it would not, and Waldeyer stated this in his article, interfere with the neurone conception. The axis cylinder of every nerve fibre, just as much as every protophasmit process, is an integral part of a neurone, and has an organic comnection somewhere with a nerve cell. Nerve conduction paths may, and probably iasially do, in higher animals at least, involve more than one neurone, the neurones being, as it were, superimposed upon one another to make simple or more complex neurone chains or chains of neurone groups, one individual nemrone through its rarions processes being in a position to be affected by and in turn to affect several or many other neurones. Notwithstanding almost infinite minor variations in form, the neurones in the most different parts of the nervous system present surprisingly similar general external morphological characteristics. The nerve life of the intlividual, including all his reflex, instinctive, and volitional activities, is the sum total of the life of his milliard of neurones.*

[^24]
CHAPTER VI.

TIIE HEAIRING OF RESEAR('IES SINCE 18O1 L'PON TIE V.JLJITV OF THE NEURONE HOCTRINE.

The reliability of the data npon which the nemrone doetrinn was fommedThe cell doetrine-Confirmation of the work of His-Study of degen-erations-Researches with the method of Marchi nod with the method of Nissl-Anastomosis of dendrites-Studies of lleld upon conerescence - Contributions of A pithy.

It must now be asked (1) In how far, in the seven years which have elapsed since the nemrone conception was distinctly formulated, choosing ablitrarily the artiele of Wakleyer as tha date of this, have the data upon which it was based been fomed to be reliahle? and (2) Cin all the results of researehes which have led to the discovery of new facts since that time be bronght into accord with the nemrone doctrine? *

It has been seen from what has preceded that the fom dation of the nemone doctrine is quadruple: (1) The "priori probability that the nerwors system agrees with other parts of the body in being a cellular system; (?) the proof that in the embryo the nerve cells exist as independent units, many of which are capable of wandering fur eonsiderable distances from the site of their origin; (3) the fact that the matrition of the nerve cells is most easily explicable from the stamdpoint of a doetrine which looks upon the nerrous system as made up of units, which are not only anatomical hut also physiological, since in pathological degenerative proeesses affecting a given unit or set of mits, degeneration of a given type extends only

* ('f. Barker, L. F'. On the Validity of the Neurone Doctrine. Amer. J. Insan.. Balt., 1898-9, vol. lv. pp. 31-49. Three American reviews of the neurone doctrine may be referrel to by the reader-one by $\lambda .0 . J$. Kelly, The Netron. Univ, M. Mag., Phila., 1896-'7, vol, ix, pp. $976-293$; the seend by D. I. Wolfstein, The Ilistological Basis of the Nemrone Theory, ('incin. Laneet-Clinie, n. s., vol. xxxix, 189\%, pp. ©65-579) the third by P. A. Fish, The Nerve C'ell as a Unit. J. Comp. Neurol., Cranville, 1898, vol. viii, pp. 99-112.
within the limits of that mit or set of units, any degeneration of other muits being of an entirely different mature, and when resembling the former oceurring much more slowly; mid (4) the histological demonstration of the fact that, for reasons as yet too subtle for unalysis, sometimes one unit, sometimes another, may be pieked out by a particular method of staining or impregnation and bronght exquisitely into view, others neur by remaining only partially stained or entirely maffeeted. In uddition, the doctrine agrees well with all the known facts discorered ly Edinger, Herrick, and others in the fick of comparative anatomy.

Have these data been proved to be unreliable? With regard to the cell doctrine it may be said to be now miversally held, althongh it is true that it loes not explain all known facts, and that here and there a distinguished biologist draws attention to its "inadequacy."* The embryological researehes of His concerning the neurobasts have been manifolly confirmed by his own and by other methods. Not mutil we come to the studies of degeneration inside the nervons system do we find any appearance of diserepaney. The doetrines of von Gudden and von Monakow, on the whole, however, still hohd. Lesion of a given set of neurones canses degeneration of the typical and generally recognized sort (that revealed by Weigert's method) only within the domains of that set. If large numbers of nemones belonging to a given system degencrate and are absorbed, there may be, it is true, after the lapse of a very long time, possibly total atrophy with absorption in neurones of another order (as probably ocemred in the case reported by Flechsig and Hoesel, in which the cortieopetal nemrones of the general sensory path had been injured by a lesion involving the contral gyri, and after many years many of the nemrones, the axmes of which go to make up the internal aremate fibres of the medulla whongrata and the fibres of the lemniscus medialis, had entirely disappeared). But, as a rule, the tertiary change is one of shrinking and diminntion of the calibre of the medullated fibres rather

[^25]than eomplete disintegration and absorption (as the condition in which the brachium eondunctivm is ordinarily found after extensive disense of one cerebral heminphere fully illustrates).

Since 1891 a vast deal of work upon degenerations has been done with two methods which are espectially well mapted for yielding information, especially in tissues obtained too soon atter the lesion to be of value for study by the methol of Weigert.* The tirst of these methods, that of Marchi, thas far speaks strongly in its results for the validity of the nemrone doetrine. There is no evidence from its use that a degeneration following an injury extemls beyond the limits of the nenrone or nemrones which the lesion involves. On the contrary, the method is mainly of value since it permits the following of a set of diseased fibres to their termination. By its aid the exact course and distribution of Gowers' tract as fiar as its emang in the cerebellar worm have been followed. 'lhis is only a single, although in important, example of its eflicary.

Investigators who have employed the secom mothod, that of Nissl, and its varions moditications have been extrandinarily active. The procedure is an extremely delicate one, and changes hitherto entirely unsuspected have been detected by it in various pathologian conditions. Through it, in one respert at least, the nemrone conception has heen supported, for the method has demonstrated that, when any portion of all axome or its terminal ramitioations is diseased, the whole neurone to which that axone belongs suffers, the changes which oceur in the "stainable substance" or "tigroid" of the cell body and dendrites of a neurone after lesion to its axone being now generally recognized and appreciated. As stirling of Manchestert emphasizes, the changes which oeenr after amputations also point to the indiviluality of the meurone mit. In another respect, however, the application of the method of Nissl has bronght into view a phenomenon which at first glance appears to be opposed to the neurone conception. It has been found by Marinesco (though, curionsly enough, he interpreted his observation differently), by Warrington, \ddagger and by van (ichuch-

[^26]ten that in certain instances the cutting through of a cerebral sensory nerve between its ganglion mad the central nervons system (or, i:: terms of the neurone conception, solution of contmaity of the axomes of sensory nemrones of the first order) is followed by changes in the nuclens termimalis of the nerve quite like those which oceur in the cells of the peripheral ganglion itself after section of the sensory nerve between the ganglion and the periphery of the body, or like those which follow in a motor muclens nuon section of the root tibres issuing from it. Highly interesting as the phenomenon is, and as yet insufliciently explained, it can hardly be suid to in uny way invalidate the nenrone conception. The fact that an injury to one individual in a society leads to the detriment of certain other individuals with whom the former individual was most intimately associated, can not be considered as disproving the idea that the society is composed of individuals. And that, in the case of the neurones moder consideration, the chameter of the injury in the peripheral and in the central neurone differ is obvious from the subsequent history of the two nemrones in animals permitted to live for some time after the injury. In the one instance typical Wallerian degeneration with absorption quickly takes place, in the other there is at most slow secombary atrophy.

Histologieally, there have been since 1891 repeated confirmations of the earlier single observations of coarse anastomoses of dendrites. In mammals the finding, except in the retina, is rare, though in lower forms, according to the recent observations of Bethe, Nusshamm, Sehreiber, and Holmgren, it appears to be more common. I have myself seen it in the nerrons system of rabbits, and have observed, what others have seen alsonamely, the partial fusion of the cell bodies of two neurones. But these unusual conditions, even were they common, are surely of but little consequence when brought forward as argumonts against the individuality and relative independence of the nerve units. If one thinks for a moment, the unreasonableness of the objection becomes obvious, for who would consider serionsly the argument of an anthropologist who contended that the humam race did not consist of separate units and individuals on the gromed that cases of doable malformations like the Siamese twins, the Janus-hcaded monsters, and the varions instances of epignathi, thoracopagi, and fotus in fetu are known
to oecmr:' Even if in the heart of Africa somewhere we shoulal come to find that there existed a terrible and swift ruce such as Phato makes Aristophanes describe in the Symposinm, we doult very much if we shonla the willing to give up the genem! view that humanity is a mass of multiple units, thongh doubless we should have to modify our conception as to the possibility of variety in the mits, or admit a bond of mion between them more intimate than that to which we are acenstomed.

On the whole, however, it may be said with faimess that the control instituted by humdreds of histologists in varions parts of the world has, practionlly, in every instance in which the method of Ciolgi or the method of Ehrlich has been employed, gone to contirm the conception that the nenrone is a mit in the sense of Waldeyer.

Passing now to the last inguiry, let as examine the original contributions dating since 1891 , and see if in them we can tind any facts which necessarily mullify the validity of the neurone conception. In this comnection only two researches present themselves which are likely to be brought forward by its mtagonists. One of these is the investigation of lleld concerning the kind of relation which exists between the terminal branches of an axone of one nemrone and the eell bodies and dendrites of other neurones with which they are conneeted; the other is the moch-talked-of researeh of A pathy, emanating from the Zoölogical Station at Naples.

Held's* commmication is one of very great importance, representing, as it does, the most eareful application of modern eytological technique to the study of the nerve cell and its processes. His findings concerning the tigroid and the ground substance of the protoplasm, brilliant as they are, do not concern us here. The observations of Held, however, which must here be taken into account are those in which he describes fusion of the terminals of the axone (inchading the end ramifications of the collaterals) of one neurone with the protoplasm of the dendrites and cell bodies of nemrones of a higher order. Held agrees with other investigators that in embryonic tissues and in early youth the neurones are entirely independent of

[^27]one another (except for an ocrasional dendritic or other amastomosis). In these stages, which, hy the way, correspond to those of the majority of dolgi prep-

 II. Ifell, Irelı, t'. Inat. II. I'lysial.,
 bixation with vall fiohneltents mixture ; stinining wilh iron-h:emattoxylin. 'The harge axolle is seren trominatiner upontlue rell and יxhibiling whil thede ralls contrers cener relations. 'The small axome wilh its axome hillow jsaldising from fhe cell berly show in the ligute. arations, he finds, in areas especially well suited for the study (e.g., the muclens of the trapezoid body), that when the terminal of an axone comes into contact relation with the cell boly of another neurone one (amalways make out where the protoplasin of the one nemrone ends and where that of the second begrins, inasmuch as the line of demareation is more rofiartive than the adjacent protoplasm (Fig. 18). Held finds, however, that this refractive limiting line is not demonstriable in the adult, and comes to the conclasion that during the process of growth the protoplasm of related neurones fuses.

Indeed, in some instances there is evidence that the termi-

 a xis rylimber. \searrow, unelous.

Fig. 20.- Cell from the mucleqs corpuris trajezoidei of an adult rabbit. Alcohol fixation : staining with iron-hamatoxylin.
nals of one nenrone plunge deep into the cell body of another nemrone and even come into close proximity to the muclens of the latter (Fig. 19). He describes the relation as one of "concrescence." Hedl's pictures are very convincing, and one must certainly admit that his work proves the existence of much more intimate relations among the nenrones than the studies made with Golgi's method had led us to suspeet (Fig. ?0). Aud yet, in following Held's various articles closely, one finds that this histologist, notwithstanding the disappearance of the refmative line of demareation, is able, ede" in arlult stayes, to distinguish the protoplasm which belongs to the terminal axone or collateral of the one nentone from the protophasm of the cell body or dendrite of the other. By a lueky hit Held

 lion and statuing by Almann' methol with acid furhsin; slight ditherentiations. I distinet ditherenere ean be mate ont betwern the momber of mentosomes in the beximuings of the demdrites of the mitral cerls amd the terminals of the nervi oftactorii. 'The midelle part of the glomernlas has not been trawn.
seems to have diseovered a method of staining certain minute particles (his nemrosomes) in the ground substance of the protophasm of the neurones-a method which stains them intensely
and leaves the other structures but dimly or not at all tinged. It would seem that, aceorling to his report, the nemrosomes are

 thares lak like grammat bands owing to the perseme in them of large momluets of medrosomes.
far more chosely agrgregated in the axis cylinder, and esperially in its terminal branches, than they are in the protoplasm of the rell hody or of the dendrites of a nemrone. Thas, in the olfactory glomernli (Fig. 仓1) it is very casy to distingnish the axones of the nervi olfactorii from the dendrites of the mitral cells and of the brush cells, both of which, as is well known, enter into the formation of these corious bodies. Again, in the molernlar layer of the cerebeltar cortex, Held's nemrosome method outlines aceurately the position and relations of the terminals of the axomes which elimb trellislike along the trimks of the huge limbs of the cerebellar forest which is made up of the dendrites of the Purkinge cells (Fig. De). Held's contributions, therefore, far from disproving it, are contirmatory of the nemrone doetrine; and, as a matter of fact, Held represents one of the ahlest of the German artherents of the doetrine.

Adverting linally to the investigations of Aprithy,* one finds in them the greatest stumbling-block to those who, perhaps on accomnt of lack of tamilarity with the exact principles of the nemrone doctrine and the history of its foundation, are inclined to think that it is jeopardized. I skilled teehnician, well known to the biologieal world as the author of a treatise on the teehnigue of animal :aorphology, and generally recognized as a most careful and painstaking worker at the Naples Marine Lahoratory, after several years of specially directed study, during which he has elaborated an entirely new mode of bringing certain finer strnctures within the nerve cells into view, hats timally, in a long article of more than two hundred pages, presented the main results of his investigations npon the nervons tissues to the scientific world. While Aparthy has studied vertebrate tissues to a limited extent, the majority of his observations have been made upon invertebrates, especially upon the leech and the earthworm. His technical methorls need not be entered into here. Suffice it to say that for the most part his techmique is original with himself, eonsisting, in addition to a method of staining with methylene blne, of a hamatin method, and an esperially moditied gold-chloride method which can be applied not only to fresh tissues hat to fixed tissues as well. Tosum up his views in a mutshell, Aprithy has been convinced for some twelve years that the nervous system is composed of two varieties of cellnlar elements entirely different from each other --" nerve cells" and "ganglion cells." The "nerve cells," the architecture of which is quite in aceord with that of musele cells, give rise, he thinks, to neuro-fibrils (Fig. ©: 3). A neuro-fibril in turn passes ont of a process of a "nerve edl" and then goes through a number of "ganglion cells," and nltimately, after leaving the last "ganglion cell," with which it is comnected, passes more or less directly to a musenlar fibre or to a sensory well. The nemro-fibrils are (as condueting substance) for the "nerve cell" what the muscle fibrille are (as contractile substance) for the musele cells. The pathways to be followed by the neuro-fibrils are predestined from the earliest embryonic stages, for they correspond, aceording to Apaithy, to the intereellular protoplasmic bridges.

[^28]
Fig. 23.-Motor-nerve spindle in longitudinal section of the right anterior nerve stem from the lech. (After S. Apathy, Mithh.
 of the motor nerve sindle correspond to a focms somewhat above the level of the nucleolns: the imanchen of the motor nerve
 sectom. The interisk indicates a division of the privitive fibril into two limbs.
Fig.

Each neurofibril is, A prithy states, male up of a large mom-ber-near its origin, at any rate-of "elementary fibrils," and in the course whieh it follows elementary fibrilla are being given off at short intervals, mutil finally the nemro-fibril itself may be reduced to a single elementary fibril. Apaithy as carly as 1885 fibrils. Some of " ganglion cells" into the sense (Fig. :3\%) cells was able to follow the paths of single nemrothem grow toward the centre into the (Fig. 24), others toward the periphery cells (Fig. 2^{5} and Fig. 26), or into muscle

The "ganglion pass, and which, if
 blood capillaries.
cells" through which the neuro-fibrils Apaithy is correct, supply the force which is to be cmolucted along them, aplear to be complicated in structure. Thus in the leech the body of the cell can be divided into a series of more or less concentric zones. It the periphery are two zones, an outer and an imer, consisting of neur, grlia, which are more or less separated from the

F1G. 21- - Large phapolar ganglion cell of the ventral patamedian hicld of the

 on its way to a ganglion coll heroming thinmer, uwing to ble emissiom of the side thbrifs. A rery complicatel intracellalar reticulam al neurotibrits is to be mate ont in the formation of which the primitive tibrils of all the processes take part. kik, mucoulus; k, melous. a and β are processes eontaning one primitive tibril in carch, which arriving in the eell looly split up into several

 dinal processes γ and δ comtain a large number of primitive tibrils which, as far as they cat be bollowed, do not unte to one fibril.

 II. A, 'Tat. xxviii, Fig. 12.) The relation of the mele the, b, to tha plexts of nemro-fibrils is well shown. "('on-

 of the vitreons of the retinal cells: heo. clear zome of the vitreons of the retinal cells ; piy, pigment ; rh, jrojecting hillow of somatophatsm.

 9.) A, vitrous: b, cell male us ; co coll lums : ic, the limiting line of the diameter of the vitroons: we the outer contome line of the periphers of the somatophasm immediatelyadjacent to the vitrons: gm, probahly thin glia membanm
 brillar manta as tar as the cell. The peritionilar mantle is lost at the eell sur-
 striped zone of the vitroms : hao, clear \%ome of the vit rems : ikp, internal bodis

cell borly proper by the su-called outer alventar zone. The periphery of the cell proper consists of an outer chromatic zone, inside which is in "imer alveolar zone." Inside this

 where "conducting "primitive bibril turns and appears to ebod.
again is an immer chromatie zone, which in turn is separated from the muclens by the so-called perimuclear zone. In the latter is situated a small centrosomelike body. Inside the ganglion cells a retionlmon of tine fibrils derived from the nenrofibrils in transit can be staned a beantiful deep violet color by Aplathy's chloride-of-rold method.

Aceorling to the size of the eells and to the arrangement of the memral retiendum inside, Apathy distinguishes in the leech two main types: (1) the large ganglion cell, and (*) the small gamglion cett. It is to be borne in mind that the gamglion cells in this animal are mipolar, the so-ealled "stem processes "giving off near the cell body a number of processes which appar to be comparable to the dendrites of higher forms, the main contination of the process representing probably the axome.

In the large type of ganglion cell (his Type (i) the relations are described by Λ páthy somewhat as follows: The neurofibrils arriving by way of the pyriform proeess of the eells enter the protoplasm, breaking up into elementary fibrils which diverge meridionally to ramify in the external chromatic zone. (The cel's of this type possess no distinct internal chromatie zone.) Free anastomosis among the elementary fibrils inside the ginglion cell appears to be the rule. Having arrived at the

Fis. 28.-Colossal gimglion edl (TVpe g) from the locelt. (Aftur S. Apathy,
 atirl 6.)

 fibrils at the pole of the edll is illastrated.
sidn of the cell most distant from the stem process the nemrofibrils turn about and again phonge through the cell, converging to pass out of it hy way of the pyriform process, which is thas seen to cary two sets of neuro-fibrilla, which A pithy believes serve in the one ase for cellalipetal and in the other for cellulifugal conduction (Fig. D8).

In the small type of gamglion eell (his Type K) the relations, it wonld appear, are somewhat different. Here the pyriform stem process contains a single thick nemro-fibril in its centre, which Aprithy assumes to be cellulifugal and motor, and a number of finer neuro-tibrils peripherally phaced, which he believes to be celhalipetal and sensory. He describes the finer peripheral nemo-fibrils as follows: They are seen to enter the cell body and, passing out to the peripheral part of its protophasm, there to break up into a compliented plexus composed of anastomosing elementary fibrils in the onter chromatic zone. From this peripheral plexus there pass through the "immer alveolar " zone radial bramehes to the internal chromatie zone, in which is to be seen another fine plexus of elementary tibrils which, amastomosing and eonverging, finally form the single strong motor nomo-filnil, which passes out of the cell through the very contre of its priform process (Fig. 29).

In other amimals studied by Apithy there are cells with definite dendrites entirely separate from the axone and, in these the cellulipetal nemro-fibrils enter by way of the dendrites, ramify and anastomose freely inside the cell booly, and then, remiting, take their exit from the cell by way of the axome. Similar relations exist in the ganglion cells of the vertebates which he has studied thus firr. His descriptions of the nenroglia and the relations of the glia cells to the nerve cells, interesting as they are, need not now detain us, since they have but little bearing, if any, upon the topic under disenssion.

As to the relations of the nemro-fibrils to sensory surfaces on the one hand amb muscular tissue on the other, Apathy makes very definite statements, especially in the last chapter of his article. A newro-fibril entering the cytophasm of an epithelial cell of a sensory surface in the leech breaks up) (very much as in a gatmion cell) into a fine reticulum eomposed of the elementary fibrils. A large number of the constituent fibrils, however, perhaps the majority, leave the cell in order to take
fart in the formation of a complicated interepithelial fithil plexus. For the interesting details eoncerning the innombion of the supreficial epithelial cells and the subepidermal sense cells the origimal urticle should be consulted. In the museular tissue, bowever, a very different distribution of the neurofibrils is encometered. I neuro-fibril here also breaks up into elementary fibrils which ramify inside the mascle cell. But althongh many of the fibrils emerge from it, instead of forming a complicated reticulum among the muscle cells they pass on

 tibrifs is well shown, as are also, the radial tibres. The peripheral phexus in, indiatal. afo axis bibrils which I pathy takes fo be motor ; a!d external in-

 tibrils romerting the extermal plextes with the internal plexas of nemer bibrils; st, stem proecsises of pata-shatped gatuglion cells.
to enter and innervate other mascle cells. The neuro-ibibil of a single axone would, therefore, through its elementary filwils innervate perhaps a considerable mumber of musele cells. the nerve cell may, A paithy states, he put into contimus relation, by mains of one or more primitive tibrils, with several ganglion cells, and one nibril can be comected with a number of sense cells. But while one "ganglion cell" may be conneetel with

IMAGE EVALUATION TEST TARGET (MT-3)

several " nerve cells," a given sense cell is never comected with more than one nerve cell.

From what has been said, and from a study of the accompanying illnstrations, especially of Fig. 30, the main tenets of A paithy may be gathered. And we must now ask whether, granting all his findings, and even his theories, to be in aecord with the facts, the nemrone doctrine would be mullified by them. Althongh the opinion has been expressed that it would have to be entirely given up, or very seriously modified, I must confess that such a view of the matter would seem to be, to say the least, premature. That the nemrone conception, as it has been hed by many, would have to be materially altered, there can be but little doubt, but many views of the neurone conception and what Waldeyer actually defined it to he are by no means identical. Nor can it be admitted, as a number of authorities, including apparently A páthy himself, appear to assume, that in the researeh emanating from the Naples laboratory we have a confirmation of the doctrines of Gerlach, inasmuch as Gerlach's diffuse nerve network and its relation to axis-cylinder processes and dendrites involved conceptions somewhat different from those which Apaithy takes the responsibility of fathering. Aprithy's Elementargitter, however, stands very close to the conception of Gerlach.

It would seem, then, that were Apithy's observations and theories in aceord with the facts, the nemrone doctrine, as conceived by Waldeyer, would not lave to be seriously modifiel, much less abamboned. Some of the apparent novelty of his results depends upon the fact that, in the first place, he is dealing in the main with tissues which are not very familiar to many

 the sensery or simple eommeting gathghon cells, gst. Tlure kinds of nerve spiodles or ureve fibres ate shown. 'The behavior of these inside the centre, their distribution in the central fibre mass, and their eomberions with the gillglion rells, are illastaterl. Forther, tiae behavior of these at ble prophery is piotured : musele fibres and epidermal and subepidermal sabe colts, fire end hamehings in the epidermis, fire. At the point marked 14.8 seht is intieaterl a phate where a semsory fube bends aromen in a lomettulinal diredion into the rentral tibre mass. The place shg indieates where

"romheting", britges betweren the musele fibres atre shown at mir. an,

 of nerve fibre); zku, nucleits of a "herverelf" (not of" a "gathglion coll").

Fif. 30.
nenrologists, namely, the nerve cells and tibres of invertehrate animals, and in the second place his publieations thas far consist pincipally of an objective deseription of his own findings with particular methods devised by himself, and pay hot little attention to the work of other investigators, so that the casual reader may, from lack of adequate comparative data, fail to distinguish between actnally new diseoveries and deseriptions which may withont unfairness be found to coineide in many respects with those of other students working with different methods. I feel convinced that when Apathy fultills his promise of supplying us with a still more lengthy commornication in which the results of other investigators are to be compared with his own and properly valued, those who have been inclined to look upon all his ohservations as entirely migne will be disabused of their error. That many of his ohservations are entirely new must be frankly and thankfilly almitted; that the techmique he has introduced is altogether original, and evidently" highly valuable and well worthy of extensive application and widespread control, must be freely granted.* . Ill that I wish to say, and that withont any desire to detract from the merit of his laborious researches, is that an attentive analysis of the actnal findings of Apathy shows that there is far less absolutely novel and revolutionary in them than many seem to imagine. For, when one thinks of it, the form of the cells in invertebrates has long been known, the unipolarity of the elements has been generally figured and described, the fact that the prritorm process corresponds to both axis-cylinder process and dendrites is stated in the text-books, the irregularity in the distribution of the "chromatic substance" in the cells is easy to make out in Nissl preparations; the existence of the so-called intercellnar bridges, if not for the cells in the

[^29]
net

nervon' system, at least for many of the cells of the borly, is tanght and demonstrated in every histologieal labomory, and the fibrils in the processes and the reticula in the cell hody have been the object of stuly and the topie of diseussion, too often of bitter polemic, for at least two generations. The very ncuro-fibrils upon which lpaithy bases his doetrine were first well seen, as the anthor himself states, by Kupfler in the tissues of vertebrates.
'ithe essential novelties in $\Lambda_{\text {phithers contributions, in addi- }}^{\text {n }}$ tion to his moditiations of teehnique and his wonderful deseriptions of the details of the fibrilhary appearances inside the protoplasm of cells stained by his methods, which are undoubtcolly of great valne, are his deductions and hypotheses, of which all, in my opinion, may be permitted, at least for the present, to be judicionsly skeptical. How does he know, for example, that the structures which stain violet by his gold method aetnally represent the conducting element in the nervons system: It may he true, but the Scoteh verdict "Nat proven" is here most applicable. Again, on what grounds does he separate the " nerve cell" so shamply as a different montity from the "grangrion cell" and how does he know that the "nerve cells" build the conducting clement, and that the "ganglion cells" smply the force to be conducted? These may be the functions of these two sets of elementa, but we must not neglect to point out that the evidence is not yet convincing.

As yet it is altogether too arly to pass judgment upon Aphithy's views; much work must be done by his methods by other observers before the exact value of his findings can be properly estimated ; but were all his statements true, is there any reason to doubt that nemrones will continue to degenerate as mits, as heretofore ; that the i.srvons systems of our children will continne to be built ap laring development of repeatedly dividing neuroblasts in the way with which we are familiar, or that Golgi's method in the thirtieth century will have lost its power of demonstrating here and there a particular nerse unit or nemrone in its entirety? Again, wonld the confirmation of the existence of continnous fibrils or fibrii systems passing through a whole series of nerve elements necessarily militate against a unitary conception?' I must say that I can see na reason why it should. Waldeyer, in his article in 1891, after discussing the probable modes of conduction by means of the neu-
rones, alded, it would seem almost with prophetic insight, the following statemont: "If we assume with diolgi and B. Haller the existence of nerve networks, the conception is somewhat modified, but we can still retain the nerve mits. The limits between two anere units would then always lie in a nerve network and not, anatomically at least, be exactly definable with our present methods." We do not regard the eomneetive tissnes as any the less cellular hecanse they build white fibres, yellow elastie fibros and membranes, and reticulum; we do not look nom the studies of Weigert and Mallory, which deal with nemroglia fibrils and their relation to the neuroglia cells, as subversive of the doctrine that nemroglia cells exist; nor do we, becanse Kromayer and others have demonstrated, by particular methods, fibres rmming throngh the bodies of a number of epithelial cells, ery out that the cell doctrine must be given up. One might just as well assert that there are no organs in the body becanse there is a general vascular system. There may be mits smaller than cells, and in all probability there are; there may be, and probably are, in the nervons system mits other than those generally described, and it is important that we should find out all that there is to learn abont them; but that the human body is made up largely of a mass of eells, and that the human nervons syster.a is made up largely of great numbers of cell units, the so-ealled neurones, would seem to be facts too firmly establisher ever to be utterly overthrown.

[^30]may, however, beome inempable of exixtence indepembent of their follows. A malticellalar individnal (person) like a human being comsists of an argregate of billions of edels so intimately commeted with and related to omb: wother that the combined activitios of the individual cedls give the iden of mity, but each eefl nevertheless contintes to have a life history of its own. In such a demoeraty, as it were, it is not smprising that there shomble be morphological diflerentiation eorresponding to the physiologiad division of labor necessary for the welfare of the whole. 'The spectatization of activities remders earla cell less independent than a well of a simgla organism, that does not rob it entively of its chamater as an individual. For a diselossion of the question of "individalities" in Natare the reader is merred to the writings of Huxley, Nägeli, Haerkel, Spenerr, and expectally to 0 . Hoptwig's

SECTION II.

TILE EATERNAL MORPHOLO(iY OF NEURONES.

CHAD'lek CII

THE EXTERNAL FORM OF'TUE (ELA, HOWY ANH OF THE OENDRIJES

Nemrones as eds-Extemal morpholngy of neurones-The shape and size
 of the dendrite-The relation of the dendrites to the edll body-Adendritie nemrones-lateral hads or gemmales.

Ir is neressary to examine a little more closely into the morphological rharacteristies of the individual nemones. Nenromes are in reality nothing more nor less than cells. They are curionsly modified in structure and elaborately differentiated in function, but are none the less gemine cells of the animal body. It must be distinctly understood, however, that the nerve coll inclades not only the rell body (perikaryon of Foster and sherrington)* and its protoplasmie processes, althongh these together make up the nerve cell of many of the textbooks, but also the axis-eylinder process with all its sublivisions, collaterals, and terminal ramifications. Aceording to omr modarn deffintion, each and every portion of a nenrone represents an integral part of a single borly cell. \dagger. As will be emphasized later, this riew becomes of especial significanee in the eonsiderat tion of neurones in their physiological and pathologieal relations.

Xeurones heing eells of the horly just as are liver cells or muscle cells, we shond, notwithstanding their remarkable

[^31]mophological differentiation corresponding th the high physiologieal funtions for which they are destined, experd them to posisess eartain general chameteristices common to all living rells. And in this expectation we are not disappointed. A nerve cell, like all others, possesses protophasm man muclens, the morphohgical characteristices of which, so far as they can at present be maraved with the highest powers of the micoseonpe, would searely seem to difler sutheriently from those of the elements of less noble tissnes to abeomat for their greater dignity of function.* It may be that, although the microseope or the human cye will never be ahle to distinguish suecin morpholugical differences, chemical mothods may chable us to arrive at much more satisfactory results. Despite this act, however, thanks to some recent deliate histologieal methods, we are now in a pmsition to make certain defmite statements concerning the extermal and internal structure of different kinds of nerve cells.

In disenssing the strneture of the nemrones, it will be conremient to speak first of the external morphological relations, best revealed by the methods of Golgi and Ehrlich, and seeomd$l y$ of the internal architecture of the nenone, our knowledge of which has been mach increased since the introtuction of the newer cytological techmigue, and especially from the applieation of the methods of Nissl, Hedd, and Apathy. I have already spoken of the remarkable uniformity in type of the nerve eells in the most diverse parts of the eantral nervons system, and by my endeavors to emphasize this miformity for the pmpose at that moment in view some perhaps have been led to infer that the neurones are ererywhere so similar as to be practically indistinguishable from one another. This is hy momes the case ; indeed, the method of Golgi has revealed a wealth of morphological peouliarities of which we were formerly able to obtain

[^32]no aderpate conception. The mothod of Nissl too has revealed differences of internal stmoture of different eell gromps which are equal in importane for purposes of chassification to the external form relations diseovered with (iongi's stain. Of these a deseription is given further on.

There are many nemones which, from the appeatmee of a single example stained back with silver, permit an absohnte dedision as to their somree. Thus we are able at once to reeognize the cells of the semsory ganglia (Fig. 31), the cells of Purkinje in the cerebellam (Fig. 38), the pyramidal cells of the cerebral cortex (Fig. 34), ant revtain of the wells of the hippoeampms. The shape and size of the cell body, the mmber, size, and move of hamehing of the protoplasmic and asis-cylinder processes, the relations of these to the celi body and to one another are some of the criteria which serve to gmide one in making a distinetion. A haudable begiming hats been made to determine by the exact methods of reconstruction from serial

Fis. :
diame
sections the precise external morphology of the nerve sells. We refer to the beantiful models of the reconstruated nerve cell exhibited by \mathbf{G}. Mam at the sixty-sixth meeting of the British Association for the Advamement of science at Liver-
frow in $18: 6$, and at the meeting of the Amamischer (iesedtwhalt, in Kiel in 1 sts.

The bodies of the newe cells vary much in size, measmring from four to a hombed and thirty-five mioroms and more in

diameter. Among the very small ones are the grames of the olfactory bulb and the small cells of the cerebellum, whereas the relatively huge protophasmic masses, such as the larger cells of the ventral homs of the gray matter of the spinal cord and the spinal ganglia, or the cells of Purkinge in the cerebellum, are visible even to the naked eye. Starting originally as spherical germinal cells, the cell bodies, partly owing to the mode of origin of their processes, partly for reasons at present not clear, later assume, in different regions, very different shapes. The spherical spinal granglion cell, the flask-shaped lorkinje cell, the multipolar ganglion cell of the ventral horms of the spinal cord (Fig. 32), the pyramidal cell in the ecrehral cortex (Fig. 83), the spindle-shaped cell of certain regions are welt-known and characteristic types.

Of the two main varicties of processes which eome off from the cell body, the protoplasmic and the axis-cylinter processes,

Fis. 33.-l'ymundal erll of cerobral "ortex of motise. (After liamón y (mijal.)
the former, as might be inferred from their name, resemble more closely in apparance the cell body itself. These protophasmie processes or, as they have been better named by lifs, dendrites (I)emdriten), alter their manner of brunching, represent, as a rule, rather coarse projections of the protoplasm, which run out often in several dire tions from the general mass of protophasm of the cell body.

Broad and thick, usually, at their origin, they grow gradually more narrow as they divide in a dendritic or antlerlike fashion, until the final smblivisions of a single dendrite may be distributed at a distance from the eell over a territory of no inconsiderable extent. All the sublivisions of a single dendrite finally rum out to end free, never, so far as our present knowledge goes (with the exception of a few rare instances), imastomosing with one another, nor becoming united in any waty other than by simple contact (Ramón y Cajal), by conerssence (IIeld), or ly eell bridges and minute tibrillie (1pán- $^{\text {and }}$ thy), with the processes of other nemrones.* The individnal dendrites, not only of different cells, but also of the same cell, may vary considerally in length.

* As van Gehuchten foreibly puts it. "Note\% bien que je dis : dans létut actuel de nos connaissances, les neurones sont des éléments indépendants:

While in some types of colls all the protoplasmie processes are approximately equally developed, in other types-for example, in the pramidal coll of the cerehral cortex-me deatrite may be enormonsly developed, being thick at its origin and extembing for a long distance from the eell body, while the others are diminutive and comparatively iasignitieant in size und extent. The eontour of a dendrite is often irregula rather than smooth and sharply defined. 'There may be noduhar swellings (Fig. 34) at various points, though whether these are to be comsidered as momal appearances, as artefacts, or as pathologieal phenomema, does not yet seem entirely clear. There is, as a rule, no marked

Fiw, 34.-Multipolar nerve cell from the cord of the cmbryo cati showing vari"osities of the modrites. (Ahor van (iohuchom.)
nodulation in normal specimens. Berkley, Monti, and others have observed marked distortions of the dembrites in certain pathological conditions. These will be referved to again in section V.

The course of the dendritos, thongh sometimes tolerably straght, is nsually devious; in fact, the irregularities in contour ind direction are important distinguishing characteristies of this type of process. The character of the demdritic branching of the protoplasmic process varies much in cells of different parts of the central nervous system; whereas in some demdrites
cela rent dire qu'avee les méthodes dinvestigation dont nous disposons actuellement, on ne voit pas de contimite, on ne voit pas dumastomoses entre les chements nerveox. et par consequent on we doit pas les almettre." But this rule, as we have seen, is relative, not absolme.
the hamehing commences at a shout distame from their origin
 final divisions weme, in the themberes of othere eeths a main tronk may extend for a comsiderable distamer from the eed amd then suddonty beak up into, a large number of termmal dendritioally banching prowesses. The latter hehavior is chararteristic, for example, of the apieal dembrites of the pramidal rells of the cerebal coitex. The dequer of complexity of the bramehing varies emomously; in some cells the demdrites are
 ing is most complex.
'The tervitory oremper he these antherlike divisions of the
 are fer greater surprises for the stuldent in histology than his tirst view of a sureressful imprequation with the silver methend of the dembites of the larkingo relts erowding with their demse feltwork the outer hayer of the cerehellar cortex. The huge protuphasmia tronks coming att from the flask-shapeed cell divide and sublivide with tropical haximiane into widespreal bashlike masses, ocrupying a wite territory and increasing the surfine of the cell booly, perhaps a lomblred times or more. 'The sig-
 drites must he very great, hat it has mever as yet bed satisfactorily axplamed; al present, we am form only hypotheses, at hest wery masatisfatory, ats to its meaning.

Viry chametaristic, too, for the difterent varieties of menremes is the relation of the dendrites to the surfane of the erell houty. In some instamers, as in the motor reels of the vent ral homs, they radiate out in all directions from mearly every regrom of the cell surface. lathe cells of the hipperampens, ar hom of Ammon, one or two demdrites proced from one end of the more or hess oblong or fusiform eeli horly, ame a whole group of them are siven off from the other mol, white the sides of the adl body are smooth and sotactimes give ofl no dembites at all (ligg. 35). Other erell hodies, as is the ease with some bolonging to the umidess dentatus corebelli, yield dendrites from only me side. In the preamidal well of the cerebal cortex the main dendrite is given off from the apex of the pramin, while the smaller lateral demdriter are yiedded mainly thy the angles at the hasco the lateral surfaces and the basal surfare itself giviag oft, as a rule, very liwe or mo dembritie projeretions at all. Many
other exmmples might he given, hat those mentioned will suthere
 tion of the dembrites ats faturs in determining the morpholongonl ehamberistios of a given nemone.
 the su-milled memdritice nemoners, has to he reeognized. Intered,

in invertebrates, as von lambossík, Retzins, and dpathy have shown, they are vory momeroms and form in these animals mo small proportion of the eomstitnents of the nervons system. In such newrones, however, the pyriform stem process shows near the redl many aceessory hramehings (lig. Bli), which some believe to le of the mature of demdrites, thongh wthers look weon them as eollaterals. 'Jhe altimate contimmation of the main process is regarded hy all as the axis-rylimer process of the erell.

The question has been fully diseussed by von Lenhossék (op. cit., S. st fif.). In the adult human nervons system the ma-

Fra, 36,- Thipolar eedl from a ganglion of Lambricols. (After voia Lembossék.) 'The cell body is devoid of' dembles; the aceessery brame hes of the main processes are looked upon hy some as demeleites, loy others as collaterals.
jority of the neurones of the ganglia of the dorsal roots are histologically adendritic;* though embryologically, and per-

Fig. 37,-photomicrograph of a mormal pyamidal eell from the eerebral cortes of the whiner-pig. (Alter Berkley.) The single-hramelhed apieal dendrite, and the hasal dendrites show distianetly the lateral buds or "gemmuless." The ax men is redatively stmoth.

[^33]haps also physiologically, the axone of the peripheral sensory nerve fibre is more of the nature of a dendrite. Microseopically, however, it has every appearance of on axis-cylinder process, and indeed must be regarded as the axis cylinder of a medullated nerve fibre. The dendrites within the central nervous system are, like the cell bodies, entirely devoid of myelin sheaths.

Another feature characteristic of the dendrites of some nerve cells deserves more than passing notice. Upon the sur-

Fig. $3 x$. - lhomomierograph of at mormal Parkinje cell from the haman cerehellar cortex. (After Berkley.)
face of the processes it is possible to make out minute lateral buds, which, although too small perhaps to deserve the name of branches, are still definite histologieal structures, probably of no mean signifiemee. On the dendrites of the pyramidal cells (Fig. 34) of the cerebral cortex and mon those of the Purkinje cells in the cerebellum (Fig, 38) these lateral projections are very numerons and constant in silver preparations of healthy tissue. They are not mulike the projections into the liver cells from the bile capillaries, as revealed by (iolgi's method, hat ap-
pear in far greater numbers. Berkley, who has named these processes "gemmmes,"* thinks they are of very great signifirance for the contact of different neurones with one another (Fig. 39), and thas for the transference of impulses from nen-

 (Aftur Berkhey.)
rome to nemrone. He asserts that in certain diseases, particularly in certain intoxications, it is these "gemmules" which are the partions of the nemrone which first suffer, and he has even suggested that in paralytic dementia, for example, the carly symptoms may be explicable by assuming the destruction of large numbers of these gemmules.

It has been objected that these lateral buds are demonstrahe only by Golgi's methods, and that therefore one should hesitate before deciding that they are more than artefacts.

[^34]Hill * hats recently stated that, althongh he finds them in nine (ances out of ten, he believes them to be artefacts representing "the cell end of an mastainable nerve filament surround by a film of staining cell plasm." From the constancy of their appearance on the dendrites of certain only of the nerve cells, from their entire absence from those of certain others, and from the fact that they are most apparent and more shapply defined in the most sucressfin impregnations, it seems, however, fair to conchade that they are definite histological structures. Moreover, Ramon y Cajal \dagger has been able to demonstrate beatifully these lateral buds on the dendrites of the pyramidal cells of the cerehral cortex by means of the "vital staining" with methyfrie ble, and has pietured them in Fig. 1 , 1 , of his article. ihese appearances can, therefore, be no aceident, but whether the interpretations thas far advancel as to their significance are correct or not further knowledge and experience most determine.

[^35]
CHAPTER V'III.

THE EXTERNAL FORM OF TUE AXIS-CYLINDER PROCESSES or A AONES.

The axis-cylinder processes or axones-Differential characteristios of dendrites and axones-The relations of the axones to the cell body Dendraxones and Imxomes-Momaxones-liaxones-l'olyaxones-Amax-ones-Schizaxomes-Modes of termination of axomes-TclodendrionsThe coverings of axones.

Tue axis-eylinder processes or axones* of nerve cells differ markedly in many ways from the dendrites. The apparances presented by an axome in (iolgi preparations are so chamacteristic that after a little experience the observer will rarely have the slightest diffieulty in distinguishing it from adjacent dendrites; indeed, a few days' study with the microscope of successfully impregnated specimens will do more to convince the student of the differences in type of dendrites and axones than will many pages of carcful explanation. \dagger On imalysis, however, the structures admit of differentiative description. The axone differs from the dendrite in its mode of origin from the cell body, in its contour and calibre, and in its course and mode of branching; further, if long, it is nsually medullated, and also shows differences in its access ry processes and in its method of termination.

Arising embryologically through a prolongation of the stem of the pear-shaped neurohast (ride infru), in the adult the axone comes off from the cell body or from a dendrite (Fig. 40), in the latter case ustally near the cell body, though sometimes at a long distance from it, by a narrow wedge-shaped begiming.

[^36]This mode of origin makes the axome appear to be a more independent structure than the dendrite, sime the latter, as is obvious from its broad, wedgeshaped origian and from the mature of its contents, is simply an attenuated portion of the body of the nerve cell. 'That the axone is, however, also a direct continnation of the protoplasm of the cell body, at least of the gromed substance of that protoplasm, there eam be no doubt, althongh, as will be pointed ont later, certain substances, those which account in tissues fixed in alcohol for the so-ealled Nissl hodies, present in considerable amome within the cell borly and dendrites, appar to be entirely ahsent from the axomes, or to be present in them in such small quantities as to escape detection by the methods at present employed for demonstrating them.

The calibre of the axones varies much for the different cells, corresponding in general to the length of their course, a point which Schwalhe early pointed out
 and which von Lemhossók has recently emphasized. Unlike that of the dendrite, its ealibre is, as a rule, maintained for a considerable dis-

Fig. 40.- Neurone from the optic the of the embryo chick. (After Kïlliker.) The large dendrite ruming toward the periphery of the tole gives rise to an axone, u, which rums loward the centre, giving ofl' in its collmes, several collaterals. One of these, c, is much lmanchect. tance from the cell. Even in the dendraxones (Golgi's cell, Type II; Kölliker's Neuropodien) the axone is sufficiently well characterized in this
resifect to permit easily of its identification (Fig. 41). We are often deceived from its narrow calibre an to the volnme of an axis cylinder. This may be as much as a humbed and eightyseven times that of the cell boly (Donalitson).
 syinal cord of the newbern monse. (After von Lenhassék.) Exen in such a drultasene the axone is very celsily distinguishable from the dendrites. The latter are only represented in part in the illustration.

The surface of the axone is smooth, its contour rogular, and its course, as a rule, direet, so that in most instances the trained eye can recognize it in dolgi preparations at first glance standing out sharply like a piece of black thread on a white or yellowish backgromnd. The axones do not always, however, take the comse to their destimation which ippears to be the shortest,
and the origin und significance of some of the curves and digressions, for example of the root fibres of the nervas facialis, are difficult to understamd.

The length of the axones is in the highest degree variable. In the dendraxones, where dendritic bramehing of the axone

 axome whith diviles repealedly; e, axames.
oeems soon after its departure from the cell, the total length before complete loss of indiviluality may amome to only a few millimetres, or even to a fraction of one millimetre. On the other hand, the axomes of some of the motor nemrones are fully half as long as the height of a man. Betwem these two extremes there is every possible degree of variation.

The nenrones with long axones (inaxones of von Lemhessík, (Golgi's cells of 'Type I, Kölliker's heteropentere Sercenzellent), as a rule, are monaxones-that is, they possess only one axone,

a
Fig. 43.-Ramon y (abial's cell from the sumertial layer of the corebral cortex of

though the spinal granglion cells may, histologically at least (cille suprou), be regarded as diaxones. There are nemrones, too, which possess several axones. Among these, the so-called polyaxones, are the eells deseribed by Ramon y ('ajal in the outer layer of the cerobral cortex of certain animals (Figs. 4: and 43), from the horizontal dendrites of which as many as four or even

invariably ends "free." The termimation of a brach of an axome by mems of a definite end aborization nbout a single cell (Fig. 4\%) oceurs, though

Firk. 46, not so frepuently as many writers would lead one to think. The common mote of ending is by exhanstion throngh multiple division, this division being often spread over quite a wide

Fit. 47.

Fra. 46, - Y-shamed division of semsory root fibres atter chtamee into the spinal eord. Six-months human embrev. (After von Käliker.) Axomes which undergo such a division ate ralled by vorl lenhossék sehizaxomes.
Fita, 47.-Wint ramithations furming a hasketwork about (wo I'urkinje reths of the cerebeflar cortex. (From Sehaifer, after Ramony (ajal.) a, axome; b, basketwork.
domain, so that the terminal bramehes of a single axone not infrequently eome into the neighborhood of the dendrites and cell bodies of a considerable number of caterent nemrones. It may not be superfluous to emphasize this fact, inasmuch as a great many diagrams hitherto published in text-books and not a few descriptive articles are entirely misleading ; the intimate interdigitation or interweaving of the terminals of one axone exclusively with the dendrites of a second neurone, so frequently pictured, very rarely occurs, except in a few localities, as, for instance, in the olfactory glomeruli of some animals (Fig. 48). It is much nearer the truth to think of one neurone coming by means of the terminals of its axone or axones into contact with,
and thus perhaps being put into a condition to influence the processes or cell bodies of a few or of many other neurones ("amalanche conduction" of Ramón y Cajal). In the aceompanying figure, which illustrates tho terminal sensory muclens of the trigeminus in the eat, the distribution of axones over a considerable area is clearly shown (Fig. 4!!) ; in Fig. 50 and in Fig. 51, the manifold bamehings of some of the emb ramifications of axomes, as revealed by the method of ciolgi, are also demonstrated.

A number of elurions forms of termination

Fic. 1 s.

Meiss faces termir trapez
illustrates the mode of termination of the so-called welimbing fibres" in the cerebellar cortex. Many other mores of termi-mation-for example, the diselike expansions to be seen in

Fig. 50.-A much-branched fibre from the optie thatamus of a mouse. (After Külliker.)

Meissner's corpuseles and in the tactile dises in epithelial surfaees (Fig. 53)-might be mentioned. The curions calyxlike terminals (Held) of axones met with in the nuclens corporis trapezoidei are fully described and pictured in a subsequent
ehapter (Seetion VI). It is to be remembered that within the central nervous system the terminals of the axones and collaterals may, in some instances, come in direet contact with the borlies of other nemrones (ride Fig. 4^{7}), in other instances the second nemrones are influenced perhaps manly throngh their processes. The anatomical relation of one nerve cell with another is spoken of by Foster . Id Sherrington* as a symupsis. \dagger

 hryochick. (.Atter Källiker.)

In the majority, although not all, of the inaxones the axiscylinder processes are in the greater part of their course inclosed within a sheath. Dendraxones, being for the most part entirely within the gray matter of the central nervous system, possess axomal proeesses which are, as a rule, devoid of such a protective covering. In the majority of peripheral spinal and cerebral nerves this covering consists of a relatively thick fatty layer forming the myelin sheath, external to which is a cellnhar layer, the neurilemma. Henle's sheath is the fibrous tissue

[^37]often present external to the neurilemma. Within the central nervons system the myelin sheath is present, but the neurilemma appears to be albsent, a finet which speaks strongly in favor of the view that the myelin sheath is the result of the productive activity of the avone rather than of the neurilemma cells, as many have believed. The sympathetie nerve fibres possess no myelin sheath, but are surromided by a protecting layer of long, flat cells forming a sort of neurilemma. It is not my purpose here to refer in detail to the histology of these varions sheaths of the axone; they have long been carefhlly studied, and are deseribed at length, and, as a rule, correetly, in the text-books. I would only point ont that the discovery of the fact that within the brain and spinal cord the asones of

Fiti, 5:-The su-ralled "climbing tibres" of the cerehellar cortex from the lomin of a rhild: monath and a half wh. (After Käliker.) nemrones destined for different functions receive their myelin sheatins at different periods in developmental history, and its application as a means of analysis of nerve tracts form the basis of Fleehsig's embryologieal methods. By means of the recent method introduced by

 n, were tibre: m, menisens or dise: a, cpithelial erll in combet with dise; e, ordinary epithelial cell.

Fic. 5 . - Developing myerlin sheaths of ditherent ages as seen throngh the polarization mieroseope. Lehematic. (Atter H. Ambronn w. If. Held, Areh, f. Anat. u. lhysiol., Anat. Ahth., Leipz., Jsiti, Taf. ix.) The upper of the two figntos represents the reflex bath betweren the aconstic and optie merves and the motor apjaratas governing the movements of the hemen and eyes. The lower figure shows the reflex path throngh the dorsil and ventral roots of the spinal dord. Yellow tibres oldest ; red fibres yonngest.

Ambrom and Held,* in which the polarization microscope permits the determination of the younger and older of medullated fibres of nearly the same age, the sphere of applieation of the myelinization method of study has been eonsiderably widened. In Fig. it the sharpness of analysis made possible by means of the color differentiation is illustrated. Held \dagger has tested recently hy means of the polarization method the effects of stimulation upon the progress of myelinization. The work done upon these lines belongs to one of the most important epochs in the development of methods of nemrological investigation, and to the application of Flechsig's method to the study of some of the higher nerve centres I shall later take occasion to ref. The portion of an axone nearest the cell body is with : ; exceptions devoid of myelin, ats are also its terminal ramifications (motor end plates and maked telodendrions within the central nervons system). Here and there in its course a medullated peripheral nerve fibre may suddenly lose its myelin shath, be devoid of it for a certain distance, and again suddenly be covered by it (Schiefferdeeker).

[^38]
CHAPTER IX.

COLLATERALS, SIDE FIBRILS, AND INTERNEURONAL SUBSTA NCES.
Accessory branchings of the axones-The collaterals or purnsones-The side fibrils of (iolgi-Substances bet ween nemrones.

Besines the main divisions of axones above described, the accessory branchings of the axones, the collaterals (von Lenhossék's Pararomen; Retzins' Cylindrodmadriten), and side fibrils (Colgi) must be considered. In Golgi preparations the point of origin of a collateral from the axone is usually marked by a slight thickening. In the spinal cord, collaterals from the fibres of the dorsal roots and from the fibres of the white fasciculi rum in at different levels in great mombers into the white substance, so that a given nerve fibre may be connected not only with the gray matter in which its axone finally terminates, but accessorily by means of its collaterals with the gray matter of very many segments of the cord intervening between its origin and nltimate termination, a fact of incalenlable importance in the explanation of roundabont conductions and of manifold reflex activities. According to ron Lenhossék, and my own studies thus far support his statement, the portion of the axone nearest its cell of origin-that is, the cytoproximal portion-possesses many more collaterals than that distant from the cell body; indeed, the cytodistal portion of the axone may be almost or entirely devoid of collaterals. Owing to technical difficulties, the number of collaterals which may he given off by a single axone has never as yet been satisfactorily determined. Kölliker, in a longitndinal section of the spinal cord a few millimetres long, comnted as many as nine collaterals from one fibre. It will be remembered that some of the fibres of the dorsal roots in their intramedullary course extend from the lumbar cord as far as the medulla oblongata, though it would be incorrect to calenlate the number of collaterals pro rata, since, as has just been said, the cytodistal portions of the axone appear to be entirely free from accessory branchings.

Von Lenhossék, who has made exhaustive studies of the spinal cord, including that of human beings (Fig. 55), has never been able to find collaterals in the fascienlus gracilis Golli and does not believe that they exist there. Moreover, the number of collaterals varies molh, not only for axones of the same faseiculiss, but also and more particularly for the axones of different physiological systems. In the dorsal fasciculi of the spinal cord,

Fig. 55.-Stheme showing the elements of the gray matter of the spinal cord. On the left are shown the terminal axomes and collaterals enforing the gaty matler from the white substance: on the right are fo be seren the ditlerent merve rells of the gray matter. (After von Lemhossík ats monlified by van (iehuchten,) ar vential horn iodls, the axomes of which go into the ventral roots of the spinal merves; b, erell, the asone of which passes into the dorsal

von Lenhossék has shown that the collaterals are most abmind in the entry zone; they are very mumerous in the mildle and ventral parts of the faseiculns cuncatus Burdachi, but oceur in much smaller numbers in its dorsal peripheral part; and in the faseieulus gracilis, as has just been pointed out, they appear to be absent altogether. 'That they are absent in the faseiculas gracilis must not he taken to mean that these axones are entirely deprived of collaterals, inasmuch, as is well known, those belonging to the fibres constituting the fascienlus gracilis represent axones of dorsal root fibres, which lower down have ron for some distance in the fascieulus cuncatus and only after a
longer or shorter course within the cord have passed over, or have bean unshod over through the entrance of more fibres from dorsal to her up, into the fasciculus gracilis. That there are axon. , sever, which have no collateral seems very probable, and this is true for

Fig, 56 --Endings, a, of collateral from the dorsal funiculi in the gray mater of the spinal cord of the newborn tabbit. (After K゙̈lliker,) many axons of ventral hor cells and of the optic and obfactory peripheral senstory neurons.

The collaterals are often, it might perhaps be said generally, medilated, and an inmense number of the very fine fibres revealed by Weigert's method within the gray matter of the central system represent medullated collaterals. Λ great step forward was made when it became possible to recognize that the great mass of medullated fibres passing in from the dorsal funiculi of the cord do not represent. the terminal branches of the fibres of the dorsal roots, nor even the main stems of these fibres on their way through the cord. The majority of these fibres represent collaterals and are not main branches of dorsal root fibres, by far the majority of the latter passing on up in the dorsal funiculi. Thanks to the extremely careful studies of ron Lenhossék, Ramon y Cajal, and Kölliker, which supplemont the embryological investigations of Flechsig, we are now able to recognize very different groups of these collateral, inchiding the reflex collateral and others, groups differing in
origi of all to ge -ill prob
axon (iolg ont i always come ese mastic cell 1 as mi of en only of re obvio a who
funct later they with other when differ
origin, in their methods of termination, amd, most interesting of all, probably in function. This new classification is destined to go far in rendering elearer the pathology of the spinal cord -indeed, it has already done much to elucidate many obscure problems connected therewith.

The free ending of the collaterals like that of the terminal axones is insisted upon by those who work with the methorl of Golgi (Fig. 56). After repeated division each little fibril rums ont into a terminal end point which occasionally, thongh not always, appears slightly knobbed. The collateral may thas come in contact, by virtuc of its end arborization, with the processes of several other neurones, and here as before the diagrammatic representation of collaterals surrounding exclusively the cell body or dendrites of a single neurone is to be emphasized as misleading. While it cam not be denied that such a means of ending may oceur, it is at least certain that it is not the only one, nor, I think, the most common. The importance of recognizing the real methol of termination becomes more obvious in the consideration of the simultancous affection of a whole series of neurones belonging to one functional neurone group. As to whether collaterals can be distributed in domains in which they can come into conduction relation only with the side fibrils or collaterals of curomes of other neurones, I shall have something to say when diseussing the possible functions of the different parts of the neurones.

Golgi distinguishes the side fibrils (Fig. 57), which run off from the axone into the gray matter immediately after its origin, from the regular collaterals which arise at a greater distance from the cell body. The former are non-medullated, the latter usually medullated. Though morphologieally there seems to

Fig. 57.-side tibril of tiolsi on the axome of a motere eell of the ventath horn of the spinal cord. The arrow indieates the cellmilugal direction. (Alter von Lanhossík,) be no very olbvious reason for such a division, von Lenhossék has recently expressed himself as of the opinion that the two
structures may be of different signitionne in their functional aspects, a smbject to which it will also be neressany to return.

In sum, then, the cell berdy, dendrites, axomes with their collaterals and telodendrions represent the different portions of the nemrones ats diseovered by the folgi method. It is obvious that the closer the analysis, the more eertain and distinct becomes the view of the relative morphological independence of the nerve units. Exem of the existence of a soldering intersubstance we have very little evidence of a convincing mature. His assumes the presence of the mformed ground substance between the different processes, and suggests that this may be a constituent easily atfected by infurnces of a general nature, especially those of mutrition. On the other hamd, von Lenhossek argues that no one has seen this intermeriate cement suhstance, and believes that it is possible to get along with the view which looks mon the phasma strean or lymph stream as the only substance saturating the final plexus of nerve processes and filling up the minimal interspaces of the tissuc. Onr knowledge of the lymphatics of the central nervous system is, however, deplorably deficient, and there is urgent need for further researeh in this direction.* Ramón y Cajalls \dagger hypothesis, according to which the penetration of neuroglia fibrils between the processes of neighboring nemones plays a part in the make and break of conduction paths, has as yet but little hasis dependent direetly upon anatomical observation.
'To Held's views with regard to "eonerescence" as a mode of internenronal relation we have already referred in Chapter I'I. In his third contribation to the structure of nerve cells Held \ddagger mentions that by means of diolgi's methoul he has been

[^39]
 of axomes. (iolgi prepamations from a eat twenty days old. Seretions 70μ.
 Abth., Suppl. Bol., Taf. sis, Figs. E, 7, aml 8.) A. ('dll with metwork from
 whole edl and a dendrite passing upward. The fibre "correspomds to one

 uetwork. B. Dart of the wetwopk aromd a e efl in the numbens nervi west ibwhatis lateralis (beiters). Held believes that the thickenings in the network may eorrespond to the aggegations of nemonsomes which stan in irmhamatexylin preprations. a, b, e, d, e, f. axomes which help to form the metwork. (S. Part of the metwork aromid a cell of the melems nervi conlearis ventratis; the anastomeses of the comarser saldivisions of the fibres a and b and the larger swellings of the threals of the network are clearly visible.
able to show the formation by terminal axones of pericellular and peridendritic networks. 'This finding is illustated in Fig. 58. The views of dpathy as to the comection of many nenrones with one amother hy mems of momofibrillar have also been dealt with in ('hapter V'l.

As this book is being put through the press a novel inden with regard to intereellular substances has been suggested by Xissl.* This investigator has through the researehes of Becker, Apithy, and Bethe (ef. Chapter NIII) recently been led to believe that certain fibrillary struetures demonstrable ly special methods within the protophasm of the nerve cells are the elements actually concerned in nerve functions. On the gromil of as yet rather meagre evidence he attempts to show that these fibrils also exist outside of the nerve cells and their processes, in certam places in great abmance. It is his opinion that the essential difference between the gray matter and the white matter of the central nervous system is not dependent, as those who have worked with (iolgi's method contend, simply upon the enormons number of eell bodies, dendrites, and collaterals in the former and the immense number of medullated fibres in the latter, but rather upon the presence of a speeial morphologieal constituent. Since there is much evidence that the gray matter of vertebrates corresponds to the nenropil of invertebrates, and since in the latter Apaithy asserts that he can demonstrate as the principal eonstitnent a network of naked nemro-tibrils (cf. Fig. 30, in Chapter VI), Nissl thinks it likely that the peculiar essential constituent of the gray matter of vertebrates is a mass of these extracellular nerve fibrils in the sense of Aprithy and Bethe. 'To this intereelhnar substance, together with the neuro-fibrils in the protoplasm of the nerve cells and their processes, he attributes the highest functions of the nervous system. He grants that our technigue at present is absolutely insufficient to demonstrate the actual character of the intercellular substanees, but believes that he has brought the proof that a speeific constituent of the gray matter actually exists by a comparative study of the cerebral cortex of the motor area in man (Fig. 59), dog (Fig. 60), and mole (Fig. 61). It is obvious from a comparison of these three figures that the

[^40]higher the animal the fewer cell bodies in areas of gray matter of equal size. Now this discrepancy is attributed by Ramon y Cajal and others to the easily demonstrable disproportionality

Fig. 59.-Reproduction of a photugram of a perpendienlar section throngh the tip of the head of the grows centralis anterior of at hathey adnet nam elose to the balx. Staning by Nissl's method. I. haver poor in cells. II. Laver of pramidal cells, comaining $z=$ haver of small pramidal rells $=2$. Mcymert's layer) $+3=$ layer of have pramidal redls $1=3$. Movert's haver, lit.
 (5) \%ome of the layer of medhlated fibes $(=5$. Meynert's layer). The regiom marked 5 correspmots to the ganglionerell laver of lanmarterg and The regien marker of the spindle-cell layer. (After F', Nissl, Mimelo, med.

of development of the dendrites and collaterals pertaining to the cerebral nemrones of the different animals, but Nissl denies
the ndequary of this explamion. He asserts that many of the struetures which appear to bee, and are desemibed as, dombites of the pyamidal cells in (iolgi preparations can not possibly

Fig. A0.-Reprodaction of a photogram forn a prowndionar cortial sedion thromgh the summit of the gyrms just in font at the suldes cruciathe of an

be dendrites at all, and maintains that in any case in layer II (Meynert's ${ }^{2}$. and 3. hayers) of Fig. 59, there must be a substance present which is entirely absent or at most present in but small amounts in the homologons layer in Fig. 60 and Fig. (i1. A ditierence in the number of nervereell processes, glia eells, and glia fibres sufficient to account for the inequality in the different specimens is, he believes, absolntely impossible.

This view of Nissl's is certainly most interesting, and, coming from so high a source, worthy of the most thoughtful consideration. Should it turn out that besides the nerve cells (or
nemromes) and the gria cells und their fibrils these peculiar interrellular substances do really exist, the writer comfesses that he would not be much surprised. Nor is it unthinkable that interprellular substanes in the mervons system, if present, comblat be of the highest functional importance, for in other tissues wr bave mot a little evidence that intercellular substances play minnortant role in physiological processes. One has only to remember the thinits of the blood and the fibrils of the eomnective tissures, for example of tembons, to satisfy himself in this regurd. No me, howeser, hesitates on this aceome to believe that blood cells. and comeretive tissue cells exist, amd that they are of paramomit. importance: similarly, cren were internemromal substances of great finnetional significance demonstrated in the nervons sys-

Fus. B1.-Reprometion of a photogiam of a perpendicular section thromgh the

tem, no one surely would draw the absurd conchasion that nerve cells or nearones do not exist, or that they are of but little functional value.

Brief reference only is necessary to the hypothesis of Rabl-

Rückhard * and the modifications and extensions of it by Drval, \dagger Tanzi, and others. \ddagger The whole doctrine by means of which sleep, anasthesit, the phenomena of hysteria, double personality, ete., are to be explained by amoboid movements of the dendrites, or the so-called "retraction theory," appears to be based upon (1) the single observation of Wiedersheim with regird to amoeboid movements of the processes of nerve cells in transparent animals like Laptodora lyalimu and (: 2) the undulatory movements of the distal processes of the olftetory peripheral neurones. The idea has been severely criticised by von Köliker, \# and it is worthy of note that a theory so feebly supported by facts has been so widely accepted and made the basis of a mass of clinical generalizations.

[^41]
SECTION [IT.
 THE INTERNAL MORPHOLOGY OF NEURONES.

CHAP'TER N.

STUDIES BY METHODS WHICH REVEAL THE INTERIOR OF NEURONES.

Intermal morphology of nemrones-Investigations of Remak, Max Schultze, and others-Doctrine of n fibrilhary structure-Stadies of Flemming and Dogiel—Method of Nissl—Stainable and mastainable substances of Nissl-Investigntions of von Lenhossék.

Supficient has been said to make apparent the extraordinary signifiemee of the methods of Golgi and of Ehrlich for the investigation of the nerve structures. Certain it is, that with regard to the extermal form of the neurones, the gencral interrelations of these cells and their processes, the origin of peripheral nerve fibres from cells in the nerve centres, and the establishment of the existence of channels accessory to the main conduction by means of collaterals, these methods have led to clearer and more definite knowledge than any others hitherto employed.

But a knowledge of the external form and connections of nerve cells is by itself necessarily insufficient, and if we are ever to gain any adequate idea of the relation of the morphology of nerve eells to their complex functions, the mothods described must be supplemented by others which enable us to penetrate into the interior of the individual neurones, and to become acquainted with the structure of the protoplasm of which they are made u_{p}. Here we enter one of the most ohscure domains in the whole of histology. We stand before the cells and their ultimate structure in the position ocenpied by histologists a eentury ago as regards the individal organs and tissues. The desirability of becoming conversant with the morphologieal relations existing inside the nerve cells becomes all the more
obvions when one thinks of the possibility of nltimately being able to trace a direet bearing of these upon function. When we remember not only the finctions which the nerve cell possesses in common with all cells, but also the remarkable capacity it exhibits for responding to external irritation, and apparently for recording and reprolncing the happenings which go on within it, processes which in groups of neurones we recognize in what we call habit and memory, the significance of such a possibility becomes evident.

Let us turn for a few moments to a consideration of the studies which have already been made with the object of gaining an insight into the internal strueture of nerve cells. Ahout half a century ago, Remak* called attention to a fibrillary structure inside the axis cylinder and cell body of certain of the nerve cells; this was afterward further studied by Wolter and Leydig in invertebrates, and by Beale, Frommann, Deiters, Kölliker, and others in vertebrate tissues, but, it must be confessed, with no very complete agreement among the various investigators.
'The most notable of the earlier researches are those of Max Schultze. \dagger This observer studied nerve cells and nerve fihres from different parts of the certral nervous system of different animals, and has given us an elahorate deseription of his findings, which, by the way, have done much to inflnence the articles in the text-books ever since. The fibrillary nature of the axis-cylinder process had been deseribed before, bat Max Schultze asserted that portions of the whole cell borly are fibrillary, and further, that the fibrils are to be fomed within all the processes of nerve cells and not simply in the axis eylinder. The differences in appeatance, he thought, depend npon the amount of interfibrillar gramular substance present. This substance, he states, is scanty in the axis-cylinder processes, while in portions of the cell body and in the protoplasmic processes it is often ahmodant. An idea of Max Schultze's conception can be gained from a study of the illustration of the large nerve cell from the brain of the torprdo taken from his article (Fig. fiv). Schultze asserted that

[^42]the fibrils which he described can easily be made ont in fresh cells prepared in sermm without any staining or fixing reagent, but that they are best demonstrated by bichromate solutions. He further added that the nucleus lies imbedded in the finely gramular fibrillated material
 of the central part of the cell, but does not appear to stand in any direct connection with the distinet fibrils covering the external surface. It was also his idea that the fibrils which compose the axis cylinder result from the collection into a group of the fibrils from the arborescent processes of the cell; that is to say, that the fibrils which are seen traversing the sulstance of the ganglion cell do not originate in the cell, but only milerge a kind of arrangement in it, and then pass to the axis-cylinder process or extend into the other branched processes.* In view of what we know now of the structure of nerve cells, and of what ean be made out with the methods he employed, it is ahmost inconceivable how Max Schultze conld have seen nerve cells as they appear in his figures (Fig. 62). That his view, however, is surprisingly near that held as the result of some of the most recent researches can not be denied. The study of the bibliography

[^43]since his time is rendered difficult by the fact that different observers have used different terms to indicate the same thing -in fact, nowhere in histology, perhaps, has there been more confusion than in dealing with the gramules and fibrils within nerve cells.

The doctrine of the fibrillary structare of the nerve cell was supported strongly by Boll, Schwalbe, and Ranvier. This view soon met with opponents, however, among whom Arndt and Key and Retzins were, before Nissl's publications, the most important. The first, in 18\%4,* deserihing the strncture of the spinal ganglion cells, spoke of the presence in them of different kinds of "elementary spherules," which varif 1 in size and in general appearance. Key and Retzins \dagger declared that the gromud substance of the spinal ganglion cell was homogeneous, but that ' n it numerous strongly refractive round or oval granules were present; and they thought that the appearance of a concentric striation or fibrillation conld be simulated through the arrangement of these gramules in rows. Flemming, in 1882, \ddagger saw granules within the eells which would stain with nuclear dyes, azo dyes, and hematoxylin, but nevertheless affirmed a fibrillary structure of the central cells, and of a tortuons or muelreurved threadwork within the spinal ganglion cells between the gramules. He did not believe, however, that in the spinal ganglion cells there were long connected fibrils, such as the carlier observers had deseribed, but thonght that the cell body was in the main constituted of numerons, evenly distributed, very short threats, which showed sometimes finer or coarser thickenings upon them, observations which were supported subsequently by E. Müller." Flemming has recently

[^44]published two other articles* in which he warmly supports the doctrine that fibrils exist inside the nerve-cell protoplasm. In Fig. 63, taken from one of these, the fibrils are pictured. Kronthal and Dogiel have also expressed themselves in favor of the view of a fibrillary structure for certain at least of the nerve cells.

Since 1885 there has been in certain quarters a lively reaction against this view, Nissl, of Frankfort (now of Heidelberg), and von Lenhossék, of Würzburg, representing its most vigorous opponents. In that year Nissl published the first of a series of articles \dagger in which he laid stress upon the appearances to be made out in tissues hardened in alcohol and stained in basic amilines, such as magenta red and methylene blue. Although the structures described by Nissl had been observed earlier by Flemming and by Benda, it was throngh the introduction of Nissl's methods, which

Fig. ti3.-Nerve cell from the region of the veutal colmon of gray zatter of the spinal cord of ciodus. Sublimate fixation ; limenatoxylin staining. (After Flemming.) 'The axome is serelt conning ofltrom the lowere erid of the cell. bat the axome and at its origin in the cell borly a tibrilhary apparanee is seen. In the interior of the rell body the spindereshaped grame lar masses are deroply statined, while between them are Fhemuing's tibrils, ent genemally ohliquely or tmassersely. bring them especially well into view, that their arrangement in the protoplasm and their significance for the function of the cell conld first be studied.

* Flemming, W. Ueher die Struktur centraler Nervenzellen bei Wirbeltieren. Anat. Hefte, I. Abth., 19. Heft (Bd. vi, II. 3).
\dagger The principal contributions of Frma Nissl concerning the structure of nerve colls are the following: Ueher die Untersuchungsmethoilen der Grosshimrinde. 'Tagebl. d. 58 . Versamml. deutsch. Naturf. u. Aerzte in Strasshurg (1885), S. 506.-Wher den Zasammenhang von Zellstructur und Zellfunction in der eentralen Nervenzelle. 'Tagehl. d. 61. Versamml, dentsch. Nuturf. n. Aerate in Köln (1888).- Die Kerne ales Thalamos beim Kaninchen. Tagebl. der 62. Versamml. dentseh. Naturf. u. Aerzte in lleidelberg (1889),-Veher

Nissl's early methods consisted of staining tissues hardened in alcohol with Magenta red or methylene blue and elearing in oil of origannm. The method has undergone several modifications. the most recent of which will be given here, inasmuch as it does not seem to be so generally known as it should be. In an article* published in 1894 Nissl describes it as follows: Small blocks of tissue are hardened in ninety-six per cent alcohol and fastened by Weigert's method with gmon arabie without imbedding. The sections are received in ninety-six per cent alcohol and stained in a wateh glass. The stain is to be heated over the spirit flame matil small bubbles arise which make a crackling noise ($63^{\circ}-70^{\circ} \mathrm{C}$.) ; sections are then transferred to aniline-oil alcohol until differentiated. The process of differentiation is ended when no more coarse elouds of eolor go off into the fluid. The section is then transferred to the slide, dried with filter paper, after which some drops of oil of eaje-
die Veraindermgen der Nervenzellen am Fueialiskern des Kaninchens nach Ausreissung des Nerven. Allg. Ztschr. f. Psychiat., ete., Berl., Bal, xlviii (1891-92), S. 197.-Veber experimentell ereugte Verinderungen ander. Vorderhornzellen des Rlickenmarkes bei kiminchen mit Jemonstration mikroakopiseher Priparate. Allg. Ztschr. f. Psychiat., ete., Berl., Bd. xlviii (1891' 62), S. 6ã-682.-Nittheilungen zur Anatomie der Nervenzellen. Allg. Z/selhr. f. Psyelint., ete., Berl.. Bhl. I (1893).-Ueber Rosin's neue Järbemethode des gesammten Nervensystems und dessen Bemerknngen ïber Ganglienzellen. Neurol. Centralbl, Leipz., Bd. xiii (1894), S. 98 ; 141.-Ueber eine neue Untersuchungsmethode des Centralorgans speeiell zmr Feststellung der Localisation der Nervenzellen. ('entrallhl. f. Nervenh. u. Psyeliat., ('oblen\% u. Leipz., n. F., Bel. v (1894), 心. 3:3;-344; also in Areh. f. Psyehint., Berl., 1894 , Bl. axvi, S. $597-612$ - Ueber die sogemamten Gramula der Nervenzellen. Neurol, Centrulb., Leipz., Bil, xiii (1894), S, 6;6; 781; 810.- Mittheilungen über Karyokinese im eentralen Nervensystem, Allg. Ztsehr. f. Psyehiat., ete., Berl., Bel. li, 1894, S. 245.-Bernhard von Gudden's hirnmatomische Experimentainmtersuchugen. Allg. Zisehr. f. Psychiat., ete., Berl., Bal. Ji, 1894, S. $52 i-54!$-Der gegenwairtige Stand der Nervenzellen-Anatomie und P'athologie. ('entralbl. f. Nervenh, u. Psychiat.. Coblen\% u, Leipz., n. F., Bd. vi (1895), S. 1-2l.-Veber die Nomenklatur in der Nervenzellenanatomic und ilure nithsten Ziele. Neurol. ('entralbl., Leipz., Bd. xiv (1895), S. $60^{\prime \prime} \quad 104$. - littheilungen zur pathologischen Amatomie der Dementia paralytica. Areh. f. Psychiat., Berl., Bhl., xxviii, 1896, S. 98i-992.-Ueber die Veränderungen der Nervenzellen nach experimentell erzengter Vergiftung. Neurol. Centralbl., Leipz., Bd, xv (1896), S. 9.-Uebér die ärtichen Buwerschiedenheiten der Ilirnrinde, Areh. f. Psychiat., Berl., Bal. xxix, 1897. S. 1025-102x.-Die Ilypothese der specifischen Nervenzellenfunction. Allg. Ztsehr. f. Psuchiat., ete., Berl., Bel. Liv (1897), S. 1-107.-Ueber Nervenzellen und graue Snbstanz. Mïnchen. med. Wehnsehr., Bd. xlv, 1898, S. 988, 1023, 1060.

* Centralbl. f. Nervenh. und Psychiat., 1894.
pat
put are applied and the seetions are again blotted with filter paper. A few drops of benzine are pented on, then some benaine-rolophonimm, and the slade is heated matil all the benzine gas has been driven off.

The dye is made as follows: Methylene blue B. pat., 3.75; Venetian soap, 1.75; distilled water or soft water, 1,000. The differentiating fluid has the following eomposition : Tell parts of colorless aniline oil and ninety parts of ninety-six per cent alcohol. Nissl obtains his aniline oil directly from the factory at Höchst, and keeps it carefully protected from the light.

The benzine-colophonium is prepared by pouring benzine upon colophonium (white rosin) and allowing it to stand for from twenty-four to thirty hours. The fluid, transparent mass which results is ready for use; the desired thickness can be obtained either by the aldition of benaine or by allowing it to evamonate. In monnting, while driving off the benzine gas, the material may catel fire, but if the flame be blown ont immediately, no injury is done, and the alterations produced by burning are finite characteristie and easily recognizable.

The method of Nissl permits in some respects of a very exact morphologieal analysis of the bodies and nuclei of the cells. His method of elective staining distinguishes within the cell hodies always two, sometimes three, constituents which are sharply separable from one another and easily recognizable. One of these constituents of the protoplasm stains intensely hue by his method, and is spoken of by Nissl as the staimable or visible formed part of the nerve cell.* The second constituent remains entirely unstained and is spoken of ly him as the unstainable-that is, the visible unformed part of the nervecell borly. In addition to these two constitnents, in many nerve cells the well-known pigmentary deposits are risible. \dagger Leaving

[^45]the pigment for the time being out of consideration, much is to be learned from a study of the characters of the stainable portion and its relation to the non-statinable portion of the cell body in different cells in various parts of the central nervous system, and upon such studies Nissl has built up un elaborate elassification of nerve cells. This will be referred to in the next chapter. Any one who takes the trouble to use Nissl's method in the way that he has directed can easily convince himself of the reliability of his deseriptions. The stainable portions in the nerve cells show a series of different forms; smaller and larger gramules of regular or irregular shape, groups of gramules, and rows of gramules can be male out. Often the stamable masses are arranged in threads, sometimes smooth, sometimes rough, and varying in thickness, course, and length. Oiten larger structures, regularly or irregularly shaped, are to be seen, which stain with varying degrees of intensity. Some of them appear homogeneous; others show an internal constitution, complex and difficult to describe. Of the larger bodies, three varieties are especially noteworthy:
(1) The so-called nuclear caps (Kernkappen), stainable masses which possess the form of regular, sometimes of irregnlar cones, each hollowed ont internally like a cap, corresponding to one pole of the mucleus upon which it sits. There may be two of these nuclear caps within one cell body, correspond-
dulla; in the pramidal cells of Beta in the cerebral cortex ; in the eells of the unclens dorsalis and in other parts of the central nervous system. Curionsly enough, when the pigment is present in masses in the nerve cell the tigroid aggregations appear to be absent from a portion of the protophasm in which the pigment is situated. The pigment here deseribed is not identical with that of the locus curuleus, the substantia nigra, tie e substantia ferruginea, etc. The relation of the substance or substances here concerned to what we have bern accustomed to look upon as pigmentary deposits should be further investigated. Rosin believes that the pigmentary substance is allied to fat. It wot o stains black with osmic acid, but if the tissue be previonsly treated witt alcohol and ether the osmic reaction, it is said, is notobtaimable. Acetic acid has no effect upon the reaction. Aceording to Pilez, Obersteiner, and others, the light yellow pigment appears at different periods of life in lifferent n e eells; thus in the cells of the spinal ganglia it is first fomed at the sixth year, while in the spinal cord it appears first at the eighth year of life. As age advances the amount of pigment in the nerve cells gradually increases, a fact entirely eonsonant with the idea that the pigment is n result of catabolic metabolism. Van Gieson refers to the pigment as "metaphasm gramules."
ing to two opposite muclear poles, und occasionally, according to Nissl, cells are seen in which three such eaps are present.
(3) So-called wedges of division (Verzueiguugskeryelu), stainable masses which fill completely the angle at the point of division of a nerve-cell process.
(3) Spindles, oblong or spindle-shaped stamable masses which are thick in the middle and become thinner toward the end, oceasionally rmming out into threadlike iorms. Onc-sided and double-sided spindles exist.

Any one of these forms may be vacuolated, as has been pointed out by Nissl, ron Lenhossék, Held, and others.

Von Lenhessék, who has also strongly opposed the idea of a fibrillary structure for nerve cells, has in the second edition of his book* given us a very aceurate description of the appear-

Fig. 64.-Large motor ganglion cell from the rentral horn of the spinal cord of the ox. Thionin staining. (After von Lenhonsék.)
ances within the cells of the ventral horn and the cells of the spinal ganglia. Ventral horn cells, examined fresh or in an indifferent fluid, show little if any structure. The protophasm is seen as a smooth, glistening, indistinctly gramular substance in

[^46]which sometimes a slight concentric arrangement and, in the region of the processes, mindistinet longitudinal strintion ean be male ont. The yellowish gramular pigment is very evident in the fresh cells. As a staining method, von Lenhussék has fomm that thimin (Fig. 6it) yields results as good as, if not better tham, those obtained with methylene bhe, and my own experiments with this lye have been equally sutisfactory, thongh in my experience erystalline deposits have been more frequent in preparations stained with thionin than in those stained with methylene blue. Von Lenhossék very properly objects to the term" gramules" for the stamable substance, the masses ordinarily referred to being much too coarse to be so designated. Ho has pointed out, further, the differences in appearance dependent upon thickness of section and upon whether the median or tamgential be the mode of seetioning employed. He has deseribed the differences in size and concentration of the staimable masses in different animal species, and states that the chromophile masses are especially coarse, both relatively and absolutely, in the ven-tral-horn eells of the rabbit. He has laid stress upon the differences in appeatance in the different parts of the cell; thus, the arrangement in the centre is often quite different from that visible at the periphery of the cell body, and the stamable masses in the dendrites again show different characters. He has further pointed out differences in internal character between the typically stellate-shaped cells of the ventral horns and the oval elements which are met with there, and attributes the differences in shape of the "chromophile corpuscles," as he calls the masses of stainable substance,* to developmental rela-

[^47]tions borlic ndmi that often small horlie which Von bodie. numb, boly, ness. quite form 1 distin, axes cositic holds stance larly
tions. De Quervain* has suggested that all the chromophile bodies represent multiples of tine granules, and von Lenhossík admits that the bodies are rarely limited by a slump line, but that they, is a rule, show irregular, often jugged, margins, and often look at their borders as though they were broken up into small gramules. He refinses to admit, however, that all such bodies represent aggregations of minute gramules, a point about which more will be satid when the work of Held is disenssed. Yon Lenhossék has studied with care the relations of the Nissl bodies in the dendrites, and finds that from nlways being few in number they cease to appear at a certain distance from the cell body, and as soon as the dendrite has reached a certain thinness. In the dendrites, their shape and general uppearance are quite different from those of the interior of the cell body; they form long, narrow, straight, rod-shaped masses, often sharpened distinctly at the ends, so as to form definite spindles the long axes of which are parallel to that of the process. The varicosities on the dendrites in Golgi preparations von Lenhossík holds to be due to superficial collections of ehromophile substance. \dagger His deseription of the origin of the asone is partienlarly elear and acemate.

Sehaffer \ddagger was the first to deseribe the peeuliar behavior of the axone and the adjacent portion of the cell body as regards Nissl's staining. The axone itself, unlike the dendrites, is entirely free from the stainable substance of Nissl, as is also the portion of the cell body immediately adjacent, known as the axone hillock. This hillock is marked off by a tolerably sharp curved plame from the gramular protoplasm of the cell borly, and shows at its margin not infrequently a layer of especiully fine granules. With Kronthal's method, the axone and axone hillock stain intensely in methylene blue, very much as in the vital staining of Ehrlich. Bat Benda found that when specimens thus prepared were eleared in creosote the axone and axone hill-

[^48]ock lost their color, and only the stumble substunce of Xissl retained the dye in the cell body and the dendrites. Benda* makes one exception to this statement. In the basal axomes of the pyramidal cells of the cerchrum, especially of those known as the giant pyramidal cells of Betz, the collaterals which come off at right angles are visible when the preparations are stained by Benda's methylene-blue method. Just at the begiming of the collateral, a small wedge-shaped gramule, in section trimgnlar, takes up the methylene blae, the axone itself remaining fuite mistamable. I have met with this observation nowhere else in the bibliography,

Von Lemhossók has not been able to make ont definite fibrils in the cell body, and one gains the impression that he disbelieves in their existence. He has taken the tronble to stain the cells of the brain of the torpedo, the object of Max schultze's classical description, by Nissl's methorl, and denies the existenee of tibrils in them.

In his study of the spimal ganglion cells, von Lenbossék used specimens from the ox (Fig. 65) as well as homan tissues. In the fresh cells, teased withont the ac-

Fus. (in.-Spinal ganglion coll from the ox howing clearspares (• ole" "). Magem ing. (After hossík.) tion of reagents mader high powers, he conld make out a distinct, tinely gramular consistence, the gramules being closely and evenly arranged throughout the whole cell. He could not deeide, howerer, from the fresh tissue whether he had to deal with actual gramules or with the optic appearances of threals. In Nissl preparations, however, and in specimens stained in thionin the cell appeared nearly always to consist of two distinct layers-an internal perinuelear layer, which stained deeply in the basic dye, and a peripheral layer of lighter color, the two layers passing gradual, ar into one another, althongh oceasionally at sharp separation between the dark endoplasmatic and a lighter ectoplasmatic zone could be made out. Von Lenhossék could not find in the ox the coneentric arrangement of the gramules de-
serif
maijo
manss
deser
voll
fiolls.
suent
(colu's:
ans bo be no size 0 is seel grianll thosio alesiori spinal ence 'These of the a sing larger widely
seribed by Nissl in human spinal gimglion cerls, at lenst in the majority of eells. He motied the mever size of the stamble masses and their armagement into a networkike appeatanee, as deseribed by other anthors. In some cells of the spimal ganglia von Lenhossék fombl, in areordance with filemming's observations, grambes wheh are murh eomerser than thene ordinarily seen in such cells, but he does mot think a dassitiention into coarsely gramular and timely grambar eolls is desimble, imasmueh as both kinds lie everywhere intermingled und there uppars to be me loeal rombection betwen the extent of the eedl and the wize of its grambes. (iemerally speaking, the coarser grambation is seen in the smaller cells, the large cells having always a fimely gramular strocture, apparameses which contrast strongly with those met with in the cells of the ventral horn. Von lamhossík desuribes at some length what every one who hats sturlied the spinal gimglia mast be acpminted with-mamely, the presence of clear areas in the protophasm of some of the cells. These areas are to be foumd, as a rule, in the peripheral portion of the cell, sometimes as many as three or four being present in a single eell. They are spherical or eiliptical in shape, often larger than the melens, and do not represent struetureless

 end dise; the clear zone of prochalasm, b, bemeth fwo of the dises is shown
spaces tilled ouly with fluid, but contain normal ground substance, and besides often show in their interior a few gramules widely separated from one another. The exact nature of these
vamole-like spots is as yet not clear. It is not impossible that some of them correspond to the position of terminal end dises of side tibrils coming off from the axone and ruming back to the eall body, such as have been deseribed by lluber, of Am Arbor,* in the spinal ganglion cells of the frog (Fig. 66). He stutes that there is usmally fomd a clear zone of protophasm surrounding the expanded end of the processes.

* Hntrer, (i. Curl. The Spinal (inuglin of Amphibia. Anat. Anz., dena. Bd, xii, 1896, No, 18, ㄷ. 11i-425.

OHAl'TER XI.

VARIETIES OF NERVE GELLS DHSTINGULSHABLE HY NISSL'S METHOW.

Glassifieations of memrones hased upon Nissl's staming method-Komatochrome, eylochrome, nud aryouhrome nerve cells-Arkyodirome, slichochrome, arkyostichochrome, and gryowrome nerve cells-objections to Nissl's classilleation-l'yenomorphons, apyenomorphous, and parnpyenomorphons romditions-Chromophile cells.

Nissi, has spent several yours in the most exact investigations of the nerve cells in the different parts of the nerve centres of man and animals, and has come to the conclusion that definite types or varieties of nerve cells exist, varieties which are constant not only in the same animal, hat often exist characteristically in homologrons localities in a whole series of amimals. He has had some ditlieulty in finding suitable desiguntions for these types of nerve cells. In the present strite of onr knowledge, a nomenclature based upon funclion, excopt, perhaps, for a few cell entegories, is not justifable, and Nissl has been compelled to chassify the cells according to their morphological characteristies. Aecording to him, all the cells in the nerve centres, except the so-called chromophite nerve cells, can be divided into two main classes.

The tirst group inchules the nerve cells which possess a well-marked cell bor!y which surrounds the mucleus completely on all sides, the r, rotonlasm having a distinct contome. These cells Nissl calls sommtarhrome nerve cells.
'To the secomd group (subdivided into two groups-cytochrome and earyochrome) helong those cells in which in Nissl preparations the nuclens is most in evidence; the nueleus has it clear contour, but only indications, as it were, of the cell body are present, an appearance due aithor to seanty dovelopment of the cell boly or to the predominance in it of the unstuinable substance. These d!ls oiten look as if they were naked nuclei, though hy (iolgi's method it can be shown that they may possess definite axones and dendrites. In some of these cells the
stamable substance may be present, though when it is, it is very mevenly distribnted, being collected at definite points in the cell, the nuclens apparently being only partly surounded by protoplasm. Such cells are to be seen in the substantia gelatinosia of Rolando. Nissl suggests that the nerve cells with an ill-developed cell body, in which the melens appears to be incompletely surromded and does not exceed in size the molens of a nemroglia cell or of an ordinary lencocyte, be called "framules" (K"̈rmer) or ryturlh rome nerve cells. These cells are present in great numbers in the gramular layer of the cerebellam. There are different varieties of these cytochrome cells, those in the

cerehral cortex, those in the cerebellar eortex, and those in the olfactory bulb, for example, being by moms identionl.

The second suhgroup of cells in which the cell borly is only indieated, but in which the stamed muchens is of the size of that of an ordinary nerve cell, or at any rate is larger than that
of a nemroglia cell, Nissl calls raryorlhrome nerve cells. Of these there are also distime varieties-for example, those of the snbstantia gelatinosa of the spinal corl, and those of the

Fig. (is- Norre cell from dorsal millens of proximal portion of madulla of mahit.
 morphous comdition.
gringlion habemular-types which for the present are designated simply by letters of the (ireek alphabet.

The majority of the nerve cells, however, fall in the first gromp-that of the sommtarlerome eells-where the cell body, if we julge solely from its morphology, has apparently far greater relative importance than the nucleus. But this group contains a series of typers of nerve cells which are distinguishable from one another in part through differences in the nuclei, but mainly through different relations of the stainable and mustuinable constituents of the eell body. Nissl divides the somatochrome cells into four great groups: the arly/gerhrome, the stichuchrome, the arkiptostichorlorome, and the ! 1 rhorlhrome nerve eells. In the arkyochrome nerve cells the stainable portion of the cell body appears in Xissl preparations in the form of a network (apovs). The branches of this network appar to be distinctly connected, but Nissl notes that in many of the cells in this gronp there can be made out processes moto which the distinct network of the perimuchar part of the cell body can go
over, so as to form a parallel-striped arrangement. As a sample of cells belonging to this group, Nissl pictures an arkyochrome olfactory cell (Fig. (if). Among the arkyochrome nerve cells, Nissl further distinguishes enurkiyorhrome forms from ampharthyorlhrome forms. The former show the stained constituent arranged in the form of a network which differs from

Fta. 69. - Motor nerve eall from ventrat hom of enay matler of spinal cord of rabbit. (Atter Nissl.) Of the threw lowne proresses, the middle ome represents

 tion. It the amgle of the division of the large lemerite at the left suproior
 kemln). 'The spimble-shaped Nissl Imodes are well shown, cspreially in the demdrites. 'Thise erll is chased by Nissl as atiehorhome merve rell in the apknomorphons comdition.
the network in the ampharkyochrome eells, in which the intensely stained radiating nodal points of the network are con-
neeted in the cell booly by deeply stained very thick bridges, so that a further comected network of very deeply stainable substance is observable. Both enarkyoehrome and ampharkyochrome cells are, according to Nissl, widely distributed thronghont the central nervons system. The former ocem in the spinal cord, but are most umerous in the large dorsal mucleus at the proximal end of the medulla (Fig. 6is).

 (After Nissl.) Stirlowhrome nerve rell in ingknomorphons comblitam. 'Two large numeoliare shown within the melens. The axomeat the uper end of

In the second main group of somatochrome nerve cells, the stichochrome cells (oríxos), the stamable substance is arranged in the form of strie which rum in the same direction and usinally parallel with the contom of the cell body, in part also with
the surface of the moleus. 'These stria, as a rule, are not contimons fibrils, but the striated arrangement is depentent in the main upon different stained elements, threals, spindles, and gramules, more or less isolated and in rows. These varions elements, without being directly continnous, arrange themselves in rows ruming in the same direction within the cell body. Ocasiomally, in this gronp, of nerve cells, there oceur examples in which here and there a thread or a row of grambes assmues a direction opposite to that of the general striation, an appearance, however, which would not prevent the cell from being inchuded in this mategory. So far, Xissl has distinguished four types of stichochrome cells, represented by the nerve cells of motor nuclei (Fig. 699), the large cells of Ammon's horn (Fig. 70), certain cells of the cerebral cortex, and spinal ganglion cells (lijg. il).

The third group of somatochrome nerve cells includes those of the so-called arkyostichochrome type, in which the striated appearance is miterl with a networklike structural character in the most intimate mammer, so that one can not deeide which mode of arrangement of the stainable substance is most characteristic of the cell. Nissl cites as a typical example of eells of this sort the Porkinje cells of the cerebellar cortex (Fig. 72).*

Lastly, as a fourth group of somatochrome nerve cells, Nissl
deseribes the gryochrome ($\gamma \rho \bar{v}$) type, in which the stainable constitnent of the cell booly is cutirely made up of small gramules. The gramules are not distributed, however, at random in the cell body, hat tend to form threads or heaps, so that a distinct habitus em be attained. Nissl does not give pictures of eells of this type, but mentions that they are particularly, though not exclusively, found in the corpus striatum.

The whole series of types ats revealed by his method may be classified therefore as follows:

Grovp I. Somatochrome Nerve Celas.-Cells in which the cytophasm surrounds the mucleus completely and exhibits a distinct contour.
A. Arhyorhrome neree cells. The stainable substance in the cytoplasm appears to be arranged in the form of a network.

1. Type of emarkyochrome nerve cells.
2. 'Type of ampharkyochrome nerve cells.
3. Type of arkyochrome olfactory nerve cells, ete.
B. Shehorhrome nerece cells. The stamable substance in the cytoplasm is arranged in the form of stripes rmming in at similar direction.
4. Type of motor nerve cells.
5. 'Type of large stichochrome cells of Ammon's horn.
6. Type of stichochrome cells seen in the cerebral cortex.
7. Type of nerve cells in the spinal ganglia, ete.
(. Arkiyasticharlimeme merte rells. Of these, up to the present, only one type has been distinguished; this would now be classed by Xissl among the arkyochrome cells.
8. 'Type of Purkinje cells of the cerebellar cortex.
I). (iryorhrome nerve cell..

Group II. Ala Nerve Cbles not fabling in Grofpl.

A. C'yturheome merie cells. Only traces of a cell borly are present. The muclens is of the size of the muclei of ordinary lencocytes.

1. Cytochrome cells of Type α.
2. Cytochrome cells of Type β, ete.

[^49]13. C'aryorlurome nerve cells. Only traces of a cell body are present. The muclens is of the size of ordinary nervecell melei, and is in every case larger than the nuclei of the glin eells.

1. Caryochrome cells of TYype a.
2. Caryohrome cells of Type β, ete.

It is Nissl's belief that this classification will, withont being foreed, include all nerve cells which cim be found, although it it is not impossible that further study may reveal forms which will neressitate an extension of the number of types. He lays stress upon the fact that between the single types transitional forms exist, sometimes rendering classification difficult. Benda has urged this as an argument against the existence of definite types, but without, as it would seem, any sufficient proof. The justification of the classiileation does not rest solely upon the establishment of the existence of the single types of cell structure, but is based largely upon the circmastance that cells of a wholly definite strmeture are sitnated throughout the amimal series always in homologous localities. Any one who will take the trouble to stain nerve cells in different regions in different animals will be able to convince himself not only of the existence of definite types, but of their predominance in certain localities, and I ean give no better advice to the begimer and to the doubting than that he study the regions suggested by Nissl in this comection-namely, the ventral and dorsal horns of the cord, the ganglion cell groups in the thalamus of rodents, in the corpus mammillare, in the pons, in the red nucleas, and in the melens of Deiters.

This elaborate nomenchature recommended hy Nissl must not, however, be regarded as a permanent and satisfactory method of designating the varieties of nerve cells. On the contrary, it must be looked upon only as a temporary expedient. If, as is to be suspected, too much stress has been laid by Nissl upon the importance of his "stamalle substance," which we now have some reason to believe represents only a portion of the supply of food stuffs in the nerve eell, such a classification can searcely hope to stand the test of time. It would be as though an arehitect should attempt to classify houses according to their pantries and cellars, or an anthropologist to group men as types according to the contents of their stomachs
and i perhi
may
tions
longri staint trictio seque $p!y k \cdot n$ arran staine it is 6 not a arate terme deser chrom differ which velop nucle less d ple, is is rela ples, parts 'This but al ehron
and intestines-methods of catalogruing useful enough at times, perhaps, but scarcely to be lookel upon as ideal or permanent.

Nissl early pointed out that the single typers of nerve cells may under certain diremmstances show different staining relations; * the individual members of a given group of eells helonging to one type may be palely, moderately, or intensely stained. These differences appear to depend upon the concentration of the stainable substance in the cell body. : sl consequently designates the extremely darkly stained cells as pylnomornhous cells, or cells in which the stainable portions are arranged relatively most closely ($\pi v \kappa v o s$), while the very feebly stained cells he names \quad p!yknomorphous-that is, aells in which it is characteristic of the staming that the stamable masses are not arranged close to one another, but are tolerably widely sepparated by the non-stainable constituents of the cell body. Intermediate stages Nissl groups as purap!!/momorphous. Fleseh \dagger deseribed these appearances, speaking of chromophilic cells and chromophobic cells as well as transition forms, and attributed the differences to variations in the internal chemistry of the cells, which depended in part, he thonght, upon differences in the development, in part upon differences in metabolism or of function.

Nissl goes further, and mentions that not infrequently the nuclens shows modifications which correspond in greater or less degree to the staining intensity of the cell body-for example, in the apyknomorphous cells the unstained nuelear juice is relatively more abundant than in the pyknomorphous examples, in which, as a rule, the nuclear framework and the stainable parts of the nuelens generally are relatively more abondant. This holds, he asserts, not only for the somatochrome rells, but also, thongh in less degree, for the caryochrome and cytochrome cells.

A curious and puzzling phenomenon is met with in the socalled rhrommphile \ddagger nerve cells (Fig. 83). One sees often,

[^50]aleng with the other nerve cerls, single cells or small gromps of cells in .rhich the staimable substance appears to be evenly diflusen throughout the rell body, so that it is impossible to distinguish a stamable from an unstainable constituent in the coll. 'The explamation of these forms is as yet not entirely satisfactory. Nissl points out that they are always relatively smaller than pyomorphons cells. It is nemply alwas possible

Fig. 73.-Nerve cedl from the spinal rood of the deg in the st-called "rhromophile " rombition. This appearamere is at kast in the majority of instances an arteliaet due to the action of the reasents emplosed. The axome here, as in other wervereds, aperars to be free trom the stainable substanere.
to make ont in alcohol preparations, as I have hat many opportmities of ohserving, that at the periphery of the sections chromophile cells tend to be abundant, amil there is no donht, in my mind at least, that the majority of these correxponl to the well-known artefacts which are so common in the periphery of tissues hardened in aleohol. But the chromophile cells are not entirely confined to the periphery of the sections; they may occur singly or in little groups in almost any portion of the tissue; it has seemed to me, however, that even then they are
more larger situat alcoh natur that t ploye stance
presen ance them, only tl to hatr 1 fiurt
move ahmmant in the neighhorhoml of the homberosels or harger tissme interspaces, and it is not impossifle that in these situations they may represent artofacts due to the metion of the alcohol. Nissl himself dues not seem entionly clear as to their mature, but has recently expressed himself as of the opinion that they are in large part che to the ation of reagents emploged, although he does not deny that muder certain diremmstances they may have a pathologieal signifieance. For the

Fiva. 7t.-Mator nerve erll from the ventral hom of the sray matter of the spinat

 esperially in whe of the demetrites. 'The axome is mot shown. 'The burdern of

 graphice methot, the struetures at only one forlas show elearly.
present, howerer, inammeh as they vary so markedly in apparance and localization that no nomal ean be established for them, he suggests that in the stmly of pathological alterations only those observations are of value which we know for certain to have been made upon cells which are not chromophile cerls. I further study of these appanances is urgently nemed, and it
is to be hoped that cre long we shall have a clearer conception regarding their significmence.

In Fig. 74 is shown a nerve eell from the spinal cord of a dog. The photograph which Dr. A. (i. Hoen has kindly made for me shows very well the uppenrances to be made out under relatively low powers.

CHAPIER NII.

 STANCK" OF NISSL。

Nature of the "staimble subsianee" of Nissl-Views of Nisst, Bemda, Rosin, and Ifeld-Ibld's modifiention of Nissl's method and the results yidded by it-The intluence of chemicnl rengents and of digestive fluids upon the Nissl hodies-Studies of Mamllum mod Soott.
ls medieine, as in theology and philosophy, the subjects which are most interesting and most discussed are those a,out which we know least, and it is not surprising, therefore, considering the sematiness of our knowledge, that the nature of these stainable portions of the substance of which the cell body is made up shonld have been the subject of much polemical writing. Indeed, between Nissl on the one hand and Rosin and Benda on the other (the two latter not being, however, entirely in agreement), a battle royal has been carried on in a series of artieles in which too often personalities, tiresome to read and unworthy of the disputants, have been permitted to enter. Nissl has taken the gromul that for the present, at least, we have no right whatever to make any positive statement regarding the ehemical nature of these substances; he urges that for the time being we must remain content with a description of the morphological apparances met with in the specimens. His terms, "visible formed substance" and "orgamized substance," as applied to the stained portions of the cell body, introdnced with the idea that they are purely objective, are in reality not so, and are, therefore, undesirahle. To the term " stamable," if by this is meant "stainable by Nissl's method," there can be no objection. Rosin,* whose studies were made largely with the triacid stain, having in mind the principles of clective staining formulated by Ehrlich, compares

[^51]the gramules within the nerve cells-that is, the stainable sub)stance of Nissl-with the basophile gramules of the Ilastzellen of Ehrlich, and conchodes from his studies that the gramule in the nerve cell is to be thonght? more in a chemical than in a morphological sense. Bendi, ats regards the general significance of staining reactions, supports Rosin. Nissl has opposed Rosin's riew, and has urged, tirst, that not all basie dyes will stain the substances concerned, and secondly, that certain acid dyes will stain them intensely, oljections which he believes upset entirely Rosin's view hased on Ehrlich's oolor theory. It is certain that hasie dyes, like methylene wine and thionin, stain very beantifully the Nissl bodies; indeed, the method of Nissl depeuds nuon this quality; but Nissl contends that the term Besophilier should be used only in the sense in which it has been previonsly detined by Eholich, in which event it is improper, he thinks, to apply it to the stainable substance of nerve cells. Rosin separates the "gramules" in nerve cells from other basophile rell suhstances on accoment of their behavior toward the triacid mixture;*: mond Benclines to the view that the gramules in the nerve cells approach nearest in charater to the o-gramules of bhrlich. He asserts that in mamerous experiments with his method (tormol freezing) he has found in the most diverse orgims ronstituents of the cell body which behave, mot only tinctorially bat also morphologically, exactly as the stainable substances in norve rells. He describes them in glaud cells, liver cells, in cells of the pamereas, in the vells of sore sarcomatons tumors, in vertain eomertive-tissue cells, but esperially in normal and pathologieal iymph glands. Ramom y Cajal talsoasserts that the stamable substance of Nisol is not sperific for the nerve cells, as he has demonstrated its presence in eertain of the lencocytes and of the comective-tisme elements.

A llood of light hats been thrown upon this portion of our subjeet through the recent researehes of llans lleld. \ddagger Iteld hats studied the structure of nerve cells of different animals in a large mumber of diflerent regions with a modifieation of Nissl's method, which he hats himself devised.

[^52]speak in ${ }^{n}$ jures his st facts On th thin : Nissl: crons, that n stainal ordin: from : mosts slide is of Niss аquem ture m with : the oth of Niss, methow allowed then di for fron of the st quickly xine-col six por shrinks very sin culty. solution sithisfact this labe high ton by stain

Anot Mami, with a c then dit

[^53]His modibation, which I have nsed myself and of which I can speak in the highest terms, is as follows: The tissues are imbeded in parathin, notwithstanding Nissl's objection that imbeelding injures the nerverell structure. Held has fomul, and I can confirm his statemont, that with eareful parallin imbelding no more artefacts are prodneed than when no imbedding at all is employed. On the contury, it is possible with pamaflin to obtain sections as thin as one microm, or even thimer, whereas sectons prepared by Nissl's method are seldom thinner than from seven to eight microns, and it is by virtue of the possibility of obtaining thin sections that much of the increase in our knowledge of the nature of the stainable substances inside the cell hats resulted. In order to study ordinary pathological altemations in the cells, however, sections from six to twelve or even thirty microns in thickness atforl the must satisfactory results. Held fastens the paraflin section on the slide with dilute alcohol ; the staining fluid consists of equal parts of Nissl's solntion of methylene blue and somp and a tive-perent aquenus solution of acetone. The sections are heated in this mixture matil all smell of acetone has disappeared. (Held stains lirst with a solution of erythresin. the erythosin serving to bring out the other constituents of the cell berly, the non-stainable substance of Nissl ; for the study of the Nissl boclies alone this portion of his methorl can be dispensed with.) The sections, after staining, are allowed to remain in the blue solution until it has cooled, and are then diflerentiated in a one-tenth-of-ome-pererent solution of alum for from a few secomats to a few minntes, aceording to the thickness of the section. The specimens are then washed in water, delydrated quickly in absolnte alcohol, cleared in xylol, and momed in ben-zine-colophonimn. Held used as a lixing agent sometimes ninetysix per cent alcohol and sometimes pierosulphuric acid, ats the latter shrinks the protoplasm less. In using this fixing agent, however, vely small priees must be employed, as it penetmates with difliculty. It has been stated by some that staining with the blue solation for twenty-four homs in the cold gives resalts fally as satisfactory as when heat is employed. M. Bettmann, working in this laboratory, finds that artefacts are mueh more frequent when high temperatures are emploged. He has obtained his hest results by staining for twenty-four hours at a tomperature of $3 \mathrm{a}^{\circ} \mathrm{C}$.

Amother excellent moditication of Nissl's method is that of Mam, of Elinburgh.* Sections of sublimate tissurs are stained with a comentrated aquons solution of tohnidin blue. They are then ditherentiated, and may be comenter-stained if desired. The

[^54]whidin-blue method has also been used by von Lenhossék* with satisfaction, and recently Harris, of Philadelphia, \dagger has publishel :nt article in which he gives a number of interesting details with regard to his modilications of this method of staining.

Held finds in sections from one half of a micron to one micron thick that the tigroid bodies present an exquisitely gram-

Fici, 75.- (cill of ventral horn of ghay matere ot'haman spinti rorrl. (Ather Ildel.) 'The tissue' hats lower dixed in pierosulphurice acid atul imbedded in parathin. suere lions one micron in thickHess. Stained wilh erythrosin ame methylene bles. The Nissl borliess are seen to be madre up of massers of milute grannlos. 'The dine gramblation of the grombl sul) slance is also apparent. lar structure (Fig. 75). With high powers they are seen to be made up of masses of granules, some of the constituent gramules being very small, others very coarse. They have a ronnded form, and when not too close together appear in rows and radii. In some cells, where the constituent gramules are very close to one another, a gramular strueture is recognizable only in extremely thin sections with the aid of strong immersion lenses and favorable illnmination. But Held maintains that in reality all are composed of gramules. In some cells the gramules, instead of being grouped in clumps, appear to be more or less evenly distributed thronghout the whole of the cell body.

In many instances with the erythro-sin-methylenc-blue stain the gramules are not in contact with one another, but are imbedded in a coagnlumlike mass which stains violet and is easily distinguishable from the bright blue of the gramules proper and the red of the gromid substance-that is, mostainable substance of Nissl-lying between the tigroid borlies so that Held deseribes the tigroid bodies as being made up of two constituents, one gramular, the other coagulamike, with sometimes a thirl-namely, the vacnoles.

[^55]Held describes in detail his study of fresh ganglion cells in physiologieal salt solution and in vitreous humor. Execpt the flat gray glistening moleolns, with sometimes a vacuole and aecessory mucleoli, and a homogeneons transparent mueleus limited by a narow, doubly contoured membrame, nothing could be made out. I few dark gramules only could be seen within the protoplasm, even in the most farorahle cases, and he asserts that when he worked quickly the protoplasm rematined almost absolntely free from gramules. The tigroid bodies are invisible in fresh cells. Hell treated the fresh cells with various reagents in order to make ont, if possible, the aetion of swelling and fixing solntions upon the structure. He fommd that on adding methylene bue in dilute solution he obtained a result which led him to think that the bue act. upon fresh tissue as a fixing agent at the same time that it exereises a staining influence.* With other fixing agents Held obtained dark masses after vacuolization, which he thinks represent the tigroid bodies. He believes, therefore, that we have no right to think of the tigroid bodies as of an organized natture or as representing preformed cell organs. Basing his experiments uron those of Fischer concerning the mode of action of fixing agents, he thinks that the tigroid bodies represent simply substances

 chens in the mblait. Acriom thre microns thick. The tissue hats been rexpmas to the digestive ation of : mixture of pepsiu and hydrochloria: acid at 40" (C. for twelve lioms. The ground sulstance hats beren dissolverd bint and the Xisis lowlia's alone remain. (.Aftor Held.) precipitated from solution by the action of the fixing mixtures. They are not visible in fresh protoplasm, but dark masses cor-

[^56]responding to them are obtained on the addition of fixing reagents.

Held modertook a most carefal and exact chemieal study of the gramber in alcohol tissues. Thus, he found that the tigroid bodies are insoluble in dilate and concentrated mineral acids, in acetic aeid, boiling akcohol, cold or boiling ether, and in ehloroform. On the other hand, they are easily soluble in dilute and concentrated alkalies. With pepsin-ind-hydrochoris-acid digestion he found that the ground mass of the protophasm vanished and that the tigroid bodies alone remained undigested (Fig. \%i(i), the reverse of what oecurred on treatment with lithimm (Fig. ©i). The tigroid bodies yieldel no reaction with Millon's or Adamkiewiez's reagent. Held obtained, however, slightly positive results with Lilienfell and Monti's microchemical test for phosphorus, and a considerable quantity of the gray matter of the spinal marrow after

Fie. $\mathbf{7}$. - Nerve rell from the gray matter of the lombar come of the ons. Aleohol tixation. Treatmont for fond days in fonerentrater aglerobs solation of lithillm eabomate. Tha Nissl bution have bern disolved ont, alld the gromad sul) stance alone rematins. (.Vfor Iled.) digestion with pepsin and hydrochloric acis examined hy Siegfried, of the physiological laboratory of leipsie, showed the presence of phosphorms. Held comelmes, therefore, from these varions reactions, that the Nissl bodies belong to the gromp of the nucleo-allmmins, a view which agrees with the investigations of Halliburton, who fomm in the gray matter a mueleo-allommin which coaguated at from 55° to $1 ; 0^{\circ} \mathrm{C}$, and which contaned as much as 0.5 per cent of phosphorns. We have here in Baltimore tested the tigroid masses a mumber of times for the presence of iron by Nacallum's methorl, always with negative result. Warring-
ton, tinet
tom, too, has applied de same test, but does not ubtain any distinct reaction for iron.

Macallum * himself, however, appears to have demonstrated the presence of iron in the substance. In his address before the physiological scetion of the British Medical Association, held in Edinhurgh in July, 1898, he referred to some investigations undertaken by his pupil scott, mentioned that iron and phosphorus exist in the substance, and stated that the Nissl spindles of the ventral-horn eells resist peptic digestion (as Held had shown), but that they are slowly digested with trypsin. He conelndes accordingly that they are of the nature of a nueleo-proted. Macallum has developed a method for the histological detcetion of phosphorus which seems to be more exact tham the procedure of Lilienfeld. Instead of using pyrogallie acid as a reducing agent on tissues previonsly subjeeted to treatment with acid solution of ammonimm molybdate, Macallum employs the hydrochlorate of phenthydrazin, removing the excess with water. The lecithin may be removed from the tissues before applying the test by placing the slide, with section attached, into a Soxhlet apparatus and extracting with ether. By this method the portions of the tissue containing phosphorus assume a dark-green color.

Held believes that these nucleo-alhmmins, althongh invisible in the fresh protophasm, are present in it in solution, and that they first take the form of Nissl bodies when the protoplasm is subjected to the action of fixing reagents. In further support of this view he found that with the different kinds of fixing reagents and with varying concentration of the same reagent entirely different histological pietures of the tigroid accumulattions and of the masses lying between them could be obtained. \dagger

[^57]If these investigations of Held are confirmed-and the aceuracy with which this work has heen conducterl, as well as that of his previous contributions, leaves but little romm for doult mon this point-we must admit that his suggestion that they yiek an index to the internal metabolism of the nerve-eell protophasm is entirely reasonable, and that through fixation and staining are can ohtain an idea of the stock in trade, as it were, at the moment inside of the nerve cells.

The relation of the stainable substance of Nissl to the nerve cells of the ventral horns has been studied by Macallum and scott in embryo pigs. At a very early stage the ventralhorn cells are found to consist almost entirely of nuckens rich in chromatin, the protoplasm of the eell being but poorly developed. It a later period the cell body clongates, the mucleus becomes less rich in chromatin, and close to the muclens a "cap" of freuliar nature, stamable with toluidin-bhe, makes its appearance. Sill later in development this stainable substance seems to be miformly distributed thronghout the eytophasm, and finally the aggregations of the substance in the form of the spindles met with in the adult are eneomentered. Macallum and Seott, therefore, are of the opinion that the Nissl bodies are derived from the melens of the nerve cell.
 derstands the microseopie jieture of a nerve cell present in the tissue of an mimal killed in a presiribed way and afterward treated hy a definite method of preparation. Ite thes dees nol eomem himself with the way a healthy nerve cetl of lowing or deal tissue looks, but ever bears in mind a certain constant-mmely, the "equivalent form" of the hathy nerve cell of the dead tissue. Any deviation from this normal "erfuivalent pieture " of the nerve cell wond indieate some alteration in the latter, and it is in this way that the alterations under physiohgieal and pathological conditions can be described and juiged.

CHAP'TER XIII.

 0\% NISSL.

Nature of the "mstamble substunce" of Niss- Deidephile renction of Rosin-Comparison with sureoplasm (Benda)-Fibrils in the "unstainable substance "-Becker's findings in ventral-horn cells-stadies of Apaithy and Bethe-(iolgi's endoeelhar network-Held's ohservations with erythrosin staining-'The structure of axones-The a xosponginm -Neurosomes-Studies of Nuntemery-llymetheses concerning the condneting substance-The presene of eentrosomes and atraction spheres in nerve cells-Extermal retientar covering of perikaryon and dendrites.

If we are left in doubt, then, as to the exant mature and signifieance of the portions of the nerve-cell body stamable by Nissl's method,* we are in a still greater dilemma as regards the character of the non-stainable part, the visible unformed substance of Niscl. While Nissl himself lays great stress upon the significance of the stainable substance, he grants that the non-stainahle substance, or ground substanee, \dagger is probably just as important, indeed, possibly of murh greater consequence. The quantitative relations of the two substances vary enormonsly in different nerve cells, almost as much, perhaps, as do their position relations. In the large motor cells of the ventral horns, for example, and in similar cells in the formatio reticularis, the stamahle substamee of Nissl preponderates ly a comsiderable amoment in the l'urkinje cells of the cerebellum, in the pyramidal cells of Betz, and in many other nerve cells, it is the gromod substance which is often by far the more abmonant.

Rosin's studies comvinced him that the gromnd substance of nerve eells had a distinct elective affinity for acid dyes; he therefore speaks of this portion of the rell bory as acidophile as contrasted with the basophile constitnent, hy which he means the stainable substance of Nissl. The majority of investigators,
but hy no means all, are agreed that the non-stainable substance of the cell booly is elosely ullied to, if not identical in structure with, that of the axome and of the axone hilloek. Others, however, look upon the axone as a specifically differentiated portion of the ganglion cell body, differing entirely from the rest of the eytoplasm in structure. Benda has advanced a number of interesting hypotheses in this comection, comparing the histogenesis of the nerve cell and its processes to the development of the striped masele fibre. The cells which give rise to muscle fibres, the so-called sareohlasts of Marehesini, eontain a protoplasis which, in part, beeomes differentiated to form the musele tibrils, but in small amoment persists as the so-called sarexpiasm of adult muscle. Benda deseribes the neuroblast of His as being made up of protophasm and of paraplasm,* the latter belonging, according to him, to the non-stainable portion of the nerve-cell body. Benda thinks that the protoplasm of the nemoblast in the conrse of development is in part differentiated into a fibrillary substance constituting the nerve fibrils of the axone as well as portions of the cell body and dendrites, but in part remains undifferentiated, even in the fully developed nerve cell, as basophile nemroplasm, quite amalogons to the surcoplasm of musele. Nissl has objected that these views are purely hypothetical, and states that the developmental course of a neuroblast can not be bronght into analogy with that of a sarcoblast. Apathy, when describing his "nerve cells" (as opposed to his "ganglion cells"), states that they proiluce neurofibrillie just as musele cells protuce musele fibrillie. He also compares "nerve cells" with musele

[^58]rells
more
appea
highe:
have
rells in their histogenesis, and believes that a " nerve eell " is no more capable of the highest functions of combluction before the apparance of the nemofibrilla than is a masele cell of the highest functions of contraction before its pecular fibrilla have been dilferentiated.

One thing would seem certain, if we have to deal in nerve cells with a fibrillary strueture at all, the fibrils must be songht within the "non-stainahle " portion (in the sense of Nissl) of the cell. Beeker* has asserted that he has staned electively with hematoxylin-copper the substance of the nerve cell which remains unstained by Nissl's method, and finds that it consists essentially of actual nerve fibrils. It represents, he says, the direct continuation of the primitive fibrils of the axone into the cell body and the dendrites, an idea which upproaches elosely to that adranced by Max Schultze. Beeker's studies were made upon the motor cells, and Nissl has recently agreed that the existence of the fibrillary nature of this part of the eell body has been proved for these cells. He says, however, that Becker's mothod does not suffice for the decision of the question in all varieties of nerve cefls, and that the nature of the structure in cells other than the motor cells mast for the present remain undeeided \dagger The wonderful demonstrations of Aprithy of curiously complex fibrillary relations in the nerve cells have already been referred to at some length in Chapter VI, and need not he deseribed again in this phace. We await with considerable eagerness the apparanee of A pathy's seeond commmieation, in which he promises to compare his own findings with the observations and opinions of other investigators.

Stimulated by the results attained by Apathy, Bethe \ddagger has attempted to demonstrate the fibres in the cells of vertebrates and especially in human nerve cells. The method of A pathy does not appear to yield very satisfactory results when applied to the nervous system of higher mammals. Bethe, however, hats

* XX. Wanderversammhang der südwestd. Nemologen und Irreniarate in Baden-Baden am 25. nud 26. Mai 1895. Arehiv f. Psychiat. n. Nervenkr., Berl., Bd. xxvii (1805), S. 953.
\dagger In a still later article, Nissl, on the ground of the preparations of Apathy and bethe, aceepts a fibrilhary structure for the nerve eells in gencral.
\ddagger Bethe, λ. Ueber die Primitivfibrillen in den Ganglienzellen vom Mensehen und anderen Wirbelthieren. Morphol. Arb., Jema (1898), Bcl. viai, S. 95-116.
developed a method, the details of whieh are not yet published, which stains the fibrils beatifully, even in the nerve eells of man. The principal points in the method are as follows: The Nissl bodies are first removel from the sections by treatment with ammonia, in which they are soluble. Later, the sections are treated with hydrochlorie acid, and afterward with molybdie ated followed by toluidin-bue. The fibrils by this method stain of an intense blue color.

Bethe has been able to demonstrate the fibrils in difterent parts of the central nervons system in both cells and fibres ats well as in the peripheral norve fibres. In the axones of the peripheral nerves the fibrils appear distinctly staned, with delicate smooth contour roming in a somewhat wavy conse and nearly parallel to one another. Single fibrils am be followed for a distance of tifty microns and farther. They seem to be imbedded in a homogencons ground substance, Bethe can find no indieation of the honeycomb structure of Bütschli. In longitudinal sections no tramserse fibrilta cam be made out connecting the longitudinal fibrils, and in cross sections of the axones the fibrils appear as isolated points in the homogeneous substance. The fibrils are more separated from one another in the axones in the peripheral nerves than in those inside the central nervous system, appurently owing to the presence of relatively larger amomets of the homogencous substance.

The filurils inside the nerve eells are so distinctly stained that Bethe is much impressed with their independence. He does not think that they are actually a part of the protoplasm since they seem to he so markedly differentiated from the latter. They oecur everywhere in the unstanable substance of Nissl. Bethe differs from Apaithy with regard to the relation of the fibrils to one another inside the nerve cells; whereas Apaithy deseribes the formation of tine intracellular plexnses and networks through multiple anastomoses formed by the subdivisions of the fibrils within the eell protoplasm, Bethe is of the opinion that the fibrils do not unite at all inside the cells, and that the close perinuclear plexus which often resembles a network is in reality only a feltwork of isolated fibrils.

Thus far, Bethe has studied chiefly the Purkinje cells in the cerebellum, the pramidal cells in the cerebral cortex, and the cells in the rentral hom and in the dorsal hom of the spinal cord.

Ilis statements with regard to the fibrils in the dendrites and axomes are of the deepest interest. He finds that not all the fibrils entering by means of dondrites into the eell horly pass out by way of the axome; on the contrary, they are just as likely to pass out of the eell body by way of amother dendrite, and, what is still more interesting, Bethe asserts that he has followed fibrils along one branch of a dendrite into another brameh of the same dembrite, thas mot entering the merve cell at all. Again, in the pyrmmilal cells of the cerebral cortex he finds that most of the fibrils run longitudinally throngh the apieal dendrites and cell body, lut they are evenly distributed to all the processes at the base-that is to saly, to the demdrites there as well as to the axone. 'The lateral dendrites of the eell are conneeted by means of amother series of fiboils with one another and with the axone. Bethe is inclined, therefore, since he regards the fibrils as the comducting substance, to discount the general opinion that the nature of axomes and alemdrites is fundamentally different. As von Lenhossék says, howerer, in his critigue * of Bethe's paper, it is by nomeans proved that the interfibrillary substance is excluded from the rondurtion. Von Lenhossék emphasizes the fact that the marked differences between the axome and the dendrites in Golgi and Nissl preparations can not be withont definite physiological significance. If the fibrils alone conduct, Bethe's studies would upset entirely the widespread view concerning the rellalipetal chameter of dendritic conduction. But this view of an exelusive eollulipetal eomdnetion for the dendrites and exclusive cellnlifugal conduction for the axones, has, in my opinion (ef. Seetion V'), always been fombded npon a totally insufficient hasis of experience, and it would not be surprising should a conduction in hoth directions be proved, whether the views of. paithy and Bethe are or are not in accord with the facts.

The statement is usually made that Colgi's mothool is inalpplicable to the study of the interion of the norve cells. As this volume is going throngh the press, Golgi \dagger publishes a description of a fine network inside the cell body of the Ponkinje cells demonstrable by a slight morlification of the osmo-bichro-

[^59]mate procelure (F゙ig. is). Similar networks have been seen by Verati, an assistant of Golgi, in the large nerve cells which folgi believes give oricgin to the axomes of the nervis trochlearis. Golgi states that he can say

Fig. тs. - Vudocrolular metwork within a l'urkinje ecll of the curvellom of Strixe thememer. propared ly a "rojuvenespence" morlitication wit the rapial (folgi methorl. (Altar (c) (bolgi, drels, ital. de hiol., Turin, I. xxx, leas, 1. (2.4.) nothing concerning the significmee of the endocelhalar network, but he is inelined to believe that his findings thas far are only a partial manifestation of finer and more complex structures. He feels sure, however, that this network has nothing in common with the classical description of Max schultze and his school; that it has no analogies with the pictures diseemible in Nissl preparations, and that it offers no correspondence with the interesting results of Aprithy eoncerning the nerve cells of invertebrates.

Held, in :uldition to his studies of the stamable part, has also turned his attention to the gromnd mass of the protoplasm of nerve cells; the full results of his researeh have been published in an article of nearly one handred pages, and beantifully illustmated with lithographic phates.* He states that in sections fixed with alcohol, pierosulphurie acid, or chromic acid, it has a distinctly reticular appearance. In very thin sections he can make ont gramules which are extremely fine, staining on the limits of microseopic perceptibility. No fibrille could be observed except at the wedge of origin of the axone and in the more cytodistal portions of the dendrites, in which the tigroid masses cease to appear. Here he conld make ont, stained bright red in erythrosin, a fine longitudinal striation along with an arrangement of extremely fine gramules in rows and pressed together, ats it were, so as to give the appearance of fibrillae. Held helieved at first that he had before him the fibrils of Max schultze. On nsing dilute sohntions of

[^60]rher
not
foull
toxy
hont
and
Schit ming
cept
corre
close
nervi
belie
mark
plasm
agent
tions
emplo
applic
he hat ences laloura dues stillice phile. Fische come pend differe colorin when purts; dyes h stituen
chromie acid, howerer, mond of ammonimm biehromate, he did not ohtain fibrils, lout in the thinnest sections shw distinet formlike structures; espectally on staining with iron-hamatoxylin withont any subserguent differrontation, he ohtainem honeyromb pictures which correspond entirely to the pietures and descriptions of Bütschli. Held, in opposition to Max Schultze and II. Schaltze among the ohder histologists, and Flemming, Benda, and Dogiel of the present time, is inclined to accept Biatsehli's view that the fibrillie of the older ohservations correspond to longitudimal layers of honeyeombeeds which lie close over one amother ; Held will mot grant, however, that the nerve edll actually passesses a homeremb strurture, since he believes that fixing agents with which it appears exercise a marked vacuolizing influme mon living nervered protoplasm.* He has worked with an extensive serios of fixing reagents, including, in addition to the weak bichromate solutions used by Schultze, the lixing fluids which Biitschli has amployed, and also the majority of the fluids new generally applied in the teehnigue of modern aytology. The results he has obtaned lead him to the wiew that the varions differences met with in the deserpiptions of investigators in different laboratories are in large part due to the fixing factor. Nor Hoes Held aceept Rosin's view that of the two main sub)stances in nerve cells one is acilophile and the other basophile. Relying rather upon the recent researches of A. Fisehere, \dagger and of the Italian investigator (ialeotti, \ddagger he has come to the conclusion that the so-alled eleative stains depend more upon physical factors than upon purely chamical differences. In the first place, closely arranged gramules ahsom (o) oring matters much more intensely and hold them longer when subjected to differentiating thaids than loosely built parts; and secondly, the "covering power" (Incrkherf") of dyes has to be eonsidered, since through covering-over comstituents, stanings wheh are really only apparent can result.

[^61]Methyleme blace, for example, is known to have a very high cowring power.

Yian diesom, van dichuchtom, Ramon y (injal, and ohors assert the existeme of a distinct retientom which extends throughoul the rell booly and all its proedesses (demdrites alld axomes). There may be, they think, a ditference betwern the retienhm in the dendrites and that in the axmmes. Filling up the interstieces in the retienhm and bathing it is the softer and more thad part of the nerve erell, the well salp. Vian (iasom mports some interesting axperiments made on the nerve aeds of the corkroad, in which he has fombl it fossible to sume ore out, the cell sap, leaving behind anty the retoreticulam. He fows mon the cevoreticulam as the contrate tile part of the nerve coll protoptasm, and helieves that, extonding into the dendrites, it may enter into the formalion of

Fivi, a!!- ('ross sedions of (wo axomes lions the Hervits Irigernintis of letromy:on tlmintilis.

 is surrombled lis a por riphrial liver al mon-
 the gemmules present on many of these processes.

The riews whidh have been held rogarding the strutture of the axome are as divergent as these romerming the strueture of the nom-stanabla portion of the nowe cell generally. The idea that it possesses a thbillary structure, suggested by hemak and so strongly urged he Max Shhultze and Fre. Schalza, Fugelmann and von Källiker, recoived important comtirmation in the researches of sehiefferderker.* This histologist fomm, in the perfect? fresh nere fibres of petromyzon, what he regards as mombed evidenee of the existenee of tibrils inside the axome (Fig. f!). The a ames of the merve cells of this amimal romsist, aceording to : ichiofterderker, of two essential romstituents, the axone fibrils and a homogromeoss sulstamer, the axoplasm or memroplasm. In petromgan the asome tibrils teme to rom in the centre of the axome, a large area at the periphery of the axome being entirely free from tibrils. This prepheral zone

[^62]comsis the ti
(onnsists entirely of nemoplasm, whirh also extonds in among
 (asy to make ont in the axones of 'yrelostomes able molluses (Rawit\%).

Subserpent researehes mpon highor lurms make it mot improbable that a similat strmeture holds in them. It would serom, however, that in medallated nerve bibes the axome tibribs are more evenly distributed thronghont the whote axome, the peripheral laver of pure nemroplasm being absont allugrother or

 in boll lomg amb crons wolliol.
many histologists, howerer, who rofise to helieve in the existence of actaal fibris inside the axomes of higher animats. 'The doetrime of the fibillany mature of the axome and mastamable portion of the protoplasm of the merve cell has reently reaceived support from the stmlies of Lagimo *an of Levi.t 'The former fow, in his studies of the nerve erell maler patholoriad combli-tions-for example, alter prosoning wibl lead ame arseniclimfs that the fibrils may hoome very distinct inside the nerve cells. +

Hedres desoription of his lindings in the axis eylinders of merve cells is lengthy am: thetalod. With a laroe sorios of

[^63]fixing reagents, among which van Gehnchten's mixture (fio parts alcohol absol., 30 parts chloroform, and 10 parts acid.

Fig. 81.-Axis eylimber in lomg and rross section from al spinall sanglion in the limbar region of at adult dog. (After lleld, Areh, ir, Anat. it.
 4, 'Tilf. X, Fig. 5.) Sublimate and acelome tixation; pamathen seretion 1.5 microns thick. Staning with arythrosia methyleme-blue. Scorosomes and axosongitm are dearls visible. acet. glac.) yielded the most constant and satisfactory results, Held concludes that there can be no fibrillary structure of the axis cylinder if by the term fibrils one moderstands isolated threads rmming near one another. Instead of these, Held finds always a networklike aplearanee which in his thimest sections is seen to be extraordinarily delieate and long-meshed. In this meshwork, which he designates the axospongimm, are to be seen certain gramules somewhat variable in size, thotegh always very minute, which lie generally at the nodal points of the network, thongh sometimes in the spaces within the walls of the vacuole-like cavities.

Nuctei of celts of shealh.

Fig. 88.-A Ame hillow of a spinal ganglion ent of the dag. (After Meld, Areh,
 limate-acetone: parallinsection 1.5 midroms thick; staning with arythrosin methyme-blue. The Nissl bodies, the mentosmes, the eytospongimm and the axospongium are visible. 'The arrangement of the mentosmes in rows and the lomgitudial mesh tormation of the axnemogim is partienarly distinct. The alleration in the appeatane of the meshwork where the axone hillock groes ower into the bexly of the rell is distinetly shown.

These gramules-Iteld calls them neurosomes-are not, he states, regularly distributed either in longitudinal or cross sections of an axone (Fig. 81). The nemosomes appear to
have been observed before by Biatsehli, Altmam, and others, though but little attention seems to have been paial to them. In the axone hillock the neurosomes present constantly a ratially converging gromping (Fig. 82). They seem to be extraordinarily momerons in the terminals of many axones, for example, the mossy and climbing fibres of the cerebellar cortex, in those ending on the ventral horn cells (Fig. 8:3) and in the terminals of the axones of the peripheral olfactory neurones. Inasmuch as in the gromml substance of the dendrites and cell bodies of the nemrones the nemrosomes are much less numerous, a ready methorl of distingnishing the protoplasm of teminal axones in eytologieal preparations from that of other portions of nemrones which lie in direct contact (or concrescence) with one another is afforded us.*

Montgomery, t in an able paper, has denied the existence of fibrillary struetures in nerve cells. He smpports the dow trine areording to which hyalophasm and spongioplasm are the two principal constitnents of protoplasm.

Flemming \ddagger emphasizes again that he hats admitted that his fibrils may be nuected by oblique fibres rmining from one to another. He maintains that in any case the longitudinal fibrillation is always moch more pronomeed, and that it can often be seen when nothing in the way of a transerse fibrillation is discemible.

Various attempts have been mate to comect the function of conduction throngh the protoplasm of the nerve cell with one or mother of its finer histolugieal constitnents. I paithy ${ }^{\#}$ especially is convinced that his "neurofibrils" represent the essential amatomical hasis for conduction, and he constantly refers to these fibrillae as the conducting element (duss leitrme blement) in the nervons system. Bethe shares this view.

[^64]

It was and is still Lexdig's * opiaion that the "hyalophasm" of the nerve roll which fills up the meshes of the spongiophasm represents the comdurting suhstance, a view which, in the main, was supported by Nimsen, though the Aretie explorer assmed that the hyaloplasm is arranged, both in the axis cylinder and in the boly of the nerve rell, in the form of "primitive tubules."

Other investigators assmme that it is the spongioplasm which is active as the comducting agent-an opinion which would aceord well with the ideas of MacCallum \dagger with regard to the contractility of muscle.

The hypotheses of Leydig and Nimsen have been vigoromsly opposed by Bütsehli and by P'flueger. Bïtschli himself is strongly of the opinion that the framework substance of the nervecell protoplasm, his Waberyeries/, must be considered to lee the histo'ogical substratum of nervous conduetion, since it alone extends continnonsly through the axis cylinder, and is acoordingly the oniy structure in a position to underlie the phenomenon referred to. He brings forward in favor of his view the statement of Phlueger that nerve fibres can be excited only by meams of currents directed longitudinally, not by currents directed tramsversely.

Held argues that, in view of the possibility that the so-ralled foam structure may be am artefact, the to the fixation of the protoplasm, it is premature to assme that the meshwork sen in fixed specimens is necessarily the conducting substance. Ben if it does correspond to the structure of living protophasm, it would be diftionlt to deny for the delicate tramserse conneetiag bands the possibility of a function freely granted to the longitudinally ruming coarser beams of the meshwork. Held is inclined to look upon the gromud sulstance of the protophasm, ss a whene, as aceounting for the function of the propagation of stimuli, thongh he does not deny the possibility of the temporary existeme of sections of this better or worse adapted for the function depemdent upon alterations in vital chemical constitution.

As a matter of fact, ure dro wol homur the exact histolugiaal

[^65]mechanism in the protoplasm of the neurone maderlying the conduction of what we call nerve stimuli, and we should be willing to confess it. If we form hypotheses concerning it, let

Fig. 8.- Centrosome and attrartion sphere inside a spinal wanglion cell of the frog. (From Wiknom after vom Lenhossoks.) The athation sphere is seen situated in the extoplasish mot far from the muelens. Inside the attaction splere is shown the simgle rentrosome, which comtans sevezal rentriokes. us label them distinetly as such, and take care not to grow, throngh familiarity with them, into the idea that our hypotheses are actually proved facts.

Von Lamhossék* hasbrought the nerve cell into still closer agrecment with the general cellular structure. He has beem able to demonstrate within certain of the spinal ganglion cetls (Fig. 8 t) of the frog the presence of a definite centrosome and attraction sphere (Centrosph(ïrre). Bühler \dagger subsequently described a centrosome and attraction phere together with archiphasmie radiations in the nerve cell of the brain of the lizard, while Dehler \ddagger has demonstrated pole corpuscles and attraction spheres in the sympathetic cells of the frog. Up to the present time these structures, to which very important functions have been attributed by many eytologists, have not been demonstrated in the nerve cells of mammals, with a single exception to be mentioned immediately, but it is not improbable that the evidence for their existence in these also will soon he forthcoming. I find in the second portion of Kölliker's text-book, which has reeently been published, that he has found centrosome and attraction sphere in a giant pyramidal cell of the posterior central gyrus of a

* von Lenhossék, M. Centrosom und Sphäre in den Spinalganglienzellen des Frosches. Areh. f. mikr. Anat., Bomn (1895), Bd. xlvi, S. 345-369.
+ Bühler, A. Protophasma-Structur in Vorderhirnzellen der Eidechse. Verhandl. d. phys.-med. Gesellseh. zu Wïrzb., n. F., Bul. xxix (189\%), S, 209252.
\ddagger Dehler. A. Beitrag zu Kemntnis vom feineren Ban der sympathischen Ganglienzelle des Frosches. Areh. f. mikr. Anat., Bom, Bal, xlvi (18!\%), s. 24-739.
radiati
(relate that t puscle of divi
thirty-year-ohd man.* Sehaffer \dagger has also lately deseribed eentrosomes in the ganglion cells of cyelostomes, MeClure + in molluses, and Lamaker ${ }^{\#}$ in Nereis.

Margaret Lewis || has describel centrosome and sphere with radiating fibrits in certain giant nerve cells of a new amelid (related to ('lymrn'lla tinrquitu). She does not think, however, that the evidence yet sutfices to prove that the central corpusele and sphere of nerve cells and the centrosome and sphere of dividing cells are equivalent structures.

The significance for the cell eronomy of the centrosome and attraction sphere has been the subject of considerable controversial literature. While some histologists would make the rentrosome the areh power, the seat of govemment, as it were, of the cell, and would give it precedence even orer the nudens, others, with Watase, look upon centrosomes merely as moditied cytomicrosomes.

It minst be confessed that in view of what we know of the relation of the centrosome to the phemomena of mitosis a ruism Witre for this boty within the nerve cell is at first thought ditticolt to find. It might be assumed, of course, that it has remaned over from the last cell division. If the old view were correet, that ganglion eells fully formed never divide, little reason rould, perhaps, be found for the persistence of the centrosome. The stmdies modertaken of late make it neecesary, howerer, to hesitate before denying the possibility of division of atult nerve cells by karyokinesis; in such cells the centrosome could be of its ordinary significance. There is 110 ground as yet, howerer, for the statement that the centrosome possesses
*Källiker, A. Handheh der Gewehelehre dres Mensehen. Bd. ii, Leipz. (1*9\%), ふ. $81 ?$.
tsemfer. J. Lbber einon nemen befund von Centrosomen in fanglienmad Ǩnorpedzellen. Sitzungsb. d. k. Akad. d. Wissenseh., Math.-natmew. Cl. Bd. © v , Wien (1890t), S. 21-24.
 Sheres in the Ganglion C'ells of Helix Iomativ. with Remarks upon the Stractura of the ('ell Body. Princeton ('oll. Bulletin, vol. viii (1896), No. 足, pro:3s-41.
\# llamaker, d. I. The Nemons System of Nereis virens Silrs. A study in Comparative Nemrology. Bull. of the Mas. of Comp. Zool, at llarvart Coll., vol. xxxii (189\%), No. 6, pp. 89-124.
$\|$ Dewis. Margaret. Centrosome and shore in Certain of the Nerve Colls of an invertebrate. Anat. An\%... Jena, Did. xit (1896), S. :991-299.
no functions other than thase comermed in the division of thre erll; indeed, it may have to do in many instances with motor attivities of cedls imlepembent of those involved in mitosis. Besides, the existence of erntroseme and sphere in many cells, which are not dividing and which exhibit no detinite phemomena of motility, make it likely that these structures are of valne to the eell in ways other than those hitherto suggested. The eentrosome in nerve eells, is in other rells of the heoly, may appear solid or it may show numerons eentrioles.

In clesing this chapter reference may also be made to the peroliar and detioate invertment of the cell hodies amd dendrites of neurones tirst deseribed by Golgi * in his article on the spinal

 - pilal cord otia (mat.
cord in 188., published in the Encyelopedie medicale. According to the Italian olserver this investment presents varions appearances; sometimes it is a retienlar structure; sometimes it forms a contimmos homugeneons layer; sometimes it appears

[^66]F'lli. s6.-P' "1t :1x.ma thirk. . Ablh., s mulletis whote a of thar 1 Hall. network ularis 1 at work man lurematos. 1101work learis w ":an! b risible.

 wharis lateralis (Deiterst. Held heliowe that the thiek enings in the uet-

 "and band the laryerswellings of the theats of the notwork atre elearly visible.
as a mosaic of delionte seales; not infrequenty it presents markinge which probally correspond to the imprints of nerve filmes on wher times impinging on the nerve cell. 'The retienlar variety serms to be most common; it may invest the whole of the eell hody and be followed out upיn the brandhing den-

A

B

drites as far ats the smblivisions of the secomd and third order: upon these banches, however, it loses its reticular nature in order to assume the chatacter of a homogeneons layer. (iolgi's illastrative figure is reproducel as Fig. 85. As to the exact mature of the substance conecrned, Golgi speaks vaguely, suggesting that it may be of the mature of nemro-keratin, thongh his digestion experiments with trypsin and gastric juice are not
decisive. Simitar investments have bern described by Laguro* and by Martinotti. \dagger

Hedd \ddagger describes and pietures (Fig. sif) peridellular and peridendritic networks demonstrable hy Golgi's method, which he betieves are formed by amastomosis of the smbdivisions of the fine axones terminating there. In what relation these stand, if any, to the pericellular investment of Colgi, further work must thetermine. Bethe by his method also finds pericellalar networks forming "stockings," as it were, drawn over the perikaryon and the demdrites. These are illustrated in Fig. si.
 Monitore Zool, fiaronze, vol, vi ($18!5$) .
\dagger Martinoti, (: sin aloune particolarita dede cedlale nevose dal mi-
 Acomel, med. d. 'Torinu, an. dix (1896). French 'ramsl. in Areli. itul. de biol., Turin, t. xxvii (180\%). [1]. 20.3. .2.54.

 Sujul. Bt., S. 2デ~-31~.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CHAPTER XIV.

SUMMARY OF OUR KNOWLEDGE ['POS TIIE IN'JERN.MI STRUC'PLRE OF NELRONES.

Contlicting views regarding eoll organization in gencril-.hmmary of the existing state of knowledge concerning the internal structure of nermrones.

I'r must be obvions that the idea entertaned by any given investigator regarding the ultimate structure of the nerve cells is eolored deeply by the opinion which he holds as to the nature and strneture of protoplasm in general. Until some agreement has been arrived at among eytologists regarding the latter, we eanscarcely hope for a manimity of opinion concerning the former. It is not necessary here to disenss in detal the diverse theories bearing mpon the nature of protophasp. A whole series of them-the micellar theory of Nageli, the network theory of Frommam, the threal-framewne theory of Flemming, the fom or honeycomb theory of Buitsehli, the phanome theory of Wiesener, the biohast theory of IItmamm, as well as many others-have been fully ontlined and compared in several places.* The majority of histologists and zoologists ean not conceive of the cell is the elementary organism of the body, but postalate the existence of mits or clementary organisms much smaller than cells. \dagger 'Those who are interestei in ievelopmental

* (ff. Lintwig, 0. Die Zelle und die Gewher dena, 14:3: : ('mon, J. B.,
 ghobules polatres che\% les hatmeiens. telluld, lierre and hourain, 1 . xit (1897). Il 1 . 189-295: and especally for a trief but thorough eritieal review cousult Wiahleyer. W. Die neueren Ansiehten ïberden han mud das Wesen der Zelle, Deusehe med, Whasehr.. Leip\% u. Berl. (1s90), xxi, 803 : 82π; 764; 756 : 800; 846. For man abmble review of the modern literature con'erning the finer structure of the cell. in which many origimal observations are ineluded, the book of E. B. Wilson, which has reeently been published, atitled 'The Cell in Development and Inheritance, N. V. (1ser), 8ro, is heartily recommemind.
\dagger The reader who interests himself in this side of cytology is referred to
relation furthes theorie meiltar nimber for cexil zonden the wri signifie nalnts,"

In f
ture of "1p as 1 nuclens called demons mic por exoplas rones, a in the 1 tibrillat portion portion there c or less ! larser : substame by the stance " snbstant

The
of son I
he follow in the Al_{1} rinn Gies letate La Wien (18: Colvoxg Bot, Kig.. siden vot phys.-me
relations and their bearing upon heredity have perhaps gone furthest in this direetion. Roux, an amostle of the mechanical theories of development, not only assmmes the existence of elemeatary organims within the cell, but classifies them into a number of varieties correspoming to their main characteristicsfor example, into "idiophassonten," "isoplassonten," "antomerizouden," "antokineonten"; and those who are familiar with the writings of August Weismam will remember the enomons significance whirh is attached to his "biophores," "determinants," and "ids."

In fine, the statns of our knowledge abont the internal strusture of the protoplasm of nerve celts may perhaps be summed up as follows: A nemrone is made up, like all other cells, of muclens and protoplasm. In the latter a centrosome and a socalled attraction sphere are present; at least, they have been demonstrated in a certain momber of nerve cells. The protoplasmic portion of the cell cam be ronghly divited into a peripheral exoplasmic portion and a central endophasmic portion. In nenrones, as in muscle cells, thongh less distinct in the former tham in the latter, there is a tembency to a tibrillary structure, the fibuilation being more pronomed in the peripheral exoplasmic portion of hoth nerve and masele eells than in the endonasmic portion of the protoplasm. In both exoplasm and entophasm there can be made ont, in tissues which have been fixed, a more or less homogeneons gromd substance in which are deposited larger and smaller masses of a gramalar mature. The gromul substance eorresponds, in tissues fixed with alcohol and stained hy the methods of Nissl and Meld, to the "mostainahle suhbstance" of' Nissl, and the masses of gramules to the "stainable suhstance " of Nissl and the pigment.

The "stainable substance" of Nissl (the tigroill substance of von Lenhossék) in tissues of healthy animals of the same age
the following: Graf. A., The Individuality of the Cell, wid an lutroduction on the Apoliention of Cellular Biology to the Problems of P'athology hy Der.
 Letate Lehenseinheiten und ihe Verband an ainem Keimplasma Lajoig u.

 Bot. Ztg., Lefipz., Bu. liv (1896), No. 11-19; ant von Källiker, A., Die Energiden von v. Sachs im lichte der fowebelehme der 'Thicre, Verhatud. d.

and spectes, killed in a preseribed manner and submitted to the same methot of fixing and staining, is tolerably comstant in apparance and arrangement in the eell bodies and dendrites of the same gromps of nerve cells, a fact of extreme importance for nerse anatomy and pathology. The axones, as well as their hillocks of origin in the bodies of the nerve cells, appear to be entirely devoid of the "stainable substance" of Nissl.

Whether the stainable substances represent hodies presipitated from solution throngh the action of reagents or hoolies pre-existent thongl invisible, first brought into view through the adtion of fixing or staining reagents in the hardened tissume, in wither case they appar to yidd the chemical tests characteristie of the gromp of meleo-allomins. Whether the staining reaction chamateristic of the stainable substance kepents upon chemical relations or mon purely physical conditions must, for the present, remain undecided.

The "unstainalle portion" of the cell body-that is, the ground substance-thongh probalbly functionally much more importiont tham the "stainable," is not so well understool; its mature and structure are still as obseure as those of protoplasm in general. It is here that the so-ealled fibrils of the varionsinvestigators (Flemming, Apathy, Limaro) oreur. In this gromml substance, aside from the Nissl bodies, very fine gramules or notule formations ean be demonstrated which stain with erythrosin and with acid-fuchsine (held's nemrosomes), and in eertain parts of the neurones these are arranged in rows, thas bringing the nerve cell into agreement with what has been observed in animal cells generally. The gromed substance is casily vacuolizable, and the erythrosinophile gramoles apparently represent the nodal points of the meshwork which results from the valeuolization, though sometimes they appear to lie in the vacuohar eavitics. With suitable methools not only eam lougitudinal markinge comereting the roolal points be made out, but also more dedicate transerse markings. As to the physiology of the varions elementary histological constituents, we can say but little. The muclens doubtless presides over the functions of matrition. In some way or another the gromed substimee condncts what we call nerve impulses, whether as a whole or by means of fibrils, a network, walls of honeyeombs spaces, hyalophasm, rows of neurosomes, Apaithy's conducting primitive
fibrils, or Engelmam's longitudinal rows of neurotagmen ad normam inotagmen, we do not know.*
shomld intercellular sulstances other than the lymph and neuroglia, of a fibrillary or more homogeneons nature, sometime be demonstrated, it would not be surprising, but thas far the proof for the existence of such substances is wanting.

We can searcely hope for a clater understanding of the structure of nerve cells matil our general cytological knowledge has heen extended. If too great a degree of importance anpeals to have been attached to the work which has heem dome upon the structure and nature of the substances within nerve edls, two ideas have influenced me; in the first place, the topie is one which has been too little considered in the text-looks and too little respected by research workers in neurology ; and, in the second phace, the bibliography is becoming so complex, and in phaces so confusing, that I have felt that a connected résnmé of the work of others, together with an expression of opinion regarding the relative value of the different researches based noon persomal studies in this field, might not be madrceptable to those who from want of time or other reasons might find the hibliographic studies burdensome.

One thing is eertain: before we em hope for a satisfactory pathology of the ganglion cell, we must have before us clearly, as Nissl states, a sharply defined anatomy of the nerve cells. The estahlishment of amy relations, no matter whether they be structural or functional, so long as they are constant, must always he welcomed. We are too often inclined to undervalue an anthosiasm for facts, especially when these at the dirst view appear trivial and insignificant, but we have been tanght the folly of such depreciation more than once in the progress of anatomical and especially of histological knowledge.

[^67]
SECTION IV.

TYE MISTOGENETIC RELATIONS OF THE NELRONES.

CHAPTER XV.

THE ORIGIN OF TUE NERVOLS SYSTEM IN THE EMARYO AND TIIE EARLIEST HISTOAENETIC STACES.

Embryology of the nervons system-The medullary phate-The nenral tube-Primary cerebral vesieles and their derivatives-Songioblasts and neurospongim-The marginal veil (handschleier of Ilis)-(ierminal cells (heimzellen of His)-The neuroblnsts-Origin of axones und dendrites.

Having had so much to say concerning the extermal appearances and internal structure of nemrones in late embryonic and adult stages, it would searcely be fair to close these morphological considerations withont dealing to some extent with the form-relations to be met with in the domain of the nervous system earlier : , the history of the organism. For not only has the study of the embrology of the nervous system, as I have pointed out, contribnted enormonsly to the development of our modern eonception of nervons organization, but the investigations, on account of the aceuracy with which they have been pursued, and expecially in view of the light they have thrown upon processes amd arrangements which before their advent were almost hopelessly mintelligible, are surely worthy of our serious attention and command our thankful admiration.

The study of embryology attains its maximmm of interest in the consideration of the development of the human nervons system. It is not my intention at this time to review what most alrealy be familiar to all-the processes of fertilization and of segmentation, the formation of the medullary plate and of the mednlary groove, the forermmers of the nerve tube-nor to describe how it is that the three bulgings (anterior, middle, and posterior cerebral vesicles) at the head end of this simple
tuke (Fig. 88), which correspond, the firs/ to the forebrain (teleneephalon) and inter-hrain (diencephalon), the seromil to the midbrain (mesencephalon), and the thirel to the hind-brain (meten-

Fiti. s s. - Anterion portion of the budy of a chick, the head distimetly difierenti-

cephalon) and after-brain (myclencephalon), gradually undergo those metamorphoses which ultimately yield the complicated brain strueture characteristie of the aldult.* The relations will

[^68]Ine sulliciently wear if the reater study carefully the diagrams

Fta. sta. Median sodion thromgh embryo hmman bran at the rad of the tirst

1. 2. Pills ventralis.
1. 2. Puns.
III. 1. ledumali crabri.
IV. 1. Pedumenti cerelni.
1. Mredencephaton.
2. Metrmerohialon.

Ill. Isthmins.

1. ㄹ. ('crebellim.

IV. Mesancephalon.

V. 1. Pars mammilharis hypothalami. V. :2. 'Thatamms.
V. 3. Mretathalamms.
V. 1. Epithalamons.
VI. 1. l'ars option hypothalami.
VI. ©. (orpus st riattom.
VI. 3. Rhinemerphathon.

V1. 4. l'allimm.
His. Leipz., 189\%. This nomenehafme has been clasely followed in the present book, except that I have substituted the words rentral and dorsal

IVは. (1).
I/ (\%.,
plls in
lamia;
rest
R. $1 ., \mathrm{r}$
:1mas:
for conter ticulalrs. Mecisions, and postel to undersi nell Univ Mills hus terims of $\$ the follud - lntermat (1896), 阳• bruckets it refer to l'r

The derivatives of the three corehnal wesides arrentimed in the arempanying table on page 163 .

Nor shall I permit myself to digress and deseribe to you how from the moment of fertilizalion, thronghont the gradual process

 amus; Z.. corpus pincale.
for athtrior and pasterior risuctively, and perhaps in a few ohber parfienhars. Why the Commission on Nomenclature, nsually so hapyy in its decisions, meglected to use the terms ventral and dorsal, insteal of anterior amd posterior, with regard to the rowts al the spinal nerves, 1 lind it diflienlt to molerstand. The nomenclatare elahorated by Professor Wilour, of Cornell Univorsity, is used by a large number of Jmoricun nnatomists, and Nills has followed it consistently in his reront elinical text-hook. Tho terms of Wilder and the duivalent troms of the basel (ommission are to be foumd in the artiele of lrofessor B. (i. Wilder, entilled ${ }^{-1}$ Noural 'lerms -lnternational and National." J. ('map. Nemrol., Gramville. O., vol. vi
 brackets in this book. but the reader acoustomed to this momenclature may refer to Professor Wilder's tubles.
 Fig. :d. 'The lettering is to he interpeted in the sume way as

HSTOKENETIG RELATHONG OF THE NELKONES 163
Encephalon
I-VI (Brain)

of thedevelopment of the embryo, intheneres of different kinels, smeh as variations of temperat ure, of the oxy eren supply, allat of othor conditions of environment, or tramman lanling to injury of gortions of the egeg ar of the segrmentation cells, can give rise to these maforthate earieatures of haman beings which we comsmonly dexignate as monstrositios, amd for the origin of which experimental lomology has during the past few yours hern attompting to supply us shitable exphanations.*
'The histogrentio relations of the menrones and of their supporting structures must, however, be dwelt upon briedly; and the deseription here given is drawn largely from the writings \dagger

f 'The primeinal pminimations of W. Ilis which are interesting in this eme
 Anfinge des pripherisehen Nervensystemes. Areh. f. Ama. a. Physiol.,

 siehs, (E4, deu Wiss., Bil, xiii, No. 6, Leipz, (1886), S. 179-ilis. (4) /ur Hewhelhte des dehims sowie der eentralen mod pripherisehen Nerven-

 mobasten umb deren lintstehmog im embryonalen Mark. Ihil.. Bul. xv, No. 4. Laí\% (188:), S, :31:3-3\%2. (6) Die bormentwickolung des mensehdichen Vorderhirns vom Ende des arsten bis zan bugime des driften Monats.
 lichen Ramtohirns vom Emble des emsen bis zam Beginn des dritten Jounts. V. Verlingertes Mark. Bid., Mal, xvii, leip\% (1891). S. 1-it. (8) \%ur allgemeimen Morphologie des Gehirns. Arch. f. Anat. n. Phesiol., Anat. Whih., Leip\% (1892), S. $346-383$. (9) Weber das trontate Eute des (ichirnrohres. Aroh. f. Anat. II. Physioh., Amat, Abth., Leipz. (Is93), S. 15i-171.
 mechaniselne Grumborginge tieriseher Formenhildmer. Areh. f. Anat. n. Physiol., Inat, Abth., Leipa. (1894), s. 1-80. (12) Cober die Vorstufen der Gehirn und der Kopfbildung bej Wirbelthieren. Ihid.. 1894, s. 313-3:36. Fior the reports of 1 wo interesting addresses t.pon some of the general results of Ilis's work the rember is referred to (1) His, W.. Histogenese und Zasammenhang der Nervomemente. Verhamal.d. x. intruat. mad. ('ong. Berl., t-9. Jug., 1890. Bla, ii, S. 93. Berl., 1891 ; and (2) IIis, W., Veber de: Sufthan unseres Norvensystems. Berl. Klin. Wehnsehr. (1893), S. 958 und 996. Au excellent eritical review in English of all the liternture upon the development of the haman nervons system in its early shages is to be found in ('. S. Minot's Human Bubryology, pl. 593-642, and in the article by the same muthor entitled llie frühen Stadien mad die Histogenese des Nervensystems, in Merkel-Bonnet's Brgelnisse der Inatomie und Entwiekelungsgeschichte. Bal. vi (for 1896). Wiesballon (I897), si, 68t. The subject is also
 which, as every me knows, has its origin in the extermal latlike layer of the embryo, the cetohlast, the samu hyer which gives rise 10 the skin mol its appendages -is manle up of a single bayer of mulleated epithelial reells plated side by sidu (Fig. 93). The planes rovesponding to the two ruds of the epithelial erells

Fins. 93:-seption through mevallary phate of rabbit. Imomer the cpithelial redls a large pothd grominal rell wilh elent protophasm is visible, (Mtur lis.) represent the uper and lower surface of the medullary phate, and, after the formation of the medallary or nemal tuthe, the imere and outer surfaces of the wall of the tobe, the inmer surface of the wall of the tube thas ohvionsly correspouding in its arigin to the outer surfice of the embro. The mulde of the epithedial rells of the phate tho mot all lie at the same level, but form sereral rows corresponding to differenes in the distribution mad armage ment of the protoplasm in the individual cells (Fig. 94). The melei are ramely, however, situated at the ends of the cell, so that very soom the medullary plate, as seen on tramsverse ser:tion, ean he divided into three more or less distinct zones-a middle zone containing the murlei and two horeder zones free from murlei. These last two are made up of the protoplasmic ents of the epithelial cells and behave very differently in their further differentiation. In the protophasm of both ends of the epithelial edls hyatine areas resem-

[^69]bling varuoles soon appear. In the distal emds of the eefls (that is, the conds directed toward the outside of the body in the medullary phate, or those direeted later toward the inside of the medullary tuhe) the cell boolies tend to collapse so as to form a series of striated pillars with spares betwern the indi-

Fiti. 9...-Suction through wall of nombal thte at at liter state. billementiation of the fwomes of the rpithelial cells. (Allem IIIs.) vidual eells. The free ends of the cells retain their original breadth, and with those of ncighboring cells form a thin limiting membrame. The proximal ends of the eells, insteal of collapsing, assume a ragred, irregular appearanes, the protoplasm becoming, acoording to His, manifollly perforated, so that the framework hetween the perforations yiclds a reticulated appear:are (Fig. 95). For a time the bomodaries between the individual rells at the proximal ands are casily disecruible,* bat very som, throngh further development and extension, the cell bommaries disappear, and we have the appearance of a spongy network or of a dos dy folted thicket, the neurospongium of IIis. Whether we have to do in the threadwork with an actual elosed network seems ans yet not quite certain. Ramin y (ajalal, from the study of silver proparations, denies this, and also disputes the independence of the ecll territories which IIis maintains for the nemrospongiom.

This thicket, which in the closed mednlary tube forms the periphery of its wall, becomes more and more complex with further deveiopment. The foltwork, at lisst extremely close, shows later wider meshes, the whole spongy structure forming a peripheral or meryinul wit-the Rimuluchlefirer of Llis. Is we shall see presently, the threads of this veil form a scalfolding of fine beams which later appear to play an important mechamical ribe in determining the course and direction of the dewloping

[^70]norve lito :m 'pendy central he mad corres) which deserib cells (shispe, their n proeess relation and to 1 some al tally di prod h ter has schaper
*Aㄴ
framewor teeculiar ther eedo Ilate, an currespu salysin.
$+0 p$.
\ddagger siclun
Amat. All loristhe (94). S. 48
" Vigu corticales de physis Recherch cervem hantes it II $5.5-80$. cervem et
|t Schat system: nervisiser (1897), s.
nerve fibres. ladeed, the marginal weil persists thromghout life and appurs to correspoud in the alult to a part of the epralymal framework of the white matter of the whole of the central nervous system.*

Vary early in the history of the medulary plate there are to be mate out in the intercellular spares of the border \%one, which porresponds to the distal ebls of the epithelial cells, elements which have an entirely different apparame from those just deseribed. These elements are desighated by this as germinal (eells (Krimzerlm). They are, ats a rule, at tirst spherical in shape, possess characteristic elear protoplasmic bodies, and their muelei in well-fixed preparations are asually seen in the proeess of rapiul division by karyokinesis (Figs. 96). The exat relations of these cells to the epithelial cells before deseribed ame to the other cells of the eetohast still form the subjeret of some dispute. 'The idea that the heimzellow are fundamontally different from the cpithelial cells hats been vigoromsly opposed by Källiker, t Schaper, \ddagger and Vignal." The whole mattter has beed rery recently subjected to a critical review by schaper.\| It is mrged that the heimzellen are really only

[^71]yomg proliferating forms of epithelial cells which afford material for a gemeration of indifferent cells. 'These latter may be further differentiated either into nerve cells or into glia

 through the nembal tube of amblystomat. Sicveral edls mulergoing division by karyokinesis can be seen in the inmer жone. A large momber of epithelial
 nutelej and some what indistinedy shown, rorresponds to the region ot the marginal veil.
cells. Schaper has observed up to a certain period of development direct transition forms of leimzellen to long epithelial rells, and pictures them. The number of spongioblasts (in the sense of His) is not sufficient to account for the origin of all the glia cells.

The spherieal shape of the germinal cells is soon lost in the majority of instances, since at the extremity of the cell originally directed away from the outside of the body a short hont projection appears which later becomes extended into a longer, more delieate process (Fig. 97). In silver preparations this process shows a conical pronged end knob, probably corresponding to the division of the fibre later. The protoplasm, also, instead of remaining evenly distribnted thronghont the
cell hodiy, tends to arecumatate at the print of origin of the proeess, forming a feebly striated protophasmic cone on one side of the mucleus from which the process appears to take its origin. These pear-shaped cells, the derivatives of the heimzellert, are termed by lis memrollests. The muclens of the cell body of the nemroblast corresponds to that of a future neree sell, and the , single process represents the developing axonc. of the existance of dembrites there is at this period of develomenent no evidence, and studies in histogenesis have shown hs that the dendites appear ontogenetically much later than the axome, the latter heing the first process of the young nerve cell to appar and tor a long time existing alone, a fact that is of especial interest, is llis suggests, when we remember that in

 the dendrites developlater. At the pposite poles are shown the embryonice axomes, at the extremities of some of which there are halbons swellimgs.
 wout., voiltal root.
the young larvar of frogs and fish before the feltwork formed by the dendrites of the nerve rolls has appeared at all, there are already in full activity physiologieal mechamisms of no inconsiderable significance and complexity.

CILAPTER NTI.

THE DEVELOPMENTAL HISTORY OF PIE GPINAL CORO ANH MEDOLLA OBLONGATA.

Wambering of nemoblasts-Fate of the asomes in the spinal cord-Formation of ventral roots of spinal nerves and of the intrinsic tibres of the white fmiculi of the spinal cord-Tantomerie, beteromerie, and herat teromerie ururones-Fasciculas cerobellospimalis-Wiadering of neuroblasts in the mednla oblongata-bevelopmental history of the motor muelci in the medulla, the formatio reticularis, the olivary bodies, and the pyramids-Relations of the white and gray mater in the cerebrum.

Tuse nemoblasts possess a certain degree of motility and are capable of altering their position. Following the rathating paths which correspond to the spaces between the epithelial cells of the medullary plate, they tend soom to leave the border zone at the inside of the nerve tube where they tirst appear, and to wander out toward the marginal veil, there to form ofien a sort of mantle layer (Fig. 98). In the marginal veil they appear to encomnter an obstacle hirh prevents their further progress, although they may suceeen in penetrating for a short distance into its meshes. The gamglion cells oceasionally met with far ont in the white matter of the adnlt spinal cord are to be looked upon is cells which have been able, through their active mohility in the neuroblastie stage, to attain a position more peripheral than that reathed by their fellows.*

The various wanderings of the different groups of nerve cells in the human cord have been carefully followed. \dagger In the

[^72]formation of the mantle layer of nemoblasts the cells in the dorsal half tend to wander toward the ventral halt and their prodesses are nearly all directed ventrally, the memohlasts modergoing, as it were, a partial turning so at to berome panallel to the surface of the marginal veil. Of the cells of the ventral half, a portion lying grouped together insitle the marginal veil possess processes which, mulike those of the other nemroblasts, penetrate directly through the marginal veil to appear ontside the embryonic cord, forming the ventral roots of the spinal nerves. The cell bodies of these nemroblasts represent the 11 ,tor rells of the ventral homs of the gray matter, and their processes the axones of the motor spinal nerves (Fig. !!!). The processes of the other nemroblasts ilo not go through the marginal veil, but remain within the spinal cord. The majority of them can advance, how: wer, for a certain distance into the

Fus, gr.-sicction throngh half of memal lube showing the
 Which ate wambering wht (1) form a sort ol mantle: "!en the inmer surfine of llo marginal veil. Tha axomes of some , It the mettrohlasts have permetmatert llorongh (ha vail (o form the rent mal root of at spinal Herve. (After llis.) meshes of the neurospongimm, but somer or later meet in it with opposition, aceording to His, which leals to the directing of the processes upward and downward (Fig. 100). Hence arise the axones of the intrinsie fibres of the white funieuli of the spinal cort. Those of the nemroblasts which seml their processes to help in the formation of the white matter of the same side of the cord correspond in the adult to the tuntomerio* neurones; those which send their processes through one of the commissures to the white matter of the other side, to the heferomeriat nemomes (Fig. 101) ; and thase of them whose processes divide into two, one going to each side of the cord, to the herateromeria \ddagger nemrones. The majority of the intrinsie tibres of the cord send their processes

[^73]into the ventral and lateral fmiculi of the white matter. Of the latter, a lavge bundle known as the faseiculas cerebellospinalis (divert cerebellar thact) recoives its axomes from the gromp, of cells situaterl in the muclens dorsalis (Clarke, Stilling).* Comparatively few of the nemoblasts send their processes into the region of the dorsal fumicnli, these, ats well as the region of the pyramidal trarts, being ocempied in the adalt almost entirely by nerve fibres which may, in a certain sense, be looked upon as extrinsir to the spinal cord, since their axomes in their origin are entirely independent of nerve cedls lying in it. \dagger

A very marked example of the wandering eapacity of nemroblasts, and one to which His has frequently taken occasion to re-

 day chick: right side trom tive-lity chick. (Alter, , Kollmann. Lechrouch

fer, is mot with in the development of the medula oblongata. In its carly stages (Fig. 10:) the regi of the medulla is more or less pentagomal in shape, the fifth side being formed by the thin,

[^74]non-mervons roof. 'The lateral and the ventral walls of each half of the tube conform in strueture, as regards memrohbiasts and

 aremata; i. M., internal mantle layer ; J. p., intermal plate; N. l. m., mem-

 sensory dorsal root; \therefore. $h .$, cormu laterale.
sfongioblasts, closely to that which I have deseribed as eharacteristie of the spinal cord in its early stages. In the ventral plate, in a series of sections, am be made ont quite early the groups of nenroblasts corresponding to the motor nuclei of the medulla (Nuel. N. hypoglossi, Nuel. N. aceessorii, Nucl. N. ragi, and Noel. N. glosso-pharyngei), and at this period these muclei, as well as the bmalle of libres known as the tractus soli-
tarims (formed by semsory fibres from the \mathcal{N}. vagles alld N . ghosso-pharyogens, and so malogons to the dorsal funionli in

 pusito side.

Fig. 102.-Transverse section through the medulla of the human embryo. T. s., tractus solitarius; X, movas vagus; XII, nervis hypoglossus. (After Ilis.)
the spinal cord), are situated close to the onter surface of the meduliary tube. As is well known, in the adult the motor mo-
clei in
from
neath
separa
ventra
bodies.
is casy
examil
able m
Th
ing fig aliplik the 1 p

Fic. 103.
His.)
tariuts
This lip medulla with the derisive and for gion we to the li

* Frarl rhomboid pending blasts.

Clei in the medulla and the tractus solitarins are far removed from the ventral surface; indeed, they are sitmated close beneath the flow of the fourth ventricle (central camal), being separated from the surface by nearly the whole thickness of the ventral wall of the medulla, indluling the pyramids, the olivary bodies, and the formatio retieularis. The explamation of this is casy when the histogenetic relations are followed. Let us exmme and see what has haprened to loring about this remarkable morphologieal metamorphosis.

The medallary tube at the stage represented in the formoing figure on further development shows in the haman cmbryo a liplike lateral projection resulting from the hending over of the nper border of the thick lateral wall on each side (Fig. 10:3).

Fic. 103.-Transwerse seetion through the medmala of the haman combryo. (After
 tarius; Rl., rhombuidail lip.

This lip, which reaches on each side from the lower end of the medulla as far forward as the junction of the metencephalon with the mesencephalon-that is, as far as the isthmus-is of decisive significance for the further shaping of the medulla,* and for the development of the cerebellum. The lip in the region we are considering bends well over and becomes adherent to the lateral wall, after which there is a visible cegress of armies

[^75]of neurohbasts (Figg. 10.4) from the lip into the latern and ventral plates of the modnlla, whirl lie medially to it. As they wander in, they pass ventrally as regards the traterns solitarias and
levels it
in late 1 looked ment of

Fist. 106, lumath wlivare: $\lambda^{\prime}: 111$ tarius: of orimi blivare Cessive all ularis: so they h to their a
levels in the spimal cord. 'Thas the lamelnation of the mednlat in hate combryonid stages and in the mew-horn (lig. loni) most be looked \quad poon, as llis satys, as the result of ath reorhal development of which the difforent stages are representerl by the sme-

 wivate lemmisu.
cessive addition of (1) the motor mudei ; ($\%$) the formatio retisularis; (3) the olivary masses; (4) the pyramids. As they lie, so they have developerl. Their position is, as it wore, the key to their levelopmental history.

Nimilar hisforicul drvelopmonts oreme thronghont the central nervons systam, esperially in the brain, where the strmetures present in the adnlt have arisen not simultaneonsly, but

Fla. 107.-Langitmdimal section of the cerehmal hemispheres of Niertirris. (After Mall.) F, veuricle: 11 , white mattor ; (i, gray matterextending from the ventriche lo form a rudimemary cortex. The growing point and the direction of the axome are imbleated. successivoly. So far, the diferent stages have not heren worked out so well for any other part as for the mednlat. Just here may be inentioned, however, a point will regard to which a good deal of interest has always been evinced. Jow is it that in the cercbrum the gray matter of the cortex is ontside the white matter, whereas in the spinal eord the main masses of the white matter are outside the gray substance!. Igain, what are the genctie relattions which exist between the gray matter of the eerebral cortex and that of the basal ganglia: To these questions histogenetistudies alone ean afford the answer. 'Those who are interested are referred to the exphanation offered by Mall as the result of his studies of the brain of Necturns.* He believes that "in the gradaal ehange of griay matter from the ventricle of the brain in lower animals to the cortex of the higher, the cell undergoes a half revolution, and the side which originally pointed toward the rentricle now points toward the surface of the brain." The relations of the gray matter to the white matter in a longitudinal section of the brain of Necturns are shown in the accompanying diagram (Fig. 10\%).

[^76]FHE OH

Origin of
spiux
opur
Wan
syste
Wint
nerves : the nem the gene of the or sympath to be ex but thes riod of tube onf of the se that the are situa cord and four, Bea these cel the ectob plate wit at number number

* Thant tirely inde sufely expr a spinal con Fall yon A Leipz., Bal.

CHAPTER N゙VI.

 ANH OF THE SYMPSTHETC NELBONES.

Origin of sense " ganglia. peripheral sensory nerve fibres, dorsal roots of spiual nerve atol dorsm white fmiculi of the spinal cord-l'he development of the rgans of sprecial serose-The emr-'The eye-'The noscWhaterings of nemroblasts in the formation of the sympathetie nervons system.

Whemeas the origin of the motor fibres of the prepipheral nerves and the intrinsie intramednlary fibres is to be songht in the neuroblasts of the medullary tube, these do not give rise to the genernl peripheral sensory nerve tibres and the nerve fibres of the organs of special sense, nor to the fibres and cells of the sympathetie nervons system. How, then, is the origin of these to be explained? Concerning this there has been some dispute, but the skein is heing gradually disentangled. From a given period of development on, one can make out near the medulary tube on cach side groups of eells which represent the begimings of the sensory ganglia of the dorsal roots of the spinal nerves, so that the cell bodies of all the sensory neurones of the first order are situatel-outside the neural tube-that is, outside the spinal rord and brain (Fig. 108).* The studies of His, Marshall, Balfour, Beard, von Lenhossek, and others have tanght ns whence these cells are derived. All are agreed that they come from the ectoblast at the junction of the edges of the mednlary plate with the aldoining ectoblast (Fig. 109), although there are a momber of researehes which make it probable that a certain number of the cells do not wander off until the medullary tube

[^77]has been pinched off from the ectoderm．In the fromt part of the heal，corresponding to the sensory region of the trigeminns and especially to the aconstic－facialis area，there exist in the

 ＂al wove。
worlerm，at points corresponding to this junction，definte ridges which are arowded with dividing cells very like those that llis rakes to be the forermme is af the nemroblasts in the medullary tube．

In the region of the can fossa these cells cam often he seen heaped up as a compact colum shoved in between the ecto－ hast amd the medullary tube．In the trunk，howerer，no marked argregations of germinal eells are visible at an carly stage，and，aceording to His，the ganglia of the spinal nerves in luman beings are formed of nemroblasts which colleat in gromps
alfter to the are m elge， he hat their grallerli
after wamdering out from the portions of the ectoblast adjacent to the medullary tube. Aceording to others, the spinal ganglia are made up of neurobasts which wander out from the dorsal edge of the medullary tube. Dr. Mall tells me that in Neeturns he has observed a mumber of the ganglia of the tat having their origin in a pinching off of gamglonie masses from the gangla lying farther headward.

The young rells giving rise to the nerve elements of the spinal ganglia divide hy karyokinesis even for some time after they have arrived among the gatnglionic groups. The further development of the individual eells, thamks to the researches of His, is now very well known. The cells assume a hipolar shapre, one process growing from cach pole. The process corresponding to the dendrite (that is, the one arising on the pole of the nemoblast, which originally was turned toward the external surface of the embron grows toward a pripheral sensory surfiace, the process corresponding to the axome growing centralward until it reaches the outer surfiae of the mednlary tube, into the wall of which it penetrates. Bundles of these, assuming in the spinal cord a longitudinal direction, go to make ur

 of llo human cmbryo. (After N, von Lanhossick.)
the primary dorsal funiculi, in the medulla, the amalogons trantus solitarins, the radix descendens norvi vestibuli, and the tractus spimalis nervi trigemini. The relations of the dorsal roots to the spinal cord are well shown, as are those of some of
the cells of the ventral horns, in the accompanying figure, copied from van (iehuchten, which represents the development in the chick (Fig. 110). An earlier stage is well illustrated in

Fiti. 110.-Transweme section of the rmbryonice cord of the chick. (. Ifter vath (reluchten.) f. ruml. amt., cells whieh give rise to asomes of ventmal roms: e,
 col. collateral (sisle fibril) passing l'rom axome of cell of the velit mol hora batek
 ruc. tut., ventral ruot fibres.

Fus. 11t, Bitolar cell from the spinal ganglion of the pike. (After Käliker.)
 d. axomes; e, cell protoplasm; o, macletas.

Fig. !
cell, e being and tl lying aluima even (Fig. 1 beings, lear ut

Fig. !\% (ride supra). The two processes of the spinal gathglion cell, central and peripheral, go off from one edge of the cell, being at first in a direct line with one another, the madens and the main mass of the cell body, as His describes them, lying eccentrie to the fibre. This bipolar condition is in some amimals maintaned thronghont life. In the tish, for example, even in adults, nearly all the spinal ganglion cells are bipolar (Fig. 111), amd it is of no little intrest to find that in hmman beings, amd in mammals generally, in the ganglion on the coehlear nerve (granglion spirale, of. Fig. 112) and in the gamglion

Fict. llis.

Fini. 114.

F'ta. 113. - Sehematie representation of the gradat tamsition of the hipolar eells of the spinal ganglia to the su-talled unipolar type. (. Iftor His.)
 glion of the pig. (. Ifter van (iblumiten.)
on the vestibular nerve (ganglion vestibuli) this primitive bipolar condition of the cells is also maintained throughout the whole of life. But in all the other sensory ganglia of man there is a gradual transformation from the bipolar to the unipolar condition, typical of the adnlt spinal ganglia, recognized and deseribed by Ranvier more than twenty years ago. Oeca-
sionally, simgle hipolar rells persist even in the spinal ganglia of the admati, as reent researeh has shown. In the accompany-

 the axomes of "spinal gimglion colls of the seromd type." (After Dogind.) A, pericapsular phexts: B. rirmumednata plexas.
ing diagram (Fig. 11t) the early steps in the formation of the 'T-fibre of Ranvier are well illustrated. It is obvious that the change consists rather in the formation of a protoplasmic pedicle than in a gradual approximation and fusion of the central and peripheral fibres, as was formerly taught. The cells in the developing spinal gingrion of a guinea-pig staned by van (iehnchten by Golgi's method show very elearly the mode of tramsformation (Fig .114). The sheath of the spinal ganglion cells appears to be mesoblastic in its origin, although some assert that it also has its origin from the ectoblast.

A few maltipolar cells oceur also in the spinal ganglia. These ealls, previonsly seen in the ambryo by Disse, von Lenhossek, Ramon y Cajal, and Spirlas, and thought to be rare and of little significance, are said by Dogiel to oceur also in the adult.

Dogiel has recently given an acrount* of a special hitherto

[^78]modes nammer :xonte ummb sheath artorio well-k accord but :ll.

Fuc. 116.
gilligli,
nerve;
mınici
and seed
form il
secomd
type: ;
exlls of
cells (Fi』 thinks, in pathetic,

HISTOGENETIC RELATIONS OF THE NEURONHAC 185

undescribed variety of cell in the spinal ganglia, which he names " ppinal ganglion cell of the serond type." The main axome of the cell breaks up inside the ganglion into a large number of medullated fibres, which finally lose their medullary sheath and terminate within the ganglion in a fine pericellular artorization about the spinal gatuglion cells of the ordinary well-known type. The axones of the cells of his secomd type, aceording to Dogicl, form not only an extracapsubar feltwork, but also a fine intracapsular feltwork about the spinal ganglion

Fite. Bhe. - Sheme of the reciprocal relations of the mements within the spinal
 nerve; l and E, ventral and dorsal divisions of spinal nerve ; F, rambs coinmanicans (sympathetic commetion) ; a. b. spinal ganghinn cells of the first and serond type; h, tronk processes of refle of the first type which divide th form the axome of the peripheral and eratral tibres; n axomes of cepls of the secomd type which end as a prepicellutar feltwork about the cells of the tirst type; s, sympathetic fibres which embas a ciremmedhar plexus alome the cells of the seeond type:
cells (Fig. 115). The spinal ganglion cells of Type II are, he thinks, in turn surrounded by nerve endings from the sympathetic, a finding which, if confirmed and taken in comnection
with the observations of Ehrlich, and esperially with those of Ramon y Cajal, is of extreme signiticance in dabing with the functions of the spinal granglia and the relations of the spinal and sympathetic systems to one another. I have reproduced in "ir. 116 Dogiel's sehematic representation of his connepption ()) relations inside the spinal ganglia.
ond take too long to deseribe in detail the mole of development of the organs of sperial sense. It is interesting to find that the development in them ronforms very closely to that met with in the sensory nerves in general. .thl the peripheral nemrones in the organs of special sense, as in the spinal

 bryo at the tilth week. After His, Jmior, Prom Komman's text-bonk, s. эif, F゙is. 333.)
ganglia, arise from cells of the ectoblast and pass throngh the nemroblastic stage, the axis-eylinder processes of the nemrobasts growing into the central organs to terminate in them in free endings. In the ear, for example, the ganglia commected with the cochlear and vestibular nerves contain cells whose two processes grow away from the ganglia, the one toward the periphery (to the cochlea or to the vestibule), the other toward the eentre to the nerve tube at the junction of the medulla and pons (Fig. 11\%). These ganglia are in every way analogous to dorsal-root ganglia, their only peculiarities consisting in (1) the short distance which the peripheral process has to go before terminating; (?) the maintenance thronghout life of the bipolar condition.

In the ege, too, all the nerve elements of the retina are of neuroblastie origin, and the axomes of the cells of the ganglioncoll layer, growing backward, pass by way of the optic nerve

 Ext. The arloriar comtralis retine hat heon drawn in trom dinding in at human embryo at the sixth were.

 S. 576, l"ís. 343.)
and of the optic tracts into the mid-brain and inter-brain. The eye differs somewhat in origin from all the other sense organs, in that the embryonie masses of neurones, making up the optir
vesicles from which the eyes are formed, grow ont as lateral projections from the gencral medallary tube (Figs. 118 and 119). Later, however, they become practically separated from the econtral nervons system, mat the final o! ganie nerve conneetion is subsequently made by the growth of axones, from the nerve cells deposited at the periphery, back into the central nervons system (Fig . 100).* The earliest portion of the retina to develop is the region of the fovea centralis.

The most peripheral olfactory sensory beurones deserve especial mention, since in the nose we find the only evidence in human heings of a condition quite general in invertebrate

Fita. 130.-Composite diagrammatic tramsverse section of the head of a haman embbryo to show the growing point in the mervous system, and the direetion of the growth of the fibre. M. mednllary eamal: E. eye; O, ear; N, mese; (', cephatoperl eyo ; L., semsory cells from the skin of hambriens. (Affer Math.)
forms (cf. researehes of von Lenhossék on the central nervons system of lumbriens, and the investigations of Retzins upon invertebrate forms). In the olfactory macous membrane the early stages of the neuroblasts are present among the epithelial cells, just as in the eetoblastie ridges from whieh the spinal ganglion cells arise. But insteal of these youngr cells wandering ont from the epithelial plate, as appears to be the case with the cells of the spinal ganglia, in the nose they remain

[^79]F'it. I:1.-' bryo of dorsal in hurve; , of mollsel molowhon rluet; st.
with it; le'tum;
tions with fore, the o end of the
throughont life situated in the murous membrane itself, the axones, which, by the way, never become medullated, growing upward and backward throngh the ribibiform phate to entro the olfactory bulb, where they teminate in lree and-arborian-

 darsal root; 18 , ventral root; du. darsal, sp. H., ventral branch of spimal merve; mp, part of maselo plate already comverted intomasele; mp. l., pare of muscle plate extemding into the limh; wh, mervos lateralis; ao, atorta; eh.
 duet; st, segmental tnbe; du, duodemmm; hp. d., jumetion of hepatie duet with it ; pum, rudiment of panereas rommeeted with amother part of tho-

tions within the olfactory glomeruli. In these nemrones, therefore, the only representative of a dendrite is the hairlike distal end of the olfactory sense epithelial erll, and the bodies of the
fringlion cells are more superficially phoed than are those of any other mammal sense orgam.

The sympathetic nervons system is that which shows in its arevelopment the most markel wanderings of the different constituent clements. Som after the outgrowth of the spinal norves toward the periphery there can be seen coming off from them at the dorsal edge of the colom, short visceral branches, which run over toward the aorta (Fig. 121). These appear before any sympathetic ganglia are present and correspond to the rami commmicantes. All authors agree that the ganglion refls of the sympathetic ganglia have an origin in common with that of the spimal ganglia, although it would appear that Onodi's original view that the former were formed by a sort of pinching off of the latter is incorrect. Aceording to His, the sympathetic ganglion cells are formed from unripe motile

Fis. 120.-Photomicrograph by A. (i. Hoen of section through a nerve in the side of the human tongue. Aleohol fixation-hematoxylin and eosin. Two sympathetie ganglion eells are visible inside the nerve tronk near its celge.
elements which wander ont from the spinal ganglia into the regions subsequently occupied by the sympathetic chain. These wandering cells traveling in the paths of least resistance
tend 1
tion, sit
lifre, sit

F'us. 123.
cinlirys
limgsige
merves
ligure:
has carref toxylin a Anerbach sels, the fitmiliar all of the to thonsin origin in berg halver ganglia bo the first t of the nor

* II is, W schr. d. Med. von Praipara imere Med. nervensysten Gesellselh. Il. cerning the v l Leviden, K schr., Leipz.,
temd to eotlect in gromps, the sympathetio ganglia: in whlition, seattered along the sympathetie nerve trunks thronghont life, singhe ganglion cells remain demonstrable. Iny one who

Fics. Le3. Shematic mpresentation of the nerve plexus of a heart of a haman

 meres from the vagus are delicate, thense of the sympathetio conase, in the thenr:
has carefully studied even ordinary sections stained in hamatoxylinand eosin from the heart, alimentary tract (plexuses of Anerbach and Meissmer), the tongue (Fig. 1 2) , the bood-vessels, the bladder, the sexnal organs, and dsewhere, most be familiar with these ganglion cells, and it is now betieved that all of them which are to be found in the viscerat, amomenting to thousands, or perhaps millions, of elements, have had their origin in this nomadir way. The yomger ILis* and Romberg have already worked out the mode of formation of the ganglia belonging to the heart, and have thas established for the first time a satisfactory anatomical basis for the physiology of the norves of the heart, and a starting point whence perhaps

[^80]those puaking elinical problems in commertion with the eardine neuroses may be minntugeonsly mproached (Fig. 1P:3). It is true that so far an regards the exmet history of the developmont in the other visecra, we are for the most part still profommdy ignorant, and 11 vast and attractive fied lies here open to the investigator.

The sympathetic cells diffor in many ways, both strnetural and finctional, from all other ganglion eedls, a fuct which is not surprising when we consider the peenlanities of their origin and of their emviromment. Whereas all other nerve colls tead to be aggragated in large cell eommonities, more or less sharply separated off from the tissmes in general, those of the sympathetic system ure much more isolated, heing gathered together only in small heaps, while in many instanes single cells matataining their existence far from all their fellows me eompletely isolated in the wilds of the body tissues, retaining commmication with the centres only by means of their nonmodullated axones. Conder suld circomstunces it is perhaps but little womber that these cells, like the pioneers of the backwoods, shonld present peemliatites both in habites and eomduct.

CIIAPTER XVIII.

ON THE MECHSNIC.SL FBCTORS OF WEVELOPMENT ANI TIE: HEMAS HOHY AS A SEAMENTED ORUCNISM,

Mechanidel factors of development-The finnmation of the diaphagmSegmentution of the benly-Metmmeres-l yotomes-Neurotomes-
 - Part pheyed by the margime wil-lalation to the problems of heridily.

Is the stady of the historical development of the nervous system, mechanieal factors, of a very simple matnre, when viewed elose at hamb, ure continally met with. 'The results of the bending and shaping of the mednllary tube in its early stages are appurently eomparable in many respects, His thinks, with those which ocenr in a simple rubber tube when suljected to similar influences. 'The peripheral nerves in their outgrowth follow always, like boor-vessels in their ulvanee, the chammels of least resistance. In regions where there is much bending of the body-for axiaiple, in the neek and lumbar regiom-the nerve trunks converge to form the well-known plexuses.* If a bundle of nerves in its sutgrowth meet with any obstacle in its path, such as a bar of cartilage, a hoorl-vessel, or the wall of a cavity, the humdle tends to divide, a purtion of the fibres passing on each site of the obstruction. In this way the rurioms distribution of many peripheral nerves, entirely obscore before these embryological stmelies, becomes explicable. In instructive example of the light afforded in eertan dark corners by histogenetie studies is to be seen in the imnervation of the diaphagin.

Von Bater \dagger had pointed ont that the diaphragm in mammals develops at first in the neek region amd that it deseends

[^81]later. He suggested its rervieal origin as an explamation of the well-known fact that it is imervated (in the main at least) by a ecrvical merve. Cadiat* and His \dagger recognized the mass of tissue which in the embryo is destined to give rise to the diaphragm. Mall \ddagger has studied the position of the diaphragm in several reconstructed hirmin embryos, and his researehes, taken together with those of Uskow " and Ramn, \| show most clearly the shifting of the organs and the constantly elamging relations atecompanying the flexion and extension of the embryo. In Fig. 104 the position ocenpied by the diaphragm at various developmental stages is elempy shown. The position marked xliii corresponds closely to the position of the diaphragm in the adnlt; while xii, xviii, xix, ii, KO, and ix represent successive stages of the wandering proees, during development. When the phrenie nerve grows into the diaphragm the latter is in the cervical region, and the distance from the spinal cord to the musele to

Ftg. 1:t.- Diagram showing surnesive positions of the ditphatern during the development of the humstin embryo. (. Mltor Mill.)

* Cadiat. (o. Ita développement de la porion cophato-thoracique de l'embryon: de la formation da diuphragne, des pleveres, du pépiearde, du pharynx at de l'usophage, J. de l'mal. et physiol., ete., Par., t. xiv (1878), ph. 630-6i4.
+11 is, W°. Antomie mensehtieher limbryonem, i, 1880: iii, 1885.
\ddagger Mall, $\mathfrak{F} .1$. Jovelopment of the llmman Cobom. J. Morphot., Bost.. vol, xii, 1N0\%-9\% [p. 395-45:3.
\# Uskow. N. Uober die bintwickohng des Zwerchferls, des Pericardinms

he

 phria the : of t nervi theirte" o tualsc grine Piter Ruge stand ing th illens
be innervated is minimal. With the deseent of the diaphragm the phrenie nerve grows and goes with it, so that in the adult we have an ablominal mastle imervated by a nere of the neck. The work of His upou the reenrent laryngeal nerve, and of Xissbam upon the wandering of museles and their innervation, are of iaterest in this comeetion. As a matte" of fact, an cutirely new conception of the relations of the haseles to one another, and to the nerves and bones, has been gained through the anatomical studies of Huxley, Ciegenbarr, Paterson, Dohrn, R. G. Marrison, Fïrbringer, Mah, Risler, Bolk, Rage, van Wijhe, and whers. Since from a morphologicai standpoint the museles are most casily understoon ly considering them as end organs of the motor nerves some reference to the ideas at present held in this commedion will here be in phace.

As is well known, man, in common with a large series of animals, is a sermented organism. Even in the adolt the vertebral colnmm, the roots of the spinal nerves, the ribs, and the transerse bands of conncetive tissue in the rectus abdominis musele give evidence of this. But when we go beneath the surface and study the segmentation of the body of man and other animals in the embryo, and compare the relations of adult struetures with the embryologieal memberment, a coneeption of the anatomy of the haman body is gained which is wholly foredign to and impossible for the ordinary student of the old-time dissecting room. 'This memberment or metamerism is most sharply to be made out in the embryo with the appeanace of the primitive segments (protovertehra, metameres, or Crasegmente of the Germans). The musenlar system is originally laid down as a series of musele segments, (myotomes or somites) which are derived from the dorsal portion of the metameres. The segmentation is almost ans elearly visible in the nervous system (nemal segments, neuromeres, or neurotomes),* in the

[^82]vascular system (vascular segment or intersegment or angeiotome), and in the skeletal system (bone segments or sclerotomes) ; it is also to be made ont probably, though much less distinetly, in the alimentary tract (enteromeres) and in the integument (dermatomeres). The overlapping or "telescoping" of the segments and of the segmental derivatives in general complicates the study in human beings, but without the conception of segmentation anatomy can not easily be understood.

Fid. 125.-Schemes of transworse sections of younger and ohder Schachian em-
 mital haver. (Altor van Wijle and Hertwig from A. Ranler, Lahohuch der Anatomio dos Mensehen, Bel. i, Leipe., 1s97, S. 52, Figs. 15, 16.)
A, transure seetion through the region of the fore kidney of an embryo in which the musele segment, mp, is being pinehed ott.
13, transerse section through a somewhat older embryo in which the masele segments have bern pinched off. m, nerve fube; ch, chorda; wo, norta; seh, subchorlal eolumn; mp, musele phate of the primitive segment; w, zone of growth ly which the masele plate hembs aromed inte the skin plate, cp; rb, piere miting the primitive segments with the boly cavity from whirh the tubnles of the primitive kidney, uk, develop; sk, skeletogenoms tissue which arises ly proliferation from the medial wall of the minting piece, m; rn, fore kidney $; \mathrm{m}^{\mathbf{1}}, m k^{2}$, parietal and viseremb middle layer out of the walls of Which the mesenchyme develops; th, hody eavity; ik, layer for intest tual glands; h_{1} cavity of the primitive segment: $n k$, tubmes of the primitive kidney; wh, point of separation of the thbules of the primitive kidney from the primitive segment; u!, du't of primitive kidney with whieh the kidney tubules have mited on the right side ; tr, commetion of the tabolas of the prinitive kidney with the body avity; mess mes mesemelyme whieh has had its origin in the parietal and viscral midde layer.

Leaving out those of the head, the number of which is not yet exactly determined, the human body has from thirty-five to
thirt eight
thirty-seven primitive segments or metameres on each side; eight cervical, twelve thoracic, five lumbar, five sacral, and

Fic. 126,-Ilaman embryo fourteen to sixteen days old ; lefthalf of reoss section $\times 20^{0}$ to show developing myotome. (After i. Kollmann, Labrbeh der Entwiekelumgsgeschiehte des Jhensehen, Jena, 1898, S. 133, F'ig. 71.)
from five to eight eaudal. The primitive segments appear in the embryo as sharply defined masses in the mesoderm lateral from the chorda dorsalis and the medullary tube. They appear one by one, gradually incrasing in momber as the embryo grows, those in the ecrvical rexion being the first to become developed. Each metamere or primitive segment is divided into a dorsal portion and a ventral portion. The dorsal portion gives rise, as we have seen, to the myotome. The ventral portions of all the metameres are in the eraniota fused to form a eommon cavity, the hypocolom, sometimes called the ventral or mensegmented eolom, which eorresponds to the body cavity (pleure, pericardim, peritoneum), lig. 12\%.

The apparances on section in the haman embryo are represented in Fig. 12ti.

Each myotome or musele segment is at first hollow, but later is seen to be filled with a core of cells, the so-called nuclens of the metamere (Remak's Truirbelkern). These cells stream out from the medial side of cach myotome to form the sclerotome or skeletal segment (Fig. 127), and there are accordingly as many selerotomes as there are myonmes.

Corresponding to each metamere there is an artery and vein (vaseular segment or angeiotome). Further, each metamere behind the head receives the motor root and the sensory root of one spinal nerve. This spinal nerve, including both the motor part and sensory part with its spinal ganglion, together with a

Fig. 12t. Ituman embryat the end of the third werk. (ross seetion at the level of the developing upper extremity to staw developing myombur and

portion of the medullary tube to which it belongs, represents one neural segment or neurotome.*

The lines which in the embryo separate the primitive segments or metameres from one another are known as the intersegmental lines. la these develop later those myosepta or myocommata which separate the myotomes from one another, and in the adult give origin to the ribs and the intermusenar septa.

The museles of the body are divisible into (1) skeletal and (*) visceral musicles.

The skeletal museulature, which includes the eye museles, the museles of the tronk and of the extremities, arises from the myotomes. The viserral musculature, whieh includes the muscles of the alimentary tract and of the bhood vasular system,

* As will Jo printed out in sertion V'I, Head thinks that a comparison of his stalies with those of sherrington indiente that the segment in the spinal cord does not exactly comespond to the merve rools in its peripheral relations.
arises from the unsegmented mesoderm, especially from its visceral or sphanchnic layer. There has been some dispute as to the nature of the muscles of the head (muscles of the eyes, tongue, jaws, and branchial arches), but the results of many investigators make it seem probable that they have their origin in atypical myotomes (ventral portions of head myotomes). Since they arise from the cells lining the cavities of the branchial arches, however, a number of investigators look upon them as belonging to the visceral museulature.

During development marked wanderings of the museles take place, and it is exceedingly interesting to attempt to trace the relations of each embryonic myotome to the adult museulature. In general it would appear that each myotome of the trunk undergoes subdivision into a dorsal part and a ventral part, these two portions being separated from one another by connective tissuc. The dorsal part of a myotome gives rise to the large museular mass which oceupies the costovertebral groove, Fig. 128, A 1. The ventral part of the myotome extends out into the ventral parietes (Fig. 128, 1 $2,3,4,5)$, in the thorax, for example, helping to give rise to the intercostal muscles (2), the subvertebral museles (3), the subcostat museles (4), and the muscles of the upper extremity (5). The ventral musculature (Fig. 128, A $2,3,4,5$, and B v.) together with the dorsal museulature (Fig. 108 , A 1, B d.) make up the parietal museuhature derived from one myotome. The visceral musculature corresponds to the mass marked (6) in the figur":

Fig. 128.-Scheme of bone and musele segment. (Alter A. Rathener, Lehrhum her Anatomie des Menselen, V Aull., Laib\%., 1897, s. H66, Fig. d99.)
A. - c, buly of vertohra: d, ardus vertemar: r, a ${ }^{2}$ us costarmu: h, arens viser ralis; l, dorsal part of musche seguent ; \langle trat part of musele serguctut with its ditler"ut sublivisions: 3 , prevertebral; 4 , subcostal; \therefore interenstal ; 5 , portion for extremity : 6 , viscrombusilde.
13.-The parietal miselde segment bronght to its simplest expmession; d, dorsal part ; r, ventral part.

The division of the parietal museulature into a dorsal portion anl a ventral portion separated by a comective-tissue septum is very much more distinct in lower vertebrates than it is in man. The line of separation between the dorsal and
ventral museulature is known in these animals as the lateral line (Seitenlinic oi the Germans),* and here are situated an important series of sense organs known as the " sense organs of the lateral line." It is not milikely that the so-called branchial sense organs (Beard), which appear temporarily in the region of the head in yomng embryos of higher forms, correspond to the sense organs of the laterul line of lower animals.

Eaeh myotome has a neurotome corresponding to it by which it (along with the skin and other aljacent structures) is innervated. The rentral and dorsal roots of a spinal nerve mite to form a common trunk, the mixed nerve stem. The latter, the peripheral representative of one neurotome, divides into a dorsal ramus and a ventral ramms. The dorsal ramus in-

Fia. 129.-Trunk segment of hmman ambryo with ome pair of merves and the rudiment of the musenlature of one extremity at the sixth week, selamatice
 Jena, 189k, s. 2s9, Fig. 16:1.)
nervates the dorsal portion of the myotome, the ventral ramus the ventral portion of the myotome, Fig. 129.

At the time the union of the neurotome with the myotome occurs, the latter is in elose proximity to the mednilary tube,

[^83]and minin chang tachn place tives goes, a mat nerve
and the distance to be traversed by the outgrowing nerve is minimal. As development proceeds, however, the museles change their position, in large part owing to their skeletal attachments, and become farther and farther removed from the places in which they originate. The displaced myotome derivatives carry their nerve branches with them; where the muscle goes, the nerve accompanies it. In the adult the easiest elew, as a matter of fact, to the myotomic origin of a given musele is its nerve supply.

Some of the museles of the adult body have been derived from more than one myotome. Thus, those arising from two myotomes are known as diplomeric muscles (e. g., the supraspinatus and infraspinatus museles), those from more than two myotomes as polymeric muscles (e. g. the peetoralis major and minor muscles). In such instances the diplomeric or polymeric origin of a muscle is indicated in the adult by its diplomerie or polymerie innervation, for mascles derived from more than one myotome are innervated by nerves derived from the ventral roots belonging to more than one neurotome.

The origin of the muscles of the extremities and the immervation of these muscles are of especial interest. For our knowledge in this connection we are much indebted to Dohrn,* P. Mayer, \dagger Kästner, \ddagger Paterson, ${ }^{\#}$ van Wijhe, $\|$ van Bemmelen, ${ }^{A}$

[^84]Kollmann,* and in America, Ryder, \dagger and espectally R. G. Harrison. \ddagger The museulature of the extremities is derived in the

Fig. 130.-Reconstruction of a yomg hmman ambrya chlarged five times, illustrating the position of the M. rectus abdominis and its polymeric nature. (Alter ド, I', Mall, I. Morphol., Bast., vol. xiv (1897-98), II. B, Fig. 4.)

Zungenmuskulatur hoi Eidechsen. Anat. Anz., Jemu. Bal. iv (1889), s. 240-955.

* Kollmann. J. Die Rumpfsegmente menschlicher Embryonen von 13 bis 35 Urwirbeln. Areh. f. Anat. und Phys., Leipz., Anat. Abtheil. (1891), S. 39-88.
\dagger Ryder, J. A. A Contribution to the Embryography of Osseons Fishes with Special Raference to the Development of the Cod (Gudus morrhuil). Anmal Rejort U. S. Com, of Fish and Fisheries for 1882.
\ddagger Iharri , R. G. Leher die Entwickelung der nicht knorpelig vorgehildete keletheile in den llowen der Telenstior. Areh. f. Mikr. Amut., Bomn, Bd. xlii (1893) : also The Development of the Fins of Teleosts. The Johns IIopkins C'niversity (ireulars (1894), No. 111; also The Metamerism of the Dorsul mi' he Ventmal Longitndinal Mascles of the Teleosts. The Johns IIopkins L. .versity C'irculars (1894), No. 111 ; also Dic Entwickelung der mpaaren und parigen Flossen der Teleostier. Areh. f. mikr. Anat., Bonn, Bd, xlvi (1895), S. 500-5is.
main ment tain the hold treme
main from musele buds which ure pinched off during development from the trunk myotomes. According to Harrison, a certain number of the museles of the extremities are derived from the unsegmented mesenchyme rather than from the myotomes.

It seems likely that the relations of myotome to nemrotome hold also for the extremities, but thus far, owing to the extremely complicated processes of development, it has been im-

 to the attachment of the varions museles. 'The thomeo-lumbosacral nerves (12th-19th) goveruing the individual museles are indicated. (Atter I. Bolk,

possible to determine this absolutely. Here also in the adult structure it seems probalble, however, that the neurotome supply,
when it can be established, is a sufe guide to follow in drawing conclusions as to the myotonic origin of the various museles.

Fus. 13: - Onter maface of os immonatmm, The limes homm the areas in whieh are fomb the athachments of the masele masses derived from the myotomes imervated by the 10 th to the 190 h thematormbo-steral nerves. The girdle zomes on the bome betwern the lines are the somentled "selemo

That these general principles loold for the human abdominal muscles and their imervation has recently been demonstrated by Mall,* Fig. 130.

* Mall, F. P. Development of the Ventral Abdominal Walls in Man. J. Morpliol., Bost., vol. xiv (1897-98), 11!. 34i-366.
must tion o may 1
Fig. 1

F14: 133.
it leys
lımb
111113
1894,
tro-dors
(ə) M. glutens

* Bolk

Extremifi
Plexus la
Rekonstri
un den
Juhrb., La
merus; z
Morphol. differenzia phol. Jahr

An extensive series of investigations modertaken by Bolk* must here be referred to. His results regarding the imervation of the museles of the pelvis and their bony attachments may be chosen as an example. As will be seen hy reference to Fig. 131, there are successively attached to the diam in a ven-

 lumbo-sideal merves. (After L. Bolk, Morphal. Jithrb., Laipz., Bal. xxi, 1:314, S. 256, l'ig. 3.)
tro-dorsal direction the following museles: (1) M. sartorins; (2) M. tensor fasciax late ; (3) M. gluteus minimus; (4) M. glutens medins, (5) M. glutens maximus; (i) M. piriformis.

* Bolk, L. Beziehungen zwischen Skelet, Muskulatur und Nerven der Fxtremitaiten, dargelegt am Beekengïrtel, an dessen Musknlanur, sowie an Plexus lumbosaeralis. Morphol. Jahrh., Bd. xxi (1894), S. 241-2: ; nlso, Rekonstruktion der Segmentirung der Gliedmassemmuskulatur, dargelegt an den Muskeln d'es Obersehenkels und des Selmitergürtels. Morphol. Jahrb., Leip\%., Bal. xxii (1894-95), S. 357-379; also, Die Sklerozonie tes lltmerus; zugleich ein Beitrag zur Bildungsgeschichte dieses Skelettheiles. Morphol. Jahrb., Leipz., Bil. xxiii (1805), S. 391-411: and Die Segmentaldifferenzirung des mensehlichen Rumpfes und seiner Extremititen. Morphol. Jahrb., Leipz., Bl. xxv, II. 4, S. 465.

These muscles are innervited hy a corresponding series of ventral roots, as is shown by the accompanying table.
'Tames: 1.

 tro-torsal iftravlon.

1. M. sartorins.
2. M. tensor fiseciar latar.
3. M. glatans minimus.
4. M. glutions modins.
5. N. gratarns maximus.
6. N. piriformis.
lunervation of the mancelen by thoraten. lumbo-natrol spinal norvots.

$14 \quad 15$

10 (17)
$16 \quad 17$
$16 \quad 17 \quad 18$
$\begin{array}{lll}17 & 18 & 19\end{array}$ $18 \quad 19$

Again, the following moseles are suceessively attached to the pubis and ischium in ventro-dorsal direction.
(1) M. rectus abdominis, M. pectinens, M. adduetor longus, M. adductor brevis, M. gracilis, M. adductor magnus, M. obturator externus, portio ischiadica M. adductoris magni, M. qualriceps femoris with the M. gemellus inferior, M. semimembranosus, M. semitendinosus, M. bieeps femoris, M. gemellus superior (obturator internus). These museles are in a similar way innervated by a series of ventral motor roots of spinal nerves passing in a cranio-caudal direction, as the following table makes elear:

Table: II.

Fint. 13t. - Arangement al the metambat dorsal nerves for the masenti ghatai

Fig. 135.-Armagement of the metazomal ventmal werves for the Mm. Alexores. (After L. Bolk, Morjhol. Jahrb., Leipz., Bil. xxi, 1891, S. 261, Vig. 5.)

Book has ateordingly drawn a series of lines over the surface of the pelvis corresponding to the limits of the attachments of the derinatives of successive myotomes. The position of these

lines corre ponds to the myorommata or mesodermal septa which in the embryo separate the myotomes from one another. It seems likely that the distribution of one myotome stands in a definite relation to that of a given sclerotome. The surfitee of the bone giving attachment to the museles derived from a given myotome is known as a selerozone. In Figs. $1: 31$ and 132

Figi. 137.the various selerozones on the outer surfare of the pelvis are demonstrated. It will be notieed that the museles attached to the ventral surface of the pelvis have been derived from myotomes more anteriorly phaced, while those attached to the dorsal part of the pelvis have originated in myotomes more camially situated.

That the relations are much more simple in the embryo is not surprising, and Bolk has done matomy an important service in pointing this out. In Figs. 133 to 138 the feetal
coudit limite the eo being tion trimks ischiad mechan of mus, may be
search is Anatomy. \dagger

The se Figs. 139 t

[^85]conditions are illustrated. The selerozones at this perioul are limited by straight lines. The bone is mueh simpler in form, the eomplexity of the later relations of the museles amb nerves being in large part due to skeletal alterations. For a deseription of the (1) prozonal, (:) diazomal, and (3) metazonal nerve tromks * ((1) N. femoralis, (: N . obturatorius and (3) N. ischiadiens, No. ghatai and N. ubturatorins internus) and the meehanieal factors which have led to the curious distributions of muscles and nerves in the aldult, the original artirle of Bolk may be consulted. An excellent epitome of portions of the re-

search is given in the last edition of Rauber's Text-book of Anatomy. \dagger

The selerozonic anatomy of the humerus is indicated in Figs. 139 to 142. Bolk believes that the mesenchyme ont of

[^86]which that portion of the skeleton which corresponds to a selerozone is formed arises from the same segment as the myomere belonging to the selerozone, but will not assert that the whole mesenchyme undergoes segmentation-that is, that a definite metamerism of its whole substance can be demonstrated.

It appears that the homerus is formed of the mesenchyme corresponding to the fifth, sixth, seventh, and eighth cervical myomeres. It is a curions circumstance that of the museles of the humerus in the proximal part of the bone, all are derived from the dorsal layer of the maseulature, none from the ventral (cf. stratum dorsale and stratum ventrale in Fig. 129). The only muscle of ventral origin at the proximal end of the ha-

Fig. 138.-Arangement of the ventrad and dorsal prozonal, diazomal, and metazonal nervers. (Atter L. Bolk, Morphol. dahrh., Bd, xxi, 1894, S. 206, Fig. 8.)
merus is the long head of the biceps, which comes from the stratum ventrale derived from the fifth and sixth cervical myomeres. Even this is not comected with the ventral surfice of
the : cus that not longi

Fuc. 139 milt levi of the maition Morpho
merus, th scetions o lature, evo and that arrangemd 140 to 14%

The ms concerned to be thos
the axial blastema, but lies instead in the bicipital groove (sulcus intertubereularis), a faet which Bolk looks upon as evidence that the ventral mass of the axial blastema has in this region not been differentiated. Despite the fitet that the selerozones longitudinally considered take a tortuons course down the hin-

 ent levels indieated in the longitudinal view of the bumerns. The relation of the (dark) ventrophanmin to the (colorless) dorsophanme, as well as the position or the \&-f revical selerozones, are illnstrated. (Atter L. Bolk, Morphol. Jahrlo, Laipz., Bel. xxiii, 1845, s. 401, Fig. 4.)
merns, they are reciprocally regularly arranged, as the cross sections of Eig. 139 show. That the ventral and dorsal museulature, even in the adult, form two sharply separable groups, and that in each of these groups the primitive segmental arrangement is discoverable, will be elear from a study of Figs. 140 to 14%.

The most wonderfnl, however, of all the meehanical factors concerned in the development of the nervons system would seem to be those which, according to the ingenious hypotheses of

His, are comnected with the marginal veil. It is almost like a fairy tale to be told that the direction of many millions of white fibres within the central nervous system dnuing development depends upon simple obstructions offered at the proper time and in the right degree to the ontgrowing processes of the neuroblasts. We have seen the long distances which certain of the axones have to travel from their cells of origin in order to reach the cell bodies and dendrites of the other neurones which they have to influence, some of the axones of the filmes of the pyramidal tract, for instance, having to extend

 'The heavy dark lime inderates the limit becween velotal ame dorsal derivatives of the myomeres. The other lines show the limits of the produets of the th-9th cerviro-thomace mpomeres. (After L. Balk, Morphol. dahrb.,

from the gyri centrales to the lumbar region of the spinal cord. We have also noted the manifold metamorphoses passed through in some localities at several periods of development. And when one recalls these distances and complications, even when lessened and simplified by looking through the large end of the telescope of embryology, it seems almost inconceivalble that mechanical factors alone shonld so direet the inherent activities of the growing tissues as to ultimately give rise to adult
structures which, when examined with high powers of the microscope in the corresponding parts in two different inti-

Fig, 141.-Thasverse section throng h the proximal portion of the humerus. (After L. Bork, op. cit., Fig. 11.)
viduals, are scarcely distinguishable Especially dumbfounding is it to be told that the same developmental factors hold in the convolutions of the cerebrum ; in that portion of man's nervous

Fig. 142.-Transverse section through the distal part of the humerus. (After L. Book, op. cit., Fig. 12.)
system which we believe to be functionally concerned in his mental processes; and particularly when we reflect that both
the bodily and mental characteristics of the individual are hereditarily transmissible. As His finely puts it (the translation is free) : " It is exactly in these last considerations that the key for the correct understanding of the special relations is to be sought. Like every other organic formation process, the origin of one's body and of its nervous system appears as the expression of a life process in course of progress (im Gitmy befindlichen Lebensprocess). The begiming of the process we do not know, for since time immemorial it has been striding forward, periodically produeing new individuals and again destroying them. Each individual life is only a participating member of the life of its generation series, comparable to a single one of the waves resulting from the propagation of one wave over wide surfaces of the sea. Advancing from one member to another, the life of the generation passes throngh phases of the greatest simplicity in order to elevate itself again to summits of the greatest total energy. In those phases of the transference of life from member to member, the mass serving as the bearer of it sinks to a minimum. An imponderable amomnt of material suffices to carry over the life in a strictly regular way. And while life is a periodical process there is an all-pervading law which commands all its component processes and their internal connection. In such a mechanism one process goes over into another; each appars at a given time as a definite sequence of processes which have gone before, and at the same time as the necessary determinant of processes which shall come after. And even where processes of apparently different origin and significance reciprocally influence one another, yet they all act at the place assigned to them by the general law, and do no more and no less than is ordered."

It is now necessary to hasten on to the consideration of the neurone as the unit in physiological and pathologieal processes.

The coll

Fol Pathold mal ap in itsel belief t to any the brai ring ar bears w of a lar upon a organisn to one special other pal led to a ogy, was the nerv time ver sort of

* Virch logische 11 440,8 vo, 3

SECDION V.
 TIEE NELRONE AS THE UNIT IN PHYSLOLOG[CAL AND PATHOLOGJCAL PROCESSEA.

CllAP'TER NIN.

INTRODUETORY.

The cell doctrine and the nervous system-Physiology of the nemrones-The metabolism and nurition of neurones-Lffert of afferation in blood supply-The fool stufts and exerelory products of nemrones-Constancy of function despite continual change.

Fonty years have passed since Virchow, in his Cellular Pathology,* gave expression to the conviction that every imimal appears as a sum of vital mits, each of which exhihits in itself all the characteristics belonging to life. It was his, belief that the chamacter and the unity of life are referable not to any single locality of a higher organization-for example, to the brain of man-but rather to the definite constantly recurring arrangement (Eimrichtumy) which every single element bears within itself. According to this view, the composition of a larger body, of the so-ealled individual, always depends upon a social arrangement; it represents, in fact, a social organism, in which there is a mass of single existences related to one another in such a way that every element has its own special activity, and each, even when incited to activity by other parts, does its work of itself. While this concept, which led to a revolution in the prevailing ideas regarding pathology, was accepted for the body in general, its application to the nervous system, and especially to the brain, was for a long time very little emphasized and only recognized in a vague sort of way. And indeed this can hardly be matter of sur-

[^87]prise when we eonsider the cruleness of knowledge at that time of the structures concerned. But with the establishment of the nemrone concept of the nerrous system the importance and applicabhility of such a view of its constituent organs can be more fully appreciated. Only after it had been clearly shown that the nervous system, like all other tissues, consists of elements more or less isolated and independent, and comnected directly with one another apparently only by contact, concrescence, or protoplasmic bridges, and after we had learned to recognize the different structures which belong to the single elements, could the study of the functional units in the nervons system be satisfactorily approached.

An extensive series of physiological and pathological data concerning nerve cells and nerve fibres has been acemmulated. Many of these data appear to be discordant or even actually contradictory. It will be of interest to consider briefly how some of them appear when regarded from our new visual angle, and to see in how far the new doctrine has brought into agreement results which were formerly adduced on both sides in support of conflicting views.

In a systematic description of the physiology of the neurones it would be necessary to consider not only the functions which they possess in common with all cells, including such fundamental phenomena as those of metabolism and reproduction, but also those which are peculiar to neurones in general and to neurones in particular. The facts already collected bearing on these points, if adequately discussed, would demand the space of a volume of considerable size, although they represent but an infinitesimal amount of knowledge compared with that which is still needed to explain all the complicated manifestations of the various parts of the nervons mechanism of mammals. I shall bring forward at this time only a few of the physiological and pathological considerations which seem to be of especial importance in relation to the morphological characteristics previously outlined. It will be most convenient to divide these into three classes: (1) Those bearing upon the metabolism of the neurones, (2) those concerning the phenomena of irritability as manifested by the neurones, and (3) those referring to the interdependence of the trophic function and the manifestations of irritability. From a disenssion of these it will be found that the physiological independence of the
nentoi
Th,
of the anaboli althous all othe materin build t highly which, which c bodies, metabol varions the pote energy festation existenc plexity s the natu utterly 1 of all par ity of the there tha of the "1 often suff extensive from Pfla in a ray retina and forces of t tain poisol

The de is well she nutrition mental ca fainting, " oxygenate even for a extremely
neurone is as marked a feature as might have been expected from our knowledge of its morphology.

The Mriallulism and Nutrilion of Neuromes.-To the study of the mutritive processes in newrones or their metabolismamabolic and catabolic-attaches a high degree of interest, although the subject is attended with great difficulties. Like all other cells of the body, the living neurones take up food materials into their substance, transform them, and gradually build them up throngh a series of synthetic pr. esses into highly complex and extremely labile ehemical compounds, which, in turn, undergo a series of decomposition reactions which enlminate finally in the formation of more or less simple bodies, which we recognize as the excretory products of nemrone metabolism. There is every reason to believe that in these various modifieations of chemical materials by means of which the potential energy of the food is transformed into the kinetie energy which gives rise to what are called the "vital" manifestations of the neurones, chemical componnds come into existence, in some of the neurones at least, of a degree of complexity scarcely approached elsewhere on this plamet, and before the nature of which the most advanced organic chemist stands utterly powerless and despondent. It is in the nervous system of all parts of the human body that the delicacy and complexity of the chemistry of metabolism are most in evidence. It is there that we find the best examples of the extreme instability of the "living" substances, in that the slightest influence will often suffice to bring about remarkable transformations and extensive functional manifestations in the cells. To quote from Pflueger: "What infinitesimally small active forces acting in a ray of light eall forth the most powerful effects in the retina and in the brain! How entirely minimal are the active forces of the nerves; what wonderfully minute quantities of certain poisons suffice to completely destroy a large living animal!"

The dependence of the neurones upon nutritive influences is well shown in certain circulatory disturbances. When the nutrition of the brain falls below a certain minimum the mental capacities become elouded or may even vanish. In fainting, we have the proof that without an alequate supply of oxygenated blood complete conscionsness can not be maintained even for a second. The blood supply to the nervous system is extremely well provided for by the circulatory apparatus of the
brain and spinal cord, thongh there would appear to be a grave imperfection in the arrangement of the arterial system which terminates in the so-called end arteries, so that the blocking of a single one leads inevitably to the death of the territory supplied by it.

As to the nature of the substances which represent the raw food stuffs of the neurones, we have as yet but little definite information. While ultimately the substances taken up as food stuff by the newrones must be derived from the general food ingested by the individual, this must undoubtedly have undergone most marked alterations before being presented to the nerve cells in the blood and lymph as material suitable for their sustenance. There is considerable evidence that some of the material at least must have already played a part in the metabolism of other organs, and, in a sense, as their excreta have first been rendered suitable for ase by the nerve cells. The physiological law formulated so long ago, accredited to Trevirams, is probably as true for the nervous system as for the other organs of the borly. A possible example of this is seen in the thyreoid metaholism; in the absence of substances in the body derived from the thyreoid gland, the nervous system undergoes very important and serious metabolic modifications evidenced by the remarkable nervous and mental phenomena with which all are now familiar. On restoring these substances to the body by the administration of a thyreoid extract the symptoms may sometimes be made to disappear.* It is likely, however, that the neurones find their staple foods in the main mutritive constituents of the blood as derived from the food digested in the stomach and intestines and purified by the lymph glands and liver. That the stainable substance of Nissl may represent dentoplasm-the contents of the larders of the nerve cell-is not at all improbable, inasmuch as Held \dagger and Macallum have pointed out that they yield the reactions characteristic of the nueleo-albimins.

[^88]The select f_{1} stuffs more ce or set 0 limits w must be underst tional 11 groups o capable. One to be no synthese the ones the secon with grea in any cals -a eertai The best notwithst found in t now know removed 1 up certain or constitu be reinsta destroyed This fact ory traces neurones, These nem associated sneh as hav have such them to be of past exp we can onl with which

While er of function,

There ean be but little doubt that the individual neurones select from the blood or lymph quantities and varieties of food stuffs corresponding to their individual needs, and it is still more certain that the constructive metabolism in one nemrone or set of nemrones varies from that in another within certain limits whieh, though perhaps nsually narrow, in some instanees must be tolerably wide. Fialing this, it would be impossible to muderstand, even with varying correlations, the different funetional manifestations of whieh the individal nemrones and groups of neurones in different parts of the nervous system are eapable.

One striking feature in neurone metabolism is particulurly to be noted. With chemical processes ever in progress, with syntheses and decomposition reactions going on all the time, the one set of ractions predominating perhaps at one moment, the second at another, both classes of ehanges oceurring now with great rapidity and again with comparative slowness, but in any case always continuonsly-with all this "perpetual flux" -a certain constaney of structure and function is maintained. The best evidence, perhups, of this physiological constancy, notwithstanding continual change (Inemer im I'rersel), is to be found in the consideration of the phenomena of memory. We now know that when certain cells are destroyed by disease or removed by the knife of the surgeon, the eapacity for ealling up certain memory pictures is lost. Certain psychical elements or constituents which had faded from conscionsness, but could be reinstated by sccondary suggestion before the cells were destroyed or removed, can afterward be no longer revived. This fact would almost justify us in believing that the " memory traces" are in some way or another laid down in the neurones, and are actually organicaily eonnected with them. These nemrones with which the memory traces are in some way associated are continuously undergoing the metabolic changes, such as have just been described, and the wonder is not that we have such poor memories, but that they are as good as we find them to be. Far from being surprised that the reproduction of past experiences in consciousness is occasionally unfaithful, we can only wonder how it can reach the degree of accuracy with which we are familiar.

While emphasizing the maintenance of a certain constancy of function, and consequently of structure, despite the unend-
ing chemical alterations going on, we mast admit that the metabolism in no individuat is perfectly constant. This is shown in the first place, should illustration of what is so obvions be demanded, under nomal conditions in the gradual increase and development of the faculties of the mervons system in carly and middle life, and in their gradual decay as the emd is appoached. Again, taking memory once more for an example, it is probable that no "eproluction of past experience is absolately aceurate, nor is the attempt to recall one and the same experience on two different oceasions attended by the appearance in conseionsuess of exactly the same mental picture. Even when the focal constituents in conscionsness are almost or precisely the same, the marginal setting of so-called "sul)conseions" clements may be at the two times entirely different. 'There is always more or less variation, the differences being often, perhaps, searcely recognizable, but none the less existing.* A whole array of evidence conld be brought forward demonstrating functional alterations dependent upon disturhances of

[^89]nourone action of even in tion whi system herent is certain ble of of extermal certain restricte vidual. \dagger

The speed ur by the a the posi The bot table or what its climate. should underly ass are th of a kno one poss festation rones wl

* In tl effect of e stimuli ea velopmen organizati + If th squaking. in the mo phetie sig
neurone metabolism through deprivation of mutriment, tho action of toxic agents, and other pathological indmemers. But even in these ubormal statess it is the comstancy of the funstion which impresses us most ; the fant that, given a nervons system male up of a certain set of neurones, the metivities inherent in them most neressarily lead to the manifestations of certain definite functional characteristies, the alterations capable of ocemring under changes of enviromment,* intermal aml external, normal and pathological, being compressed within eertain rather narow limits, limits which grow more and more restricted upparently with the increase of the age of the individual. \dagger

The astronomer, supplied with certain data concerning the speed and direction of a given planet controlled in its motion by the attracion of definite forces, can predict with preaision the position it will oceupy at a given moment in the future. The botanist, informed of the species to which a given vegetable organism belongs, can foretell with tolerable aceuracy what its behavior will be under given conditions of soil and climate. Were it permissible to introdnce here an opinion, I should not hesitate to say that I am convinced that the laws underlying neurone metabolism \ddagger are just as fixed and constant as are those of astronomy and botany, and that I can conceive of a knowledge of their nature and action which wond enable one possessed of it to prophesy unerringly of the functional manifestations of a nervous system made up of a given set of nenrones which must result upon exposure to a given environment.

[^90]'That the nemrologist is almost infinitely distant from any approximation to such astronomical accuracy with regard to the nervons system it is needless to remark. That he may never attain to such omniscience is altogether probable. But the fact that he las already learned that in the nervous system certain causes are followed by eertain definite effects almost with mathematical aceuracy shonld encourage and stimulate him to further research with the hope that the intricate laws in question may gradaally be rendered less obscure and rague.
('hanges leria rone $-\mathrm{H}$ of M of N axoll othe in 1 duct and whol

As without tion of interrm (*) Ho of inju attempt that we certain shall fir nature lation will rea from ti muderst has den

As 1 sctmeid

+ Yal pathici,

CHAPTER XX.

ON TIE DEGENERATION ANO REGENERATION OF NEURONES.

Changes which oceur in a part severed from the rest of the nemrone-Wallerian degeneration-Titrek's degeneration-Wifect on the whole nenrone of injury to one or more parts of it - ('hanges following amputations -Expriments of v. Gudden, Fored, and others-Appication of method of Mardi to the study of the central stmmp of a divided nerve-studies of Nissl on changes in the eell bodies of nemrones after section of their axones-Eifecefs of injuries to dendrites-Stadies of Warrington and others-Effects of injuries to the cell bodies of the nemrones-Changes in lumbar cord after ligation of ndomimal aorta-lixperimental production of secondary degeneations- Vahe of the method of Marchi and the method of Nissl for pathologieal stulies-The neurone as a whole a frophic mit-Regeneration of nerve fibres and werve cells.

As regards the trophic relations of the nemrones, it may without further preamble be asked (1) How far is the mutrition of the individual portions of a neurone affected by an interruption of their connection with the rest of the neurone? (2) How far, if at all, does the whole neurone suffer as a result of injury to any one of these individual constituents? In attempting to reply to both these questions it will be found that we possess data to draw upon which regard not all, but certain only of the individual portions of the neurone. We shall find, too, that an answer to one question must from the nature of things include a reply to the other. That the formulation of the two questions as just adopted is not superfluons will readily be granted, in that the contemphation of the subject from the two different standpoints will help us materially in muderstanding the reciprocal relations which recent researeh has demonstrated to exist.

As long ago as 1839, Nasse * and Valentin \dagger had proved that

* Nased. Cober die Veriimdermenen der Nervenfasern mach ihrer Durehschmeilung. Areh. f. Amat., Physiol. n. wisemedh, Med.. Borl. (18:39), S, 405,
\dagger Valentin, G. De fumetimibus meromm cephralium at nervi sympathici, libri quattuor. 4to. Bernir. $18: 39$.
interruption of the connection of peripheral nerves with the central nervous system could lead to their degeneration. Their

Fig. 143. - Wallerian degeneration of nerve tibres after sertion. I, normal nerve fibre ; $I I$ and $I I I$, fibress showing dillicent degrees of degenamtion ; s, nemrilemma; m, medullary sheath; A, axome; k, Huchelis of neurilemant cell ; La, marking of' Lamtermann; R, node of lamvior ; mt, drops of mycelin; at remains of axome; w, proliferating eolls of mourihemma. l'arty selematic. (Alter Themat. A 'lext-Book of l'athology and D'athologianl Amatolly, vol. i, p. 505, Fig. 3.55.) findings were confirmed by Stallnius.* Waller \dagger made a thorongh study of the subject and formulated the fundamental law of the physiology and pathology of the nervons system known by his name. By Wallerian degeneration we understand the changes which take place in the distal end of a peripheral nerve after it has been cut through. The details are familiar to every medical student, the coagulitive breaking up of the myelin sheath, the dissolution of the axis cylinder, the neurilemmia with its nuelei remaining for some time at least preserved (Fig. 143). Waller proved that if a motor nerve was severed there resulted complete degeneration of the fibres in the peripheral end, even to the museles which they govern, the central end remaining apparently intact. As a matter of fact, the changes characteristic of Wallerian degencration could not, as a rule, be traced farther in the central end than to the first node of Ranvier. If a sensory nerve is eni through peripheral to a spinal ganglion there ensues complete degeneration of the sensory fibres as far as the sensory surfaces in which they

[^91]begin.' dorsal the gat tached tion, w charae throug lorsall therefo sensory explan strated gingli funicu
begin.* It was further shown by similar experiments that if the dorsal root of a spinal nerve was colt throngh at a point between the ganglion and the spinal cord, the portion of the nerve attached to the ganglion did not molergo the typical degeneration, while the portion still comected with the corl showed the chameteristie degenerative phenomena, which coulal be traced throughout the whole course of its constitnent fibres in the dorsal funiculi of the cort. The cells of the spinal ganglia have therefore been looked upon as trophic centres for the peripheral sensory nerves and their intramedullary continnations. 'lhis explanation was much simplified by the work of lis, who demomstrated that the axone of the peripheral sensory fibre, the spinal ganglion cell, and the axone of the nerve fibre of the dorsal funiculns all represented parts of one and the same cell.

These degencrations in the domain of the peripheral nervous system were early shown to oremr also within the confines of the central nervous system, the secondary descending degeneration of the pyramidal tract established by Türek \dagger and the ascending secondary degeneration in the spinal cord after tramsverse lesion being quite analogons. We now know that the axis cylinders of the dorsal root fibres, with the exception of the few centrifngal fibres present in them, are axones of neurones whose cell bodies are situated within the spingle ganglia. We know that the axones of the motor peripheral nerves arise from the cell bodies of nemrones situated within the ventral
hurgh, and Dublin Philosophical Magazine, vol. xxxvii, No. 247, p. 6.3. July, 1850. Also in Philosophical Transactions of the Royal Society of Lomdon, 1850, p. 42:3, and in the Elinh. M. and S. J., vol. Ixxri (1851), pp. 36:9-3:6.Sur la reproduction des nerfs et sur la structure et les fonctions des ganghions spimans. Areh. f. Amat., Physiol, u. wissonseh. Med., Berl. (185:), S. 39?-401: Compt, rend. hebd. des séanees de l'Acal. des se., Par., t. xxxir. p. 675.-Nouvelle méthode ponr l'itude du systeme nervenx applicable ì Yinvestigation de la distribution matomigue des corlons nervenx. et an dingoostic des maladies du systime nervenx, pendant la vie et apres la mort. Compt. rend. hebd, des sémes de l'Acad, des se. Par.. t. xxxiii, 1851, p. 606. - Expuriener sur les sections des nerfs et les altérations. Compt. rend. Soce. de biol., Par., Dme s.. t. iii (18in), pp. 6-8.

* This appars to holl even for the sensory neres comnected with elaborate end organs. sheh as Meissuers corpuscles, alhough for a time these were thonght to be exempt
 stringe mul ihrer Fortsetzugen zum (ichirne. Ztschr, d, k.-k. Gesellseh, d. Acrate an Wien. (18.0), ii, 511 ; 18.33, ii, 289.
horns of the spinal cord, and that the axis cylinders of the fibres of the pyramidal tract are axones whose cells of origin are situated in the cerebral cortex. Converting, then, the Wallerian duetrine into terms of the neurone eoncept, the followins, general law may be laid down: Whenever it has suffered

Fici. 14.-Sertionstained ly Wrigert's method thromgh the cervical ropd of a woman, shawing secombary degenemations tollowing compression of the eord at the level of the serond thorider segment. (After
 fasciculns cerele lospinatis (1 lireet cerebellar tract) :

 Gowersi. Siner the dibres in the tase inulus gracilis and many of those in the fisedember revelmellospinalis
 site of lesion, eells of origin of the degemerated fibres mast be sitmated below the level of the seromd thoracioe segment. The pyramidal tratet is not degromerater ; the erels whicli give arigin to its axomes are sitnated ellowe the lesion. In the fignre the degememted areas are light, the momal arats dark. a solution of continnity with a severing of its connection with the cell body and dendrites of the neu:one to which it belongs, the axone, together with the myelin sheath covering it, undergoes in the part distal to the lesion acute andi complete degeneration. This degeneration includes not only the mainaxone, but also its termimals, together with the collaterals and their terminals connected with it.* There has gradually developed, therefore, a general belief that what are called the " nerve cells" represent trophic centres for the nerve fibres in genemal.

The application of the Wallerian doetrine has aided immensely in unraveling the complicated relations existing inside the central nervons system. Thus, in a transverse lesion of the cord, for the bands of fibres which degenerate in sections above the site of the injury (Fig. 144), the "trophic centres" i. e.. their cells (of origin) are to be songht below this level, and, rice rersa, the cells of origin for tracts which degenerate in sections below the level of injury (Fig. 145) must be situated somewhere above this level.

* Sindies of degenemation of the simal cord will convince any one of the arenracy of this stafement regarding the collaterals.

Sir degent of ori Homé intere einetly thaft ${ }^{\text {\# }}$ inform periol which after stages. include cur du days. which mentat and of first or nodes o lesion, lieves, of the t W:alleri (or the gins or third distal t with tl The ax

[^92]Since the time of Waller and Türck the histology of the degeneration ' nerve fibres after separation from their cells of origin has been studied by many-notably by Ranvier,* Homén, \dagger Howell and Hnber, and Tooth. \ddagger The last, in the interesting Gulstonian Lectures for 1889, has reviewed suecinctly the facts $u p$ to that date. The studies of von Notthaft ${ }^{\text {a }}$ are of especial value, in that they have yielded definite information concerning the state of the nerve fibres at various periods after the lesion. This investigator divides the changes which oceur in a nerve after section into two stages. The first stage includes those which oc. coll during the first three days. These alterations, which consist in fragmentation of the myelin and of the axone in the first one or two internodes on each side of the lesion, are, Notthaft believes, the direct result of the tramma. The true Wallerian degeneration (or the second stage) begins on the second or

Fia. 145.--ixedion stained by Wigert's mothod through the lambar cord of a woman, showing serondary degencrations following eompression of the come at the level of the seeond thoracie segment. (Alicers. Rosenheim.)
 is degeromented. The rells of orjgin of its axomse are sitnated above the lesion (in the cerrhal cortex). third day in the fibre distal to the lesion, and is the result of severance of connection with the central end, and not the direct result of the trama. The axone swells and fragments, and the myelin breaks up into

[^93]droplets along the whole length of the nerve. Multiplication of the melei of the nemilemmat is evident at the fourth day. At the sixth or seventh day lignefaetion of the myelin commenees, and this continnes mutil the sistietl or eightieth day, he which time all the myelin has heen liguefied and a large part of it has bern absorhed. After three or fom months the myelin has entively disappeared.

During the secondary degeneration of the white fibres within the central nervons system there is a proliferation of the nemrogliat. The multiplication of the nemroglia cells begins in the white matter, according to Ceni,* some forty-five or tifty days after the lesion. The nemroglia cells cease to multiply at about the humdredth day, after which there is a gradual disappearance of nemroglia muclei with gradnally progressing selerotie change.

Owing to the shortness of the dendrites (umless we look upon the peripheral sensory fibre as a dendrite), we possess no exact studies concerning their fate when severed from the cell bodies of the neurones to which they belong, lut we have every reason to believe that they wond undergo speedy and complete degeneration.

Viewing now the question from the other side, let us examine and see in how far the injury to one portion affects the mutrition of the whole of the rest of the nenrone. The study of portions of the nervons systems from individuals who had died a certain length of time after amputation of an extremity soon afforded data which apparently stood in direct contradiction to the doctrine of the trophic centres as formulated by Waller. For, while Waller demonstrated the complete degeneration of the portion of the nerve fibre discomnceted with the trophic centre, he maintained the integrity of that portion of the fibre left in connection with it. \dagger

* Ceni, C. Sur les fines altérations histologiques de la mothe f́pinidra dans les dégénćrescences secondaires aseendantes et descenduntes. [A bstr.] Arelı, ital. de biol., 'Turin. t. xxvi (1896-9\%), pp. $9 \boldsymbol{6}-111$; nlso in Areh. per le se. med., xx, 'Torino (1896), pl. 13t-194.
\dagger This seemed to aceord well with the well-known fiet that some of the sensory nerves proximal to the lesion are capable of functioning for some time after amputation, protueing sensations which often may give rise to no little mental disturbanee mal alarm on the part of the patient, sinee irritation oecurring in the course of a sensory nerve fibre is attributed in ennscionsuess to stimulation of the sensory surface from which it has been in

As early as 1se? Berard* had noticed that in the spinal nerves supplying a limb amputated some time before, there was at antupsy distinct atrophy of the rentral roots. Viuphian, Cruveilhier, Hayem and (iilhert, Dickinson, Friedhathder and Kranse, Honén, Vanair, (irigoriefl, and many other investigators busied themselves with the subjeet, and came to conclusions which were often at variance owing, as has heen shown by Marinesco, t to the fact that the anthors studied and deseribed different phases of the alterations. Marinesco convined himself that after amputation of a limb, or after seetion of a peripheral nerve, there oceur in the central part definite pathologieal changes, the intensity of which depends upon the species, and especially mon the age of the animal and upon the length of time intervening between the injury and death. The younger the individual at the time of the amputation and the longer the time elapsing between the operation andoleath, the more marked are the alterations. The degeneration in the central stump of the divided nerve, althongh it appears much later tham that in the distal portion, presents similar morphologieal appearances and is apparently an amalogons process, althongh-and herein lies the vulnerable point of the Wallerian doctrine-the central end still maintains its continuity with the "trophic centre." Not only do the sensory fibres distal from the spinal ganglia degenerate, but after a time large numbers of fibres in the dorsal roots proximal to the ganglia and their corresponding fibres with their collaterals and ter-
the habit of conducting impulses. The superstition referred to in the old phay-
"Still in his dead hand clinched remain the strings
That thrill his father's heart-e'en as the limb
Lopped off and laid in grave, retains, they tell us,
Strange commerce with the mutilated stump Whose nerves are twinging still in maimed existence "-
is not yet obsolete, as any one familiar with many of the rural districts of this country can testify. S. Weir Mitchell has given un interesting account of some of the sensations deseribed as coming from the lost limbs in his monograph, Injuries of Nerves, and their Consequences, 8 vo. Philadelphia, 1872.

* Berard. Bull. Soe. anat. de Par., quatrième année, Bulletin No. 3, mai, 1829, deuxième édition (1846), p. 54.
† Marinesco, G. Ueber Verïndermgen der Nerven mal des Rüekenmarks nach Amputationen; ein Beitrag zur Nerventrophik, Neurol. Centralbl., Leipz., Bd. xi (1892), s. 463; 505; 564.
minals in the dorsal fumionli of the word molergo pathologieal changes and totally lisappear. 'The motor theres of the central stump gradually diminish in number: in some instane es they appear to vamish almost totally, ame a large momber of the motor wells of the ventral horns dwindle in size (lig. Ifii), and

 ing marked atrophy of right half at cond dollowing :amputation of right amm.

may after a time be actually lost. 'The spinal ganglion cells do not show gross alterations for some time after buth peripheral or distal tibres have degencrated (Friedlander and Kramse, Ilomén, Vianlair, Marineseo), a finding which denotes that their trophir mechanisms differ in some way from those which are romerned in the mutrition of the eells of the ventail horns. I have thonght that his may depend upon the possession by the spimal ganglion colls of a cellular capsule.* It would be inter-

[^94]estingr
 alter sur rourse, יviden pellew :lways ing to splamel dremer
find 年 Xissl, a restigat alway fir espuecial were all killerl al with the microse changres distinct vanisherl cerned sides. sulferesl appared

Bregn nikow's central sis

Herve has

 may y+il 10 the rami on * (iuld ansergeten $+\mathrm{Bragn}$ iseher mut Centraluerv Leip\%, n. I\ddagger Durkis Abschuilt schnittes.
resting to noto if the sympathetio ganglion endts, which are also comapsalated, act similarly amil preserve their gross integrity after sedion of the nerve tilores loblonging to them. I refer, of comese, to gross integrity alome, imasmmeh as there is month vidoncre, some of very recont date, from which we me compedlal to belinse that the timer strubture of the mere coll is always altomed hy the rotting through of its axome. derooding to the resparches of Biedl (ride infira), entting of a splanchaice merve rathses both cellolipetal and velhalifagal Megemeration.

A suries of investigations associaterl with the mames of vom (imdlon,* Förel, Maysar, Mendel, Brogman, Darksohewitsch, Nissl, mal flatan mast now bo emsidered. The first four investigators experimonted by tearing spimal on exrebral merves away from thoir combeetions with the contral mervous system, esperially in nowhorl or very young animals. 'These mimals were allowed to live for several months, after which they were killed and the eontral portion of the nerve involved, together with the gronp of nerve cells corresponding to it, was stadied microseopually. 'Jhe histohgrical examination revented marked changes in the molens of wrigin. 'The molls prosent showed distinet atrophice atterations amd many of them had entiroly vanished, so that emmerations of the edls of the gromps conearned revaled a decided discrepancy in the eomots on the two sides. 'The nerve tibes in the eentral portion of the nerve had sutfered dogencrative rhanges, many of them having totally risappeared.

Bregman, in Viomma, \uparrow and Darksehewitsoh, \ddagger in Koshewnikow's laboratory at Moseow, modertook the stmily of the cratral stump of motor nerves som aftor the establishment of

[^95]the lesion, athere whle lo show hy the delieate mothod of Marrhi that extensive madomhted legentrative promesses orcorverl in the tithers.* In whe ease, in whind the facial neve

sults it harl he which H|1"-all| artially very sox rabhits, an ones
sisting in in the Xis

No. $7, \mathrm{p}, 50 \mathrm{~s}$ the C'hatges ii, pr. 918Sketrh with

* " Darin ficiren."
sults in face of tho liact that the mphaic doctrine of Whaller
 which most now be eomsidered. Nissl, with his muthylethe
 adnally demomstrate definile altarations within the nerve redls Very soon after the solation of anntinnity af lheir axomes. In rabhits, for example, after excision of a portion of the facial nerve on one side, chameteristir alteralions can le demonst mated, can-

 the aminal. 'The mervis trigeminns on the right side was rompletely serared intmeranially thity-two days before the death of the atanal. 'reat-

 right side. In the neighboring suhstantia gelatimosi bumerous humdles wi

 restiformia, in the fasedenlas lougitudimalis madialis of both sides, und in tho tibre armata rexterase.
sisting in the man of a rarefaction and finely grambar change in the Nissl borlios of the cells of the seventh muclens.* Ile as-

No. T, p. 50x.-Some Notes on Ascending Degeneration (so-called) and on the Changes in Nerve C'ells ('onsurpunt Thereon. Brit. M. J., Loud. (18!6), ii. 1יp. 918-921.-Aseending Dageneration in Mixed Nerves; a Critieal Sketh with Expmrmental Results. Edimh., M. J. (1897). n. s., i. Ip. 49-60,

* "Darin, dass dieselben unter einer foinkïrnigen Umwandlung rareliciren."
serte that while the changes are most marked if the amimals
 with them alterat ions are revognizable within the celle of this
 tindings, as might to expereted, vary for the ditferemt forms of merve cells and somberwa in the salle form of celle in amimats of diferent speries. Bisen if the priphomat nerve is not ent throngh but is rembered temporaty imeapable of fundioning, the regressive altomations man be made to apmar, as Nissl asserts he has shown, hy the applacation of cheminal subtataneres (fore ex:mple, common salt) to the tronk of the facial nerve, or hy atplying at tompary ligature to it. After these have mached a masimm (nightern to (wonts-1wo th thiry days) the apparamers for a time do mot alter materially, hut Nissl thinks that lather the majority of the cells, perhang through the formation of ofher mimes, hogin slowly to remoser, so that by the fiftioth or sistiod day it may be dithentt for the inexperiomed to distinguish them from momedy hoalthy meds. (hamateristio dhanges in the menoglia arempany these fomm in the mere colls. Of the impertalle of this methoul, which has been dexig-
 alrady spoken in amother plane \dagger 'Ilow methon is a very dedicate one-in fact, the most sensitive as yot introllued. Nissl ramtions against drawing condusions from its applation before ome has become skilled in the meressary terhmigue. In order to ohtain results of any value the operations mast be dome aseptieally, and a long and intimate ambinantane with the apperamers presented ly the different varietios of ededs arenring nomally in the regions moder examination is absolutely ess sential. 'Tlue procedure has already been appliad to determine a momber of rompliated relations existing within the mere centres and is full of promise as regards the sothtion of many intribate questions, among which Xissl refers with experial hopernhess 10 those involved in the study of the eye-minsele muclei.
 speriolf zur Fiststellung der Lacalisation der Sorwazellon. Vortrag gehalen bei der Vorsammbug der sudwest. Seurologen mad Iremilrate in

+ Iohns llophins Hospital Bulletin, vi (1895), p. 166.

Plat fuill craniall livily cutiong

114
div's
plili:n
f'rown 1

lollogg
liarg'r"
! $\|_{11}$
states th nseftul, Bamorsk
By both mistrate orcills a

[^96]Flalan,* in Wuldoyor's laboratory, "xamimod the brains of fond yonng esta, in which the thind merve hat been cont intm"ranially ly diml, thitterm, weven, lhrer, and two days resperlively uftor sections. Itis deseriphions of thes timbings mecords culimoly wilh lhose af Nissl's invertigntions (fig. 149). Helll

 al I lw will.
stales that he has employed the methon and fomme it to be useful, esperially where the central mations are vary complex. Sinlovsky's researehes \dagger are also confirmatory of Nissl's stmelies. By both Nissl's method and Marehi's mothod Biedl \ddagger hats delnonstrated that rellalipetal as well as cellolifugal degeneration oremes after section of the splanehoic nerve. Bermheiner ${ }^{*}$

[^97]thinks he has heen able hy this method to deedide as to the portions of the mulems of the oculemotorins respectively eonermed

 after section of the nerve root. Dawing made trom ome of J. Erlanger's brepatations.
in the innervation of the extrinsie and intrinsic muscles of the cyeball. Aecording to him, in the rabbit the four extermal eye museles supplied by the oculomotorius nerve are governed by the ganglion cells of the distal and middle thirds of the nuelens (chicily of the opposite side), while the cells of origin for the intrinsic muscles of the ayebal are to be sought in the most

Vixperimentclle Simiten zur Kemntniss der Inmervation der inmerem und itusarinn von Oenlomoterins versorgten Muskeh des Anges. Arelı. f. Ophih., Leipz. (1897), Mal. Ixiii, 3. Ahth.. S. 481-52.
proxim guged from w stinces of thesis shown: allter sed "ol FH

Is 1 portion hate ats

ING: VIN. Vi
Miter bis
with has
the chron
Experi for (exampl entirely ne ress ber bo axomes (th
prosimal portions of the mulens. I. Erlanger is all presem engheyed with me in the stady of the spinal cords of amimals from which pieces of nerves suplying museles, and in some instances the museles themselses, have been excised ; the results of these investigations will le published later. In Fige. 150 are shown seme cells: from the muelens mere facialis: fifteren days alter seetion of the facial nerve. Ther may be compared with "of Fig. 149, which represents a mormal motor edill.

As to the effects umen the cell hody indued hy injury to : portion of the teminals of the collaterals of a given asone, as have as yet no evidence.

Exproments such as the forecroing pilace eertain diseasesfor example, the so-ablled peripheral nembitis-bebe sin in antirely new light, for it is obrions that eren if the : . deror cess be confined at first axelnsively to distal protions of the axones (the lesion, when of the nathre of a fimal nedrosis, is
usually dependent upon poisons circulating in the blood), it does not remain localized in them, and, as we have seen, injury to an axone leads to alterations in the whole of the neurone to which it belongs. Ballet and Dutil* have already deseribed such changes in the eells of the ventral horns in eases of polyneuritis (Fig. 151). Many alditional examples of the bearing of these experiments upon pathology might be given. From what has been said it is obvious that we must be very chary of denying the existence of alterations in the cell bodies of the neurones in a given disease, moless these have remained undiscovered with the most delicate methods now at our command. There can be but little doubt that in many cases in which the nerve eells have been deseribed in the bibliography as being perfectly normal, very distinct pathological ehanges could have beendemonstrated in them had Nissl's mothod been used for their detection. On the other hand, it must be borne in mind that in the very delicacy of these methods thore lies the great danger that with them the inexperieneed may easily be led to describe pathologinal findings where, in reality, none exist. I must confess that I am very skeptical of accepting as facts the statements in any publication of work based on Nissl's methods where I am not sure that the results have been controlled by an investigator of experience.

Cufortumately, tissues fixed for staining by Nissl's methort in alcohol or corrosive-sublimate solutions are not suitable for staining by the method of Weigert or by that of Marehi.

[^98]Marina ture (fo tissues Weigert Gieson. tions atre beautifn in the or

As on the wl ing from drites w lefinite i ing out o juries to nerve fib have see their em to dendri 1 shatl later, thol their phys at least s duction of concerned arenerally t tologically tion only t servers, en cases of ina the latter

* Maritia, Nervenzelle ('entrallol., la
\dagger An epit with regaral comprehensiv der allgem. P' Jahrgants. 18 :
\ddagger Berkley, min Poisons, vol. vi (18:

Marina * has tried to obviate this difficulty. His fixing mixture (formol and chromic acid) permits of staining of the tissues by the methods of Weigert, Nissl, and Vim Gieson. The Nissl preparations are not, however, so bematiful as those prepared in the orthodox way.

As regards the effeets on the whole nemrone resulting from injury to its dendrites we have mueh less detinite information. Leaving out of consideration injuries to peripheral sensory nerve fibres, which, as we have seen, correspond in their embryological origin to dendrites, and which, as 1 shall point out a little bater, though eonforming in their physiongical behavior, at least so far as the conduction of nerve impulses is

Fita. bas.- Larger pyamidal wells from the seromd layer of the erembal contex showing advanued stages ol degeneration forlowing rixin trismang of tourten homss duration. The cells have lost the angularity of their comtours. (Allur II. I. Brorkley. Johns llopkins Hosp. Rerp.. vol. vi, ill, xii.) concerned, rather to what is generally trne of dendrites than of axones, are nevertheless histologieally indispatably axones, we have as data in this commetion only the observations of Monti \dagger and Berkley. \ddagger These ohservers, employing the silver method of Golgi, the former in cases of imanition and experimental cerehal embolism (Fig. 15\%), the latter in several varieties of intoxication (Fig. 1am) and in

[^99]terminal dementia (Fig. list), have fomd that muder certain circumstances the earliest lesions which appared were those atfecting the dendrites. These showed varicosities and distortion phenomemath withs of the gemmules and finer side bamehes;

 terminal domentia; the wemmotes have disapreaved amd the iomentar malibe is well shown. (Amer Il. I. Burkbey.)
only subsequently did the cell body and axone show alterations. An effort has been made to attribute the changes in such cases in the axone and cell hody to the disturbances in metaholism resulting from the loss of the dendrites. It wouli seem to me possible that the alterations in external form in a cell hody and anone diseovered hy the method of (iolgi may be due to the same eanses as the preading changes in the form of the demdrites and not simply he the ir motabolie seguel.

The researches of Wiarington (ride infren) and others have
shown dendri neuron if the alterati than th the con
collater another ogist. commm them, tl culating That
tion of the mol intimate matter

Besid
the rest hats long inevitably
comnerte be recalle ligature 1 the point results at extremitio necrosis o cord. 'Th Mïnzer a complete the neerot degenerati by the mi (either the ablation) i axone, and
*Shimam schenkelgeget Leipz. (1894),
shown that if the impulses coming to a cell by way of the dendrites and cell body be cat off, changes in the whole nemrone result. It would not be diflienlt to believe then that if the dendrites undergo serious injury of any sort marked alterations of the neurone minst result, if for no other reason than the eutting off of centripetal impulses. Held's studies of the concrescence-relations between the terminals of axones and collaterals of one neurone and the dendrites and cell bodies of another are, it seems to me, well worthy of note by the pathologist. When one remembers that these delieate internenronal communications are directly exposed to the lymph which bathes them, the possible deleterious effects of solnble peisonings circulating in the hood and lymph are not difficult to imagine.

That the cell body is of very great importance in the mutrition of the neurone is evidenced by (1) the existence in it of the nuclens with its surrounding endophasm, and (2) its very intimate relations to the capillary plexuses within the gray matter (Fig. 155).*

Besides, the effect of severe injury to the ganglion eell upon the rest of the nemrone is now very generally appreciated. It has long been known that destruction of a ganglion cell leads inevitably to the decay and disapparance of the nerve filse comected with it. A few interesting experiments may perhaps be recalled. Ehrlich and Brieger showed in 1884 that if a ligature be applied for thirty minutes or an hour elose bencath the point of origin of the renal arteries of the rabbit, there results a permanent sensory and motor paralysis of the posterior extremities and of the bladder and rectum, owing to acute neerosis of the cells of the gray matter of the lumbar spinal cord. These experiments, repeated later hy Herter, Spronck, Mïnzer and Wiener, and others, are invariably followed by complete degeneration of the whole of the neurones of which the necrotie cell bodies form a part, and the course of the degenerating fibres can after a few days be prafitably studied by the method of Marchi. The removal of thre nerve cell (either through chemical injury, cutting off of nutrition, or ablation) is, for the part remaining, equivalent to severing the axone, and the typical secondary degeneration always occurs.

[^100]'This brings us to the ntilization of experimentally protheed secondary degenerations, by means of which important contributions have been and are being made to the anatomy of the central nervons system. No matter what nerve eell or group of nerve cells is destroyed, whether in the spinal cord, in the merlulla, in the thatamus, or in the cerebral cortex, whether belomging to the projection systems or to the association sus.

tems, the correspombing axone or axones, with their enveloping myelin sheaths, degenerate completely to their terminals. The mothod of Marehi permits us to make out the changes long lefore they assume the degree necessary for their recogrition hy Weigert's method. Indeed, nowadays practically avery nomor logical investigator employs this procerlure, so valuable is the information afforted by it.
'Ihis mothod, when employed in comeretion with that of Xissl, is of extreme valae, not only for anatomy, hat alsu for pathology, for it must now be evident that onne we have demonstrated degeneration in a given set of nerve fibres we ban prophesy almost with certainty the existenere of lesions of somu
sort
olviou either serelil to by sol neluron all the suflice in othe illstanc lateral s cells of tal port dergener probabl (alcuhol distill unon tl gromed ous intl whole w recognit rones in sumalby (Striim! the dise: similar thait in the spin:

Inasm nerve roo the fibmes tion of th finnation. :it lealst in to be acee sought in inllumeer erence or shecomb, or the tox
sort in their cells of orgin-lesions which, however, may obviously, from what has been said ahove, be, in a giren ase, either primary or seeombary. The statement of this fact would serem to be all the more important in that it has been suggested by some investigators that apparently trivial injuries to neurones, so slight in the cell hody as to exelnde deteetion by all the cruder methods, may nevertheless in all probability sulfice to give rise to easily demonstrable degenerative lesions in other parts of the memones. Perhaps the most signitiont instance which can be eited is that met with in some forms of lateral selerosis in haman beings in which the pyramidal motor ecfls of the cortex show no marked lesions, thongh the most distal portions of the nerve tibres arising from them have gradually degenerated. While it is not impossible that here, as seems probable in some forms of disense of the peripheral nerves (alcoholie neuritis, lead-poisoning, ete.), the degeneration of the distal fortion of the axones may be due to the direct action mon them of some toxine, the view is gradnally gaining gromed that in these cases we have to deal with some deleterions intuence acting upon the cell horly, or perhaps upon the whole nemone, which expresses itself in a manner accessible to reognition by our methods first in those portions of the nellrones in which the matritive intluences are least ative, presumably those most distal from the cell boty and molens (Strimperll). Wollenberg's idea regarding the primary seat of the disease of the sensery nemrones in tahes wonld involer a similar explamation, but many hawe objerted to the assmuption that in this disease the primary lesion is in the cell hodies of the spinal gianglia.

Inasmmeh as in tabes we have mot, as aftor section of a dorsal nerve root, a remplete degenemation following the eontinnation of the fibres within the spimal cord, but mather an eleetive degrememation of the dorsal fimienli, certain only of the intramedullany contimations of the dorsal poots being involved in the disease proerss. ai least in the early stages, it seems to me that one of two virws has to be werepted for the explanation of its wigin. Either this is to be sought in a slow intoxication of the eorl, the toxine being one that inthences deleterionsly the semsing regions of the cord and by proferemed only certain parts of these the individual hmalles which sucemblabring toal certain extent indifferent rases of the disease. or the toxid proces is exerted in an ele tive way in the spinal gran-
gria, of possibly on the whole of the periphemal semsory beurone, certain only of the peripheral sensory memones being allected, at least at tirst, and aceombingly erpain only of the liberes of the donsal funienti inside the eord. The former view has been supported by. Erb, Strimupell, Möbius and others. A result of poisoning somewhat similar to that assmmed in this dortrine of the origin of tabes has been observed in eertain other intoxications. Further, nothing can be more obvious than that certain groups of nemones in a given individual are more suserptible than others to a given toxic agent; more than this, the same group of nerve cells in two individuals may react very differently to similar doses of the same poison. Our daily experience with the effects of aleoloh, confee, tea, and erertain antrstheties upon ditferent individuals and upon ourselves mader different circumstances are of interest in this commertion. The toxines of syphilis, although we are entirely ignomant as to their nature, show a decided preference for eertain parts of the cerebral cortex, other areas being less often aflected. Hampe's observations eoneerning the diferences in the psychic disturbaneres following carbon-bisulphide poisoning in different individuals are very eonvincing in this regard, as are also the carefal pischo-pharmacologieal investigations of Hoch and Kraepelin * concerning the caffeine and ethereal oils in samples of tea. It is Fleehsig's idra that these variations in vulnerability of different gronps of nenrones, and of the different portions of the individual neurones, are to be traced back in large part to developmental conditions, a suggestion which is highly phatible in view of the evidence that ean be brought forward in its favor.

The answers to the questions whieh we have formulated concerning the events oceurring in the various component parts when eut off from the main body of the neurone, and the effects of lesions of individual portions of the neurone upon the nenrone as a whole, are, of necessity, as yet very incomplete. Suffieient evidence, however, is at hand to render clear the fact that the neurone as a whole is a trophic mit, and that any attempt to locate the trophic function exchsively in any one portion of it must assuredly fail. We have seen that we possess reliable observations which all favor the view that injury to any part of it also affects to a greater or less extent the remainder of the neurone, amb that no portion of a nemrone is capable of existence for any great length of time after the severance of its

* Hoch. A., u. E. Kraepelin. Veber die Wirknig der Theebestandtheite anf körperliche und geistige Arbeit. Kraepelin's Psycholog. Arbeiten, Bd, i (1895), 11. ${ }^{2}-3, \therefore .378-488$.
romection with the rest of the nerve mit. And after all, when one thinks of it, this is not so very astonishing ; indeed, it is mather a matter of smrprise that the fact should have been questioned, after the knowledge had once been gained that a neurone as a whole represeatsa single cell, for we have long known that even in such presumably little differentiated protoplasm as that possessed by an ameba, an injury (for example, with silver nitrate) to one portion of the cell body is speedily answered by phenomena which concem the whole of the unicellular organism. How little likely that a nerve cell, the protophasm of which represents the highest example of differentiation along the lines of irritahility with whirh we are achuainted, should remain mintheneed by irritation or destruction of one of its integral parts!

Nany facts might be added in conncetion with regeneration of nerve fibres and nerve cells which have more or less bearing now the trophic functions of the neurones. On the regeneration of nerve fibres an immense amount of work has been done, some very important rontributions having been made by investigators in this commtry, especially by llowell and Huber.t It hats long been known that on snitable apposition of the ends of a divided motor or sensory nerve, the axones of a central stmmp, may grow out again to the periphery and function may again retum. In the event of the re-establishment of comection and function, the regressise alterations which begin to appear in the central portions of the nemone almost immediately after section (Nissl) gradualy give place again to the normal appearances. The investigations of Bater, Dawson, and Marshall, carried on under the direction of W. II. Howell (1897), speak in favor of the regeneration of the central axones of peripheral sensory neurones in the dorsal fimienli of the cord after experi-

* Compare the excellent review and ritifue of the bibliography upto 1895 by II. Strobe. Die allgemeine Ilistologie ter degmerativen mad regenemtiven Proeesse im centralen mol peripheren Nervensystem mab den nomesten Forsehungen. Vasammenfassentes lieferat. Centralbl. f. allg. Jath. u, patle. Anat., Jema, Bal. vi (1895), s. 849-960.
\dagger Ilowell, WV. II., and Huber, (i. (. A Ihysiological, llistologienl, and ('linieal Study of the begeneration mui Reqeneration in Peripheral Nerve Fibres aftre Severance of their Connertions with the Nervec'entres. J. Phys-

memat lesion of a dorsal roon between the ganglion spinate and the xpinal cord.*

Regeneration of severed norve fibres within the spinal cord and brain is, unfortunately, very much less emplete than in peripharal regions. Whether a neme eell ondenatrely destroyed cam have its place adeymately filled by one formed by division from amother nerve cell is a question of vital interest. The ressarehes of Thigges, Mondino, ('oün, Cattani, and lopofl are of importaner in this comection. The newspupers have recently rontained the most exaggerated and ladicrons aceomits of the siguificance of the experiments of Vitzon. \dagger According to his rescarches, there may be an actual new formation of nerve cells in the hrain, and it is his opinion that the restitution of function after ablation axpriments is to be attributed, not, as Luciani and Tamburini think, to the existence of seeondary centres which take on the function vicarionsly, bat directly to the mowly formed nerve tissine. This view is not shared by Trodeschi,t of lisa, althongh this investigator alsor asserts that he has demonstrated the possibility of a regeneration of the nerve eefls (Fig. 15is). It is highly lesimble that these studies be repated ind extembed, especially as the resent researehes of Tirelli \# on the spinal ganglia, and of Montiand Fieschi $\|$ on the sympathetic gimglia, go to support the prevalent view that in allult animals ganglion cells once destroyed are not regenerated. That there can be remarkable regeneration in embryonie stages,

[^101]howerer, is fully estallished ; witness the experiments of Rons, Loed, and others. Fexmer has reerently statiod with mare the

 misture, sathranin staning.
process of regeneration in phambans with especial refereme to the histological side.*

Of these phenomena of regenemation it may be said briefly that they emphasize most strikingly the erlhalar mature of the nemones, and acomel in nealy every particubar with what a priori might have been expected.

I have purposely hail particular stress upon the mity which characterizes the trophic functions of the nemrone, beanse the Wallerian doetrine of trophie centres has been so ingrained in our minds that it is dillient to disabuse them of the erromeons portions of it. In making this point, however, there hats been no intention of giving the impression that all protions of the neurone are of equal value from the standpoint of mutrition. such an idea wonld probally involve a fallacy even greater than the one from which we are being emaneipated. Laxatly the part played by the dembites, by the cell body, and by the axome in the mutritive proeesses it is as yet impossible to say; but that calch has an important function is certain, and that the role of the nom-medulated portions of the nenrone is somewhat diflerent from that of the mednllated seems very likely.

We lave now to thrin our attention for a short while to the phenomena of irritability as manifested by the nemones, and shall retum later to consider the relations of the trophic functions to the nervous functions proper.

[^102]
IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences 23 WEST MAIN STREET WEBSTER, N.Y. 14580
 Corporation

CHAPTER NXI.

TIIE IRRITABILITY OF THE NECRONES.

The phenomena of irritability of the neurones-Applicability of the law of the conservation of energy in the domain of mimal life-The problems to be solved-Unremitting character of the activity of the nemronesThe majority of the nervons processes meonseions-significance of the so-ealled "subconseions" and "infraconseious" centripetal and centrifugal impulses-(question of spontancity of neurone activity-On the trunsference of an excitation from one nenrone to another-The "nen-rone-threshold"-Importance of proper adjustment of stimuli-Edinger's theory of tabes-The speeific energies of nerves.

The physiologist of the present day sees in the functions of the nervors system, even in those which are most complicated, anly certain manifestations of energy. Morcover, he believes that in nemrones, as in all other cells of the body, mal as in the work generally, the law of the comservation of energy during transformation holds, and consequently regards the phenomena of irritability, as exhibited by a nemrone or by groups of nemrones, as the kinetic representative of the potential forces of the cells and their food stuffs. The metabolic activities and the vital manifestations of the cell are concomitant processes-another example of the inseparable connection which exists between what we term matter and energy. There has been in many quarters a certain amount of hesitancy in accepting the view that the eapacities of the nervons system, particularly those of the brain, are dependent directly upon the chemical and physieal alterations which are rontinnally going on within its con-stituents-a hesitancy which, though it has in the past proved a serions obstacle to progress, is happily now fast disappearing. For the plant, all the evilence goes to prove that maler the influence of smbight and heat marked chemical and physiat changes take place within it which we recognize in its vital processes. In the ammal, be it granivorons, carnivorons, or, like man, ommivorous, it is the rhemical energy introdnced as
food wh the org Rubner strate in the cons however tion in y were for mate na the deta legree much th side the to the 1 scanty.

The more to impulses. axonesbelieve t efforts h chemical only the of the o these el well be claims as impossil cerned w yet rema

It wo points w ferences ence of 1 matic al are abso from che their po
fool which represents in the main the sonree of the energy of the organism. The recent accurate calorimetric studies of Rubner* are of much interest in this comnection, and demonstrate in a most convineing way the applicability of the law of the conservation of energy in the domain of animal life. While, however, our present knowledge suffices to permit the recognition in gromps of living cells of these broad general laws, which were formerly thought by many to be applicable only to inanimate nature, it must be almitted that in no single instance are the details of the transformations of energy known to us in any legree of completeness. We have not as yet discovered very much that is definite concerning the storing up of energy inside the individual neurones, and our information relating to the discharges of energy in these structures is even more scanty.

The physiologists have been struggling for fifty years or more to gain an insight into the nature of what they call nerve impulses, by which is to be understood the occurrences inside axones-for example, at the time when we have good reason to believe that they are functionally extraordinarily active. Their efforts have supplied us with a multitude of data, physical and chemical, interesting enough, no donbt, but whieh can serve as only the barest prolegomena to an explanation of the essence of the occurrences. If we are so badly informed conceming these elementary and fumdamental phenomena we may very well be content to be modest for some time to come in our claims as regards a physiologieal nsychology. It is by no means impossible that in the nervous system forms of energy are concerned which do not exist outside the animal boly and which yet remain to be recognized and studied.

It would be easy enongh to ontline rapially the most salient points with which we need to be better aequanted. The differences in nemrones in diflerent species of amimals, the infloence of heredity upon the strueture of the neurones, the antomatic activities in these cells, if indeed they lave any which are absolntely antomatic, the changes in neurones resulting from chemical and physical alterations in their enviromment, their powers of adaptation, and many other questions present

[^103]themselves, the solution of any one of which would bring alout. a great advance in our knowledge. Truly, to find ont the properties of a single neurone wonld be a task appalling enongh, but when we remember that of the millions of nenrones in one individual perhaps no two are just alike, the quest would seem hopeless. But instead of burying onrselves in pessimistic reflections, or being disconaged by what is at present mattainable, by what may perhaps forever remain to us maknowable, we may prefitably turn to the consideration of some of the points which lie more within our ken.

One point, self-evident enongh when one's attention is directed to it, but which often appears to have been overlooked in comnection with the neurones, is the unremitting character of their activity. With a metabolism so complicated as that oceurring within the nerve units it is inconceivable that there can be any period in which alterations in chemical structure, and consequently energy transformation, are not groing on. From moment to moment, throughont all the hours of the day and night, analyic and synthetic processes are taking place, associated with the alterations in physieal forces which necessarily accompany these changes. In common with everything that lives, the nemrones know no absolute repose. As I have said, in speaking of their metabolism, periods of extravagant activity may alternate with periods of more economic change, but total rest is ineonsonant with continuance of existence. We are foreed to believe that what we ordinarily speak of as the passage of a nerve impulse represents, as it were, a stormy process in the nerve fibre, and that just as absence of a storm does not mean absence of weather, there are in all probability minor alterations, currents if you will, passing to or fro or to and fro in a given nerve fibre in the intervals between the more violent excitations. With increasing knowledge the importanee of centripetal impulses which fall below the threshold of consciousness and of centrifugal impulses insutficient to call forth visible muscular contractions is becoming more and more evident. In a healthy individual perhaps the majority of the impulses passing from the periphery into the nerve centres have no share in the composition of the mental pictures, but these subconscions stimulations are doubtless of decisive signitiemee for the mutrition of the elements concerned and for the processes of subconscions co-ordination. Similarly, the myriads
gi impulses passing to the muscles without producing marked contractions in them mast of necessity hase to do not only with the proper metabolism of the motor nemrones, mitase with the mutritive processes in the muscles themselves. l_{11} deed, there is much evidence to show that the nutrition of the museles enn be kept up very well in the absence of atetive muscular eontractions so long as these less violent impulses pass regularly to them, but as soon as the latter are cut of the museles speedily mulergo atrophy. This fact is often extremely well illustrated in cases of hysterical patients, where, as is well known, there may be inactivity of certain muscles for very long periods without tmy very marked atrophy. By means of very delicate graphie methods it cam be shown that the museles in such patients are imervated when corresponding movements are thonght of, just as in a healthy individual the hearing of the word "tower" is often associated with nerve impulses to the eye museles, which tend to make the imividual look up. The different tracings yielded by the antomatograph during various psychic processes may be mentioned as interesting in this comection. The importance of the contimons passage of impulses along the sensory nerves for the carrying out of all complicated movements of the museles, long emphasized by the observations upon tabes and also upon cases in which there have beculesions of the trigeminas, has been made even more strikingly evident by Mott, Sherrington, and others who experimented npon monkeys in whom the dorsal roots of certain of the spinal nerves had loen ent. In such ammals, although practically all the motor neurones (cacept the few possible motor axones of the dorsal roots) are intact, and the memory traces of previons movements must be believed to still exist, movements of the limbs imervated by the corresponding segments of the spinal cori, those, hich are eomplicated as well as many which are quite simple, are only very inatecurately carried out. The continuity of the merve excitations cam therefore scarcely be insisted npon too forcibly, and I am inclined to agree fully with Goldscheider when he says, "Es herrscht eine zeitliche Contimuitit von Erregungen in allen Bahmen des Nervensystems." As Donaldson.* writing in this comnection, beautifully puts it: "In this picturing the entire
nervons system as a sensitive meehanism, it is evident that it must respond to the surrounding stimuli as does the water of a lake to the breeze; and such is the relation between the central system and its enviromment that the breeze is always blowing and the waves of ehange always chasing one another amons the responsive elements. If there are no waves, then the cells are dead. The breeze still blows, but it falls on a frozen surface, on cells chilled and rigid beyond the power of response."

The influence of the arrival or non-irrival of external stimuli to the neurones upon their trophic and nervous functions will be referred to a little later. If among external stimuli we class not simply those outside the body, in which event a very minute fraction of the whole number of newrones would be firectly accessible to external stimuli, but all those external to a given neurone, ineluding those arriving through the lynuph which bathes it, or by means of the processes of other neurones which enter into relations of comluction with it, we shall come to the conclusion that the limits of genuine spontaneity of action on the part of neurones are very narrow; indeed, some authors would deny its existence altogether. Von Lenhossék, for example, says: "Man darf den Satz wohl als gesichert betrachten, dass es keine Nervenzelle gieht, die ihre Nervenwirkungen aus s; in selbst herams, ohne aeussere Impulse, spontan entfalten komnte." The reflex actions are very obviously dependent upon extemal intluences, as are also the instinctive reactions, and what we call volitional movements are, when analyzed, apparently only reactions to esternal influences modified by memories. We must not lose sight of the fact, however, that there may be periods of considerable length interrening between the arrival of the external influence and the discharge of energy which it determines or helps to determine, just as we know that the springs of conduct often lie far removed from immediate aets. And it is just here that the laws bearing upon the summation of stimuli * assume an especial interest, although they must be passed by now without discussion.

[^104][^105]Of the plysiology of the transference of an excitation from one neurone to another, a word may be in place. All our knowledge of sensation goes to indicate that a certain minimal amount of stimulation is necessary to call forth a reaction ; for example, to stimulate a pressure point in the skin a certain amount of pressure, say from : hair, is required to elicit the sensation of toueh. Any pressure less in amount will not suffice. That is to say, the touch point has a "threshold value."* In the same way there are threshold values for the various cold points, \dagger warm points, and pain points, and in connection with the special sense organs much work has been done upon the special threshold stimuli which will call forth sensations of light, smell, sound, and taste. It is obvious, if the neurone doctrine be true, that for the spreading of an impulse or excitation through the nervous system one neurone must act as the excitant upon the neurone or neurones beyond it which stand in conduction relation with it. It seems highly probable, therefore, that each neurone has a special threshold value. Coldseheider, \ddagger in a brilliant essay recently published, has defined the "neurone threshold" (Neuronschwelle) to be the degree of excitation of a neurone which just suffices to call forth a fruitful exeitation in a nemrone with which it is in contact; that is, that sufficient to call forth a sensation, a movement, etc. If this view be correct, the resistance in the passage of the excitation from neurone to neurone would, Goldscheider believes, lie at the point of contact or of concrescence of the neurones. A series of new problems are opened up by this suggestion, not only with regard to the easier propagation of impulses in habitual nerve processes (Bahmung) and with regard to the phenomena of inhibition ($/$ emmumg), but also with regard to the therapy of nervous diseases, especially the explanation of phys-

[^106]iral therapentic methorls like massage and hydrotherapy. 'The monograph comes to hand too late to be reriewed here in detail, bat every neurologist will be repaid by a careful perusal of it.

The importance of normal aderquate stimuli for the welfare of the memones in health can no longer be questioned. As valm Gehuchten has emphasized, without stimuli there can be no life. For the mantename of absolutely perfect function the relation of stimuli to the reparative nutritive power of the cell must be absolutely and perfectly adjusted. Just here the Eirsatz-Theoric of tabes elaborated ly Lidinger can be asily umderstook. Lidinger, under the influence of Weigert, assmmes that, if stimuli be received in excess, anerve cell is no longer able in the intervals of attive function to repair the loss sustaned by the functional activity. As a result, progressive degencration ensues. In certain diseases like tabes there is, in his opinion, an almormal impairment of the power of restitution on the part of the nerse cell, so that a given nemrone is no longer able to keep up its mutrition even when the stimali reaching it are not in excess of what would be normal in a healthy borly. As a therapeutic measure in tabes, therefore, he urges the importance of giving more than manal rest to the nemones which are degenematiog. I'hus, a man who has been compedled to be much upon his feet, and who suffers, sily, from lumbar tabes, would be ordered rest in bed. In cases of brachial tabes, exercise of the arms would be interdicted. With begiming degeneration of the optic paths reading and all unnecessary ase of the eyes would be proseribed. Eilinger asserts that he has, in many instances, not only been able to arrest the progress of the disease in this way, but to markedly ameliorate symptoms already present.

In many cases of neurasthemia associated with pathological painful sensations in one part of the boly, the symptoms ean be reliced by incrasing the number of stimuli entering the central nervous system by mems of sensory nemones distrib)ated to other parts of the body, by massage, fambation, hydrotherapy, ete. It is not impossible that the beneficial effects of coanter-irritation are to receive their explamation in a similar way. It will be the task of the elinical neurologist in the future to decide from his study of a given case as to the existence of abnormal neurone-threshold values; inther, what neurones are receiving an excess of stimuli and what neurones are being insufficiently stimulated, and to outline his treatment aceordingly.
'lhe time of nent much 11 tions of rome dor of the always o the stim trical mo or how it mated, all clect reaction

The variabilit most pho has to d whole ess : pparatus that the birtlo is a of respons alfected b rugies bel the peripl though su incomplet process of orgams har that the v : the extern: tions of th dental stri we imagime bral cortex ferent part origin of t

[^107]The dortrine of the specifie anergies al nerves, since the time of its formulation by Johames. Mäller, has taken a prominent phace in nerve physiology. The riew of Mätler has heen much misunderstood and often misstated, and many modifications of it have bern suggested.* It has been left for the nemrome doctrine to explain, if it call, why it is that on stimulation of the retima or of the optic nerve, for example, the respomes always ocems in one and the same mamer: no matter whether the stimudation be ly normal methods or by mechanical or eleretrical means, the sensation of light or of color alone is yielded; or how it happens that when a "cold point" in the skin is stimulated, whether it he with iere, the prick of a sherp toothpick, an electrical current, or a piece of hot wire (paradoxical cold reaction of von Firey), the sensation of cold always results.

The constancy of the quality of the raction, despite the variability in the form of the external stimulns, is one of the most puzzling of the phenomena with which the nemologist has to deal. While some physiologists would attribute the whole essence of the process to the characters of the peripheral apparatus with which the nerves are connected, maintaining that the position of the centres at which the stimuli arrive at birth is a matter of little signifieaner, others hold that the sort of response evoked is dependent entirely mon the central region affered ly the stimulns, which wonld mem that the specifie enargies belong to the centres and are practically independent of the periphery. It seems to me that awh of these doctrines, though supported by distinguished nemrologists, is necessarily incomplete. Is it not much more likely that in the gradual process of development and modification peripheral and central orgams have been correlatively differentiated! We can not think that the varions modifications of apparatus mediating between the external physical influences and the most peripheral porthons of the sensory neurones of different kinds represent accidental structures which have no physiological import, nor cam we imagine that were the eentral projection fieds in the cerebral cortex, at which the sensory impulses arrive from the different parts of the periphery, of no specific signiticance for the origin of the different sensations, they would present for the

* For a clar and complete neemont of the doctrine the reader is referred to A. Goldsebeider's artirle: Wie Lehre von den specifischen Energicen der Sinnesnerven, Berlin, 1881.
different sensations so absolutely speceifie a structure.* The pathological cases again, in which direct irritation of these areas in the cortex has called forth definite sense perceptions, speak for a direct relation of these centres to the specifie energies of the sensory nerves. Odors, images of colored objects, of muscular movements, and of somels have been experienced by individals suffering from the pressure of cysts and other bodies upon the corresponding cortical sense arens.

The question is still obseure, nor have we much promise that it will speedily be satisfactorily explained. Von Kölliker, \dagger in a diseussion of the physiological functions of the elements of the brain, thinks that all nerve cells possess in the begiming essentially the same function, and that the manifestation of function depends entirely upon the manifold external influences or stimuli which affeet them, and upon the many possible modes of responding to these excitations. \ddagger

[^108]
CHAPTER XXII.

Partieipation of all parts of the nemone in the phenomena of irritability Functions of the rell bodies-Views regurling the mature of the dendrites.

Witin the concept we have gained of the nemone with all its parts, as a rell, and of the mity which characterizes the various steps in its metabolism, it would almost seem idlle fo devote time to the question of the existence of a maity in nervons function; the latter would appear to be a meerssary corollary, and í should not disenss this topir at all were it not that some of the most distinguished investigators have assumed that only a part of the nemrone is concerned in the aetmal nerve function, in the phenomena of irritability, in the tramsmission of impulses, and the like.* All are agreed that the amomethe axis cylinder of the nerve fibre-with its endings, is active in the conduction of impulses, but concerning the nerve function of the cell body and of the dendrites there hats been much controversy. Recalling for a moment what was said at the begimning of these remarks regarding the position assumed by Golgi as to a diffuse nerve network, it will be romembered that he excluded in the spinal cord the dendrites and the eell hooly from the reflex arc. The sensory impulses, he thought, passed from the sensory fibres directly throngh the tibril reticulnm out along the side fibrils to the axones of the motor fibres, and thence along them to the museles. Accordingly, he doubted the possession of nerve function by the cell body and dendrites, and assumed that they were set apart to act solely as mutritive structures. That the cell bollies themselves are concerned directly in the nerve function can now scarcely be donbted by any one, hardly even hy Golgi and Nansen, since the intimate

[^109]redation of axone ame terminals to the protophasm has been Clealy demonstrated in certain instanmes. 'The origin of the indea of the uon-participation of the eoll buly in the proparation

 the comrent. I pregunt example oftered was the armagement in the spinal gramglion rell. fore a long time it wats held by many that the 'T'shaped provess which bromght the peripheral into a direet lime with the erentral axome was for the purpense of cotting off the rell hody lrom the comdurtion path. 'This iden Was negatived by the demonstration of $1{ }^{\prime \prime}$ undt * of a delay in the passage of the i:mpulare correspombing to its passige through the spinal grimglion of 0.00:3 of a scombl, a result which has bern contirmed and extemded by the exeriments of tiad and desceph upon the vagus of rabhits. Moreover, the relations of the proecesses to the rell bosly in the cochlear and vestihnlar gallghia of homan heings, as woll as those in all the selnsory gangria of tishes, merossitates the passage of the impulses alirectly through the cell bodies. And, hastly, the physiologists who have stmdied such rentres, as, for reximple, that governing respiration in the modulla, and who assume that exeitation of this eentre can result from the direet chemical artion of gases in the blood, will not permit ms to believe that the gromp of eoll bodios making up the contre is meoneorned in nervons merohanisms.

There has been marh eomboversial writing upon the functions of the demdrites. 'The argmonents in faver of the different views have been ably marshaled and ariticised by both ron Källiker \dagger amd rom Lenhossík. \ddagger On aceomnt of the fundamental importanme of the topic it will be neeressary to consider bricely the main points bearing upon it.

A mainstay of the (iolgi selool was the supposed direet attachment of the ends of the dendrites to the glia cells amd to Walls of the blood-vessels. The supporters of the "nutrition" view held that the dendrites throngh their apieal attachments represent the direet paths for the introdnetion of food materials

[^110]from th direst al walls of proved, comment ing tor is that 0 clul free if it be mo the silver highly the nerve the bowe

Ihis . to be the demblites and (ored) (oord rill" matter fo certaill re now the planation ing juiees from the 1

That at against the their mutri of eonside

Some h have to dr that dendr functions. that many no means not play sul tion of the

* Sala, L. wissensech. Zo + "Fonsen die Warsehal Dendriten sie
from the bood-ressels into the nerve redls. Xow, while the dired attachement of many of the proeressens of glat celles to the walls of the bowdevessels appars to hate been definitely proved, there is no evidonce at all that any such armenement rommonly exists for the demdrites of the mere cells. aceording to won Kalliker, the muly attempt to pieture such a relation is that of sala.* 'This example of failure of the demerites to cou froe must be looked umon as an masmal ohservation. Fiven if it the combirmed, the exprienere of every one who works with the silver method must ronsinge him that sueh a relation is highly exeeptional. Worewere studies ipmon the histogenesis of the nerve centres reveal no distine remprocal relations bet weren the homb-vessels and the dembrites.

This commertion with the blowd-vessels was thought he Gengi to be the true explatation for the existenere of the forests of dembrites which pass out toward the surfare of the ceremellum and corethal reortex, and of the demdrites which in the spinal cord rom out in no incomsideralle mombers into the white matter for some distance, and in some amimals (for example, vertain reptiles) even to the surfiace, forming a matted felt work "pon the exterior of the cord. Comld any more plamsible explanation be given than that they, like the roots of trees drawing juices from a distance, pass outward to ohtain mutriment from the hood-vessels of the pia?

That adembitic eells exist, has heren addued as an argment against the mervons function of the dendrites and in favor of their mutritive function. So olvious a fallacy is hardly worthy of consideration.

Some histologists, who concede that many of the dendrites have to do with both nervons and nutritive antivities, helieve that dembrites may exist which possess omly one class of these functions. Thms, von Kïlliker, while he inclines to the view that many of the dendrites are conerned in conduction, is by no mems willing to deny that there are some of them which do not play sweh a part, hit which serve only to aid in the mutrition of the cell. He emphasizes the statument that all the

* Sila, L. Zarr feineren Anatomie des grossen Seepfordefusses. Ztsehr, f. wissenseh, Zool., Mänch. u. W،"ipz.. Bd. Jii, Taf, v, Fig. 6.
f "Fussen wir alles zusummen, so scheint, wie dir Sachen jetat liegen, die Wagsehate doch in hohen Grade ga Gunsten der nerviben Nutur der lendriten sieh zu neigen." Ihanduuch der (iewebelehre, Bd. ii, S. 113.
physiological functions of the spialal corl cam be entirely satiofactorily explained without calling in the aid of the dendrites.*

There is some fore in the ohjeetion that there are dendrites so situated in the nervons system that they apmarently ram not come into conduction-relaiion with strnetures belouging to other nemrones. Many of the examples which have been brought forward to ilhstrate this point have not, however, stood the test of invesigation. 'Thus, Ramon y ('ajal and (. L. Sala have demonstrated in batrachians collaterals from the fibres of the white fumienli in the spinal cord which mon out toward the periphery and even to the smrlace of the spinal cord to mingle with the plexis of demdrites in that sitnation. ; the olfactory bulb, however, and in Ammon's horn and the fiscia dentata, there are dendrites which appear to have no direct relations to the terminals of collaterals or atomes of other neurones. At any rate, such relations have not yet been proved. Even ron Lenhossík, who along with van fichuchten and Ramón y Cajal is one of the strongest supporters of the view that many of the dendrites are conduetors, grams \dagger that to assert that the disposition of the dendrites in the nerve contres depends entirely upon the establishment of finetional relations among different ne uromes is going too firr. We argues that if this were the sole determining factor the orgamism could have gotten along with murh simplar arramgements than those to be met with in many parts of the eentral nervons system-for examphe, in the molematar have of the cerebellar cortex. He womb rather assume that the excitations oremring within nerve ealls are in some way favored ly the fact that the protopalsm of the rell is split up into a mmber of time proeessesthe dendrites.

Lat us furn mow to the datal whel farm the assumption that the dembltes are eonerned in nerve function as well as in aiding in caring for the nutrition of the nemrone. 'The most eonvincing evidenew of nerve function in demdrites is that offered by the structure of those cmrions bodies, the olfactory glomernli. 'The riew adranced by Owsiamikow \ddagger and by

```
* op. cit., s. 196.
+10 p. rit., s. 14?
```

\ddagger Owsianikow, I . V'oher die feinere Structur der Lobi olfatorii ther silugethiere. Areh. f. Amat., Physiol, n. wissenseh. Mod. Läip. (1stit), s. 4tio-1\%

Walter,* halls firm the prowe matter al who tory hery begimuins malter no protoplas fail to tal ence betw

Ramin the osmoouly possi terminals drites of they follo 'These ols of' animals Källiker.A (:ill issinm transferen ran take of cell ber Issential.

The ex sary the as has herell

* Natter. mith. Anat.,
\dagger (iolgi, (
at.. lieggio-12
\ddagger Kamón turias. fiac. Barrelma, is
"tholgi's wher than th tirmed ly oth $\|$ van (iol mamiffires.
\triangle von kï Sit mingss. al.

Walter,* that the fibres of the olfaremy nerve on butering the bulb from the regio affatoria berome direotly combinnoms with the processes of the large and smatl merve cells of the erver matter of the offarlory lohe, was shatply contested by (iolgi,t Who asserted that betworn the fine fibrils into whieh the olfactory nerve tibes break pp on entering the erlomernli and the begrimings of the protophasmice proeresses of the cells of the graty matter no union ran be flemonstrated ; nay, since sometimes the protoplasmic processes stain when the axiserylinder processes
 ence between the 1 wo sets of fibrits exists.

Ramony (ajal, from a carefol stuly of the glomeruli with the osmo-lichamate methot, rame to the eonelnsion that the enty passible path for the olforetory mere impolses is from the terminals of the olfatery tibres in the eremerme to the dendrites of the mitral eells, and along these to the rells whenee
 These ohservations and views were rontimed in a large monlore of amimals ly ram (ichmehton and Martin, $\|$ as well as ly von Källiker. ${ }^{A}$ The last states comphatioally (1) that the demdrites cim assume the comblation of nerve impulses and (?) that the transference of nerve impulses from one nemone to another ran take placo diredty from fibre to fibre, a dired intlume of cell body mon fibers of of fibres ngon eoll hoties mot being essential.

The existenco of amatomionl relations which render neessary the assmmption of a conducting capacity for the dendrites has beron further demonstrated in the eerehellar dortex by

* Wather, (i. V'eber den feineren ban des Bulbus alfamorias. Arelo. f .

\dagger Golgi, C. Sullat lata struftura dei halli olfatoria. Riv. spere di freni-

\ddagger Ramón y Cajal, s. Origen y terminatóón de las fibas meviosas olfac-
 Rarrelona, $18: 11$.
\# (iolgi's onservation of time axomes emtering the olfatory ghmeruli, wher than those of the nervi olfartori, has not, so far as a kiow, hem confirmed by others.

a von Käliker, A. U'ber den feimeren han des bulbus offatorins.

Ramón y Cajal;* in the optie lobe of birds (Fig. 158) by van (iehnehten; \dagger in the distribution of the axones of the mitral

 B, whactory bulb: (, artilage of the (mbryonje cribriform phate; D, nasal
 of an olfardory ace tibre in the glomerulus of the olfactory bulb; d, small
 short asome (f) terminating in the molecular layer; j, aborization of theres of central origin. (After kamón y (ajal.)
cells of the olfactory lobe by Calleja; \ddagger and in the retina by Dogiel.\# There can, therefore, be no tloubt that certain of the dendrites are capable at least of receiving excitations and of paying a part in their further propagation. Ramón y Cajal, van Gehuchten, Retzins, and von Lenhossék have therefore endeavored to extend the view so as to make it hold in general for all dendrites, and have assumed that the most common mode

[^111]of trans second of the f which w
of transference of a nerve excitation from one neurone to a second is by means of the contact of the terminals of an axone of the former with the dendrites of the latter, a conclusion which would seem to be scarcely warranted by the facts at pres-

Fif. 15s.-Section throngh the optic lobe of the embryo ehick. (After A. van

 in the laver B are shown several nerve eells of the middle zone of the optie:
 eand d, deep arborizations; r, rectangurar arhorizations ; f, cuboidal arborizations. The nerve cells show internall dendrites manifoldy branehed, and al lage peripheral dendrite which temmates at difterent leveds in the onter layer, sometimes (k) by a horizontal artmorization at the level of the deres retimal arhorization, 'The axone arises from the peripheral dendrite and runs throngh the middle latyor, siving off nomeroms collaterals, i.
ent establisherl. That it is one mothod of transference is certain; but that there are others, for example, through direct
contact or concressence of axong terminals with the proteplasm of the cell body, all grant.

It may be worth while to point ont just here a certain fallacy of gencmalization to which, cmionsly enough, attontion appears not to have been called. Evidence has heen adduced which demonstrates indubitably that in certain parts, "" the nevvors system the anatomical relations are such that a cond:eting function for the deudrites must be admitted. This proof was brought forward as one of the means of demonstrating the mervons function of the dendrites. But some writers appear to take it for granted as a necessary sequence that dendrites for which no such anatomical relations are demonstrable prosises no nerve fimetion. If this were sound reasoning, we shond have to assume that the transference of impulses from one nemrone to another mate up the sum total of the nervous fumetions, an absurdity too obvious to seed further diseussion. We have mot the right to doaw our deductions fiom any one factor to the exchasion of all other coexisting influences. It is surely easy to conceive of a partienation of the dendrites in the nerve functions of the neurome, even if they stand in no direet relation either of receiving or diseharging to amother neurone or set of neurones. Indeed, granted that one portion of a single cell, as we believe a whole neurone to be, possess nes nerve function, the onus of proof upon the question of the nature of another portion of this cell-for example, the dendrites lies with those who deny the mervous function, not with those il maintain it.

Now that the cell body of the neurone is known to possess nerve function, the fact that the axone often comes off from a dendrite instead of from the cell borly is further evidence in favor of the identity or at least similarity of function of cell body and dendrites. This conchnsion would agree strikingly with the morphological resemblances revealed by the method of Nissl. Further, if anaxones are to be regarded as nerve cells, as seems almost certain, the dendrites mast surely possess nerve function.

That the axones are coneerned in the nerve function of the neurone has, so far as I know, never been questioned. It is generally believed that in the conduction of the excitations there can be no transference from one neurone to another except in those parts in which the myelin sheath is not present -that is, for the majority of neurones, so far as the axone is concerned, only in the region of its terminals and possibly in the short non-medullated portion immediately adjacent to the
nerve cell. This statement is equally true of the collaterals, for, as Flechsig* has shown, these branches, at least in the cerebral cortex, are, like the main axones, provided with medulary shoaths. We have indubitable evidence, too, that the majority, if not all, of the collaterals of the dorsal root fibres within the spinal cord are medulated. The side tibrils of Golgi are non-mednlated, and from the studies of von Lenhossék, A píthy, Held, and Bethe may probably be important agents in the transference of impulses from nemrone to nemrome. The relation in which the site fibrils stand to the nemropilum in invertebrates has already been refered to.

[^112]
CHAPTER NXIII.

THE THEORY OF THEIR DYNAME POLARITY.

Direction followed by nerve impulses in their passage throngh nearones('ellulipetal and cellulifugal conduction-Theory of the dynnmie polarity of the nerve elements- (enestion of possibility of eond tion in both directions in axones and dendrites.

Wre have now to deal with the question of the dircetion followed by a nerve impulse in its passage through a nemrone, and have to consider the evidence for and against the view that the impulses in a given variety of eell processes take always the same direction. The hypothesis that in the neurone the dendrites represent the apparatus for receiving nerve impaises, condueting always in the direction of the cell body (cellnlipetal conduction), the axones being the discharging processes conlucting always in a direction away from the cell body (cellulifugal conduction), advanced first, I believe, by van (iehuehten in April, 1891,* has been strongly advocated also by Ramón y Cajalt in an artiele in which he deals with "the theory of the dynamie polarity of the nerve elements." Retzius \ddagger has deelared also in favor of this view, and it has been adopted, thongh in a somewhat modified form, by von Kölliker, Waldeyer, von Lenhossék, and others. In the embryologieal sonsiderations of Uis and of Mall it met with approbation, since a priari nothing eould be more natural than that the processes developed upon the end of the cell originally directed toward the ontside of the body

* van (ichmehten, A. J.a structure des centres novenx. La moelle épinière et le ecrvelet. Cellule. Lierre et Lombiat, t. vii (18:1), p. 101.
\dagger Ramón y Cajal, S. Signifieación fisielogica de las expansiones proLophasmáticas y nerviosas de las células de la sustmeia gris. Rev. de cien. méd. de Barcel., vol. xvii (1891), p. 6 (73.
\ddagger Retzins. Ueber die neueren Prinzipien in der Sehre von der Einriehtung des sensiblen Nervensystems. Biol. Untersnch., Stockhohm, in. F'., Bd. iv, 1892.
should s cellulipe vations ducting of the olfactory lawsky \dagger condueti
be found root fibre matter of

Are th in dendri question, in the atti an axone the portio the axone culty of n surgestion impulses i But in tl

[^113]should scrve for the reception of stimuli.* The actual proof of cellulipetal conduction in ilendrites is established by the observations previonsly mentioned, which demonstrate their comducting canacity; above all, by those bearing upon the structuref of the mitral cells and the relation of their dendrites to the olfactory glomeruli. The galvanometrie experiments of Mislawsky \dagger have led him to support the doctrine of cellulipetal comduction in dendrites.

That the axones, at least when engaged in those of their functions with whieh we are aepminted, conduct, as a rule, eellulifngally is immediately upparent. Among other examples we have the passage of impulses along the pyramidal trats or along the motor nerves from the ventral horns to the museles, or, again, in the dorsal fumiculi of the spimal cord or in the optie nerve. From the nature of things in motor nemones the cellulifngal impulses passing along the axomes are also centrifugal impulses; while in the sensory neurones within the central nervous system the cellulifugal impulses in the axones are, as a rule, centripetal. 'This is not, however, tantamome to saying that centripetal impulses are always descending, and that centripetal impulses are always aseending, althongh this holds as a general rule. An example of an exception is to be found in the descending limb of the 1 -shaped divided dorsal root fibre which passes downward to terminate in the gray matter of a lower level and is undoubtelly a centripetal fibre.

Are there exepptions to the law of cellulipetal conduction in dendrites and of cellulifugal conduction in axones? This question, according to our present knowledge, must be answered in the affirmative. In those dendrites from which oceasionally an axone takes its origin it is obvions that the conduction in the portion of the dendrites between the general cell body amd the axone hillock must be cellnlifugal, not cellnlipetal, a difficulty of nomenclature which ean be obviated by adopting the suggestion of von Lemhossik, who reeommemds deseribing the impulses in demidrites as being aremetal mather than cellulipetal. But in this way we are thrown on the other horn of the

[^114]ditemman when we consider the diredion of eonduction in the dendrites of an anaxone-for example, in the amacrine cells of the retina. Where there is no anome it would be absurd to speak of axppetal impulses. The argument that there are demblites which stand in no relation with processes of other nemrones which would permit of any transference of impulses makes against the doetrine of the universal cellulipetal conduetion of dendrites. Finther, if there is ever a transference of impulses from one nemrone to another hy means of the interwoven demdrites of two nemrones, at view which von Beehterew strongly supports, it is obvious that with a given impulse the direction of the eomluction in one of the sets of dendrites must be cellulifugal and axofugal. Von Bechterew, in corroboration of his hypothesis, describes the intimate relations of certain dendrites of the two halves of the eord in the ventral commissme, and of those of the anamones in the olfactory lobe with those of the mitral cells; further, he adduces as instances the dendrites in the molecular layer of the cerebral cortex, and esperially those of the nuelear layer of the cerebellam. Interesting as the hypothesis is, there is, as yet, no proof of its truth.

Nearly all writers have agreed that in rertebrates in the typical monaxomes the condnction along the axones is cellulifugal. In the diaxones, however, the same rule need not hold. If we look nom the spinal ganglion eells as diaxones, then, ob-

 rord; mi, median line : s, sensory werve rools; $\quad z^{\prime}$, hipolar gatughon rells, the main processes of which run hongitudinally and divide dichotomonsty ('T-shaped), seduding ous hrimeh into at sensory root.
vionsly, the direetion of the conduction of the sensory impulses in the peripheral axone is cellulipetal ; in the central axone, eelln ifugal. Those who have commited themselves to the doctrine of miversal cellulifugal comduction in axones have deniea that the axis eylimeter of the peripheral sensory nerve fibres is solly an axone, assmming it to be rather dendritic in
nature.* fibre is, fibre hass process; referable and the

FIO. lifil--s onlcur all shown,
the peripis cochlear : and here calime tha acknowle eral senso the passag be granter In amphi Retzius \dagger the telode etally to commonly ties of cel (Fig. 159, zius, von I

* The sus believe, first texion gener príctiea, Ma
\dagger Retzius xus lanceold
nature.* The fact, tom, that the axis cylinder of the pripheral fibre is, as a rule, of thicher calibre than that of the central fibre has been thought to favor the view that it is a proloplasmis: process; hut, as has been stated, this womld appar to be contirely referable to the differences in distance between the cell body and the end of the axis cylinder, since for the ordinary ginglion

Fia. 1tio.-Spinal cord ot amphioxus. (Alter liotzins.) mi, median line ; ä,

the peripheral fibre is, as a rule, longer than the central ; for the cochlear and vestibular ganglia the peripheral fibre is the shorter, and here the process passing to the periphery is of smaller calibre than that of the central fibre. I take it that we must acknowlemge that, though embryologically a dendrite, the peripheral sensory fibre in the adult is histologically an asone, and the passage of impulses from the periphery to the centres must be granted as an example of cellulipetal combuction in an axone. In amphioxns, an animal which possesses no spinal ganglia, Retzins \dagger has shown that the sensory impulses are receivel by the telodendrions of axones and eonveyd along axones cellulipetally to the nerve centres, a form of sensory apparatus very commonly met with in invertehrates. In amphioxns two varicties of cells send axones into the sensory roots, bipolar cells (Fig. 159, $n z^{\prime}$) and multipolar eells (Fig. 160) (Sminnow, Retzius, von Lenhossék).

[^115]The fact that the optie nerve contains axones whose cells of arigin are situated not in the retima but in the brain (corpora quadrigemina) is not, as some think, proof of cellulipetal conduction in axomes. I em see no reason for not believing that centrifugal impulses pass from the brain to the retina. Indeed, now that we know what an enormons number of nemrones are situated within the retina, it wonld be surprising were its elements not in some way under the control of a governing centre in the central nervous system; and a primi the centre most likely to possess the power would be one of the three which first receive the centripetal impulses from the retina, namely, that which we know to be also the local seat of govermment for the movements of the eye muscles-the superior colliculi of the corpora fuadrigemina. That these centrifugal tibres of the optic nerve represent the apparatus concerned in the objectivization of received sensations- i. $e^{\text {., }}$, in their projection outward-an idea suggested by von Bechterew, does not seem to me to be probable.

The arguments for cellulifngal conduction in axones hold also for their medulated collaterals. The hypothesis has been put forward by von Lenbossék * that Golgi's distinction between non-medullated side fibrils and true mednlated collaterals is of definite physiological signifiemee. He thinks it very probable that the side fibrils act as axopetal conductors, the true collaterals alone being cellulifugal as regards direction of conduction. He advances as examples the relations of the side fibrils on the axones of the ventral hom cells of the cord, the l'urkinje cells of the cerebellmm, and those described by Ramón y Cajal and van Gchuchten on the axones of the olfactory mitral cells. He would designate the side fibrils then as axodendrites (to distinguish them from cytodendrites), and the true collaterals as paraxones. Von Lenhossék's personal studies, particularly those dealing with the relations in rodents (Fig. 161) of the sensory collaterals to the side tibrils given off from the axones of the ventral horn cells, are indeed strikingly suggestive of the exereise by the aide fibrils of a receptive function for impulses. As a result of his own stndies van Gehuchten \dagger has opposed this theory, and I must agree with von Kölliker that up to the present time a cellulipetal conduction in the col*
laterals "omenducti If th true that different pation of
l'it. 161...I' methowl. tral hurn

tion must portion of sometimes a dendrite drite (Beth drites must A most Bethe * mu at Niples i ond antenn glion cells processes

[^116] anatomisch-ph mikr. Anat.,
laterals (side fibrils) is no better proved than is cellalifugal ronduction in the dendrites.

If the studies of Aphithy and Bethe be eonfirmed, and it be true that the filmils demonstrable by their methods be especially differentiated for the purpose of conducting impulses, a participation of all parts of the nemrone in the phenomena of conduc-

Fic: 161.- D'ortion of sinal cord of new-born rabbit stained by the chrome-silver
 tral horn cells at the ventral margin of the ventral horn; b, commissinal :ixome with lomg side fibrils, e. (Altur II. von Lanhossik, Der feinere lan dex Nervensystems, ete., II Anfl., 1895, s. 2iñ, Fig. 38.
tion must be granted, for these fibrils are limited to no single portion of the nenrone. Moreover, since the same fibril can sometimes be followed ruming cellulipetally in one branch of a dendrite and cellnlifugally in another branel of the same dendrite (Bethe), it is obvious that, if the fibril conducts, the dendrites must carry both eellulipetal and cellulifugal impulses.

A most interesting and diffieult experiment performed by Bethe * must here be referred to. This investigator, working at Naples in November, 1896, isolated the neuropil of the second antennit of Carcinus-in other words, he removed the ganglion cells of the neurones supplying the antenna, but left their processes and side branches. He proved that, even in the ab-

[^117]sence of the perikaryons of the nemronms, flexion and extension cin be retlexly prodnced-apparently an absolute demonstrin tion that nemrones ean temporarily eontinne to function in the entire absence of their rell bodies. In in still later article, * as a result of his studios of the primitive fibrils (A pathy), Bethe eonn--hules that the explamation of inis fumdamental retlex experiment is to be fonnd in the relations which the fibrils hem tu the meehanism. 'These rehations are ilhustrated in Fig. lise. When Bethe

Bhe primitive tibriks coming from the "reeretion hairs" on the strfiee of the body fo the contal organ. Red the primitive librils going to the nuelens. Black othor librils.

 mediald: a, motor primilive fibrils to llexor maseles from N. a. p. ; b, s.motar

 influmer of memopil: ! motor librils extending form arell body to maseles.
removes all the gramlion cells from the nenropils of the second antenna of Carcinus and separates them from the whole of the rest of the nervous system by a circular ent and section of the

* Bethe, A. Das Centralnervensystem von Careinas Maemas, Ein anato-misch-physiologischer Versuch. II. Theil (3. Mittheilung). Areh. f. mikr. Anat., Bomn, Bd. li, S. 382-452.
asophla is erontle ale, late nection. exeitabi least net primitis neuropil cells, lie centripe (withont into the stuelies : views of of the th lieves thi of Leydi That the tween th cordingly doctrine of the ne Bethe hin all the pa one gingl

To epi the cond axopetal nenrones, the major tiinly oce the eviden very stron: the side f present to both direet reason why and antipe as electriea of copper nently irrit
osophagent commissure, so that the nerve of the second antema is connected with end stations (nemropilum antemanii II mediate, haterate at posterims) entircly deprivel of ganglion-e ell conneetion, this serond antema still retnins its tomes and its reflex excitability. This proves that the reflex areh does not (or at least med not) inchade the eell bodies of the memones. Since primitive tibrils (Aputhy) can be followed directly from the nemropils into the motor axones without going throngh ganglion cells, Bethe believes that the rellex path goes by way of the rentripetal (receptive fibres) to the nemropil and thence direetly (without passas, throngh the perikaryon of the motor nemrone) into the "entrif it motor fibres. Thus, on the whole, Bethe's studies afford a strong and most important contirmation of the views of Aphithy, the main difference between the conceptions of the t wo observers lying in the fact that whereas A pithy believes that the Elomentergilter (neuropil of His, P'unktsubstanz of Leydig) is "diffinse." Bethe is confincent that this is not so. That the conceptions concerning simple contact-relation between the processes of the nemrones previonsly held must acrordingly be modified there can be no doubt, though that the doctrine of the morphological and physiological independence of the neurones is invalidated but few will be willing to grant Bethe himself retains the term neurone as a designation for wlll the parts easily demonstrable as standing in connertion with one gamglion-cell body.

To cpitomize our actual knowledge then of the direction of the conduction of impulses in neurones, it may be said that axopetal conduction has been proved for the dendrites of many neurones, and that cellulifugal conduction can be asserted for the majority of axones, althongh cellulipetal conduction certainly oceurs in some. Here our certain knowledge stops, yet the evidence for cellulifngal conduction in many dendrites is very strong, and it is not lacking for cellulipetal conduction in the side fibrils. Nevertheless, it would seem very unwise at present to state positively that nerve impulses may not pass in both directions in all meurones. There is certainly no apparent reason why they shonld not; indeed, just as we have peristalsis and antiperistalsis in tubes covered by smooth musele, and just as electrical currents may pass in both directions along a piece of copper wire, it would not be at all improbable in such eminently irritable structures as the nerve cells that the stimula-
tion of either pole or of the terminals of any one of its processes may lead to ulterations in the energy comblitions of the whole nemrone.

That at present we are woll acopainted with the evidence for the passage of impulses in the nemrones in one direction only does not exehde the possibility that we may at some later time become cognizant of facts which may demonstrate the conduction of impulses of some sort in the opposite direction; expecially as physiological experiment has shown that impulses artificially exeited in nerve fibres travel in both directions from the point of stimulation. Thongh the researehes of Goteh and Horsley* make it appear that on aruficial stimulation of a motor nerve, while impulses may pass into the cell bodies of the nenrones to which these fibres belong, there is no evidence that they pass ont of the neurones immediately affected into those related to them anatomically. But the question of collulipetal and cellulifingal conduction must be solved first for single neurones before the transference of impulses from neurone to nenrone can be settled, and the evidence as yet will not permit us to deny the passage of impulses in both direations. The changes in the cell body in the neighborhood of the axone hillock occurring after section of the corresponding axone may not be dependent entirely upon alteration in the character of cellulifugal processes in the cell, but may be inthenced in part possibly by cellnlipetal influences coming from the point of section. In attempting to explain the phenomena of tetamus, a similar possibility slowid be borne in mind. 'The impulses passing in one direction conld be of an entirely different nature or quality from those passing in the other. 'Ihe whole question must be for the present left open. The danger of the ancient morle of induction described by Bacon as "inductio per enumerationem simplicem, ubi non reperitur instantia contradictaria," is one against which the scientist must eva bo on his ghard.

[^118]
CHAP'TER XXIV.

THE RELATIONS OF TROPHIC TO NERVOCS FUNOTIONS IN THE NELRONE.

The relations of trophie changes to nervous functions-Influence of repose and artivity upon the neurones-Studies of llodge upon the histology of fatigue-Studies of Vas, Mam, Iugaro, and others-Luvestigation of hibermating animals-Method of indirect electrical stimulation of neurones.

We may now perhaps most suitably turn to a brief consideration of the mutaal relations and interdependence of the trophie functions and those which have to do with the manifestations of irritability. In this comnection the influence of the repose and of the ativity of the nemrones upon their mutrition is of especial importance. Intimately associated with this topie of repose and activity is the question of physiological rhythms so ably dealt with by Donaldson.* Into a discussion of the subject from this standpoint it is not my purpose to entor, and my remarks will be confined to certain more striking histological relations. As has been said above, opriori there is in the nemrones, as in everything that lives, no sueh thing as absolute repose, since at no time during life is complete cessation of activity possible. Repose and ativity are here, therefore, merely relative terms, and are ased throughont in this restricted sense.

The pioneer in the investigation of the histology of fatigue is mudoubtedly the Amariam investigator Hodge. \dagger

[^119]In a series of brilliant experimental researches he has established the existence of detinite morphological alterations in the eell bodies of nemrones aceompanying the excessive exereise of their physiologiall function. He found that prolonged faradic stimmation of a peripheral sensory nerve in the cat led to distinct alterations in the cells of the corresponding spinal ganglion (F゙us. 163, 164), and later he was able to demonstrate similar chames in the nerve cells of animals after a long day's exereise (English sparrows, swallows, pigeons [Figs. 16:5, 166], and honey-bees). On comparison of the non-

Fuc. 163.-Section throngh ganglion on domsal moot of first thoracic nerve of eat. ()sinic neid. Unstimulated. (Altor Hodge.)
fatigued cells (in case of faradie stimulation, the cells of the spinail ganglia on the side not stimulated; in the other instances, the cells of animals captured in the morning) with
Pp. $95-168$; Die Nervenzelle bei der Geburt und brim Tode ath Alterschwitche. Jnat. Anz., Jenn, Brl. ix (1894), S. 700-710; (hunges in Ganglion (Cells from Birth to Senile Death; Observations on Man und Iloney-bee, J. Physiol., Cambrilue, vol. xvii (1894), pp. 129-\{34; A Mieroseopieal Sumy of the Nerve Cell during Electrical Stimulation. I. Morphol., Bost., vol. ix (1894), pp. 440-46:3.
those a in the
lis. 164.
altur
(Atte
muchioi seluted mal nu more fe appeare dectric case of

Cert sympat the mi

* Th Gioldseling tion can inerunal f simulus
those artificially or normally fatigued, Ilodge found alterations in the latter hoth in the protoplasm and in the nurlens. The

 atfer intermittent cleceriatal stimalation daring five hours. Oinic acid.
 and the protophasm is somerwhat vatemolated.
numed of the tired cells were diminished in size; they presented zigzag borders and stained more internsely thin did normal muclei; the protoplasm was often shrmaken, and staned more feebly than in the cells not fatigned. The altemations disappeared within about twenty-five hours after cessation of the rlectrical stimmation,* which had lasted five hours, and in the atse of the working imimals after a night's rest.

Certain of his expreriments in which he stimulated living sympathetic cells where they could be watehed directly throngh the microscope and compared in appearance with others not

[^120]stimulated, are most convincing. Drawings at intervals show very clearly the gradual alterations which oecur.

 to show rested nerve cells. (orrosive sublimate for fomr hours; fimbe's staining. (After Howles.)
Fit. 166.- cimmerilucida drawing of cortex af pigeon killed at 7.30 r. M., to show (hanges in cedls indicating mormal daily fatigue. (Alter Hodge.)

Experiments along similar lines have been made by Vas (Fig. 167),* Lambert, \dagger Mamn (Fig. 168), \ddagger reeently by Lagaro, ${ }^{*}$ Pugnat, $\mid \|$ and by Eve. ${ }^{\Delta}$ Mam and Vas, while essentially con-

[^121]firming of both authors ments o a displa axone h has beel and tho ments f is accon the cell diminut moderat the cell if the a The sta slow inc later, w more di

F1G. 167. hy xi 111al ir trunk
firming the researehes of Hodge, have described an enlargement of both cell body and nuclens after brief stimulation; other authors (Swierezowsky and Tomsa) have noticed active movements of the nucleoli during excitation, and Magini has deseribed a displacement of these structures in a direction toward the axone hillock. Lagraro, who thinks that insufficient attention has been paid to the distinction between signs of cellular activity and those of fatigue, has made an exhanstive series of experiments from which he concludes that the activity of nerve cells is accompanied by a state of turgescence in the protophasm of the cell body; fatigue, on the other hamd, producing progressive diminution in the size of the cell body. He finds that with moderate degrees of ativity, which correspond to swelling of the cell body, the nucleus undergoes no alterations in size; but if the activity is prolonged to fatigue it slowly becomes smaller. The stainable substance of Nissl, Lagaro believes, undergoes a slow increase in amount in the earlier phases of activity, while later, when the cell becomes fatigued, it is diminished and is more diffusely distributed throughout the cell body.

Fig. 167.--s.etions throngh the superior cervial ganglion of the rablit stained ly Nissl's method. (After Vas.) $\times 1,000$ dimmeters. a, seerion though bornat ganglion ; b, setion throngh ganglion after stimulation of sympathetio trunk for fiftern minntes with haridie currout.

Eve could find as the only change resulting from protracted activity the occurrence of a slight diffuse blue stain in the cell substance (Nissl's method). His idea that this is due to formaltion of acid by the cell with consequent slight solution and diffusion of the material which stains bhe will, considering
what is now known of the Nissl bodies, doubtless meet with opposition.

Studies of the nervons system of hibernating animals have bee nodertaken by Jacobsohn.* He found, however, no discer Iteration in the motor cells of the ventral homs.

Fig. 168. -Two motor cedls from lumbar region of spinat cord of dog fixed in sublinate and stained in tolnidin btue. fi, from the fresh dog: I, palde nuclons: 2, dark Nissl sumdes; 3, bundesof nerve filutis. b, from the fatigned dog: 4, dark shriveled nuchens: $\overline{5}$, pale spindies. (After Mamn.)

The influence of prolonged ilhmination upon the retina hats been studied by Pergens. \dagger

A very ingenions suggestion in order to do away with direet traumatic influence or direct physial or chemical influence by an electrie current upon the nearone has been made by Goldscheider and Flatan. \ddagger They suggest that one stimulate the

[^122]motor region of the cerebral cortex and then examine the cell bodies of the corresponding lower motor nemrones (ventral horn cells). In the same way the lower motor neurones conld be indirectly stimulated by way of the peripheral sensory neurones (spinal ganglion cells, dorsal roots of spinal nerves), after which the morphological appearances of the ventral horn cells conld be compared with the normal. In such an event, as they emphasize, it would be important not to contine one's self to the use of Nissl's method, whieh gives definite results only with regard to the tigroid masses, but in addition other methods, like those of Flemming, Held, and M. Meidenhain, which demonstrate more particularly the strueture of the ground substance, should be employed.

While it is evident that additional research is still urgently called for, it will be seen that enough hats already been done to supply us with some direet mieroseopie evidence for the intimate relations existing between the state of nutrition of the cell and the manifestation of functional activity. In substantiation of these results there exists a considerable amount of pathological and pharmacological evidence, some examples of which will be considered in the following chapter.

CHAP'TER XXV.

ON TLIE HISTOLOGICAL ALTERATIONS IN NELRONES DUE TO THE ACTION OF POISONS, ANH A COMPARISON OF TILESE WHTII THE EFPECTS OF TRACMATISM.

Changes in the menrones in intoxications und infertions-(omparison of primary lesions in the cell bodies of nemrones with those secondmey to lesions of axones-Theories concerning trophicity.

Wre are in possession now of a large series of stuties by Nissl's and other methods which have been mudertaken to investigate the effeets of poisonous substances upon the neurones. It wonld be impossible to even refer to all of these, but a few at least may be mentioned.

- 'Nissl * has demonstrated definite lesions in the large motor cells of the ventral horns of the rabbit after poisoning with strychine, veratrin, alcohol, phosphorus, the toxines of tetanus, and trional. He has also shown the alterations produced in the larkinje cells and spinal ganglion cells of the rabbit after lead poisoning, and the changes in the cortical eells; after poisoning with alcohol, morphine, and lead. Nissl has emphasized the differences of the alterations produced in the same group of cells by the action of different poisons, and has further demonstrated that the same poison eim lead to entirely different results in different types of cells in the same animal. He has referred not only to the changes in the chromatic and achromatic snbstance, but also to the muclear alterations in such intoxications.

Nissl has investigated the nerve cells in acute, subacute, and chronic forms of poisoning, since he finds that the effects of poisoning vary very much according to the time during which the intoxication has been active. Especially interesting are the

* Nissl, F. Ueber die Verinderungen der Nervenzellen bach experimentell erzengter Vergiftung. Neurol. Centralbl., Laipz., Bl. xv (1896), s. 9; Alhg. Ztsehr. f. Psychiat., etc., Berl., Bd. liv (1897), S. 1-107.
results which he has obtaned in his so--ailled "subacute maximal intoxientions," in which the animal moder experiment receives daily am amomet of poison just short of the lethal dose mintil death oeenrs (after from a few days to several months). The alterations in arsenical poisoning are well shown in Fig. 169. 'Th' whole nerve cell is swollen, there is marked diminn-

tion in the amome of tigroid substance, so that it is often inpossible to distinguish the chromatic from the non-chromatic portion of the cell. Alterations in the nuclens can also be made out.

In his studies of phosphorns poisoning Nissl found very profound alterations in the nerve cell-alterations which tend at the begiming to affect often one portion of the cell in preference to others, although no definite rule as to the exact portion likely to be affected in a given instance could be laid down. In advanced stages of the poisoning the cell is remarkably diminished in size and the nuclens smaller than normal. The architecture of the cell becomes completely obseured, the only trace of tigroid remaining being a few dustlike particles and irregular granular masses. The cells may even go on to complete atrophy, and eventually entirely disappear (Fig. 1\%0).

The effects of veratrin poisoning are somewhat different. Here and there in the cell body of the nearone, tigroid masses disappear, leaving small cavities in the ground substance.

Whereas certain of the tigroid masses modergo this change, others remain apparently entirely unafeeted, or are at most but slightly aldered. In prolonged poisoning the gromed substance

 poisoming.
may be involved, and the nuclens of the eell diminishes in size. Many of the cells present a diffuse staning, the limits of the Nissl bodies being but very indistinetly visible (Fig. 171).

For Nissl's findings in poisoning by silver, strychnine, morphine, tetans, lead, and alcohol, the original pmblications of that author may be consulted.
hasmuch as different poisons act upon the same variety of cell in a different way, and as the same poison can influence different types of cells in different ways, Nissl believes that we are thas afforded a new and important means of amalyang the functional activities of the different groups of cells inside the central nervous system. By administering elective poisons and comparing the elinical and psychological manifestations during life with the alterations in the cells after death, it may be possible to establish the function of the individual cell varieties and along with these the function of the varions localities in which they are situated.
'Th11 who ha and at: portion poison: follow and the part :ar matic eome resist:al drites 1 in oppo change: deseribr

Fich. 171.-
Ally.
right-1
The been stn The eha

* Latgr menti per ii. pp. 49-

These views of Nissl are supported in the main by Lagaro, who has studied the alterations in the nerve cells after lead and arsenic poisoning.* It is Lagaro's idea that the chromatic portion of the cell (Fig. 1io) is the first to be affected by poisons, und that the alterations of the achromatic sumsamee follow with a rapidity which depends mon the kind of poisom and the type of cell coneerned. Alterations of the chromatio part are reparable, but be doubts if this be troe for the abhromatic portion. The alterations in the periphery of the cell come on earliest ; changes in the muclens oceur hast, when the resistamee of the cell has been exhansted. Changes in the dendrites he thinks succeed those in the cell body, "point of view in opposition to the position taken by Monti and Berkley. The changes in the spinal ganglion cells in arsenic intoxications, described by Lagirro, are pictured in Fig. 1%.

Fit. 171.- The eflectis of veratrin poisoning upon the nenrones. (After lr. Nissl, Allg, Zasehr. f. Psumiat., ete., Berl., Bh. liv, 1807.) The erll in the hower right-hamb cormer is normal; the oh hers show the elle er of veratrin poisming.

The effert of strychnine upon the lower motor neurones has been studied by Nissl, by Goldscheider and Flatan, and others. The changes are closely allied to those which are fomb in

[^123]tetanus poisoning. They may devolop very quickly nfter the injection oi the alkaloid, even as cmrly us three mimutes after subentancons ingeetion. Alterations in the mucleoli precede those in the tigroid musses, atecording to Goldscheider and

Fig. 17s. - 'Two spinal ganglion cells showing peripheral ehromatolysis in arsen-
 !. 53 Figs. 2 and 3.$)$ sublanate dixation ; hamatoxylin staming.

Flatan. No distinct proportion could be established between the morphological alteration and the amount of functional disturbance. Functional disturbances were recovered from some time before the histological apparances had again become normal.

This absence of any striet proportionality between the visible morphological changes and the degree of functional disturbance is of the highest importance, and such incongruity should hold in check those zealons investigators who, withont adequate data, are ready to interpret every histological finding in terms of the clinical symptomatology. As a matter of fact,
the alte far as scarcely The oee a whole evidence sjonden neurone. histologi no one c denying changes ances me that the climieals neuromal spondenc tions int and will mit of th changers.

Very vestigatio boolies of twenty-th were subs chronic p the mont the marks paralytic herame poisoning amimals e. ous system of altered there rem: be affecte lifferent :

[^124]the alterations in the bells in acnte and chronic poisoning, so far as they have been stadied up to the present time, can searcely be hrought into relation with the clinical symptoms. The oecurrence of Nissl's "acute cell disease" (ride infrot in a whole series of entirely different disense-pictures is further evidence of our lack of information with regard to the correspondence of the demomstruble histological alterations in the neurones and the symptoms met with during life. That the histological alterations lave functional equivalents, however, no one can doubt, and other investigators have gone too far in denying the existence of any relation hetween the nerve-edl changes demonstrable in poisoning and the nervous disturb)ances met with during life. All that we can say at present is that the apparmace and disapparance of the majority of the clinieal symptoms are independent of the relatively gross intraneuromal struetural alterations thas far deseribed. The correspondence in all probability lies in the finer structural alterations indiscoverable ly our present methools of examination, and will first be ascertanable when advances in technigne permit of the application of procedures which reveal such finer changes.

Very important from a thempentic standpoint are the investigations of Bramer.* 'This investigator studied the eell bodies of the acarones in the contral nervons system of some twenty-three rabbits poisoned by mereury. Some of the animals were subjected to actace, others to subacute, still others to chronic poisoning with this metal. The poison was given by the month, subentaneonsly and intravenonsly. In addition to the marked alterations in the kidneys and intestines distinct paralytie phenomena on the part of the nervous aystem soon became manifest. The paralysis gradually increased as the poisoning continued, the reflexes were exaggerated, and the animals exhihited an ontspoken ataxia. Sections of the nervous system studied with Nissl's method showed large numbers of altered cells in the ventral horns. Among the altered cells there remained a considerable number which did not appear to be affected, although the relative proportions varied much in different animals. Very frequently Braner met with localized

[^125]areas in individual cells in which tigroid bodies were begimning to break up. The fine partieles became scattered through the ground substance, and the cell
 like apm presented a dustlike appearance. 'Tho bearing of such observations npon the treatment of syphilis is obvious.

It wonld take too long to consider ull the reports of studies of intoxication even if only those made recently were referred to. Among the recent researches, those of Sarhó* on anamic alterations, Vas on nirotine poisoning, Dehio on strychnine poisoning, Manersi on strychmine and ehloroform poisoning, Berkley on alcoholic and riein intoxications, Masetti \dagger

Fita. 173.-A move relt from a part of the spinat cord deprived at blowe for six hours throngh higature of the ahdominal atorta. (Altor (r, Marinessco, hal I'resse medieale, l'ar., 1s97, 1 . 45, 11. V.) The prripheral portion of the eytoplatim contains mily a fow ligroid matsoes, although the latler are still umberons near the muchens.
on antipyrine intoxication, of l'indi \ddagger on bromine, eocaine, nicotine, and antipyrine poisoning, Laslett and Wiarington ${ }^{*}$ on lead poisoning, Wright || on bromite poisoning, Mourek and

* Sarbó, A. Treber die Rïekemmarksverianderungen nach zeitweiliger Verschliessung der banchaorta; ein Beitrag \%ur Patholugie des Ganglionzellkerne. Nearol. Ceatralbl., Leip\%, BS. six (1894), S. 664-671.
\dagger Maseti, B. Le alterazioni del midollo spinale nellavelemamento eronico sperimentale per mitipirina. Riv. sper. di freniat., Reggio-Euilia, vol. xxi (1898), pl. 668-6\%\%.
\ddagger Páadi, K. Ueber die Verimherangen des Centralnervensystems nach chronseher Vergifhug mit Brom, Kokain, Nikotin und Antipyrin. Ungar. Arch. f. Med., Wieslr, Bal, ii (1893-9.9), s. 95i-284.
\# Laslett, K. F., and W. B. Warrington. The Morbid Amatomy of a Case of I.ena Paralysis. Condition of the Nerves, Museles, Musele Spindles, and Spinal (ord. Brain, lond., vol. xxi (1898), pp. D24-231.
$\| W$ Wight, II. K. The Cerebral Cortical Cell under the Inlluener of Poisonous Doses of Potassii Bromiduar. Brain, Lond., vol. xxi (1898), pp. 186-223.

Hess* The efl illustra infections (1892). p. it |l Bwing Med. Reme, ${ }^{\Delta}$ (iolls Nervazarll 0 Golds der Nerven \ddagger lagu sperimemta
\downarrow Nichol
S Sabra: de la meell (1897). 11.
** Mari des matudic

$\dagger t$ Actili nervosi and i (1896), 11. $\ddagger \ddagger$ Bullet la méthote

Hess＊on the efferets of virrions poisoms，should be mentioned． The affect of antting off the hoond supply to the nemomes is illustrated in Fig．1i：3．

There exists also a series of researehes poon achte and chronid infections prowesses，those experimentally prodnced and those oremring in nature．Among these may be men－ tioned the stomber of Babes，\dagger Berk，\ddagger Dejorine，\＃Ewing，$\|$ Ciold－ scheder and Braseh，A Goddscheider and Flatan，\rangle Lagawo，\downarrow Nichohls，\uparrow Sahrazes and Cabames，\ddagger Marinesco．＊＊

A begiming has been made in the stmdy of acote and chronie degencrative processes in homan beings and in ani－ mals，some of known and some of doubtful origin：＇The researchers of Acguisto and lousaturi，$\dagger \dagger$ Ballet，$\ddagger \ddagger$ Ballet and

[^126]Dutil,* Boedeker and Juliushurger, \dagger Cramer, \ddagger Dejerine and Thomas, \# Frielmam, $\|$ Marinesco, ${ }^{\Delta}$ Monti, \rangle Popolf, \downarrow Hoch, \downarrow Quervain,, Sacerdotti and Ottolenghi,** Sehaffer, $\dagger \dagger$ Lugaro and Chiozzi, $\ddagger \ddagger$ Soukhanoff,\#\# and Stroebe.||l|

[^127] nerveuse. XIIth Internat. medie. Congr. zu Moskan. Neurolog. Centralbl., Leipz., Bd. xvi (1897), S. 915-916.
† Boedeker und Juliusburger. Anatomisehe Befunde bei Dementia paritlytica. Neurol. Centralbl., Leipz., Bd. xvi (1897), S. 774-7\%9.
\ddagger Cramer, Λ. Pathologiseh-anatomiseher Befund in einem aeuten Falle der Paranoiagrupue. Areh.f. Psyehiat. n. Nervenkr., Berl., Bd. xxix (1806), S. 1-24.
\# Dejerine et Thomas. Sur l'absence d'altérations des eellules nerveuses de la moelle épinière dans un cas de puralysic aleoolique. Compt. rend. Soe. de biol., Par., 10 s. (1897).
|| Friedmann, M. Ueber progressive Veriinderungen der Ganglienzellen bei Fntzändungen, nebst einem Anhang über netive Verianderungen der Axeneylinder. Areh. f. Psychiat., etc., Berl., Bd. xix (188i), S. 244-268.
a Marinesco. Pathologie de la eellule nerveuse. Rapport présenté au eongrès international de médeeine ì Moscou. Paris (1897).
\bigcirc Mouti, A. Sur l'anatomie puthologique des éléments nerveux dans les processus provenant demboli me cérébral; considérations sur la signifieation physiologique des prolongements protophsmatiques des eellules nerveuses. Arch. itul. de biol., Turin, t. xxiv (1895-96), pl. 20-33.
\ddagger Popow, N. Areh. f. path. Amat., ete., Berl., Bd, xeiii (1883). S. 351-36f.
\uparrow Hoeh, A. On Changes in the Nerve Cells of the Cortex in a Case of Aeute Delirium and a Case of Delirum Tremens. Am. J. Insam., Balt., vol. liv (1897), pp, 589-606.

毛 de Quervain, F. Ueber die Verïnderungen des Centrahervensystems bei experimenteller Kachexia thyreopriva der Thiere. Areh. f. path. Anat., ete., Berl., Bd. exxxiii (1893), S. 481-550.
** Sacerdotti, C., e D. Ottolenghi. Sulle alterazioni degli elementi nervosi nellis discrasia memien sperimentule. Riv. di patol. nerv., Firenze, vol, ii (ts!i), s. 1-8.
$\dagger \dagger$ Schaffer, K. Ueber Nervenzellverinderungen wilhrend der Inanition. Neurol. Centralbl., Leipz., Bd. xvi (1897), S. 832-837: also Das Verhalten der Spinulgugglienzellen bei Tubes nuf Grund Nissl's fiirbung. Neurol. Centralbl., Leipz., Bd. xvii (1898), S. 2-7; also Ueber Nervenzellenveriinderungen des Vorderhorns bei Tabes. Ein Beitrag zur Pathogenese der trophischen Störungen der Tubes. Monatschr. f. Psyehiat. u. Neurol., Berl., Bd. iii (1898), S. 64-98.

㧊 Lagaro, E., e L. Chiozai. Sulle alterazioni degli elementi nervosi nell immizione. Riv. di patol, nerv., Firenze, vol. ii (1897), pp. 394-400.
\#\# Souklmnoff, S. Sur l'histologic pathologique de lu polyuévrite dans ses rapports avee les lésions de la cellule nerveuse. N. iconog. de la Salpêtrière, P'ar., t. x (1897), pp. 347-354.
\|\|\| Stroebe, II. Ueher Verinderingen der Spinalgunglien bei Tabes dorsulis. Centmbl. f. ullg. Puth. und puth. Anat., Jema, Bl.v (1894), S. 853-85\%.

In t cortex 1 In a ree in the ehronie disease (7) gram

Niss so-ealled course i and whe cortex that, aft without cell only as the body, th apparent the unst staimable able sub but, in a

Nissl but in a have not sense, bu death be ment of feature,

An in able by Hoch, \ddagger o

* Nissl. Bla, xlv (18
t In thi Cortex in a J. Insan., I the "acute "severe cel tions of the
\ddagger IIoch, Communie

In the investigation into the changes in the human cerebral cortex no one has thus far had so much experience as Frunz Nissl. In a recent paper* he distinguishes seven forms of alterations in the cells of the human cortex: (1) Acute cell disease; (2) chronic cell disease; (3) severe cell disease; (4) combined disease forms; (5) vanishing of cell; (6) simple rarefation; (7) gramular breaking up of the cell. \dagger

Nissl lays mneh emphasis upon the first of these forms, the so-called acute cell disease. Aecording to him it runs the same course in every instance, having always the same termination, and when it has once appeared :t involves all the cells of the cortex withont exception. The ehanges are so characteristie that, after onee \cdot sing them, one can make a positive diagnosis without difficulty. The disease does not affect a part of the eell only but involves the whole neurone, the stainable as well as the unstainable substance, the nueleus as well as the cell body, the axone as well as the dendrites, all parts being involved apparently in the same degree. In this form of neurone change the unstainable substances are so altered that they become stainable, a fact which makes Nissl think that his " mustainable substance" consists not only of a fibrillary constituent, but, in addition, of one or several other substances.

Nissl finds this acute cell disease not only in acute paralyses but in a great variety of psyehoses, and also in patients who have not been the subjects of mental disease in the ordinary sense, but who, succumbing to various disorders, have before death been partly delirions, partly somnolent. The involvement of all the cells in the cortex is an exceedingly interesting feature, and one met with rarely in any other form of disease.

An instructive paper dealing with the alterations diseoverable by Nissl's method in the human cortex is that of August Hoch, \ddagger of the McLean Hospital, Waverly, Mass. Working in

[^128]Nissl's laboratory at Heidelberg, Hoch had been impressed with the frequeney with which changes were fonnd in the cortical nerve eells in individuals dead of diseases of different kinds. Recognizing the importance of a thorongh knowledge of the possible changes in the cells in somatic disease for the interpretation of the pathological alterations met with in the brains of the insane, Hoch directed his especial attention toward these. In the paper mentioned he deals with a particular cell alteration, which he designates "cell shrinkage." He has studic this change in hman beings, in whom it oceurs in the most diverse diseases, and also in experimental animals.

This alteration in the cells, as he describes it, is fomm chiefly in the medium-sized and smallest pyramids, as well as in the cells of the fifth layer. The contour of the nourone is distorted and shrunken, and there may be much retraction of the borders of the cell body between the processes, so that a part of tine cell borly may, at first sight, look like part of a cell process. I well-marked honeyeomb structure is visible in the cell body, and is sometimes indicated in the processes. The nuclens is darkly stained, diminished in size, and often distorted. In Nissl preparations it looks homogeneous; the nucleohs is often oval in shape, and may be paler than normal, but never shows a purplish hue. Instead of the honeycomb apparance, the protoplasm may be " crumbly-looking."

While these changes oceur in the smaller pyramids and the cells in the fifth layer and in a few of the larger pyramids, Hoch finds a very different appoarance in most of the larger pyramidal eells and especially in the largest pyramids (not the motor or Betz cells). There may be but little alteration in the external form of the cell body, but there is marked change in the distribution of the stainable substance throughout the cell. The stainable substance is seen at the base and at the sides of the pyramid, sometimes forming a rim aromd the periphery of the cell ; often this rim is not continuous but consists of a mumber of separate "erumbly" portions. The basal processes are mueh more altered than the large apical dendrite, especially in the larger cells. The alterations in the nucleus are very characteristic. No muclear membrane can be demonstrated, and the interior of the mucleus shows no trace of a sharp design, in Nissl preparations frequently looking entirely homogeneous. The mucleolns is, however, unaltered. The change just described

Hoch rlens."

Hoch designates "alteration with rarefaction around the nucletus."

As a rule the large motor cells look entirely normal.
In two of his cases Hoch met with an alteration in which the cells may be compared to vesieles. Around the mucleus he found a narrow rim of "crumbly-looking" substance, then a clear area, and at the periphery of the cell body another acemmatation of " crmmbly-looking" substance. There may be a marked acenmulation of the stainable substance at the site of origin of a hasal process. The nucleus in such cells varies much in appearance; sometimes it may be homogeneous; it may be pale; it may be indistinctly spotted, or sometimes it may look almost normal. The feature common to these cells is the vesieular, balloonlike appearance of the defoctive cell hody. The cells exhibiting this alteration were met with only in the upper layers of the cerebral cortex.

It struck Hoch that the vesicles may be due to odema, and he accordingly experimented on the cortex of the rabbit. A piece of a rablit's brain immediately after decapitation was placed in distilled water for from twelve to twenty-four homs and then hardened in aleohol. Another piece was treated with normal salt solution and sulsequently hardened in alcohol. The cortex treated with water showed by Nissl's method typical "resicular cells," while the cortex treated with normal salt solution showed cells which corresponded in every detail with the typical "cell-shrinkage." Experiments on the human cortex obtained from healthy individuals at autopsy, so far as they went, ronfirmed the results obtained in the rabbit. Hoch was not able to produce experimentally his "alteration with rarefaction arome the muclens."

Hoch concludes that ordema is an important factor in the production of vesicular cells. He points out in his article the importance, however, of bearing in mind the possible appearance of artefacts due to the action of alcohol upon the tissues. It may be that the moditication of Nissl's method recommended by Lord * will be of service in the exclusion of such artefacts,

[^129]since in his procedure，as in that of Bevan Lewis，frozen seetions are emphoyed and aleohel fixation is avoiled．

There would appear to be some groum for believing that a stuly of the changes in the nerve colls cmables us to distinguish between the mieroscopie pieture of the eell boly of a nemone after a lesion to its asone amd that which results from the direct action of toxie substaneres upon the cell hooly of the nemrone．

We now know very well the apparanes of the correspont－ ing ventral hom cells of the spinal com and medulla after ser－

 of the rell．
tion of the axones of a motor nerve（ridesupra）．After a short time the cell bodies of the gromp of nemrones concerned appear somewhat swollen and there are marked changes in the appar－ ance of the protophasm，most alvanced near the axome hillock． These changes consist，as has alrealy been stated，in a breaking up into fine gramules of the tigroid masses with diffuse stain－ ing of the achromatic substance of the cell．If the changes be very marked，as is often the case in young amimals，the ti－ groid masses may disappear from a large portion of the cell body and the mucleus may be displaced to the side of the cell．As a
result， Mregratic stiges left ：リリ blue sta bodies o maty lean tion can certain 1 mal ： commerti process to a peri lieves th： pose of nerve，all the amite extablish

The e of toxic those jus here it III circemmst： at the per ing gradl stross 11 pe changes V the aorta periment： that in ：ut of the ne matolysis Hy ow mineral p in conjun bits after cells in th the hiceps

[^130]result, the typieal stiehoelnome arrangement of the tigroid aggregations inside the boly of the eell is entirely lost, in late stages in the dendrites also, and what stamable substance is hoft appears in the form of fine dustlike particles or as a ditfuse Whe stain (Fig. 1\%4). 'These secondary chamges in the well bodies of nenrones, the evidenee of "raction at a listance," maty lead to the death of the cell in case the peripheral conmection can mot he again made, althongh more often after a eertain length of time there is a grablual restitution of the normal appearanees, due, Nissl thinks, to the formation of new comertions. Aecorling to Marinesoo, there onerms during the proeress of repair progressive hypertrophy of the merve coll in to a perion as late as ninety days alter the operation. He believes that this incrase in size of the nerve cell is for the purpase of assisting in the repair of the lesions in the divided meve, and that complete return of function ocens ouly after the anatomimal continnity of the peripheral nerve has been re(2itiblishem.

The changes in the cell bolies following the direet action of toxie substanees upon them differ, as a rule, markelly from those just deseribed. Withont going into a detailed deseription here it may be pointel ont that the chromatolysis umber these ciremmstances begins, as a rule, not inside the eell but rather at the periphery of the cell body and in the dendrites, extending gralmally toward the muclens. Marineseo * has laid great stress upon this point, and has bronght forward in evidence the rhanges which oeeur in experimental mamia after ligation of the aorta (Fig. 1\%3, ride sumro), in hydrophobia, in acole experimental uramia, and in other combitions. He states also that in addition to peripheral ehromatolysis in primary lesions of the nerve cell, instances are met with in which the chromatolysis is diffuse and others in which it is perinuclear.

My own stulies, made on several forms of intoxication with mineral poisons, on eerebro-spinal meningitis (Fig. 175), and, in conjunction with J. Erlanger, on the facial muclens of ralsbits after section of the fiecial nerve (Fig. 176), and on the motor rells in the ventral horns of the spimal cord after extirpation of the hieeps musele, so fir as they have gome, support these views,

[^131]although with certain modifications und reservations. The main emphasis in the "secondary " lesion is to be laid non the fact that the process begins near the axome hillock. Less importance is to be attribnted to the peripheral chromatolysis in the
" prim may ha at a vo In the

F16. 176.-
ather st
prepary
results of fully in 1 deavor to alteration
two cells from the haman spimal coro That of the oth is displaced to the side of the eedi. Marked disorgamization of the statable shbstane of Xissl, the secondary result of the involventent of the ventral roots by the memingeal inflamation. b, ed from the mele dorsalis showing alterations which result from a lesion of the axome of the (c)ll.
"primary "lesion, since in ricin poisoning, * for example, changes may have occurred in the Nissl bodies thronghout the cell bouly at a very early period, even before there is actual chromatolysis. In the study of the pathological anatomy of human cases the

F'us. 176.-Four nerve cills from the nuclens nervi facialis of a mbbit fiftern days aflar sertion of the nerve root. Drawing mate from one of J. brlanger's preparations.
results of such investigations should at all events be borne carefully in mind, and it will be the duty of the pathologist to endeavor to distinguish in the varions forms of nerve lesion the alterations which depend upon "reaction at a distance" from

[^132]
 (1) hy whting the axome and (2) hy culting the corresponding dorsial rewts.
 1. ㄹ.. and 3.) A, a momal well of the ventmi hom; B, watal horn wed
 lateral gromp of vent mat hom twenty-there days altere sedtion of weveral dorsal roots of the eatata equina.
those which are the mesnlt of the diroet action of noxio in soln-

 gitis.
 aro in part those of remetion al a distance, in purt those of primury intoxication of the urve cell. I um wl the opinion that the former set of lexions which hy the way ate by far the bure pronanamed aro the rexnll, of injury the the motor poots by the meningral inthammation, the latter the the gemeral toxir retfeet of the poisoms prondeced by the hateria which ranse the dindmas.
llighly interesting in this eonncetion aro the mandes ohtained by Warrington,* of Liverpool. Ho has ent the dormal roots of spinal nerves from the tiflt to tho ninth thormeice inclasive,
 Nissl's method. Ife fonmal altorations in atagn bumber of colls in the seventh and eighth segmenta, rapercially in the dorser latoral group of eedls in those segments. In the monkry a groat many cells are fomme altered on the opposite side. 'The altorations, as will he soren in Fig. lis, are similan to the ehanges which result when the axomes of these dellen are vent. Wiaringenn attribates the rhange to the withorawal of the
 and rompures his resultis with those ohdained from the wrils known יxproriments of Mott nmil Sherrington, thy which it was shown that seation ol the lorsal roots laids to pronomaced loss of masenlar tome, ataxia, aml marked impairment of volmatary movemont. 'These stmbien of Warrington, taken with those of Marineseo and van (ichmehten, \ddagger shonhl make na keep in view the possibility that the lesion hitherto supposed to be typical of

[^133]

 -ancomed.

[^134]the towie substame: It the date of writing only a few resparehes Which have a diowe batring mon this topio hat herom mado -

known that if malon-nitril be injected into a rabbit, hydrocyanie poisoning quickly results, leading to the death of the animal, after from twenty to thirty minutes, with paralytic and dysporic phenomena. If, however, the amimal has been injeeted a few minutes before with a solution of hyposulphite of sola it quiekly stirs about and recovers. It is supposed that the sodie salt acts as an antilote by giving off sulphur which unites with the eyanogen radicle. In animals killed with malon-nitril distinct alterations in the Nissl bodies can be made out (Fig. 178). In animals treated with the two snbstances and killed after nineteen hours certain alterations in structure are still apparent, though after seventy-one hours the cells are again normal. r 'dscheider and Flatatu have compared the findings in such instances with those resulting from the artificial heating of animals in the thermostat up to 42° or 44°. If the animal be taken out before death it is flaceid and ineapable of moving. The ventral horn cells of the cord examined at this period are seen to have lost their normal structure ; the tigroid bodies are replaced by light-brown opaque masses and by single granules, the whole cell being enlarged and the dendrites swollen (Fig. 179). If the overheated animals be removed from the thermostat and kept alive, gradual restitution of the normal structure can be made out afte: several hours (Fig. 180), though the repair in the eells is not so rapid as the reappearance of function would lead one to believe. While the animals appear to recover very quickly from the symptoms, the regeneration of the cells after the nutritive disturbance requires for completion at least several days. It is evident, therefore, that changes in the chromatie sul)stance alone, as many have long suspected, do not suffice to account for the clinical phenomena associated with them. All the evidence goes to prove that the function of the cell, as has already been pointed out in Seetion III, must be intimately associated with the integrity of what we call the achromatic substance.

Marinesco and Chantemesse have studied guinea-pigs injected with tetanus toxine with the object of investigating the relation of immunity to histological alterations in the cells. After injection of the toxine alone they found typical alterations in the cells of the ventral horns, quite like those which have been deseribed by Nissl, Goldscheider and Flatan, and others (Figs. 181, 18:). After injection of tetanus toxine and antitoxine they could find no alterations in the cells after three days, but if the anti-
toxie
inject neuror were I

Th consid of inv tion here b

HIG. 1s0
toxie serm were not injected until twenty-four hours after the injection of toxine, distinet alterations in the cell bodies of the neurones could still be made out, although it is stated that these were less marked than when the toxine alone had been injeeted.

The various ehanges in the mueleus and nucleoli, to which considerable atteution has been already directed by a number of investigators, afford, to a certain extent, valuable information concerning the state of nutrition of the cell, but they must here be passed over without further comment.

Fig. 180. - Recovery of ventral horn cell from changes produced by artiticial in(rrease of' body temperature. (After (ioldseheider and Flatan, Nomale und pathologische Anatomic der Nervazellen, ete., berl., 1s0s, 'Taf, y, Fiz. :2.) The fighre shows a ventml horm eell of the lateral gromp after cight hours and at half of restitution.

A warning concerning the necessity for obtaining very fresh material when Nissl's method is to be employed for stulying pathological aiterations may not be superfluous. Not only may lesions in nerve cells change in appearance in pathological eases a short time after death (Marinesco), but normal cells may by post-mortem alterations come to resemble those altered as the result of disease. We have to thank Neppi,* of Tram-

[^135]
 Condacheider and Flatan. Sarmale and pathologisehe Anatomio der Norven-
 hom coll of the mbit. showing tymeal strmedure as demonst rated by Nissl's methokl. 13, ventral horn cell two homps after int memons injertion of 0.01

 what pale. thongh the arrangement is well preserved.

F14: 1s:?
sulterid.
atc.. l 1
dixuat
iltcheol
from
"יII.. 1
tigrosid

 tigroid masses show the fincly githular lisint gration.
busti's lahoratory, for a report on the changes, revealed by Nissl's method, which take phace post mortem in normal nerve celts.

Since Neppi's article another on the same subject has appeared by Barbacei and Campacei.* A. Hoch states that the Betz cells of the paracentral lobule are very resistant to postmortem alteration.

None of the methods at present at our disposal suffice, however, for more than the discovery of what must be relatively extremely gross alterations in the structure of the nerve cells, and we can only hope that ere long advances in cytological technique will permit a deeper penetration into the mysteries of nerve-cell organization.

These considerations bearing upon the physiology and patthology of the neurone have led me further than I had intended; they must now be brought to a elose. A series of phenomena have been touched upon, all too brietly, I fear, to do justice to them-Wallerian and Turek's degeneration, the changes in the nerve centres following amputations, the experiments of von Gudden, Bregman, Darksehewitsch, Nissl, and Flatau, the effects of injury to the nerve centres through eutting off of the blood supply, the effects of acute and chronic poisonings of the nellrones, the phenomena of regeneration, the incessant activity of the nervous structures, the absence of proof of any actual spontaneity in the elements, the doctrine of the specific energies of nerves, the unity of nerve functions in the neurones, the direction in which impulses are transmitted, and the inflnence of aetivity, fatigne, repose, poisoning, ete., upon the structure of the nerve-cell protoplasm. This cursory glance, however, over many phases of the metabolie and nervous activities of the nemrones may have sufficed, I hope, to throw the essential points conecrning the nutrition of newrones into relicf. The changes rharacteristie of the degenerations of Waller and of Thärek prove to us that no matter how important the medullary sheath may be in the integrity of the newrone for the nutrition of the axone inside it, it is certain that this ; fflnence alone or together with that of the nutrient supplies arriving through the nodes of Ranvier can not suffice for the mantenance of the

[^136]health deed, f its nou nourish ences f body, a is the n axone glion e likely, needing to gover data at Every o in large vorum a dence fo be foun from the natureproblem the fact moved fi To expla scheider gests tha of a mat along the first thro enabled its dispo of the in ugal dege planation sonally, consultel.
health of the nerve fibre. There is not a little evidence, indeed, favoring the view that the medullaty sheath depends for its nourishment upon the axone, rather than that the axone is nourished from the medullary sheath. Some influence or influenees from the rest of the neurone, particularly from the cell body, are essential to the well-being of the nerve fibres. What is the nature of this influence or of these influences? Does the axone actually receive all its nutrient material from the ganglion cell, or does it depend, as would seem a priori much more likely, for the most part upon autochthonous metabelism, needing only the influence of the cell to which it is comeeted to govern the assimilation? These are questions for which the data at command do not permit as full answers as we could wish. Every one must grant that the peripheral nerve fibre takes ca-e in large part of its own nutrition; the presence of vasa nervorum affords sufficient warrant for this belief. Further, the evidence for its subordination to local processes of diffusion is to be found in the local injuries to peripheral nerves resulting from the circulation in the blood of soluble substances of a toxic nature-as, for example, in diphtheria. The key to the whole problem undoubtedly lies, as the neurone concept teaches, in the fact that the axone in all its parts, no matter how far removed from the cell body, is an integral part of a single cell. To explatin the influence of the cell body upon the fibre, Coldscheider has advanced a very ingenious hypothesis. Ile suggests that it is most probable that there is an actual transport of a material, perhaps a fermentlike substance, from the cell along the whole course of the axone to its extremity, and that first through the influence of this chemical body the axone is enabled to make use for its nutrition of the material placed at its disposal in its anatomical course. Schafer sees in the loss of the influence of the nuclens the important factor in cellulifugal degeneration of a severed nerve fibre, hat attempts no explamation of the nature of the nuclear power exerted.* Persomally, I rather favor the view advocated hy von Lenhossék,

[^137]that instead of assuming in actual transportation of a chemical substance we ean very well conceive of a variety of excitation which, starting from the cell, perhaps even from the muclens, streams constantly throngh the axone, and in it in some way, perhaps by a process comparable to electrolysis, mantains the chemical conditions suitable for the assimilation of the mutritive juices, a view entirely compatible with the fact that the trophice action of the cell body apmars to be least active in the parts of the axone most distant from it. Goldscheider hass argued that since peripheral sensory fibres (in which presumably the impulses are, in the main at least, centripetal) degenerate completely when cut throngh, just as do divided motor tibres in which the impulses are centrifugal, the influence of the ganglion cell presiding over the assimilation is not identieal with the functional excitation, an idea which Rumpf * had as early as 188) satisfactorily stated. In view of what I have said before concerning the possibility of functional exeitation in either direction in a neurone, this argument would lose something of its forre; but, granting that it is well based, it need not militate agginst von Lenhossék's hypothesis, inasmmeh as in the absence of the passage of genuine nerve impmises cellnlifugally in the peripheral sensory fibres the transmission of the excitations essential to mutrition would still be conceivalbe, and wonld certainly be no more dithicult to conecive of than the actual cellulifugal transport of a chemical substance in a direction opposite to that followed by the functional excitation. The mere thought one gives to the subject, the more he will find in the trophie relations of the nemrones to make him hesitate before he denies the possibility of the conduction of impulses or influences in either direction throughont the nemrone.

But hypotheses such as have just been considered will not suffice for the interpretation of the findings in the main body of the neurone after division of its axone-those ineluded in the delicate experiments of Nissl, Flatan, Marinesco, Erlanger, and others, as well as those in the earlier studies of von (indden and his pupils, and in the observations upon the nervons system after amputations. We have seen that these observations have, partially at least, amulled the validity of Wal-

[^138]ler's de after in axone tions in cell bor
ler's doctrine of the trophie relations of the nerve cells, for after injury to an axone, in addition to the degeneration in the axone peripheral to the lesion, there are demonstrable alterations in the cytoproximal eud of the axone and especially in the cell body of the neurone itself.

Marineseo, in his careful study of the nervous system after amputations, attempted to accomet for the diserepancy. AIthough up to this time the spontaneity of nerve function had scarcely been questioned, this anthor threw donbt now the antomatic activity of the nerve cell. It was his idea rather that the functional activity of a nerve cell was entirely dependent upon stimuli reaching it from the outside, and that in the absence of the advent of external stimuli the spinal ganglion eells, for example, can not retain their untritive functions. He was more cantions in his explamation of the atrophy of the ventral horn cells, but suggested that in case a limb was amputated, even though the path carrying voluntary impulses to the motor cells in the ventral horns remained intact, the one which bronght the sensory impulses concerned in reflex activities was interfered with, and the dimimation in impulses reaching the ventral horn cells thus brought about could, he thought, result in a marked depreciation of their vitality. (ioldscheider, in his article dealing with the doctrine of the trophic centres, accepts fully this hypothesis of Marineseo and in a way extends it.* Von Lenhossék, who is favorably impressed by it, does not believe, however, that the loss of centripetal stimuli reaching the corresponding segment of the spinal cord by way of the sensory fibres coming from the muscles, tendons, etc., after injury to a motor nerve, \dagger will suffice to explain the alteration in the cells of origin of the fibres ent throngh. While 1 cannot agree with von Lenhossék that there is no physiological basis for the view that these stimuli influence the motor cells which lie in the same segment of the spinal cord, or that no reason for snch a relation is visible, it must nevertheless be granted that in his attempt to offer a suitable explanation he has called attention to another possible factor which may be of decided import as regards nutrition. He finds the simplest ex-

[^139]plamation of the degenerative phenomena in question in the assmmption that for every nerve cell a necessary combition of existence is its normal comection with its end organ by mems of its axone-for example, in the case of a cell of the ventral horn with its corresponding masele. In the cutting throngh of a motor axone it is, according to him, not the loss ly the motor cell of the few centripetal stimuli which this might oceasion, but rather the impossibility of a normal diseharge of conergy, the nerve cell being, as it were, embarrassed by the storm of excitations reaching it by way of the reflex collatemals, fibrils of the pyramidal tracts, or other comections. Flatan, in his discussion of the subject, takes a midway position, believing that the nutrition of the ganglion cell may be affected either by diminntion in the number of impulses which it receives or by the consequent impossibility of the giving off of stimuli to museles or to other neurones. This certainly is a very rational position to take, inasmuch as in

Fig. 1s:3. Spinal gamglion coll showing marked allemations following section of the sciatie uerve. Sublimate tixation; thioninstaming. (Alter Lagitro.) a society of cells, just as in any other community, if one member be deprived of the intluences of its fellows, or, althongh receiving such intinences, hecome glatted with them, owing to imability to discharge its own functions, that member must necessarily suffer.
Still another hypothesis has been advanced by Lagaro,* who has studied the alterations in the spinal ganglion cells after section of their peripheral (Fig. 183) and central (Fig. 184) axones. He points ont that the motor axone and the peripheral prolongations of spinal ganglion cells differ in that they are placed at the opposite extremities of nerve elements. This very position he suggests may be of especial influence as regarils

[^140]listurn, of the s or impe energy turbing metahol degener fimels, section the spir marked be made side the tion of t of a spin lary pro cant ch to be fo paradox system o can imag from the hand the to the di under no centre wl that the permanes be explain tive capan

That porary, n indicated eration o signs of Nissl, the strenuous

[^141]disturbances of untrition. He thinks that either suppression of the stimuli normally arriving in the group of nerve elements or imperliment to the diselarge of energy from a group ates by disturbing the normal action of the metabolic cycle and can lead to degeneration of the nemones. He fints, however, that while after section of the peripheral axone of the spinal ganglion cell there are marked mutritive disturbances to be mate ont in the cell hoolies inside the spinal ganglia, after sertion of the fibres of the dorsal root of a spinal nerve or its intramedullaty prolongations only insignifi-

Fua. 184.-Spinal kinglion roll forly days aflor seretion of cor-
 mate li xation: thioninsataing. (Alter lagaro.) cant elanges or none at all are to be found in the cells. In order to explain this apparent paradox he suggests that the varions elements of the nervons system offer varying resistance to nutritive disturbances. He cam imagine that the sensory elements suffer more especially from the suppression of external stimuli, while on the other hand the motor elements suffer mainly as a result of hindranee to the discharge of energy elaborated within them, and which, muder normal ciremmstances, is removed immediately from the eentre where this work is done. It is Lagaro's opinion further that the recovery of certain cells in the spinal ganglia and the permanent alterations or complete disintegration of others is to be explained by the assmmption of variations in native regenerative capacity in different eells.

That the injury resulting from whatever canse, if only temporary, need not be fatal to the neurone concerned, is fully indieated by the general work which has been done on regeneration of peripheral nerves. Even though the preliminary signs of neurone decay can be demonstrated by the method of Nissl, the trophic function is not at first lost, inasmuch as strenous efforts toward repair are made,* and shond the axone

[^142]happily succeed in reestablishing its terminal relations there is gradually a complete restitution to the normal eondition. Only when on account of some obstneles in the way, or throngh some other eanse, this re-establishment of the former or other combution relations of the nenrone is rendered impossible, do complete degeneration and disapparance of the nemrone ocenr ufter section of the axone. With the peripheral sensory axones the trophic effort manifested is often extreme, as many unfortumate individaals lave fomd to their discomfort in the appearance of the so-ealled amputation neuromata.

sbection vi.

ON THE GROUPING AND CHAINING TOOETHER OF NHURONES IN A COMPLEX NERVOUS SYSTEM LIKE THAT OF MAN ANO MAMMALS.

Intronection. Chap, XXVI.
Sunsertos 1. Nemrones comeeting the sense organs of the body with the central nervons system (peripheral centripetal nemones; sensory neurones of the first order ; sensory protonemones).

Classification of sensory impressions. The nemral segment. Physiological and rlinienl stadies. Chat. XXVII.
A. Centripetal nemrones of the first order eollecting bodily inupressions: 1. 'lhose eombeeted with the spinal cord, Chups. XXVIII to XXXIV ; :. 'lhose connceted with the rhombenrephalon, Chap. XXXV.
B. Centripetal nenrones of the first order collecting impressions of suecial sense: 1. Peripheral gistatory meurones: 2. Peripharal olfaetory nemones, Chap. XXXVI: 3. Peripheral visual nemrones, Chap. NXXVII: 4. Periphemal anditory nenrones, ('hap. XXXVIII.
Subsermon II. Nemrones within the central nervons system eomecting the end-stations (molei termimales) of the axones of the peripheral centripetal neurones with other portions of the entral nervons system (sensory nemrones of the second and of higher orders).
A. Central menrones of sensory conduction paths other than those eorresponding to the organs of special sense: 1. Those pertaining to the spinal peripheral sensory nemrones-(a) Neurones the cell borlies of which are situated in the moled funienli gracilis et ementi, ('hup. XXXIX; (b) newrones the eell bodies of which are situmed in the nucleus dorsalis, Chap. XI: ; (c) neurones the cell bodies of which are sitnated in the gray matter of the cord, the axones going to the faseienlus ventro-lateralis Gowersi, ('hup. XLJ; (d) neurones the coll bodies of which are sitnated in the gray matter of the cort, the axones going to the fascienli proprii, Chap. XLII. 2 . Those pertaining to the eerebral peripheral sensory nen-rones-(a) Neurones the cell bodies of which are situated in
(11:1)1

 ('la!!. I.I.
 "ryate of :

 belong to the N. fatialis: ©. Those the axomes of which
 behong to the N. trigeminus: T. These the anome of which

 malis modialis and in the formation minularis allat of the thomberserphan, (hap. W゙1II.
 bellim: (hapr. LiN.

CllAPMER NXVI.

: N'TbOHETMORY.

One: would like to be able to deseribe the structure of the human mervons system acoorling to the arrangement of the menrones molderying the varions functional nervons processes. I wfortunately, the limited knowledge we have at present suflioces only for a herimning of sum a deseription. We have gained, it is true, important clews emmerning the indiviluality of meehnmisms, the smecessive complieation of nervons phenomena, and their strontaral hasis from romparative anatomy
and from studies in ontogeny. Thus, Edinger* in the last alition of his text-look has given us for the first time a view of the suceessive increase in eomplexity chanaterizing the nervons systems bolonging to a large series of amimats, and the physiologienl studies of Jateques Laeh, J. Steiner, and A. Bethe give us a glimpse of what we can hope from the stmly of the functions in lower forms. Flechsig's method permits as also to form some idea of the mehanisms mederlying the simplest nerve functions in human beings and those concerned in the performanee of the more complex ones up to at least the fifth month of extraterine life. But none of these methods furnishes us with more than a agiming on the lines indieated.

In the deseription to be given here of the grouping of the neurones no attempt will be made to deseribe the groups ateeording to the sequence met with in the development of finmtion, but instead, inasmuch as for practieal purposes this serms at the moment to be more important, some of the main gromps of neurones with which we are fiairly well acemanted and of the functions of which we hate a relatively extended knowhedge, especially as they appar in the new-born babe and in the adult, will be dealt with.

The eentral cerebrospinal nervons system is ordinarily deseribed as being commeted with the other orgams of the body and with the external world by means of nerves. These nerves contain tibres of one or both of two sorts, afferent or centripetal, and efferent or centrifugal. By means of the former the neurones within the central system are capable of being intluanced from withont; through the latter they exert an induence upon other parts of the body. Co borrow an illustration frem von Lenhossid, the peripheral nerves eare for the "import" and "export" relations of the central nervons system, while the neurones inside look after "home" relations. In the following aceomt, therefore, it will be necessary to consider the struetural relations of the nemrones which eomeet the sense organs of the body with the central nervons system (inchaling the afferent nerves), of those comeeting the central wervons system with the museles of the body (including the effernont

[^143]nerves) rentral venic'nt 1. the rem sensery Cliaps.
II.
the entromes w nemone with stil romes of to LIN'. III. the roll (hin)s. I IV. inta con throw th rones col motar ne tral :and whtainabl whole si logical, at ical relati degrenemat organs at with the montal fun of the di the cells much mor from seris
nerves), and of those of the collections of nemrones inside the rentral mervons system. The different grouns may be conveniontly disenssed moder the following headings:
I. Xemromes comecting the sense organs of the body with the central mervons system (peripheral rentripetal nemrones; semsory memrones of the first order; semsory protonemrones). Ghaps. XXVII to XXXVIII.
11. Xemomes within the eentral neronessatem commeding the end-stations of the axomes of the peripiacral centripetal nemromes with other portions of the cembral nervous system, and memones which in turn commed the embestations of the latter with still higher portions of the eentral system (semsery nemromes of the secomd order and of higher moders). (haps. $\mathcal{X} X . X . X$ to LIV.

1II. Nemrones romureling the central mervons system with the colmatary museles of the body (lower motor nememes). (hapis. W' and W'I.

IN. Nemrones within the eentail nervons system which enter into conduction relation with the lower motor menrones and throw the latter under the inthence of other centres. Xenrones conneding the pallimm, cerchellum, de., with the lower

V. I'rojerdion, commissural, mul assoriation memome of the tolenmphaton. ('haps. LXV to LXVIII.

An idea of the tectonics or arehitecture of the nervons syslem, considering the nemrones as the arelitectaral mits, sam be gained only when we form spatial conceptions of the distribution of the various memones and their proeesses in the remtral and peripheral nerve organs. Such spatial comeptions are oltainable only ly rombining in the mind the results of a whole series of stmbes-embryoborieal, histohogical, physiological, and pathological. A marefol stady of the topographinal relations in finultess sets of serial sections throngh varions degeneratod nervons systems, or throngh the fortal cemital organs at varions stages in the process of myelinizatiom, together with the stody of diolgi preparations, permits one to make mental fusions of the single piotures, and so to ohtain an idna of the distribution in space of the various fibre bundles, and the cells of which they represent the medullated axomes. A murh more acemate method is that of graphic reconstrotion from serial sections ($\mathrm{IV} . \mathrm{His}$), or phastie recomstruction by
means of wax plates (G. Born). The advantages of the latter method are illustrated in the model of the rhombencephalon and mesencephalon constructed by Miss Florence Sabin, to which references are occasionally made in the following chapters. If he has not obtained "ideas in three dimensions" of the groups of neurones and their interrelations inside the central nervous organs, the student will find himself entirely at sea when he attempts the explanation of the results of pathological lesions.

The term "system" is employed often by neurological writers, and unfortunately not always in the same way. It would seem desirable,* in accordance with recent German writers, to limit the use of the term "neurone system" to an aggregate of homologons inaxones, and to restrict the use of the term "fibre system" to a group of medullated axones of homologous origin and homologous distribution (as regarls their collaterals, subdivisions, and terminals). Thus, for example, the neurones, the cell bodies of which are situated in the spinal ganglia, the central axones of which enter the dorsal iuniculi of the spinal cord and terminate in its gray matter or in the nuelei of the medulla oblongata, together represent a great "system" of peripheral spinal centripetal neurones. This system is in turn divisible into sub-systems-(1) on the gromd of myelinization; and (z) according to the particular nuclei in which a given set of fibres terminate. The fibres of the pyramidal tract represent a "fibre system," since (1) they are the axones of homologous cells in the cerebral cortex, and (2) they terminate in homologons regions in the spinal cord.

Topographical study teaches that there may be a mixing of systems" in given areas of a cross section. A given topical area in a microseopic section seldom represents an entirely pure "fibre system." It is legitimate, however, in topographical descriptions, to give names a fortiori to the varions areas. Thus we speak of the "area of the lateral pyramidal tract" in a cross section of the spinal cord, although we know that in this area a few fibres other than those of the pyramidal tract

[^144]GRoU
exist ; periph dorso-l dence least, n

A al unit path " "syste path " tertiary path fr centrip represe order (nierli run as i interoli minate " second lateral 1 cerebral duction of " nen "eentrip of a give the anon next ner or "cent drites of and the of the ne ture sug, composed path of " are in the in the ma

* (f . HI $\therefore 436 . \quad 11$ Bechterew.
exist; and again we call a certain bundle in the dorso-lateral periphery of the cord the fasciculus cerebellospinalis, or the dorso-lateral spino-cerebellar system, though we have good evidence that the fibres of this fasciculus are mixed, in places at least, with fibres not homologous with the spino-cerebellar fibres.

A chain or series of neurone systems, constituting a functional unit of a higher order, may be designated a "conduction path "-the Germans call it a Leitunysbahn.* Thus the several "systems" following upon one another in a given "conduction path " may be spoken of as primary systems, secondary systems, tertiary systems, ete. In the general centripetal conduction path from the museles to the cerebral cortex the peripheral centripetal neurones corresponding to the spinal ganglion cells represent a " primary system"; the neurones of the next higher order (whose perikaryons and dendrites are in the nueleus funictli crneati (or nucleus funiculi gracilis) and whose axones run as intermal arcuate fibres across the raphe into the opposite interolivary layer, and on through the medial lemniscus to terminate in the ventro-lateral part of the thalamus) represent a "secondary system"; while the neurones connecting the ventrolateral part of the thalamus with the somesthetic area of the cerebral cortex represent a tertiary system. This sensory "conduction path" would consist, then, of three superimposed sets of "neurone systems." As we shall see, in the "afferent" or "centripetal" conduction paths the perikaryons and dendrites of a given " neurone system" are, as a rule, situated below and the axones ascrud toward the perikaryons and dendrites of the next neurone system. On the other hamd, in the "efferent" or "centrifugal" conduction paths the perikaryons and dendrites of a given neurone system are situated, as a rule, abore, and the axones deseend toward the perikaryons and dendrites of the nenrone system of the next order. To use a nomenclature suggested by Tschermak, the efferent conduction path is composed of "distal-axone" systems, and the afferent conduction path of "central-ixone" systems. The "distal-ixone" systems are in the main motor or reflex, the "central-axone" systems, in the main, sensory.

[^145]In a given conduction path, composed of several superimposed or subimposed neurone systems, the primary, seeondary, and other systems need not necessarily contain the same total number \sim f nemrones; indeed, as we have seen alretuly, and shall see furiser on, a single neurone of one system is often, by virtue of a number of end-ramifieations, able to enter into conduetion relations with a mumber of neurones in a neurone system of the next higher order (e. g., terminals if \mathcal{N}. trigeminus in the substantia gelatinosa, terminals of tractus opticus in the collieulns: superior); in other instances, on the contrary, the terminals of a large number of axones of one neurone system may be so arranged that they can influence only a smaller number of neurones of a neurone system of the next orter (c. g., Nin. olfactorii, terminating in the olfactory glomeruli). In t'e ons aase there is a "multiplieation of elements" in the direction of the conducting path, in the other a "reduction of elements." *

To a description of the rarions neurone systems, at least those that are best known, we may now conveniently proceed.

* For further interesting considerations of a similar mature with regard to neurone systems and conduction paths, especially with refarence to the divergence and comfluence of paths, the reader may tarn with alvantage to the article of Tschermak above cited.

SUBSECTION I.

Neurones Connecting the Sense Organs of the Body with the Central Nervous System (Peripheral Centripetal Neurones; Sensory Neurones of the First Order; Sensory Protoneurones).

CIIAP'TER NXVII.

ON TIIE CLASSIFICATION OF SENSORY IMPRESSIONS AND THE RELATION OF THE CENTRIPETAL NECRONES TO THE SEHMENTATION OF THE BODY.

Neurones collecting bolily impressions-Neurones collecting impressions from the external world-Lixtemalization of impressions-The nemral segment or nemrotome-Nu. spinales-Radix ventralis-Radix dorsalis -Ganglion spinale-Peripheral nerves-Rami commmicantes, etc.Plexns cervico-brathatis-lPexns lumbo-sacralis-C'ntaneons distribntion of peripheral sensory nerves-C'utaneons distribution of dorsal root fibres-Experimental studies in amimals-Overlapping-Clinieal studies on human beings-surface areas of the topographical anatomists.

Tus peripheral centripetal nemrones are those through which the central nervous system is affected, (") by changes taking place in the body itself (ontside the central nervous system and organs of special sense), and (b) by physieal and chemical influences exerted from the environment of the individual.* This elassification of sensory neurones conforms to the custom of dividing the impulses which pass into the central nervous system into (A) impressions which concern the body itself, and (B) impressions which concern the external

[^146]work, the former including what has ordinarily been known as "common sensation," the latter embracing the " special senses." The tentency of the mind is to refer the sensations which may result in conscionsness from the former set of impulses to changes in the bowly itself, and to project those which result from the latter set of impulses into the extemal word ; that is to say, while the former are, as a rule, not "objectivisable," or "externalizable," the latter are always or nearly always "objectivisable." In the latter set of impressions an element of externality seems to be inherent.

Such a distinction, while convenient for purposes of description, is not wholly free from objection. In the skin, for example, one meets with a sensory surface which concerns not only the body itself, but also the external world. And even impressions brought into the nervous system through the musele sense are probably, to a certain extent, objectivisable. For the sake of convenience, however, and with this preliminary qualification, the neurones may be considered under these headings, the first group (u) bringing impulses into the nerve centres from the skin, mucous membranes, museles, semicircular canals, bones, tendons, joints, sexmal organs, and internal viscera; the second group (t) bringing impressions into the central nervous system from the organs of special sense; namely, from (1) the gustatory orgams ; (?) the olfactory organs ; (3) the vismal organs; (4) the auditory organs.

The relations of the sensor? nerve to the so-called neurotome or neural seyment are shown in the accompanying figure (Fig. 185). If the student grasp elearly the idea of the neural segment (ef. Chapter XVIII) he will have much less difficulty in understanding the arehitecture of the nervous system in general. In the illastration the motor rentral root (radix ventralis) is seen coming out of the ventro-lateral surface of the spinal cord, being formed by the mion of a number of fila radicularia. It turns dorsalward where it is joined by the dorsal semsor!g root (3) or radix dorsalis, in the course of which is seen a notular swelling, the grmylion spinule (4). The ventral root forms no definite mion with the dorsal root, bat simply lies beside it, the combined roots forming the rommon or micel nerece stem (5). This common stem of a spinal nerve divides into two main trunks, the remus derv:elis (6), which runs dorsalwarl to supply the museulature and skin of the back, and a ramms rentrolis (i).
which turns ventralward into the parietes to supply the musenlature and skin of this region, including the musenkiture amb skin of the extremities. This ventral ramus in typical instanees gives off (") a lateral branch, the su-called ramus cutancus

 communicans: !! ramus menimgens: 10 , gamglion sympathicum: Π, ramus
 ventralis dividing into a medial limh 15 and a latemal limbltio. The ceross sere tion of the spinal rord shows the 11 -shaped substantia griseat with the eanalis
 mantle formed ly the substamia allat.
lateralis (11) (which in turn divides into a dorsal (12) and a ventral (13) limb), and (b) a more ventral branch, the ramms entanens ventralis (14), which (dividing into a medial (15) and a lateral (16) limb) innervates the skin on the ventral surface
of the body. The other branches of the rami ventrales innervate the whole of the ventral musculatmer, incheling the muscles of the superior and inferior extromities.

 Ventral view, h, nervis hypuglossits: dh, rambs atesemolens hypgybsid, which, along with de, the mams desemdens cervialis, bams the ans hapo-

 medialis; ih, N. intemosto-hachialis.

In addition to the main division of the mixed or common nerve stem into a ramus ventralis and a ramus dorsalis, two
other ret"I". tibres symbilit which the ve tribute verteb that in corres] nem:al the th and sill anistol neighb bundles a supe forior-
other rami are given off from this mixed tronk, namely, the roums rommunirous (8), containing both sensory mul motor tibres destined for the viseera and blood-vessels by way of the sympathetio: mervons system (10), and a remmes meminyens (9), which runs buek through the formmen intervertebrale to enter the vertebnal eanal, there to break up into fitmes, which are distributed to the spinal cord, its sheathe, and the walls of the vertebral canal.

It woukd be a mistake, however, to lave the impression that in each periplerell werer there are sensory and motor tibres corresponding omly to ond common stem derived from a single nemal segment. While this wouk be truc, or nealy true, for the thoracie region, it would not hold for the cervical, lambar, and sacral regrions. In these regions the rami realrulds form anastomoses and plexiform unions, so that the derivatives of meighboring neural segments beeme incorporated in common bundles. It is eustomary to deseribe two large nerve plexases: a superior-the so-ealled pherees rervicu-bruchialis ; and an in-forior-the so-eatled ples'us lumhersetcralis.

The perms cerviothrorkiallis (Fig. 186) arises from the amastomoses formed by the rami vantrales of the cervical and first two thoracie nerves. It is sublivided into the (1) plesus cerriothis and (?) the pler"s brarkialis, the latter being further subdivided into (") a purss suprorlaricularis and (l) a pars iufrenclarimularis.

The pherus lumbu-surrolis (Fig. 18\%) (an be subdivided into
 pudendo-r"udulis, the latter being farther subdivisible into (") the plerus pudrulus and (h) the plerus curemfens. 'The plexus lombalis is composed of the ventral rami derived from the mixed stems of the four upper No. lumbales, while the plexns sacralis hat its origin in the ventral rami, derived from the fifth N. lumbalis and the first and second Nin. sacrales.

The plexus pudendus is formed by the ventral rami derived from the mixed stems of the third and fourth Nin. salerales, the plexus cocergens from the ventral rami of the fifth N . saeralis and the first N. coecrgens.

As a result of the anatomical conditions just referred to, it must be obvious that the elinieal symptoms dependent upon lesions of the peripheral sensory neurones will vary widely according to the situation of the lesion.

Thus, the distribution of the disturbances of eutameons sensibility will be very different in a case in which n nerve is

Fig. 187.-Plexus lumbsuratis, including the pexas lumbalis the plexus sacralis, and the plexus pudendus. Ventral anpect. (After I' Bisler, taken

 N. ilionguinalis; q/, Serwe for quadratis lumborm; se, N. spermaticus "X ternus; $l i$, N. homboinguinalis: p, ramus muscularis to M, pasas; d, N. cutaneus femoris lateratis: i, ramus musenlaris to M. iliarus; ip, ramus mus-
 N. whturatorius; !s, X., glutanus superior: pi, ramus musenlaris to M. piri-

 M. gemellus suprrior: ap, N. cutaneles femoris posterior ; cm, N. cut, chun.
 hamorrhoidalis ext. ; l, ramusmuseularis lo M. levator ani ; c, ramus muser laris to M. corcygens; π, b, Nin, anococeygei.
injured case in mind th quite di of a s continu paths f root, wi distribu interfer lesion.

The has been
sections
(3) clinic careful 1
ingured near the periphery, from that to be made out in a case in which one of the strands of a nerve plexus is involved, and the distribution in both these instances will again be guite different from that met with in hesions of a dorsal root of a spinal nerve. Fimally, lesions of the intrimednllary continuations of the dorsal roots, owing to deviations in the paths followed by individual bundles arising from a given root, will yield disturbances in sensation quite different in distribution, und probably atso in the qualities of sensation interfered with, from those met with in any extramedullary lesion.

The cutaneous distribution of the peripheral sensory nerves has been tolerably carefully worked out by means of (1) dis-

Fut. 188.-The areas sapplied by the cutaneons nerves of the head. (After F. Merkel, taken from Rambers text-book.)
sections on the dead, (*) experiments on living animals, and (3) clinieal ohservations on diseasel human beings followed hy careful post-mortem examination. In Figs. 188-190 the main
results of these stulios are illustrated. For further details the valaable athas of liasse* may be consulted. Now that we

Fif: 189.-Areas supplided hy the atamens merves of the upper extremity.

 volaris manns) in the hamd ; "', moms ('ntamens palmaris of N. wharis: m, N. mediams in the hamd: m'. its ramms pathatris.

* Hasse, C. Hand- It las der sensiblen uml molorischen (febinte des IIirnund Räekenmarksnerven (36 Tafeln). Zam (iebrumel fïr praclische Aerate und itudirende. Wieshaden (1895), Sro.
matorius ; posterior
superficis
Nı. digi
hallurits

matorius ; c.p., N. cutaneus femoris posterior ; su., N. ※uphemus; p.e., lateral, p.m.,
 superfiequlis (N. entancus dorsalis medialis of N. cutanens dorsatis intermedias et Nu, digitales dorsales pedis) ; p.p.iN. peronarus profundus (Nu. digitales dorsales. hatharis lateratis et digiti secombi medialis: m., N. plamtaris mudiatis; l., N. plantaris lateralis.
know from the studies of Blix, * Goldscheider, \dagger von Frey, \ddagger and V. Henri that at least four qualities of sensation-cold, warmith, touch, and pain-are mediated by the skin aud apparently by means of speeific sense organs, it is important that the surface of the body be reworked to determine whether or not the peripheral areas are identian for the different sense qualities. Is we shall see in a few moments, the segmental areas at least appear to be somewhat different for the different qualities of eutaneons sensation.

The study of the sensory areas of the surface corresponding to the dorsal roots of the spinal nerves, in addition to its high clivieal importance, has exeited so much interest and has been prosecuted in so many ingenions ways that a brief synopsis of the researehes and a statement of the present status of knowledge and belief in this comection may not be out of place.

As early as 1849 Eckhard\# stated as a result of a few experiments that the field of skin to which a sensory root goes is not exactly that which overlies the museles which are supplied by the corresponding motor root. This research was soon followed by another from the same laboratory, this time from Peyer.\| This investigator seetioned all mixed nerve stems except the one which he was studying, and then alpplied mechanical and thermal stimuli to the skin. He came to the conclusion that in the skin of the fore-limb the fields of the individual spinal nerve roots more or less overlap one

[^147]another. by a sen which motor is

The be clone used th degener studies and mus this fiel and ei
another. He believed, however, that the territory imervated by a sensory dorsal root corresponds approximately to the skin which covers the muscles immervated by the corresponding motor ventral root.

The admirable researehes of Kranse* show how much can be done by simple dissection and dissociation. Kranse also used the so-called reflex method and followed besides the degeneration of nerve tibres after section of the nerves. His studies are of great importance in the history of localization, and must be carefully considered by every one investigating in this field. His conehsions regarding the fifth, sisth, seventh, and ei ht ${ }^{4}$ cervical roots in the main still hold.

A very important contribution to knowledge is to be found in the research of Tairck, \dagger who worked ont in detail the areas

Fic. 191. Diagram of the position of the nippor in the selnsory skin fielele of the
 aruas is representerl. (Ifher C. S. Sherringtom, Phil. Tr., Lombl., 13., 1803, vol. claxxiv, 1s!u, p. 737.)
for the spinal nerves in the dog from the level of the fourth cervical to that of the fonth sacral. Ilis results are very nearly in areord with those of the more recent studies, and it is mather eurions that they have not attracted the attention of anatomists in general. This appears to be due in large part,

[^148]as Sherrington points ont, to the difficulty of understanding the experimental notes and drawings left by 'Tarck, and published posthmmonsly. 'l'irek made out distinetly the bandlike areas of distribution, but probibly went too far in stating that each spinal nerve has an area of skin belonging to it, which is supplied by it exclusively. He recognized, however, that many of the spinal nerves have a field which they sapply in common with some other spinal nerves, and he even made ont that the nerves of the upper and lower extremity have no exelusive areas but only common ones.

Of the recent studies may be mentioned those of Wialsh,* Herringham, \dagger Paterson, \ddagger Sherrington, ${ }^{\#}$ and others.

Sherrington's studies are most painstaking and elaborate, and inclade experiments upon a large number of frogs, cats, and monkeys. He proceeded as follows: Finding that section of a single root did not canse complete amasthesia anywhere, but only a diminution of sensation, in order to determine the exact peripheral area of distribution of the dorsal root of a given spinal nerve he eut two or three roots above and below the root in which he was interested. Thus, to determine the area of distribution of the fourth thoracie root he would ent the second and third thoracie roots and the fifth and sixth thoracie roots, while to determine the area of distribution of the third thoracic root he would cut the first and second thoracie roots and the fourth and fifth thoracie roots, and so on. The zone in which sensation stiil existed could be determined by testing for reflex response. He found that the field of skin belonging to cach sensory spinal nerve root overlaps the skin fields of the neighboring spinal nerve roots to a remarkable extent. "The disposition is such that the field laps to a certain extent over the field of the root or roots immediately in front

[^149]of it, and immediat respectiv sensory r

Sherri spinal ne trunks, t of disjoi another tinuous f

When the cutall with alm between This sim owing pr have ind figuration regular f growth of ably ace Here the the limb, the limb

Reflex of a field, each spin

In adi field into lap into fields has opposite mid-vents marked, out the b some regi fields of fields of i He states spond wit root as j
of it, and to a certain extent over the field of the sensory roots immediately behind it. These two overlaps may be termed respectively the anterior ocerlap and the posterior ocerlap of a sensory root field" (Fig. 191).

Sherrington further finds that although in a plexus each spinal nerve root affords separate contributions to several nerve trumks, the cutaneous distribution of the root is composed not of disjoined patehes but of patehes so connected with one another that the distribution of the entire root forms a continuous field.

When at its simplest, as in the thoracic region, the shape of the eataneous field of a dorsal root is that of a horizontal band with almost parallel edges, wrapping hatf way around the body between the mid-lorsal and mid-ventral lines (Figs. 190, 193). This simple zonal shape is departed from in many places, owing probably to the modifieation which the body segments have individually modergone in the development of the configmration of the animal. This deviation from the simple and regular figure is due in vertebrate forms largely to the outgrowth of the limbs, but with care the root fields can be tolerably accuratel defined in the upper and lower extremity. Here the zones amproximately parallel to the long axis of the limb, which is not surprising when the mode of origin of the limb in the embnyo is considered.

Reflex reaction is much less easily elicited near the edge of a field, in Sherrington's experiment, than in other parts of each spinal field.

In addition to the cuteriar ourerlap of a sensory spinal skin field into segmental fields anterior to it, and the posterior overlap into fields posterior already mentioned, each one of these fields has crossed ocerlaps passing into the fellow field of the opposite half of the body, both at the mid-dorsal and at the mid-ventral line. Since the fore and aft overlaps are very marked, Sherrington concludes that each point of skin throughout the body is supplied by at least two sensory spinal roots, in some regions by three. Sherrington denies that the cutaneous fields of the sensory spinal roots correspond closely with the fields of distribution of the motor roots in the skeletal museles. He states further that the sensory spinal fields do not correspond with the fields of entaneous distribution of the motor root as judged of by the pilomotor fibres of those roots. On

 14. 110.1
:3::1

the other hand, the pilo-motor fields of the sympathetic ganglia and the cutaneons sensory fields do correspond.

A more recent and apparently very extensive paper by Sherrington I have thus far been able to consult only in abstract.* In this artiele Sherrington diseusses, in addition to his experi-

Fig. 194.- Mode of distribution of the domal root fibres of the lower ervial and thoracie nerves. (After W. Thorburn, Irom A. van dehuchten's Anatomie dusysteme nerveux, ete.)
mental studies of the distribution in the skin and museles of the Nin. cervicales and upper Nin. thoracales of monkeys, the results of some investigations which concern the N. trigeminus and also the behavior of the spinal reflexes in total transverse

[^150]lesion.
maining from "or generater

So fal second el with the tremities. believe tl in the art given spi

Fiti. 1! $65,-1$
Horves huchtes
tinmous 7 and exter
ties-that
lesion. Sherrington has employed hargely his method of "remaining amesthesia" in order to avoid the confusion resulting from "overlapping." Electrieal stimulation and studies of degenerated fibres by osmium blackening were also made.

So far as the subject now being considered is concerned, the second chapter of his artiele interests us most-that dealing with the relation of segmentation to the imervation of the extremities. On superficial examimation one might be led to believe that considerable differences exist as regards the limbs in the areas of distribution of the motor and sensory roots of given spinal nerves. The areas of motor distribution form con-

Fiti. 105.-Mode of distribution of (he domal root fibres of the lower eervient nerves and of the thomade newes. (After W. Thorlarm, fiom A, vim deluchten's text-book.)
timuous zones, all begiming at the middle line of the trunk and extending for a longer or shorter distance into the extremi-ties-that is to say, the same ventral roots of spinal nerves 23
whieh innervate museles at the tips of the extremities also innervate some miscles of the trink. The areas of distribution of the dorsal roots (sensory) appear, on the contrary, to be separated entirely from the trunk; thas the cutameous areas supplied by the seventh and eighth cervical roots and by the first thoracie root, for example, nowhere reach the trunk. Sherrington proves, however, that this difference exists only between whin nerves and motor nerves, not between sensory nerves in general ind motor nerves, for though the sensory dorsal roots above referred to supply no portion of the wim of the tronk, they do send sensory branches to the museles and other subentaneons structures there. Thus the arens of sensory distribution also form continuous zones involving both trunk and extremity. The sensory nerves for given museles always originate in the spinal ganglia of the segments which correspond to the motor nerves to the same muscles. Sherrington, with Mall, is of the opinion that the best guide to the muderstambing of the structural relations in an extremity (arm or leg) is to be found in the nemal distribution. Ilis studies show the following: (1) The degree of overlapping of cutimeous areas of individual dorsal roots varies greatly, being much more marked in the extremities than in the tronk. (2) The intermixing of the fields of dorsal roots is very much greater than that of the periphoral nerve tronks, even in the hand and foot. Thus, while there is very little overlapping of the areas supplied by the N. medianus, N. nharis, and N. radialis, yet when the innervation of the hand by dorsal roots is examined it is foumd that a large middle area of the hand and fingers is supplied by all three of the seventh and eighth eervical and first thoracie dorsal roots. (3) A certain parallelism between the overlapping of the skin areas of the varions dorsal roots and the anastomoses between the derivatives of different roots in single museles is recognizable. Thus, in the extremities very few muscles are monomerie (misegmental), the majority being polymeric (two, three, or four segments). The intereostal muscles are monomeric. The museles of the hand and foot, on the contrary, exhihit the most marked mixing of motor roots from different segments. (4) As regards the functional significance of the overhaping, Sherrington thinks there is none; the anastomoses have, on the contrary, a morphological basis.

In thi results of pathologi burn,* Ro Cushing. \downarrow

Thorb tion in h plexus ce correspon based mai and his 1 starr's val epitomize lower mot

* 'Thorb C'ord. Brait (auda Equi izations us 11. 289-324. the Cervical 1p. 1382-138 delphia (188:
\dagger Ross, Brain, Lond
\ddagger Dana, Reflex or Tr
\# Starr, Lesions of tl (1899). pp. 1:
sions of the (1894). pp. 48
|| Macken ciated with 293-322.
\triangle Iteal, I the Pain of ibid.. vol. x 15. 153-2\%6.
\square Kocher, Physiologie II. Cliir., Jena Verletzungen
\ddagger Cushing Spine. Am.

In this comnection it is interesting to eompare with tho results of experiments on mimals the findings of clinicians in pathological human cases. We refer to the researehes of 'Thorburn,* Ross, \dagger Dana, \ddagger Starr, \# Mackenzie, $\|$ Head, ${ }^{\wedge}$ Kocher, $\varnothing_{\text {and }}$ Cushing. \downarrow

Thorburn's studies refer mainly to the peripheral distribution in human beings of the fibres of the dorsal roots of the plexus cerviealis and of the plexis lumbo-sacralis and their corresponding segments in the spinal cord. His studies are based mainly upon eases of traumatic injury to the spinal cord, and his results are illustrated in the accompanying figures. starr's valuable analysis of a vast amount of clinical material is epitomized in the table, introduced in Chapter $L \mathcal{N}$, in which the lower motor neurones are discussed.

* Thorburn, W. Cases of Lujury to the Cervical Region of the Spimal Cord. Brain, Lond., vol. ix (1886-87), pl. 510-543.-On lnjuries of the ('auda Equina. Brain, Loml., vol. x (1887-88), pp. 381-407.-Spinal Loealizations us indiented by Spinal lnjuries. Brain, Lond., vol. xi (1888-89), In. 289-324.-The Distribution of Paralysis and Amesthesia in Injuries of the Cervical Region of the Sipinal Cord. Brit. H. J., Lond. (1888), vol. ii, pp. 1382-1385.-A Contribution to the Surgery of the Spinal Cord. Philadelphia (1889).
\dagger Ross, James. On the Segmental Distribution of Sensory Disorders. Brain. Lund., vol. x (1887-88), pp. 333-361.
\ddagger Dama. C. L. A Clinicał Study of Nenralgias, and of the Origin of Reflex or Trumsferred Pains. N. Y. Med. J.. vol. xlvi (188\%), pp. 121-127.
\# Starr, M. Allen. Local Anasthesia as a Guide in the Dingnosis of Lesions of the Lower Spinal Cord. Am. J. Med. Sc., Phila.. n. s., vol. civ (1892), pp. 15-35: and Local Anarsthesia as a Guide in the Dingnosis of Lestoms of the Upper Portion of the Spinal Cord. Brain, Lond., vol, xvii (189.4).pp. 481-512.
|| Makkenzie. J. Contribution to the Study of Sensory Symptoms Asso(ciatel with Viseeral Disease. Med. Chron.. Manchester, vol. xwi (1892), pp. 203-322.
a Ilem, II. On Disturbunces of Sensation with Especial Reference to the Pain of Visceral Disease. Brain, Lond., vol. xvi (1893), pp. 1-133; ibid.. vol. xvii (1894), Part III, pp. 339)-480; and ibid., vol. xix (1896),川. 153-206.

O Kother, T. Die Verletzangen der Wirbelsitule zugleich als Beitrag zur Physiologie des menschlichen Rähekemarks. Mitt. a. d. Grenzgels. d. Med. n. Chir., Jema, Md. i (1896), S. 415-480.-Die Laisionen des Rückenmarks bei Verletmugen der Wirbelsiale. Ibid.. S. 481-i60.
\ddagger Coshing, Harvey W. Hematomyelia from Gunshot Wounds of the Spine. Am. I. M. Se., Phila., vol. exii (June, 1808).

The paper of Ross is brimful of suggestiveness, and should be read by every one who wishes to enter at atl thoronghly

 merves. IAfer W. Thombrn, from A. van (behuehten's text-hook.) A, verntral asperd; B, dorsal asperet.
into the bibliography of sensory localization. Scarcely less interesting are the arearate observations of Dana with regard to the pain acompanying visceral disease, and Starr is right in his complaint that too little attention has been paid to Dina's studies in subsequent investigations upon the same subject. A comparison of Dana's diagrams (Figs. 197, 198) with those of Head, Thorburn, Starr, and others, show how elosely the ideas of a later date correspond with those advanced by him in 188%.
(iROUPIN
'lhe es attructed Dama, ami (patholor orders of with defin and aceon other orga followed d Ross, he t definite r studied th zoster, hol nificance he found t cexactly to ances. Fit distributio spinal cor

Head i roots is so ments insi hriefly thes neous supl states that inconsidera sent the r areas corre tions. It n filires for tl lap conside however, st indifferentl and Heand f surgical div was there : most instin not material as Sherring correspond spinal cord

The extended stadies of Head are very ingenions, and have uttracted widespread attention. He, like Clifford Allbutt, Ross, Dana, and others, had noticed that the entaneons temberness (pathological associated sensations) ancompanying certain disorders of the stomach tend to oeempy definite tracts of skin with definite borders. This led him to investigate the pain and uecompanying tenderness consequent upon disturbances of other organs, and he found that these sensory disturbances atso followed definite lines. Stimulated by the suggestive papers of Ross, he thought it probable that these areas might bear some definite relation to nerve distribution, and with this in view studied the distribntion of a large mumber of cases of herpes zoster, hoping that they might throw some light upon the signifieance of the tender areas in visecral disease. Tow his surprise he found that the areas ocenpied by herpes zoster corresponded exactly to those with which he was fumiliar in visceral disturbances. Further study showed that the areas repersented the distribution of either a single nerve root or a segment of the spinal cord.

Head inclines to the view that the distribntion of the nerve roots is somewhat different from the distribution for the seg. ments inside the spinal cord. Wis reasons for thinking so are briefly these: Whereas Sherrington fomed that the areas of eutaneous supply from any two roots detinitely overlapped, Head states that his areas do not overlap at all, or if so, only very inconsiderably. Sherrington's areas, it is true, apparently represent the root supply for the sensation of touch, while Il ead's areas correspond rather to pain sensations and trophic sensations. It might be assumed that whereas the distribution of the fibres for the sensation of toueh in the varions lorsal roots overlap considerably, those for pain do not overtap. Sherrington, however, states expressly that he nsed toneh and pain stimnli indifferently as a test for the presence or absence of sensation, and Head feels sure from his observations in five instances of surgical division of a single dorsal root in man that not only was there absence of amesthesia to tonch after division, but in most instances the sensation of heat, pain, and cold was also not materially disturbed. Head believes, therefore, that whereas Sherrington's areas represent the true root supply, his areas correspond to the supply, not of roots, but of segments of the spinal cord from which the roots in part arise. He believes

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

Fig. 197.-Referred pain in visceral disturbances, (After C. L. Dana, N. Y. Med. Jour. for July 30, 1887, 1. 125.)

Fig. 199.-Referred pain in visceral disturbances. (Afte
Med. Jour. for July 30,1887 , p. 125.)
C. L. Dana, N. Y.

343

Fig. 199.-Areas of pain semsation in visceral disease. (After H. Head, taken
 p. 910, Fig. 7.)

Fig. 200.-Areas of pain sensation in viseral disease. (Aftor M. Head, taker from W. Osler, The Prineiples and Practice of Medicine, 3d ed., N. Y., 1898, p. 911, Fig. 8.)
that the meehanism for the sensation of tonch in the varions spinal segments most overlap, while that for the sensations of pan, heat, and cold does not overlap, at any rate to the same extent. The areas as ontlined by Head are indicated in the aterompanying diagrams (Figs. 109, 200).

The localization within the spimal cord can not, however, be said to be satisfactorily settled, and mueh researeh is still necessary.* The elinicians often have considerable diftienlty

Fig. 201.-'Types of anesthesia, A, periphemil (from Hasse); B, spinal, root type of (hipault (from Kowher); (', erebrat, medultary type of Chipant (from Brissaul). (Aiter I'. C. Knapp, Tr. Amer. Neuron. Assoc., 1897.)
in deciding as to the site of a lesion which canses disturbances of sensation. These difficulties have recently been discussed in an instructive paper by Knapp. \dagger It is especially in cases of syringomyelia that the findings may be puzzling. In the dia-

* An interesting recent paper is that of C. F. Beevor, The Distribution of Motor and Sensory Syinptoms from Injury to the Roots of the Brachial Plexus. Tr. M. Soc., Lond., vol. xix (1896), pp. 72-79.
+ Knapp, P. C. Anasthesia in Diseases of the Spinal Cord. 'Tr. Am. Neurol. Ass. for 1897. New York (1898), p. 81.

Fig. 203.-Regiones corporis humani. (After W. His, Die anatomische Nomenclatur, Leipz., 1895, Taf. ii.)
gram (Fig. コ01), combined by Kinapp from various sources, the so-ralled peripheral, spiate and corebral types of amasthesia in the left arm are indicated. I lesion of the cerebral type can be dne not only to diseases of the cerebrum, but to lesions inside the spimal cord.
'That the areas of cutaneons sensory disturhance do not correspond to the regions on the surface of the body which have been defined by the topographical amatomists will be clear from the accompanying diagrams, which are here introduced for convenience of reference (Figs. $20: \geq 0: 3$).

(A) Centripetal Neurones of the First Order collecting Bodily Impressions.

CHAPTER NXVIII.

PERIPIEERAL CENTRIDETAL, NEURONES.

Relations of periphernd erntripetal neurones to the central nervons systemThe sensory spinal nerves-'The sensory eerebral nerves.

THe nemrones collecting bodily impressions will first be deseribed. Part of them are connected with the spinal cord, the remainder with the rhombencephalon. There are, as every one knows, thirty-one pairs of spinal nerves, including eight eervieal, twelve thoracic, five lumbar, five sateral, and one eoecygeal (Fig. 204). If we include the two rudimentary coceygeal nerves, which Rauber has deseribed, the total number is increased to thirtythree. All of the spinal nerves have ganglia upon their dorsal roots (Fig. 905). It is in these ganglia that the cell bodies of the spinal peripheral sensory nemrones are situated. Of the cerebral nerves not all possess sensory functions; outside of the organs of special sense only those which are provided with ganglia in their course are known to carry centripetal impulses. Excluding the nerves of special sense-that is, the olfactory, optic, and cochlear nerves, and the nerves concerned in the sense of taste (portions of the glossopharyngeal, trigeminus, and nervus intermedius)-we have left as sensory cerebral nerves the sensory portion of the nervis trigeminus with its ganglion semilunare (Gasseri), the nervis intermedins of Wrisberg with its geniculate ganglion, the nervus vestibuli with its ganglion restibuli, the nervus vagus with its ganglion jugulare and ganglion nodosmm, the nervus glossopharyngens with its two ganglia (ganglion superias and ganglion petrosum), and ocasionally, perhaps, a portion of the hypoglossus nerve, since in the embryo at any rate it is sometimes provided with a sensory ganglion (Froriep). In these varions ganglia are situated the cell bodies 350

Fict. 205.-Portions of the pars cervicalis of the spinal corl with nerve remes. (After A. Ramber, lalıbueh der Anatomic des Menselobi, V. Aull.,
 sern from the ventral surface. On the right side the vent ral tilat radienlarial have been ent throngh. B. spinal rord seren from the latemal surface.- 1 , ventral median fissure ; 2, dorsal median sulens: x^{2}, sulcus lateralis ventralis, whence the ventral tilat modienbaria emerge; f s suldi laterales domates throngh whieh the dorsal root dibres rnter the spinal cord; σ^{5}, radix ventralis going bast spinal gathalion eut through on the right side in Fig. A; a, radix dorsalis emerging from the manglions spinalle(6;); γ_{1} N. spinalis immediately altor its fomation through the mion of the radix ventralis and dorsalis dividing into \approx a ramas ventmis, and γ^{\prime}, a ramms dorsalis. The ramus eommonicans and the ramus meningens are not shown in this tigure.
of the peripheral sensory nenrones, of the variety under disenssion, pertaining to the rhombencephaton.

It is especially to be noted that, if we leave out those gathered from the viscera by means of the sympathetie nerves, all the impressions collected at the periphery of the body aud

Fig. 206.- Scheme of periphoral spinal sensory nemrone showing the peripheral
 entering the spinal cord through the domal rat of a spinal merve there hifurrating at e into an aserending and a deserending limb whirl give ofl momeroms
 rones are sehematically shown, bat med not be considered here. (After s.
 p. 25, Fig. (i.)
from the internal organs are carried into the central nervons system (spinal cord and brain stem) by means of one set of neurones (Fig. 206). The total number of individual neurones
concerned is cnormons, but there is no superimposition of nenrones in the meehanism here deseribed. A centripetal impulse originating at the periphery reaches the primary end-station of the sensory neurones insile the central nervons system after having passed through only one neurone. Although for the origin of any given sensation centripetal impulses start at the periphery, usmally in a considerable number of different nenrones, each of these extends as far as some primary end-station inside the central nervous system, not requiring to pass through any secoudary neurone on the way.*

[^151]
CILAPTLER NXIN.

(AENERAI HESC'RIPTION.

> The spinal ganglia-Bipolar cells in embryo-l'nipolar cells in adultPeripheral sensory fibres-contral axones 10 elorsal funcouli- Fibres exogènes of 1 . Marie-Nuclei termimales-Phylogenctic stmbes-The structure of human spinal ginglion cells-Studies of von Lenhossék, Lagnro, and Nissl.

1. Centripetal Ncurones of the First Order (collecting Bodily Impressions) connected with the Spinal Cord.

Tine perikarous of all the sensory nemrones that we are describing are sitnated ontside the central nervons system (in human beings) in marked contrast to the cell bodies of the peripheral motor nenrones, which are sitnated within the eolumat grisere of the spinal cord. In Section IN the embryological origin of these nemrones has been described. It will be recalled that in the human embryo they appear near the spinal cord and soon come to ocenpy positions lateral from it. At a very early period the distal and central processes of the spinal ganglion cells are rerognizable. It has also been pointed out that there is a gradnal tramsition in the embryo from the bipolar condition of the cells to the mipolar condition which is chameteristic of the adnlt. In considering the anatomical distribution and physiological function of these periphemal sensory nenrones their bipolar nature has ever to be borne in mind, the unipolar condition of the adalt being the result simply of an attenustion of a portion of t..e cell body, doubtless an example of adaptation to environment, but whether for cemomy of room or for improvement of mutritive relations we do mot know. It has been stated that the distal proeess of the spinal ganglion cell grows to the periphery and becomes the axone of a peripheral sensory nerve fibre, or, simee it often divides, it may tilke part in the formation of many peripheral sensory nerve fibres.

The central prolongation of the spinal ganglion cell grows directly into the spinal cord. 'The total mass of central prolongations from a single ganglion forms the dorsal root of one
 within the spinal cord are built up in the main of the intramorl-

ullary prolougations of the dorsal root fibers. They are thas formed chiefly of tibres extrinsic or exoremons to the cord (fibres ereugimes of P'. Maric). These dursal root fibres somewhere in the rord, medulla, or cerebellum end by ramifying among and upon the cell bodies (perikaroms) and dendriter of other neurones in what we now sall the melei lermineles, or the "primary cul-stations of the sensory combluetion paths."

This deseription holds good for the peripheral sensory nen-
rones of the cerebrum as well as for those of the corl. There too the cell bodies are situated outside the brain in the ganglia on the cerebral nerves, the peripheral prolongations run to the surface of the boly as medullated fibres, the medullated central prolongations run into the nerve centres to end in the primary end-stations or nuclei of termination of the cerebral nerves. In the last are situated the cell bodies and dendrites of other menrones (of the sceond order) which can take up the impulses and carry them further.

While it is true that nearly all the embryonic hipolar cells of the spinal and cerehral sensory ganglia become later unipolar in haman beings, in many of the lower forms, for example in the fish, they remain bipolar throughout life. It is interesting to remember that in the ganglion vestibuli of human beings (as well as in the ganglion cochlear) the bipolar condition is retained throughont life just as in the fish.

Plyylogenetie studies have exeited a great deal of interest "a connection with the original position of these peripheral sensory nemrones.* ln some animals like Lambrians the cell borlies of the sensory neurones are sitnated in the eputhelial surfaces of the animal (Fig. 208), the short peripheral process or dendrite passing between the other epithelial cells towarel the surface, the central prolongation rumning from the skin into the nerve centres. Other amimals (like Joreis) possess neurones in which the cell body is no longer located in the peripheral epithelial surface, but is situated near it, or at varions points between it and the central organ. The further the cell body from the epithelimm, the greater of course is the length of its distal process. In human beings, as has been stated, and in other mammals the cell body is almost as far distant as possible from the peripheral surface, inasmuch as the spinal ganglia are very close to the central cerehrospinal nervons system and very far removed from the peripheral sensory surfaces. One vertebrate, amphioxus, is peeuliar in that its bipolar sensory nemones are situated within the spinal cord (Retzins). There are ami-mals-as, for example, Plerofrochen-which in a emparatively limited space show a whole number of transitional stages be-

[^152]GROU tween (Eilin being. hower is situ refer (Fig.
tween the peripheral position of the cell body and the central (Edinger). It is of the greatest interest to find that in human beings we have one instance (in the domain of the special senses, however) in which the cell body of a peripheral sensory nemrone is situated among the epithelial cells of a sensory surface. I refer to the cell bodies of the peripheral olfactory nemrones (Fig. 15\%, vide supr", p. $2(92$).

The ganglion spirale and ganglion vestibulare in haman beings present stages transitional between the peripheral olfactory neurone and the ordinary peripheral'spinal neurone, since

 I. oligochetic worms (lambriens): B, polyehetic worms (Nereis); (', molluses (Limax) ; Ir, vertebrates. The grathal elange iathe position of the perikaryon in the phylogentede serias is interesting. e, ephthelial cells of sen-
 rm, rete Dalpighii l^{\prime} eppdermis; sh, isome; co, "entral nervous system.
the cell bodies of the neurones in these ganglia are situated ont near the sensory surfaees, whence they collect impressions, though not aetaally in them.

The structure of the cell bodies situated within the spinal ganglia has been deseribed at some length in section III and
need not be disenssed again here. In Fig. 209 is shown a large type of cell from the human spmal ganglion taken from von Lenhossik's recent articie, and in Fig. : 10 certain other types.* For aceurate measurements of the dimensions of the spinal ganglion cells of different anmals, adult and embryonic, the reader is referres to the article of Cavazami. \dagger

The medullated peripheral prolongations of the spinal gamglion cells rm, along with the mednllated motor axones, ont into the peripheral nerves (Fig. 205 ; cide supret).

Frg. 209.-Large spinal gamglion eedl from a heathy man with comertive-tissue

 chear zone of the protoplamis k, ixane hilloek ; pi, pigment.

In the dog five distinct types of cells in the spinal granglia have been leseribed by Lagaro. \ddagger The types to be found in the rabbit have been carefully studied and deseribed by Nissl.

After dividing a variable number of times, these medullated

[^153]
GROU

axone etal is rate, the te

Fig. 210 Are
gim Cinal

axones reach the peripheral organs, whenee they coliect cellulipetal impulses. All of these peripheral fibres end free; at any rate, we have as yet no evidence of conncetion by continuity of the termination of one of these fibres with any other cell. That

Fig, 210.-Scemal types of spinal ganglion cells. (After M. von Lenhossék, Arel. f. P'syehiat., IBd, xxix, 1896-97.) I and D, small chomophile spinal gamglionceds, sumewlat slimenen; 13, medimm-sized spinal ganglion cell with
 ligroid evident ; lid watl chromophile spmal gamplion eoll, interior of eell presents a homogemoons apparance, garland of tigroid masses at the poriphory.
the peripheral endings may actually penetrate into epithelial or other cells seems lifaly from the studies of Engelmam, Apithy, and others. The motes of ending in the peripheral organs are, however, very variable.

It was long thought that ganglion cells were situated in Meissner's corpuscles in the skin, in the so-called T'astzellen of Merkel, and in other peripheral end organs, and that these send their axis-eylinder processes into the nerve centres. But this view has been shown to be false. The peripheral prolongations of spinal ganglion cells end free in the shape of disklike expansions in these structures.

On account of their functional relations the so-ealled sensory nerve endings might be, perhaps, better called peripheral nerve begimnings.

No less than one hundred and eighty-five articles concerning the endings of sensory nerves in. تertebrates have recently been collected and reviewed by Kallins, of Göttingen.* As this author states, the different varieties of nerve endings may be classified in different ways, either according to the endings themselves or to the tissues in which they are situated. They may terminate independentiy of any special end organ, or the free endings of the fibres may be inclosed in certain definite, speeially differentiated, terminal corpuscles. The most convenient method of deseribing them is as (1) those incident to epiblastic and hypoblastic structures, and (z) those ineident to mesoblastic struetures.

[^154]
CHAPTER XXX.

THE MEDULLATEI PERIPHERAL AXONES OF TIE PERIPIBERAL CENTRIPETAL NEURONES AND TIEIR TERMINAL APPARATUS.

Centrijetal nerve endings or beginnings-C'assifieation-Nerve beginnings in epiblastie and hypoblastie tissues-Naked begimnings in epithelium -Epidermis-Mucons membranes-Vind-platelets-Werkel's 'Tastzellen and Tustmenisei-(irandry's eorpuseles-Nerve beginnings on hairs, hair follieles, und teelh-Nerve beginnings in lung, liver, pancrens, stomach, and intestine-Nerve begimings in mammary ghad.

Sensory Nerve Beginnings in Epiblastic and Hypoblastic Tissues.
In the skin the fibres representing divisions of peripheral prolongations of spinal ganglion cells lose their myelin sheaths before entering the epithelium. Once inside the epidermis, they branch typically, giving off first tangential branches, from which secondary finer divisions pass through the stratum germinativum into the upper layers. The individual fibrils can pass upward or downward, but always, or nearly always, end in the epithelium itself. At the tips of the individual fibres very fine bulblike processes are often seen. Many believe that the nerve fibrils end inside the epithelial cells. Certain it is that the nodules can be seen pressing into the surface of the cell, but that they actually are to be considered as intracellular nerve endings is at present doubtful. The weight of evidence is, on the whole, against this view.

In mucous membranes covered by squamous lamellated epi-thelium-for example, the tongue and cesophagus (Fig. 211)the relations are similar to those in the epidermis. Retzius* has pointed ont a peculiarity of the terminals of the nerves in

[^155]the epithelimm lining the urinary passages. Thas, in the hadder, for example, the sensory nerve fibres run tangentially fins long distances, making marked curves about the cells. The

Fig. 211.-Nerve fibrils in the epithelial lining of the asophagns; method of Golgi. (After G. Retrins, Biol. Unterstelh, Storkhom, 11. F., Bi, iv, 1892, Thif. siv. Fig. 2.) o, surface of epithelimm; bi, subepithelial commertive tissthe: n, nerve fibre.
actual terminations, however, appear never to lie in the superficial layers of the epithelium, but the bramehes, having passed out near the surface, turn backward to end free near the jumetion of the epithelium with its comnective-tissue support (Fig. $212)$. Whether or not this hehavior depends noon the variations in the distention of the bladder wall, or represents at mechanism for the purpose of avoiding a possible harmful influence of the urine upon the nerve endings, is not known.

The mucons membranes covered by ciliated epitheliam also receive nerve fibres which end free in among and unon the cells (Fig. :13).

The number of nerve fibrils present in ordinary epithelial surfaces is remarkable; even the gold method, by means of which Cohnheim * discovered the free intercellular endings in

[^156]the epithelian layer of the romeat (Fig. 214), shows in surcessfatl preparations a large number of fine fibrils. But the nigro-

Fig. 2l2. - Nerve tibils in the epithelimm of a vertical section of the mbit's bladder. Methoul of tiolgi. (Atter (i. Retzins, Bioh, Untersurli., Stockholm,
 by, subepithelial eomnertive tissme; n, berve tibre passing from comnertive tissue into the epithelimu.

Fig. 213.-Termination in the form of trefoil emd platelets on the ciliated cells of the frog's palate. Sagital seretion; vital staining with methylene blur ; ahmm cochineal nsed as a romuterstain. (Xiter A. Bethe, Areh. f. mikr.

sine and safrmine staining of Mamblum,* and the method of (iolgi applied by F. E. Schulze, \dagger van dichuchten,\ddagger and others, has shown us the really enormons mmber of nerve fibrils that are present in such structures (Fig . 215). The method of Ehrlich, applied to the skin and mucons membrane hy Eberth, Szymonowicz," Bethe, Dogiel (Figs. 2lfi-218), and others, has revealed even more. It would appenr that almost every cpithelial cell stands in contact rehation with one or more nerve fibrils. And perhaps this may be true of all epithelial cells.

While the majority of the fibrils in the skin und in the epithelinm of the mucous membrames end free, often with formation of slight varicosities, others of them terminate in definitely differentiated end platelets. As an example of these may be mentioned the so-cmled trefoil-shaped phatelets which Bethe $\|$ has described as oceurring on the nerve inbrils in contact with the eylindrical cells in the epithelime of the frog's tongue and palate, and the romd end phates which he finds on the rod cells, the forked cells, and the deep eylindrical cells in the same organ. These end plates (Fig. :19) are to be looked upon ats expansions of the distal end of the nerve fibril. The nerve fibril is attached to the end phate very mueh as the stem is to a leaf. Several of them may belong to a single nerve fibril, and, what is more important, the same nerve fibre can be connected with the simple free nerve endings as well as with these endings in phatelets. The epithelial cells in contact with these platelets can often be differentiated from the other epithelial cells hy their behavior toward alnm cochineal. Niemack deseribes in the frog's tongne cells almost completely surrounded by a mantle of nerve substance arising as an expansion of a terminal

[^157]fibril; Bethe combl not, however, find such structures in tissues fixed hy his method.

with
The of tile mit ferent that w oguize show t

 which divides into two, damd of which one, r, ceds in a rommomed sken,

 E, but the threal i helps io firm the simple skein $r^{\prime}:$ the braneli f^{\prime} enters the complex skein, b; (bu lranch $f^{\prime \prime}$ tinally breaks up into the throads $f^{\prime \prime \prime}$ mad $f^{\prime \prime \prime \prime}$, ot whin the former ends in al loon, H, while the other gese into the skein C^{\prime} "The hranch $f^{\prime \prime}$ is surrounded for a certain distance hy basetin, mucloi are, however, bumediately aljacent to the thereds, $f^{\prime \prime \prime}$ and $f^{\prime \prime \prime \prime}$. !? branch of : m medalated filme (now shown in the tigure) which hreaks up into
 pheral part of asonte: c, myetin.

Another form of end platelet with which histologists have become familiar since Merkels * deseriptions is that to be met

* Merkel. Frs. Veher die Emdigung der sensiblen Nerven in der Itant.
 (1875). s. 193-128.-Tast zellen und Tastkörperehen bei den Inmshieren und beim Menschen. Areh. f. mikr, Anat., Bonn, Brl. xi (18in), s. (633-650.Ueber die Eudigungen "e: sensiblen Nerven in der Haut der Wirbeltiere. 4to. Rostock (1880).

F1\%. 217. -
Anat.
culd of
a, form
Whie-h
the ase
most nur They ar embryo
with adjacent to the well-known 'invzerlen of this nuthor. The eprithelial coll (Thestarlle of Merkel) adjacent to the tactile meniscus is of different shape, ano possesses entirely different staining reactions from those of the other eedls, so that when one is once familiar with its appearance he can recognize it in sections which have not been staned especially to show the nerve endings. In the skin, Merkel's Tastzellon are

Fut. 217.-Nerves mad nerve endings in hman cornces. (Aíter A. S. Dogiel,

 Which mates two 'and skeins: f, threads whieh have arisen hadivision ot the axome of the medallated tibres.
most numerons in the interpapillary processes of epithelium. They are easily demonstrable in the adult (Fig. 2\%0) and embryo (Fig. 221) pig by means of the vital staining with
methylene-blue, as Szamonowiez* has shown. I have stained them by the same method in the pig's snont, and also in human skin obtained from the surgieal operating room. With the aid of Bethes fixing methot one can obtain beantiful pietmes by counter-staning the sections with Czokor's alum coehineal. In a suce sstul preparation the expansions of the ends of the nerve fibrils-the tactile menisci-are staned deep blue, the Thatzellen vi Merkel dark red, and other epithelial eells pale pink.

 medallated tibre (a) braks 1 pe into single hramehes (b) and smaller divisions still (e), which form a plexns beneath the "pitheliam.

Merkel thought at first that the Thatzellow were actually ganglion cells. Now we know them to be simply modified epithelial cells in contact with special disklike expansions of the neree fibrils. The stactures have been aptly compared to an ateorn, the differentiated cell ecresponding to the mut, the meniserns to the eup in which the nut sits, and the nerve fibril to the stem of the eup. Kallius looks upon Bethe's end platelets, described above, as transition forms hetween the simple free inter-

[^158]cellutar nerve entings and the ending in menisei on Merksl's Tistzelle".

A comprehensive series of resarches on the somalled diandry's * corpmseles, which are found in the duck's bill (Fig. Dide),

Fig. 219.-Nerve endings in epithelium of frog's patate. After A. Bethe, Areh.
 staining with methyleme blue. Fixation by Bethes method; romoteraining with alom erehineal. t, two emdings with teroid and phates, one of the endings being seren trom the side: \quad, "pper borter of a semsery hilloek teased out of a sagital suction, merve oblings with trefial plate on fone erlindrial cetls (one of them seren from the sides, also merve lermination in the
 drpth; e, two isolated rol cells with end plates and burw tibrits fom a teatsed preparation.

Fig. 220.

FIG. Sel.
 two papilla which shows a large promp of Morkel's Tasterellew. . Wowe, one sers the limits of the centhelial reds imdeated, below wo nerve fibers ritering the cpithelime. Ont the left side probably a part of an emed hall). (Aftur
 Hig. 6)
 hetwern two pitpilla, from a fiotus 30 em. long. to shaw the develogment of the nerve omdings about Morkols Tistarllen. SAfter W. Saymonowiez, Areh.

[^159]make it appear that these structures also represent groups of epithelial cells between which nerve fibrils end free by means of terminal end plates. Dogiel* has studied them with the me-thylene-blue method and has convinced himself that there are Gisks inside them which are continuous with nerve fibres lying between the cells of the corpuscle. The finer strncture has ween studied also by Geberg \dagger with both Golgi's method and the methylene-blue stain (Fig. 22:3). Geberg believes that the nerve fibre breaks up in the disk into at number of very fine fibrils which run in directions through the disk

Fif. 222.-Gimudry's terminal nerve corpuseles from the duck's bill. (After M. (Grandry, J. de l'anat. et flyssiol, Par., t. vi, 1869, pl. xv. lig. 10.)
(Fig. $2:+$), while Dogiel thinks that the axis eylinder breaks up into two bundles of fibres which run around the border in a ringlike way, leaving the centre of the disk free from actual nerve fibrils. It is rather interesting to note that Grandry's corpuscles are classed among the epithelial structures, despite the fact that they are situated in the subepithelial tissues and are inclosed in a definite connective-tissue sheath. The study of the ontogeny of the cells, however, is said to have established their epithelial origin.

The nerve endings in the hairs have naturally attracted a great deal of attention inasmuch as these structures have long been known to be very delicately responsive tactile organs. As

[^160]
von Frey * puts it, " Every hair is a lever whose short arm is in the skin, while the long arm serves for the reception of the

Fig. apl. - Tatile dises from two Grambry's corpuseles in commeetion with tho anis rylinders (mu) of the merve tibres eommeded with them. Mahylemo

 over into the tactile dise, where the staned titrils or bumbes of tibriks of the axis cylinder break up into meleate thrads whirl pass in ditherent dirertions, but mingly to the border of the terminal dise. In A, a metwork like mono of the threads can be made ont among the tibrik of the tactile dise in phares, althomgh it mot very marked; k, mueleus ol the comective-lisiste sheath of the eorpusile.

Fib. 205. -Nerve endings about a harge hair from the dog. (After R. Bommet,
 The entering moves partly form loops, which oftern grow sudternly more lolieate, as at $"$: at b one can make ont the origin of the sfaight torminal tibres going forklike from the modnlated fibres; re rirenlar ferminal fibers prationlly in cross section, visible extermal to the straight fibues.

* von Frey, M. Beitrige zur Physiolorie des Schmerzsinnes. Bre d. math-phys. Cl. der K. Siehs. Gesellseh. d. Wissenseh., leip\%, Sit\%. vom 2. Juli, 1894, S. 188.

Fig, 2.ef. - Erectile body of a hair of the rat. (After R. Ponnet, Morphol

 plexuses: N, brameh al entaneons merve whirh lomes the pexas of the

stimulus．＂The earlier studies of Bonnet，＊Merkel，\dagger and Arnstein \ddagger showed the intimate relation of mednllated nerve fibres to the hairs，and indeed to a particular part of the hair （Figs． $2.25,2026$ ）．Just below the spot where the sebaceons gland opens into it the hair follicle shows a furrow abont it，beneath which is a projecting ridge．The nerves comnected with the hair follicle mproach this ridge and penetrate the sheath，los－ ing on entrance their medullated coverings．The further fate of the nerve fibrils was for some time not clear，though Bomet by means of chloride of gold staining showed the existence of horizontal branches rmming about the hair．These branches gave off ascending twigs which appeared to lie upon the glassy membrame of the hair follicle imbedded in longitudinal folds in this structure．There seemed to be some doubt whether or not the fibres went through the glassy membrame；many he－ lieved that they did not perforate it but simply lay upon it． The method of Golgi in the hands of van（iehuchten ${ }^{\#}$ and Retzius $\|$ has shown the general characteristies of the endings about the hairs in the monse，rat，and man very clearly and sat－ isfactorily（Fig．2？：In the monse and rat each hatir receives one nerve fibre which has its origin not in the deep nerves of the skin，but as a branch of a neighboring fibre which is des－ tined to imervate also a portion of the epidermis．This fact is of great interest inasmuch as it proves that either the hairs and these portions of the epidermis have to do with the origin of the same quality of sensations，or if they mediate different sense－modalities then the sume neurone must be capable of tramsmitting from the periphery to the centres impulses eon－

[^161]cerned in the production of more than one sense-quality. The nerve fibre having reached the hair follicle, divides into two branches which run horizontally about the hair almost at right angles to its course, one division riming in front, the other behind the hair. These may meet or they may run only part

Fig. 297, -Nerves and nerve endings in the skin and hair follicles. (After f .

 hair: ais, outer root sheath; h, the lair itself: dr, gambler sebacerar.
of the way around, thus forming an incomplete ring, Small ascending twigs run up from these horizontal branches parallel to the direction of the hair to terminate, according to van Ge-
(ikOU
huchten, in small emed modules. A few bramehes rum perpendienkarly downwart. Retzins, by means of Golgi's method, has made ont very similar relations in the human cmbryo.

Fig. ses.

Fig. mes. - Xerw ondings in the form of tactile dises leneath the glassy mem-

 hair. The tadile dise ate combeded with perforating newe tibere and with
 ", tactile dises bemeath the ghass membanal b, staight terminal tibes extermal to the glasey membathe which rim ont into spexin-shaped or hate hetshatued codings.

 svii. Fig. 7.) de dentine : μ, mere fibers aseduling elose to inmer surtace of dembe and ending lires.

Whether or not the nerves fomed by Orru* and ly Retzins in the papilla of the hair actually rm into the folliele and correspond to constant nerve endings in the alult must as yet remain undecided.

[^162]stein.

Vory complicated nerve endings have been dpseribed on the so-called sims hairs by a momber of ohservers. The most complete descripion is that of Ostromow,* who worked with methylene blue (lig. 228). I have found in the embryo pig by means of the mothylene-blue method nerve endings connected with detinite T'ustzellen (of Merkel) inside the hair follicles just as Ostrommow has deseribed them. The "nerve end buds" pietured by Bonnet in $18 \% 8$ are probably the salle endings about Tastzellen (ef. Fig. 22th, vide supru).

 of liver colls.

That the teeth are sensitive to tonch, and more especially to pain, is a matter of general knowledge. It has been disputed whether or mot hesides the nerve endings in the pulp there

[^163]were also nerve endings in the solid portion of the tooth; while some have believed that the nerve fibrils end only among the boolies of the oflontoblasts at the periphery of the pulp, others think that they may actually penetrate the dentine itself, inasmuch as it is known that if the gum be re-

Fig. :331. Perincinons plesus (a) of merve tibrik in the pancreas. (After E.

tracted the dentine is sensitive at the margin of the enamel. Retzins* has applied Golgi's method to the teeth of many ani-

[^164]mals, finds

F1(8. 23)
intest
1.0
cland
Îllest
are dist
the imm to follo the sul) stern,* differen even in
mals, and has suceeded in staining the nerves (Fig. Pe?!). He finds that the nerve fibres of the pulp branch manifoldly and

Fio. 232.-Nerve wills and meve thres in the villi man mong the ghats of the

 intestinales; the plexus formed hy their promesses is shown.
are distributed between the odontolasts ending close or near the inner surface of the dentine. He was never able, however, to follow nerve fibrils into the dentinal tubules. Subsequently the subject has been submitted to especial research by Morgenstern,* who has obtained very remarkable results. He deseribes different sorts of endings not only in the dentine itself but also even in the enamel. These findings have been disputed by

[^165]

 erescent: \quad, H, merve theres.

 (). 'I'imoteres, from kamieres textlowi.)

Fig. $235 .-$ Norve terminals in manserse setion of the thbuli seminiferit of the

(ikol
Riösre,
tates
bhasts
result
the on britice:
rifor 230.
hiave di Korolk

* lioi Momatse †' 'u
Aermil.
mento e
rariu.
$1: 94-03$.
polmoni
schir. f. A
\ddagger Ber
Hosp. Re
\%, Je

Rüss,** who thinks that Morgenstern had to deal with preeipitates in she dentinul tuhbles and on the processes of the odontobasts. Fior the present, thon, we must await patiently tho results of further researeh in this direction.

Asto the begimings of centriputally comblueting filmes in the argans of hypohastie arigin, exelusive of the muenos membrumes, comparatively little is known. Cuccati \dagger and Berkley

Fug. 236. - Ni.fre cudings in the mammary gland. (After Dmitrijowski, Kusam, (8!14.)
have deseribed the nerve endings in the lung, and Barkley \ddagger and Korolkow ${ }^{\#}$ have followed the tine merve fibrils thronghout the

[^166]liver substance (Fig. 230). The pancreas (Fig. 2:31) as well as the stomach and intestine (Fig. 232) have been studied by Erik Mäller,* and ly Ramon y Cajal, and the salivary glands (Fig. e:33) and the thyreoil have also been investigated by several observers. The endings in the epididymis have been studied by Timofeew (Fig. e:3t), those in the testicle by Sclavunos (Fig. : P35). The sensory as well as the motor and secretory nerve endings in the mammary ghand (Fig. 2:3if) have

Fif. 237.-Two corpmseles emtaining nerve endings fom the extemal fon-nective-tisime shath of the dog's prostate. (After 'Timotioew, 1s95, from Ranler's toxt-hook.) a, thiek mednhlated nerve tiber which rans wht inte the batm-shaped axis exlinder; b, delicate medniliterl werve tibre whids forms the terminal appamtas; methyleme-blte staining.
lately been studied ly l)mitrijewski. \dagger 'Two corpuseles from the prostate are shown in Fig. 233\%. Without going into a detailed deseription of the findings in these various organs it may be stated that every one has heen surprised at their enomons richness in nerve fibrils.

[^167]We extremi structur the con the brai and int muscles. tissue. terminat ties or el organs o

ChAPTER AXXI.

THE MEDLLLATEH PERIPIERAL AXONES OF THE PERIPIIERAL CENTRJPETAL NEURONES AND THEIR TERMINAL APPARATUS——(Continuetl).

Sensory nerve begimnings in mesoblastic lissues-C orium nut teln suben-tanea-'Tuniea mucosid and tela submucosir-Meninges-TendonsComnective tissue of organs-Voluntary, curdiac and smooth museleServe terminals in pallological growths.

Sensory Nerve Beginnings in Mesoblastic Tissues.
We: next have to consider the distribution of the peripheral extremities of the centripetal nerves in the various mesoblastic structures including the eorimm and tela subentanca of the skin, the comnective tissue of mucous membranes, the meninges of the brain, the tendinous structures of the bory, the capsules and interstitial connective tissue of the solid organs, and the muscles, ineluding voluntary, cardiae, and smooth museular tissue. Here also it has been found that the nerve fibrils may terminate as free endings either in the form of delieate varicosities or end-platelets, or they may be inclosed in encapsulated endorgans of specifie structure (corpusenla nervorum terminalia).

Fra. g3s. Free herve endings on the hasal membrane at the junction of the
 mikr. Anal., Bomm, Bat. xlv, Tat, xxxiji, Fig. 5.) Ome seres a nerve dibre enter from below on cach side and break up to form an end plexas. Symonowisz thinks that this emding is identian with the tremintisem hedriforme of Ranvier.

In the skin at the junction of the corium with the epidermis Ranvier has described what he calls terminaisoms hédériformes. These have subsequently been studied by the methylene-blue method by Szymonowiez* in the snont of the pig (Fig. e:38).

[^168]They consist of axis cylinders which divide manifollly and form irregular dendritie end-branchings and end-plexnses, the fibres often showing varicosities in their course. According to Szymonowicz, they are more developed in the parts of the skin in which Merkel's T'ustzellen in the

Fit: 239. -Tactile corpusele of Mas incer from al seretion throngh the skin of the linmatlore. Fixalion with osmicatid. $B 1$, blood-vessel ; N, mednlated nerve tibre. (Alter P. Sehieflerdereker (iewobelehre, Bramschweig, 1891, S, 2en, Fig. 141.) epidermis are absent or present only in small numbers. They often lie immediately upon the basal membranc, following exaetly the indentations and irregularities of the junction of the epidermis with the corium. Szymonowiez conld not make out, however, that any branches ever passed into the epidermis to run among the epithelial cells.

The endings lying upon the glassy membrane of the hair follicles also represent free nerve endings in the comneetive tissue.

Of the special end-orgams oceurring in the comnective tissue of the skin several interesting forms have heen deseribed. First of all the tactile corpusele deseribed long ago by Wagner and Meissner* is familiar to every one (Fig. 239). A section made throngh the skin of the pulp of the finger shows numbers of these in the papille of the corium. Sometimes the corpuseles are simple, but they may consist of several lobules with a common base. One or more nerve fibres enter the lobule at or near its base; after taking a somewhat tortuons course each phanges into the corpuscle, loses its myelin sheath, and divides repeatedly with formation of a definite end arborization inside the corpuscle. Each terminal branch runs out to end free, usually as a

[^169]Fig. 241.-

Fiti. 240.-Sention through the skin of the toe. In three papilar Meissuner's cor-
 grambusim: © © stritumi Malpighi. (Alter A.s. Dugiel, Intermat. Monatsiselor. f. Auat, u. Plysiol., L.-ib\%., Bl. ix, 1842, Tuf. v, Fig. 1.)

Fig. 241.-Meissner's corpusele. a and a^{\prime}, axis eylinders of nerve fibres, which enter the compusele and break up into bramehes and threads, out of which the nerve skein nrises. (Aiter A. S. Dugiel, Internat. Monatssehr. f. Anat. u. Physiol., Leipz., Bd. ix, 1892, Taf. v, Fig. 2.)
somewhat flattened plate in among the flat or wedge－shaped cells （Kolbenzellen of Krause）＊of the corpuscles．These corpuscles of Meissner are abundant in non－hairy parts where tactile sense is acute．They have been carefully studied by means of the methylene－blue method by Dogiel．\dagger He has described at length the formation of a system of loops resulting from the spiral－ like curvings，manifold divisions，and crossings of the fibres inside the corpuseles（Figs．240，241）．Dogi 1 believes that a network is formed of these divisions，a view shared by Smirnow，\ddagger

Fig．242．－Tactile corpusele from the skin of the volar surface of the index finger of a man twonty－five years old．Methorl of Golgi．（After A．Smirnow，In－ ternat．Monatsichr．f．Anat．u．Physiol．，Leipz．，Bd．x，1893，Taf．xi，Fig．5．）
who has studied Meissner＇s corpuscles in the skin with gold chloride，with Golgi＇s method，and also with methylene blue in

[^170]

Fig. 243.- Peripheral part of eonjunctiva palpelbrarum of man. a, papilla with terminal nerve eorpusele inside ; b, layer of epithelial cells on the surface of papilha. Vital staining with methylene bhe (After A.S. Dogiel, Areh, f. mikr. Amat., Bom, Bel. xliv, 1894-95, Taf. iii, Fig. 1.)

Fig, 24.-Terminal nerve rorpuseles in the eyclids of man. (After A. S. Dogiel, Arch. f. mikr. Anat., Bonn, Bu. xliv, 1894-95, Tat. iii, Figs. 2 and 4.) I. Terminal nerve corpuseles from the papille of the margin of the lis ; a. mednllated nerve fibres. II. A, $B_{\text {, }}$ C, terminal nerve corpuseles of ditferent forms from the pars orbitalis eonjunetive: n, the sheath; b, nuclei of flat cells of the shenth ; e, mednlated nerve fibres.
perfectly fresh tissue removed at operation (Fig. 24*). The latter staining showed exquisitely the ramifieation and division of the fibres inside the corpuseles. Methylene-blue preparations

Fig. 24.-simi-sehematie section of the skin of the pulp of the fingers in order
 deseribed by Rutlini. After A. Ratlini, Areh. ital. de biol., Turin, t. xxi.

 suloriparous glands; oN: Ruthai’s embling ; sip, papiltary layer of the skin ; si, reticular layor of the skin; za, fitt.
show that the same nerve fibre may be connected with more than one tactile eorpusele, and Dogiel states that he has seen fibres enter the corpusele, pass again out of it, and enter the epithelium to terminate there. End corpuscles (Figs. 243, 244)

somewhat similar to Meissner's corpmseles, but much simpler, have been described in the conjunctiva of human beings by Dogiel.*

A special variety of terminal corpuscle has been deseribed in the subcutancons tissue of the human finger by Ruffini. These bodies, which are oval in shape and about as numerous as the corpuscles of Pacini, lie at the junction of the corium and tela subcutanea, and often, according to Ruftini, \dagger in the connective tissne septa which separate the masses of fat in the latter (Fig. 245). These eorpuseles, which he names orgones nerven. terminanr, are ordinarily known in the bibliograply as

Fiat. $2: 17$.-Terminal nerve corpuscle of Rutlini. The nerve fibres cuter by one of the extremities of the eorpusele. It is masy to make ont that Henle's sheath goes to form the eapsile of the eorpusele. (After A. Ruilini, Areh. ital. de biol., Turin, t. xxi, 1894, pl. 1, Fig. 4.)
"Ruffini's endings." They receive their nerve fibres from the side (Fig. 246), or more rarely from one end (Fig. 247). The nerve fibre, when once inside the strong connective-tissne sheath, divides into ummerous branches which show varicosities

[^171]in their course and end in small free end knobs. Ruftini believes that they form actual anastomoses before terminating. The Rutlini ending is seen in cross-section in Fig. 248 , and in

Fia. 248.-Trinsverse section of Raflini's terminal corpusele. (After A. Ruffini, Areh. ital. de biol., Turin, t. xxi, 1804, pl, ii, Fig. 12.)

Fig. 249.-Oblique section of a terminal nerve corpusele of Ruffini. (After A. Ruftini, Arch. ital, de hiol., Turin, t. xxi, 1894, Fig. 11.)
oblique section in Fig. 249. Ruflini's findings have been confirmed by Sfameni * and by von Frey. That a number of end-

Fti. : are attached five orftenes nereres terminum of Rulthi. (After A. Rullini, Arch. ital. ele biol., Turin, t. xxi, 1894, pl. ii, l户ig. 10.)
ings may be attached to the subdivisions of one nerve fibre is well shown in Fig. 250. These corpuseles of Ruffini while they resemble the corpuseles of Golgi and Mazzoni, are really different from the latter.

A somewhat simpler strueture than Meissuer's corpuseles is met with in the so-called end bulbs of Krause, \dagger which oceur in the skin and in greater numbers in the conjunctiva. Each corpusele consists of a sheath made up of flat connective-tissue cells continuous with the perineurimm inside which is the socalled imer bulb, a finely granular mass which shows sometimes a concentric lamellation. In the centre of the inmer bulb is the axis cylinder, the myelin sheath having been lost at its entrance into the organ. The axone rums out to end quite free at the upper end of the bulb, usually terminating in a slight button-shaped thickening. These structures have been studied also by Szymonowiez with the methylene-blue method.

[^172]His findings are well illustrated in Fig. 251. The end-bulbs in the conjuntiva where Krumse first discovered them have been described by Dogiel (Fig. 25:).

Not malike these simple cylindrical end-bulbs of Krause, and differing from them in reality mainly in the complexity of

a the capsule, are the peculiar corpuseles varionsly known as the corpuscles of Vater, of Pacini, and of Llerbst.* The general upparance of the Pacinian corpuscle from the eat's mesentery is well known to every medical student, since it forms a standard

 and 3.) ", spimaly wisted emd bulb; the axis rylimer, the imuer bubs, amd the romberive-tissine lavers ran be sern; the small piece on the right-hame side below probably belongs to a secomid cod bilb. b. lerminal corpasele composed of several end bullos.

Fia, 25:-Terminal rophase from the edge of the ronjunctiva bubi, (After
 3.) a, mednlated merve tibre, the axis eylinder of whieln goes over intoa drase comd skein.
object for study in every histological course. The corpusele, large enough to be visible to the naked eye, has a translucent

[^173]apparanco. The fibrous sheath of the nerve is continuous with the comnective-tissue shenth of the corpuscle, the latter consisting of from twelve to fifteen or more concentrie lamella. The myelin sheath passes for some distunce into the orgam, but as som as the nerve fibre hats reached the imner bulb the myelin sheath disappears and the axis cylinder runs naked in the centre of the imeer bulb. At the apex of the bulb the nerve tibre often divides into several proecesses, all of which rim out to end free in the grambar substance of the bulb. Ehrlich's method is very suitable for the study of these structures, as Dogiel * and Kallins \dagger have shown, inasmuch as the nerve fibre stans of an intense blue or purplish color, while the gramular substance of the inner bulb stains only feebly (Fig. 253). Retzius \ddagger has

Fig. 253.-Iterlast's corpmseles. Methyleme-hbue staining. (After A. S. Dogiel,
 asis celinder entering the corpinsele A breaks up insille the inmer bulb into
 a side twig is givell oll the immer buth from the matn fibre, alses terminating in an cull kabl.
studied them also by using Golgi's method. The surface of the terminal fibre shows many black prickly projections. Simple tratment of Pacinian corpuseles with dilate acetic acid, however, shows practically all the details of the structure (Fig.
54). Pacinian corpuscles oceur in the skin of human beings m the comective tissue near joints, in periostemm, on tendons, and in the comective tissue of the serous membranes, pericardium, pleura, and peritonaum.

[^174]

Fig. 254.-Corpusele of Pacini of the mescontery of an adnlt eat ; studied fresh

 central mass or so-allal inuer halb; n^{\prime}, terminal fibre; n, point where one of the bramehes of the terminal fibredivides into a large momber of branches which go to form numbrons terminal bulgings. (After L. Ranvier, Tuité technigue I'histologie, I'aris, 1sĩ. p. 923, Fig. 309.)

Rutlini* deseribes a modified form of Vater's corpusele in different parts of the boly, whieh he designates the " (iolgiMazoni corpuscle." It is in rality the same corpuscle deseribed by (iolgi in tendons (cide infric). He finds that the nerve fibres inside these bodies divide oftener tham in typieal Pacinian corpuseles, although they always end free in flat bulblike expansions. Ruffini fints them not only on temulons but in the subentaneons comective tissue of the finger tip (Fig. 35\%). It is evident that Krause's bulbs, the Vater-lacinian eorpuseles, the tendon-corpusele of Golgi, the terminal corpuscle of Mazzoni, \dagger and the (iolgi-Mazzoni corpuscle of Ruffini ate closely allied varieties of nerve endings. In the same group are probably also to be placed some of the so-ealled genital corpuscles. \ddagger They have been carefnlly studied with the methylene-bhe method by Retzins. ${ }^{*}$ The main difference between them and the lacinian corpusele lies in the fact that the genital corpuscle has fewer lamelle in its comective-tissne sheath (ride Figs. $256-258)$. These bodies have been studied in human beings and in the mouse by Dogiel || (Figs. ?59-2(i1).

[^175]
 mertive tisule of the puly of the tinger. (Alter . . Ruthini, Areh. ital. de biol., 'Turin, t. xxi, 1s91. pl. iii, Figs. 14, 15, and lis.)

Fig. 25
f. Anat. u. Physiol., Ieipz., Bhl. vii, 1890, Taf. xiv, Figs. 1 and 2.)

Fig. 257.-Genital nerve corpuscles from the mucons membrane of the glans penis of the rabbit. Methylene-blue staining. (After G. Retzins, Internat. Monatssehr. f. Anat. u. Plyysiol., Leipz., Bd. vii, 1890, Taf. xv, Fig. 15.)

FIG. 258.- (ross section of genital nerve corpuscle from the elitoris of the rabhit. Fixation with Flomming's fluid: hematoxylin staining. (Alter G. Retzius linternat. Monatssehr. f. Anat. u. Physiol., Leipz., Bd. vii, Lseo, Taf. xv, Fig. 16.)

A peenliar form of nerve ending hitherto undescribed has been found by Dogiel * in the comnective tissue of the cornea. He has made out in this situation peenliar free terminals in the form of definite end-platelets. He deseribes nerve bramehes which run more or less parallel to the margin of the cornma, sometimes in radial directions toward the centre of this structure. At their extremities are found flat quadrangular or

Fha. 259.- Genital merve corpuscles from haman ghans penis. n, sheath of at wervestem; b, sheath of corpusele with moclei of that cells in same; r, axis
 (After A. S. Dogiel, Arelı. f. mikr. Anat., Bomm, Brl. xli, 1s!13, Taf. xxxii, Figs. 2 and 3.)
irregularly rounded end-platelets, some of which show coneavities and indentations, with meven and jagged borders (Fig. $2(i)$). The size of the individual platelets varies much. They never contain muclei, and they sometimes resemble closely the corneal cells, but in reality have no sonnection with the latter. It is not impossible, as Kallins points ont, that the older ideas of Kühne, Wialdeyer, Izquierdo, and others, concerning the im-

* Dogiel, A. S. Die Nerven der Cornen des Menschen. Amat. Anz., dena, Bd. v (1890), S. 483-494.-1)ie Nervenendkörperchen (Endkolben, W. Kranse) in der Cornea und Conjunctiva bulbi des Menschen. Areh. f. mikr. Anat., Bonn, Bd. xxxvii (1891), S. 60?-619.
mediate connection between nerves and the protoplasm of the connective-tissue cells of the cornea, may this be explained.

Fig. 2b0.- (ienital nerve corpuscles of different forms from the hmman phans penis. After A.s. Dogiel, Arelof. mikr. Anat., Bomn, Bd. xli, 18:3, 'Taf. xxxii, Figs. 6 and 7 , and Taf, xxxiii, lig. 8.) a, medulated nerve fibres.

The enormons number of nerve fibres which have been described in the connective tissue of the mucous membrane of

Fla. 261.-Fud bull from glans pernis of a white mouse. "t, modnllated nerve fibres, the nxis cylinders of which end in a nerveskein. From the skein a fine nerve tibre ean be secen going out to conl among the epithelial cells. (After A. S. Dogiel, Arelı. f. mikr, Anit., Bonn!. 13al. xli, 1893, Taf. xxxiii, Fig. 18.) the stomach and intestine by Erik Müller, Berkley, Ramón y Cajal, and others, are thought by many to be mainly motor for the innerration of smooth muscle, and secretory for the innervation of glands. There can be but little doubt, however, that among these are many fibres which carry centripetal impulses. They have been studied with the method of Golgi, and also with the method of Ehrlich.

The nerve endings in the meninges of the brain in animals have been investigated recently by D'Abundo * and Jaeques, \dagger who find that both the spinal and cerebral dura mater is rich in nerves, particularly in nonmedullated fibres. Witl the methy-lene-blue method free end-arborizations and pencil-like nerve endings are to be made out inside the bundles of connective tissuc. Aequisto and Pusateri \ddagger have since studied the endings in the human cerebral dura mater, and describe and figure, in addition to vaso-motor filaments, endings which are probably those of centripetally con lueting nerves. They suggest the hypothesis that variations in the pressure of the cerebrospinal fluid may by means of these lead to reflex vaso-motor phenomena. If this idea be found later to correspond with the facts, the nerve endings of the dura mater must subserve physiological functions of no mean significance.

[^176]

 the tomen phate whieh betongs to the mateles of the batek of the mabit. From the upper part al the plate there rome there merve buthes which gite

The sensory nerve endings in tendons since they were deseribed by Golgi* in 1878 have been the object of many researches. According to Golgi, they form true terminal plaques, from two to thirty of these plaques making up a silugle corpusele (Fig. 2ib3). He found them in voluntary museles located at the junction of the musele fibres with the tendon. The whole corpuscle, as deseribed by Golgi, is fusiform, and is situated on the surface of the ten ' n, being formed of gramular substance, and possessing an envelope of several hyaline concentric layers, in which are imbedded a certain number of muclei. The nerve fibres on entering the corpuscle lose their neurilemma, but at first retain their myelin sheaths, dividing into two or three medullated fibres, each of which then gives rise to a true end-atborization of naked nerve fibrils. Each corpuscle receives at least one nerve fibre, though usually at least four or five pass to it.

Very extensive studies of the endings of nerves in tendons have been made since by Ciaccio. \dagger He has examined the tendons in several classes of vertebrates as well as in haman beings, and finds similar relations in all (Figs. 264-267). The nerves entering the tendons divide, according to Ciaccio, into several branches, the individual fibres romning in between the tendon bundles. On their way they lose their myelin sheaths, and the connective-tissue sheaths fuse with the connective tissue of the tendon bundles. As the fibres pass on, they divide repeatedly, and finally end free with small varicose bulgings, surrounding the tendon bundles, in the form of spirals or rings. The structures described by many as nuclei in these endings, Ciaccio feels sure, are nothing more than peculiar nodosities of

[^177]

Fig. 2th. -Tendinous expansion of one of the museles of man. (After G. V. (Caceio, Arch, ital, de binl., t, xis, 1891, pl. i. Fig. 1.) Latrge terminal nerve phatue composed of several portions, equal in number to the bramehes into which the fibre which gives rise to the phague divides. Lerewit's gold methend. afop, fusifurm thickening of the perimen ral shenth; ifg, fusiform thickening of the medullated norve tibre inside; ifos, slight simusity of fusiform thiokening of nerve tibre; $g p$, perimemal sheath; ifmu, bramehing of the axis eylinder.

the nerve fibres. He denies definite enompsulation with connective tissue, such as Golgi described, und further lays stress on the relation of the endings to the tendons proper, independent

Fif. 367.-Temdinons ixpansion of one of the motor museles of the eye of an ox. (Alter (i. V. ('iaceio, Areh. ital. de biol., t. xiv, 1801, pl. iv, Fig. 27. 1 'Two museralo-tendinoms ongans of (iongi mited with one anothor and compressed toward the lower extremity by band of conneretive tissime. Wach corpusele of Golgi has its own ultimate merve plaque. These two plagues show both the bushlike and ringlike endings.
of the maseles, a view arain in contratiction to that of (bolgi. 'I'he entings always lie inside the tendons, apparently never on

 745, Figs, 3, 4, i.)
their sheaths. Ciaceio ealls them plaques tomdiumess arer termimaisom buissomuense des mefis ì spirals on it ammeme. As
we have said, these endings of Golgi, Ciatcio, and Mazzoni are probably closely allied to Pacinian corpuseles.

As to the endings of nerves inside the interstitial conneetive tissue of organs we have data concerning the heart, lungs, and certain parts of the eye. The sensory nerve endings in the endecardimm of the auricles and rentricles, as well as the anrieulo-ventrienlar valves and the chorda tendinear of aphibians and mammals, have been studied by smimow,* who has also attempted to makn out the alterations in the endings after section of the neves to which they correspond (Fig. Wis). The nerve endings in the lang have been examined by Berkley,

Fla. 2ti9.-Nerve endings in the lang of the frog: large skein with emtering

Cuccati, \uparrow and smirnow \ddagger (Fig. 269). The endings here in the comective tissue are not unlike those found in that of the heart.

Melkich \# has studied the free endings of sensory merves in the comnective tissue in the iris of hirds by Ehrlich's method and finds two varieties of nerve endings in this region: On the pusterior surface of the iris a plexus of very fine nerve fibres which, after manifold division and interlacing, end free, never forming anastomoses. The other variety, situated near the

[^178]muscle fibres of the iris, arises from the division of medullated nerve fibres which form free nerve endings after repeated dendritic subdivisions (Fig. 270). Se does not think that they are motor fibres, but believes that they represent the sensory element in accommolation, the first variety, according to his

Fits. 270 .-Scensory nerve modings in the ciliary body of birds. (After Melkich,
 tion from the ciliary body uear the elastie ring ; a, mednllated nerve fibre; B, tembritike merve endings in eomertion with the medullated nerve fibre which arises directly trom a nerve trank. At a are seen some grambir phates.
idea, carrying impulses concerned in pain sensations. Very similar nerve endings have been described in the comective tissme of the ciliary body in the eye of the cat and of man by Agababow * (Fig. : 271).

Turning now to the sensory nerve endings in voluntary, cardiae, and involuntary museles, the former may first be described. In addition to Pacinian corpuseles and end bulbs, not unlike those deseribed by K ennse in the conjunetiva, which oceur in consilerable numbers in the muscles (Kerschner) and the organi museuli-tendinei of Golgi, above referred to, the prineipal ending believed to be sensory in voluntary musele is the so-called muscle spindle (Kühne, Forster) \dagger or nenro-mus-

[^179]cular bundle (Roth). These orgams were first seen in the frog in 1861 by Weissmam, who thought them to be definite orgams inside the musele. They have since been studied and deseribed by a whole series of observers in many different animals as well as in human beings. Kühne, who introduced the term " musele spindle," deseribed a special form of the structure in reptiles. Many anthorities, among whom may be mentioned Eisenlohr, Babinski, and Farakel, have studied them in diseased musele and thought them to be pathological phenomena. In 1878 Ranvier expressed the view that they represented an especial physiological mechamism standing in a definite relation to the nervous system, a riew which has been aceepted by Roth, Kerschner,* Christomanos and Strossuer, Laura Forster, and in fact by the majority of recent investigators.

Fita, a71.-Nurve endings in ailiary body demonstrated by the methom of (bolgi.
 fignme shows a delicate nerve stem which breaks up into single nerve fibres,
 ill the tissise.

The musele spindles consist of long, narrow, hollow structures, containing within them siriped muselo fibres, blood vessels, connective tissue, and medullated nerve fibres. The openings at the ends are partially elosed by bundes of musele fibres,

* Kersehmer. L. Voher Mnskelspindeln. Verhandl. It. amut. Gesellsch..
 srstem im willkürlichnn Maskel. Amat. Anz.. Jemn, Bi, iii (1888). S. 126-132.- Driatag zur Kenntuise dus sensiblen Eudorgame. Amat. Anz., Jom,

 kungen za Hevrn Dr. Angelo Rumbi's Aufalz: Considemzioni eritiche sui reeenti studi dell nppuruto nervoso nei fusi museolari. Anal. Anz., Jena, Bd. ix (1803-94), s. 5033-562.
vessels, nerves, and connective tissue. The whole mass of structures inclosed in a common sheath is considerably wider
 in the middle than at the end. lymph interspaces exist thronghout the spindle, while through the rentre of it rums a lymph space of considerable size. The sheath corresponds in character to the perineurium of a peripheral nerve. At the ends of the spindle it is thin, but it increases in thickness toward the widened parts. 'The mumber of striped musele fibres present in a single opindle varies in its different parts They are usually fewer at the enis, where the filbes are also finer, more numerous in the middle of the spindle, where the individual fibres are also thicker. The fibres are beantifully striated, as one can easily make out in longitudinal sections. The nerve fibres, like the musele fibres, vary in numbers at different levels in the spindle. Forster * found eleven musele fibres and six nerve fibres in in cross section of one spindle, and in that of another ten musele fibres and eight nerve fibres.

The nerves enter the spindle in different parts of its comrse, penc-

Fiti. 27x. Musconlar spindle trom myoxus avellanarins. (Atter S. 'Trinehese, Dem. Arcad. d. se d. Ist. di Bologma, 4. s., t. x, 1889-90, lig. 7.$)$, sheath of the musele spindle: es, axis eylimder penetrating the intermuchear protoplasin; cs^{\prime}. another axis eylinder entering the internuelear protoplasm; er, large axis cylinder: al, af, axis cylinder pemetrating the interomberar protoplasm; rh, axis cevlinder in varions depths of the intermelear protoplisin ; 1 , nuelei of the museles.

[^180](iRol
atin are o
mily
dle.
one a tween space
ating the sheath after rumning a short distance in it. They are oftea accompmied by blood vessels, which are present not only in the capsule, but also inside the neuromuscular bundle. The musele and nerve fibres inside are separated from one another by strands of white fibrous connective tissue. Between the sheath and its contents is situated a peripheral lymph space through which a few single fibres rmo.

The number of spindles in a single masele is very large; as many as thirteen have been counted in one eross section through the genioglossus musele. They may be situated in the various parts of the musele itself, in the external perimysimm, partly in the tendon and partly in the muscle, or they may be wholly surrounded by tendon. The bodies are especially easy to demonstrate in eases of museular atrophy in human beings, and they have already been studied and deseribed in a large number of sueh eases.* Spiller \dagger has recently reviewed the bibliography of the subject, and his paper is accompanied by an excellent illustration. As to the sensory nature of the spindles there can be no longer much doubt, for when the motor nerve fibres supplying the voluntary museles have undergone almost complete degeneration as a result of disease of the lower motor neurenes, the majority of the nerves in these structures may remain normal. Sherrington \ddagger proved by physiologieal experiment that the spindles are comeeted with the sensory roots of the nerves. While it is true that motor nerve terminals have been oceasionally fom in the muscle fibres inside these bodies, ${ }^{*}$ the majority of nerve endings which have been thins far demonstrated are of the sensory type. In 1889 Trinchese || gave a good illus-

[^181]tration of these structures (Fig. dre). Excellent demonstrations have been given by Ruthini.* He finds claborate sensory endings resulting from the manifold subdivision of the axi, eylinders of the nerve fibres inside the spindles. He distingnishes three varieties of these endings: termimuisoms it anwothri, where the nerves surround the mascle fibres in rings; terminuismes is spirules, where they go around them in a spiral fashion; and termimeisoms is flemrs, where they end upon them with complicated dendritic branchings (Figs. 2\%:3 and 284).

Fig. 273.- Middle third of a terminal phatue in the museld sindle of an adule
 $1:$) sp spirals: .1 , rings; F, dendritic bamehings. ('hloride-of-gotd preparation.

Huber, of Ann Arbor, has recently studied these structures with the methylene-bhe method, aml has succeeded in obtaining exquisite pietures of the nerve endings even to their ulti-

[^182]mate termination (Fig. こia). Thanks to his comrtest, l have had the opportmaty of examining his specimens, and have

 propatilion.
been murh smprised at the complexity of the endings. His results, together with plates and a very complete bibliography, have been embodied in a reeent paper by himself and Mra. De Witt.* The method of sihler \dagger is also of great service in demonstrating the muscle spindles. To suceed with the method some care has to be taken in teasing out the preparation. I have hat the erood fortume to see some of Sihlers preparations. and can spak in high terms of his methot. The eontrast between the large caline of the sumsory filnes groing to these struc-

[^183]tures and the moch smaller calibre of the ordinary motor nerve tibres of musele was very striking.

 Fig. 38.) Siy. \quad., sympathetic vasomobrer tibre.

The whole make-up of the muscle spindle or neuro-muscular bumble impresses one as a structure especially adapted as a sense organ to give information concerning rarions states of tension in the muscle. Contraction of the muscles in which they are situated must necessarily lead to alterations in the pressure of the lymph inside them, and I am inclined to agree with those observers who assign to them in important function in connection with muscular sense. The subject is, however, still obscure, and the last word eoncerning them has by no means yet been said. Renewed attention is being paid to them just now by the neuro-pathologists. I need only refer to the careful stadies of Batten ${ }^{*}$ and Griunbam. \dagger

The nerve endings in the heart muscle have been studied by Berkley, \ddagger Dogiel and Thmarzew," Lleymans and Demoor, \|

[^184]Jueques,* und Huber and De Witt. Whether or not the complex feltwork of fibres which these investigators find throughnut the organ have to do with the mediation of centripetal impulses or whether they are concerned wholly with the carrying of motor impulses to the heart muscle fibres has not yet been determined. The fibres in Fig. 2 ati are believed by Huber and De Witt to be motor. \dagger Similar doubt exists coneerning the nature of nerve endings in smooth muscle ; enormons numbers of fine fibrils have been fomd in smooth muscle membranes, and their exact relation to the fibres hats in some cases been carefully studied ; but how many of these are motor and how many of them are sensory, remains for further investigation to determine. Certain it is that the walls of tubes which have smooth muscle coats are well supplied with sensory nerves. To make

Fic. : lluber and Lydia De Witt, J. (omp. Nemol., (itanville, vol, via, 189s, pl. xiv.)
this clear I have only to mention the intestine, the bile duct, the ureter, the bladder, the uterus, and the blood-vessels. Intestinal colic, biliary and renal colic, are aceompanied by a vari-

[^185]ety of pain，eharartaristide Bomgh to be designated as＂smooth musche pain．＂＇The latur pains comerted with cont metions af the uterus are of a similar matme：the surere pain believed by

 Lamber＂stext－home．）
many to be associated with spasimolice contraction of the biont－ vessels（angina，migrane）may also be thomght of here．but whether the pain in these cose＇s is the result of stmmation of

semsory neme fibres heqiming in the musele itself or in the com－ nective－tisune structures is not known．In the trachea inter－
museular nerve-endings have been demonstrated by Arnstein (Fig. :ain). The nerve endings described in comection with the smooth musele of the iris mod ciliary hody are doubtless concerned in the meehanism of pupillary contraction and of accommodation reaction. In Fig. Ris the motor condings on the smooth muscle-cells of the intestine are illnstrated. The findings of Retzilus on the vasa afferentia in the glomeruli of the kidney are shown in lig. Dis. The nerve endings on the lymph vessels have recently heen described by Dogiel.*

Recently nerve endings have been found in certain pathological new growths. Thus Reisner \dagger has found nerves in condylomata, and Vollmer \ddagger hat also stadied nerve emtings in these growths. Yomng," in his study of nerves in tumors, has suecessifully demonstrated nerve fibres, both medullated and nonmedullated, in a comsiderable number of these growths. He condudes that, in

Fu. 27t.-Nerve emding on the vas atherens in the cortex of the kidney. (Aftur (i. K"tzius, Biol. V'u! ${ }^{-1}$ sulfh.. Starklalm.) m. corpuscula revis (Ma\}pimi) ; ra, vasiallicrems; n, nerve. sarconata at least, nerves are just as much an integral part of the tumor as are the sarcomatons blood-vessels. The nerves were not followed, however, to their ultimate teminations, and it must for the present remain toubtful whether they represent purely vaso-motor filaments or whether among them detinite sensory tibres also exist.

* Dogiel, A. S. Dir Nepen der Lẹmphefiowe. Arch. f. mikr. Anat.,

\& Remer, A. Lebme das Vorkmmen von Nerven in spitzen Condylomen.

\ddagger Vollmer. E. Norven mul Nepronemdigungen in spitzen Condylomen. Areh. f. Wermat. u. Syph. Wien u. Laip\%, Ba, xax (1895), S. 363-3so.
\# (1) cit. ('f. ('hap. W゙, p. 3\%.

C'IIAPTER NXXII.

©ENTRAE AXONES OF PERIPIERAL EENTRIPETAL NEDRONES,

Fibres of dorsal roots-Origin, course, brumehing, mul formination-Iateral and medial bumble of dorsul root-lintry zont-Methols of somping intramorlallary contimmions of dorsal root flbres-Myolinization of fibres-Studies of Fleehsig, von Bechterew, Kiurnsin, and TrembskiVentral, middle, and dorsal root zones-F'lechsig's oval centre-Relalions of myelinization sub-systems to function-'repinskis four futal sub-systems-ritulies of taber.

Centrel A Lomes of Periphered Centripetel Nemromes.- Having considered the medullated peripheral sensory nerve fibres (distal processes of the spinal ganglionic ceels) it is next in orler to consider the proximal processes of those cells, those which enter the central nervous system. The central prolongations of the spinal ganglion eells (which together make up in mammals almost the entire mass of fibres in the torsal roots of the spinal nerves) approach the spinal cord and plunge into it at the dorsal lateral suleus where the neurilemma of the individual fibres is lost. The fibres on entering the corl divide by Y-shaped division into an ascending and lescending branch. Of these the former rons a shorter or longer distance before terminating in the gray matter of the cord or in the ease of some fibres in the medulla oblongata or cerebellom ; the descending limb terminates in the gray matter of the corl after romning downward for a very short distance. On their way these axones before and after division give off numerous collaterals which also rum into the gray matter to end free among the cells and dendrites of cells situated there. In this way the mechanism is supplied by means of which the impulses arriving ly way of the peripheral sensory neurones ean be transferred to motor neurones in the cord or to centripetal neurones of a higher order which in tnrn conduct impulses to higher regions of the nervous system. The regions of termination of the tibres are, it will be seen, of 422
very considerable extent, and inclute not only those of the termimations of the main fibres* but also those of the terminations of the collaterals. Althongh an enormons amomet of work has been done coneerning the more exact distribation of the dorsal root fibres on their entrance into the cord and the course followed by their intrumedullary prolongations, we are cenen now in the dark concerning many points. This fact will be evident from the following summary review of some of the principal contributions in this field.

It was early ohserved that each dorsal root of a spinal nerve on entering the cord consists of two more or less differentiated bundles, a lateral bondle consisting in the main of fine fibres, and a medial, much larger bundle, consisting of coarser fibres. Lissaner \dagger showed that the fine root fibres beeome separated almost immediately after entrance into the corl from the coarser fibres and pass over directly into the perpendicular column which he termed the " marginal zone" (Rumlzom"), now nsually spoken of as Lissaner's fasciculus. The fibres of this fasciculus are easily recognizable by their small size. The rest of the fibres pass medialward, a large number of them ruming in for a long distance close to the dorso-medial surface of the dorsal horn of the gray matter. This zone is easily recognizable in well-stamed Weigert preparations of the abult cord ent at suitable levels, and has been called by Strimpell and West phat the " root zone" or "root entrance zone." It will be spoken of here simply as the entr!y zone of the dorsal roots. The further course of the fibres was for a long time disputed. Before the period of the newer investigations many authorities believed that the dorsal root fibres furned directly into the gray matter of the cord and were directly continuons either with cells there or with a network or feltwork. It is now known that relatively few dorsal root fibres enter the gray matter to terminate exactly at the level of their entrame. On the contrary, the majority of them run up and down in the white matter after bifurcation for some distance before entering the gray substance. When they do enter the gray matter they are not fomad to be the processes of cells situated there, but end by exhansting themselves by multiphe sul)-

[^186]division, coming into relation with other neurones only by contilet or concrescence.

A knowledge of the intramedullary course of these medullated axomes of the dorsal root fibres has been gained, aside from the simple topographieal stmlies of serial sections, in the main through (1) the application of embryological methods; (: 2) the study of secondary degenerations, (") experimentally produced, and (b) the result of disease in hmman beings; and (3) the ehrome-silver method of (iolgi.

His's researehes showed that the dorsal fascienli of the spinal cord are embryologically the resnlt of ingrowth of the central processes of spinal ganglion cells. A comparison of the number of fibres in the dorsal fasciculi with the total number of those of the dorsal roots prevented many from believing, however, that the dorsal fasciculi were made up in the main of llowal root fibres. At this time the Y-shatped livision of the dorsal ront fibres inside the spinal cord hat not been discovered.

The myelinization of the varions portions of the dorsal fasciculi has heen carefully studied hy Flechsig,* yon Bechterew, \uparrow and Kirrusin. \ddagger

Flechsig's studies early convinced him that the fibres of the dorsal roots and of the dorsal funienli do not become medullated all at once. On the contrary, definite gromps receive their myelin at very different periods. A study of homam foetuses at different perions of development has established the segnence of mednallation in the different bumiles, and Fleehsig's description of the dorsal finnienli is hased upon the results of this developmental analysis, and largely upon preparations made ly Trepinski in his laboratory. Each dorsal fimiculus, exclusive of Golls hmotle (fascicults gracilis), (emb, aceording to Flechsig, be divided into the following areas:
(1) The ventral root zone (rordere IWhartzome).

[^187]$(:)$ The middle root zone (mittlere If wadzont).
(3) The dorsal root zone (kiutrre I'urzelzome).
(4) The median zone (mediane Žune der Hinterastränge).
'The median zones of the two sides make mp in the lumhar region what is often spoken of as the ocules centrum of Flechsig. The middle root zone develops in two parts (first and second systems of the middle root zone), as does also the dorsal root zone (medial and lateral portions of the dorsal root zone). The position of these varions zones is elearly shown in the accomproning diagroms (Fig. 280). The sequence of medullation is as follows:
(1) The ventral root zone (Fig. 280, I.r.z.).
(?) The first system of the middle root zone (M.r.z.) and the median zone.
(:3) Coll's fasciculi, second system of middle root zone and the medial portion of the dorsal root zone (I.r.z.).
(4) Las of all toward the end of fatal life the lateral portion of the dorsal root zone (Lissamer's marginal zone) (Fig. $\because 80, F: L$.$) .$

Of these the only bundle to inerease steadily in cross section as one passes u, the cord is (ioll's fascieulus. All other regions show in the thomacic cord, especially in its midale parts, a comsidcrably less area in cross seetion than they do in the enlargements.

As to the origin and termination of the nerve fibres contained in the different fuetal zones, Flechsig, when he wrote in 18:0, believed that the ventral root zone (I.r.z.) received very many, probably all, of its fibres direet from the dorsal roots of the spinal nerves: they went, he thought, into the dorsal hom after a lomger or shorter course. In front of the dorsal hom they ramishen, although he could mot make out their exact termanation. He felt sure that they have nothing to do with the muclens dorsalis.

The fibres of the first system of the middle root zone he bedieved come minely from the dorsal roots and end atiter a short comse ly turning into the muclens dorsalis (Clarkii). As to the origin and termination of the fibres in the median zone he could make no statement. Concerning the fibres of conlls fisedemlus, Flechsig conld give 1 ireet proot from the study of the for ths that they have their a in the dorsal roons. Ite could tirst certainly demonstrate them ans eompact bundles of fibmes in the region of the tenth thomacie nerw. Further down
A.

Middle of intumescentia corvinalis: A, memberment of arsal fimiontias reveaked by stmly of myelinization ; \mathfrak{j}, lesion in a cate of ineipient tabes.

Pars thomealis: C, sertion through mid-thoracid region ilhotating mureliniza tion memberment: D, section throngh uper thoracie region showing hesion in a case of fucipient tabes.

Intumeserentia lombalis: E memberment ats revaled by stady of myolinization : F, howinn in at rise of incipiont tases.
 lmmbar regioms of the spinal coorl. Thase ont the left side illustrate the embryohgical memberment, those on the right side the fesioms in cises of

the fibres appeared to be distributel over thr whole cross section of the middle root zone.*

The fibres of the medial portion of the dorsal root zone (I.r.z.) all come, according to Flechsig, from the dorsal roots. They leave the dorsal funiculi by three paths: (a) The fibres most medially laid run in part in the raphe forward to the dorsal commissure and then bend out toward the dorsal horn. These fibres have nothing to do with Goll's fascieulus. (b) The latcral fibres leave the dorsal fasciculi from the side, crossing the entering dorsal roots at an acnte angle, and arrive at the dorsal horns, whence they run forward. (c) The main mass of fibres runs through the middle root zone to enter the dorsal horns midway between the dorsal commissure and the periphery of the corl. These bundles rum forward as far as the periphery of the ventral horns, becoming lost between the fibres of the rentral roots and the large ganglion cells of the ventral horns.

The fibres of the lateral portion of the dorsal root zone (Lissaner's marginal zone) rum, just as Lissaner deseribed them, to the fine plexus of fibrils in front of the dorsal commissure and to the lateral limiting layer of the gray substance. All fibres of this zone, Flechsig believes, have their origin in the dorsal roots. \dagger

This memberment of the dorsal funiruli does not correspond to that based upon secondary dageneration after lesion of dorsal roots (ride infru), and apparently the former, unlike the latter, does not correspond to the different length of the fibres. It is Flechsig's opinion that his areas correspond to specific sense qualities (musele-sense, sense of touch, of pain and the like), the different systems having different peripheral connections. While the areas outlined by degeneration secomary to lesion of dorsial roots differ much from those which result from

[^188]rmbronougical analysis，Fleehsig asserts that in locomotor ataxia the lesions in the dorsal funiculi confurm to the hater

 HI＇．Aursal rout zonte（medial purtion）：sw，dorsal root zonle（mont median

and not to the former．The degenerations in this disease so well worked out hy Chareot and lierret，Westphal，Strimpedl， and others，Fhechsig asserts on closer analysis show a very dis－ tinct parallelism with the areas ontlined from the study of the fortus．In begiming tabes he fimls that the disease is nemrly ahwas localized to the areas designated hy him as the＂middle root zone＂and the＂median zone＂（these receive their myelin simultancously，ride smprof），all other regions remaining at first intact．A comparisom of the two sides of Fig．sso，and of Fig．2si（fural markings）with Fig．os：（deqeneration in talbes）illustrates strikingly the parallelism．Ifter tabes has patsise the incipient stage the zones which develop later may be attacked in variahle order，althongh，as a rule，the first to sulfer is the lateral portion of the dorsal root zone，tugether with （ioll＇s fascienli，and later the medial portion of the dorsal rout zone．The rentral root zone appears to be，without exception， the list to be attacked．

Vim Benterew asreses in the main with the views of Fhelsig．
 a lateral，and a dorsal zone，but dowe not ohject in the insertion ly
cord．t
the wt
\％（1） lip of

GROLPMNG ANO CHANNAN TOGETHER OF NEURONES, 429

 there is some stress lad unom ditleremes in the time of medulation of certain portions of the fasciculns grandis of Goll. The first portion of this faseiculus to become modnllated, aceording to him, is that immediately adjaernt to the median septom, an area whieh comesponds to Flechsig's modieue Zome. In addition to this, he distingrishes two other systems of tibere in the faseienlats gracilis: (1) An areat, g gow taking in the major part of the fascientus. amd situated just extermal to the median zone : and ((3) a marow stripe gl. lyime between the area, ! $/$ m, and the taseienlas cmatas. The latter, von Bechterew states is the premion of the domal fasciculi of the spinal

 Fig. \%.)
cord, the last to become medullated. Hu asserts withemplasis that the whole of Goll's fascictulus (with the execption of the "median zone." whid he thinks has its origin in domsal root theres is mate the of medulated axomes, which are proersese of colls sithated in
the dorsal homs of the graty matter of the spinal cord.* This view is in direct contradietion to the results of the studies of secondary degemerations, and of those in which Golgi's method has been employed wide infrot). Von Bechterew further thinks that while a part of the fibres of Goll's bundle run all the way to the medulla oblongata without interruption, another pretion is interrupted and contimat upwarl only by the interealation of other cellular elements sithated in the domsal horms.

Karusin, who has recently gone over this whole subject with the same method, having a large amount of material at his disposal, states cmphatically that sharp limitations of single regioms cam not be made out. He holds that while it is true that the first well-developed tibres appear in the entry zone (Einstrahlungszour of von Lemhossék, or coutrale Wiurzrlzome of Flechsig), at later periods the process of myelinization oceurs diflusely in all directions. He comeludes that only three well-separated regions in the donsal faseiculi are to be made out: (1) The fasciculus comeatus, ((2) $^{(1)}$ the fascienlus gracilis, and (3) Lissaner's marginal zone. He insists that a eomectivetissue sheath separates the faseiculus graeilis from the fasciculus coneatus, at finding which he looks upon as a strong argment in favor of the anatomical individuality of the two faseiculi.t

As has been stated, Fleehsig's publication in 1890 was hased upon the study of sections mate in his laboratory by Trepinski. Trepinski himself, now at Zoppot, has continued the studies, begun in Flechsig's laboratory, during the past eight years, and in 18.98 hats written a i_{i} aper, ${ }_{+}$in which he comes to conclusionss which differ matcrially from those of Flechsig. Leaving out of consideration the fibres of Lissamer's marginal zone, he states that, corresponding to the period of myelinization, there are four distinet fibre systems to be diflerontiated from one another in the domsal funienli of the human eord. These fibre systems, the areas of distribution of

* As is pointed ont further on, all the recent evidence is in exact opposition to this view of von Bechterew. The tibres of the fascioulus gracilis ((iolli) aphear to be ahost wholly intramehallary continuations of dorsal root fibres. while those in the medim zone almost all represent medullated names of nemones, the cell borlies of which wre situated withon the gray matter of the spinal cord itself.
+ There is no getting around the fact, however, that the long fibres of the dorsal roots of the lower pinal neres which enter the fascieulus cmeatus are continned upward in the fascienlus gracilis. Secondary degenerations prove this bevond the shadow of a dombt.
\ddagger Trepinski. Die embryonalen Fasersystem in den Hinterstriugen und ihre Degeneration thei der Tabes dorsalis. Arch. f. Psychiat. und Nervenkr., Berl., Bd. axx (1897), S. 54-81.

GROI

whie plete and Whol Lissal myel ski's: Pstel mine dorsial

In medu The d
which frequently overlap, attain to a ripe condition-that is, complete the process of medulation in fortuses $24 \mathrm{~cm} .$, , $8 \mathrm{~cm} .$, , 3 em., and te cm. long, respectively. In fortuses of the last length the whole dorsal fumienlus is fully medullated, althongh the tibres of Lissaner's margimal zome are then only begiming to receive their myelin sheaths. A number of the figures aceompanying Trepinskix inticle are here reproduced (Figs. ©s:3-291).

While it is true that the areas of distribution of the four fibresystems overlap one another to a certain extent, these can be determined by an analysis of the varying appearances presented in the dorsal fumienli at different stages of tevelopment.

In the dorsal funiculus of futuses $\mathbf{2 4} \mathrm{cm}$. long there are many medullated libres present, but not everywhere in the cross seetion. The dorsal part of the dersal funiculus (Fig. ‥s3, a) in the lumbar

reciom is devoid of myelin ; the more ventral parts (Fig. ex.3, (c) are magularly studded with nerve fibres, but even here the individual libres are separated from one another by considerable distances. [n the thoneme and eervical cord there are no medulated fibres in the densal region of the dersal funiculus (Fig. est, b), nor are there any in the middle region of each dorsal funiculus (Fig. est, a); the only medullated fibres present are situated in a narrew stripe near the median septum (Fig. 28t, d), and in a somewhat broader stripe along the dorsal hom (Fig. est, of). In the most rentral region of the funculus these medullated areas go over into one another. The nom-medullated regions are continuons with one another at the dorsal periphery.

In fetuses es em. long the apparance of the dorsal fmiculi in all pegions is very difterent from the foregoing. In the lumbar cord, which has by this time grown to be considerably larger, not only is the dorsal portion, which before was non-medallated, now regulayly studted with medullated libnes (Fig. 285), but the ventral portions have many more medullated tibres in them than before, the individual medullited fibres now standing much closer together
 the intermpares betwern tha older ones. It is obvions, therefore that this serond serstem of libres oechpios the whole cross seetion of the lambar portion of the dorsal funiculi, althourh Trepinaki staten that the domsal region of the domal finiculas contains nome of the fibres of the low sistem than does the ventral region, for in a
 lated is almost as thickly studded with medulated fibores as is tha vential resion.
 a marked increase of mednllated tibres when the fortus hats attained a lengeth of 2 se em. The regions of the dorsal fimicoli, which in the fortus et am, long were momednllated, are now wempod bey mednlated fibres, and, further even those magions whid showed medullated tibere before now contain a greater number of them, for the individua! tibres stand closer together. The distribution of the new tibres in the eross seetion is, howeror, not arall alld the cross section shows light areats and dark areas in Weigert prepanations, which are quite diflement in distribution from these chanateremiac of the previons period of development.

In the thomacie comb the lightest part of the cross seetion at thin stage is the middle region of the domsal fomicnlas (Fige sati, h: it has the form ot atripe which groes from the dorsal periphery almont
 the thomacie region thas beeomes divided into a middle light part

(Fig. Skti, b, a lateral dark part (Fig. 2xi. © (amd a medial dark part (Fig. :Nif, (1).

 wear the median septhen (Fig. sti, d, a reqion which, it will la
recal
The
1'urio
corre
there qion whol fibres mulle] 11:130 merli cienl wide to the Thare tibues in thi fanse id
recalled, contained some medulated fihers in the fortus 24 (oms. long. The dark stripe of Goll's faseiculas pasose orer at the most ventmat region of the thosal funienlus into the mednllated areat which conresponds to the faseienh comeatus. 'The second sistem of tibues, therefore, in the earvical regien is distributed wer the whole cross section, but the tibres of the system are mund more numerous in the narrow stripe oceupring the merlial portion of the fasciculas gracilis, and in the wide stripe corresponding to the fascienlas cmantus. There are relatively fow tiber of the system situated in the lateral portion of the fase ieulas gracilis.

It is thas seen that the seeond system of fibres (fiestus 28 (m. longe diflers from the first system of tibres (fuetis 24 cm. long) not only
 in the time of medullation, but also in the arrangement of bibres as seen in the cross section. The mistake must not be made of thinking that all the fibres seern to be meindlated in the fatus es em. long belong to the soerome system : 'Trepinski's meaning. I take it. is that to the secomel system belong only those filses which have received their myelin sheaths during the period of growth extending from the time when the furtus was et em. long to the time when the fortus is es cm. long.

The third system of fibres in the dorsal funiculi, mitely nonmedullated in the fortuses $2 s$ em. long. attains its full development in fertuses 35 em. long. In the fortus 2 sem . long the eross sertion of the dorsal funiculus in the lumbar region was evenly studded with medullated fibres. In the fortus 35 cm . long there is seen to be one area which in Weigert preparations takes a very dark stain, while other parts are stained of a light color (Fig. ess). This is owing to the fact that in the dark region there has been a grat increase in the number of medullated tibnes. The new fibres those of Trepinskis thibd system) oceupy on the eross section stained by Weigert's method the greater part of the lumbar dorsal funienlas (Fig. Dsis, é). The area in whieh they are distrihuted is limited dorsally be a curved line, behind which the donsal funienhes looks light (Fig. ©sis. b). Near the modian spotum tow there is a light stripe (Fig. 关s, (t), which is contimons with the donsal light region; 99
besides, the most ventral part of the hmbur dorsal fumbenlus (Fir. Pss. f) looks light in eomparison with the dark area, but here the lemareation is mot sharp.

In the thenacic eorl of a fortus 35 em. long there is a membermont into light and dark arens, but this memberment, as 'ropinskis drawmes show, is quite diferent from that deseribed in the fotus est em. long (ef. Fig. est with Fig. esti), In the fortus ise em. lomer only the more ventral part of the latemal pertion of the domsal funiculus (Fig. 2s: c) is clark; the domsal portion of the latersal region (Fig. Es: , b) aprats new to be light, although in the fatas 2s em. loug it was just as dark as the ventab portion of this lateral region. Further, at this previod (fietus 3.5 cm . long) the lateral dark region is considerably broader than it was at the marler periond

F14. 2s9, (35 (.m.)

(futus © midthe light stripe of the earlier devolopmental stare. The medial
 stripe situated near the median septam, a stripe which at the ventral end of the domal funienlas geos over without limitation into the lateral dark area. The hatter does not, howerer, reati the dorsal periphery (Wing to the narrew limits of the medial dark area there is a much more extensive light area (Fig. Ex. of in the thomeic cord of fortuses 35 cm. leng than existed in fortuses es em. loug.
 tibes is distributed in the ereater part of the fisceiculas chmeathe
 showing no increase in fibres: this dorsal portion is now of a light
 more vental portions of the fase ienhas cumatus. The tibres of the
thind system are distributed also in the medial pertion of the fascieulus gracilis (Fig. sim, 1), as is shown by an increase of the medullated fibses situated there at this developmontal stage. This region of (ioll's fase ioulus is bow closely studded with mednlated fibers, and looks darker than the more latem portions of this fasciculas
 lus in the levtus 35 cm . long with that of the fotus 3 s em. long. it will be seron that the regrion at the later period, thongh eonsiderably larger, shows fibres standing mach more closely together than in the carlior stage The medial dark portion of the faseienlas grarilis is continnons with the dirk pertion of the faseiculus cmeatus at the ventral region of the dorsal funienlas.

The fomth system of fibres, aceorling to Theppinski, has completed its development by the time the fatus has attained a length of f° erm., for at this period, he states, all purts of the eross seretion of the dossal fundentine evenly stadded with medullated nerve tibres. The change in the appearane of the cross section is evidently due to an increase of medullated libres, which have come in to orrupy the light regions between the fiberes ahealy present in them at earhem developmontal stages. It is ancordingly easy to dofine the areas of distribution of the fibres of the fonth system. Thas in the lumbar eord the nerve dibres of this system one eupy the dorsal por-

 of the dorsal funienti. [n the cervieal comed they lio in the donsal part of the fascienlas cmeatus (Fig. e90, b) and the lateral part of
 show, acompling to Trepinski, no alteration in the appeammere of the donsal fimionla, so that he assmes that all the fibre serstems are present in fortuses 40 (omm. lonig.

It this preriod Trepinski combl make out mednllated tibres for the tirst time in the region of Lissauers marginal zone, ant area which in mality belongs to the lateral fumienlas of the eord. Even in fortuses ti com, long the myelin development in this region does not appere to be complete for the mednalated tiberes stand murh finther apart then than in the adnat individnal.

Trepinski asserts, therefore, that, leaving out Lissamer's zone, it is casy to distinguish in the donsal fmiculi fone cmbryonie systems of nerve fibres. The arral of distribution in the eross section corresomding to each of these fibre systems can. he thinks, be established with exactness, in spite of the faet that the fibres of different systems mix up with one amother, for rath of the sestems when it appens leads to an alteration in the appeanane and momberment of the dopsal funiculi. Each of tha four strotems lies, in the uper regions of the spinal cord, partly in the faseienlas eumentus. part? in the

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporation
fascieulas gracilis, and since medulation is completed in the fasciculus gracilis at the same period as in the fasciculus cumeatus, it is obvions that from the staly of development alone Golls fascienh are composed of the same embryonic fibre systems as are Burdach: fascieuli.

Trepinski, like Flechsig, believes that the distribution of the embryonic fibre systems atfords the clew to the varying pictures met with in tabetic degeneration. In his article he gives a mombrar of examples of cases of tabes illustrating his view. And it must be granted that if his drawings are objective, the parallelism betwern the tabetic degeneration and the stages of myelinization is remarkably striking. No student of tabes, at any rate, can afford to overlook these studies of Trepinski. It would lead us too far if we attempted to compare the tindings in cases of tabes with the finding, in the embryonic spinal cord. One exmmple from Trepinski's aticle

Fig. 291.
may, however, be given. In a case of begiming lumbar tabes Trepinski found, in addition to a degeneration of Lissaucres zone and of certain parts of the gray matter of the cord, a moderate degeneration in the middle region of the dorsal fmiculi (Fig. e9n, c). The dorsal parts of these funiculi (Fig. e91, b) look heathy, as do the medial regions comected with the dorsal parts and lying elose to the median septum (Fig. 291. a) and a ventral field i:a the dorsal fumiouli (Fig. 391, f). This distribution of degenerated fibres in the dorsal funienti leads to a memberment, reminting one immediately of that met with in the spinal cord of a foetus 35 cm . long (ef. Fig. פws). with this difference, that the portions which were of a light colnr in the furtal dorsal funiculus appear dark in the diseased cord, and rice rerste. It will be remembered that in the fuetal dorsal funiculas this special appearance was bronght about by the ripening of
the thind system of fibres. Trepinski believes that the memberment in the diseased cord in this ease must, therefore, be due to the degreneration and disappearance of that system of fibres which ealled forth the memberment in the spinal cord of the fotus. He concludes, therefore, that in this ease of tabes the degeneration has atfected the third embryonie tibre system alone. That in the derenerated area many healthy nerve fibres remain is easily explained, for in among the fibres of the third system there exist iibres of the first and second system. If the fibres of the third system alone be diseased, then the fibres of the other system should "main over as healthy libres in the degenerated region. He cites a series of interesting cases which he has met with, fond illustrates them by drawings of the seetions, but for these the reader must eonsult the original article.

CIIAPTER XAXII.

CENTRAL AXONES OF PERIPILEAL CENTRIPETAL NETRONES. (' 'mutimuti)

Studios of secondary degenerations-Dixperimental investigations-Lasions of single dorsal roots in human beings-Studies of cases of tamsverso lesion of the spimal cord-libres comrtes, fibres lomgues et fibres moyphenes of P. Marie-Aseending degencrations in dorsal funienli-Deseending degenerations-The comma of schultz-Fibres endoyiones of 1'. Marie-Triangle médian of Gombanlt et Philipne-Flechsig's owal centre-Descending septo-marginal tract of Bruce and Muir-Deseending limbs of dorsal root fibres-Axones of spinal cord cells entering dorsal funienli-Wxeentrie position of long tibres-Aseending embogenous fibres in dorsal funicoli-Anmic nerosis following ligature of ablominal aorta-Fasciculns dorsalis proprins-'Terminals of dorsad root fibres as studied by Murchi's method.

TuE methods of studying secondary degeneration applied to the dorsal fascienli have supplied us with a large nmmber of facts of the highest degree of importance. In animats, if one or more dorsal roots be cut between the spinal ganglia and the spinal cord, the intramednlary continmations of these fibres undergo secondary degeneration, and can be studied later by Weigert's method or, better still in some eases, by the methorl of Marehi. In this way it is possible to determine the exact position in all parts of the spinal cord of the intramedulary eontinnations of any desired dorsal root. Withont reviewing in detail all the individnal researehes made in this field, the results in general may be thus stated: After section of the dorsal root of a spinal nerve between the ganglion and the eord, both the lateral and medial bundle of fibres (seen just after entrance) modergo complete degeneration and can be easily stadied. Immediately above the level of entrance of the nerve root concerned there is degeneration in the entry zone. If the lesion be situated low down in the spinal corl, an examination of transverse sections made at different levels up the cori shows two things: (1) A 438
progressive diminution in the mumber of degenerated fibres as the cord is ascended; (\because) a gradual change in the position orconied by the segenerated fibres. The first observation proves that the fibres of a dorsal root which aseend in the cord stop at different levels; the second proves that fibres, which low down in the cord are sitnated near the gray matter in the entry zone, ligher up come to occupy a position more dorsal and medial, gradually approaching (ioll's fasciculus, and in the case of the satral roots, for example, forming a part of it. Sll the evidence from the study of secondary degenerations goes to prove that the fibres of the fasciculus gracilis in the cervical region represent the long intramedullary continuations of dorsal root fibres which in the sacral and hambar region were among the fibes of the fasciculus cuneatus. Lach dorsal root as it enters the spinal rord pushes the fibres of Burdach's fasciculus in a dorsal and medial direction, so that the long ascending fibres are necessarily successively more and more displaced toward the dorsal median suleus. These relations are beantifully illustrated by the experimental work of Singer,* Kahler, \dagger 'Tooth, \ddagger Singer and Minzer," and others.

Singer and Minzer cut the dorsal roots of the twenty-sisth, twenty-seventh, and twenty-eighth spinal norves on one side, aud also the dorsal roots of the twentieth, twenty-first, and twenty-second nerves of the same side. After the animal had lived long enough for degeneration to hecome marked, it was killed and the degenerations were studied in sections made at different levels (Fig. age). A section made just above the entrance of the twenty-sixth root showed degenerated fibres in the white matter immediately adjacent to the dorso-medial

[^189]surface of the dorsal horn. It a little higher level below the entrance of the twenty-second dorsal root the diseased fibres were more separated from the dorsal horn and ocenpied a triangnlar area not so very far from the dorsal modian sulens (rig. $\because 9 \cdot, 11$. These fibres were evidently those which represented continnation of the twenty-sixth, twenty-serench, and twentyeighth neare roots which had been shoved dorsalward and medialward on areonnt of the entranee in the interval of fibres from the twenty-fifth, twenty-fourth, and twenty-third spinal

Fig. 292.-Scendary degenerations in the spinal cord after exprimental see tion of dorsal ronts. (Atur Singer amd Dünzer, tron S. van (ichnehten.

 nerves; ef tansverse saetion themgh the eord at the lavel of the eightemeh
 verse sedion of the eord at the lewel of the intmenerntia cervionlis.
roots (not cut in the experiment). Seetions mate throngh the cord at any level between the entrance of the twentieth and twenty-second dorsal root showed the degenerated fibres of the twenty-sixth, twenty-seventh, and twenty-eighth still nearer the medial septum, and in addition new degenerated fibres of the twenty-second and twenty-first roots just dorso-medial to the doral horn of gray matter (Fig. 290, b). Higher up, at the level of the eighteenth spinal root, the degenerated fibres be-
longing to the dorsal roots which had been cut highest up were somewhat separated from the dorsal horns and hat come to wempy the middle portion of the dorsal funiculns, although they were still separated by undegenerated fibres from the hundle of degenerated fibres near the melian septum, the long contimations of the twenty-sisth, twenty-seventh, and twentyeighth roots (Fig. $292, c$). The lateral bundle deereased progressively in size in the sections taken from parts of the cord higher up. Sections made through the thoracie cord showed an ever-lecreasiag number of tibres in both bundles, which now began gradually to apipoach one another (Fig. obs, (1). In the ecrical cord the two hindles actually fused, and Singer and Manzer conh see only a small triangular zone of degenerated fibress sitnated near the median septum (Fig. P! ? , e). Such an experiment would seem to be proof positive of the successive termination of the ascending continuations of dorsal root fibres at different levels of the cord and of the gradnal and progressive displatement dorsalward and medialward of the longest fibres. Experiments of this type may be repeated at will, and they have heen alrealy mate by momerons investigators, among then Oldi and Rossi,* lerdez, \dagger Mott, ${ }_{\ddagger}$ Tuoth ind Morsley, Barbateci," and Langley and Anderson.\|

The stuly of secombary degenerations has led many to the riew that in the fascienlus gracilis only the long intramedullary continuations of the sacral, or at most the hombar dorsal roots are contaned (Sehiefferdecker, Singer). On the other hamb,

* Gddi, R., e l'. Rossi. Sulle dagenerazioni eonsecutive al taglio delle madiei posteriori ; contributo allo stulio delle vie sensitive nel midollo spimale. Monitore zool. ital. Siena, vol. i (1890), pp, nis-is; also Translation iuto French in . Ireh. ital. de biol.. Turin, t. xiii (1890), Pl! 382-386.
+ Berde\%. Reeherehes expirimentales sur le trajet des fibres centripntes dans la moelle épiniere. Reve méd. de la Suisse rom., Genere, t . xii (1892), pl . $300-316$.
\ddagger Mott, F. W. Experimental Iuguiry Contral Nervous System of the Monkey. Brain, Lond., vol. xviii (1895), III. 1-20.
\# Barbacei, O. Die secmuliren, systematischen, anfsteigendea Degeneratimen des Rückenmarks. Centrallh, f. allg, Path, n. path. Anat., Jena. Bla, ii (1891), s. 353-36.5.
|| Langley, J. N.. and II. K. Anderson. Notes on Demeneration resulting from section of Nerve lionts and Injury to the Spinal Cord. I'roe. of Plysiol. Soe., Lond. (1894), p. xii.

Bastian, Schultze,* Hofrichter, \dagger Barbace,\ddagger and Bruns believe that the dorsal roots of the thomeie nerves are also comcerned in the formation of the faseiculas gracilis, Barbacei even going so far as to assert that the dorsal roots throughout the whole extent of the spinal cord help, to build Cioll's fascienli.

We turn with interest to the examination of the relatively small number of eases in human beings in which there have been lesions (tumor, trama) of one or more dorsal roots entirely or almost entirely without direct injury to the corl itself. Let us see in how far the results of study in such cases are in aecordance with the findings in experimental amimals. Such cases have been reported by Lange, Pfeiffer,\# (iombanlt, $\|$ Sottas,* Mayer, δ Nageotte, \downarrow Souques, \downarrow Marguliés, , $_{\text {and }}$ Dejerine and Thomas.** These cases, though relatively few in

[^190]number, have been very carefully studied, in two instances at least, ly Marehi's method.* The finlings thas far in human cases prove that in man, as in experimental amimals, the root fibres on entrance ocenpy a tolerably wide zone in the fasciculus coneatus, just dorsal to the gray mater of the dorsal horn, as this is the area which is fomm degenerated at the level of at diseased dorsal root. In sections made at higher levels in the cord there is, as in animals, a gradual diminution in the number of degenerated fibres met with as the cord is aseended, proving that many of the root fibres terminate not only shortly after entrance, but also in different segments of the cord as they are passed. Eac! dorsal root, however, contains some very long fibres which aseend to high levels in the eord, ard some to the medulla oblongata. 'The long filbers, as the study of the degenerated areas has demonstrated, are very gradually dis$p^{\text {baced }}$ from the region of the dorsal horn as the corl is ascended, owing to the entrance of new dorsal roots at each segment. Is distinet a lamellation, however, corresponding to single roots, as would appear from Singer and Münzer's experiments to exist in the monkey, is not met with in the human cord; at any rate, in the midthoracie region there is in the faseiculus gracilis an intimate admixture of the long fibres of the lumbar and sacral roots (C. Meyer), and in the mideervieal region the degenerated area corresponding to the sixth thoracic root (Margulies' case) is practically identical with that for the third thomeie root (Nageotte's mase) and with that for the first and second thoracic roots (l'feiffer's cases). Still, speaking generally, it is true that in the heman cervicel romd in its upper part the portion of the faseiculus gracilis nearest the median septum represents the continuations of fibres in the sacral roots, the lateral portion of the fascieulus gracilis corresponds to the upper sacral, lumbar and, possibly, lower thoracie roots; the portion of the faseiculus emueatus aljacent to the fasciculus gracilis contains the fibres from the thoracie roots, especially the upper. while the lateral portion of the fasciculus comeatus consists mainly of fibres from the cervical roots. It is probable, how-

[^191]ever，that individual tibere may disobey this general haw of dis－ trihution．＊

The change in the form of the degenerated area，as well as the alteration in position，is wortly of mote．The case deseribet ly Margulies may he chosen as typiom of the class to which it helongs．If the acompanying fignres（Fig．e9：3）and their leg． emis be consulted，the relations at different levels above the site of lesion will be clearly understood．At the level of lesion （sisth thoracie root）the area corresponding to the entry zone shows degenerated fibres；the medial disphacement with arrange－ ment of the degenerated fihres in the form of an L is illustrated in the next section（level of first thomacie）；still higher（level of seventh eervical root）the degenerated fibres，of which there are bow many fewer，orempy a triangular area，and in the highest section figurel（level of thind ecrvical root）the typical narrow dorso－ventral band lying close to the paramedian septum is clearly visible．

Thus far in homan cases，eren in those studied by Marehi＇s method，continuations of dorsal root fibres into the opposite dorsal funiculus by way of the gray commissure have not been deseribed，thongh somu of those whu have experimented upon animals assert that in them such tibres exist（Oddi and Rossi，\dagger Loewenthal，\downarrow Paladino， and Pellizzi\｜\｜）．The very（areful Euglish investigator Mott，howerer，could not find such tibres in the monkey＇s cord．

Tho stulies of secomary degenerations foilowing trenserese lesion of the cord from compression，tramma，and other canses， while of the greatest service for the information they have afforded conceming the tracts in general which ascem amble－

[^192]
I)

 (rations following isohated lesion of the sixth thasacio spinat merve. (After
 1-4.) A, thanserse sedtion at the level of the sixth thomerie ront : B. thans-
 hevel of the seventh cerviral rowt: 16 , trathereme section at the lewe of entratere of the third erevieal romet
serem in the eord, maturally do not gieh as satisfartory datal far dedmetiens comerning the intramedullary vomse of the dorsal root tibres as do the "purer" anses in which the root fiburs alone are ingured. still they have supplied us with a mass of comblimatory eridenee of very high ralue, amd besides, in surh dases dertan features are met with which demand experial consideration.
 hor of eases have been stadied by many diferent investigators. The individat researedes which romerern the dersal fimionli beed not ber referved to hore, sime several exeellent reviews of the status of this sulijeet are extant - notally those of Towth, \ddagger Barhaeri, \ddagger Redlich, ${ }^{*}$ ron Lenhessék, $\|$ Sthmans," and Philippe:s

Latring out of comsideration here the degeneations in the rentral and lateral fanionli of the cord, the statement may be mate that after total tramserse lesion of the spimal cord the dorsal funiculi show, in addition to the ramges which result
 of schiefferlecker), eertain smombary degenemams within them, mainly abuer, but to a less extent alkn befou the level of the lexim.
'The seromatary degenemation in the dorsal funienli abere the beve of the lesion (asembing seemdary degeneration) varies aremding to the site of the injury. 'Thus, if it be situated in the lower parts of the spinal cord the dorsal funiculi will, just ather the lesion, be degenmated orer almost the whole of the transerse sedem of these fundenti. Foctions a little higher,

[^193]ffter the colrance of dorsal roots abore the lesion, show undegenemated fibres in the entry zome and lateral purtion of the fascicolus comatus. The zone of undegenmated tiberes inareses propressively in size in sections cut at higher and higher Levels, and the area orempied by the degencrated fibres as progressively dereases in size, and at the same time beromes more and more limited to the dorsomedial portions of the dorsal funicul: of the two sides. In the cervieal region the degonerated tibures are antirely or almost antirely contined to the faseicollus gracilis, and if the lesions hawe heod very low down (saty below the lewe in which the fiscienhas gracilis commeness) they will orolpy only that portion of the fascienlus gracilis ablanent to the dorsomedial septum. The degeneration in the fascionlus grawilis an be followed up to the burdous funionli gramilis in the medulta oblongata. Sueh findings prove the falsity of the dortrine of the absolute amatomieal individuality of the fascienlus grancilis.

If the lesion, on the wher hand, be sitmated in the mper themaries region, in addition to the degeneration of the fascipenlus gracilis, there may be fomm in suerimens studied by Marehis mothod, at a suitable prien (dath within three montha) after the lesion, degencorated tibres also in the medial and dorsal portions of the fascioulus comeatus, thongh the tibres are so few in mumber that in old casses stmbed by Werigert's methoul the fasdembes cmatas on earh side may aprar almost or entirely nomal. 'Prasverse lesion of the eord in the eervial region
 which, though diminishing in volnme, maty be followed up to the muelens fanionli cmeati of the modulla ohlongata.

Since each dorsal root, as is evident from the foregoing studies, contains tibere of very difliment hoghthe, we are justitied in speaking of "short" dorsal root tibres, "longe" dorsal root tibres, and dorsal root fibres of "intermediate" hength (filures
 The root tibres are distingushable not omly by their length, but also by their topographical relatioms in the dorsal funiculi, amd their terminal distribution in the gray matter of the cord and medullia.

The areats of secombary degeneration in the dorsal funiculi freme the level of a transerse lesion (desecuding secondary degeneration) also ary in form and extent aceording to the

Fif. 294. - Sr heme of the conse and termination of the fibres of the dorsal roots. The blark lisiform mass firmeremts. a spinal ganglion; the line erossing it represells the site of suetion of the alomal ront arising from it. This dorsal root is divisjble into three parts, wabla of which contains bitureating fibres: $+++\cdots$ short tibres" terminating in Aorsal hor'm ; " libus of medimm length " proming in laseidelus comeaths burdachi fo later plonge into gray matterat hase of dursal horm: -.... " ${ }^{\circ}$ lumg thbers" terminatimg in melens limiandi gracilis (ablli ($/$) ather having aserember within the liserioulus gracilis of the eord. The murlens: tunienli remeati Burlachi is indieated at (! It remives the terminal of those "long hibres" ame those "tibres of merliom lengeth" whicheome from the dorsal roots al the cerviend portion of the spinat eord. (After 1 . Jarie, Lecons sur les maladies de la moelle, l'atis, 1s! is, p. 45, líg. (48.)
level of the second segment. The figures show the degeneration in the dorsal fmiculi at the level of the fourth, fifth, and

Put. 295.-Secondary degemeration in the dorsal fumenti below a transwome

 bet., 1sas.) A. hevel of the formoth thomede segment: B, leved of the tifth
 the degemerating eomma of selmber is very evident. Fers, lasedelus cerebrospinalis lateralis, also dexemerated.
sixth thoracie segments. Below this level it could not be followed. The form and position of the commat in the fascienlus cuncatus parallel to the medial margin of the dorsal horn of 30
gray matter is well illustrated. The thicker head end of the comma is directed toward the gray matter, the thin tail toward the dorsal surface.

While some investigators (S'Chultze, Brous, v. Lenhossék, Flat tan, (iiese) have held that the comma corresponds to descending fibres from dorsal roots, others (Tooth, Marie, Daxemberger, (iomhant and Philippe, Dufour, Hoehe) think that the medullated axones to which this area corresponds represent fibres entirely independent of the dorsal roots, and that they have their cells of origin in the gray matter of the spinat cord itself. The comma woulh, according to the latter view, represent a longitudinal association tract comnceting different levels of the gay matter with one mother. On this supposition its fibres would be intrinsic to the cord itself (fibres. rudoyènes of P . Marie).* The comma appears to have never been observed below the level of the ninth thoracie segment wint the recent study of Hoche, t in which that observer, by means of Marehi's method in a case of compression at the level of the seventh thoracic segment, followed its fibres, though the commalike arrangement soon disappeared, as far as a point between the third and fourth lumbar segments. Ife was able, too, to determine by means of longitudinal sections what became of the filbes of the commi. They conld be followed as tine dotted fibrils passing obliquely into the gray substance. In this, however, they must quickly change their phane, for Hoche eould never follow a fibril to its exact termination. The long extent of these fibres in the dorsal funiculi (through at least eight segments of the spinal cord) is, as Hoche suggests, scarely in accord with the idea that they represent deseending branches of the dorsal roots. In the second ease of compression at the junction of the eervicai and thomacie cord, Hoche followed fibres from the comma as low as the level of the twelfth thoracie segment. Longitudinal sections in this case showed the degener-

[^194]ated fibres ruming into the muclens dorsalis (Fig. 296). Mamn* advances with much reserve the hypothesis that since it extends throughont the whole thoracic cord, diminishing progressively

FIG. 296, -Eongitudinal section in an almost sagittal direction at the level of the
 transperse lesions. (After A. Woche, Areh. f., ,hiat, ete., Berl., Bel. xxviai, 1sm, That. x, Fig. 8.) "1, ventral finiculus: the degencrated fibres befong in part to the deserending suldo-mateginal degene ration, int part to short paths of the fasciculi promii; b, substantia grisea eontaning the muchens dorsalis (larkii: ce, elorsal fimienhas. The degemerated bimes which lie on the right-hand side wear the periphery belong to the path which lowere down forms the oval tield of Fhechsig. The degenorated fibres going toward the smbitantiagrisea form, on at corresponding cross seetion, the welt-known commatshapert degememation fignve. The combat is som exhansted be! w this level, since all the fibres turn into the graty substance.
in volume as the cord is deseended, it may have to do with the immervation of the intercostal museles. As a matter of fact, at present it.s function is entirely unknown. In 189\%, at the Mascow Congress, Obersteiner expressed the opinion that the fibres of the comma are exogenons, and in 1898 Zappert, \dagger working in Obersteiner's laboratory, made a strong plea for the view that Schultze's comma, at least in part, is formed of descending limbs of dorsal root fibres of the upper parts of the spinal cord.

A set of fibres in the dorsal funionli other than those concerned in the formation of Schultze's comma, though they have been confused with the latter, degenerate downward after transverse lesion of the cord. Thans in one of the cases studied by

[^195]Barbacei, * in which there was compression at the level of the sixth and seventh thomeie roots, followed by death at the end of forty days, he found just below the lesion a rather diffuse degeneration in the dorsal fumiculi. Lower down he fomd in the transverse sections a stripe in the laterat part of the faseicuhus euncatus on each side, while much lower still the degeneration was limited to a marrow stripe along the dorsal mediam septum. Barbacei assumed (almost artinly erronenusly, as will immediately be clear) that the degeneration below along the septum depended upon the wandering ore" toward the median line of a certain momber of fibres from the comma higher up. The degremation here mentioned as sitnated near the median septum has also been observed by Redlich \dagger and by Davenherger. \ddagger The region concerned together with a peenliar triangular fiedd carefully described by Gombant and lhilippe ${ }^{\#}$ does net degenerate after injury to the dorsal roots, nor does it degenerate in an asemding direction after lesion of the gray substance below. Gombant and lhilippe conelnde from their studies that the fibres adjacent to the septim, the so-called
 sides corresponding to the centrum orole of Flechsig), form at the level of the lumbir enlargement and a little below this level an oval faseiculns; that lower sown in the comns medullaris the same fibres are grouned in the form of a

* Op.cit.

\dagger hedlich, E. Zur Verwendung der Marehi'sehen Fitirbung bei pathol,gischen Priiparaten des Nervensystems. C'entralbl. f. Nervenh. u. Psyehian, Coblenz u. Leipza, n. F', Bd. iii (1892), S. 111-15. See also, lie hinteren Wurzeln des Riatekemarkes und dic pathologisele anatomie der Tabes dorsallis. Jalhtr, f. Psychiat, Leijız. I. Wien, Bal wi (1892-93), S. 1-5s.
\ddagger Daxenherger. II. Ueler eincn Fall von chronischer Compression des Unammurks mit hesonderer Beriekssichtigung der secuadiren absteigenden Degenerationen. Deutsehe Ztschr. f. Nervenlı, Leipz., BII. iv (189:3-9: 9), S. 136-150).

* Gombault. A., et C. Philippe. Contribution al l'étude des lésions systématisées dans les cordons blane de la moelle épinière. Areh, de méd. expér. et damat. path., l'ar., t. vi (1894), pp, 365; 538.-Note relative à ha signifieation de la srlérose desecndante dans le cordon postérieur et aux relations qu'clle uffecte avec le centre ovale de Flechsig. Progrès mél., Par., 2 s.. t. xix

 (1895), pr. 161-166. Also Eng. Transl. in Mel. Week, Par, vol. iii (1890), гр. 4:33-1; 3 .
triangular area (triangle médian of Gombault and Philippe); and that they belong to the association systems of the dorsal funieuli, and do not represent continuations of dorsal root fibres.

Hoche's study* of two cases of compression (one at the level of the seventh thoracic, the other at the level of the eighth eervical segment) has gone far to render our knowledge of the fibres under consideration more satisfactory. By Marehi's methol he has been able to follow the degenerated fibres in both instances throughout the whole thoracie cord into the filum terminale. In his second case degenerated fibres of this group conld be followed through no less than twenty-three segments of the spinal cord. These cases are so important that they merit consideration in some detail.

In Itoche's first calse (compression at the level of the seventh thoracic segment) the degenerated fibres belonging to the system umer discussion, even just below the lesion, are sitnated on the dorsal periphery of the cord and are entirely distinct from those of the comma (Fig. 297). A little lower they approach the dorsal median septum (without, however, leaving the dorsal periphery), whieh they reach at the level of the eleventh thoracic segment. The fibres lower down begin to be arranged along the median septum, part of them remaining at the dorsal periphery, however, immediately adjacent to the septum until the level of the second humbar is rached. From the level of the third to that of the tifth lumbar they no longer reach the dorsal periphery. But from the level of the fifth lumbar downward as far as the filum terminale the degenerated fibres of the two sides form a small triangle, the narrow base of which corresponds to the dorsal periphery of the cord. Throughout, the comma and the fibres of this bundle are entirely separate and distinct. They have, Hoehe emphasizes, nothing to do with one another. It will be noticed that the degenerated fibres from the third to the fifth humbar segment correspond exactly to Fleehsig's centrum orole, amd that from the third to the

[^196]fifth sacral segment they correspond precisely to the friomgle médicun of Combanlt and Plilippe.

In Hoche's second ease (compression at the level of the eighth cervical) it was fomd that the fibres of the tail of the comma in the upper part of the thoracic cord are intermingled

FIG. 297.-Descending degeneration below at tanswerse lesion at the level of the seventh thomede segment. Method of Marehi. (After A. Hoche, Areh. f. Psyehiat., ete., Berl., Bil. xxviii, 1896, Taf. ix, Fig. 1.)

Fig. 208.-Deseroding degenerations below a lesion (compression) of the spinal cord at the level of the cishth cervical nerve. Method of Marehi. (After A. Heche, Areh. f. P'sychiat., rete., Berl., Bal. xxviii, 1896, Tif. x, Fig. 1.)
with the most ventral of the group of tibres, which lower down are contined to the dorsal periphery of the cord, the centrum orale of Flechsig, and the triangle médian of (iombanlt and Philippe (Fig. D!s) . Thongh there is a eertain degree of intermingling, the fibres uppear to represent entirely distinet bumdles, inasmach as longitudinal sections prove that the fibres of the comma passing more and more ventralward finally terminate by bending into the gray substanee. They do not wander hackward into the dorsal bundle.

The fibres of the dorsal humdle terminate at different levels, but apparently in greatest numbers in the lower hmbar region,

Fig. 299,-Sagital longitudinal seetion at the le vel of the fifth sueval nerve from a calse of compression of the rord at the lewe of (' , viii. Wheracmated fiberes stained by the medhom of Marehi. (After A. Howlee. Areh. f. Isyelint. It Norvenkr., Berl., Bd.
 tral collam, free from degencration at this level: b, sumstantia grisen, showing the echls of the central camall; no ganglion cells in this regiom; c, dumal funiculi close to the midde lime, some of the vessels mear the middle line heings anck. The fibres of the triangular tield (ine correspond ing (rows section) of this lewe are hending around in a slighty anved direction into the gray smbatance. The field som beemess exhansted. imasmuch as at the level of the fourth lumbar segment there are as many as 350 or 400 degenerated fibres (lesion at level of eighth eervical), whereas at the level of the thirl sacral the number has been redneed to 130 or 140 , at the level of the fifth sacral to 30 or 35 , while below this only isolated fibres were found (Hoche). The ending of these tibres in the gray substance is elearly shown in lig. 299.

A very valualble confirmation of the views above presented is to be found in a case of fracture of the twelfth thoracie vertebra, with complete erushing of the cord for a length of some 2 cm. in the lumbar region, studied by Bruce and Muir, of Edinburgh.* As the patient died about five weeks after the injury, the case was a very favorable one for studying the degeneration by the method of Marehi. Brace and Muir deseribe

[^197]and figure accurately the course and termination of the descending degenerated fibres with especial reference to the bundle here muler discnssion. They zuggest that the bundle be called the "descending septo-marginal tract."

Besides the two distinet and now fairly sharply defined descending tracts which have just been described, there is a third group of fibres in the dorsal funiculi which degenerate downward, which should not be passed over ummentioned. In Fig. 297 , at the level of the eighth thoracie segment (first segment below the lesion in Hoche's tirst case), is seen a small group of fibres in the form of a stripe along the dorsal septum in its ventral half. This does not reach the gray matter. It has already vanished in the section throngh the ninth thoracie segment. In Fig. 298 the same fibres, thongh in greater number, are seen in Hoche's second case at the level of the first thoracic segment, forming a field on each side of the median line converging toward the septum. They also have vanished at the level of the second thoracic segment (second segment below the lesion). These fibres evidently are extremely short (length of one or two segments).

Finally, immediately below a transverse lesion a few fibres degenerate diffusely over almost the whole of the transverse section, extending, however, rarely beyond one segment, an area usually spoken of as being within the limits of "traumatic degeneration."

The question now arises, What is the origin of these various deseending tracts? We know from studies made by Golgi's method (vide infru) that fibres of two sorts descend in the dorsal funiculi-(1) the descending li . bbs of bifureation of the fibres of the dorsal roots, and (2) the medullated axones of cells sitnated within the gray matter of the corl. What is the relation of each of these varieties of fibres to the different groups of descending fibres determined by the stady of secondary degenerations? It must be confessed that at present we do not know for certain. Dufour* supports the view of Tooth and Marie. Studying a case of compression of the lumbo-sacral nerve roots, he found in the lower part of the cord the two

[^198]bumalles (comma, septo-margimal bundle) entirely free from degeneration, and believes, therefore, that the fibres entering into the dorsal roots play no part in their formation. He believes that eath of these descending tracts represents an association bumdle (endogenous fibres) of varying appearance, according to the level at which one ohserves it, the one being represented ly the comma of sichultze in the upper part of the cord, by "cornu-commissural" fibres in the lumbar and npper sacral regions, and below the fourth sacral level hy fibres which he terms the faiscretu sutco-commissural pastériemr. The second bundle, consisting in the main of longer association fibres, is situated in the thoracic cord in the dorso-lateral zone of the dorsal fimiculas; at the level of the twelfth thoracic amd first lumbar segment it reaches the dorso-medial angle of each dorsal funiculus. At the level of the third lumbar root it corresponds to the Centrum ocale of Flechsig, while at the fifth sacral it becomes the triumgle médian of Gombant and Philippe. It is obvious that the consensus of opinion at present is in favor of the endogenous nature of the fibres of these two bualles.* The idea of Hoche that the shorter longitudinal association fibres tend to rom in the more ventral bundle, the longer in the dorsal bundle, is very attractive and entirely in aceord with the general law of the tendency of the longer filres to be situated near the periphery of the white matter. This law, though generally recognized, has been recently very definitely formulated by Flatan. \dagger

[^199]The descending limbs of the fibres of the dorsal roots must, however, ocenpy some position in the cord. Whether they are diffusely distributed over the fasciculas emneatus or are limited to the region of the entry-zone or to the third gronf of descending fibres (very short fibres) deseribed above, or timally are intermixed with the emogenons descending filres, we do not know. serial sections in the next human case of pure lesion of a dorsal root, coming to mutopsy at a period suitable for study by the method of Marchi, should settle this much-vexed question.

In view, the 1 , of the extreme prohability that deseending adogenons fibres really exist in that part of the corl, the question maturally arises, Are there not also aseending endogenous fibres in the dorsal funiculi? Snch a question cond searcely be answered by the stuly of degencrations following either lesion of the roots or compression of the cord. It could be more satisfactorily attacked by Golgi's method, and Ramón y Cajal* and v. Lenhossík \dagger have described the cell bodies of nemrones situated in the dorsal homs whose nxones enter the dorsal white fonienli. Vom Lemhosselk states that the axones may be mixed with asecoding and descending limbe of sensory filores. The number and course of the ascending endogenons axones in the corl of the rabbit can be exquisitely established by utilizing the experiment of Ehrlich and Brieger. \ddagger Manzer and Wiener" have demonstrated in the rabbit by this method (tying the abdominal aorta and thus causing anemic neerosis of the gray matter of the lumbar spinal cord) the conrse of the ascending endogenous fibres of lumbar origin (F゙ig. 300). While the results of such an animal experiment may not of course he divertly transferred to the human eorl, still it is in the highest degree suggestive and should put us on the alert for the isolation of these fibres in hman beings. It is of no ineonsiderable interest to note that the ascending bundle in the rabbit oceupies a region in the upper part of the cord

[^200]along the median septum, reminding one very much of the position taken ly the descemding bundle of emdogenons fibres in the lumbar cord of haman beings.*

Fig. 300.-('roses sectioms through the spinal cord of a mbint eleven days after compression of the abrta fire one homr. Demenerated tibres staineal by the method of Marchi. (Atter Minnar ame Wiomer, Arelf. f. exper. Pathol. II.
 tion through the lombar eord at the level of the twemy-fifth root: B, cross seetion throngh the lower thomerie cord at the here of the twemtieth rowt; C. crosis seetion throgh the ervieal cord at the lavel ot the sevent remb.

* The possibility of injury to the mutrition of axogenons fibres by the conditions of the experiment must here not be lost sight of.
'To conclude this part of our subject, therefore, it may toe stated that secondary degenerations prove that the dorsal finniculi are composed of two distinct sets of elements--(1) intramedulary contimmions of dorsal root fibres (eentral prohe ngaltions of spimal ganglion cells) and (?) medulated asones of neurones whase cell bodies are situated in the gray matter of the cord. The former (extrinsic or exngencons tibnes) make up the main bulk of these funiculi, the latter (intrinsice or endogenons fibres) partly descending, partly in anl probability ascending, make up a small pertion of certen fairly definitely defined regions. 'The position of the aseending limbs of the hifurcated exogenoms i res corresponding to dorsal roots of different levels have been tc c. abbly well estahlished; the topographical relations of the deseending limbs have not yet been satisfactorily made out. I venture to suggest that all of the fibres of the dorsal funiculi whose cells of origin are sitnated within the spinal cord itself be included under the term "fiscienlus dorsalis proprius." This would hring the dorsal fmiculi into agreement with the vental and lateral funiculi where the faseiculns ventratis proprins und the fascienlas lateralis proprius contain respectively both aseending and descending intersegmental fibres of varying length. The faseiculus dorsalis proprins wonld then he divisible into a venteal protion (fibres of the comma, ete.) and a dorsal portion (Bruce and Muir's dorsal septo-marginal bunde, Obersteiner's dorsomediales Sacralluïndel, filses of the Centrum oredr of Flechsig, of the median triangle of Gombanlt and Philippe, ete.).
'The fibres of the dorsal roots terminating at different levels in the cord and mednla have been followed into the gray matter ly means of Marehi's method, though their exact terminal relations can be made out only with the aid of the method of Golgi (ride iufru). The majority of filres of the faseiculns gracilis which reach the medulla oblongata turn in to end in the muclens funiculi gracilis, those of the fasciculas cumeatus to end in the nuclens fumienli emeati. Marehi's mothod, however, shows that in cases of compression of the cord not all the fibres of the dorsal fumiculi which reach the medulla end in the gray matter of the muclei graciles et comeati. A certain mumber of those which ascend in the fasciculas gracilis are contimued on as fibrae arcmatie externae dorsales into the corpus restiforme and terminate first in the cerebellum, while a cer-
 seen deenssating in the raphe (Fig. 301). Manty of the tihres
 of the merlallat (K. Schatfer, Hoche). In lig. 30: hegenerated

fibres coming from the area representing the ufpermest end of the nuclens fasedenti rumeati cimb been forming two hames, one luming dorsal, the other ventrit for the substantia gelatinosal and tractus spinalis nervi trigemini to contor the corpus restiforme through whieh the corehellmm is reached.*

[^201]The study of Weigert preparations in lomgitudinal and transvise seetion has show the existeme of malny bumdles of modullated merve filters extending hetwern the white matter of the dorsal finiouli and the gray matter of the cord. When thase were first observed they were believed to be medultated fibres having their origin in wolls of the cord, and passing from it into the dorsal white funiculi. But alter the st tudy of seecoulary degencrations which proved that the majority of the white fibres of the dorsal fasciculi are in reality continuations of dorsal root tibres, the belief herame rurrent that the medulated fibres mow malder consideration represent mathly the terminals of the densal root fibres themselves, roming in to cod in the gray matter of the spinal cord. Wixhanstive and exart deserip)tions of these medulated tibere were given ly varions investigaters who stadied Weigert specimens; the comerse of the bundles, their armugement in gromps, and the relative size of the individual bmadles have been known for a long time. Evem more hat been made ont. Gerlach, for example, had mentioned the entrance of bundles of tibres from the dorsal funiculi into the ventral homs, an observation which was contirmed by Waldeyer, Ferelsige, and others. Von Källiker deseribed the termination of many tibres from the dorsal funienti in the muclens dorsatis (('larke's gray colmma), and vom Lamhossík had called attention to the relation of the dorsal rood fibres to the dorsal white come missure. As we shall see, these deseriptions, so far as they were purely objeetive, still have their value. They contain, howerer,

 externar iorsales for ruter the corpus restiforme. The diredt termination of nxenes of dorsal rout fibres in the remelnellum of the same side somens to be better establisher for man than for amimats. The atmly uf expromentat
 Sherrington ami Nott fitiod to meval bateked tibes beyom the meldei in the medulla, (Sere Sherrington, ('. S. Sote on the Spinal Portion of some

 III. 1-20.)
where ohjectivity was negleeted, many grave errors which had to be corrected by means of studies made after the method of Golgi. In the light of the newer resnlts, however, these older deseriptions are by no means devoid of value. They can now be correctly interpreted, and indeed a combination of the results of studies by fiolgi's method with those belonging to the older technique alone pemit us to mmerstand satisfactorily the anatomienl relations of this portion of the spinal cord.

CIIAPTER XXXIV.

CENTRAL AXONES OF PERIPIERAL CENTRIPETAL NELRONES. (Coutinued.)

The dorsal root fibres as studied by Golgi's method-Y-shaped bifurentionAscending limbs and deseending limbs-Collaterals and terminals.

Nownere, perhans, in the nervous system has the application of Golgi's me been of greater service tham in the sturly of the spinal cora elf. Golgi's * early studies of the corl, which are of the rery highest importance, were soon followed by the epoch-making contributions of Ramon y Cajal, \dagger von Kölliker, \ddagger van Gehnchten," von Lenhossék, $\|$ and Retzins. ${ }^{\text {A }}$ An excellent epitome of the newer work on the spinal cord is to be fomud in the thorongh article of Peláez. 0

The chief results afforiled by the sturly of Golgi pietures of the intramedulary continnations of the dorsal root fibres may briefly be summed up as follows:
(1) The fact has been completely demonstrated, by way of direct observation, that the majority of the fibres of the dorsal funiculi represent contimations of dorsal root fibres-that is, of the central prolongations of spinal ganglion eells.

[^202](2) The dorsal root fibre has been shown to divide by Yshaped division soon after entrance into the cord into an aseconding and a descending limb.
(3) The limbs soon assume a perpendienlar direction, the deseending one terminating, after a short conrse, in the gray matter of the corl, the ascending limb ruming usaally for a mneh longer distance in the white matter before terminating in the gray matter of the contral system.
(4) In its course each fibre gives off a large number of collaterals, so that each central prolongation of the spinal ganglion cells comes into conduction relation with nemrones of the cord, not only in the region where its fibre terminates, but at many levels in the cord where its collaterals end.
(5) The majority of the mednlated fibres seen in Weigert specimens entering the gray matter from the dorsal funienli represent, not the terminals of the dorsal root fibres, but collaterals given off by the ascending and ileseending limbs during their course.
(6) The terminals and collaterals of the dorsal root fibres which enter the gray matter end there among or upon the cell hodies and dendrites of the neurones of the corl. They aro never commected otherwise tham secondarily with cells, or with dendrites, or with collaterals or side fibrils, or with the branches of axones of cell type II.*
(7) The nmmber of collaterals given off by different portions of the continnations of the dorsal root fibres varies, and as a result the different areas in the dorsal fumenli do not agree as regards their richness in collaterals.
(8) Greater preeision has been reached in determining the exact conduction relations of the varions groups of fibres in the dorsal faseienli to definite gromps of nemrones within the spinal cord. (Ventral horn cells; cells of nuelens dorsalis, ete.)

Golgi preparations show that on their entrance into the coril at the dorso-lateral sulcus the dorsal root fibres plunge in direetly medial to the marginal zone of Lissaner, where the axones are seen to be gromped into two more or less definite portions, a lateral group of delicate axones and a medial gromp of much eoarser axones. Very soon after entranee each fibre divides by means

[^203]of a forklike, Y-shaped division at an angle between 150° and 160° into two divisions, an ascending and a descending branel. White Golgi asserts that Y-shaped division is the exception, not the rule, Ramón y Cajal, von Källiker, von Lemhossík, and van (iehnchten have never met with fibres which do not bifurcate. A snceessful Golgi preparation studied in longitudinal section through the zone of entrance is very convincing (Fig. 303). The fine fibres of the lateral bundles mudergo Y-shaped

 fibre n, is seron dividing info two branehess, b, b, the aseroming and desermiing limbs of bifureation. From the stem fibre n, a collateral, e is sern to arise. A momber of eollaterals arising from the limbs of bitareation of wher fibres are illustated.
division nearly all at the same spot, but the coarse fibres of the medial bundle undergo division in very different parts of the entry-zone. In the haman embryo many of the fibres of the lateral portion divide first after entrance into the snbstantia gelatinosa, and these divisions in part pass baek ward ont of the substantia gelatinosa into the dorsal funiculi again; certainothers of the
divisions run mp and down perpendienlarly in the so-eatled longitminal bundle of the dorsal hom. As regards calibre, the ascending limbs and descenting limbs differ much. Von Lenhossók describes the ascending limb as being often coarse and thiek, while the descending limb may be very delicate, sometimes resembling a collateral brameh. Von Külliker, on the contrary, bot convince himself of any comstant difference in the $f \quad$ if the two limbs. Studies with the method of vital staining with methylene bue have tanght Ramón y Cajal that as a rule the two limbs are of equat thickness, but that in from ten to filteen per cent. of the fibres the size differs essentially, and then, as a rule, it is the descending limb that is the finer.

As regards the course of the ascending and desemding limbs after division, this differs atecording as a fibre belongs to the lateral bundle or to the medial bunde, and indeed varies for the fibres of the same bundle. The aseending limb of a lateral fibre runs upward in the marginal zone of Lissamer for a greater or less distance. All the fibres in Lissamer's fascienlus are, however, relatively short. Some of the fibres, as mentioned above, run upward in the white matter of the dorsal horn. The descending limb of the lateral fibre runs only a short distance below the point of bifureation before terminating in the gray matter.

The aseending limb of a fibre of the medial bundle runs upward in the comeate fascienlas of Burdach; it may be short, rumning in to terminate soon in the gray matter; or it may be longer, passing up many segments of the cord before terminating; again, it may, if it form one of the longest fibres, reach even the medulla oblongata to terminate in the muclei of the dorsal funiculi situated there (Fig. 30t); or it may even go past these unclei withont stopping to anter the cerebellum by way of the corpus restiforme. I nfortmately, thas far it lats been impossible to follow in seetions prepared by Golgi's method a given fibre for a distance of more than a feew segments of the cord, hut in riew of the combined results obtanell with Golgi's method and from secondary degeneration this statement must be hed to be eorreet.

The termination of the fibres has been studied very carefully. They bend in at rarions levels at right angles to enter the sub)stantia gelatinosia beyond which they divide into a number of

Fiti. 304.-Stheme indicating the course followed by the eentral axomes of the guripheral spinal eentripetal newrones in the dorsal fimiculi ol the spinat

 shorter and longer axomes of a singhe dorsal root; ont the right side the reditive positions of the lam! fibres from a whole series of dorsal routs (a, b, d, d, i) are indieated: only a single cell of ench ganglion is drawn.
fine branches which run ventralward, exhansting themselves by multiple division and embing, just as do the collaterals, in various regions of the gray mater of the cord. 'Those that rim as far as the mednlla before termimating end in the same way in the nuclens funionligracilis or molens funculi ementi. 'Those antering the cerebellam are believed to follow the gencral course of the fibres of the corpus restilome.
'The form, conrse, gronping, and terminal distribution of the collaterals (since their discovery in 1881 by (iolgi and the demonstration of their large mumber and great signitieance hy Ramón y (ajal) have been studied by nearly all investigators who have worked with (iolgi's method (lig. :30) . Is a result we have now very delinite information concerning these fine branclas. They are best studied in longitudinal seetions where they em be seen arising by little wedge-shaped processes, sometimes from the main axone of the spinal gamglion eell before its bifureation, but more oftern from the ascending and descending limbs which resnlt from the Y-shaped division. In the mednllated fibre the origin of the collateral appears to correspond always to a node of Ramvier. Not only do the fibres of the dorsal roots alwilys bifurate at a node of Ramvier, but the collaterals are always given off at such modes. It is interesting to note that the collaterals have rerently been demonstrated in the spinal cord by Ramon y Cajal * with the methylene-blne methorl.

The total mumber of collaterals given off from a single dorsal root fibre is manown, but may probably be very large. In calibre bach collateral is mach finer than the axome from which it has its origin maless we exrept the ultimate terminal branch of the axome which, as von Lemhossék suggests, may not improparly be looked upon as the latst collateral given off by an axome. 'The collateral rums, as a mile, almost at right angles to the fibre from which it arises, passing straight or in a curved direction ventralward into the gray matter. 'That the eytoproximal portion of the fibre possesses many more collaterals than the cytodistal portion, at least as far as the ascomding limbis concemen, is made very probable hy von Lenhossák's sturlies, since he has

[^204]never beconable to diseover collaterals roming off from the fibres constituting the fiscienlus gracilis.* 'This inequality of differ-

ent portions of the fibre as regards the origin of collaterals in all probability explains the varying rielness of the different re-

* In eont rast with von Lemhossék's statements may he mentioned the timdings of Schaffer (beitrag \%ur Ilistologie der seematiaren Degeneration: mingleich ein Beitrag zur Rhekemmarksmatomic. Areh. f. mikr. Amat., Bom,
 extembing from the bevel of the bower thoracie cord all the way up to the medulla in the fasciculas cmentus siving off al all leveds denenerated collaterals which radiated into the ventrat loorns. It is perlaps possible that he has mistaken terminals for collaterals.
gions of the dorsal fmienli in collaterals which is shown in both transverse and longitulinal sections. The gromping of the collaterals in animals shows some minor differeneres from those found in human specimens. Aceording to von Lentossék, whose

Fiat. 306, seheme of the structure of the spinal cord; nerve cells shown in the left hatif of the comd; collaterals shown in the right half of the cord. Atter

 sem arising from their axomes red eells are tantomerie menrones, the axomes going to the ventral and latemal fimionali. Among these are the erells in the muclens domstis and some rells in the sulstantia gelatimosi of labanda; eollaterals are coming oll from the axomes. Violet ecllsare commiswat eells or heteromerie netrones : one is seron sembing its axome into the gray sulbstanere of the of her side: the others seble their axomes into the white matler of the opposite side. The green erells send their axomes to the darsal funierali. In blue is sem represelited a tiongi cell of Type II, or dendraxome. In the right half of the cord the hate wedls represent the cell bowles of peripheral sensory neuromes situated in the panglion spinale: thar centmal prolomastions are shown entering the spinal coral as domal-root fibres, which bifureate and somd collaterals to fominate in varions parts of the sulstantial grisea. Thus the reflex coltaterals are sern going to the wentral horn: other collaterals enter the mateles dorsalis ; some pass thenght the domal eommisinte to the dorsal horn of the opposite sible. The red eollaterals eome from the white fibres in the ventral and hateral funiculi : the libae collaterals belong to the axomes of heteromerie memomes: the brown eollaterals and teminals represent tibres from the tasedoli erebompinales or pramidal tact. 1 ,

 R. e., radix ventralis; R. d., radix domalis; fi.s., fanglion sjinale.
careful studies of the cord have finmished us with a wealth of data coneerning them, the collaterals in haman being may be classilian as follows (lig. 306) :

C'ollutercels cemeling in Doessal Morms and Mihlle Purt of Sub-
 substance (not including those which me most modially placed und which are reflex collatemals). These give rise in the gray mather to that line complex of delicate medullated liberes known in the bibliography as "Waldeyer's mucleus of the dorsal homo." 'T"uey probably stand in comduction relation to the small nerve cells situated there.
(b) Collaterals arising from the fasciculns cmentus medial to Rolandos substance from the same area which gives rise to the retlex collaterals (ride infire), although muell less nomorous than these. They turn transversely latembard to terminate in end-mberizations among the eells of the centerl part of the dorssil horn.
(c) Collaterals from the most ventral part of the faseiconlas comeatus passing into the dorsal homs. These stain brown with (iolgi's methosl, quite differently from the other gromps of collaterals. They go past the nuelens dorsalis but enter into no relation with its cells.
(d) Collaterals which end in the substantia gelationsa of Rolando, few in number and extremely line. Origin mot clear.

Collaterals enting in Ventral Horns of Gray Molter.-This gromp includes the majowity of those inregular buadles seen in Weigert sertions passinge in from the cumate fasciculus of Burdich partly ventro-medial to the substance of Rolindo, piatly through the medial half of this substance, forming s-shaped eurves in the gray substance and passing ventralward directly into the ventral lorms (Abschniitruyssbiantel of Schwalbe, Boypenbianthl of Redlich). These haudles are largest in the intumescentiar of the cervical and lumbar regions. They arise always in the sickle-shaped tiedd of the fasciculus coneatus in the region before spoken of as the "entry zone." * The collaterals of this gromp are the largest in the hmann cord. They can be divided into two sub-grouns: (1) The main mass passing in fanlike convergence from the fasciculus cuncatus into the gray substance throngh the narrow space just ventro-medial to the medial angle of the substantia gelatimosit of Rolando, immediately behind the point of bending of the margin of the dorsal hom. They are joined here by the second grom, (2)

[^205]consisting of a mumber of bumbles less remsely manged whieh arise nearer the print of entrance of the dorsal roots inte the cord in the latemal region of the fasciconlas enmeatus donsal to Rohando's substance. They have to penctinte the substuntia grelatinosa before uniting with the main group ventral to this sulastance. All these collatembs (heflerkollaterahen of vom Källiker, Mamojo semsitioro-
 fashion, ame exhatast themseltes hy multiphe division in momg the cell bodies, dembrites, mad side fibrils of the lower motor membons. On their way forward they rive otl side twigs which eome in contate with cells of the domsal homs. The curions behasion of these eollaterals in the monse and mabit where the eontact relabions are mainly with the side blbils of ventral hon'm eells has been wefermed to abowe (Section V'). Bethes "fondamental experiment" (see pare $\because \pi=$ is also interesting in this commertion.
 (fi).-This very important gromp of collatemats has its origin exelasively in the midalle area of the faseionlas comeates, never from the fasciculus gracilis. The dark eodor of Clarke's muelens in Wrigert specimens is due to the presence in it of large mumbers of mednllated collaterals (and terminals) of densal boot tibres. The bumders of collaterals pass into the gray matter and reach the domal side of the nuclens, where they split into two divisions, one of which passes to atch side of the maclens, so that in cross sedions the melans peminds one of a berry on a stem or, if one will think of the structure in three dimensions, the long muclous donsalis can be thought of as a log lying in a trough. They form by their andiphe divisions baskets about the individual erells of the muclens, each fibre coming into contact with the bodies and dendrites of several orlls. In hegimbing tabes, specimens stained by Weigert's method often show that these fine feltworks of mednlated collaterals in the mublons dorsalis ane, along with Lissathers marginal \%ome, the first elements ${ }^{\circ}$ to dis:ippear.

C'olluterals going into the Dorsal Commissume of the Spinal Cord.-The donsal eommissure in most aminals is mate up mainly of sensory collaterals. Von Lemhossék states that in luman beings it is composed exclusively of such tibres. They have their origin in the most ventral part of the fascienlus cmmeatus on the domsal border of the gray commissure. They appear to end in the opposite dorsal hom, spreading out in a bushlike fashoon vental to the medial portion of Rolamdo's substanee, where they brak up into end arborizations.

No eollaterals from the dorsal root fibres on dorsal faseiculi have
brentmed though the vental commissmo.* Whatever dimet derossation owerms whe themuin of the peripheral sensory bemone is neromutal for, therefore, by the semsory collatemes forming the dorsal commissure. That such "ferphe bass of fibres can beoount
 posis. 'This semsury demussation most much rather be explained, therefore, by the nssimption of crossing of the uxomes of cemberpetal nemrones of the seromid order or of higher orders (ride infica).

As to the netual trimimels of the aromes of the dorsial root fibres, they behave just as do the collaterals running in to emd in the dilferent portions of the gray mater of the cord amd medulla. There is an innortant grap in our knowledge in one particuiar. We do not certainly know us yet whether or not the terminals of fibres of different length have spreifie, that is to say mon-homologrons, cmal stalions. Should the aflimative be proved, the importance of such a fact lor physiology und pathology is obvions.

We have now lescribed the spinal peripheral sensory neurones as fin as they are known in their entirety, including the boties of the spimal grmglion cells, their peripheral prolongation, the nerve cmaling on the surface of the borly and in the organs, and fimally the central prolongations of the spinal gan. ghion cells, their Y-shaped divisions, the comrse and temination of the ascending and deseronding limbs, as well as the origin and distrabation of the collaterals give.. off from their varions parts. When we think of individual neuromes of this group, for example, a nemrone correspouting to one of the sacral roots whose peripheral process collerts through a large number of divisions impressions from the lower extremity, perhaps even from the sole of the foot, while ils central prolongation, leaving the spinal gimglion amb entering the spinal cord in the lombar region, gives ofl collateral bramehes to the nerve cells in the cord of that region, while its main ascending division passes up throngh the whole length of the spimal corl to terminate in the nnelens fimionli gracilis of the mednlla oblongata, giving

[^206]off on its way very many wollaterals to very different samonts of the cord, we ser at a ghane the marrelloms distribution of
 else in the amimal kingelom a greater extemsion or a more manifold contane relationship, is met with in any redl. Biach spinal menrone may he though of with the spinal zathglion eill as its centre, having a fantike distribution of eath prowess, the peripheral lan collorting impressions, the contral fang giving oft impulses to the varimes sensory and stations with which the fimer, by means of its termimals amb collaterals, comes into comduction mation. 'Tha sum total of all the sinsory emb shations in the spinal cord and merlulta, as has been seen, includes pran tically all rexions of the gray matter.*

[^207]
CHAPTER XXXV.

Those permining to the nervis vagus and mervis phossipharyggens-'Those
 medins-'Those perlaning lo the merves trigeminus.
2. Contripetal Nencones of the First Order (oolleoting Bodily Impressions) connecter with the Rhembencephalon.
'Tome pripheral centriputal or semsary memones of the cerehral newres rollerting impressimes from the hand and meek and from some of the internal organs, agree ing general in their form amb relations with what has beron deseribed as chamederistio of the peripheral spinal eentripetal nemones. 'The cell bodies of these eerebral preriphral sensery memones are sitmated in the ganglia on the cerehtal nerves. 'Their prephateral prolongations pass to the surface of the homly and to the organs with which these meves are comeded, where they also cexhithit the varoms
 fore. 'The cent ral prolongations pass into the hain stem, and, as von Käliker showed, bifureate, afterward rmming ont into their terminals in the gray matter very murh as do the domsal row filues on antrance into the cond. Wre have here to eomsider the sensory fortions of the nervis vaghs, nervis glossopharyngens, nervis vestibuli, movis intermedins, and nervis trigromi-
 nenrones resemble rlosely the spinal sensory mememes of the Sirst ormer (Fig. :307).

In order to make clear the relatims of these nerves to their mulei terminales in the erontral nepoons system, there are introdued here a momber of seetions taken al varions levels from iwo mbroken sets of serial seetions of the limatu stiom of a new-
born babe (Figs. 308-3:4). The central prolongations of the unipolar ganglion cells of the mervus ruyus (ganglion jngulare and ganglion nodosmu), together with those of the ganglion colls of the rercers: glossophuryageus (ganglion superins and ganglion petrosimn), enter the medulla oblongata mixed with

Fig. 307.-The developing cerebral nerves: head of a human embryo 10 mm . long. (After W. His, from Kollmam's text-book.)
the motor fibres of these nerves, just making their exit, at the dorso-lateral sulens (sulens lateralis dorsalis). The sensory root fibres of these nerves do not all enter at one spot in a compact mass, but make a number of small hundles whieh pass into the central system at several points along the sulens (Figs. $3 \geqslant 0$ and 321). In the new-born child the linear extent of entrance measures abont .6 cm . (Fig. 325). The medullated fibres plunge throngh the traetus spinalis nervi trigemini and the adjacent substantia gelatinosa, going obliqnely in the dorso-medial direction
toward the muclei of reception (nuclens ale cinerea and nuclens tractus solitarii) of these nerves natar the floor of the fourth ventriele. There is no bifurcation of the sensory fibres immediately

Fig. 3us.-Transv i e seretion through medulla ohongata of newborn child at level of derenssatio lemmiscorm, (Series ii, section No. 50.) ('e., ramalis centratis; Decet, decussatio lemmiscorum; Fia.i., fibre arenate informe;

 ahas cerebellospimalis or direet cerehellar tract; fig., fiserabus gracilis

 I'y., pramis; T.s.u. I., itactus spinalis N. trigemini; s.g., substantia gelatinosi [Rolandi]. (Weigert-lal preparation by 1)r. John Hewetson.)

Fili. 309.-Transverse section of mednila ohbongata of newhorn chidd passing through the bucleusolivaris inferior: (seriesii, section No. wis.) (.r., corpas restiforme; F.a.c., fibme aremata inlerme lrom the anterion half of the

 Nono.o.m., muleus olivaris acerssorins medialis: Nu.o.i., muelens olivaris

 tractus solitarins: T.s.n.l:, tratus spinalis N. trigemini; V.q., Vomtriculus quartus. (Weigert-Pul prepatation by I)r. John Inewotson.)
after entrance, a fact which is not surprising when the histogenetic relations discussed in Section IV are recalled. The bifurca-
tion oereurs just where one wonld a priori expeet it to take phace, namely, when the fibres have ramed the neighborhoond of their gray nuclei of termination near the thoor of the ventricle. In reality, then, the amalogy with the behavior of the darsal rowt fibres of the spinal cord is nearer than if the bifureation ocemred imme-

diately after entramere 'The bifureation of the fibres has beren earefully studied by von Källiker,* Helal, \dagger and liamon y ('ijabl.t Aceording to fon Kiblliker, single fibres going to the molens

* op. cit. Bd, ii, S. $\because 40$.
\dagger Hedd, II. Die Emdigmgsweise der sensiblon Nopen in Gedian. Areh.

 Dentsehe Lehersel\%, v. Brester, Laip\%g (1896), s. 43.
(GROUPING ANG CHANING TOGETHER OF NEURONES. tSL

$$
\begin{aligned}
& \text { and cerebellum of newborn } \\
& \text { child. (Series ii. section No. } \\
& \mathbf{1 7 0 .)} \text { Br. Conj., Brachium con- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 170. Br. Conj., Brachium com- } \\
& \text { junctivun: Corpus, resti- }
\end{aligned}
$$

$$
\begin{aligned}
& \text { junctivani } \\
& \text { forme : F.,., hundie continuous } \\
& \text { with the funiculus lateralis of }
\end{aligned}
$$

with the funcelus lateratis of Bethrerew): Nin.o.i., nucleus divaris inferior: Nu.y., antero veatibuli medialis: P ? f., pedunculus flowenli: Py, pyramis: vestibuli: st.i.l... stratum interolivare lemnisci: Tr.fronn. $/$., the sinal cord: Tr.s.n.t.tractus
spinalis N . trige mini. Wiejgert-

宅

Frg. 31. - Transwerse section

(iROUl'LNG ANL CHAINENG 'TOGETIIER OF' NEURONES. 483

ala cimerem divida in the bmilles mear this matens, the mest of the fibres insids it. The tibres embring the traetus solitarins madergo division, bin not all at the same level.

Fia. 311. Tranverse sedion throngh isthmus rhomberephati of mewhorn

 lemmisens latumlis: L.m., lembisens mestiatis: N. II., derensstion mervorm

 dividing, one brameh passing to the melens alar dinever, the other descending in the tractus solitarius. These deseonding tibres give off collaterals (Fig. Bei) and terminals, to end in the anjacent gray matter (nuckens tractus solitarii). Ramón y (ajal denirs the avistence of typieal hifureations (at least for the majority of, fibres of $N . N$ and $N . N$), and thinks that

[^208]these tibres, disobrying the general law of dichotomy, are devoil of ascombing limbs, all the tibres turning down in the tructus soliturius. The tibres entering tho molens nla rinerear, which in the monse is continmons with the muclens tractus solitarii, he lowks unon as collaterals. 'The gemeral eomerse of the limethes solimmins is best stmdied in horizontal soctions of the halys s mednlat stamen by the Weigert-l'al method (Fig. 3ex). In its

 [

 in its lower part modial to the molens funculi gracilis. Its fibres
can be seen terminating at different levels in the mullens tractus solitarii which accompanies it. The gray matter of this meleas more or less suromids the tract, being better developed in some places than in others. At the eephalic extremity of the tractus solitarius a mass of gray matter con be seen passing heal ward for a distance of 1 or 2 mm . (. Vn.trasul., lig. $3 P 8$). From the gencral appearance of this mass, and the character of the colls within it,

F'ta. 316.-Transverse section throngh mesenceplaton oft mewhorn babers Level

it is probably to be regarded as an upward continuation of the nuclens tractus solitarii. The maintenanee of the general calibre of the tractus solitarius as it passes spinalward renders probabe the view that the majority of the stem fibres pass for a long distance spinalward, chiefly collaterals being given off in the course of the tract. In sections of the baby's medulla, at the spinal end of the tractus solitarins, there is to be made out on each side of the middle line a distinct mass of cells, evidently
comeeted with the tractus solitarins (Nucom., Fig. 308). It is not impossible that this corresponds to the genmfion commissu. rolle, which has been deseribed by Ramon y Cajal in the medulla of the monse. Aecording to him, in the monse this me cleas forms an oval mass of cells, which extends bridgelike just dorsal to the central camal (between the ependymal cells and the gray commissure of the cervical cord). In it terminate a large number of the fibres aceording to Ramón y Cajal, no less than three fourths of them) of the tractus solitarius of the opposite side, so that we have to do here with a true termimad dectsssutio tructus soliturii. The fibrils branch manifoldly, and are so numerous that the plexus formed by them is one of the most complicated met with inside the central nervous sys-

Fis. 317.-Transwerse section throngh mesencephaton, colliculi superiores of porjora quadrigemina and cerebral peduncle of newhom habe. Wrigert-Pal,

 midales in the busis pedunculi: F.r.oM). faseriolus retrotexns Mernerti;

 N. oxculomotorins: se.ell, p., stratum albun profinulum: si.!f.ce, stratum

 (Preparatiou ly Dr. John Hewetson.)
Ontside the central nerrous system the nervus vagus forms mumerous anastomoses with the sympathetic. The relations are well shown in lig. 330 .

Fis 318. - Ibrizontal sertion thromgh the romabenerphaton and mesencephaton
 ing, mories iii, ser bateralis towarde 8. Merosmatio colliculas ia, libres romaing fromb rexion of lemmeselas
 Fic.. tiase
 Fc.j hase

 (Ibriters) pars medialis: Nom.r.l.f. nuclens N. Nestibuli latembis (Deiters pars

Fic. 319.- Horizontal section through the rhombencephaton and mesemephatom of a newhorn batere. Weigert-Ralstaining. Level of vental part of nuelems

 rior maded of termimation of the westibular nerves of the two sides: Fu.cen.
 pertaining to the central vestibular parhs; Fins.l.med.. haseiculas longitudinalis medialis: Lemm.Int., lemmiserns lateralis; Mcilodi., medulla ob-
 Wecosating portion of the root of the N. trigeminus; N.JII, madix N .

 s.efll.p., stratum allum profundun: st.ur.e., stratum griselum centrate: Tr.sol., tractus solitirius. (Preparation by Dr, Johm Ifowrosom.)

Fig. 3:0.

Ftt. 320.--ILorizontal section through the rhombencephaton and mesencephalon of the mewhorn bathe. Weigert-lal staining. Level of the fiscocoulas longitudinalis medialis. (Seriess iii, section No. 80.) Iq.eer. aqueductus cerebri: Br.romj., hathitm eonjonetivmm ; C. Becht, commisimre hetwern Beehterew's mullei of the two sides; Coll.s., colliculns superior: C:r., corpus restifiome: F.a.i., tibre arenatie interme: F.chs, fisericulas corebellospinalis or direct
 lasciculus lomgitudinatis modialis; I.. ., lemnisens lateralis : L...., lemmisens superior: N.IT, N. tromberis; N.Mot.I, N. trigeminhs, pars motorims:
 pars prima; N:ITH(c), radix N. facialis, pars secmula: N.rest., N. vestibuli; S: $I X, X$, radices Nu. glossopharyngei' et vagi; Nu,f.cu,, nublens lunieuli cuncati; Nu.f.g., nuclens fimiculi gracilis: Nim.m.c.d, nuclens N. cowhlen domsalis : Nu.n.i', uncleus N. trigemini ; Nu.u.NII, umelens N. hypoglossi: Nu.t.s., muclens lateralis sumprior of Fherhsig; R.d.u. rest, madix desembens N. Vestibuli; St.g.e., stratum griselum centrale ; Sub.qfol. Rohme'i, sulstantia gelatinest Rolandi; Tr.sol., tractus solitarims: T.s.n.1; tractus spinalis N . trigemini. (I'reparation by Dr. John Hewetson.)

Fifa, 32l. - Horizontal section throngh the medntla, pome and midhain of a new-
 muelons mervi trochlearis, (series iii, section No. 100.) Aq. cer., athedactus

 traner of semsery part of N. trigeminus: Tr.s.u.t., tatus spinalis N. trigemini: Tr.fr.an.I), tract from Defers muele is to the spinal cort. (Preparation by Dr. John Itewetsmo.)

Fig. 391.

FIG. 322. - Horizontal section throngh the mednlla, pons, and midbrain of a newborn labe. Weigert-l al staining. Level of dernssatio brachii conjunctivi and of muelens retienlaris teguenti. (Sories iii, seetion No. 108.) (.p. commassura posterior cerehri; Dec.B.e., deenssatio hanchii ronjunctivi: Der. Recht., commissure letween lbechterew's muelei ; D.f., fibres to derossitio
 comeati: F.e., tascioulus dumatus; F.e. to F.r., bunde from faseiculas cumeatus to formatio reticularis; F.g., faseiculas gracilis; F.I.m., fasciculus longitudinalis medialis: I.m., lemniscos modialis : L.I., lemmisens lateralis: Mof. I°, radix motorias N. trigemini ; N.ITI., radix N. facialis, pars secumda; N.est., ralix N. vestibuli; N.IT., madix N. aloducentis: N. XII., radix N.
 pirs lateralis; Nu.u.III.(b), nuclens N. orulomotorii, pars impar: Nu.cos.(l), bueleus contralis superior, pars lateralis: Nin.e.s.(m), unclens centralis superior, pars medialis: Nu.l.l., unclens lemnisei lateralis; Nu.n. VII., uncleus N. facialis: Nu.N.e.r., undens N. cochlere ventralis: Nu.c.i., mueleus centralisinferior: Nu.r.t., nucleus reticuluris tegucnti : Nu.l.s., mueleus lateralis superior: St.gr.c., stratam grisemm contrale; Sou. V., sonsory root of N. trigeminus: S.g., substantia gelatinosa Rolandi; Tr.fr.un.l)., tract from Deitors nuclens to the spinal cord: T.s.u.V., tanctus spimalis N. trigemini. (l'reparation by lor. Johan Hewotsom.)

Fig. 323.-Horizontal section throngh the medulla, pons, and midhratin of a mewborn balse. Weigert-lal staining, level of dorsal part of corpus traperoidemmand dorsal portion of maclens ivaris inferior, (Serics iii, section No. I22.) C.t., corpus trapezoideum; Derc. IBr. (onj., decusatio brachii conjunctivi; Dec. Beeht., commissure between Bechterew's nuclei ; D.e.u.r., domal apsile of nuchens ruber ; F.u.i., fibre aremato internar ; Fase retrof, taseiculus retrothexus Mrymerti ; F.l.m.., faseiculus lomgiturlimalis medialis; F.l.p., humble contimuns with the fasciculus lateralis proprius of the cord ; F.t.p. d d), dorsal portion of bund e continuons with fascienlus latemas proprius of the cord : L.L., lemaiscus latemas; I.m., lemmisens modialis: N.III., madix N. oculomotorii ; N. Mot. 1 ., motor root of N. trigeminns; N. J., semsory root ol N. trigeminus; N.I'I, madix N. abducentis; N. IM., madix N. facialis, pars secunda; N. rest., radix N. vestihuli ; N. NI., madix N. aceossorii ; N.XVI., radix N. hypoglossi ; Nu.F.l.w., nuclens fasciculi lomgitudinalis medialis, or nu(lelts eommissure posterioris (oberee Octomotoriuskern of l)arksehewitsel) ; Ne. u. III.m., pars impar of nuclens N. ocolomotorii ; Nu.n. III.l., pars lateralis of nuclens S. oculomotori: Nu.o.s., mueleus olivaris sturerier: Nu.n.c.J., nucleus N. cochlene ventralis: Nu.o.i., muchens olivaris inferior; No.o.f.m., nuclens olivaris accessorius medialis: Tr.fr.mu. I). tract from beiters' muchens to the spinal cord. I'reparation by 1)r. Johin Ilewetsom.)

Fig. 324.

Fu: 334.-Moriznatal section throngh the medula, pons, and midmain of new hora babe. Level of stratum interolivare lemnisei, corpus tappoidenm anel nuclens ruber. Weigert-lial staining. (Series iii, suetion No. 136.) C.t., eorpus traperoiderman; Dee. Br. Couj., deenssatio bmehii conjumetivi ; D.t., elerenssatio tegmenti ventralis (vent mil tegmental decensation of Forel); F.n.i. (Dec.J.), fibree arenatie interme (decossatio lemniscormm) ; Fil., filmes continnons with the funienlas lateralis of the spinal cord; F.I.m., faseiculas longitudinalis medialis; F.r.M., fiseiculus retroflexits Meynerti ; L.m., lemniscus medialis; N. III., rudix N. encolonotorii ; N.Mut.l'. motor root of N. trigeminns; N.Sen. I., sensory root of N. trigeminus; N. VIII. (coch.), ruhix N, cochlead:
 N. facialis, pars secunda; N. XII., radix S. hypoglossi ; Nr.f.I.m., muelous faseiculi longitudinalis medialis, or muchens commissmat pesterioris (obrerer Oenhomotorinsker" of Darksehewitselh); Nu.".III., nurleus N. ocnlomotorii ; Nu.o.a,m., muclens olivaris aceessorims medialis: Nu.o.i., nuclens olivaris inferior: Nu.o.s., uncleus olivaris suprior: Nor.ruber, uneleus ruber: Nt.i.1.. stratum interolivare lemnisei ; N.n., sulastantia nigra. (l'reparation by br. John Hewetsom.)

GROUPING AND CHANING TOGETHER OF NEURONES. 49\%

Fig. 325.

 of a mewhern babre. Weigert-Pal staining. Level of ventral part of nurlens

 rior maded of termination of the vestibular nerves of the twosides; Fident.
 pertaining to the rentral vestibular pathe: Pasel. med.. fiscienlus lomgi-

 deressating portion of the root of the N. trigeminns: Nitill., badix N.

 Tr.sol., Iructus solitarius. Prepamation by Dr. Jolm Hewetson.)

Fig. 329.- Cross section through the rhombencerphatom of a four-day-old monse. (After S. Ramón y Cajal, Beitrag zam Studimm der Medulla Oblongata, ete., Leipz., 1896, S. 48, Fig. 13.) A, umeleus N. hypoglossi; B, muelens com-
 motor root of N . vagas and N . glossopharyngeus; F, muclous ambiguns; \boldsymbol{i}. posterior extremity of mueleus N . Vestihnli madieis descendentis; M, eross section of tractus solitarius; I, fibres going to mur lous olivaris inferior; $I_{\text {, }}$, pyramis; b, collatembs from the pyramid and from the sulbstantia alba lateral from it: a, collaterals from the faseienhs latemis proprins; f, sensory collatemis for the nuelens mmbignts; f, recurreni fibres in motor ronts which rim toward tractus spinalis N . trigemini ; j, erossed motor root fibres of \mathbf{N}. vagus and N. glossopharyngetas; h, collaterals of the seonsory ront of the N. vagus and N. glossopharyugens moning in the fisceienlas solitarias ; i, protoplasmie commissure betwern the nutelei N . hypoglossi of the two sides.
(AHOLTING AND CHANING TOGETHER OF NEURONEK. 499
The cell bodies of the peripheral nemrones corresponding to the mereus mestihuli are sithated in the internal car inside the ganglion vestibulare (Searpa's ganglion, Fig. 331). These cells, which remain bipolar throughout life, send their periphemat

Fita. 330. - Sympathiens and N. vagus of a buman embryo viewed from the right
 der Entwiekelungsgesehichte des M"•usehe'n, dena, 1808, S. 560, Fig. 3:36.)
prolongations to the vestibule and semicircular cainals, especially to the macula acustica atriculi and to the crista ampullares of the superior, posterior, and lateral meabranous ampullat (Fig. 332). These peripheral fibres, after repeated division, all end free * in among the hair cells situated there, coming only into contact relation with these cells (Retzins, \dagger van Gehuch-

[^209]ten,* Ramón y Cajal, \dagger von Lenhossék, \ddagger and Krause \#). Inasmuch as the endings in the macula acustica saceuli (Fig. 33:3) correspond closely to those in the macula acustica utriculi, the

 bryo at the fifth week. After llis, dmaior, from Kollmamistext-book, S. 5.tic Fig. 333.)
question may naturally be raised as to whether the saceular branch of the nervis cochlea really may not subserve the same functions as we now attribute to the branches of the nervis vestibuli. In the latter event it would perhaps be justifiable to remove the neurones corresponding to the nervus saceularis from the group of peripheral auditory neurones, and to include them with the group at present muder consideration.

The central prolongations of the cells of the ganglion vestibulare, united into a compact mass as the nervos vestibuli, enter the central nervons system at the junction of the medulla aud

* van Gehnchten, A. Contributions it létude des ganglions cárbrospimaux. Bull. Acul, roy. A, se. de Belg., Brux., 3. s., t. xxiv (1892), pp. 11i-154.
\dagger Ramón y Cajal. S. El nuevo concepto ile la histologia de los ecotros nerviosos. Lev. de cien. méd. de Barcel., vol. xviii (1892). pp. 361-356: mal PI. 457-476.
\ddagger won Lanossik, M. Die Nervenmbigmgen in den Mnembar und Crisar acmsticil. Anat. Hefte, Erste Abth. : Arb, uns mall. Instit., Bd. iii, Heft, 9. 心. 231.
\# Kranse, R. Die Endignugsweise des Nerv. Acusticus int Gehärorgan. Verhandl. d. anat. Geseliseh., Jena, Bel. x (1896), S. 105-173.
the pons as the vestibnlar root of the acoustic nerve (radix vestibularis N. aenstiei). The demonstration by von Bechterew * in 1885 of the existence and anatomical independence of two roots to the nervus acusticus, one (posterior and lateral) comeeted with the cochlea, the other (anterior and medial) comnceted with the vestibide and semicireular eamals, formed the starting point of the series of investigations which have gradually solved the much-vexed questions concerning the origin and central eomneetions of the "acoustie" or eighth nerve. Von Bechterew's researches found a most important confirmation and extension in the investigations of His. \dagger This root enters at a point farther anterior (eerebralward) than does the cochlear root. It is also sitnated medial to the cochlear nerve, and after entrance passes obliquely, medial to the corpus restiforme (between it and the tractus spinalis nervi trigemini), in a dorsal and medial direction toward the floor of the fourth ventricle. A little lateral from a point midway between the median line of the medulla and the lateral margin of the corpus restiforme at this level, the root fibres, as von Kölliker and Held have shown, undergo bifurcation, dividing into a coarse deseending and a more delicate ascending limb. 'This hifurca-

Fits, 33\%.-Stheme of proipheral termination af N. vestibnli. (After (i. Retzins, Biol. rirtersilel., Stoekholm, n. Fr. Bl. iv. 1s!2, p. 56, l゙ig. 7.) co. central mervons system $f=$ delicate supporting cell: ha, hatrerells: sm, asome of N. restihnli: ss, prrikaryon of vestibular meurone ill the ganglion vestibulare.

[^210]tion is exquisitely demonstrated in one of Ramón y Cajal's preparations (Fig. 334). The descending limbs of the vestibalar fibres together make up the well-known radix descendens nervi vestibuli.*

Fici. 333. - Isolated impreguated interepithelial emb arborization from the marda
 Wiesb., Bel, iii, Heft ix, 1803, Tat', xiii, Fig. 3.)

The root fibres of the nerve of the vestibule come into conduetion relation by means of the collaterals and terminals of their axones with the so-called " nuelei of reception" or nuclei terminales (Lindkerne of the Germans) of this nerve. In the descriptions of no part of the medulla has there been more confusion, perhaps, than in those of the region of the nuclei of termination of the acoustic nerve. The older literature, well epitomized by Onufrowicz, \dagger is a mass of the most bewildering and contradictory statements, which, together with the varying,

[^211]

Fig. 334. - Tateral sagital section throngh the rhombencephaton of a foral

 shows distinetly the bifaration of the root fibres of the N. vestibili. a, root fibres; b, aserobling limbs; f, continuation of aserenling limbs into nuchens N. vestibuli superior, Berhterew and mutens cerobellonemstiens: e, deserending limb of large calibre; d, collaterals terminating in muchens N. vastibuli spinitis.
overlapping, and inconsequent nomenclature employed, have made the older articless so pazzling as to render them almost worthless to the student of to-liay.* I shall not attempt, therefore, a tedions résumé of the bibliography, but shall state as simply as possible my own views regarling these nuelei, which have been formed .ifter study of serial frontal, and horirontal sections through the medula of the fotus and the adult with Miss Florence Sabin, and after a careful comparison of our findings with those of yon Beehterew, \dagger Flechsig, \ddagger Bas,inski, \# von Monakow, $\|$

* The extreme complexity of the parts and the limitutions of technigur of the period excuse the labyrinth of errors into which the older investigators were led. Amid the genemal confusion a reader of the older articles. can not help being impressed with the eareful objectivity of the deseri, tions of the great English neurologist, J. Luckhart Charke (Researe ies on the Intimate Structure of the Brain, Ihuman and Comparative, I anl. 'Tr., Lond., vol. exlviii (1858), pp. 231-259.-Researches on the Intimate Structure of the Brain, ibid., vol. clviii (1868), If. 2(63-331). The pulnications of John Dean, of Boston (The Gray Substance of the Medula Oblongata and Trapeainm, 4to, Smithsonian ('ontributions to Knowledge, Washington, 1864), show excellent illustrations of the region in (question. The original articles of O. F. C. Deiters (Untersuchungen meher (iehirn und Rückenmark des Menschen und der Siaugethicre, nach dem Tode des Verfassers heransgegeben und bevorwortet von Max Schult\%e, 8vo. Braunschweig, 1865) should be consulted by any one wishing to muderstand the position taken by this celebrated memrologist concerning the nuclei in question.
t von Bechterew, W. Ueber die innere Abtheilung des Strickkörpers und den achten Hirnnerven. Neurol. Centralbl.. Leipz, Bal, iv (188i), S. 145-147: [Origin and Course of Strie medullares s. ueusticar.] Med. Obozr., Mlosk., vol. xxxvii (1892), pp. 470-478: also in Neurol. ('entralbl, Lecipz., Bid. xi (1892), S. 297-305.-Der hintere Zweihïgel als Centrum für das Gehör, die Stimme und die Reflexbewegungen. Neurol. Contrulbl, Laip\%, Bd. xiv (1895), S. 706-712.
\ddagger Flechsig, P. Zur Lehre vom eentralen Verlauf der Simesnerven. Neurol. Centralbl. Leipz., Bd.v (1886), S. 545-551.-Weitere Mittheilungen äber die Beziehungen des nnteren Vierhilgels zum Hörnerven, Neurol. Centralbl., Leipz., Bal. ix (1890), s. 98-10to.
\# Baginski, B. Ueber den Vraprung und den centralen Verlanf des Nervus acusticus des Kaninchens. Areh. f. path. Auat., ete., Berl., Bra. ev (1886), S. 28-46.-Veber den Ursprung und den centralen Verlanf des Nervis acusticus des Kaninchens und der Katze. Arch. f. path. Anat., ete.. Berl., Bl. cxix (1890). S. 81-93.
|| von Monakow, C. Ueber den U'rsprumg und den centralen Verlauf des Nervas achsticus. Cor.-Bl. f. schweiz. Aerate, Mh. xvii, 1887, No. 5; abstract in Neurol. ('entrulbl., Leipz., Bd. vi (1887), S. :201.

Sala,* Hehl, \dagger P. Martin, \ddagger Cramer, ${ }^{*}$ Ramón y (ajal, $\|$ and others.
'There are, in aceordance with the views of the majority of recent investigators, at least four well-tefined primary muclei of termination in connection with the vestibular nerve: (1) The nueleus nervi vestibuli medialis (Sehwalbe); (?) the nuclens nervi vestibuli spinalis (rudix descendens); (3) the muclens nervi vestibnli lateralis (Deiters); and (4) the nueleus nervi vestibuli superior (Flechsig, von Bechterew). In adlition, the nervus vestibuli comes into direct conduction relation, (") (proh)ably chiefly loy means of collaterals) with the nucleus nervi cochlea ventralis; (b) (by means of aseending limbs of divided root fibres or collaterals from these) with the mass of nerve cells (Ramin y Cajal's muleus cerchello-arustirus) in the lateral wall of the ventricle, dorsal to Bechterew's mueleus, and (r) with the nuelei of the roof of the fourth ventricle (nuelei fastigii) on both sides of the middle line, and (d) possibly, acemuling to Ramon y Cajal, by means of a few fibres with the nuclens dentatus cerebelli and the cerebellar cortex.

Concerning the exact topographical rehations of the form principal nuelei, the deseriptions in the bibliography are not only very incomplete, but there is also considerable variance between the statements of different authors. Florence Sabin hats male from serial sections a flat reconstruction of the exact limits of these melei as they exist in the new-born babe, and we

[^212]

Fig. 335.-Diagram representing flat reconstruction of the melei of tomanation of the cochlearam vestibular nerves. (After Florence R. Sahin, Johns Hopkins Hasp. Bull., Balt., vol. viii, 1897, lig. 1.) The lime a, a repesents the lataral wall of the ventricle; the line b corresponds to the lateral ontline of the corpus restiforme: the lime d_{1} to d_{4}, d_{1} to d_{3} and the line e. $e_{\text {a }}$ e correspond to the suldi in the flowe of the fond ventriche: \mathcal{C} d. . nuclens nervi cochlen dorsalis; ('. r., nuclens nervi cochlear ventralis; the gradaated line eorresponds to the middle line of the How of the ventricle; Fler., thoculus: K. loll. knee of nervas facialis; L., medial portion of nucleas nervi vestibuli lateralis (Deiters): L_{1}, lateral portion of nueleus nervi vestibna lateralis (Deiters) ; M, tugetherwith Y, muedens mervi vestibali medialis (s.hwalbe);
 pedmentus thoceuli ; N. m. p. Í, nuelous motorins primerps nervi trigemini; N. o. s., macletus olivaris suprior ; N, s. I:, nuelede bervi trigemini (semsory) ; N. r., root bumdle of nervas corhleme; N. epst. root bumde of mervis vestibnif R. I. N. re., radix deseendens mervi vestibuli: s.. melems nervi vestibuli superior (Bechterew) (area inelosed in the broad back lime) ; Tr.s. 1 . l., thactus spinalis nevi trigemini; V, melens $\eta,=$ antero-lateral portion of mucleas nervi vestibnli medialis; z, decussationervi trigemini.
are presented for the first time in her article* with a diagram which shows elearly (at least in two dimensions) the size and relative positions of the nuelei. Miss Sabin's diagram is reproduced in Fig. :335.

It will be seen in the diagram (Jreas M and Y) that the large nueleas nervi vestibuli medialis, begimning spinatward a little above the middle of the nueleus nervi hypoglossi, extends cerebralward to a level corresponding approximately to the spinal extremity of the nucleus nervi abducentis. Its medial border raches almost to the median line of the floor of the ventricle, going over withont sharp limit into the central gray matter, while laterally it fuses with and is with difliculty distinguishable from the nucleus nervi vestibuli spinalis (radix deseendens). The latter mucleus is male up of great numbers of cells situated in the gray matter surrounding the deseending root, and also of many cells interspersed among its filres. The fibres of the desconding root, is the eross section (Fig. :33i) shows, are arranged in small bundles among which gray matter rich in cells is everywhere distributed. The nucleus of the descending root represents at least one of the principal, if not the principal, end-station of vestibular fibres. \dagger

The antero-lateral extremity of the medial vestibular nuclens (Miss Salbin's nucleus Y) is undoubtedly the most important part of the medial nuclens. In transverse section, nuelens Y^{\prime} is triangular in shape with the apex ventralward, hence the name uuclens triangularis given to it by some authors. In it are sitnated an enormons number of cells closely crowded together, in among which ramify very many rather fine medullated fibres from the area in which the nervis vestibuli bifureates. The nucleus Y tapers out posteriorly, and finally disappears anteriorly just medial to the wide part of the medial portion of

[^213]Deiters' nuclens as shown in the diagram (Fig. 335). Posterior to it (that is, spinalward from it) is situated the nuclens of the descending root, and the junction of the two nuclei is marked by a regular vortex of fine medullated fibres.*

Fig. 336.-Transverse section of medulla oldongata and ecrebellum of newhorn child. (Saries ii, section No. 146.) C'r., corpms restiforme ((hae part medullated correspemds in the main to the direet erevellar tract): $F \cdot$., bumde comtinuous with the funienlus lateralis of the cord ; F.I.m., fasmentus bongithidinatis mediatis: N. IS....., N. glossipharyngens et vagns: N.XII., N. hypu-

 stratum interolivare lemnisei: bif, plane of longitudinal section Xo. fif. [Sorv.-This figure has been dispropertionatety reduced in the reproslue. tion.] (Weigert-Pat preparation hy Dr. John Hewetsom.)

* Sabin, F. R. (op. cit.), has rightly had emphasis upon the individuality of nucleus Y, adducing as her reasons (1) the size of the cells (larger than those of the rest of the medial mucleus, suatler tian those of Deiters' mucleus) : (2) the mode of staming ot the muckens (much darker than Deiters nuclens proper in suitably differentiated Weigert-Pal preparations); (3) the distribution of the cells (elosely packed together in Y , seattered und far fewer in number in Deiters' nuclens), and lastly, (4) its distinct demarkation from the moljoing gray masses. She dons not assert its absolute morphological independence. but is contrm with ontlining its position and calling attention to its characteristic features.

The nuclens nervi vestibuli superior (Fleehsig, v. Bechterew) is represented in the diagram by the area s, outlined by the very henvy black line. It begins posteriorly at a level somewhat behind that of the unterior end of the medial nuelens, but is placed much more laterally and dorsally, so that it lies in reality in the lateral wall of the fourth ventriele and in the ventro-lateral angle of this eavity rather than in its floor (Fig. 3:3\%). At the inferior end it is intimately comected with the fibres of the pedunculus floceuli; indeed, its lower limit is only with great difficulty determined, owing to the intimate admixture of fibres and cells. At its upper (anterior) extremity it tapers out into a narrow mass of cells which can be followed anteriorly as far as the level of the prineipal motor moelens of the nervis trigeminus. The main mass of the superior unclens of the N . vestibuli is ventral and medial to the ventral portion of the brachium conjunctivum. At its lower (posterior) extremity it is medial and dorsal to the corpus restiforme, where the latter turns up, into the eerebellum. Just anterior to the point in which the comnection of the peduneulns tloceuli with Bechterew's nuclens is most apparent the melens lies ventral to the corpus dentatum and dorsal to the corpus restiforme, being interealated, as it were, like a buffer between these two structures.

The nueleus nervi vestibuli lateralis (Deiters') is situated between the medial nuclens and Bechterew's nuclens, lateral to the former and ventral and somewhat medial to the latter (Fig. 334). Miss Sabin's diagram shows elearly its division into two parts, L and L_{1}. The portion L is situated in front of (anterior to) and medial to the portion L_{1}. I would suggest that these two portions of the muclens nervi vestibuli lateralis be designated, temporarily at least, as the P^{\prime} rrss mediulis (L) and Prars luteralis (L_{1}). I wish to lay stress, however, mpon the fact that the subdivision of Deiters' muelens here made, refers only to relatively gross relations, for microscopic examination shows that the two parts are in reality made continuons with one another by a few seattered cells which are interspersed among the root fibres of the nerve. The cells in L and L_{1} are very large multipolar ganglion cells, closely resembling the cell bodies of the lower motor neurones (eells of ventral horns in spinal cord, motor nuclei in medulla). The study of serial sections shows very clearly the remarkable relations of Deiters' nu-

cleus to the vestibular root fibres. The fibres entering as a tolerably compact bundle penetrate the medulla to the region of this nuclens, and then, suddenly stopping their dorso-medial consse, bifurcate, the coarse descending limbs passing immediately downward ufter division in the radix descendens nervi restibuli. The diagram (Fig. 3:35) shows how Deiters' nuclens $\left(L_{4}, L\right.$) sits, at it were, like a eap upon the descenting root. The medial portion of the nucleus L is separated from the lateral portion L_{1} by the entering root fibres.

Just how far down the fibres of the descending root go it is ditlicult to saty. They can certainly be followed to a level posterior to the middle of the nuelens nervi hypoglossi. Ramón y Cajal has been able in the monse to follow them below the ganglion commissurale of the tractus solitarius.

What is the fate of the ascending limbs of division of the axones of the nervis vestibuli: The careful studies of x. Källiker, Itedd, and Ramón y Cajal with Golgi's method have determined their course. They pass in a dorsal and somewhat lateral direction, pursuing a tortnons and very irregular course into the nucleus nervi vestibuli superior, where all of them give off numerous collaterals and many of them end. The coarser fibres among them pass up medial to the corpus restiforme and terminate in the cerebellum in the nuclei of the roof of the fourth ventricle of the same and of the opposite side, and, according to Cajal, give off in passing collaterals to the little matss of nerve cells sitnated in their course (his nucleus cerebellu reusticus). The fibres of the direct cerebellar bundle of the nervus restibuli are doubtless among the bundles of medullated fibres seen in Fig. 33\%, extending between the region of Deiters' nucleus throngh Bechterew's nuclens and the brachium coujunctivum to the region of the muclens fastigii, though they do not represent the majority of these fibres.* It is impossible, however, from Weigert-Pal preparations to say in every instance in which direction the fibres are running-whether from the medulla to the cerebellum, or from the cerebellum to the medulla.

The connection of ascending limbs of vestibular fibres with the medial muclens (its antero-lateral extremity, uncleus Y)

[^214]and with Deiters' nuelens nppens to be manly by means of collateruls. In Weigert-Pal preparations enormons numbers of fibres are seen to anter muelens Y, but it is impossible to say

 uli in the muelens X. vestibuli lateralis (D)-itors') of a four-day-old rat.

 terminations of the ultimate tibils; a, collaterms which, chtering into a met

whether these are collaterals or ascending limbs of divided root fibres. The lower portions of the medial mucleus receive numerous collaterals from the descending limbs ruming in the radix descendens. I great many collaterals from the fibres of the descending root end in Deiters' molens, where they form most complieated pericellular plexuses (Fig. 3338). The majority of the collaterals and terminals of the desconding limbs end, however, in the gray matter immediately adjacent-i. e., in the nucleus nervi restibuli spimalis. Ramon y Cajal insists
that the inmmeruble collaterals of the descending root form without doubt the chief termimation of the vestibular nerve.

A very weleome contirmation and extension of modern views concerning the distribution of the root fibres of the vestibular nerve has been furnished by Thomas.* The reader is referred to his experiments in which he cut the root and subsequently studied the distribution of the fibres by means of the method of Marehi.

The stadent of the mieroscopie anatomy of the medulla oblongata con not fail to be impressed with the importance of these complex gray masses in connection with the collaterals and terminals of the axomes of the peripheral vestibular nenrones. Such an elaborate end-apparatus in a region where

Fig. 339.- (ianglion geniculi of anewhorn monse. (Atter M. von Lenhossék.)
 of lifinreation ; b, isolated tibre of the \mathcal{N}. petrosias silperticialis mator,
space has been economized to the utmost must be of the highest physiological signifieunce.

The central axones of the cells of the genienlate ganglion \dagger

[^215](nervas intermedius) join, in all probability, the intracentral prolongations of the N. vagus and N. glossopharyngens. The peripheral axones accompany, in large part at least, the bumble of motor axones which constitutes the N. facialis (Fig. 339).

The eell bodies of the sensory neurones of the merrus triffminus are situated in the ganglion semilunare (dasseri) (I'l. I, Fig. :). They are unipolar, like the cells of the spinal ganglia. Their medullated central axones form the portio major of the fifth cercbial nerve (Fig. 340). The peripheral processes of the ganglion cells are distribnted to the skin of the face and the mincons membrane of the month. The central prolongations plunge through the substance of the pons into the region of their nuclei of reception (Fig. 341), where they bifureate * (Fig. $34 *$), being thas distinguishable from the motor fibres of the fifth nerve, whieh do not bifurcate. \dagger The descending limb of hifureation is coarse ; the aseending is fine, and terminates after rather a short conrse in that portion of the substantia gelatinosa often spoken of as the main meleus of reception of the sensory portion of the trigeminus. In reality this is only the mach expmded upper portion of the substantia gelatinosa. The descenting limbs pass a long way down, the medullated axones forming the well-known trartus spinalis nervi trigomini, which runs throngh the whole length of the
der Kopfucwern. irch. f. Amat. u. Physiol., Anat. Ahth., Lepp\%, 188\%, S. :39-45:3; and Mis, Ji., W. Kur Entwickelungsgesehichte des AcusticoFacialgehietes beim Menschen. Arch. f. Amat. u. I'hysiol., Anat. Abth., 188!, sирр.-131.. S. 1-28.

* The bifuration of the sensory axones of the N. trigemimus observed hy Ramon y Cajal (Gace sam. de Bareel. 10 April, 18:1) hats been confimed by von Källiker, lleld, and van Gehuchten.
+ In Weigert-Pal preparations the sensory fibres of the N . trigeminns ner of tine calibre, and stain of a brownish-black color: the motor axones are much coarser in ealibre, and stain of a deep buish-black color.
\ddagger Why even the first-class text-books persist in calling this spinal bundte the ascemling root of the fifth (the Germans constantly referring to it as the aufsteigende Wurzel) I ann mot understame. This is a serioms mistake, and nothins is more colcuiated to comfuse the begiuner than the eontimanew of such an erroneons momenclatre. The filmes deseend; they are in fact, the medulated desendiag limbs of the divided axones of redl bodies sitnated in the Gasserian gamglion. by naming the "spinal tract of the trigeminus." or traetus spinalis nerri trigemini, we aroid the confusion with the radix desecmdens (meseneephalisa) nervi trigemini. the mednathed motor axones desending from the nurlei motorii minores nervi trigemini.

GROUPING AND CHAINING TOGETILER OF NEURONES. 515

medulla, going even below the level of the deenssation of the pyramids. These fibres on their way give off great numbers of collaterals and terminals, to end free in the neighboring

Fig. 310.- (erebrmm, with a portion of the spinal eord vie
from the vorital surbere OH the righthand side the vent tal roots

+ otl short aml

 ие I, N. cervianli. s. imuls.

substantia gelatinosa, which in reality forms a continuous column of nuelei of reception for the fifth nerve, designated now as the muclei tructus spinalis nervi trigemini (Fig. 343). The fibres of this tract are very characteristic in transverse sections stained by the Weigert-lal method (Fig. 344). In the medulla

FIG, 342.-Nedeme showing the mutur and sensory neurones, the axomes of whielt enter into the formation of the N. Arigemints. (Alter A. van Gehmehtom,

 spo, ", I'. tmelms spinalis nervi trigemini.
the bundle is traversed by the root bundles of the N. glossopharyngens and N. vagus (Fig. 344), and by some of the fibre cerchello-olivares.
. Iust how far spinalward the tractus spinalis extends there seems to be a difference of opinion. According to Ciudden,* it probably reathes to the lowermost parts of the eervieal cord.

[^216]Ohersteiner* puts its lower limit at the level of the seeond cervical nerve, while von kïlliker \dagger states that in the region of the mpermost cervical nerves there is no trace of the spinal

tract of the trigeminus. A little higher (about at the level at which the dorsal nuclei of the mednlat begin) he finds the bwer limit of the spinal tract. (ramer \ddagger traces it to the distal emel of the pramidal deenssation.

It has heen shown hy Golgi's methom by Ramón y C'ajal in sagital sections that the two longitulinal layers of the tractas

[^217]GROUPING ANI CHAINING TOGETHER OF NEURONES. 519

Fig. 345.

Fig. 315. - Hurizontal sution throngh the mednla, poons, and midbrain of a mew-

 trame of sensory part of N . trigemints: "Tr.s.z.t., tractus spinalis N. trigem-
 by 1)r. bohn I Fewntson,)
 adjarent mhstantia gelatinosil of a newhorn mabit. (Afters. lamon y (ajat,

 f, stellate giant rells not armanged in ishands: ! interinsular cells; h, a marginat cell. the axome of which apperas to go into the white substance or into the tate the spiadis N. trigemini.

Fig. 346.
spinalis (one suproficial and eompact, the other decper, and consisting of sereral bmolles separated from one amother by masses of gray matter) are formed by deseending limbs of bifureated root filres (Figg, 343). The superticial and deeper layers of the tractus spinalis are easily demonstrable in horizontal sections of the rhombencephaton of the new-born babe, stained by the method of Weigert-Pal (Fig. 345).
'The collaterals, from the axones of the trigeminal fibres have been carefnlly studied and described by Ramon y Cajal. He divides them atecording to the ragion in which they are foumd into (1) interfascieular collaterals, (*) marginal collaterns, and (3) medial collaterals. 'The interfaseioular collaterals ramify among the cell bodies lying medial to the superficial compart layer, and among the faseiculi of the deep layer of the tractus spinalis. The marginal collaterals, passing sometimes forwarl, sometimes backward, ramify among the peripherally phaed spiuWheshaped cell bodies (Ridulzellen) along the humdle of the deeplayer. The medial collaterals mite to form small bundes which pass throngh the fibres of the deep layer, and form two or three layers of extremely dense ent-plexuses in the substantia gelatinosa. Ramon y Cajal states that many of these collaterals, especially those arising from the dorsal part of the tractus spinalis, end in well-tefined "cell islands" in the dorsal part of the substantia gelatinosia (Fig. 34fi).

The work of Bregman,* in which the degenerations following section of the main bramches of the trigeminus were stadied, makes it seem certain that in the rablit the fibres from the nervus ophthalmicas rim in the ventral part of the tractus spinalis nowi trigemini, while those from the nervis maxilharis and from the nervus mandibalaris rom in the dorsal part of the tract. For important data regarding the functions of the tractus spinalis nervi trigemini, the case studied elinically by Imn \dagger and pathologically by Ira van Gieson is referred to.

[^218]Vian Gehuchten, in the first edition of his text-howk, Arseribed the asemding limhs of the fibres as passing up in the course of the descembing mesencephatie motor root as far as the inferion collienti of the corpora quadrigemina to the lateral region of the gray matter of the aqueduct. The studies of Lagaro,* von Külliker, and Ramón y Cajal, however, make it probahle that the fihres of the descending mesencephatie root are chietly, if mot entirely, motor, and in the secomd edition of van (ichurhten's work these conchosions are agreed with.

Some authors descrite sensory axomes of the nervos trigeminus passing divetly up into the eerebellum. The demomstration of the existener of such fibres womla mot be surprising, now that we know that certan of the axones of the dorsal funiculi and of the nervis wastibli pass direety into the cerpbellum without molergoing relay. Newertheless, such a direct "erehellat tract for the nervis trigemimus has not yot been proved for homan beings, \dagger and its existance is vigoronsly opposed by von Bechterew \ddagger and 'Tumer." The latter, a very carefnl observer, believes that what has been described as the "diret cerehellar root" $\|$ of the trigeminus corresponds to the fibres extemding betwen the nuclei of the roof and Deiters' muclens, and probably abso to those comnecting the superior olivary muclei with the muclei of the roof. Oberstemer, $\stackrel{\text { in }}{ }$ the last edition of his text-hook, expresses the opinion that those who deny the direet relation of the nervus trigeminus to the cerebellum are in the wrong.

Centripetal impolses arriving along the fifth norve can affect the motor maded in the medullia and uper ceprical cord cither by means of collaterals from the axones of the peripheral nerves

* Lagaro, le. sulle celtule doorigine delln ratioe discomente del trigemino. Ardh. di ottal., Palermo, vol, ii (1894-95), 1]. 116-1I!.
\dagger van (ielnediten has followed in the embryo ehick ly Golgis methoul trigeminal tibres directly into the cerchellum through the briblamm pont is.
\ddagger von Beehtorew, W. ['ber die Trigeminuswurzeh. Neurol. Centralbl., Latiz., lih, vi (188is), S. 289.
\# Turner. W. Aldren. The Central Conmeetions mad Relations of the 'Trigeminal, Vigo-glossopharyngeal, Vago-aceessory, amblypoglossal Nerves. J. Inat. and Physiol., Lomil., vol. xxix (180.4-95), I!P. 1-15.
|| Filingeres directe somsorische k̈leinhirublhu.
 ralorgane, III Iull.. leipaig u. W"ion (1896), S. 40:3.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences

themselves, or ly mems of collatemals or terminals of centripetal meurones of a higher order.

It will be seen that the eentral prolongations of the cell bodies of none of the peripheral sensory neurones collecting impressions from the body itself pass to the cerebral cortex directly. The centripetal impulses, therefore, which enter by means of these neurones into the nerve centres must be carried to the cerebral cortex through neurones with which these come in contact. But before deseribing these sensory neurones of a higher order it will be convenient to consider briefly the charaeters of the peripheral sensory nemrones comecting the organs of special sense with the central nervous system.
(B) Centripetal Neurones of the First Order collecting Impressions of Special Sense (connecting Organs of Special Sense with the Central Nervous System).

Inder this heading the gnstatory, offactory, visual, amb anditory peripheral sensory neurones will be discussed.

CHAPTER NXXVI.

PERIPIIERAL CENTRIJETAL NEURONES CONCERNED IN TILE SENSE OF 'TASTE ANI SMELL.

Peripheral centripetal neurones mediating taste impressions-Nervus glos-sopharyngeus-Nervas trigeminus-Nervas intermedius-Taste buds in tongue-Relation of nerve fibrils to taste bud-Intragemmal fibres -Intergemmal fibres-Specifie taste qualities-Peripheral centripetal neurones mediating olfactory impressions-Perikaryons-l Distal hairlike processes-Non-medullated axones-Termination in olfactory glo-meruli-Regio olfactoria of nasal mucous nembrane.

1. Per:pheral Gustatory Neurones.

(iustatory Veuromes.-The peripheral sensory neurones mediating taste impressions consist of a portion of those of the nervis glossopharyngens and probably also of the nervis trigeminus and nervus intermedius * (Pate I, Fig. : $)$. In general, what has been said regarding the collection by the sensory neuromes of the spinal and cerebral nerves of bodily impressions holds also for the nerves of taste. The peripheral branches of the ganglion cells concerned in colleeting taste impressions cone ultimately, however, into contact in the month and tongue with eertain peculiar struetures-the so-called taste buds. \dagger

The structure of these bodies is well known and has been acenrately deseribed in the text-books. They are egg-shaped or barrel-shaped masses of epithelial cells situated mainly in the vallate papilla and fimbria, thongh a few of them are scat-

[^219]tered elsewhere over the tongue, in the soit palate, and on the cpiglottis. Disse * has recently described similar structures ats

 und voni lavidatr:)
occurring also in the alasal mucous membrane. They represent a differentiated portion of the epithelial part of the mucons membrane. At least two sorts of cells are present in each taste bud: (") the supporting cells consisting of an outer layer with muclei centrally phaced, and an inner layer of very delieate cells with muclei sitmated at the base; (b) the sensory cells, the so-called nemro-epithelial cells of the taste buds-delicate long-drawn-out cells which stain well by Golgi's methoul, and which send a hairlike process throngh the pore at the apex of the taste bul to the surface of the mucous membrane. It is probable that the flat cells at the base of the taste bud correspond to a special form of aupporting cell (Fig. 34\%). The nerve fibres, as von Lenhossék \dagger and Retzins \ddagger have shown, end free in

[^220]among the cells of the taste bud. The old idea that the nearoepithelial eells gave off axis-rylinder processes which ran to the nerve centres hat been definitely disproved.

It is to be remembered that the meons membrame of the tongue is supplied in general with nerve endings mediating the sensations of tonch, pain, and temperature just as is ordinary skin. In addition it receives the nerve fibres which pass directly to the taste buds. The nerve fibres approaching the taste buds and becoming connceted with them (intragemmal fibres of ron Lenhossik) are distinguishathe from the brame whes wheminate among the ordinary epithelial cells of the mueons membrane between the taste buds (intergemmal fibres). From two to five fibres approach the hase of each taste hat, each of which on entering the bud breaks up into a fine end-arborization, the

Fiti, 3ts.- l'aste lums (ealyculi gustatorii) and peripheral extremities of peripheral processes of peripheral gustatory menrones, propared hy (iongi's methorl from the papilla foliata of the rabhit. (Afcer M. von Lenhossék,
 and a single shpporting eell ; brlow the taste had a sulgenmal cell is indiated; b, the begimings of the nerve fibrils upon and between the taste buds.
individual fibres forming a complicated plexas about the comstituent cells of the organ, though without entering into any
relation oher than that of contace with any coll and apparemly withont the formation of anastomoses among the individual tibrils. It is stated that the intergemmal fibres arise from surdial mere fibus and never from fibres which give of the intralfommal nerve tilaments, a statement of very great physiologidal importance if contirmed (l"ig. :3is).

 Latungshahmen in (rehirn mad Rürkenmark: Deutsch von R. Weinhorg,

 cerebral cortes; gas corjora qualrigemina; m , mothens lentitormis: th. thalamms.

Coneerning the existence of several types of taste buls of specifie structure corresponding to specifie taste qualities, we have as yet no data, nor are we informed at all concerning any special muclei of termination of the taste fibres in the mednlla and pons sepatrate from the other nerve fibres of the three sensory nerves involved.

A general scheme of the taste combuction pathis hats been prepared by W.. . Bechterew. It is reproduced in lig. 349.

2. Peripheral Olfactory Neurones,

The olfactory neurones of the first order extemd from the mucons membrane of the nose to the olfactory bulb. The cell boties of these nemenes are, remarkable to state, situated actually in the mucous membrane of the nose itself, thus differing from all other peripheral sensory nemomes (in human beings).* It hat long been known that in the olfacteny region

 (iongi well of Type 11 or dendraxome. The arrows show the direction of the impulans.
of the masal mucous memhrane cells of two kinds exist-supporting eells and sensmy opithelial cells, the latter being deliate narrow cells provided with hairlike processes which project slightly upon the mucons surface. Max sehultze, \dagger in 186%, dis-

[^221]covered that from the proximal end of each olfactory cell atl olfactory norve fibre took its origin. The nse of the methyleneblue method by Elarlich * and Arnstein \dagger and of Golgi's method by Ramón y Cajal \ddagger and ran Cehtuchten\# has proved beyond

 A. von Kölliker, Ilamdhuh der (iewelelehre des Denselaen, Bd. ii, Leipz., 18!6, S. 701, Fig. 754). Fo, fita olfactoriat hreaking up into terminal brinches inside the glomerulus; ece eapillary bleod-vessels.

[^222]donbt that the olfactory nerve fibres really represent the axones of the eell bodies sitnated in the masal muens membane. The short hairlike processes of these cells represent the dombrites (Fig. 350).

The nerve fibres which end free in the mueous membrane of the nose independent of olfactory cpithelial cefls prohally helong to the nervis trigeminus, and have nothing diredty to do with the carrying of olfietory impulses.

 von Bromis, is immervaled ly Nit. olfactorii.

The axones of the olfactory nemones are mon-medullaten. They pass through the eribriform phate of the ethmoid bone in humiles (Nn. olfactorii) to the olfaetory lulh which they enter.* Here they terminate, as Golgi first proved, by free end-arborizations in the so-ealled olfactory glomeruli, coming into manifold contact inside them with the large dendrites of the mitral cells

[^223]of the olfactory bulb which are ultimately distributed in these structures. The mitral cells and brush cells of the olfactory bull, represent olfatory nemrones of the second order and will be deseribed subserpently. The entings of the Nin. olfactorii are well shown in Fig. 35i. The dembles of the mit all cells are not impregnated. The exact area of hasal mucons membrame concerned in the sense of smell is mach swaller than many have believed. Thas, the studies of the late von Bromn* have shown that the olfactory region is limited to a relatively small part of the superior turbinated bone and the adjacent region of the nasal septum. The area in each nostril situated at the very top probably does not exeed in extent more than two and a half square eentimetres. Vom Bram in the course of his carefml masmements fomd in one case that the olfactory epithelimm extended in the right nasal eavity over a surface of ent square millimetres. In a second case the distribntion amomoted to 238 millimetres (Fig. 35:).

[^224]3. Peripheral Visual Neurones.

CHAP'TER NXXVH.

 THE KE'TINA.

Ohler studies of the retima-Its humelhation-Studies of Thrtuferi, Ramon y ('ijal, mod Dogin]-(iolgi preparations-The rod eells and cone cellsThe bipolar cells-The ginglion cells and optice nerve fibres-Superinposition and interrehtions of the retinal elements-Mïller's tibresThe amacrine cells-'The horizontal eells-('omparison of the peripheral vishal neurones with other peripheral eentripetal nourones-Von Lenhossik's study of the cephaloper eye-Reduction of elements in the visual combluet ion path.

Vismal Sourones.-'The peripheral sensory nearones eonearned in the sense of sight are situated in the retina. The older ideas of the structure of the retima which most of us were tanght in the medical schools were extremely complex, and the memorization of the exact position and appearanee of the various layers of this membrane was by no means casy, since the intraretinal relations and connections of the elements were entirely obseure.

It will be recalled that externally next to (1) the layer of hexagonal pigment cells were situated (\because) the layer of rods and cones. Then followed, passing inwarcl, (3) the onter nuclear layer: (4) the onter molecular layer ; (5) the imner muclear layer; (6) the inner molecular layer; (i) the layer of nerve cells, and, lastly, (8) on the imner surface of the retina, the layer of nerve fibres. These varions layers were easy to make out in preparations stained with orlinary nuclear llyes (Fig. 35.3), but as to what the individual layers meant, and to exactly what cells the various melei and processes belonged, there was much disagreement.

Insteal of this mintelligible classification based simply upon staining appearances and withont any rational interpretation as regards the internal comnection of the elements, the newer stulies
of 'Tartuferi,* Ramón y ('njal, \dagger Dogiel,t ami others have tamght us what these varions layers moan. If onn will eompare Fig. 3Ris with the silver-pietare of the retina (lög :35t), the enomons simplifieation winich has resulted from the upplieation of (iongi's method to the stmly of this membrane will be immediately apparent. 'The silver chromate method shows that in the retina, in addition to certain more complex relations whilh exist, three very distinct suts of eells are superimpused: (1) The eells to which the rods and cones belong ; (3) the bipolat cells ; (3) the ginglion cells of the retina. ${ }^{\#}$ Comparing the old classification with the present simple scheme, it will be seen that the outer

[^225]nuelear layer correspombs to the nuelei of the aills whose distal processes represent the rods and cones, while the inmer melone

 erels: forir muchei (external gramulai layer) ; s, membrana limitans ex-

 filme.
layer corresponts to the nuclei of the bipolar cells. The outer molecular layer represents the region of contact or concrescence relation between the proximal processes of the rod and cone cells and the distal processes of the bipolar cells, while the inner molecular layer corresponds to the region in which the ter-
minals of the proximal processes of the bipolar cells enter into contact or conerescence relation with the dendrites of the ganglion cells of the so-called "layer of nerve cells." The layer of nerve fibres represents the axones arising from the cell bodies

Fig. 354. Weheme of the structure of the retina. (After S. Ramon y Cijal, Die
 A, hyor of rods and cones; B, bodies of visand cells (external molear hyer) ; (, exturnal plexiform laver ; \dot{E}, layer of bipolar cells (internal marlan hyer) ; F intermal plexiform lityer; li, layer of ganglion cells; H, hyer of herve tibres; \quad, rods; b, concs; e, hpolar (row) cells: f, bipolar (come) cells; r, Jower bramehing of bipolar (rod) orells: r_{1}, lower braneling of bipolar (eone) ecells: a, h, i, k, ganglion cells banching in diflerent hyers of the internal plexifirm \%onc: x, contact between the rods and the bipolar (rod) eells; z, contat hetween the concs and the hipolar (cone) eells; t, Müller's ecells; s, centrifugal nerve fibre.
in the " layer of nerve cells." These axones pass over the inner surface of the retina to reach the blind spot of the eye where they penetrate through the whole retina and make up the constituent fibres of the optic nerve. The nerve fibres of the optic nerve mudergo partial decussation with those of the opposite side in the optic chiasm, and pass throngh the optic tracts to terminate in the corpora quadrigemina, lateral geniculate bodies, and pulvinar of the two sides (Fig. 355).

These three sets of elements-the $r{ }^{\text {a }}$ and cone cells, the bipolar cells, and the ganglion cells-represent the principal
morphological constituents of the retina. There are, however, certain other elements present in this membrane which must be mentioned, though their relations to the principal elements, while they have been carefully studied, are not yet satisfactorily understood. These are (1) the so-called Muller's fibres (spongioMasts of IFs), which correspond to the ependymal framework of the spinal cord and brain; (?) the so-called amacrine * cells of Ramon y Cajal (also sometimes called spongioblasts), which occur in the inner molecular layer, and which appear to be

Fig. 355. -Scheme of visual conduction path. Lettering same as for Plate II, Fig. 1.
anaxones; and (3) the horizontal cells, outer and inner, of the outer molecular layer.

* a privative, μ aкpos long, and avos fibre.

 (ajal, Jie Retina der Wirbelthieve, Tederset\% v. (iredt, Wiesh, 1s94, Tat.

 el, laver of spongioblasts ; e intermal phexiform laver : fayor of gamglion cells: a, basal laver or membrama limitans interma. IS, Mäller's fibres or epithelial cells from the retilat of ('ybrimas carpio.

Fac. 37\%.—. sertion through the retina of an adult dog. (After S. Ramon y

 aseconding end-hush belonging to the rods : e, lipolar redl with emd-brush sproal out llathe longing to the comes ; f, giant hijomar eoll with emd-brush -pread ont flat: h, diflise amarrine eedl, the variowse batuehes of whieh lie for the most mart ilieretly upon the gamglion rells; i, ase ending newe fibres; , centrifagal tibres ; and a', special colls which are very rarely impreghated; n, gatiglion coll which reed ves the emb-brash of a bipolar cril destimed for the rods; m, werve fihe which becomes lost in the internal plexiform layer; p, werve fibre of the optie-tibre layer.

The shape of Mitler's fibres is shown in the aceompanying figure (Fig. 35if). It is not improbable that they represent supporting cells.

The anaxones (amacrine cells) represent, in all probability, meehanisms for correlating the activities of the different neurones (bipolar cells and ganglion cells) with which they come into relation in the imner molecular layer. Since it is exactly

Fig. 35s.-Norve cells of the retina of the ox, stained with methyleme bue; methord of Ehrlich-Dogid. (After s. Ramón y (bial, Dio Retina der Wir-
 shows the extermal or small horizontal rells. n, cell forly rontianing very intense hhe pots; b, very film and marh-hamehed dendrites; c; axmes
 which probably arise from the large or internal horizontal cells.
in their neighborhood in the retina that the few centrifugal fibres of the optic nerve terminate, it is not impossible that the influence exerted by the cerehral centres riou the retinal aetivities is mediated by these cells (Fig. 35\%).

The horizontal cells of the outer molecnlar layer can be divided into two groups inn external group (cellate superficiali di gromdezze medlin of Tiatuferi) and an internal set (large superficial cells of 'lartuferi, large and small stellate cells of Dogiel).

The external horizontal cells are very numerons, and have long diverging dendrites, which spread out to form at thiek plexus (Fig. 358). Their axomes are extremely delicate and difficult to find, bat are deseribed by Ramón y Cajal as coming off usually from a dendrite. The axones and collaterals are distribnted in the superficial portion of the outer molecular layer.

The imner horizontal cells (Fig. 359) are of two sorts: (11) Those with descending dendrites, and (b) those without de-

 Taf', vi, Fig. 12.) a, internal horizontal cell with descemling proces; b, another cell of the same surt without desermbing proeess; re, mitral-shaped amarine rell with two branches whirl go in oprasite dire ammerine coll for the forth sublayer : esmall ganglion oell which bratheles in the second sub-bayer : f, a. h, i, j, ditlierent types of nempoglia cells; k, interstitial amacrine cell which banches ehiefly in two sub-layers.
scending dendrites. The axones of the cells with descending dendrites are very thick and long and devoid of collaterals. Aceording to Dogiel, these axones descend in order to enter the layer of optic nerve fibres, a view denied by Ramón y Cajal, who finds that they are distributed to the external molecular layer itself. The axones of the inner horizontal eells without descending dendrites are also thick and run horizontally for a considerable distance. It seems probable that the function of the horizontal cells of both sets (onter and inner) is to bring
into relation definite groups of rods with other definite gromps lying at a distance.

The question at once arises, Whicll of the elements mentioned are to be looked upon as the peripheral visnal nemrones amalogous to the peripheral spinal centripetal neurones and to the peripheral olfactory neurones? 'This question is not so casily decided, and is male more complicated by the fact that the whole retina arises embryologically (ride Section IV) from the central nerve tube, and not from a separate basis, as do the spinal and cerelmal ganglia. I prefer, though wis opinion may not be shared by all, to look upon the bipolar celts of the retina as the analognes of the spinal ganglion cells; their distal processes are then comparable to the afferent fibres in the peripheral spinal nerves, and their proximal processes to the axomes of the fibres of the dorsal roots. The rods and cones womld then correspond to differentiated epithelial epemlymal cells* with which the peripheral processes of the bipolar cells come in contaet, just as the so-called neuro-epithelial cells of the taste louds in the tongne stand in contact relation to the peripheral fibres of the glossopharyngeal and other cerebral nerves, or as the Thstzellem of Merkel are related to the peripheral processes of spinal-ganglion cells. The axmes of the bipolar cells would find their "nuclei of temination" in the onter molecular layer and in the ganglion cell layer of the retinat the latter wonld be analogoms then to the gray matter of the spinal cord and medulla (of the general spinal sensery pathes), to the muclens alie cincrea and molens tractus solitarii (of the gastatory conduction path), and to the olfactory bulb (of the olfactory sensory conduction path). This would make the ganglion cell layer of the retina, the optic nerves, and the optic tracts parts of the central nervons system. The optic nerve is then, in a sense, not a peripheral nerve. Inasmuel, therefore, as we are here consilering only the sensory neurones of the first order, the optic nerve and its course and termination will bedeseribed when the sensory neurones of higher orders are considered. It is only fair in conclusion to state that the recent studies of

[^226]
mintlons wlin!!
alid

N. vom lamhosék * makn it exfromely prohahle that the renl and cone wells in sume animals are rally (rome peripheral visual
 the retima must in such animals ber regarded as visual sernsory menromes of the seromid arder. 'There is mon obeetions, so fitr as 1 know, tor comsidering the roud cells and come cells of the retima of homan beings as actual merrmers. Nomalogoms cell is, howaper, existent in the olfatory mome membane.

In mammals two kimls of hipular erills (arbitrurily spmethin!,
 rooks, with vertical coultufte, which conter into comblution relafien with the terminal spherules of the rowl colls, and (?) bipolar
 lie in a derper plane than thesir for the rouls; these emithets onter into combledton relation with the terminal bulgings and tibuillo of the come erells. The bipolar colls mearly always come into comduction relation with several of the rod cedts, of of the reme cells. 'The number, however, varies; while me bipular coll may stand in mation formly a few, another may the in a pusition to reereive impulses from a great many. In the fovert cantalis, where the mumber of emme ents is cmommes, the intividual romes are very delicate, and the basal swelling of each cone comes into contace cxelnsively with the dembitie bult of a single hipolar coll.

* von Lonhossík, M. Histologische Untersmelmagen mis Schlajpern der

 Such a coll comsists of a distal prolomgation, the "roul apparatus," amd af" the

 the plexiform laver, partly in its extermal plex as with a deliente fibrillary
 the intermal horizombal phexis. In the extormal grambe layer there are

 there with frere ramitications (hyputhetial). In the medullary layer thas

 4(1 , represelt the mare form-namely, the rells wilh aspending anomes ; fimally, at the boflom, is shown very large giant cell, $\tilde{\sim}$ (i), which sembs ifs

 of somull]

 cmal prowesses run ont to end frow withont manifold bramelhing in among the epithelial anlls of the spiral orgin of Corti (het-

Fla. 363.-Two hipolar coths from the ganglion spimate cochlate of a yomg monse.

zins,* van (iehnchten \dagger) inside the (hactus cochleat \ddagger (Fig. 364). The medulated central prolongations or axones of these cells massed together make the nervas cochlea (posterior lateral or
many of the cell bodies of the pripheral autitory nenrones are sitmated in the rentral eochlear nuclens, but this view hus not been supported by subsequent investigators.

* Retzius, fr. Die Eudigungsweise des Gehörnerven. Biol. Vntersueh., Stoekholin, n. F., Bl. iii (1892), S. 99-36.
\dagger van Geluchten, A. Contribution it létule des ganglions rérébrospinanx. Cellnle, Lierre et Louvain, t. viii (1892), p. 226.
\ddagger The nervis sacenli with peripheral distribution in the macoln nenstica sacculi is a branch of the nervens cochlea.
cochlem root of the nervis acusticus). They pass into the central nervous system at the junction of the mechulla with the pons, and enter into relation with definite masses (mainly the nuclens N. cochlee ventralis, and the nuclens N. cochlead dorsalis, nuclens tuberculi acustici) of gray matter in which are sitnated the cell bodies and dendrites of large numbers of sensory neurones of the second order.

The cochlear nerve as it enters the rhombencephaton passes dorsalward and spinalward lateral from the corpus restiforme into the medial side of the large melens nervi cochleae ventralis, in which a large nomber of its fibres terminate (Fig. 365). A bundle of considerable size, however, am be followed in Weigert-P'al preparations as far as the nuelens nervi cochlea

Fig. 30t.-Spimal organ of (orti of the ductus coelalaris in fransverse or madial
 re, mednalated distal proesses of hipolar merve cells in gatughon spiale: f fommen mervosum in lahimu tympaniemu giving passige to a buble of the coehlear nerve libres; th, tymbanal covering of lamina basilaris; re, vas spimalo ; is, internal supporting edels which on the left side are eontinmons with the epithelimu of the suldes spiralis: p internal pillar with an inner basal cell (b) mext to it ; p^{\prime} extermal pillar with its extermal hasal cell, $b^{\prime} ;$ 2,3 , Deiters' supporting eells with phatangen processes arriving at the surfine of torti's organ, there athehod to the lamina retienlaris, r; I, Mensern's supporting cells which diminish in height toward the right side of the figure and are contimutan with C, the cells of (landins; k, cpithelial erells of the sorcalled "layer of gramules" ; i, internal hair cell, the upper end of which is hidden by the "head" of the internal pillar; i, hanis of intermal hair exll ; e, external hair cell ; e^{\prime}, e^{\prime}, e^{\prime}, haiss of threre external hair edts: n, n^{\prime} to m^{4}, varions cross sections of the spiml cord of neve distribution ; the
 Nuel's spate.
dorsalis, where the fibres appear to be continuons with the medultated fibres in the medial portion of this nucleus (Fig. 36fi, right side of figure). It is probable that the majority of the

fibres of this bundle terminate here, though some of them may pass directly through the dorsal cochleur melens to enter the strie medullares (sive acusticar), or, passing orer the dorsal border of the corpus restiforme, phange down to the region of the homolateral superior olivary complex and hateral hemnisens (Held). The position of the arens corresponding to the ven-

 combinums with the funionhas lateralis of the corl: F.l.m., faserenlas langi-

 shown more typieally on op

tral and dorsal cochlear muclei, and the relation of these to the entering root bundle, and to the corpus trapezoidemm, are well shown in Clorence Sabin's serond diagrim (Fig. 36ia). The two nuelei, thongh practically continnous with one another, are fundamentally different in structure, and a very little study onables one, even with low powers of the microscope, to differen-

Fut. 367.-Diagram repoesenting that reenostruction prepared from serial see-

 nervi cochlea dorsalis; (it., corpus traperoidenm: for, nuclens nervi fordhhar ventralis: h, portion of root bunde of cochlear nerve roming gast the vental cochlar andens to the region of the domal corhbear nuchens; l, arat ocenpied ly mednlated tibres of latemat portion of dorsal cochlear nuclens; w, area oreupied hy mednlated dibres in the medial partion of the donsal cochlatar muchens: L.L., region of lemmisens lateralis; N.e., neryis
 lateralis.

GROUPING AND GILALING TOGETIIER OF NEURONES. 551

tiate the two muclei at a glance.* A few of the fibres of the nervis cochlea, according to Held, \dagger go past the ventral nucleus without terminating in it, to enter the corpus trapezoideum

Fig. 36s.- Entrance of N. cochlea into the eentral nervons system ; portions of the contral anditory paths arre also shown. Weigert preparation. IImman fietus, 32 cm. long. (Aiter H. Hell, Areh. f. Anat. n, Physiol., Anat. Abth., Leipz., 1893, S. 210, Fig. 5.) The fignre is some what sehematic.

* The reader is advised here and in connection with other deseriptions to refer frequently to the transverse mud longitudinal sections pietured in Figs. 308 to 324.
\dagger Ifeld, H. Die centralen Bahnen des Nervas aensticus bei der Katze. Arch. f. Anat. n. Physiol., Anat. Alth., Leipz. (1891), S. 271-291.-Die centrale Gehörleitung. Arch. f. Anat. It. I'hysiol., Anat. Abth., Leipz, (1893), S. 201-248.
A. Direct system. (Periphoral anditory selnewry nempones, wr alldita bermones ot the lorder.)

B. Indirect sistems. (Auditory nenrones ot' "II order abl of higher
orders.)

Decussatio brachii conjuncfivi...

N. cochlize

FIG: 369.-Schemes illustrating termination of axomes of N. cochlere in the central nervous system, torether with some of the centailanditory nememes, (After H. IFeld, Areh. f. Anat. II. l'hysiol., Anat. Abth.. Leipz., 1s93, s. Dio.
Fig. 15.)
(Fig. 368), and so come into relation with the superior olivary complex of the same or of the opposite side. Some root fibres may possibly, he thinks, go into the one or the other lateral lemniseus to terminate first in masses of gray matter sitnated even higher up in the cerebrospinal axis (Fig. 369). The studies of Thomas,* by Marchi's method, also make it seem probable that root fibres of the cochlear nerve pass without interruption

Fig. 370.-Gagital markedly latema wection through the rhombencephabon of a fortal mouse, to show the entering N . cobhleae. (Afters. Ramón y cajal,
 79, lig. 21.) A, N. cuchlege; R, N. vestihuli: (", sensory N. trigeminus; I), corphs restiforme: a, aseconding limbs of hifureation of nxomes of N. cochlele ; b, descending limbs; bamdle of deseending limbs which rnters into the tail of the ventral muleles and inte the muedens N. cochleme dorsalis; d, deseroding limb of bifureated axomes of N. trigeminus (tractus spiatis N. trigenilii) cut tangentially.
directly into the strixe acustica, corpns trapezoidemm and lateral lemniscus. A point to he emphasized in connection with the nervus cochlea is the ahsence of any evidence for the passage of any of its axones directly into the cerebellum. Thus the nenrones of the first order as well as those of the second

[^227]order (ride infrof) of the anditory ronduction path are in marked contrast with those of the nervus vestibuli as regards their behavior toward the cerebell am.*

 20a.) a, fibre cuding in a conical bulb; b, fibwe survambing a cell; c, flue end baths coming into contut with a single eell ; d, stellate and balb; e, delirate collatemals from a fiber commered with an end bulb; f, emb bulb with a hole in it.

The axones of the cochlear nerve bifureate on entering the ventral nucleus, dividing, as do the dorsal root fibres in the spinal cord, into an aseending and a descending limb, each of which gives off many collaterals (Fig. 3r0).

The ascending limb is short, and, passing dorsalward and nackward, ends as a rule in the ventral cochlear nuclens. The descending limb is much longer. It runs pusteriorly and enters the tail of the posterior part of the ventral nucleus and in many instances passes into the nucleus nervi cochlea dorsalis.

The terminals and collaterals from the axones of the cochlear

[^228]nerve form curions end-iulorizations which eome into close contact with the cells of the nuelei terminales. 'They were first deseribed by Held, and have also been pietured by lamón y Cajal. They are well illustrated in the aceompanying figure, which shows the terminals in the new-born eat (Fig. 3:1).

The comse followed by the anditory impulses inside the remtral nervons system (anditory nemones of the seeond and of higher orders) will be cousidered in a subseguont ehapter.

SUBSECTION II.

Neurones Within the Central Nervous Systern Connecting the End Stations (Nuclei Terminales) of the Axones of the Peripheral Centripetal Neurones with other Portions of the Central Nervous System (Centripetal Neurones of the Second Order and of Higher Orders ; Central Neurones of the Sensory Conduction Paths).

('IIMPER NXXIX.

CENTRIPETA, NEDRONES INSIDE THE ('ENTRAL NERVOLS SYSTEM.

('lassifieation--'Those concermed in bodily sensations-Those pertaining to the spinal peripheral wemtripedal memones-(iromps of these-Those the and bodios of which are sitnated in the nuclei of the fanienlas gracilis and fomicolns comeatus of earh side-Fibra areman interoa-sitman imerolivare lemnisei-Deenssatio lemniseormo-Lemmisens medialis-Nucleo-cerebellar systems.

Harnse considered the memones collecting impulses from all parts of the body (including the organs of special sense) and earrying them into the nerve centres, it is necessary to camine briefly the man facts whieh have been ascertained concerning the neurones which are so disposed that they can take up the impulses, where they are left by the peripheral nomones, and carry them further. In this examination we shall follow the same plan as that adopted in our study of the peripheral centripetal nemrones and consider (A) the paths concerned in the earrying of bodily impulses separately from (B) those whose function it is to forwarl the impressions derived from the organs of special sense.

(A) Central Neurones of Sensory Conduction Paths other than those corresponding to the Organs of Special Sense.

In considering the peripheral spinal nemones we have seren over how vast a terribory the collaterals and ferminals are distributed in the xpimal coml and mednla. It is obvions that impulses arriving along a single peripheral spinal nearone ean affert nemrones of the second order ly means of eollaterats and terminals in very different portions of the gray matter of the

 bere cut through in the midhle line and turned to the side. dar ala dimerear ;

spinal cort and medulla. An immense problem here lies before us. It present we can not speak with desired definiteness conreming all the neurones of the second order and of higher orders here concerned, but have to be content with describing the relations of cortain great groups of nemrones of the nuelei terminales as far ats they have been made ont. The lower motor neurones situated in the ventral homs are, ats has been seen,
thrown under the influence of collaterals and terminals of periphrall sensory neurones, but in such an event the impulses eam be carried, it is believed, to the muscles alone; the progress

Fer. 373.- Tmasverse sertion at the jumetion of the mednlan spimalis with the

 $P \cdot$, formation retienlaris. 'This section is below the level of the derusatio pyramidatu.
of centripetal impulses toward higher centres would not be furthered. The nemrones concerned in the latter function consist of at least several well-marked groups. It will be convenient to consider (1) the central neurones pertaining to the spinal sensory nerves more or less separately from (2) those which pertain to the cerebral nerves.

1. Central Neurones, the Perikaryons and Dendrites of which are Situated in the Nuclei Terminales of the Axones of the Spinal Peripheral Centripetal Neurones.
The nemrones, the cell bodies and dentrites of which correspond to the nuclei terminales of the dorsal roots of the
spinal nerves may be considered mater the following headings:
(11) Nemrones the cell bodies of which are situated in the mclens funienli gracilis and melens fmiconli cmeati of each sitle.
(h) Nemromes the eell bodies of whichare sitmated in the nuclens dorsalis of each side.
(r) Nemrones the cell bodies of which are sitnated in the gray matter of the cord, their axones helping to form the fasciculas rentro-lateralis (Gowersi) of each side.
(1) Nemones the cell bodies of which are situated in the gray matter of the cord, their axones making up the fascien-

 (grisea) ventalis or ventral horn ; $P^{\prime} r^{\prime}$, contination in the meinhlat of the

 areressomitus.
las proprius (gromed bundle) of the ventral, lateral, and dorsal funculi of each side of the cord.

While these represent the ehiof muclei torminales of the dorsal roots of the spinal nerves, it must be pointed out that a certain momber of dorsal puot tibres terminate first ia the eere-

 cormon is not indieaterl in the lignre, thongh it is te be seen at this level. ('I. Fig. 3is.
bellum, and possibly also in the formatio reticularis grisea of the medula oblongatal (wide iuftre().
(nel ") The muclei of the dorsal funiculi (nucleus funienli gracilis and nuclens fumbuli cuncati of each side) are situated in the medula ohlongata at its jumetion with the spinal cord. The swellings on the dorsal surface of the medulan. known on eath side as the clare ind the tulurrulum rumatum, are dua to these muclei (Fig 3:20). The rlare corresponds to the ant clens: funiruli grarilis and the tuturculum cmmoutmm to the
nurlows finnima rmumati. A stuly of a sirvies of sections
 part of the spimal comed and the lawer purtion of the medulla raveals the general relation of the fibres of the dorsal fimionli

to these molei. Passing from below upward, one makes out that as the masses of gray matter begin to appear, the volume
of the fascionli of white fibres logins to diminish. In sections still higher up the nuclei ure larger and the faseienli grow pro-

Fha. 377.-Transverse section of the mednala oblougata at the level of the midale

 olivaris inferior: Xom, molens olivaris ace essorins dorsalis; Xp, muclans olivaris are

gressively smaller, until in the uppermost regions of the nuclei there are sarcely any white fibres intervening between the griay
masses and the dorsal surface, the white fibres having disappeared by ruming into the melei to terminate in them. The muelous fomionli gracilis appurs at a lower level than does the nurdens imniculi comenti and it termimetes at a lower beve in the medulla thun dees its neighbor ; the white fibres of the fascionlas gracilis have all disampured at a level a' which there is still a large mass of fibres in the fascienlus emeatus roming to higher levels.

The fibres of the dorsal fmiculi of the spinal cord terminating in the madei mentioned transfer the impulses which they earry to the dendrites and cell bodies of nemones situated there; the axones of these nemrones carry the impulses farther. A large number of these arones appear as internal aremate fibes which press in a curved direction to the raphe, decussate with corresponding intermal aremate fibres of the opposite side, forming the decenssatio lemmiseormm (Fig. 3 as), and then assume a longitmdinal direction in the so-called interolivary layer of the lemnisens (stratmm interolivare lemmisei) (Fig. :39). Firther head-

[^229]ward this interolivary layer is continuons with the lemmiscus medialis whieh runs through the pons and midbrain toward the higher centres terminating mainly in the ventro-lateral group of nuclei of the thatamus. Another jortion of the axones fiom the nnclei of the dorsal funicnli pass through the corpus restiforme into the cerebellum.

The nueleus funienli graeilis on rach side recerives the terminals of the majority of the axones whieh make up Goll's fasciculus of the same side of the cord, though it has lately been shown that a few terminals and collaterals eross the middle line to enter into the nucleus of the opposite side, forming in this way a terminal deeussation of the axones of the peripheral centripetal neurone system (Ramón y C'ajal's entrecruzumi('uto torminnl).* The eell bodies of the acurones situated in the nucleus funiouli gracilis are triangubar or stellate, and richly provided with dendrites. A part of their axones pass at first lateralward, and then curving around become directed ventralward and medialward in orfer, as fibre arenatie interne, to cross in the raphe and to enter into the opposite stratum interolivare lemnisei and thence into the medial part

[^230]of the lemmisers medialis. The conse of these filues and their terminations will be deseribed in full further on. A certain mumber of the axomes from this nueleus pass dorsalward to reach the surface of the medulla, and then rum laterally as fibue arronte asternae dorsales to enter the rerebellam throngh the corpus restiforme (Edinger, Bruce, Verrior and 'Thrner). Firther, some of the axomes before mentioned as decussating at the raphe instad of rmang longitudinally in the stratmo interolivare bemisci, phange ventrally through or aromad the pramid to rearh the lateral surface of the medalla and to enter the eerebellom through the corpus restiforme. It is believed by on Bechterew* that a portion of these fihate arcmatae externe ventrales mulergo relay in the mulei arenati. At any rale it appars that of the extermab arenate fibres having origin in the nucleus funienli gracilis, the dorsal comere this melems with the cerebellum hy meams of the eorpons restiforme of the same side (marrossed gracilar muleo-cerebellar nemrone system), the ventral by mems of the corpus restiforme of the opposite side (crossed gracilar meleo-erebollar nemome system).

The nurlens funiculi cmmati, or nurlens of Burdach's colnmen (includiag the lateral [external] mulens of Blamenant), recoives the majority of the terminals of the axomes of the faseiculns emeatus of the same side of the spinal corl, the terminal tiberes breaking up into very complieaterl bramehings in among the "islands" formed of the cell bodies and dendrites of this muclens. The cell boties in this molens arre also rather smatl, triangular, or fusiform in shape. The majority of the axones of the eefls in the pars medialis of the melens, like these of the cells in the muetens funienli gracilis, enter the medial lemmisens of the opposite side by way of the internal aremate fibres and the stratmon interolisare lemnisei. A comsiderable number of the medullated axones from this melens, however, again in agreement with the nuelens fmicnli gracilis, enter the cerchellum of the same (morossed cuneate nueleocerebellar nemrone system) and of the opposite (crossed cmeate mucleo-erebellar nemone system) side by way of the fibre arrmata externae dorsaldes et ventrales and the corpora restiformia. The majority of the

[^231]

 lomgitudinalis medialis: L.m., lemmiseos medialis: I.I., lemmisens lateralis:

 (I'repamation by Ir. John I Iewe (sont.)

 the fomienlus latematis of the spinal cord : Fllu.. fascioulus longitudinalis

 fascionli longitmanalis medialis, or nuelons commisime postorioris (aberer

 John IEwetsont.)
axones from the cells in the pars lateralis or Bhamenan's nucleus go to the cerebellim on the same side. In the cercbellam these fibres rum as a compact bundle past the nuclens dentatus, throngh the more metial of the two bundles into which the corpus restiforme here divides ('Tsehermak), to end mainly in the cortex of the vermis inferior. On the way collaterals are given off to the nucleus N. vestibuli lateralis (Deiters), and to the cerebellar unclei, especially to the nuclei fastigii.

As a result of the relative positions of the tyo nuclei, the internal arenate fibres from the nucleus funiculi gracilis are to be found at levels farther spinalward than those containing the arcuate filhres from the nuclens funiculi emeati, while, on the other hand, intermal arenate fibres from the melens funiculi cuncati can be seen at levels much higher up than those in which the last intermal arcuate fibres from the nuclens funienli gracilis are situated (Fig. 380). Miss Florence Sabin finds two main masses of arcuates comeeted with the nuclei fumienli gracilis et cmeati-(1) a lower mass probably common to the two nuelei, but manly arising from the nucleus funiculi gracilis, the majority of which decussate in the raphe (Fig. 381), a distinet bundle, however, turning forward into the stratum interolivare lemnisei of the same side, and (2) an upper larger mass originating from the anterior half of the mucleus fumiculi cuncati, apparently undergoing complete deenssation in the raphe (Fig. 380). Between these two masses of arcuates is an area of considerable width, corresponding to the posterior half of the nuclens funiculi cuncati, in which no distinct bundles of areuate fibres can be made out.

The developmental method has thrown much light upon the distribntion of the axones from these two nuelei. The study of them is rembered easier by the faet that the axones from the muclens funiculi cuncati beeome medullated some time before those from the nucleus funienli gracilis. The former are already medullated in the human foetus 30 cm . long, while the latter receive their myelin sheaths first when the foutns has attained a length of from 35 to 38 em . It is possible, therefore, to follow the course of the fibres upward separately. Withont going into the details,* it may be

[^232]stated in general that these studies have shown that the internal arenate fibres from the muelens funienli cuneati, after having crossed in the raphe, rim cerebralward in the more dorsal portion of the stratum interolivare lemnisei to form in the pons the more lateral portions of the lemmiseus medialis. A part of these fibres at the level of the inferior collieulus of the corpora quadrigemina pass dorsahwarl, according to von Beehterew, to enter the region which he designates as the corpus parabigeminum,* some of them going on to the superior colliculus, apparently to terminate in these gray masses. The majority of the fibres, however, do not go so far dorsalward, but passing somewhat laterally, on account of the red nuckeus, above this body, turn still more laterally to become connected, most probahly, as we shall see later, mainly with the ventrolateral group of nuclei in the optic thalamus, but partly with the muelens hypothalamiens (Lnysi), and partly with the nuclens lentiformis of the same side and of the opposite side. The point of importance to remember at this stage in our deseription is that the majority of the fibres of this portion of the medial lemniseus extend through the cerebral peduncle, by way of the tegmentum, into the hypothalamic region.

The fibres from the nueleus funieuli gracilis occupy in the stratum interolivare lemnisei a region rather more medially

[^233]and ventrally situated than those from the nuclens finiculi emeati, thongh it would appear that mo sharp line of division can be drawn between them, the fibres of the two systems intermixing, especially at higher levels. A little higher upa portion of these fibres terminate apparently in the so-called "moclei reticulares tegmenti pontis," those masses of gray matter situated near the raphe in the most rentral portions of the pars dorsalis pontis. The majority of the fibres, however, are comtinned throngh the pons as the more medial portions of the lemmisens medialis.* In the tegmental portion of the eerebral pelunele these fibres lie medial and ventral to the bundle from the nuclens funiculi cmeati; the medial lemmiscos, male up largely of the buntles from the two nuclei of the dorsal funieuli in this region, assumes, therefore, a sickle-shape. The fibres from the muelens funienli gracilis pass on through the tegmentum of the cerebral peduncle to the dienecphalon, where, as will be pointed ont later, the majority of them probably terminate hy end-ramifications in the ventro-lateral regions of the thatamus. Von Beeliterew's seheme of the axones passing out of the nuclei of the dorsal funienli is reproduced in Fig. 38. .

Studies by the method of Marehi, after destruction of the nuclei funienli gracilis et cuncati in amimals (Singer and Mänzer, Ferrier and Turner, F. W. Mott, A. 'Tsehermak), have shown that while the majority of the fibres extend forward as far as the thatamus, many of them terminate in the gray masses on the way (formatio reticularis grisea, melei pontis, collieuli of corporal quadrigemina).

Singer and Münzer, \dagger experimenting upon eats, destroyed the spinal extremity of the nuelens funieuli cuneation one side, and studied the ascending degeneration with the delieate method of Marehi. They found degeneration of the myelin sheaths of the fibre areuate interne, corresponding to this part of Burdach's nuclens, and were able to follow the fibres across the raphe into the ventral part of the stratum inter-

[^234]FIf. 3se.-The womse of the axomes from the numbi of the donsal limiculi to the lemmisells and to the corpus rostiforme, selomaticatly represented. (After W. vim Bechterew, Dic Lej-
 Rïckelmmark, II. Anfl.,
 219.) r, cortex of pallimm; II, mucleus lentifinmis; th, thatamus; c L, muchers hyputhalamicus (corpus baysi);
 withenlus interior; ull, corput parabigeminum of vom Bucherew; m, melens lemnisw latematis; ns, mullens olivaris superior ; I'III, muwens mervi cowher velttralis: oi, muclens olivari, infurior ; wh, mullons fumicali bateralis yentralis; $n t p$, burlons luniculi latematis domsilis: wfe, ullectos fimieali cuncati Buriachi: wit. muclevis fimiculi gracilis

 lemaiselus fibres of Seryert's comminatre.
olivare lemnisei of the opposite side. The fibres here assumed a longitudinal direction, and conld be followed through the

 olivaris intiorior, showing the degeneration whinh follows destruchon of the

 funionli gracilis: i.n.f., tibue aremata intormare deremerated on the side of

 middte aremate fibres in part degromerated om side of hesiom: i.o., mure hens

lemuisems medialis as far as the hypothalamic region and ventrolateral part of the thalamus. Farther than this they were mable to trice degenerated fibres.

Ferrier and Turner* destroyed the nuclens funiculi gracilis,

[^235]or the nuctens funiculi cuneati, on one side, in the monkey, with the aid of the galvano-cantery, and studied the ascending degeneration with Marchi's method und Weigert's method. They obtained always degeneration in the corpus restiforme on the side of lesion, but failed to produce degeneration in the same bundle on the side opposite to the lesion. They studied also the degenerations in the tibra aremate interne of the same side, and in the lemniscus medialis of the opposite side, and showed by the degeneration method that the fibres from the muclens funiculi gracilis go to the ventral part of the opposite lemniscus medialis (Figs. 383 and 384), while those from the

Fig. 3st. -Transverse section of the mednlan oblongata from the same ease as the preceding somewhat higher up. (After Forrier and Turner, ibid., pl. Ixviif, Fig. 6.) Lattering as in the proceling figure.
nucleus funiculi enneati go to the dorsal part of the same fibremass. The latter relation is well shown in Fig. 385, which represents a section stained by Weigert's method from a case in which Ferrier and Turner had cont the corpus restiforme and
destroyed the melens funirnli cmenti [Burdachi] on one side. They could not tase degencrated fibres beyond the thatams.

 in its dorsal pertion. In the ere
 muslens funiculi comeati, is ohservable : wing to the fact that the restiform looly was also destroved, the seleresed area comtains in addition tibres from

 trigeminit degenerated on the laft side owing to seetion of the werve lelwern

 N. vestimuli.
F. W. Mott,* in a most convincing series of experiments, describes the course of the fibres from the muclens fumiculi gravilis et comeati throngh the internal aremates, decussation

* Mott. F. W. Experimental Enquiry upon the Afferent Tracts of the Central Nervons System of the Monkey. Brain, Lond., vol, xriii (1205), pp. 1-20.
of the lemmisens, interolimary layers, and medial lemmisens an far as the diencophalon. He followed degenerated fibres in the monkey as far as the ventro-lateral part of the thalamu:, where the degenemation appared to cease.

Tschormak* has very recently attacked the problem again in Flechsig's laboratory at Leipzig. He destroyed the nuclei of the dorsal funienli on one side in three cuts, and studied the degenerations ly the methol of Marchi. He distinguishes four nemrone systems, the perikaryons und dendrites of which are situated in the muelei of the dorsal funienli : (1) An unrrossed system from the muclei of the dorsal fimiculi to the eevebellum; (${ }^{2}$) n erossing system from the nuclei of the dorsal fumiculi to the cerebellum; (3) it crossing system from the nurlei of the dorsal funiculi to the thatamus; und (4) a erossing system from the muclei of the dorsal funienli to the cerebrall cortex. \dagger

The first systom (unerossed system from the nuelei of the dorsal funienli to the cerebellum) origimates mainly in the pars lateralis of the nueleus funiculi cuneati [Burdachi], the medullated axones passing partly as fibre areante externe dorsales into the corpus restiforme, pirtly direetly from the anterior extremity of the muelens into the corpus restiforme. Collaterals from these axones are given off to Deiters' maclens in passing. Inside the cerebellum where the fibres of the corpus restiforme divide into two bundles-one lateral, the other medial-the fibres of the system under consideration enter the medial bundle and pass through it, giving off collaterals to the cerebellar muelei, especially to the nuelens fastigii of both sides, finally terminating in the vermis inferior. This neurone system behaves much like the uncrossed dorsolateral spino-cerebellar system (Flechsig's direct cerebellar trate, the fasciculas spino-cerelnellaris dorso-bateralis), and

[^236]accordingly the lateral part of Burdach's muclens, or so-miled muelens of Bhamenam, presents certain analogies with the noclens dorsulis (Clarke's column) of the spinal cord, in point to which C. S. Sherrington, und also Blumenan, have atready called attention.

The second system (crossing system from the nuclei of the dorsal funiculi to the cerebellum) origimates mainly in the muclens funculi gracilis [colli], but also in part from the pars medialis of the nuclens funienli cumeati [Burdachi]. The medullated uxomes ron us fibra arenate interna to the raphe, mixed with similar arcuate fibres of the third and fourth systems. Having arrived in the stratum interolivare lemmisei of the oplosite side, the medullated axones of the second system rum between the pyramis and the nuelens olivaris inferior, thence along the ventro-lateral periphery of the mednalla in the fibme circumolivares, partly aromul, and partly through the nuelei funiculi lateralis, to reach the area in which are sitnated the fibres of the fasciculus spino-cerebellaris dorso-lateralis (direct cerebellar tract). Mixed with the fibres of the latter, the fibres of the system we are considering enter the medial half of that bundle, lateral from the tractus spinalis nervi trigemini, which, headward, grows so rapidly in volume, and further on the fibres are situated in the medio-ventral part of the corpus restiforme. After giving off collaterals to Deiters' muclens, the fibres of this system enter the lateral bundle (of the two fasciculi into which the corpus restiforme divides), give off collaterals to the nucleus dentatus, and ultimately terminate in the cortex of the vermis superior, chiefly on the corresponding side, but partly by way of the superior cerebellar deeussation in the cercbellar cortex of the opposite side.

The third syystem (crossing system from the nuclei of the dorsal funiculi to the thalamus) and the fourlh sys. $/ \mathrm{fm}$ (eross-
g system from the nuclei of the dorsal fumienli to the cerebral cortex), as deseribed by Tsehermak, will be considered a little further on, when the lemnisens medialis is discussed more in detail (Chap. XLXII). In the same place the results of the studies of human pathological cases will be taken up.

The method of Golgi has afforded interesting results, especially concerning the collaterals of the neurone systems originating in the nuclei of the dorsal funiculi. The work thus far with
this procedure has been done by Hedr,* v. Kölliker, \dagger Ramón y Cujal, \ddagger und Blamenam." 'The collaterals from the axomes of the nemrone systems on the way to the cerebellom have been referred to above. Still more interesting are the findings regarding the collaterals from the axomes of the neurone systems pertaining to the lemmiscus medialis. Thus from the fibrat arenatie interne, before reaching the decussatio lemmiscormm, there are colluterals given off to the mulens N. hypoghossi, and to the formatio retienlaris grisea (in this region represented by the nuclens centralis inferior Flechsigi and the muchens hateralis inferior flechsigi). On the far side of the raphe where the medullated axones run in the stratum incerolivare lemnisei, long collaterals are given oft which pass chietly by way of the hilus into the cavity of the molens olivaris inferior to terminate in among the perikaryons and dendrites situated in the moch wrinkled gray eapsule which this body represents. lassing headward, the main axones enter the lemmisens medialis, arriving there by planging throngh between the transverse fibres of the corpus traperoidemm, and then follow the comse of the lemmisens, many fibres going as fur as the diencephalon. In the pons where the lemniselus medialis forms the floor of the pars dorsalis pontis, large numbers of collaterals are given off to the alljacent masses of gray matter. Among these may be mentioned (1) collaterals to the muclens centralis medins, $\|$ especially to its ventral part ; amil (2) eollaterals to the melei pontis, those large masses of substantia grisea situated among

[^237]the fitacienli longitudinales and fibrar transversa in the pars basilaris. pontis (Fig. :3sii).

Fio, 388.-A. transverse seetion through the postarior half of the pons. The left half of the illust mation eorverponds to the anterios, the right half to the pos-

 An.o.s., muclems olivaris superior: No.p., meloi pontis; Nif.r.t., mbeleus

In the mesencephalon collateral hamehes (and possibly terminals of stemaxones also) go from the axones of the lemmiscus medialis to (1) the muchens collienli inferioris, (:) the strata grisea colliculi superioris, (3) the moleus lateralis superior Fledhigi, (t) the muclens centralis superior, (5) the melcus commissura posterioris (obere onemomotoriuskern of Darkschewitselh), (6) the stratum grisemm centrale (centrale HöhlenIfroli), and (7) the substantia nigra.

Abstract

(mesencephatia) norsi trigemini : star.e., stratum grisemu centrale. Redfib, theres of the lemaisens medialis protaning to the nuelens funienti eunati 10. sattereyl humdes in the lemmiseus medialis; In, rekion of seatered fibres which dewhop late in the lateral tield of the formatio retieularis; f:, lem- tudinales (pyramidales) ; ath, theres of medial acessory bumble in lemmisells cerobrocorticommal path. Cirren-! tascienlus lompitndinalis medialis; s, fibres which represent the pontal cominnation of the lasere olns lateratis proprins of the spinal cord; fit $^{\prime}$, commisimal buadle lying ventralward from the brachimm conjunetivm.

13, thasistse seetiom through the hain stem ; level of pedmenti reve bri. The right half illustrates the level of the rollieuhts infierior, the immomiathes of von Bechterew); Nu.n.1II, nuclens nervi wenlomotorii; ferior: : 2n, fibres of hrachimu (undrigeminum intiorins from the colliculus the hembisens which go over intu the hasis pedunculi; f", region of the sat- of lemuisens medialis from the nuchens fimienli gracilis; zs, fibres from the 45, tibres of the hathinm comiunctivm bedore their cutance inte the red 9, fasciculus hongitudinatis medialis; 31, tihers of the donsal part if the com- corperis mammilaris, ; in fibres from the suhtantia grisen of the coblicalas sulntantia nigra with the cerebral hemispheres.

Further on in the hypothalamie region of the diencephalon the studies with Golgi's method have thus far not yielded wholly satisfactory results, owing in large part to the complexity of the region and the pancity of our general knowledge concerning it. Hold, however, observed with silver chromate impregnation large, coarse axones which enter the ventral part of the thalamus, where they divide manifoldly, and form thick feltworks of fine branchings extending for considerable distances. He made out that these axones come in part from the bands of white matter dorsal to the nucleus hypothalamicus, (corpus Laysii), and concluded that they correspond to the fibres of the sensory cerebral paths (both lemniscus medialis and brachium conjunctivm), and aceordingly made the statement that at least a portion of these paths does not extend all the way without relay to the cerebral cortex, hut that the nenrone systems concerned terminate definitively in the thalamus. This observation is a pleasing confirmation of the views based upon the study of pathologieal degenerations in haman beings with Weigert's method (von Monakow, Mahaim), and upon the examination of the central nerrous systems of experimental animals (Singer and Münzer, F. W. Mott, Ferrier and Turner, Tsehermak).

The stadies of Blumenan with the method of Golgi proved that the axones of the cells of the nuclens fumiculi gracilis, together with those from the pars medialis of the melens finniculi enneati, pass chiefly in arches to the raphe, where they cross to the opposite side and assume a longitudinal direction in the stratum interolivare lemnisci. A number of these fibres bifurate in the interolivary layer, one limb ascending, the other descending. He conld follow the axones of the large perikaryons in the pars lateralis nuelei funiculi cuncati into the corpas restiforme.

It is obvions, therefore, that in addition to carrying impulses for long distances cerehralward, the neurone systems under consideration are well adapted for phaying an important role in connection with the complicated reflex activities, the centres for which, it is believed, are situated in the medulla and pons.

CHAPTER XL

THE NUCLEUS DORSALIS AND TUE ASCENDIN゙G HORSO-LATERAL SPINO-CEREBELLAR NELRONE SYSTEM

Clarke's column or the nucleus dorsalis-Perikaryons and dendrites-A xones of direet cerebellar tract-Myelinization-Relntion tocorpus restiforme -Terminations in cerebellum-Collaterals to nuclens dentatus.
(ad b) We have seen that collaterals and terminals from a certain definite region of the dorsal funienli of the spinal cord, namely, those from the middle area of the fasciculus cunentus (part of Fleschsig's middle root zone), enter and terminate in the nueleus dorsalis (Clarkii, Stillingi). This longitudinal column, described by Loekhart Clarke * as the " posterior vesicular column," and called "Clarke's column" by von Kölliker, seen in eross section of the thoracie spinal cord on the medial side of the neek of the dorsal horn of gray matter on each side, extends uninterruptedly from the level of the third lumbir nerve below to that of the seventh cervical nerve above (Fig. 38\%, C and D). Corresponding masses, separated from the main column, are fonnd in the sacral and cervical regions; that in the sacral cord is situated at the level of origin of the second and third sacral nerves, and is known as the "sacral muelens" of Stilling. \dagger The "cervical nuelens" is situated at the level of the third and fourth cervical nerves. In many respects the pars lateralis of the nucleus funiculi cuneati, or Blumenan's uncleus in the medulla, corresponds to the nucleus dorsalis of the spinal cord.

In the nuelens dorsalis are situated rather large multipolar eells with numerons mueh-hranching dendrites (Fig.

[^238]388). Ramón y C'i, jal and ron Lenhossék divide the cells in this muclens, the majority of which are multipolar, into two groups-(1) stellate or polygonal ; (?) spindle-shaped ele-

Fif. 387.-Cross sections throngh the hmman spinal eord, staned with carmine. (After JI. Obersteiner, Anleitung beim itndium des Banes der nervösen

 atha: (\subset, canalis contralis; ('m, commissura medula spinalis; C'a, corma
 comeatus Burdachi: Pinf, fascicolus gracilis Golli: Ful, funiculus lateralis;
 solitarins: Pr, formatio retioularis ; Ra, radix ventralis; $h p$, radix dorsalis; Sy, substantia gelatinosa Kolandi ; Nh, sulens lateralis domalis; Simed, septum medjanum darsale ; sim, septum intermedimm dorsale; Til, tractus intermodio lateralis. 3 , transwerse sertion at the level of ('vi; Irm, processils cervialis medius corm ventmas: Ti, colamma intermedio-lateralis. (
 transerse sertion at the level of ' T xii; (C , muclens domalis. E, transwerse section at the level of $L \mathcal{L} ; m$, medial cedl gronp of the cornen ventralis; Ir, lateral ventral, M, latemal dorsil, amd r central ecll gronp. F, transverse seretion at the level of siai m, medial, lel, lateral-dorshl cell group. (i, transurse sertion through the lower part of the conns medularis at the level of origin of the N. coceggens.
ments. Mann* has reeonstructel examples of the nerve cells of this nurleus, one thonsamd times embirged. Ite asserts that the cells are essentially bipolar (in agrecment with Mott), and that they send one axis rylimer upward, the other downward.

 shown at the upere lelt of fignme beromes the axis rylinder of a medullated tibre of the tascichlus cerebello-spinalis or aliect cerebellar tact).

The axombe of most of the eerls sitnated here pass ont, though sometimes wither indirectly, to the fasciculus cerehello-spinatis
 sig) of the same side. Flechsig's \dagger studies of myelinization (Fig. 389), and those of Mott, ${ }_{\ddagger}$ and especially of II. 'T'.

[^239]Patrick* on secondary degenerations, made it almost certain that the axones of the cells of the nuclens dorsalis pass upward in this tract. The actual proof of this has, it is said, been fur-

Fita. 3s9. - Frontal longitudinal section at the junction of the pars thomealis and pars lmmalis of the spinal cord, illast mang the relation of the melems dorsalis to the tasereulus spino-erehellaris damo-lateralis. (After 1'. Flechasig,

 cerebelar tract, the borizontal direction being mantamed "ntil the rompact
 stantia alla (limiting laver) : e, mednlated axomes from moclens forsalis to taseioulas spino-erehelaris dorso-lateralis (direct ecrebollar tract) ; r, fibre taking a steplike course, doubthes belonging to the dirext cerebrllar tane ; z filre bomalle of anasmal course near the murlens donsalis: y, fibre bumdles which bend aromed ont of the horizontal direction to descond longitndinally (nature donbtial).
nished by Laura. The axones are very long, rmnning the whole length of the spinal cord to the medulla, whence they pass by way of the corpus restiforme into the cerebellum. The fibres
pp. 479-495.-The Bipolne Cells of the Spinal Cord and their Connections. Brain, Lond.. vol. xisi (1890), pl. 483-448.

* Patrick, II. 'T. On the Course and Iestination of Gowers' Truct. J. Nerv. und Ment. Dis., N. Y., vol. xxiii (189(i), Pp. 85-107.
which in the adult are of a very large calibre become medutlated at a later period in the embryo than those of the lateral ground bundle.

In the thoracic cord the medulated axones of the uncrossed dorso-lateral spino-cerebellar tact which we are here considering make up a rather narrow stripe at the periphery of the dorsal half of the lateral funiculus. They thas oceupy the region between the lateral pyramidal tract and the surface of the cord, and are situated dorsally as regards Gowers' tract (Fig. 390). The fibres, corresponding to the location of their

Fig, 390. - Sehematic transererse section throngh the pars cervicalis of the me-

 tralis; Cop, cormu dossalis; (i, fascionlus ventro-lateralis (iowersi f fisd fas-
 bateral tield of fumbulus dossalis: is, intermediary bundle of fumionlus
 sig: L. Lissumer's faseiculus: m. marginal zome; Pys, fasciculus cerebro-

 limiting hyer: sur. substantia gelatinusa centralis: I'f, hiseciculus ventralis
 ". dorsal root fibre.
cells of origin, appear first in the nppermost part of the lumbar cord, and gradually increase in mass as the cord is ascended,
owing to the continmed accession of now fibres from the unclens dorsalis at successive levels. It the junction of the cervieal cord with the medulla oblongata this fasciculas cerobellospinalis Fleehsigi comes to ocenpy the angle between the gray matter of the dorsal horn and the bateral surface of the cord. The fibres become displaced dorsalward and help to build the eorpus restiforme, being the carliest of the tibres of the latter bundle to become medullated (Fig, 3:1). The tibres of the

direct cerebellar tract are merlullated at the fifth month of fotal life (Bruce). In fortuses from ${ }^{5} 5$ to $2 \% \mathrm{~cm}$. long, one ean follow these medullated uxones in serial sections up through the

 fortas at level of hast (proximal) portion of melens fastigii. The muclens globosins consists of seremal parts. (After Simede de Sanctis, Monatssidar. f.
 denusation commissure; (!.D., corpus dentatum sell ciliare; Cir., corpus restiforme ; L, melens emboliformis; Fh, floceulus, with its pedmucle; Fis.l.

 $r . I^{\prime}$, (ractus spinalis nervi trigemini ; t.b.c., nuclens mervi cochloe domsalis.
corpus restiforme to their terminations in the vermis. They pass by the anterior part (giving off collaterals to it) of the corpus dentatum mainly on its lateral side to pass out to the cortex of the dorsal and proximo-ventral portion of the vermis, partly on the same side, but to a great extent by way of the large commissure (Figs. 392 and 393) also, on the opposite side, where the fibres enter the gray substance, lose their myelin sheaths, and terminate by end-ramifications in among the nerve cells and their processes situated there. Another smaller portion of the corpus restiforme, its so-called "medial bundle," passes, partly medially and ventrally as regards the cerebellar nuclei (nuclens dentatus, nueleus globosus, nuclens emholi-
formis, and muclens fasigii), partly actually throngh these gray masses torminate chiofly in the cortex of the vermis inferior. Some of the fibres, however, pass throngh the commissma cerobelli inferior, others throngh the interfastigial commissime It is not smbrising, therefore, that some time after section of the fascienlus in the upper cervieal cord in young animals von Monakow should find that there had resulted atrophy of the corresponding half of the vermis. The area whieh is orenpied by these fibres is shown in Fig. 3!日. The fact that the fasciculus cerebello-spinalis,* all the way from the lower

 f.l., fibres lying lateral from the brachime conjonetivam, which joint the

 harge anterior eommasame; i.f., intertistigial dernsation.

* On aceount of the direction in which impulses are conducted by this tract it is unfortmate that it has hern designated a cerebello-spinal fascieulus: it would be more appoprime to apply the term spino-cerebellar to the bundle. In a revision of the nomenclature. I would suggest that fasciculus spino-cerebellaris dorso-lateralis be considered as a suitable name for the tract.
thonacie region to the corpus restiforme in the meslulh, is sitnated on the very surfine of the cord explains why in diseases like cerebro-spinal meningitis it is espectally expeed to injury.*

Fus. 30.- Frontal sertion throngh rhombencephaton of monkers: destruetion of

 athlitum tibres l'rom the mele

 IVI, melens N. facialis: l"MI, N. vestibuli.
Accorling to Patrick, whose studies are among the most careful we possess, a certain number of the fibres of the fasciculus do not enter the cerebellum through the corpus restiforme, but pass on further headward in company with the fibres of Gowers' tract.

* Barker. L. F. On C'ertain Changes in the Cells of the Ventral IJorns and of the Nuchens Dorsalis ('larkii) in Epidemic Cerebro-spinul Meningitis. Brit. M. J., Lond. (1897), ii, pp. 1839-1841.

ClIAPIER NLI.

 of bdinger-'lhe ventro-lateral superior spino-fundrigeminal momone system-L'he ventro-hatemb spino-thalamic system-Relations ta the lemmisens lateralis-Rossolimos stulies-l'he inforion spino-pandrigeminal nemrone system- The spino-podmentur menone system (to the substantin nigra)-'lhe spino-lentiformal neurone system-'lhe ventro-lateral spino-erebellar restiformal nemrone system.
(ral r) The cell bodies of the neurones, the axomes of which go to make the faserenlas ventro-lateralis superficialis ((iowersi), ordinarly known as Gowers' tract, are situated in the gray matter of tho simal cord, apparently, partly in the central portion of the ventral horns, partly in the middle zone of the graty sulstance (v. Lemhossik). The axones of the fasciculus coms in part directly from the gray matter of the same side of the cord (axomes of tantomeric nemrones), in part indirectly fiom the gray matter of the opposite side * of the cord by way of the ventral commissmre (axones of heteromeric neurones). The correspombing bundle of mednllated axones in the white matter, whieh bears the name of the distinguished linglish nemrologist Gowers, \dagger degenerates upward on transverse lesions of the corl,

[^240]a finct determined hy (iowers himself, and contirmed hy 'Tooth, Francotte, Barhacei, und others. The size and Imsition of the degenerated area varies acoording to the position of the lesion, owing to the circumstance that the tract is mude up of fibres which enter it at varions segments of the cord. The tract first becomes visible in the uphermost region of the lumbar cord, being situated on the surface of the lateral funiculas ventmily and laterally as regards the lateml pyramidal traet; it inereases notahly in volume as the cord is assemded. Higher up in the thoracie region the fibres form a stripe along the ventro-lateral

Fui, 305.-Transerse sertion of spimal rorl at level of the fourth cervical sem-

aspert of the cord in front of the fasciculus cerebello-spinalis Plechsigi, hut among them are mixed many filures of the faseicwhan ventralis et lateralis proprins. In the cervical cord Gowers' hundle forms a more extensive and more compact mass, extending from the direct cerebellar tract of Flechsig hehind to the ventral roots in front (Fig. 395). It would appear that many of the fibres in the tract muler consideration continue up for only a short distance when they turn in to end in the gray matter of the cord, thas representing shorter and longer longitudinal assuciation tracts betwern the spinal segments. Thas,
in hmman eases, where a spinal losion has existed low down in the cord the main mass of the ascending deqeneration in Gowers' tract ean be followed as a rule no firther up than the cervical cord. In the case deseribed by (iowers, of lesion in the upper part of the lmmbre enlargement, it was impossible to follow the degenemation ahove the upper part of the cervical enlargement, and in a case of lumbar paraplegia, studied by Sehatfer * with Ma"chi's method, it was not possible to follow degencrated fibres in (iowers' bundle above the level of the root of the second cervical nerve. Moreover, in lesions at any level, the number of fibres degenerated decreases , ogressively as successive sections in ath aseending direction are studied. According to the observations of Barbarei and others, the longest fibres of this fascienlas run in the parts of the tract situated nearest to the periphery of the cord.

The upward continuation in the mednlla of Gowers' tract has been the topic of much diseussion. A number of investigators believe that a portion of it at least is continued directly or by relay into the medial lemnisens. Von Bechterew, who independently isolated the fasciculus as a separate tract by the embryological methor of Fleehsig, states that it is mednlated at the beginning of the eighth month of fortal life. He followed it into the medulla as far as the region of the nuclei laterales, where it lies close to the periphery of the ventro-lateral surfare. lle inclined to the view that the fibres of ciowers' bundle terminate in the more ventral of the two nuelei laterales. It was early shown, however, by the experiments of Loewenthal, that destruction of the left lateral funienles in the dog was followed by a degeneration of the fasciculas ventro-lateralis superficialis which could be followed up to the upermost part of the pous, where it turns dorsalward in order to pass near the brachinm conjunctiomm throngh the velum modulare anterims into the ecrebellum. At that time Lowenthal named this fasoboulus the "ventral rerebellar path." Similar experiments wore mate

[^241]by Auerbach* with the aid of Marehi's methoif he wats able to follow the degenemated fibres to their temination in the ventral parts of the superior vermis. We found three faseionli extending from the cord to the corehellum : (1) a dorsal cerebellar trate

 dorso-latembis are miled in the rome atm in har lower part of the medulat.

 rearehes the level of the N . trigeminus: passing beyond this it forms 1 lown

 of the sumerion vermis.
(Flerhsig's tract) emting in the dorsal part of the vermis superior: (: $: ~$ a ventral cerchellar tract ((iowers' trant) ending in the rentral parts of the vermis: and (:3) a thind smaller homble arising in the

[^242]lumbar cord and accompanying Gowers' tract as far as the level of exit of the nervus trigeminus, where it left the hatter to pass through the corpus restiforme into the cerebellum toward the nucleus dentatus. The exact course of the fibres has also been very carefully worked out by Mott* and by Schaefer in monkeys by means of experimental section and subsequent study by Marehi's method. The English neurologists find that in the pons the fibres "lave their ventral situation, forming a loop over the fifth nerve; they are then directed obliquely upward and baekward, to the surface of the superior peduncle, forming a layer of fibres contmuous with the valve of Vienssens and separated from the peduncle by a thin hayer of gray matter; they then run downward on the posterior surface of the perlunele as far as its junction with the cerebellum at the isthmus, where these degenerated fibres can be seen streaming inward to the superior vermis." The aceompanying diagram shows in general the conse of the two principal tracts which ascend from the spinal cord to the cerebellum (Fig. 396).

In human beings, however, the upward continuation of (iowers' tract above the medulla was first followed by Patrick \dagger as far as the region of the corpora quadrigemina (Fig . $39 \mathrm{~m}_{\text {a }}$).

IIe found along with the degeneration of the ventro-lateral spino-cerebellar bundle marked degeneration in the lateral lemnisens. In 1896 he published in this comntry the results of his experiments on eats with the aid of the method of Marchi. He found after hemisection or total transverse lesion of the spinal cord ascending degeneration in the region of (iowers' tract as far as the cerebellar worm, and stated that whereas the dorso-lateral spino-cerebellar tract terminates in the dorsal and proximo-ventral portions of the vermis, the fibres of the ventrolateral spino-cerebellar tract are altimately distributed in the rentral and distal dorsal parts of the vermis as well as to the lateral lohe.

[^243]

Fug. 39s.-Arending degeneration of the faspiculus ventwolatombis fowersi

 superior hatf of the malens olivaris inferiar. E., level of the genn intermam

forme. Fr, traswers section at the fevel of the matix N. trigemini a, fowers bundle bending aroma into the hook: b. Gownes lamelle ather the

Risien Russell * finds that in man the fibres of Gowers' tract begin as far down as the third or fourth lumbar segment. He insists further that thongh there is marked "overlapping" or " mixing" of the efferent with the afferent tracts in the ventrolateral region of the cord, the main representation of the afferent tract is internal to that of the efferent tract, that is to say, Ciowers' tract is separated from the periphery of the cord by efferent fibres.

In 1896, Hoche \dagger was able in two human cases to follow the tract throngh various levels of the cord, medulla, pons, and midbrain, and thence back through the brachimm conjunctivum or medullare anterins into the cerebellmm. The tindings in one of his cases are well illustrated in Fig. 398. In the second of his cases he thought he cond make out a decussation of the fibres in the roof of the fourth vencricle. It is evident, therefore, that 'Testut, Edinger, and Mott are correet in assmuing the existence of two direct tracts from the spinal cord to the cerebelhm, and it seems likely that, in the future, Flerhsig's tract will be known as the fascienlus spino-ecrebellaris dorsalis (or dorso-lateralis), and (iowers' tract as the faseicnlus spinocerebellaris ventralis (or ventro-lateralis).
'The cerebellar termination of Gowers' tract has been made out also in human cases with Marchi's method by 1 . Sölder \ddagger and by Worotynski.\#

The newer investigations make it appear that what we have designated above as Gowers' tract consists of at least several distinct neurone systems. The principal mass is the fascieulus spino-cerebellaris ventro-lateralis, which goes through the brachiam conjunctivom or velum medullare anterius to terminate in the cerebellum. This corresponds to the ventro-lateral conjunctival spino-cerebellar system of the Swiss and Germans, and

[^244]might very well be called the systemu [neurouicum] spino-cerebellare centro-luterute conjuncticule. The researches of Edinger,* Mott, \dagger and others make it appear that several other nenrone systems exist, whose axones take a similar course for at least a long distance in the spinal cord and rhombencephaton.

Edinger, in 1889, from studies of myelinization, came to the conclusion that many of the medulated axones ascending in the fascienli preprii of the rentral and lateral funienli arise from cells of the dorsal colum of gray matter in the mposite side of the spinal cord. The erossing of the axones, he believed, oceurs partly behind the camalis centradis, partly in front of it, by way of both the commissura grisea and the commissura alba. LIe separated this crossed ascending ventro-lateral system from Ciowers's tract.

The most important observations in this comnection are those of Mott, who, experimenting on monkeys, stutied the resulting degenerations hy the method of Marehi. Mott has clearly distinguished, in addition to the (largely erossed) conjunctival spino-cerebellar system, (1) a rentro-lateral superior spino-quadrigeminal system and (${ }^{(2)}$ a ventro-lateral spino-thalamie system.

The ventro-lateral spino-quadrigeminal system (or, as it might very well be designated, the systemn [uenromirum] spinoqualrigeminum remtro-laterale spmerius) sends its axones, the exate origin of which is still donbtful, upward in the smbstantia alba of the spinal cord, where they are sitnated at first in the internal (central) of the three zones of white matter at the region of exit of the ventral roots. lassing up throngh the ventro-lateral region of the cord, they ascend into the medulla oblongata, where they are found among the other fibres which represent the ventro-lateral portion of the continuation (in the medula) of the rentro-lateral funiculi of the eord. The fibres

[^245]which at first lie lateral from the nuclens olivaris inferior come higher up to be sitnated ventro-laterally from the nuclens olivaris superior. While the ventro-lateral conjunctival spinocerebelar system turns dorsalward, at a level corresponding to the nervus trigeminus, just behind the colliculns inferior, so as to pass lateral from the tractus spinalis nervi trigemini into the velum, the spino-guadrigeminal system of Mott contimes a course ventro-medial from the tractus spinalis nervi trigemini and from the nuclei terminales nervi trigemini ruming mixed with the bundle of fibres which descends from the nuclens ruber of the opposite side to the lateral funienli. Accordingly, the spino-quadrigeminal bundle comes to lie dorsal from the level of the meleus olivaris superior and between the fibres-of the lemnisens lateralis which here pass dorsalward. The fibres of the spino-quadrigeminal system lie in the medial portion of the lemniscus lateralis medial from the mucleus lemnisci lateratis. At the level of the collicnlus superior the spino-quadrigeminal fibres berome separated from the descending axones from the opposite red molens, since the bundle of the latter, ventro-lateral from the muclens ruber, has reached this lateral position by passing from the nucleus ruber of the opposite side through the decussatio tegmenti ventralis in the raphe lateralward. The spino-quadrigeminal system, on the other hand, turns medialward into the substantia grisea of the collienlus superior in order to terminate by end-ramifications in among the perikaryons and dendrites of the neurone systems situated there, mixing with similar end-ramifieations from the tractus opticus and from the anditory axones of the lateral lemnisens system.

Mott's spino-thalamic fibre system (or, as it might be called, s:!/stemn [neuromicum] .ppino-thalamirmm erntro-laterale) also takes its origin in cells in the gray matter of the spinal cord, but just in what regions and whether on the same or on the opposite side, or both, does not seem clear. The mednllated axones ascend throngh the ventrolateral region of the cord mixed with those of the spino-quadrigeminal system and to a certain extent with those of the conjunctival spino-cerebellar system. In the medullit oblongata the course of the path is the same as has been described above for the spino-quadrigeminal'system, and the fibres of Mott's spino-thalamic system appear to be mixed, not only with those of his spino-quadrigeminal
system, but, like the latter, also with the descending fibres from the midlorain to the spinal corl. At the level of the colliculas superior, as has been mentioned above, the descending medulated axomes from the red muelas to the corl berome separated from the common buadle (in the medial part of the lateral lemnisens), as do also the ascending spino-fuadrigeminal tibres. The medullated axones of Mott's ascending spino-thalamic system, however, are continued with that portion of the lemmisens lateralis which goes past the colliculus inferior without stopping in it. Further on they become more or less mixed with the medullated axones of the lemniseus medialis which are seattered more or less diffusely in that region of the tegmentum which lies medial from the corpus geniculatum mediale. It seems likely that the axones of the spino-thatamic system enter the hilus thalami and terminate in the ventrolateral region of the thatamus along with the principal axones of the lemniseus medialis (those derived from the cell borlies in the uncleus funienti gracilis and the nucleus funiculi cunenti) and the axones from the cerebellum (by way of the brachinm conjunctivum and red nuelens, to be described further on).

For further notes on aseending (eentral-ixone) spino-thalamic neurone systems, the reader is referred to the publications of Mott,* Patrick, \dagger von Silder, \ddagger and Tschermak. ${ }^{\#}$

Before laving the subject of the fascienlas ventro-ateralis superficialis (Gowersi) reference must be made (1) to the recent publications of Rossolimo and (*) to the findings of Tschermak concerning an ascending ventro-lateral restiformal cerebellar system.

Rossolimo, || in an article accompanied by seventeen illustrations, deseribes his findings conerrning secondary degenerations in the region of Gowers' triact. He employed the method of Buseh, Δ a modification of the method of Marchi, which possesses, he thinks, certain advantages over the latter procedure. The patient, a girl of twelve years, had suffered from retroperi-

[^246]tomeal sareoma, with multiple metastases, the spimal corl being involsed whefly in the lower thorade and lambar region. In the ventro-lateral region he found a very definite degeneration, which on the whole correspombed to the position of Cowers tract in the spinal cord as well ats in the medulta and pons. A few of the degenerated tibres laft the bumbe to cuter the revebollum by way of the corpus restiforme. No fibres, areorling to Rossolimo, passed by way of the brachinum combuntivam or velum medullare anterius into the cerebelam. On the other hamd, the fibres mulergen a partial decussation in the velum and then ron to three different regions-(1) into the colliculus interior, (*) into the substantia nimpa Soemmeringii, ann (:3) into the globme pallidus of the mulems lentiformis. Rossolime comeludes that his case is a sharp contratietion of the series of results obtained by Loewenthai, Anerbinh, Mott, Horde, and others comerning the termination of Gowers's trat in the berebellum by way of the brachimm ronjunctivam and relom. This 1 em not agree with. On the contrary, Rossolimos studies are to be looked upon not as contratioting previons knowledge, hat as extending it in a most desimble way. Russolimo appars not to have recornized the fact that fowers": tract can no longer be considered a morphological entity. It is much rather a complex of fibre systems by no means homologous with one amother. We have seen above that it contains (f) the medullated axones of the systema mearonicm spino-ecelellare ventro-laterale conjunetivale, (${ }^{(2)}$ the medulhated axones of the systema neuronicum spino-quadrigeminum superius, and (:3) the medullated axones of the systemat neuronicum spino-thatimicum. We shall see in a moment from Tsehermak's stulies that Gowers' tract also contains (4) a systema neuronicum spinucerebellare ventro laterale restiformale. It apparss to me that the correct interpretation to put upon Rossolimo's studies is the following: From the lower portion of the spinal cord there ascend medullated fibres in the comrse of Gowers' tract mixed with the fibres of the neurone systems above mentioned. The termination of these fibres is partly in the cerebellum (corresponding to 'Txehermak's ventro-lateral restiformal spino-cereloellar system), but chiefly in regions hitherto not known ats receiving tibres of Gowers' tract-riz, the colliculas inferior of the rompora quadrigemina, the substantia nigral and the numbers lentiformis. If Rossolimo's observations and the interpretation
here suggested be comeret, we shall have to pmsh the amalysis of the romplex of fibre systems represented hy dowers' tract still farther than that givell above, and add (5) a systema mon-
 ("ums spinc-pedumentare (ad substantian nigram), and (i) a systemat neurouicum spino-lentiformale.

Tsehermak* hat described at some length a ventro-lateral spino-erebellar restiformal nemrone system. \dagger. Ifere section of the ventro-lateral funiculi at the level of the mulder of the dorsall funienli, he fombl by Marehios method degemerated fihers pasing dorsalward, in part at least, from the region mow misully designated as that of (eowers' tract in the medulla. 'These fibres consist of two groups: ((t) tibres at first lying in the fissurall part of the remains of the rentral fimionlus, and farther on coming to passiat labalwarl dorsal from the remains of the ventral horms, and still higher dorsal from the mulens olivaris inferior, and (?) fibres which join the former-viz, transerse fibres sitnated at first on the medial side of the muclens limiculi lateralis as well as latero-dorsal from the melens olivartis inferior. . In
 become aggregated into a thick trallsverse bumble dorsall from the muclens fimienli lateralis, in which probatby terminate mmerons branches of aseending fibres from the spinal coded; the bundle arrives in the white matere at the ventral angle of the tractus spinalis nervi trigemini. The libres under consideration mext pass, looplike, dorsalward and arrive, by way of the medial portion of the tingential fibre-eovering of the tractus spinalis nervi trigemini, into the ventral part of the corpus restiforme. 'Tsehermak thinks that the fibres pass by way of the lateral bundle, of the two buntles into which the corpus restiforme divides, into the vermis superior, probably to both sides of the midnle line. It is, as 'Tsehermak remarks, rather. interesting to note that whereas Patriek deseribes a few fibres of the direct dorsolateral 'erehellar tract which, instead of entering the cerebellum by way of the corpus restiforme, pass on to enter that organ higher up by way of the ventro-lateral conjumetival spino-cerebellar system, these findings make it appear that an exact combterpart exists in these fibres of the ventro-lateral

[^247]spino-cerebellar tract which, lower down than their fellows, pass into the cerebellum, taking the short cut by way of the corpus restiforme. I take it that the few fibres observed by Rossolimo, above referred to, passing from Gowers' tract into the corpus restiforme, belong to the same nemrone system as that of 'Tschermak here montioned. It seems likely, too, that 'I'schermak's system is identical with the third of the three ascending spino-cerebellar systems of Auerbach nbove referred to.

CHAP'TER XLII.

ON CENTRAL-AXONE (CENTRIPETAL) NEURONE SYSTEMS IN THE FASCICLLI PROPRII OR (GROUND-BCNDLES OF TILE SPINAL CORD.

Shorter and longer meurge systems-Intersegmental or internuncial association axones-Perikaryons nud dendrites-Tantomerie, beteromerie, and becateromeric neurones-Axones and collaterals-'The lateral limiting layer-Its ventral and dorsal parts-Bundles in the rhombencephalon contimous with the fascienli proprii of the spinal eord-The aseending spino-cerebral system in the fascienhas longitudinalis medialis - Relative mombers of ascending and descending axones in these bundles.
(cul d) The central sensory conduction paths corresponding to neurones the cell bodies of which are situated in the gray matter of the cord, the axones helping to make up the faseiculi proprii of the ventral, lateral, and dorsal funiculi of the white matter of the cord, have been the ohject of mueh study, but as yet only partial and unsatisfactory information concerning them is available.* The fasciculi proprii of the white matter contain fibres of shorter and longer neurone systems, both asecnding and descending, crossed and uncrossed. The shorter fibres appear to rim up and down close to the gray substance; the longer fibres tend to ocenpy areas nearer the periphery of the cord. The nen-

[^248]rones concerne! serve to connect segments of varions levels with one another, and their axones are aceordingly sometimes refermb to as "intersegmental" or "internmeial" axones or ats those of "longitudinal association fibres." The shortest ones conneet segments immediately adjacent to one another ; the longer ones may comet widely separated levels of the spinal cord and rhombencephalon, or may even bring the spinal cord into relation with the mesencephalon and diencephaton. There is much reason to believe that many of these neurones, especially those with ascending axomes the myelin sheaths of whichaccordingly undergo secondary aseending degeneration after lesion, have to do with the carrying of centripetal impulses toward the higher centres, and they are areordingly appropriately considered here.

The perikaryons and dendrites of these nemrones have been studied especially by Ramon y Cujal, von Kölliker, van Gehuchten, and von Lenhossék. Those whieh send axones to the fasciculus ventralis proprins are sitnated (1) in the most medial part of the ventral horn (Kommiswmrempruphe of von Lenhossék), and (${ }^{*}$) in the ventral and midilte parts of the gray substance. Those which send axones to the faseiculus lateralis proprins are situated in the middle regions of the gray substance and in the dorsal horns as far back as the substantial gelatinosa of Rolando. Those which send axones to the fasciculus dorsalis proprias (endogenous fibres of the dorsal funienli) are but few in number, and appear to be sitnated in the gray matter of the dorsal horn (Fig. 400). The axones of these varions cells pass partly to the white matter of the same side (those of tantomeric neurones, van Gehuehten), partly to the white matter of the opposite side (those of heteromeric neurones), and occasionally, after divison, to the white matter of hoth sides (those of herateromeric nemrones). The calibre of the axome sometimes increases at a distance from the cell hody. In the white matter an axone often divides into an ascending and a descending limb. Numerons collaterals are given off into the gray substance, so that a given meurone may affect not only the gray matter of the segment in which its axone terminates, but also, by means of collaterals, the gray matter of intervening segments. The arrangement of the whohe mechanism here under consideration seems to be that espectially adiapted for co-ordinating the activities of the gray matter of different levels. In so far as it is concerned in mediating the condurtion

Fig. 400.-Tantomeric, heteromeric, and hecateromerie neurones as revealed by (iolgi's methos in the pars lambalis of the hanam sinat cond. Combined from a momber of prepamanis taken from a haman embro 30 cm . long. The lower motor ne日romes, the eommisamal medrones, the perikatyons of which are situated in the ventromedial part of the vent mal hom, and the dembraxames of the substatia grisel hate mot beror repesented. After M.

 situated in the middle zone of the substantia grisea, their insomes passing to the vental or lateral fimioulas, where the assme a bomgituliat divetion:
 passing wentmatwe to bifureate, the limbs of hifncation ratering, ome of

 af which send axomes to the dorsel fimienti.
of impulses to the higher centres concerned in sensation, the mechanism must, for the most part, be looked upon as a comduction path of many relays, that is, of many superimposed nemrons, the impulses which travel abong it passing alternately from gray matter to white matter and from white matter to gray matter over and over again as tho neural axis is ascenderl.

The so-ealled hateral limiting layer, or fascieulus lateralis limitans,* was first deseribed by Flechsig on the ground of studies of myelinazation in 18\% By it he meant the portion of the lateral funiculus, close to the substantia grisea (F. l. l. in Fig. 39:3). Flechsig's ideas of the origin of the fibres of this lateral limiting layer were vague, althongh he felt sure that it represented a complex of fibres of different sorts. The area has been further differentiated by von Bechterew and by Bruce.

Von Bechterew \dagger states that the fibres of the lateral limiting layer do not have their origin in fibres of the dorsal roots, since this layer does not degenerate when the dorsal routs are injured. Nor do the fibres of the layer arise from the cells of the nucleus dorsalis, for though the axones from the nueleus dorsalis run through the fascientus lateralis limitans on their way to the dorso-lateral periphery of the cord, they do not turn to run longitudinally near the gray sulstance.

From the study of developing spinal cords von Bechterew has been able to divide the lateral limiting layer into (1) a more ventral portion which is medullated carly, and (:) a more dorsal portion which is medullated later. 'The latter he has designated "the medial bundle of the lateral funiculus." \ddagger This bundle lies just lateral from the substantia grisea, dorsalward from the colmma grisea lateralis, and thus occupies a part of the space hetween the fasciculus cerebro-spinalis lateralis and the substantia grisea. Its broder rentral extremity (as sem in cross section) lies in the angle between the rentral and dorsal horns. The topographical relations, however, rary somewhat at different levels. Von Bechterew believes that his "medial bundle" is

[^249]composed of short medullated axones, which arise from cells in the dorsal horns. The more ventral part of the lateral limiting layer, von Beelterew believes, is made up of the medulated axones of cells situated in the ventral homs.

An interesting amb important extension of our knowledge in this connection has been furnished by l3rnce, of Edinhurgh.* This observer, studying a case of amyotrophic lateral selerosis, found partial degeneration of the ventral part of the lateral limiting layer along with degeneration of the ventral horns and of the fascienlus cerebro-spinalis lateralis. The dorsal part of the lateral limiting layer (von Bechterew's "melial bundle ") was intact, as was also the gray matter of the dorsal hom. It seems likely, therefore, that the fibres of the ventral part of the lateral limiting layer have their origin in cells of the ventral hom. In speaking or writing of the lateral limiting layer, or faseiculus lateralis limitans, care should therefore be taken to mention whether one is referring to its puers dorsalis, its purs reutrelis, or both.

The fascieuli proprii are largest in volnme in the intumescentia. In the thoracic region of the cord they are relatively small.

The continuation of these paths upward in the medulla and pons has been cardfully studied loy Filechsig, \dagger mon Bechterew, \ddagger Elinger, and Iteld.\# Aceording to ron Bechterew, the relations can be ensily made ont in human fotuses 25 to 8 B cm. long, when but few tracts are medullated in the rhombencephaton. Indeed the fasciculi proprii of the cord are among the carlicst parts of the substantia atha to become medullated. The results at which he has arrived may be briefly summed up as follows: The fibres of the ventral and lateral fascienli go over into the formatio retioularis. The

[^250]

[^251]where won Bechterew thinks they are intermpted in the noteled of the corpus traperoidenm.*

It a level corresponding to ahout the mindle of the inforion olive, the fibres from the fascicults ventralis proprins, togrother

 roots of the N. vagus allud N. hypuglossits. (After W. von Bechterew, Wie
 II. Anth., Laijz, 1890, S. 15: Fig. 131.) J, root of N. vigus; NM, root of N.

 ventralis; ulp, muclous fundeuli lateralis ulorsalis; fuha, finp, fibres from nurlai funienti lateralis to the eorpus restiforme; foractus spinalis nervi

 nuclens funiculi ventralis; py, pyamis: ion, st ratum interolivare lemnisei ; Im, fiberes of thestratmanterolivare lemanded derived from the comtra-lateral nucleus funiouli roneati amd continums father rerelnalwad with the lateral portion of the lemmiseus medialis; lma, fibre bands of the st matm interolivare lemnisei which have come from the contra-hateral muclens fundenli gracilis amd which farther cerebralward form the medial pertion of
 ventrales which have come from the nuelens fanienli gracilis of the opmosite side by way of the dereusation lembiseorum: fi, tibra arouata interna ; fa, position of the so-valled "athermant bumble" of the medallat coming from the dorsal part of the fasciaulus lateralis promias; foi, fibme olivorerebellares.

* We know now, from the studies mentioned in the preceding chapter, that this ventro-lateral bundle (abervierendes Seitenstrangbundel of von Bechterew) is by wo means so simple as von Beehterew thought it to be, It includes a whole series of ascending and destending fibre systems-rentrohateral spino-cerebelhar coujunctival system, spino-qumhrigeminal system, spino-thalamie system, tegmento-spinal system, etc., ete.
with a part of those from the fascienlus latemtis proprins, are seen in the form of a rompact reetangular bundte, one on carb side of the raphe. These hundles are directly contimoms above with the fascienlas longitulinalis medialis (posterine longiludiaal hundle of many authors) on rath side. Between the compact bumdle in the dorsal region and the stratum interolivare lemmisei are situated more loosely armonged strambs of fibres, which, von Bechterew thinks, represent in the main the neward continuation of the more ventral fibres of the fascionlas hateralis proprius of the cord. Another portion of the fitsciculus lateratis proprins is continued upward in the form of isolated bundes in a region hateral to that just deseribed dor-

F'ta. H03.-Schematice sertion through the upher part of the medulla oblongatan at

 fis, fratus solitatios: far. contimation of fascioulas lateralis of the spinal cord (von Bechterew's" aberrant bundla") ; ma, fibres of interolivary layer from contra-hateral muclens finiouli rmandi: lm, fibere of interolivary laver

 tegmenti (centiale IInnernhelen).
sal to the olive. 'These last fibres, together with the more ventral of the fibres of the fasciculus longitudinalis medialis, appear

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporation
to be comected intimately with the nucleus funiculi ventralis* and the mucleus centralis inferior, \dagger hasmuch as, when serial sections are stadied, the fibres followed up from below suddenly vanish, at least in large part, at the level of these nuclei.

The fibres of the main compact bundle (continnons cerebralward with the fasciculus longitndinalis medialis) representing most of the fibres from the fasciculus ventralis proprius, and probably a few of the fibres of the fasciculus lateralis proprius, can be followed above the muclens centralis inferior as far as the miclens retienlaris tegmenti \ddagger (Fig. 401, cille sniru). Here a number of the fibres appear to undergo interruption, but many go farther. Of the latter, a few cross in the raphe to pass to the mullens centralis superior ${ }^{\text {\# and }}$ possibly to the ganglion interpedunculare Guddeni. Those most dorsally sitnated, however, are continuons with the eerebral extension of the fascienlus longitudinalis medialis (Fig. 406), which extends at any rate ats far cerebralward as the nueleus fasciculi longitudinalis mediadis se" nucleas commissurae posterioris (oberer Ocnlumotoriusker'l of Darkschewitseh).

[^252]Of the recent studies dealing with the aseending fibres of spinal origin in the faseiculus longitudinalis medialis, those of Held,* Hoche, ${ }^{1}$ and Tschermak \ddagger may be mentioned.

Fig. 404. - Schematie cross acetion themgh the pars demsalis pontis at its junction

 fqu, fibres from the region of the coblienlus inferior to the numens retienlaris iegnenti ; IV, N. tromblearis; lat, tibere of the lemnisens medialis from the contra-lateral nuchens funiend cuncati; Im, libres of the lemnisens medialis from the contra-lateral nuclens fitmiculi gmalis: lamp, won Bediterew's medial aceresury lemmisens: lasse, von Berhterew's seathered bundles of the lemuisens; Imb, temniselis lateralis; nes, maclens cemtalis superior, pars
 lateralis: mr, mullens retioularis tegmenti pomis; per, dorsal, pro, midder,

 ofr, sulstantia ferruginea. $V_{\text {, madix }}$ deserndens (mesencepladica) nervi trigamini.

Held, with the myelinization method, was ahle to show the relation of the fibres, and especially of their collaterals, to the muclei of the formatio reticularis grisea and to the muclei of origin of the nerves governing the eye museles. His researches

* op cit.
\dagger Hoche, A. Zur Pathologie der bulbïrspinalen spastisch-atrophischen

\ddagger Tsehermak, A. Ueher den centraten Verhaf der aufsteigemden Ilinterstranghahnen und deren Beriehungen zu den Bahmen im Vorderseitenstrang. Areh. f. Anat. n. Physiol, Anat, Abth., Leip\% (1898), S. 291-400.

Fig. 405.- Horizontal section throngh the medulla, pans, and midbrain of a newhorn babe. Weigert-Pal staining. Level of decussatio hrachii eomjunctivi and of nuelens reticularis tegmenti. (Srries iii, section No. 108.) ('.p., commissum posterior rerebri; Der.B.e., deconsatio brachii comjonctivi: Dec. Bechlo, commisure between Bechterew's nuclei : D.t., fibres to derensatio tegmenti : Foni. (con. ., fibre archatie interme from the nucleus funiculi cuncati: F.c., fasciculus cuncatus: Fic. to F.r., bundle from faseijeulus
 longitudinalis medialis: L.m., lemmisens medialis: $I .1$. lemmisens lateralis:

 muclens centralis superior. pars lateralis: Nines.s. (m), nutens centralis

 tralis inferior; Nu.r.t., unclens reticularis tegmenti : Nu. $1 . x$. . nuchens lateralis
 trigeminus: s.g. suhntantia gelatinos Rolandi: Tr,fr.me. Ih tract from Deiters' nuclens to the spinal cord: T.s.n.I., tractus spinalis \dot{X}. trigemini. (1'reparation by Dr. Johm Hewetson.)
deal more particularly, however, with the deseending fibres in this region, and will be referred to more at length in Chapter LVIII.

Itoche studied the degenerations in a ease of progressive bulbar paralysis with Weigert's method and with the method of Marehi.

Figi, 406. - A sagittal section of the medulla oblongata, pons, and mesemorephatom parallel amd elose to the middle line: child aged three months: method of Weigert. After A. Brace, Illinstrations of the Nove Tracts in the Mide- and Hind Bran and the (ranial Nerves arising thereftom. Elinh. and Iand., 18:9, pl. xxvii, Fig. 1.) The fasedrulus lomgitudimais medialis and its relation to the fasciculas ventralis proprins of the spinal cord are partienlarly rell shown.

Tsehermak, after experiments upon cats and studies with Marehi's method, has given the latest deseription. Aecording to him, the long neurone system from the spinal cord to the cerebrum by way of the fasciculus longitudinalis medialis* has its origin in the ventral horn of the spinal cord. The perikaryons and dendrites are situated in the group of commissural

[^253]cells in the rentral horn, the axones aseending in the ventral faniculas. In the medulla oblongata, at the level where the central canal of the spinal cord widens ont to form the fourth ventricle, the vental and hateral funiculi become separated into two groups of filres, one medio-dorsally placed (contimons farther up with the fasciculus longitnalinali, mediahis), the other ventro-laterally plated. The ascending spino-cerebral system under consideration enters the first-named fibre complex.* The ascending fibres give off many collaterals to the same side and to the opposite side. The collaterals to the same side pass lateralward to the mucleus nervi hypoglossi, the mucleus nervi abducentis, the mucleus nervi trochlearis, the maclens nervi oenlomotorii, the muclens centralis et lateralis inferior, the nuclens centralis et lateralis medins, and the muclens centralis et lateralis superior. The collaterals to the opposite side pass medialwaril aeross the raphe and end in the varions nuclei of the formatio reticularis grisea.

The longest fibres of the ascenting system of the fasciculus longitudinalis medialis, having reached the level of the colliculus superior of the corpora quadrigemina, swing around laterodorsalwarrl, to pass between Darkschewitseh's nucheas and the mucleus lateralis superior, the axones terminating in the cells of both nuclei. A part of the fibres go through the pars ventralis of the commissura posterior cerebri to terminate in the corresponding muclei of the opposite side. \dagger

Accorling to Meld and Tschermak, the neurone system under discussion represents a deep crossed comection (the crossing taking place low down) between the spinal cord and the nuelei of origin of the motor cerebral nerves as well as the nuelei of the formatio reticnlaris grisea of both sides as far up as the commissura posterior cerebri.

There las been a great deal of controversy between won Bechterew, von Kölliker, Hehl, Ramón y Cajal, van Geiuchten,

[^254]Mahaim, and others concerning the relative number of ascending and descending fibres in the fascicnlus longitudinalis medialis and in the other bundles of the formatio reticularis alla Some authors hold that the majority of the fibres are for centripetal conduction; others maintain that certainly the majority of the fibres conduct in a centrinugal direction, and that the paths are motor, not sensory. The truth seems to lie in a meam between these two extreme views. In all probahility we have here to deal (1) with ascending or eentripetal paths consisting of some long inaxones and also of a number of shorter siperimposed inaxones (sensory neurones of the second and of higher orders) by means of which motor nuclei may be affected by impulses arriving along sensory nerves and possibly by means of which impulses concerned in sensation can be carried toward the cortex; and (:) with descending or centrifugal paths by means of which the motor nuclei of the rhombencephalon and spinal cord are brought under the influence of the centres of the midbrain and perhaps of higher regions.

Some of the ascending fibres may pass directly into the medial lemniscus, or independently into the hypothalamic region, or from some of the gray masses in which many of these fibres end axones may be given off which run by way of the medial lemniscus or through the formatio reticularis to join the other sensory paths in the hypothalamic region.

Jnst here it may be mentioned that Ciaglinski* has described a long centripetal path situated in the substantia grisea of the spinal cord. He is of the opinion that the bundle he describes may have to do with the conduction of impulses concerned in pain and temperature sensation. I have no personal knowledge of this bundle, and thes far I know of no research confirming the results obtained by Ciaglinski. The subjeet of centripetal paths in the substantia grisea is of course of deep interest in connection with the elective sensory disturbances met with in syringomyelia and in central hæmatomyelia.

The paths dealt with in this chapter will be further considered in Chapters XLVIII and NLIN. \dagger

[^255]The nuelens alm cinerea, that obliquely longitudinal mass of gray matter extending forward from near the spinal extremity of the nuelens nervi hypoglossi below to a few millimetres beyond the anterior (or cercbral) extremity of the same nueleus in front, corresponds, in the floor of the fourth ventricle, to the fovea inferior and ala cinerea (Fig. 407). It is chanacterized in transverse sections stained by Weigert's method by its poverty in medullated fibres, thos contrasting strikingly in appenrance with the mucleus nervi hypoglossi which lies medial and ventral to it. Just how much of the nuclens alie cinerea receives terminals and collaterals from the N . vagus and just how mneh of it receives filires from the N. glossopharyngeus seems to be doubtful. While some authors, along with von Källiker,* assert that in microscopic preparations it is impossible to decide this further than to state that the uppermost parts of the nucleus belong to the N . glossopharyngeus, and the lowermost parts of it to the N. vagus, others, with Roller \dagger and Holm, \ddagger are strong supporters of the view that the muclei of these two nerves are entirely independent of, and on close examination easily distinguishable from, one amother. Certain it is that in the gray mass which we call the muclens ala cinerea it is possible to make out more or less distinct groups of nerve cells. According to Holm (Fig. 408), in a section through the middle of the terminal nuclens of the vagus, three gromps of cells can be distinetly made out-(1) a ventro-medial portion of the vagus nucleus consisting mainly ff large cells; (2) a dorso-lateral portion of the vagus nuclens consisting chiefly of small cells; and (3) the nuclens of termination of the N . glossopharyngens. ${ }^{\text {\# }}$ The view that the dorsal vagus nuclens is not sensory, but a real mucleus originis for motor fibres of the nervus vagas, advanced

[^256]

Fig. 407.
 the brain of a new-burn bathe, showiug the nuthe of the cerebtal nerves and the aren of exit and of entrance of the remot of the eevebral nerses in that pro-

 ventral hom erells. 'Tlae numbers to the left if the dawing indiate apmoximately thi lavels of the corresponding transverse sections repremented by Fiys. 30s to 317 .
The phate of the sertions from which this diagrams was mate is mot gmite transverse but smanewhat obligne: the dorsal surfine of the medulta has beens
 formed by the phane of the saretion with the lomgitudinal axis being aproximately seventy degeres, ats measined on the eerehral side. This a (he evident (slight) displacement cerebralward of the struetures in the ventral portions of the seetions as compared with those in the dorsal pertions.

by Deres* as a result of staly with the mothon of atrophy, and Probntly kupported (for smooth mascleg) liy Darimeseo, t as a result of his stmenes of the mueleus hy Xissl's mothonl after secetion of the nerve, lors not sorm to be well fommerl. We know now that the changes surli as Maneseo deseribes ean renalt

Fis. $\mathbf{4 0 x}$ - - lat preparation from the modulla of a rhild six werks ohd; wrotion

not only from lesions of the axone of a given neurone, hat also from injury to other neurones the axones of which bring impulses to it. (Cf. Chapter $X X V$.)

Strange as it may appear, the information we possess concerning the conrse of the axones of the neurones, the cell borlis of which are situated in this important nuclens abs cinerea, is extremely maigre. It really amounts to a few vague state-

* Dees, O. Cehor die Bezirhung des Nervus arcessorius zin den Nin vagus und hypoghssus. Allg. Zaschr. A. Psyehiat., etc., Berl., Bal. slir (1888), s. 6.5.
+ Marinesen, G. Les noyanx musenlo-strís et museulo-lisses do pueumogastrique. Compt. reml. Soc. biol., Par., 10 s , t. iv (1897), p. 168.
ments as to the origin of fibra arematie interne from the nuclens, some of which are supposed to pass to the medial lemmiscus, whers to the fiascientas longitudinalis medialis or to the formatio reticularis allan.

Fig, 409, - (ross section throngh the rhombencrphaton of a four diavahd momse.

 missmalis: C, muleus olivaris inferior: l, Amotus spimalis N. Arigemini ; E,

 pramis: b, collaterats from the pramid and from the substantia alba lateral

 vagus and N. gloseopharybgens: h, eollaterals of the sensory rome of the N.
 phasmice commissure betwern the muelai N. hypoglossi of the two sides.

The views hed concerning the muclens tatactus solitarii are also very divergent. A study of horizontal sections through
the babys rhombemephalen has, however, convined me that while the majority of tibres entering the tractus solitarias amb terminating in its muclens are derived from the N. Nlassopharyngens, nevertheless a goodly number of bibres from the N. vagus also follow the same course. It seems probable that the n nolens traters solitarias also receives terminals and collaterals of fibres entering as the N. intermedias. 'I he murlens tractus solitarii, aside from the anelens commissuralis at its

F'la. fto. 'Tratisurese sedion through the medulla oblongatat of a monse at

 N. hypoghossi.
spinal extremity, consists of a mass of gray matter which sme rounds the tractus solitarias along its whole longitudinal extent almost like a eylimer. In this mass end rertain eollaterals and a few terminals from the tractus solitarias, and in it are situated the perikaryons and dendrites of somsory new-
rones of the second order. Whither their axones go has not yet been satisfactorily determined.

If Ramon y Cajal's studies be confirmed, then the nucleus commissuralis (his Commissureuhern or ganglion commissurale) must be regarded as one of the main depots of the cell bodies of the eentral neurones now being deseribed. According to him,* three fourths of the fibres of the tractus solitarins deconssate at its spinal extremity and terminate in the form of a most complicated plexus of fibrils in this nucleus (Fig. 409). He describes the cell bodies of this mucleus as being small, spindle-shaped, ovoid, or triangular ; their dendrites are delicate and almost smooth. The axis cylinders are extremely delicate and form small bundles, which, passing laterally and forward, reach the 1 -mniseus, some of them crossing in the raphe. Isolated fibres can be followed through the formatio reticularis grisea to a region (Fig. 410) which corresponds to the path of the axones of the central nemrones of the trigeminus.

$$
\text { * op. cit., S. } 46 .
$$

CHAPTER XLIV.

Centril vestibllar nelbone systems.
The nuelei termimales N . vestibuli-Axones from these nuclei-Melial and lateral central vestabular paths of Ramón y Cajal-The ventral part of the decussatio brachii conjunctivi a vestibular commissure-The central vestibulo-spinal bundle-The fibres extending between the nucleus fastigii ar leiters' nueleus-Influence of vestibular impulses upon the eye-musele nuclei.

Tue cell bodies of the sensory neurones of the second order pertaining to the N. vestibula are situated mainly in (1) the nucleus nervi vestibuli medializ, (2) the nucleus nervi vestibuli spinalis (radicis descendentis), (3) the nucleus nervi vestibuli superior, and (4) the nuclens nervi vestibuli lateralis (Fig. 411). Finally, (5) a few of them, as we have seen, must be situated in the cerebellum (Ramón y Cajal's nucleus cerebelloacusticus, the nucleus fastigii, and perhaps in the nucleus dentatus and the substantia grisea of the cerebellar cortex). The exact location and reciprocal relations of these nuclei have been described above in connection with the peripheral centripetal neurones. The course followed by the axones which go out from the cells of these nuclei is what interests us here. In the brain of the new-born child, stained by the method of Weigert-Pal, there can be made out going from the nucleus nervi vestibuli medialis and from the nucleus nervi vestibuli spinalis radicis descendentis numerous medullated internal areuate fibres. These fibres differ from the majority of internal areuate fibres of the rhombencephalon in that they pass close to the dorsal surface instead of making a deep curve ventralward. The most dorsal of these run toward the raphe and pass in among the fibres of the fasciculus longitudinalis medialis. Some of them turn to run forward in the fasciculns of the same side; others of them, after decussation, turn forward in the fasciculus

Fis. 41.-Diagram representing flat reconstruction of the nuelei of temination
 Hosp. Bull., Balt., vol. viii, 1s97, Fig. t. The line a, "represents the latamal wall of the ventriele; the line b correspomeds to the lateral outlime of the corpus restiforme: the line d_{1} to d_{4}, d_{1} to d_{3} and the line $e^{\text {e }} \boldsymbol{c}_{\text {, }}$ e eomperpond to
 dorsalis; © P., unclens nervi coelitere ventrabis; the grachated line corresponds to the middle line of the foom of the ventricle: Flowe, Hocenlos
 lateralis (Deiters): L_{4}, lateral portion of nuclens uervi vestibuli hateralis

 R.d.n. re, malix desemdens mervi vestibuli; s., melens mervi vestibuli
 tractus spinalis mervi trigemini ; Y, mesens y, =antero-lateral portion of mudens mersi vestibuli medialis; z, dernsation mersi trigemini.
of the opposite since* 'The majority of the axons, from the medial mavens and from the mole ns of the descending or spinal foot, however, appear to rm to at region in the formation rofionlaris situated lateral and ventral from the nucleus nerve abhorentis (lix. His), where they assume a longitudinal directton, \dagger sometimes bilmreating into an ascending and a descroning limb. A good many of the axons cross the middle line

 uh which rim to the lateral ventral vesibinlar path; d. cells the ax ames ot which go lateralward; r, f, axomes which rime to the maple. The letter e implicates the axames.
amd reach a similar " lateral vestibular bundle" on the opposite side. A number of the cells in the nucleus of the descending root send their axons lateralwarl and dorsalward to mingle with the fibres of the describing root. As yet the exact teraination of these axomes has mot been satisfactorily made out.

[^257]The nucleus nervi vestibuli superior (von Beehterew) contains large numbers of multipolur cells of smaller size than those of Deiters' nucleus. The axones follow at least two directions. A part of them pass through the nucleus and

Fic. 413.-Frontal section through the pons, ineluling the eorpus restiforme, Deiters and Beehterew's muelens num the vermis of the cereluellum of a
 Ohlomgata, ete., Bresler. 18!ni, s, 6in, Fig. 18.) A, corpus restiforme ('ut
 muclens fastigi : E, muelens N. vestibuli sumeriar (vom berhterew); F. superior extrenity of maclens N . vestibuli lateralis (Deviters); (i, muchens dentatus ; a, asernding limbs of hifareated axomes of N. vestibuli : b, col-
 restifurme: P, descending limbs of biturated axomes of N. vestibuli; d. axome from erell in Bechterew's moleus; foblaterals from the axomes of the eorpus restiforme to the cerehellar hemisphere: 9 , fibres from corpus restiforme which apperm to brameh in the cerebellar cortex: h, collaterals from the corpas restiforme to the vermis; i, free bumehing of an axome in tha nueleus fistigi; j, cells of the muchens fastigii, the axomes of whiclenter the vermis.
throngh the brachinm conjunctivm into the cerebellum, upparently following the same course as the fibres connecting Deiters' muclens with the cerebellum (idide infiru). The majority pass ventralward and medialward (Fig. 413) to the region of

Fif. 414.-Tramserse ser tion through brain of newhorn bathe. Level of colliculi inleriores of corpora guadrigeminat. (Wejgert-Pal, series ii, section No. 290.) Ag. ©er., agucductus cerehri ; a, filses romning from lateral lemmisens toward dorstl horder of brachium conjunctivum; Bre ('omj., hrachium conjunctivum; C:s.i., commissure between the colliculi interiores; Dec.Bech., ventral pertion of brachiam conjunctivem, which in reality forms a commissure he ween the smprior nuche of the vestibular nerves of the twosides; F.I.m., faseimens lomgitudinalismedialis: FIPy. Aascieuli longitudinales pontis (pyramidales); L.L., lemmisens lateralis in large part teminating in the nuclens of the eolliculus interior; L.m.. lemmisens medialis ; N.IV.. N. trochlemris; No, Collinf, mucleus colliculi inferioris; Auces.(l). nuclens rentralis superior, pars lateralis;
 [mesencephalica] N. trigemini ; sqroce, stratum grisemm centrale. (IPrpara(iom ly Dr, John llawetsom.)

Deiters' muclens, where some of them probably end, though most appear to pass throngh the nucleus (perhaps giving off collaterals to it) in order to follow the same course is that pursued by the axones arising in it. The axones from Ramon y

Cajal's nuclens cerebello-icusticus apparently follow the same course as those from von Bechterew's nuclens.

Von Bechterew* describes a bundle of fibres running from the muclens nervi vestibuli superior of one side to that of the other by way of the brachia conjunctiva. The fibres which make up this bundle are the first of all the fibres of the brachinm conjunctivin to become medullated, and oceupy in the middle of the pons its most ventral part. Von Bechterew asserts that the fibres have nothing to do with the cerebellum, that they rim forwarl as far as the upper part of the pons, but before reaching the general deenssation they leave the brachium conjunctivum and pass over to the other side in the form of a commissure. l'ortions of this vestibular commissure, which is relatively independent of the main decussatio brachii conjunctivi, are shown in Fig. 414 and Fig. 415. The comection of the axones of these fibres with the cells which give them origin by (iolgi's method has thus firr not been established. In Miss Florence Salin's wax model of the medulla oblongata, however, the reconstruction shows the intimate relation of von Beehterew's nuclens to the ventral part of the brachium conjunctivmm.

The course of the axones of the neurones, the cell bodies and dendrites of which constitute the nuclens nervi vestibuli lateralis (Deiters), has been studied by nearly all investigators who have been active recently in this field, and he who will know this region in its details should study the articles of Ohersteiner, von Kölliker, \dagger Sala, \ddagger Held, \# Ramón y Cajal, || and Risien Russell. Δ The cell bodies in Deiters' muclens are large and multipolar, resembling elosely, by all methods of examination (including that of Nissl), the motor cells of the ventral horns of the spinal cord. The axones of the cells are of large

[^258]

Fig. 115.-Horizontal wrotion through the mednlat, pons, and midhrain of a mew-

 comtinums with the laseiculus latembis proprins of the cord : $F . l . p$. (d), elomal portion of bundle continuons with las-joulns lateralis proprius al the cord;

 N. hypoglossi: Ju.F.l.m., mucleus lasrianti lomgitudimalis medialis, or mucleus commissure pusterioris (oberer (orntomotoribskern of l)arkschewitsely); Ňu.и. III.m.. pars impar of nucleus S. ornlomotorii ; Nu.n.III.I., pars lateralis

 to the spimal cord. (lreparation hy Dr. Joha llewetsom.)

40

ralibre and devoid, or ahmost devoid, of rollaterals. The exact courses which they follow are still not entirely setted, but at any rate, concerning rertain groups of axomes, we now possess

Fiti. 417.-Transwerse section throngh the rhombenerehatom of a momse at the

 M, collaterals frum nxemen of fascionlus lomgitudinalis medialis: \boldsymbol{N}, mathe: f^{\prime} vertical path formed by axomes of melei terminales comeneded with the
 axmes from erells in the burdens N . combere densalis; $;$, mulens N , vestibui
 cells in sulstantia gelatimosa,
definite information. Thus it is known that a large number of the axones pass dorsalward throngh the nuclens nervi vestibuli superior (von Bechterew) and through the brachium conjunctivum into the cerebellum. These end in the gray masses
sitnated in the roof of the form ventricle (eliefly in the nucleas fastigii, but possibly also in the nuclers globosus and muclens cmboliformis) of the same side and of the opposite sidemainly, it would seem, in the latter. Vivery one who las sturtied serial sections of the new-born bube's medulla and corebellam mast have been impressed by the bands of mednllated fibres which obvionsly extend between the nuclei of the roof and the region of Deiters' mbelens (Fig. +lij). Now, while the majority, perhaps, of investigators regard these bundes as medullatert axomes arising from cells sitmated in the nuelei of the roof mad

Fig. 11s, - Ohlique sedion thromgh the brain stom of a newhorn eat. The eourse of the path lion the melous nervi vestibuli bateralis (1) eiters) to the remains

 1su2, Tili, ii, Fig. s.)
passing to Deiters' mucleus of the opposite side, still von Külliker's studies by the method of Golgi show elearly that a part of these fibres :epresent axones passing in the opposite direction, having their origin in the cells of Deiters' melens.

The majority of the axomes from Deiters' malens do not, however, pass into the cerebelhim, but, tognther with the axomes from the muclens nervi vestibuli superior, pass mediatward, in order to rench certuin longitndimul bundes of fibres tio be immediately deseribed. The tibres passing medialword may be divided into two groups: (1) those more dorsal!y sitmated, mud (Q) those passing more ventrulward. The former group of fibres, as Ramon y Cajal describes them in the monse, pass from Deiters' muclens medialwarl, avoiding the knee of the facial nerve; they go sometimes behind, sometimes through the muclens norvi ubducentis, cross the raphe, and enter the fasciculus longitudinalis medialis, where they bifureate into an ascending and deseending limh, the former often being the stonter (rig. 41\%). This "medial or crossed central vestibular path," Ramon y Cajal thinks, is the principal eonstitnent of the fasciculus longitudimulis medialis. 'The second group, of fibres passing to a more ventral and lateral position has been seen and studied by several nearologists. Thas Bronee * saw mod pietured it as early as 1889, and the bundle is indicuted in Fig. 150, page 38: of Oberstemer's text-book published in 18:2. The bundle was carcfully described by Held \dagger in 1891 and in 1892 , and I have for illustration reproduced one of the pictures accompanying his articles (Fig. 418). The axones going into this bandle have heen studied by Golgi's method, especially by von Kïlliker and by Ramon y Cajal. It may correspond to Ramón y Cajal's "lateral or direct central vestibular path" (Fig. 419). Having reached the bundle (which, as the figures show, is situated laterally as regards the root fibres of the nervus abducens, and dorso-medially ats regards the superior olive), the fibres turn in it to assume a longitudinal direction. Some, probally the majority, turn down toward the spinal cord ; others turn up to run towarl the midbrain, while still others bifurcate, one bramels turning upward, the other downward iato the faseiculi proprii of the spinal cord (Held), and in all probability come into anatomical relations with the eell borlies and dendrites of the lower

[^259]motor neurones situatel in the ventral horns. The bundle marked I'r.fr.mu.I). in the necompanying illastration represents the system under description (Fig. 420).* This vestibular

Fig. 419.-TMansvorse section thromgin Deiters' nuclent of a monse a few days old.

 inns: b, lateral central vestibular path; d. cent ail vestibular path reaching the

 cales :some
spinal bumlle will be deseribed more fully in Chapters LVII to LLN. The ascending fibres of both medial and lateral central vestibular paths may be of importance in furthering the trams-

* Deiters' moleus thos in all prombility repersents an importmot waystation belween the crrelvellam mad the spimal cord. The fuet that many axones from Deiters mulelis pass down into the ventro-lateral grouml hamde donbthess explains the interesting observation of Roller, who fommd that the eells of Deiters' nucleus atrophied after section of the ujper cervical cord.

 Prepatation hy lor. John Ilewetsom.)
port of impulses toward the cerebral cortex ; if so, they are properly regarded as axones of sensory nemrones of the second order in the general path from the periphery of the body to the somesthetie area of the cortex. The exact course of the ascending Shres is not wholly clear; those of the medial path accompany the fibres of the fasciculus longitudinalis medialis ; * indeed, if lamón y Cajal be right, they make up a large part of this bundle; those of the lateral bundle either join the lemniseus medialis or run up as a separate bundle in the formatio reticu. laris, some of them ultimately, in all probability, passing through the tegmentum of the cerebral peduncle into the diencephalon.

[^260]
CHAP'TER NLV.

central centriperal trigeminal nevrones.

The substantia gelatinosa and nuclei truetus spimalis nervi trigemini-Interstitial cells-Margimal cells-Deep or medial cells-The giant cellsAxones and eollaterals of central trigeminal neurones.

The cell bodies and dendrites of the sensory neurones of the second order pertaining to the sensory part of the serves thigeminus are situated in the substantia gelatinosa and adjacent gray matter. The substantia gelatinosa adjacent to the tractus spinalis nervi trigemini may, therefore, be called the nuclei tractus spinulis nerni trigemini. The large mass of substantia gelatinosa situated opposite to and somewhat above the entrance of the nerve, often referred to as the main sensory nueleus terminalis of the trigeminus, is really only an expanded upper extremity of the substantia gelatinosa, which accompanies the tractus spinalis, inasmuch as serial sections show that these masses are directly continuons with one another. A portion of this large main mass of the anterior extremity of the nuclens is intercalated between the motor and sensory bundles, and is possibly destined to receive the ascending limbs of bifureation of the entering sensory axones.

These terminal muclei of the sensory trigeminus have been studied especially by von Kölliker* and by Ramón y Cajal. \dagger Aceording to von Kölliker, the cells may be divided into two kinds: (1) large cells and (2) small cells. Their axones, he believes, pass medialward as fibre arcuate interne, decussate in the raphe, and turn to run longitudinally, probably in the medial lemniscus.

Ramón y Cajal's studies concerned ehiefly the nuclei in the

[^261]monse. He divides the cells of the sensory unclens into three zones: (1) the interstitial cells, (2) the marginal cells (Lamdzollen), and (3) the deep or medial cells. 'The interstitial cells are triangular or stellate, sometimes spindle-shaped. They are located between the bundles of the der p layer (cide sumprot, p. $5 \because 2$) of the tractus spinalis or between this and the superfieial layer. Their dendrites pass ventrally, dorsally, or medially in among the bundles mentioned. Their axones assume usmally a longitudinal direetion sither in the adjoining bundles of the tractus spinalis or in the substantia gelatinosa itself. The cells are nearly of medinm size, althongh many of them reach eonsiderable dimensions (Fig. 42t, ").

The marginal eells form a thin layer just medial to the bundles of the deep layer of the tractus spinalis. Many of them are spindle-shaped, others are pear-shaped, the dendrites assmming variahle directions. The axones run in part ventralward, giving off collaterals to the substantia gelatimosa and being contimad as longitudinal fibres of the plamum, fibrillare prof"udum, in part medialward, in order to help in the formation of the central sensory path.

The deep or modial cells, those of the substimtia gelatinosa proper, are very nmmerous. In shape they are usually triangular or stellate, and ran be divided into giant cells and small cells. The latter are the more numerons and are arranged chicfly in the form of small, sometimes indistinetly limited, islands. These islands, which appear never to be absent from the dorsal region of the substantia gelatinosa, consist of three elements: (1) Very finely branched varicose dendrites, arising from the spiadle-shaped or triangular cells and lying in the interspaces between the islands; (2) extremely complicated dendrites, which have their origin in the small cell hodies lying within the cell islands; (3) a number of very dense plexnses made up of the and ramifications of collaterals or terminals from the axones of the tractus spinalis nervi trigemini. The very delieate axis eylinders of the small cells of the istands give off hamehed collaterals in the substantia gelatinosa and follow an irregnlar course, so that Ramón y Cajal could rarely follow them beyond the smbstantia gelatinosia itself. Occasionally, however, he saw one reach the formatio reticularis grisea, and he assumes that such axones perhaps enter the central sensory path.

The giant cells are seattered irregularly throngh the whole substantia gelatinosa; the axones from these cells could be easily and certainly followed. Arising ordinarily from a den-

Fig. 421.-Transverse sertion throngh the tractus spinalis N. trigemini and

 into the tractus spinalis N. trigemini.
drite near the eell body, such an axone turns dorsally and medially in the form of a curve, giving off two or more collaterals to the substantia gelatinosia and to the formatio reticuluris grisea; it is continued finally after having erossed the dorsal part of the raphe at a level which varies for different axomes, as a longitudinal ascending fibre of the medial lemnisens of the opposite side. The fibre often bifureates into in aseending and a descending limb.

The axones of other giant cells do not cross the middle line, but, having arrived at the dorsal border of the formatio reticulanis grisea, bend aromed in the neighborhood of the knee of the nervas facialis to run in a longitudinal bundle. This bumdle, representing one central path of the trigeminus, receives axones not only from the substantia gelatinosia of the same side, but also from that of the opposite side. Aceording to Ramon y Cajal, it finds a special location in the formatio reticularis alba, close to the central longitudinal path, made up of the axones of sensory neuroncs of the second order associated with the nervus vagus and nervis glossopharyngens.

Other axones from the substantia gelatinosa may follow a still different course, but for the details the reader is referred to the original contribution of Ramón y Cajal. All important, however, is the observation that the axones of the central nenrones now under description, in their transverse as well as in their longitudinal course, give off collaterals into the formatio reticularis grisea and albat, some of which certainly reach the motor melei, in which are sitnated the cell bodies and dendrites of the lower motor neurones, the axones of which go to make up the nervus facialis and the motor part of the nervus vagus and nervas glossopharyngens. In Fig. 422 are shown some of the fibres of the trigeminal path entering the bundle continnons with the ventro-lateral fumiculi of the cord.

While many of the axones of the central neurones just deseribed are concerned in more or less complex reflex activities, certainly some of them, either directly, or indirectly by means of newrones of a higher order, take part in the formation of the longitudinal bundles which go throngh the tegmentum of the cerchral pedmale into the hemisphere.

The two human cases reported by Hoesel * make it seem

[^262]

likely that the contral trigemimal comduction path is a crossed path ternanating in the central gryi of the pallimm. The indications are that it is interrupted in the ventro-lateral gromp of muclei of the thatamns. If this be the case, then in the trigeminal conduction paths at least three neurone systems are superimposed, the crossing taking place in the doman of the system of the second order. This view hats been contimed by the experiments of Wallenberg.* After injury to the substantia gelatinosat in the upper cervical eord on one side, he found degenerittion of a bundle of fibres which crossed the raphe ventral to the muclens N . hypoglossi, and then ascended in the formatio retienlaris, being at first situated medio-dorsally and higher up latero-lorsally. Having reached the level of the hilus thalami the fibres entered the lamina medullaris medialis, and a large part of them ended in the ventral group of nuclei of the thatamus. Another group of degencrated fibres could be followed by Wallenberg across the raphe, thence by way of the interolivary layer and medial lemmisens to the ventral part of the thalamus.

[^263]3. Central Neurones, the Perikaryons and Dendrites of which are situated in the Cerebellnm, the Axones running Cerebralward, and possibly representing Indirect Central Centripetal Conduction Paths.

CHAPTER NLVI.

THE SOM.ESTHETIC PAJU 'JO JIIE (DREHKUM HY WAY OF TUE CEREBELLCHM.

Cerchell - ecrebral paths-The brachinm cozjunctivum or suproior cerebelhar pedmule-Fixperimental degemerations-Degenerations in hmman eases - Myelinization of the bruchinm conjumetivmm-Situdies by (iolgi's methor-l'be fascienlas cerebellaris lateralis deseembens.

Takina a backward glance for a moment, it will be seen that from all the groups of sensory neurones of the second order, pertaining to the spinal and cerebral nerves which bring impulses concerning the body itself into the central nervous system, there are axones (aside from those of short paths mediating reflexes) passing in two main directions: (i) toward the cerebral hemisphere by way of the tegmentum of the cerebral peduncle; (b) into the cerebellum. Of the former, the groups of axones going to make $u p$ the medial lemniseus, the fascienlus longiturlinalis medialis, and certain longitudinal bundles in the formatio reticularis will be recalled; of the latter will be remembered the fasciculus spino-cerebellaris dorso-lateralis or direct cerebellar tract of Flechsig, the cerebellopetal systems in the fasciculus ventro-lateralis (Gowersi), the fibre arcuate externae ventrales et dorsales pertaining to the spinal paths, is well as certain less definitely worked out cerebellar connections of the nuclei of termination of the nerves of the rhombencephalon. Further must be mentioned the fact that from many of the axones from the nuclei of the dorsal funiculi, as they pass through the stratum interolivari lemnisci, there are given off collaterals to the nueleus olivaris inferior. Thence the cerebellum may be influenced by the fibre olivocerebellares.

The question muturally arises, Cm these nerve fibres, which rom in to terminate in the gray matter of the cerebellum, help to carry impulses townd the cerebral cortex hy means of neurones of a higher order: 'That they can do so seems fairly

Fig. 483.-IIorizontal sertion of the cerobellam passing throngh the mateinal thickenings of the lingula. (After B. Stilling, Netme ["utersuch. n. I. Batir 1. kleinen (aelimus It. Denseh., ('issel, 18is. Taf. xv, Fig. os, taken from

 x, murlens emboliformis; y, y, puts of the melens globosis ; z, mele its fastigii.
eertain, partly from clinieal evidence that need not now be discussed, and partly from anatomical findings to be immediately mentioned. We have seen that the axones entering the ecrebellum from the nuelei of termination of the sensory nerves do so chiefly by way of the corpus restiforme (inferior cerebellar peluncle); a few of them enter by way of the brachimm con-
junctivam (superior cerebellar peduncle) and volum medullare antrins (for example, a part of Cowers' tract), und a few possibly through the brachimm pontis (middle cerebellar pednucle). 'These axomes terminate chiefly in the cortex of the vermis; some terminais as well as mamy collaterals go directly to the muclens dentatus, others to the nuelei fastigii and adjacent masses of gray matter. ('The gross relations of these nurlei to one mother are shown in lig. 42:3.) There is evilence, further, that the muled dentati and nuclei of the roof are manifoldly

 ohbongata of a laman embryo 41 dm . long; shationg by Wrigert's methoul.

 fastigii ; V, cortex of vermis: fil, dorsal, far, middle, fr, ventral bundle of
 fibresextending hetwern the nuelens N, vestibuli sumerior and the nurle us N. vestibuli hateratis on the one hand and the nuelei of the revehellam
 Ify, tibres of the eorpus restiforme from the mele fus funiculi rasilis hy way
 otivares ; for, tibres in forpos restitorme corresponding (o (1) the faseralas

 glohesiss and the nuthens embolifumis with the cortex of the worm.
connected by means of associative neurones with the gray matter of the cortex of the vermis (Figs. 424 and 425).

Given these conditions, it is not diflicalt to find an unatomical path which cond serve for the further eoblaction of sen-

 shown more typiatly on "pmsite side of tigure: Nu.n.r.m., mutlens. N. veso

 Rol.u.rest., madis desemdens N. vestibuli : st.i.h, stratum interolisare lemnisci: fif, plame of lomgitudinal section No. Bis, [Note.-This figure has beren dispropertionately redued in the werentuction.]
sory impulses cerebralward The axones of this path * constitute the main portion of the brachimm conjunctivum \dagger (Figs. 426 and 424).

The study of degenerations in pathological cases in human beings (Turner, v. Monakow, Turner and Charcot), and after experimental section of the brachinm comjunctivam in ani-

[^264]mals,* have led to results which have heen interpreted in different ways. There is abmanne of evidence to show the interdepemtence of one cercbral hemisphere and the opposite cerehellar hemisphere (1) by way of the brachimm -onjunctivme, and (き) by way of the brachium pontis. That the conncetion is

Fig, 420. 'Tmasverse section through isthmas rhombenerphati of newhorn

[^265]

mot dirent, howerer, is shown hy the fant hat after cormbal hesion the changes in the eerehellar pednacles (superiom and midille) are thuse of simple atrophy rather that of actial secomary degromation. It further appars that after expuri-

 6, tathation from the reghon of the imelens riner fo the rapishat intornat.
mental section of, for example, the right brachinm conjumetivm, all or mearly all the fibres degenerate through the de(ansation* to the red mubles, and there results not only alteration in the refls of the muchens dentatus and cerebellar hemisphere on the side of seetion (Mahaim), but alse atrophy of the posterion part of the rel murlens of the opposite side, the cells of the anterion pirt of the red muclens and a few seattered cells in the posterior part remaming intant (fored,

[^266]Gudiden, Mahaim). While some authorities believe that the fibres of the brachimm conjunctivum have their origin in the cerebellum, others think that they originate in those cells of the red nueleus which atrophy on section of the brachium

Fig. 429.-Transvarse section throngh mesencephalon of nowborn babe. Iavel of colliculi superiores of corporit quadrigemina. (Wejgert-1al, series ii, see-

 Furel) ; F.l.m., tascieulas longitadinalis medialis: F. I'y., dascieali py ramidakes in the pars basilaris pontis: L.m., lemonisens medialis; N.IV., N. trocharis ; Nu.l.s., nucleas lateralis supurior of Florehsig: Nu.n.II., muelens N. troch-
 trale ; S.n., siblistantia nigra. (Preparation by Dr. Jolus llewetson.)
conjunctivum, and that they do not begin in the cerebellum but end there. The experiments in which one half the cerebellum has been extirpated * have, on the whole, afforded

[^267]no more exact conclusions, though Marchi asserts that the fibres of the brachium conjunctivum do not undergo complete decussation, since he can follow a small bundle, past the region of crossing, directly to the thalamus of the same side. This unerossed bundle of Marchi appears to be reinforeed to a slight extent by the medullated axones of cells situated in the part of the nuclens ruber designated by Mahaim as the " nuclens minimus" (von Bechterew). Ferrier and Tumer describe complete degeneration of the brachium conjunctivum after extirpation of the lateral lobe of the cerebellum.

Von Külliker* interprets the findings in the cases of secondary degeneration above referred to differently than do some of those who have carried out the experiments. He believes that the majority of the fibres of the brachium conjunetivum arise in the cerebellum, run cerebellofugally, and nearly all undergo decussation; part of them end in the red nucleus of the opposite side, especially in its posterior part (that region which atrophies after section of the brachium conjunctivam); part, on the other hand, go through the red nucleus, without ending in it, to join the bundle of fibres lateral from it and to enter the area in the hypothalamic region, known as Forel's "Feld II," to be referred to later. Held \dagger believes that the majority of the fibres of the brachium conjunctivum arise in the nueleus dentatus, a view quite in accord with the observations of Menzel, Arndt, and Dejerine, which prove that, in lesions of the cerebellum involving only the cortex and subjacent white matter, no marked alterations in the brachium conjunctivum or in the red nucleus result.
ii. Ganglios cerebelosos vi. Conexiones distantes de los celulas de Purkinje. Anales de la Sociedad espuñola de historia natural, Madrid, 1894.-Russel, J. S. R. Degenerations Consequent on Experimental Lesions of the Cerebellam. Proe. Roy. Soc., Lond., vol. lvi (1894), pp. 303-30:̃.-Ferrier, J., and W. A. Turner. A Recorl of Experiments Illustrative of the Symptomatology and Degenerations following Lesions of the Cerebellum and its Peduneles and related Structures in Monkeys. Phil. Tr. Lond. Soe., vol. elxxxy (1894), 13., pp. 719-7\%8.-Thomas, A. Le cervelet : étude anatomique, clinique et physiologique. 8vo, Paris, 189%.

* Op. cit., S. 450.
\dagger Held, A. Beitrige zur feineren Anatomie des Kleinhirus und des Hirnstammes. Arch. f. Anat. u. Physiol., Anat. Abth., Lecipz. (1893), 太. 435-446.

FIf, 430.- Harizontal seetion thromgh the medulia, pons, amd midbrian of a newborn bithe. Wrigert-l'al staining. Level of deensstio bunhii ronjumetivi amb of muclets roticularis termenti. (Series iii, section No. 10s.) ('p.,

 longituelinalis medialis: L.m., lemmisers medialis: L..l., lemmise'ts luteralis:

 tralisinferiur ; Ju.r.i., muelens reticularis tegmenti: Nu.l.s., muelens lateralis
 trigeminus: s.g., substantia gelatinosi liolandi: Tr, fr.mm.J., thet from Deiters' muelens to the spimal cord; Tis.n. V., truetus spinalis N. trigemini. (l'reparation by Dr, Joln Hewetson.)

In a case reported by von Monakow,* in which there was at defect in the right cerebral hemisphere, and also a large defect in the left cerebelar hemisphere, no marked secondary degeneration oceurred in the brachium conjunctivm, bat only secondary atrophy (diminution in calibre of the individual fibres). It is of great importance to note that in this case von Monakow explicitly tells us that the corpus dentatum was not injured. He further believes that the fibres of the brachimm conjunctivm which extend beyond the red nucleus probably arise in the opposite cerebeltar hemisphere, and end free in the gray matter of the tegmentum. Von Monakow is of the opinion, therefore, that the brachimm eonjunctivm contains both centrifugal and eentripetal fibres, and that it is preferably the latter which undergo atrophy of the second order after defects in the pallinm, so that any direct connection of the brachinu conjunctivm with the cortex can be sately denied.

Thomas \dagger followed by Marchi's method degenerated fibres not only to the nuclens ruber, but also beyond it to the ventral part of the thatamus. No fibres could, however, be traced beyond the thatimus to the nuclens lentiformis or to the pallimm. Mirto \ddagger makes the fibres of the brachinm conjunctivm end chielly in the contri-lateral nuclens ruber, but partly also in the ventro-lateral region of the thalamus. According to Flechsig, some of the fibres go to the nuclens lentiformis by way of the dorsal white matter of the nucleus hypothalamicus (corpus Laysii), otherwise known as Feld, of A. Forel. He is of the opinion further that a certain mumber of the fibres pass out to the cerebral cortex, terminating there in the region of the gyri centrales. The upper portion of the somesthetic path to the cerebrum by way of the cerebellum will be described more fully in Chapter L.

A study of the stages of myelinization of the brachium conjunctivnm makes it seem extremely probable that fibres of different systems are contained in this bundle. Thus, von

[^268]Bechterew* distinguished easily four distinct hundles which, in the middle of the pons, as seen in eross section, present a typical topographieal arrangement (Fig. 431). Of these, the first to become mednllated (fortus 28 em. long) is that which in

Fig, 831,-Sebematic eross section throngh the pars domalis pontis at its junction
 bahnen inn (ichirn nud Rärckemmark, Dentsel von R. Weinherg, II. Anti.,

 fiqn, theres from the region of the collienlus intierior to the nuelons retientaris tegmenti; $I V$, N. trochlearis; Im, fibres of the lemnisens medialis from the

 lemnisens; Im, lemnisens hateralis; nes, uncleus centralis superior, pars
 lateralis: urt, muldus reticularis legmenti pontis; pri, darsal, pro, midille,
 sents the commisume betwerl the nuelai superiores nervorim vestibutornm:
 trigemini.
a section through a plane corresponding to the middle of the pons lies in the most ventral part of the brachinm conjunctivum (Fig. $431, p_{r}$, and Fig. 43), 46). This bundle has nothing to do with the eerebellum, but is the bundle above mentioned which forms a commissure between the nuclei nervorum vestibulorum superiores of the two sides. Of the three other

[^269]bundles, the most dorsal one (Figs. 431, pe, und 432, 45) is medullated in foetuses about 33 cm . long. This bundle appenrs to be comnected with the muclens fastigii und with the cortex of the vermis (von Bechterew). Its fibres pass to the decussation, eross to the opposite side, and are interrupted in the red nucleus, since no fibres are medullated beyond at this stage.

The third bundle (Fig. 4:31, $m^{\prime \prime}$), medullated in footuses 35 to 38 cm . long), lies between the dorsal and ventral bundles (Fig. $432,39)$. In the cerebellum it is related especially to the nucleus ghobosus and the meleus emboliformis. Some of its fibres appear to be related directly with the cortex of the vermis supe. rior. The fibres of this bundle decussate with the other fibres of the brachium conjunctivum, become partly mingled with the fibres of the dorsal bundle, and come in relation anteriorly to the cells of the red nuclens.

The fourth bundle (Fig. 431, pem) (beginning to medullate in the new-toorn babe) consists mainly of very fine fibres which lie partly in among the fibres of the other bundles, partly medialward from them. In the cerebellum the fibres of this bundle appear to stand in relation to the cortex of the cerebellar hemispheres, and in part to the nuclens dentatus. The fibres of the bundle decussate with the other fibres of the brachium conjunctivnm, and in front are related to the red nuclens.

We fortunately possess a certain amount of positive information concerning the origin from cells, of the axones of the fibres of the brachium conjunctivum. This has been gained by the application of Golgi's method, especially by Ramón y Cajal * and Martin. \dagger

Ramón y Cajal finds that certain of the fibres of the brachinm conjunctivam in the monse arise from the nucleus dentatus. He emphasizes the fact that ly no means all the ascending fibres come from the nuclens dentatus, some having another origin, perhaps the cerebellar cortex. This view has been supported by studies made with Marchi's method, and Ramón y Cajal has shown that axones of Purkinje cells go directly into the superior cerebellar peduncle. All the thick fibres, however,

[^270]

Fie: 432.-A, transwrse section throngh the posterior half of the pons. 'The heft half of the illust ration corresponds to the anterior, the right half to the posterion protion of the pons. (Ahter W. von Bechterew, Is 9 , somewhat modi-

 (mesemephalica) nervi trigomini ; st.gr.e, statmongriseme erent rale. Red-
 10. satatered bundles in the lemuiselts medialis; 12 , region of seattered fibres which develop late in the latemal fied of the formation retidularis: 1 !, lemniselts lateralis. lellum-lo, tibres of lemniscos medialis originating in
which go into the brachium conjunctivm arise，he states， from the nucleus dentatus of the same side．＊

The cells of the muclens dentatus are large，triangular，or stellate，and exhibit meven dendrites．The thick axmes arise either from the cell borly or from one of the dendrites，give off one or two collaterals inside the nuclens dentatus，and pass over into the brachium conjunctivim of the same side（Fig．433）． In some eases it has been possible to follow the axone even outside the cerebellum，not only in longitudinal sections，but ulso in transverse sections．

Abstract

nuclens fumionli gracilis：23 fibres from the region of the eollientus inferior to the muclens reticularis tegmenti and to the pons．J＂oplet－s，fithere of ferent bundles in the brachinm conjunclivan．blur－\｛，biscicoli longi－ medialis（to motor nucle of cerchal merves）；4i，fibres of ererelmal bumde of cerebrocortionpontal path．（icere－9，fiscieculus longitadinalis medialis；α ， fibres which represent the pental continution of the fiserientus lateratis pro－ prins of the spinal end ：你，commissumb hande lying ventralward from the hachinu conjuntivim，

13，transwerse section through the hain stem；lesel of perlune ali are－ bri．The right half illustates the lewe of the colliculns inferior，the left half that of the eolliculus sumerior．（Atter W．von Berhterew，1sad， thm mediale：C：m．，corpus mammilline：（＇s．，colliculas superior；N．／I， centrale．Red－l！，fibres of lemmisens lateralis which enter collembus in－ medialis originating in the melens fanienli comeati：b^{\prime} ，tihere of the bem－ nisels medialis going to the eropora ghadrigemina：U^{\prime} ，seatered bumbles of the lemnisens which go ower into the hasis pednaculi ；$⿳ 八 人 口$ ，regiom of the seat－ tered fibres（late to develop of the formatio reticularis．Gellme－li），fibres of lemmiserns medialis from the muchens funiculi gracilis； $2 x$ ，fibres from the nuchens collienli interioris to the thatams（actording to won Bechterew）； 隹，fibres of the barhinm combuetivam before the entrane inte the red melens：fir，as，fibres from the red numens to the melens lentifomis，the 9 ，faseiculas longitudinalis medialis；3／，fibres of the dorsal part of the com－ missuma posterior ；st＇，fiberes of the sempal part of the comminsmat pesterior ： d＇Aayri）；zz＇，fasciculus pedunculomammillaris pars basilaris（pedaneulus Forporis mammillaris）：os，fibres from the sulstamia grisea of the colliculus superior to the region of the melens ruber of the mpusite side．blue－s． faseiculi longitudinales（pramidales）：ant，fibres of fromal cerebmorti－ copental path（medial handle in hasis medmenti）：zh，fibres of oreipith－ fibres of the aresestry bomdle of the lemmisens；se＇，tibres comeneting the sulstantia nigra with the ceretmal hemispheres．

＊Op．cit．，S．$\perp 0$ ．

A very important observation, which we owe to Ramon y Cajal, has been made in sagital und lateral sections. At the point where the fibres of the brachiam conjunctivum leave the

Fic. 433.-Frontal section throngh the cerchelhm and pens of a fortal monse. (After S. Ramon y (:ajal, Britrag zam Studium der Merlulai Ohlongata, refo.
 motor root of N. trigeminus: 1 , unclens motorids princeps N. trigemini ; I.

 terminals of ascending limbs of bifureation ; c, cells in among fibres of ale
 nenromes in the murlens motorins primeres N. trigentui ; anomes of the latemal sensory eentmal trigeminal and glossopharyugeal path which give off rollaterals to this muelens.
cerebellmm and go over into the dorsal and lateral surface of the pous, many of the fibres give off at right angles a stout eolhateral, which passes in a descending direction. At times the division resembles more a bifuration of the axone (Fig. 434). 'Ihis bmadle of collaterals arising from the fibres of the brachinm conjunctivm leaves the brachimm and deseends, forming a fasciculus cerebellaris lateralis descendens (Ramón y Cajal's luterales absteigerudes Kleinhirubï̈ndel).

 monse, showing the sensory portion of the N. trigemints. (After S. Ramón y
 lig. 1.) A, portio major or sansory root of N. Arigeminms the indivitand axomes dividing into an asebding (a) and a deserodiug limb (b) ; re frominal branches of asceuding limb; d, root fibres which sink into the drphit; r, dor-
 vestibuli, the nseroding himbs (a) going to the rerebelfam, the deserembing limbs (f) going downward to the medulla oblomgata; \mathbb{P}, brachimu cont-
 lemoniseus lateralis; H, corpus traprooideum; O, nueleus dentatus.

This descending eerebelar bundle consists of several small bundles arranged more or less in the form of a plexus, and separated from one another by eells. He bas been able to follow these small bundles in lateral sagittal sections along the tractus spinalis nervi trigemini, in relation to which it is medi-
ally phaced. In its course collaterals are given off to adjacent regions of the formatio reticularis. In transverse sections the descending cerebellar bundle of Cajat is seen to rom at tirst forward and ventralward, outside the principat motor nuclens of the trigeminus, medial from tho upjer part of the substantia golatinosa. Soon after it has passed medial to the latter it turns to rm lomgitulinally, and forms a large bundle of longitudiand fibres in the formatio retieuharis grisea just medial to the substantia gelatinosa of the tractus spimalis nervi trigemini. In its transverse course, while it passes lateral from the principal motor nuclens of the trigeminus, it gives off some collaterals which branch in among the cells of this mueleus, amb, further on, following the longitudinal course of the mednlla, it gives off collaterals to the nucleus nervi facialis, the cells in the formatio reticularis grisea, and perhaps also to the nuclens ambigums and to the mucleas nervi abducentis. Ramon y Cajal was unable to follow the course of this bundle below the olive, as his set of serial sections unfortumately stopped at this point, although the path was distinetly impregnated and evidently went farther. He concludes that this boudle has nothing to do with the descending cerebellar path described by Marchi. Ite bolieves that at least a part of its. fibres have been described by von Bechterew as the cerebelhar root of the trigeminns, by Edinger as the direct sensory cerebellar path of the trigeminus, and by Cramer as a central sensory path of the trigeminus.

Martin has olserved, by Golgi's method, axones passing from cells in the red muclens through the decussation to the brachium conjunctivum of the opposite side. These axones give off collaterals before and after deenssation to the formatio reticularis. These possibly correspond to the fibres of Edinger's tractus tegmento-cerebellaris and to the cerebellopetal degeneration ohserved by Mendel * and by von Beehterew. \dagger For the structure of the nucleus dentatus in the new-born babe and in

[^271]adult homan beings, the rader is refermed to the researeh of laguro.*

It is obvious that while by far the majority are cerebellofugal, in the brathinm eonjunctivm there are axones passing in both direetions. The throgrmphical distribution of these axones remains yet to be worked ont. It is wery important that this be determined for each of the four bumbles which ean so easily be isolated by the stmly of myelinization.

In passing it should the mentioned that a Russian investigattor, Klimorl, \dagger has ilmonstrated, by Marr:hi's methool, fibres commenting the corebellum of we side by way of the brathime conjumetibum with the contralateral melens nervi oenkmotorii.
'There are cerebellofngal pathos also in the brachiom pentis (middle cerebellar pedamele) bat the evidence thas far is against the view that these are rerehopetal in matmere (c'f. Chapters LaNII mod LXIV.)

[^272]

CHAP'TER XLNHI.

ON THE STRUCTURE OF THE ICYOTIALAMIC REGION ANO TIE course of tife lemniscus mebialis.

Centripetal fibres which forward bodily impulses through the cerehral peduncle toward the somasthetic area of the cortex-Forel's studies (1887)-Feld II-The zona incerta-The noclens hypothalamicus or Lays' body-The nuclei of the thalamus-von Kïlliker's studiesResearehes of Nissl-Investigations of von Monakow-Tsehermak's studies.
The lemniseus or fillet-Subdivisions-Lemnisens medialis-lemnisens superior-Varions neurone systems in the lemmiscus. 'The "e cortical lemnisens," direet and indirect-View of Flechsig and Hoesel-View of von Monakow and Maham-Other stuties of lemnisens-Demonstration of direct eortical lemnisous in cats by Marehi's method (Tsehermak).

All the centripetal paths earrying impulses toward the cerrbrum must pass throngh the cerebral peduncle. We have seen that the bundles of fibres concerned in carrying impulses from the bodily sense orgams (as opposed to those of speeial sonse) may include the following: (1) The lemnisens medialis; (2) the fasciculus longitudinalis medialis; (3) certain longitudinal bundles of the formatio reticularis; and (4) the brachim conjunctivum and some of the axones arriving from the nueleus ruber whieh pass cerebralward. These various fibres (axones of central neurones) pass through the pedunculus cerebri (mainly or entirely through the tegmentum, not through the pes, or basis) to reach the diencephalon, where most of them in all probalility terminate in the hypothalamus, in the thalameneephalon, or in the nucleus lentiformis; a few of the axones may pass throngh the diencephalon, withont terminating in it,
so as to reach the cerebral cortex directly ly way of the internal capsule and the corona radiata (direte limensehteife and a part of the Inubenstrallung of the (iermans). The fibres which terminate in the hypothalamus (mainly in the moclens hypothatamieus) and in the thalamus (mainly in its ventro-lateral portion) apparently do so in conduction relation with the cell bodies and dendrites of neurones of the third (and often doubtless of a higher) order, the axones of which run out through the retro-lenticular portion of the oceipital limb of the internal eapsule and through the corona raliata to reach the cerebral cortex. The region of the cortex in which the axones of the general sensory conduction path here considered terminate, I have designated as the somesthetic area of the cortex.* It inchules, in all probability, the central gyri, the posterior portions of the three frontal gyri, the lobulus paracentralis and perhaps in part the gyrus einguli (Fleehsig) and portions of the parietal lobe behind the posterior central gyrus (von Monakow). In addition, doubtless, fibres of this sensory path terminate in the corpus striatum.

The study of the upward continuations of the sensory conduction paths of the tegmentum is fraught with extreme difficulties, especially in man, in whom the brachium conjunctivom and red uneleus are colossally developed in comparison with the other tegmental structures. It has been attempted by purely anatomical methods ; by the method of secondary degenerations, and by the embryological methol. Thus far but little help has been gained in this connection by the use of Golgi's method, but a beginning has been made. The application of the method of Nissl, though full of promise, has as yet been limited.

The purely anatomical studies, extending the earlier researches of Reil, Burdach, \dagger Arnold, (Gratiolet, t and Lays, " have been carried out chiefly with the aid of serial sections by Mey-

[^273]nert,* Forel, \dagger Ganser, \ddagger Dejerine, ${ }^{\#}$ von Kölliker, $\|$ Mills, * and von Monakow. 0

Forel, in his exhanstive description of the tegmental region, attempts to follow from the pons and midbrain the main longitudinal paths upward into the tegmentum and hypothalamic region. His conclusions regarding the various bundles which we have seen may be concerned in the carrying of impulses from the bodily sense orgams-namely, the fasciculus longitudinalis medialis, certain longitudinal bundles of the formatio reticularis, the medial lemniscus and the brachium conjunctivmm, and the fibres coming out of the red nucleus may here be referred to.

As regards the fibres of the fasciculas longitudinalis medialis, Forel \downarrow found that the majority of the coarse fibres aml some of the fine fibres reaching the level of the posterior commissure of the brain enter into it. The majority of the finer fibres, however, went farther, passing through the fascieulus retroflexus Meynerti to become lost in the gray matter of the tegmentum, mingling with fibres from the formatio reticularis, and perhaps reaching the area in the hypothalamie region designated by Forel as Feld I_{2} (cide infra).

The longitudinal bundles of the formatio reticularis are much confused in the midbrain by the decussatio brachii con-

[^274]
junctivi. They become displaced dorsally and laterally, and above the red mueleus pass apparently into the diffusely limited oval Feld II. A special mass of fibres of the formatio reticularis, designated as Heubenfuscikelu or fascienli tegmenti by Meynert, and especially well seen in the dog (Fig. 435), patss upward and apparently go direetly to the most ventral parts of the thalamns.

The fibres from the brachiom conjunctivam and from the red mucleus were especially studied by Forel. He describes partieularly the white matter of the dorsal surface of the red nuclens and that of the lateral surface of the red nuclens. He

Fag. 436.-Frontal section throngh the human brain stem. (After A. Forel, Arch. f. Psychiat., Berl., Bel. vii, 1877, Taf, vii, Fig. 10.) RATh, large bunde of fibres which, coming from the melems ruber and its catesnle, runs mpward, lateralward, and dorsilward to the ventral part of the thalamus to the reticular layer, to the lamina mednalaris latemalis, ete., where the fibers beome so interwoven with others that they ean not be foblowed farther; Forel's Feld M, thorsal white natter of regio suhthalamica.
believes that the dorsal white matter consists of fibres from the brachinm conjunctivm, from the faseiculas longitudinalis medialis, and from the formatio reticularis inextricably mixel.* On the lateral surface of the red muclens he describes a mass of fibres which passes obliquely lateralward and dorsalward toward the cerebrum, converging to form a bundle which he calls BATh (Fig. 436), and which he thinks, in the main, enters into the rentral part of the thalamms, there again to break up into seroudary bundles which appear to help to form not only the lamina medullaris lateralis, but also other lamine medulares and radial bundles of the thatamos. \dagger Lateralward this hondle

[^275]tonches the zona incerta, while dorsalward, somewhat above the red nuelens, it fuses with Frld I.

Forel s Feld $I /$ would therefore be made up mainly of tibres from the capsule of the red muclens, partly of fibres passing through the red nucleus from below, partly from fibres which represent mednllated axones from the cells of the red nuelens itself. There are contained in this Feld H, then, aceording to Forel, fibres from the brachium conjunctivam, from the formatio reticularis, from the fasciculus longitndinalis medialis, and from the red muelens.

As regards the main portion of the lemniseus, Forel describes it as bending dorsalward and lateralward at a level corresponding to the lower end of the red muclens. It passes close to and parallel with tae bundle which he ealls BATh and runs in a direction toward the pulvinar, interweaving with the IIaubenfascikeln, and becomes lost in the gray matter of the tegmentum, so that its fibres can not be further followed.

Very convenient for purposes of description will be found the division of the hypothalamus (regio subthalamica)* adopted by Forel. He recognizes three layers: (1) A dorsal layer of white matter; (2) a middle layer, the so-called zona incerta, which laterally is continnons with the reticular zone of the thalamus; and (3) a ventral layer, somewhat more laterally placed, the so-called Luys' body, now known as the nucleus hypothalamicus (corpus Laysi) (Fig. 437).

The dorsal layer of white matter just cerebralward from the red muelens consists of an area of very fine medullated fibres which Forel designates as Feld /I. This field may receive fibres, Forel hinks, from (a) the fasciculus longitudinalis medialis;

* The limits of the hypothatames (regio subthalamiea), or Wernickes stratum intermedium, as defined by Forel, are ns follows: Darsally it is eovered by the thanams, being separated from it by the lamina medulatis lateralis: metially it is limited by the stratom griseum eentrale of the thid ventricle and by the faseidulas thamomammillaris (Vieq d’Azyri) atmi the anterior root of the fomix; ventrally by the lamina perforata posterion or by the corpus mammillare, as well as hy the substantian nigra with the basis pedinculi: laterally by the internal capsule and by the retieular zone (fit(epschicht) of the thatams. Betow it is limited by the ntelens ruber and the fascinulus retroflexus (Mernerti) : above it is eontinuous with the sub)stantia innominata of Reil.
(b) longitudimal bundles of the formatio retionlaris; and (r) pessibly also tibres from the brachinm ronjumetivnm and the red muclens, inasmoeh as he believes it may be looked mon as
 matter surrommling the red molelens. It is rontimoms laterally

 ulus lertitus.
with the lamina medullaris lateralis. Wigher up, in sections passing through the posterior part of the corpus mammillare, Fored deseribes the feld $/ /$ as splitting into two portions, one dorsal ((ride $I I_{1}$), remaining in direet continnity with the lamina meinllaris lateralis of the thalames the nther ventral (Fidel H_{2}), sinks into the zoma incerta, beeomes more eompact, and sends a process (of white matter) lateralward which passes as a that lamella over the cerebral extremity of the dorsal white capsule of Lays' body. This lateral "ite proeses from the Feld I_{z} grows thicker farther up, is dosely attached to Lays' booly, and hends aromal its lateral margin into the intermal capsule at its jumotion with the basis perluneuli. In doing so, it is joined by lateral-ventral bundles from Lays' booly, and, like these, divides the eapsulat interma into rectangular fiells (Fig. 4;38).

The zona incerta, a mixture of gray matter and white matter, lies between the dorsal layer of white matter and Lays' body.

[^276]Forel conld say mothing alefinite regarding the mature or relafions of the fitres and cells situated in it.

The maclens hypothalamious (corpus Laysi), the most ventral of Forel's three layers, is a biconvex, trasversely oral, lens-shaped mass, somewhat smaller than the red muclens and very different in shape. It can be sem to begin in seetions eorresponding to the pane of the faseiculas retroflexus Meynerti, in which it lies dorsal to the hasis peduneuli and the anterior part of the substantia nigra. More anturiorly it increases rapidly in size, assumes an expuisite spindle-shape in cross serlion, with somewhat more convex dorsal surface, and finally limits sharply dorsally and somewhat medially the whole basis protumenli. It is largest in reoss seetion at a level just posterior to the corpus mammillare. Anterior to this point it becomes smaller, but remains spinde-shaped in aross section and timally disappears in phanes correspombing to the anterior part of the corpus mammillare. 'The dorsal surface of bays' body is lumed toward the gona ineerta, while the ventral, somewhat less convex surface, is turned toward the basis pedunculi and the internal rapsule. The muclens is inclosed somewhat imperfectly by a dorsal and ventral white capsule, the two coming in contact with one another at the cirenarar edge of the nurlous, esperially at its anterion and posterior extremities.

 Prevelial., Bryl., BI, vii, 1sti, 'Jaf. vii, Pig. 13.)

As regards the nurlei of the thalamis, fromel follows closely the deseriptions of Burdach, who divided the thatamus (aside from the pulvinar) intor three gray musei, which correspond to what we now designate as (1) the nuclens medialis thalami,* (2) the nuclens lateralis thatami, \dagger and (3) the muclens anterior that-

[^277]ami.* In addition he recognizes the existence of Lays' rentre mislian, a nuclets hidden by many medullated fibres lying deep in the substance of the thalamus between the nucleus rubrer, the nuclens medialis thalami, and the muclens lateralis thalami. Yon T'sehisch, \dagger in 18sif, deseribed an alditional nueleus in the thahmos situated just dorsal to the red nuelens and lateral from the fasciculus retroflexus Meynerti. This mass of gray matter, which in reality belongs to the nuclens lateralis thalami (according to von Momakow to the ventral group of nuelei), is concave above, and in the concavity rests the rentre médiun of Luys. Von Tschisch calls it the schalenförmigee Körper; Dejerine writes of it as the moyan semilumaire de F'lechsig; and von Kölliker calls it the nucleuss arcuatus of the thalamus.

Dejerine, in a beautifully illustrated publication, describes and pictures a large number of sections-coronal, horizontal, and sagittal-through the cerebral hemispheres, from which the student, in working through the region of the thatamus and hypothalamus, will find much help. An extremely careful and detailed description of the thalamus and hypothalamus has been given to us by von Kölliker in the last edition of his textbook; it is of especial value in that it is accompanied by a large number of exquisite illustrations.

Yon Külliker \ddagger aceepts Forel's nomenclature as regards fields II, H_{1}, and H_{2}. He calls fell $I I$ the "tegmental bundle of the red muclens." ${ }^{+}$This splits into two parts: a dorssl part, Forel's Feld I_{1}, which he designates as the "tegmental bundle of the thalamus," $\|$ and which he finds vanishes in the lamina medullaris lateralis and in the nucleus lateralis thalami; and a ventral part, Forel's Feld H_{2}, which he calls the "tegmental bundle of the lentiform nuclens; ${ }^{\wedge}$ this goes through Luys' body and the cerebral pedmele to become lost in the nuclens lentiformis. He separates the upward contination of the

[^278]medial lemnisens from frld II, wid states that it is sitnated laterally from it.

The upward contination of the fasciculus longitudimalis medialis is discussed at length by von Kölliker.* In his opinion, instead of breaking up in the nuclens of the posterior commissure, the medi ' portion of the fitscieulus passes ventralward into the hypothammas, and then passes dorsal from the corpora mammillaria to enter a commissure formed by the bundles of the two sides. A second portion, including the majority of the fibres, mixed with the arcuate fibres which surround the red nuclens on its medial and ventral aspects, becomes lost beneath the same, so that it can not be followed further. Although he formerly believed that it represented a erossed central sensory puth, he now, as a result of the studies of vam Gehmehten, Held, and others, is inclined to think that the majority of the fibres are descending, having their origin either in the thatamus or in the central gray matter of the third ventricle.

With regard to the bundles passing cerebrahward from the region of the red nucleus, von Külliker thinks it is difficult to state how many of them come from the brachinm eonjunctivum, and how many of them correspond to longitudinal bundles of the formatio reticularis. \dagger He agrees with Forel in thinking that the bundle designated by the latter $B A T / h$ goes over into Feld $I I$ and splits. His descriptions of the fibres from Feld I_{1} and from Feld I_{2} agree in the main with that of Forel.

The bundles from the red nueleus itself tend, von Kölliker states, to surrond the ceutre médian on its ventral side, and are continued in the form of an arched platelet, which, cutting through a radiation of the thalamus parallel to the lamina medullaris lateralis, turns dorsalward and becomes lost before reaching the dorsal surface of the thalamms. This arehed plate of fibres is seen in frontal sections farthei forward at the begiming of the lamina medullaris medialis. Parallel with this phate there go stronger fibre bundles from the red nuclens through the medullated radiations of the lateral nuelens of the thalamus, representing for some distance a special intermediary lamina medullaris (Fig. 439). Between these two ratdiations from the red muclens is to be fomb a small field of

[^279]\dagger Op. cit., S. 454.
gray substance, the muclens arcuatus, or schuleuformiger Kärper of ron 'rschisch.

Von Kölliker in his text-hook gives further an chaborate deseription of the different unckei of the thatamus, in which he compares his findings in Weigert preparations of the brain of

 Laysi) : ('p, commissura posterior ercheri ; F'M. fasefolus retrothexas Mey-

 molevs medialis thatami ; Nure, puclens arematus seholewfömiger Körper of Feechsig and von Tsehisels); Nr, unclens rubur; I, putamen: P, basis
 Tr.o., tractus opticus.
man and animals with those of Nissl in the thalamus of rabbits. As is well known, Nissl * has made a very thorough study of the nuclei of the thalamus in the rabbit, and has isolated, according to the form and grouping of the cells, some twenty different nuclei. In brief, his description is as follows: In the

* Nissl, F. Tagebl. d. 62 Vorsamml. deutsch. Naturf. n. Aerzte, Heidelb. (1889-'00), S. 509.
part of the thalums projecting most anteriorly is situmted an anterior nuclens which must be divided into a smuller anterion dorsal and a larger anterior ventral nuclens. The hatter shows a further differentiation, so that one can distinguish distinctly in it a dorso-medial part from a ventro-latemp part in which the cells are much closer together. Medial from the anterior muclens is seen the rather small anterior medial molens which lies like a cap aromd the middle medial muclens. The latter is a large maclens situated close to the middle line, and visible for as much as half of the longituclinal extent of the thalamus. Ventral from the anterior nuclens lies the nuclens of the reticular zone ((iitterschicht). 'The first to appear in a frontal series of sections is the ventral unclens of the reticular zone, which terminates medially at the transverse section of the columns of the fornix; laterally it adjoins the lateral mucleus of the reticular zone, in insignificant muclens. Between the ventral mucleus of the roticular zone and the ventral anterior nuclens lies the dorsal mucleus of the retieular zone. Close to the middlle line appears a narrow cell plate of spindle-shaped cells, which Nissl calls the "nuclens of the middle line," without fuestioning whether it belongs to the thalams or to the stratum griseum centrale. This mucleus of the middle line is invaded by the middle medial nucleus, which quickly approaches the middle line, so that one part of it comes to lie dorsal, another rentral from the midalle medial nucleus. These two parts quickly spread out lateralward, the dorsal more than the ventral.

In a slight lateral projection of the thalamus is situated the anterior extremity of the lateral muclens. First of all comes the anterior lateral muclens, which occupies almost two thirls of the longitudinal extent of the thalamus and which increases in size as the anterior nuclens diminishes. It hats the form of a sector of a circle, the curved line of which forms the lateral curve of the thalamus, the medial ratins of which adjoins the anterior nuclens, the ventral radins adjoining the dorsal nuelens of the reticular zone. Around the angle formed by the ajex of the sector there is deposited a narrow row of cells also in the form of an angular mass. One series of these cell groups lies, therefore, between the anterior lateral nueleus and the vental anterior meleus; the other between the anterior lateral nuclens and the dorsal nucleus of the reticular zone. Since this nu-
cleus contains the largest cells which occur in the thalams, Nissl calls it "the large-celled muclens" of the thatimus.

As the anterior nuclens vanishes, its place comes to be orenpied by the posterior medial muclens, a large muclens which laterally abuts against the anterior lateral unclens." Besides, betwren the ventral and the dorsal nuelei of the reticular zone, which are both displaced markedly lateralward, a new nucleus develops, which had hitherto never been mentioned. Nissl calls it the ventral mucleus. It is very large, and oceupies about the posterior half of the longitudinal extent of the thalamus. This nuelens is very difficult to deseribe, because transitions into almost all the other molei oceur. However, it is not difficult to determine in it three cell groups of definite arrangement. The lateral ventral nuclens possesses spindle cells, the medial ventral mucleus large cells, the dorsal ventral nuclens, on the contrary, small cells. The ventral mucleus in its totality represents a triangle, the base of which rests upon the lamina medullaris lateralis.

Soon after the appearance of the lateral geniculate body the posterior lateral nueleus develops, which contains much smaller cells than the anterior lateral nuclens. The posterior lateral nucleus is situated between the lateral geniculate bodies and the anterior lateral molens. In these frontal planes there are to be made out in addition only some remains of the ventral nuclens of the reticular zone, the ventral nueleus, the posterior medial muclens, and the nucleus of the middle line, the separated parts of which have again coalesced throngh the disappearance of the middle medial nucleus. Besides, in these phanes, one finds also the ganglion habenula, in which a more distinct lateral mucleus can be made ont, containing seattered larger cells, and a medial nucleus with cells pressed close together. While the lateral geniculate body becomes much larger, the other nuclei diminish in size, and there appears between the two lateral geniculate nuclei and the ganglion haben'la the posterior lateral and the posterior medial nucleus. Tle latter shows scattered cells, which go over quickly into the stratum griseum centrale, while the former is a larger nucleus containing cells closely massed together, which stain feebly. With the appearance of the posterior commissure and of the medial geniculate body the posterior lateral nucleus alone still remains large, while only remains of the lateral geniculate body, of the
posterior medial nuelens, and of the ventral melens are visible. Nissl believes that Ganser is incornet when he states that the posterior mucleus goes over into the medial geniculate body, and holds that von Momakow is nlso wrong in thinking that this muclens also goes over into the lateral geniculate body. IIe states that the posterior muclens is always sharply separable from the two geniculate bodies. The luteral genieulate hody consists of a dorsal mucleus and a ventral mucleus. In the dorsal unclens, again, one can make out a lateral-dorsal muclens, which, in contrast to the dorsal muclens proper, possesses far larger cells. This lateral-dorsal murlens is identical with von Gindden's centre for the pupillary fibres. The ventral nucleus of the lateral geniculate body can be distinetly differentiated into a ventro-medial muelens and a ventro-lateral mucleus containing cells of a different sort.

According to von Kölliker, Nissl has, since the publication referred to, given up his posterior medial nuclens; accordingly he designates as the " posterior " nueleus the mass of gray matter which he formerly called the "posterior lateral" mucleus. Ite udds still another moleseribed nuclens, which he states is sitnated close to the tenia thalami, and contains numerous spindleshaped elements.

For the sake of convenient reference, I have arranged these nuclei deseribed by Nism is tabular form.

Nugle of the Thabames of the Rabit (accomdint; to Nissl).
I. Anterior Nurleus.
(a) Dorsal nuclens.
(b) Ventral nuelens.
a Dorso-medial part.
β Ventro-lateral part.
II. Medial Nuelpus.
(a) Anterior muclens.
(b) Middle nucleus.
(c) Posterior nucleus (since given up).
III. Nuclei of the Retimhtar Zoue ((iittersehichkerne).
(a) Ventral nueleus.
(b) Lateral muclens.
(c) Dorsal mucleus.
IV. Nucleus of Midllle Liue.
(a) Dorsal part.
(b) Ventral part.
V. Lateral Dinlens.
(a) Anterior nurlens.
(b) Posterior nuclens.
VI. Ieutral Nucleus.
(a) Lateral nuclens.
(b) Medial nucleus.
(•) Dorsal mucleus.
SII. Posterior Nuclens (now designated the posterior lateral nucleus).
VIII. Comumed N'uctens (close to temia thalami).

Yon Monakow* has carefully studied the numei of the thalamns in human beings and in higher mammals, and has compared his results with those obtained by Nissl in the rabbit. He widens the classifieation which dates from Burdach's deseription ("ide sumra). It would take up too much space to introduce here a detailed account of his findings, but the following table will give a fair idea of his classitication of the nuclei as observable in a series of seetions in human beings, It is to be especeally noted that von Monakow adds a distinet ventral group of nuclei to the older deseriptions. Thus, the lateral nuclens of the thatamus (of Burdach) is divided by an arbitrary phane into two halves-one dorsal (lateral nuelens of von Monakow) and ene ventral (belonging to von Monakow's ventral group of nuelei).

Niclei of Thalames in Iluman beings (according to von Monakow) (Figs. 440-44).
I. Auterior Nucleus.
(a) Int. a-the main mass (Fig. 444).
(b) Ant. e-in accessory anterior nuclens (Fig. 444).

II. Metlial Vurleus.

(a) Med. a-the main portion consisting of the anterior and medial portions (Fig. 4+?).
(b) Med. b-the rentre médian of Luys (Fig. 4\%).

* Op, cit. Arch. f. Psychiat. n. Nervenkr., Berl., Bil. xxvii.
III. Lateral N'uclows (Fig. 4t) -the dorsal half of Burdach's lateral melens of the thatames.
IV. Ventrol Ciranp of Niulei.
(a) Vent. ant. (l'ig. 444)-the anterior vental nueleus.
(b) Vent. a (F゙ig. 44^{*}) -the middle vontral nuelens.
(c) Vent. b (Fig. 44:) - the medial ventral nuclens (sichatcuftiormiger h'ärper of l'lechsig and von 'Tsehisel.
(d) Yent. e (Fig. 441)—the lateral ventral nucleus.
V. Nuclei of the Reticulur Zone ((iittersehichtherne, Fig. 443).

V1. Iosterior Nuclens (Fig. 441).
VII. I'ulvinur (Fig. 440).

In the cat von Monakow deserihes, in addition to the melei above mentioned, (1) a muclens ant. b, (2) a muclens mod. ". and (3) a melens med. c (unclens magnocellulatis of the medial nuclens). He divides his lateral melens into two parts, lut. "

Nucheres prsterior thatemi.

 white matter of lateral gembebate bexly.
amd let. b. The nuclei of the retioular zone (fitterschirht) he divides into an anterior and a posterior gromp.

Tsehermak* speaks of a medial ventral muelens in the thalamus which is identical with the selhelenfiarmiger härprer of Flerehsig and with ron Monakow's rent. b. 'The midhle or erentrad mucleas (ernt. (1) and the lateral ventral melons or went. a

[^280]of von Monakow are grouped together by Tschermak and called the "ventral nucleus in the narrower sense." * He describes the schalenförmiger Körper as spreading out lateralward and going over without sharp limit into the nucleus lateralis thalami. It

Fig. 44.-Frontal section throngh a normal human brain at level of mper extremity of corpus geniculatmm modiale. (Alter C. von Monakow, Areli, f. Dsychiat., Berl., Bd. xxvii, 1895, 'Taf, ii, Fig. 13.) r, lateral white mather of lateral geniculate boaly ; y, lateral white matter of pulvinar.
is divided by bands of medullated fibres into a number of small groups of ganglion cells. Under the term Thalamusmassio Tschermak describes the more or less egg-shaped total mass of the thalamus which, latero-ventrally and laterally, as far as the floor of the lateral ventricle, is surrounded by a lamella of gray substance, the Gitterschicht or zona reticularis. This Thellemusschale, as Tsehermak prefers to call it, is continuons with the anterior extremity of the substantia nigra aud with the corpus genieulatum mediale. Ventral from the Thalamusschule lies the nucleus hypothalamicus (corpus Luysi) covered by its dorsal white matter, the so-called Feld H_{2} of Forel. In mann the nueleus hypothalamiens lies upon the dorsal surface of the basis pedunenli, but in the cat it passes through the latter as a coarse-meshed framework of gray matter. On the lateral side of the Thalamusschale are situated the fibres of the capsula interna (the direct continuations of the white fibres of the basis pedunculi). Inasmuch as the Thulamusschale leaves the Thulamusmassiv uncovered only on its medio-ventral surface, a groove is formed through which fibres pass, on the one hand, between the Thulumusschule and the Thalamusmassiv, and, on

[^281]the other hand, into the gray matter of the Thutumusschule and of the Thalamusmussiv themselves. Aecordingly, Tschermak designates this the Hilus thulami. The fibres which enter the thalamıs run in company with other fibres which leave the thalamus, in places forming very definite bundles which, running through the gray matter, divide the thalamus up into a number of nuclei or groups of nuclei.

Tschermak's deseription is so clear and agrees so well with what one actually sees in sections through this region that some of its main features may with propriety be introduced here. Numerous bundles can be seen passing out of the hypothalamic region and radiating through the hilus thalami into the thalamus itself. These include the remains of the lateral lemniscus, the medial lemnisens, and the radiations of the red nucleus. Some fibres, however, approaching the hilus searecly enter it, but turn aside again to break through the Thalamusschule and

Fig. 442.-Frontal section through a normal human brain at the level of the lower end of the muclens hypothalamiens. (Atter ('. von Manakow, Areh. i. Psuchiat., Berl., Bd, xxvii, 1895, 'Taf'. iii, Fig, :20.) a, dorsal white matter "f unclens ruber: β, voitral white matter of anchens ruber ; γ, lateral white matter of muclens ruber.
bend aromind past the moleus hypothalamicus to arrive in the basis pedumenli. In man the fibres of the main mass of white matter in the hypothalamic region, at least those most ventrally situated, do not pass through the hilus into the thalamus. These ventral fibres, on the contrary, rin along the ventral surface of the Thulamusschull-that is, between this and the
nucleus hypothalamicus, forming the "lorsal white matter" of the latter (feld $I I_{2}$, of Forel). They pass lateralward into the lasis pedunculi, and so, according to Tschermak, represent genuine direct hypothalamic fibres from the hypothalamic

Fig. 443.-Fromal section throngh a momal homan bmin at the level of the ansa lentionharis anterior to the marlens hyouthalaniens). (After © von Monakow, Areh. f. I'syehiat., Benl., Bul. xxvi, 1805, 'Taf', iii, Fig. as.)
region to the basis pedunculi. Speaking purely topographically, these direct fibres represent a continuation of the bundle which in lower regions, especially at the level of the colliculus superior, can be seen passing over from the area oceupied by the lemniscus medialis ventro-lateralward into the basis peduneuli. These are the fibres which Flechsig designated the Fusssorlleife or Perlunc:ulussrhleife, and they are, Schlesinger believes, probably identical with the fibres of the lateral pontine bundles of the lemnisens described by the latter anthor.*

[^282]In man Forel's Feld $I I$ is in contact at its anterior extremity with the compact ansa lenticularis (Linsenhernarhlimge of Flechsig), which, apparently begimning (or ending) in the nuclens lentiformis, circles around the medio-ventral border of the basis pedunculi and, in comection with the so-called medial peduncle of the thalamus, radiates into the most anterior ventral region of the thalamus. Von Monakow distinguishes in the ansa lentienkaris three principal bundles: (1) A dorsal bundle which groes from the globus pallidus tramsversely throngh the pedmacle to go between the (iitterschicht and the nuclens hypothalamicus. This bundle corresponds to the abovementioned hypothalamic fibres (Forelss Fild I_{2}, dorsal white matter of the nueleus hypothalamiens). In man the fibres are much more numerons and arranged in the form of a much more compact bundle than in the cat ('Tschermak). (2) A middle portion rumning medio-ventralward from the fibres of (1). This middle portion of the ansa lenticularis forms the lateral and especially the ventral white matter of the nuclens hypothalamiens connecting this body with the nuelens lentiformis. (3) The ventral part of the ansa lentieularis runs between the

Fig. 44.-Frontal sertiom through a normal human bain at level of anterior part of thatamus. After (': von Manakow, Areh. I: Psyehat., Berl., But. xxvii, 1895. Taf. iv. Fig. 33.)
pedunculus cerebri and the tractus opticus medialward and sends some fibres into the commissura hypothalamica media of Meynert, but the main mass of its fibres form the so-called ansa peduncularis* which extends to the most anterior ventral part of the thalamus of the same side.

[^283]It is von Monakow's opinion that the fibres of the dorsal part (Forel's feld H_{3}) mite with the main mass of the ventral part of the ansa lentionlaris, and that aneordingly the ansa lentieularis is in the main a conneeting bundle between the muclens lentiformis and the anterior ventral parts of the thalamas (and also the tuber cineremm), some of the fibres being interrnpted in the muelens hypothalamiens. Flechsig has come to the conelusion that there is a relatively important commection, partly direct and partly indirect, by means of the nuelens hypothalamiens, between the mulens lentiformis and the thalamus. This is brought about, however, he believes, only by way of the middle and the ventral part of the ansa lenticularis. The dorsal part of the ansa lenticularis (fold $/ I$ a of lorel) represents, on the other hand, according to Flechsig, the continuation of a large part of the cerebellar tegmental (or conjumatival) radiation. The fibres go into the nolens lentiformis and thas, acording to Fleehsig, represent a radiation from the brachiam conjunctivum into the nucleus lentiformis.* Another part of this radiation, however, goes by way of the red nueleas through the hilns thalami into the ventro-lateral group of muelei of the thalamus.

We may now consider seriatim those bundles of eentripetal fibres which, passing into or throngh the cerebral peduncle, may be concerned in the forwarding of somasthetic impnlses. These are (1) the lemniseus or fillet, (b) the tascienlas longitur!inalis medialis, (c) the formatio reticularis alba, and (d) eertain fibres of the brachium conjunctivum and radiations of the nucleus ruber.

(a) The Lemniscus or Fillet

The term lemniseus laqueus, or fillet (German Schleife, French rubum de heil), was first applied to that triangular area on the lateral surface of the isthmus rhombencephali, which separates the brachium conjunctivam from the surface (Fig. 45). This area, now ealled the trigonmm lemnisei, corresponds to what is now known as the lateral lemnisens.

With the progress of anatomical knowledge the complexity of the nerve paths comprehended in the term lemnisens has rapidly grown until at present the begimer often has difficulty

[^284]in understanding the meaning of the varions names applied to the different portions, especially since, imfortmately, the same term hats been used by different anthors for designating entirely

 des coutres ucrvers, f. i, l'aris, 1s! BrQa, brachinm quadrigemintm stuprims; Brepp, brachimm quadri-

 funionlas latemalis of mednlla oblomgata; fum, fibne aremata extermar:

 superior; (p, colliculus inferior ; A, trigomum lemnisci; Rm, Jemnisens
 perlumedatis tratusversits.
different paths. The two prineipal portions of the lemmiseas are (1) the lemnisens lateralis or lateral fillet (inferior fillet,
 medialis* (inchading the main portion of the lemmisens, the

[^285]superior fillet,* rertain seattered bundles of the medial leminiscus, \dagger and, finally, the medial accessory lemniseus \ddagger) (Fig. 446).

FIG. Ati.-Sehematic representation of the conrse of the fibres met with in the reqion of the superion collienhas of the eorpata quatrigemina. (Alter W. von

 medialis; feys, sfatum abbum probinalum (medulaled axomes to dowsal de('ussation of Seynert); I. lemmisems medialis; ls, fibre bmodle from the

 warl in the nuelei of origin of the motor ereronal nerves (Spitzkis bumelle,
 the (bermans); lap, seattered bmodes of the lemmiseus (zersterete sebliden-

[^286]Of these varions bundles we may exclude from the general centripetal path now being eonsidered (1) the lateral lemnisens. which is, in the main at least, a eentral aconstic centripetal path; (e) probably a part, at least, of the seattered bumbles; and also (3) the medial accessory lemniseus which beeomes mednulated at a later period than the rest of the lemnisens and which, after solntion of contimuity, degenerates downward, not upward, and is therefore to be regarted as a centrifugal, probably a motor path, and not als a contripetal or sensory path (ride Chapter LXII). The ohl view of Mrynert that the lemnisens passed through the lateral part of the basis pethnenti was disproved by Flechsig, who showed that this area in the pes represented a cerebro-cortico-frontal path which has nothing to do with the lemmiscus.

The medial lemnisens is made up largely, as we have seen above, of the axones of neurones, the eell bodies of which are situated in the nuclens funionli gracilis and the maclens funculi cmeati (the medial part of the latter, acoording to von Momakow) of the opposite side of the medulla oblongratat. These mednllated axones we have traced as internal arenate

fibres, which undergo decussation in the raphe (decussatio lemniseorm, Fig. 44\%), then to turn forward to run throngh the stratum interolivare lemmisei into the broad flat band situated
in the ventral part of the pars dorsalis pontis (Fig. H4s). In the uppre part of the pous the medial lemniscus comes to oceupy it

File, 418. - Tansvorse section through isthuns rhombencephati of newhorn

 lemmisens lateralis: L.m., lemmisens medialis: N.JF, decossatio mervormm Irochlearimm; N. V., N. trigeminus; Nu.l.l., unelens lemmisei hateralis:
 cophatical nervi trimemini. (lreparation by Dr. John Hewenson.)
more lateral position (Fig. 449), and in the millbrain ehanges the direction of its long diameter in cross section; whereas in the pons the long diameter of the lemniscus is transverse, or lateromedial in direction, in the midbrain it is almost rertieal or dorsoventral. The transition from the one form to the other takes plare by means of a gradual curve, very well shown by a reconstruction made by Miss Florence Sahin. It is to be especially emphasized that the terms medial lemnisens and hateral lemniseus hold for only a part of the course of these two bundles, for while in the pons it is true that the lateral lemmisens is situated nearer the surface of the metencephalon than is the medial lemnisens, still in the isthmus the lateral lemnisens

Fig. 44:-Horizontal section through the medtalla, pons, and milhrain of at wew. born habe. Wiogert-lal staining. Idevel of dorsal part of corpus trabegoidenm and dorsal portion of undeus olivaris intirior. Series iii, section No.
 Dere. Aceht., commissure betwern Berhterew's mbele; I).e.n.r., domal atpable
 thexas Meynerti; Fil.m., fasciculus longitndinalis mediadis; F.l.p., bumble

 nuclens olivaris acressuritus modialis; Pr. fr.on. I., tract from Deiters' muelens to the spiatal cord. (Preparation hy I)r. John Ifewetson.)
passen mediahward and dorsalwarl, in order to merge into the interior colliculus of the corpora pumbrigemima. At the same time a large portion of the medial lemniscus passes lateralward

 (pramidales): L.m. lomaisens medialis terminating in wortal portion of

 brachium ghadrigerininm inferius.
and dorsalward toward the smperior collienlus of the corpora quadrigemina, and aceordingly comes to ocerpy a position as far lateral as the lateral lemnisens. This portion of the medial lemnisens running toward the snperior colliculus, and partly ending in its gray matter, is known as the sipperior lemnisens or fillet * (oberer Schleife of Forel, rubuen de lieil supeirirur). The main portion of the lemniseus roms forward and somewhat lateralward, heing bounded ventro-laterally by the substantia nigra and dorso-medially by the red melens and the white fibres which pass from its lateral surface into the hypothalamic region. The ventral portion of the superior fillet remains, however, for a considerable distance in direet contant with the dorsal border of the main portion of the medial lemnisens.

[^287]Above the decussation of the brachimm emjanetivm, however, in the hypothatamie region a certain amome of gray matter is intercalated be ween the upward eontination of the superion lemnisens and the upard contimation of the main purtion of the lemniscus, so that in coromi sections throngh the hypothulamic region one sees two separate amd distinet bumdles, that moredorsally and laterally pated corresponding to the superior lemnisens, whild the larger one more ventrally and medially pharod correspomets to the main portion of the lemmisens. 'This separation into two distinet bmolles in the lower hypothalamic region, however, is not to be made ont in frontal phanes a little farther forward. In these planes the fibres of the suprerion lemnisens become inextricably mixed with those of the main portion of the lemmisens, and for some little distance firther forward any attempt to separate the fibres belonging to the two bundles by purely anatomian means is entirely impossihle. The mixed bundles turn somewhat lateralward and dersalward, amb, breaking n^{\prime} into small fascienli, beeome lost in the gray matter of the ventro-lateral portions of the thatamus (according to von Mlonakow, in the caudal protions of his ventral group of

 lentiformis.
muclei in the thalamus). In Figs. tion, 451 is shown a sagittal section of the brain of a babe shortly after birth, illustrating the relations here muder disenssion.

Jomisens arise in the gray matter of the formatio reticularis of the medulla oblongata and of the tegmental region of the pons. Finther, the muclei of reaption of the sensory cerehral nerves donbtless contain eells which eontribute anomes (sensory nemrones of the second order) to the medial lemmisens, and finally from the gray matter of the midbrain and hypothalamic region

it seems probahle that axones pass through the lemniseus to the region of the thalamms. The medial lemniscos is, therefore, a very complex tract, consisting of filhes of difterent length, of different origin, and of different termination. It is thas not dissimilar in ponstitution from many other tracts which have been well st $\quad 1$-for example, certain fascicu! of the eord, the fascionlns aritudinalis medialis of the rhombencephalon, and the like.

There has heen for a long time much dispute as to the rela-

 . Whan Hewe tuoth.
tions of the medial lemnisens to the cerehral cortex. Two main views may be said to have been dominant. Acrorting to the one, formerly championed in the main by Flechsig and Hoesel, a large majority of the axones making up the lemnisens in its conrse throngh the rhombencephalon pass without interruption throngh the internal capsule and out throngh the corma ralliata to the cerebral cortex. According to the other riew, supported hy Mahaim, von Monakow, and others, very few, if any, of the fibres of the lemmiseus pass tirectly withont interruption to the cerebral cortex. Aceorling to the latter observers, the majority, if not all, of the fibres of the lemmisens terminate in the interbrain, chicfly in the optic thalamas, the comncetion with the cerebral cortex being made by means of neurones of a higher orler. Inasmuch as an accurate knowledge of the exact relations existing here is of fundamental importance, it seems desirable to consider briefly the history of these two views (Fig. 454) and the evidence thas far brought forward in favor of cach.

Before entering into this disenssion, however, it will be well to clear the way by defining the torm "cortical lemmiseus" (Rimdensclleife of the Germans, ruban de Reil cortical of the Belgiams and French). This term was introduced by von Honakow in 1884 as the result of experiments made by won Giudden and himself. Yon (indden* showen that remor..l of the cerebral hemisphere in the rabbit by his methol was followed by atrophy of the lemmisens \dagger as far down as the corpus trapezoideum. Von Monakow \ddagger fonm that remoral of a portion of the parietal lobe in the cat, eorresponding to the " zone F" of Munk, led to marked atrophy of the lemniscus, which extended not only as far as the corpus trapezoidem, bat also through the interolivary layer and internal arenate fibres of the opposite side to the nuelei of the dorsal funiculi in the medulla ohlongata. He conld make ont, after a long time, not only atrophy of the fibres of the lemmisens, but also degeneration of

[^288]the gangion cells of the muclens funienli gracilis and of the medial part of the nuclens funiculi cuneati of the opposite side. Inasmuch as the welfare of a large portion of the lemniseus is obvionsly dependent, as these experiments showed, upon the integrity of the cerebral cortex, von Monakow introdnced as a designation for that part of the lemniseus which degenerated

Fig. 45t. -Two selnemes illustrating the two minn views concerning the eonse and interruption of the genemal sansory path (lemmisens medialis). (Ater A. vin Gehuchten, Anatomie du systeme nervenx do lhomme, lanv., 1sy7, p. 783, Figs. 54, 545.) A, scheme illust mang the view that the lemnisens runs ont directly to the eortex without interruption in the thalamms. B, seheme illustmang the view that the lemmisens is comected with the cortex indireatly, being interrupted in the thatamus.
on removal of the cortex the term" cortical lemnisens " (Rimdenschleifo). The term Rimdenscheife has been used in a very different sense ly other investigators, but it seems better to limit its use to the signifieance attached to it by von Monakow.

A little earlier Spitzka* had deseribed a case in which, following hemorrhage in the region of the lemniseus inside the pons, there had resulted degeneration of the fibre arenatie interne and of the nuclei of the dorsal funiculi on the opposite side of the medulla oblongata.

The view of Flechsig \dagger and Hoesel and those who adhere to the same opinion dates from Flechsig's study of myelinization in 1881, but is based mainly upon the study of a case by Hoesel in Fleehsig's laboratory. \ddagger In this case, following an old defeet (porencephaly) of the left cerebral hemisphere involving prineipally the posterior central gyms, there had resulted secondary disease of the main portion of the medial lemmiscus, which extended all the way to the muclei of the dorsal funiculi in the medulla. IIoesel concluded that nine tenths of this portion of the lemniscus was "cortical lemuiscus," and that not only was this true, but that the fibres passed direetly all the way from the medulla, through the pons, midbrain, and tegmentum, to enter the internal capsule and to pass through it and the corona radiata without interruption anywhere to the cortex of the posterior central gyrus. If this view were correet, two neurones would suffice for the conduction of sensory inpuises from the surface of the body to the cerebral cortex, one corresponding to the spinal ganglion cell, the other bulbocortical (that is, myelencephalo-pallial).

Forcible objections to the doctrine of Fleehsig and IIoesel was offered in 1895 by Mahaim. ${ }^{\#}$ This investigator, working in

[^289]von Monakow's laboratory, studied most carefully a case of primary defect of the cerebral hemisphere which involved the white matter of both central gyri. The lemniscus was secondarily diseased. The change in the lemniscms, however, was not that of typical secombary degeneration, but rather of simple atrophy (dimimation of the calibre of the individal fibres). The whole internal capsule was, however, transformed into completely degenerated tissue. Mahaim, then, having fomet that the fibres of the lemnisens ended free in the degenerated tissue, argued that it was improbable that the same set of medullated fibres should in one part of their course (in the lemnisens) show simple atrophy and in another part (internal eapsule) typiral secondary degencration. He came, therefore, to the conclusion that the fibres of the lemniseus do not pass ilireetly out to the cortex, but that they are interrupted in t ie region of the thatamos, thus confirming a view previonsly arrived at by von Monakow. Mahaim does not deny absolntely the existence of any direct fibres from the lemuiscus to the cerebral cortex, but asserts that if such filres exist they can be but few in momber.*

A very important contribation to our knowledge of this whole subject has been made by von Monakow tin an article in which he sums up all of his wide experience with secondary tegenerations in hmman beings, and compares the results of these with those of the experiments which he hats mate nom animats. 'These are so important that they must be briefly reriewed here. Von Monakow finds that when the whole ererehral hemisphere of the cat or dog is extirpated without injury to the thalamm, the lemnisens undergoes a reduction in volume of as much as one third, a reduction which is due not to actual degeneration of its constituent fibres, but to simple atrophy. \ddagger

[^290]The amome of change in the lemnisens after removal of the hrmisphere decreases, puri pussu, as one cxamines frontal seetions sucessively from the upper to the lower parts of the lemaisens. Even in cases in which after cortical disease there is complete secondary degeneration of the internal capsule, the area orenpied by the lemnisens in the hypothatamie region just rentral and lateral to the lateral portion of the white matter forming the capsule of the red muelens shows no degencration, but simple atrophy.

If the lemnisens be cut through in the region of the pons in the dog or in the cat at birth, very intense secombary degeneration in an ascending dirertion results, but the degenerated fibres do not extend as far upward as the internal capsule, nor do any of them enter the white matter of the hemisphere (von llomakow). The degenerated fibres an be followed, howerer, to the thatamas, and a distinct loss of fine fibres in the gromul substance in the rentral nuelei of the thalamas can be made ont. Von Monakow states that a degeneration of the lemmisens in an ascenting direction has thens far not been eertainly followed beyond the region of the ventral gromp of melei in the thatamus.* Mott's expreriments in this romection are especially convincing. In five eases of excision of the mole funceuligraeilis rt cuncati in monkeys he conld follow the degeneration at fir upward as the hypothalamic region, but no farther.

1 must arree, therefore, with Mahaim and vom Monakow, that, in the metu puth "t ruy relte, between the muclei of the dorsal fanieuli of the medulla oblongata and the cerebral cortex at least two nemrones are superimposed, the first with a cell body sitnated in the mudens finnienli graceilis or in the melens funiculi comeati, its axome extenting cerebrabard as far as the rentral portion of the thalamus (xyskeme lemuisctele m!/rlenerpheltheliencrphentirnm), and the second with a eell bowdy situated in the ventral region of the thalamus, its axome passing through the intermal capsule and corona ranliata to the cortex
 axmes from the cell bodies in the thatamus in the region in which the lemmisens terminates, at least those which rim out to the region of the entral gyri, ocenpe that pertion of the in-

[^291]terual capsule which corresponds in frontal sections to the first candal planes of Lays' body (von Monakow).

I'sehermak* has recently restudied the original brain deseribed by Fleehsig and Hoesel. 'The defect, which had lasted for fifty years, involved the gyrus centralis posterior down as far as the island s.nd that part of the lobulus paracentralis which lies between the paracentral suleus and the fissura collateralis. It extended also into the gyrus contralis anterior and the lobulus parietalis superior, hat involved the white matter of these gyri only slightiy in their upper portions. \dagger Following upon the destruction of the cortex there was disappearance of the corresponding portions of the corona radiata, and farther down disappearance also of some of tho fibre bundles whieh partly run over the dorsal corner of the putamen, partly cut through the "ridge region" of this mass of gray matter, dividing it up into wedge-shaped areas. No alteration conld be fomm in the substantia grisea of the nuelens lentiformis, or of the nucleus candatus. At the level of the ridge of the patamen (in its eaudal part) the degenerated area divides into two portions, which assume the form of hands. One of these passes through the capsula interna in a transverse direction, breaks through the zona reticularis (Thulamusschale or Gittorschicht), and extends into the ventral half of the muclens lateralis thalami. The other band of degeneration sinks ventral from the former to pass along the dorsal surface of the nuclens lentiformis; by way of the capsula interna the latter band passes into the basis pedunculi (Fig. 455). While in the upper part these diverging bands of the degenerated area both pass throngh the pars occipitalis capsula interma, they do not, however, extend between the same frontal planes, but the band descending into the basis pedunculi comes to lie frontalward from that passing transversely into the thalamus. In the basis pedmenli the former band is no longer recognizable as a distinetly separate area, but the loss of fibres is manifest in a diffuse reduction of the total mass of the basis pednuculi. In connection with this the fasciculi longitudinales [pyramidales]

[^292]of the same side are reduced in size as far down as the deenssatio pyramidum. 'Tschermak states that from the level of the decussation downward into the spinal eord the faseiculus cere-bro-spinalis ventralis is ahsent on the sitle of the lesion, while the contra-latern faseiculns cerebro-spinalis lateralis is only one fourth its normal size.

The atrophie proress in the thalamus, as studied by Tsehermak, is of especial interest in connertion with the disenssion above referrefl to. Hoesel in his first communication hat ex-

Fig. 455.—Seheme of the bands of degeneration in the ease of Hoesel and Flechsig. constructed on the hasis of' a sedion inclined from alowe and forward in a direetion downwasd and batekward through a normat haman bean. (Aftor A. Tsehermak, Areh. f. Anat. It. Ploysiol., Anat. Abth., Leipz., 1808, S. 312, lig. 1.)
pressed the opinion that the atrophied fibres simply passed through the thalamus into the region of the tegmental radiations of the red nuclens, and farther on into the curved area of the lemniseus medialis as well as into the contra-lateral brachium conjunctivum. He noticed that the muclei in the thalamms were diminished in size, hut believed that this was due essentially to loss of medullated fibres, the cells remaining unaltered. In a later report (18:3) he admitted a moderate loss of nerve cells in the thalamus. Still later, Flechsig * described total loss

[^293]
Bielsehowsky* has studied the bruins of two of Golto's dogs, one almost two and a half years after remomal of one cerehal hemisphere the other about nine months after removal of one hemisphere and two months after removal of the opposite hemisphere. In the first dog the corpus striatum on one side was also removed; in the seeond dog both corpora striata were extirpated, while the optic thalams remained minjured in both animals. Bielschowsky fomed secondary atrophy in the optie thalamus but no degeneration in the lemmiseus, and therefore concludes that the fibres of the lemnisens do not extend beyond the thalamus, and that they can influence the cortex only throngh the intervention of nemrones of a higher order.

Vary important confirmatory work in this romection has been done ly Jakob \dagger and by the Dejerines. \ddagger The latter investigators have made sections of nineteen hemisphares, in which there were cortical lesions withont involvement of the basal ganglia. The cortial lesion was more or less extensive, but in all these mineteen instances it involved the Rolandie region amb the parietal lobe. In no one of the cases was the medial lemnisens degenerated. In three very ofd cases there was a slight diminution in the volume of the lamisens, but this was due to simple atrophy and a diminution in calibre of the individual fibres, not to a decrease in the number of the fibres. In all mineteen cases there was intense serombary atrophy of the optic thalamus. They insist, therefore, that the path from the maclei of Goll and Burdaeh in the medulla to the cerehal cortex consists of at least two neurones-(1) an inferior or bulbo-thalamic neurone corresponding to the medial lemniscus, and (*) a superior or cerebral memrone comecting the thalamus with the cerebral cortex. Von Bechterew's elaborate scheme of the central paths is reproduced in Fig. 456.

The view adranced by Fleehsig and Bechterew, according to which the lemnisens forms connections with the nucleus hypothatamicus of Lays and the globus pallidns by means of

[^294]

Photographic Sciences Corporation

Fig. 456.

Fig. 456.-Central paths ats present understool with reference to the five emlryomie subblivisions of the hrain. (Seheme eonstracted hy R. vom Weinherg: taken from the chapter written by W. won Beedterew, in A. Rauber's text-

 (pyramidahes) ξ^{\prime} fasciendas cerchro-spinatis ventratis; 5 , fasciculus hateralis medialis; 6 , fasciculus ventro-lateralis (fowersi; γ, fibres from fasciculus lateralis which asiend on the lateral surface of the medulat oblongata ; 8 , fascienlus lateralis et ventralis proprius passing into the formatio retiendaris; s^{\prime}, traut from the mucleus N. Vestibuli lateralis (Deiters) to the fasciculus lateralis proprius; 9 , fasejeculus ventralis proprins; $9^{\prime}, 9^{\prime \prime}$, fibres from the fascienlas ventralis proprins to the nuelens retionaris tegmenti and the muchens contralis sumerior $; 9^{\prime \prime \prime}$, fibres of the fascientus longitudimais modialis continuons with the tasciculus ventralis proprins: 10 , fibres of the lemusens medialis arising from the muclens funiculi gracilis; 10^{\prime}, satatered Inmelles of the main portion of the lemnisens (trom the nuelei terminales of the coreball sensory nerves") ; $10^{\prime \prime}$, tibres from the lemnisus medialis to the nurleus reticularis tegmenti; 11 , tibres from the nuellens funiculi graciiis to the "ereluellum; 13 , fibres of the main pertion of the medial lemmiselus arising from the macleus funculi comeati; $13^{\prime}, 1,3^{\prime \prime \prime}$, fibres of the lemnisens medialis to the colliculus superior and to the nuclems hypothalamicus (corpus

 nuelens hypothatamicus with the globus pallidus; lo, fibres from the globos pallidus to the eerebral cortex; 18 , tibres of the corpus trane\%nidedm which go from the mucleus N . cobleme ventralis to the nuelens olivaris superior and to the lemniseds lateralis; 19, fibres of the lemnisens lateralis; 20, fibres from the nuclens olivaris superior to the nuelons N. alulucentis: 21 , fibres fommerting the melens bastigii with the muclens olivaris superior: of, tibres comberting the colliculas inferior with the nuclens retionlaris tegmenti; 23 , fihres from the region of the thatamus to the formation retienlaris; $2 f$ tibres from the pons through the raphe to the formatio retienlaris and to the nuclens retientaris tegmenti; 2π, fase ienlas peduncolo-mammillaris pars
 millarts pars hasilaris (pedunculas corporis mannillaris); an, aceessory bundles of the lemuisous; 26', fibres ecomeeting the substantia nigra with the cerebral cortex: 2r, hasticulus metrolexus (Meynerti); Ds, fibres from

 fibres from the corpas zeniculatum mediale to the cortex of the temparal lothe; ;30, fibres compecting the collienlus suluerior with the corpus proniculatum laterale ; 31, tibres of the commissura posterior ceredri (alonsal and

the ansa lentuenlaris, is opposed by von Monakow and by the Dejerines. Von Monakow, trom studying degenerations, thinks that the lentienlar nuelens and the ansa lenticularis take no part in the formation of the lemniscus, or at the most an entirely minimal part. The Dejerines have examined three cases of very old lesions involving the island, the opercuhum, the putamen, the caudate nucleus, and the globus pallidus without injury of the internal capsule or the optic thalamus. In these cases there was a more or less pronomeed degencration of the ansa lenticularis and of the lenticulo-candate fibres going to Lays' body. These degenerated fibres passed through the intermal capsule and could be followed into Luys' body and into the thalamus, but there was absolutely no change in the medial lemuiscus.

Flechsig, in his latest publications, does not distinguish sharply in the hypothalamic region the fibres which represent the upward continuation of the lemniscus from the other centripetal fibres of this area (fibres of the capsule of the red nuclens, fasciculus longitudinalis medialis, and longitudinal fibres of the formatio reticularis). He grants, however, that in all probability a large proportion of the fibres of the lemniseus are interrupted in the thalamus. ILocsel, again, in one of his later articles,* has modified his earlier views so as to bring them more into accord with the doctrine of Mahaim and von Monakow. There is some danger in reading the articles of these various writers of misunderstanding just what each means by the term "cortical lemniscus" (Rindenselleife). The term indicates the portion of the lemmiscus which is connected either directly or indirectly with the cortex. According to von Donakow, Mahaim, and others, all, or nearly all, of the "cortical lemniscus " is indirect-i. e., it is interrupted in the thalamus -while aceording to the view adyanced by Iocsel in his first article the most of the "cortieal lemnisens" is direct.

The utmost that can be said at present is that the weight of evidence is in favor of the view that the majority of the fibres of the medial lemniscus are interrupted in the thalamus, though some axones, helping to form the lemniscus, doubtless extend all the way from the nuclei of the medulla to the opposite cere-

[^295]bral cortex, since Tschermak * has been able, after destruction of these muclei in the cat, to follow degenerated fibres through the thalamus directly out to the cortex.

A full report of 'Tsehermak's investigations in this comection has been subserpently published. \dagger In his experiments he destroyed the muclei of the funiculi in three cats. The symptoms which resulted corresponded to those previously found by von Bechterew \ddagger in dogs, and by Ferrier and Turner ${ }^{*}$ in monkeys.

Yon Bechterew in dogs injured the nucleus funiculi gracilis. The animals tumbleci about when they attempted to walk, and swayed on standing. There was no disturbance of cutaneons sensibility to be made out. Similar symptoms could be produced by cotting the fimiculus gracilis in the upper part of the pars cervicalis of the spinal cord.

In monkeys, Ferrier and Thrner found as symptoms resulting from injury to the dorsal funiculi restlessness on che part of the anmals and a sprawling character to the body on exertion, and the animals exhibited a tendency to fall backwarl. As far as they could make ont, the sensations of tonch and pain were unimpaired, and the capacity for localization did not appear to be disturbed. The interference with the equilibrium of the animals vanished in a few days.

Tschermak's eats showed marked symptoms at first of disturbance of equilibrimm, but these soon disappeared. On the first or second day after the lesion the cats, on attempting to walk, deviated constantly toward the side of the lesion, and often fell when they attempted to use the paw of the injured side. While the contra-lateral fore paw could be used almost normally, the homo-lateral leg sprawled about on attempts so move it. One animal kept the lind leg on the affected side lifted when it walked. Even on sitting, all three animals showed lateral

[^296]swaying to the side of lesion. Cutancous sensibility appeared to be normal. After from two to five days the disturbances of equilibrium had practically disappeared, though in one case marked symptoms continued until the death of the animal at the end of sixteen days.
'The consensus of opinion at present is, therefore, that destruction of the nuclei of the dorsal funiculi does not interfere with the sense of touch, the sense of pain, or the capacity for localization, as far as the skin is concerned. The long fibres of the dorsal funiculi, accordingly, can seareely be concerned in the mediation of the centriptal impulses concerned in these sensations. Their function appears to be rather that of conduction of the impressions of museular sense, a view which is supported by observations in tabes and other pathologieal conditions in human beings.

In Fig. 457 I have reproduced some of the illustrations accompanying 'Tschermak's article, which show degenerations as revealed by Marehi's method after destruction of the nuelei of the dorsal funiculus, and some of the parts just ventral to this. The fibre arenate interne are seen to be markedly degenerated. The finer blackened fibres going to the nuelens N. hypoglossus and to the lateral and ventral portions of the formatio retienlaris grisea probably correspond to degenerated collaterals. Large numbers of degenerated fibres can be seen passing into the nucleus olivaris inferior. A moderate number of degenerated fibres extend from the degenerated contra-lateral stratum interolivare lemnisci along the periphery of the medulla into the ventral part of the corpus restiforme. On their way to the cerebellum some degenerated fibres go into the vestibular nuclei. The degeneration in the formatio reticularis alba, inchading the fasciculus longitudinalis medialis, is well shown, but is due not to the injury of the nuelei of the dorsal funiculi, but rather to the destruction of the parts ventral to this at the time of operation.

The degenerated interolivary layer can be followed in the pons into the lemniscus medialis. Fine degenerated fibres ean be seen passing from the lemniscus dorsalward into the formatio reticularis grisea, and also ventralward into the muclei pontis. Ifigher up distinet bundles of degenerated fibres can be followed into the nueleus colliculi inferioris. Higher there are fine degenerated fibres passing medialward to the formatio reticularis,

:mul parts just wentral to them, wh
and ventralward into the substantia nigra. In the hypothalamic region the degenerated fibres of the lemniscus lie seattered over a rather large area sitnated medial to the corpus geniculatum mediale. Farther frontalward they pass into the hilus thalami. The area of degeneration in the tegmentum is approximately triangular in shape in cross section. From the dorsal apes of this triangular area single blackened fibres can be followed through the parts dorsalis of the commissura posterior cerebri to the nucleus lateralis superior of the opposite side. Of the fibres which pass into the hilus thalami a great number seem to disappear in the ventral muelei of the thatiamus, bat many rum into the lamina medullaris media, and into the hamina melullaris lateralis as well as into the lateral half of the zona reticularis (Thulrmussurfule).

The rest of 'Tschermak's description is of the deepest interest. He follows a considerable number of single fine collaterals (never in bundles) radiating out to the ventral and ventro-lateral parts of the retieular zone to pass transversely into the basis pedmeuli and into the capsula interna. Of the fibres which pass farthest ventralward, some go medio-ventrally into the nuclens hypothalamicus (corpus Laysi); farther on single fibres cam be followed into the commissura superior Meynerti (or so-called commissura hypothalamica), which passes down between the basis peduneuli and the tractus opticus. They extend to the mucleus lentiformis of the opposite side.

But in aldition to these Tsehermak is able to follow a much greater number of isolated degenerated fibres through the capsula interna into the nucleus lentiformis; these fibres appear as fine blackened droplets, especially in the globus pallidus. A number of somewhat coarser fibres pass through the lamine medullares (and also probably through the capsula interia) to enter the eoroma radiata. Most of the fibres, howerer, which enter the corona radiata arrive there directly by way of the capsula interna. These degenerated fibres of the corona radiata pass out, according to Tsehermak, chiefly to the cortex of the gyrus coronalis, and to the adjacent marginal parts of the gyrus ectosylvins (pars anterior), and to the gyrus suprasplenius (pars anterior), withont, however, going to the gyrus fornicatus sen cingnli. The cortical distribation of these fibres is well illustrated in Fig. 458.

As a result of his studies, Tsehermak concludes that four 47
prineipal central-nxone neurone systems originate in the nurlei of the dorsal fimiculi. 'The first two of these systems which pass to the cerebellmm have ahready been described in Chapter XXXIS. The other two systems which pass to the cerebrum demand further disenssion here.*

Fug. dis. - Cortical area of termination of lemmiselts fibers in the eat. Alter A.
 Fig. 2.)

The medullated axones of these two neurone systems are those which we have already seen passing as internal arcuate fibres through the deenssatio lemmiscorm into the stratum interolivare lemnisci and into the lemniscus medialis (Figs, 308, 309,322 , and 323 , ride supra). While the majority of investigators who have worked with Marehi's method have never been able to follow degenerated fibres of the lemniseus above the thalamns, Tschermak has succeeded, as we have seen, in following in his three eats a certain number of fibres still farther, even to the cerebral cortex. He concludes, therefore, that a

[^297] strangkern-Hauptschleifensysteme) of 'Tschermak.
not inconsiderable number of fibres from the nurlei of the dorsal funienli of the opposite side, insted of defmitely terminating in the thatams, pass throngh it in the form of seat tered fibros.

These longer fibres, which do not stop in the thalamus, follow different paths. All those most ventrally sitmed in the radiating filn of the lemmiseus medialis (Hauptselleife) very soon hreak throngh the narrow rentmal marginal zone of the zome reticulan.s (Thulamus.scheld) and pitss in a courved direction latero-ventmanard to cuter the hasis pedmaculi. Firther on a number of other fibres more laterally sithated follow the same comrse. It is just at this bevel that the white tibres of the basis pedmenli are contimoms latero-lorsalward with the eapsula interna which lies between the zonia reticularis and the maclens lentiformis. 'The most ventro-medial portion of the fibre-mass surrounds the undens hypothalamicus.* 'The dexenerated fibres refermed to are foumd in the cat to give off, on passing throngh the basis pedmenli, eollaterals to the murlems hypothalamiens which lies medially from them. A relatively smaller part of the dagenerated fibres here tum medialward and rum along the ventral margin of the basis peduncoli; they lie immediately npon the tractus opticus and run towat the region of the tuber dineremm. These fibres form one constitnent of the commissura superior Meynerti (eommissura hypothalamiea media of Meynert), and after crossing the middle line arrive, by a similar path between the perluncle and the optie tiact, in the globus pallidus of the mueleus lentiformis of the other side. Aceording to 'lsehermak, therefore, this commissure is part of a high decussation of axones of the neurone system which extends from the muelei of the dorsal fumienti to the cerebral cortex.

The greater part, however, of those fibres whieh go ventrally and rentrolaterally out of the thalimus and pass through the basis pedunculi arrive in the muclens lentiformis of the same side, partly by roming lengthwise (at first along its base and then boinding up into the nuclens), partly by crossing over directly into the globus pallidus. It womld seem likely, at tirst thought, from the large number of degenerated fibres met with here, that the globus pallidus receives no ineonsiderable number of sueh fibres, but Tsehermak states that in reality not very

[^298]many stem fibres teminate here, the majority of termimals in this region being collaterals. On the other hamb, he is of the opinion that the majority of the fibres (chiefly hy way of the lamina modallaris medialis amd the lamina medullaris lateratis, but in part, also, by way of the layer of white matter between the putamen mul the cortex of the istand of Reil) leave the morfons lentiformis aggin in order to pass throngh the cormm rambata, and tinally arive in the cortex of the pallimm. The axomes then from the muclei of the dorsal funienti which go directly to the pallimm make a cmions loop-shaped excursion throngh the muclens lentiformis. A certain number of the so. called dirert fibres pass straight through the zoma reticulariss on their way from the thalams to the capsula interna, and ascend into the corona radiata, especially along the obligue dorsal surface of the nuclens lentiformis.

If other investigations confirm the results of 'T'seliemak, I would anggest that the system sending axones from the malei of the aorsal funienl, withont interruption to the cerebral cor-
 On the other hand, the system sembling axomes from the mulei of the dorsal funiculi to terminate in the rentral region of the thalamus of the opposite side conld be designated the s.ystrman
 sysstem" (lemmiscele) myflemerphalu-pulliule actually exists is: human beings remains to be proved. The proof of the existence of such a system in the cat, howerer, taken together with the researches of Hoesel and of Flechsig on human beings, make it unsafe to deny its possibi:ity.

Tschermak disensses in his article the portion of the cortex in which the dirent cortical lemnisens terminates in the eat and attempts to arrive at certainty with regarl to the corresponding region in man. Whereas many observers have comsidered the crucial suleus of the dog's brain as the equivalent of the sulens centralis Rolandi of hmman beings, Meynert \ddagger was the first to recognize that the fissura coromalis, not the fissura cruciata, of the cat is the homologne of the sulens centralis

[^299]of man. All the evidence goos to prove that this view is correet, and Tsehermak agrees with Meynert. He assumes, therefore, that his direet cortical system of the lemnisens in the ent cuds in the region of the cortex homologons with the gyrns centralis posterior of man.

The best review of the history of the development of our knowledge concerning the lemniscus I know of is that given by T'sehermak.* Since this his uppeared so recently (1898), and, moreover, has been published in a journal gencrally aceessible, it has not seemed necessary to make any attempt at an exhanstive review of the literature here. It has seemed to me wiser to lay emphasis upon the main features of the subject, riting only the more important researches rather than to leal very fully with all publications bearing on the topic, for in the domain of the lemnisens, perhaps more than anywhere else in the central nervons system, the berimer, on approathing the hibliographic forest, rims in danger of "losing sight of the wood on aceount of the trees."

For those who wish to delve deeper into the bibliography, however, the articles of Flechsig, \dagger Bilinger, \ddagger von Bechterew, ${ }^{*}$

[^300]Dinkschewitseh and Frend，＊and（＇ramer \dagger on myolini－ zation．those of Meyer，\ddagger Schultze，${ }^{\#}$ Spitzkis，｜｜Schrader，A von Monakow，D Mahaim，\downarrow Vejas，\downarrow Loewenthal，\ddagger Gebhard，＊＊ von Bechterew，$\dagger \dagger$ Werdnig，$\dagger \ddagger$ Rossolimo，\＃\＃Dejerine，\｜\｜\｜Sehaf－

[^301] 6：3－19．
\＃Sclablze，F．Beitriage zm Pithologie mul pathologischen Anatomic des centralen Servensystems．Areh．path．Anat．etc．，Berl．，Bi．Ixxsvi （ $18 \mathrm{SN}^{2}$ ），S．510－540．
$\| O_{p}$ ．cit．
Aschrader，A．Ein Groshirnsehenkehtherd mit seeundiren Degenera－ tiouen der Pyramide mad Lambe．8ro，Italle， 1884.

D von Monakow，C．Experimentelle und pathologiseh－matomisede \mathfrak{F} ntersuchnagen ueber die Be\％iehungen der sogenamen Sehsphaire \％u den infracortienien Opticuseentren mad zan N．opticus．Areh．f．P＇syohiat．，
 misehe Unterstehmgen weber die Hanbentegion，den sehhngel und die Regio subthalamien，nebst Beitraigen mur kemntaiss frïh erwoblener（iross－ und Kleinhirn defecte．Areh．f．Psychiat．，Berl．，Bl．xxviii（1895），S． 1 ；： 2 6．
\ddagger Mahaim，A．Op．cit．
\uparrow Vegas， P ．Experimentelle Beitrage zur Kemutniss der Verbindungs－ bahmen des Klemhions und des Verlatis der Fmiendi graciles und emeati， Areh．f．Psychiat．，Berl．，Bul，xvi（188，），s．200－214．

表 Locwenthal，N．Note relative is latrophie unilaterald de la colonne de Clarke observé phe\％un jeune chat，operé a la partie inferioure du buble bachindienne dans la première fuinzaine apres la naissance．Rev，méd．de la suisse rom．，Gemere，t．vi（1886）．〕p．20－27．
＊＊Gehard， F ．Scemnliare Degenerationen nach tnberkulöser Zerstio－ rung des Pous．8vo，llalle（1887）．
tt von Bechterew，W．Zar Frage Bber die secundaren Degenerationen des llirnsehenkels．Areh．f．Psyehiat．，Berl．，Bd．xix（1887），S．1－1\％．
$\ddagger \ddagger$ Werdnig，G ．Concrement in der reehlen Suhstantia nigra Sömmer－ ingii mit auf－und absteigender Degeneration der Schleife und theilweiser Degeneration des IIirnsehenkelfusses．Med，Jahrl），1888．Wien，n．F＇， Bıl．iii（ 1889），S．44i－47\％．
\＃\＃Rossolimo，（i，Zur Physiologie der Schleife（Ein Full von Giliomatose cines Hinterhorns des Räckenmarks）．Areh．f．Psychiat．，Berl．，Bul．xxi （ $18890-90$ ），今，8．77－909．
$\|\|$ Dejerine，J．Sur un cas d＇hémianasthésie de la sensibilité générale． ohservé chez un hemipleginue et relevant d＇me atrophie dn faisemurubane
fer,* Henschen, \dagger Singer and Mïnzer, \ddagger Mingazzini, \# Hoesed, $\|$
 Bielschowsky, ${ }^{* *}$ Mäller and Meder, $\dagger \dagger$ Shhesingror, $\ddagger \ddagger$ Saxer, ${ }^{\# \#}$ Mayer $\|\|$ on degenerations (in human beings and in experimental animats), may be recommended.
de Reil. Areh. de physiol, norm. et path., Par., 5. s., t. ii (1890). P1, 5ise-Bio,-Dejerine, J., et Dejerine, Mme. J. Sur les connexions du ruban de Leil asec la corticalité cérébrale. Compt. remd. soc. de biol., Par., 10. s., t. ii (1895), 11. 285-291.

* Schaffer, K. Beitrag zur lehre der secmuliren und multiplen begen(ration. Arelh, f. path. Anat. cte., Berl, Bl. exxii (1890), S. 125-145.
+ Ilenschen, S. F. Klinische mal anatomische Beitriage zur Pathologio des lielhims. Th. L, L Usala (1890), s. 48 ; 6i).
\ddagger Singer, J., et E. Münzer. Beitrige zur Amomie des Centrahervensystems, insbesondere des Lüickemarkes. Denksehr. I. Akad. d. Wissenselı, Wien, Math.-naturw. (9, Bd. Mii (1890), S. ofe9.
\# Mingazaini, G. Intorner al decorso delle fibre appartenenti al peduncalns medins ectehelli ed al eorpms restiforme. Arch. per de se. med., Torino (Palermo, vol. xiv (1890), pr. 24,-262-13athologised-anatomisehe Untersuchungen $̈$ ibher den Vorlauf einiger Nervenbahnen des Centrahervousystems des Menschen. Beitr. \%. path. Amat. וt. \%. allg. Path., Jema, Bd. xx (1*96), s. 413-476.
$\|$ Op. rit.
A Bruee, λ. On a ('ase of Deseending Degencration of the Lemnisens, Consequent on a Lesion of the Cerebram. Brain, Lond., vol, xvi (1893). Ip. $46 i-4 \% .4$.
\checkmark lholfmann, J. Zar Lahe von der Syringomyelie. Deutsele Ztsehr. f. Nerronh., Leip?., Bel. iii (1890-93), S. 1-136.
\ddagger Op.cit.
\ddagger op. cit.
f (ireiwe. J. Ein solitirer Tuberkel im rechten Grosshirnsehenkel berielungsweise in der Lhmbe, mit Degeneration der Schleife. Nemol. (entrabl., Leipz., Bd. xiii (1894), s. 130; 184.
** opp. cit.
$\dagger \dagger$ Müller, F'., und E. Meder. Ein Beitrag mur Kemntniss der Symugomyelic. Zischr. f. kinn. Med., Berl, Bd. xxviii (1895), A. 117-138.
$\ddagger \ddagger$ Shlesinger, II. Bemerknugen äber den Aufban der Schleife. Nemrol.
 nervensyst. a. d. Wien Univ, (1896), II. 4.
\#\# Saxer, F. Anatomisehe Beitrige zar Kenutniss der sogemamten Syringomyelie. Beitr. \% path., Anat. n. 7. allg. Path., Jena, Bhl, xx (1896), S. 382-398.
|l|l Mayer, C. Zar Kenntniss des Faserverlafes in der Mambe des Mitteland Zwisehenhirns anf Grund eines Falles von seomodarer anfsteigender Degeneration. Jahrb. f. Psychiat., Leip\% 11. Wien, Bhl, svi (189\%), S. 221-233.

CHAP'PER XLNIII.

CENTHIDE'TAL FIBELS IN TIE: FASCICCLUS LONGITUDINALIS MEDIALIS.

('ases of secondary degeneration-Studies by (holgi's method-The nuchens of Darksehewitsch-Adjacent bundles of white fibres in the developing brain.
(b) The Fasciculus Longitudinalis Medialis.

Tue course and relations of the axones in this bundle have been the subject of much dispute, and although an immense amount of work has been done to determine the origin and termination of its constitnent fibres, we are still umable to make entirely positive statements in this connection. The comnections of the bundle below with the mpard contimation of the fasciculi proprii of the ventral and lateral funieuli of the cord are certain. The connection between the two is formed by means of a well-marked eurve (Fig. 459). The intimate relation of the bundles to the eye muscle muclei in the midbrain is also very definite, but just how far downward fibres extend and just how far upward its fibres reach we do not yet know. Nor are we certainly informed as to the exaet number of ascending fibres and the exact number of descending fibres in the fascienlus. While many observers assume that the majority of fibres descend-that is, are centrifugal in conduction direction, having mainly to do with reflex activities-others hold that the majority of the fibres ascend and are centripetal in conduction direction, representing the sensory limb of reflex arcs and possibly a central conduction path for the passage of sensory impulses toward the cerebral cortex.

The study of eases of secondary degeneration thus far has thrown but little light upon the suljeet, though in the case studied by Jakovenko* the degeneration of the bundle stopped

[^302]
ciculus

saddenly anteriorly on raching the level of the nuclens of Darkschewitseh.

Golgi's method has proved definitely the existence of numerous axones passing into the fasciculns longitudinalis medialis, axomes which have had their origin in the cell bodies or

F'ue. 459.-A sagital section of the medulla ohlongata, pons, and mesomerphaton pamallal and rlose to the middle line; rhild aged threre monthas methot of Wieigert. Aftor A. Brame, Illastrations of the Newe Tracts in the vid-and Hind Brain and the cranial Norves arising therefome Bdinh, and
 its relation to the fasedohes ventralis proprins of the spinal cord are partienlarly well shown.
dendrites of neurones situated in the nuclei of termination of the sensory cerebral nerves. Axones of the cerebral condnction path connected with the vestibular and other sensory nucki entering the fasciculns longitudinalis medialis have been referred to above. On the other hamb, (iolgi preparations of the midbrain have shown large numbers of axones passing from cells in the superior colliculns of the corpora quadrigemina and in the nucleus of Darkschewitsch, which pass ventral to the nucleus nervi oculo-motorii to decussate with correspond-
ing fibres in the middle lino amd to enter the ventral portion* of the fascienhes longitndinalis medialis to descend in it. Simi-

Fig. 460, - Sagital sertion through hain of fatal monse in phane of the fasciculas langitulinatis medialis. (Atters. Ramón y Gapal, Beitrag zmm Studim der
 dinalis medialis at hevel af pons ; B, collaterals from it to meleus N. troeh-

 with asemding axomes.

* The so-called pracdorsales Lamgshändel of the Germans.
lar anomes arising from the superior lateral melens of Flechsig pass into the fasciculus longitudinalis medialis of the same side, or after decussation into that of the opposite side, from which point they deseeml. It remains for fiture work to determine the relative mumber of ascending and desconding libres. It is believed by van (ichuchten that in the tront mod salamander the majority of the fibres of the bundle descend (motor and reflex fibres). Latrge numbers of collaterals are given off from the tibres, probably from both ascending and deseending fibres of the faserienlas lomgitudimalis medialis to the various gray masses with which it comes into contaet relation in its conrse (mustens nervi trochlearis, nuclens nervi ocmo-motorii, formatio reticularis griseat). (Figg. 460.)

The relations of the faspiculas longitudinalis modialis at its anterior extremity are peculiarly puazing, and one has only to read the descriptions in the varions text-books and in the original articles deating with this topie to appreceiate the confusion which exists with regarl to it. lispecially contlicting are the views which have been hedr concerning the relations to the muclens of Darkschewitsel, and to the gray matter of the hypothatamie region. It would be mifruitfol to diseuss at length, in the prosent state of our knowledge, the various theories which have been adrameed. I shall restrict myself, therefore, in the main, to a mere statement of the results of my own stulies, and of those of Niss Sabin and Miss Stein, who have especially studied this region.

As the fascienlas longitudinalis medialis is followed frontalward it is found in the region of the mucleus nervi trochlearis as a compact bumdle which at this level begins to bend ventralward as it contimes its course toward the cerebrum. The fibres of the fasciculus longitudinalis medialis come into very intimate relation with the nuclei of the N . trochlearis and of the N. oculo-motorins (Fig. 4(i1), and in this region the medial fibres of the fasciculi of the two sides curve ventralwarl and medialward, and come into contact with one another in the mildle line, so that the eye musele nuelei lie in a long trongh extending thronghout their whole length.

The mucleus of Darksehewitsch,* situated somewhat anterior-

[^303]

Fifi. 461.-Worizontal seetion throngh the medula, pons, and midbrain of a newborn bate. Weigert-lad staining. Level of dorsh part of corpus trapezoidemmand dorsal pertion of nuclens olivaris inferior. series iii, sertion No.

 flexus Meymerti ; F.l.un.. faseiculus lomgitudinalis merdialis; Fil. 1. . bumble
 portion of bumde contimums with fascioulus lateralis proprins of the corl ; L.L., lemmisens lateratis: L.m., lemmisens medialis; X./II., radix N. oculomotorii; N. Mot. I', motor root of N. trigeminus; N. I', vensory ront of N. trigeminus: N. I'I., rulix N. abducentis; N.J'II., rulix N. fincialis, pars secumba; N. rest., malix N. vestibuli; N.XI., madix N. aceessorii; N. XII., radix N. hypoglossi: Nu.F.l.m., muclems fascienti lomgitudimalis modialis, or moClens commissure posterioris (oberer Ocmbomotorinskern of barksehewitseh); Nu.H.III.m., pars impar of luclecus N. oculomotorii ; Nu.u. III.l., pars lateralis
 muclens N. eochleme ventalis; Nu.o.i., unclens olivaris inferior; Nu.o.u.m., molens olivaris aceessorins medialis: Tr.fr.an. I., I ract 'rom Deiters' melens to the spinal cord. (Preparation by Dr, John Mewetson.)

 stratum interolivare lemaisa; ; s.m., substantia nigra, (I'reparation by Inr. Johm Hewatsom.)
ly and laterally (Fig. 462) as regards the muclens nervi oeulomotorii, and in frontal sections apparing to be dorsally placed as regards the latter (Fig. 46i3), stands in very intmate connection with the white fibres of no less than three areas. In the first place it is direetly associated with the white fibres of the fascieulns longitudinalis medialis; in the seeond place it is in the direct course of the fibres (distal or ventral part of posterior

 pora puadrigenina and cerebral pedancle of newhorn bathe. (Wrigert-1al, serios ii, sortion No. 381.) Aq.err., aqueduetus cerebri: (bhl.sup., collienhs

 L.m., lemmis'us medialis: Nu. Fit.m., nuelans fasejeuli longitudinalis medialis or nuchens commissura posterioris (oberor Grmbomotorinskern of barksehewitseh): No.n.III, mucleus N. ornlomotorii : Nin.r., muelens ruber: N. III, N. oculomotorius; stalh.p., stratum alloum profumdum; st.!r.c., stratum griselum centralo: S. 1 , substantia nigra; a, region of Flechisig's Fusssuhleife: β, temprow-omipital tract to pons; γ, frontal tract from pallium to pons. (Drepanation by Dr. John Hewetson.)
commisswe) which extend from the superior colliculus of the corpora quadrigemina of one side aeross the roof of the aqueduct of Sylvius to the region of the faseiculus longitndinalis medialis of the opposite side. In the third place, ventral to the nucleus of Darkschewitsch is a mass of white fibres which extends from the region of the nuclens ventralward and frontalward and somewhat lateralward, so as to pass between the middle line and the fasciculus 1 troflexus (Meynerti). The mucleus of

Darksehewitseh is intercalated, as it were, as a nodal point at the junction of these three masses of fibres. The nuclens of Darkschewitsch has a very definite ontline just anterior to the nuclei of the third nerve, but farther anterior, just medial to the place where Meynert's bundle merges into the red nueleus, the nucleus of Darkschewitsch comes into relation with the gray matter of the anterior capsule of the red muclens, and a small bundle of fibres, apparently belonging to the fascieulus longitudinalis medialis, can be followed beyond the nuclens of Darkschewitsch to the ventral portion of the capsule (F . Sabin). It is very diffieult to say from the stady of Weigert preparations how many of the fibres ventral to the nucleus of Darksehewitsein represent continnations of the fasciculis longitudinalis medialis, and how many represent continuations of the bundle of fibres of the commissure. Nor is it possible to say, from Weigert preparations alone, how many fibres from the opposite snperior colliculus go past the nucleus of Darkschewitsch without ending in it to enter the faseiculus longitudinalis medialis. The best Golgi studies of this region are those of Held and vin Gehuchten.* The comparative anatomy is dealt with by Edinger. A full deseription, which, however, is not altogether satisfactory, is given by von Külliker.

Miss Gertrude Stein, who is now studying a series of sagittal sections through this region from the brain of a babe a few weeks old, describes the nucleus of Darkschewitsel as follows: "The aucleus is more or less conical in shape. It lies dorsomedial from the red muclens, being about as thick in a dorso-ventral direction as is the dorsal eapsule of the red muclens in which it lies. At this period of medullation the commissura posterior cerebri, considered simply topographically (that is, as a medullated fibre-mass without particular reference to the course of the fibres), appears as a dorsoventral bundle, solid in the middle, sublivided dorsally into an anterior (proximal) portion and a posterior (distal) portion, while ventrally it expands in the form of a hollow pryamid, which rests directly upon the nueleus of Darkschewitseh." As to the bundle of fibres described above as being situated ventral to the nucleus, and passing forward and ventralward, Miss Stein in the brain she is studying can follow the fibres only as far as the fascieulus retro-

[^304]flexus. The fibres most ventally sithated are vory complex in arougrenent, forming a whirl in the substane of the nuclens ruber. ludered, the moleus ruber is divisible into two parts by this whit of fibres-one part anterior and smaller, the other part posterior and much larger. In the anterior portion there are only delicate modullated tibres, and these are directed abmost stmight intero-posterionly. In the posterion part the medallated fibres are mueh comern in catibre, are armaged in small bundles, are direoted diagonilly, and appear to compespond to the continnation inside the red maclens of the fibres of the brachiam conjunctivim and of the formatio reticularis. The allterior fine fibres and the posicrior coarse libres are separated from one another in the medial part of the nucleus ruber by the fasciculas retroflexns. Ln the lateral part of the nucleus the two areas approach one another, and the pecnliar ditfrrenees between the two masses of tibres gradaally disappear. Some of the comse fibres of the posterior part of the red uncleus curve dorsalward to come into relation with the nucleus of Darkschewitsch at the point where the ventral bundle above mentioned originates.

The upward continuations of the fasciculus longitudinalis medialis, which could be looked upon as being concerned in the conduction of sensory impulses toward the somesthetic area of the cortex, are not at all well understood. So far as we can find in serial seetions throngh the baby's brain cut in all three dimensions of space, it is not possible to follow any direet upward continnations far into the hypothatanie region, and if the fascieulus longitudinalis medialis is to be regarded as one of the paths merliating sensory impulses on their way to the cerebral cortex, this path is almost cortainly interrupted in the hypothalamus or thalamus.
centripetal axones in tile formatho reticllaris.
Forel's Ilaubenfaseikeln-IIonegger's hintere Längshinndel-furmationCentral paths of vagal, glossopharyngeal, aul trigeminal nervesFasciculi tegmenti centrales.

(c) The Formatio Reticularis Alba.

As to the upward continuations of longitudinal bundles of fibres in the formatio retieularis we have also little information that is definite. It has been shown by von Monakow that, after extensive defect in the hemisphere of the dog, degeneration of Forel's Ituubenfascikeln, and of many other fibres in the formatio reticularis, results. The change is that of simple atrophy rather than of aetual degeneration.

It has been observed in human cases as well as in experimental animals, so that there can be but little doubt that many of these longitudinal bands of the formatio reticularis ure conneeted by means of neurones of a higher order with the cerebral cortex. Just where the medullated axones of the formatio reticularis end is not certain. But it seems probable that the place may be the hypothalamic region, or the ventral group of nuclei of the thalamus, and that a new neurone thence sends an axone out through the internal eapsule to the cerebral cortex. It seems probable that Honegger's hintere Längsbiundelformution is to be here included. The bundles deseribed by Honegger do not coincide with the faseiculus longitndinalis medialis, but include the longitudinal bands of the formatio retioularis, which go between the two brachia conjunctiva dorsal to the decussation, and beyond the red nuelens into the hypothalamic region. They become mingled with the irontal and medial bundles of the eapsule of white matter which surrounds the red melens.

Not to be forgotten in this commection are the special humdles in the formatio retienharis made up of the medullated nxones of central neurones, the perikaryons of which are situated in the

 12.) A, whelens commissumalis; h, burleus N. hypoglossi ; f; decussation

 et N. glossopharyugens; d, commisime formed by collatemals of hypoglossal
 N. hiypoghossi.
muclei terminales of the N. vagus, the N. glossopharyngeus, the N . vestibuli, and possibly also the N . trigeminus. It is desirable that as soon as possible these bundles, which have been localized by Golgi's method (Figs. 464 and 465), should be satisfactorily topographically located in Weigert-Pal preparations of the medullated formatio reticularis.

The fasciculns tegmenti centralis (centrale Haubenbalin) of the Germans) may contain some centripetal fibres, but the con-
sensus of opinion is that its fibres are in the main descending. It is described in Chapter LX'III.

 retionlaris grisea in which the lateral equtal path (axomes of erotripetal monrones al the serould arder conthered with the N. vestibuli) lies; B, lateral

 of which rati to the lateral centat vestibular path: d, erols the usomes of which go lateralward; e, f, usomes which ron to the mphe. The letter e indicatos the a mones.
5. The Upward Continuation of the Fibres of the Brachium Conjanctivam and the Radiations of the Rea "acleus."

CHAP'TER L.

 JUNCTIVUM, AND THE RADIATIONS OF THE RED NUCLELS.

Termination of fibres of brachium conjunctivam-The capsule of the red muclens-Study of sceondary degenerations-C'ercbello-cerebral pathsSomasthetie area of the cortex.

We have seen that the majority of the fibres in the brachium conjunctivum do not extend farther cereloralward than the red nucleus. The majority of the constituent fibres of each brachium conjunctivum partly arise bat mainly end in the red mucleus. There is some evidence that a few of them extend beyond the red nueleus, joining the other white fibres situated on the lateral surface of this body (Fig. 324).

The study of serial sections through the brain of the newborn baby stained by Weigert's method shows medullated fibres forming a very distinct capsule to the red nuclens. These fibres are most abundant anterio: to the red nucleus and on its lateral side, althongh large numbers are also present upon the dorsal surface of the melens. Relatively few medullated fibres exist ventral to the nuclens at birth, though in the adnit more exist here. It is customary to divide the capsule of the red nuclens, therefore, into a lateral portion, a frontal portion, a dorsal portion, and a ventral portion (Fig. 23 and Fig. 324).

The lateral portion of the capsule of the red mucleus corresponds to the bundle which Forel desizuated as BaTh, and represents a part at least of Flechsig's Hambenstrahlung. It is the bundle described by von Monakow as lmRh. As has been pointed out above, it lies close to the medial surface of the up-

[^305]ward continuation of the main portion of the lemnisens, but it is easily distinguishable from this bundle. There are certainly many cells among these fibres. Anterior to the red nueleus the fibres of the different portions of its capsule euter into a common area-the " field II" of Forel. The further continuation cerebralward is still a matter of dispute.

Von Monakow's experiments have shown that if a whole hemisphere be removed two sorts of changes take place in the fibres now being considered-(1) actual secondary degeneration and (2) simple atropliy. The total reduction in volume of the field amounts to about one half after total defeet of one hemisphere. Apparently, the part of the cerebral cortex chiefly concerned, directly or indirectly, with the radiations of the red nuclens, is the region of the central gyri and the opereulum. It is possible that some of the fibres are connected with the island and with the anterior portion of the parietal lobe.* We are not sure how many fibres in Forel's "field II "assend (from cell bodies situated in the red nueleus or gray masses still more inferiorly situated) nor how many descend (from cell hodies in the basal ganglia or in the cerebral cortex), nor how many are directly connected with the cortex, nor how many are indirectly conneeted with it by means of neurones of other orders. It is probable that fibres pass in both directions between the region of the red nueleus and the cortex, and it seems certain that a part of the fibres extend throngh the whole distance without interruption. These, in all probability, are the ones which undergo total absorption after a defect in the cortex which has existed a long time. They appear to eorrespond to a part of the dorsal and anterior portions of the capsule of the red mucleus. On the other hand, a great many of the ascending fibres, in all probability, end free in the hypothalamie region and in the thatamus (Mingazzini, Dejerine), and are connected with the cortex, if at all, only by means of neurones of a higher order. It seems probable that the fibres forming the lateral and ventral portions of the capsule of the red mucleus are here to be considered. Yon Monakow sug gests that the fibres forming the dorsal capsule of the red nu-

[^306]cleus are identical with Honegger's hintere Längsbündelformation.

An observation by the Dejerines is so important in this connection that it deserves more than passing notice.* They had the good fortune to obtain for study the nervous system from a man fifty-three years old, whe had for eleven years suffered from a right-sided hemiplegia wii! total aphasia. At autopsy there was found a very extensive lesion of the cerebral cortex involving the whole external face of the left hemisphere and the orbital surface of the frontal lobe without injury to the central ganglia. There were multiple secondary degenerations. There was not only a degeneration of all the projection fibres of cortical origin, but also a total degeneration of the fibres of the internal capsule, of the foot of the ccrebral peduncle, of the substantia nigra, and of a portion of the red nucleus. They were able to follow in this case very exactly the course of the bundles of fibres which they believed to pass uninterruptedly between the red nuclens and the cerebral cortex (fibres corticorubriques directes.). They could identify them below the degenerated fibres of the internal capsule in the upper part of the hypothalamic region, whence the degenerated area extended inward, passed between the geniculate bodies on the one side and the bundle of Tïrck on the other, and occupied an irregular zone outside the central gray substance of the third ventri-cle-a position which corresponds evidently to the upper part of the capsule of the red nueleus and which is situated between the faseiculus retroflexus of Meynert and the bundle BATh of Forel. The degeneration of these fibres, which form a portion of the radiations of the red nucleus, could be followed into the whole of the dorsal and anterior portion of the red nucleus. The ventral and posterior part of the mueleus was normal, as was also the brachium conjunctivum. Not all of the dorsal part of the red nucleus was deprived of fibres. On its dorsal, anterior, and lateral surface the thalamic contingent of the radiations showed undegencrated fibres, and one could in this case easily deeide, therefore, which of the radiations belonged to the thalamus and which belonged to the cerebral cortex.

[^307]Between the cortex of one cerebellar hemisphere und that of the opposite cerebral hemisphere two paths, therefore, in ull probability exist, one consisting of three superimposed neurones, the other of four. The neurones of the more direct path would include (1) a neurone the axone of which extends from the cerebellar cortex to the meleus dentatus; (2) a nenrone the axone of which extends from the nucleus dentatus through the brachinm conjunctivum and its decussation to the red nucleus of the opposite side; (3) a nemrone with the axone extending from the red nucleus to the cerebral cortex. In the less direct path four neurones would be involved: (1) a neurone with axone extending from the cerebellar cortex to the nucleus dentatus; (2) a neurone comecting the nucleus dentatus with the opposite $\&$ melens by way of the brachium conjunctivum; (3) a neuro. onnecting the red nueleus with the hypothalamus or thalamus ; (4) a neurone connecting the hypothalamic region, or the thalamms, with the cerebral cortex.

I would suggest that the term "somasthetic area" * be retained for all those regions of the cortex which receive centripetal impressions from these central sensory conduction paths, be it by way of the lemniscus, by way of the formatio reticularis, by way of the fasciculus longitudinalis medialis, or by way of the upward continuation of the brachium conjunctivam and the radiations from the red nucleus, and whether the conduction be direetly from these bundles, or indireetly by means of neurones of a higher order interposed.

[^308]6. Central Centripetal Axones passing throngh the Internal Capsule (Corticopetal Projection Neurones of the General Somæsthetic Condnotion Path).

CIIAPTER LI.

Embryological memberment-Flechsig's system No. I-System No. IISystem No. IIl-Résumé of somasthetic conduction pulhs.

From what has been said in the foregoing ehapters, it will be plain that we are in urgent need of more exact knowledge concerning the sensory paths from the tegmental portion of the cerebral pedmele to the cerebral cortex. It is certain that a large majority of the fibres are interrupted (nearly all of the lemnisens, probably all of the fibres of the fascienlus longitudimalis medialis, many of the fibres of the brachium conjunctivum, and radiations of the red nuclens). It seems likely that a part of the fibres pass directly out to the cortex (possibly a portion of the lemniscus, many of the fibres from the radiation of the red nucleus). The stations intercalated in the path are of rather wide area (ventro-lateral group of nuclei for the thalamns, for the lemniseus, gray matter of hypothalamic region, of ventrolateral portions of the thalamns, and possibly of Luys' body, and the centre médian of Lays for the fibres of the other bumdles). Secondary degenerations show a different path through the internal capsule for different portions of these centripetal fibres from these various intermediate stations. Thus, while they all pass through the posterior portion of the pars occipitalis of the internal capsnle, still in this region it is possible to separate, to a certain extent at least, the area corresponding to the axones coming from the intermediate stations comneeted with the leminsens from the areas which correspond to the intermediate stations belonging to the radiations of the red nucleus.

The embryological studies of Flechsig dealing with the sensory fibres going to the cerebral cortex may be mentioned in this comection. Flechsig unfortunately does not distinguish clearly in his work the upward continuations of the lemnisens, 734
direct or indirect, from those belonging to the radiations of the red nucleus, etc. He groups the large mass of centripetal fibres together, and states that passing through the internal capsule the indirect contimations of the sensory fibres of the dorsal roots of the spinal and cerebral nerves can be divided into three definite systems, which become medullated at different periods. He has designated these three systems of fibres, according to

Fig. 4bib.-Sagital section through the hmman hain: schematic. (After P.
 Fig. 1.) ($j p$, globns pallidus of the lenticutar nuclens; I, putancu; N, nuclens candatus: $I . K$, lateral mucleus of the thatanms ; sh, cup-shaped body of thalames (schulenformifer hörper) ; cm, centre médim of Lays of thalamus; IKK, medial muelens and pulvinar ; r, anterior nuclens of thatanus; LK, sh, em, together represent Flechsig's ventro-lateral gromp of muclei of the thatams; $1 / h^{*}, r$, represent his domso-modial gronp of morlei ; ci, internal (apsule; L, nuclens hypothatamicus (eorpus Lassi); F!, , suparior frontal gyrms: $F, I I I$, inferior frontal gyrus; (ill, uyrus hippocanpi; le, anturior erntral gyrus: $H C^{\prime}$, posterior contral gyrus; sh, sutens centalis Rolandi; Soup, sulcus parieto-occipitahis; Fi.cen, tissura calkarima; $I, I, I, I^{\prime \prime \prime}$, semsory system No. $1 ; 2^{2}, 2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime}$, sensory system No. $2 ;, 3,3,0^{\prime \prime}$, sensory system No. 3: ditferent kinds of dotted lines are used to represent these three systems in all the figures. The cortiecopetal paths of the optid thalamus are represented in the figure ; the eorticofigat conduction paths of the dorsomedial groap of nuclei of the thalamos, the motor paths of the cerelmal cortex, cte., are not shown. The arrangement of the joints in the rentrolateral domain of the thamus is sehematie.
the order of their medullation, as systems I, II, and III (Figs. 466-468). For system No. I the myelin appears at about the
begimning of the ninth fietal month. It oceupies the posterior part of the intermal eapsule, and in its upper half the area immediately behind the fibres of the pyramidal tract. The fibres of this system it onain pass up from the basal portions of the lateral r . of the thalamus, the enp-shaped body (schutenförmiger livirer of Fleehsig and von 'Tsehisch), and in part, Flechsig believes, directly out of the medial lemniscus. They are distributed exciusively to the cortex of the two central gyri, which are thus, the first of all, the regions of the cortex to become comnected by means of medullated fibres with the

Fig. 467.-Fromal section through the human brain; sehematic. (After 1P. Flechsig, Die Lacalisations der geistigen Vörgange, de., Lejpz., 1896, s. 20, Fig. 2.) $I, I I, I I I$, first, serond, and third portion of the muclens lentiformis; I, K, lateral nuclens of thalamas ; $i K, i k$! medial nucleus of thatamus $; N e$, nuclens eandatus ; L, muelens hypothalamicus (rorpas Laysi) : of brachium conjunctivnn ; o, tractus optiatis ; Am, nucleus amygdalie ; Fs, Fussa sylvii ; IIC, posterior central gyrus; (ism, gyrus supmanargiualis; TI, TII, TIII, superior, mindle, and inferior temporal gyri ; (), anterior tansverse temporal gyrus ; oT, gyrus oceipito-temponalis; If, lobulus paracentralis; Bu, corpus callosum; a, anditory conduction path.
sensory apparatus of the body. The fibres of this system are marked $1^{\prime}, 1^{\prime \prime}$ in the diagrams.

A few of the fibres of this system, corresponding to the posterior angle of the lenticular nueleus, rum in the external cap-
sule, and in the most posterior part of the lamina medullaris lateralis of the lenticular nucleus. A small bundle appears to

Fig. 468.-IIorizontal section throngh the limman brain; sehematie. (After P. Flechsig, Die Lamalisation der geistigen Vorgange, ete., Leipz., 1890, S. 23, (ig. 3.) $I, I I, I I I$, first, secomo, and third portion of the nurlens lentiformis; Ne, undens mmatns: $L K$, latemal nuelens of thalamus; $; \boldsymbol{K}$, medial mueleas of thalamas; cm, reatre módian; P, pulvinar; M, fascioulas retrotlexus. Meynerti in cross section; hC, posterior eommissure; Za pineal borly ; r^{\prime}, pyramidal tract; I, Armold's bmalle of internal eapsinle; T, sensory region of internal eapsule; a, auditory conduction path; Ne, (imatiolet's radiation ("Optice radiation in the wider sense") ; a, corticofingal pathes of tiratiolet's radiation: β, corticonetal pathes of tratiolet's radiation, projection fibres of the lateral genienlate body ; Q, anterior transverse temporal gyrns going over into the superior temporal gyrus ; (is, gyrus subangularis; FI, superior frontal gyrus ; FIII, interior trontal gyrus; (if, gy rus formieatus; $S C$, suliculum cormu Ammonis; $I f$, posterior horn of lateral vantricle; op, operculum ; $P^{\prime} m$ (dotted), cross sertion of large assoriation system betweren somesthetie area (wentmagri) and posterior large association centre; , J. cortex of ishand of Reil.
go into the lower part of the optic radiation $(1+)$, the exact distribution of which is not yet eertain.

The sensory system No. II begins to receive its myelin about a month later than does No. I. The fibres of this system also pass out of the lateral nucleus of the thabams, but more dorsally. A few of them issue from the centre médian of Luys. Passing upward, they are distributed in part to the central gyri, the lobulns paracentralis, and to the foot of the superior frontal gyrus. Another portion of them, after bending around at m acute angle and passing inward, becomes distributed to the gyrus fornicatus along its whole length. 'The most posterior bundles (2^{\prime}, Fig. 466) enter into the cingulum and run toward the Ammon's horn. Still later another hundle belonging to this system runs from the lateral nueleus of the thalamus basalward and enters into the unens, and arrives from in front and below at the subiculum cornu Ammonis. The whole of the limbie lobe thus comes to be connected with the lateral nuclens of the thalamus.

The sensory system No. III, the last to become medullated, is also commeted with the lateral nueleus of the thalamns, emerging from the anterior portion of it. It enters the intemal capsule in about its middle portion, and runs in part directly to the foot of the third trontal convolution, another part enrving markedly, as shown in the diagram (Fig. 466, 3, $3^{\prime \prime}$), before reaching the cortex. Bundles of the latter run from the region of the pyramidal tract forward into the fasciculas subcallosus, and descend at the anterior margin of the corpas striatum to the third frontal convolution (3'). The fibres of a second group pass througlo the pars frontalis of the internal capsule irito the frontal lobe almost as far as the pole, and then bend round at an acute angle, part of the fibres reaching the middle portion of the gyrus formicatus (3), another part the anterior half of the superior frontal gyrus, while single fibres go to the foot of the middle frontal gyrus.

It is of the highest importance, in order that the resuits of these researches of Flechsig and those of the study of secondary degenerations may be satisfactorily interpreted, that studies by Golgi's method be undertaken. It is to be hoped that in this way a more exact amalysis of the paths under consideration may be made, so that ultimately we shall be able to state positively the exact position of the cell bodies and axones of the neurones
belonging to the different portions of the complex series of nemrone systems which mediate the centripetal condnction from the sensory surfaces of the body toward the somasthetic area of the cerebral cortex.

Let us now summarize briefly the contents of the chapters immediately preceding, bearing on the somasthetic conduction path. We have seen that it consists of peripheral centripetal neurones (centripetal newrones of the first order of the spimal and cerebral nerves) and central centripetal neurones (centripetal nemrones of the second order, and of higher orders).

The cell bodies and peripheral processes of the peripheral centripetal nemrones are sitnated ontside the central nervous system, while the axones phange into the nerve centres and terminate in the nuclei terminales of the sensory nerves. In these nuclei terminales are situated the perikaryons and dentrites of the lowermost central centripetal neurones, and their axones carry the impulses on to higher centres. Possibly a few axones of these lowest central centripetal neurones go as far as the somasthetic area of the cortex, but as a rule, however, they terminate in some gray mass on the way (mainly the thalamis), there coming into conduction relation with eentral nenrones of a still higher order, whose axones carry the impulses out to the somasthetic area of the cortex. The simplest somasthetic conduction path then would consist of at least two superimposed nemrone systems-one peripheral centripetal nemrone and one central centripetal neurone. In all probability the main somasthetic conduction path, however, consists of three sets of superimposed neurone systems-one peripheral centripetal nellrone, one lower central centripetal neurone, and a third higher central centripetal neurone. In addition, in the possible somasthetic conduction paths there are much more complex superimpositions in the domain of the central nemrones, so that from the periphery to the cortex four, five, six, ten, or perhaps a great number of neurone systems may be superimposed. This is especially true of the romdabont somasthetic conduction paths by way of the cerebellum.

The peripheral centripetal neurones have been divided into (1) those pertaining to the spinal cord and (2) those pertaining to the rhombencephalon. The central axones of the spinal peripheral centripetal neurones end in their nuclei terminales in the spinal cord, medulla oblongata, and cerebellum. The
axomes of the rentral eentripetal neurones whose perikaryons and dendrites correspond to the nuclei termimales of the peripheral spinal centripetal neurones do not all follow the same course; on the contrary, they assume in the central merrons system very different ascending paths, and have at times entirely different termimations; in other words, at the junction of the peripheral spinal centripetal neurones with the nemone systems of the secomd order there oceurs it murked diererfence in the somasthetic conduction paths. Leaving out of aceount the terminals of axones and collaterals which reach the ventral horns of the spinal cord, we have seen that many axones of spimal centripetal nemones terminate in the muclens donsalis, in the dorsal hom and middle part of the gray matter of the spinal cord, in the nuclems funienti gracilis, and the meleas fumenli cuneati of the medulla, and some even in the cerebellum. The axones from the cells in the meleus dorsalis aseend in the anseiculus spino-cerebellaris dorso-lateratis to enter the cerebellum by way of the corpus restiforme, and to terminate in the cortex of the worm, giving off collaterals to the nuclens dentatns as the fibres pass ly it. The axones of the central centripetal neurones and perikaryons, which are situated in the dorsal horn and in the middle part of the gray matter of the cord, aseend partly in the white matter of the same side and partly in the white matter of the opposite side in the fascieulus ventro-lateralis superficialis Gowersi and in the fascieulus ventralis et latendis proprius. These axones have varions terminations: some, as we have seen, run in Gowers' tract to the upper part of the pons and then turn back alongside of the brachium conjunctivum into the cerebellnm to end in the worm, others turn into the cerebellum through the corpus restiforme, still others terminate in the collienli of the corpora quadrigemina, others in the substantia nigra, others in the thalamus, and, finally, some in the nuclens lentiformis. The fibres of the fasciculas lateralis proprins terminate in part in the nuelei laterales of the medulla, in part in the formatio reticularis grisea. Some of these axones are quite long, others are very short. The axones of the fasciculus ventralis proprins in large part enter the fascieulus longitudinalis medialis, and come into relation with the motor and sensory nuclei and great reflex centres of the medulla oblongata.

The axones from the nucleus funiculi gracilis and from
the molens funiculi cmmenti, us we have seen, comersond to at least four nemrone systems of the secoud order, two of them

 two of them going directly to the cerebrum. Of the latter, one set of axones- the main set-end in the ventro-lateral group of muclei of the thabmus (1, sysirma lemniseale myelencerehnituthelamirmm). The nxones of the other set go all the way out to the cortex of the pallimm, to terminate, woording to 'Sehermak, in the gray matter of the somasthetie area ($\%$, systemm lemmiscale myplencephul(e-pelliallum). On their way these axomes to the cercbrum give off collaterals to the melens olivaris inferior, and to the motor and reflex nuelei of the medulla oblongata, pons, and midlrain. A part of the axomes mudergo a high erossing in the commissura superior of Aleynert, in order to enter the nuclens lentiformis of the opposite side.

Of the axones which pass into the cerebellam, we have to consider (1) those which go directly from the spian cord to the cerelellum, and (?) those which go from the nuclei of the medulla into the cerebellum. Among the latter may be classed eertain axones from the nuclei of the dorsal fmienli, the nuelei funculi lateralis, and the nuclens olivaris inferior. The axomes on entering the cerebollum terminate in the cortex of that organ, and also come into manifold relation by means of collaterals with the muclens dentatus and adjacent gray masses, probably of both sides. The fibres from the nuclens olivaris inferior to the cerehellum form the so-called fibre olivo-cerebellares. From the regions of the eerebellum, in turn, in which the fibres mentioned terminate, there proced axones of neurone systems of a higher order which extend cerebralward-namely, those of the brachim conjunctivum, most of which terminate in the nueleus ruber of the opposite side, some beyond this nucleus, some, however, going to the thalamus of the same side. From the nucleus ruber of each side there go out axones of neurone systems which extend in the main to the nucleus lentiformis and to the somasthetic area of the cortex. These make up in large part the " radiations of the nucleus ruber."

From the ventro-lateral region of the thalamus, in which so many axones of the central neurones of the somasthetic conduction path terminate, there extend neurone systems to the somæsthetic area of the cortex-systems which can be subili-
vided into three great groups, necording to their perion of myelinization. (System No. 1, System No. II, and System No. III.) The peripheral nemrones pertaining to the rhombeneephe-

Fig. 469. -Stheme of genemal somesthetic paths; lettering the tame as on pl. i, Fig. 1.
lon conermed in the conduction of bodily impulses end in the nuclei terminales of the sensory cerebral nerves. The axones, as we huve seen, correspond to those of the N. vigus, N. glossopharyngens, N. vestibuli, and N. trigemini. The nxones of the central nenrones, which belong here, enter partly the lemnisens medialis und partly the fascieuhas longitudimatis medialis-that is to sny, they run in company with the principal handles of the centripetal axones of the spimal somasthetic conduction path. For certhin of the cerebral sensory nerves, however, there are espeeini central bundles in the formatio reticularis that have been pointed out in their appropriate connection. (Cf. central puths for the N. vagus, N. glossopharyngeus, N. intermedins, N. vestibuli, und N. trigeminns.) it is not impossible that some of the cerebral nerves also make roundabont conduction paths by way of the cerebelhom and brachium conjunctivim. From the cerebral pehmele on, it has not been possible thus fur to distinguish the eentral paths of the eerebral nerves from those which correspond to the spinal nerves.

These manifold distributions of central axones and collaterats in the spinal cord and rhombencephnton render possible the enormous number of conduction relations necessary for the construction of the reflex mind instinctive mechmisms which are associated with bodily centripetal impulses. The axones which reach the so-called somasthetic area of the pana., mane in turn able to affect association neurones which combine the activities of the somesthetic areal with those of the other sensory areas of the cortex. In the somesthetic area are situated also the perikaryons, dendrites of the motor neurones, the axones of which extend from the pallium to the groups of perikaryons belonging to the lower motor neurones (motor nuelei of the midbrain, pons, mednlla oblongata, and spinal cord). It is thas obvions that the motor conduction paths can be affected in different parts of their course by way of the various sets of superimposed neurone systems of the somasthetic conduction path. The lower motor neurones are, by means of collaterals at loast, in direct conduction relation with the peripheral centripetal neurones; the sensory neurones of the second order come, by meins chiefly of collaterals, into conduction relation with the large nerve cells of the formatio reticularis, the axones of which in turn cin affeet the lower motor neurones, while the higher contral centripetal somesthetic neurones can

F16, 470.-Scacme of peneral somesthetic paths; lettering the same as for ph. ii ,
Fig. 1.

F'w, 471.-Seheme of neuromes superimposed ingeneral somesthetie paths; lettering the same ats on pl, i, Figs. 4 and 5.
directly, in all probability, affect through the eonduction relations which are established in the somasthetic area the neurones whose axones form the pyramidal tract. Finally, it seems likely that from the association centres of the cerebral cortex which are on the one hand thrown under the influence of the somesthetie area as well as under the influence of the other sense areas of the cortex, paths may go out to reach the motor areas of the cortex again, and thence by way of the pyramidal tract affect the groups of lower motor neurones. When one regards the possibilities of communication between sensory neurones on the one hand and motor neurones on the other hand, actually thus far established, and thinks of the infinite number of communications which may yet be demonstrated, the intimate relations of these sets of neurones with one another becomes truly astounding.

Particular attention is directed to two great subdivisions of the somasthetic conduction paths-A, the paths from the periphery to the cortex but not passing throngh the cerebellum, and B, the less direct paths by way of the cerebellum and brachium conjunctivum. Here anatomical knowledge is vastly in advance of physiological rescarch and of clinical application, but we may hope that the near future has much to reveal concerning the respective functions of these different paths.

A scheme illustrating some of the better known neurone systems of the general sensory path from the periphery to the cortex is given in Figs. 469, $4 \% 0$, and $4 \% 1$.
(B) Central Neurones of Sensory Conduction Paths Corresponding to the Organs of Special Sense.

We have now to pass on to the neurones of the second order and of higher orders whieh conduct centripetally in connection with the paths which we to do with the organs of special sense-namely, the sense of taste, the sense of smell, the sense of sight, and the sense of hearing. Althongh on superficial examination these paths are very different from those conducting to the somesthetic region of the cortex, we shall find on closer examination many amalogies.

CHAPTER LII.

(RENRAL NEURONES OF TIIE (iCSTATORY ANI) OLFACTORY CONDCETION PATIS.

Central gustatory nemrones-Central olfactory neurones-siructure of rhin-cucephalon-Studies of Sir Willian Turner-Studies of W. ItisStudies of Retzins-Bulbus olfactorius-'Tractus olfactorias-Striar olfactorie-('ommissma anterior cerebri-Olfactory terminals in the frontal and lemporal lobes-Olfactory association and reflex paths.

1. Central Neurones of the Gustatory Conduction Path.

Oti knowledge of these paths is incomplete and extremely unsatisfactory. Turner,* in reviewing the subject, finds disagreement among investigators as to the peripheral gustatory neurones and almost complete ignorance as regards the central gustatory nemrones. For the pathology of taste sensations the excellent puitome of Frankl-Hochwart \dagger is recommended. The diagrams on page $5: 8$ may also be referred to.

[^309]
2. Central Neurones of the Olfactory Conduction Path.

Itasmuch as the olfactory conduction path is the first path in the forebrain comneeted with the special sense organs to beeome medullated in the developing human footus, it may appropriately be first considered. We have already seen how the axones of the peripheral olfactory neurones terminate within the olfactory glomeruli of the olfactory bulb. It is now necessary to examine the nemrones and their varions processes by means of which these impulses, arriving in the olfactory bulb, are earried to higher parts of the central nervous system. Before proceeding to this description, however, it may be helpful to refer briefly to the general structure of the olfactory portion of the brain.

The more interesting of the earlier studies upon the central olfactory stations were made by Broca,* Sehwalbe, \dagger and Zuckerkandl. \ddagger An important advance was made when Sir William Turner \# grouped the regions espeeially connected with the sense of smell under the term rhinencephalon, thus distinguishing them sharply from the rest of the forebrain (the pallinm), a distinction which has been proved by His $\|$ to be embryologically well founded, and by Edinger to agree with phylogenetic development.

The size of the rhinencephalon varies enormonsly in different

[^310]animals, corresponding to the marked differences whieh they exhibit as regards the olfactory sense. Animals were divided by Broca into an anosmatic and an osmatic class. The latter group was further snbdivided by Sir William Turner into mic rosmatic and macrosmatic animals. The rhinencephalon in microsmatic animals is relatively feebly developed, and to this group human beings belong. The general relations of the rhinencephalon are accordingly much more easily studied in lower animals than in man, and, as a matter of fact, for a long time the nature of certain portions of the humam brain now recognized as remmants of the olfactory brain was not at all understood. In order to gain a clear conception of the relations of the various parts of the rhinencephaton to one another and to the pallium in man it is probably best to study the development.

His, of Leipzig, has shown that the developing olfactory brain becomes separated at the begimning of the second month from the anterior end of the hemisphere and appars as a projection near the lamina terminalis. Between the pallium and the rhinencephalum there is a distinet furrow which Sir William Turner has designated the fissura rhimica. At a very early period the rhinencephalon thas marked off is subdivided by an indentation (the fissura prima, which is especially marked on its medial surface) into an anterior half (directed more dorsalward) and a posterior half. The anterior half or anterior olfactory lobe is in contact with the region which is to become later the frontal lobe; the posterior half or posterior olfactory lobe is in contact with what is to be later the temporal lobe (Fig. 4%). Shove the posterior olfactory lobe the fossa Sylvii develops. As development proceeds, the anterior olfactory lobe becomes gradually depressed toward the base of the brain by we growing frontal lobes and it comes finally to occupy a plane decper than that in which the posterior olfactory lobe is situated. Each of the two olfactory lobes consists of a portion directed toward the base and of a portion directed medialward. From the basilar portion of the anterior olfactory lobe are developed the bulbus olfactorins, the tractus olfactorins, and the trigonum olfactorium, all of which, taken together, make up what is known as the "lobus oftactorins" of the anatomists. The basilar portion of the posterior olfactory lobe corresponds to the substantia perforata lateralis which is
definitely characterized by its position at the entrance to the fossa Sylvii and hy its connection with the gyrus hippocampi of the temporal lobe. It becomes in later development overarched

 lohes to me mother and to the lobe of the cerchat hamisphere in ditherent

 corpus st viatum.
secondarily by the pole of the temporal lobe. Medialward the substantia perforata lateralis is continuous with the gyrus subcallosus (medial portion of the posterior olfactory lobe), which in the adalt human brain is a somewhat indefinite structure, although in the hmman fotus it is a very well-marked morphological entity. The gymus subeallosus (pedmentus corporis (allosi) is in front separated from the medial portion of the anterior olfactory lobe (area parolfactoria Broca) by a deep indentation, the so-called sulcus parolfactorins posterior (the fissura prima of the embryo). The furrow which separates Broca's fiell from the begimning of the gyrus einguli and which aceordingly is sitnated in front of the trigomm olfactoriam and of the area of Broca has been called by lis the sulcus parolfactorins anterior. In the adult the junction of the substantia perforata lateralis with the island of Reil is not very definitely limited, hut in the human foetus at about the fourth month this junction is sharply marked off by an arched ridge,* which con-

[^311]nects the anterior alfactory lobe with the temporal lobe. The region, therefore, known as the limen inswhe in the adolt is to be considered as a part of the rhinencephalon. The following table shows at a glance the varions parts of the rhinencephaton as described by IIis:

The anterior olfactory lobe is connected with the posterior by means of the stria olfactoria lateralis and the limen insular.

The best recent microscopic study of the structures bolongto the rhinencephalon is that of Retzins, of Stockholm.* He calls the area parolfactoria of Broca the gyrus olfactorims medi-

Fig. 473.-The lasal surface of a haman fotus 2x.5 em, long (begiming of fifth month) to illustrate developing rhinemerphalong. (After (i. Retzins, Das Monsehemhirn, Storkhohm, 1s!ti, Taf. xxxii, Fig. 2.) 'The tratus olfictorii
 olfactorif haterales run lateralward, turn at ant angle, and go over into the
 rhinemerphaton from the Gohus temporalis is distimetly developed; besides
 sprat ont with its hateral wings in fromt of the corpora mammillaria, llat latter heing as you but little developed.
alis, while he designates as gyrus olfactorins lateralis the region corresponding to the comse of the lateral olfactory stria and

[^312]the limen insula (Figs. 473,474 , and 475). The lateral olfactory gyrus, directed at first laterally and posteriorly, makes a shurp turn backward at the amgulus luteralis and goes over into the anterior extremity of the gyrus hippocampi, where it forms two minnte convolutions which Retzins calls the gyrus semilunaris

Fus. 17. - Part of the basal surface of the banin of the left hemisphere) of a man furty-three years old, seren from below and to the right. After if.
 at the trigomum olfartorimm one seres the two limbs rambing ont into the gyrus olfactorins medialis and the gyras oltactorius hateralis and behind them the somewhat buging substantia perforata unterior, on the posterior border of which the diagomal band of Brona passing latekward and lateralwam from the gyrus subeallosins is distinetly visible. In the gyrus behind the substantia perforata intorior-i. e., in the gyras offectorins lateralis whish is here separated from the gyrus tanswersis insalie-and be seen the white stria altactoria latemas rimanag latoralwamd mal barkward as far us the begiming of the gyras hipporampi, where it disippears: the stria offactoria merlialis planges deepinto the substantia perforatit anterior. On the gyrus hippoeampi can be recognized medialward an oval, half-mon-shaped bug. ing, the gyrus semilmaris, which is semmated by the suleus semiammatis from the gyrus ambiens, more laterally placed.
rhinencephali and the grus ambiens rhinencephali, the two being separated from one another by a shallow furrow-the socalled sulens semilunaris. The gyrus ambiens in turn is separated from the rest of the ryrus hippocampi by what Retzius calls the sulcus rhinence ${ }_{p}$.ali inferior (Figs. 476 and 4%). That these two gyri exist in the region of the uneus, and are easily separable from it, I can eonfirm from the examination
by Flechsig and other anatomists as existing in the unens, has
of a number of hemispheres in this laboratory, and it would seem very probable that the temporal olfactory area, desoribed

Fira. 475. -Illust ration of part of the rhinemerphalon of a man forty-there years
 Fig. 8.) The tratus alfartorii, with their sumomblings, athe the gyri olfastorii mediales ret latembes gong hark warl from them, are well seem. The
 transworsus insular. Wath lateral olfarlory gyras eombains a well-marked stria olfartoria lateralis. In this instane a well-mated stria intermedia is visible phogeng into the mueh-halged substantia pertoratanuterior. The two olfactory trates dither in lengh and anteriorly spreat ont intos the bubi olfactorii.

F'ti, tifi. The lower part of the gyms hippocampi, with survomding simetures
 gyms hipperampi bends arothed the atherior extremity of the tissura hipporampi into the mones, and the garns intalimbicus sits like a mp mpon the eme of the mons: the bertor of the latter corresponds to the limbus diacomini ; above amd anteriorly the gyrus indalimbiens is comtimons with the lillocklike gyrns semilmaris (sf): on the laft the velum lorminale goes over into the ehoriondal fayer: hemeath this the formix and the fascia dentata. After (i. Retzins, Dats Mousehenhim, Stockholm, 1s96, pl. I, Jig. 3.)
in reality much less to do with the unens itself tham has been
thought, and really concerns these two small gyri which, curionsly enough, before Retzius's description uppear to bave been entirely overlooked.

Fus. 477--The inforion anterior extronity of the gyvis hipporampi from the

 mucus, sharply marked otl, is the limbus diacomini. Which goes over medially and behind into the posteriom limb of the gyrus similunaris and is separated tusteriorly by a shallow farrow from floc gyrus int andimbicus. Mcolial from this gy yos is attached a portion of ilme timbria, mal medial from this again is situated lae lamolla of the plexus rhoriondens performed by vessels alomg with the velum. By means af these st buetures the eavity of the rormo inferias is clascel.

The various parts of the rhinencephalon described by Retzins are here presented in tabular form:

Classification accommeta to Retzies.

1. Bulbus olfurtorius.
2. Trachus olfactorius.
3. Trigoum olfactorium (gymo tuberis $\left\{\begin{array}{r}\text { Stria olfactoria latera } \\ \text { olfactorius lateralis. }\end{array}\right.$
olfaclorii)................... $\{$ Stria olfactorin medialis to gyrus olfactorius medialis.
4. Gyrus olfuctorius medialis.

Area parolfactoria Broces.
Pars anterior = Eberstaller's gyrus transversus insula and the limen insula.
5. Gyrus olfactorius lateralis.

Pars posterior. Extends from angulus lateralis to anterior extremity of gyrus hippocampi and terminates in the gyrus semilunaris rhinencephali and the gyrus anbiens.
6. (iyrus perforalus (sen intermetive) y Anterior, mach perforated, purt rhimencephali................ ! of substantia perforatanaterior.

Costerior, less perforated, purt of sulstantia perfornta materior. ('orrespemids to the diagomal bund of Brocn, which extends from the gyrus subcallosus to anterior end of gyrus hippocam!i.
8. Ohher portions of rhinencephoton.
(a) Ciyrus hippacumpi.
(b) L'ucus.
(c) (igrus dentatus.
(d) (iyrus intralimbicus.
(e) Gyrus fiascialaris.
(f) Ciyri Andrear Retzii.
(g) Indusium griseum (including the shriar longifudinalis medialis et luteralis).
(b) Giyri subrcallosi.

The bulbus olfactorius (anterior extremity of the lobus olfactorius anterior of llis) is relatively much smaller in man than it is in animuls like the dog or the rabbit. In the embryo there is a central cavity in the olfactory bulb continnous through the olfactory lobe with the anterior horn of the lateral ventricle, but in the adult homan being this cavity is obliterated, though its site is evident in coronal sections, being marked by the presence of a central gelatinous substance.

Since the rabbit's olfactory bulb has been very carefully studied, this will be described first, and the human bulb eompared with it.

The Main Bulb in the Rabbit.*-Von Köllikert deseribes the rabbit's olfactory bulb as being made up of the following layers:
(1) Layer of olfactory nerve fibres.
(2) Stratum glomer ilorum, containing the glomeruli olfactorii.
(3) Stratum griseum.
(a) Stratum moleculare seu gelatinosum, containing small and large nerve cells.
(b) Layer of mitral cells.

[^313](4) White substance, or granule layer, eontaining medulhated nerve fibres und large numbers of minute nerve cells, the so-call "olfactory gramules."
These layers are well illustrated in Fig. 47\%, taken from von Külliker's book.

Fig. 478, - Jirontal section of
s olfactorits of a young rabhit: Weigert stain. (After d. von Kir' ii, Jeipz, 18!\%, s. (is (ilo. glomeruli olf: SMrar, stratum gi torins lateralis; olfactorii ; ($\mathrm{gr} . \mathrm{S}$, subatallial grisea

Inside the layer of granules mixed with white fibres are aceumulated the main bundles of medullated axones, those corresponding to the stria olfactoria lateralis (Tr. o. l., Fig. 478) and the stria olfactoria medialis ('T'r. o. m., Fig. 478) being more superficially situated than the fibres which form the bundle
(ct, Fig. $4 \% 8$) which goes to the anterior commissure. 'The appearances of the hman olfactory bulb are well shown in frontal section in Fig. 479 and in horizontal section in Fig. 480. The nature of the different parts are sufliciently well indicated in the legends accompanying the figures, and further description here is unnecessary.

The olfactory glomeruli receive, besides the terminals of the axones of the olfactory nerves, extremely numerous, much branched dendrites from the mitral cells and from the brush

Fio. 470.-Transwese seetion of the human hulhus offactorins: Weigert stain. (After A. von K̈̈lliker, Handmels der (iewelvelehre, Bid. ii, Laipz., 1896, S. 698, Fig. 751.) Fo, tila oltactoria; (il, glomeruli olfactorii ; Kie, grambe layer ; M, molecolar hayer; MZ, mitral cells; dus, dorsal white hayer ent tramsversely ; grs, inner gray muclens; rws, vental white hyer cot transersely ; $w F h$, bumille of white filmes.
cells of the olfactory bulb. It is these dendrites of the mitral cells (Fig. 481) and of the brush cells (Fig. 482) which take up, the impulses from the peripheral olfactory nemones and carry them farther. The peripheral sensory neurones do not come into contact directly with the cell bodies of the mitral cells, bat ean affect these and their axones only through the intermediation of the dendrites. The axones of the Nn. olfactorii are easily distinguishable from the dendrites of the mitral cells in sections which demonstrate the neurosomes, since the latter are much more numerous in the axones than in the dendrites (Fig. 483). The axones of the mitral cells and of the brush cells are medullated and run backward in the tractus olfactorias toward the main mass of the brain. On assuming a longitudinal direction they give off a number of collaterals to the stratum moleculare.

These fibres can be divided into two sets in the offactory tract of human beings-a superficial set consisting of the fibres which

Fig. Aso. - Ilorigontal sertion through the bulbus and tructas olfatorins of man :

 veres, anterior bundle of whild smbstane
later form the lateral and medial olfactory strie, and a deep set consisting of fibres which run into the anterior part of the anterior commissure of the cerchrum (Fig. 48t). The relations of the mitral cells amb brush cells to the individual olfactory glomeruli vary in different mimals. Thas, in the eat and rab)bit each glomerulus receives only one dendrite from a single
mitral cell, while in the dog one glomernhes may recerion dendrites from as many as tive or six mitral cells. The nature of the offactory gramules (Fig. f85) is as yet not well modnestood.

The tibers destined for the commissure as they pass backward oeempy the dorsal part of the tract and gradtally collere into a bmulle which is romed in cross seetion and which enters dirertly into the anterior commissure forming its pars anterior. The tiberes of the stria olfactoria latemas, which inchodes the math mass of offactory fibes (Fig. frif), pass harkwat

 hrush.
and outward first on the lateral side of the sulbetantia perpforata interior, and then bathward and modialward (eorresponding to the posterior part of the gyrns offactorins lateralis), to terminate apparently exclusively in the molecular

 in which the offactory fibres terminate has a pecolian strueture in that just beneath the uppermost layer (poor in eells) there exists a layer of "gramules" (K̈rner) which agrees entirely in
structure with the muclear layer of Ammon's horn, and indeed is continnous with it. As above mentioned, we may have to

Fig. 48:. - Bubus olfactorias of a monse twenty-four days old. Mcthod of Golgi. (After A. von Kölliker, Handburh der Gewebelehre, Bd. ii, Laipz., 18136, S. 707. Fig. 75x.) (i, collaterals; (il, glomeruli ; M, mital colls; M, superticial large brush cell : M^{2}, small brash cell; $R p$, olfactory brush; \quad, axone.
deal here with the gyrus semilunaris and the gyras ambiens rather than with the uneus proper. On their way to the meus the olfactory fibres give off large numbers of eollaterals to the double pyramidal cells which are situated in the adjacent gray matter of the rhinencephalon, each fibre thus entering into relations with a cerebral zone of considerable extent.

Of the fibres which run toward the stria medialis many ter-
minate in the gray matter of the trigonum olfactorium (Calleja).* In the gray matter oi this region the eerebral strueture is much modified; here are sitnated the curions" olfactory islands" which were seen by Ganser but were first earefully deseribed by Calleja (islotes olfatioos) (Fig. 48\%). Each island, consisting of a mass of pyramidal cells (closely crowded to-

 A. von K̈̈lliker, Handbueh ter (iewobelehre des Mensehem, Bn, ji, Iapze,
 iaside the glomuralas; re, capiltary bloed-vessels.
gether and distorted in shape), receives a large number of fibres which break up into an extremely rich ent-plexns among the

[^314]cells (Fig. fss). Some fibres from the medial offactory striat reach the gyras subcallosus and the basal begiming pieece of the gyrus fornicatus which possesses a special structure characterized by the presenee of only one ganglion cell layer (mostly spindle rells). Others positively rach the septum pelheidnom and go by way of the fornix to Ammon's horn. 'The majority

 stain. (Ather A, von Källiker, llandharla der (irwobelehre, Jal, ii, 1896, s.

 ventricle.
of the fibres of the stria medialis are connected with the area parolfactoria of Broca. Thence, by means of neurones of a

 762.)
higher orter, rommetions with the indusemm grisemm, strite Lameisi, cte, are probably formed.

The tibres of the anterior commisumere, mum less ileveloped in man than in many animals, buter the hom of the melons
 roming to the alfactory loulb of the apmenite sids, the pensterior, more mumeros, ruming to terminate in the grins hipmor

It is evident, therefore, that the axomes of the mitral eells and of the brosh rells (olfactury semsory menomes of the sereond order), as regards their termimak, are widely distrihuted. They emb in different parts of the rhimemephalon of the same side, and by means of the anterion commissme in the rhinemcephalon of the apmsite side. Further, the varions bats of the rhinemephalon are comected manifolly with one another,

Fig. Asti- Vratial pari of a frontal sertion of a mblit's bain. (Aftor A. vors

 triculus lateralis.
and with other parts of the brain. When the nemrones in the gray masses in the tractus olfactorias, the trigonum olfactorimm,

He area parolfactoria (Brows), the substamia preforata anterior, the gyrus offactorins laturatis, etre, are comsidered in all

parts of which axumes of meurones of the second order appear to terminate, the enormons mumber of offactory nemrones of the third and of higher orders may he vaguely appreetated.

Some interesting comeetions of these portions of the rhineneephaton with wther parts of the bain have already been made out, though we are far from the possession of any adequate or exhanstive knowledge of all the relations which exist.

Thus there are manifold comeetions between the unens (or prehaps the gyrus semiamularis and gyrus ambiens, cide sumru) :anl the hippocampus (rorme ammomis) (infro, Fig. 489). The nueleus amygdala doubtless reeceives similar fibres. While there is no donbt about the intimate union of the hippoeampus with the olfactory paths, there is still dispute as to whether the former
belongs to the rhinemerphalon in the striet sense, or whether, as many think, it represents a portion of the pallinm. 'The

Fig. 48s.-Ome of' ('allepia's jalands in the olfactory tuberele of the rablit. (After ('. (allejia, Lat regien offatorial dal wrehro, Madrid, 1s!13, p. 15, Fig. 3.) I,

 and later deserouds ; f, finsiform cell of the deep layer ; g, large stellate cell with desernding axome.
general relations are well shown in the accompanying diagram taken from Edinger's text-book (Fig. 48!). The hippocampus of one side is comected with that of the other by means of the commissmra hippocampi.*

The hippocampus makes important connections by way of the formix with (") the corpora mammillaria; (l) the nueleus habemule ; and (r) the septum pellucidum and lobns olfactorius.
(ad a) The axones going to the corpora mammillaria pass through the whole length of the fornix (corpus fornicis) after arriving in it from the pyramidal cells of the hippocampus by way of the fimbria hippocampi, \dagger the subieulum cornu ammonis, and the alvens. In the colnmna fornicis the fibres are arranged

[^315]in several bundles which cam be easily followed to the corpus mammillare. Here a part of the asomes end by ramifying in among the dendrites and eall bodies situated in the mucleus medialis corporis mammillaris. A large part of the fibres, however, form a knee in the eorpos mammillare, and then, apparently, cross over to the opposite side, on the dorsal and post, -i, aspects of the corpora mammillaria ((ianzer). The farther ate of the crossed fibres is still not satisfactorily settled. Decording to Gamser they appar to go farther cambabward, in the teg-

Fis, 489.-Section through the base of the brain and the hippocampus lying be-
 $225, \mathrm{Fig}, 154$.) Plexus choriodens made simpler that the arthal.
mentum of the pedunculis cerebri. Other observers, among them von Gudden and von Kölliker, follow them running
dorsalward between the faseiculi retroflexi to become lost in this region. The last-mentioned investigator * inclines to the belief that they end in the muclens nervi oculomotorii, or in the nuclens ruber, or in both. It is not impossible that they terminate in the stratum grisemu centrule, since von Monakow \dagger fombl this gray matter atrophic on the left side candal from the corpus mammillare in a case of atrophy of the fornix on the right side.

Ramon y Cajal, however, does not find any decussation of the columne fornicis such as (ianser and others describe.

By means of the nemrones, the cell bodies of which are situated in the corpora mammillaria, other important centres may be brought under the influence of the central conduction paths of the olfactory apmaratus. Each corpus mammillare consists of at least two nuclei-(1) a large medial muclens, representing the main mass; and (2) a smaller lateral nuclens, which ocenpies an area corresponding to the anterior half of the medial nuclens. It has for a long time been known that the corpus mammillare is connected with the nucleus anterior thatami by the fasciculus thahamommillaris (or bundle of Vieq d'Azyr), and with both the tegmental and basilar portions of the cerebral peduncle by means of the fasciculi pedunculomammillares. Nenrologists working with Weigert's method early noticed that the bundle of Vieq d'Azyr always fused with the tegmental houdle before entering the corpus mammillare. All believed, however, that the two fasciculi had a separate origin in the corpus mammillare. In this region again the method of Golgi, as applied by Ramon y Cajal, has been of service, since it has made it possible to demonstrate beyond controversy that the pars tegmentalis of the fasciculi pedunculomammillares and the faseiculus thalamomammillaris (Vieq d'Azyri) represent medullated axones which belong to the sume set of neuronesindeed, are but the representatives of the two limbs of a forklike bifurcation which the stem axones of the cells of the nucleus medialis corporis mammillaris undergo. The cells of the

[^316]medial muclens are, according to Ramón y Cajal,* small, spindleshaped, stellate, or triangular cells, which ure provided with much-branching dendrites, and give off delicate axones diflicult to follow on accomt of their torthous comrse. The cell hodies

Fig. 490.- Group of cells from the pars medialis of the melens corporis mammillaris of a child. \quad, axones. (Alter A, von Kölliker, landbuch der (ie-

and dendrites have been successfully impregnated in human tissue (Fig. 490). Their axones pass dorsalward and somewhat lateralward. In a region ontside the corpus mammillare, each bifurcates (Fig. 491) into an anterior process running to the nueleus anterior thalami, and a posterior, usually more delicate

[^317]prowess, looking wlmosi like a rollateral brameh which passes camblamed, to enter the legmental bumdle of the fascienti perduncolomammilares.*

 into J^{\prime}. the other intor:

* von Kölliker has contirmed the work of Ramon y ('ajal, and we have at the laboratory in baltimore been able to see precisely similar pietures in sagitfal sections of the embryo pig. The deseription given in the text hohls for the monse. In the rabbit the brameh of bifurention going to the tegmental bumale is stouter than that entering the faseiculus thamomammillaris. Von Källiker suggests that the bundle of stem axones be ealled the

The modnllated axames of the fascionlas thatamomammillaris (Vieq d'Azyr) pass domsalward and sumewhat frontalwari

 run lomgitudinally in the formation reticularis.
fasciculus mammillaris princepis, and that the bundlos corresponting to the two linhs of bifurcation be callen the faseiculas lhulamomemmillaris und the fasciculus tegmentomammillaris respectively.
toward the melens anterion thatani, where the fibres cliverge to come into contact with all portions of the mulens. The individual axones inside the mulems break up into momerons terminal tranches which ramify freely in atomg the eell boolies mad demelrites sitmated there.
'The medallated axomes of the pars tegmentalis of the fasciduli pertunembomamillares (thubruhänald of von (indden) pass cundalward into the tegmentum of the cerebral pedmele. Their ultimate destiny is still obseure. Von Guden* believed the bundle to be comeeted with the ganglion profundmon tegmenti, which he deseribed in the rabhit, but this mulens is not well marked in human beings. The axomes have heen followed by Ramon y Cajal in the monse as extremely tine tibres throngh the red mudens down into the pots in the region of the eorpus trape\%nidem, where this tegmental bundle ean still be mate out as a few fine fibres lying ventral to the fascienalns longitudinalis modialis. (oollaterals are given off to the medial side of the red muclens in passing. He timets, further, a derenssation of many of the anones of the bundle near the plane in which is situated the derussation hrachii conjunetivi. 'This derussation may be designated the midde derenssation of the tegmentum, inasmueh as it lies between the dersal deenssation (Meysuerl's fombinerorlige Ilambenterenzung) and the ventral

Held's studies of the region of the deenssationes tegmenti are among the most interesting that have been published. Three of the figures acempanying his artiele are here reprodued (Figs. 493, 494, and 495).

The axomes of the mucleus lateralis eorperis mammilaris help to make up the purs bersilaris of the fisseiculi pedmeulomammillites. This bundle of medullated axomes, of ten spoken of as the pedunenlus corporis mammillaris, runs caudalward into the cerebral pedunele. The inferior termination of this is as yet uneertain. A part probably rons to emd in the ganglion tegmentum dorsale of von Gudden. Fleehsig states that it terminates in the stratum grisemm centrale, and that thas offactory stimuli can be transferred to this gray matter and thence to the medulla ohlongata with its nerve mole and antomatic centres.

[^318]

Fit. dad. - Ohlinge sertion throngh the hrain stem of a cat fine days old. (After

Fig. 494.-Ohligue seretion through the hrain stem uf a ait fomr days old. (Aftor

 arewoll illustrited.
(at b) The hippocampus is conneeted with the nuclens habembe ly way of the fornix and the stria medullaris thatami.

 lizg. 10.)

The term stria medullanis is applied to the band of white matter adjacent to the temia thalami. The latter term is limited to the line representing the junction of the white matter with the simple epithelial layer which forms, over a certain area, the wall of the ventricle. The tamia thalami begins in front of the corpus pineale and follows the free border of the stria medullaris, being continnous with the narrow epithelial lamina whel eovers the plexus chorioidens medius on its moder surface (Fig. 4!(1). It the foramen of Monro the temia thatatai bents aromed backward into the temia chorioidaa (His). A study of sagittal sections of the brain of man and amimals shows that a number of the fibres rmoning forwarl from the hippocampos in the fornix, near the region of the anterior commissure, turn back, following an acute curve to enter the stria medullaris thatami. This bundle from the formix, which, by the way, appears to give
rise to the more ventral portion of the stria medullaris, is joined by a bundle of fibres from the ganglion basale. These relations are graphically illustrated in the accompanying seheme of a sagittal seetion of the rabbit's brain taken from von Källiker (Fig. $+9 \%$). A similar seheme is to be found in Edinger's textbook. It seems likely that in the stria medularis axones rm in both directions, thongh those we are now considering run toward the nuclens habenula to end inside it among the cells and their processes situated there.

The nuclens habenula, a part of the epithalamus, is situated in the trigonum habenula lateral from the corpus pineale. It contains larger and smaller cells, the former predominating in the lateral portion of the nuelens, the latter in the medial portion. It has long been known that the mulens habemula is connected with the interpeduncular region by a strong band of medullated fibres-the fascienlus retroflexus (Meynerti). Studies ly Golgi's method undertaken by van Gehmehten,* Ramon, \dagger and von Kölliker \ddagger have shown that axones of Meynert's bumdle arise from the cell bodies or dendrites of the nuclens ha-

Fig. 496. - Transverse seetion throngh the that chorioidea ventriculi tertia and

 corpus callosmm; fornix: the thatamms: st,m, stria medullatis; st,t,
 2 , tania choriodeat ; 3 , tanial fornidis. The tigure shows the transition of the teniae inter the epithelial layer of the plexus chorioideri.
benula, and that the coarser fibres arise in the lateral, the finer fibres in the medial portion of the mulens.

[^319]
Fig. 497.-Sagittal median section of the bran of the rabbit, with the main bands of fibres lying in different neighboring planes: sehemati-
 fasciculns mammillaris princeps: Ftm. fascieulus peduncolo-mammillaris, pars tegmentalis; Fthm, hasciculus thalamo-mammillaris
 basilaris (pedunculns corioris mammillaris); Rgip, radiation of the fibres arising in the ganglion interpedunculare; Rs, fibres from

The medullated axones of Meynert's bundle run obliquely ventralward and somewhat candalward to the interpedmenalar

Fici, tas.- (iolgi preparation from the perlmarular region of a monse tive days ohd.

 IFM, derensation of its terminal axomes.
region, where (in amimals at least) they terminate in the ganghion interpedmenlare of von Gudden. In the mouse, according to von Kölliker, there is a terminal decnssation (Fig. 448).

Fig. 409.-Diagram illustmang the melation of Meynert's bundle to the red meldus. (From a reomstruedion by Diss Florenee Sabin, Baltinore, 1898.) F.R.M., , faseiculus retroflexus Meynerti entering the anterior extrenity of the muclens ruber: $F \cdot R . M_{2}$, fiscienlus refothexus Meynerti leaving the infirior extremity of nurlens ruber: N. R., nuelens ruber.

The course of these fibres cim be followed with the greatest ease in the brain of the newhorn babe.* Florence Sabin has reconstructed the bundle in this laboratory. She describes it as

[^320]follows: "The bundle enters the nucleus ruber, on its medial aspect, near the anterior extremity of the meleus. The place of entry is a small area which, measured on the dorso-vental diameter, is abont one third the distance from the dorsal surface. The fibres pass obliquely throngh the muleus, so that the place of exit is opposite the middle of the same diameter. After emerging from the nuclens ruber the fibres spreal ont inte a humdle, the dorso-ventral diameter of which is nearly three times as great ats that of the entering bundle. This mass of fibres lies just ventral to the nuelens ruber of either side,

Fig. 500. -Seheme of a horizontal sertion throngh the hain of Cyprimus carpio. (After L. balinger and Aliee Hamilton, from Edingers Nervöse ('ent morgame, V. Aull., laipz., 1s!6, S. 145, Fig. 9S.) The figure shows the individual subdivisions of the rhinemephaton and the comse of the offactory fibres. All parts projucted into one platae.
very near the surface of the fossa interpedmenlaris. Some of the root fibres of the nervis oculomotorius pass througis this area. With a high power a few nerve cells can be seen between these fibres, the group probably corresponding to the ganglion
interpedunenlare" (Fig. 499). Von Kölliker denies the existrace of a gamglion interpeduneulare in man, and states that the

Fha. 501.-Schematic representation of some of the principal ne urone systems of the olfintory romduction path. Projected into sasital phane. Benlh. olf., bulbus alfactorius; (ol. forn., rolumat torniris; (col. sup, colliculus superior;
 (orp. pin., corpus pinale ; (i, wh. banglion optiemm hasale ; cil. off, phomeruli oliactorii ; (iyr, umb, thin., gyrus ;mbicus rhinencephali; ciyr. off. lut., gyrus

 tomy. med., stria longitudinalis medialis: sitr. medull., st ria medullaris:
 cells going to striat olfactorial lateralis; I, axome of mitral rell terminating in gray malter of trigomum olfartorimm; $I I$, axome of mitral cell terminating
 axemes to anteriar commissure: $11^{\prime \prime}$, cenfrifugal libre terminating in halbus oltactorius: $M I I$, ..xome of mitral cell terminating in gyrus ollictorius medialis; 11 , axomes of nemomes "ombetimg the offactory portion of the

 hipmenempi ; $\mathrm{I}^{-\prime \prime}$, axomes from fornix to septum pelluridum; $\mathrm{l}^{\prime \prime \prime \prime}$, axomes

 perluncolo-mammilaris. pars basilatis (peduncolas corporis mammilaris);
 to the ganglion int erpedunculate.
fibres of the fascieulus retroflexus become lost in the lamina perforata posterior.

Fie. 502.-- Sehematic representation of some of the important mempone systems of the olfaetory eonduction paths; projeetion in horizontal phane. Buth. off.e bulbus ollatorius: Col. form., columma formisis: (omm. out., eommissira
 athosum: (orp. mam., forpus mammilhare: liamg. int., sanglion inferpedmendime; (il. alf., glomernli ollactorij; (i. o. b., gamglion optioum
 gyrus diagomalis rhimencophati; rity. o. m., gyrus ollactorims medialis; fiur. off. Int., syrus ollitetorits hateralis: (igr. semiom, rhim., gyras semi

 s/r. lou!. med., stritu longitudinalis medialis: str. modull., striat medullares; I, asones of mitral rell to lohms pyriformis; I, axome of coll in gray matter of tmotus olfactorins: $I^{\prime \prime}$, asome to basal optic gamglion; $I I, I I$, axones to commissulat anterior cerebri; $I I^{\circ}$, centrifugal axone
 romes the axmes of whieh commert the temporal ollactory semse area with the hippocampas; I, asones from hippactmpts fo fornis; je, corph;
 lornix to stria modnllaris; J'I, menrones in corpori mammilharia giving ofl axomes which bifureate to form the fascieulas thalamo-mammillaris amd the fiscoiculas pedmondo-mammillaris, pars tegmentalis; VI axomes of fascionlas thalamomammilaris Viey d'Aqyri terminaling in the murbus

 flexas Meymerti; $/ X$, axone firm basal optic ganglion throngh stria medullatis to molens hathenube; X, asome fiom basal optic sanglion throngh the fornix to the hippreampus.
(ad c) Extending from the formix into the setpum pellueidum are many mednlhated fibres, some of which donbtless represent axones of cells in the hippocampus. Some of these may be continned farther into the basal ganglion or even into the olfactory lobe. In all probability these are accompanied by fibres ruming in the opposite direction, but thas far definite statements concerning the exact origin and termination of the white fibres of the septum pellucidum are not justitiable.

The study of the comparative anatomy of the olfactory appparatus has been prosecuted, mong others, by llerrick, 1 . Meyer, Edinger, and Nice Hamilton. The last-mentioned investigators have recently pietured the relations in the olfactory apparatus of the carp. Their seheme of the tracts in this fish is reprodneed in Fig. 500 . It will be seen that in the earp the medial part of the secondary olfactory path ends in what Edinger ealls the epistriatum: the lateral part terminates in more ventral portions of the brain stem in the posterior part of the rhineneephalon. In Figs. 501 and $50:$ I have represented schematically the principal groups of olfactory nemrones thas far made ont. It is not to be forgotten, however, that these are only sehemes which must be recast as onr knowledge of the complex relations alvances.

CHAPTER LIII.

OPTIC NEURONES OF THE SECOND ORDER AND OF HIGHER ORDERS

The morphological position of the N. optieus-Ganglion cells of the retina -Their asones-Chiasma opticum-Fasciculas eruciatus-Faseiculas non-eruciatus-Tractus opticus-Its lateral and medial roots-Termimation in mesencephon and diencephalon-Fibres to collienlus superior, corpus geniculatum laterale, and pulvinar-Commissura inferior Guddeni -Commissnra superior Meynerti-llemispheric bundle of von GaddenCommissura ansata of llamover-Commissura hypothalamica anterior Tractus pedumenaris transversus.
Optic nearones of Order III-The structure of the collienlus superior and the distribution of the axones arising there-The corpus genienlatum laterale and its connections-Radiatio oceipito-thalamica (Gratioleti)"Optie radiation in the murrower sense "-Superticial and deep optie paths of Ramony Cajal-The cortical visual sense area-Hemianopsia and certain other pathological conditions-Pupillary paths-Schematie representation of prineipal neurone systems in visual induction path.

3. Central Neurones of the Visual Conduction Paths.

It has been pointed out on an earlier page that the so-called N. opticus is in reality not a peripheral nerve at all, since it is not comparable with true peripheral nerves which contain only processes of peripheral neurones (sensory or motor). For the visual sensory system actual analogies of the peripheral sensory neurones of other systems were seen to be the bipolar cells of the retina, the cell bodies of whieh correspond to the "inner nuelear layer," with dendrites distributed to the " onter molecular layer," and with axones terminating in the "imer molecular layer" among the dendrites of the ganglion cells. The true nuclei terminales of the optic neurones of the first order, therefore, are situated within the retina itself. The medullated axones of the ganglion cells of the retina, which go to form the so-called N . opticus, are in reality nerve fibres inside the central
nervons system,* and are anulogous to the medullated axones of sensory neurones of the second order of other sensory conduetion paths (e.g., internal arcuates and fibres of the medial lemniscus from the melens funiculi graeilis and the nuclens funiculi cuneati, medullated axomes of the mitral cells in the bulbus and tractus olfaetorins). The fibres of the optic nerve and tract, besides in deenssating, resemble the medial lemniscos, in that they terminate in the midbrain and interbrain. \dagger

To call the band of fibres rimning from the eye toward the brain the "optic nerve" is therefore to be guilty of an inconsistency in nomenclature, though the term has been so long and so universally in use, before the actual rehations were discovered, that its elimination would be diftienlt if not impossible, even if the attempt were thought to be advisable. It seems worth while, however, in order to avoid confusion of ideas, especially for the begimer, to enphasize the fact that the designation is a misnomer.

The appearance of the ganglion cells in the retina is familiar to all. The irregularly oval cells are multipolar, the dendrites rmming to the adjacent imer molecular layer, where they branch manifoldly, and come into relation with the axones of the bipolar cells. We have seen, in considering the peripheral optic nenrones, that certain of these are related only to rods, others only to cones. The majority of the ganglion cells, on the other hand, appear to stand in relation to both sorts of bipolar cells, though it is not impossible that some of them, especially the monostratified forms, are connected with only one sort. The dendrites of some ganglion cells (Fig. 503) spread out in one horizontal plame of the molecular layer (monostratified cell), of others in several planes (polystratified cells), of still others throughout the whole thickness of the molecular hayer (diffuse eells). The dendrites oceasionally

[^321]penctrate in among the cell bodies of the optic nemrones of the first order (immer mulear hayer). Here and there at tolerably regular intervals giant ganglion cells can be made ont. These as a rule correspond to very large hipolar eells in the inmer nuelar layre, and it has been suggested that these are signs that the retina is divisible into more or less definite provinces, which possihly may be of importance from a physiologiend standpoint (Kramse).

The axones of the ganglion cells pass into that hayer of the retina known as the "layer of optic nerve fibres." They all run toward the "blind spot," or papilla nervi optici, and plange throngh the tumice optici to enter the so-called nervis opticus. In the retina itself the axones are, except in rare instances, dowid of myelin shaths. From the papilla on, however, they are mednlated, thongh, like other white fibres within the eentral nervons system, they are distinguishable from those of periphoral nerves in that they possess no macleated sheath of Schwam (or nemilemma). 'That the fibers of the optie nerve really have their origin in the ganglion cells of the retina has been proved over and over again ly embryological study (Mall, His), hy the stuly of secondary degencrations (von Monakow, (iamser, Manz, and others), and directly by means of Golgi's method ('Tartuferi, Ramón y Cajal).

Since von Gudden undertook the investigation of the optic paths * we have known that fibres of different calibre ocear in

[^322]the optie nerve-(10) coarse fibres and (1) tine fibres. Salzer's * comuts made anch optic merve contain 438,000 libres; Krause subsequently showed that, inclading the finer fibres, each optie nerve contaius $1,000,000$ fibres. There are about $1,000,000$ cells in the ghaglion crill layer of the retina. The majority of researehes (ron Ciudden, von Monakow) point to the view that the finer fibres are comected with the suprerior colliculas of the corpora quadrigemina, but von Leonowa states that many go also to the lateral geniculate booly.

Having rached the chatsma opticom, a large proportion of the fibres (fascienlus cruciatus) of one nervis opticus cross over

 phexuses, the first below the fourth shblayer, the seromed in the thirt suth-

 its branches beroming involved with an anawrine cell going to the sime
 goes in a horizontal dirertion tweyon hlo jaternal plexiform layer.
to enter the tractus opticus of the opposite side; a certain mumber of fibres (faseiculus non-ernciatus), however, fo not cross but enter the tractus optiens of the same side. The faseioulus erneiatus is ordinarily mach larger than the fascienlas non-cruciatus; the former appeats to correspond to the fibres arising from the ganglion cells of mather more than one half of the retima on its medial or masal side, the latter to the fibres arising from the ganglion cells of rather less than one half of
ihre seh- imd Pupilharfasern und die Centren der letzaren. 'Tageht, dis Versamml. deutsch. Nuturförscher in Strussburg (1885), S. 136.

All these lave been reprinted, together with his researches on of her subjects, in Bernhard ron Godlen's Gesammelte mid hinterlassene Abhandlungen. IIrsg. von Ir, II. (imshey, W'iesbaden (188!)).

* Salzer, F. Ueber die Anzahl der Sehnervenfasern und der Retinazapfen im Auge des Mensehen. Sit zungsb. d. K. Akarl. d. Wissenseh., Math.-maturw. Cl., Wien, Bd. lxxxi (1880), 3. Ath., S. 7-23.
the retina on its lateral or temporal side. 'The fibres of the two fasciculi in the chiasm of human beings are not, however, present in the form of definite bmodes; those of one fascienlus interwave with those of the other of the same side and those of both of the opposite side in so complex a mamer that to follow individnal fibres, even in faultless serial sections, is probably an impossibility.

The secomary degenerations observed in pathological cases in higher mammals and in human beings (fiowers,* Kedlermamn, \dagger von Gudden, \ddagger Purtseher, ${ }^{\#}$ Bamgarten, $\|$ Singer and Mmzer,* Burlach, δ Marchand, \downarrow Schmidt-Rimpler, \uparrow Jacohsohn \ddagger) prove beyond reasmable guestion that there is a semi-lecussation, not a total erossing, in the optic chiasm.** In many of the somewhat lower forms, for example in the guinea-pig, the decussation is total. In the rabbit the deenssation is almost total, but von Gulden and others have stoutly maintained

[^323]

Fig. 504. - Brains illustating atrophy following experimental romoval of the eye

 adult rabbit's bain with mormal optic nerves. B, Base of a mbhits brath itu which the right N. optious is al rophied. (C. Base of a rablig's brain with bilateral atroply of the No. optici. noppt.d., N. optiens dexher; moned., N. ormbomotorins dexter: tr.opt.d., tractus opticts dexter; M.p.tr.d., tractus pedmuenlaris thasversms dexter.
the base of the bria n of a rabbit the right eye of whieh had been extirpated at hirth; and $\left(C^{\prime}\right)$ the base of the brain of a rablit both eyes of which had been removed at birth. In A the Nin. optici, chiasma opticum, and 'Tr. optici are nomal; in β the right N. optiens and the left tractus opticus are atrophie; in U both Nu. optici are atrophic, and the eorresponding portions of the optie chiasm and optic tracts have degenerated; the portions of the optic chiasm amb of the two tracts which persist correspond to the combissura interior (Guddeni), whieh has no connection, it is believed, with either ratina (ride infra). The faseiculus non-cruciatus in the rabhit is illustrated in Fig.

[^324]505. The same bundle in man, mueh more vohminons, is well shown in the remarkahle case studied by (Ganser,* in which this bundle ram as a separate tract, practi-

Fud. 505.-Remowal of the laft hatic of the rhiasman opticoms along with the eommonsarit inferior Gindeloni in the matrbit. (After li. von Gimdelen, (idsammelde mand Hinterbsseme Abhandlungen, (imashey, Wiesto, 1ss!, 'Taf, xvi, Fig. 3.) N.opt.d., ntrophic optice merve on right side, the
 talimal ; N. opt.s., N. opticus sinister, atrophac: Tu.c., f1tere cincromin: l. t., bohs temporalis eally completely isolated, from the retima into the optie tract of the same side. The example is unique, and is of such importance that I have had Ganser's drawing reprodnced in Fig. 50f. Although Reich, \dagger of St. Petersburg, confirmed the results of von Gudden, Mandelstamm \ddagger and Michel ${ }^{\#}$ have supported the view of von Biesiadecki, $\|$ who, as carly as 1861 , asserted th: dt even in man the decussation is total. Von Michel based his conchusions upon (1) serial sections of the whole normal chiasm stained by the method of Weigert; (2) sections of the optic nerves, optie chitam, and optic tracts in cases of degeneration in both man and animals; and (3) certain physiological considerations.

[^325]In serial sections of the normal chiasm he found that the fibres of one optie nerve meet those of the optie tract of the same side almost at a right angle, and he contended that the view that an merossed bundle passing from the optic nerve to the optic tract was due to the presence of looplike excursions of certain of the fibres of the nerve for some distance into the tract of the same side, before actaally erossing throngh the chiasm into the tract of the opposite side. Von Michel can not confirm the investigations of others concerning degenerations either in man or in animals, and asserts that there is no evidence from this somre in his sperimens in favor of a fatsciculus non-cruciatus. Finally, von Miehel does not consider semi-decussation a necessary physiological postulate. He argues that if homonymous hilateral hemianopsia* is to be explained

 thastle.
by the decussation in the optic chiasm the proportion of crossed to unerossed fibres should be as $1: 1$, and rontrasts with this the almission of even those who adhere to the durtrine of partial decussation, that the relation is as $3: 1$, or as $4: 1$, at most as $5: 3$. As further evidence against the generally atscepted view he cites the well-known fact that in by far the matiority of cases of hemianopsia central vision is sharp on boto silles, and urges that, in spite of the hypotheses which

[^326]have been adranced to explain this, there are no anatomical grounds for the assmption that each macula lutea is donbly represented.

Von Gudden, up to the time when his brilliant career was so tragieally cut short, combated vigorously the doctrine of complete decussation, backing up his views with a large number of elaborate and most ingenious experiments, Which have been sufficient to convince at least the majority. In his articles from 1879 to 1885 he dealt with all the objections which had been raised, and in the minds of many definitely settled the question in favor of a partial decussation in man and the higher animals. He took carefully into accoment the commissura superior (Meynerti), the commissura inferior (Guddeni), and the homispheric hundle which bears his name, and demonstrated methods by which caeh of these, as well as the fasciculus crneiatus and the fasciculus non-cruciatus, can be individually isolated. Von Gulden cited the experiments of Nicati,* who, through the months of eats, cut the optic chiasm in the middle line. The eats could still see, which would be difficult to explain were the decussation total. Even had they been totally blind after the operation, the decussation need not be total, for, as Gructzner points out, we do not know how near the uncrossed fibres go to the median line before passing into the optic tract of the same side. It von (iudden's instigation, Bumm examined the retina in cases of degeneration as to the origin there of the merossed and crossed fasciculi. Bumm came to the conclusion that the uncrossed bundle is related to the lateral part of the retina, the crossed bundle mainly to the medial part of the retina.

In won Gindlen's time the embryological studies which had been made threw but little, if any, light upon the topic under diseussion. Whereas von Mihalkovies and von Kölliker hat assumed total decussation from the mode of development, von Baer, on the contrary, thought that the mode of origin of the

[^327]chiasm was consonant with semi-decussation. I have recently (1898), through the courtesy of Prof. Mall, examined the optic paths of several human embryos eut in various planes (sagittal, coronal, horizontal), but have found the relations so complex, even in fanltless serial sections, that I can not deeide from the appearances, at least in these carmine preparations, whether or not the deeussation is partial or total. A lateral bundle ean be seen passing from the optic nerve through the chiasm well toward the tractus opticus of the same side, but one is not justified in asserting from these sections that it actually enters it to be distributed to the optic centres on the same side. What strikes one most in the study of embryonic tissues is the intimate relation of the optic chiasm and of the optie tracts to the basal plate of the diencephalon. I should not be surprised if it shonld turn out that a considerable number of fibres, possibly of no mean signiticance, ran into the base of the brain from the chiasm and optic tracts, to end there without passing throngh the whole length of the latter to the regions usually designated as the optic centres (lateral geniculate body, pulrinar, superior colliculus of corpora (quardrigemina). Thas far, studies with Golgi's method have not succeeded in demonstrating the partial decussation, though mueh is to be hopel from its application to the study of embryonic tissues, especially if Born's method of reconstruction be used in connection with it.

Since the death of von Gudden, von Michel has reiterated his former statements, and has received substantial support from the Nestor of German histologists, von Kölliker, of Ẅ̈rzburg.

At the meeting of the Anatomical Congress in Berlin in 1890 von Kölliker, on the ground of his own studies and of a careful control of von Miehel's preparations, stated that he hat come to the conchasion that the optie nerves andergo eomplete decussation in the ehiasm in man and in the dog, eat, fox, and rabbit. Curiously enough, this statement met with searcely a dissenting voice. Von Kölliker, later, in his text-book lescribed fully his findings, and reviewoll at consilerable length the bibliography of the subject.* On the whole, he confirms the statements of ron Michel and urges the neressity of amil-

* von Köliker, A. Humbuch der Gewehelehre, Bd. ii, liailfe ii. S. 560 ff .
tomical demonstration of the uncrossed bundle. He denies the alleged results of the study of secondary degenerations, and emphasizes that decussation is not a necessary postulate for the explanation of physiological findings, and that even were it apparently impossible to explain all known physiological facts without the assmoption of a partial decussation anatomists would not be justified in admitting deenssation in the chiasm mutil it had been actually demonstrated by anatomical methods.

Gructzner,* in the summer semester of 1896 , undertook to restudy the whole subject by the methods of the investigators who had preceded him and by special methods devised by himself. From his own work and from a consideration of that of others he concludes that only a part of the fibres of the optic nerves cross. He made models of the chiasm in which he made half the fibres cross, while the other half passed through mcrossed into the optic tract of the same side. He then delydrated these models and imbedded them in paration and ent them into horizontal sections. In the sectione he could make out only fibres which erossed, although he knew perfectly well that only half of the fibres actually crossed. He concludes, therefore, that the microseopical study of horizontal sections is absolutely of no value for the derision of the question whether or not all of the fibres actually cross in the chiasm.

In the human case studied ly Siemerling, \dagger in which one optic tract was completely destroyed, there was diminished sharpuess of vision in the opposite eye, but the pationt could still sce with the temporal side of his retima. This could not have been possible had there been complete decussation of his optic nerves. Nor are the experiments of Monk \ddagger or the clinical pathological observations of Bammgarten, Marehand, and others (ride sumra) compatible with the assumption of total decussation.

[^328]The ingenions experiments of lick,* so far as they go, teml to confirm the results of von Käliker. This investigator, working with the rabbit, destroyed ciremmseribed areas of the retina by means of a galvano-ranstie needle, and subserqently studien the optie nerve, the optic chiasm, and the optie trat with the aim of establishing the topographical relations which exist hetween the retina and the optic nerve on the one hand and the chiasm and the optie tract on the other. His results led him to conchde that the relations are very simple, the relative position of the fibres in the cross section of one optie nerve corresponding in tof, to that of the transverse section of the optie: tract of the opposite side. The dorsal and ventral tibres of the optie nerve are the dorsal and ventral fibres of the opposite tract, and in the same way the lateral and medial fibres of the nerve ocenpy the same relative positions in the uptic tract of the opposite side. His studies were carried out by the methon of Marchi. It is highly desirable that his results be controlled, and that studies by the same method be earried out on animats higher than the rabbit in which there is evidener of a larger faseicolns non-cruciatus. In the rablit the unerossed bundle, if it exists, is very small, and von Gudden missed it in his earlier studies. The monkey would be a particularly suitable mimal for the prosecution of such a researeh.

Most interesting in this connection are the painstaking and extensive sturies of the Swedish investigator Itensehen. \dagger ITe has been able to accumulate a large amount of homan material, which he has studied elinically and worked up pathologically with care. On amalyzing his results he has compared his findings theroughly with the cases recorded in the bibliography, and comes to important eomelusions regarding the localization of the bundles in the optic nerve, in the chiasm, and in the tract, and the relations of these to the higher centres. Itis puhlinations

[^329]

Tractus opticus dextor
C

E

Fig. 507.-Lacalization of optic tibres (Henschen).
represent at mine of rich material, and must be consulted by every student who wishes to go beneath the surfuce in this field. In Fig. 50% is reproduced the phate in which his conclusions regarding localization are epitomized. The fascieulus non-cruciatus of the optic nerve (see accompmying figures) arises in the main from the temporal side of the retina. It follows a tolerably isolated comse as fiar as the chiasm, oceupying the latero-ventral portion of the transerse section of the optic nerve. The fasciculus cruciatus, on the other hand, is situated more medially and dorsally. The bundle from the macula hatea (fascienlus macularis) on each side roms in the central part of the optie nerve, and maintains its central position in the optic chiasm and in the optic tract. The relations of the crossed and morrossed bmilles to the inferior and superior commissure in the optic tract will be sufficiently clear from the diagrams if the legends be consulted.

The researches by Marchi's method, carried out by Singer and Mänzer* and Ramon y Cajal, \dagger support the doctrine of partial decussation. Even in the rat and monse, in which it has been generally supposed that decussation in the optic chiasm is total, Ramón y Cajal

Fits. 508.-Alisence of optia chiasim. (Aftr Andreas Vesalius; taken from 1. Katuber'stuxt-book. I'ra' scoli figura n- vormm quos hice desuribimms durths cxprimitur. ar, cers bri pertionculam indicat. fiuds an uncrossed bundle, and states that it goes only to the lateral genienlate body of one side, white the crossed bundle goes to the lateral geniculate body and also to the superior colliculas and the thalamus.

We must conclude, therefore, from the evidence before us, that as a rule the decusation in the optie chiasm in man and of higher animals is partial, not total. That in individual cases there may be considerable variation seems certain. Even in the anatomy of Vesalius we find a human ease reported in which the optic chiasm was entirely absent (Fig. 508), the right optic nerve going bodily over into the right optic tract, and

[^330]Hente * has collected a number of sueh cases from the bibliograpliy. It is not impossible that oceasionally there is actually complete decassation in the chiasm, in which event we shonld expeet total amblyopia in the opposite eye (instead of hemianopsia hinolving the two eyes) to follow upon lesion of one optie tract. The marity of such observations is, however, very striking, especially since the exact stulies concerning hemianopsia have been inangmated. Between these two possible extremes of mo decassation and total deenssation there may be all sorts of degrees of decussation, the most frequent proportion of uncrossed to erossed fibres in man probably being about as $1: 2$ or as $3: 5$.

The optie tract on each side behind the chasm rms aromd the cerebral pedanele of the same side and arrives at the junction of the mesencephalon with the diencephaton, where it divides into two distinct roots, (1) a lateral root and (${ }^{2}$) a medial root (Fig. 509).
'The optie tract on the right side, for example, includes the fasciculas eraciatns from the left optic nerve, the fascienlus non-ernciatus from the right optie nerve, fibres of the commissura superior Meynerti, tibres of the commissura inferior Cuddeni, tibres of the direct hemispherie hundle of von Gudden, a certain momber of centrifugal fibres romning from the higher centres of the retina, and possibly fibres of still other categories.

The fibres of the lateral root of the optie traet include the centripetal and centrifugal fibres comected with the retina, and terminate (or in case of the centrifugal fibres have their origin) in the lateral genienlate body, in the pulvinar of the thalamms, and in the superior colliculas of the corpora quadrigemina. In these centres the terminals of the optic nemrones of the second order come into conduction relation with the eell bodies and dendrites of the optic neuromes of the third order. Of the optic nemrones of the third order, those in the lateral genienlate body and the pulvinar send their axones, in large part at least, to the visual area in the oecipital cortex, while those in the superior collicuhs of the corpora quadrigemina send their axones in large part to enter into conduction relation with nen-

[^331]liblitually hould mianoptic strik10psia remes sorts of 111 $: \therefore$ or rombl it the here it a meles the ciculus ommisr (indIden, a higher r catede the 1a, and origin) lamus, cminal. he secies and Of the yenicupart at in the eir axh nen-
rones which throw the eyr-muscle nuclei under their inflnence (ride infru).

Fig. E00.- A purtion of the right erombal hemisphere resting on the polas

 tractus opticus. The ralix medialis amb the radix latratis are well illus-

The laterי"l genienlate body and the superior colliculns of the corpora quadrigemina have acoordingly been designated, especially by the German writers, as "primary optic centres" in the brain. This designation is, however, not wholly suitable, for we have seen that the peripheral optic nemones correspond to the bipolar cells of the retina, and the ganglion cells of the rutina really represent a part of the brain. It would be much more logical, therefore, to designate the ganglion cell layer of the retima as the primary optic centres of the bran, and to mame the lateral genienlate body, the pulvinar, and the superior colliculus of the corpora quadrigemina the "secondary optic

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences Corporation

centres " of the hrain; for it is obvious that the ganglion cell layer of the retina corresponds to the nucleus funiculi gracilis, and the nucleus funieuli cuneati of the general sensory path and the termination of the optic tract in the superior colliculus and the lateral geniculate body corresponds to the terminations of the medial lemnisens in the mesencephalon and in the diencephalon respectively. The neurones eatending between the lateral genienlate body and the cortex would, for the visual path, therefore, be the analogues of the sensory neurones of the third order of the general sensory path extending between the ven-tro-lateral group of nuclei of the thalamus and the cerebral cortex.

The exact areas oceupied in the optic centres of the mesencephaton and diencephalon by the terminals of the fibres of the lateral root of the optic tract have been demonstrated by the degeneration experiments of von Monakow. After enucleation of both eyes in the new-born puppy, this observer found, on killing the animal at the end of six months, that the gelatinous substance of a large part of the lateral geniculate body -that portion of it which he designates a-undergoes degeneration. This substantia gelatinosa consists, in the main, of the terminal branches of the fibres of the optic tract.

In the dog von Monakow divides the lateral geniculate body into several nuchi-a, a_{1}, b, b_{1}, and v, the ventral nucleus.* While a few of the optie fibres apparently terminate in a, b, b_{1}, and in the rentral nucleus, by far the majority of them end in ι_{1}, the dorso-candal part of the lateral geniculate body (Fig. 510).

The fibres going to the pulvinar from the lateral root of the optic tract in the dog are distributed to the superficial part of the dorsal zone.

The fibres of the lateral root of the optic tract which go to the superior colliculus correspond, so many have thought, to the superfieial white matter of that body (von Gudden, Forel, Ganzer, \dagger

[^332]GROUPING AND CHAINING TOGETHER OF NEURONES.
n cell raeilis, th and us and ions of dienen the ll path, e third re venerebral

mesen-

 ; of the by the leation und, on gelatte body legener, of the te body ucleus.* a, b, b_{1}, nd in ϵ_{1}, g. 510). t of the part of o to the , the suianzer, \daggerinto two n Retina-

Fiat. 510 - Frontal sections throngh the eorpus ganicnlatmon latemate of a dog. A.

 vent mal undens of the corpas gevioubatum laterale: r, most ventral murlens of rorpus gentulatam haterales. B. Firoutal section throngh the corpas
 (After ('. von Monakow, Areh, f. Psychiat., Brl, xx, 188日, Taf, xiii, Figs. 22 :14d 23.)
ron Monakow,*) althongh, as Thrtuferi has pointed ont, the most merlial part of the superticial white matter belongs to another system of fibres, and reeently it has seemed more likely that the optie fibres are those which assume an antero-posterion direction, just bencath the remper cineref.

The lateral geuirulate borly in man, especially in horizontal sections, is heart-shaped, the apex being directed forward. The appearance is very characteristic. The mass consists of alternating, somewhat irregnar layers of gray and white substanee, (Fig. 511) the white matter consisting of optic trat fibres in the main and partly of the medulated axones which pass from the lateral genienate borly into the optic ratiations to pass to the eerebral cortex. The gray matter of the muclens contains cell bodies and dendrites of the optic nemrones of the third order. In man, probably so per cent. of the fibres of the optic tract end in the lateral genicnlate body (von Monakow). The embings of the fibres of the eptic tract in the lateral geniculate booly have been studied by Golgi's method, by l'. Ramón,t von ä̈liker,t and Ramon y Cajal." The temmations of the optie tibres in the lateral genienate body of the newborn eat are well shown in the accompanying figure taken from Ramon y ('ajal's article

[^333]ont, the ongs to e likely osterion rizontal d. The of alterlistance, fibres in ass from p:1ss to contains ird order. tract end adings of rody have iulliker, \ddagger fibres in ell shown l's article
"ptic nerve "gisech-amu(t Solsphuire f. Psuchint. Hres neluer In dersedlown ip\% (1ssion 1 meior div Noprenkr., Untersucth(Beilrigen Psychiat, n.
1.p. 10 ; (2)
duclomato
(4) Juvest.

1ulurenlus
$\therefore 16$: also Asin.
omgitia des
an Bresler.
(Fig. 512). The terminations of the optie fibres in the putvinar of the thatams are well illustrated in ron Kïlliker"s cut (Fig. 513). From the manifold divisions of the terminats of

 ") 1 ticm.
the optic fibers it is obrions that a single fibre must come into contact relation with the cell bodies and dendrites of many
nemrones of a higher order. For a mimute deseription of the terminals of these fibres the original articles of these investigators must be consulted.

Fici. 512-Lower portion of corphs genicolatim latemile of a mewhorn cat.
(Afters. Ramón y 'ivial, Beitrig zam Situdium der Medulla (Hblomgata, ete.,
 hattemed end aborizations: B, optid fibues terminating in middle level: r^{\prime} athe D, "phice fibes with very elosely interwowen end arborizaldors situated in the deptle: E, bundle of central ophic path: F, tibues continnens with the tratelus opticus; the letter ef correspome to the lower portion of the corpus gericulation laterale.

Von Monakow believes that between the terminals of the fibres of the optic tract in the lateral genienlate body and the eell bolies and dendrites of the neurones, the axones of which go
whorn cat. mgata, cte., somewhat lle level: ins situated uns with the f' the corpus
als of the y and the which go
into the optic radiations, Golgi cells of Type H are interealated. He thinks that otherwise it is difficult to explain the findings in cases of hemianopsia.

A certain number of optic fibres have long been known to stand in intimate relation to the white matter of the colliculus superior of the corpora quadrigemina. Thanks to the researehes of Ramon y Cajal * and van Gehuchten, \dagger the proof was brought

Fig. 513.- Golgi preparaton from the pulvinar of amouse five dars old. One large moltipolar cell, with its anome, is visibhe. (Iflur A. von Källiker,
 terminals of the tractus optiens are visible.
that the axones which terminate here in the superfieial gray hayers are those of optic fibres which have their origin in the

[^334]ganglion cell layer of the retina. Since their studies our knowledge of this region has been extended by the rescarches of 'Turtuleri and Held. The endings of the optic fibres surromal gathglion cells whose axones partly shorter break up in the superficial gray matter immediately on entranee, partly longer ran radially into the the per layers of the superior colhiculus so as to reach the sime regions of the superior colliculas in which terminate many of the tibres of the lateral lemniseus.

The difference in significance of the superior collienlus for the optic paths in different animals has been emphasized especially by von (iudden * and Edinger. \dagger In lower forms the optic lobes-that is, the region of the corpora guadrigemina-are the main vishal orgams. In higher forms the corpora quadrigemina appar to be active mainly in reflex functions, while the lateral genieulate body represents the way station in the visual path to the oecipital cortex. In higher mammals it seems probable that the oceipital cortex alone takes part in visual pereeption, for the superior collieulus can be destroyed withont any disturbance of light or color vision. Phylogenetically the superior colliculus is older than the lateral genicuiate hody, and the latter in turn than the oceipital cortex. In the fish, practically the whole of the optie norve ends in the roof of the midbrain; in birds, according to Bilinger, one gets a differentiation of a mesencephatic nuclens (superior colliculus) trom a diencephatie nuclens (lateral geniculate body), and in them for the first sime one meets with a gemuine occipital cortex.

The medial root of the optic tract rums into the medial geniculate body where most of its fibres appear to terminate, although some, according to Obersteiner, may pass through the bachium quadrigeminum inferius into the colliculus inferior. This medial root of the optie tract has no connection, as ron Gudlen proved, with either retina, nor with the optir centres of the mesencephaton and diencephalon. It consists in the main of the commissura inferior (Guddeni), which extends between the two medial geniculate bodies. It therefore probably represents a commissure in comnection with the anditory system, for, as will be seen later, the medial genieulate boily

[^335] probable ception, any dissupritior and the actically illbrain ; ion of a cephatic irst time rminate, ugh the inferior. 1, as voll centres in the ends bere probtuditory te borly
and the inforion colliculas of the corpora quadrigemina are insportant way stations in the anditory comburtion path.

This medial root of the optic trate and the inferior eommissure of von (imdlen, are well isolated by extirpation in the new-born of both eyes, as has bern seen above (Fig. solo).

The view of Darksinewitseh and Pribytkow,* that von Gudden's commissmre represents a crosised commection of the medial genionlate body with the muclens lentiformis, is supported by von bechterew, \dagger but is opposed by other investigators.

In addition to the eommissura inferior Guldeni, certain other bundles of tibres, some of which maty be commeeted with the optie tract, others not, have to be consideref before we leave this portion of the optie comeluction path. These are the commiswara sumerior Meymerti, the hemispherie bundle of von Gudden, the commissura ansata of Hamover, the eommissmat hypothalamica anterior, ame the thactus perlunenlaris thansversins.

The cemmissmet sumprion Me!gmerti has been deseribed by Meynert. ${ }_{+}^{+}$Forel. ${ }^{*}$ and von (inddrn. $\|$ In the middle line in the rabbit it lies almost dorsal from the optic chiasm. It then deseends venfally and heromes visible latoral from the optie trate dirst looking narrow, and then breoming broaller. It can be followed batranward as far as the jumetion of the medial and lateral part of the base of the erorebol pedmele, where it vamishes trom view (von Gudden). In human brings it is never visible exeept in sertions, but in general the rehations are the same (Figs. int and ons). Achmophagen helped to eonfuse investigators in that he designated Meynerts commissure as the inferior eommissure. The term commissura superior should be applied to Meynert's commissure, and the term commissum inferior shomble beserved for the commissure of von Gindeden. The ultimate termination of the libres of Meynert's commissure is as yet not known. Aecording to Darksehewitseh and l'ribytkow the commissura superion Meynerti represents a tract combecting the mablens lentiformis of one sirle with the mulens

[^336]hypothalamicus (eorpus Luysi) of the opposite side, while Flechsig assmmes that it mpremes a deenssation between the medial lomniscus of the two sides. These theories of its nature are contradicted by the results of Mahain's investigations of secondary degenemations in human beings.*

 rhiasma opticum ; CM., commissura superior Afeynerti.

Fita, $\mathbf{5 1 5}$. - Gection from the bran of a child three months ohd. Weigert-lal preparation. (After W. von Beehterew, Die Lcitumgshahmen in (rehirn mut Rïrkemmark. Dentsch von R. Weinberg, II. Infl., láip\%., Is09, s. :203, Fig. 17.4.) c.cal, corpus callosum : ch, chiasma optirum: ci, capsila interna; c.l̆, commissura suprior Meynerti ; est, unclens hypothalamions (corpus اaysi) : !fp, ghohus pallidus; fur, fibres from the muelens ruber and the contimation of the brachimm eonjumetivom to the globus pallidus and to the thatames: If, tuenia thalami ; tro, tmetus apticus; liu, ventriculus tertius.

* Mahaim, Albert. Ein Full von secundiiren Erkrankung des Thalamus optiens und der Regio subthahamica. Ireh. f. Bsychiat. mud Nervenkr.. Bd. xxv (1893), S. 343-382.

Flechsige alial lemitradictod degenera-

Weigurt-1'al Grhirn und 1, s. 203, Fig. interna: c.M. bpus luysi); continnation he thatamus:
es Thalamus arvenkr.. Bil.

The hemisphoric bumlle of rom Giudden* loe deseribes as a bumble of tibres in the optice trat which gows over to the most latemal part of the base of the pedmerie, that portion of the pes whirh lies benest to the tractas options, and thence enters the cerobal hemisphere. This bmdle, von Gudelen stated, dens mot atrophy on extipation of the reges, bat disappars after extirpation of the cerebral hemisphere. He cites especially the experiment of Gamser, who in the new-born mabit destroyed the chiasm and the conmmissuma inferior Gudeni, thas leading to eomplete atomply of the corresponding parts of the optic tract and leaving the hemispherie bundlo minjured atod eompletely isolated (Fige Elti). Simere these studies of von Gudden and (ianser, however. but little has been added to our knowledge of this bundle.

Under the name of the commissuma censeta of Hammover von Kïlliber dessribes those line fibres seen in horizomtal sections through the ehiasm cut transversely and obliquely on its anterior border. In sagittal seetions one can make ont that these fibus deseend from the lamina cinerea terminalis and from the gyrus subeallosus. Some anthons have thourht that they are continued into the optir nerve.

The commeissura himpothalamich amberior (the bumdle designated by

Nis\%. 516. - Bman of mablet opror-
 Was wemover amd the tretetus opticus mear the midedle lime thro atoms. In this way von
 of the optie: trat wis isolated as a hathe of white mather which passers from the surfice of the corpuss quinculatum laterale into the basis perlunculi. (Ifter ls. von limddelf, (wasmondte buld Ilinterlasseme Abhamblungen. (imashey, Wiesh., 1ss9, Taf. xxix, l'ig. \&.) h. R., hemisphoric bumble of the thatis upticus. von Gudden as B. T. e.) was liost named by Ganser the deenssatio subthalamiea anterior. Areording to von Kölliker it rms dorsalward hateral from the colmmes of the formix and then becomes lost in the other tibre bumdles ruming in the stme direction (ansa lentienlaris, inferior peduncte of the thalamus and portions of the stria medullaris) (Fig. 5if).

The tretctus pedumenturis tronsirersus, aceording to von Gudden, is a bundle begimning in fromt of the superior collienlus amd rmming obliquely over the base of the eembral pednache, turning aromud its medial border to sink into the base of the bram in front of the region of exit of the nervus oculo-motorius. Von Gudien stated that it atrophied entirely in the mabit after removal of

[^337]both ryes. Its signiliemme is, however, us yat but imperfeetly malerstome. 'The lest reerent dreseription is that of von Käliker,* who finds thoer tmalus perlanculares transwersi on en'h sinde in the mbibit-a main bumdlo mud two meoessmy bmalles. This mathor states that the mon bumdle arises from a small romnd

nurlous which lies lateralward from the nuclens mber at the ventral end of the burlens lateralis pesterior thalami of Nissl. He believes that the bmalle temmates in the smperior collien'res of the eoppora quarhigemina, probably in its depper layers. Von Bechterew + derives the bumble from a small oblong comical mass of grat mattor which lies between the maclens mber and the substantia nigra which he calls the nuclens tractus peduncularis thamsversi.

We may next properly consider the cell bodies and dendrites of the nemrones (optic nourones of the III Orter) in the centres in which the retinal fibres terminate and trace the distribution of their axomes.

The rolliculus superior of the corpora quadrigemina, so largely developed in lower animals, is but rudimentary in man. On section one can make ont in it a distinct stratum zonale on

[^338]the surface bencath which is the strutum grisemm collienti supe rioris，which in turn is separated from the st ratum grisemm cen－ trale（the so－eatled rewtrele Mïhlengrone of the（iermans）by the stratum album profundum．＇The gemerit disposition of white able gray mater in the superior colliculas will be clemest if we refer to seetions throngh this horly in the rabhit．
＇The strathm zonale consists of a thin peripheral hayer of White tibres（von Köllikers menswere meiswe latfe）．

The stratum grisenu colliculi superiomis can be subdivided into several layers，amomer which is to he seen the su－colled mide dle white matter（von Kölliker＇s milllere urisss La！re）of the superior collicolns，which may with propricty be designated the stratimm album merlimm．These white fibers assume ant antero－posterior direction，and are in large part terminals of optic fibres which have entered the colliculas superior hy way of the batchimm quadrigeminum superins．The superticial layer of gray substance，which I shall call the stratum grisemus super－ ficiale，is marow，contans relatively few gathglion cells，and is of rather small size．＇I＇his is the so－called cappat cinerea of the

The stratum grisenm profundum contains a relatively large number of nerve cells，miny of which are of very large size． ＇The mednlated axones of these help to form the stratmm albmin profumdum．

Von Källiker describes the graty mater between the stratum album medinm and the stratum allomm profundum as the ＂middle gray zone，＂reserving the term＂deep gray zome＂ for the gray matter in anong the snperticial and deep fibres of the stratum album profundum（Fig．5ls）．In the nomen－ clature of＇l＇artuferi，the stratum album medinm plas the middle gray zone of von Kölliker become the slrato biremor－ ＂ineroo superficialr，while the stratum album profundum with its gray matter is designated by him the stralo bimmeromerore profu゙いでの。

Aecording to Ramon y Cajal，the most important optic fibres ending in the superior collionlas eome from the zone of antero－posterior mednalated norve fibres，designated above as
 superficiale），whieh lies bencath the peripheral gray cortex． Apparently the fibres of the stratmon zonale are not direet con－ timations of optir：fibres，since after extirpation of the eye no
degeneration of these fibres can be demonstratel by Marchi's method. Ramón y Cajal suggests that they represent end

 No, muthens ruber: Prm, faseiculus permuculo-mammilaris, pars hasilaris

 tihes; $!9,!r^{-1}, g^{2}$, gray layers of the colliculas superior ; w^{\prime}, w^{2}, w^{3}, white zolles.
arhorizations of axomes which arise from cells in the cortex of the collieulus itself.

In the cappe cincrea of 'Tartuferi, besiles the small comical stellate or spindle-shaped cells deseribed there by Tartuferi and
P. Ramoin y Cajal,*S. Ramón y Cajal desirvihes certain other rell types: (") marginal cells, (b) horizontal spindle-shaped cells, (c) small cells with dendrites directed outward.

Fia. 519.-Transwerse section throngh the colliculas superior of a mahit right

 same kind of cell will well-marked axome d, small rell with complieated dandrites: e, vertical spindle cells; f, !, h, dillierent types of colls of the grav
 bayer of transverse fibres; m, eollateral desedoling toward the stratum grisemm erntrale; n, end arborization of: an optie tibre.

The axones of the smatl marginal cells (Fig. 519, ") are delicate; they rin downard, but their termmation is mecer-

* Ramón y Cajal, l'. ?nvestigaciones de histologia compatuda en has centros de la vision de distintos vertehrados, 1880 ; Juvestigamiomes mierograficas en el enedalo do los batracios y rephiles, comerpos genientados y tuberculos eundrigeminos de los maniferos. Zaragoza, 180 I.
tain. The spindle-shaped cells phaced parallel to the surface of the colliculus show polar dendrites, two or three in number, which run horizontally, divide onee or twice dichotomonsly, and end with free, somewhat jagged terminals (Fig. 51:9, t). Their axones nsually arise from the dendrites and also run horizontally, soon breaking up into a number of small branches which are distributed in the first hayer. They appear to be dolgi cells of type II. The small cells with dendrites directed outward are triangular, ovoid, or stellate in shape. They possess from one to three or more dendrites, whieh, branching manifoldy, form an irregular complex bunde of delicate tortnous terminals. The dendrites are so delicate that they might be taken for axones. The axones, howerer, descend; they are short, but little bramehed, anu reach as far as the zone of optic or antero-posterior fibres (Fig. 519, d).

The ending of the optic fibres has already been deseribed. The axones of the large nerve cells of the stratumgriseum profundum and in the stratum album profundm itself pass rentralward in the stratimm album profundum, bending around the gray matter which surromels the central canal, and giving off in their course collaterals to the aljacent gray matter. As they curve they often undergo 'T-shaped division, one branch passing dorsalward, the other ventralward, the dorsal bramehes terminating, as a rule, soon after their origin, a few of them passing, however, to the superior colliculus of the opposite side. The ventral bramehes, along with the mulivided axones, unite to form the curved system of fibres which rim along the margin of the central gray matter (Held). These arehed fibres pass ventral to the fascieulus longitudinalis medialis and nuelens N. oculo-motorii as far as the middle line, where they decussate, as Held has shown, with similar fibres from the opposite side in what Forel has ealled the "foutaineartige Hanbentrenzuny of Meynert." The fibres then pass downward toward the medulla, and in human beings soon enter into the faseiculus longitudimalis medialis. In eats and rats lleld found it forming a separate bundle from the fasciculus longitudinalis medialis for some distance. As these axones pass downward they give off, from different regions, collaterals and terminals to the various motor nuelei which innervate the eye museles, a fact which accounts for the eye musele reflexes which result from retinal stimulation. The superior colliculi of the corpora quadri-
urface mber, y, and Their rizonwhich (iolgi d ontwossess manirtuons shit be ey are optic cribed. mpross rellnd the ing off r. As brameh anches them te side. , unite margin es pass leus N . sate, as side in wny of hedulla, |gitulia sepallis for five off, various which retinal quadri-
gemina appear to represent the central organ eoncerned in the control of the eyc-muscle movements.

The rorpmes yeniculutum luterente is a part of the metathalamus of the thatamenephalon. It, together with the pulvinar

 romvexititis.
of the thalamns, represents the main termination of optic fibres in the diencephalon. The general charaters of the lateri I genienlate body lave abready been described (ride somptr). The gray matter inside the lateral genieulate body in hman beings is known as the mucleus corporis gemiculati lateralis. The majority of the cells sitnated here possess axones which run out through the radiatio occipito-thalamica (Gratioleti) to

Fita, 5al,-Frontal section of hamam hrain, illustrating the visual eonduction path. (Aftur ('. von Monakow, (ichirnpathologic, Wien, 1897, S. 23. Fig. 16.)
terminate in the cortex of the oceipital lobe of the hemisphere. The mednllated axones extending between the lateral geniculate body and the cortex pass at first lateral from the lateral geniculate boly and form an area known as Wernicke's field.* The fibres are joined by others from the pulvinar and from the collieulus superior of the corpora quadrigemina. They then turn around the melens candatus and the lamina semicircularis and enter the optic radiation. Gratiolet's radiation forms a

[^339]large sagittal bundle (s/rethme sulyithele inter"utm of Sachs,* Fig. 500), which rous all the way hank, dorsal and lateral, from the cornu posterius of the lateral ventricle to the cunens.

The white matter of this region includes the tapetum, the gemaine optie radiations, and the so-called fasciculas longitudinalis inferior. The elations of these bundles to one another are well shown in the acompanying diagrams (Figs. $5 \cdots 1,5 \times 2$, and 5:3), selected from von Monakow. The medullated axones from the lateral geniculate body are sitnated in the occipitothatamic radiations, ventral from those arising in the pulvinar. As the fibres extend toward the oceipital pole, those arising in the lateral geniculate body tend to become distributed to the

A wnat Area supplieal by arteria cerebri media.
B Area suphlied by arteria cercbriposterior.
$\mathrm{C}-($ Unsliphled) Area sumplied by arteria eqrebri anturior.
Fige. 522.-Frontal section of nomal homan bain, illustrating weipiothatamic radiation, cte. (After (: von Nomakow, (ibhimpatholngic, Wien. 1s97. s. 22, Fig. 14.)
medial surface of the hemisphere, especially to the cunens in the region of the calcarine fissure (Fig. 5?4).

[^340]A superb demonstration of the exact position of the axones from the cells in the lateral gemiculate body is aftorded by horizontal sections through the brain of a newborn babe. At this age, as Flechsig has shown, these fibres are medullated, while all the other fibres of Gratiolet's radiation are as yet non-medullated, and one can follow then as a very definite bundle passing out fan-shaped from the posterior superior lateral surfate batekwarl as far as the wall of the ventricle, and upward ahost to the upper borker of the thatamas. This bumble has been called by Flechsig * the "optie ratiation in the narrower sense" to distingnish it from (iratiolet's radiation, or the "optie ratiation in the willer sense." Flechsig feels smo that the axones from the lateral genicnlate boly ("optie raliation in the narrower sense ") enul exchusively in the wall of the fissura calcarina

A wat hea suphlied by arteria corebri monlia.
B and Are suphided by arterin cerctori posterior.
C - (Unstiphled) Areat suphand by arteria cerctri anterior.
Fig. 523.-Frombal section of mornal human brain, illnstating occipito-thal:mmi. latiation, ctr. Alter C. von Monakow, dehimpathologic, Wion, wat. A. :20, Fig. 10.)
(Fic: $5 \cdot 5$). He assumes, further, that these fibres represent the indirect continnations of the fibres from the mateula lutea. If he be correct, the clinical significance of the fact is obvions.

By the study of secondary degenerations the relation existing between the lateral geniculate body and the cortex has

[^341]axomes y huriIt this hile all -nedulpassing e backmost to 1 called se " to diation es from arrower ilcarina
been well ilhstrated. Von Monakow has shown that in lesions of the occipital cortex in man involving the region in which the oceipito-thalamie regions terminate, there results degeneration, with absorption, of the radiation of the lateral geniculate

body, and the ganglion rells of the lateral geniculate body atrophy, and finally disappear (Fig. 5eli). Von Monakow has further shown, by repeated experiments on amimals, that extirpation of the visual sense area of the cortex leads to degeneration and disapparance of the majority of the ganglion cells of the lateral geniculate borly. The changes in the lateral genienlate body under these conditions are in marked contrast with those which oceur when the optie tract is diseased or experimentally eat. Whereas, in the former case, it is the gamerion cells of the lateral genientate body and the white matwi of

Wernicke's tield whieh degencrate, in the latter instance the ganglion cells and the white matter of Wornicke's field are

I'isuch sense area.
 (After 1'. Flochsig, tichirn mad serle, laijz., 1896, Taf, iii, lig. 4.) (', melens (andatus; I, putamen; Gijm, globus pallidus.
practically uninjured, but the fibres of the optic tract and their terminals (substantia gelatinosia of the lateral genienlate body) vanish.

The region of the pulvinar in which the optic-tract fibres terminate resembles very elosely in its histological appearances the lateral genienlate body. The cell bodies situated here give off axones which enter the radiatio oceipito-thalamica [Gratioleti] in a plane dorsal from that occupied by the medullated axones from the lateral geniculate body.

As to the existence in man of nemones with edl bodies sitnated in the collienlus superior and axones extending to the visual sense area in the occipital cortex, there is, as yet, some douht, although the findings in the superior colliculus, after disease of the visual semse area, would hat one to believe that at least a certain mumer of such nemrones exist. It is probable that the cell bodies of these nemones are sitatad in the stratum grisemu colliculi superioris, and that the axomes pass by way of the brachimm quadrigeminum supurins and the radiatio owecipitothatamiea to the cortex. Just what impulses are carried by

 erated atter extensive hesion in the bohs tempralis and bobs orequitalis of the left side. a, masses of small gamglion eefls armoned in lavers, shown atrophie (erl) in 1s: m, lamina mednllares, sluwn atrophie (mel) in B: h, ven-

 of the large celts in the cemtral region. The optie tract is atrophie in it.
these fibres does not yet seem clear, for in man the superior collieulns cam be entirely destroyed without any recognizable disturbance of light or color vision.

The nemromes of the optice paths in the regrom between the terminations of the optic tract and the oreipital cortex have been earefally stadied by Rmmon y C'ajal in the mouse, rat, and

 matlons hathenulae: II, commissural interhallemularis: I, medial thatamic

 baterale gring ta the central optic path; b, deromames.

rabbit.* Ramón y (injal distinguishes a superticial amd a heep optic path extembing from these lower centres to the orcipital cortex.

The superticial path arises from the supertiegal zones of the lateral geniculate body, and prohaps from the region of the stratum zonale of the thalamus. This path aecompanies in part the contination of the optie tract itself, and having arrivel at the pedmenus cerebri, turns medialward in order to enter into the upper protion of the latter, where a large triangular bundle exists, sometimes separated distinctly from the other fibres of the pedumele, a humble which Ramon y Cajal ealls the "contral optic path" (Fig. 5:is).

The deep optie puth is much more important. It collects the axis cylinders of the cells lying deep in the lateral genienlate borly as well as those of the stratum zonale, forms a eurve slightly concave lateralward, and enters the "central uptic path " on its medial border.

Some of the axmes entering the "erntral optie path" malergo hifureation, one branch ascemding with the main bundle of this path into the corpus striatum, the other descemding toward the tegmentum. Ramon y Cajal suggests that the descending hamehes may represent a retlex path between the risual centres and the motor muclei of the eyes, of the head, and of the neck.

It is of the highest interest iml importance that Ramon y Cajal has been able to follow the axmes of the "central optic path" in the new-born monse thronghont their entire course, from their entrance into the corpus striatum an firl as their termination in the oeeipital lobe. He describes the bundle as orcupying the most medial part of the peduncular radiation in its passage through the corpus striatum, and states that the fibres having arrivel in the white substance beneath the cortex, go upwarl into the gray substane of those cortical regions in which the white stripe of Ciemari or Vieq d'Azyr \dagger is especially

[^342]

Fig. 528.-Section through the cortex of the gyrus ocripitalis superior. (Sltor (${ }^{\text {(. Mammarmerg, Stu- }}$
 ik orblatoin, ri, ra, Upsala, 1s93, Taf, is, Fig. 4.)
well developed, a finding which agrees entirely with the embryological observations of Flerhsig. Vnfortmutely, the ultimate terminals in the gray matter of the cortex were not impregmated in Riamim y Cujal's preparations, possibly becanse the treminals in the new-born monse haul not yet develonod. Vinn Kölliker, in disenssing these findings, fints it striking that Ramon y Cajal lats referred all of the axones of the cells which lie in the distribution of the optiens to the centripetal optie path, especially ats it was Ramón y Cajal himself who diseovered centrifugal optio fibres in mammals, and believed that be had found such in birds.

The structure of the primary visual sense area in the cerebral cortex-that is, of the region in which the fibres of the orecipito-thalamic radiations termi-mate-has been stulied by a mumber ol investigators. Onc of the best descriptions is that of S. Ramon y Cajall.* We eam not do better perhaps, in order to illustrate the extreme complexity of the cortex in this region, than to introdnce here the figure embolying the results of the exatet studies of the Swedish investigator Hammarberg \dagger (Fig. ses).

As to the term: nation of the fibres of the occipito-thalamic radiation in the cerelnal cortex, von Monakow believes, from the study of secondary degenera-

[^343] in Risdy be-- bor" lon dings, Cajial re cells if the pith, al himoptie d that ; visual $x-$ that bres of termimber of lessrip* Ne rder to - of the troduce sultes of A inves-
tions, that the ultimate cond-arborizations correspond more partienlarly to the fibre plexins of the fiftic layer, and in part also to the third and fourth hayers. Here he would phace diolgi cells of 'Type II, which, hy means of their murh-branched axomes, transfer the impulses to the cells of the same and other cortical layers. This view is supported by the findiugs of von Loonowa* in cases of congonital anophthalmia. On neconnt of the large number of sallable contributions which von Momkow has made by his investigations of the optic paths in man rad mimals, the sebome which he has construeted for the explamation of the ronte followed by the impulses is worthy of special consideration. It is reproduced in Fig. 5es.

The area in the cerebal cortex, in which the axones from the nptie eentres in the mesencephalon and diencephaton termimate, is designated, as has been mentioned above, as the vis.
 the rortex is as yet the subjert of much dispute. Whereas Flechsig, for example, maintains that the fibres of ciratiolet's radiation are distributed only to the medial surfare of the oecipital lobe and to a small area close to the fissma longitudimalis rerebri on the lateral surface of the hemisphere, other investigators (including II. Sachs and C. von Monakow) believe that fibres of the occipito-thalamic radiations are distributed to the whole of the cortex of the oecipital lobe, and possibly also to the posterior part of the parietal lobe. It seems certain that the majority of the fibres from the lateral geniculate body end in the region of the calearine fissure. Pathological cases in homan beings thus far studied have not been uniform enough in their results to permit of decisive statements regarding the matter. In the majority of the cases in which hemianopsia has resulted from cortical disease, the region abont the calearine fissure has been involved, in some instances the posterior part of the fissure to a greater extent, in other instances the anterior part. The view of Ferrier, that the gyrus angularis represents the visual centre, is opposed by both Flechsig and von Monakow. Certain it is that lesions in the region of the angular gyrus are, as a rule, accompanied by defects in the visual fied, but it

[^344]

 large moltipalar ganglion cells giving rise to the axome of the N. opticus;
 colliculns supreror, its telodendriom being situited in the retina: h, tiolgi
 comberting the corpus gonicuhathm laterale with the lohns weripitalis, its axome rombing in the radiationeropito-thabamieat tatioheti). The visual imjulsers are indicated by the arrow.
seemis probable that in every sueh instamee the lesion has mot bere limited to the cortex in the region of the angular gryes, hut has extemed into the white matter bereath and has involved the fibres of the radiation meeipito-thalamica(tiratioleti) on their way to the oce ipital lobre.

Attempts have heen male hy Munk and others to connect certain arees of the orecipital cortex fometionally with definite regions of the retima. Thus Munk wonld make the lateral part of the retima correspond to the lateral part of the visual sense area in the oceipital cortex, the medial border of the retina to the medial portion of the cortieal area, and similaty for the upprer and inferior portions of the retina. He believes that the region of the macula lutea is represented only in the opposite visual sense areab. lint this view is mot wholly in aceord with the findings in cases of hemianopsia. It is rare in instamees of homonymons hemiamopsia to find dofeest of the vismal field corresponding to the tixation puint (macula ln(ea). Viarions theories have heroll offered as attempts to explain this pr-

 tion al the ax mos passing trom the corpus

 Hatimms: f.q., collienlus superior.
cularity of the majority of cases of hemianopsia. 'Thns van (ichuchten suggests a partial deenssation of the optie fibres, extending between the centres in the diencephaton and the oreipital cortex (Fig. 5330), but this view as yet lacks anatomieal suphort. The explanation of von Monakow is ingenions if not emiaely satisfactory. This anthor* assmmes that the macula lutea hibres are very widely distributed in the lateral genienlate body, the fibres from the macula of each side being distributed in cach lateral genieulate body so as to come into conduction relation with cells in all parts of this nucleus (Fig. 531). With such an anatomical relation in the lateral geniculate body there could always be a path from the macnla to the eortex mess all the cortical comnections with the lateral genienlate body were destroyed. Von Monakow, therefore, believes that the macula lutea is represented in the occipital lohe, neither solely in the middle nor in the peripheral parts. of the visual sense area, hut that probathy no part of the cortex of the orecipital lobe, and perhaps also of the posterior part of the angular gyrus, is uneonneeted with macular representation. The cortical field for the macula lutea would thus exceed by far that ordinarily assumed for the visual sense area. The view of Wilbrand \dagger is somewhat similar to, although by no means identical with, that of von Monakow.

Henschen's \ddagger idea that the field for the macula corresponds to the region of the anterior part only of the calearine fissure is negatived by cases in the bibliography, while the view of Fïrster and Sachs, \# which alssumes that the region correspombing to the posterior part of the calcarine fissure is that in whioh the maenlar representation exists, is negatived by the instanees eited by Menschen.

On reviewing the whole subject of hemianopsia it would seem possible to do without such an elaborate seheme as that

[^345] lateral me, becipital l parts he eorior part resentithus exase areta. h by fissure view of espondn which istances
wonld as that
tomisehe linischen Areh. f. (1892), 心.
estschrift

Arb. ats
suggested by von Monakow or that suggested hy Wilbrami. While it is not impossible that the macnlar representation in the lateral geniculate body is widespread,* as von Momakow

 the representation of diflerent fortions of the retina in the eorpas genioulatam baterale and his explanation of the faed that matentar vision is modisturned in

 tu N. oft.; H_{1}, b_{1}, r_{1}, gamglion eells in the homomymons part of the left retina :

 interropted axomes at r. While most of theretima has limiter representation in the corpas geniculatum laterale ron Mankow levieves that the mandat tibres are distributed over the whole muelens. With every reossed optie tibre there terminates alsu an wherosed optio tibre, aroording to his view.
suggests, yet it seems to me umnecessary to assume that the fibres from the lateral genieulate lody have so wide a cortical distribution as he would give them. Inderd, there is very moch anatomical evidence against such a wide distribution. It seems to me much more likely that the matular field corre-

[^346]sponds to the whole length of the cortical area corresponding to the calcarine fissure, and that involvement of the whole of this area is necessary to canse defert of the vismal field eorresponding to the fixation point. This would be in aecord not only with the fimdings of llensehen bat also with those of Förster and Sachs, and, as far as 1 am aware, there are no anttomical data thas fiar which contradict it.*
la the priphery of this vismall spme area in the namporer sense there is donbtless a considerable area of eortex which receives fibres from the oecipito-thalamic ratiation. from the visual sense area in the wider sense-that is, the region corresponding to the distribution of all of the fibres of the oecipitothalamie radiation-there pass ont doubtless many axones to neighboring gyri in the parietal and temporal tobe, axones of neurones associative in function which bring the activities of the risual sense area into relation with the activities of other centres in the cerebral cortex. Some reference to these association nemrones, whirh may, in a sense, be looked upon as the nemrones of higher visual centres, will be made further on.

[^347]onding tole of correrd not ose of 10 :anta urower which onn the 1 corre-teipitoones to ones of ities of f other e associas the on.
th., Berl.. p:sclian. tack with eption of ears later With this riving and miness of colors was things in ted lesion, The brain icully the ent white preduncle region of Than any (romets bewible that afticed fur in which h of buth on to the if the cal-

Fug, 5se. Geheme of the emore of the ontie bathe represented in a horizontal plane, with illust mation of the owerrener of cortical and sulwortioal hemian

 tur of oceipital lobe. With lesion at y there wonld be intermption not mby of the fibres of the optic radiations. Wint also of the axomes of the fasedentan longitulimalis inferion, so that along with right-sided hemianopsiat there

In the diagram (Fig. 532), also taken from ron Monakow, the principal lesions which ocemr in haman beings in the domain of the optic paths are well ilhstrated.

With regard to the eentripetal fibres carrying the impulses to the nuclens nervi ocutomotorii and leading to reflex contraction of the pupil the following positive statements can be made:

In the first place, they arise from all portions of the retian, masmueh as a ray of light thrown upon any given minute area on the surface of the retina will lead to reflex contraction, provided the nerve tracts are in a normal condition.*

In the second place, these fibres run through the optic nerve, the chiasm, and the tract, and undergo partial decnssation in the chiasm. This is proved by the so-called "hemianopie pmpillary inaction" of Wernicke. Wernicke showed that in hemianopsia due to a lesion of the optic tract illumination of the homonymons halves of the retina affeeted will not cause contration of the pupil, while, on the other hand, illumination of the opposite halves of the retina leads to pupillary contraction, and the pupil contracts normally on convergence.

It is further known that the pupillary path passes through the brachium quadrigeminum superius to reach the colliculas superior of the corpora quadrigemina and thence goes to the muelens nervi ocnlomotorii in the floor of the aqueductus cerebri.

More than this, perhaps, ean not be said with certainty, and the most divergent views are held regarding certain details of the path. Thus, for eximple, the total number of neurones concerned in the passage from the retina to the nuclens nervi oculomotorii is disputed. Whereas a certain number of investigators hold that the retinal axones pass directly to the region of the oculomotor nuclens, others maintain the existence of intermediary pupillary centres. Bogroff and Flechsig \dagger have deseribed a root of the optic tract which passes directly into the stratum grisemm centrale of the third ventricle. The evi-

[^348]dence at present is in favor of an intermediary unclens in the pupillary path, but just where that molens is sitnated is still a matter of donbt.

Darkschewitseh* believes that the pupillary fibres leare the tratus optieus in the region of the corpus geniculatum laterale, and pass through the thalamus to the corpos pineale and the ganglion habenula. Hence the reflexes are mediated by means of fibres which pass throngh the posterior commissure to his obere Oculomotorinskern. His conclusions were arrived at after study of degenerations following physiologieal experiments, and they have received support from Bellonci \dagger on the gromd of his stadies in comparative anatomy.

The views of barksehewitseh have received a partial confirmation from the studies of Mendel, who supports the doctrine that the ganglion habenule is a pupillary uncleus. Mendel extirpated the iris in new-born amimals, and asserts that he found atrophy of the ganglion habenula of the same side, and of certain fibres of the posterior commissure. According to his view, therefore, the reflex path for the iris would be through the optic nerve, chiasm, and optic tract to the ganglion habenula of the same side, thence ly way of the commissura posterior to ron Gudden's nuclens, and to the mucleus nervi ocnlomotorii.

A somewhat different idea is advocated by von Beehterew. He follows the pupillary fibres throngh the optic nerve of the chiasma opticum, but states that they do not enter the tratus opticus nor the genienate bodies, but elose behind the chiasm and withont decussation enter the stratum grisemm centrale of the third ventricle, whence they pass merossed to the melens nervi ocnlomotorii. \ddagger He bases his view upon the following findings: (1) Seetion of the optie tract in the dog eansed hemianopsia but no alteration in the prpil ; (?) destruction of the superior colliculas, or of the corpora geniculata, did not abolish the reaction of the pupil to light.

[^349]Henschen * 'mplasizes the fact that Wernicke's observation of hemianopie pupillary inaction in lesions of the optic tract is decisive in favor of the view that the pupillary fibres run in the tractus opticus. They go at least as far as the border of the pedunculus rerebri. The case reported by Leydent is especially valable in this comection, as is also a case reported hy Dercum, of Philadelphia. Hensehen states that a series of cases supports the view that the pupillary fibres do not enter the lateral geniculate body, and holds that Knies is probably wrong in thinking that lesion of the lateral geniculate body can give rise to Wernicke's hemianopic pupillary sign.

Although the evidence is not yet couchasive, it seems to me most probable that the pupillary fibres run through the brachium quadrigeminum superius into the superior colliculus, there to come into contact with the cell bodies and dendrites of neurones in the nuclens colliculi superioris, and thence the impulses pass by way of the axones of the latter to the nucleus nervi oculomotori of the same and of the opposite side. At any rate, the histological investigations of lleld make such a view plausible.

The statement is frequently made that the coarse fibres of the optic nerve are those which are concerned in pupillary reflexes. But even this is not definitely proved. \ddagger

The conduction paths in comnection with the eyes should not be dismissed without reference to the centrifugal fibres of the optic nerve diseovered by Ramón y Cajal. 'The existence of these fibres has been confirmed hy van Gehuchten, von Kölliker, Held, and others. The cells of origin of these centrifugal axones are situated in the centres in the mesencephalon and diencephalon. They have not only been demonstrated by Golgi's method, but their existence and disposition has been proved also by the methods of secondary degeneration. Ac-

[^350] nucleus e. It such : bes of pillar should bes of istence к̈̈llirifugal on and ted by s been Ac-

linische

'Their, 1
kheiten.
Bd. iii
K. Baas. not thins
cording to the findings of ron Monaknw, following section of the optic tract there is degeneration of cells mot only in the superior colliculus of the corpora quadrigemina, hat also in the lateral geniculate lolly (dorsal caudal part, which he designates as a) and the pulvinar. The termination of these fibers in the retina appears to be in the internal molecular haver, for the

Fig, 533. -Scheme of vinuat conduction path. Lettering same as for Pate $1 /$. Fig. 1.
terminals probably come into contact with the amacrine cells, which Ramon y Cajal has described in this layer. Possibly they act also upon the bipolar cells (peripheral optic sensory neurons) themselves. Just what the nature of these centrifugal impulses can be is hard to imagine. Several theories have been suggested, hat none of them is satisfactory, and they need not be discussed here. It may be that the retina is brought
mader the inthenee of the corrbal cortex throngh these centrifugal memones, siace the large pramialal cells in the thire cortical hayer, the so-ealled solitury cells of the vismal sense area, semd their axomes down throngh the optie radiation and throngh the posterior limh of the intermal eapsule to the optie emotres in the dieneephaton and meseneephaton. 'Thesse cells degenerate after lesion of the internal capsule or of the orecpito-

 Platil.
thalamic radiation. It seems prohalhe that the majority of these axomes ron to eome into conduction relation with the mesencephalic organ controlling the cye mascle nuclei, but it is not impossible that some of them terminate alout the cell bodies and dendrites of the neurones, the axones of which form the centrifugal fibres of the optie traet and optie nerve.

In eomeetion with the visual conluction paths it wonld have been interesting to diseuss the various theories of vision which have been put forward, especially those propomed by

Helmholta,* Hering, + Giäller, \ddagger Domlers,* von Krioss, || mud Mrs. Franklin,s but they em only be mentioned here, meompanied by the bibliographice referemes.

In : \& 533 and 533 the more important and best known centripet.a memes of the vismal ronduction path are sehematically represented.

* Hehmholt\%, II. Ceber dic 'Theorie der zasammengesetaters Finhen.
 (188K).
\dagger Huring, l:. Lefure rom tichtsimn. II. Anll., Wien (lais).
\ddagger (ä̈ller, A. Die Amayse der lachtwellen dureh das Auge. Bian Beitrag zur Firklitung der Farbenemphindung. Areh. I. Amat, It. I'lysiol., Physiol. Ahth. (1888), S. 1390-1tis.
 Bil. xax. Abtlo. 1 (1884).

 Netahntperipheric. Zatschr. f. I'syehol. u. Physiol. It. Sinuesory., Iamb, u.

 -on Theories of Light Semsation. Mind, Lomd, and Edinb., n. s., vol. ii (180:3), plp. 473-489.-A New Theory of Light Sensation. Johns Ilop-
 Theory of Color Vision, Mind, Loml, mad Eilinlo, n. s., vol. iii (1804), p. 10:3.-I'rofessor Maller's 'lheory of the Light sense. I'syehol. lier., N. Y. and Loud., vol. vi (1899), pr. $70-8.5$. Mrs. lirmblin's whervations upon "normal faint-light foveal blintness" are recorded in l'sychol. liew., N. Y'. and lond., vol, ii (1895), II $183-148$.

CHAPNER LNE

oldotiss

Nincoiturminales of N. cochlea-fipheral view of central anditory pathsStria medallares-('orpus trapezoidenm-Suןerior olivary eomplexLammisens laternlis-Nafens lemaisei lateralis-Collionlus inferion(orpas geniculatman modinle.
 olivaris superior-Nucleas corporis trapooidei-Nucleas pracolivarisNucleas semilunaris-('orpus traperoidemu-Lemnisens lateralis-Nuclei lemmisd laternlis-Relations of the lemasens laternlis to the murleus rolliculi inferioris, the corpus geniondatan medinke, and the pallimmAcomstic reflex palhs-Anditory sense aren in the cerebral cortexschemes of andifory path.

4. Central Neurones of the Auditory Conduction Paths.

Tint: peripheral auditory neurones comneeting the argan of Corti with the rhombencephalon have heen described in on carlier chapter. We have seen that the cell bodies of the periphembanlitory neurones are situated in the ganglion spirale, that their dendrites are distributed to the organon spirale (Cortii), and that their axones pass throngh the madix cochlearis of the nervus acustions to terminate chiefly in the muchens nervi cochlearis ventralis and the nuclens nervi cochlearis dorsalis (tuberenhm acusticum), a portion of the fibres, however (aceording to Mehl), going farther, to terminate first in the nuclens olivaris superior of the same or of the opposite side, or in masses of gray matter sitnated even higher up in the central nervons system.

With regard to the central anditory paths, the results of different investigators in carlier yars were markedly discordant. 'Thus, while Forel, Onnfrowicz, and von Monakow denied that the fibres of the trapezoid body had anything to do with the central anditory path, Flechsig, von Bechterew, Baginsky, Bumm, and others maintained the opposite view. Neurologists
are to be congratulated that through the researehes of the past few years, by means of a varioty of methods, we have finally arrived to macia more detinite and satisfactory ileas regneding this portion of the nervous system. The views to be outlined here, which may be considered to represent the presen status of our knowledge regarding the aditory conduction inside the eentral nervous system, are based upon researehes of Flechsig,* von Momakow, \dagger Hekl, \ddagger von Kölliker, ${ }^{*}$ Ramon y Cajal, $\|$ and Florence Sabin. ${ }^{\text {A }}$

In general, it may be said that from the muclei terminales of the cochlear nerve, axomes of nemromes of the secomd order pass by way of both the stria medullares and the corpas trapezoideum to the region of the superior olivary complex of both sides, primeipally of the opposite side. Many of the fibres terminate in the maclens olivaris superior and in the gray nuclei of the corpus trapezoidemm. Others of them go on (aceompanied by axones arising in the muclei in which their fellows stop) to pass through the lemniscus lateralis to the colliculus inferior of the corpora guadrigemina (Fig. 53a). On their way a mum-

[^351]her of them terminate in all probability in the molens lemmisei lateralis.

The colliculas inferior must be looked upon as one of the most important way-stations in the central ambitory path. In the muclens collieuli inferioris terminate, perhaps, the majority of the fibres of the lemmisens hateralis; a certain number, howwer, go farther forward. These fibres patss on mainly through

 (1) the selpationt, in the sturerior part of the pons, of the haseiculas hongifudimalis medialis from the libre system deseroming from the collidulas superine to the ventro-hatemi fonienti ; and (2) the relation of the hateral

the brachiam quadrigeminmm inferins to reach the eorpus geniculatum mediale, where apparently a large number of them terminate in the muelens corporis genjeulati medialis. In the latter mucleus are situated the cell bodies of nemrones, the axones of which pass forward through the retrolentiform portion of the capsula interna to reath, by way of the coroma raliata,
the auditory sense area in the cerebral cortex (junction of third and fourth fifths of gyrus temporalis superior, together with the gyri temporales transversi). It is possible that some fibres from the lateral lemnisens go past the geniculate body without stopping to terminate first in the auditory sense area in the cerebral cortex (so called direct acoustic eortical path of IIeld).

The smatlest number of neurones superimposed to form the auditory conduction path from the internal ear to the cerebral cortex is therefore, in all probability, three-one extending from the organ of Corti to the muclei terminales of the cochlear nerve (peripheral anditory neurone or anditory meurone of the first order) ; a second passing from the nuckei terminales of the anditory nerve to the corpus geniculatum mediale (rhomben-cephalo-diencephatic anditory neurone or anditory neurone of the second order) ; a third extending from the medial genienlate body to the temporal lobe of the cerebral cortex (diencephatotelencephatic ambitory nemrone or anditory nemone of the third order). While such a superimposition of neurones is to be regarded as the sinplest and most direct arrangement possible in the auditory conduction path, it seems likely that there are other more complicated and perhaps far less direct combinations of neurones which make up the apparatus of the condution of anditory impulses.
'Ihus it may even be that the simplest anditory conduction path consists of at least fonr superimposed neurones, one extembing from the organ of Corti to the nuclei terminales of the cochlear nerve (peripheral auditory nemrone or anditory nemrone of the first order) ; a secomd passing from the nuclei terminales of the anditory nerve to the colliculas inferior of the corpora quat drigemina (rhombencephalo-mesencephalic anditory neurone or anditory nemrone of the second order); a third extending from the colliculus inferior to the corpus geniculatum mediale (mesencephalo-diencephalic anditory nemrone, or anditory nenrone of the third order); a fourth extending from the medial geniculate body to the anditory sense area in the cortex (dien-eephalo-telencephalic auditory neurone, or auditory newrone of the fourth order). Further, a whole series of nuelei interealated in this conduction path have to be comsidered : the nomel terminales of the cochlear nerve, the nucleus olivaris superior, the muclens corporis trape\%oidei, the mullens prombivatis, the
nut lens smilunaris, the mulens lemmisei lateralis, the muclens colliculi inferioris, and in aldition the muchens corporis genicnlati melialis, and possibly other masses of gray matter in the hypothalamus not yet elearly defined.

It is not impossible that, besides neurones extending botween these different gray masses and comecting them with one mother, folgi cells of 'Type II, or dembraxones sitnated inside the individual gray masses, may pay a part in the conduction of anditery impulses.

No attempt will be made to give here an exhanstive description of all the neurones which are probably concerned directly or indirectly in the anditory conduction path. In the first place, our knowledge of these neurones is by far too fragmentary to permit of an exhastive deseription, amb in the second phace, for practical purposes, it would seem to be much more important that the student possess a elearly defined idea of one or two of the principal paths than that he have his con"eption confused by a mass of bewildering details which can not as yet be adequately valued.

Since their discovery by Piccolomini the strice medullurps, those white bands which rum across the floor of the fourth ventricle and which vary so enormonsly in different individuals, have attracted the attention of many neurologists (cf. Fig. 372, pp. 55\%). Sometimes they may be entirely absent on one or buth sides; in other instances they are very markedly developed, forming a very striking anatomical feature. The bands do not run, as a rule, exactly transversely, nor are they all parallel to one another, for one band may even cross some of the others. One stripe, often seen ruming oblicuely forward and to the side, is known as the conductor sonoris (K"angstab of Bergmann).* Later studies make it seem likely that Bergmann's stripe really has nothing to do with the conduction of anditory impulses. Embryologieal studies of von Beehterew show that the strie medulares become medullated at a relatively late period. He thinks that they have nothing to do with the aconstic path, but represent cerehellar connections.

The study of secondary degenerations has thrown considerable light upon the peripheral and central relations of the striae

[^352]medulhares. Section of the cochlear nerve causes hat little degeneration in the stria [Forel,* and Onufrowicz \dagger]. That certain of the fibres of the cochlear nerve enter directly into the strial medullares wats shown to be probable by the studies of Baginsky and of Held, and has recently been proved lefinitely by Marchi's methorl hy Thomas. \& The experiments of von Dlonakow proved directly that the lateral lemniscos is in part a continnation of the striae mednllares, \# and the later studies of the same investigator $\|$ have male the relations of the stria still clearer. Thus section of the lateral lemmiscus in a newhorn cat leats to atrophy of the stria acustica, and of the nucleus nervi cochIrris dorsalis of the opposite side. It is especially the cells of the midlle layer of the muclens nervi cochlearis dorsalis which atrophy on section of the lemnisens lateralis. The fibres ean be followed from the dorsal cochlear molens around the corpus restiforme on to the floor of the ventricle, whence they plunge down ventrally to pass between the stratum grisemm centrale and the melens nervi vestibuli lateralis of Deiters to reach the raphe, where they decussate with similar fibres of the opposite side, and pass to the dorsal white matter of the mucleus olivaris superior on that side. Thence they turn upwarl into the lateral lemnisens. It seems not milikely that in the strias mednllares are contained fibres which run in both directions; namely, (1) fibres which represent axones of cells situated in the nuclens nervi cochlearis dorsalis, and which pass upward to the lateral lemmisens of the opposite side; and (\%) fibres which represent axones arising in the gray matter of the colliculus inferior, and ron downward to end in the dorsal cochlear unclens. Yon Kölliker, who has carefully studied the striae medullares, reserves the term striae acustice for the fibres which represent central comnections of the cochlear nerve, and

[^353]the term stria medullares for the fibres not concerned in the auditory path. He pictures a large bundle running across the floor of the ventricle in the middle line, then rmming ventratward in the raphe to become external aremate fibres which go toward the cerebellum (Fig. 533). It is by no means certain,

 ing. (After A. von Källiker, Handbuch der (iewebelehre, VI. Antl., Bul. ii,
 cochleme ; Nt, molens limienli teretis; R, contimmation of strine mednlhares dextree et sinistrat throngh the raphe and decossation of the same at the
 trales (liarer) lateral from the pyramid and olives atiar as the corpus resti-

however, that the latter fibres have anything to do with the auditory conduction paths. It seems tolerably certain that the striae medullares in man are quite different from those of many animals, for in man there seem to be many more fibres which have to do with the cerebellum than in the eat and rabbit, in which the stria medullares seem to be almost exelusively auditory tibres.

The striae achstica have been earefully studied by Golgi's method by Held and by Ramion y Cajal, and the results at which these observers have arrived will be mentioned as som

[^354]

Fig. 53k. - Horizontal section throngh the mednla, pons, and midbrain of a mewborn bathe. Weigert-lal staming. Level of dorsal part of corphe tapegoidemm and dorsal portion of nuclens olivaris inturior. series iii, sectinn No.

 L.I., lemmiseus latorallis: I..m., lemmisens medialis: N.IIJ., radix N. whlo-

 N. hypoglossi: N'n.F.I.m., muclons fasciculi longitulimalis medialis, or mo-

transversely throngh the colliculas inferior, the fiberes of the hateral lemniscus can be seen suromoding the ventral surface

Fit. 539--Transwrse section thrombl buin of newhorn habe. Lavel of colliculi inferiores of corpora quatrige minta. (Wrigert-1'al, series ii. section No. sin).

 C: ©., rommissure betwern the collieuli inferiore; Der. Bech., vent tal purtion of barhime conguntivum, which in rality forms a pommissure bed were the

 lemmiseus lateratis in large pari terminating in the mellens of the colliculus

 [meseneephatica] N. trigemini ; share., stratum grisemm centrale. (Prepata(iom hy lbr. John Hewetson.)
of the molens coilionli inforioris very much like a calyx (Fig. 539).

The unclens lemmisei luteralis is anatomically continuons with the nuclens olivaris superior, althongh the character of the cells situated in the former is very different from that of the cells in the latter. The muclens lemnisei lateralis, in reconstruction, forms a long colummar mass, which lies in a trough,
medial from it, made by the fibres of the lateral lemnisens. Ramón y ('ajal divides this molens into an inferior and a superior part (ride infira).

The colliculus iuferior of the corpora quadrigemina, much better developed in man and higher mammahs than in lower forms, presents inside a very much more distinet muclens than does the colliculas superior. This is known us the muelens collicali inferioris. On the lateral surface of the mesencephaton the lateral lemnisers is visible as the so-called trigonum lemnisei. The colliculas inferior is comected with the corpus geniculatum mediale of the dieneephalon through the brachiam quadrigeminum inferins.

The curpus gruiculatum medinle forms a small owoid mass situated medialward from the lateral geniculate borly at the junction of the meseneephaton with the diencephalon. On its surface is situated a superficial layer of white substance which stands in relation to the medial root of the tractus optieus (commissura inferior Guddeni), and ulso with the brachium

 main portion of hemnisens medialis (Itumpheil der sederifensehicht); x, lat rail white matter of latemal geniculate boly.
quadrigeminum inferins from the colliculus inferior (Fig. 540). Inside the capsule of white matter is sitnated a gray mass known as the nuclens corporis geniculati medialis.

The topographical relations of the nuclei terminales of the cohhlear nerve have been described in Chapter XXXVII, where the peripheral anditory neurones were eonsidered. The difference in character between the muclens nervi cochlearis
ventralis and the nurlens nervi cochlearis dorsalis were roferred to in the same chapter.

The murlens merif rotheter rentrohs ean be subdivided into two parts: the materior part or head, and the posterior part or

Fig. 541. - Nublens N. cochlene ventralis of a newhorn cat. (After S. Ramon y

 lear: © axomes of N. vestibuli ; D, tractus spinalis N. trigemini ; E. corpus
 zuidemmand giving off a collateral which runs dorsalwand ; b, asome with eollaterall ruming to the anterior portion of the ventrat nuclens: r. mo bramelhed axome going direetly into the corpus traperoidenan; d, another axome with collateral pasing domsalward; c^{\prime}, end bulb of axome of N. cochleze.
tail of the melons. The eells in the tail are somewhat less regular and mather larger than those in the head. In hoth regions they possess numerons demdrites, which brameh manifoldy in the gray matter. The mednllated axones of the cells situated in the anterior or head portion of the muclens (Fig. it 1) pras forward and medialward in a mather narrow handle to enter the trapezoid body, where they spread out to form the transwerse fibres of this structure. The axones urise usually from the cell body, but oceasionally come off from the dembrites at a considerable distance from the cell, a faet to which P. Martin attributes Sala's mistaking certain of the cells of this muclens for spinal ganglion cells. As Meld has shown, not all of the axones from the ventral cochlear muclens pass ventral to the corpus restiforme into the trapezoid body; a certain number of them, those in the tail portion of the molens (Fig. 54\%), go dorsal to the corpus restiforme to phunge down again medialward and forward to enter the corpus trapezoidenm, passing either medial to or lateral from the fibres of the tractus spinalis nervi trigemini. Some of these fibres give off, in passing, collaterals to the mucleus nervi vestibuli lateralis of Deiters. The axones from the mucleus nervi cochlearis ventralis, having arrived in the corpos trapezoideum either by a path ventral to the corpus restiforme or by one dorsal to that body, proceed, as a rule, through this structure to the region of the superior olivary complex of the opposite side, where they turn to run forward in the opposite lemniseus lateralis.* Not all the axones, however, from the ventral cochlear meleas go into the lateral lemniseus of the opposite side. Nany of them appear to terminate in the muclei of the superior olivary complex of the same side and more of them in the nuclei of the superior olivary complex of the opposite side. Further, a fow in all probability run to terminate in the nuelens nervi cochlearis ventralis of the opposite side, for, besides the terminal fibres of the cochlear nerve, there are to be made ont within each ventral cochlear mucleus terminal axones arriving from the trapezoid body.

[^355]

Fite Sta. -Nuclei terminales of the N. cochlere of a four-day-odd rablit. (After S. Ramón y Cajal. Baitag zum Studium der Mednlla Ohlongata, Bresher.

 (rim); E, corpus restitorme; N, sactus spialis: N. trigemini.
'The "undrus urvi corthere derselis, often spmenen of as the
 ahout the dorso-lateral surface of the corpus restiforme. In transverse seetion through the rhombenerphaton this mudens appears to be divided intes three zones, of whish the middle one is almost entirely free from medulhated fibres. The medullated axomes of the cells sitnated here atl pass dorsal to the corpmes restiforme, bat the fibres can be divided into two gronps: (") those which enter the stria medullares to pass to the midde lime, there to deenssate with simila fibres from the opposite side and to dip down and beeme involved in the superior olivary romplex, the impulses mitimately fimbing their further coorse forwarl in all prohahility throngh the fibres of the lemnisens hateralis, and (h) those which, insteal of entoring the strie modullares, plange direetly downward to arrive in the superior obivary complex, the trapo\%oid hody, on the lateral lemnisens. The former group represents the dorsal path of Hedd, and the latter group the ventral path of Held from the dorsal cochlear muslens.

It is thas seen that from both the ventral cochlear mueleas and the dorsal eochlear moldens we have to deal with a dorsul and a ventral path. 'Ihe exatet terminations of the axones has not been elearly made out for any one of these paths. How many terminate in the gray matter of the superior olivary complex of the samo side or of the opposite side is not yet clear ; and how many fibres, if any, are directly continned on into the lemnisems lateralis of the opposite side or of the same side we do not yet know. It seems certain that the majority of the impulses coming out from the muldei terminales of the rochlear nerve on one side ultimately travel forward directly or indireedy through the lemniscus lateralis of the opposite side. 'That a cortain proportion of the impulses pass up on the same side seems, however, to be generally accepted.*

The best general deseription of the murlens olicaris sumpriar since the articles of J. Lockhart Clarke, Schröder van der Kolk, Dean, and Spitaki, is that of von Kïliker. \dagger The mucleus

[^356]is much smaller in human heings than in animats. Flechsig, in his leetures during the smmer semester of isan, suggesterl that the muctens olivaris superior might be concerned with the imberation of the maseles of the ear, inamuch as it is murh larger in amimals that hatve large, vory movable ears. It is descrihed by von Kältiker as consisting of three portions: a barger modial portion, and two lateral eytimdrical masses. Its situation in the pons is rentromedial as regards the molems nervi ficialis. It is survombled by and partly imbedded in the fibres of the corpms traperoidemm. The structure is most casily "'mbied in the mednlla of the cat or rabbit ;aceording to Sipitaki, . is highly developed in cetaceams.

In the mulens olivaris superior are sitatad a very large mumber of nerve eds which sent their axomes in varions dirertions, while the nurlens recerives terminals and collaterals in enomons numbers. The attempt hats been made to estahlish the relations of the muclens to other portions of the nervons system by studies with the embryological method of Flechsig, with secondary degenerations, and with the method of Golgi. The researehes of Fleehsig and von Bechterew show a correspondence in myelinization of a portion of the white matter of the superior olive to that of the traperoid body and the lateral lemniseus. Von Bechterew has further postulated (from studies of myelinization) a comnection of the melens olivaris superior with the unclens fastigii throngh a hundle which passes through the medial part of the eorpus restiforme. He has also deseribed a connection between the mucleus olivaris superior and the unclens nervi ablucentis by means of a bundle of fibres, which passes out of the dorsal portion of the superior olivary mucleus, runs parallel to the root fibres of the nervis facialis, and goes to terminate in the nucleus nervi abducentis This bundle is known as the pedmele of the muclens olivaris superior, and is shown in its first portion at least in the aceompayying figure (Fig. 543) taken from von Kölliker's text-look.

Aecording to baginsky, if the cochlea be destroyed in a newhom animal there results atrophy and disappearance of the cells and white mater of the muclens olivaris superior of the same side. Von Monakow found that, on cutting the lateral lemnisens on the right side in the cat or dog, the dorsal white matter of the right upper olive atrophied and disappeared. Not all of the white matter, however, of the upper olive stands
in relation to the lateral lemmisens, ant, what is more, section of the lateral lemusens leads to atrophy and degenemation of only a portion of the cells in the molens olivaris sumpior. Son Monakow, therefore, holls that the mulens olivaris soperior stands ouly in part in relation to the lemusens lateralis of the יImosite side, the fibres eomerned passing throngh the dorsal white matter of the olive and oecupging the dorsal field in cross sections of the lateral lemmismens.*

 S. cochlese ventalis; $\mathrm{I}^{\prime} I I^{\prime}$, radix deseendens N . vestibuli.

The studies mudertaken liy the fiolgi method have led to somewhat more satisfactory results in this region. These have heen carried out hy Held, von Källiker, and Ramón y Cajal. Withont going into a detailed deseription, the following general statements may be made: The cell bodies in the macleus oliraris superior resemble a good deal in type those of the nuele-

[^357]us olivaris inferior and those of the mucleus dentatus of the cerebellum. 'They possess mumerous much-branched dendrites, whieh are turned toward the interior of the muclens, the axones being directed in the main toward the periphery of the nuclens. The axones of the cells, according to Ramon y Cajal, pass in three directions: (1) The majority of them, after giving off collaterals in the nucleus itself, pass to the dorsal surface of the nucleus, and then turn to run vertically (either by bending or by lifurcation) in a longitudinal bundle, which is continuous with the lemniscus lateralis of the same side. (2) A certain number of axones much curved inside the nucleus leave the latter at its lateral border to enter the trapezoid body, where they can be followed nearly as far as the nuclens nervi cochlearis ventralis. Held describes similar axones as actually terminating inside the ventral cochlear nucleus. (3) Other axones arising in the nucleus olivaris superior pass out at the medial side of the nucleus to enter the plexus of the nuclens preolivaris, there to mingle with the fibres of the trapezoid body. Further, according to Hed, axones ean be followed from the cells of the nucleus olivaris superior directly into the nucleus nervi abducentis, these axones doubtless corresponding to the bundle which has long been described in Weigert preparations as the peduncle of the nucleus olivaris superior.* It is not unlikely that such a path is of importance in connection with the acoustic eye muscle reflexes.

Terminating in the nucleus olivaris superior can be made out many fibres from the corpus trapezoideum. Many of these are donbtless terminal fibres, but the main mass of them consists of an enormons number of collaterals given off almost at a right angle from the transverse fibres of the corpus trapezoideum. These terminals and collaterals, together with the terminals and collaterals which enter the moleus from the formatio reticularis, and the collaterals from the axones arising from the cells in the nucleus itself, form a dense plexus of fibres as complicated, perhaps, as any met within the central nervons system. The accompanying figure illustrates well some of these relations (Fig. 544).

The murlens corporis trapezoidei is also better developed in other mammals than in man, but can nearly always be distinctly

[^358]the rites, rones lens. ss in ficolof the ng or nuous ertain ve the where eochly teruxones medial preeolibody. om the ucleus to the rations not unith the of these em conmost at trapethe terhe forarising exus of central ll some oped in stinctly
made out. It is sitnated between the nueleus olivaris superior and the root fibres of the nervus abducens, the cells which compose it lying in among the fibres of the corpus trapezoilleum. In this nueleus terminate many collaterals from the transverse fibres of the corpus trapezoideum, and a certain number of terminal fibres which come from the region of the raphe. In ad-

Fig. ith.-Transverse section throngh the ventral part of the nuclens olivaris superior with the adjacent fibres of the eorpus trapemilemm of a newhorn cat. Method of Golgi. (After A. von Källiker, Handbueh der (rewebelehre, V1. Aufl., Bd. ii, heipz, 1896, S. 267, Fig. 486 .) ITI, madix N. facialis, pars secumda; ol, lateral lobe of nuclens olivaris inferior ; O.m, medial lobe ; tr, axones in corpns trapezoidemm; tri, bundles of collaterals from trapezoid axomes passing into molens olivaris inferior ; tra, eells of nueleus corporis trapeanilei ; $x=1$, axomes to the same.
dition there terminate in this nueleus a certain number of rather large thick axones which, on coming into contact with the cell bodies situated in the nuclens, expand into those peculiar end-plaques or acoustic calyces which were discovered by Held, and which have been so carefully studied by him and by Ramón y Cajal. The latter fibres come from the region of the raphe, possibly from the nueleus nervi cochlea ventralis (Ramon y Cajal), or possibly from the nucleus corporis trapezoidei of the opposite side (Hell); they enter the nueleus of the trapezoid body, where the axone widens and spreads ont to form the yellowish, almost homogeneous, cup-shaped expansion, which fuses with a spherical eell body inside the nuclens. Ramón y Cajal has compared this plaque to the Tastmenisken (of Merkel), and to the ivy-shaped endings which Ranvier has

C

Fig. 545. - Terminals of axomes upon the cells in the muchens corporistrapezoidei. (After N. Meyer, Areh, t. mikr. Amat., Bomm, 13d. xlvii, 1s! 6 , Taf. xxxvii, Figs. $1, \dot{z}, 3$.) A. From a section through the region of exit of the N, ahduens of a mewborn guinei-pig ; methylene-hbe staining. Between the asones of the N. ahblucens are seren momeroms axomes terminating upon the eclls of the mucleas of the taperoid bouly. B. End apparatus from another section of the same series. C. The same structures stained by the slow Golgi mothod from a rabhit sevemil werks ohd. Only a few of the endings are shown mon eateh rell in all the fighes.
described in the skin. These axones terminating in acoustic calyces on the cells of the trapezoid nucleus are much larger than the axones arising from the cells of the nucleus. It is possible to stain them with hamatoxylin and carmine in ordinary sections (Ramón y Cajal), and recently they have been stained in the newhom gninett-pig, rat, and rabbit with methylene-blue (Semi Meyer)* (Fig. 545). Held has recently undertaken again the study of these structures by the most careful methods, and has utilized his results to support his doctrine of concrescence as one mode of interneuronal relation \dagger

Flte, 546.- (ill from mellents corporis traperoider of newhorn eat. (After 11. Meld, Arelt. f. Anat. II. Ihysiol., Anat, Abti.., 1897, 'Tal', xii, Fig. 2.) lixation with van Gelatehten's mixture ; staining with iron hemattoxylin. The large axone is serell terminating mpen the efdl and exhibiting what Held calls concresscenfe relation. The small axome with itsaxome hilloek isarising from the coll hody shown in the figire. (Figs. 546 and 547).

Under the designation uucleus pruolicuris, Ramón y Cajal includes the mass of cells lying ventral from the nuclens olivaris superior and lateral from the nucleus corporis trapezoidei. This nucleus is included by most writers in the nucleus of the trapezoid body, but its cells are much larger and are of different shape. The dendrites are large and manifoldly branched. The axones pass into the lateral lemniseus in its medial part (Fig. 548). A few axones pass lateralward, perhaps, to form an association path between the nuclens praolivaris and the nuclei terminales of the enchlear nerve. The curious calyxlike endings characteristic of the nuclens corporis trapezoidei are not found in the nucleus pracolivaris.

Still another nucleus in this region is defined by Ramón y Cajal. He describes as the undeus semilunaris a mass of nerve eells situated just ventral to the convexity of the nucleus oli-

[^359]varis superior, embracing its ventral surface (Fig. 549). The cells in this crescentic mass are stellate, triangular, or spindleshaped ; they are separated from one another by interspaces in

Fig. 517.-Cell of the nurleus corporis traperoide of an adult rablit. Fixation with van Gehuchten's mixture ; parallin sertion 1.5 microns thick ; erythrosin methylent-bhe staining. (Aler H. Medd, Areh. f. Anat. H. Dhysiol., Anat. Abth., Leipz., 1807, Tat. x, Fig. 3.) The axis eylinders (a) which go by the cell are stained homogeneonsly; the fibres (b) terminating in the cell comtain large numbers of isolated nemmanomes the lower bordar of the eefl imfosed by the torminal axome shows very distinctly a most intimate union betwem the axiseylinder protoplasm and the gromed substance ot the rell hody, since bere the same plasma layor is common to both. On the righthand side the rytosponginm is wide-meshed owing to coarse varuolization on arcoment of whinh the axiserylinder terminal looks to be more independent from the rest of the cell mass.
which an enormous number of collaterals are distributed. The axones of the cells situated here are extremely difficult to follow, but appear to run lateralward to become associated with other fibres of the corpus trapezoideum. The nuclens is characterized definitely by the entrance into it of two or more bundles of collaterals of such extraordinary delicacy that Ramón y Cajal considers them to be withont doubt the finest in the whole nervous system (a in the figure). There are usually two such bundles, the lateral being somewhat more voluminons than the medial bundle. They have their origin in the more superficial and delicate axones of the corpus trapezoideum, from which they come off almost at a right angle. The terminal branches of these collaterals inside the nucleus semilunaris are so extremely delicate and so closely interwoven that they can be

The follow, other terized dles of y Cajal ble nero such Ian the erficial which anches so excan be
made out only by means of the highest powers of the microseope. In Golgi preparations they are so fine that they do not stain of a black color, but look yellowish, and resemble minute pearly threads. These bundles of collateruls extending between the trapezoid body and the mucleus semilunaris are easily visible in Weigert-Pal preparations. They are often mistaken for eollaterals which go to the nucleus olivaris superior, but hamon y Cajal insists that the latter are quite different from those under disenssion, inasmuch as they are much coarser, and have their origin in deeper trapezoid fibres (C ' in the figure).

 newhorn monse. 'The npper border of the ligure represents the rentral surfiace. (Afters. Ramon y Gijal, Beitrag zam Sidamm der Medulta Obhagata,

 cross section; E, central aconstie path or phace where the ixsones of the trapepoid bouly turn to ran sertieally into the lemnisems lateratis; a, rell of nuclens of taperoid bedy the axome of which gives ofle collaterals to this
 bifurcates: c, collateral tron another tibe of the same sort tor the melows pratoliaris: d, cell of the nuclens pracolivaris the axour of which appers to go lateralward ; e, erells the axones of which go to the white substance to
 n , radix N. facialis, far scoundi.

From what has grone hefore, it will be seen that the corpus trapezoilloum is a very complex structure containing medullated axones of very different origin, and probably of very different termination. Von Kölliker thinks it probable that the majority of the transverse fibres represent medullated anones arising from cells situated in the ventral cochlear nuclei of the two
sides. But, in addition, there are undoubtedly fibres from the nuclens uervi cochlearis dorsalis of each side, from the nuclens corporis trapezoidei, from the nuelens olivaris superior, from

Fig. 519.-Nu'lens semilumaris of a newhorn cat: method of Golgi. (After S. Ramón y Cajal, Beitrag zan Studinm der Medulla Oblongata, ote., Bresler, Leipz., 1896, S. (OO, lig. 23a.) A, main portion of muclens semilunaris; B, muclens olivaris superior ; O, coarse collatemals enfing in the molens olivaris superior: a, bmale of very fine collaterals which go to the muelens semihunaris; b, delicate superficial tibres ol the corpus trapezoidenm; c, terminals of axomes in the molens olivaris superior ; d, spindle cells of the machens olivaris saperior, the axones of which go into the hilas.
the nucleus preolivaris, and possibly from the nuclens semilunaris.

The finer structure of the lateral lemmiscus must next be
considered. Tho medullated fibres of which it consists are separated from one mother by ishands of gray matter. The gray masses form two main nuelei : the nucleus lemnisci lateralis inferior, which is directly or almost directly continuous with the muclens olivaris inferior, and which extends for a considerable distance upward, and the so-called nuclens lemnisei lateralis superior, composed of a number of gray masses more or less separated from one another, althoue with high powers minute columns of cells can be seen connecting this nuclens with the lower one.

 von Monakow, Arelı. f. P'sechat., Burl., Bal. xxii, 1890, Tat, i, J’ig. 1.)

The most eareful studies of secondary degeneration following lesions of the lateral lemmiseus are those of von Monakow.* He concludes from his experiments that the fibres of the lateral lemniseus can be divided into five portions:
(1) A portion connected with the strie acustiea (Fig. 550, r).
(2) A portion connceted with the nucleus olivaris snperior (After S.
c., Bresler, hanaris; l. cus olivaris lleus semic terminals he nuclens
cus semi(Fig. ฮั50, c).
(3) A portion connected with the ventral deenssation of the tegmentum (Fig. 550, (l).
(4) A portion connected with the nuclens lemmisci lateralis (Fig. 550, a).
(5) A portion consisting of very short fibres (Fig. 500, b).

[^360]The first portion, that eomneeted with the stria acnstice, he thinks, serves to comect the nuclei terminales of the cochlear nerve with the cerebrum. The region of the hateral lemniseus oecmpied by these fibres is shown in the diagrom (Fig. 550).

Yon Monakow's statements regrarding the portion of the lateral lemnisens comnected with the ventral decussation of the tegmentum are not very satisfactory. He believes, however, that it is the medial portion of the lateral lemniscons which is eoncerned. Later studies have, however, shown the eorrectness of this view of von Monakow, and in Chapters LXII and LVIII it will be pointed out that the fibres here mentioned are the axones of eells situated in the mucleus ruber. They descend to the spinal cord.

The fibres in the lateral lemmisens, which are connected with the muclens olivaris superior, ocenpy the dorsal portion of the lateral lemniseas, being mixed with the portion of the lateral lemnisens which is commeeted with the stria aenstica. The bundle in the lateral lemniscus comected with the muclens lemnisei hateralis is situated in its central portion. The fifth portion of the lateral lemniseus deseribed by von Monakow as consisting of short fibres is probably concenned in connecting neighboring masses of gray matter with one another.

The lateral lemnisens has been studied by Golgi's method by Held, von Külliker, and Ramón y Cajal. Ileld believes that the medullated axones of the lateral lemnisens are derived from the nuclens nervi cochlea ventralis of the same side and of the opposite side, from the nuclens olivaris superior of both sides, from the nuclens corporis tripezoidei of both sides, and from the mucleus nervi cochlea dorsalis of both sides by way of the stria acustica. Ilis views concerning the relations here are well shown in his diagram (Fig. 551). Von Kölliker confirms these results in part, and states that he finds fibres from the meleus nervi cochies ventralis going to the lateral lemniscus of the opposite side to form its ventral part; further, fibres from the nuelens olivaris superior and nucleus lemnisci lateralis of the same side. He also "ontirms von Monakow's findings of the relations of fibres in the ventral decussation of the tegmentum to the lateral lemmiscus. The striae acustiea, he believes, undoubtedly help to form the lateral lemniseus in mammals.
a, he hlear uscus . if the of the vever, ich is ctness WIII re the end to rected ortion on of strie nected entral cribed y conr with nethod es that 1 from and of f both s, and y way here confrom 1 lemrther, misisci kow's ion of stica, cus in
L'ilires from nu* Corpues trope- N. faciullis

clews ruber to zointum.
funiculus lut.
eralis.
 Pins ono fond

 ор др!s ано fок?

 Lomniseres lateralis.
Soheme of the erurse fol.
lomed by the fibres in
Fiig 1 Iripezoileum.

How many fibres of the lateral lemniscus are ascending axones arising in maclei lower down, and how many represent descending axones, is not yet fully desided. Certainly tho majority of tibres ascend and represent an anditory conduction path.: That some fibres descend seems certain, from the studies of Ifeld, but further investigation is necessary to determine their exact mamber, their origin, and their terminal relations.

The studies of Ramon y Cajal with regard to the murlei of the lateral lemnisens are lielpful. He holds that while the lower muclens of the lateral lemnisens is anatomically contimuons with the mucleus olivaris superior, it is nevertheless to be sharply separated from the hatter muclens, for its constituent cells are very different in shape, and the axones are entirely different in their distribution. The cells in the lower mueleus of the lateral lemniscus are large, stellate, or spindle-shaperd, and possess long, smooth dendrites, which are much bramehed. The axones of these eells, in contratiction to Held, Ramón y Cajal asserts, do not ascend ; at any rate, in the majority of his preparations he found that they passed medialward, appearing to rm in the direction of the raphe, although he was not able to follow the fibres to their termination. The cells of the lateral lemnions come into conduction relation with an enormons number of collaterals, which come off fiom the fibres of the lateral lemniseus as they pass by, a fact which has been confirmed loth ly Held and Ramón y Cajal.

The cells of the upper nucleus of the lateral lemnisens are more scattered. Ramon y Cajal states that in general they are spindle-shaped with polar dendrites, which extend transversely. Here again the axones almost all go medialward, and, he believes, decussate in the middle line in order to help to form the rentral decussation of the tegmentum.

There has been much dispute as to the nature of the transverse bundles of rather fine fibres, which are easily visible in Weigert preparations from the newborn babe (Fig. 552), extending between the lateral lemmiscus and the region of the brachium conjunctivum. Held assumed that these fibres reprosented medullated axones which pass from the lateral lemnisens to enter the brachinm conjunctivum, and to follow a course farther cerebralward, similar to that of the fibres of the latter bundle. This view has been opposed by von Bechterew, von nhurIn the ry to mintal rlei of of the atinuto be ituent itirely nclens hapeel, nelied. món y of his earing ot able the hatormons of the in conous are hey are ersely. he berm the

trans-

 :ible in 2), exof the res rep-lemniscourse e latter w, vonKälliker, and Ramín y Cajal. Aerording tw won Bechterew,* these fibres pass to the lateral surfuce of the stratum griseum

 of bachinm conguntivm, which in riality forms a emmmisinme betwern the

 Nu.e.s. (m), nuslens rentralis superine, parsmodialis; R.d.u. I', ratix desembens
 tion by Dr. John Il'wetsom.)
centrale, and thence run along it toward the raphe, where they vanish from view. Von Källiker denies any direet relation of these fibres to the brachium conjunctivm, and, on the contrary, assumes that they represent areuate fibres. He describes them as passing beyond the brachimm conjunctivm, and then bend-

[^361]ing down either lateral or medial from the mesencephalie root of the nervus trigeminus, in order to form definite fibra arenate interne (Fig. 553). Ramón y Cajal could not find these fibres described by Iteld, nor conld he find any cells in the muelei of the lateral lemnisens, which sent axones downward, steh as Meld deseribes. We have frequently, in Prof. Mall's laboratory in Baltimore, observed fibres extending from the region of the lateral lemmisens to the region of the brachium conjunctivm, bat have not been able, thas far, to come to any positive conchsion regarding their ultimate distribution.

Fig. 5a3.- lart of a transverse sediom of the spinal extremity of the collientas inforior of the cat. (After A. von Kïliker, handhuch de (Gewebelehre, ele,
 batchinm conjunctivum; ('I, st matum grisemu rentrale; K, ventral limit of muches colliculi inferionis; N $I L$, nuclens lemmisei lateralis; $L I$, lemnisens ateralis: q, fibres raming from region of lemmisens latemas to berome intemal aremate fibres ; IJ , N . tromlearis.

The lemnisens lateralis, having arrived at the inferior horder of the mesencephalon, passes in large part dorsalwart, as has been stated, to plunge into the colliculus inferior of the corpora quadrigemina (Fig. 55t). At this level the reciprocal relations of the lemmisens lateralis, the lemnisens medialis, and the brachinn conjunctivm, become much altered. In the pons the lemasens lateralis is situated close to the lemnisens medialis, the fibres of the one bundle going over into the other without sharp limit. But from this point on the two bondles are easily distinguishable from one another, inasmuch as the lemmiseus medialis continues its conse without marked change of direction, while the lemuisens lateralis tums sharply dorsalward and enters, at least in large part, the muclens col-
root fibr:e find ls in lownProf. from hinm ne to on. are, cte., biri ; $\quad i n$, limit of miniscus rome in-
border as has he corbeal reis, and In the niscus to the te two smuch narked harply us eol.
A. Direct system. (Poripheral anditary semsory burumes, or atditory metmones of the I order.)

\boldsymbol{N}^{\prime} costhliar Nulcus nervi cochloae veultalis
B. Indirent systems. (Ambitory nenrones of 11 ovder and of higher orders.)

Divassati, brachii conjunclivi....

Fic. 554. - Schemes illust rating termination of axomes of N, cochlewe in the eentral nervons sy . (ngether with some of the central anditory metmones. (Alter II. Iteld, Areh. f. Anit. II. I'hysiol., Anat. Abtli., Leipz., 1sis3, S. dedo, Fig. 15.)
liculi inferioris. The brachium conjunctivum at the same level begins to turn ventralward, and a iittle higher up enters into the decussatio brachii conjunctivi.

The relations of the lemniscus lateralis to the unclens colliculi inferioris are very characteristic, and lend an especial stamp to this portion of the brain, so that Weigert preparations of transverse sections through the inferior colliculus are recognizable at first glance, when one is once familiar with the appearances. The nucleus of the inferior colliculus sits like a herry on a stem, the latter being formed by the diverging fibres of the lateral lemniscus. A portion of the fibres pass over the dorsal surface of the nucleus collienli inferioris to decussate in the velum medullare anterius with similar fibres from the opposite side (so-ealled Hirnklappenschleife of Meynert). Von Kölliker believes that many of the fibres enter the frenulum veli medullaris anterioris.

Still another portion of the lateral lemniseus passes by the colliculus inferior to enter the colliculus superior, there to terminate in the middle portion of the stratum griseum collieuli superioris. This buntle, being one of the earliest to become medullated in the colliculus superior, is extremely easy to follow. Doubtless these fibres are of no inconsiderable significance in comection with reflex movements of the eyes depending upon acoustic stimuli, inasmuch as we have seen that the superior colliculus of the corpora quadrigemina represents the most important subeortieal central organ for the control of the eyemuscle movements (Figs. 555-558).

And, finally, a portion of the fibres of the lateral lemnisens probably pass forward through the brachium quadrigeminum inferius to terminate in the corpus genieulatum mediale or its immediate neighborhood.

Held deseribes fibres of the latera iemniseus which pass on directly throngh the tegmentum, the hypothalamic region, and the intermal capsule to the cerobral cortex (Held's diverle achstische Riudembahn). That such fibres may exist is not impossible, though that there are many such seems mulikely, since, as von Kalliker points out, the experiments of von Monakow prove that after removal of the temporal lobe in the rablit and in the cat no alterations result in the lemuiseus lateralis even after the lapse of a long time.

The nuclens colliculi inferioris has, unfortunately, not yet nters eecial tions ecog10 aplike a fibres er the ate in орpo1 Kölm veli by the to terllieuli ecome follow. nee in 5 upon perior most he eyemiseus minnum e or its Mass 011 m, and te acuss-imposince, as a prove in the n after

Cirpus trapezoideum
B. REFLEX PATHE (1) Optic-acoustic reffex path to eye-muscles
(2)Aconstic reflex puth to ficiell minscles
(3) Opth-aconstic rillex puth to

 retlex paths. (Aiter II. Itekl, Areh, f. A mat. und Physioh, A mat. Abth., 1893, s. : 24, Fig, 16.)
been sufficiently studied to permit of more than fragmentary statements regarding the nenrones situated in it, and the dis-

Fig. 556.-Semi-shematic drawing illustrating the relations of the lemmiseus lateratis to the corpma quadrigemina. (After H. Meld, Areh. f. Anat. It. Physiol., Anat. Abth., Leipz., 1893, S. 2ide, Fig. 10.)
tribution of their axones. It would appear that there are contained in it both inaxones (Golgi cells of Type I) and dendrax-

ntary

 dis-Brfor of Lubus limporatis
.acentres. $i c u l \rho u t h(H z l d)$

Finimichlus dersulis

 Aur., millelens rulur.
ones (Golgi cells of Type II). The long asomes apparently take two directions; the majority of them ascend, passing mainly through the brachium quadrigeminum inferius to go, atong with the contination of the lateral lemniseus, to the corpus genientatum mediale. A few of the fibres which pass into the brachium quadrigeminum inferius leave it again, according to ron Beehterew,* to decussate in the roof of the aqueductus cerebri, and probably to terminate in the meleus of the opposite inferior colliculus.

Fig. 5as. - Corpus trapmoidemm, with adiacont masses of gray matter on the right side of the brain of the mbhit ; methon of' (folgi. ('ombined picture. Alter 11. Ifeld, Areh. f. Anal. II. Plysiol., Amat. Ahth., Lépz., 1893. 'Tal', xiia, Fig.

 alivary eomplex.

Held fomd that another portion of the long axones arising from eell bodies in the nurlets of the inferior colliculas tessent, and pass by way of the lateral lemniscus to the varions muclei of the anditory path situated below this level. 'That there must be other connections of the inferios colliculus scems very likely,

[^362]and the impression is gradually gaining gromad that this quadrigeminal body is of the highest significance for the setting free of reflexes in comncetion with anditory stimuli. It appears to stand in the same relation to the auditory conduction path as does the superior colliculus to the visual "onduction path.

It will be of the greatest importance in the future to determine exactly the relation of the inferior collieuhs to the most direet acoustic path which extends from the ear to the cortex. Do the anditory fibres earrying impulses concerned in sharp, elean-ent vismal sensation undergo interruption in the inferior colliculus:- It would seem to me probable, in analogy with the general sensory conduction path and with the conduction path for visual impulses, that the colliculus inferior is not a way station in the shorles/ auditory conduction path to the cortex. It wond seem much more like!y that, for the anditory conduction path, the corpus geniculatum mediale supplies the interruption, thus corresponding to the ventro-lateral group of naelei of the thalamus for the general sensory conduction path, and to the corpus genieulatum laterale for the visual conduction path.

The best description of the brachium quadrigeminum inferins, since the artieles of Meynert and Forel, is that of von Monakow.* The origin and termination were not at all elear to the older writers. Even Forel was satisfied with saying that it went, along with the lemuiscus, into the region of the teg. mentum, while Meynert put forward the hypothesis that from the tegmental region there pass projection fibres to the cerebral cortex. Von Monakow finds only the indirect form of atrophy in the brachium quadrigeminum inferius after experimental lesion of the cerebral hemisphere in the dog and after defoet in the region of the operculum and of the temporal lobe in man (his cases "Widmer" and "seeger"). He believes, therefore, that the fibres of the arm of the inferior collienlus do not extend directly to the cerebral cortex, hut are interripted in the dieneephalon (Fig. 559). In all probability this interruption oceurs in the corpus geniculatum mediale.

[^363]

The topographical relations of the corpus genieulatum mediale and its general histologieal characteristics have already been deseribed (vide supra). When the lateral lemmisens has been cut, degenerated fibres can be traced all the way to the medial geniculate body, but the cells of the medial geniculate body do not atrophy or disappear. On removal of the temporal lobe of the cerebral cortex, however, or on section of the white fibres passing from the region of the medial geniculate borly to the internal capsule, the corpus geniculatum mediale degenerates int toto (von Monakow).* Nissl subdivides the corpus geniculatum mediale in the rabbit into an anterior mucleus, a posterior nucleus containing large cells, a ventral nucleus closely erowded with cells, a dorsal nueleus, a medial mucleus, and a posterior nuclens. Unfortunately, thus far these nuclei have not been thoroughly studied by Golgi's method. It seems almost certain, however, from the researehes of von Monakow, that a large portion, at any rate, of the axones arising in the medial geniculate body run through the retro-lentiform portion of the internal capsule to terminate in the cortex of the gyrus temporalis superior, to end, he believes, by free terminal ramifications in the deep layer of the cortex. Von Monakow holds that Golgi cells of Type II (dendraxones) are interposed in the medial geniculate body between the terminals of the anditory conduction fibres coming from below and the neurones which send their axones out to the cerebral cortex. The bundle of white fibres issuing from the medial geniculate body (Stiel des medialen Kiniehöchers of the Cermans) to enter the internal capsule oceupies in the retro-lentiform portion of the capsule the region just anterior to and a little lateral from the fibres of the occipitothatamie radiation. It and the brachium quadrigeminum inferius are easily demonstrable in sagittal sections of the developing brain, now being studied by Miss Gertrude Stein (Fig. ati0).

The path followed by the auditory conduction fibres is beantifully demonstrable in the cerebral hemisphere by the methor of Flechsig in the brain of the babe shortly after birth, although the following of the conduction path out to the auditory sense area in the cortex is rendered somewhat ditficult by the fact that the fibres of this path do not rom in one plane in the corona radiata, but make many curves owing to their relation

[^364]to the fossa Sylvii. The axones of the cells of the medial geniculate hody become medullated hater than those from the

 (pyamidales); Lam. hemisets medialis terminating in contal jortion of

 lontifomis; e, corpus senieulatum mediak and beneath it the tibres of the butchilum quadrigevinuma interius.
lateral geniculate borly, but earlier, according to Flechsig, than any of the other fibres of the region in which they are situated. Fleehsig* has been able to follow the path satisfactorily by means of horizontal and sagittal serial sections. He says: "The fibre bundles of the brachium quadrigeminum interius, in which are represented without doubt the contimuations of the cochlear nerves, partly hecome lost in the medial geniculate body where the fibres break up, partly go past this, but elose by it. With the latter are associated the fibres which arise in the medial genienlate hody, and the two sets of fibres go together behind and beneath the thalamus to the internal capsule, pass transversely through the same, and then go in two separate bundles to the transverse gyri of the temporal lobe. The one bundle ascends near the external capsule and arrives from behind and above into the auditory sense area. The second runs for some distance along with the oceipito-thalamic radiations and ascends,

[^365]medial ont the
(ib). . I.I. wospimales portion of nigra: 2, i, mucleus π muclents nes ol tho
sig, than situated. orily by s: "The in which cochlear ly where With medial r behind ss tramsbundles e bundle hind and for some ascends,

Fig. Etie.-Frontal section through the armetal hemispheres of a rhild four months and a half old. Widigert propamation by W. Reimers. (After W. von Berehterew, bie leitmgshahmen im (iehirn und Raiu-kemmark. Dhetseh von R. Wainberg. II. Aıll., Laip\%., Is!99, S. 591, Fig. 563.) cilm, hippotampas
 nicis; ce, empalat externat ; fu, formix: fti, pedumentus thatami intiorior ; ft, aconstic path to the cortex entering into the gyrus temporalis suprior ; ftp, corona raliata thalami (pars parictalis): figp, fasiculus gyvi fornieati; fac.

 (pyramidales) ; pt, putamen ; th, thalamus; tro, tractus opticus.

878

Fig. 563.-Nerve cells in the eortex of the gyrus temporalis superior. (After (: Hammarberg, Stadier öfver Idiotens klinik och latologi, etc., Upsala, 1893, Taf. ii, Fig. 3.) .
\qquad etal and centringal projection nene pred in it assur

[^366]chind itself, 1 gyri, (FH igs.
in the fibres ecorde two aticuof the ely adh fifth
rea has ber of er part se area de out, ed horibrains, to posthat of liar cell ies and ve been m to be exactly se area, n from the coror, very (g. 563). sig, beal path to the on nenase areat associa-
ig (1896),

Fig. 564.- Morizontal section throngh hrain showing the relations of the auditory sense areato the other speech centres. (Von Munakow.)
tion neurones, some with short axones, going to regions of the cortex immediately aljacent, others with long axumes commet-

ing the aconstic sense area with more distant regions of the same hemisphere and (thromgh the rorpas eallosum) with the opposite hemisphere. Of these long association tibres, one bumble,
of the meet-

the so-called faseionlas longitudinalis inferior, is stated to ran neet the anditory sense area with the oeripital lobe of the same sille, while a portion of the fascionlus arenatus (fascienlas longitudinalis smperior) commerts it with the island and with the gyrus frontalis inferior. In these bumbles of association fibres are axomes rmaning in both directions. In the atmditory sense area in all probability terminate the axones from numerons association neurones, the cell bodies of which are situated in varions portions of the cerebral cortex, but a vast deal of research will be repuired before very definite statements comerning these can be mate.

 as in l'late l, Fís. 3.

The ar 'itory sense area on the left side has been proved to be of espectal importance in comnection with the functions of speech. It is, in fact, identical with the "centre for the sounds of words" which are so neeessary for the development of the so-ealled "internal speerh." Lasi of this regrom on the left side leads to "worl deafaess." ': sentre is related to the other speech rentres by means on association fibres. Present ideas concerning these relationsare schematically represented in the ${ }^{\text {a }}$ agram taken from von Monakow (Fig. stif).

A lesion of the anditory sense area, on one side only, does not destroy hearing in the opposite car, but probably interferes to a certain extent with the hearing of both sides. Bilateral lesion, involving the atditory sense area on the two sides, causes total deafness. It is not surprising that unilateral lesion does not cause complete deafness, since, as we have seen, there are manifold decussations of the auditory fibres in the lower portions of the central nervous system. Thus there is partial deenssation in the corpus trapezoideum, and again in the mesencephaton, especially between the two inferior colliculi of the corpora quadrigemina. A further commissure in the auditory path to which little attention has been paid is to be found in the commissurat inferior Caddeni. All the evidence goes to show that this conmissure comnects the medial geniculate bodies of the two sides, and, as we have seen, the medial geniculate body on each side represents a most important way station in the conduction path from the internal ear to the cerebral cortex. I should not be surprised, therefore, if the commissura inferior Guddeni were of the highest significance as an anditory commissure.

In the diagrams, Figs. 565 and 566 , the principal groups of neurones in the anditory conduction path are schematically represented.
s not es to sion, total not nanins of ation alon, rpor: th to comr that e two each retion Id not i were tieally

SUBSECTION III.

Abstract

Neurones Connecting the Central Nervous System with the Voluntary Muscles of the Body. (Lower Motor Neurones, or Peripheral Centrifugal Neurones.)

CIIAPTER LV.

THE LOWER MOTOR NECRONES.
General description-Those pertaining to the spinal cord-Perikaryons of the ventral horn-The "middle cells "-The ventral roots of the spinal nerves-Motor nerve-endings in musele-Physiologieal studies-Lucalization of motor function in the segments of the spinal cord-Starrs tahle-Researehes of Sano, Bernheimer, und Schwabe-Cohmma me-dialis-Colnmma intermedio-hateralis-Colnman extremitatis superioris -Columma extremitatis inferioris.

The neurones next to be considered are those which bring the voluntary museles of the body under the influence of the nerve centres. Between the nerve centres and the voluntary muscles one set of neurones-the lower motor nemrones-exist, just as we have seen that for the connection between jeripheral sensory surfaces and the nerve centres one set of nemrones suffice.

The cell bodies and dendrites of the lower motor neurones are all situated within the central nervons system, so that the distance between the central nervons system and the voluntary mmscles is traversed by the mednltated axones of these nemrones. These axones make their exit from the nerve centres always (with the exception of those of the nervus trochlearis, vide infra) from the ventral or lateral surface of the cerebro-spinal axis. The bundles of medullated axones make up the ventral roots of the spinal nerves and the motor portions of the cerebral nerves.

Thr, lower motor neurones are situated in the parts of the cerebro-spinal axis below the diencephalon-that is, in the mesen-
eephalon, rhombencephalon, and medulta spinalis. The cell bodies and dendrites of these neurones oceupy a very definite position in the cerebro-spinal axis, being situated always ventral to the central camal, ocenpying in the medulla spinalis certain portions of the ventral and lateral horns of the gray matter, and in the rhombencephalon and mesencephalon regions which correspond to those mentioned for the cord.

It will be convenient to describe tirst the lower motor nenrones ineident to the medulla spinalis and afterward those belonging to the rhombencephalon and mesencephalon.

(A) Those Pertaining to the Spinal Cord.

In the spinal cord the cell bodies, it has generally been tanght, are arranged in the ventral and lateral columns of gray matter more or less segmentally *-that is to say, longitudinal seetions throngh the cord show that the cells are not evenly distributed, but arranged more or less definitely into groups (Schiefferdecker, \dagger Schwalbe, \ddagger and others). The literature of the subject has been collected and analyzed by Liideritz. \# The total number of motor cells varies much in different portions of the cord. They are most numerous in the cervieal and humbar enlargements, corresponding to the innervation of the muscles of the extremities, least mmerons in the thoracic cord whence the comparatively small bulk of tronk museles receives its nerve supply. In addition to the longitudinal grouping, in eross section also the cells show an arrangement in definite groups, as (ierlach first pointed out (ride infrot). Wialdeyer,\| in his elaborate stmly of the spinal eord of the gorilla, divided the ventral horn cells into a medial ventral and a hateral dorsal group, a classitication agreed to by Kaiser ${ }^{\Delta}$ in his very thorough stndy of the cervical cord.

[^367]'The arrangement of the motor cell groups in human beings has been earefully stmbed by won Lenhossék in the cord of a healthy young man.* Inasmuch as the application of (iolgi's method has convinced son Lemhossék that the cells sitnated most metbally and ventrally in the rentral horns send all their asones not into the rentral roots of the spinal nerves, but through the rentral commissure to the other side of the cord, this investigater excludes these from the motor cell gronps, desig-
 hom, as far as the third cervical nerve, von Lenhossék makes out only a single small longitudinal, rather narrow group of ventral hom cells, separated from the gronp of commissural cells by a narrow space free from nerve cells. From the fourth cervical nerve to the begiming of the cervical enlargement this interspace becomes much broader, and, in aldition, the motor-cell group becomes divided into two well-separated cell nests-a rentral group more medially placed, and a dorsal group more laterally phacel. The intersace between these groms is characterized not only by the absence of motor cells, but also by the presence of large numbers of fine nerve fibres which run in between the groups.

In the region of the cervical enlargement (from the level of the fourth to that of the seventh cervical nerve) von Lenhossék finds a progressive thongh gradual increase in the number of nerve cells in both motor gromp, so that the motor area here is relatively large. The increase takes plate, however, manly in the dorso-lateral group, which now exceds very markedly in size the ventro-medial gronp. In places the darso-lateral group shows a division into two compartments. At this level the medial gromp, is separated from the gronp of commissural cells ly a broal fied, which correspomls to a distimet indentation in the ventral margin of the ventral horn. A similan indentation of this margin

[^368]exists between the dorso-lateral and ventro-medial group of motor cells. The size of the ventral horns rapidly diminishes between the level of the eighth cervical and that of the first thoracie nerve, and the relations in the lower part of this region cor-

Fig. 30t.- Neheme of the strncture of the spinat cord: never cells shown in the loft half of the cord : collatemats shown in the right hati of the cord. After

 going to the ventral and lateral fimiculi. Among these are the cells in the Hucleus dorsalis and somb (rells in the sulstantiat pelatimosa of Robamo: collaterals are eoming off from the axomes. Violet edlsare dommisumb eds or heteromeric mentones : one is sern sumbing its axome into the gray substanere of the other side; the others semp therer axomes into the white matter

 right half of the cord the hack cells repressent the eell bodies of peripheral sensory mesmones situated in the ganglion spinald: their central prolongattions are shown entering the spinal eord as dorsal-root filores, which bifurate and semd collaterals to termanate in various parts of the substantia grisent
 laterals enter the matelus domalis: some pass through the domsal comanissure to the domal harn of the opposite side. 'The red collaterals rome from tha White fibere in the ventral and latemal foniculi ; the lilace collatorals belong to the axomes of heteromerid memrones: the brown coblaterals amd torminals represent tibres from the fasedeali rerebrospinales of preamidal tract. I,

 R. r., radix rentralis; R. d., radix dorsalis; (f.s., ganglion minale.
olip of unishes rst thoon cor-
respond to those described hy von Lenhossék in the upper part of the cervical region-that is, the motor eells are represented by a small single longitmdinal mass, separated from the commissural cells by a narrow stripe free from nerve cells. In the upper two thirds of the thomeic cord the group of motor cells is no longer separated from that of the commissural cells; both sets of cells are reduced in numbers, and the two together make up the narrow longitudinal column of nerve cells in the small thonacic ventral horn, the medial cells being commissural, the more lateral ones motor root cells.

From the level of the ninth thomeic nerve on, von Lenhossek deseribes again a progressive change in the appearances. The motor cells become gradually separated from the commissural cells, so that begiming from the level of the first lumbar nerve there is seen a very broal interspace between the two gromps of cells, broader indeed than in any other region of the spinal cord. 'The motor cells increase here enormonsly in numbers, until the level of the first sacral segment has been reached, where the motor cells are so numerons as to canse the ventral horn to projeet as a broad, plump hemisphere. Very soon within the motor group two subdivisions, as in the cervical cord, cim be made out -a ventro-medial and a dorso-lateral group. In addition, from the level of the fourth lumbar segment on, a third, or central cell group, corresponding ahout to the middle point of the ventral hom, is distinguishable. This group is most distinct at the level of the first and second sacral segments. Lower down the characteristie gronping gradually vamishes, the first to disappear being the central gronp. Soon a division into dorso-lateral and ventromedial ceases to be visible, and again the motor cells become united into a single cell colmm which gradually diminishes in extent. The reduction, however, does not express itself, von Lenhossék states, as in the thoracie cord, by thiming and sharpening of the whole ventral horn, but the ventral horn remains plump as far as its lower extremity, the cells gratually becoming less mumerons.*

[^369]Argutinsky * has recently taken up the subjeet it Waddeyer's laboratory. He conclules that in the eolumms of motor cells and in the nuelens dorsalis there is no distinet memberment of any sort. For the "midde colls" (Milletzellomsinten) atw the cells of the lateral homs he finds an extroordinarily sharle separation into groups (Fig. 5is), but amphasizes the fact that thus far no one has proved the existence of a true segmental arrangement of the cells in any of the gray colnmms of the enrd.

The cell bodies of the largest motor cells form the most promment elements in the spinal cord. There are among the motor cells, however, smaller forms the asones of which muloubtedy enter into the formation of the ventral roots of the spinal nerves. The differences in calibre of the ventral root fiberes have long been recognized. 'The eoarser fibres are medullated carlier than are the finer (ron Bechterew). According to Gaskell and Mott, the coarse fibres are destined for the voluntary muscles, the fine fibres for involuntary museles, by way of the sympathetie system. The strecture of the axone hillock is shown in lig. sio.

The internal structure of the motor wemtal hom cells has been adready deseribed (Section 1II). It will be recalled that they are typical multipolar stichochrome cells in the sense of Nissl (Fig. if(3). 'The demdrites arising from all parts of the
garding their function. 'The eefls sithated in the ventral colmons ure, it is true, predominantly motor in mature, hecanse the greatest mumber of these sond their functional prociss into the ventral roots. Ilawerer, just as one can not say, withont reservation, that all the cedls of the velut eolnmens enter into relation with the correspending merve roots, so it is also not true that it is not extlusively the remls which belong more or less strietly to the wentral horns which become comberted with the ventral roots.
"I ans certain that the cells which send their axis-e. linder processes out into the (motop) ventrat roots (anl be met with in every part of the gray substance: (1) in the ventrul horns where they are certainly predominant; (${ }^{(2}$) in the zone of gray substane which I have mamed the eintermediate zone, and which. lying in the region limited he the lateral columbs of white matter and the contral camat, forms a zone intermediate between the ventral
 the exerption of the dorsal horden-that is the border which forms the socathed gelatimons subatane of Robamdo. In this latter, ul to the present time, only cells have been fond the axones of which branch in an extremety (omplicated way."

* Argutinsky. P. Vober eine regehmitssige (iliedermeng in der gramen Sub)stan\% des Rärkenmarks boim Kougeborenen umd bher die Mittelzellen. Areh. f. mikr. Anat., Bonn, Bl, xlviii (1897), S. 496-523.
deyer's ells and t of any the cells paration is far no ment of
st promte motor oubtedly a nerves. ave long lier than ud Mott, the fine e system. cells has alled that sense of ts of the
ns are, it is er of these ust us one at columns oo nol true etly to the
cuesses ont (gray sulbniuant : (2) liate zome, white mat(he ventral horns with rme the sothe present extremely
cell spread ont into varions regions of the cord, so that the possibilities of contat relation are very great. Ramón y Cajal divides

 thomede aninal cord of newhem habe: After P'. Arguthaks, Areh. f. mikr.
 horizomal eerebellar humden of Flechisig.
the dendrites into three sets: (1) a medial gront which passes toward the ventral commissure in some anmals decussating with those of the opposite side, so as to give rise to a definite "proto-
 the dorsal horn ; (3) a lateral set rimning ont toward and into the lateral finienlas, in some animals reaching the surface of

Fig. 569.-Motor nerve eall from vental horn of gray matter of spinal corn of rablit. (Atter Nissl.) of the three lower processes, the middle one repres sents the axame. All the other processes are demalrites. The margins of the cells and of the masses of stabable substance appeat ton shatre in the reprop daction. At the angle of the division of the large dendrite at the left sumerion angle of the eell is shown one of the " werlges of division" (Verameigntis. kergha). The spindle-shaped Nissl bodies are well shown, esperially in the dendrites. 'This cell is elassed hy Nish as a stichochrome nerve cedl in the apykomorphons comdition.
the cord in large numbers so as to make a sub-pial plexus of dendrites. The large axone arising at the axone hillock plunges " prolotoward mid into face of xins ol tha the repros. It superiot
 1lly inthe cell in the
blexus of plunges
nsually by the shortest route, sometimes, however, by a devious course, into the nearest ventral root of a spinal nerve, leaving the spinal cord at the ventro-lateral sulcus. The myelin sheath

 radix dorsalis; R, eollateral from dorsal root tibre; ci, asomes.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporation
does not begin until the axone has passed for a short distance from the cell. From the non-medulated portion of the axone there arise constantly in hmman beings, inconstantly in many animas, from one to four delicate branches, the "side fibrils" of Golgi. These are always non-medullated and run bach toward the cell bodies which give rise to the corresponding axones. Several have thought that they come into contact with the cell body just as do the side fibrils from the spinal ganglion ee'ls, which ilnber has described.* Others, however, believe that in rumning back they come in contact rather with the terminals of sensory collaterals of the dorsal root fibres. This view has already been mentioned in the diseussion regarding the possible cellulipetal conduction by the side fibrils (Section V).

The ventral roots of the spinal nerves contain the motor fibres of the peripheral nerves. They are, in actuality, nothing more than the medulated axones of the motor cells of the ventral horns. A number of fibres from each ventral root pass by means of the rami communicantes into the sympathetie trunk. \dagger In the spinal cord on each side there ace thirty-one of these ventral motor roots--eight cervical, twelve thoracie, five lumbar, five saeral, and one coecygeal (Fig. 5\%2). The nerve roots do not everywhere correspond to the vertebre. The exact relations of the varions roots to the spinons processes of the vertebre are clear in the table prepared by Reid. \ddagger It would be a mistake to assume that each ventral root corresponds to a definite peripheral nerve, for this is not the case. It has been proved (vide infra)

[^370] axone many trils" oward xoues. te cell cells, hat in nals of Hready eellu-
motor othing ne venbass by trunk. \dagger se venar, five do not ions of rre are take to ipheral Binfra) " collatanism in mi conthe cells secretory e of the uents of erruined. sympahe intlluendings urones of "gal int-
that each peripheral motor nerve, especially those going to the extremities, receives fibres from a whole series of different rentral roots, the opportmity for such distribution being afforded by the different nerve plexises (cervical, lumbar, sacral), and also by the large nerve trunks themselves, which, it seems, are to be looked upon as a kind of nerve plexus. It would seem unnecessary to repeat here what has already been discussed at some length in Chapters XVII and XVIII. The remarks made there with regard to the neurotome and its relation to the myotome, and the distribution of the fibres in the mixed nerve stem formed by the mion of the ventral and dorsal roots, are just as applicable here as there, and can be referred to.

The motor axones of the peripheral neurones may divide several times on their way to the voluntary muscles, so that one neurone is capable of innervating a considerable number of striped muscle fibres. Arrived at the muscle in which they terminate, the bundle of nerve fibres breaks up in the perimysium, forming in it a plexus (Fig. 5\%3). The individnal nerve

Fus. 57\%.-Spinal cord in connereton above with the medulla oblongata and pons. (After A. Ramber, belabluch der Anatomide des Menselane. V. Ansl. Leipz., 1s98, Bd. ii, S. 50t, Fig. \&sis.) F, Hevvis trigeminus; $X^{\prime} I I$, nervas hypuglansths; (b, first cer-

 norve; f, nervis corevgens: r, r, tilnm terminale of the spinal cord, From ! ! o rool marked L_{1} (o) x, atuda equilat: Rer. Hexus bralhialis: (\%, mervis

 sent the spinal gimglia wit the dersal roots. ()n the left side of the tigure the sympathetie trunk in simown. a to ss are gamglia: a, ganglion ervienle superius;

 tirst limbar ganglion; ss, lime sateral ginglion.

fibres can divide from one to three times, each time giving rise to from two to five subdivisions. In this way the number of

 ing fibres, which gato the mond merve ambings, indieated by the melledti-

nerve fibres is considerably increased, until finally there are a sufficient number to supply every musele fibre with one or sevaral nerve-endings (Schiefferdecker). The mumber of nerve-endings for the individual fibres varies; thas the fibres of the gastrocnemius and of the triceps of the frog always receive, according to Simdman, one nerve-coding at about the middle of the fibre.* The fibres of the sallorius, on the contrary, each receive from two to six nerve-endings. In the rectus abdominis minsele a fibre of each musele segment is suid to receive its own special nervembluy. Whils this appears to be true for frogs, in mammals, in

[^371]spite of their great length, the imdividual muscle fibre appears to need only one nerve-enting.
'The views concerning the exact mote of morve-embing vary; it is generally stated that the mednlated fibre, having arrived at the masele in which it is to terminate, sends its axis eyluder only into the fibre itself, the neurilemma apearing to fuse with the sareolemma, the myelin sheath disappeasing. 'The continnation of the axone then branches manifold!y so as to form telodendrions of various appearance. In reptiles one sees typical motor end plates so well known since the stmdies of Kuehne.* In Fig. Sit the appearances to be met with in Lacerta are shown. The appearances ate quite difierent in different animals. In Fig. Sis the relations of the frog are illustrated ; in lig. sith, those in

Fifi. 57. - Mo.ar tulodembiom: "xamined Presh in physiologioal salt sohrion

 fibre. The muclei af the museld tibre are easily visible.
the rabbit. In every case the axone breaks up into a number of subdivisions, many of whieh appear to spread out into disklike platelets. Von K̈̈lliker, Kranse, and others do not believe that the axis cylimber amb telodembions are situated between the satron-

[^372]lemmat and the musele, but assert that it lies noon the sarenlemmat itself; that this nemrilemmat acompanies the subdivi-

 mednlated ferminal bramehes ; ble ressed striation ot the masele is mot shown. (f.1, mom-medullated terminal thbrils with aljacent mueloi.
sions to their terminations, and that it is Henle's sheath which unites with the sarcolemua. The majority of investigators, however, inchding Knchne and Schiefferdecker, take the opposite view. Sihter, of Cleveland, believes that the nerve fibrils are situatel outside the sarcolemma, and 1 must say that the beantiful specimens prepared by his method, which throngh his kindness I have had the opportmity of studying, speak strongly in favor of his view-at any rate, so far as the endings in the

Fig. Soti. - Nerve ending on an intereostal masele of the mbhit. fobld prepam-
 derker's (iewehelehre.)
frog are concerned. Apaithy, however, by means of his goldchloride methml, demonstrates the existence of a very complicated arrangement of his neurafibrille, inside the individual
(After W) alluseliw. Ins. Narmil che is mot
h which tigators,拉 ороe fibrils that the ongh his strongly s in the
musele cells. IIs observations have been alrealy referrel to in Chapter V'I, and Fig. ai' in that chapter may again be referred to.

Sine the introduction of the vital staning with methyleneblue a number of researches bearing upon the embings of motor axones in striated voluntary musele have bern fortheoning. We need only mention those of Ehrlich,* I Wogiel, \dagger and enpecially Retzins. f The investigutions of hatzims are of partientar value, since they include objective descriptions of the motur endings in a long series of vertehrate classes. The recent litemature has been collected and briefly epitomizel by Kallius." The whole lower motor nemrone from the nerve centre to the musele is schematieally illustrated in the diagram (Fig. sia).

The localization of function in connection with the lower motor heurones of the spinal cord is a topic which in late years has interested a progressively increasing number of investigators. After the proofs brought by Sir Charles Bell in regard to the motor nature of the ventral roots and of the sensory nature of the dorsal roots had been generally recognizel, there arose conflicting opinions in the carlier part of this century concerning the functions of the individnal spinal nerve roots.

Panizza, $\|$ as a result of his experiments, deeided that section of one nerve root calused only temporary weakness of the limb as a whole, the weakness increasing in proportion to the number of roots divided. Complete paralysis resulted only when the last root had been eut. According to Panizza, therefore, the varions roots acted as a whole, each one of them being capable of maintaining the functions in their integrity. Johannes Mïller and van Deen decided, from their own experiments and from those of Kronenberg, that the purpose of the nerve plexus, so far as the

[^373]
 all its protoplasmie processes, its axis-eylinder proeess, side fibrils, or collaterals, and cand ramitiations, represent parts of a single cell or neneme. \#.h., axome-hillosk davoid of Nissl bodies, and showing tibrillation ; ax., asis evlinder or axome. This proess, near the ed buly, beromes surrombed hy myelin, m., and a cellular shath, the nemilemma, the latter mot being an integral part of the ururone: c, extophasm showing Nissl hodies and lighter

 m^{\prime}., striped museld tibre; s. L., segmentation of Lamtermann.
motor herves are concerned, is to convey fibres to each muscle from different parts of the brain and spinal cord.

The careful dissections and electrical experiments of Peyer* proved that the group of museles supplied by each spinal root was a complex one, and also that each muscle is supplied as a rule by more than one root, findings which were confirmed in large part and extended by the researehes of Kranse. \dagger

The eleetrical experiments of Erb on the brachial plexus of man made it seem probable that the researehes which had been conducted upon lower animals also applied to the functional relations of the roots in human beings.

From the elinical side, too, Remak \ddagger suggested that functionally related or synergic museles are represented together in the ventral horns of the spinal cord. He arrived at this conelusion from his observations in eases of atrophic spinal paralysis, since he observed that the muscles simultaneonsly affected corresponded to those concerned in definite movements. He even went so far as to indicate the probable position of the centres of certain brachial and crural museular gronps in the cervical and lumbar portions of the spinal cord respectively.

Some help was gained with regard to motor localization at this period from the study of the spinal cord after amputations and from experiments on animals undertaken by von Gudden's method. But the next significant adrance in knowledge dates from 1881, when the experiments with loealized faradie excitation were undertaken by Ferrier and Yeo.\# These investigators, by stimmlation of the individual ventral roots in the monkey, proved not only that various museles contract, but that a definite group

[^374]of muscles in synergic combination is set into activity, the effeet being to produre a highly co-urdinated movement smeh as liemak hand suggested must be the case. 'They found, for example, that stimulation of the first thormeric root canses auldnetion of the thamb and tlexion of the fingers at the metacarpo-phatangeal joints: stimulation of the eighth cervical roet leads to a comp ${ }^{1}$ ex reaction, comprising tirm elosure of the fist (intrinsic museles and long flexors of fingers and thamb), pronation and flexion of the wrist (to the ulnar side), and extension of the forearm with retration of the upper arm (long head of the triceps, especially in action). Stimulation of the seventh cervical root cansed addaction of the upper arm with rotation inward and retraction; the forearm became extended so as to bring the dorsum of the hand against the rmmp, the wrist and fingers being flexed (at their second phalanges), the so-called sealptor mi movement, involving the eo-operation of mumerons miseles. In the same way they determined the complex movements which result on stimulation of the ventral roots of C vi, Cv, C iv, Si, L vii, L vi, L, v. L, iv, and Liii.

Since the museles thrown into action by each ventral root are innervated in most cases by several nerve tranks, Ferrier and Yeo conchuled that the plexiform junctions of the varions roots are for the purpose of distributing the requisite motor fibres in different trunks to the various museles engaged in each functional eombination. Such a view would explain why section of a motor root, while causing paralysis of the corresponding combination, need not necessarily paralyze the individual muscles involved, and the remarkable findings of Panizai were thas made less unintelligible. These experiments were in large part confirmed by Bert and Mareacei,* and were confirmed and extended by Forgue, the latter investigator stating that each root passing to the upper en lower extremity supplies the two opposite surfaces of the limb; that, in the cervical region, as the thoracie roots are approached, the resulting museular entractions involve the

[^375]he effect s liemak ple, that i of the ualangeal "omplex museles lexion of um with specially t cansed traction; m of the lexed (at ovement, the same result on vii, L vi, rrier and ions roots - fibres in unctional f a motor bination, involved, nade less onfirined ended by rassing to - surfices acie roots volve the
a distribu, Firenze : also Gaz.
inferior segments of the limb, and that, further, passing in this direction the contractions progressively involve the masonlar masses proceeding from the ralial to the alnar side of the limb.

The whole subjeet was again taben uf, in $180 \cdot$ by Risien linssell,* of London. Russell begran his researeh byy entting individual roots and exciting the peripheral ends in order to observe the total compound movement prodnced. Subsequently he attompted to make a minnte analysis of this combined moventent, dividing it into its eomponent factors he using minimal currents of exeitation applied to the separate bumdes of nerve fibres in each nerve root. He makes the remarkable statement that stimulation of each of the various bundles visible on the surface of the transverse section of a root leads to a different movement. He attempted also, by exeiting snecessively the varions roots and their parts, to find out whence individnal musches received their imervation. Agiln, when a given musele was fonnd to be immervated from several rentral roots the attempt was made to determine to what degree any given root supplies it.

It is impossible liere to give more than a single example of the results reached by this investigator, but for this the effect of stimulation of the eighth cervical root and its constituent parts will serve very well. linssell fomb that on excitation of the whole root of the eighth cervicel nerve the whole upper limb becomes extended straight down by the side of the trunk parallel to its long axis and in a straight line, with the digits very slightly separated. Fiurther, on excitation of the iudividual bundles of the same nerve root he was able to differentiate no less than twelve constitnent movements: (1) Arm drawn to the side of the trunk with tilting of the elhow ontward; (\because) arm drawn down from the shonlder and fixed to the side; (3) arm drawn across the thorax to the opposite side; (4) arm drawn to the same side of the thorax; (5) retraction of the elbow: (6) extension of the elbow ; (${ }^{\prime}$) flexion of the wrist ; (8) extension of the wrist; (9) supination of the forearm : (10) pronation of the forearm ; (11) flexion of the dirits ; (1 $\stackrel{\sim}{2}$) extension of the digits. Russell determined that the fibres representing a certain movement, as a rule, preserve the same position in a given nerve root. "T'lus, for example, extension of the wrist is represented by a bundle of tibres

[^376]in the upper part of the ciremmference, while flexion is represented by a bundle of fibres in the lower part of the same root. Eatch bundle of nerve fibres representing a single simplo movement in a nerve root remains, linsell states, ilistinct in its course to the musele or museles producing such a movement without inosenlating with other motor nerve tibres.

It is interesting to note that all the recent investigations indieate that the gronp, of muscles supplied by any given root to a limb oceupies not only the anterior but also the posterior surface of the limb; in other words, that museles, the mimpeded action of which would produce a certain movement, are represented in the same root ats others, the action of which would produce a movement diametrieally opposite (antagonistic museles). In such combinations, however, one set of muscles is always more extensively represented than others, so that with sufficiently energetic stimulation of all the fibres of a given nerve root certain muscular contrations-for example, those of flexion of the joint-predomimate in their action over others. That the individual bundles of fibres in the nerve roots do not go to single muscles is proved by the fact that it is impossible by stimulation of sueh a single bundle to produce contraction of a single musele alone. As might have been expected from what we know of the relation of the myotome to the neurotome, when the same musele is represented in two nerve roots, the fibres of a musele which are imervated by one nerve root are not innervated by the other.

In general, these results have been contirmed by a whole series of researehes in embryology, comparative anatomy, elinical medieine, pathological anatomy, and experimental physiongy. In 1888 M. Allen Starr* did great service by combining in the form of a table the data whieh 1 p , to that date had been aceumulated. We produce here the table, slightly modified, including some of the ehanges suggested by Edinger.

[^377]reprete root. move; course without
ns indirot to a surface 1 action ented in oduce a In such e extennergetic musenlar reilomiindles of roved by e bundle ght have myotome 1 in two 1 by one ole series al mediagy. In the form mulated. some of

Features,

Med. s'e.,

Larculizution of Punction in He Ditforerent Segments of the syimel Card. (.IV. .lllen Starre, slighlly mulified by bilimyer.)

Segments.	Muscles.	Reflex m	
C. ii-iii	M. sterno-eledo-mastoidens. Mon. sualeni et eolli. Diaphagimu.	Inspiratory rellex on quickpressore heneath rils.	Nrek mul buck of head.
C. ir	Diaphragmm. M. suruspinatus. M. intraspinatus. M. deltuidens. M. Biceps brachii. M. curaco-brachiadis. M. supimator hongis. M. rhomboidei.	Dilatation of the pupil on irritation of the nerk (C. iv-vii).	Noek. "plur part of shoulder. Outer side of arm.
C. v	M. Meltoideus. M. biceps brachio. M. corneo-brandialis. M. supinater longns. M. supimator brevis. M. pectoratis major (pars chaviculatis). M. sermatu: anterior. Mm. rhormoidei. M. brarhialis antiens. II. teres minor.	sompular reflex Trimben reflex of of the maresponding museles.	Back of shombler allul arm. Guter side of upber arm nat of the forearin.
C. ri	11. biceps brachii. 1. Brachialis amticus. M. pectoratis major (fass chavionlaris). M. sermas atherior. M. triecpes brachii. Mon. extelisores mans et digitorum. Min. promatores.	Tomdon rellexes of the Mme extensores lacerti et brachii. 'Temberimeres of the inuseles of the wrist.	Outer side of forearm. Back of hand and ralial region.
C. vii	M. trieepls brachii (eaput longum). Mm. extensores mants et digitormm. Mm. Hexors manns. Man. pomatores mamis. M, pectomalis major (pars stermo-costalis). 11. subseapularis. II. latissitams doesi, II. heres major.	Blow uron the palm of the hand catises closure of the fingers. Palmar raflex (C. vii-T. i).	Radial region of hand. Distrihution of N. medianus.
C. viii	Mon. flexores manns et digitorum. Vm. minores manns. Mon. extensores pollicis. Mm. minores manus. Mm, eminent. thenar. al hypothemar.	Pupillary reflex.	\int Whar recrion.

 (10utinumed.)

'I'. if vii Mm. domi.
Wh. abhominis.
Man. ©rodores spinar.

ग. surlorims.
Min. alxhminis.

1. if M. iliopmons.
N. sarturius.

N!m. Hexores gromics (liomak!

L. iia M. puatriongs femoris.

Im. robatores lemoris (inward).
Mat. alllatores fomoria.

Mas. mhantores fomoris.
M. Ih hatiosambrim:

Man. thexomengemis (Fimine?
1a, Nom. rodatores fomoris (outwarl).
Mm. lexomes gemus (lommors)
Mm, Hexures perlis.
Man. extmontre digita. 11111.

S. i-ii Mm. Almores pertis of Plantar rethes. aligilarum.
V17. fromai.
Mon. minnore prolic.
\therefore Bii-s Mm. promai.
liollowas.
Fingas ria motlox (I'. is- Mi).
dhilominal reples
('l'. vii-xi).
('remater redres (l., i iii).
latellartandon rofles (la ii-iv).
lilutenl rethes (1., ir $\begin{gathered}\text { •) }\end{gathered}$
\qquad

Sohillas temburn tles. Vixical ame reveral folltres.

Burk of hily aml
 patio wfort.
 ithervintiol.

Skin of thoras, Inck, abloment.
 mator.
skin of pulbire reo gions.

- Intrrior part ai s'rolloll.
Oulor side of hip.

Introior and inner side of thigh.
hamer side of thigh atul logr as far as ankle: inuer sidu of font.

Bunk of lhigh: wilor side of lore atill finot.

Skin wry saroma,
 lalia, anal abous แ1114:

The starting point for the recent stalies of the gromping of the berve colls inside the spinal cord is the exhamstive resmateh of Watdeyer * upan the spinal cord of the grovila to which we have already refored. The gromps designated hy him, or modidiations of theste, ate still in use.

The mext important researeh haring bown the topie now

 re side
umder comsideration is that of Kaiser.* This mathor amalyed most carefully the work of previons investigators and then himself made ath elaborate stmily of the well gromps in the ventral horns of the cervieal regime of the spinal coral. Nor was he satistiod with simply gromping the wedls momphogerally, hat attempted to get at the functiomal maning of the varions gromp of redls in the ventral homs. His limlings :me ilhustrathed in Figus. AS: to is:.

The stmatios of rom lanhossék have alreaty bern refored to (ride suprea).
'T'wn American resemelnes worthy of mote masi hore the mentioned, hat of llammomit t amb that of Collins. $\frac{1}{\text { Hammond }}$ was able to state that in the llird lambare serment of the spinal eand (Fig. ises, I) the metelens of the ghalriow femoris orempers the midille part of the ventrobaterall column of cells in the remtal horn: at the lewel of the temb thanacio segmem (Fig. is: B) the crolls of the abdomiatal musches are sithated in the vell-tre-kateral amb indermedia-lateral colnmes: in the lown cervinal

 reviral rond wowding in Forgur

 thes Italsmarkes, Me., Itatag, Isal, s.

 Vion.
 1491.

 119. 1i-8!

Fiti, 574, - Sumal cord of adnlt man at level of C III, to show the gromping of the

 laterale; r. fi., ventmit group: zh, sattered cells.

Fw. 580.-Transverse section through human spinal cord at level of C'V. (After O. Kaiser, Die Fouktionen der Gabglienzellen des Jakmarkes, ete., Dang,
 lateral gromp 2 ; l. (i.s, lateral group 3; m. (i., medial group; Mz, middle

Fle. 5s1.-Tramserse section through the hmman spinal cord at the level of " Clll. (After O. Kinser, bie funktionen der (amgliemedten des lialsmarkes, cte., latag, 1891, Taf, vii, Pig. 7.1 I.h.fi., lateral domal group; l.r.f., latemal ventral group; m. (i., medial group; Mz, midulhe cedls.
region (Fig. $88: 3$, (') the muclei of the manseles of the forearm are situated in the ventro-lateral column, while the muscles of the hand are represented behind these in the most ilonsal and inferior parts of the nuelens of the superior extremity.

Collins compared the corvical enlarement from a normal cord with that from a case of polionyelitis. by careful examination of serial sections he concluded that the rast majority of the motor cells of the cervical cord show a definite arrangement; that certain of these cells form colmms which extend throngh several spinal segments; that detinite functions can be attributed to certain groups and to eertain columns of cells in-

 tions of latema gronp; l.d.di., lateral dorsal gronp; l.r. (i., lateral vontral group; m. (i., merlial group.
side the spinal cord ; that the main cellular groups corresponding to the brachial plexus are three in number, and extend from the upper part of the fourth cervical segment to the iverer part of the first thomeic segment, the cells of the upper part of this territory inmerrating the museles of the shoulder and of the arm, the cells of the lower part innervating the muscles of the arm and of the hand. 'The group of cells innervating the flexor museles is sitnated outside and below that innervating the extensor museles. On the other hamd, the cells imervating the extensor muscles are more medially phaced than those imnervating the flexors. The museles of the back are imervated, he be-
lieves, by the cells situated ventrally and medially in the ventral horn. Collins believes that the number of cells and cell groups is in direct relation with the motor functions of the parts corresponding to them topograpically. The nuclens for the phrenic nerve, according to Collins, oceupies the ventro-medial portion of the ventral horn at tl lower part of the third eervical segment (Fig. is4).

The loealization of cells corresponding to various museles entered upon a new eral with the introduction of the special method devised by Nissl in 1894.* This method (Methode der. primaren Reizeng), and some of the results to which it has led, have already been referred to in Chapter $X X$. It depends upon the fact that if the axone of a lower motor nemrone be severed, certain definite and easily recognizable changes occur in the cell body of that nemrone. There is disintegration or disappearance of the tigroid masses in the protoplasm, and the muclens beoomes dislocated to the side of the cell. 'The inventor's applieation of his own method was not so happy as that of recent investiga-

Fug. 583.- (iromping of "oll bodies of lower motor neuromes innervating varions maseles. (After (i. llammomd. N. Y. M. J., INQ.4, ats modified by F. Nimo.)
 (ehls inmervating the ahdeminal museles. (C. Level of inferion erevieal eord ; ventral muclens goverming museles of forearm; dorso-lateral nuclens governing intrinsile museles of the hand.
tors, for, instead of extirpating individual muscles, Nissl cut definite nerves such as the radial, the ulnar, and the median. He fond changes in ceils in the spinal cord, not in compact groups, but more or less at intervals, a fact which is not surprising

[^378]when one consilers the central and peripheral relations of these nerves, and those of the nemrotomes and myotomes to whieh they eorrespond. Ilis results have been in general confirmed by Colenbrander,* by Marinesco, \dagger Flat:un, \ddagger and by others. By means of this method attempts at localization in the , nelens nervi oeulomotorii have been made by Bernheimer ${ }^{\#}$ and Sehwabe \|(wide infru).
J. Erlanger, in Prof. Mall's laboratory in Baltimore, has used this method to determine the position of the cells in the spinal eord, which imnervate the biceps muscle in rabbits. After extirpating the muscle

Fla. 5s.1.-l biagram of the human spinal ford at the level of (' II from at catse of
 M. I., 1sit, ats moditiod by F. Simo.) The emeleus of the pherenie is shown. or entting the motor nerve going to it he studied the changes in serial sections in the spinal cord, the animals having been killed fifteen days after the experiments.

A most important series of researehes in this eomnection have been undertaken by Sano, ${ }^{\wedge}$ who hats studied a number of spinat cords by Nissl's method after amputation, and has made a number of ingenious experiments on cats, pigeons, and rabbits. From

* Colenbrander. Over de Structuur der Gangliencel uit den boorsten Iloorn (1896), cited by Sano.
\dagger Marineseo. Op. cit.
\ddagger Op. rit.
\# Bernheimer, s. Zur Kenntniss der Localisation in Kerngebiete des Oculomotorins. Wien. klin, Wchuschr., Bat. is (1896), No. 5.
$\|$ Sehwabe. II. Ueher die Gliederung des Oculomotorinshaupterns und die Lage der den einzelnen Maskeln entsprechenden Gebiete in demselben. Neurol, Centrallhl., Leipz., Bl. xv (1896), S. 792-794.
Δ samo, F. Les localisation motrices dums la moelte lombo-sneric. J. de neurol, bt hypnol., Par., I. ii (1897): Les loealisations motrices dans la moelle épinière. Conmunieation an Congrès de Neurologie et d’Hypnologie, Septembre. Bruxelles. Résumé dans le J. de neurol. et hypuol., 1897; Les localisations des fonctions motrices de la moelle épinière. Annales de la Sococtó Médico-Chirurgicale d'Anvers. 19 Novembre (189\%): De la eonstifution des noyaux moteurs médullaires. .J. de neurol. et hypnol, (1898), p. 62: localisations médulaires motrices et sensitives. /hich. (1898), 1. 129.
the results of these and a very careful consideration of the literature, this author has formulated his views concerning the con-

 Anvers. Browelles. 1sis, p. 32.) Columma mediadis- 1 . ", short rotators of

 medialis mear the polnman callalis centralis. fobluma intermedio-lateralis-s.

 the M. latissinus donsi. Cohmmue estremitutis superiaris-3. Mon. peretorales;
 \therefore © M. bierps: lowe down suphators and extensoms of the fingers ; between dande tlexores and pronators: ef themar and hypothenar moseles; f, hypo-

stitution of the columns of motor cells in the spinal cord. His work is of value and interest and should be consulted by every one who wishes to become familiar with the most recent findings dealing with spinal motor localization.

In brief, simo distinguishes, as do most neurologists, in the ventral hom two longitudinal columns of motor cells which are
almost constant thronghont the whole length of the and - the columnte medialis and the columme intromedinlateralis: ${ }^{*}$ on transverse section these are designated the moled mediales amd the nuclei intermediolaterales. Fanch of these colnmas mat ho subdivided in phaces into two, three, of four seondiny colmmas.

Between the colaman medialis and the colnman intormelio-

 of the toes; $, j, k$, intrinsic minseles of the fowe.

* The term columna intermedio-lateralis corresponds to the sicitentornzellen of Waldeyer. These, together with his Mittelzellen, correspond to I. Lockhart Charke's Tractus intermedio-hateralis. deseribed in his Further Researches on the Gray suhstance of the Spinal Cord. Phil. Trans, Roy. Soe., Lond., Bd, exlix (1859),
lateralis there are intercalated, in the cervical and lumbur enlargoments, longitmbinal motor nuclei of emsiderable size which are related especially to the museles of the extremities. These intercalated nuclei are known in the cerviem enlargement as the columna extremitatis sumrioris (Kaiser's mucleus extremitatis shlerioris), and in the limbar enlargement as the columne e.rtremitatis inferioris.

In Fig. asi the varions andei in the cervical enlargement are shown not only in their longitudinal extent, but also in their reriprocal positwin in transverse section. In lig. asf the motor nuclei of the lumbar enlargement are represented. If the legends accompanying these be curefully consulied they will, it is believed, be understood without further deseription. It is to be remembered that not every one of these malei has as yet been definitely established by means of Nissl's method, but the figures represent aceurately the present status of knowletge gained from a great many different sources. The artieles of Matin* :and van Gehnehten \dagger may with profit be consulted in this commetion.

On the whole, then, it is seen that in the spinal cord each muscle is represented by a nucleus of ventral horn cells. Further, each segment of the spinal cord may contain portions of the nuclei of a number of different muscles; and these portions, judging from electrical excitation of a whole ventral root, may correspoud to a very complex movement. Section of the ventral root, as Warrington hats shown, leads to degeneration of the nerve cells in all the groups in a given segment. Russell's experiments, in which he excited electrically the indivilual bundles of a single ventral root, render it almost certain that the very complex movement represented in a whole ventral root can be analyzed into a large series of simpler component movements. The nerve cells corresponding to these individual simpler component movements have not been localized inside the spinal cord, but there can be but little donbt that they will be at some later time.

[^379](B) Those pertaining to the Rhombencephalon, Isthmus, and Mesencephalon.

OHAPJER WNI.

THE LOWER MOTOR NETBONES ('ONTINERH).
Lower motor nemones above the spinal cord-Columm medialis-Cobumat
 Proximal or prositic cavilies-Distai or postotio cavities- ('ephatic myotomes-'The so-ealled "rompenens" of the peripheral nerveSomatie motor, somatio sensony, viseeral motor, visceral sensory, amd acustico-lateral romponents-N, hypuglossus-N. aceessorius-N. vagus $-N$. ghossopharyugus-N. facialis-N. abducens-N. trigemimus-N. trochlearis-N. ocmbuotorias.

The lower motor neurones pertaining to the rhombencephaton and mesencephalon are those the axomes of which go to make up, the motor cerebral nerves. Contimons with the motor gray columns in the cord are similar columns, thongh less regular and more interrupted in the medulla, pons, and midbrain. The motor cells in these upper regions (Fig. 28:) are divided into two very distinet longitudinal masses, one placed more medially, the other more laterally. To the melial column passing from below upward belong the nucleus N . hypoglossi and the nuclens N. abducentis; while to the lateral column passing from below upward belong the motor muclei of the N. accessorius, N. vagus, N. glossopharyngeus, N. facialis, N. trigeminus, and probably also the nuclens N. trochlea is and the nucleus N . oculomotorii, although there is some doubt as to whether the last two nuclei belong to the lateral or to the melial column of motor cells. In the medulla oblongata the motor cells form almost a continuous column, but in the pons, isthmus, and midbrain there are wide interspaces between the groups of motor cells.

The central canal, in passing from the cord to the ventriculus tertius, shows two marked curves. The first is at the junction of cord and medulla, where the canal curves rapidly dorsalward to
open into the ventriculus quartus, 'The secomi is ubove the uqueductus cerehni (Sylvii), where the cmal curves rentralward to enter the ventriculus lertias. It will be noticed that the longitudiml fibres near the raphe follow the sime curve. Opposite

Fac. 5×7.- Brain, showing the origin and termination of the nervi derebmates; human embryo. From a reconsifuction anlarged abome vightern times.
 selichten des Menselen, dena, 1s!s, S. 5.42 , Fig. 331.) Te, tuber cintroum; II. hypophysis.
the lower enrve the fibres of the fascieulns ventralis proprins pass dorsalward to enter the faseiculus longitudimalis medialis. Opposite the upper curve the ishres of the fasciculus longitudinalis medialis pas: ventralward to the region of the nuclens fasciculi

* Westphal, A. Veber die Mnrkscheidenbildmy der Grhirnnerven des Menschen. Areh. f. Psychint, u. Nervenkr., Berl., Bd. xxix (189i), S. 474-52\%.
of the head, of the eyes, and of the mildle ear arise from cortain so-ealled "hoad eavities," which appear at a certain period of devolopment in the mesoderm of the head. As has been pointed

 mil, N, corvialis primus.
out in Chapter N'Il, there is some dispute as to the exmet mature and origin of these bead casities. Wherens many observers, and it would seem the majority at present, look upon them as portions of myonmes, others regard them as eorresponding to entoff portions of the body eavity. Aecording to the former view, the maseles of the head and eyes would be a part of the genemal skeletal musenature, while aceording to the seromd view they would represent portions of the siseeral musentature.

Assuming for the moment that they are portions of the skeletal musenlature, and have their origin in myotomes, it will be interesting to refor, if only brietly, to the views hed with regard to eertain details of their develophenth. Host observers seem to look upen the "head eavities" as corresponding to the ventral tiedds of the myotomes, the dorsal tiedds having disappenred, owing to the great extent of the eapsule of the brain, which, on aeoomt of its tirmness and immobility, makes a dorsal masenlatiore suluerthous (Kollmami).

The relations hase been perhips best stadied in the hony tishes in which ninn rephalic myotomes are distinguished, four of which are proximal or proitio-that is, lyiug in fromt of the anditory vesiele-and tive distal or postotic, lying behind the anditery vesicle.* 'Thus far the proutie cephalie savities have not bern made out in minn or in mammals, aldhomgh it is not impossithe that thanes of them may yod be fomm. The relation of the individual museles in man to eephatin myotomes is up to the present time largely a matter of sperulation, hat it is believed that the musdes supplied by the N. oudomotorins are derived from the tirst prointic myotome or ceplablie emity (Fig. is!), the museles supplied by the N. troxhlearis from the seromd proutio myotome, and the museles suppliod by the N : abduens from the third myotome.
'lle fourth myotome is supposed to give rise to the museles
 sor reli palatini, all supplied by the motor part of the N. tri-

[^380]geminus. It has been suggested also that the M. mylohyoideus and the anterior belly of the M. digastriens, on accome of their innervation, are also derived from the fourth eephalic cavity.

 I wonty-right primitive segments. CAtere atratation hy (orming, from d.
 S. 244, Fig. 167.)

The myotome corresponding to the N . facialis gives rise to the whole musenlature of the face, the phatysma, the M. stapedius, the M. levator veli palatini, and the M. unale.

The ventral processes of the five postotic myotomes (lying in the chordal part of the head) grive rise in the bony fishes and in reptiles to the muscles of the tongne (Fig. 591). This has not been definitely proved in man and mammals, but from the behavior of the N. hypoglossus and the relations of this nerve to the museles concerned, it seems likely that a similar origin will be found true in them.

The N. aceessorius is primarily a spinal nerve, and the myotomes corresponding to it are myotomes of the tronk, not cephatic myotomes.

The eomparative morphology of this region, so important for the proper understanding of the problems of cephalogenesis, has been discussed in a recent paper by Fürbringer.*

[^381]'The comparative morphology of the cerehal nerves has been carefully stmdiel, by Itnsley, Gegenbanr, Strong, Ewart, Herrick, Kingsbury, l'inkus, Cole, Allis, E. L. Mark and his associates, and others.

This seems a snitable place to mention the ideas which have theen developed, especially by American morphologists, coneerning the componcuts of the peripheral nerves. In this comertion the researehes of Strong, Herrick,* Shore, Cole, Kingsbury, \dagger Johnston, \ddagger and others may be referred to.

These investigators recognize in a typieal spinal nerve (in the gnathostome vertebrates) four dilferent components:
(1) A somatie motor eomponent originating in the ventral horn eells.
(:) A somatic sensory or general chtaneons component, the axones terminating in the dorsal horn.
(3) A visceral motor component.
(4) A visceral sensory component. The exact central relations of the visceral components have not yet been satisfactorily worked out, though the general opinion seems to be that the sen-
banr, Leipz. (189\%), s. 351-is8. Herrick hats published a full review of his article, together with tables illust bating the metamerism of the spimal and cerehral nerves, in the domrnai of Comparative Neurology, vol, vii ($\mathbf{N G A}$), pl. 25-48.

* Herrick, C. .J. The ('ramial Nerves of the Bony Fishes. J. Comp. Neurol., (iramsille, vol, viii (18!8), pp. 162-1;0.
† Kingsbury, B. F'. 'The Enopphatie Evagination in (imonils. J. Comp. Neurol., (iranville, vol. vii (1s92), p. :3:.
\ddagger Johnston, J. B. Anat. Aı\%, Jema, BiJ. xiv (1896). S. 92-93.
sory visceral fibres enter the cord by the dorsal root, tho visceral motor fibres leave the cord b_{y} the ventral root, in higher mammals, and by both derisa! and ventral roots in inframammalian

 arigin of the maseles of' the tomgue. Aftor (orning, taken from J. Koll-
 s! (ti, Fizg. 16!.)
gromps. In the spimal cord it is believed that both sorts of tibres are related to the colmmat intermedialis or region of the corm laterale, the motor fibres in all probability arising there, and the sensory fibres terminating there.

Herrick, in his study of the cerebral nerves of the bony fishes, states that in the cerebral nerves these fom components are present, and in aldition a fifth component, the so-called aenstico-
isceral mammalian
lateral. The somatic motor component, for example, is represented by the motor nerves of the eye museles, the somatic sensory or general cutaneous component by the general sensory fibres of the nervus trigeminus and the nervos vagus. The

Fig. 592.-A diagmammatie view of the sensory components of the crebral nerves of Menidia, as seen from the right side. The diagram is hased npon at pros
 from serial sedions. The gememal entatome component is indiented ly the single cross-hateling the commmos rembpoment by double reoss-hatehing and the atestien-lateral is drawn in blatek. (Alter c'. J. Herriek, J. (omp).
 breg. Y, the ganglia of the fome banchial rami of the ragns, the last one contaning also the ganglion of the r , intentinalis; d.l.!. IVII, the dorsal

 neons ganglion of the vagus nerve (jugulatr g. of shore able Strong) ; loh. I,
 ramms cutancus dorsalis of the vagus; r.intest. X, rambs intestinalis of the
 superticialis trigemini : r.aph.sup. I'II. ramus ophthalmicus superth••ialis farialis; r.of., ramus oticus; r.pal., mams palatimus fardalis; r.rer. I'lI. ramms
 tremations facialis: sp. lif, tractus spinatis nervi trigemini ; t.f, the tuber-

 the r. hucealis TlI, together with commmons tibres: 'I'MI, the eighth merve;

visceral motor component corresponds to the motor fibres of the other cerebral nerves, and these fibres leave the brain by dorsal roots to become distributed to the branchial museulature. The
visceral sensory component as well as the viseeral motor component is very largely developed, and, according to Herrick, is represented by the commmis system of the nervus vagus, nervus glossopharyngens, and nervis facialis. The fibres of this component terminate either directly or by mediation of the fasciculus commmis in the vagal lobe which corresponds to the nuclens ala cinerea of higher forms. The communis system of the head itself differs from the corresponding visceral sensory system of the trunk in that it receives fibres from the taste buds and from other sense organs not belonging to the system of the lateral line. By the aenstieo-lateral system is meant the structure which receives fibres from the ear and from the organs of the lateral line, but no other fibres. These fibres in the bony fish terminate apparently together in the tubereulum acusticum. The motor fibres for the unstriped visceral musculature pertaining to the cerebral nerves are, like those in the spinal nerves, very small, while those for the striated visceral musenlature of the branchial arehes and for the somatic eye museles are large. The fibres of the acustico-lateral system are of two sorts; those from the orgams of the lateral line are usually large, while the anditory fibres are of medium size.

The general cutaneous fibres are usually of small size or of medium size, while the visceral sensory system (or commmis system of the head) consists of very small tibres. In Fig. n9: is reproduced the diagram which accompanies IIerrick's artiele, and which illustrates the relations of the sensory components in the cerebral nerves of Menidia.

The various groups of motor neurones corresponding to the individual motor cerebral nerves may now be properly considered some what more in detail.

1. Those the Axones of which belong to the N. Hypoglossus.

'Those corresponding to the N. iryotiosses have their cells of origin in the so-called nucleus N. hypoglossi. This consists of a gray column some eighteen mm . long, from one to two mm . broad, and about one mm . in thickness. It corresponds to the continnation upward into the medulla oblongata of the medial portion of the ventral column of gray matter of the spinal cord. In its lower part it lies ventral to the central camal of the medulla oblongatil. Above, the column is thicker and is situated beneath the floor of the fourth ventricle adjacent to the suleus medianus on either side. It extends anteriorly as far as the region of the
or comerrick, is 3, nervis is comiscieulus nuclens the head in of the om other ne. By receives line, but e apparibres for al nerves for the 1 for the o-lateral eral line size.
ize or of mmunis Fig. 592 s article, ponents
; to the usidered
eir cells nsists of wo mm. s to the a medial al cord. medulla beneath edianus 1 of the
 the brain of "new-horn babe, showing the nuclei of the cerebral nerwe and the area of exit and of entrance of the roots of the eerebral merves in flat pro-

 murlens N. vestibulisurerior: Nu.u.r.l., muelens N. vestibuli lateratis (Deders;

 N. trigemini : R.f.u.c., malix desemdens N. vestibuli; S.!., substantia gelati-
 ventral horin cells. The mungers to the left of the drawing indieate approximately the lavels of the correspouding transerse sections represented by Figs. 308 to 317.
The phane of the sections from whiph this diagram was made is not site trams-
 struck by the knife more cerebralward than the vental surfare, the angle formed by the phane of the section with the lengitmanal axis being aproximately seventy decrees, ats masismed on the cerebnal side. This acconts fir the evident silight) displacenent rerebubard of the struetures in the ventral portions of the sections as compared with those in the dersal portions.

GROUPING AND CHAINING TOQETHER OF NEURONES. 9g:

F14. 5133.
strice medullares. It is separated from the floor of the fourth ventricle by some gray matter which corresponds to the general stratum grisemm centrale, in this are a namber of tine white fihres which give the oparne whitish apparance on the surface of the trigonmm N. hypoglossi. Posteriorly, as is seen from l'ig. 59:3, the nuclens N. hypoglossi is overlapped by the nuclens abe cinerea.

The more or less spherical mass of small ganglion cells lying ventral to the meleus N. hypoglossi is the so-called small-eelled hypoglossal mueleus of Roller. It probably, however, has no direet comnection with the N. hypoglossus. The gromp of small cells lying just medial to the hypoglossal nucleus in its upper half contimes with a mass of cells roming longitudinally; in the floor of the fourth ventricle is the so-called muclens funiculi teretis. On its lateral side and between it and the nuclens abe cinerea is situated an anterior group of small nerve cells, the nucleo inter. calcto of staderini.

The cells in the meleus N. hypoglossi are typical motor cells. Their axones pass ventralward and slightly lateralward andpartly after perforating the medial accessory olive, and even portions of the nucleus olivaris inferior, partly by passing between the nuclens olivaris inferior and the medial aceessory olive-arrive on the surface of the medulla oblongata in the suleus lateralis ventralis, appearing in the form of from ten to fifteen fila madienlaria. A few fibres may pass from the muclens of one side through the rap he into the nerve of the opposite side; but this is disputed.
'The fibres are coarse and mueh branched, and, according to ran Gehuchten and Ramón y Cajal, may extend even as far as the muelens of the other side so as to form a dofinite protoplasmie commissure.

The nuclens N. hypoglossi receives from its hateral and ventral surfaces an enormons number of collaterals and terminals, part of which are sensory, while part, in all probability, represent fibrils coming from axones higher up in the nervous system (possibly tibres of the pyramidal tract). The sensory fibres appear to have their origin from the axones of cerebral sensory neurones both of the first order and of the second order (Fig. 594).

In the embryo the N . hypoglossus, like the spinal nerves, is provided with a dorsal sensory root and sensory ginglion, or occasionally with dorsal sensory roots and sensory ganglia. We have seen that the N. hypoglossus corresponds apparently to at least five nenrotomes, since it innervates muscles derived from no less
than five myotomes. 'Thus far, however, only two sensory ganglia and dorsal hypoglossal roots have been observed in higher mimals (in the cat by I'. Martin); in man a single hypuglossal ganglion (Froriep) has oceasionally been observed, but only rarely.

Fig. 504. - Tramsorse sertion throhgh the mednlat ohbongata of a monse at

 nucleif: !f, collaterals of sensury axames of the seeond order for the murlans N. hypuglosisi.

The upper motor nemones bringing the nuclens nervi hypoglossi under the influence of the pallimm will be deseribed further on. The nucleus N. hypoglossi is, of eourse, of especial clinical interest on account of its comnection with disturbances of speech.

2. Those the A.xones of which belong to the N. Accessorius.

The lower motor neurones corresponding to the N. accessorics are usually described as being partly spinal, partly cerebral, in origin.

Embryological studies warmont the conclusion that originally the nervis accessorins is distinctly a spimal nerve, its cerebral connections being made only secondarily. 'This is proved not only by investigations on its muclens of origin inside the central nervons system, but also by the fact that it immervates muscles which have their origin in myotomes belonging to the trunk. Rudimentary ganglia have heen observed upon it by Chiarngi.
'The so-ealled cerebral part of the N. accessorius in all probability belongs to the N. vagus.

 born bale at jumedion of pars rervienlis moduthe spitatis with the medulla
 Hewetson, drawing by A. Karsted.,

In the spinal cord the cell bodies of the nemrones pertaining to the N. accessorias are situated in the lateral hom, where they form a part of the so-called columna intermedio-lateralis. The moclens is usnally described as begiming at the level of origin of the fifth cervical nerve, and extending as far as the junction of the lower with the middle third of the nnelens olivaris inferior of the oblongata. The medullated axones arising from these cell bodies pass lateralward with a sharp hend to find their exit from the sulcus lateralis of the cervical cord (Fig. 595). Von Källiker distinguishes sharply between the spinal portion of the N . accessorius and the cerebral portion. All those root bundles finding exit ventral from the tractus spinalis nervi trigemini he elasses
with the spinal part, but all root bundes sitmated higher up or passing through the tractus spinulis nervi trigemini he speaks of as being neeessory to the nervis vagus.

3. Those the Axones of which belong to the N. Vagus and N. Glossopharyngens.

The lower motor nemrones corresponding to the N. sadas and the N. adossoblabriames possens axones which arise from the cell bodies situated in the melens ambignas and possibly in other masses of gray matter in the medulla oblongata. 'I'his melens ambiguns lies dorsalwarl from the nuclens olivaris aceres. sorius dorsalis, medial to the tractus spimalis nervi trigemini, in the formatio reticularis. It is diffienlt to make out in ordimary Weigert preparations, but is beantifully demonstrable in Nissl preparations, where it is seen to consist of a gronp of typical multipolar stichochrome motor cells. The nuclens ambiguns extends a little more auteriorly than does the notelens nervi hypoglossi. 'The axones from the cells situated in the muelens do not form a compatet bumble, but pass out as separute fibres from the cells in a dorsal direction in order to reach the plane in which are sitnated the entering axones of the peripheral sensory nemones of the N. vagus and the N. glossopharyogens. Then they turn sharply lateralward and ventralward to pass out of the medulla oblongata at the sulcus lateralis dorsalis in common with the entering sensory portions of the nerve. In the nuclens ambiguns terminate a number of fine medtalted axones and collaterals which correspond to (1) fibres from the cerehral sensory neurones and (2) fibres from motor neurones which throw the nuelens ambignus under the influence of higher centres.

The nuclens ambignus corresponds to the lateral horn of the spinal corl. 'The N. vagus and N. glossopharyngeus are typieal branchial arch nerves, but their exact nemrotome relations are still obseure.

4. These the Axones of which belong to the N. Facialis.

The lower motor nemrones corresponding to the N. mactatis have their cells of origin in the melens nervi facialis, which is situated in the pars dorsalis pontis just anterior to the junction of the medulla oblongata with the pons. 'This muelens corresponds to the colamma intermedio-lateralis of the spinal cord. It is essentially the nerve of the hyoid areh-the same arch which in the embryo yields a part of the hyoid bone, the styloid process,
the stylohyoid musele, the posterior belly of the digastric musele, the small museles of the car, the whole of the museles of the face, the platysma, ete. An musnal interest pertains to the nemrones corresponding to the N. fiteialis, since it is they that govern the museles of facial expression. The eell bodies of the nenrones here concerned are typieal multipolar stichochrome motor cells, casily recognizable as a large group (Fig. 5 ant) in the formatio reticulatis medial from the tractus spinalis nervi trigemini and dorsal from the corpus trapezoidenm. The medullated axomes from the cells of this molems pass as sparate tibres (not in a compact bundle) dorsalward and somewhat mediahward (purs prima) toward the floor of the fourth rentricle. 'They then bend and rim anteriorly along the floor of the fourth ventricle dorsal and molial to the melens nervi abducentis, and then again turn lateralward to plunge ventro-laterally in the form of a compact bundle (purss ser"mela) to their phace of exit from the thombencephalon, passing between the malens olivaris superior and the tractus spinalis nervi trigemini. The donble bend beneath the floor of the fourth ventricle is known as the gem" merri facialis.

It would appear that a certain number of the root tibres of the nervis facialis of each side have their origin in the muclens nervi facialis of the opposite side, the decussation taking phace in the raphe dorsal to the fascionlus longitmdinalis medialis (Stieda, Obersteiner, ('ramer). In the nuclens nervi facialis terminate many axones and collaterals from eerebral sensory nemrones of the tirst and probably of higher orders, and also axones and collaterals, throwing the melens muder the inthence of motor nenrones, the cell bodies of whiel are sitnated higher up in the eentral nervous system.

It is customary to speak of a "lower facial" and an "npper facial" nerve. The so-ealled "upper fileial" is the part which imervates the M. fromtalis and the M. orbicularis oculi; the "lower facial" innervates all the other museles which receive their nerve supply from the N. facialis. The principal litemture on this topie is referred to in an article by Bregmamm.* In certain paralyses the muscles immervated by the "lower farial" may be paralyzed, those innervated by the "uper facial" being

[^382](iROUPING AND (IIAINING TOGETHER OF NEURONES. 931

seareely, if at all, affeeted (so-ctilled supramuclear paralysis). In other forms of paralysis all of the museles immervated by the N . facialis may be equally paralyzed-as, for example, from a lesion involving the N . facialis at its exit from the rhombencephalon. All attempts made to loate sequate groups of lower motor neurones corresponding to the "upper facial " and "lower facial" have thus far been unsuccessful, though, as we shall see, in the cerebral cortex these two functional gromps are separately represented.
5. Those the Axones of which belong to the N. Abducens.
'The lower motor neurones corresponding to the N. Ambucens have their cell bodies and dendrites sitnated in the melens nervi abducentis in the pars dorsalis pontis. 'Ihis mucleus, more or less spherical in shape, lies close beneath the floor of the fourth ventriele, being partly surrounded by the genu nervi facialis. The cells and their dendrites have all the characteristies which we have seen so often in other groups of lower motor neurones. The medullatel axones pass ventralward and slightly spinatward, planging through the formatio reticularis and corpus traperoideum medial to the melens olivaris superior. 'Then plunging farther through the pars basilaris pontis, they make their exit from the rhombencephalon just a little anterior to the junction of the medulla oblongata and pons in the form of from fifteen to eighteen fila radicularia. In leaving the mucleus the axones go, in the main, from its dorso-medial border. According to van Gehuehten, who has studied the chick thoronghly with Golgi's method, a certain number of fibres of the N. abducens on each side arise from cells close to the muclens nervi facialis. The axones bend around and join the main bundles of fibres from the principal nuclens. This accessory mass of cells, which has also been seen by Lagaro, is referred to by van Gehuchten as the "ventral muclens of the sixth nerve."

In the mucleus nervi abdacentis terminate axones and eollaterals from varions somres: (1) from the peripheral cerebral sensory neurones; (\%) from the cerebral motor paths; (3) from the muclens olivaris superior (ef. anditory neurones of the second and higher orders) ; and, especially, (4) from the fasciculus longitudinalis medialis. By means of the collaterals from the latter bundle the mueleus nervi abducentis is in all probability brought unter the influence of the superior collieulas of the eorpora
quadrigemina, and the innervation of the rectus lateralis masele of the eye is such as to lead to movements co-ordinated with those of the other eye muscles (especially the rectus medialis) which are immervated by the nervus oculomotorisas and the nervas trochlearis.

6. Those the Axones of which belong to the N. Trigeminus.

The lower motor nenrones corresponding to the motor part of the N. thieminus may be divided into two groups: (1) those having their cell bodies of origin in the nuelens motorius princeps nervi trigemini, and (z) those having their cell bodies of origin in the nuelei motorii minores nervi trigemini.

The nuclens motorius princeps nervi trigemini (noyau masticateur of the French anthors) is situated in the pars dorsalis pontis just a little anterior to the nuelens nervi facialis and the nuclens nervi abducentis (Fig. 5!i). It lies medial to the main mass of axones of the peripheral sensory neurones of the trigemints as they plunge into the pars dorsalis pontis. The muclens is a large one, and in Nissl preparations it is scen, like the other motor muelei of the rhombencephalon and of the spinal cord, to contain a large number of typical multipolar stichochrome motor cells. The mednllated axones of these cells, joined by the mednllated axones of the nuclei motorii minores nervi trigemini, to be presently deseribed, form the motor portion of the nervus trigeminns (Fig. 598). The motor root fibres easily distinguishable from the entering sensory axones pass obliquely ont of the pons to become distributed entirely throngh the nervus mandibularis (Fig. 599), or third portion of the nervis trigeminus, to the muscles of mastication. A certain number of axones from the cells of the dorsal motor muclens of one side pass to the motor portion of the nerrns trigemimus of the opposite side (Obersteiner, Edinger, Bruce), the decussation taking place in the dorsal part of the pars dorsalis pontis.

In among the cell bodies and dendrites of the principal motor melens of the nervis trigeminus terminate many axones and collaterals (1) from the cerehral sensory nemrones of the first and of higher orders, and (2) doubtless from the upper motor neurones.

The mnelei motorii minores nervi trigemini contain the cell bodies and dendrites of the nemrones, the axones ef which form the radix deseendens (meseneephalica) nervi trigemini. The B1
cells which form these nuclei are vesicular rather than stellate; their dendrites are rudimentary (Lagaro, Ramón y Cajal). Their axones descend, giving off many collaterals on the way, some of which always enter the mucleus motorius princeps nervi trigemini. The cells, as described by Ramón y Cajal, form a column which, descending from the region of the corpora quadrigemina, passes obliquely over the brachium conjunctivum, growing larger in size as the mucleus princeps is approached. The axones of these cells are of large ealibre at their origin, and, gradually growing more delieate, run along with those of other cells in a curved longi-

Fig. 598.-Sigittal siction throngh rhombene phaton on hman fartus. (After A. Bruce, Illustrations of Mid-and Hind-Brain, Edin., 189:.)
tudinal bundle, which increases in volume as it descends (radix descendens). Before the axones of the descending roots reach the nuclens princeps they undergo a plexiform arrangement, whereby they are distributed between groups of spherical cells, and finally the bundles of the descending root become mixed up with the cells of the nuclens princeps (Fig. (i00). Ramón y Cajal states that the extremely complex plexus of fibrils among the cells of the nuclens princeps arises almost exelusively from the terminals of collaterals given off by the fibres of the descending root. He suggests that these collaterals may be of the greatest physiological importance, and suggests that the ahsolute coincidence in point of time of the movements of the masticatory museles might be explained by the view that the voluntary excitation received by the nuclei minores is transferred by means of these
collaterals to tho nerve cells of these nuelei as well as of the nueleus princeps. He thinks that these and other examples make it seem likely that the collaterals of the motor roots, and perhaps those of every axone, have the function of distributing the excitation received from a single cell, or from a sumall number of cells, anong all the cells of the same mueleus or in a group of similar cell elements situated in different regions of the gray

Fig. 599.-Scheme showing the motor amb sensory nemones, the axomes of which enter into the formation of the N. trigeminus. (After A. van (ielanelhten, Anatomie des systeme nerreus de l'honner, Lonsain, 1897, p. $\mathbf{7} 43$, Fig. 384.) (i.s. G., ganglion semihnare Gasseri : Jw, m, m. n. V', muclei motorio minores nervi trigenini; Sin, m. pr. m. I., anclens motorias prinerps nevi trigemini ; Rod, dese, mes. n. F., madix deseendens [mesencephalien] mervi trigemini; Tr. sp. $1 . V^{\prime}$., tractus spinalis nervi trigemini.
substance. Accordingly, the nervons excitation, feeble in the beginning as it comes out from one cell, would, in proportion to the number of neurones intercalated, grow and attain to its greatest effect at the begimning of the exit of the motor root. If the stimulas of the voluntary exeitation is transferred exchusively to one muscle or one group of muscle bundles, then the collaterals

of the motor roots are either only moderately developed or entirely absent, as is seen in the nuclens nervi hypoglossi and in the nuclens nervi oculomotorii. In these cases, according to Ramón y Cajal, the momber of cells associated with the motor impulse will depend upon the number of fibres of the pyramidal tract received by the motor nucleus, or perhaps upon the distribution of the end branchings of such fibres.

Merkel's view that the radix descendens nervi trigemini represents a trophie root has not been confirmed by other investigators.

7. Those the Axones of whioh belong to the N. Troohlearis.

The lower motor neurones, corresponding to the N . Trochleants, or fourth cerebral nerve, maty next be described. The cell bodies and dendrites of these neurones form the so-called nucleus nervi trochlearis, which is to be seen in sections passing through the isthmus rhombencephali and inferior colliculus (Fig. 601).

The cells are typical multijolar stichochrome motor cells, and the nucleus forms a spherical nodule, which lies ventral to the aqueduct of Sylvius in a trough on the dorsal surface of the fasciculus longitudinalis medialis, somewhat posterior to the spinal extremity of the nucleus nervi oculo-motorii. In Weigert preparations many fine medullated axones can be seen passing from the region of the fasciculus longitudinalis medialis into the nucleus nervi trochlearis. Through these, in all probability, the activities of the nucleus nervi trochlearis are co-ordinated with those of the other eye-muscle nuclei. It is likely that the nucleus also receives axones and collaterals from peripheral cerebral sensory nemrones and from nemrones which throw this mucleus under tho influence of the pallinm.

The medullated axones from the cells of the nuclens nervi trochlearis pass ont of the nuclens mainly from its dorsal and lateral surfaces. They curve lateralward and dorsalward through the stratum grisemm centrale until they reach the level of the rau : descendens nervi trigemini, when they make a tolerably sharp turn spinalward and run for a short distance longitndinally backwarl, so that in transverse section the root bundle, or sometimes two or three root bundles, are met with in cross section on each side. Having reached the level of the velum mednlare anterius, the fibres turn sharply medialward and dorsalward to undergo
 bern labe. Weigert-lial staisiogs. Leved of molens newi orolomotorii and

 motorins N. trigemini ; N.IT.. molix N. alnherontis; N. resl., radix N. vestib-

 liy bry. John Ilewetsom. !

Fig. 601.
decassation in the substance of the velum (rigg. 60:). It is believed that this decussatio nervorum trochlarimm is complete, and that no tibres enter the nervis trochlearis foom the nuelens of the same side. Immediately after the decussation the root bundles make their exit from the dorsal surface of the nervons system at the

Fla. fita. - 'Transverse sertion through isthmas rhombencephali of newhorn

 - "phaliea] nervi trigemini. (Ireparation by Dr. John Jewetsom.)
lateral border of the vehm medullare anterius, lateral from the frenulum veli medullaris anterioris, close behind the lamina guadrigemina. 'There is often asymmetry of the root bundles on the two sides; whereas the nerve of one side may go out in the form of a compact bundle, the root fibres on the other side may form two or more well-separated bundles (fila radicularia). 'These bundles, however, unite almost immediately to form a common nerve trunk. The nervus trochlearis passes into the porns trochlearis of the dura mater, runs through a small dural eanal alongside of
the N. ophthalmiens to the fissum orbitalis superior. Having arrivel in the orbit, it passes aeross the origin of the M. levator palpebra superioris to the M. obliguus oculi superior, into which it enters in order to innervate it. It is estimated that in the N . trochlearis there are some twelve hundred nerve fibris.

8. Those the Axones of which belong to the N. Ooulomotorius.

The lower motor neurones corresponding to the N. ovidomotonics, or third eerebral nerve, possess cell bolies and dendrites which are situated in the muclens nervi oculomotorii. This mucleus is locuted in the mesencephalon. In sections taken throngh the pedunculus cerebri it is seen to oceupy a position in the tegmentum ventral to the aqueductus cerebri and to the stratum griseum centrale which lies beneath the aqueduct. It

Fig. 603.-Transverse sertion throngh mesencophaton, collicult sumpriows of cor-

 (Prepuration by De. Johan Hewetsom.)
is situated just dorsal to the fascienlus longitudinalis medialis on each side (Fig. 603). Since the aqueductus cerebri is here di-

Feted oblignely, the long axis of the melens nervi ocnlomotorii is inelined at an angle to a line drawn paratlel to the long asis of the fourth sentrishe (eide sumra).

The axomes of ach nervis wentomotorins arise mainly from the melens of the sane side but party from the anelens of the opposite side: that is to say, there is a partial deemssation of the root tibres. 'This derassation meromm oenlomotorionman comcorns mainly the posterior or distal (spimal) thited of the motens. There is but little, if amy, decussation of the axomes arising from

- well bodies sitmated in the atherion or proximal (arembat) two thirds of the murkens.

The unded of the N. endomotorii are very romplex, wonsisting of mumerous well gromps a and ahthough they have heren stadiod by many able investigators, motalbly bey lowal and labomede.*

 we are still far from posisessing ant adequate and satisfatery knowledge eonerning their rations pats. That they shombla he amatominally romphex is mot sumprising when one remembers that the N. aenlomoturius immersates as rebatime large mumber of

[^383]musides, amatomiablly mad physiohugivally more or less indepombent of ome another, and meaths further that these museles, both insile and ontside the eyeball, are co-ominated in the most delame way with one another and with the maseles immerated be other gromps of lower motor mentones (II. obliguns suprerior, M. rectus lateralis, Mm. capitis ef colli).

It will be convenient, owing to the axistene of a melens impar, to doseribe the mulde of the twa sides tegether. In the newhorn babe there ean be very distinctly made ont a large bateral melens one each side and a molens impar in the midille line. 'The melons impar does mot exteme quite as far either anteriorly or posteriorly as do the lateral massess. With the high pewer of the mieroseone, cells can the male ont comberting the machens impar (exepet at the posterion and dorsal extremity) with the lateral melens on its ventral aspert on emels side. Tha lateral masses of the two sides are more widely separated from blle another and more indepombent at the postero-darsal extremity of the moldens than at the anterior ventral extremity; in fact, in the lather region the two lateral masses fuse and form a solid mass of mere cells weropging the midalle lime and a rexion just lateral from this on calla silde. These appeatames are well
 laboratory in Baltimere.
'The mulde of the two sides in three dimensions looked at from the dorso-interior surfine of the reconstruction are of the shap of an arrow with its anex pemting ventalward and anteriorly, its base pointing dorsalward and pusterionly; or, on merome of the hollowed-ont apperamere, it may be satid to resemble the anterior half of a canoe along the foom of which, from the bow to the middle, projerets a thick vertieal bar-the melens
 is seen to be consex and toldably miform, exepot at the posterodorsal extremity, where the mudens impar is separated by a nar-

A rery chathente deseription has been wiven by lerlia (Fig. 6if1). 'This anthor desoribes a momber of groups of merve cells which he satys he makes ont distinedy. Ite divides the masses into a staperior gromp and an inferior gromp. 'The inforion gromp forming tho main mass of the mulens comsists of a central mumenes sitmated in the middle lime (Nucl. entralis), of a moldens containing small rells known as the batinger- We itphal melens
(Nucl. Edinger-Westphal.), and of four muclei containing rather large cells, two dorsal and two ventral, of which one is anterior and the other posterior.

Fio. 604.-Scheme of the nuclei nervorm ocmomotorium. (After Perlia, Arch. f. Ophth., Leipa., Bd. xxv, Abth. iv, S. 297.)

The superior group, much smaller than the inferior, consists of two nuclei-(1) a median muclens (Nuel. med. ant.) and (i) a lateral mucleus (Nuc. lat. ant.). Perlia believed that root fibres of the N. ocnlomotorins come from all of these groups of nerse cells except the muclens of Edinger-Westphal and the auterior median nucleus. It will be noticed that Perlia's nucleus lateralis anterior is in reality identical with the oberer Oculomotoriuskern of Darkschewitsch,* but, as we have seen, the newer investigations

* Darkschewitsch, L. Neurol. ('entratbl., Lecipz. (1885), S. 101 and Ibid. (1886).
have shown that Perlia, Darksehewitsch, and others were wrong in believing that this mucleus gives origin to root fibres of the N . oculomotorius. It has, we believe now, nothing to do directly with the N. oculomotorius, but is connected with the fascieulus longitudinalis medialis on the one hand and with the commissura posterior (distal commissure) on the other. Von Kölliker has therefore referred to it as the nuclens of the posterior commissure, and it has been described in a previous chapter of this book as the nucleus fascieuli longitndinalis medialis.

Von Kölliker has made a very careful study of serial sections of this nuclens in the newborn babe, and his deseription should be consulted by any one who wishes to study the nucleus thoroughly. He decides that the N. oculomotorius has on each side essentially only one nucleus.* From this main nuclens a round dorsal mass brmehes off at the cerebral end. He does not find any paired dorsal medial nuclens, but deseribes only an unpaired central mucleus, which apparently corresponds to what has been mentioned above as the nucleus impar. Von Külliker does not find the nuclens of Edinger-Westphal in his embryo preparations, although he states that he sees it perfectly well in sections of the adult brain.

The partial decussation of the root fibres of the Nu. oculo-motorii was first proved for the rabbit by von Gulden. It has also been made ont in man by Perlia and von Kïlliker and by van Gehuchten in the duck (Fig. 605). The decussation in human beings has been perhaps most carefully deseribed by Bernheimer. This author believes that the distal part of the main muclei give off almost entirely decussating axones. In the most posterior ten sections he found exclusively crossed fibres; a little anteriorly a few merossed fibres appeared, which gradually became more mumerons; while at the middle of the melear mass the uncrossed fibres predominated, and in the anterior half of the lateral main nucleus there were no decussating fibres at all. He assumes that on the whole one fourth of all the fibres from each muclens decussate. The decussation occurs as follows: Ont of all parts of one nuclens there arise tibres which press more or less on the medial side of the nucleus and descend at the same time toward tho median space, there to pass over like a commissure to the opposite nuclear mass, in order again to raliate ont, fan-shaped,

[^384]into the latter. After passing throngh the meleus of the opposite side, united in bundles they go throngh the fascienlus longitndimalis medialis. The fibres arising most dorsalward go out of the opposite melear mass farthest ventralward, while those arising more ventrally pass out farthest dorsalward. Hence one can distinguish among the erossed fibres some with longer roots, others with shorter roots.

 After A. van Gehuchten. Anatomie da systeme nervelux de l'homme, eme
 epilhelimm: fly, laseiculus Lungitudinalis medialis.

According to Bernheimer, erossed fibres never leave the main mucleus in the neighborhood of the median line. The crossed fibres go through the fascienhas longitudinalis medialis in its dorsal part, and, after a somewhat curved conrse, pass near the lateral border of the red nuclens and then turn toward the middle line to the region of exit of the nerve.

The unerossed fibres from the main melei arise unmixed only from the proximal half of them. They leave the nuclear
masses and pass exehusively between the libres of the fascientus longitudinalis medialis which lie close to the middle line-that is, to the most ventral tibres of the faseiculas longitudinalis medialis.

It seems likely that the various gromps of nerve calls in the nuclei nervorm oculomotoriormm are eonneeted with one another by means of large numbers of association nenrones.

Ending in the nuclens nervi oculomotorii of eath side are collaterals and axones which in the main come trom the fascienlus longitudinalis medialis. By just what paths, if any, other than the fascieulus longitudinalis medialis the nuelens nervi oculomotorii is brought under the influence of cerebral ser sory peripheral nerves and of nemrones, the cell borlies of which are situated in the pallium, is not yet elear.

The relation of the muclens nervi ornlomotorii to the nueleus nervi abducentis, on accome of the physiology of the muscles supplied by these two nuclei, is of the lighest interest, especially with regard to the latemal movements of the eyes, the M. reetus medialis being supplied by the nucleus nervi oculomotorii and the M. reetus lateralis being supplied by the nueleus nervi abducentis. Duval and Laborde are of the opinion that there is a crossed relation of the oculomotor nerve to the contra-lateral nueleus of origin of the nervos abducens mediated by the fascienlus longitudinalis medialis. If their view be correct, libers leave the nueleus nervi abducentis at its cerebral extremity, enter the fascienlus longitudialis medialis. and farther cerebralward pass into the dorsal decussation of the tegmentum, to go over to the other side, where they meet with the root fibres of the nervus oculomotoritus, and join them on their medial surface. Spitzka, the other hand, and Ohersteiner think such a view unnecessary. Assmming that the M. rectus medialis is imnervated mainly by crossed root fibres of the nervus oculomotorius, they suggest that a connection by means of the faseiculus longitudinalis medialis exists between the nucleus nervi abducentis and the nucleus nervi oculometorii of the same side. This would afford an anatomical basis for the synergism existing between the M. rectus medialis of one side and the M. rectus lateralis of the other side. Held's studies with Golgi's methorl have demenstrated so many collaterals from the fasciculus longitudinatis medialis entering the eye-misele muclei that it seems very likely that the co-ordination of the aetivities of these various nuclei is brought about by means of fibres in the fasciculus longitulinalis medialis (Fig. (606).

A great many attempts have been made to localize in the nucleus nervi oculomotorii and in the bundles of root fibres coming

from them structures corresponding to individual eye museles. Thus, IIenseu and Völekers* in the dog stimulated electrically individual bundles of fibres coming out of the different portions of the nucleus. 'They concluded that from before backward the tibres of the nervus oenlomotorius in the dog have the following arrangement: (1) Nerves of aceommodation; (?) those for the M. sphincter iridis; (3) those for the M. reetus medialis; (4) those for the M . rectus superior ; (5) those for the M. levator palpebre superioris; (6) those for the M. rectus inferior; (6) those for the M. obliquus inferior.

Other investigators (Starr, Kahler and Piek, Leube, Spitzka, Siemerling, Westphal, von Monakow) have examined the pathological alterations in the nuclens in eases in which partial paralysis of function had been observed during life.

Thus Starr \dagger distingrishes in the muelens nervi oculomotorii a medial portion and a lateral portion. From the former he believes there arise from before backward the fibres for the ciliary musele, those for the M. reetus inferior, and those for the M. rectus inedialis; from the latter arise the nerve fibres for the M. sphineter iridis, M. levator palpebrae superioris, M. rectus superior, and M. obliquus inferior. Aceording to Kahler and Pick, the pupillary tibres of the nervus oculomotorins rom in its most anterior root bundles; while the posterior root bundles, they believe, are destined for the external muscles of the eye, and can be separated into (1) a lateral group, governing the M. levator palpebre, the M. rectus superior and the M. obliquus superior, and (2) a medial group, imervating the M. reetus medialis and the M. rectus inferior.

The ease deseribed by Leube, ${ }_{\ddagger}$ in which during life there had been posis (paralysis of the M. levator palpebrae on the right side) and dilatation of the right pupil, and in which after death a small apoplectic nodule was diseovered in the dorso-lateral part of the nuclens nervi oculomotorii of the right side, is worthy of especial mention here.

[^385]Of especial interest, too, are the investigations which hawn been made by means of the method of Nissl, which, as we hawn seen above, has thrown so much light upon the localization of function within the gray masses inside the spinal corl. Here the studies of Bernheimer and of Schwabe have been most extensive. Bernheimer* distinguishes between the extra-ocular and intra-ocular museles, and finds that the extra-oenlar museles arise from the melial portion of the nuelens, while the intra-ocular museles arise in the main from the lateral portion of the muclens.

Schwabe, \dagger under the direction of Hans Held, operated upon a large number of rabbits with the purpose of loealizing the portions of the N . oculomotorius concerned in the innervation of the individual eye museles. In his preliminary report he states that his results prove that the view of Mendel, \ddagger according to which the upper facial had its origin in the nuclens nervi oculomotorins, is probably incorrect, since on section of the nervus facialis there resulted extensive typieal degemerative alterations in the nucleus nervi facialis, but not a single degenerated cell conld be fomd in the nuclens nervi oculomotorii.

When the whole of the orbital contents were removed he found total degeneration of all the ganglion cells of the motor: type of the main nucleus of the nervus oculomotorins as well as of the lateral cells lying in the fasciculus longitudinalis medialis. The relations are in part crossed, and Schwabe confirms von (ind. den in that he finds that the cells in the crossed mucleus are sitnated in its most dorsal parts. Sohwabe thinks that the only musele which receives a crossed imervation by means of the nervus ocnlomotorins is the M. rectus superior. The root fibres belonging to it come out of the dorsal half of the distal portion of the opposite muelens nervi oculomotorii, a region which corresponds approximately to the nuelens dorsalis deseribed by von Gudden in the rabbit.

The M. obliqums inferior is innervated by fibres arising from

[^386]the ventral half of the distal portion of the nucleus nervi oculomotorii of the same side. The M . rectus inferior is innervated by fibres arising from cells situated in the proximal portion of the unclens nervi ocnlomotorii of the same side und from some of the lateral cells in the fascienlus longitudinalis redialis.

The cell bodies which send axones to the M. rectus medialis were not so easily determined. They do not apparently correspond to a definite well-defined group, but the cells governing it are spread ont over the whole of that side of the melens nervi oculomotorii which lies upon the fasciculus longitudinalis medialis. These cells include the greater part of the lateral cells, a number of cells lying at the junction between the distal and proximal portion of the maclens and about half of the cells whieh, together with those which govern the M. rectus inferior, form the most lateral upex of the proximul portion of the main nucleus.

The fibres governing the M . levator palpebre superioris and the M. retrahens bulbi could not be connected with any cells, although Schwabe thinks it is possible that the levator musele may be imervated by cells in the most lateral dorso-distal group of the nucleus, possibly of the opposite side. Interesting from the physiological standpoint is the fact that the $\mathbf{~} I \mathrm{~m}$. reeti superiores et obliqui inferiores, acting together in pure upward movements of the eyeball, are innervated by the distal portions of the nuclei of the two sides; and also that the cells imervating the Mm. recti inferiores et mediales are intimately mingled in the most lateral part of the proximal portion of the nucleus. This latter region might very well be called, as schwabe suggests, the Comecrgenzrentrum.

SUBSECTION IV.

Abstract

Neurones which enter into Conduction Relation with the Lower Motor Neurones and throw the Latter under the Influence of Other Centres (Intermediary and Upper Motor Neurones).

CHAP'LER LNH.

INTERMEDIARY AND CPPER MOTOR NELRONES.

Relation of peripherul centripetal nemrones to motor nuclei-Golgi cells of Type It intersegmental-The triangular path of Helweg or the olivary bundle of von Bechterew.

It has already been stated (vide supra) that collaterals, and possibly terminals, from great numbers of peripheral sensory nenrones enter into direct contact relation with the dendrites and eell bodies of the motor neurones in the ventral horns (Fig. 60\%.) in addition to this mechanism by means of which the peripheral sensory nemrones can come directly in contact with motor nenrones, the fibres of the dorsal funieuli can influence the motor neurones by means of interealated talutomerie and heteromeric neurones with shorter and longer axones. In this way one sensory fibre of a given nenrotome ean perhaps throw motor nenrones in many segments of the cord under its influence (Fig. 608).

The lower motor nearones of the same ventral horn and of the ventral horus of the two sides ean reeiprocally affect one another by means of Golgi cells of T'ype II. Thas wonld be true of motor neurones of the same segment or of segments immediately aljacent.
(A) Those the Axones of which help to make up the Fasciculi Proprii of the Spinal Cord.
The motor neurones of the varions segments of the cord are anatomically and functionally comnected by means of lougitudi-
nally extending association nemrones. 'Thas the eell bodies of such association neurones situated in one segment of the eord send ont their axones into the fascienlas ventralis proprins or the fascieulus lateralis proprins, where they may aseend or deseend, or, bifurcating, both ascend and deseend, usnally close to the ventral gray columns, to teminate in the gray matter at a distance of one, several, or very many segments distant from their site of origin. The axones which comect the most distant segments with one another are most peripherally situated in the white matter, while

FtG. 607.-Scheme of reflex meehanism of the spinal cord. (Alter A. Von K̈̈̈)liker, Itamdbuch der (fewehelehte, Bel. ii, 18! (6, s. 119, Fig. 399.)

Fis. hos. - sicheme of reflex meehanism in the spintal cord. Alter A. von Källiker, Ilandbuch der fewebeledire, Bd. ii, Leipz., 1s: 16 , S. 1:20, Fig. (100.)
those connecting neighboring segments rmo in the white fisciculi close to the gray matter (Flatiai).* On the way these axones send off numerons collaterals to terminate in the gray matter of the segments which they pass. That there are association neurones of motor function has been proved by the eases of progressive muscular atrophy in which degencrated fibres have been found in the ground bundles without any accompanying sensory disturbance. These intermediate neurones between groups of motor

* Fhatuin, E. Das Gesetzder excentrischen Lagerung der langen Bahnen im Rückenmark. Sitzber, d. Akad. d. Wiss, an Berlin (1897).
nenrones are mure numerons in the lumbar and cervical entarpements than in the portions of the cord of smaller ealibre. They are very abmalat in the medulla oblongata and pons Varolii, where they belp to form the formatio reticmbaris albat. One very important gromp of axomes of surh longitudinal association menrones is met with in the faseicmlus longitmlinalis medialis (oftm called the posterior longitudinal bunde), by means of which practically all the motor nuelei of the cerebral nerves are funstionally comeeted with one another.

This phee serms as suitable as my to deseribe the "triamunlar path" of Itelwa,* which extends between the melens olivaris inferior and the spinal cord. Whether it is olivopetal or olivofugal in direction has not yet been satisfactorily determinel. In the description given by Ilelweg, that anthor stated that the system concerned eonsisted of an area of tine fibres triangular in shape in cross-section in the nppermost urvical cord. It was fomed by him in the central neroms system of imbividals who during life land been insane. In the few bodies of non-insane individuals cexamined by him he conld not find the tract mentioned, and he aceordingly comelated that the finmess of the fibres in the "triangular path" represented an abnomality oceurring often in the central nervons system of the insane. Though Ilelweg's studies were madr with the armine method, he was able to establish the relation of the tibres of his "triangelar path" to the mulens olvaris inferior. It was this author's idea that the path had to do in some way with the conduction of vasomotor impulses.

A comparison of Helwer's deseription with the plates and text of a comprehensive study of a case of degencration following poutine hamorhage, published by Panl Meyer \dagger in 1850, makes it seem certain that Meyer saw the path much earlor than did Helweg. Meyer's Fig. 1:2 appars to correspond exactly to Helweg's path.

In 1894 r. Bochterew + described as the "olivary fascienlus"

[^387](Olicenstrany) a bmal of fibres which in the distal region of the modnla oblongata lies close to the muclens olivaris inferior. Aceording to the linssian nenrologist, this band of fitres belongs

Fin man.-Sertions through the medulla oblomata and apperervieal corl, showing the nom-medallated olivo-spinal fasciedus. The pyramids are not yot mednllated. (Alter W. vou Berhberew, Dir Latungshalmen im Gehim und Rä̈rk'mmark. II. Anfl., L^•ipz., 1s!9.)
to the youngest fibre systems of the spinal cord．Even the fasion－ uli cerebro－spinales（pramidales）are medullated before the tibues of the Cliverstram，so that it is mot matil some time after birth that the tibres become surromoded by myelin sheaths．Indeed， one of the easiest methods of heoming familiar with the position of the path is to study the medulla and cervical cord of the mew－ born bathe（Fig．（000）．In the cervical cord the＂olivary bmalle＂ lies at the jumetion of the lateral with the rentral funiculus at the region of exit of the ventral roots．In the medulla it is sitnated close to the lateral horder of the pramid．In aross－ section the area corresponding to these fibres is lens－shaped in the lower cervical cord，triangular in the miderervieal region． It the level of the melens olivaris inferior the bunde，areording to ron bechterew，suddenly disappears，but this investigater grants that there is no proof that its fihes are direetly related to the nerve cells of the olive．

The fibres of the olivary bomdle are among the finest of the white fibres in the cord．While this lmodle is medullated very late，a monthafter birth，the majority of the fibres of the fiscio－ ulus lateralis proprius are medullated very early in the fotus． 1 ．Becherew filvors the view that the axones of the fibres of the ofivenstreng arise from perikaryons sitnated in the homolateral vental horn－that is to saty，the bundle，in his opinion，is spinn－ fugal．＊
＇i＇he bundle has heer fomd degencrated in two cases by hein－ hold，tand in several cases recently by lick．+ Rembold indines to the view that the bmalle represents a centrifugal basomotor path．Piekpointsont that the bundle is donbtless often overlonked， owing to the firet that thongh it ean be followed as far down ats the junction of the pass cervicalis with the pars thomalis of the cond，it is usually very indistinet below the level of the secomd cervical segment，and the region in which it is listinetly visibhe is at ordinary antopsies ent throngh very obliquely，so that the tissue is unsuitable for study．If Chiari＇s myelotome he employed this diflieulty is ceasily obviated．

[^388]I first eneomered this path in the medullat oblongata of an infant deal of an extensive supertiobial burn. At tirst I had no idea of its nature, but afferward found that it corresponded in shape and position to the Ilelwer- Beehterew path. Its late myelinization speaks, it seems to me, in favor of its being a centrifugral bather than a wentripetal tract. Noreover, the faet that when it is degenerated the olive may appear unaltered is rather against the view that this tibre system takes its origin in the maclens olivaris inferior. Inteed, 1 do not feel sure that the term" olivary bundle" is well chosen. Could it not be that the fibres of the lomdle come from higher parts of the mervons system, the fibres being so scattered above the level of the inferior olive that

they are no longer recognizable in Weigert preparations as a disfinctly localizable bundle? As a matere of fiet, Helweg's path in the cervical cord corresponds very closely in prsition to that of certain lescemding fibue systems in the ventro-lateral fiscienti. bick even surgests that lowenthal's "faseioulus marginalis anterior" * is identieal with llelwer's path. The more one thinks of this fract in connection with other eentrifugal tibre sustems in the ventro-lateral ragion of the eort the more he will be inelined, I think, to haseate lafore he deedes that it is at fibresystem which is entirely mulepmont. Shoulat it turn out that

[^389]the bundle known as Helweg's Dreikantenbahn, or von Beehterew's Olivenstrany, is really only one portion of a much longer fibre system, the experience would not be a novel one; on the contrary, entirely similar steps have preceded the final unaveling

in the history of the development of our knowledge of a number of the more important tracts in the central nervons system. The eurious shape of the olive is shown in ligs. 610 and 611, mate from drawings of a reconstruction ferm serial sections by Miss Florence Sabin. The gyri and sulci in the olive of the two sides agree.
(B) Those the Axones of which run in the Fasciculus Longitudinalis Medialis and in the Formatio Reticularis Alba of the Rhombencephalon.

('HAP'TER IN'II.

INTERMEDARY ANI IPPER MOTOR NELRONES (CONTINUED).

The vestibulo-spinal path-Distal axone systems from the gray mases of the formatio retienlaris grised.

Is the medulla and pons are sitnated groups of nemrones with axones ruming down to terminate about the motor nemrones of the ventral horn. Concerning the tracts which correspond to the axones of these neurones our knowledge is as yet very indefinite. One very important bundle, however, must be mentionednamely, the bundle of axones which descends toward the spinal cord from the nuelens N. vestibularis lateralis (Deiters' mucleus). This bundle is sharply differentiated in sections of the brain of the newborn babe, stained by Weigert's method, and F. Sabin has been able to reconstract it.
'This bundle degenerates after removal of one half the cerebellum, although, according to Risien Russell and Ferrier and 'Turner, only when the vestibular nuelei are injured at the same time. Thomas * is inelined to think that the bundle has its origin partly in the nuelens nervi vestibularis lateralis (Deiters) and partly in the muclens nervi vestibularis superior (von Beehterew), a view which a careful study of Weigert preparations in the newborn babe would tend to support.

This bundle of fibres can be easily followed, especially when degenerated, deep cown into the cord where the individaal medullated axones turn in to terminate in the ventral horns. It is not surprising, therefore, that von Monakow, after hemisertion of the spinal cord in the cervical region, found, after a long time,

[^390]atrophy of the cells of Deiters' nucleus. He was wrong, however, in connecting the bundle with the dorsal fascienli, for it undoubtedly descends in the ventro-lateral gromed bundte.

It would seem that this morossed descending vestibulo-spinal neurone system has been deseribed by various anthors under different names. Many of the deseending cerebello-spinal systems. deseribed by the authors in all probability correspond to the mednllated axones of this system. I refer to the researehes of Basilewski, Biedl, and others.

The fibres passing ventralward from Deiters' :melens are well shown in Fig. 612. They come to lie close to the ventro-lateral portion of the upward contimation of the lateral fmicnli of the spinal cord; in all probability they are more or less mised with the axones of the ascending neurone systems which make up Gowers' tract, and with the deseending axones from the red molens to the spinal cord. 'The libres from Deiters' muclens, however, to the cord tend to occupy a somewhat diflerent position from the other fibres of the ventro-lateral funiculus; they come to oecupy the area between the melei laterales and the remains of the ventral horn. Having passed downard as far as the spinal cord they lie in the peripheral parts of the zone of exit of the ventral roots, occupsing the lateral portion of the ventral funicnlus, and sitnated, in the main, vental from the ventral horn. Some of the fibres, it is stated, extend as far as the pars hombalis of the spinal cord, and are ultimately exhansted by branches which turn in to emd in the gray matter of the sentral horn.

In addition to the descending fibres from Heiters' melens there appear to be many other descending fibre systems in the formatio reticularis. These have their origin in perikaryons of the formatio retienlaris grisea, particularly in the inferior midnte and superior central and lateral nuclei.

Those fibres descouding from the muleus centralis medims and uncleus lateralis medins (ron Bechterew's muclens retienlaris tegmenti pontis) have been best worked out. A good description is to be found in 'Tsehermak's recent article. 'Those axones from the melens centralis medins cam be followed to the fasciculus longitndinalis medialis. These there divide into ascending amb desernding branches. The descending bramehes appear to rim down into the ventral fmiculus of the cord, there ocenpying the so-called fissural part of the fmienlus (fissurenstrang of the

GROUPING AND CILANING TOGETHER OF NEURONES. 941

(Germans). Collateral fibres are given ofl to the formatio reticu laris on the way, and to the ventral hom as it is passed. Fibres of this neurone system extend throughout the whole length of the spinal cord. This might be called the unerossed deseending spinal neurone system from the formatio retienaris.

Another system of axones from the muclens eentralis medius can be followed, fassing transversely throngh the fascienlus longitudinalis medius to the dorso-lateral part of the opposite side of the formatio reticularis alba. Having reached that situation, the fibres bifurcate, the descending branches ruming spinalward in the bundle lateral from the fasciculus longitudimalis medialis, and ventral from the genn intermm radieis nervi facialis. The fibres lower down are more and more ventrally sitnated, and come to lie in the middle of the lateral zone of the formatio retienaris dorso-lateral from the muclens olivaris inferior, and medial from the ventral angle of the mass of fibres which represents the tractus spinalis nervi trigemini. The fibres we are considering now come to lie between the tractus spinalis nervi trigemini and the nuclei funiculi lateralis; while in the spinal cord the bundle is sitmated in the dorso-lateral region of the fied oceupied by the lateral pyramidal tract, a little medial from the descending fibres from the red nuelens and from the direct cerebellar trast. The fibres of this erossed system from the nucleus centralis medius can be followed down in the spinal cord as far as the conus terminalis. It grows over smaller in volume owing to the passage of terminals and collaterals which are distributed to the central zone of the substantia grisea.

Fusari * has deseribed a case of degeneration implicating the fibres here mentioned.

[^391]
(C) Those the Cell Bodies of which are Situated in the Cerebellum.

CHAPDER IIX.

INTERMEDLARY AND UPPER MOTOR NEURONES (CONTINIED).

The question of cerebello-spinal paths-Studies of Marchi, Ferrier amd Turner, Risien Russell, Biedl, Jhomas, and others.

In the cerebellum are situated also neurones the axones of which descend in order to affeet directly the lower motor nenrones. As to the exact position of these neurones and their axones we are not well informed.

The studies of the descending cerebello-spinal tracts begin with the investigations of Marehi,* who described such a bundle rumning down in the peripheral part of the ventro-lateral fasciculi of the eord. He believed that these fibres came mainly from the vermis, that they passed from the brachim pontis and thence by way of the fasciculus longitudinalis medialis and the stratum interolivare lemnisei into the ventro-lateral fascienli of the cord. lle followed the degeneration through the whole length of the cord, where it oceupied two areas-(1) a ventro-lateral area extending from the sulcus ventralis to the ventral extremity of the direct cerebellar tract of Flechsig, and ($\boldsymbol{\sim}$) a more lateral area situated just in front of the fascienlus cerebro-spinalis lateralis. He believed that these fibres terminated in the ventral hom of the spinal cord, and that a lesion of the bundle containing them led also to degeneration in the ventral roots of the spinal nerves. The ventro-lateral bundle of Marehi corresponds to the descending cerebellar bundle, which has been described by Loewenthal, sehaefer, Miehael loster, and others. 'l'he negative findings of

[^392]Ferrier and Turner,* however, huve made many neurologists skeptieal as to the existence of these centrifugal spinal fibres arising in the cerebellum, especially as the English investigators state prositively that when one lobe of the cerebellum is extirpated there is no degeneration at all in the spinal cord. 'They found degeneration, it is true, in the corpus restiforme, but this, they believed, concerns the fibres extending to the inferior olives and to the melei funienli gracilis et cuncati, or when the vermis is extirpated the fibres rmming to the meleus of Deiters. They assert that the degeneration deseribed by Marchi is due to a lesion of the nuclens of Deiters or to a lesion of the lemniscus.

A nother English investigator, Risien Russell, \dagger has carried ont, a similar series of experiments, but, instead of employing the method of Weigert, has used the more delicate method of Marehi. On extirpation of the lateral lobe of the cerebellum, Russell tinds degeneration in the corpus restiforme on the same side as the lesion. 'These degenerative fibres are not seattered, but are limited to the lateral border of the restiform body. On examining sections lower down, these fibres come to oceupy a more ventral position inside the restiform body. 'They leave this bundle in large part to become distributed to the nuclens olivaris inferior of the same side and of the opposite side. A few fibres descend into the ventro-lateral fascieuli of the cord in the cervical region. These fibres, however, Russell states, are scattered aml few in number, and disappear at the upper part of the thoracie region.

When the vermis is removed (to quote Russell's findings further) the corpus restiforme degenerates on both sides; the fibres become distributed in the formatio retieularis of the medulla, going to the mucleus olivaris inferior of both sides. Some fibres descend into the ventro-lateral faseiculi of the spinal cord. Russell does not hay much stress upon the descending cerebellar paths to the cord, but is inclined to agree with Ferrier and

[^393][^394]Turner that the marked degeneration observed by Marchi depends upon an accidental lesion of the nucleus of Deiters.

A stont supporter of the view that extensive bundles of fibres lescend directly from the cerebellum into the spinat cord is found in Biedl.* After reviewing more or less thoronghly the bibliography of the subject this investigator deseribes his own anatomical findings after section of the corpus restiforme. He decides in favor of the centrifugal corebellar path of Marchi,

Find. 613.-Desernding deqenemation in the spinal cord after experimental section
 s. 4.11, lig. 1.) Luvel of uper cervical cord. liedl is probahly wrong in thinking that these fibres come trom the ererelelhm.
and states that he can follow it from the nttermost portion of the cervical cord almost as far as the sacral end of the spinal cord. One bundle runs in the ventro-lateral fascienhus in the area corresponding to that deseribed by Marchi, Loewenthal, Foster, Sehafer, and others. 'The other bundle deseends in the funiculns lateralis, and, he asserts, in the exact area oceupied by the lateral pyramidal tract-a vary important finding if it be confirmed (Fig. 613). He disugrees with Marehi, however, as to the way in whieh the fibres get from the cerebellum to the cord. Whereas Marchi believes that they pass from the cerebelhm by way of the brachium pontis through the faseiculas longitudinalis medialis, and the stratum interolivare lemnisei to the

[^395]cord, Biedl believes that they go from the cerebellum to the corpus restiforme, and thenee, partly through the fascientus longitndimatis but mainly throngh the ventro-hateral ground bundles, to the spinal corm.

Thomas, in Parris, has also employed Marehi's method, and states that total removal of the cortex of one cerebellar hemisphere canses no degeneration in the spinal cord. On extirpation of one whole hemisphere, however, he finds distinct deseending degeneration in the spinal cord of the same side in the ventrolateral fascienli, which can be followed ats far as the lumbar region. He is of the opinion that these fibres arise in the nuclens dentatus, and that they pass through Beehterew's muelens and

Fut B1. D. Demomion following section of the comprestifome diwe a prepatation of A. Basilewski, Zaken from W. won Berhterew, Din Latmeng

the nuclens of Deiters, and thence by way of the formatio reticularis to the ventro-lateral fasciculi of the cord. The path
the the Beer
wond then ocenpy the same region in the formatio retienlaris as does the bundle which we know descends from Deiters' melens to

the spinal cord ; 'Thomas states that if, along with the lesion of the cerebelhum, the mueleus of Deiters and the nueleus of von Bechterew be injured, the desconding degeneration in this desemding tract is muel more extensive. The tindings of Basihewski after section of the corpus restiforme are illustrated in liges. $61+$ and (ins.

On the whole, it must be confessed that our knowledge of the deseending eerebello-spinal paths is at present unsatisfactory, the results of the varions investigators being markedly contradictory. As far as one can julge from the mass of conflieting data before us, it seems likely that a certain number of filres deseend from the internal nuelei of the cerebellum to the cord, and possibly a few axones from Porkinje cells in the cerebellar cortex, especially since Ramony (bjal * finds a few axones of Purkinje eells passing directly into the corpus restiforme.

It seems likely, however, that the influence of the cerebellom ugon the spinal cord is mediated mainly by means of nemrones

[^396]intercalated between the cerebellum und the cord. These intercalated nemrones consist, in the first plate, of those having their cell bodies situated in the nuclens nervi vestibuli lateralis of Deiters, and possibly in the muclens nervi vestibuli superion of von Bechterew, and (2) those having their cell bodies situated in the mueleus olivaris inferior of the two sides. Von Kolliker has especially emphasized the importance of the nuclens olivaris inferior as a way-station between the eerebellum and the spinal cord. We know now that, although the mujority, perhaps, of the fibre cerebello-olivares consist of axones arising from cells in the nuclens olivaris inferior and passing to the cerebellum of the opposite side, n certuin number of them consist of medullated axones arising from cell bodies sitnated in the cerebellum of one side, and passing across the raphe to terminate in the muclens olivaris inferior of the opposite side (von Kölliker, Russell, Biedl, 'Thomas). The connection between the nuelens olivaris inferior and the spinal cord must be made by means of the fasciculus ventralis proprius and the fasciculus lateralis proprius. The so-ealled olivo-spinal bundle has been deseribed above. In Weigert-I'al preparations of the medulla of the newborn babe large numbers of medullated fibres can be seen extending between these fasciculi proprii of the cord and the hilus muclei olivaris inferioris. How many of these fibres pass from the cord to terminate in the olive, and how many pass from the olive to terminate in the cord, it is as yet impossible to say. The study of experimental degenerations and of suitable Golgi preparations must be relied upon to give us the information which we desire upon this point.

D) Those the Cell Bodies of which are Situated in the Mesencephalon and Diencephalon.

CHAP'TER LAK

INTERMEDAREY ANO VPDER MOTOR NEURONES (CONTINUED).
The puth from the superior collienlas to the spinal eord-The path from the red unclens (o the spimul cort-'the fascicalns tegmenti centralis or centrule Manbenbithn.
'That the lower motor neurones stand to a certain extent muder the influence of nemrones whose cell bodies are situated in the mesencephalon there can be but little doubt. Reference hats already been made to the fact that many optic neurones and anditory neurones of the seeond order terminate about cell bodies in the superior collicuius of the corpora quadrigemina. The asones of these cells pass down, decussute, and sooner or later join the faseienlus longitudinalis medialis, the tibres of which, as we know, come into contact relation with the motor nuelei of the cerebral nerves, and with the ventral homs of the cervical cord. Fibres from the meleus lateralis superior to the faseienlus longitudinalis medialis are well shown in lig. 616. In this way the comection of the eorpora quadrigemina (and of the retima) with the neurones in the cervieal cord, the axones of which pass through the rami commonicantes to the sympathetie and lead to alterations in pupillary coutraction, may be explained.

The studies of Held and 'Tsehermak make it appear that this crossing spinal system from the middle and deep gray matter of the superior collienlus of the corpora quadrigemina forms in large part the decussatio tegmenti dorsalis (fontaineartige Ianbenkreuzung of Meynert). Having erossed the raphe, the fibres lie in a separate bundle which goes through the whole brain stem just ventral to the faseiculns longitudinalis medialis.* According to Held, eollaterals are given off on the way to the

* Iruedorsales Laingsbiindel of the Germans.
deep gray matter of the superior colliculus and to the stratum griseum centrale of the same side, and, by way of the dorsal commissure, to the opposite side. Collaterals are also sent into the nuclens nervi oculomotorii of each side, and to the nuclens nervi trochlearis and nuelei nervi abducentis of the opposite site. Tsehermak has fomd that the distal axones here eoneerned give off also collaterals lateralward to the cells of the formatio reticu-

Fita. 616.-Sicetion through the midhain illusimang the relation of the melens lateralis sumerior to the fitseciedus Iongitudinatis medialis. (After 11 . Held,

laris, especially to the melens centralis medins and the nuclens centralis inferior. Some collaterals eross the raphe to the same nuclens of the other side. Lower down the hunde concerned comes to ocenpy the ventral part of the fissural portion of the ventral funiculus, and exhausts itself hy giving off collaterals and teaminals to the columna grisea ventratis of the same side, hou partly by sending axon s throngh the commissura ventralis alla to terminate in the contralateral columna grisea ventralis. 'The longest stem tibres of the neurone system here inder eonsideraltion reach as far down as the lower part of the pars lumbalis. It seems likely that Loewenthal's marginal fascieulus is identical with the system here deseribed.

A very interesting series of experiments is that made by Boyere.*

* Boyce, R. Newol. ('entralbl., Laip\%, (1814), S. 466.
liti. 617

He made hemisection of the midbrain at the level of the third nerve in eats, and fomad, by Marehi's method, descending degeneration through the dorsal tegmental deenssation of Meynert into the bunde whieh runs just ventral to the faseiculus longitadinalis medialis of the opposite side. He followed these tibres down into the fissmal part of the ventral fumienlas of the eord ats far as the pars thoracalis.

Boyee also found degeneration through the ventral tegmental deenssation of Forel; further down, degenerated fibres at ifrst dorso-lateral from the lemmisens medialis, passing throngh the region traversed by the stem of the facial nerve; then ventral from the tractus spinalis nervi trigemini, and dorsal from the

 of the left hemisphere. (After li. Buyer, Nomol. 'entally . ip\%., |BK. xiii,
 1 wormosini
 nediallis: c.

 the tibers of the lisedoulas lateralis (fom the derossation ten monti ventratis Foreli!: f, dequeration of the radix desomdens (mesemeppaliea) N. trigemini.
muclens funienhs lateralis into the spinal cord, where the fibres lay just in front of the degenerated lateral pramidal tract. The degenerated fibres could be followed as far as the lumbar
cord. The findings in Boyce's cases are well illustrated in Figs. $61 \%, 618$, and 619 .

It seems likely, as 'Tschermak suggests, that Boyce's bundle from the dorsal tegmental decussation corresponds to Held's

 removal of the lefi hemisphere. After k. Boyere. Xewrol, Centrable, Leipo. Bd, xiii, 1894, S. 46s, Fig. 2.) A, degeneration of pramis, left side; a, dr. generation of tibres in the region of the fisciculus cerebrospinalis ventralis: b, fibres frum the fisciculus longitudinalis medialis; re, fibres to the fascienlus ventrolateralis (from the dectissitio tegmenti dorsalis' Aleynerti).
crossing spinal system from the superior colliculus to the ventral horus. Boyce's fibres from the ventral tegmental decussation probably correspond to (1) the crossing descending system from the. red nucleus; (2) the crossing descending system from the nucleus centralis superior and the mucleus lateralis superior.

The crossing deseending spinal system from the nuelens ruber of the tegmentum comects the nucleus ruber with the spinal cord. The axones arise from perikaryons in the melens ruber. They then pass throngh the deeussatio tegmenti ventralis Foreli, and come then to be sitnated ventro-lateral from the nuelens ruber of the other side (Held, Ramon y Cajal). At the level of the collienlus inferior the axones of this system he among the fibres of the medial part of the lemnisens lateralis. Further spinatward these fibres oceupy a region situated between the tractus spinalis nervi trigemini and the nucleus olivaris superior. In its descent through the medulla this desceuding system from the red nucleus is mixed up with the fibres which ascend in Gowers' tract. 'The fibres pass into the region of the medulla, which corresponds to the upward continuation of the ventro-lateral funiculi of the cord. 'The fibres of the descending
system from the red mueleus are situated somewhat laterally in the bundle, but medio-ventrally as regards the tractus spinalis nervi trigemini, and lower down, lateral from the nuelens funienli lateralis. In the funieulus lateralis of the spinal cord these fibres assume in the eross section the form of a comma lying medial from the direct cerebellar tract in the lateral part of the area corresponding to the fasciculus cerebro-spinalis lateralis. The comma extends from the dorsal horn ventralward as far as the region of Gowers' tract. 'The bundle is gradually exhansted, owing to the giving off of collaterals and terminals to the substantia grisea, especially to the lateral horn and the central zone of gray matter. The longest fibres reach as far down as the pars lumbalis medulla spinalis. This bundle probably corresponds to that described by Ferrier and 'Turner as descending from the nueleus lemnisci lateralis. It appears to have been degenerated also in Biedl's cases. Ischermak is of the opinion

Fio. 619. Sortions throngh the upper part of the ervical spimal eord. (After R. Boyee, Nemrol. C'entralbl., 1aipz, Brl. xiii, 189.t, S. 469, Fig. 3.) I. Degemeration after removal of the left hemisphere, right side; a, degeneration
 tion of tibres of the fasedoulas ventro-lateralis (from the derenssation tegmenti dorsalis Meynerti) ; d, degenemtion of tibres of the fascidulus lateralis (fiom the decusisitio tegmenti ventralis loureli). Il. Degeneration after removal of the motor zone of the left hemisphere, right side; a. degeneration of the fibres of the fascioulus cerchorospinalis lateratis. III. Thememation after removal of the left hemisphere, left side ; wo degeneration of the lasciculus rerobro-spinalis lateralis ; b, degeneration of tibres from the tascidulas longitudinalis medialis; d, "egememtion of tibres of the fascioulus latemis, section below the level a" their decussation.
that in Basilewski's case, and in the experiment of Sakowitsch reported by Bechterew, this bundle from the red mulens was also degenerated.

The view that from the diencephalon axones pass downward
which can influence the motor nuclei has met with general aceeptance, thongh in just what protions of the corpus striatum and thatamus the ell bodies of these nenrones are sitnated. and in what tracts their mednilated axones pass downward, whether in the tegmental tract or in the bundles of the hasis, pedunculi, we are as yet ahmost completely ignorant. Von Monakow assmmes that all thalamic tracts are corticopetal, and that the thalamus does not represent a motor centre intercalated between the cortex and the lower motor centres.

Von Bechterew and Flechsig have deseribed as descending from the diencephalon a special bundle which they call the centrale Inabeubahn. I have referred to it in various illnstrations of the region throngh which it passes as the fasciculns tegmenti centralis. There seems to be some doubt as to whether it has its origin in perikaryons in the thalams or in the nuclens kentiformis. The bundle is easily isolated by the method of myelinization, as the fibres are medullated very late. It has also been described degencrated in a recent case studied by von Bechterew. 'Thus far studies by Golgi's method of this fasciculus are wanting. It appears to terminate in the melens olivaris inferior. Its position in the central region of the pars dorsalis pontis gives it its name. [For figures illnstrating the fasciculus tegmenti centralis the index shonld be consulted.]
(E) Those the Cell Bodies of which are Situated in the Telencephalon (Pallium and Rhombencephalon).

We have much more exact information concerning the nenrones which throw peripheral motor nenrones under the influence of the pallium. These may be divided into (a) neurones with medullated axones, making up the fibres of the pyramidal tract; (b) nemones with medndlated axones corresponding to the frontal cerebro-corticopontal jath; (c) nemrones with medullated axones corresponding to the temporal cerebro-corticopontal path ; (d) nemrones which possibly conneet the occipital region of the cortex with the lower motor neurones; and (e) neurones connecting the olfactory region of the cortex with the lower motor neurones.

CHAPTER LATI.

THE PIR.DNIDAL 'TRAC'T,

 malis-Fascicalas rerohrospinalis ventralis-studies by the embryolog-
 stimmbalion-Gewndary degenerations of the pyrmmidal trati-stmes Ly (iolni's method.

1. Those the Axones of which Correspond to the Fasciculi Cerebro-spinales or Pyramidal Tract.
(Ad u.) The neurones with axones eorresmoling to the fibres of the framidal tract have been most carefully investigated, and are the best understood of all the nemrones now inder consideratimn. Their cell bodies are sitnated in the so-called motor area of the eortex (zone motrien of Charent). Their axones extemd from this situation to the motor meled of the cerehal nerves and to the cell bodies of the peripheral motor nemrones situated in the spinal cord, some of them rabhing as far as the lowermost purtion of the sacral spimal cord. Thas some of the motor 975
axones are anong the longest of cell processes occurring in the body.*

The motor area of the cortex, corresponding to the situation of the cell bodies and dendrites of the nemrones we are now de. scribing, includes the anterior and posterior central gyri, the feet of the superior, middle, and inferior frontal gyri on the external surface of the hemisphere, and the lobulus paracentralis on the inner surface of the hemisphere. It will be immediately noticed that this area corresponds elosely to the region of the cortex in which terminate the axones of the central sensory nenrones which canty impressions from the periphery of the body, muscles, and inte nal organs to the cerebral cortex. Indeed, the motor area "wresponds more or less closely to what has above been designated as the "somesthetic area" of the cortex (K"̈rperfühlshüre of $M_{m} m$, T'astsphëre of Flechsig). \dagger In this area are sitnated many millions of cortical pyramidal cells, each supplied with one main strong apical dendrite running out to branch more or less freely in the molecular layer of the cortex, with dendrites of smatler size coming off from the angles at the base of the pyramid, and with an axone whieh soon beeomes medullated and runs into the white matter to form one of the constituent fibres of the centrum semiovale of the hemisphere. By no means all of the pyramidal cells situated in the motor area belong to the group of neurones which we are just now considering. Besides large numbers of fiolgi cells of Type II of local significance, and cells with axones aseending to pass ont toward the surface of the cortex (cells of Martinotti), \ddagger a great number of these cells represent the neurones of association systems comecting neighboring gyri, gyri at a distance from one another in the same hemisphere, and gryi in one

[^397]

Fhe beq. Large pymmidal afls of the cortex. (Ster W, vom Bechterew, hia
 (1.37, Fips. 417, 41\%.)
hemisphere with those of the other. Inteed, only a relatively small number of pyramidal cells in the motor area of the cortox represent cell bodies of nemrones, the axones of which patss ciownward throngh the cerebrospinal axis to come into conduction b. lation with the lower motor nenrones. The cell bodies of theses pyramidal cells are, as a rule, of rather larger size than thoin neighbors, and inchule the large pyramidal cells (Fig. $6: 0)$ (1)seribed by Bevan lewis and by Hammarberg and the so-tallend giant pyramidal cells met with in these regions (l"ig. 621), "specially those gigantic cells in the lobulus paracentralis (Ripsenpyramilenzellen of Betz) the axones of which have to run tho longest distance (to the lumbar and sacral cord) (Fig. iex). 'The structure of the cortex of the gyrus centralis anterior is represented in Fig. $6 ? 3$.

Fui, 6:1.-Diagram showing position and number of giant pyamidal wells in the

The exact relations of the cells in this area to one another and to incoming fibres have been carefully worked out by Bevan Lewis,*

[^398] arll, von Källiker, and others. The eell bolies with axones

of the ('orfex ('erehri. Phil. 'rams. Ros. Soe., Iomd., vol. elxsi (1880), pt. i, 1p. :3i-4it.

* (forgeri, ('. Sulla lima amatomia degli organi centrali del sistema nervoso. Mikmo, 1880 (1885), Moepli, 8vo, p. :214.
+ Ramón y ('ajal. S. Sobre la exishoncia do ecolnhas nervinsis esperiales an la primmra capa de las ciremboluciones corebrales. (iace mod. catal.

 :30: 56i-loli。

groing to the moter nuclei of the face are situated on the lateral surface of the cortex jurt above the sydian fissure. 'Those groing to tho corvical combargement of the spinald cond (gion eruing the lower motor neurones of the nemat tomes which imnervate the museles of tha mopre limb) are situated in the midale rearion, while those the axones of which rim tor the lombar and sacral cord are sitnated in the up. per portion of this area, and in the lohntas: parmentralis on the inner surfice of the hemisphere.

The axones shortly after leaving the cells give off collaterals which Flechsig * has shown to be medultated. The axones of these monn nemones all stremon onto the centrum sumiovale, and rom in the corma radiata of the intemal capsule. Arrived at the intermal (apsule, they occupy (at the level most frequently inscribed) the genn and the anterior two thirds of the posterior limb of the internal capsule.t The fibres at the knee of the capsule are those which have come from the lowermost region of the motor area (fibres governing movements of the tongue and face) ; behind them are sithaten the fibres of the middle region of the motor area (fibres governing movements of the shombder, arm, forearm, and hand) ; while mat posterior of all are situated the fibres from the uppermost portions of the motor area (fibres governing movements of the lower extremity). From the internal eapsule these medulated axones are contimed down throngh the base of the cerebral pedmele, of which they orenny (roughly speaking) the middle three lifths, and

[^399]then phage into the substance of the pons, making up in it a large proportion of the fascienli longitudinales of the pars basilaris pontis, being separated from the surface by the fibrar pontis superticiates. In the midbrain and in the pons a number of the asones terminate, coming into direct contaet relation with the cell bodies and dendrites of the lower motor nemrones sitment in the melens nervi oenlomotorii, melens nervi trochlearis, muelei motorii nervi trigemini, melens nervi abducentis, and melens nervi facialis.* Some fibres go into the muclei of the same side, lut the majority go into the muclei of the opposite side. The exact place where the fibres of these nuelei leave the main bundles, and the exact paths which they follow to the muclei, have not as yet been fully determined, but already a certain anomut of valuable information bearing upon these points hats been obtained (vide infri). The statement that nerve fibres from these bumlles do pass to these melei is based mainly, but not solely, upon clini(al experienee, physiological experiment, and amalogy.

As these axones pass through the pons they give off numerons eoltaterals which terminate in the muelei pontis.

Lating the pons, the axones are continued throngh the medulla oblongata, forming there the well-known fascienli pyramidales, which correspond on each side to the pyramis medulte oblongate, as seen from the surface. The fact that the fibres in the cord represent the continuations of those which make up the pyramids of the medulla oblongata gave rise to the name "pyramidal tract." This term was not derived from the pyramidal cells in the cerebral cortex, as some have erronconsly thought.

In the medulla the bundle of axones on cach side diminishes in volume owing to the exit of fibres which run to the groups of cell bodies and dendrites of peripheral motor neurones situated in this region-namely, to the mucleus ambiguns (nuelei motorii glossopharyngii, N. vagi et N. aecessorii) and the muclens hypoglossi.

In the lower part of the medulla oblongata, just above the cervieal cord, the majority of the fibres of each bundle cross over to the opposite half of the nenral axis, giving rise to the wellknown decussutio pyramidum (Fig. 62t). This deenssation does

[^400]
IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

not oceur all at one spot, but extends for a distance of about one cm., taking place in successive bundles. 'The fibres whin cross from one side to the other phunge through the gray matter of the ventral horn into the lateral funienlus of the oppesite side, criving rise to the faseiculus cerebro-spinalis lateralis of the opposite half of the sumnal cord. A certain prophortion of the fibres do not cross but go down on the same sille of the cord, the majority of them in human beings oceupying a region of the ventral funienlus, forming the so-called funiculus cerebro-spinalis ventralis. Some of the fibres, however. rm down on the same sid. in the fascienlus cerebro-spimalis lateralis, so that in the spinal cord the fasciculus cerebro-spinalis ventralis is an unerossed bundle, while the filsciculus cerebro-spinalis lateralis is in the main at erossed bundle, but contains a certain number of unerossed fibres.

There has been a great deal of disenssion during the past few years coneerning the dicussation of the pyramilal

Fiw, 6id. scheme showing the derensatio, prymidun at the lower part of the
 huelhten, Anatomie dusystime nervens de l'homune, 1sil7, Fig. sibī, p. \$11.) fipy, farcieulus rerebro-pinalis ventralis: fipg, Bascievelus carchro-spinalis

 pyramis mululiar oblongate; X. N. vigus; XII, N. hypoglosilus.

 res which le to the ough the e ventral al funicuside, erivfasciculus ateralis of 1 the sipe in propordis mot n on the cord, the in human a region of ulus, formfuniculus ventralis. ; however. same sidu ercbro-spihat in the fasciculus: entralis is rille, while rebro - spithe main but contnumber of

1 great deal ig the prist nge the depyramidal all of the hich temmif the fibros ssed fibres heir termiare to emb
in the ventral horns of the opposite side. Aceording to this view there was, therefore, ultimately a complete decussation of the pramidal traet fibres : that is to say, all the fibres from the pallimm to one side of the spinal cord came from the opposite half of the hrain, a view which was supposed to agree entirely with clinical observation and pathological fintings. In 1881 and 1882 , however, Pitres found, after unilateral cerebral lesion, besides the degeneration in the opposite lateral tract in the cord (heterolateral bundle), a feeble degeneration in the fasciculus cerebro-spinalis lateralis of the same side (homoiateral degeneration). In an artiele published in 1884 he makes the statement that his homolateral degeneration could be made out in no less than ten of forty cases. These studies of Pitres have been confirmed by other pathologists. In addition, a large number of experiments on animals are in agreement with his observations; thus Franek et Pitres, Moeli, Sherrington, Mellus, Fürstner and Knoblauch, Unverricht and Kusiek, Sandmeyer, F. W. Mott, Muratoff, Rothmam, Wertheimer, and Lepage, after fortical lesion experimentally produced, have studied the cord for secondary degenerations. All are agreed that besides the abundant heterolateral degeneration more or less homolateral degeneration also occurs. It is to be rememberel, however, that in the animals below man, so far investigated, except in the monkey, no ventral pyramidal tract exists; all the pyrmidal tract fibres of the cord must run down in the lateral frmiculus, and it has been assumed that the fibres whieh degenerated homolaterally in animals correspond to the fibres which in man run down in the ventral funiculus. Hallopean's suggestion that the degeneration of the homolateral bundle depended upon pressure effects exereised by degenerating tibres of one side at the level of decussation in the medulla, has been supported to a certain extent by the experiments of Rothmann. This observer, operating repon a dog and a monkey, found, after unilateral lesion of one motor zone, degeneration always in both pyramidal bundles in the spinal cord in accordance with what had been established by previous investigators. Hestates, however, that the degeneration is permanent in a crossed track, but in the homolateral bundle is temporary, lasting only about two months-that is, as long as pressure efleets would probally be exerted at the level of pyranidal decussation. The homolateral degeneration in man, however, is permanent. but Rothmam suggests that this may be the result of defective mutrition, sinee in human beings spontaneous cerebral lesions are, as a rule, of vaseular origin, and the nutrition of the brain may be insulficient to repair the loss in the homolateral fibres aecidentally produced by the pressure at the level of decussation in the medulla. The ingenions experiments of Werthomer and Lepage make it, however, seem probable that in the
dog there are actual homolateral tibres in the lateral colmun. They found that after cntting through the left half of the cervical cord excitation of the motor area in the right cortex led to move ment of the extremities of the right site. In the second plate when they cut through the left half of the medullatabe the pyamidal decussation and again stimulated it, the motor area of the right side, they could produce movements in the left hind leg. Again, on cutting through the left half of the cord below the deenssation at the level of the first cervical nerve. movements in the right legr could be produced by electric stimulation of the signomed gyrus. To answer the objection that instead of innervation of the right foot by homolateral fibres the connection might be made by fibres which crossed t wiee between the two planes of hemiscetion, they made a longitudinal section of the medulla and fomm that exeitation of the motor area on the right side was still followed by movements in the right hind foot. While the objection with regard to pressure elfeets at the level of decusiation must be carefully eonsidered, the evidence, 1 think, is, on the whole, sulticient to justify the statement that both heterolateral and homolateral fibres exist in the spinal cord, beth of man and animals, : the fascieulus cerehospinalis lateralis. Indeed, it would be surprising, when one thinks of it and considers the nature of the impulses which set ont from the eortex, if such a double-sided imervation did not exist.

The fasciculus cerebro-spinalis lateralis oecupies in the cervical cord the large area in the posteromedial region of the lateral funiculus. It diminishes rapidly in volume as it deseends the cord, being very much smaller in the thoracie than in the cervical, and in the lower lumbar than in the thoracic corl. In the lower part of the cord it comes to lie adjacent to the periphery, while in the cervical and thoracie cord it is separated from the periphery by the medullated axones whieh go to make ul the fasciculus cerebro-spinalis previonsly deseribed.

The diminution in volume as the cord is traversed depends upon the fact that at the different segments constituent fibres of the bundle turn into the gray matter to end there. The greatest loss, as one would expeet, occurs in the region of the cervical and lumbar enlargements in which are situated dendrites and cell bodies of the peripheral motor neurones which govern the movements of the upper and lower extremities respectively. Below the lumbar eulargement the number of fibres is small, but a certain mumber can be tracel to the lowermost portions of the sacral cord.

The fasciculus cerebro-spinalis ventralis also diminishes in nd leg. the desin the bigmoid of the ade by section, ad that wed by 1 regraxl lly comjustify 'es exisl sciculus hell one set ollt exist.
he cerof the escemels in the rtl. In periphdrom rake n! lepends ibres of greatest cal :and ind rell e moveBelow , but :b of the
volme as the cord is descended, and in it too the loss is greatest at the levels of the cerveal colargement, the faseiculus being entirely exhausted on the thoracic cord. The statement that the libres of the ventral pramidal tract eross over just before torminating throngh the anterior commissure to end in the ven-

Pars frontolis capsula interner.
Cavem septi pellucidi.

 phtamen. Inst medial to the latere is seron the tip of the ghobus pallidus (muclens lentiformis II). (After I' Flechsig, Areh. f. Anat. u. I hysioh., Anat. Ibth., Léjpz., 1ssi, Tat. iii, lig. S.)
tral horn of the opposite side, has been vigorously combated by ron Lenhossik. This investigator has made a careful study of the spinal cord of two human embryos-one thirty-three, the other thirty-five centimetres long. He states that he could never find axones fr m the ventral pramidal tract entering the ventral commissure. He believes that they all rmin in to terminate in the gray matter of the ventral horn of the same side; that is, that the path from the motor area of the pallium to the sentral hom cells is thronghout direet and mocrossed. Van (ichuchten has made the objection that at this period of development of the human fortus the fibres of the ventral pramidal tract are not present. If this be true, the argmment of von Lenhossík falls to the ground.

Itoche with Marehi's method finds that the fibres of the ventral pyramidal tract end partly in the ventral horn of the same side, but mainly in that of the opposite side (vide iufra).
'Thr four principal methods for investigating the conse of the axomes which go to make up the pyramidal trats are (1) the cmbryological method of Fhechsig; (i) by phesiological experiment, including electrisal stimulation and the like; (3) the method of secondary degenerations, (a) wecurring spontaneously in human beings as a result of disease; (b) experimentally prom dueed in animals by cortical extirpation or by section of the bumbles at some point in their course ; and (t) the application of the method of Golgi.

The embryological method of Flechsig is especially well adapted for the stady of the fibres of the pyramidal tract, inasmach as at birth, or shortly before birth, all the fibres of the spinal cord have received their myelin sheaths with the exrep tion of these fibres; and in sections stained by Weigert's metheol the positions ocenpied by the fibres of the pyramidal tract stand out elearly and sharply as pale areas in the section. 'Ihis methoud has been of particular service in demonstrating the asymmetry of the decussation which often oceurs in the human cord.

It is among the greatest achicrements of Flechsig * that he has traced ont with the strietest aceuracy the position of the axones of the pyramidal tract and the corresponding bunde of tibres for the imnervation of the melei of the cerebral nerves, all the way from the cerebral cortex nearly to the termination of the fibres in the groups of cell bodies belonging to the lower motor neurones. The course of the bundles, as ontlined by the embryological method, will be clear if Figs. $6250-631$ with their legends be consulted

The sequence of mednllation in the sensory and motor fibres

[^401]is different as regarils the veripheral nemones from that which concerns the central nemrones. Whereas the axones of the peripheral motor meurones of the spinal cord and mednalia oblongata are medallated before the asones of the peripheral sensory neurones, the axones of the upper motor neurones-that is, those extending from cell borlies in the paliam to the muclei in

Fita. fid. - Ilorizontal soction throngh bran of newhorm labe above laved of most mealial segment of muclens lemtiformis. (After l'. pelechsig, Areh. f. Anat. II. Jhysiol., Anat. Ablh., Leipz., 1881, Taf. iii, Fig. 7.) II, rlobms pallidus; $I I$, putamen. Natumalsize.
which are sitnated the cell bodies of the lower motor nemronesbecome medullated later than do the axones of the central sensory neurones extending out to the cerebral cortex. In other words, in the cerebral white matter the sensory (eentripetal) projection fibres are medulated bufore the motor (centrifugad) projection fibres. The medullated axones of the pyramidal tract pass ont, in the main, from that region of the cerebral cortex which, aceording to Flechsig, corresponds to the distribntion of the sensory axones of his system No. I (ride s"mra). These fibres, originating in the large pyramidal cells of the lobulus paracentralis, and the anterior and posterior central gyri, converge in the corona radiata to enter the internal capsule.

The position of the fibres of the pramidal tract in the internal eapsule varies, as the fignes show, according to the level of the capsule studical. In the level most frequently reforred 10 by elinicians, the pramidal tract fibres ocenpy the anterior
two thirds of the posterior limb of the capsule ; that is, the so called thatamo-lentiform portion. Arriving in the internab capsule, these bundles cease to be separated by fibres of a differem. nature, and berome aggregated in the form of a tolerably eompand

 (rlas lentifirmis; newhorn babe, 50 to 51 cm , Jong. (After I' Flechasig, droh

 time's.
fiseiculus, which passes first between the nucleus candatus and the nucleus lentiformis and farther down between the thalamus and the nuclens lentiformis, to enter the cerebral pedmele. At
about the junction of the internal capsule with the cerebal pedancle the fibres of the pramidal tract are interwoven with transverse bands of tibres, which become medullated at a perion later than that of the myelinization of the pramidal tract. This interleaving begins at a level corresponding to the dorsal border of the mullens hypothalimicus (corpus Laysi), and extends downward as far ats the posterior and ventral extremity of Lays' body. These transverse fibres ruming through the pyramidal tract at this level represent in the main the fibres of the ansa lenticularis. On its way through the internal capsule the pyramilal tract is separated from the thatamus by a medial layer of

 rombintation of laseriolus basilaris lateralis; d, tibres rontinuons with dot Fig. 627 : r. mednllated fibres extembing betwern lypathalamio region and

 III, pulamen. Magnified fobr times.
white matter (medullated axones of sensory neurones extending between the diencephaton and the pallinm).

In the base of the cerebral peduncle, too, the position of the pyramidal tract varies according to the level examined. In the
higher regions of the base of the peduncle (or pes) the pyramilat tract ocenpies the third, fourth, and fifth, reekoned from the medial side, while lower down it ocenpies about the middle third of the base of the pedmale. At the junction of the ecrebral pechancle with the pons the fibres of the pyramidal tract spht up into several bundles and help to make up, in large part, the fasciculi longitudinales (pyramidates) which run through the pars basilaris pontis. At the lower end of the pons these longitudianal bundles mite on each side to form the compact pyramis which oceupies the ventral surface of the medulla oblongatit, elose to the fissura mediana ventralis. In the mednlla the majority of the fibres of the pyramidal tract as shown by the developmental method pass over to the opposite side of the nervons system forming the decussatio pyramidum. The large crossed bundle passes down as the fasciculus cerebro-spinatis lateralis through the lateral funiculus of the spinal cord. The

Fig. ben. Fection at right angles to the longitmanall fibres of the hasis pedreandi junclion of uppre with midde thirl); newhurn bile, 50 to 51 cm. ling. Mïlder's fluid hatroung. Moment in glyerin. (After P. Flechsig. Arrlo.
 lateral humfle of the lursal stratum of the basis pedunculi ; d, mom-medullated
 materemined. Magnified fome times.
smaller merossed bundle, consisting of the lateral portion of the pyramis,* passes down as the fascienlus cerebro-spinalis ventralis of the cord.

* It is of interest that Burdach was able to make out this point.
raminalal rom the Ile thinal cerebrand act iplit art, the ugh the se longimyramis longat:a, alla the by the of the he large -spinalis d. The

Flechsig has studied the decussatio pyramidum mal its sariations with great eare.* In about tifty per cent. of all wril-studied

 50 cm. lomg level of sixth cervial merve. (iold proparation. (After I'.
 Taf, nix, Fig. 1.)
cases the distribution of the pyramidal tracts is asymmetrical. 'lhns, in a certain number of instamees, all of the fibres go down in the lateral pyramidal tract and there is complete absence of the ventral pyramidal tract on each side. In thesc cases Flechsig assmmes that the decussation is total. \dagger In other cases he finds a

* Fhechsig, P. Dic Leilngsbahnen im Gehirn und Rïrckemmark des Menschen, etc., Lapz. (1876), S. 270 et seq.
+ F'rom the studies of "xperimental degenerntion to be deseribed farther on we now know that many of the fibres which rm down in the lateral pramidal tract in the spimat corl are uncrossed fibres. It is therefore not improbable that these eases of apparent tutal tecoussation are in reality not such, but simply instances in which the uncrossed fibres all go down through the lateral tract: in monkeys this is the nommal condition since the monkey possesses no ventral pyranidal tract, and yet he is not mprovidel with direct (merussed) pramidal tibres.
ventral pyramidal trate on one side, but mone on the other. In other cases there is a ventral pramidal tract on beth sides, and in these eases the number of tibres in the ventral trate of one side as compared with the number of fibres in the lateral tract of the opposite side, and again the relation of the number of fibres in the ventral tract of one side to the mumber of fibres in the ventral trat of the other side, can vary within considerable limits. Flechsig conchoded that the fibres arriving from a definite region of the cerebrum through the pyramids into the spinat cord may take either one of two courses, ruming in the ventral pyramidal tract of the same side, or in the lateral pyramidal tratet of the opposite side.

Fig. fi31.-Transverse section throngh the spinal cord of a mewhorn babe, abont 50 'm. long; level of fourth hombar nerve. (iold prepamation. (After l'. Flechsig, Die Latungshahnen in Gehirn und Rürckemmark, Lápz, 1sifi, Tat, xix, Fig. 2.)

The area ocenpied by the pyramidal tract decreases from above downward as the spinal eord is deseended, owing to the fact that the mednllated axones are ever rmnning in to terminate in the adjacent gray matter apparently in the ventral horns.

The fasciculus cerebro-spinalis lateralis, or lateral pyramidal
tract, lies always in the posterior half of the funiculas lateralis. Filechsig states that the fibres never extend farther forword than an imaginary straght line drawn lateralward from the group of rells known as the colmma intermedin-lateralis. The embryological methor permits one to follow the hateral pyramidal tract downward as far as the lower end of the lombar enlargement, or even to the level of the third or fourth sacral nerve. As regerds the relation of the lateral pyramidal tract to the periphery of the eord, this varies considerably at different levels. Thus, at the level of the third cervieal nerve it reaches, as a rule, to the surface of the posterior part of the lateral funiculns, even coming in contact with the pia mater. In the cervical enlargement the lateral pyramidal tract is separated from the pia mater by the compact bundle of the fascienlns cerebello-spinalis of Flechsig (direct cerebellar tract). From the middle of the thoracic cord downward the dorsal portion of the lateral pyramidal tract reaches the periphery, although the ventral part of the lateral surface of the bundle still remains separated from it. In the lower portion of the spiad cord the lateral pyramidal tract, now grown small, is sitnated close to the periphery of the cord.

The fascienlus cerebro spinalis ventralis,* or direct pyramidal tract, lies, as a rule, all the medial surface of the ventral funiculus. The area in eross section is variable. It may extend from the ventral commissure as far ventralward as the ventral margin of the fissura mediana ventralis. In other instances it oceupies the dorsal half or the midnle third of the medial surface of the ventral funiculus (llechsig). its longitudinal extent in the cord varies much. Sometimes it ceases even at as high a level as the middle of the cervical enlargement. In other cases it extends to the upper thoracie or, most commonly, to the mid-thoracic cord. Occasionally it has been followed as far as the intumescentia lumbalis.

Elempucal, Stimidation.-A great deal of our knowledge reararding localization of the cell bodies of these upper motor neurones in the cercbral cortex has been obtain dhrongh physiologieal experiments, and especially by means of electrical stimulation of the cerebral cortex.t We are indebted especially for this

[^402] galsamie curront, and especially to the brilliant resules obtained by Fervier \dagger ($18: 3$) on faradic exeitation of the cerebral cortex.
'The expriments of Fritsith and Ititaig showed that stimulation of certain re_{g} gions only of the bain lemu to movements of parts of the body, and that between the plater stimulated an! her pirt of the bedy set in motion strictly definite relations exist. the idea of a so-called motor eortex thas arose.

The experiments of Forrior prowd that on suitable excitation of the surface of the cerebrom with the farald current movements can be called forth which possess a detinitely purposetul chamacter. In other words, movements of the individual parts of the buly are ewoked which correspond to those achally carriod out voluntarily by an individual in the comrse of his ordinaty bodily activity. With similar methods Ferrier was able to localize gencrally the principal movements of the face, arm, trunk, and leg in the monker.
'The general eledrical experiments on the exrebal cortex wera carried ont with additional refinements by Horstey and sematim \ddagger
large part condirmed by physiologists and amomists, 'To be convinerd of the womberful foresight of the writer one has only to compare present know edge with the hypotheses which he manterd in the following artiches: Notes, on the Physiohogy and l'athology of lamguage: Remarks on those ('ases of Disense of the Servons System in whell befert of bixpression is the

 Hac Amatomical and Physiolagial Latedization of Movements of the Brain.
 of Wovements in the Corebral llamispheres, as revealed by ('uses of Convalsion. 'horen, mul Aphasin. West Riding Lam. Asyl. Repl, Iand., vol. iii
 mase hering on the lixperiments of llitaig and Ferricr. Nemb. Times and (
 Groshirns. Areh. f. Amat. Physiol. n. wissensclo. Med., Leipz. (Ision), it. 301) : $3: 3:$.

+ Ferrier, I). The lacidization of Fimelion in the Brain, l'me. ling.

 S?1, Nve.

 (1888) (13.). P1. 1-45.
and by Beevor and llorsley.* At present it would seem as thongh the results with regaril to the monkey's cortex are as perfect as the limitations of the methods permit. Since the monkey's cortex, and especially that of the ormug-outung, so elosely resombles that of man, these results are of the highest importance for the physician and surgeon. Over and over again it hats been porsible in haman cases to localize with great aecuracy the existence of an irritative lesion in the motor domain of the cortex, and in many instances surgical interference has been resorted to with suceess. Of comrse the improvements in the technique of hain surgery in recent times have resulted in the more frequent resort to operative interference on the brain of hmman beings, so that it has been possible in quite a notable number of instances to carry ont actmal electrical exeitation of the human cortex, owing to which we alrendy possess a certnin amount of detinite informs.tion regarding localization in the human cortex, which has been obtained direetly (cide infru).

Beevor and llorsley (185\%) decided, from the results of their experiments, that the anterior central gyras is much more concerned in the motor functions than is the posterior central gyms. They concluded, too, that in the area of motor representation for the upler limb, the regions for the larger joints are at the upper parts of the area, while those for the smaller joints and more differentiated movements lie peripherally at the lower part of the area. The movements of extension, they believe, are represented rather in the upper part of the aren, white those of flexion appeared to be related to the lower part. In between these two areas is situated a zone of confusion (Fig. (63:). In their earliest experiments they stadied not only the primary movements which result from elactrieal stimulation, but also the subsequent " marre" of the movements as the electrical stimmhs berern diffused through the cortex. A remarkable correspond-

[^403]ence was fond between the progress of these marches and the farsighted observations of J. Hughlings Jackson in eases of epilepsy. In Figs. $\%$ and 8 accompanying their article the mode of march is clearly illustrated, and it is seen to be in harmony with the representation of primary movements in the varions points in the area. They decided that there is no absolute line of demarkation in the monkey between the area of localization in the cortex of one movement and that of another, each movement having a centre of maximum representation which grallually shades off into the surrounding cortex.

Fita fi32.-Darly experiments of Bee yor and Horsley at motor cerebmal lowalization. (Afier ('. E. Beevor and V. Hursley, l'hil. Tr., Lomd., 1ss7, ph. vii. Fig. 3.)
'These preliminary researches of Beevor and Horsley were soon followed by the exhanstive studies of Horsley and Schatef (1888), who attempted to localize centres for volmentary movement and also for sensation by means of electrical excitation and ablation. In the prefrontal region the results of electrical excitation were negative as long as the electrodes were applied in front of the sulcus pracentralis; but as soon as stimulation was applied behind this sulcus these observers began to get lateral movements of the head and eyes sueh as Ferrier hat described.

The main motor area of the cortex as outlined by physiologieal experiment inchudes a large region in the neighborhoor of the sulens centralis Rolandi. The motor cortex corresponls in the main to that of the two central gyri (anterior and pos-
terior) and the lobulus paracentralis, althongh stimulation of the feet of the three frontal gyri as well ats of certain other points in the cortex may oceasionally call forth a motor reaction.

Ferrier had found, as we have said, the principal areas of representation for the various movements of the face and of the upper and lower extremity. By stimulation of the excitable portion of the lateral surface of the cerebral hemisphere he obtained (1) on the middle of the frontal lobe, movements of the head and eyes; (${ }^{2}$) just behind this area on the anterior central gyrus, movements of the hand and arm ; (3) on the posterior central gyrus, movements of the fingers and wrist ; (4) on stimulation about the inferior extremity of the sulens centralis Rolandi, including parts of both central gyri, movements of the face, jaw, and tongue.

Horsley and Sch "er described the arm area as ocempying a triangular portion of the surface, broad behind and narrow in frout. It comprises most of the upper half of the posterior central and anterior central gyri (in the monkey) from a little below the level of the sagittal part of the suleus pracentralis below nearly to the margin of the hemisphere above, together with a small portion of the adjacent part of the frontal lobe. The shoulder muscles react most strongly when the electrode is applied near the superior limit of the area; while the museles moving the forearm and wrist come into activity when it is applied near the central and inferior portions of the area, and the muscles of the wrist and fingers react to stimulation along the posterior horder. It is significint that these ohservers, like all others who have experimented on the cortex, find that movements and not individnal museles are represented here. The facial area described by Horsley and Sehaefer includes the area of representation not only for the movements of the facial museles, but also for those of the month, throat, and larynx. It comprises the whole of the posterior central and anterior central gyri, inferior to the arm area, extending downward as far as the fissure of Sylvins and inchoding the lateral surface of the operenhm. It is in the upper third or half of this area that blinking or closure of the eyelids along with elevation of the ala masi and retraction of the angle of the month are initiated. This portion of the area they have therefore justly designated the "upper face centre." 'The lower third of the area, stimulation of which is accompanied by varying movements of the jaw
and tongue, some of them much like chose of mastication, t ey call the "lower face centre."
"The head area or area for visual direction eorresponds t" an oblong portion of the surface of the frontal lobe extending from the margin of the hemsphere, around which it dips for a short distanc. otiward and somewhat backward to the upper and anterior limit of the face area." It is bounded posteriorly by the arin area and in front by nonexcitable cortex. On exeitation of this area they obtained opening of the eyes, dilatation of the pupils, and turning of the head to the opposite side with conjugate deviation of the eyes to that side. Strong retraction of the ears could frequently be elieited if the electrode was applied near the angle of the suleus iracentralis.

The leg area (vide sup $\because a$) is situated partly upon the medial surface of the hemisphere, bat extends also over a certain portion

Diagram I.

Fig. 633.-Motor cerebmal loealization in the monkey. (After V. Horstey mind E. A. Schacler, Phil. Tr., Lomul., !888, p. 6, diagram 1.)
of the lateral surface of the hemisphere oceupying an area in front of the fissura parieto-occipitalis almost as far forward as the
level of the anterior extremity of the small sulcus marked x in their diagram.

Diagram II.

Fig. 634.-Motor cerebal lowelization in monkey. (After V. Horsley and C. i. Schacfer, Phil. Tr., Lond., 1888, p. 10, diagtam 2.)

The trunk area is situated mainly on the medial surface of the hemisphere, extending for only a short distance over the margin to reach the lateral surface. I'le general results of their findings are beautifully illustrated in the accompanying diagram (Fig. 6;33).

In addition to their carcful study of the lateral surface of the hemisphere, Horsley and Schafer extended their experiments to the lobulus paracentralis and to the medial surface of the gyrus frontalis superior. 'To give briefly their results on stimulating the excitable portion of this area on the medial surface of the hemisphere, it may be stated that on applying the electrodes at successive points from before backward they obtained (1) movements of the head ; (2) of the forearm and hand; (3) of the arm at the shoulder; (4) of the upper (thoracie) part of the trionk; (5) of the lower (pelvie) part of the trunk; (6) of the leg at the hip; (i) of the lower leg at the knee; (8) of the foot and toes. It
will thas be seen that in the monkey the head, arm, trank, and leg are all represented to a certain extent upon the fucies medialis cerebri (Fig. 6:3+).

The physiological results of ablation in the motor areas of the eortex were quite in necord with the findings with regard to function as determined by electrical excitation. In this eonnection the studies, ot only of Horsley and Schaefer, but also of Ferrier and Yeo, of Schiff, Munk, Luciani, and others shonh be consulted.

In 1890 the results of in important research were published by Beevor and Horsley in which appeared their fiudings on electrical excitation of the motor areas of the cortex in the orangontang. Since the anthropoid ape is much nearer to man than the bomnet monkey, this study is clinically more applicable than the observations which were carried out upon the Macarus sinicus. One remarkable difference between the effects of excitation of the cortex of the orung-ontang and that of the monkey is the fact that very few "marehes" reproduce. It is evident, therefore, that the muscular movements of each individual segment are much more fully represented in the eortex of the orangoutang than in that of the monkey. And, indeed, it seems to be a general law that the higher the animal the greater is the area of representation not only of individual segments but of individnal movements belonging to one segment in the cerebral cortex. Beevor and Horsley have been able to show that in the bonnet monkey the representation of the segments of the varions parts of the body is arranged along the sulens centralis Rolandi in horizontal levels, and that the boundary lines of these pass across the sulcus. 'The same arrangement was found to hold in the orang-outang. The comparative relations in the bonnet and the orang-ontang will be elear if the accompanying figure (Fig. 635) be consulted, in which the segments are placed in successive order. It will be scen that the general plan of arrangement of the representation of the segments in the two animals corresponds closely, the variations being due to the exaggeration of the simosities in the gyri of the orang rather than to any central antatomical characteristics. It is to be noted that the plan of the segments of the lower limb is truly horizontal in the orang but antero-posteriorly placed in the bonnet, the difference in representation being ascribed by Beeror and Lorsley to the habits of the two amimals. It is further to be noted that the representa-
ton in the brain of the anthropoid ape and man differs from that in the monkey in that the excitable area in the cortex of the former is not continuous, being much interrupted by spaces from which no effect could be obtained even by the application of strong stimuli. 'These unexitable areas are situated, in the main, between the areas of representation of the larger divisions of the body. They are not intercalated between the individual segments of the single large divisions. The higher the plane of the animal the more perfect the integration of representation.

BONNET. ORANG.
LONGITUDINAL FISSURE

Fig. 635.- (comparison of motor representation in the bonnet monkey and in the orang-ontang. I After (: E. lheevor and V. Horsey, Phil. Tr., Land., 1890, p. 150, Fig. 4.)

Subsequently to these fundamental investigations a number of others have been undertaken to localize still more aceurately certain of the individual movements in the different areas. Among these the study of the facial area by Beevor and Horsey in 1894 may perhaps be singled ont. They analyzed minutely the facial area of the bonnet monkey with reference to the facial, lingual, and pharyngeal movements. They undertook in this study especially a detailed investigation of the so called bilateral representation. This work was very thorough, and the results
are embotied in a long series of tables acompanying the originm article, to which the reader who is interested ann easidy refer. The report is especially valuable in contaning a tabular representation of the series of "marehes" observed on stimulation of varions parts in the monkey's cortex.

While a priori there conld have been no donbt, after the studies upon the brain of anmals, that the human brain also is electrically excitable, the direct proof of this was first established by observations of Bartholow * and Sciamamal. \dagger Vietor Horsley astablished the fice that excitation with a feeble interrupted indinced current in the facial area of the cortex of a boy produced movements in the opposite side of the face only when the elertrodes were applied at points distant from each other and not at intermodiate points. Again in 1888 Keen, of Philadelphia, t loanlized in the cortex of a man under ansesthesia the representation for the movements of the wrist, the shomkler, elbow, and face. We extirpated the focal representation of the wrist, and after operation the left hand was found to be paralyzed as regards all movements both of the fingers and wrist. 'The elbow was weak, but the shoulder and face were entirely maffeeted. In the same year Lloyd and Deaver" also stimulated the cortex faralically and brought further evidence in favor of the view that the integration of movement representation is mueh more: marked in man than it is in the monkey or even in the anthropoid ape. It was made ont that considerable areas did not appear excitable at all to the strength of current employed, definite movements corresponding to the epileptic seizures from which the individual had suffered being elieited on stimnlation of com-

[^404]paratively restricted areas. Similar observations were made by Nimerede* with Morris J. Lewis.

For the localization of function in the cortex, therefore, cleetrical excitation has been of immense value. Bit no less fruitful results have been obtained by the same method with regard to the localization of function in the bundles of fibres whiels pass through the internal eapsule. Here aguir our most important knowledge has been derived from the experiments of Beevor and Horsley. \dagger Valuble results by the method of excitation have also been obtained by Burdon Sanderson \ddagger and Franck aml Pitres.\#

In experiments upon the internal capsule it is essential that the exact anatomical location of the fibres stimulated be mentioned, for in different horizontal planes the motor fibres oceupy entirely different positions. The term capsula interm is a bad one, but has been so uniformly employed that it seems necessary, at least for the present, to retain it. By it is indicated the white fibres bounding the nucleus lentiformis on is medial side. The term is, however, more loosely employed and is made to include all the descending and aseending fibres of the corona radiata which pass between the basal ganglia-between the muclens caudatus and the optie thalamus on the medial side and the nuclens lentiformis on the lateral side. Above, the capsula interna is directly continuous with the corona rad, , while below it is directly contimuous with the base of the cerebral peduncle. The upper and lower limits of the internal eapsule must, therefore, be arbitrarily defined. The upper level would

[^405]correspond to a plane resting upon the upper surfaces of the candate and lenticular molei; the lower level is usially detined as the region corresponding to the posterior and inferior limit of the fibres of the ansa lenticularis which pass through the internal capsule at its junction with the cerebral peduncle.

The capsula interna has been compared not inaptly to a mass of fibre bundles arranged like the rays of a fan, the handle corresponding to the base of the cerebral peduncle, the siles of the fan corresponting to the antero-ventral and postero-dorsal borders of the internal eapsule, where it joins the corona radiata. This appearance is well shown in a sagittal section passing through the cerebrum (Fig. 636).

Fits fi3k,-Sugital section through the brain of the monkey. illustrating the
 pl. xi. Fig. 3.) A.t., anterior or asemding fibres of the pars frontalis of capsule: I, horizontal tibres of the same: S.t., sumerior or deseending tibre of the same : P'f., pymmidal tibres (excitable) ; P, thbres entering the pats
 Th, thalanus; ('.,c.c., commissara anterior cerehri.

In horizontal section the apparance of the capsule varics enormonsly at different levels, as is shown by the aceompanying figure (Fig. 63"). At the horizontal level of the capsule most
frequently leseribed (that is, a horizontal seetion which strikes the ventral end of the gem corporis callosi, the pulvimur, and the

 (After C. E. Bervor and V'. Horshey, I'liil. 'Tr., Lomal., Ision, pl. v, Fig. 1.)
polus oceipitalis, Fig. 6338), one sees that it can be divided, as Chareot suggested, into an anterior limb and n posterior limb, which meet at an oblique angle to form the so-called genu capsula interne. The anterior limb is known as the pars frontalis capsulae interna, while the posterior limb is designated the pars oceipitalis capsula interne.

The pars frontalis (sometimes known as the lentiformostriate portion) is smaller that the pars oceipitalis and consists at this level almost exelusively of tibres running nearly horizonaally and made up in the main of axones rumning corticalward from the thalamms. As the genn is approached the fibres assume a more vertical direction.

The pars oceipitalis can bo further subdivided into a thalamolenticuliform portion (that sitnated between the thalamns amb the nuclens lentiformis) and a retro-lentiform portion, namely, that portion situated hateral to the thalamus, but behind the posterior extremity of the nuclens lentiformis.

The fibres which pass through the genu capsula intermae are not located in the same antero-posterior position in all horizontal planes, since the position of the genn alters; in the more inferior horizontal phanes it is situated far more posteriorly than in phanes higher up. In the same way the pars frontalis capsula interne is shorter in inferior planes than in superior planes. The importance of recognizing these differences in position at different levels can not be too mueh emphasized; much of the confusion in pathological literature with regard to the internal capsule is due to the fact that elinicians and pathological anatomists have paid

 " distaure of th mom. below its superior horder: mataral size. (After I.

 talis capsulae internue : ('irl, retrolenticalar portion of internal eapsule ; rem,

 frontalis supherior ; f_{2}, gyrns frontalis medins: Fa, gyrus frontatis inferior ; f_{1}, sulens fromalis supurior ; f_{2}, sulens frontalis inferior; $F_{3}(r)$, pars trimgnlaris gyri Prontalis inforioris: Fli, finctenlas longitodimatis inferior; FM, faselenlas retrotlexas Meynerti: F'm', biseicalas inferior or minor of the
 terior) ; Ip, insula (pars posterior) ; K, lissum calearina; $k+m$, union of the
 isthmas gyri Gornlati; 分 lamina cornea and bibres ol the tana semicirenfaris: Lif, gyrns linghalis; lmer, hamina medularis lateralis muclei lentiformis; Imi, lanina medularis medialis muchei lentiformis: Ims, lamina

 pedanculas anterior thatani; po, tissum parieto-a'cipitalis; Jow, palvinar: $\pi \mathrm{C}$, , uneo-limbic told: $\pi p / p$, posterior paricto-limbic fold; R'th. radiatio
 sylvii ; S(r), mants nsecondens: sec, silus corporis callosi ; sur, substantia grisea centralis; sige, subependymal gray matter; Th, pyras temporalis,

 basciculus thalamo-manmilharis Vieq d'Azyri; if, corm anterins ventriculi

保

But little, if any, attention to the variations in the structure of the eapsule at diflerent horizontal terels. In every ense in which at mutopsy a ciremmerited lesion of the intermal eapsule is foumd the pathologist should bake eare to describe acemately the exact lowatization of the hesion with regard to phase taken in the three dimensions of space.

On the whole it muy le said that the fibres passing throngh the intermal eapsule correspond very well in position to the gyri to which or from which they mathe, those farthest forward being combeted with the fromtal lolve, those in the middle with the enutal gyri, while those more posteriorly sitmated rum to or from the temporal and oecipital gyri.

Beevor and Hossley fomed that the pars frontalis eapsula interna is for the most purt entirely mexcitahle, or rather that alectrial excitation applied to it leads to mo motor response.

Tho tibres which on stimulation eall forth definite movements oceupy positions in the level most frempently deserited, the gem and the thatamo-lentiform portion of the internal enpsule; that is, the gemu und the amturior two thirds of the pars oeeipitalis eapsula internas. From before hackward in the internal capsule the arrangoment of the tibres is as follows: Farthest forward stimmation canses movements of the eges. A litthe farther batek the tibres for the opening of the month are situated; then come those governing tho movements of the hemd and eyes, mal next the tibres for the tongue and for the angle of the month. Immediately behind these are sitanted the thes governing the movements of the upper limb-lisst those for the shonlder, and wext those for the wrist, fingers, and thumb respectively. After those come the tibres for the tronk, and last of all the tibres governing the movements of the lower limb in the following order: Hip, ankle, kner, hallax, toes. The armugement in the eapsule is therrefore seen to be but a reproduction of that on the cortex, which in its turn, as has been pointed ont above, corresponds to a peripherie projection of the order of the metameres of the whole body. In the accompanying drawing (Fig. (633) the relation between the lowalization of motor or efferent function in the cortex and that in the mpule are clanly shown. In the capsule, as in the cortex, segmental movements and not individual museles are represented. It is interesting to mote with regard to the tateral juxtaposition of the fibres in the capsule that those most medially situated in the thatamolentiform portion of the pars
aceipitalis, when stimulated, yielded no motor response, siner, as we have seon, when studying the axones of dieneephato-telenesphalie sensory nemrones, this region of the capsule is that in which many of these axones are sitnated.

The study of the internal capsule of the orang-outing hy the methoi of electrical excitation yiedled, acoording to Beevor and Horsley, results very similar to those obtanined with the bonnet monkey. The localization is epitomized in the following tathe:

'The length of the pars oceipitalis of the internal capsule in the orang-ontang, which they studied, was 18 mm .

The tibres rmang from the pallimen to the motor muclei of the cerebral nerves leave the other motor fibres in the pons and mednila oblongata. These fibres throwing the mucki of the motor cerebral nerves under the influence of the pallimm are not, strictly speaking, included in the term "pramidal fibres."

The "pramidal tract" proper consists of the fibres which go throngh the pramids of the medalla and form the fasciculi cere-bro-spinales laterales and the faseiculi cerebro-spinales ventrales of the spinal eord ; that is to say, the fibres of the pyramidal tract, strictly speaking, innervate mainly the lower motor neurones by means of which the movements of the upper and lower extremity are excented. Many writers, however, especially English and Ameriean nemrologists, include the fibres going to the lower motor neurones of the eerebral nerves, ats well as those going to the lower motor neurones of the spinal cord, under the term pramidal tract. 'This is a matter of nomenchature and of bat little significance. The main point for the student to grasp is that

Fil4, $1: 3$
both sets of fibres have in similar funchint-6 throw the lower motor nemrones mater the indluence of the patlimm.

Arrangement of excitable fibres in tho internal capsule.

 lisy, l'hil. 'I'r., Lamd., Is!o!, p. 8i, Fig. 7.)

From the fact that in the cortex and in the internal capsule the bumbles of libres are arranged in groups corresponding to the different movements, and from the fact that in the spinal cord libres which run ior the longest distance tend to be more peripherally situated than those which run for shorter distances, it is not surprising to learn that in the fasciculas cerebro-spinalis latcralis of the spinal cord there is a definite gromping of the fibres corresponding to segmental movements. Direct proof of this, however, was admeed only recently. In 189% (Gad and Flatan*

[^406]excited with the firadie current different areas of the fresh-ent section of the pyramidal tract of the spinal cord of the dog. Their results are well illustrated in the accompanying diagrams (Fig. 640).

The study of sceondary degenerations has yielded results second in importance only to those afforded by the embryological method of Flechsig with regard to the paths followed by the axones of the nemones extending between the pallium and the motor nuelei of the cerebral and spinal nerves. The knowledge afforded by the study of secondary degenerations has been derived from two sources: (1) the study of human cases observed elinically and pathologically, and (2) the study of the nervons system of animals in which the motor tract has been experimentally injured.

The first to investigate in man degenerations in the domain of the pyramidal tract was 'Türek in 1851,* who in eases of longstanding hemiplegia observed degeneration not only in the spinal cord but also in the posterior and superior part of the internal capsule and in the middle of the base of the cerebral peduncle. The illustrations accompanying his publications are very erude, but nothing but praise ean be said of the accuracy of his observations. Türek stated that when definite parts of the cerebrum were destroyed in any way, as a result there became diseased in every instance definite bands of fibres which are situated in the internal capsule, the base of the cerebral peduncle, the ventral part of the pons, the medulla oblongata, and the spinal cord. This " secondary disease," which he observed in a large series of eases, manifested itself in the appearance first of mmerous fatty particles and later by atrophy. T'ïrek observed that this secondary disease oceurred not only when the lesion was situated in the cerebrum, but also whenever the bands of fibres in their conrse between the cerebrum and the spinal cord, or even in the spinal cord itself, became interrupted. He made ont by the study of these secondary degenerations the decussation of the pyramidal tract in the medulla oblongata, and it is to him also that we owe the recognition for the first time of the existence of a direct pyramidal tract (although not recognized by Türck as such)

[^407]

Trunk + flank (homolalerul).

Fig. 60.- Fxperimental stimulation of freshly ent substantia alba of tog's spinal

 monfonf trunk (homolateral); at p, fhigh + skin of abolomen; at a, liomolatemal segumental trunk muscles + extension of homolateral toreleg (plantar

which passes down in the ventral colnmm of the cord on the same side without decussation.* He asserted that these tracts degenerated only in a descending direction from the side of the lesion, although he recognized that above a given lesion there were many fibres which degenerated in an aseending direction. 'Tärek suggested that the cause of the secondary degeneration was probably the interruption of conduction, and inelined to the view that the conduction direction could be concluded from the direction assumed by the degeneration in a given case.

This preliminary knowledge of secondary degenerations was much expanded by the investigations of Bonchard, \dagger Chareot,+ Pierret, \# Nothagel, $\|$ ron Monakow, and others. It has been possible in a large number of human eases to follow the secondary degencration not only of the whole pyramidal traet, but also of the separate portions of this tract, to their destination. A good example of the secondary degencration of the pyramidal tract after a cerebral hamorrhage in the region of the internal capsule is illnstrated in the accompanying sections (Figs. 6;1). From what has been said of localization, it is obvious that lesionis of the cerebral cortex will be likely to canse only partial secondary degeneration of the pyramidal tract, since, in order to lead to complete degencration of the tract, an enormons area of cortex would have to be involved, and, as a matter of fact, hemorrhages and other lesions implicating the cortex of the pallium and centrum ovale are not sufficiently large to lead to destruction of the cell bodies or axones of all the neurones extending between the pallinm and the groups of lower motor neurones. Unfortnnately for human beings, however, the most frequent place in whieh the pyramidal tract suffers injury is the internal eapsule. Here the fibres are elosely pressed together

[^408] purlens latemas thatami and in the lemienlo-optice pertion of the caponla
 171-17\%.) A. Ohlique harizontal we tion throgh the anterior part of the

 serombary dogenemotion in the masula interma, doted red; the pyamidal

 loutifurmis; str, corpus striatum; lot, muelous lateralis thatami: remt, muchens ventralis thalami; Ime, lamina mednlaris. B, (: D, fronto-tworirontal seretions (plane of Meynert) throngh the brain stem of the same atase; B, level of the collientus suprior and of the perlanenhes arebri; 1 , middle of pons; I, medalla oblongata. The degemerated pyramidal traed is

 modialis ; R.t, bmehium ronjumetivm ; Br.1, brachimm pontis; Ped, pedm-
 restiforme; I^{\prime}, anfst, tractus spinalis mervi trigemini. E. Wegenemated fibes int the spinal ford ot the same case; 1-3, pates cerviealis; 4-8, pars thamalis;
 fascieulus comberspinalis hateralis.

into a compact bundle, and a tolerably ciremmseribed lesion will sulfice to lead to complete interruption of all the deseending motor axones. 'This region of the internal enpusule is supplian in the man by the so-called lenticulo-striate artery of Duret, and in by far the greater proportion of cases of hamorrhage this artery is involvod. So frequently does hamorrhage take place at this site that this artery has been designated by Chareot as the "artery of cerebral hamorrhage." 'This explains why it is that in the majority of instances of cerebral hamorrhage there results total hemiplegia of the opposite side of the body. At autopsy the motor tract below the lesion will be found degenerated, and the area of degeneration can be distinetly made out in the cerchral pednucle, in the pons, in the medulla, and in the spinal cord as far as the lowest level to which the fascienli cere-bro-spinales penctrate. If an antonsy be made hefore too long a period has elapsed, the area corresponding to the position of the motor fibres shows a diminished consistence, and on eross section the area may look somewhat darker and rather more gelatinous than normal. If bits of the tissne be placed in Mïller's fluid for a few days the degenerated area presents on cross section a typical appearance. One makes out a clar, sharply ciremmscribed zone, distinctly visible to the naked cye. If sections be examined shortly after the lesion has occurred, numerons cells containing fat droplets, the so-called gramular corpuseles, will be found present in the degenerated area. Specimens stained by Marchi's method show the degenerated fibres stained a deep black color. If the individual have lived for a long time (more than three months) after the lesion has oceurred, Marchi preparations may not show the degenerated area well, owing to the absorption of the myelin of the degenerated fibres, but Weigert's method will, at this stage, bring ont clearly the area of degenerated fibres. Instead of a mass of normal, black-stained, medullated nerve fibres, a yellowish patch, in which only a few normal nerve fibres are retained, can be made ont. It is important to emphasize, however, the fact that in such degenerated areas a certain number of fibres nearly always escape degeneration. This is owing to the fact that in the area ordinarily designated in the spinal cord, for example, as the fasciculus ceer-bro-spinalis lateralis or lateral pyramidal tract, there are, in addition to the mednllated axones of this tract proper, a mumber of other axones which do not belong to it. Prohably no absolutely
pure tract exists in the spimal cord, but there is everywhere a grenter or less idmixture of fibres of different trats. This accounts, therefore, for the preservation of certain normal medullated fibres in the area of the pyramidal tract even after all the motor fibres descending from the pallinm have undergone secondary degeneration. Another reason, however, for the persistence of healthy mednllated tibres in the region of one lateral pyramidal tract after milateral cerebmal lesion is the presence in each

Fig. 6id, - A. Portion of pyramidal in tract in cross merion which has umdergone

 f. cavities which have arisen ly the breaking down and alsomptions of nerve
 b, healthy norve dibres, (Atwr (: von Monakow, dehimpathohgie, Wion, 1847, S. 724, Fig, 176.)
lateral pyramidal tract of medullated axones from both cerebral hemispheres. As we shall see farther on, it has been proved that besides the crossed axones in the lateral pyramidal trat there are always a certain number of axones which deseend in the lateral bundle merossed from the cerebral hemisphere of the same side. 'The differences in appearance of the healthy pyramidal tract and of that which has undergone secondary degeneration are represented in Fig. 64\%.

paralysis had involved the domain of the cerebral norves. On the other hard, in Itoche's case lateral from the area nsually designated as the motor area, in a section of the eerebral pedancle which has always been believed to be an area throngh whim sensory tibres pass mpard into the corebrm, degeneration had weenred in a centrifngal direction. Howe followed the degeneration from the hase of the cerobal pelanele and downward. The pyramidal tract proper (for the upper and lower extromities) corresponted closely to tho descriptions ustally given of it. 'Thus no tibres were given off from it to the nuclei of the nervi oculo-motorii, athongh a great momber were followed from it to the melens nervi faciadis and to the mulens mervi hypughossi. Hoche fomm libres going from the pramidal tract of one side to the medens morvi farialis of the same side, and also ateross the raphe to the melens mervi faciatis of the opposite side. A large momber of tibres going from the pramidal tact to the molons mervi hypoglossi of the same side and a few to the melens nervi hyporglossi of the opposite side combld also be made out. In the spinal cord degencrated tibres eond be traced from both pramidal tracts into the gray matter of the ventral horns; and it is worthy of note that from the lateral pyramidal tract tibres go not only to the ventral lorn of the same side, but some of them pass through the ventral white eommissure to enter the ventral horn of the opmosite side.

Hoche also asserts that the libres from the ventral pramidal tratet (fasciculns cerebro-spinalis ventralis) run in to terminate in the gray matter of the ventral homs of both sides, but mainly in the ventral horn of the opposite side of the cord. Hoches finding, that fibres of upper motor nemrones run to the eerebral motor nuelei of both sides, brings these nuelei closely into aceord with the motor muclei of the spinal eord.

Still more interesting, however, than these donble relations of the pyramidal tract to the revebral motor molei are the observations of IVoche with regarl to another descemding motor tract. In his tirst case, especially, he was able to prove that the mulens nervi facialis and the melens mervi hypoglossi receive mednlated axomes from the cerebrum by a path entirely separate from the pyramidal trat, which descends through what we have been acenstomed to consider as an ahmost purely sensory regionnamely, that of the medial lemnisens. Coming ont of the lemnisens medialis in the pons and extending between it and the

(HROUPING ANI CHANING TOGETIIER OF NEURONES. 1019

Fig. 643.-Secondary degeneration of motor fibres from the pallium after extensive cerebral lesion. (After A. Hoche. Areh. f. Psychiat.,
nucleus nervi facialis of the same and of the opposite side could be made out a number of degenerated fibres. In the same way, coming out from the stratum interolivare lemnisci of one side, could be seen a number of degenerated fibres extending from it to the nuclens nervi hypoglossi of the same side and through the raphe of the mucleus nervi hypoglossi of the opposite side (Fig.643), That these fibres are entirely distinct from the majority of the fibres of the lemniscus medialis is proved not only by the fact that they degenerate in a descending direction, but also by the fact that higher up in the nervous system they are entirely separated from the rest of the fibres of the lemniscus medialis. Thus in the uppermost planes of the cerebral peduncle these fibres to not lie in the region of the lemnisens at all; they are sitnated in the base of the peduncle in the immediate neighborhood of the fibres of the pyramidal tract, but are placed lateral to them. These fibres in reality appear to come out of the internal capsule, whence they go into the base of the cerebral peduncle, occupying a position just lateral to the fibres of the pyramidal tract. In the pons, however, they become somewhat separated from the fibres of the pyramidal tract and become disphaced into the region of the lemniscus medialis, running downward in this bundle for a considerable distance. It is interesting to note that this descending eentrifugal bundle of the medial lemniscus had been made out many times before, though its significance had not been properly valued. Thas it had long been known from the researches of Flechsig and von Bechterew that a certain number of the fibres from the medial lemniscus become medullated at a much later period than do the majority of its fibres. Von Bechterew had even given this bundle a special name.*

Hoche has studied the position of the fibres in the brain of the newborn babe, when they are easily distingnishable owing to the fact that they are non-medullated and appear as pale areas (Fig. 644).

It is especially interesting that in Hoche's two cases the most medial parts of the base of the cerebral peduncle (Flechsig's frontal cerebro-corticopontal path) were entirely free from

[^409]degeneration; and that also the most lateral portions of the base of the peduncle (Flechsig's temporal cerebro-corticopontal path, Bündel ron der Schleife bis zum F'uss) were also entirely free from secondary degeneration.

Fig. 6ti-- Som-medullated fibes in the lemisens at birth corresponding to the centrifugal bundles of the lemnisens. (After A. Hoche, Areh. f. P'syehiat, Bert., Bal, xxx, 189s, Tat' is, Figs, ef to 2s.) A. Lavel of the colliculas inferior. B. Level of suprior part of pans. C. Level of merves trigeminus. 1). Lavel of spinal extremity of muclens mevi facialis. E. Level of nervas yagus.

In the most medial part of the peduncle, Flechsig and others have located the path from the pallinm to the muclei of the motor cerebral nerves, while by Spitzka it was placed in the lateral part of the pes, in the so-called bundle from the lemniscus to the pes.

It seems probable, therefore, on compraing Hoche's researehes with those of other investigators, that the muclei of the motor cerebral nerves can be thrown under the influence of the pallinm by means of fibres which run in two entirely different paths-(1) a path situated in the pes medial to the pyramidal tract, and (2) a path in the pes lateral from the pyramidal tract. That different motor paths destined for the cerebral motor nuclei may possibly exist is of the highest interest in connection with the pazaling elinical problems: met with in the domain of distribution of the cerebral motor nerves. We may hope that further investigations with the Marehi method of secondary degeneration after cerebral lesions will elear up anatomically these elinical differences, especially with regard to paralyses of the face and tongne which have so long puzzled us.

In one of Hoche's cases there was degeneration of an abnormally placed bundle of fibres of the pyramidal tract, which evidently corresponds to the abnormal bundle described by Pick,* Heard, \dagger of Pittsburg, and others. It would seem that in a few instances a bundle leaves the pyramidal tract of one side, untergoes premature decussation in the raphe, and takes an abnormal course through the medulla oblongata, fusing finally again with the fasciculus cerebro-spinalis lateralis below the level of the general pyramidal deenssation.

One of the most fruitful of all the modes of investigation for the determination of the course of the fibres of the pyramilal tract, especially of individual portions of this tract, is that of extirpation of the whole, or, more particularly, of limited areas of the motor cortex, with subsequent study of the nervous system for secondary degenerations. The earlier studies of von Gudden, \ddagger von Monakow, ${ }^{\#}$ Franck and Pitres, $\|$ and Moeli ${ }^{\Delta}$ were carried

[^410]GRO
out
Wei
to t
met
toff,
obtai
monl
more
have
idal
eleet
up th
cereb
the sp
after
the m
only
spinal
side o
conne
Th
both 1
and by
lieve

* M_{t}
a lesioni freniat.,
$+\mathrm{M}_{1}$
isehens
tion der
(1893),
$\ddagger \mathrm{Me}$

nal Cord

Cortex 0
generati،
net Mon
(1895), p!
" Lan
Nerve Tr
J. of Phy
|| Sher idal True
out with the aid either of the carmine method or the method of Weigert, but the newer studies have been much more exact owing to the possibility of greater accuracy afforded by the delicate method of Marchi. With this method Marchi and Algeri,* Muratoff, \dagger Mellus, \ddagger Langley and Sherrington, ${ }^{*}$ aud Sherrington\| have obtained important results.

Of these experiments, those which have been carried out upon monkeys are of course most valuable, since they yield conclusions more applicable to man. In general it may be said that they have shown that the course outlined for the fibres of the pyramidal tract by the embryological method and by the method of electrical excitation is correct. 'The experiments have also cleared up the puzzling findings in human eases, in which after unilateral cerebral lesion degencrations in both lateral pyramidal tracts of the spinal cord were observed, since they prove conclusively that, after extirpation even of minute areas of the cerebral cortex in the motor region, fibres of the pyramidal tract degenerate, not only in the lateral pyramidal tract of the opposite side of the spinal cord, but also in the lateral pyramidal tract of the same side of the cord. Each cerebral hemisphere in the monkey is connected with the ventral horns of both sides of the spinal cord.

The explanation of the appearance of degenerated fibres in both lateral pyramidal tracts has been attempted by Sherrington and by Mellus. Sherrington's earlier researches led him to believe that there was a total crossing of the fibres of the pyramidal

[^411]tract. Mellus concluded that, instead of a total erossing, certain of the tibres of the pyramidal tract did not cross at all-a conclusion with which Sherrington in his more recent articles appears to agree.

The experiments of Mellus, which were carried out mider the direction of Victor Horsley in Lomdon, and which are still being continued in Dr. Mall's laboatory in Baltimore, may be referred to somewhat more in detail. Mellus operated upon the bomet monkey, extirpating small areas from the motor cortex, sometimes from the hallux centre, sometimes from the thumb contre, sometimes from the varions centres in the facial area. The animals were killed in from two to tive weeks after the operation, and the bains studied by the method of Marehi (Fig. (64i).

 II. hallux ; T. thumb; F facial. being the upur barder of facial area ugon the anterior centmal gyrus, the mosement representerl being elesume of the opposite reve and retraction of the opposite corner of the month. (Expuriments of lis. 1. Mrllis.)

After lesions of the hallux centre, there degenerated many association tibes, both coasse and fine, which pass from the central grye down as far as the level of the inferior gemu of the sulens centralis Rolandi. Some fine association tibres were fomd to pass 10 the lobulus parietalis sumerion, others to the posterior part of the gyrus fromalis superior, and both coarse and fine association fibres were found to comeet the hallax centre with the lobulus paraeentralis. This centre was further commected, by means of fibres which passed through the compos callosum, with the hemisphere of the opposite side heing distributed in the opposite hemisphere in an area on the whole similar to that whenee they irrose.

The projection ithers which degenerate after lesion of the hallux entre conld be followed through the medial half of the emtrmin

Fig, 647,-Degencrated area in Fig. 6ifa, enlarged. (Experiment and photomicrugraph by E. L. Mellus.)
semiovale to the intermal capsule, in the lower levels of which they are located in the middle thind of the pars oceipitalis or pesterion limb (Figs. 6ti and 647). Here a great many line degenerated fibres pass ont of the internal capsule into the thalamms. The hat linx libres in the basis pedunculi are somewhat evenly scattered over. the middle third, and it is especially important that a number of coarse degenerated fibres pass into the substantia nigra apparently to terminate there.

At the level of the decossatio pyramidum (Fig. 64S) the hallax fibres undergo partial decussation, the majority passing over into

Fus, 648.-Dechssatio pyramidm, hatlux lesion, showing degenerated fihron passing to fascienlus cerebro-spinalis lateralis of hoth sides. (Experiment amid photo-micrograph by E. L. Methes.)
the faseiculus cerebro-spinalis lateralis of the opposite sifle of the cord, a smaller portion groing to the fasciculas cerebro-spinalis lat-
emalis of the same side. The relative numher of erossed and uncrossed tibres varies considemably in the different anmals experimented upon. A few tibres pass down in the faseiculus ventralis

 lat ral degromeram. (Experiment and photo-micrograph by E. L. Nellus.)
of the corl of the same side, which proves that in the monkey, contrary to the general statement, there is a very feebly developed fascienlus cerebro-spinalis ventralis (Fig. it:9). The derenemated tibres could be followed down through the cervical and thomacie cord without showing dimination in momber, but in the lambar region of the cord the degeneration in the lateral tracts of both sides and in the ventral tract on the same side begins to disappear, although certain filmes extend below the level even of the third sacral root.

Following extipation of the thmb contre (cortex of posterior central gyrus between inferior extrenity of sulens interparictalis and suleus contralis Rolamdi, a little above the inferior gemu of the latter sulens in the bomet monkey) association fibres degensate to the anterior and posterion central gyri, the posterion portion of the gerus fromtalis medias and the gyrus fromtalis inferior and to other gryi of the cortex. A certain number of association tibres from the thmb centre pass throngh about the middle thind of the corpus callosum to the hemisphere of the opposite side.

Fine and coarse projection fibres degenerate from the thomb centre downarid through the centrminsemiovale. The fine fibres
terminate in the thalamms, the large fibres (pyimmidal trmet fibres) wenley in the lower horizontal levels of the intermal capsule the middle third of the pars onejpitalis or posterion limb. In the base

of the cerebral pedmele the thmo fibres orempy the middle third of the area as seen one cerss section. A barge number of the degromemated fibnes pass to the substantia nigua. Mellus states that from a half to nearly the whole of the degeneration, following lesion of the thmmh centre, which extends as far as the cerebral pedmele, terminates in the substantia nigra. At the pramidal deenssation in the medulla the majority of the fibres eross over into the lateral pram idal tract of the opposite side, although a feew go down in the lateral funieulus ($F i g$. bion), and still fewer in the ventral funieuli of the same side. It is interesting that the deqenerated fibres do not stop in the upper cervical levels, but, as might have been expected from the experiments of Fervier and Yeo, begin to leave the white matter from the level of the serenth cervical root down wird, the degenemang tibres steadily and gradually disappearing by turniner into the gray matter until at the level of the thind thomeic mont no degenerated fibres remain.

It would take too long to deseribe all of the experiments made by Mellus in commection with the facial area of the eortex, but in-

 ing to the motor representution for oprening the month straight, his results after extipbation of this area may be briefly deseribed. The ussociation libres from this aren were carefally studied as well as

 Mr.Ilus.
the projection tibres. As regards the latter, beth fine and coarse tibres degenemated, the fine fibres terminating in the thatamms, the coasse (fibres of the pramidal tratet) extending through the anterion portion of the capsule (in its mper levels) and the middle thind of the posterior limb of the capsule (in its lower levels) (Figs. 6ish and $6 a^{2}$) to enter the cerebral pednuele. In the cerebral pedmele the fibres are seattored evenly over the middle third of the area, as seen on aross section, encroaching a little non the lateral third (Figs. 6:3:3 and $6: 4$). Some tibres leave the trat here to terminate in the substantia nigra or in the hypothatamie region.

Farther down the remaining degenemated tibres begin to have the promidal tract at the junction of the pons and mednla obbongata, and single degenerated tibres combld be followed to the mulders nervi facialis of the same side and of the opposite side to the motor muclei of the N. glossopharyngens and N. vagus of both sides.

Mellus emphasizes the fact that all the degenerated pramidal fibres from the hallux and thmb regions enter the internal eapsule at or near its posterior extremity, while the corresponding filmes from the lesions in the facial area enter the capsule ato near its anterior extremity. The former fibres beome displaced forward at lower levels, the latter backward, mitil in the lower levels of

FIf, fis3.-Horizontal section of monkey's hain throngh hasis medmenli, showing lowation of degomeration following excision of area marked
the interual capsule the tibres are all crowed together at about tho middle thind of the posterior limb. "It is also shown that a line can be drawn from the fissime of Sylvins forwarl, so dividing the motor area into two patis-that of the facial lesions from which fibres enter the anterior portion of the eapsule would be in the anterion division, and all the hallux and thomb lesions from which tibres enter the posterior portion of the capsule would be in the

 Mellus.)
posterior division. In the movement of the facial fibres backwad between the upper and lower levels of the capsule they would necessarily, at sume bevel, envelop the genen, which would acoome for the fact that they have always been deseribed as oreupying that position." The striking arreement of the findings in these cases of exprerimental degenoration with those following upon electrical exeitation will be elear if the two be comparad with one another (eide smbro). Mellas emphasizes the fact that in the hase of the: cerebral pedmele in the monkey the facial fibres are mixed up in
mudert
interve
with 0
bral eo
nenron
relatio
For
realer
is repre
'Th
tions il
As
tract a
in the
entrans
the pyr
gray m

* Ra nervelux Pp. 39-6
the middle thind of the area, as seen on cross section, and do not ocempy a space by themselves medial to the fibres of the pyramidal tract.

The signifieance of the uncrossed tibres of the pyramidal tract is somewhat diflicult to understand. Now that we know that a certain number of fibres remain unerossed even to their termination, and the proof has been brought that each cerebral hemisphere stands in eonnection with the gronps of lower motor neurones on both sides of the rhombencephaton and spinat eord, it does not seem mulikely that in the merossed fibres we may find the anatomieal exphation for the physiological peenliarities of the so-ealled bilaterally innervated movements. It is not impossible, too, that herein is to be songht the explanation of the enrions behavior of the so-catled residual paralyses after cerebral hemiplegia, which have been ably described by Wernicke and Mam, of Breslan. The cases of hemiplegia following homolateral lesion of the brain have also to be thought of in this comection, though it is mot yet clear that the explanation of this unusual phenomenom is to be fonnd here.

The light thrown upon the upper motor neurones ly studies undertaken with the method of Golgi concerns mainly (1) the interrelations of the cell bodies and dendrites of these neurones with one another, and with those of other newrones in the cerebral eortex; (\because) the collaterals given off by the axones of these nemrones in varions parts of their course ; and (3) the terminal relations of these axones.

For the interneuronal relations in the cerebral cortex the reader is referred to the studies of Ramon y Cajail.* His seheme is reproduced in Fig. 655.

The studies of Starr, Strong, and Leaming include investigations in this area. In Fig, 6 anf their sheme is shown.

As to the collaterals given off by the axones of the pyramidal tract a number arise in the first place while the axones are still in the ecrebral cortex; others are given off shortly after their entrance into the corona radiati. In the pons, collaterals from the pyramidal tract are distributed to the muclei pontis. In the gray matter in which the axones of the pyramidal tract terminate

[^412]many collateral brunches are given off ; indeed it may be said that the axones become exhausted through the projection of numerons collaterals.

Fita. bis5--Scheme showing the probable cempse of impulses and the internernronal commections in then romtex rerebri. (After s. Ramón y Guja, Les mumvelles idées, etce, Azmblay. Paris, 1894, p. bif, Fig. 16.) A, small pyramidal cell; B, harge pyramidal cell: (\because, D, pulymorphoms erths; A, terminal rentripetal projection tibre; F, collaterals from the sulstimita alla: ; G, axme bithreating in ile sulstantia allow.

It is highly desirable that the exact terminal relations of the axones of the upper motor neurones be more thoronghly studied by means of the method of (iolgi, for we find in the bibliography two diametrically opposite views with regard to the relations of the terminals of these axones of the cell bodies and dendrites of the lower motor neurones. Von Monakow* believes that the

[^413]FIG, 656.-Diagram of the cells of the errehral cortex. (After Starr, Strong, and Leaming, Athas of Nerve Cells, New York, 1896, t. 72, Fig. 10.) I, superficial layer; a, fusiform: b, triangular; e, polygomal cells of kamón y (ajal ; II, layer of small pyramids ; d, smallest ; e, small ; f, medimm-sized pyramidal eells witl axones deseconding to the white matter and giving off eollaterals in their course ; $N I I$, layer of large pyramidal cells ; g, largest (giant) pyramidal cells; k, large pyamidal rells with very mumerons dendrites: all byramidal edls are seen to send long apieal demdrites nip to $I ; m$, Martinotti eell with descending dendrites and aseending axone; n, polygomal eells; $I \mathrm{~F}$, deco layer; p, fusiform cell ; q polygonal cell ; V, the white matter comtaning the axomes from the pyamidal cells d, e, f, g, and from a cell of the deep layer $q ; r$, nenroghia fibres.

Fig. 6inis.
axones of the pyramidal tract in all probability do mot enter into direct conduction relation with the lower motor neurones at all. He is of the opinion that in between the upper motor neurones and the peripheral motor neurones are intercalated dendraxones (Golgi cells of 'Type II, von Monakow's Schaltzellon). By means of these dendraxones the peripheral motor neurones are aggregatel into gronps, so that one or more pyramidal axones acting upon the dendraxone conld set into activity all the motor neurones requisite to innervate the musele fibres concerned in the production of a given movement. By means of this interalation of dendraxones von Monakow would account for the production of so many different movements with so limited a number of fibres as the pyramidal tract contains. This highly ingenions view is not purely theoretical, for von Monakow states that in his exiensive series of secondary degenerations of the pyramidal tract he finds that the degenerated fibres do not extend into the ventral horns of the spinal cord, inasmuch as the substantia gelatinosa does not atrophy and disappear there. On the other hand, there is with lesion of the pyramidal tract a disappearance of the substantia gelatinosa in the region of the processus reticulares near the lateral horn. Von Monakow, therefore, suggests that in this part of the gray matter are situated the dendraxones which receive the impulses direetly from the fibres of the pyramidal trat, and which by means of their axones in turn distribute them to the dendrites and cell bodies of the lower motor nenrones. This view of von Monakow has been supported with a good deal of vigor by Redlieh.*

On the other hand, von Kölliker assmes that, taking into cousideration the number of collaterals given off by the terminals of the axones of the pramidal tract, the total number of fibres coming into relation with the lower motor nemrones is quite sufficient to account for the liberation of the impulses concerned in the various voluntary movements without the assumption of the existence of interealated dendraxones. For the present it seems wise to leave the question open. I most favorable tield for work with Golgi's method is here represented.

The whole conduction path from the cerebral cortex to the museles, involving at least two sets of superimposed nemrones, is

[^414]sometimes spoken of as the cortico-muscular conduction path (Figs. fin\% and 658).

We owe to Cowers especially the recognition of the differences

Fig. 657. -Scheme of upper and lower motor neurons. Lettering as in Plate II.

Fut, dins.-sicheme of upper and lower motor neurmes. Lettering sime as in Plate I.
in the effects of lesions involving on the one hand the lower motor neurones and on the other the upper motor neurones. Gowers deseribed these as (1) lesions of the lower motor segment and (2) lesions of the upper motor segment.

If the lower motor nemrones be serionsly injured there results the so-called flaceid paralysis. 'The muscles madergo rapid atrophy, and exhibit the so-ealled eler ceal reaction of degeneration. On the application of the galvance or the faradic current to the degenerated nerve there is no response. But when the musele is stimulated, while there is no response to the faradic eurrent, there is a response when the galvanic eurrent is applied, which, however, is not that which normally ocemrs. Instend of being sharp and quick, the contraction is slow and lazy, and, in opposition to the rule in health, the anodal elosure contration may be greater than that on cathodal closure. Since the reflex are is destroyed when the lower motor nemrones are degenerated, the so-ealled deep reflexes are in such instances abolished and the muscular tension is timinished. The groups of museles paralyzed give the clew to the localization of the lesion.

When the npper motor neurones-for example, those the axones of which correspond to the pyramidal tract-are degenerated there is also paralysis, but of un entirely different nature. Instead of the flaceid, markedly atrophic paralysis of the museles with electrieal reaction of degencration, there oceurs the so-called spastic paralysis, accompanied, as a rule, by no more atrophy in the museles than that which wonld naturally follow disuse. 'The deep reflexes in such instances are of conrse exaggerated, and the teusion of the musele may be markedly increased. The distribution of the paralysis will of conrse be entirely different from that which oceurs with lesions of the lower motor nemrones, and the situation of the lesion may be aseertained by careful consideration not only of the nature and distribution of the paralysis, but by a consideration of the accompanying phenomena due to associated lesions in other nerve paths.*

[^415]
CHAP'TER LXIII.

INTERMEDLARY AND UPDER MOTOR NEURONES ('ONTINUED).
The frontal cerebro-corticopontal path, or fasciculus pallio-frontalis, pars, frontalis.
3. Those the Axones of which Correspond to the Frontal Cerebro-Corticopontal Path.

Turs path, described by Flechsig as the frontale Grosshirn. rinde-Briuckenbath, is assumed by him to arise in those regions of the cerebral cortex which correspond to the distribution of the system of sensory fibres which he designates as No. III ; that is to say, the feet of the three frontal gyri, and possibly also the middle portion of the gyrus fornicatus (Fig. 659). The axones from the large pyramidal cells of this region of the somesthetic area rumning in the centrifugal direction toward the internal capsule become medullated at a period somewhat later than the fibres of the pyramidal tract. The fibres pass through the pars frontalis of the capsula interna near the genu, pass through the base of the cerebral peduncle medial to the fibres of the pyramidal tract, and, according to Flechsig, terminate in the nuclei pontis. It is Flechsig's opinion that this frontal cerebro-corticopontal path is concerned with the movements of bilaterally innervated museles, such as those of the eyes, neek, and trunk. The motor impulses concerned in the speech movements may also, he believes, be carried by fibres of this path. There is a good deal of evidence, however, that the speech path is separate and distinct from the frontal cerebro-corticopontal path. By means of neurones extending between the nuclei pontis and the cerebellum by way of the brachium pontis, the frontal cerebro-corticopontal path throws the cerebellum under the influence of the opposite cerebral hemisphere.

In the pars basilaris pontis the frontal cerebro-corticopontal path at first oceupies the dorso-medial portion of the longitu1040

Fig.
dimal fibres, but in more eaudal phanes it turns ventralward, so that it comes to lie ventral and somewhat medial to the fibres

Fig. 659.-Scheme of frontal cercbro-corticopontal path. Lettering as in Plate II,
of the pyramidal tract (Fig. 660). This tract may degenerate after lesions of the middle and inferior frontal gyri, in which event the dorsal bundle of the anterior limb of the internal capsule undergoes secondary degeneration, and the frontal cere-

Fig. gith.-Scomdary degenemation following lesion in the left middle and info-

 A. Transverse section at the level of the middle of the thalamos passing throngh the mucleus hypothalamieus (eorpus laysi); mit, murlens anterior thalami; di, capsula interna; ('L, mule us hypothabaniens (rorpus laysi); fitt, stratum redieulatum; M.str, madiations from capsule of red nuele us (ilanbenstrahlung) : Li. lut, muclens hateralis thalami ; Li. nuele ons loutiformis; Liseth, mnsil lentioularis; med, nuderus medialis thatami ; medd, degeneration in muchens medialis thalami ; Ird.ed, degememated trontal cerehro-cortienpontal

 RI, fascifolus thalamomammilaris Vieq d'Azyri. B. Transwerse soction throngh the posterion extremity of the thatamos and the retrolenticular purtien of the eapsula interna; ; BA, brachium comjunctivan: $/ 1$ N. tractus
 bri, pars basilaris; Rh, mucleus ruler; Thut, thalams; rent, veut ral group of
 tion of the colliculus sumerion with the collienlus inferior ; B.A, brachiom
 tion through the uppormost part of the medula oblongata ; degencrations no lomger demonstrable: Br.1, brachinu pentis; IIL, fasciculus longitudinalis

 nucleos N. tacialis; I'yr, pymmids.

B

Fu. ${ }^{6} 61$.
bro-eorticopontal path can be followed into the most medial portion of the base of the cerebral peluncle. In such instanees the radiation of the nuclens medialis thalami and a portion of that of the nuelens lateralis thalami atrophies, and after a time disappears (von Monakow). An example of degeneration of the frontal cerebro-corticopontal path is shown in Fig. 661. This bundle, especially in the base of the cerebral peduncle, has been called, though improperly, Arnold's bundle.

Zacher* has recently denied any connection between the frontal lobe and the medial segment of the base of the cerebral pedunele. In his case, in which the medial bundle of the pes was degenerated, the anterior portion of the posterior limb of the internal capsule was entirely free from degeneration. He believes that the medial bundle of the pes has its origin in all probability from fibres which run in at the base of the muclens lentiformis in its posterior part from the ontside. These fibres, he believes, in part at least, have their origin in the island of Reil. Dejerine attributes the origin of the fibres to the Rolandic opereulum and adjacent part of the frontal operenlnm. One of Spiller's \dagger easts would indicate that at least a portion of the bundle has an origin anterior to the Rolandie opereulum.

[^416]
CHAP'TER LNIV.

INTERMEDIARY AND UPPER MOTOR NELRONES (CONTINIEB).
The temporal cerebro-corticopontal path-Paths from the lobos oecipitatis to the corpora quadrigemina-Olfactory reflex paths.
4. Those the Axones of which Correspond to the Temporal Cerebro-Corticopontal Path.

These are the nemrones the medullated axones of which ocenpy the most lateral segment of the base of the cerebral peduncle designated by llechsig as the temporale GrosshirurimedrBräckenbathn. The bundle is usually called 'Türek's bundle, quite improperly it would seem, since the bundle concerned is separated by a wide area from the region found diseased by Türck in hemiamesthesia.* Flechsig believes that the cell bodies and dendrites which givo origin to the axones of this path are situated in the anditory sense area of the cerebral cortex (gyrus temporalis superior et gyri temporales transversi). 'The axones, he believes, pass down throngh the posterior portion (retro-lentiform portion) of the pars occipitalis eapsulae interne to the lateral region of the base of the cerehral peduncle. Thenee they go into the pons and end there in some way unknown to Flechsig, perhips, he suggests, roing crer directly into trimsverse fibres of the pons or ending in the muelei pontis. He is inclined to think that, like the frontal cerebro-corticopontal path, this temporal path represents a mode of connection by way of the brachium pontis of one cerebral hemisphere with the opposite cerebellar hemisphere. The fibres are medullated at a later period than the fibres of the pyramidal tract.

Yon Monakow describes the temporal cerebro-corticopontal path tis occupying, in the cerebral extremity of the pons, a dorsolateral field, which it follows until it becomes exhansted in the gray matter at the candal extremity of the pons, except that from

> * ofr. cit.
the middle of the pons on it is located exactly dorsal to the fibres of the pyramidal tract. The fibres of this bandle, like all the other faseieuli longitudinales of the pars basilaris pontis, are separated from one another by fibra transversat pontis and by the masses of gray matter which make up the nuelei pontis.

Fic: bifid.-Zane of the corebral eortex, hesion of which entses degemeration of alt the fibres of the basis pedumenti. (After J. Dejerine, from A. van (iehnehtem's

The fibres of the temporal cerebro-corticopontal path degenerate in a descending direction (Zacher, Kam, von Monakow, and Dejerine). According to Dejerine,* the bundle arises from the whole temporal lobe, but by no means solely from the gyrus temporalis superior. Indeed, he favors the view that the fibres arise mainly in the G. temporalis medius and the (G. temporalis inferior. Moreover, Dejerine asserts that the fibres on their way from the temporal lobe to the base of the cerebral peduncle do not $\mathrm{i}^{\text {mass through the eapsula interna at all, but instead go below }}$ the nuclens lentiformis to join the other fibres which enter the cerebral pedmele in thie hypothalamie region. In Fig. ti6: is reproluced a diagram in which is shown the cortical zone, which, when destroyed (aceording to Dejerine), will lead to complete degeneration of all the fibres of the basis pedmenli.

In this connection a ease of the highest importance has

[^417]recently been earefully studied by Mills and Spiller.* This canse makes it diffientt to understand the view of Fleehsig, for it seems hard to conceive how in such a case, where there was no degeneration in the lateral bundle of the base of the cerebral peduncle, the fibres which form this bundle conld have their origin in the gyrus temporalis superior (Flechsig). It seems strange that the origin and distribution of the axones of the lateral bundle of the pes have not been approached from the experimental side. It is not too much to hope that we shall soon have data to record in this connection. Ferrier and Thrner have extirpated the gyrus temporalis superior and have obtained secondary degenemation in the lateral bundle of the pes, thas supporting the doctrine of Flechsig, though their studies support Dejerine in part, in that they find that the fibres pass lateral and ventral to the uncleus lentiformis.

5. Those the Axones of which Connect the Lobus Ocolpitalis with the Nuclei Governing the Movements of the Eyes.

Flechsig, in his descriptions of the lateral bundle of the base of the cerebral pedmele, thinks it probable that a certain number of the fibres of this bundle may arise in the visual sense area of the occipital lobe. His views are supported by the embryological studies of von Bechterew. \dagger That there are nemrones extending between the visnal sense area in the occipital cortex and the eye-musele nuclei, or at least the superior colliculas of the corpora quadrigemina, seems extremely probable from the studies of secondary degeneration after animal experiment carried out by von Monakow and the studies of anophthalmia conducted by his students. Exeitation of the cortex of the occipital lobe, as Munk, Sehaefer, Horsley, and others have shown, is followed by movements of the eyes. The results of these rescarches render

[^418]it probable that the giant pyramidal cells of the third cortical layer send their axones throngh the radiatio oeeipito-thalamica (iratioleti and the brachium quadrigeminum superius to the colliculas superior of the corpora quadrigemina and the stratum griseum centrale aqueductus cerebri. Whether or not any of these axones actually reach the muclens nervi oculo-motorii and the other eye-musele nuclei directly is not known; it may be that another nemrone is interposed between the terminals of the occipito-mesencephatic nemone and the lower motor neurones. Indeed, this is the view which von Monakow is inclined to support, and it is quite in accord with the prevailing ideas with regard to the superior collieulus, which is genemally looked upon as the central organ for the government of the eye-musele muelei. 'That the fibres from the oceipital cortex to the mesencephalon do actually pass throngh the lateral segment of the cerebral pedmucle is made very probable by the studies of Zacher.* He believes that the fibres from the occipital lobe are most laterally placed, those from the temporal lobe being situated between these and the tibres of the pyramidal tract. The cases of Sioli \dagger and Winkler \ddagger make it not impossible that some fibres from the lobus parietalis also pass through the lateral segment of the base of the cerebral pedunele.

6. Those the Axones of which Connect the Rhinencephalon with the Lower Motor Neurones.

These have already been dealt with in connection with the olfactory sensory nemrones of the second and higher orders, to which the reader is referred.

[^419]
SUBSECTION V.

Projection Neurones, Commissural Neurones, and Association Neurones of the Telencephalon.

IT seems desirable to refer briefly to the main telencephalic nemrones by themselves. It is customary to divide the fibres in the telencephalon into projection filhes, commissural fibres, and association fibres. The eomplexity of the fibres of different sorts in the gray matter of the cerebral cortex is well illustrated in Fig. 663. Now that we know that no white fibres exist which have not their origin in cell bodies-that is to say, which are not the axones of neurones-it seems more logical to speak of projection nemrones, commissural nemrones, and association neurones.

(A) Projection Neurones.

CHAPTER LAVV.
protertion neurones of tile telencepilalon.
Groups of projection nenrones-Cerebral appanges or dependenciesPhylogenetically yonng parts of the hrain.

By these are understood the nemrones which connent directly the eortex of the telencephalon (pallinm and rhinencephalon) with lower portions of the nervous system. 'The medullated axones may pass in either direction-from the cortex to lower centres, or from lower centres to the cortex. In the former instance the cell bodies of the neurones are situated in the cortex, and the axones deseend-that is to say, the conduction is corticofugal. In the latter instance the cell bodies of the nemrones are situated in the lower centres, and the axones ascend to terminate in the cerebral cortex. The latter are corticopetal in conduction.

Fig. 663.-Cortex of human hrain illustrating the systems and plexuses of worw fibres (eombination of the methods of Weigert and (iolgi). (After L. Andri-
 M.P., Exnev's phexns in the molecular layer: A.str., anhignus cell st ratum: Summ. P. submolecular plexus: (it.I'I., great pyramidal plexus; Iod.I., polymorphic plexus; IV., white matter.
broand ceph rone lowe the y be cd of th tion

The majority of these nenrones have alrealy been deseribed in comnection with (1) the sensory nemones of the higher order and ($:$) the upper motor neurones. 'Tlus (a) the diencephalotelenceplualic neurones of the general sensory path, (b) the radiatio oceipito-thalamica (iratioleti of the visual condnetion path, and (c) the radiatio corporis geniculati medialis of the anditory conduction path represent corticopetal projection nemones. Again, the fibres of (1) the pyramidal tract, (b) the frontal cere-

Fig. 664.- Sagital section No. 148, through the hain of a babe shortly atter birth, illust rating the progection tibues to the somarsthetio area. ('i.. eapsulat interna; (i.c.a., gyrus centmbis anterior; (i.e.pe. gyrus contralis posterior: Lob. fromt., lobus fromtalis; Loh. orcip., lobus occipitalis: Th., thabmus;
 líl., ventriculas lateralis.
bro-eorticopontal path, (c) the temporal cerebro-corticopontal path, and (d) the fibres rmning from the occipital lobe to the mesencephalon represent the axones of corticofugal projection nenrones. The ease with which these projection axones can be followed in the medullating brain is well illustrated in Fig. 664.

If an area of the cerebral cortex be extirpated, especially in the young animal, the axones of projection nenrones, whether they be corticopetal or corticofugal, undergo a change. In the case of the corticofugal axones secondary degeneration with absorption rapidly takes place; in the case of the corticopetal axones 619
there is less rapid degeneration or atrophy, which can be traced to their infracortical origin. These infracortical areas in which the corticopetal telencephalic projection fibres originate, and which, like the fibres themselves, undergo atrophy or degenerntion after extirpation of the area of the cortex in which they terminate, are known as " cerebral appanges "or "dependencies." Von Monakow has recently paid a good deal of attention to these areas, and has deseribed them under the term Grosshirnantheile. He believes that they are phylogenctically young, for they are absent in lower forms, and increase progressively in size and number in direet proportion to the development of the cerebrum. Aceording to his view, the majority of the melei of the thalamms and geniculate bodies, the substantia nigra, and portions of the corpora quadrigemina and of the pons belong to this category. The varions cerebral dependencies are of different age, as far as can be judged from phylogenctic studies, the olfactory organ, the visual sense, and hearing hatving been suecessively developed.
(B) Commissural Neurones.

CHAPTER LAVI.

COMMISSURAL NEIRONES OF THE TELENCEPHAJON.
Heteromeric temerphalic neurones-Hecateromerie neurones-('orpus callosum-('ommissura muterior cerebri-C'ommissura hipporampi.

By these are meant neurones with cell bodies situated in one hemisphere of the telencephaton, while their axones are distributed in the cortex of the opposite hemisphere. They might, therefore, well be designated the intrinsic heteromeric telencephatic nenrones. Studies by Golgi's method go to show that some of the axones bifurate, one of the limbs of bifureation passing into the opposite hemisphere, the other being distributed in the hemisphere of the same side. Such neurones might well be called intrinsic hecateromeric telencephalic neurones.

The main groups of neurones here to be considered are (1) those with axones corresponding to the mednllated white fibres of the corpus callosum, (?) those with axones corresponding to the fibres of the commissura anterior cerebri, and (3) those with axones corresponding to the commissura hippocampi.

1. Those the Medullated Azones of which correspond to the Fibres of the Corpus Callosum.

The fibres of the corpus callosum represent the axones of the majority of the intrinsic commissural neurones of the telencephalon, and it has been well designated the commissura maxima. The main body of this is known as the truneus corporis callosi. The anterior border of the truncus bends sharply downward to form the genu corporis callosi. As a result of the curvature there arises a ventral horizontal piece of the corpus callosum, about two centimetres in length, which, on median section, looks wedge-shaped. This is the so-called rostrum corporis callosi.

Its thin, medulated, lealike extremity, extending buckwarl to the lamina teminalis, is known as the lamim rostralis. At it.s. posterior border the truncus goes over into the much-thickened splenium corporis callosi.

The axones of which the corpus callosum is formed pass in both directions, some going to and some going from each of the cerebral hemispheres. These converging and diverging fibres form what is known as the radatio corporis callosi; that portion of it corresponding to the lobus frontalis is known as the pars frontalis of the radiation. In the same way there is a pars parictalis,

 disposition of the "ombuissimal and projection tibres. (After s. lanmon y

 whe sumding at limbof hifureation thromgh the eorpus callosim to the opposiad hemisphere; b, pramidal erell sembing axome through corpus cullosim; e, pyranidal cell with an axome which bifumates; one going throngh the corpus callosam to the opposite hemispheres the other being disfributom to the cortex of the hemisphere of the same side d, collaterals from eallosal fibres ; e, terminals of callosal fibres.
a pars temporalis, and a pars oceipitalis. The tapetum is also considered by many to form a portion of the radiation of the corpus callosim, although, as has been seen above, recent investigations are in opposition to this view.

The cell bodies which give rise to the axones of the corpus callosum are, Ramon y Cajal believes, those of the small or mo-dium-sized pyramidal cells, or the polymorphons cells of the cercbral cortex. It may be that some of the axones helping to form the corpus eallosum are collaterals from the axones of long association neurones, or even of the axones of projection neurones (Fig. 66t).

Studies of secondary degeneration indicate that through the corpus callosum the activities of a given centre in the cerebral cortex of one side are associated with the attivities of a precisely simiharly located cortical area in the opposite cerehral hemisphere. Hamilton* is of the opinion that the fibres of the corpus callosim after passing into the opposite hemisphere do not go out to the cortex of that hemisphere, but pass directly downward into the intermal eapsule anl parts below. He believes, however, that the cell bodies of these axones ure situated below, and that the fibres pass up through the internal capsule and then through the corpus cullosum into the opposite hemisphere. Thus impulses would pass along them from the lower centres to the higher, which are of significance in educating the motor cortex-that is, serve as a means of eonveying impulses to arouse the motor area of the bain. This view has not as yet received the general support of neurologists, and the extirpation experiments of Mellus, Muratow, and others do not temd to confirm it. Ferrier and 'Tumer, however, in a recent article seem to support, in part at least, the hypothesis of IIanilton.

2. Those the Medullated Axones of which correspond to the Commissura Anterior Cerebri.

This bundle of medullated axones is sithated just in front of the columna fornicis as they plunge into the tuber cinereum. It is in reality situated in the region of the diencephalon, but the cell bodies, which give rise to the axones which constitute it, are situated in the telencephalon, partly in the rhinencephalon, partly in the pallium.

The anterior commissure can be divided into two parts-(1) a pars anterior and (2) a pars posterior (Fig. 666). The pars anterior belongs apparently wholly, or almost wholly, to the rhinencephalon connecting the olfactory cortex of one side with that of the other side. It is much larger in many animals, especially in macrosmatie mammals, than in man. The pars anterior atrophies in toto after extirpation of the bulbus olfactorins on one sile (Ganser), or after extirpation of the lobus olfactorius of one side (A. Meyer).

[^420]The pars posterior of the anterior commissure is believed to associate the activities of a portion of the temporal and of the basal part of the occipital

Fig. biti. -Scheme of the eommisimra anterior corehri ; p.t., patrs posterior ; p.en., pars anterior. (After A. Ranher, Lehrbueh aler Anatomio des Denseflen, V. Auft., Bid. ii, láip\%., ts98, S. 3ss, F'ig. 336.) lobe of one side with those of similar cortical treas on the opposite side. In developmental stages of the organism the pars posterion of the anterior commissure stands in intimate relation to the ventral portion of the splenium corporis callosi, and is really morphologically widely separated from the pars anterior.

The view is prevalent that the commissura anterior cerebri is a supplement to the corpus callosum, its axones originating and terminating in areas of the cortex unprovided for by that body. The comparative anatomy of the strueture has been studied by Osborn,* C. J. and C. L. Herrick, \uparrow Edinger, \ddagger Smith, \# Symington, $\|$ and by Adolf Meyer. ${ }^{\Delta}$

* Oshorn, H. F. The Origin of the Corpus Callosum, a Contribution upon the Cerebral Commissures of the Vertebrata. Morphol. Jahrb., leipra, Bd. xii (1886-87), S. 293; 5330.

H Herrick, C. J. The Corebrum and Olfuctories of the Opossum Didelphis Virginima. J. Comp. Nemrol, ('ineimati, vol, ii (1892), pp, 1-20.-The Commissures and Histology of the Teleost Brain. Anat. Anz., Jem, Bd. vii (1891), S. 6a6-681.-Alditional Notes on the Feleost Brain. Amut. Anz, 13]. vii (1892), S. 423-431.-The Callosum and Hippocampal Region in Marsupial and Lower Brains. J. Comp. Nenrol., Granville. vol. iii (1893), pp. 171-182.-Also C. I. and C. J. Herriek. Contributions to the Morphology of the Brain of Bony Fishes. J. Comp. Nemrol., vol. i (1891). p. 211 ; 333; and vol. ii (1892), 1p. 21- 2 .
\ddagger Edinger, 1. Vergleichend-Entwickelungsgeschichtliche umt unatomisehe Stndien im Bereich Jer Hirmmatomie. Amat. Anz., Jena, Bd, viii (1803), ㄴ. 305-321.
\# Smith. G. E. Notes upon the Morphology of the Cerebrum and its Commissures in the Verlehrate Series. Amat. Anz., Jena, Bd. xi (1805), S. 91-96. Worphology of the True Limhic Lobe, Corpus Callosum, Septum Pelheidum, and Fornix. J. Anat, and Physiol., Lond., vol, xxx (1895-96), pp. 157; 185; 450.
\#Symington, f. The Cerebral ('ommissures in the Marsupialia and Monotremata. I. Anat. and l'hysiol., lamd., vol, xxvii (1892-93), pp. 69-84.
Δ Meyer, Atolf. L'eber dus Vorderhirn einiger Reptilien. Inaug. Diss,, Leipz. (1892), s. 1-i8.-Zur Homologie der Fornix commissur und des Sipptum lucidum bei den Reptilien und Siiugern. Anat. Anz., Jena, Bl. x ($1894-95$), s. 4 ; 4-482.

3. Those the Medullated Axones of which correspond to the Fibres of the Commissura Hippocampi.

This in man and mammals consists of a bundle of medullated axones extending between the crura fornieis of the two sides and comnecting the hippocampi with one another. Fibres run in both directions, forming apparently a true commissure, the socalled psalterimm or lyre of David. It can be divided into two parts, one more dorsally, the other more ventrally located. This is especially true of the commissura hippocampi of animals. The axones probably have their origin in the pyramidal cells of the hippocampus.

(C) Association Neurones of the Telencephalon.

CILAPTER LAVII.

ASSOCIATION NEVRONES OF TIIE TELENCEPIIALON.

Tautomerid telencephatic nenrones-Fibrir propria-Stratum ealearimm-

 propinan eunei-The eingulnm-The fasciculus longitulinalis sun rion-The faseiculus monatus-Association bundes of the fornix'The tapetum.

These might well be called the intrinsic tiutomerie telencephalie neurones. By them is to be understood neurones which connect a portion of one hemisphere with another portion of the same. These association nenrones may be divided into (1) thoso with short axones and (2) those with long axones.

The association neurones with short axones inchude the fibre proprise of the cerebral gyri.* Some of them are medullated very late. In many of the convolutions almost all the white fibres present consist of these short axones. 'The shortest axones are most superticial ; the longer ones pass deeper into the whit, matter. They vary in direction corresponding to the position aml curves of the different grri. They are evidently for the purpose of co-ordinating the functions of neighboring gyri.
liamon y Cajal believes that the axones of the association neurones arise from the polymorphons cells of the smaller and larger pyramidal cells of the cerebral cortex. They give off numerons collaterals so that the excitation of one of these nenrones can lead to alterations in the nenral activity of many other nemrones situated in varions parts of the cerebral cortex. I

[^421]schematic representation of Ramón y Cajal's views concerning the association neurones is reproduced in Fig. 66%.

 the disqusition of the axomes of assoctiation menromes whith enomed the

 of corpus callosum chat transersely.

1. Those with Short Axones.

The short association neurones have been most earefully deseribed, especially in the oceipital and frontal lobes, by Wernicke, ${ }^{*}$ Sachs, \dagger Vialet, \ddagger and Dejerine. ${ }^{*}$

Among these may be mentioned for the occipital lobe:
(1) The stratum culcurinum (Fig. 665), uniting the superior lip of the calcarine fissure to its inferior lip by its shorter fibres, and the medial surface of the cunens to the inferior and medial surface of the gyrus lingualis by its longer fibres.
(2) The fasciculus ocripitalis rerticalis, or perpendicularis, of Wernicke, $\|$ uniting the superior border of the oecipital lobe to its inferior surface. As a matter of fact, it conneets the gyri oceipitales superiores with the gyri oceipitales laterales and the

[^422]gyrus fusiformis. Anteriorly it extends between the gyrus angitlaris and the gyrus temporalis medius and the gyrus tempralis inferior.

Fig. 66s. - Vortical tranverse sertion of the left oecipital lobe to show the origin and comse of the short assoriation fibres of the lobos orcipitalis (party selnematic). (After J. Dejerine, Anatomie des centres nervenx, laris, 1895, p.

 oceipitalis tansversus eumei ; Fios, gyrus linsformis; io, sulens oceipitalis; h^{*}, tissura malearina; ist, gyrus lingualis; fo, sulens of myrus lingualis;
 Vertioulis; ot, tissura collateralis: po, tissura jarictalis oceripitalis; mely, gyrus profundas conneeting "unems with the gyrus formiantus; RTh, radiatio oe-

 d'Azyr ; loc, corna posterins ventriculi lateralis.
(3) The fusciculus occipitalis transversus cunei* extends from the superior lip of the calcarine fissure lateralward and

[^423]then curves upward and probably terminates in the cortex of the convex surface of the occipital lobe. According to Sachs, some fibres go obliquely forward and lateralward to the lobulus parietalis superior and the gyrus angularis.
(4) The fascicalus occipitalis transeersus gyri limyualis of Sachs and Vialet extends from the inferior lip of the calearine fissure (gyrns linguatis) lateralward to the convexity of the occipital lobe (gyri oceipitales laterales). It is for the inferior lip, of the calcarine fissure what the fascionlus occipitalis transversus cunei is for the superior lip of the calcarine fissure.
(5) The stratum proprium cunci of Sachs consists of vertical fibres extending from the superior lip of the calcarine fissure vertically upward to radiate ont into the cortex near the junction of the medial with the lateral surface of the hemisphere.

In the frontal lobe fewer distinct bundles of short association fibres have been made out. According to Dejerine, the fibre propriae of the frontal lobe are grouped around the corona radiata, some extending transversely between the medial surface of the frontal lobe and its orbital and lateral surfaces, others extending vertically and comnecting the various gyri of the lobe with one another. Still other bundles assume a sagittal direction, especially tionse in front of the substantia perforata anterior.

Similar short association neurones have been described in the lobus temporalis as well as in the insula. But thas far our knowledge of these bundles is too limited to make their detailed consideration of profit in this phace.

2. Those with Long Axones.

The association nenrones possessing long axones have been better studied, but the opinions of various investigators concerning them are still markedly contradietory. Withont entering into the various polemics the following statements may be considered to represent the consensus of opinion at present regarding these bundles. Of the long association neurones the most important are (1) the cingulum, (2) the fascienlus longitudinalis superior, (3) the fascienlus unciuatus (4), association bundles of the fornix, and (5) the tapetum.

The cingulum* belongs, properly speaking, to the rhinen-

[^424]cephalon. The bundle extends in a sagittal direction close to the medial surface of the cerebral hemisphere in the white matte: of

 ulas longitmdinalis inferiar, and other hamdes of assoriation fibres. (After

 Th, Ilalanuts.
the two main parts of the gyrus fornicatus, samely, the gryms cinguli and the gyrus hippocampi. Dejerine deseribes it as an arenate bundle which turns around the rostrum, gem, trumcas and splenium of the corpus callosmm. At the isthmas gyri formicati it goes into the depth to enter the gyrus hippocampi, through which it extends toward the uncus. 'The bundle, however, is not made up of axones which extend the whole length of the cingulum, but of a great number of shorter axoms: which are ever entering and leaving the bundle. According to

Beevor,* it consists of three independent fascienli-one anterior, a second horizontal, and a third posterior' (Fig. (699). The anterior bundle, he believes, comects the substantia perforata anterior, and especially the region of the termination of the medial olfactory stria, with the anterior extremity of the frontal lobe. The horizontal fasciculus extends between the medial lateral surface of the frontal lobe and the gyrus cinguli, while the posterior fasciculus situated chiefly in the gyrus hippocampi connects this gyrus with the gyrus lingualis, gyrus fusiformis, and the cortex of the polus temporalis. The cingulum in the developing brain is shown in Fig. 670.

Fig. 6än- - Marchi proparation showing degenemation in dog's brain after destruction of che lolus fromtalis, After Shukowski. taken from W. vou Berhterew.
 11. Anll., Lait\%, 189!9, S. 5isk, Fig. 535.) en, commissura interior certhri containing degenerated fibes, whieh ou the left side go over into the external

 fasciculus subeallosus; sp, formix tiberes in the septum.

The fusciculus longitudinalis superior, \dagger triangular in coronal sections of the brain, extends as a curved bundle in a sagittal

[^425]direction, apparently between the frontal tobe and the occipital lobe (Fig. 671). The cell bodies of the nemrones, which give rise to the axones which constitnte it, have not been well loealized.

Fiti. bitl.-Iateral surface of the left cerebal bemisphare. The edges of the fissum rewhei lateralis (Sylvii) have bere removed, and the gyri pulled apart to show the insular and retroinsular requon. The lasedentus manatus, the fasciculus longitudimalis superiour, num the fasejembs ocripitalis vorticalis are secen in trmspareme. (Alter J. Dejerine, Anatomie des contres nervenx, Paris, $1805, p, 757$, Pig. 37π.) Arce fasciculus longitudinalis shperior ; $F_{1}^{\prime}, F_{2}^{\prime}$

 riour - P_{2}, lobulus parictalis inferior ; $P^{\prime \prime}$, wy vos rentalis posterior : Pr, gyrus antalaris: 「po, fissura parictoocripitalis? por, portion of sulens interparjotalis behind the upper part of the grans rentratis pesterion ; pri, sulens prabe

 cus tempomatis sumerior: t^{\prime}, t^{\prime}, vertical mani of the sulcus tempomatis supe-

It would appear that the axones of the bundle are of variable length, the majority of them not running through the whole extent of the fasciculus, but, as with so many of the association bundles, axones are ever entering and leaving this fasciculus. Among the axones in it are doubtless some extending between
the gyrns temporalis superior and the inferior frontal gyrus. This bundle on the left side is therefore, in all probability, of the highest importance in comection with the functions of speech, since in the gyrus temporalis superior is located the centre for word memories, while in the gyrus frontalis inferior is situated the centre for memories of the movements concerned in the articulation of words (Broea's eentre). It is highly probable that axones run in both directions in the faseieulus longitudinalis superior.

The fasciculus longitulinalis inferior* is nsually described as extending between the lobus oceipitalis and the lobus temporalis. It rums for a large part of its course close to the radiatio beeipito-thalamiea (inatioleti, but can, as a rule, be easily distinguished from the latter (Fig. 6id). In it, too, in all probability, are axones rmming in both directions; in the one case the cell bodies of the neurones to which these axones belong are situated in the oceipital lobe; in the other the cell bollies are sitnated in the more anterior parts of the brain. The majority of the axones, however, appear to have an oceipitofugal direction. It is believed by the majority of investigators that a great many of these axones terminate in the temporal lobe, especially in the gyrus temporalis superior, and the ideat one arises that this bundle is the one concerned in comecting the visual sense area of the oceipital cortex with the anditory sense area of the temporal cortex. 'These areas are modonbtedly comected, directly or indirectly, by means of association neurones. That the fasciculus longitudinalis inferior is, however, the bundle concerned is by no means definitely proved. The difficulty lies in the fact that in the anterior part of its course it is extremely diffienlt to differentiate fibres which belong to it from other fibres which are alljacent to it or even mixel up with it-for example, the medullated axones from the corpus genienlatum mediale and many of the cortipetal axones from the mulei of the thalamns. Flechsig apparently denies a connection of the fascienlas longitudinalis inferior with the temporal lobe; indeed, he inclines to the view that mush of this bundle eonsists of the medullated axones of projection neurones. The majority of investigators, however, insist upon the connection above deseribed, and attribute many

[^426]of the visual disturbanees accompanying aphasic lesions to interruption of the fibres of this path.

Fic: 672.-Vertical transverse section passing through the posterior part of the
 Weigert. (1 fter, J. Dejerine, Anatomie des rentres mervenx, 1805, p. 76s. Fig. 3s4.) Fili, fasciculns longitudinalis interior ; Fim, fornix major ; ftes fasejeulus transversus comei ; Fus, gyrus linsiformis; io, sulens occipitalis; ip, suleus interparictalis; K, tissuma calearina; La, gyrus lingmalis; ot, of gyri occipitales: θ_{2}, sulens occipitalis ; m, incisure of the sulens orecipitalis anterior of Weruicko: wt, sulents collatemalis; P_{1}, lohulus parietalis superior: Pe, gyrus amgularis: po, fissura paricto-nceipitalis; Prer, pracomens; RTh.
 ventriculi latemalis.

The fasciculus uncinatus is a bundle of medullated axones which extends between the unens and the basal portions of the frontal lobe. It wonld appear to be an association bundle belonging to the rhinencephalon, conneeting as it does the temporal
sense area with the olfactory sense area in the base of the frontal lobe. Authors are, however, by no means agreed as to its exact origin or as to its functions.

Many of the axones of the fornix are to be looked upon as the medullated axones of long association neurones. Especially is this true of the so-called olfactory bundle of the fornix which connects tho hippocampus with the substantia perforata anterior.

The topetum, usually described as a part of the radiation of the corpus callosum, is now believed by many to have nothing at all to do with that body, but to represent a bundle of medullated axones of long association neurones which connect the occipital and frontal lobes with one another. Thus, in instances of con genital absence of the corpus callosum it has been stated that the tapetum has been found normally developed (Fig. 673) (Forel and Onufrowicz,* Kaufmann, \dagger Hochhans, \ddagger Bruce. ${ }^{\text {. }}$) Forel and others believed that the tapetum, therefore, represents a portion of the fasciculus longitudinalis superior, but this is vigorously opposed by Sachs and by Dejerine. Sachs thinks that the tapetum really belongs to the corpus callosum, and that, in cases of congenital absence of the latter body, instead of passing through from one hemisphere to the other, its fibres are transformed into a sagittal bundle which does not leave the hemisphere in which the fibres belong. Dejerine holds, on the contrary, that the tapetum belongs neither to the fasciculus longitudinalis superior nor to the corpus callosum, and that it is not, as Sachs would have us believe, a displaced bundle of the corpus callosum. He thinks that it is an independent sagittal association bundle, differing from the fasciculus longitudinalis superior in that it is located medial to the corona radiata forming the roof of the lateral ventricle, while the fascienlus longitudinalis superior is situated lateral from the corona radiata, its most inferior fibres being situated lateral from those of the ex-

[^427]
IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

1068

ternal capsule. He pefers, therefore, to deseribe it as the fasciculus occipito-frontalis, identifying it with the bandle deseribed by Meynert as the radiation of the molens candatus and

Fig. 673.-Two vertical tmanserse sections from, a rerebal hemisplore, with
 Degerine's text-book.) A. Suetion passing through pulvinar of optie thatamms. 13. Section about 20 mm. farther back. A. Ahralvens; (.1 , hippor
 culatam latarale; ('irf, retrolenticular portion of eapsula intermat des,

 ventrioulas lateralis; Vaph, rornu infirius ventriculi latemas. 13. C, cuncos:
 O $f(7, p)$, fasciculas oceipito-frontalis of Forel and Omufrowic\%, forming the

with the bundle deseribed by Wernicke as the bundle from the corpus callosum to the internal capsule (Fig. fir4).* It is Dejerine's opinion that the bundle arises in the whole cortex of the lobus frontalis. Behind, after passing throngh the tapetum,

 natus. 'The forpus vallosim and the cimgulam have been removel and the coroma radiata disseded obt. The preparation shows the inferior wall of the upper part of the lateral ventride and the roof of the corno postarias and

 tricle: tse(ha), ternia semirifenharis, some fibres of whide are sithaterl in the

these fibres are distributed to the lateral surface and inferior border of the lobus occipitalis. It is stated that the tapetum does not degenerate after experimental section of the corpus eallosum, while it does degenerate after lesions of the cortex of the frontal lobe (Muratow).

[^428]
CHAPTER LAXVIII.

association neurones of the telencriblalon (continued).
Localization of association neurones in the eerebral cortex-Flechnig's ansoeiation centres-The so-ealled silent areas of the brain-Functions of ussociation centres-Functions of sense centres-The anterior assoeiation centre-The large posterior association centre-Criticisms of Flechsig's work-Studies of von Monakow, Sachs, von Kölliker, und others.

3. Localization of Association Neurones in the Cerabral Cortex. Flechsig's Doctrine of Association Centres.

'lue exact localization of the association neurones in the cerebral cortex is a topic attracting an ever-inereasing amount of attention. While it seems almost certain that there are association neurones sitnated in every portion of the cortex, there is much reason to believe that certain areas of the cortex consist almost entirely of such association neurones. In this connection the researches of Flechsig are worthy of especial recognition. It is Fleehsig's belief that the areas of the cortex in which projection neurones play a part in the arehitecture are much more limited in extent than we have been aecustomed to suppose.

Fleelisig has traced by means of the embryologieal method the various bundles of the axones of corticopetal projection neurones to their terminal stations in the cortex, and has also traced the course of the bundles of medullated axones of corticofugal (motor) projection nenrones from their origin in the cortex to their lower end stations, a process rendered comparatively easy by the fact that the varions bundles become medullated at different periods of antenatal and postnatal development.

The best articles in regard to the quantitative relations of the fibres of the cortex are those of Kies.*

[^429]But even when all the sense areas and motor areas of the cortex, extensive as they are, have become medullated, only about one third of the surface of the cerebrum has been involved. 'The individual sense areas are isolated, not touching one another directly. They are separated by regions which have no direet connection, at any rate at this stage of development, with the centres below or with the periphery of the body. It will have been noticed that the somasthetic area, that portion of the cortex at which bodily sensory impulses arrive, includes within it what has usually been described as the motor zone of the cortex. In all probability also from the visual, from the auditory, and from the olfactory sense areas, corticofugal, probably motor, conductions also go out.

As far as Flechsig has been able to make out, all or very nearly all of the projection tibres of the cerebrum are accounted for when the corticofugal and corticopetal paths of the different sensory-motor areas, as ontlined by him, are summed up. But nearly two thirds of the whole of the cortex yet remains to be accounted for. What is the significance, then, of the regions which are not provided with projection fibres? The studies of Flechsig have thrown these portions, which in large part correspond to what we have been aceustomed to call the "silent areas" of the cerebral cortex, into bold relief. IIis anatomical investigations, especially when their results are compared with the findings of pathological anatomy in eases which have been carefully studied clinically, indicate that these hitherto insufficiently explored regions possess functions of the greatest importance and interest.*

If the limits deseribed for the different sense areas be recalled it will be seen that the regions lef over include in the frontal lobe the anterior portions of the superior and middle frontal convolution, portions of the inferior frontal convolution, and the gyrus

[^430]

lobe not inchuded in the visual sense area. In the diagran these relations are shown very clanty (Figs. 6:5 and (6:6). The sense areas are dotted, the regions in which the majority of the sensory fibres terminate being elosely studted with dots, while in betwern the different sense areas the large undoted regions correspond to the portions of the cortex entirely devoil of projection fibres, on at most provided with extremely few of stuch fibres. At the periphery of each sense area is a marginal zone in which projection tibes are less thickly distributed.

The white matter corresponding to all the cortical regions between the sense areas, with the exception, perhathe, of that beneath the angular gyris, becomes medullated considerably hater than that of the sense centres, so that, even in chideren three months old, the former are sharply distinguishable from the latter by their
poverty in myelin. Flechsig finds, however, that medullated paths gradually grow ont from the sense centres into these non-medul. lated regions. Further, between the individual gyri of the nonmedullated regions, bands of association tibres gradually ripen, conneeting the individual gyri with others near them and also with gyri at a distance. By means of the corpus callosum the gyri in one hemisphere are comnected with those of the opposite hemisphere. Flechsig, on account of the marked predominance of association systems in these areas, has designated them "association centres of the cerebral cortex."* He does not, ats did Meynert, believe

Fig, 676.-View of the medial surfice of the left revelral hemisphere, shawing

that the individnal sense centres are connected direetly with one another, but thinks that, on the contrary, they are comneted rather indirectly by means of the association centres. 'The lat-

[^431]ter, reeeiving conduction fibres from adjacent sense centres and from alljacent as well as distant association cen ${ }^{+r}$ res, furnish an anatomical merhanism which makes possible the warking up into higher units of simple sense impressions and of combinations of simple sense impressions of the same quality and of different qualities. Thus Flechsig denies the function aseribed by many to the so-called fascienlus longitudinalis inferior which wond make it a system associating directly two sense centres with one another. He thinks that, on the contrary, it has an entirely dilferent significanee, which, however, I shall not diseuss at this time.

The position of the individual areas of association probably throws some light upon the functions which they subserve (Figs. $6 \% 5$ and 676). Thus the large region which Flechsigy designates as the posterior large association centre and which includes the precuneus, all the parietal gyri except the posterior central gyrus, part of the gyrus lingualis, the fusiform gyrus, and the middle and inferior temporal gyri, as well as all portions of the occipital gyri not concerned in the visual sense area, is situated between the visual, the somesthetic, and the auditory sense areas. The island of Reil is surromided by the somesthetic area, the auditory area, and the olfactory area, and into it run bands of tibres from these sense areas, so that it, Flechsig thinks, is properly designated as the middle association centre. The main portion of the frontal lobe, Flechsig's anterior association eentre, is very intimately connected with the somesthetic area, and with the olfactory sense area.*

While the anatomical evidence which Flechsig has brought forward would seem to be sufficient to indicate in general the essential nature of the functions of the different regions of the cortex deseribed, there has been alroady collected a mass of clinical and pathological data which, when reviewed in the light of the newer anatomical knowledge, affords confirmatory proof of his views. Lesions involving the sense centres are followed by it train of symptons of an entirely different character from those which accompany lesions of the association centres. This will be clear if certain familiar examples be recalled. All the evi-

[^432]
dence goes to show that the phenomena of sharp, clean-ent sensations as they appear in conseionsness have their origin in the sense centres. As a result of a lesion of a given sense contre this sharpuess of sensation for the particular sense puality concerned disappears. If the visual area on both sides of the brain be destroyed, the patient no longer sees. He may ocmamadly believe that he still possesses visual sensation, but on closer examination it will be found that the pieture in his conscionsness is a memorypieture, not a perception. l'atients suffering from double-sided destruction of the auditory sense area are absolutely deaf,* and it is to bo imagined that if both somasthetie areas were entirely destroyed the individual would, if he continned to live at all, be deprived of sensations informing him of the combition of his boty, of the skin, and of the viscera. \dagger Injury to the central gyri on the left side about their middle has been followed by loss of power to recognize enrrectly the form of a given objeet when the right hand alone has been used to feel it. Irritation of the posterior central gyrus may lead an individual to believe that he experiences movements of his thumb even when his eyes convince him that it has not moved. 'Tumors pressing upon the olfactory sense area have given rise to subjective odors, while mental images of colored figures and the like have oceurred in individuals in whom after death eysts involving the visual area of the oceipital lobe have been found. Imitative lesions of the anditory sense area can give rise to noises and to other somd-images. Destruetion of the sense centre concerned with the sensations of any given sense quality is assueiated with the so-called pereeptive sensory disturbances.

The sense centres are coneerned not only in the bringing into conscionsness of the individual elementary sense impressions, but the distinction of the spatial and temporal relations of these impressions, if Flechsig be right, is also to be attributed to the

[^433]
it is lighly probable that it is a "sensory atactic" disturbancethe temporal arrangement of the anditory sensations is lacking. If Flechsig be torreet nbout this, the essential basis for spatial and temporal pereoptions is to be songht in the sense spheres.

Flechsig thinks that the thetile disturbance, described by Wernicke, associated with disease of the somasthetic area, is due to loss of the capacity of uniting properly tactile stimuli to a mental image (that is to say, the spatial arrangement of the single impressions is no longer possible). It is rather an atactie disturbance of pereeption than, as Wernicke thinks, a lefect of memory eapacity. It is quite amalogous to the pereeptive worddeafness dependent upon lesion of the auditory sense area. It is probable that the organic traces of the more extensive memory pietures, built up of no matter what sense qualities, are associated with the cells of the association centres which lie between the sense centres.

Before passing to the description of the functions of the association centres, however, a few special points in comection with the sense centres mast be considered. With regard to the somasthetic area it has long been known that disease of the central sonvolutions is accompanied frepuently with loss of the kinesthetic sensations, so that the mental jmages of position and movement for the extremities and the region of the mouth may be absent or defective (Bastian). Along with these symptoms, especially where the foci of disease are small, the cutameons sensations suffer only as regards the tactile sense and its exact localization. As a result of lesion of the arm region there is an incapacity to recognize external objects by feeling their form. Indeed, these disturbances of the stereognostic sense seem to be characteristic of cortical lesions.

If the inferior frontal convolution be diseased, the capacity for calling nu images of movements, or rather the eapacity to feel the position of the organs which participate in speech, suffers, so that sensory system No. 3, eomnected with the inferior frontal gyrus, is accordingly not different in the sensation quality mediated from the sensory paths of the central gyri, but simply in regard to the region of the body whence the sensations come; the newborn infant, for purposes of self-preservation, makes use far earlier of his extremities, his lips and his tongue, than of his trunk and speech muscles, and this fact of experience agrees extremely well with the developmental finding that the sensory
and motor paths of the extremities develop carlier than those for the trunk and the special organs of speech (Flechsig). Certain of the tibres of system No. a have apparently to do with musele sense, but our knowledge is as yet insufficient concerning this gronp. There is a good deal of evidense, too, that the somesthetic area plays an important purt in the coming into conscionshess of many of the hodily processes accompanying or constituting the emotions, and that thence start ont many of the movements which serve as the expression of the emotions, a point of view which, if contirmed, is of infinite importance for psychiatry.

Let us now turn to the subjeet of the functional activities of the association centres. We have seen before that from the anatomical arrangement these areas appear to x xist for the purpose of uniting the activities of the various sense centres. Clinical and pathological evidence, too, is in favor of Flechsig's view that they are concerned in the higher manifestations of the intellect, in the processes of memory, recognition, judgment and reflection. It is in disease of these areas that we see, above all, disturbances of memory and of the associative processes. When the posterior large asseciation centre, for example, is diseased, the lesions are not accompanied with phenomena of perceptive deafness, of perceptive blindness, or of pereeptive tactile anasthesia, providing the adjoining sense centres remain unaffeeted. But instead of these an entirely different group of clinical phenomena becomes manifest. Here we meet sometimes with the conditions known as mind-blindness, mind-deafness, and the like; with apraxia or agnosia; sometimes there is weakening of the power of visual imagination. There may be an incapacity to call into conscionsness melodies which the individual formerly knew well, and in lesions of this area on the left side in certain portions, sensory (optic) alexia, optic aphasia (amnesic color-blindness), apperceptive (transeortical) word-deafness, verbal paraphasia, and sensory ammesic aphasia (incapacity to call up the memories of the someds of words corresponding to the mental images in consciousness). The memory eapacity may in such instances be aifected apparently in either or both of two ways-(1) by destruction of the association paths concerned in setting free given muntal images, and (2) ly actual, permanent destruction of the organic memory traces in the nerve cells. It would appear, therefore, that the postarior large association centre is concerned in the formation and collection of ideas concerning the external
world-that is, of aetnal knowledge concerning external objects, of combinations of somens, and the mion of all these with one another. In these regions are stored up the elements of onr positive knowledge as well as the factors which come into play in the exereise of the fantusy. It is here that preparation is made for speech which shall atecorl with the thoughts; in short, this region more than any other in the cerehal cortex mpears, Flechsig believes, to be the site of the processes concerned in what we ordinarily mean when we speak of the "intellect."

The anterior association centre-that is, the association centre of the frontal lobes-hats manifold comections with the somesthetic area, and hence also with the motor regions concerned in conduct. So that here, in all probability, Flechsig states, is to be songht the anatomeal meehamism by means of which memory traces of all conseions bodily experiences, especially of acts of the will, are stored ul. The study of the functions of this region of the brain is extremely difficult, and as yet only general statements can be mate regarding them. It would appear that the positive knowledge of the individual concerning extermal objects does not necessarily suffer in diseases of this portion, at least at first, althongh the appreciation of the value of this knowledge and its relations to the individual himself may be diminished. 'The man may lose interest in the external world ats well as in himself and cease to participate personally in what is going on about him. Indeed it is in the diseases affeeting this area and the neighboring somasthetie area that most marked alterations in the character of the individual are met with. The phenomena of attention, of rellection, and of inhibition are possibly especially comected with this frontal association centre. Wundt has for some time believed that the "active apperception" is to be localized in this region.

If Fleehsig be correct in his views, it is evident that the stady of the normal furctions of the association centres is of the highest importance and will in the future represent pre-eminently the task of psychology; while the phenomena which result when the association centres are diseased will afford the especial topic of investigation for psyehiatry. The study of cases in the literature, more especially of general paresis, in which eareful pathological examinations have been made after death, has already thrown considerabie light upon the function of these areas. Of course, in the majority of cases of this disease
the lesions involve very different regions of the cortex at the same time. While in some instances, however, the disease has affected preferably the association sentres alone without involring the sense centres, in a few casis the frontal association centres, it is asserted, have been the ones chiefly involved, and in others the large posterior association centres have been the ones mainly aflected.

Such material permits of an analysis of the functions of the individual areas. Thas where the frontal lobes on both sides of the brain have been diseased the main symptoms recognizable during life have been those referable to an alteration or loss of ideas regarding the individnal's personality and his relations to what is taking phace inside and ontside his body-symptoms which are highly suggestive when eompared with the results of extirpation of the frontal lobes in higher apes, as earried out by the Italian investigator Bianchi. 'Ilae symptoms may vary much -probably according as the lesion is irritative or destructive in its nature. 'Thus, in some instances, there is an orer-appreciation of self. 'The patient's egotism is unbounded. All things are possible to him. He is a multi-millionaire, a genius, or a high dignitary. In other eases he shows remarkable self-depreciation and lack of confidence in his personal capacity. The speech may for a long time remain unaffeeted; but the capacity for judgment as to what is right and what is wrong, what is bealltifnl and what hatefnl, is often involved so that the individual will exhibit in his conduct characteristics entirely incompatible with what his friends knew of him earlier in his life. Such persons lack self-eommand, even when minfluenced by violent emotions; and when they are exposed to unsual stimulation, to anger, or to sexual excitement, they lose all control of their conduct and are guilty of outrageous acts. Finally, if the disease progress far enongh, imbecility appears, and the individual way lose completely his ideas concerning his personality.

When the posterior large association centres have been mainly affected the elinical pieture is very different; in these cases it is the knowledge of the external world rather than that of his body and of his personality which is defective, just ans one would expeet from what has been said above concerning the phenomena of sensory aphasia met with in focal softening of the cortes due to vasenlar discase. In these individuals the indas regarding the personality may be tolumbly clear; they may have almost perfect
self-possession, but their friends notice, and they may themselves be aware, that they are mable to recognize objects seen and felt or to associate the elementary sensory impressions with the memories of experiences in their past lives. Such a patient will name extermal objects wrongly, mismblerstand their use, confuse persons, and be mixed up in his ideas of time and space. He is unable to put into words the images which float in his conscionsness, and suffers on the whole from a poverty of ideas. Yet with all this he may perhaps have a normal regard for himself and for his friends.

With combined diseases of the different association centres, and especially with combinations of disease of the sense centres with disease of the association centres, the possible variations in the elinical pieture become almost innumerable. For the amalysis of these symptoms and their anatomical localization preychiatry hats been provided in these rescarehes of Flechsig, should they be confirmed, with a most important aid.

It will be of especial interest to study the functional diseases of these different areas, disturbances of a temporary mature which can be aseribed to finlty metabolism, in the different areas dependent upon various factors such is imperfect matrition, certain intoxications, prolonged emotion, cxeessive mental and physien? aetivity, and the like. The protean symptoms of neurasthenia and hysteria often in indivihal cases bear a special stamp which may enable us in the future to suggest with some probability the portion of the brain mainly responsible for their appearance.

Representing as they do ideas which fundamentally affect onr general concept of the structure and function of the brain, these researehes of Fleehsig have, as might have been expeeted, not passed unchallenged. After his aldress at Frankfurt a number of leatling neurologists and pryehiatrists disenssed his findings and his views. It may be interesting to consider briefly some of the objections which have been oflered to them.

A number of investigators are mwilling to grant that the areats of the cortex to which projection fibres are distributed are as limited as Flechsig would have us believe. 'Thus, von Monakow asserts that projection fibres go to nearly all parts of the cortex, though certainly some parts of it receive fewer by far than others. Hitzig, too, grants that the mumber of projection fibres going to the frontal lobe is very small. Von Monakow bases his objection upon the results of his studies of seeondary
degencrations. He finds degenerations in the thalamus after lesions of certain of the regions falling within the domains whieh Flechsig ealls association centres. He believes, too, that motility and sensation are represented in the cortex in ways fundamentally different from one another. His studies have convinced him that the sense areas oceupy much more extensive fields of the eerebral surface than those indicated by Fleehsig in his diagrams. Thns, the area for cutaneous and muscular sensations, von Monakow thinks, extends far beyond the central gyri, since so produce atrophy of the lemnisens and of the nucleus funienli graeilis and the muelens funienli cuneati of the opposite side, destruction of the cortex (in both animals and man) of a far greater extent than that which represents the "motor zone" must have preceded. In answer to this Flechsig suggests (1) that a totally insufficient imount of material has been studied by the scoondary degeneration method to afford conchsive results; and (2) that in many instances not sufficient attention has been paid to the exact localization of the lesions; that is to say, not enough care has been taken to determine whether it has been purely cortical or whether it has involved also the subcortieal white matter. He points ont, for example, that lesions of the parietal cortex lave been followed in a number of instances by degenerations of projection fibres, but in all such instances he believes the cortical nodule has affected bundles of projection fibres belonging to other parts of the cortex, but sitnated beneath the area diseased. The results of experimental degenerations in amimals following extirpation of cortical zones can not properly be directly applied to haman beings, for in man there is a development of the association centres not reached in the brain of any other animal.

Another objection which very properly has been offered by Sachs and others is this: That after a certain period of development the medullation has become so diffuse in the cerebrum that it wonld be impossible to deny that later projection fibres passing to the association centres may become medullated. It must be granted that Flechsig can claim the limitation of sense centres, as he defines them, only for a definite period of dev lopment. It is certain, however, that at this period the primary sense centres are sharply marked off from the rest of the eortex.

Yon Kölliker's objection to designating the association centres as intellectual centres is based upon his view that there is no
essential difference between the pyramidal cells of the varions regions of the cortex. In the first place, however, as Flechsig points ont, the time is not yet ripe for the bnilding up of a psychology based upon the histology of the cortical cells. One need only refer to the attempt which has recently been made by hamón y Cajal.* As a matter of fact, however, the sense centres do differ very essentially, not only in the correlation of the elements present in them, but also in the actual shape and position of the individual nerve cells. A skilled histologist who has studied sections from these regions ean easily distinguisl: a section from the middle part of the gyrus fornicatus from one taken from the neighborhood of the calearine fissure, from the middle of one of the central gyri, or from the angular gyrus.

These studies of Flechsig, taken togetner with the researches of Edinger, show that the anatomical mechanisms underlying the mental processes in hmman beings as well as in animals are organieally membered, and are only secondarily fused together into an organie whole. From the study of the gradual development of the individual orgams of the brain, as shown by ontogenetic and phylogenetic investigations, we have the promise of a elear and sharply defined pieture of the various anatomical substrata which in definite sefuence are concerned in the gradually increasing complexity of the organizing intelligence. While it is probable that many of the theories which go far bevond aetual findings, which Fleehsig has advanced regarding psyehology, will, with further knowledge, be entirely given up or much modified, \dagger still every one who reads his papers carefully will be ready to grant that many of them are too well founded to be overthrown. At any rate, he has supplied us with a mass of material and data which must form the starting point of a whole series of subsequent investigations.

In deciding as to the relative value of the results of the recent work of Flechsig, all will probably agrea with His, of Leipzig, who snggests that his most striking achievements have been (1) the bringing of the anatomical proof of the existence of primary

[^434]sensory sense centres in the cerebral cortex and of the connection of these centres with the nervous apparatus situated lower down; and (2) the determination of the suscessive medullation of the fibres going to the single cortical areas and the exact periods of such medullation.

INDEX OF AUTHORS.

Acquisto, V., 289, 402.
Adamkiewiez, A., 132.
Agababow, A., 412, 971.
Algeri, G., 1023.
Allbutt, Clifford, 341. Allis, E. I., 921.
Altmann, R., 145, 154.
Ambronn, H., 89, 54.
Anaximander, 220.
Anderson, II. K., 441.
Andriezen, L., 29, 979, 663.
Apaithy, S., 38, 47, 52, 93, 54, 24, 95, $\mathbf{2 6}, 56,27,28,58,59,29,30,60$, $62,63,67,70,73,96,136,137,138$, 140, 156, 265, 271, 272, 273, 359, 896.

Argutinsky, P., 888, $5 \mathbf{5 8}$.
Arndt, R., 104, 655.
Arnold, J., 66\%, 1044, 1058.
Arnstein, C., 33, 374, 9 77, 421, 530.
Anerbach, L., 78, 82, 191, 593, 602, 604.

Ayers, II., 499.
Azoulay, 206, 350, 665.
Baas, K., 832.
Babes, V., 25, 289.
Babinski, 413.
Bacon, Francis, 274.
Baer, K. E. von, 193, 790.
Buer, W. S., 245, 246.
Baginski, B., 504, 836, 852.
Buillarger, 821.
Baker, Frank, 40.
Balfour, F. M., 179, 121.
Ballet. G., 151, 238, 289, 1065.

Barbacei, $0 ., 306,441,442,446,452$, 951.

Barker, Lewellys F., 40, 43, 111, 253,
589.
Bartholow, R., 1002.
Basilewski, A., $960,614,615,967$,
973.
Bastian, 442, 1077.
Batten, F. E., 418.
Baumgarten, P., 786, 792.
Beale, 102.
Beard, J., 1~9, 200.
Beehterew, W. von, 28, 13, 82, 45 , $268,270,319,424,427,428,429$, $430,473,501,5 \cup 4,505,509,511,523$, 349. 529, 565, 569, 570, 382, 577, 386, 592, 605, 608, 609, 401, 612, 402, 613, 614, 408, 404, 618, 630 , $632,635,424,655,658,431,659$, 439, 664, 684, 688, 446, 692, 694, 700, 705, 456, 708, 715, 716, 805 , 515, $808,830,831,836,843,852,864$, $865,872,888,954,609,956,957,958$, $960,966,614,615,967,968,974$, 6ะ0, 1020, 1047, 1063, 670.
Beek, А... 289.
liecker, $96,187$.
Beevor, C. E., 346, 095, 996, 632, $1000,1001,1003,635,636,637$, 1007, 1008, 639, 1063.
Bell. Sir Charles, 3, 897.
Bellonei, G., 831.
Bemmelen, J. F. van, 201.
Benda, C., 105, 111, 112, 122, 127, 128, 136, 141, 164.
Bérard, 229.

Berdez, 441
Berger, II., 04.
Bergmann, G. II., 840.
Berkley, H. L., 10, 11, 29, 37, 38, 71, 76, 39, 239, 153, 154, 285, 288, 381, 402, 411, 418, 892.
Bernheimer, S., : $235,911,942,945$, 946, 950.
Bert, P., 900.
Betlie, A., 34, 36, 37, 38, 46, 96, 137, 138, 139, 145, 153, 265, 271, 272, 162., $273,316,213,365,366,368,219,474$.
Bettinam, M., 129.
Betz, 108, 112, 135, 978.
Bianchi, 1080.
Biedermann, W., s0, 960, 965, 613, 966, 968, 973
Biedl. A., 231, 235, 960, 965, 613, 966, 968, 973.
Hielsehowsky, M., 70.5, 717 .
Biesiadecki, A. von, 788.
Bignami, A., 590.
Bindseheidler, 33.
Binswanger, O., 94.
Birge, E. A., 5.
Blix, M., 380.
Blumenan, 565, 568,576,575,580,581.
Boedeker, 990.
Boelm, A. A., 362.
Bogroff, 830.
Bolk, L.. 195, 131, 132, 133, 134, 135, 205, 208, 136, 209, 137, 138, 211, $139,140,1+1,14$.
Boll, 7, 104.
Bolton, T. L., 531.

Born, (.., 318, 391.
Boncharcl, C.. 1012.
Bonin, 37.
Boyce, lı., 970. 971, 617, 972, 618, (i19).
Brasch, F., 289.
Braner, 1., 287.
Bregmann, E.. 231, 232, 147, 148, 306, 52.
Bregmann, L. E.. 930.
Brieger, I.. 241, 459.
Brissund, E., り01.

Broadbent, 1073.
Broca, P., 748, 749, 750, 751, 755, 762, 1065.

Brıce, А., 456, 458, 461, 565, 569, 587, $608,609,406,637,717,45!$) 933 , 59S, 106%.
Brunn, A. vor 3.j2, $\mathbf{5 3 2}$.
lirmins, L., 33u. 44, 450, 53n, 594.
Brux, 651.
Bnck, A. I1., 783.
Buhler. A., 148.
Bumm, 790,836 .
Bunting, C. It., ©07.
Burdach, K. F., 24, 436, 4. . 1698, 565, 570, 576, 667, 673, 674, 680, 681, 705, 786, 990, 1061, 1063.
Buseh, C., 601.
Butsehli, O., 138, 141, 145, 147, 154.
C'almmes, C., 289.
C'adiat, O., 194.
C'ujal. See Ramón y Cajal.
('allejn. C'., 262, 761, 487, 488.
('ampacei, (i., 306.
('arnoy, J. 13., 154.
Cattani, 246.
Cavizzani, E., 358.
Ceni, ('.. :
Chantemesse, 301, 302.
Charcot, J. M., 428, 650, 975, 993, $1005,1012,1014,1065$.
(Chiari, 956.
Chis ugi, 928.
(Chi, zi, L., 290.
Chipanlt, ©01.
Christommos, 413.
Ciaccio, (i. V., 405, 264, 2(65, : $\mathbf{2 6 6}$, ※(37, 416, 411.
Ciaglinski, A., 619.
Clarke. Il., 978.
Clarke. J. Lorkhart. 172, 463. 4i4, 504, 576. 581. 851, 913.
Coin, 246 .
Colmheim, J., : 14, 36?.
Cole, 921.
Colenbrander, 911.
Collins, J., 905, 910.
Corning, 919, $\mathbf{5 S}$: 591.

Corli，112，545，546，836， 839.
（＇ox，W．II．， 10.
（＇ramer， $\mathrm{A}^{2}, 290,505,519,569,651$ ， （664，716， 930 ．
（＇ruveithier，2：9．
Cucenti，C．，381， 411.
（＇ushing，Harvey W．， 339.
（＇zokor，368．
D＇Abundo． 402.
Duma，（．L．，3339，340，341，197， 19 S.
1）arksehewitsch，L．O．，231，306，560， 614，618，716，719， $721, ~ 294, ~ i 25$ ， $805,831,917,944,945$ ．
Darwin，Charles， $\boldsymbol{i} 6$.
Davidoff，M．von， $\mathbf{3 1} \mathbf{3}$ ．
Dawson，I＇．M．， 245.
Inaxenberger，II．，450，452．
Wemn，Johm，504， 851.
Deaver，J．13．， 1002.
Deen，Vall， 89 \％．
1）ees，U．，（i23．
Wehio， 288.
Wehter 148.
Weiters，O．F．C．．4，1，5，12，102，120， $131,504,505,597,508,509,511,512$, 523，568，575，630，631，632，6336，637， $638,849,960,961,965,9665.967,968$.
Dejerine．J．， $289,290,442,458,655$, $668,6 i 4,445,705,707,766,731$, 7in2， $511, ~ 638 \mathrm{~S}, 1044,1046,104 \%$ ， 1059，（66s，1061，1062，（669），1062，

Dejerime，Мme．J．，705，707，717， 331 ． 730.

Demoor．L．， 418.
De Quervin，Friť，111， 290.
Deremu，F．X．，sis：．
 こうか．
Dexter，Frmklin， 120.
Dickiuson，：20．
Diotima，：20．
ILisse，J．，1\＆！， $5 \geq 6$ ．
Dixom，A．F．，5：5．
1mitrijewski，P＇，©33i，382．
Dogicl．A．S．，34，36，37，105，141，145， $184,115,185,116,962,365, \because 16$ ．
$217,218,376,240,241,386,243$,

 5334，510，897．
Dogiel，I．， 418.
Dohru，A．，170，195， 201.
Domaldson，H1．I1．，42，80，251，275， 531， 1075.
Donders， $\mathrm{F} . \mathrm{C}^{\mathrm{C}}, 8 \mathrm{Bi5}$ ．
Drieseh，201．
Du Bois－Reymond，E．， 252.
I）ufour，450，457， 458.
Duret， 1014.
Dutil，A．，151，238，290．
Duval，M．，100，94？， 947.
Bbbiughans，8：35．
Eberstaller， 354.
Eberth， 365.
Eckhardt，C．， 230.
Edinger，L．，10．29，38，44，254，316， 4633，523，565，569，590，598，509， 664．715， $748, ~ 764, ~ 766, ~ 489, ~ 755$, 500．804， $902,0033,933,942,944$ ， $94 \mathrm{i}, 1056,1058$.
Ehrenberg． 3.
Ehrlich，P．，31，39，33，36，37，47，67， $101,127,128,186,241,365,394$, $402,411,459,530,897$ ．
Risenlohr， 413.
Visler，P．．195，156； 157.
Emmert， 3.
Engelmann，14？，157， 359.
Erb，244，N99．
Frlanger，J．，150，237，295，176，308， 911.

Live，F．C．， 278.
Ewat， 101.
Fwing，1．， 289.
Exner．S．．25？．
Fervier，D．，565，570，572，383，573， 344，385，580，304，655，708，717， 823，8999，900，964，073，904， 995,996 ， 997．1000，1028，1047， 1055.
Fieschi，D．， 246.
Fiseher，A．．131， 141.
Fish，P．A．， 43.

Flatau，E．，231，235，149，27\％，280， 285，286，289， 1 74， $175,301,179$ ， $302,180,181,182,306,308,310$ ， $450,458,911,914,953,1009,640$.
Flechsig，P．，25，44，87，89，92，244， 256，265，316，424，425， 350,427 ， 428，429，： 81, Us5，430，436，452， $453,45 \mathrm{~N}, 461,46 ; 3,473,504,505,509$ ， $563,568,575,577,581,583,389$ ， $391,592,593,598,605,608,609$ ， 614，647，657，667，681，684，685，686， 688，（689，697．699，700，702，703，704， 705，707，714，715，7：21，7：30，731，733， $734,466,736,467,465,738,753$, 759， $772,806,816$, 万25， 822,823, と’30， $836,833,843,852,875,876,361$ ， $878,963,974,976,980,625,986$. $987,626,627,698,629,991,630$ ， $992,631,993,1010,1020,1021$ ， $1040,1045,1047,1065,1070,1071$ ， （675，1073，676；1074，1075，1076， 1077，1078，1079，1081，1082， 1083.
Fleming，R．A．，ఖus．
Flemming，W．，104，105，（i33，113，135， $141,145,154,156,281$.
Fleseh，M．， 123.
Flexner，Simon，247， 297.
Fcerster，826，828．
Forel，A．，9，15，17，18，20，22，26，231， 651，653，655，657，668，435，670， $436,671,672,437,673,438,674$ ， 675，682，684，685，686，692，704，727， 730，731，732， $772,798,805,812,836$ ， 841，873，971，1067，673， 1067.
Forgue，E．， 900.
Forster，Laura．412，413， 414.
Foster，M．，86，554，963， 965.
Fraenkel， 413.
Franek，F．，98：3，1003， 1022.
Franeке，С．，42．
Francotte， 591.
Frankl－Hochwart， 747.
Franklin，Mrs，Christine Ladd， 835.
Frend，S．，569， 716.
Frey，M，von，953，255，330，372， 392.
Friedlaend．：．（．，2e9， 1005.
Friedmann，I．， 200.
Fritseh，（1．，994．

Frommann，102，154．
Froricp，350，！2\％
Fhimringer，M．，105，020．
Filisther，98：3．
Fusari， 962.
（iad，J．，2isi，2ix，1009，（i4）．
indeotti，（i．．141．
 30f，7！ 8,30 万．
fardiner， 7.
Gaskell， 888.

（iebhard，F．． $\boldsymbol{i} 16$.
（iegenbaur，105，91：，921．
（iलhuchten，A．van，9，i，15，9！，4．）， 31，34，45， $3.5,142,114,171,182$. $110,114,184,254,260,261,2620$ $15 \mathrm{~s}, 266,270,299,309,194.195$, 196，ㄹ15．395，：374，375，299，465， 467，303，304，490，500，514，342， 63：3，530，546，606，618，650，673，（6in， 4．）4， $291,725,765,803,820$ ， 330 ． $8: \%, 885,!14,90(6,935,59!), 942$, 945． $600,6 \times 4.98,5$.
Gemuari， $8: 1,10.88$.
（ierlach，J，von，$\overline{5}, \boldsymbol{2}, 6,7,13,42$, （i）， $4033,884$.
（iiese，450．
（iinson，Ira vim，108，110，14，15in， 339， 522.
（iilbert， $20!$ ．
Gildersleeve，Basil 1．，40，66i．
Goeppert，38．
Goethe，Joham Wolfgang von，2：1．
Goldscheider，A．．251，253，25i，27\％， 280，285，286，289， $17 \mathrm{~s} .301,17!$, 302．180，1s1．182，307，308，30！， 330.
（iolgi，（ $., 9,10,11,12,13,14,15,1 \%$ ， $18,21,22,25,26,28,29,36,3 \pi, 42$ ， $47,48,50,633,64,67,68,75.76,78$ ． 79，80．81，82，84，90，93，94，96，98， $101,115,139,140,75,150,55,159$, $153,122,184,239,240,257,258,259$,
 376，378，386，392，394，396，403， U（633，405，409，410，411，424，430，

INDEX OF AU'THORS.

$45 \%, 459,461,464,465,466,46 \%$, $468,450,473,511,518,526,530,531$. 533.1, 580, 6:32, $6336,637,659,664, ~ 667$, 494, 719, $205,738,708,735,784,791$. $800,803,812,823,832,840,843,872$, $859,862,870,872,87 \pi, 885,887,892$, $932,94 \pi, 952,964,974,976,979,986$, 1033, 1034, 1036, 1053.
Goll, 24, 424, 425, 427, 428, 429, 430. $433,435,436,439,564,705$.
(ioller, A., 835.
Goltz, 705.
(iombmilt, A., 442, 450, 452, 453, 454. 456, 458, 461.
Gotell, Fi.. 2at.
(iowers, W. R.. 45, 589, 590, 591, 599. $593,594,598,599,601,602,604,605$, 649, $740,786,960,972,953,103 \pi$, 1039.
(iraf, A., 15.j
(irmudry, M., 369, 3\%0, age.
(irashey, H., :331, 785, 514.
Gratiolet, 667, 814, 816, 823.
(ireiwe, J., :1\%.
Grigorielf, 240.
Gruetzner, P., 790, 792.
Grínbamm, A. i., 418.
Cmarnieri, G., 590.
(imdden, B. von, 18, 44, 106, 231, 306, 308, 654, 697, 755, 767, 722, 737, 784, 785, $786,787,504,505,790,791$, 793, 790, 798, 804, 805, 514, 80\%, $831,890,942,945,950,1022$.
Gudden, II., 517.
Haberlandt, 307.
Haeckel, 6ín.
Haller, B., $7,17,38,64$.
Malliburton, W. D., 13s.
Hallopear, 98:3.
Mamaker, J. I., 149.
Hamilton, Alice, 500, 781.
Hanilton, I., J., 1055.
IInmmarberg, C., 802, s:8, 8i8, 56is, 978, 979, 6ะ3.
Hammond, G., 905, $\mathbf{5 8 B}$.
Hampe, 244.
Ha,mover, 787, 805, 80\%.

Harrix, II. F'., 130.
Harrisom, K. (1.. 96, 195, 202, :0);, 919.

Hasse, (.. : $32 x, 2(0)$.
Hayem. 2xa.

 346.

Heard, I. I., 1022.
Heidenhain, M., :88.
Held, II., 4, 38, 47, 43, 1s. 19, 20, 50. $\because 1,20,6 \pi, 49,85,54,89,94, ~ i .5$, 109, 111, 138, 129, 130, 75, 1:31. 76, 77, 13: $, 1333,134,140,141,14 ; 144$, N1. $\mathbf{N} 2,14 i, 14 \pi, \mathrm{Nis}, \mathrm{N}(\mathrm{i}, 15: 3,155$, $1514,218,235,, ~ 241,265,281,319,480$, $484,326,325,501,505,511,514$, 365, 369, 555, 5\%\%, 580, 605, 615,
 725. 722, 493, 494, 80.1, 812, 83: , x. 6 , 4:7, 5335, 839, 842, 843, 849, Ni1, Ni53, 854, 855, 857, 546, 547, 862, $351,864,866,554,868,550,546$, 5.57, 872, 570, 947, 606, 950, 969, (616. 9is.

Homholiz, II., 3, 78\%, 835.).
Helweg, 954, 957, 958.
Henle, J., 3, 340. 33:. 37:3, 374, 375,

Henri, 3:0.
 408, $8: 32$.
Hensen, V., 949.
Heraclitus, 220 .
Herbart. $10 ; 6$.
ILerbst, G., 221. 393.
Hering, E., $83 \overline{5}$.
Ilermman, 34\%.
Ilerrenheiser, 793.
Herrick, (. .., 5, 44, 781, 921, 022, 592, 924, 1056 .
Herrick, C. L., 1050.
Herringham, W. P., 3as.
Herter, 241.
Hertwig, O.. 65, 154, 125.
Hess, P., 289.
Heubner, 1076.

1090

Itrwetson，Johnt，304，308，：310， 311 ． ：31：．：31：3，314，：315，316，：31－．315．

 $4 \because(0,40(6,4 \div 7,430,4+7,4+\mathbb{N}, 449$ ，

 （603），（il？．
Heymatrs．J．F․，（118．
Hill，A．，11， 7 ：．
His，W．，：1，0，15，16，17，20，22，20，44， 60，04，1364，155，s！！，160，，90，！ $91,93$.
 16：，170，171，9＊，172．100，102． 103．104，10．8，135，179．180，181， $183,113,190,194,195,212,214$ ，

 54.

Hitzig．E．．．004， 1081.
Hoch． $1 ., 244,990,291,292,293,306$.
Hoche，A．，450，：96，45：4．4，：0\％， ？！）s，456，2！9！，457，458，462，301， $30 \pm, 3!9 \mathrm{~S}, 59 \mathrm{~s}, 602,615,615,085$, 1016， 1017 ， $6433,1000,644,1020$.
Hochlams，II．106i\％．
Horge，（．F．．：2\％，19：3，：37\％，164， 16ii，166，2：9．
Hoen．А．（4．．11，120．96；1：2．
Hocsel，44，644．697，6！3！，702．703， 704. 707，714，717， 731 ．
Holfmann，J．，71\％．
Hofrichter，E．，44？．
Holn，II．，6き1，40s．
Holmgren， 46.
Fomén，E．A．，227，290， 230.

Horsley，V．，2：4．415，44，：94，：995， 906，（6322．907，6333，009，6：34，1000，
 100\％，1008，133！！，10：4．104i．
Howell．W．II．，297， 245.
Huher．（i．Cint，：36，6i6．114，：207，：45，

H114，II．，52：
Huxley，＇T．II．，65，195， 921.

Izguiertor f1KM．
Thkson，J．Itughlings，093，096．
Jumohi，II．P＇．，I（18：3，

It＂ques，P’．40：，419．

Dakurenko．V．，Z18．
Admeton，I．B．，921．
Joseph，空学。
小wiff，B．，シ20．
Juliusharger， 290.
K゙aes，＇T＇．1070．
Kialiter，U．，4：9，0．8．
K゙aser，O．，88．1，88\％，905，578，57\％）．

Knllins，Fi．，360，B6x，39－4，400，86\％．
Kım， 1046.
Kıusin，P．，4：4，4；3．

K゙aufuman，よ．，1067．
K「еn，W．W＇，1002， $10 \% 1$.
Kellermam，M．，is6．
Kelly，A．I．J．， 43.
K゙mupher，W．．301．
Kerschucr，1．．，41：．413， 415.
Kiev，E．A．11．，104．
Kingshury，B．ド．．億1．
Klimoff．I．A．， 665.

Kuies，8：3：．
Knobhunch，983．
Kocher，＇T．，：3：39，：DOI．
Kolk，Shlurider vall der，85t．
K̈̈lliker，А，von，3，5，9，4，1i，11，26， ：8，2！，14，39，40，35，78，79，40，46， 81．\％1，51，i＝，90，92，5（6，94，100， 102．142，148．155，167，106； 111 ， $256,258,259,261,266,270,46 \geqslant$ ， 46i3，46i5，46i\％．468，474，4i5，477， 480．501，511，514，518，523，351， $5.7,575,581,606,618,621,632,636$, 6：37，641，65\％，668．674，675，676． 43！），679），725，750．756，458，479，
 766， $767,768,490,730,775,497$ ， กัт， $799,783,790,793,800,801$ ，

INDEX OH゙ AUTHORS．

6133，807，808，809，518，829，832， $837,841,8.43,533(3,851,852,853$, $859,862,865$, П．53， $868,895,928$ ， （942，945，607，60N，964，621，979， 10：36，108：2．
Kollmann，J．，ss，165，99， $11 \%, 11 \mathrm{~s}$ ， $11!, 123,126,127,124$ ，202，307， 3331，5ی7，019，ix！），5：00，5！）1．
Korolow，P．，©：30，381．
Korschelt，E．， 80% ．
Koshewnikow，2：！．
Kossel，A．，14：
Krupelin，1：．，244．
Kranse，R．，之но．
Kranse，W．，2020，230，331，386，392， 393，412，541，744，785，895，899．
Kries，J．von，8：35．
Kromayer，64．
Kronenherg，897．
Kronthal， 105.
kïhhe，W．，400．412，413，895，574， 890，575． 7 76.
Kupffer，C．rom，63，136，16in， 919. Kusick，98：3．

Laborde，I．V．，942，9．4\％．
Lambert，M．，¿ั～8．
Lamcisi， 76.4 ．
lange， 442.
Langles，．J．N．，441．1023．
Laslett，E．E．， 288.
Lamm， 584.
Lavdowsky， 36 ．
Lemming，10，1033，6in）$\%$ ．
Lebrum，II．，154．
Lenhossék，M．von，9，15，21，25， 12 ， $38,99,36,37,39,32,73,74,36,79$ ，
41，81，90，91，5．5．99，93，57，94． $105,109,64,110,111,112,65,113$ ，
$130,139,148$, सt，155，101， 179.
109，184，188，259，258，260，262， 26\％，266，267，269，270，161，307， 308，309，316，358，209，，210，430， $446,450,458,459,463,465,467$. 568，470．471，4i2，306，473．474．
$475,500,3333,3330,526,527,34 \mathrm{~s}$ ．
$543,360,3633,589,385.590,606$ ，
400，885， $\mathbf{~ 5 (~} \mathbf{i} 7,887,905,985$.

Leonowa，0．von，179，745，823．
Lapmge，！n：3．
Latw，IV．，949．
luvi，（i．，1．13．
Lewis，Bevan，99，078．
Lawis，Margaret，149．
Lewis，Morris J．100：3．
Levallu，E．，s：3s．
larylig， 1 ．．， $102,1 \cdot 17,273$.
Lichtheim， 1026 ．
Lilienfold，1：P2，13：3．
Lissaner，H．，423，425，125，430，435， 436，466，464，474．
Laloyd，1，11．，100？．
Locy，W．A．195．

Locwenthal，N．，444，59！，602，716， 95\％．96：3，9665， 970.
Loter，I．R．，：20：3．
Loven，5e5．
Labarseh－Ostariag，164， 239.
Latiani，246， 1000.
Litisleriť，（＇．， 884.
Ladwig，is．
Jagaro，1\％，143，15：3，150，278，279， $285,1 弓 ⿱ 亠 䒑 𧰨$ 1st，3．5．5e：3，（665，932，935）．
Lays，I．，667，6i1，6ion．633，6\％4，680， （694， $700,303,705,707,734,238$, 78：3．989．
 865%
Marcallum．J．B．， 147.
Mackenzie，J．．23：3．
Magini， 279.
Maluim，А．，580．619，651，653， 654, 655．69\％，700． 301, 207，216， 331, 806.

Mall，F．P．，178，107，10s，181，120， 124，104，195，130，204．266，26\％， 388．784．791，866， 1094.
Mallory， 64.
Mandelstamm，E．， 788.
Manersi， 288.
Mamm，（4．，68，129，278，168，58：3， 1033.
Mam，L．， 451.
Manz， 784 ．

Matroncei，\．，Boo．
Marchami，V゚．，\％86，\％9：。
Marchesini，1：36．
Marehi，V．，4in，10t，end，emin，2：is，211， 2． $42,438,418,414,47,150,453$, $450,458,150,461,16 \%, 463,518$,
 598，509，601，60：3，61\％，65\％，65\％．

 $1065,971,185,1014,1016,1029,102: 16$
Margulies，A．，4！2，4．43，14．4，em3．

Marina，S．，D：39．

 308，：309，4 $42,203,911$.
Mark，l：، 1．，921．
Marshall，11．＇1＇．，：245．
Damshall，Jolm， 179.
Matim，J．，2061．
Martin，P＇．，505，6599，6654，849，！12\％
Martinotti，（ \quad, ，15：3， 9 aft．
Maselti，F．，ᄅ88．
Masins，Jemu，3\％．
Mayer，C．，34，442．717．
Mayer，I．． 201.
Mayser，2：3．
Mazzoni，39：306， 411.
NeClure（1．1F．W．． 14 ！
Neter，B．．．\％1\％．
Meissuer，（6．，78，8：，191，225，384，386， 300，392．
Melkiclı，411，：70．
Mellus．E．L．．107，98：3，1093，1024， （645，（i46，（i＋7，64N，（i4！）， 1028.
 （6．54，1055．
Mendel，Li．，231，tifit，8：31，950．
Menidia，924．
Menzel，bist．
Merkel，F．，1ss，360，3366，36\％，30\％， 369，3i4，37\％，384，541，855， 93% ．
Merkel－Bonnel，12，164，360，4：4．
Heyer．А．，155． 781 ，（iさ2，1055， 1050.
Mryer，1．．． 443.
Meyer，P＇，716，！nis．
Meyer，s．，itis．8ins．

Meymert，＇1＇，42，98，502，667， 1688, 670，
 7\％ $74,71,7 \% 2,785,777,783,805$, $812,868,873,071,1058,1068$.
Michal，J，von，784，785，\％91．
Mihmikovies，Von，\％oo．
Millon，lie．
Mills，C．K．，161，666，10339，1047．
Minguzzini，（i．，4\％5，654，717，731．
Minet，（＇．s．，10，16：1， 748.
Mirlo，65\％．

Misshawsky，614．
Mähius，P．d．，D． 4.

Jonmiow，（＇．von，18，28，44，504，580， 5N8，650， 6551,657, （665\％， $6688,674,679$, （680，681，440，685，441，442，685， 444，680，680，6983，697，6！18， 700 ， 701，702，707，716，207，230，231， 768 ， 78．1， $885,708,510,800,802,814$ ，
 823 ， $32!1,820,827,531,5 i 32,830$ ， $8333,836,837,841,541,849,852$, 8583，861，520，862，868，873，35！， 8i5．3（64，881，949，974，1012，641， （i42，102：，1034，10：36，（itio，（itil， $1044,1045,1046,1048,1052,1081$. 108\％．
Mondino，246．
Monro， 784.
Montgomery＇T．II．，145．
Monti，A．，71，18：152，239，： 46,285 ， 290.

Morgenstern，N．，379，：381．
Morill，A．I．， 36.
Molt．P．W．．2n1，299，441，444．463， $570,574,580,583,500,335 \%, 35(\mathrm{i}$ ， 594，598，599，600，601，602，701，717， 888，98：3．
Mourek，J．，D88．
Muir，R．，456，458， 461.
Mïller．E．，104，ㄹ31，382，40』．
Miller，F．， 71% ．
Minler，（G．E．，8．5\％．
Mïller，He dinh，10，443．
Müller，Johannes，255，787， 897.
：Buller，Wilhelm，537， 539.
 $1000,10.17$.
Munzer，Vi，D． $41,242,439,441,443$ ， 450，3010，570，580， $717,786,795$.

Niggeli，65，154．
Nageotle，J．，442，443，
Nascrale，（＇．B．，loo：

Nissuc，22：3．
Neal，II．V．， 19.5
Neppi，А．，30：3，in：＂．
Nicali，W．，\％eo．
Nicholls，I．，2x9．
Niemnek，3f5\％
Nissl， r ．，45，62，67，96，！27．5！，9\％，60． 61，104，105，106，105，108，100， 110 ． $111,11: 3,11 \overline{1}, 116,15 \overline{7}, 112,16 \mathrm{~s}, 11 \mathrm{~s}$, 69，110，70，71，120，121，72， 122. $123,124,125,127,120,109,130,133$. $134,135,136,1: 18,133,140$, s7，155， $156,157,231,233,234,235,238,230$, $242,245,280,281,282,28: 6,16!1,284$, $171,285,171,287,291,292,2933$, 205，297，299，；302，303，306，308，311，
 $680,808,875,888,560,910,911,914$ ， 929，950．
Norlmagel，11．，747， 101 ．
Notthaft，A．von， 297.
Nussbam，46，19\％．
Ohersteiner， $\mathrm{H} ., 108,451,452,461$ ， 518，523，3N7，3900，614，632，804， 930，033，942， 947.
Oddi，R．，441， 444.
Omfrowič，13．，502，836，841，106\％， 67：3．
Orru，E．， 376.
Osborn，II．F．． 1056.
Osler，William，199，：（00，1039）．
Ostroumow，P．．シ2s， 37% ．
Ottolenghi，D．， 290.
Owsimmikow，P．，\geq ． 60.
Pacini，390， 393.
P＇al， 34.

I＇almino，（i．， 414.
I＇ími，к．，د88．
l＇anぇza，B．，897， 000 ，
l＇uterson，A．M．，19），201，3；12．
P＇ulriek，Ilugh＇T．，46？，ist，589，594． （39） 7, ，501，t603．
Peláez，I＇．1．，4（15）．
I＇ollizzi，G．13．，44．
lereti，830．
Pergens，Li， 280.
Prolia，942，9．13，944，（604，9．45．
Peyer，J．，3330，8：99．
lefeiffer，R．，44？，44；
Pllueger，147．
Plilippe，（＇l．，446，450，452，405：454， $456,45 \times, 461$.
Piecolomini，840．
l＇ick，\．， $\mathbf{2 9 3}, 949,956,95 \pi, 1029$.
lierred，498，47：3，1012．
Pilcz， 108.
Pinkins，！el．
litres，1．，：883，100：3， 1022.
Ilato，47，200．
Platt，Iulia 13．，1：15．
Polluck，13．，301．
l＇opolt，N．，946，2：0．
Pribytkuw，（i．，805．
Iugnat，（．A．，278．
Purkinje，120，212，135，133，139，96\％．
I＇urtseher，0．， 786.
l＇usateri，F．，D8！，402．
Radi， 919.
Rabl－Rlickhatel，H．， 100.
liamón，1）．s．， 7 \％\％．
R＇amón y C＇njal，I＇．，800， 811.
Ramón y Cajal，s．，3，9，10，20，21，\times ， $22,23,9,10,24,25,26,28,29,36$, 37，70，333，77，81，42，43，82，44，47， $84,92,94,97,128,141,142,166,97$ ． $184,186,260,261,262,1 ; 5,266,269$ ， 270,206 ； $232,382,402,459,465,46 \pi$, 468， $470,305,474,480,484,487,3 \div 24$, $500,502,3334,505,511,512,333$, 514， $518,343,346,522,523,350$, 530，534，354，537，354，35\％，35心， 540，35： $3,370,371,355,564$, 万7\％， $58 \%,(006,618,409,410,626,62 \%$ ，

629，41：，413，631，632，417，635． 419，640，641，642，421，644，654． 6．59，66i，433，663，434，664，4（i），
 フis， $884,508,395,800,512, ~ 803$,
 8：ㅇ，8333，837，842，843，847， 741 ， $542,853,854,85 \pi, 857,858,85$ i45，it！），86i，864，865，866，880，万йा，926，594，935，6000，938，967， （172，979，1033，（6i5．5，1054，66i5，10．8．

Ratuher，А．，40，12．），12s，209，1s．j， $1 \mathrm{N6}, 1 \mathrm{~s}$ ， $1 \mathrm{ss}, 1 \mathrm{s!}$ ）， $1!0(0,350,2(04$ ，

Ramvicr，l．，3，3：3，104，183，184，294，

Ravn，E．， 194.
Rawitz，17， 143.
Redlich，R．，446，452，473， 1036.
Reich．M．． 788.
Reichert，697．
Reid， 89% ．
Reil，667，671．688，692，697，714，717， 350，1044，1072， 1074.
Reinhold， 956.
Rejsier，A．．4：I．
Lemak．li．，3，102，142，197，899， 900.

Retzius，（i．，！，29，34，： $1 ;$ ；36，73， 90 ． 104．188，26．2． $266,15!), 269,160$,

 361，546，364． $251,473,252,474$. 475，475．\％it，47\％，89\％．
Reluter，919，sido．
Riese，Il．， 34.
Rolatulo，24．116，4\％3，474，606， 888.
Roller，（C．F．W．， 502,614, （ 62 ．
Romberer 191.
Rose，C＇．． 381 ．
Rosenheim，S．．It4，145，4．18，：3．5．
Rosenthal， 3.
Rosin，I．，107，108，127，128， 13 j.
Ross．James，339，340， 341.
Rossi，${ }^{+}$．，441， 444.

Rossolimo，（f．I．，601，602，604， 716.
houx，W．，155，2．17．
Roth， 413.
Rothmam， 983.
Rubner，M．， 249.
Riidinger，340，oss．
Ruffini，Angelo，24．），246，390，947，
 416，ッブア，ッフ4．
Ruge，195．
Rmmpf，＇Th．， 308.
Russell，J．S．R．，598，632，6．75，901，909． 914．064，918．
Ryder，J．A．，：20．
Sabin，Florence R．，318，325：504，505， 335．，507．508，509，549，367．568． $407,411,632,690,694,721,7 \pi \%$ ， 83i，843，5！93，943，958， 611.
Sabrazis，I．， 289.
Satcerlotti．（＇．．239，200．
Sichs，IB．，（668．
＇itchs， $11 ., 5: 2(), 815,823,1059,1060$ ， 1061，108：．
Nachs，K．von，155， 372.
Sachs，S．，8：6，8：8．
Nuchs，Z．，8：30．
Sudorsky，S．，235．
Silh．C．L．，259，260，505，632， 849.
sulzer，1‥ 885.
Sancte de sanctis，：3：2．393．
sauderson，J．B．， 1003.
Sandmamn，G．， 894.
Sindmevar，asis．

Siarhó，A．， 288.
saxter，I．． 717.
Seatpa， 40^{m} ．
＇rchaifer，K，A．，23．29，39，40，47，53， 307，59i，963，！79，！94，990，997， 6：33，099，66：\％，1000， 1047 ．
Schalfer．K．．111，149，290，444，458， 460，471，542， 316.
s＇сhиее，А．，16\％， 168.
Shliefferlecker，P．，89，142，7！，：3！）， 441，446．884，894，573， 896.
Schiff，1000．
｜Schleiden， 2.

Schlesinger，H．，684， 717.
Schmaus，F．， 446.
Schmidt，541．
Schmidt－Rimpler，11．， 786.
Schnopfhagen，805．
Schriider，A．， 716.
Schrciber， 46.
Schultze，Fr．，142，442，448，450，451， 458， 716.
Schultze，Il．， 141.
Schultze，Max．4，102，103，62，112． $137,140,141,142,504,59!, 3$ ，33．
Schulze，F．E．，36\％．
Schwabe，II．， $911,950,051$.
Sehwalbe，（ $\mathrm{f} ., 79,104,170,505.525$ ， 748， $750,884$.
Schwam，2． 884 ．
Sciamanna，E．， 1002.
Sclavinos，G．，3：35，382．
Scot t，133， 134.
Solgwick，A．， 44.
Sfameni，P．， 392.
Sherrington，C．S．，66，86，251， 299. $332,333,191,192,193,336,337$, $338,341,415,463,554,576,983$ ， 1023， 1024.
Shimamura，S．，241，15j．
Shore， 921 ．
Shukowski， 6 ； 0 ．
Siegfried， 132.
Siemerling，E．，792， 949.
Sihler，C．，417， 896.
Singer，J．，439，：！O2，441，443，570，580，
71\％．786，795．
Sioli， 1048.
Sminnow，A．，15，34，36，269，386，44！，
こ（6s，411，$\because 69$ ）．
Smith，G．E．， 1056.
Socrates，2e0．
Sölder，F．von，463，598， 601.
Sottas，J．，442．
Soukhamoff，S．， 990 ．
Sonques，A．，442，4fis．
Spencer，Ilerbert，7，6\％．
Spiller，415，458，1044，104\％．
Spirlas， 184.
Spitzki，E．C．，699，716，851，852， 942 ， 947，949， 1021 ．

Spronck，sti．
Staderini，926．
Stamius，204．
Starr，M．Allen，10，339，340， 902. 903，942，949，（6i2） 6.
Stein，Gertrude，泡，7e5， 8 方．
Steiner，J．， 316.
Stephen，lesilie，2el．
Stjeda，424， 930 ．
Stilling．B．，172，474，581，423，650．
Stirling， 45.
stïhr，A．155．
Stricker，S．，102，668， 783.
Stroche，H．，245，290．
Strong，（．S．， $10, \quad 29,1221,1033, ~$
（int．
Strossner， 413.
Sitrímpell，A．，243，244，423，428，448，
473．
Swierezowsky， 270.
Sylvins，724，938， 99 亿．
Symington，J．， 1056.
Saymonowica，W．，36，36\％，368，2．00，

$$
\vdots: 1,383,233 \mathrm{~s}, 384,392, \geq: 31 .
$$

Timburini，246， 976.
Tanzi， 100.
Tartuferi，F̌．，38，534，540，784， 800 ，
804， 804，809， 810.
Todesehi，A．，2it6，156．
T＇estut， 598.
Teuscher．R．，9，405．
Thoma，143．
Thomas，A．， $290,442,513,553,655$ ， 6ал̃，841，966，967，968．
Thomas，II．M．， 10 \％it．
Thorhurn，W．，194，19\％，339，340，
$\mathbf{1 9 6 .}$
Tigges， 246.

Tirelli，V．， 246.
Tomsa．2i9．
Tooth，11．11．，22～，439．441，446，450， 45\％， 591.
Trepinski，424，430，432，433，434， 4：35，436，432．
Trinchese．S．，シージ， 415.
Tumarzew， 418.

Türek, L., 295, 227, 306, 331, 332, 732, 1012, 1045.
Turner. W. A., $523,565,570,572,3 \times 3$, $573,3 \mathrm{S4}, 355,580,394,650,655$, 708, 717, 747, 748, 749, 962, 965, 973, 1055.
Tsehermak, A., 318,319, 320, 568, ane, 575, 601, 602, 603, 604, 615, 617, 618, 681, 682, 683, 684, 685, 694, 701, 702, $703,455,704,708,709,457,45 \mathrm{~s}$, 711, 712, 713, 714, 715, 741, 960, 969, 970, 972, 973.
Tschisch, W. F. von, 674, 676, 681, 736.

Unverricht, 983.
Uskow, N., 194.
Valentin, G., 223.
Valentine, 3.
Vaulair, 229, 230.
Vas, F., 278, 167, 288.
Vater, 393, 396.
Vejas, P., 654, 716.
Veratti, 140.
Vesalius, 795.
Vialet, N., 1059, 1061.
Vieq d'Azyr, 671, 768, 771, 821, 878.

Vieussens, 594.
Vignal, W., 16%.
Virehow, R., 215.
Vitzou, A. N., 246.
Völekers, ('., 949.
Vollmer, 1.., 421.
Vulpian, 229.
Wagner, R., 3, 384.
Waldeyer, W., 5. 12, 29. 39. 40, 42, 43, $47,60,63,154,235,266,400,463,4733$, 884, 888, 904, 913.
Wallenberg, A., 646.
Waller, A., 18, 224, 227, 228, 233, 306 , 308.

Walsh, J., 332.
Walter, G., 261.

Warrington, W. B., 45, 133, 240, 288, $175,299,309,914$.
Watase, 149.
Weigert-Pal, 627, 694, 728, 777, 859. 968.

Weigert, C., 12, 25, 44, 45, 64, 92, 106, 238, 239, 242, 254, 423, 432, 447, 463, $466,473,474,578,580,617,621,676$, T25, 730, 768, 788, 854, 868, 929, 938 , 957, 964, 986, 1023.
Weinberg, R., 446, 45ff, \%15.
Weismann, Angist, 155.
Weissmann, 413.
Weleh, William H., 10.
Werdnig, G., 716.
Wernekinek, 653.
Wernicke, C., 671, 814, 818, 830, 832, 1033, 1059, 1069, 1075, 1076, 1077.
Wertheimer, 983.
West ${ }^{\text {phal }}$ C., 423, 428, 448, 473, 484, 917, 942, 943, 944, 945, 949.
Whitman, C. O., 44.
Wiedersheim, 100.
Wiener, II., 241, 459, 300.
Wiesener, 154.
Wilbrand, 11., 826. 827.
Wilder, 13. G., 40, 161.
Wilson, l:. B., s4, 154.
Wijhe, J. W. van, 195, 125, 201, 919.
Winkler, C., 1048.
Wolfstein, D. I., 43.
Wollenberg, 243.
Wolter. 102.
Woreester, W. L., 311.
Worotynzki, B., 598.
Wright, 11. K., 288.
Wrisberg, 350.
Windt, W., 258.
Yeo, G. F., 899, 900, 1000, 1028.
Young, H. II., 3\%, 421.
Zacher, 'T.. 1044, 1046, 1048.
Zappert, J.. 451.
Zuckerkandl, 1., 748.

SUBJECT INDEX

The numbers in ordinary type refer to pages in the text in which the subject is discussed: the numbers in black-face type refer to numbers of figures in which the objects are illustrated

Abducent nerve. 'T. abilucens.

Aberrant bundle Bechterew), see Fasciculus velı...-lateralis superficialis.
Accessory olivary muclens, see Nuclens olivaris accessorius.
Acoustic ecrtical path, direct (IIeld), 839.
tubercle, see Nucleus N. cochlea dorsalis.
reflex paths in formatio reticularis, 35%.
Acustico-facial complex, 117.
Acustico-lateral component of cerebral nerves, 922.
Acute cell disease (Nissl), 291.
Adendritic neurones, 73, 74, 3 (5.
Aeusere graue Zone, sec Cappa cinerca. weise Lage, see Stratum zonale collienli superioris.
Aenserer Kern (Burdach), 673.
After-brain, sce Myelencephalon.
Agnosia, 1078.
Ala cincrea, sec Nuclens ale cinerear. Alteration with rarefaction around the nuelcus (Hoch), 293.
Alveolar zone, inner (Apáthy), 56, 58. zone, outer (A píthy), j6.
Ainacrine cells, 89, 44, 537.
Ampharkyochrome cell, 118, 119.
Ampulla inembranacea superior, 361 .
membranncea lateralis, 361.
membrawacen posterior, 361 .

Amputation, changes in nervous system after, 229.
Amygdaloid nucleus, see Nueleus anygdala.
Anaxones. 82, 45.
Angeiotome, 196.
Angular gyrus, see Gyrus angularis.
Angulus lateralis, 752.
Anophthalmia, congenital, 823.
Anosmatic animals, 849.
Ansa hypoglossi, $\mathbf{1 8 6}$.
lenticularis, 685.
peduncularis, 685.
Anterior central gyrus, motor functions of, 995.
cerebral vesicle, $\mathbf{S x}$.
commissure, axones of mitral cells in, 758.
commissure, termination in gyrus hippocampus, 764.
lateral nucleus of thalamus, 67%.
medial nueleus of thalamus, 67%.
nuclens of thalamus. dorsal and ventral, 679.
olfactory lobe, $90,749,47 \mathbf{4}$.
Antero-lateral ascending tract, see Fascieulus ventro-lateralis superficinlis (Gowersi).
A paithy's fibrils, 54 .
Elementargitter, 60, 273.
A páthy, theory of, 273 .
Apex columnie dorsalis, 387.
Aphasia, 1076.

Aphasia, optic, 1078.
sensory amnesic, 1078.
Apraxia, 1078.
Aqueductus cerebri, 315-321.
Arched or arcunte fibres, see Fibra arcuatir.
Area of Broca, see Area parolfactoria. parolfuctoria 13roca, 750.
Arkyoehrome cell, 117, 121, 67.
Arkyostichochrome cell, 117, 121.
Arnold's bundle, 1044.
Arsenic, aetion of, on neurones, $\mathbf{1 6 9}$, 17%.
Aseending cerebellar tract, see Fasciculus spino-cerebellaris.
Association centres of cerebral cortex, $\mathbf{6 7 \%}, \mathbf{6 7 6}, 1073$.
ecutres of cercbral cortex, lesions of, 1078.
fibres, lobus oceipitalis, (6)88. neurones, $\mathbf{6} \mathbf{6} \overline{7}$.
Ataxia, sensory, 1077.
Atrial plexus of heart, $\mathbf{1} 23$.
Atrophy, indirect, of nerve fibres, 18.
Auditory conduction puths, 836.
conduction paths, neurones of, $\mathbf{5} \mathbf{6 5}$, 5365.
conduction paths, nuelei of, 839 . ganglion, origin of, 186.
nerve, see N. acusticus.
nuclens, see Nucleus N. cochlear.
path, cortical termination of, 878. sense arca, 839.
sense urea, cells in cortex of, 878 , B63.
Avalunche conduction, 84.
Axis-cyliuder process, sec Axone.
A xolleudrites. $2 \% 0$.
Axоие, 40, 41, $\mathbf{6 2}$, $\mathbf{7 9}$, s0 4, 78, 103, 142, 145.
Axone-hillock, structure of, 41, 64, 5699, 82, 111, 169.
Axopetal impulse, 267 .
Axosponginm, $\mathrm{S1}, \mathbf{S 2}, 144$.
Basis peduncoli, Plate I, 5, 441,44. BA'Th of Forel, 436; 6\%0, $\mathbf{7 3 0}$.
Bethe's staining method, 137, 138.

Bethe, theory of, 272, 273.
Betz eell, 978, © $\mathbf{i g e}$.
Biceps musele, cells ianervating, 911 .
Bilaters! representation in cerebral cortex, 1001.
Bindearm-Linsenkernstrahlung, 686. Binolar cells, formation of, 113, 114. Blindness, mind, 1078.
Blind spot, see Prapilla nervi optici.
Blood supply, effect of ulterations in, 217.

Blumenau's nucleus, 565.
Bodenplatte, 100.
Body temperature, effect of artificial increase in, 1 7!), 302.
Bone segment, 196.
Botulinus poisoning, 301.
Boyce's bundle, 972.
Brachiuns conjunctivum, 89, 311, 312, 318, 314, 315, 318. 319, 321, 3さ2, 323, 394, 386, 414, 416, 423, 632.
conjunctivum, cells of, origin of fibres of, 659.
conjunctivum, centripetal and centrifugal fibres of, 657.
conjunctivum, degenerations following section of, 653.
conjunctivum, dorsal, middle, and ventral bundles of, 494.
conjunctirum, fibres from lemniscus lateralis to, 864, 552.
conjunctivum, myelinization of, 657, 659, 431.
conjunctivum, terminations of fibres of, 730 .
Brachium pontis, $\mathbf{5} 50$.
qualrigeminum inferius, 843, 873, -5.5).
qualrigeminum inferius, terminations of thbres of, $876,5 \mathbf{3} \mathbf{1 , 5 (5)}$
Broea, area of, see Area parolfactorin.
Brush cells, 48:.
Bulb, see Medulla oblongata.
olfatory, see Bulbus olfactorius.
Bulbo-hypothalamic neurones, 694.
Bulbo-mesencephalic neurones, 694.

Bubbo－pontal nemrones，694．
Bulbous plexus of heart，103．
Bulbus olfactorins， 529 ．
layers of，75is， 4 7s，479．
Bündel rom F＇uss zur Schleife，688， 44 ．
Burdach＇s columm，see Fasciculus en－ neatus．
muclens，see Nuclens limicmi（n－ neati．
B．T．e．（von Cindden），see Commis－ surn hypothanamica anterior．

C＇alear avis， 683.

Calcarine fissure，see Fissura calca－ rina．
C＇illosomarginal lissure，see Sulens cinguli．
Culyenli gustutorii，525，347，348．
C＇amalis centralis，30s．915．
Capm eineren of superior collienlas， $809,810,519$.
C＇upsula，exterma，6i3s．
interna，hemorrhage into，1014， （ 41.
interna，motor fibres in，980， 987 ．
interma，retro－lenticular portion of， 838.
interm，structure of．1003，6；36－ （6：3s，1007，（3：3）．
Capsule of red miclens，see Nucleus ruber．
Caryochrome cells， $115,11 \%, 1: 2$.
Cambate muclens，see Nucleus can－ datus．
Cell body of perikaryon，changes in， ufter section of axones， 233,234 ．
Coll bridges（Apíthy），60，62．
Crll shrinkage，209．
C＇ells of Martinoti， 976.
（＇ellulifugal conduction，by axones， 266.
by medulated collaterals． 370 ．
Cellulipetal conduction by dendrites， 266.

Contral gray matter of mid－brain， see Stratmm grisemm centrale． gyri，see Gyri centrales．

Central gyri，sensory path from me－ dulla to，80－1．
nemones of olfatory eonduction path， 748.
optic path，821，シャッ．
suleus，see sulens centrulis．
paths of brain（von Beeliterew）， tint．
（＇pnlrale ILaubrntuhtr，see Fasciculus tegmenti centralis．
IÏ̈hlengren，see stratum griseum centrale．
Centre antériettr， 6 as．
médian， 674.
moyen（Luys），6\％3．
Centre，medullary，of cerelmal hemi－ sphere．see（＇יntrman semiovale．
（＇entrifugal．cerebellar juth，965， $\mathbf{6 1 3}$ ． fibres in lemniseus medialis，de－ scending，1017，644．
Centriputal fibres conducting botily impulses， 606.
trigeminal nemrones，central，641．
Centrum ovale of Flechsig，see Tri－ angle médiun of Combanlt and Philipue．
semiovale，hallux fibres in， 1027.
（ephalic myotomes，relation of mus－ cles to， 91 ）．
（＇erebellar path，centrifugal，965，613．
Cerebello－cerebral paths，647， 733 ．
Cerebellopetal degencration， 664.
（＇erebello－spinal paths，！63．
Cerebellim，s：）．
axones entering，648， 741.
axones iron mucleas dorsalis to， 714.
comnection with eortex cerebri， 733 ．
degenemtions following lesions of， 964.
worm（vermiform process）of，see Vermis．
Cerebal hemispheres，see Itemispha－ rinm cerebri．
nerves，components of， 922.
nerves，control by pallium of， 1022.
nerves，relation to central nervons system，917， 588.

1100

C＇rebral nerves，sensory components of， $924,59 \%$ ．
vesicles，88，
Cerehro－spina！itis，nerve cells in．17\％．
Cerebrum（braia）， $1633,3 \mathbf{4 0}$ ． cortex of，see Pallium．
Cervical enlargement of cord，see ln－ tumescentin cervicalis．
selerozones， $\mathbf{1 3 9}$ ）．
Chromatic zones，ift，is8．
Chromophile cells，11\％．123， 33.
Chiasmu opticum，90，50s．\％is．
opticum，decussation of fitres in， 78π.
opticum，degreneration of， $38!$ ，50t．
（ingrulum，1061，66：9）．
Circumbellular plexuses，115．
C＇larke＇s nuelens or columm，see Nu－ cleus dorsalis．
C＇landins，cells of，3（i4．
（＇lava（elub），560，33こと．
Climbing libres，85，ie．
Column of Türek，see Fasciculus cere－ bro－spinalis ventralis．
Cochlear root of mulitory nerve，see N．cochlea．
Colom，unsegmented，19\％．
Cohl points，：5\％s．
Collaterals， $21,2 \geqslant, 90$ ．
from axones of pramidal tract， 1033.
reflex， 26.
Colliculus ficialis， $\mathbf{B F シ}$ ．
inferior，314，31s，319，369，352， j3：3，838，843， 84π ．
inferior，relation to auditory path， 873.

superior，fibres from lateral lemmis－ cus to，868， $\mathbf{3 . 5 0 - 5 . 5 s .}$
superior，fibres to oceipital cortex from， 819 ．
superior，path to spinal cord from， 969.
superior，termination of optic fibres in，803．
superior，zones of，808，809．
（＇olmma extremitatis inferioris， 914.
extremitatis superioris， 914.
griset dorsalis， 373.
grisea ventrulis， $\mathbf{3 7 4}, 407$.
iutermedio－lat eralis，913，585， 586. lateralis， 915.

posterior，see Columm grisea dor－ salis．
Comma of schultze，390， $293-$－908， 448．451，45t－45\％．
Commissura ansata of liamover， 80% ．
anterior ulba，see Commissura ven－ tralis alta．
anterior（cerebri），10nin，6066．
anterior grisea，see Commissura ventralis grisea．
cerebri maxima，ste（orpus callo－ silli．
dorsalis（spimal coml），474，30．5．
hippocampi，766，10．37．
hypothakmica anterior，807， 517 ．
hypothalamiea media（Meynert）， 713.
inferior（Guddeni），50\％．
posterior（cerebri）， $3 \geq 1,3 \geq 2,386$ ， 419.
supurior（Meynert），507，„14，515， 713，805．
vent ralis alba，357，3！00．
ventralis grisen（spinal cord），357．
Commissural cells，see Neurones，het－ eromeric．
libres of cerebrum，（i65）．
Commissure between Bechterew＇s nu－ clei（ventral part of brachium conjunctivum），315，319－3：3． $415,632,40(0)$
between inferior collieuli，315， 414.
optic，see Chiasmat optieum，
Conarium，see Corpus pineale．
Conerescence（Held），50．70，64．
Conducting anastomosis（Apithy）， （i）．
Conduetion avalanche，see Avalanche eonduction．
muth， 319.

C＇onduction puth．sensory，from me－ dulla to central gyri， 704.
puth，somarsthetic，résumé of，\％39， 46：）－47．
（＇onductor sonorus， 840 ．
Confusion zone，995， 6332.
Commecting plexus of heart， 193.
Contact theory of transmission of im－ pulses，200， 263 ．
Courergenzcentrum，951．
Cormin ammonis，see ILippocampus． unterius，see Ventrienlus lateralis． interius，see Ventriculus laternlis． posterius，see Ventriculus lateralis．
Corpora albicmintia（white bodies），see Corpus mammillare．
geniculata，seeCorpus genieulatum． qualrigemina，s！，：3テシ， 536.
quadrigeminn，relation of lemnis－ eus lateralis to， $\mathbf{8 i n t}$ ．
quadrigemina，signilieance of，in animal series，804．
quadrigemina，termination of optic fibres in， 803.
Corpus eallosum， 1053.
callosmon，degenerations of， 1055.
eiliare，see Nuelens dentatus．
dentatum，see Nuelens dentatus．
geniculatum laterale， $536,800,813$ ， 511，82：3，831．
geniculatum laterale，degeneration of cells in，81\％，520（ $\mathbf{5}$ ．
genienlatmo laterale，nuelei of， （37！，796，510．
genienlatum laterale，termination of optie fibres in，798．800， $\mathbf{5 1 0}$ ． 512.
geniculalum mertiale，3S6．843， 847 ．
geniculatum mediale，degeneration in， 875, ，3．0）．
geniculatum merliale，fibres to in－ ternal eapsule from，875， $\mathbf{5} \mathbf{6 0}$ ．
geniculatum mediale，buclei of， 875 ．
genieulatum mediale，termination of optic fibres in， 804 ．
Inysi，see Nucleus hypothami－ cus．
mammillare，90，3sts．

Corpus mammillare，connection of hippocumpus with， 766.
mammilhre，uuelei of，768．
parabigeminum，569，386．
pineale，90， 831.
restiforme，30：）－312，318－321， 375，355，564，575，3！） 412 ， $\mathbf{4 1 3 , 4 1 7 , 4 1 9 , 5 8 6 , 5 8 7 .}$
restiforme，degeneration following section of，（614，615， 967 ．
striatum，8！）．
subthalamicum，see Nuclens hypo－ thalamicus．
trupezoidemm，318，324，3（5i－3439， 551，553，402，417，417，612，537， 538， 843.
trapezoidem．transverse tibres of， 859.
trapezoidenm，terminals of axones on cells in，545， $\mathbf{5 4 6}$ ， $\mathbf{5 4 7}$ ． 85%
Cortex of hmman brain， $\mathbf{6 6 3}$ ．
Corti＇s membrane， $3 \mathbf{3 2}$ ．
Cortienl lemnisens，697， 699.
Cortico－museular conduction path， 1037,657 ， 6.58.
（＇rista aupullaris， 490.
Crossed pyramidal tract，see Faseic－ ulus cerebro－spimalis lateralis．
Crus cerebri，see Pedunculus cerebri． Cuneate funiculus，see Fascienhus emeatus．
tubercle，see Thbereulum cunea－ timm．
C＇meus，594，634，Pl．I， 3.
Cylinder furrow， $\mathbf{1 0 0}$ ．
Cylindrodendriten， 90.
（＇ytochrome cells，115， 121.
Cytodendriten，2\％0．
Darksehewitsch，nucleus of．721，724， $46 \mathbf{4}, \mathbf{4 6 3}$.
Deckplatte， 100.
Deafness，mind， 1078.
word， 1076.
Decussatio brachii eoujunctivi．316， $3 \div 2-3 シ 4,415,420.4 \div 9$ ．
lemniscorum，308，563，447．
nervorum oculomotorium， 942 ．

Decussatio nervorum trochlearium, 314, 940, 60).
pyramidum, 981, 990. 991, 6: 4 .
subt hatamica anterior, see ('ommissura hypothalanica anterior.
tegmenti dorsalis, 7\%2, 960, 435\%, 492. 61 \%, 61 s .
tegmenti ventralis, $42!$, 435, $\mathbf{6 1 !}$, 971.

Decussation in optic ehinsm, complete (von Gudden), 790.
in optic chiasm, theories of, 885.
of fillet, see Decussatio lemuiscorum.
of pyramids, see Decussatio pyrumidum.
Deeussationes tegmentorum, $\mathbf{3 1 6}$, 317, 324, 4!) , 4!2, 403. 49\%, 772, 812, 969.
Deep cells of melei N. trigemini, 642. optic path, $8 \geqslant 1$.
Degeneration after amputation, 228 .
ufter lesion of eerebellum, 964-967.
after lesion of gyrus centralis posterior, $702,45 \%$.
after removal of eye, 787, :04.
after section of corpus resiforme, 907, 614, 61%.
of eell-body on removal of afferent impulses, ge9. 177.
of nerve cells after section of axone, $233,234$.
retrograde, 229 .
secondary or Wallerim, 18, 46. 224, $227,148,144$.
Deiters, cells of, 364.
Deiters' nucleus, see Nueleus N. vestibuli lateralis (Deiters).
nuelens, traet to spimal cord, 311, $31 \pm .3 \pm 1,3 \pm 2,368$.
Dendraxone, 14, 70, 41, is.
Dendraxones between upper motor neurones, 1036.
Dendrites, 4, 15, 16, 37, 70, 111, 139.
effect of injury to, 239 .
origin of, 169.
theory as to nature of, 258.
Dermatomere, 196.

Desconting centrifugal bundle of lemmiseus medialis, 1017, 6\$3, 644.
cerebellar spinal tract, 963.
spimal neurone system from formatio reticularis, uncrossed, 962 .
spinal neurone system from nucleus ruber, crossing, 972.
Diaphragm, development of, 104.
innervation of, 194.
Diazomal nerve trunk, 209, 187, 138.
Diencephulon, 159, s!).
motor neurones in, 969.
Diffuse cells of retima, 783.
Diplomeric muscles, 201.
Direct cerebellar tract, see Fasciculus spino-cerebellaris dorso-lateralis. pramidal tract, see Paseiculus cerebro-spinalis ventrulis.
Directe acustische Rindenbahn, (Held), 868.
Rindenschleife, 667.
Dorsal commissure, see Commissura dorsalis.
decussntion of tegmentum, see lecussatio tegmenti dorsalis.
funiculus, see Funieulus dorsalis.
horn, see Corbu dorsale.
muelens of lateral geniculate body, 679.
nucleus of reticular zone, 675, 679.
root, see Rudix dorsalis.
white matter of nuelens hypothalamicus, 384.
Dreikantenhaln (llelweg). 958.
Ductus cochlenris, 361, 31i2.
endolymphaticns, $\mathbf{3} \mathbf{3 1}$.
reuniens, 361.
semicirculatis lateralis, $\mathbf{3 6 1}$.
utriculosaceulnris, 361.
Ectoblast, 165.
Ehrlich's vital staining, 31.
Electrical stimulation of cerebral cortex. 993.
stimulation of nemones, indirect, 276.

Elementary fibrils of Apáthy, 54.

Elementargitter，see Apuithy＇s Lite－ menturgitter．
Eimbolus，see Nucleus emboliformis．
liminentia interpedmacularis of isth－ mus， 90.
Enar yochromo cells，118，119， 68.
Encephaton， 168.
Eind－brain，see Telencephalon．
Eud－bulbs of Krause，e51．392， 396.
Eulargements of cord，see Intumes－ centite．
Ehteromere， 196.
Entry zone，423，424， 427.
Epistratum，500， 781.
Epithalamus，89．
Equivalent picture of nerve cell， 133.
E＇rsutz－Theorie of tabes（Ediuger）， 254.

Extermal capsule，see Capsula ex－ terna．
Extirpation of facial area，6．）1， 1029. of hallux centre， $\mathbf{6 4 6} \mathbf{6} \mathbf{6 5 0} \mathbf{0}, 1024$.
Lye，development of，11s， 111 ）．
muscles，innervation of，9at）．
Eyes，elfectsof extirpation of， $78 \pi, 704$.
Facial area of cortex，extirpation of， （i．）1，1029．
nerve，sce Nervas facialis．
Facies medialis cerebri，motor locali－ zation in，1000， $\mathbf{6 3 4} 4$.
Fasciculi cerebro－spinales pyrami－ dales， $172,313,314,315,316$ ， 317，374，376，377，975，981， 1008，1010，6：30－681， 640 ．
cerebro－spinales pyramidales，med－ n！lation of，987．
longitndinales（pyramidales），see Fasciculi cerebro－spinales．
pedunculo－mammillares， $668,49 \%$ ．
pedmeno－mammillares，pars basi－ laris，386，Tis．
pedmenlo－mammillares，pars teg－ mentalis， 772.
proprii，motor neurones for，95．
Faseiculus anterior proprius（Flech－ sigi），see l＇asciculus ventralis pro－ prius．
linsciculus antero－lateralis superll－ cialis（Gowersi），see Fuscjoulus ventro－lateralis，cte．
hasihuris medialis，（600－600）．
centralis tegmenti，401，40：3，404， 328． 974.
cerebellaris lateralis descembens， 663．
terebello－spinalis，see Fusciculus spino－cerebellaris dorso－latematis． cerebro－spinalis nuterior（pyrumi－ dalis unterior），see F＇asciculns cerobro－spimalis ventrmis．
cerebro－spinalis laternlis（pyrami－ dalis laternlis），き81，2s：306， $390,609,984,992,6330,631,1045$.
corebro－spinalis ventralis， $\mathbf{3 0 6}$ ， 390， 933.
cerehro－spinalis ventralis of mon－ key，102\％，64！．
crucintus，785，\％07．
cuucatus（Burdachi），©．5，©80，ㄹ．93， 0！95，301．302，304，305，318－ 32ロ，37ロ，373，37（5，40\％，443－ 45\％，461，462， 468.
dorsalis proprias，559．
dorso－lateralis（Lissaneri），25，980， 2S1，390，423－435，468．
gracilis（folli），8，り6，304，308， 318－322，37セ，373，376，405， 406.
gracilis．degenerntions of， $\mathbf{2 8 0}$ ， $292,2!33,442-447$ ．
gracilis，origin of．439－442 ；termi－ mation of，301，302，461．462．
lateralis limitans，608，609，399．
Sateralis proprins（Fleehsig），306， 415，3．5！），611－614， 740.
lateralis ventralis， 740.
longitudinalis inferior．1065．67®．
lonritudinalis medialis，309－317， 319－324，386，401，404－406； $414-417,42(0,613-619,627$ ， $637,422,668,675,718,721$.
longitudinalis medialis，connection with cord，4：5！．
longitndinalis medialis，motor neu－ rones for， 95% ．

Finseiculas longitudimatis sumerior， 881，1063， 671.
macularis crucintus， $507,795$.
macularis nonerucintus，dorsulis et ventrulis， 507 ， 7% ．
marginalis anterior，95\％．
noncrucintus， 78.5 ， $\mathbf{5 0} \mathbf{0}, 50(0), 50 \%$ ．
oecipitulis transversus cunci， 1060.
oceipitnlis transersus gyri lingu－ alis， 1061.
oceipitalis verticulis，1059．
occipito－frontalis， 1068.
pallio－frontalis， 1040 ．
pallio－frontalis，degeneration of， 661.
retrotlexns（Meynerti），317，323， 304，386；775，77\％，498．
retroflexns（Meynerti），relation to red untelens，499， 788.
spino－cerebellaris dorso－lateralis， 308，320，575，390．585－589， 30\％，396， 0 กั．
spino－cerebellaris ventro－lateralis restifomatis， 603.
thahmo－mammilharis（Viced dazy－ ri），3＊6，768， $7 \% 1$.
meinatus， 1066.
rentralis proprins， $509,306,30 \mathrm{~s}$ ， 401，496，610－614．
ventrolaterulis superfieinlis（Gow－ ersi），559，301，302 306；390， 590－598，39：6，3！）7，398，601－604．
Fatigne，inflnence of，on neurones， $276,277,164,166$.
Fetel II，655，4336， 671.
Fetd $\mathrm{H}_{1}, 6 i=438$.
Feld $\mathrm{H}_{2}, 6 \sigma^{2} 2,438$.
Feld Il_{2} ，fibres from fascieulus longi－ tudinalis medialis to， 668 ．
Feltwork（Neuropilum）， 1% ．
Fibre arenatie externa，308，376， 565， $5 \% 5$.
areuate interna，308，309，320－ 394，563，565， 568.
arcuate interne from nuelai ter－ minales N．trigemini，42．
arenate interme，relation to mucleus ala cinerear，624．

Fibri urenata internus，relation to mueleus funienli（unenti，400．
urematie：interme（vestibular），\＄19， （62\％860．5．0．8．
pontis， 31% ．
Fibres corfico－rubriques directes，732．
Fila olfactoria， $\mathbf{7 5} \mathbf{5}, \mathbf{5 0 0}$ ．
Fillet，see Lemaiscus．
Fissurn calearima， $6: 38$.
cerebri lateralis，Plate $1,3$.
chorioidea，（1）．
purieto－oceipitalis，Ilnte I， 3.
prima， 749.
rhinien， 749.
Sylvii，133：3．
F＇issurenstrang，960．
Flechsig＇s embryological method， 25. sensory systems，735， $\mathbf{4 6 (6 - 4 6 8}$ ．
Floneulus， 3 72， 411.
pedunele of，see Pedunenlus floe－ culi．
Fontaineartige Manbenkrenzung of Meynert，see Deunssationes teg－ mentorim．
Food－stuffs of nemrones， 218.
Forebrain，see I＇rosencephalon．
Forel＇s ventrale IIaubenkreuzumg，7\％2， 493.

Formatio arenatn， 100.
reticularis， 176,615 ． $208,401,412$ ， 464，46i，560，611，618，629，690．
retieularis alba，727， 959 ．
reticularis grisea， $721,960,460$.
retienlaris，optic and aconstie fibres in， 8 m ．
F＇ornix， 1067.
Fossa cerebri lateralis（Sylvii），Plate I， 3.
Fovea，anterior or superior，372．
limiculus anterior，see Funieulus rentrulis．
dorsnlis，22，56：3，3066．
dorsilis，fibres from unclei of，${ }^{7} 09$ ， 711，713．
dorsalis，function of，\％09．
dorsalis，injury to， 708.
dorsalis，myelinization of，©s1－巴ss， 4：2－4：37．

Funieulus dorsalis, origin of, 45i-461.
lateralis, 8,310 , $311,40: 3,115$.
lateralis, libre system from nuclens ruter to, 422.
pesterior, see Funiculus dorsulis.
ventrulis, :30:3.
ventro-lateralis, flthes from beiters ${ }^{\circ}$ nucleus to, 960 .
r'ussschteife (Flechsig), (ist.
Ganglia, sensory, cells of, 68, 31, 179, 108.
trunci symputhici, $190,18{ }^{\circ}$.
Ganglion cells of $\Lambda_{\text {pithyy }} 52,54$.
commissurale, see Nuclens commissuralis.
geniculi, i!3.
habenula, see Nuclens habenula.
jugulare, 478.
nodosum, 4i8.
petrosum, 4i8.
semilunare (Gasseri), 514.
spinale, 185, 18:3, 310, 311.』0 $\mathbf{2}, \mathbf{2 0 5}$, 210.
spirale, 112, 117,545.
superius, 4 i8.
vestibulare (searpa), 499.
Ganglionic ridge, 109).
Gusserian ganglion, see Gauglion semilumure.
(instroenemius musele, nerve endings in. x!4.
(iemmules, 76, 37, 39) ; loss of, 240 .
Geniculate body, extermal, see Corpus geniculatum laterale.
body, intermal, see Corpus genieulatum mediale.
(ienital corpuseles, $\mathbf{9 5 6} \mathbf{6}, \mathbf{9 6 1 , 3 9 6}$.
(ienm capsula interne, 1005 .
N. facialis, 368, 411, 930.

Gerlach's diffuse network, 7,60 .
Giant cells of substantia gelatinosa, (643, 421.
יymmidal cells, 978, $\mathbf{6} \mathbf{2} \mathbf{1}$.
Gilterschicht, 67\%, 438.
Gitterschichtherne, 679.
Glandula pinealis, see Corpus pineale. pituitaria, see llypophysis.
(ilobus pallidus, Plate 1, 8.
(ilomerulus olfactorlus, 50, 5331, Ti.5.
Golgi's enll of 'l'ype I, 11, I2.
rell of 'Type 11, 12, 13.
cells, Type II, intersegmental, , 5 , eells, 'lype II, between upuer and lower motor nemrones, 10:30.
dilfinse net work, 15.

Golgi's methoil, 9 .
Goll's fusciculus, see Fusciculus gracilis.
(luteralis superfieialis.
Grucile nucleus, see Nuclens funieuli gracilis.
Grunde lobe limbique, see Gyrus fornicatus.

Gramle layer of Flechsig's temporale Riechsphäre, \%is9.
(iratiolet's radiation, see Radiatio oc-cipito-thalamien (imutioleti).
(iray commissure of cord, see Commissurn grisea medulla spinulis.
matter, contral, see Substantin grisea centralis.
substance, see Substantia grisea.
Grosshirn, see Cerebrum.
Gromid-bundle, antero-lateral, see Fusciculus ventrulis proprius.
Gryochrome cells, 117, 121.
Gudden, commissure of, see Commissura inferior Gudileni.
law of, 18, 44.
Gustatory conduction path, central neurones of, 747.
neurones, see Neurones, gustatory.
Gyri cerebri, Plates I aud II, $\mathbf{6} 3 \mathrm{BS}$.
oceipitales laterales, Plate II, 1, 638.
occipitales superiones, Plate I, 3, 6:38.
Gyrus ambiens rhinencephadi, r5a, i)01.
angularis, 823.
centralis anterior, Plate II, 1.

Gyrus centrulis posterior，lesion of （FWechaig and Itoesel），502，tion． vinguli，Plate I，f，Gi：S，ti6is）， 1061. furniemus．Plate I，： B ． frontalis inferior，I＇late II，I． fromtalis medius，Plate II， 1.
frontulis superion，function of， 909. һірикетирі， 86.
lingualis．Plate I， 4.
olfuctorins laterulis， $501,478,474$ ，
475.
olfactorins medindis，int，473．
semihnmris rhinencephati，nis．
 suphamargimalis，Plate II，I． temperalis medins，Ilate II，I． temporulis superior， $\mathbf{8} 63,8$ siz． uncinatus，see Unens．

Hair cells of organ of Corti．36t．
Hallux cemre，degeneration following extirpation of，646－（6：5），10e．4．
contre，pyramidal thbes firm， 1030 ． reutre，dernassation of，1026，6；4．
Iftubenbündel des Limsentiernes，6i4． des wothrue hernes．bit．
des Thelemus，bit．
of von（indlen，see Fascienlus je－ duneulo－mammillaris．
Iltubenfascikelth（Forell），435，670．
Haubphkreuzuag，see Deeussutiones legmentorm．
Ifatbenstrahtung，667，730．
Ilathiselileife，see Lemmiseus media－ lis．
der Schleifenschicht，bisi．
Hempltheil der Schleifensehieht，68\％．
Head area of cerebral cortex， 998.
cavities， $918,919$.
follo．St．
pate，ss．
Heart．plexuses of，1t3．
Hecatromeric benrones，see Neu－ rone，hecateromerie．
Hell＇s method， 129.
Heminhopsia，825，826．
Hemispharium cerehi，lateral sur－ face， 6 i．

Ilamiphatrium cerebri，medial sur． Puer，this．
Hemispherice bande of von（iadden， 807，© 16.
Hensen，colls of，：36．
Herhatis corpuscte，see I＇ucinian cor－ puscle．
Heteromerie nemones，see Nomrme， heteromeric．
Heteropadere Nervenzellen， 81.
Hibernating animals，nervons system of， 280.
Hilus thalami，（is：3．
Hind－brain，sere Metencephaton．
Mintrve Lathgshbünd formation（I）（）． negger），没7，83．
Hippocumpus，cells of，68，72，33）．
connection of unells with， 4 A 9 ．
Himhlapmensehleife（Meynert），s6s．
Hiruschentielschlingr of Flechsig．tisi，．
Hoehe，researehes on byramidat trats， 1016.
Itomonymons bilateral hemianopsia， i89．
Horseshoe commissure of Werne－ kinek，6i33，4：3，4：30．
Hypoglossal nerve，mulens of，924， E903．
muclens of lioller，small－celled， 926 ．
Iypothatamms，：80．
hayers of，bia．
limits of，6il．
puths to，668．
region of，6ifi．
Itaixones， 81.
Individuality of meurones， 38.
Infections，changes in nenrones in， 2×9.
Inferior collionlas，melens of，see Nuplous eolliculi inferioris．
eollienlus，relation to auditory mith， 872.
tillet，see Lemmisens hateralis．
Infruconseions impulses，2．0）．
Inuerer Lifon（Burdach），6\％3．
Inselschuelle（Schwaltse）， 750.
Insula，Plate 1， 3.

Inter-lrain, see Diencephaton.
Intervellular loridges, see Coll bridgos.
'aterinsular cells, $\mathbf{t} 2 \mathrm{I}$.
Intormediary laminu medublaris, 4is9. motor nemrones, 85 5.
Internal cupsule, see ('apsidat interua.
Intorneuromal relations in cerchral cortex, (35\%), 65:6.
substaneres, 1010.
Interolivary layer, sur stratam interalivare lemaised.
Intersegment, lint.
Interstitial eolls of semsory nuclems of trigeminns. $6: 12,4 \geq 1$.
Intoximatons, changes in memrones in, 28.

Int erparietal sulens, see Sulens interparictalis.
Intumeserentia rervinalis, motor nen-

fumbalis, nemrones of, 88\%.
Irritahility of mewomes, :248.
Ishand of Reil, see Insula.
Islotes al futioos, 261, 457, 4is.
Isthmas of brain, see Isthmas rhmo hencephati.
rhombeneephali, N!
Iter a tertiond guartum ventriculam, seer Agueductus ardebri.

Kinser's muelens extremitalis superioris, 914.
Keimzellen, 16\%.
に̈̈rperfilhspheïre, (6iã.
Kimuse's end-bulls, see Eud-halles of Kranse.
ȟreuzembe Ilinterstranglequ-Grosshirmrindemsystem ('T'schermak). il4.
Iliuterstranglem - (irrosshirmrindThulamussysfem ('I'selurumak), 314.

Lalyurinthis memhranaceus, $\mathbf{3 6} \mathbf{i}$.
 304.
termimalis, $\mathbf{9 6}$).
Largens, see Lemuisens.

Lavge-colled bucleqs of thatamos (Nissl), 6\%\%.
Latcral colnmm, ner fonioulas lateralis.
fillet, see Lemmisens lateralis.
geniondate hody, see Conpus genienlatima laterale.
horns, grouping of eells in, she. blis.
line, : S10.
nuelens, sere Noelems hat mulis.
nuclens of corpus mammillare, ibis. nuclens of reticular zone, 6\%\%.
muclens of thatamas, miterior and posterior, 680.
Dramilat tract, see Pasciculas rerebro-spinalis lateralis.
Laterules absteigendes hileinhirnbïudel, bib3.
Lautermann's segnemtation, 4.
Langrea of cortex, ams.
Leilunyskluhth, 310.
Lemmisens or Tapucus, 686.
lateralis, 314, :315, 318-:302, 369), 3 N 6 , 5n: $, 414,40.5,414,415$, (i8\%.
lateralis, divisions of, 861 .
lateratis, fibme nrematin intemar frotu, atef, 5.5:3.
lateralis, finer structure of, 860 .
lateralis, lesions of. sial, 5jol).
lateralis, maclei of. 8rit.
Interalis, origin of axomes of, 868 , 5.01.
lateralis, relation to meleus collieuli inferioris, 868.
lateralis, termination of axones of, 8613, 554.
merlialis, 31:3-317, 356, 564, 570, 401, 404. 414, 41i, 687, 689, 44s. 44!.
mediat necessory, 688, 445.
medialis (aceessory bumdles of ron Bechterew), 404.
medialis, descendingr centrifugal bunalle in. 1017. 6;43, 644.
medialis, divect libres to cerebral cortex from, 699.
lammisens molialis，origion of thores of，18：4．
medialis，temmination of dhoment， 199．4．150，151．
merlantis，views conreminer romese of，IN4，thiti，6：12．

Ligamentum spirula reville：：30：
Limen insular，Tit．
Limsenhermsehlinge（F＇ledosig），bixi．
Lissathers colamm of late sere lins－ cienlus dorso－lateralis Lissameri．
Lobulus paramentralis，function of， ！ $1: 19$.
patment ralis，lesioms af，zol，10．5．
lablus areipuialis， 104% ．
whatorins，50， $74!, \pm \overline{2}$ ．
lamalization，moter，in spinal comst， N： 19.
 100\％．
of funclion in rainal romen，！n：－ ！0n，9月0，ises．
ا．
lamgiludimal hamelle，pustorion or Norsal，sur Fiasericulas lomgitudi－ malis modialis．
lawer fice atrea，ans．
facial nerve，9：30．
motor bemones，ser Nomones， fower motor．
Lambar culargement of revid．sor la－ tumeserentia lumbialis．
Lays benty，see Nimbers hypotha－

Lyta，ser Commissura hipperampi．
Marrosmatio amimals，T．4．
Malola alosica saceuli，：B3B，：361， Sol 0

Malon－miltil，effere of，İs，：301， 302.

Mammals，berve endings in masels fibres of，kil．
Minns：methoul，1：9．

Manlle，sere Pallimo．

Marginal bumble of lissamer，sue lamepolas dorso－latoralis Lis－ satheri．
refls of semsory millius of ari－ seminus，tilw，t： 1 ．
furvow，100）．
reil，ilit．
Mastiontion，development of musides

Medial me⿻口卄⿱宀⿻三人， rolmun of motor cells，＂li．
quminulate boxly，sere corpus ge－ nienatatum medials．
moteros of corpus mummillare，the． muchens of thatams，679，44．
remtral melens of thmbimes（von Momakow，681．
Medictle weressorisclie Baindel der Shleife（ron Bedhorew），she Medial ateressory lemonisens．
Morlulln whongata，30s－312，：38－ $3 \geq 4$.
whongata，hameltation of，18\％．
ohomgata，pramidal tract tibres in，！esi．
sensory conduction pallito tent ral myri，int．
spinalis，：0．I．
spinalis，commissurn，ist．
spinalis，commisimm dorsalis，30．s， ：300．4\％． 1.

pinalis，corm lomsale，ast．
spimalis，cornu vemurale，357，B6O， 4：3，tios．
spinalis，comut ventrale，relation to fase ientus lomgitudimatis me－ dialis， 181% ．
spimatis，melens of pestervion horn of Wialdeyer，di：3．
substantin grisea of，tiz3．
Monlullary groove，sts．
phatr，165，983．
Medullated merve fibres． 4 ．
Medullation of tibres，sempence of， 9815．

Moissmer's lactile "orpuseles, シis!), $\because 10, ~=41, ~=45$.
Meremy, aflects of, 2s\%.
 horizontal seetion through, te7.
lower motor nempones of, 915. motor neurones in, 9f8.
Mesial filied, ser Lemmisens medinlis.
Metabolism of nemrones, 21%.
Matameres, 195.
Metulhatamus, S! .
Melazomi newo tranks, 209, 135, 1:34, 13:3.
 315-3:4.
bramidal libres in, S!), :881, :900.
Mrewner, bunc'se of, see fascienlas potrollesus Meymerti.
eommissure of, see fommissura suburior Maynerti.
Mreynerl's fonluinearliye: JuntronLirvazu!!, 70, 492.

Midhrain, sere Mrsemephaton.
Widalle rerebellar pedumele, sede Brachinn pontis.
"Mrehal vesicle, st.
deconsation of tegmentum, 7ot.
horn of hatemb rentriche, see VenI riculns lateralis, corma inferias.
lemnisems, see lammiserns medialis.
or sofl commasure, see Masatintermedia.
Millılzellensï̆ulen, 8R8.
Miltlere urissw Latye, see Stratum allom medium.

Momostratilied cells of the retima, 5033. 783.

Notor area of cortex, 9af, 096.
axome, amding in masele fibme of. 893, 57:3.
wills, modial and hateral columns olf. 915.
cerobal merves, control ly pallimm of, 1tide.
cortex, degeneration following extirgation of areas in, 64i-6iot.

Molor cortex, extipmation of areas of, 1022, 144.
libres from the cortex, termination of. !8:
function in cerchen cortex, localizution of, 905, 6:3せ-ti3is, 1002.
localization in spinm vorit, kom, Ex:t.
nerve pindle, 5is, 60.

nenrones of carviol ablargement, (485).

Hellomes of the eord, commissumal Lroup of, 885, $\mathbf{8 1 7} 7$.
newrones, gromping of, 88.I.
nemrones of thombenepphalon, 915. nemones of thormeic, lumtar, and sameral (ords, NK_{c}.
nempomes, relation of upper and fower (von Somakow), Itaiti.
morones, ирия and int ermediate, 950.
murle of hombar enlargement, ista.
chertembtion of the frog, isis.
folodentrion of haerta, ist.
telodemdrion of the rabbit, 5 ati.
tolodemidion, miation to neurt. lermma, sioc.
Movements, bilaterally inmervated museles, 10-ft.
Mitheres fibres, 3.5t, nisi.
Maltipolar ganglion ewl, 4, 69, :3: 34.

Mascles of the eye, innervation of, (250)

Muselo-segment, see Myotome.
Myalencephanom, 15:, s!), :3:
Mỵelin shatlo. 41,86 .
Myelinizalion of brachinm eonjunetivim, (65\%-659, 4:31.
Myocommata, 198.
Myoseptum, 19\%.
Myotome, 185, 1:18, 199, :900,
Myotomes, proälice and postotio, 919. relat ion of museles to rephablic, met.
N. utrlucerns, 3:32, 31:3, 3:0-8324, 340. 41%.
N. abducens aecessorius, $186,30 \%$, 320. 323, 340, 374, 927,395 , 928.
neusticus, see N . cochlear and N . restibuli.
muricularis magnus, 1×6.
axillaris, $1 \mathrm{~s} \mathbf{6}, 1 \mathrm{~s} 9$.
cochlea, 307,:311, 312, 361,36s370, 546, 413, +16.
entunens antibruchii lateralis, I \mathbf{x} ? . eutanens autibrachii medialis, Ist. cutuneus brachii dorsalis, 189.
cutanens bachii medialis, 1 a! . cutaneus colli, 1N(6.
cutanens femoris lateralis, 190 .
cutancus femoris posterior, 1 isi. $191)$.
dorsalis scapula, 1St.
fucialis, 307. 31:, 319-3:4, 340 . 361, 368, +11, 417, 929.
femoralis, 1 si .
glossopharyngeus, 307, 309-3, 1, :320, $3 \geq 1,32(6,3 \geq 9,340,375$. 47%.
glossopharyngens, lower motor neurones of, 929.
ghatiens inferior, ist.
glutirus superior, ist.
hypoglossus, 102, 1 N6, 309, 3213Е4, 340, 376, 37\%.
hypoglossus, in the embryo. 926 .
iliohypognstriens, 1s7. 1s?.
ilioinguimalis, $1 \times \mathbf{5}, \mathbf{1 9 0}$.
intermedius, 514.
lumboinguimalis, $1 \times \mathbf{5}, 190$.
mediamus, 1 sti, Is!.
musenlocutaneus. ist
obturatorins, $1 \times 7,190$.
oculomotorius, $317,3 \mathbf{3}, 3 \mathbf{3} \mathbf{4}$, 340, 941, 949.
opticus, 733, 783, 795, $\mathbf{5 0 7}$.
optiens, coarse and fine fibres of. 785.
peronarus commmuis. is peromaras superficialis, $\mathbf{1 9 0}$).
phreniens, 1s6.
plantaris lateralis, 190 .
phantaris medialis, 190 .
N. abducens pudendus, 1 si .
rudialis, 186 ,
siphenus, 190).
spermaticus extermus, 187,190 .
subchavius, 1 sti.
suproseapularis, IS6.
surulis, 1:0).
thorteobrachialis, 186.
tibialis, $\mathbf{4 1 4}$.
trigeminus, $520,307,313-319$, 321-3コ4, 340, 38(6,514, 593, 5:31, 414.933 .
trigeminns, stonsory paths of, 664 .
trochlearis, $\mathbf{3 1 5}-\mathbf{3 2 0} \mathbf{0}$, 340, 3N(f, (i) 1, 088.
mharis, 1s6, 189.
vagus, $102,307,309-311,320$, $3: 31,326,3 \geq 9,3330,340,4 \pi \%$.
vagus, fibres from the terminal nuclei of, 728. 464, 465.
vagus, lower motor nemrones of, 929.
vestibuli, 307. 310-312. 318-320, 324, 340, 3(61, 365, 370, 416, 418, 419 . 499, 500, 502, 510,511.
vestibuli, rulix descendens, 40 .
Nates, see Colliculus superior.
Nerve, anditory, see N. nensticus und N. cochles.
cighth, see N. acustieus.
eleventh, see N. accessorius.
fifth, see N. trigemimus.
first, see Nu. olfnetorii.
fourth, see N. trochlearis. ninth, see X. glossopharyngeus. second, see N. opticus. seventh, see N. fucialis. sixtlo, see N. abducens. spinal aceessory, see N. aceessorius. tentl, see N. vagus.
third, see N. oculomotorius.
twelfth, see N. hyouglossus.
"Nerve-cell" of Aprithy, 5 .
Nerve-endings, see Nemones, bodily peripheral eentripetal, peripheral culings.
Nerveroots, miterior, see Radix ventralis.

Nerve-roots, posterior, see Radix dorsalis.
spinal, see Nn. spimules.
Nerves, sensory, see Neurones, peripheral eentripetal.
sensory, cutaneous distribution of, 185, , 204, 330-349.
Nervis trigeminus (portio minor), 42.
trigeminus, rudix deseendens (mesenecphalican, $\mathbf{4} \mathbf{2} \mathbf{2}, \mathbf{6 0 0}(935$.
trigeminus, sensory terminal nuclei of, 641.
Neural tube, seetion through, 94, 9\%, 96.
segment, 195.
Neurilemma, 41, 86.
Neuroblasts, 16, 44, 169.
wandering of, 172.
Neurofibrils of A pithy, 52, 54, 145.
Nemroglis, proliferation in secondary degeneration of white fibres, 228 .
Nemromere, 195.
Neurone, 39, 41.
mmpharkyochrome, 118, 119.
apyknomorphous, 12:3, (6s. (6), 61.
archiplasmic raliation. 148 .
ark yochrome, 6\%, 117, 121.
attration sphere, 148, st.
auditor $\%$, first order, 836, 839.
muditory, secoud order, 8:39.
anditory, third order, 839 .
axone hillock, 111, 6t, iv.
axome, struetire of, 142, 145.
axospongima, $144,51,82$.
bulbo-hypothalamic, 694.
bulbo-messencephatic, 694.
bulbo-pontal, 694.
catryochrome, 115, 11\%, 102.
centrosome, 148-150. st.
changes produced by arsenic in. 169, 1 \% 2.
changes produced by fatigne in,

changes prodnced by injury to dendrites of, atas.
ehanges produced by ligature of abdominal arta in, 173.

Neturone, changes produced by mercury in, 287.
changes produced by phosphoris in, 283, 17%.
ehanges produced by poisons in, $280-288.205$.
chunges prodnced by section of axone in (Nissl), : $2: 3,234$.
changes prodnced be section of axone und of dorsal root in, 177.
changes prodnced by strychnine in, 285.
chatuges produced by veratrin in, 283, 1\%1.
(hromoplite, 115, 123, 78.
dhomphilie corpuseles, 110.
chromophobic. 123.
conception of. 40.
eytochrome, 115, 121.
(ytoplasm, 147 ,
evtoreticulnu, 142.
eytospongium, 147, \boldsymbol{N}.
dendrites of, see under Dendrites.
elementary spherules (Arodt). 104.
enarehyochrome, $118,119,65$.
(endoplasm, 155.
exoplasm, 155.
fibrillar theory of Schult \%e, 102. fibrils of, $112,1: 36,139,6 \mathbf{2}$.
ground substance of (unstatinable substance of Nissl), nature of, 135-153.
gromin substance, fibrils of, 102 , $136,140$.
ground substance, honeycomb structure, 138, 141, 147, 136.
ground substance, network, 139, 140, $\mathbf{7}$.
gustatory, 525.
heateromeric. 171.
heteromerie, 1it, 101.
byaloplasm, 147.
hypothalamic, 604.
investment of, 150-153.
internal morphology of, 101, 157.
mesencephalic, 694.
purapyknomorphous, 123, 6%.

Nemrone，peripheral auditory， 544. peripheral centrifugal， 883. peripheral olfactory，529．
pigmentary deposits，10\％．
pyknomorphons，123， $\mathbf{3 0}$ ．
somatochrome， $115,121, \mathbf{6 7}, \mathbf{6 s}$. spongioplasm，147．
stuinable substance of Nissl，see under Tigroid．
stichochrome， $117,121,70,71$.
system， 318.
system，erossed gracihur nucleo－ cerebellar， 565.
system，unerossed gracilar nacleo－ cerebellar， 565 ．
tantomerie， 171.
tantomeric，elassification of， 606.
threshold（Newronschuelle）．253．
uncainable substunce of Nissl，see under Neurone，ground sub－ stance．
visual， 533.
Neurones，bodily peripheral centrip－
 $\boldsymbol{0} \mathbf{0 s}, \underline{2} 0: 210$ ．
bodily peripheme centripetal，clas－ sifieation of，321－322．
bodily peripheral centripetal，pe－ ripheral andings，361－420， $\mathbf{2} 11$ ， $\mathbf{2} 96$.
bodily peripheral centripetal，pe－ ripherul endings，cornea．：14，

bodily peripheral centripetal，pe－ ripheral endi．s，conjunetiva，

botily peripheral centripetal，ןe－ ripheral endings，bill of duck， －2．2， $2 \boldsymbol{2} 4$.
bodily peripheral centripetal，pe－ ripheral endings，bladder， $\mathbf{2 1 2}$ ．
bodily peripheral eentripetal，pe－ ripheral endings，eiliary body，

bodily peripheral eentripetal，epi－ didymis，－34．
bodily peripheral centripetal，gen－ ital tract，：950－261．

Neurones，borlily peripheral eentri－ petal，hair，205－208．
bodily peripheral centripetal，kid－ ney， $\mathbf{2} 79$.
bodily peripheral centripetal，liver， 030.
bodily peripheral centripetal， mammary glands，：336．
bodily peripheral centripetal，mes－ entery， $\boldsymbol{2} \boldsymbol{5} 4$.
bodily peripheral centripetal，mus－

bodily peripheral centripetal， asophagns， 911.
bodily peripheral centripetal，pal－

borily peripheral centripetal， prostate， 235.
botily peripheral centripetal，sali－ vary glands，©33．
bodily periphernl centripetal，skin，

bodily peripheral centripetal，eor－ puscles of Meissner in， $\mathbf{2} \mathbf{3 9} \boldsymbol{2}$ ， $\mathbf{2} \mathbf{4 0}$ ， 941.
bodily peripheral centripetal，Ruf－

bodily peripheral eentripetal，Tast－ zellen（Morkel），リン0，פり1．
bodily peripheral centripetal，tu－ huli seminiferi． 935.
bodily peripheral centripetal，villi， －33．
lower motor，41，88：3，575．
lower motor，lesion of， 1039.
lower motor，relation to upper motor neurones， 1036.
lower motor，segmental arrange－ ment in cord． 884.
olfactory，groups of， $\mathbf{5 0 1 5 0 2}$ ．
Neuropil，271－273．
Veuropodien， 79.
Neuroporus， 8 S ．
Neurosomes（Held），50，144，145，156， 81，80，83．
Neurospongim（Ilis）， 166.
Neurotome， 195.

Nissl bodies（staimable substance）， 105－134，see also Tigroid．
Nissl＇s classification of cells，115－126． methor，45，106，242，243．
Nor，clumiam medii， $18 \overline{5}, \mathbf{1 9 0}$ ．
oculomotorii，decussution of， 945 ， 505．
olfactorii， 754.
spinales，deseription of，185，322－ 325.
spinales，ganglia of，306；
spinales，radix dorsalis， $\boldsymbol{\bullet} 81.306$ ．
spinales，ratix dorsalis，ascemding limh of bifureation，304． 468.
spinales，radix dorsalis，collaterals， 305．470－4\％．
spiuales，rudix dorsalis，collaterals， classification of，473－47i）．
spinales，radix dorsalis，descending limb of bifurcation，304． 468.
spinales，radix dorsalis，fibres of， 244，303，447，465－466．
spinales，radis ventralis， 306 ．
spinales，mani of， 1×5.
subseapulares， $\mathbf{1 8} 6$.
suprachaviculares， $\mathbf{1 s \%}$ ．
Norle of Ranvier，：32， 41.
Noyan masticateur，see Nuclens mo－ torins princeps N．trigemini．
semitumaire de Flechsig， 674.
Nuclei areiformes，see Nuclei aremati． arenati， 37 （t．565，30\％， 674.
corjoris mammillaris， 769,490 ， 491.
funiculi latemats， $\mathbf{3 N} \mathbf{N}, \mathbf{4 0 2}$ ．
intermedio－laterales．913， $5 \mathbf{5} 5, \mathbf{5 S t}$ ． mediales，913，5x．i，isti．
motorii N，trigemini，313，933， 5： $7,5: 8 \mathrm{~s}$.
of thatamus，Nissl＇s study of，Gr6， 679.
motorii minores N．trigemini，313， 983，59\％，59s．
N．acustici，see Nuclei N．cochlea and Nuclei N，vestibuli．
N．cochlem，：310，311，312，31s， 323：3197，37シ，547，549，407， $410,411,415,41 \mathrm{~s}$.

Nuclei of central aeonstic puth． $\mathbf{5 0 5}$ ． of cervical margement，914， \mathbf{B} Sis． of lmatar enlargement，oxts．
of the retieular zone，675，679． pontis． $3 \mathbf{3 N 6}$ ．
terminales nervi trigemini，fibra arenatie interna from， $\mathbf{4 2} \mathbf{2}$ ．
Nuelens ala cinerar，30：），31N， 372 ， 375，479，407，621－1204．
ambigims，339，407．929．
anygdala，46\％．
anygraliformis，see Nueleus anygr－ dalar．
anterior thalani，673，443．
caudatus，6：36，633．5．
rentralis inferior，577，322，403， 40．5， 614.
eentralis medius， $675,969,972$.
（entralis superior，315，321，320， 3N6，579，404，405，414，4ㅇ）， 614.
eerebello－iteusticus，505，511， 632.
colliculi inferioris，315，386，579， 868，533！．
colliculi inferionis，relation to lat－ eral lemuiseus， 868 ．
commissura posterioris，sce Nu－ clens faseiculi lougitudinalis medialis．
commissuralis，30S，32！）．487，409， 410，625，6206．
corporis geniculati lateralis， 814.
corporis trupezoidei，369），545－ $547.854,85 \%$ ．
ventatus，310．368，505，392，423， 424，42N．
dentatus，comnection with cortex of vermis，4世4，405．
dorsalis（Ntillingi．Clarkii），8，474， 559，576，581－588，3世 $\mathbf{5 .}$
dorsalis，axones from， 740 ．
emboliformis，423，4：4．
fasciculi longitudinalis medialis， 317，3N（5，401，415．
fastigii．511，568，5i5，413，423， 404．852．
fastigii，relation to Deiters＊nu－ cleus， 636.

Nuclens funienli cumenti, 308, 30:
 560, $5(5), 402$.
funiculi cumenti, termination of asones from, ith.
funiculi gracilis, 30s, :31s-320),

fumiculi gracilis, injury tor, 20 s .
lmaienli gracilis, termination of axones from, 741 .
limenti teretis, 403.
funinuli ventralis, 614.

habenular, T\%5, 831 .
hypothalamicus (corpus Laysi),

impra, !4:3.
immominatus (von Bechterew), see Nucleus lateralis superior.
intercalato of staderini, $0: 6$.
lateralis anterjor (Perlia), 944.
lateralis interior, 5 or.
haterulis superior, $\mathbf{3} \mathbf{1 6}$; 300-320, 55\%), $4(0), 405,616,969.972$.
lateralis thatami, 673, 443.
lemnisei lateralis, 314, 321, 320, 36! . 3N2. 356, 405, 420, 846.
lemmisei lateralis, inferion and superior, sti, stat.
lentiformis, 569, \%11, \%13.
marmeellularis of modial ancleus, 681.
mertialis thalami, 67\%, 443.
minimus (von Bechterew), 655.
motorins princeps N . trigemini. 313, 330, 407, $411,933,3: 7$, 598, (500), 935.
N. abrlucentis, 312, 31s, 31!), +0\%. $411,416,4 \div \overline{7}, 939.947$.
N. eochlete dorsalis, 851 .
N. cochlea ventralis. $848,541,543$,
 407, 416, : $906,039$.
N. facialis, motor fibres from medial lemuiserns to, 1017 .
N . glossopharyugeus, 37%.
N. hypoglosi, 309, 31s-3200, 3:29. 374, 40\%, 411, 593, 824.

Nucleus N. liypoglossi, motor tibres from medial lemuisens to, 101\%.
N. oculomotorii, 315, 321-3:4, 4() $\overline{6}, 9.91,943$, (6033, 604, 947, 606.
N. aculomotorii, eolhaterals liom fasciendas longitulimalis to, 221 , +180.
N. trochlearis, $\mathbf{3 1 6} \mathbf{6}, \mathbf{3 2} \mathbf{1}, \mathbf{3 2 0}, \mathbf{3 2 4}$, 407.
N. trochlearis, collaterals from fascieulus longitudimalis medialis to. $2,2,460$.
N. vestibuli, tiot.
N. vestibuli hatoralis (Deiters), 319 , 31s, 509, sibs, 415\%, 411, 413, $416,41 \%, 418$.
N. vestibuli laterulis (Deiters), 634.
N. vestibuli latemlis, cells of, 6:34.
N. vestibuli hateralis, erossed central vestibular path, 6:3\%.
N. vestibuli latembis, direct central vestibular path, 63\%.
N. vestibuli lateralis, fibres of, 637.
N. vestibuli lateralis, path to cord from, $+15,416,41 \mathrm{~s}, 419,420$, 909.
N. vestibuli medialis, 310. 311, 315, 368. 507, 407, 411, 419, 62%
N. restibuli spimalis (radicis descemdentis), 411, 697.
N. vestilmili superior (von Bechte-
 $413,416,41 \mathrm{~s}, 680$.
of Darkshewitsch, 泡1, 204, 462, 46:3.
of Deiters, see Nucleus N. vestibuli lateralis.
of Edinger and Westphat, see Nureus N. oculomotorii.
of metamere, $107,12 \overline{7}$.
of the middle line (Nissl), 6rit, $6 \pi 9$.
olivaris acerssorius dursalis, :310, $3 \mathbf{3}^{7} \mathbf{8}$.
olivaris accessorius medialis, 304, :310, 323: 3:4, 376, 37\%.

Nuclets olimaris infirior, 176, 30:

olivaris superior, 313, 352, 3sti, 843, 851, it4.
olivaris superior, fibre system to nuelens N. abolucent is from, $\mathbf{f} \because 2$.
olivaris superior, pedancle of, 852, ;43.
posterior thalami, 440.
problivaris, 843 , ists, 85%.
ralicis descementents N . trigemini. see Nuclei motorii minores N . trigemini.
respiratory, of Misslawsky, see Nuclens fundeuli ventralis.
reticnlaris tegment $\mathrm{i}, \mathbf{3 2 0}, \mathbf{3 N 6}, 5 \% 0$, 401, 405, 400. 614.
ruber, $317,3 \geq 4,6 \% 0$.
ruber, crossing descenting spimal system from, !\%is.
semilumaris, 85\%. 858, 549, 843.
tractus soliturii, 310, 319, 4:9, 486, 624-626.
tructus spinalis N. trigemini, 30s, 309), 31:3, 3:0-302, 343, 346, :373, 375, 517, 641.
ventmis thalami, 443.
Y, 311, 318, 507.
Nul's space, 364.
Nutrition theory (Golgi), 258.
Obere S'hleife, 688, 692.
Oberer Kern. (Burdach). 6at.
Ocnlomotorinskern of Darksehewitsch, see Nucleus faseiouli longitulimalis medialis.

Oecipital cortex, fibres from superior folliculus to, 819.
cortex, lesions in, 81%.
tenlomotor nerve, see Nin, ovilomotorii.
Olfactory apparatus of the eatp, 500.
bulb, see Bulbins olfactorins.
combuction path, rentral memrones of, 748.
glomeruli, see Glomoruhts olfartorius.
olfatory gromules $756,485$. ishands, 761, 4s7, 4ss.
lobe, see lobus olfactorias. nerves, see N. olfactorii.
organon, sce Organon olfuctoriam. tract, see Tractus olfactorins.
Olivary faseledhs. mot, (60).
Olive, inferion, see Nucleus olivaris inferior.
superior, see Nucleus olivaris superior.

Operculum, $\mathbf{3} \mathbf{5 4}$.
Ophthalmic vesicle, 11 s .
Optic chiasma, see ('hiasma opticllim.
merve, see N. optieus.
newrones of higher orders, 882.
paths, see Visunl conduction paths. madiation, som Rablatio oecepitothalamica ((irathoteti).
thahmons, see 'Thatamms.
tract, see 'ractus optious.
trganon olfactorimm, 188, 15\%. spirale (Corti), 364.
Orang-ontang, motor localization in ecrelral cortex of, 1000, (i335.
Osmatie animals, it9.
 354, 393, 3!4, 396.
Pain points, 253.
Pallinm, S!).
extirpution of motor areas in, 1022 , 645.

Papilla nervi optici, ast.
Papilla vallatir, 5 , 6 .
Paracentral lobule, see Lobulus paracentralis.
P'ariah hasia, 10;8.
Parapkinomorphous eells, 123, $6 \mathbf{i}$.
latixome aio.
Partromen, 10.
P'ars basilaris fascieuli pedunculomammillaris. 7\%.
basilaris pontis, 31 s .
mammilharis hypothahmi, s!.
optiea lypothalami. s?.
 3.5 (8.
 pontal, 3N(6.
Peduncle, intiotion, ser corpus restiforme.
middle, sere Brachinm pontis.
of cerebrum, sere ledunculus certbi.
 rallosins.
of thatanus, see Pedmombus thattuni.
superior, see Brachimm romjunctivilu.
Pedmentus arebedli inferior. see ('orpus restiforme.

eerebri, localization of fibres in. (If (x-he), 10:0).
 mi perlunento-manmillares, pars hasilauis.
corporis callosi, see Gyrus subcal. losils.
floceuli, :310, :311, 36is.
medius, sore Brathinu pontis.
sumerior, see brachiam conjunctivilin.
Pedumenhusschleife (Flechsigg), 644.
Pedmenlus thalami medialis, $\mathbf{4 4}$.
Pelvis, selerozones of, 131183 E .
Prerforatel space or bamina, anterior, see Substantia perforata antarior.
Perimasular plexus. 115.
l'ericelluhar net work, 150, 153, N6, N\%.
Perikaryon. $6 i 6$.
Perinuclear zone of Apaithy, ist, 5!).
Peripheral er ingal terurones, see Neurome., seriphematentrifugal. morves, components of, 021.
Preppendiandar fissure, external, see Fissura parieto-oceppitalis.
 pedurenli, see basis pedumenti.
Phosphorus, effects of, 2x:3, 1 7o.
Phanm fibrillare profundum, bid.

Ilexus brachialis, 1×6, 325.
cervicalis, 186, 325.
arvico-brachalis. $1 \mathbf{N (f)}$, 3:
rocergeus, is7, 825.
lumbulis, 157,3 .

pudeudus, 1s7, 325.
pudendo-cumdalis, $1 \times 7,825$.
sucralis, 1s7, 325.
Pli courbe, see (iyrus anguharis.
Pumbograstrie nerve, see N. vagus.

Poliomyelitis, spinul cord in, oxt.
Polyaxones, 81, 42, 43.
Polymerie museles, 201.
Polystratified cells of retima, 783 .
Pous (Vamoli), see Matencephaton.
Ponticulus, 3才空, 375.
Posterior cerchal vesicle, Ss.
longitudinal bundle, see Fascionlus longritudimulis medialis. muchej of thatamus, 6 is.
wfactory lobe, see lobous olfactoriIts.
Post-morlem changes in nerve cells, 306.

Postotic myotomes, 920.
Pracemens, lolate 1. 4.
Iraedurselis Langsbämblel, T20. !169.
Precentmo suldis of cevehrum, see sulcus promentralis.
Primary optic conters, z!ã.
Promitive filmils (Apathy), ate. sogments, 193.
Processus verehelli ad arel) rum (Stilling), 650, tes.
Projection fibres, 66 .
Proỉt ie myotomes, 919.
Prosencephaton. 163.
Protopasmic commissure, 890, 571. contimity, 7 .
prowesses, seo bondrites.
Prozonal nerve trunks: 209, 133i, 138.
P'salterimm, see Commissura hippo-

Pulvinar, 5ima, 68t. 4ito.
termimation of fibres lirom, 818.
termiation of optic fibres in, $\mathbf{5 1 3}$.

I'unkisubstanz of Lavidig. :27:
lupil, retlex cont ration of, 880 .
Prokinge, corpuseles or eells of, I, 12. fig, 72. 75, 3s.
19ymmorphous colls, 12:3, 0 .
Pymmidal bumdes, see liaseiculi revebro-ipinales.
cells, 12, 68, 69, $35,333,37,675$. 1;20).

Pyramids, anterion, ser l'yramis (mudulla oblongatio).
decolssation of, me Deconsalio be ranididum.
P'yramis (medinlia ohlongatio. 30x$3 \mathrm{IL}, 36 \mathrm{~s}, 3 \mathrm{3} \boldsymbol{7}$, 990.

Quadricels femoris muscle, molens of, 905, ©s:
Quadrigeminal bodies, see Cobpora qualrigemina.

- Ratiatio eorporis callosi. 10.7.
weripito-thahamica (firatioleti), 814,

oceipito-thahamion (C matioleti), ending of libue of, 820, 823, $\boldsymbol{5} 2 \mathrm{Z}$.
Radices nervorum cerobralimm, see corresponling nerves.
Radix desecmens (mesencephalian) N. trigemini, ser N . trigeminus.
dorsalis, $5: 59$, 194-600. $3: 33,341$.
dorsalis, development of. 181.
posterion, ser hadiax dorsalis.
rentralis, 885.
Rembluchtrier of llis. see Margial veil.
Roudzellen of semsory mule of trigeminus. 642.
Runtenhirn, see Rhombencephaton.
Renction at a distance, s9\%.
Recessus geniculi, 0).
- infuntibuti, !0.
mammillaris, 90.
ntriculi, 361.
Reetus abdominis, nerve endings in, 894.

Red muldobs, see Nuclens ruber.
Regeneration of nerve tibres, 总4.
Regio suhthathmian, se llypothatamis.
sublumhamiat, hayers of, bial.
Rail. ishund ef, sere hasula.
Restiform benly, see corpus restiforme.
Reticular formation, see fiommaio reticularis.

Refinentheril of corpms geniculatmon laterule I!s.
lietim, bipolar cells of, owt
comparison with other sense orgams, 541.
tragrion cells of, 2×3.

migin of 18%.
rods and conces of, $0: 3$.
Retraction theory, I00.
Rhinencephatom, 748.
divisions of, $851,254$.
Rhombencephatem, lower motor nemrones of, 915.
Ricin poisoning, :3!2, I53.
Riesenpyramidrnzellen (Betz), 978, 1:2!.
Rolamdo, fissure of, sec sulus contratis Rolando.
substantin gelatinosin of see Nuclens tractus spinalis nervi trigemini.
Roller"s mulelens, 920 .
Roor. wimglion of see Nuclens fasligii.
Roots of pinal merves, see Radix ventralis, ladix dorsalis.
of spinal nerves, grompsul libers in, 901.

Rostrum corporis callosi, 1053.
Rubath de Reit, sce Lemmisells. cortical, see Cortieal lemmiserts. inferietr, see Lammisens hateralis. supárítur, 680, 692.
liuflini, nerve endiags of, -246, $\mathbf{2 4 5}$, $\mathbf{~ 4 4 , ~} \mathbf{2 0 0} 0$.

Sucrut muclens, see Nuclous dorsatis. sutorins muscle, nerve embings in, 80.4.

Saln tympmi, 36:.
vistibuli, :36:.
Seapa's ganglion, see Ganglion vestibulare.
Schelenfïrmiger Körper (von T'schisc(h), 6it.
Schaltzellen (von Momakow), 10:36.
Shizaxomes, 82, 46.
Schleife, se Lemmiscus.
Schlrife ulls dem wheren Zureihägel, 435.

Schult ze's commm, 390, :90-098, 448 451. 454-4\%.

Srissors of the brain (Stilling), $4 \boldsymbol{d} \mathbf{d}$.
Sclerotome, 196, 1ご.
Sclerozone, gos.
Secondary dugenemation, see Degenerution, Wallerian.
degencration in pyramidal tract. 1010. 6+1.
degenemtion of motor fibres ufter cerebral lesion, 6it3.
Segmentation of horly, 193.
Segments of spinal cord, function of, 003.

Sehspheirrmentheil of eorpms genicuhatum latorale, ias.
Seitentimie, see Latera! line.
Seithiche Greuzschicht der getuen Substanz, ser l'aseicolus haterulis limitans.
Semi-decussation in optic chiasm. i86.
Sense centres, cortical, lesions or. 1074.

Sensory components of cerebrat nerves. 4 4, 59:.
combuction paths to central grai, T04.
cominction puths to cortex, 234 .
cutameous areas, 330-349, 158, 189, 190-19.5.
colaneons areas (anarsthesia), e01.
cutaneous areas (pain), 197, 198. I99, $\mathbf{y 0} 0$.

Smsury gunglia, see Gunglia, semsory. nerer fthers, development of 181. mucleus of N. trigeminus, 642. optic enentres, 7an.
:rstems, I, II, III of Flechsig, 735, 4(ifi-46s.
septo-margimal bundle of Brace and Muir, sere Iriungle médian of Gombant of Philiper.
Septum pellucidum. Plute I, 3.
Sheath of Itenle, 86.
Side fitrils, 12, 41, 93, 57, 802.
Silent arens of cerebral cortex, 1071.
small-celled lyppoglossal meleus of Roller, 120.
Sohtensulostemz, 574.
solitury bunde, see Tructus sclitarius.
Somasthetic arem of the cortex, 66\%. conduction path, résume of, 739, 469-471.
puth to cerchum by cerehelhm, 64\%.
Somatic componemts of perjpheral nerves, 921.
Somatorhrome cells, 115, 121, 67, $\mathbf{6 8}$.
Sommtoplasm, 533. 5in.
Somites. 8 s .
Sumee, perforated, muterior, see Suhstabtia perforata anterior.
special senses, centres for, see sense centres.
Specitic chergy, 2int, 205.
Spinal aceessory nerve, see N. atcessortius.
cord, bulb or marrow, see Medulla pinalis.
cord, motor localization in, 899. nerves, see Nu. spinales.
neurone system from formatio reticuharis, 962.
roots, groups of fibres in, 901.
spongioblasts, 166, 99, 537.
Stereognostic sense, 107\%.
Stichochrome cells, 117, 121, 70, 71.
Sliel des medialen honiehöckers, 875.
Strato biancocinereo profundo, 809. biancocinere, superficiale, 809.

Stratum alimem medinm, som.
alhum profumlum, som.
calcariman, 10.59.
glomerulosim of offactory bull, 705, 175.
grisemm centrale, 315-317, 319:324, 386, 579, 809, K31.
grisenm collieuli superioris, 809, $868,3.50-5.5 \mathrm{~s}$.
 grixellm profundum, 809, $\mathbf{5 1 5}$.
interolivare " lemuisci, 309-312. $3: 1-3 \geq 4,370,563,565.402$, 416, 42.
moleculare sen gelatinosum, 8 n , 458.
proprimu cumei. 1061.
sugittale asternum, see Fasciculas longitudinalis interior.
sugittale internum(Suchs), 815, $\mathbf{5} \boldsymbol{2} \mathbf{2}$).
zomale collienti superioris, 808, 809.
Stria medullaris, 74 .
modulatis thalami. relation to hip, pocampus and hasal graglia, it. 49%
olfactoria latoralis, 756, 259.
olfacturia medialis, ir. 6.
Stria acusticar, see Striae medullares. medullures (sell monsticn), 36:9. $3 \mathbf{3 2}, 536,549,553,840$.
Stripe of Vicud dayr, $\mathbf{6 3 3}$.
Strychuine, rffects of, 285.
Subernseions impulses, 250.
Substantia alba of cord, stimulation of. 640.
gelatinosi, 306, 390, 403, 417, 419, 4it, 641.
gelatinusa cent ralis, 373.
gelatinosa (Rolami), see Nucleus. tractus pinalis nervi trigemini.
grisen, 405, 414, 419, 473.
nigra, 316, $317,386,579$.
nigra, termination of thumb fibres in, 1028.
perforata anterior, 5:OO.
Subthalamic tegmental region, see 'Tegmeritum and Hypothalamus. Sulei temporales transersi, fi3s.

Sulens centralis (Rolundi), 6i33.
(inguli, !!e.
(inguli, purs margimalis, 9:
ringuli, pars subfrontalis, !2.
fromalis inforior, 6:3s.
fromtalis superior, (63s.
hypothalumiens (Monroi), :00.
furolfactorius justerior, 350 .
priecentralis, 6:333.
rhinenephali infrion, ine, $4 \boldsymbol{7 6}$, 47.
semilumaris, ins.
spiralis, 362.
sutpmrictalis, :90.
tompratis superior, bizs.
Suןurficial arehed fitres, see Fibror armatio extermar.
optie puth, 大श?
Suprior colliculus, se ('olliculus superior.
lemniscus, B88, 692.
medullary velum, see V'elum merlmilare anterins.
olive, see Nuclens olivaris superior. olivary comples, 843.
Supramarginal gyrus, ver ligrus supramarginalis.
Sylvian agueduct, see Aqueductus: rerelati.
fissure, see Fissuma ceretorilateralis. forsa, sed Fonsa revori lateralis.
Symbthetic ganglia, 190 .
Sympathicus. 3:30.
Symapsis, 86.
Systema lemuiscrale myetrmephatodiencephalieum, $\% 0$.
lemmiscate myplencephalo-pulliale. 314.
myrlencephulo-cerebitlare cruciatım, 741.
myrlencephulto-cerebrllare non-crucintum. itl.
(nearonictem) tliencephalo-palliatum, $\% 01$.
(nenvonicnmi) myploncephido-pulliale. 301.
(newronirum) myelencephalo-thalımi'"mm, 714.

Siystem＂（me＂tronicum）spian．rere－ bellare whlro－lalorale ronjuncti－ rals，in！
 rembo－laterale，B60）．
 ＂um renlro－lellorale supmeius， 509．
 428，4：36．

thalami，7\％4，4！）

Traste－buls，ser C＇alyenli gnstatorii．
Thaslzallomand Tha／meniscriof Merkel，

Tautomeric nebrones，ser Nebrones， tantomeric．
＇Tegmental bumble of lentiform ma－ cleus， 674.
bumdle of red muchers，6it．
bundle of thalamas，bit．
projection， $\mathbf{0}$ ．
Tegmenatam，decussations of，Tite， 402.
pathe to，668．
Telencephaton，109，s！．
motor nemones of，ais．
＇l＇elorlendrion，41，82．
＇Telodendrions of motor axone，895， 574．
T＇cmporal cerehrocorticoponal path， 1045， 10040.
gyri，anditory fitres ending in，Ni8．
Temporale Grosshirmrimle－Brïcken－ buhn，se Temporal repebro－cor－ （icopontal pat）
Riechsphäre（F＇
Testes，see（\％）
Tetanns－t \quad－

> in9.
302.

Thalmuns，c．．．
buntle from nuclens ruber to， $\mathbf{4 \geq 8}$ ． nucleus of，67\％， $6 \div 6,6 \pi 8,679$ ． ventro－lateral madel of，i669．
Thelamusmassir＇（＇T＇sehermak）， 682.
Thatomussshale（I＇schermak）， 682.
＇flaraluld of ishand，see limen in－ sulas．
value，足：
Thumb aren，permmidal fither from， 10：30．
Tiproid．15，47，101，108，111，112， 12\％，139，1830，132，133，155，150， 64，65．，75． 76.
Tongre，origin of mascles of sim， （2）

Tract or tratis，antero－lateral ascemb－ ing，see Fiascionlus ventro－late－ ralis．
 and Sichult \％e＇s comma．
erossed or hateral pymmidal，see Finseiculus eerehorospimalis late－ malis．
direct cerebellar，see Fasebulus spino－revehellaris dorso－lateralis．
dived promadal，sere Fasciendus cerehro－spinalis ventralis．
of Burdach，see liasciculas cumen－ tus．
of fillet，see lemnisens．
of Gowers，se Fascieuhs cerebro－ spimales superficialis．
of Cioll．see Fasciculns grabilis．
of Lissmare see Finscientus dorso－ latemalis Lissmeri．
olfactory，se＇Tractas olfactorias．
optice，see＇Iractus optichs．
bymmidal，see Fisciouli cerebro－ spinales．
＇Tructus opticus，i96，809， 798.
olfactorius lateralis．478．
olfactorius medinlis，47s．
pehmeularis tmasversus，80\％．
solitarins，10上，309， $312,318-3 \pm 0$ ， 3こ6．327，376，485，407，620．
spimulis N．trigemini．308，309， 311，320－3ㄹ． $3 \mathbf{3} 9,346,377$ ， 391，3929，407，411－413，416， $41 \%, 419.421,42$.
tegmento－cerebellaris（Edinger）， 664.

Trupezium，see Corpas trapezoidenm．

Trupazailal body，see C＇orpus trupe－ zovidenm．
Triangular puth of Itelweg，mat．
Triangle median of Gombnult et Philipure，45－45\％．
Triceps masele，meve radings in，89．4．
Trigeminal nerve，ser \mathcal{N} ，trigemims． nempores，central centripetal，6ill．
Trigemims，fibres of tormatio retis－ whris from tirmimal melems of， 72N．464，46\％．
Trigommm lemmisai，688，8．1\％，
Trochlenr nerve，see N．trudilemis．
Trophice contres，seb．
Trophicity，theorics of，30ti－：311．
＇Troncols corporis callosi，105\％．
＇Trmak wrea of motor cortex，1999，（6633．
Twher vinerenm，90．
Tuherelo，aronstie，se Nuchoss． cochlear dorsalis．

ol optic thalamms，anterior，see Suclens anterior thalani．
of optic thahmas，posterior，see Pulvinar．
Tubermes qutulrijumefur，see Cor－ pora fluadrigemina．
T＇uberenlum emaentam，atio．
laterale s．arrustionm，ser Nuchers N．cochtere dorsulis．
Trumel cord，364．
space， $3 \mathbf{3} \mathbf{5} 4$.
Trírck，eolumm of，see Fascienlos combospinalis veatralis．
＇Turek＇s degeneration，wos．
Uncimate fuscienlus，se Fuscicuhs macimatus．
gyrus，see Lhems．
Uucins，Phte I， 4.
connection of hippocamphs with， 15\％．
termination of fibers of strin olfae－ toria in， 759.
Unipolar edls，36，113，114．
Upper face centre，！907．
facial nerve，9：30．
motor nemrones， 95 ，

1＇Mリリ motor nenronss，riation to lower motor nemrones，10：36． motor heurness，lision of，ith：
L＂ntersehlriffo set lamisums hateralis． l＇rsegmentr．10i．
S＇ruirbellatro，10：．
Etriculus，：311．
Vingal undens，see Nudens abar cin－ crea．
Vagns nerve，see N．vagus．
Vallate papille，see Papilla vallatar．
Valve of Vienssens，ser Vednam medul－ lare anterilus．
V＇asenlur seguent，190．
Vater，corpmseles of，see Pacinian corpuscles．
Volum medallare anterites， $\mathbf{3} \mathbf{Z}$ ．
medulhars，superior，see Velmm medullure anterius．
Ventral horin，see：Columun grisea ventrulis．
hom cells of nervical cord．905，万̄s－inv．
muclens of hateral genicolate body， 079.
melens of the sixth nerve，982．
muclei of thatimus，tifx，t80，68t．
tegmental deenssution，ser Decus－ satio tegmenti ventralis．
Ventricle，fonth，see Ventrienlus quartus．
Ventricles，Jateral，see Ventriculus lateralis．
of brain，ser Ventrieulus lateralis et quartus．
Fentriculus lateralis，6：5］，6：53． quartus，309，315，37シ．
Ventro－hatemal cell－group of anterior hom，see Nemrones，lower motor．
lateral tract，ascending．see Fins－ eiculus ventro－lateralis superfi－ einlis．
Verntrin，effects of，283． 171.
Vermilorm process，see Vermis．
Vermis， 868.575.
comnection of nuelei of roof with， $4 \div 4,4 \div 5$

Vestibulo - pinal patlo, 959.
Vieq d'Azyr, buntle of, see Pisacienlus thatamo-mamaillaris (Vieat d.Azyr

Villi, choroidal, see Plexus chorioidetus.
V isceral motor and sensory components of peripheral nerves, 921 .
Visual area of cortex ecrebri, lesions of. 81\%.
ceutres. emmetion with cord and bulb, see Visual womduction paths.
 5:3t.
condeationpathe ontrifugal fibres of. 833 .
combaction paths. decussation in, ini30.
direction, wortical area for, 9,
semse area, primary, 8 ?2, se3.
Vital staining, see Ehmiels rital staining.
Vorderstrengrest, 3it.

Wallerian degeneration, see Degenabtion, sreondary or Wallerian, doetrine ant the nempone-concept, ≥ 20.
Warm proints, 253.
Wemicke's liehl, 814.
lemiamopic prpillary sign, 832.
White collums of corol, see Finniculi.
commissure of cord. see Commissıra alba.
matter of cerebral hemispheres, see (entrum semiovale.
Worm, see Vermis.
Zerstrente accessorische Bündel (von Bechterew), 684.
Zona incerta, 671, 622, 437.
reticularis ((iitterschicht), 4:38, 6\%\%.
Zone F (Munk), removal of. (69\%.
Zone motrice (Chareot). 9 5.
of confusion, 995, $\mathbf{6 3} \boldsymbol{3}$.

[^0]: * The diseovery that the ventral roots of the spiual nerves are concerned with motion, the dorsal roots with sensation, had been made earlier by the emiuent British surgeon and matomist, Sir Charles Bell. Ilis views on the structure of the nervous system are contaned in the following three works: (1) Idea of a New Anatomy of the Brain ; Submitted for the Observaions of his Friemls, 36 pp. 8vo (London, 1811) : (2) An Exposition of the Natural System of the Nerves of the lluman Body, with a Republication of the Papers Delivered to the Royal Society on the Subject of Nerves, vii, 392 IP . 8ro (London, 1824) ; (3) The Nervous System of the Human Body, ete., 4to (London, 1830; third edition, Ediuhurgh, 1844).
 + Wagner, R. Weber der feineren Ban des elektrischen Organs im Zitterrochen, 4to (Göttingen, 1847) ; also, Nene Untersuchungen ̈̈ber den Bau und die Eudigung der Nerven und die Struktur der Ganglien (Leipzig, 1847).

[^1]: * Waldeyer, W. Ueber einige neuere Forschungen in Gebiete der Anatomie des Centraluervensystems. Deutsehe med. Wehnschr., Lapra, 1891, Bd. xvii, S. 1244, 1267, 128\%, 13:31. 13522.
 \dagger Carl Weigert's methods amd the earmin methods of Gorlach in eonjunction with improved technique in sectioning have contributed enormonsly to the adrance of investigations in neurology. For the applicution of Weigert's methods to the nervons system of lower animals the experiments of C.J. Herriek may be referred to with advantage. (Cf. Herrick, C..J., Report upon a Series of Experiments with the Weigert Methods-with Special Refcrence for Use in Lower Brain Morphology. The State Hospitals Bulletin, Utica, vol. ii, 1897, pp. 431-461.)
 \ddagger Birge, E. A. Die Zahl der Nervenfasern und der motorischen Gangliforzellen im Räckenmark des Frosches. Areh. f. Anat. n. Plysiol., Leipz., 1882. Physiol. Abth., S. 435-480.
 \# v. Gerlach, J. Artiele, The Spinal Cord, in A Mammul of Histology by s. Stricker. Ameriean Translation. New York, 1872.

[^2]: * This assumption of protophasmic contimity has also been made nse of by Mr. Horbert Spencer in the development of his doctrine of the genesis of nervons systems. Drinciples of Psychology, New York. D. Appleton aml Company, vol. i.p, ide. The botanists, following especially the researches of Gardiner, teach at present that in phat tissues the protoplasm of all the eells forms a contimum, a fact which hinders many students of mimal histology from asserting too positively the non-existence of such an rontinnmm in the tissues of adult mimals. The demonstration comparatively recently of the so-malled plasma bridges comecting epithelial and phdothelial rells, and also perhaps the elements of of her tissues with one another, is interesting in this connection.
 \dagger In gold preparations it mast have been extremely diffientt, and was probably impossible, to distinguish a network from a foltwork. A German investigator, speaking of the frightally intricate complex of fine morve tibrils in the eentral nervous system, referred to it as the Bierfilz der grauen Substanz.

[^3]: * Golgi, C. Sulla struttura della sostanza grigia del cervello. Gazzetta medica italiana lombardia, 1. vi, 1873. Golgi's contributions to the bibliography of the nervons system have been collected and translated into Germun by Teuscher. Cf. (oolgi, C.. Untersuchungen nber den feincren Ban des centralen und peripherisehen Nervensystems, Jena, Fischer, 1894.
 \dagger Golgi, C. Sulla finn matomia degli organi centrali del sistema nervoso. Riv. sper. di freniatr., Reggio-Fimilia, 1882, vol. viii, pp. 165, 361 : 1883 , vol. ix, pp. 1, 161, 385; 1885, vol. xi, 11. $72,193$.

[^4]: * The slow chromate of silver method reoommended by Golgi is ased as follows: Pieces of tissue are harlened in Mäller's thid for at least one or two months. They are then trmsferred to a bath of dilute silver-nitrate solution, where they remain for from one to three days, after which the fissue may be ent into sertions, ufter very rapid imbedding.

 The method now almost miversally employed is the quiek method in which osmic ard and potassinm bichromate are used. Small pieces of living tissue, bot expeding four millimetres in thickness, are fixed, at a temperature of 25 ('., for from one to four days in the following mixture, recommended by Ramón y Cajal: Biehromate of potassinm, 3 grm.; distilled water, $100 \mathrm{c} . \mathrm{e}$. ; one-per-eent solution of osmic acid, 30 e. e. For each piece of tissue, four millimetres sifulte, ten cubie centimet res of this mixture should be employed. After the fixation the pieces are quickly washed in distilled water, and then immersed in a 0.5 -pereent solution of silver nitrate, They are permitted to remain in the silver bath for from one to three days. They are then very rapidly imbedded in celloidin and cut into sertions, serial if desired, with the aid of a microtome. The sections are to be quickly dehydrated by passing them through several dishes of ninety-five-per-eent aleohol. The elearing is best done with oil of hergamot (Berkley). On the slide the excess of oil is removed with botting paper pressed diredty upon the sections (Weleh), and a drop of thick balsam is placed upon each section. No eover slip is to be appliet?. If desired, the sections may be monnted upon thin glass or isinglass, which may then be fastened to a glass slide by means of glass bends, the side on which the sections are being down, to protect them from Inst (Ellinger).

 For some researehes the modification of cos can be especially recommended. Aecording to W. II. Cox (Imprignation Iles centralen Nervensystems mit Quecksilbersalzen. Aroh. f. mikr. Anat., Bd. xxxvi (1891), S, 16), the fresh tissues are to be hardened for from two to dive months in the following fuid: Of a five-per-eent solution of bichromate of potassium, ${ }^{0} 0$ phrts: five-per-fent solntion of hiehloride of mereury, 20 parts; distilled water, 40 parts, Mix, and add five-per-eent solution of chromate of potassimm, 16 parts. The tissues are then to be washed for half an hour in ninety-per-ceut nleohol, then imbedded and sectioned (proferably with the freezing microtome) as in (rolgi's method. The sections are placed for from one to two hours in a five-per-cent solation of sodium cartonate, or in ammonia solution; then washed in distilled water, quiekly dehydrated, cleared, and monnted in balsnm withont eover glass.

 + sueh pietures atford suitable objects for reprotuction by photography. Compare the benutiful Aths of Nerve Cells, of Starr, Strong, and Leaming,

[^5]: 1-42. C. Weigert has recently reviewed the technique of the Golgi method in Merkel-Bonnet's Ergebnisse der Auatomie u. Entwick., Bd. v, Wiesbaden. 1896, S. 7.

 * Waldeyer mentions that he himself noted the branehing of the eentral process of the Purkinje cells as carly as 1803.

[^6]: * Golgi's fume as an investigator does not depend entirely upon his brilliant researches on the nervous system. Ifis stulips of the different varielies of malarial parasites transformed clinical ideas upon the subject and would alone have sulficed to make his name lasting.

[^7]: * Golgi has never pictured this network, and in all his writings he has spoken of it in a very indefinite manner and with great reserve. For example, in his Studi sulla fina anatomia degli organi centrali del sistema ner-

[^8]: * At the ent of an article, Zur Geschichte des mensehliehen Räckenmarkes, dated 1886, His says: "Als feststehemtes. Prineip vortrete ieh daboi den Satz: dass jede Nervenfaser aus ciner einzigen Zelle als Auslitufer hervorgeht. Diese ist ihr genetisehes. ihr nutritives und ihr funetionelles Centrum: alle anderen Verbindungen der Faser simd entweder mur mitteltare oder sie sind secmadir entstanden."
 + Namsen, F. The Structure and Combination of the ilistological Elements in the Central Nervons System. Bergens Musemm Aarsheretning for 1886. Bergen, 188\%.
 \ddagger Forel, A. Finige himamatomische Betrachtmagen umd Frgehnisse. Areh. f. Psyehiat. nud Nervenkr., Berl., Bat. xviii, 1887, s. 162-198.

[^9]: * Ramón y Cajal, S. Fistructura de la Rétina do las Aves. Revistatrim. de llistologia Numal, etc., Nos. 1 y 2, Mayo $\begin{gathered}\text { Agosto de 1888. (Guoted by }\end{gathered}$ von Lambossik.
 \dagger Sobre las Fibas Nervosias de la Capm Molecuhar del Corebello. Revista 'lrim. de llist., etco, Agosto, $18 s 8$. Quoted by von Lenhossik.
 \ddagger I have referemes fo no less than nine arlicles on the nervons system hearing his mame, published during the year 1890 alone. It would oceruy foo much space to arive here a comphete list of his publiestions. An epitume of his views is to be fomm in las nouvelles ideres sur la structure du sys-
 189, and in the (roonitu Ledure, lat lime structure des eentres nervenx, Procedings of the Royal Soedety, London, rol. Iv, 1894, FI. 444-468. This lecture wos delisered in Fromel and published in the same hagunge. A brief but meemrate abstract of it in English was printed in the British Medical Jourmal, 1804, i, ן. ot3.

[^10]: * In his earlier publications Ramón y Cajal mate cernin reservations and spoke of possible exceptions, but later he denied all anastomosis between the processes of nerve cells, thins going too fur, as will be seen later.
 \dagger Ramón y Cajal, s. Sur lorigine et les manfications des fibres nerveuse's de la moelle embryonnaire. Anat. Anz., Jemu (1890), Bd. v, pp, siñ, 111.

[^11]: * As to the nature of the collaterals, Ramon y ('ajal says (op, cit., p. 90) : " Que reprósentent ees fibrilles collatirales que noms venons de mentionuer? A notre avis, il sagit probablement de fibres de comexion rellalaire que tons les tabrs de la substamee blanehe envoimat a la grise a fin te mettre en combact riciprogue thes corpuseles bervenx placés relativenent id de granhes distances. Linbsme de mýline m nivean des eontacts (corps des eellules et arborisal ions des pollatérales) faciliterat particulicrement la comannication de loébranloment nervenx."

[^12]: * Ramón y ('ajal (Anat. Anz., I890, Bd.v. P. SB) says, " Dans l’épaissenr de la rógion du cordon de Goll." This should probably read "cordon de Burdach.

[^13]: * Through at combinati of the results attained by Golgi's method, by the methonds of serondary degeneration mad Flechsig's embryologieal methon, we have now tolerably aconrate ideas as to the eomrse and destimation of the fibres of the dorsal white fascienli of the eord, their rehations to the gray matter of the medulla spinatis mad that of the mednlla ohlongatia. Von Lenhossek has male an extremely carefut study of the varions groups of collaterals pertaining to these fibres, and has given us in a monograph (ber feinore Ban des Norvensystems in Jichte nenestar Forschungen, zweite Aullage, Berlin, 1895) a most interesting and reliable résume of the fuets at present known about the finer anatomy of the cord, ineluding the resnlts of his own brilliant researches upon the spinal corl of human beings. Ramon y ('ajal's treatise (L'inatomie fine de la moelle f́pinière; Liefernug iv of Bubes' Athas der path. Histologie des Nervensystems, Bedin, 1895) may also be ronsulted in this eomection.

[^14]: * Some of the fibres of the dorsal roots certainly enter the gray matter before undergoing the Y-shapel division ; some methllated fibres patss from the gray matter batkward (eentrifugal fibres of dorsal roots in the lower vertebrates, and tibres of dorsal finciculi whose cells of origin are sit thed within the gray matter of the cord).
 \dagger It was Källikar who showed that the sensory earebral nerves undergo Y-shaped division in almost exnetly the same manner as do the sensery spinal nerves.
 \ddagger Colgi, in his article entitled Anatomial (omsiderations regurting the Doctrine of Cerebral Localization, in 1880 detailed the resnlts of his studies on the cortex, from which he concluded that the cells of Type I and 'Type II were not separated from one another in the single concolations, but were always associated with one another in all parts of the eortex, and that aecordingly there were not only evidenees against the striet separation of the two main functions, movement and sensation, hat also positive gromnds for the assertion that in the different cortical zones there was no absolnte separation of the sensory and motor functions, and that the anatomical seats of these fanctions must to a certain degree be intermingled. It is surprising

[^15]: how near-even with false premises-m upproach to actual relations can be arrived at!

 * The axis eylinders of some of the pyramidal cells of the cerebral cortex attain a length of nearly one melre.

[^16]: * These dells have been designated Schallzellen by ron Monakow, intermediate cells by schaifer, Vereinigungszellen by von Bechterew. The term association rells has also been applied to them. The name Dematrarouen, applied by von Lenhossék, seems to me most suitable as distinguishing them from cells of 'Type 1 or Imaromen. Sehaffer's name projection cell for the eell of 'Type I may easily lead to confusion, and I think is better avoided. Von Monakow (Areh. f. Psyehiat. n. Nervenkr., Ba. xx, 1889, \therefore. $8 * 1$) sems to have been the first to recognize the signifieanee of Golgi's cells of Type II as Schaltzellen.
 + Von Bechtarew, W. Die Lehre von den Nemronen und die Entladungstheoric. Neurol. Centrulbl., Leipz., Bd. xv, 1896, s. 50; 103.

[^17]: * Vo Källiker visited Golgi in 188\%, and called attention in that year to the great signilienne of the Dalian's observations (cf. Die Uthersmehngen won Golgi über den feineren Ban desc bentralen Nervensystems. Anat. Any, , Jena, Bal. if (184 $)$, No. 15, s. 48t). From this time on he has busied himself expensively with the silver method, and has made contributions of very high importance for the development of the nemone concept of the nervous organs.

[^18]: * Ehrlich, P. Ueber die Methylenhlanreaction der lebenden Nervensubstanz. Deatsche med. Wehuschr., Berl., 1886, Bd. xii, S. 49-52.

[^19]: * A very good epitome of the work done with the method up to 1891 is to be fomm in the collective review by II. Riese in the Centralbl. f. allg. Path. n. path. Anat., dena, Bd. ii (1891), S. 836-848.
 \dagger Bethe, A. Studien ïber das Centralnervensystem von Carcimus Manns nebst Angaben über ein nenes Verfahren der Methylenblanfixation. Areh. f. mikr. Anat., Bom, 1894-5, Bl. xliv, S. 579-62s.

 The method depends upon converting the solnble methylene-blue hydroehloride used in staining into an insoluble molybdate combination. For vertebrate tissues the following mixture may be recommended:

 | Ammoniam molybdate. | $1 \mathrm{grm}$. ; |
 | :---: | :---: |
 | 1)istilled water | 10 e.c.: |
 | Hydrogen peroxide. | 1 e.c.; |
 | llydrochtoric acid, ('. P'. | 1 gtt . |

 For invertebrate tissues the following is employed:
 Ammonium molybdate. 1 grm. ;
 Distilled water.. . . . 10 c. e.;
 Hydrogen peroxide. 0.5 c. e.
 The solutions should in each instance be freshly prepared. The tissues shonld be immersed in the fluid (well eooled) at the acme of the staining, and kept in the iee box for from two to five hours. They are then left at the room temperature for a few homrs, washed for half an hour in distilled water, dehydrated quickly in cold alcohol, and imbedded by means of repented xylol clearing (to remove all alcohol) in balsam. After-staning with alum-cochineal is often helpfil for contrast. In a more recent article, entitled Eine neue Methode der Methylenblaufixation, Anat, Anz., Jena, Bd. xii, 1890, S. 438-446, hothe has suggested further modifications of the method, useful for various special tissues.

[^20]: * With Lavdowskers modilieation ol Ehurheh's melhot, logether with buthes fixing procedure 1 have been able to demonstrate merve endings in homan and amimal tissurs in manner emionly sumereding any ofler mothorl known to me. The comparison of the gradalap aprarace of structure after structure and of detail affer dotail in the tissone daring the staining fo the devolopment of a phohgraphie megntive, an ilhostration employer by havdowsy, is very apt. If the stain be pushed too far the picture heromes donded, owing to diffuse staining of the other tissums with the hhe-it has berm "owerderdoperl." 'The methods of vital injeetion of mothylene hat used at Wood's Ioll. Mass, have been deseribed hy Morill,
 the methods he emphoys in the Jommal of Applided Mirposeopy, Rochester. vol, $\mathrm{i}, 1898, ~ p \mathrm{p}, 64+6 \%$.

[^21]: * Young, II. II. On the Presence of Norves in Thmors and of other Structures in them us Revealed be a Modifiation of Vhrlich's Method of "Vital Staining" vith Methylome Blae. Jommat of Fixperimental Medicime, N. Y., 1897, vol. ii, No. 1, pp. 1-12.
 \dagger Masius, Jean, Recherches histologiques sur le systeme mervonx eentrill. Areh. de biol., (iamd, tome sii, 1892, pp. 151-16\%.

[^22]: * Waldeyer, W. op. cit.
 \dagger Schifer, E. A. Brain, Lond., vol. xvi, 1893, pp, 134-169.

[^23]: * Kölliker (Handbuch der Gewebelehre des Menschen. 1893. Bd. ii, s. : :) states his objection as follows: "1)as Wort Neuron, "Nemronen. das gat klingt, kann sprachlieh nisht gebrancht werden, wie vorgesehagen wurde, demes bedentet einen Summelpmat vieler Neuren oder Nerven. Von den Worten Nemrodendren un? Nemrodendridien ist das letatere, obsehon länger. als Lebersetzung von Nervenbüumchen doch vielleicht entspreehender." 'The adoption, however, of the better somuling word is in this instance easily intelligible, and, moreover. is not without many a precedent, as the philologist must sorrowfully grant. In the present ease, however, Professor 13. L. Gildersleeve, of the dohns Iopkins University, informs me that Kölliker"s objection to vevpóv will not hold, ns it wonld apply equally well to $\pi a p \theta \in \nu \omega \nu$, which means "the house of the virgin." While the spelling neurone is not pleasing, for that matter noither are the spellings anode and cathorle, which, after the malory of methorl, should be spelled amod and cathor, but, muder the eireumstances, in order to anglicize Wuhdeyer's term, the use of the word amb spelling neurone sems, as Professor (iididersleeve suys, to be inevitable. Cf. Barker, L. F'. ('oncerning Nemrological Nomenclature. Johns Iopkins Ihospital Bulletin, Balt., 1890, rol. vii, p. 200. Frank Baker, of Washington (New York Medial Jommal, vol. Ixiii (1896), p. 3\%3: and in l'roe. Ass. Am, Anat., 1805, Wash., 1896, vol. viii, pp, 40-45), has suggested the term neure, "orresponding to Rablor's neura, for the nerve unit, a nomenclature which has received the support of C. S. Minot.

[^24]: * Aecording to the estimations of Meynert, the cortex of the cerebral hemisplures alone contuins twelve humared millions of ganglion eells. Donaldson (Tlue Growth of the Brain, a Stndy of the Nervous System in Relation to Education, 12mo, London, 1897. p. 159) states that for the total number of nerve cells in the central nervous system three thousand millions is a moderate estimate.

 It may be reealled that ('. Franeke (Die menschliche Welle, Leipz., 1891, p. 25) has estimated the total mumber of cells. leaving out the red bloodcorpuseles, in an adnlt human body to be abont four billions (3.906 billions). The most aeenrate estimates of the total mumber of red hood-corpuscles at our command make the number about twenty-two billions and a half, making a total of twenty-six billions and a half $(26,500,000,000,000)$ of body cells. Domalelson's estimate for the nerve cells would, therefore, make them represent one mine-thonsandth of the total number of cells, exclusive of the red blood-corpuseles, an estimate which probubly falls below mather than above the truth. All such calculations are necessarily extremely crude, but atford opportunity for interesting study.

[^25]: * (f. Whitman, (. 0). The lnadequacy of the ('ell Theory of Vevelop)ment. Wool's Ioll Biologieal Lectures, 189:3; also in J. Morphol., Bost., vol. viii, 1803, pp. 6:3-(fins: and Sederwick, A., Ou the lmalequacy of the Celluhar Theory of Development, and on the Early Development of Nerves, partienlarly of the Thid Nerve and of the sympathetic in Elasmobrandii. Quart. II. Mier. Se., Lomd., vol. xxxvi, 1894-'is, ple. 8i-101.

[^26]: * The method of Marchi and that of Nissl, and the results to which they have led, will be referred to in more detail in sulseduent chapters.
 \dagger Personal commanication.
 \ddagger Warrington, W. B. On the structural Alterations ohserved in Nerve Cells. J. Physiol., Lond. and Cambr., 1898, vol, viii, Nos. 1 and 2.

[^27]: * Hedd. H., Beitrige zur Structur der Nervenzellen und ihrer Fortsitze (zweite Abhandlung) Arch. f. Anat, u. Physiol., Anat. Abth., Leipz., 1897. S. 204-294.

[^28]: * Aprílhy, S. Dis leiteude Element des Nervensystems und seine topographischon Beziehungen zin den Zellen. Mitheil. ans ler zool. station zu Sempel. Bul, xii (1897), 11. 4. S. 495-744.

[^29]: * The remarks here made are not intended to be a criticism of the very important eontribution of Apithy, but rather to counternct an impression which secms to be gaining gronnd that the whole or at least a large part of our previous idens eoncerning the architecture of the nervons system have been smbverted by the results of his smdies. Are we not more jast and at the same time linder to Apathy if we simply aceept gratefully and for what they are worth the wealth of new faets with which be has provided nts, than we should be were we to give cmrency to the impression that they are entirely revolationary und out of nocord witi. the great prineiples which eompetent meurologists believe to be ineomtrovertibly established?

[^30]: Nomb-In speaking of the nerve cells (or nemrones) as individunls, it is not to be forgotten that in the animal and vegetable kingdoms we have to deal with individuns of different orders. Whereas some individuals consist of single cells and live as independent organisms, other individuals are united with one amother to form a more complex creature, an individued of a higher order, as, for eximple, a multicellular anima! or phant. Wery individual pussesse's certain morphological and physiological characteristics and forms an elementary unit endowed with fundamental properties of life, possessing the power of assimilating food, of excreting waste substances, of incrensing in size, of reprodncing its kind, and of reacting in some way or amother to stimuli which affect it from without.

 An amorba, on the one hamd, represents a unicellalar organism, an indepeadent vital anit. but an individuality of a very low grade. A multieellular animal is, on the other hand, a mit of a much higher grade, consisting ati it does of a muss of amubalike mits, each of the latter possessing the fundamental propertios of hife, but each being sonewhat less independent than a micelluhar organism. The cells in such a complex cell state are none the less mits beanse they are to a degree subordinated. Such mits

[^31]: * A Text-book of Physiology, by M. Foster, assinted by ('. S. Sherington, Th ed., Part III. 'The (entral Nervous System, Lond., 189\%, ply 91512in, 8vo.
 t'The view expresed here seems to me to be logiral. Some writers. I think, mather too sharply seprate the axis-cylinder process as an entity apart from the rest of the nerve cell.

[^32]: * It may be that with a wider view the differences in "dignity" of the ditferent eefls of the body would berome minimal; the it is hard for homan beings, so near their own cells, to conerive of the superficiai epithelial cells of the skin shed in large nombers daily in the wear and tear of life as being of as high a crate as the eolls which eonstruct a poem, or the germ cells, notwithstanding the fact that embryongy teaches (1) that the nerve cells are derived from the same germ layer that gives rise to the epidermis, and $\left.{ }^{(2}\right)$ that in ail probability every erell of the hody has within it, though latemt, substances endowed with the properties and potential energy which mader suitable conditions would make it cipatole of developing into a complete humam being.

[^33]: * Dembriles have, however, been demonstrated upon certain of the cells within the spinal ganglia.

[^34]: * The selection of the term "gemmules "to designate these lateral buds is not entirely free from objection, inammeh as the same word was dond by Darwin in connection with beredity us t name for the minute elements which, aceording to his theory of pangenesis, are given off by the cells in different parts of the hody, to be taken up later by the sexmul cells.

[^35]: * Ilill, A. Note on "thorns" and atheory of the constitution of graty matter. Brain, Laml., vol. $x x, 18: 97,1$ p. 131-1:37.
 \dagger Lamón y ('ajal, S. Las Lispimas Colateralos de las Células del ('arebro 'Genidas por el Azel de Metileno. Revista 'Trimestral Micrografica, Mabrid, vol. i, fasc. 2 y :3, Agost?, 18915, 11. 19:3-1:36.

[^36]: * Källikers Nommant is well shortened to the more simple aroife a larm convenient and not likely to lead to any eonfusion. The desigmation mourite has also been applied to this process.
 \dagger It mast be admitted, however, that in certain regions-for exmmple, in the symputhetie ganglia and in the plexises of Meissner and Anerbach-the dendrites and asones may resemble one another so elosely that they can only with considerable differnly be distingnished from one nother.

[^37]: * Op, cit., p. 2199.
 \dagger From $\sigma \dot{v} v$ and ${ }^{2} \pi \tau \omega$, clasp.

[^38]: * Ambromn, H., und H. Ilell. Beitriige zur Kemntniss des Nervenmarks. Ueber Entwickelung und Bedentung des Nervenmarks; Ueber Beobachtungen an lebenden und frischen Nervenfasern und die Sichtbarkeit ihrer doppelten Contourirugg. Areh. f. Anat. u. Physiol., Anat, Abth., Leipz., Jahrg. (1896), II. iii u. iv, S. 202. 214.
 \dagger Held. II. Veher experimentelle Reifung des Nervemmarks. Arch. f. Ammt. u. Physiol., Anat, Ahtho., Leipz., Jahrg. (1896), H. iii u. iv. S. 202.

[^39]: * Cl. Binswanger, O. mad II. Berger. Beitrigra zur Kenntuiss der Lexmpheireulation in der Grosshirminde. Arch. f. path. Anat. (ete.), Berl., 1898, Bd. clii, S. 525-544.
 \dagger Ramón y Cajal, s. Algmas eonjeturus sobre el meanismo anatómico de la ideación, asociación y adención. Rev. de med. y cirug. prict. Madrid, 1890, vol. axxvi, pp. 49\%-505. Transhatel into German in Areh. f. Anat. u.
 by v. K̈̈lliker. A. Ueber die nene Hypothese von Ramón von der Bedenfung der Nemroglia-Elemente des Gehirns, Sitzungser. der phys.-med. Gesellseh. z. Ẅ̈̈rlurg. 1896, No. \&.
 \ddagger leld. II. Beitrige zur Struetur der Nervenzellen und ihre Fortsitze. Dritte Abhandlung. Areh. f. Anat. n. Physiol., Anat. Abth., Leipz., Supplementband, 1897, S. 273-312.

[^40]: * Nissl, F. Nervenzelten und graue Substanz. Münch. med. Welnschr., Bd. xlv, 1898, s. 988; 1023; 1060.

[^41]: * Rabl-Räckhurd, H. Sind die Ganglienzellen amöboid? Einc Hypothese zur Mechanik psychischer Vorgiinge. Neurol. Centrulbl., Leipz., Bd. ix (1890), s. 199.
 \dagger Duval, M. Hypothèses sur la physiologie des centres nerveux; tl éorie histologique du sommeil. Compt, rend. Soc. de biol., 1'ar., 1895, 10. s., 1., pp. 74-7\%.
 \ddagger Tanzi. I fatti e le induzioni nell' odierm istologia del sistema nervoso. Rivista sperim. di frenintria, vol. xix (1893).
 \# von Külliker, A. Kritik der Hypothesen von Rabl-Räckhard und Durnl über amöboide Bewegningen der Neurodendren, Sitzungsber, der phys.-med., Gesellseh., W'ürzburg (1895), 9. Mürz.

[^42]: * Remak, R. Neurologische Erlintermugen. Areh. f. Amat.. Physio. n. wissenseh. Med.. Berl., 1844, S. 463-4~2.
 tStricker, S. A Mamal of Histology, American transl. 8vo. New York, 18%, ple 184 et seq.

[^43]: * Op. cit., p. 137.

[^44]: * Arudt. R. Untersuchngen ïber die Ganglienkörper des Nervus sympathiens. Areh. f. mikr. Anat., Bom, Bd. x, 1874, S. 208-241.
 \dagger Key, F. A. Il. and G. Brtzins. Studien inder Anatomie des Nervensystems und des Bimdegewobes, 4 to, Stockhohm. 1876.
 \ddagger Fhomming, W. Beitrïge zar Anat, u. Eimbryol. als lestgabe für J. Ilenle. 18K?. Bonn, S. 12. In this artiele the previons bibliography is thoronghly reviewed. (f f.also, Veber den Ban dor spinalganglienzellen bei Sïugethieren, and Bemerkungen $̈$ bher dender centmen Zellen. Arch. f. mikr. Amut. Bonn, 1895, Bd. xlvi, 心. 379-394, and Die Stractur der Spinalganglienzellen bei Singetieren. Arch. f. Psychiat. u. Nervenkr., Berl., Bit. xxix (1897), II. 3, s. 969-934.
 \# Mäller, Frik. Untersuchungen fiber den Ban der Spinalganglien. Nord. Med. Ark., Stockholm, 1891, u. F., i, 1-55.

[^45]: * Niss] says: " Bruchstïcke des farbbaren, id est, des sichthar geformen Thiles des Xervenzellenkörpers." Neurol. C'entralb., Leipz., Bd, xiii (1894), S. 680 .
 \dagger The substances which stain black with osmie acil in many nerve cells, well known to all who have employed the method of Marchi in the study of human nerve contres, have recently been made the object of especial research by Rosin. Cf. Rosin, II. Ein Beitrag anr Lehre vom Ban der Ganglienzellen. Dentsche med. Wehnschr., Leipz. u. Berl., Bh. xxii, 1896, S. 495-49\%. Similar structures ure abmulant in the ganglion cells of the monkey, as 1 cun ussert from specimens shown to me by br. Mellus. This pigment uppars as light yellowish musses in the large motor eells of the ventral horns of the spinal eord and in the motor nuelei of the me-

[^46]: * ron Lemhossék, M. Der feinere Ban des Nervensystems im Liehte neuester Forschungen, Ite Aufl., Berlin, 1895.

[^47]: * The staimable substance of Nissl has recently been designated "tigroid" (from the Greek word rippoeidn's, spotted) by von Lenhossék, in an article entitled Ueber Nervenzellenst ructuren. Verhundl. d. anat, Gesellseh., Jenn, 1896, Bul. x, S. 15-2 Lim Gieson in his publications refers to it as the " collagenous substance." In his article in the Mänchener medicinische Wochensebrift of Angust, 1898, Nissl urges that a whole series of different substances which behave differently both morphologically and tinetorially in the "equivalent pieture "are represented by what he calls the "stainable substance." He thinks it very wrong that these shonld be thrown all together and designated either "Nissl's substance" or "tigroid substance." He is willing, however, that the stamable substance of the motor nerve cells be ralled "Nisslsubstanz," and that that of the spinal ganglion cells be referred to as "Thigroidkirper." Until, however, we know more abont the substances in the nemrones which stain blue by the method of Nissl we need trouble ourselves but little with regard to such refinements of terminology.

[^48]: * De Quervain. Frit\%. Ueber die Veranderungen des C'entranervensystems bei experimenteller Kaehexin thyreopriva der Thiere. Areh. f. pilh. dnat., ete., Berl., Bd. exxxiii (1893), S. 481.
 \dagger The writer has frequently observed varieosities in the course of the dendrites in pathologieal tissues, mad in these there appears always to be an aceumulation of the tigroid masses.
 \ddagger Schuffer, K. Knure Anmerkung über die morphologisehe Differenz des Axencylinders im Verhailtnisse zu den protoplasmatischen Fortsiitzen bei Nissl's Fïrbung. Neurol. Centralbl., Leipz., Bl. xii, 1893, S. 849-851.

[^49]: chrome cells. By far the majority of all the nerve cells in the body fall in the arkyochrome gronp.

[^50]: * Mllg. Ztsehr. f. Psychiat.. Berl., Bd. I.
 † Flesch, M. Ueber die Versehiedenheiten im chemiseden Verhulten der Nervenzellen. Mith. d. naturf, (Gesellseh. in Bern (1887). Nr. 1169-1194, ה. 190-199. Bern, P. Haller, 1888.
 \ddagger The word chromophile is here used in the sense in whieh Nissl employs the term Chromophilie (Nissl, Allg. Ztsehr. f. Psyehint., ate.. Berl. (1896), Bd. lii, S. 8). Whether or not this is the sense in which the word is employed by Fleseh and his pupils is not clear.

[^51]: * Rosin, II. Uebor cine nene Fiarthongsmethode des gesammen Nervensystems nehst Bemerkugen nber (Gnglienzetlen und Gliazellen. Neurol. Centralbl., Leipz., Bd. xii (1893), S. 803-809. Also, Entgegnung auf Nisst's Bemerkungen, etc. Neurol. Centrabl., Leip\%, Rhl. xiij (1894), S. 210-214.

[^52]:
 mictog.. Matrid. vol. i (1s90), 1p. 1-i30.
 \ddagger Hobl. II. Butrige zur Strutur der Nomemaellen und ihere Fortsitze. Arelı. f. Amat. mol Physiol., Amit. Abth., Leipz. (1895i), s, 396-416.

[^53]: * Man histologist xi (1894),

[^54]: * Mann, (i. Uoher die Behamdinig der ronzellen fïr experimentellhistologiselve Untorshehungen. Z/tsehr. t. wissensch. Mikr., Brasehwg., Bah. xi (1894), S. 4:4-494.

[^55]: * von Lenhossék, II. Ueher den ban der Spinalganglienzellen des Mensehen. Vortrag auf der Wiaderversammhing sidwestdentscher Nenrologen, Baden-Baten, 1896. Areh. f. Pssychiatr. I. Nervenkr., Berl.. Bd. xxix (1896-97), S. 346-3~0.
 \dagger Harris, H. F. 'Two New Methods of Statining the Axis-('ylinders of Nerves in the Fresh State, some Diarochemical Reations of Toluidin-

[^56]: * In the histological conrse in the Johms Hopkins Medical school the treatment of freshty teased vomtral hom cells with mothylene blue is now employed as one casy and satisfactory mode of demonstrating the tigroid bolies in the ecell brodies, and especially in the dendrites. I have repeatedly convinced myself of the homogeneons apparance of the protopham of the nerve cell when it is examined immodiately after removal from the living borly. Only atier the lape of a cer ain time do masses which correspond to the tigroid bodies berome visible I am at a loss, therefore, to mudershand the statements of Flemming and von Lembosefk, both investigators known for their arommery and objectivity, when they assert that they have observed the tigroid bulies in fresh living cells.

[^57]: * Macallum, II. B. Some Points in the Miero-('hemistry of the Nerve (cells. Brit. M. J., Lomd. (1898), vol, ii, p. Tis.
 \dagger For example, forty-per-eent alcohol precipitates a part of the tigroid bodies much more finely gramar than does ninety-six-per-ecut ateohol, while the part of the gramules otherwise thrown down in coagnlambike masses is not frecipitated at all, so that one sees distinct spaces between the single fine grumbes in the larger Nissl bodies. As Nissl has atways emphasized, however, for the stady of pathological alterations, it matters litte whether the Nissl bodies are preformed structures existing intro witam or are the result of preipitation. 'The important point is that under nomal conditions by definitely uniform methods perfectly constant mierosenpic pietures are obtumed. Nissl hats aceordingly introdnced the term "werve-

[^58]: * Von Kinpffer (Ueber Differenzirung des Protoplasmas un den Zellen thindiscler Gewebe, Schrift. d. naturw. Ver. f. Schlesw.-1tolst., Kiel, Bh. i, 1875, II. 3, S. 289) first contrasted the "protoplasm" with the "parapham" of cells. He used the word protophasm to indicate the int rinal or endoplasmie portions of the cell body-that is, those adjacent to the muclens-while the word parnplam designated the peripheral cell plasm. The terms had therefore only a topographieal signitication and had no reference to the tiner protoplasmic structure, as have the words mitom and paramitom, spongiophasm and lyalophasm. Many histologists have failed to recognize this faet-Benda, for example, quotel here, uses paraplasm in the sense of paramitom. In a recent article (Leber Energiden und paraplastische Bildungen; lektoratsrede, Münhen, 1896) von Kupffer himself uses protophasm to indieate the primary and active part of the cell, and refers to paraphasm as the secondary or passive part.

[^59]: * Neurol. Centralbl., Leipz., Bd. xvi (1898), S. 94i-947.
 \dagger Golgi, ('. Sur la structure des cellules nervenses. Arch. ital. de biol., Turim, t. xxx (1898), P!. 60-71.

[^60]: * Held. JI. Beitrigre zur Simetur der Nervanzellen und ihrer Fortsiaze. Zweite Abhandlung. Arch. f. Anat. n. Physiol., Anat. Abhh, 1, eipz. (1897), H. iii u. iv, S. $204-294$.

[^61]: * Limom y ('ijal (op, cito) has recontly supported vigorously the doctrine of a homeromb structure for the masinimble substance.
 \dagger lisehre, A. Zur Kritik der Fixirungsmethoten umd der Gramula. Anat. Anz., Jema, Bht, ix (1894), 心. (GAR-6s0; nlso Nene Boitrige zur Kritik

 \ddagger Galeot1i. (i. Ueber die (bmmation in den Zellen. Internat. Monatsehr. f. Annt. n. Physiol., Laipr., Id, xii (1815), S. 440; 461.

[^62]:
 (1s:1), s. 300 .

[^63]: * Lagaro. be sul vatore rispubliva delle parte comatica e della acro-

 II 1 . 1! - 15%.

[^64]: * Ileld believes that the fibils of some investigators-for example, those of Dogiel-arr in reality identical with rows of nemosomes. He even hints that some of Flemming's htrils represent bands of nemosones: other fibuils described by Flemming are. Ifeld believes, beams of the eytospongimm.
 † Montgomery, T. II. Stwlies on the Elements of the Central Nervons System of the Heteronemertini. J. Morphol., Bost., vol. xiii (189) , pp. 381-444.
 \ddagger Flemming, W. Article Zelle in Morkel-Bonnet's Ergebnise der Aint. 1. Butwickelungsgeselt., Bd. vi for 1896, Wiesbaden (189~), S. 218 If.
 \# Op, cit.

[^65]: * Laydir, F. Wer reizleitende Thail des Nomengewebes. Areh. f. Amat.

[^66]: * ('f, also Golgi, (', lutorno all' origine del quarto nervo ceretrale e di una questione isto-fisiologica whe a questo argomento si (oollega, Rendie. d. R. Aeead. el. Limed (1003), ii. Fremeh Tramsl, in Areh, ital, de biol.. 'Turin, t. xix (189:3), plo int-474. Also. Siur la struchure des cellules mervenses.

[^67]: * The gencral physiology and pathologe of the neturone will be considered in Section V.

[^68]: * The results of the sturlies of His upon the gross morphology of the human nervous system during devehopment have been mate aceessible to all throngh his publications, and especially by means of an exeellent series of exact wax-model reproductions. Based upon thrse we have been supplied for the first time, too, with n nomendature for the nervons sf ructures which meets the demands of embryology, comparmise analomy, and clinient nemologya nomenclature the use of which I can mot too strongly recommend to those who have oecasion. in writing on temeling. to make use of neurological terms. (f. Section Nenrologia, in D)ir antomisehe Nomenclatur. Nomina Amatomiea. Vergeiehniss der von der amatomisehen Gesellschaft auf ihrer ix. Vers. in Basel ingenmmenen Nitmen. Fingeleitet und erliatert von W.

[^69]: clearly presented in J. Kollmam's Lehrhuch der Entwickelungsgesehichte des Menschen. Jena, 18:8. 'The many viluable eontributions of von Kuprifer, of Mmich, may also be wefered to.

[^70]: *'The "pithelide cells at this stage of differentiation are spoken of by His as somgioblasts.

[^71]: * As Itis has pointed ont, the tramsormation of epithelial cetls into n framework penetated by spares and bomuled by limitmg membranes is wot peroliar to the medallary phate. Very similar forms are to be. . with in other extobastic derivatives-for example, the retima, the ear, the olfactory phate, and the porions of the cetoblast adjarent to the nempal growe which correspond, in part at least, to the buiding phees of the eelle of the semery graglia.

 ## +op.cit.

 logisehe Entwickelmg des klemhirns der Theostier. Ibill., Bal. is (1sin:-

 \# Vignal. W. Recherches sur to diveloppement des cóments des comeles corticales du cervenu et du eervelet che\% thomme at hes mammiferes. Arelt. the physiol, norm. et path.. Par. (1848). 4. s.. 1. ii. pp. 22s-254 of 311-3:38.Reverches sur le de eloppement des blaments des condes corticales du ecrem et da corvelet ehez thomme et les mammifires. Eeole prat. i.

 cervime et du cervelet. Ibid.. 1p. 8:3-112.
 system; kritische Studie mal Versuch einer Gesehiche der Eutwidkelumer nerviser Substunz. Areh. f. Bintweklugsmedha. A. Organ., Leip\%, BI, v (1897), s. 8t-1:

[^72]: * Ilis has notieed in selachian embryos oreasimally cells which have even been able to reach the extormal border of the margimal veil, although they appeared afterwarl to berome again surrommed by its meshes. Dohern believes that in the region of the nervis oculomotorius there may be a permanent exit for motor eells. He brings these cells into commertion with the ombomotorius ganglion of shwallor.
 \dagger IIis, W. Zur Geschichtedes menshlichen Rainekemuarkes und dar Norvenwargeln. Tbhaudl. d. math.- phys. ('I. d. k. sitelhs. Gesellseh. I. Wisseuseh., Leip\%.. Br, xiii (1886), s. 479-7.1:3.

[^73]: * I very satisfinfory nomendume suggested by van Gehuchten. The

 \dagger From ${ }^{\prime \prime} \tau \in \rho o \nu \mu \epsilon \rho^{\prime} \rho o s$, the other side.
 \ddagger From écárepà μ f́pos, malh side.

[^74]: * So fir as 1 know, the actual connection of the axones of the eells of the melens dorsalis with the fascienhas cerebellospinalis has not been observed, atthough the evidenee from secondary degeneration and from (iolgi specimens gives sulficiont warmat for the statemert in the text.
 t The axomes of the fibers of the promidal tracts (fascienali cerebrospinales) have their eefls of origin in the comvolutions of the so-called motor area of the cerchal cortex, while the axmes of the majority of the fibres of the dorsal funienli of the cord represent direet contimations of the central axones of the cells of the ganglia on the dorsal mots of the spinal nerves.

[^75]: * Framkin Dexter, of Inarard, has recently shown that in the rabbit the rhomboidal lip thes not exist, the morphological changes apparently depending in this animal entirely upon the wandering capacities of the neuroblasts. Areh. f. Amat. u. Phys , Amat. Abth. (Leip\%.), 1895, is. 423-437.

[^76]: * Mall. F'. I. Ilistogenesis of the Retina in Amblystoma nad Necturtis. J. Morphol., Bost., vol. viii (189:3), pp. 415-4;2.

[^77]: * That in development the system of the sensory ganglia can grow entirely independently of the presence of the medulary thbe, or, perhaps more safely expressed, that the sensory ganglia may be present in the absence of a spinal cord, is well shown by the ease deseribed by von Leonovn, O. Ein Fall von Anencephalie combinirt mit totaler Amyelic. Neurol. Centralbl., Lejpz., Bd. xii (1893), S. 218; 263.

[^78]: * Dogiel, A.s. Der Ban der Spinalganglien bei den saingethieren. Vorliiuf. Mitheil, Anat. An\%., Jena, Bd, xii (1896), S. 140-152.

[^79]: * Cf. Mall, F. P. (pp. cit.

[^80]: * His, W., Jr., u. E. Romberg. Beitrige zur Herzinnervation. Fortschr, d. Med.. Berl., Ba. viii (1890), S. 374 ; 416. His, W., Jr. Demonstration von Priiparaten u. Modellen zur llerzinnervation. Verhandl. d. Cong. f. imere Ded. Wiesh., ix, 1890. His, W., Jr. Die Entwickelung des Her\%nervensystems bei Wirbelthieren. Abhand. d. math.-phys. ('l. d. k. siachs. Gesellseh, d. Wissensch., Bd, x viii (1893), No. 1. For a recent disenssion concerning the innervation of the heart the reader is refered to the aricle by v. leyilen, Krilisr be Bemerkingen liber IIeranorven. Deutsehe mel. Wehnschr., Leipz., h. Berl., Ba. xxiv (1898) [Discussion], Ver.-Beil., S. 145-147.

[^81]: * Cf. His, W. Ueber den Aufhan maseres Nervensystems. Berl. klin. Wehnschr., Bel, xxx (1893), S. 957: 900. Also in Wien. med. Presse, Bul. xxxiv (1893), S. 147\% : 1521. Also in Wien. med. Bl.. Bd, xvi (1893), S. 483; 497.
 \dagger v. Bacr, K. E. Ueber Entwickelungseschichte der Thiere; Beobachtung und Reflexion., ii, S. 296.

[^82]: * There is still dispute as to the nemromeres. The term was aplied to the segmentation indicated by a series of altermatimg slight enhargements and constrietions of the mednlary tube. Bath enlargement is supposed to forrespond to a pair of rentral nerve roots. The hater, however, appear to spring from the eonstriction betwern two nemromeres, and Minot (lhmmen Fimbryology, phare (itio) suggests that the vent ral roots arise from half of two aljuent true neuroueres. ('f. Dlatt, Julia B. Bull. Mus. Comp. Zool., at Harvart College, vol. xvii (1889), p. 1i1. Loey, W. A. Anat. An\%... Jem, Bhe ix (1894), S. 39\%3. Neal, II. V. Ibid., Mel. xii (1896), s. 37%.

[^83]: * Corresponding to this we have in hman beings the defp layer of the fascia lumbodorsalis separating the dorsal musculature of the Irunk from the ventral.

[^84]: * Dohrn. A. Studien zur Vrgesehichte des Wirbelthierkörpers. VI. Die parigen mod umparen Flossen der Solachier. Mittheil. ans der zool. Station zu Neapel, Bi. v (1884). Nlso, Die unpare Flosse in ihrer Bedentung für die Bentheilung der genenlogisehen Stellung der Tunieaten und des Amphioxus, und lie Reste der Beckenflosse bei Petromyzon. Ibid., Bd. vi (1885).
 \dagger Mayer, P. Die unpmuren Flossen der Sehehier. Mittheil. aus der zool. Station zu Neapel. Bil. vi (1885).
 \ddagger Kiistner, S. Ceber die algemeine Entwiekelung der Rumpf- und Schwinzmuseuhtur bei Wirbelthieren: mit besonterer Berïeksichtignng der Selachier. Areh. f. Amat, und Phys., anat. Abtheil., Leip\% (1892). S. 15:3292: Also Teher die Eatstehung der Extremitatemmescnlatur bei den amurell Amphibien. Verhamil. Il. amat. Gesellseh., Jena, 1893, Bi. vii. S. 193-199.
 \# Paterson, A. M. On the Fite of the Muscle Plate and the Development of the Spimal Nerves and Limb-Plexuses in Birds and Mammals. Quart. J. Micr. Sic., Lond., n. s., vol. xxviii (188i-88), 1p. 109)-199.
 || van Wijhe.J. W. Ueber die Mesodermsegmente und dir Ent wickelung der Nerven des Selnehierkopfes. Verhandel. I. k. Akad. v. Weternseh. Amst., Deel xxii (1883). plo. 1-30.
 Δ vin Bemmelen, J. F. Ueber die Herkinft der lixtremitaten- und

[^85]: * Nomenc
 + Rauber, (1898), Bd. ii,

[^86]: * Nomenclatare of Max Fiabbinger.
 + Rauber, A. Lehnl uch tier Anatomie des Mensehen. V. Aull., Leipz. (1898), Bd. ii, S. 566 ff.

[^87]: * Virchow, R. Die Cellularpathologie in ihrer Begriundung auf physiologische und pathologische Gewebelehre. Zwanzig Vorlesungen., xvi, pp. $440,8 v o$, Berl., 1858.

[^88]: * 'This assumption does not, oi course, exclude the possibility that the relation of the thyreoid to the nervons system may consist in the destruction or neutralization by the products of the former of a substance or series of substances which are inimical to the latter. In any event the disturbances in the neurones must be thought of as metabolic in character.
 \dagger This writer terms them the "rolling stock" (Betriebsmaterial) of the nerve cells.

[^89]: * This idea had not its birth with modern physiologists, for did not the wise Diotima of Mantinen tell it long ago to Socrates? Let me frote from The Symposinm of Plato (Jowett's translation) :
 "For even in the same individual there is succession and not absolute unity; a man is ealled the same: hut yet in the short interval which elapses between youth mod age, and in which every animal is said to have life and indentity, be is mudergoing a perpetual proeess of loss and reparation-hair, flesh, bones, blood, nud the whole body are ulwnys changing. And this is I rue not only of the body but also of the sonl, whose habits, tempers, opinions, desires, pleasures, phins, fears, never remain the same in any one of us, but are always coming and going. And what is yet more surprising is, that this is also true of knowledge; and not only does knowledge in general come and go, so that in this respect we are never the same, but partieular knowledge also experiences a like change. For what is implied in the word 'recollection' but the departure of knowledge, which is ever being forgotten, and is renewed and preserved by recollection, appearing to be the sume although in reality new, according to that hw of succession by which all mortal things are preservel, not by absolute sameness of existence, but by substitution, the old worn-out mortality leaving another new and similar one behind-unlike the immortal in this, which is always the same and not noother. And in this way, Socrates, the mortal body, or mortal anything. partakes of immortality: but the immortal in another way. Narvel not, then, at the love which all men have of their offspring, for that universal love and interest is for the sake of immortality." The germ of the iden is also recognizable in the speculations of Heraclitns, and possibly in those of Annximander.

[^90]: * In this comnection the urlicles of Driesch, Herbst, and Laet) now the effect of enviromment upon development may be rad with prolit. Extermal stimuli ean and undonbtedly do exercise an imporant influcace upon development, but the character of the response is determined by the inherited organization.
 f If the convietion expressed in the text be well fombded. then, broally spraking, as his uenromes are, so the man is. In this sense, (bethe's words, in the month of Mephistopheles, ean be made to bear a new and ulmost prophetic signifiennee:
 "Du bist am Enale—was Wu bist.
 Set\% Dir l'errizeken anf von Nillionen Locken,
 set\% Deineu Fuss auf cllenhohe Sorken,
 Du bleibst doch immer, was bu bist."
 \ddagger The same remark has alremdy ben made regarding sociology in Social Rights and Duties, by Leslie stephen.

[^91]: * Stannius. Untersuchungen ̈̈her Muskheizinateit. Arch. f. Anat, Phesiol. ו1. wissensel. Med., Berl. (184i), s. 443-46?.
 \dagger Waller, A. Experiments on the Section of the Glossopharyogent and Itypoghosshl Nerves of the l'rog. and Observations of the Alterations prosduced thereby in the strmeture of their Primitive l'ibres. London, Edin-

[^92]: * Ram
 $+110$ gischen dïre Den Contribul la moelle
 \ddagger Too ations of also in 13
 \# Nott ations- inn f. wissens

[^93]: * Rauvier, I. Leçons sur lhistologie dı systeme nervenx, Paris, 18 is.
 \dagger Ifomén, ľ. A. Experimenteller Beitrag anr Puhologie mad puhologischen Anatomie des Rhickenmarks (specioll mil IJinsicht auf die secon(lize Degencration). Fortsehr. (1. Ned., Berl., Jßl. iii (1885), S. 26\%-2\%6; Conlribution experimentale a fa pathologie el a lanatomie pathologifue de la moelle épinière, HeJsingfors (1885), pp, 112.7 pl., 8vo.
 \ddagger Tooth, Howard II. The Gulstomian Iectures on Secombary Degenerations of the Spinn) ('ort. Lomion, J. and A. ('hurchill (1889), ple. 1-71; also in Brit. M. J., Lond. (1889), i, 753; 825; 87?.
 \# Noitluft, A.v. Neue Untersuchumgen ïber den Verlanf der Degenerat ions- und Regenerationsprocesso um vorlotaten peripherou Nerven. Zisehr, f. wissenseh. \%ool., Bd. lv (1893), s. 1; 4-188.

[^94]: * Another poin to to remombered in explaining the difference in effod of division upen the geripheral motor amb sensory merves is the fae that, if purent idens of eonduetion are cormed, on sedion of a motor fibre. it is perhaps the diseharge of impmeses which is prevented, while in the case of the sonsory tibre it is at first the reeption of impulses which is interfered with. It mist mot be forgotten. however. that even when a peripherat sensory

[^95]: may yet perhaps redive some centripelal impulses from the visera through the rami communicantes.

 * (indilin, B. von. (iesummelte und hinterlassene Mhamdhagen. IIeransgegeben von II. (irashry, Wieshulen, 1889.
 \dagger Bregman, Li. Teber experimentalle anfstegende Degemeration motorisehor und sensibler IIirmervon. Aph, at. It. Inst. f. Aunt. und Physiol. des Centralnervensyst. at d. Wien Chiv., 1892, s. 783. Also in Inhrh. f. l'syehiat.,

 \ddagger Darkschewitseh. I. Veher die Verimberangen in drom rentralen Absehnitt eines molorisehen Nerven bei Vorlotzing des peripheren Abschnittes. Nearol. (ontralbl., Leipz., Bul. xi (18:12), S. 658-668.

[^96]: * Flatu an frilhzai motorinsk
 t Sador sínutives 1 t. iii. ıp. 3 :
 \ddagger Biecll, Bd. viii (14
 \# Bran Oenhonoto

[^97]: an foblazitige, exprimentell ermenge Vorindermagen der \%ellen des dentomotorinskorms. Fiblsehr. d. Med., Berl., Bil. xiv (189(), No. 6, S. 2H1-295.

 t. iii. 11. 355-358.
 \ddagger Biedl, A. Uaher die Centra der Sphanchaiei. Wiem. klin. Wehnsehr., Bd. viii (1895), s. 915-919.
 Oeulomotorius. Vorl. Millh. Wien. klin. Wehnsehr, ix (1896), No. 5. Also,

[^98]: * Bullel. (b., et A. Dutil. Sur un cas te pelyuentite avee lixions médul-

[^99]: * Marima, A. Eine Fixationsmethode, bei welcher sowohl die Nissl'sche Nervenzolle als die Weigert'sche Markschedelairtung gelingt. Neurolog. Centralin., Leip\%, Bd. xvi (1897). S. 166.
 f An ephifome of the work of Italian investigators with Golqi's method with regard to pathologicul alterations in nerve cells is to be fonnd in the comprehensive review of (', Sacerdulti, in Labarsel-()stortag's Ergehnise der allgem, Pathologie u. path, Amat, des Menschen n. der 'Thiere, Zweiter

 \ddagger Berkley, II. J. Simlies ons the Lesions prowned thy the detion of Cortain Prosons on the ('ortient Nerve ('ell. Johns Ilopkins Itosp. Rep., Balt., vol. vi (18:97), fase. i, 11. 1-88.

[^100]: *Shimamma, S. Ueber die Blatversorgung der Pons- und lliraschenkelgegend, insbesondere des Oculomotoriuskerns. Neurol. Centrall l., Leip $\%$ (1894), Bıl. xiti, s. 68.7 ; 769.

[^101]: * Bater, W. S.. Datwom, P'. M., and II. 'T. Marshall. Regeneration of the Worsal Root libnes of the second Cervical Nerve within the spinal Cord. .I. Bxper. Mel.. Ball., vol. iii (18:9), No. 1.
 \dagger Vitzon, A. N. La neformation des eellules mervenses dans le cervean du singe consentim it lablation complete des lobes owipitmax. (ompt. rend. Soe biol., September 16, 1895; also in Compt. remal. Aead. d. sei., Par. (1895), exxi, $445-447$; and in Aroh de physiol. norm. et path., Par. (1897), is s., t. ix, pl. e9 - $43,1 \mathrm{pl}$.
 \ddagger Todeschi, A. Anatomiseh-pathologishe mall experimentelle Untersnehngen über die Regeneration des Norvongewehes. Vorl. Mith. Con-
 mischoexperimenteller Beitrag zum Studien der Regencration des Gewehn des t'ontralnervensystems. Beitr. \%. path. Amat. u. z. allg. Path., Jenn. 189\%, xxi, 4:3-7: :3pl.
 \#'Tirelli, V'. Dei processi riparativi nel ganglio intervertebrale. Amn.di freniatr. a se. affini, Torino, vol. v (1895). pp. 9-20; ; also 'lransl. in Arch. ital. de liol.. Turin, t. xxiii (189\%-96), pp: 301-316.
 $\|$ Monti, A., et lrieschi. J. Sur la guérison des hessures des ganglions sympathique. Arelı, ital. de biol., Thrin, t. xxiv (1895-96), 11p. 401-413.

[^102]: * Flexner, S. The Regremeration of the Nepom- System of Plambia torva and the Anatomy of the Nervons Sistem of Double-1leated Forms. J.

[^103]: * Rubner. M. Die Quelle der flierischen Wärme. Ztsehr. f. Biol., Münch. i. Léipz.. Bd. xax (1894), S. i3-142.

[^104]: * (f. Hu Bois-Reymond. Veber die Auslösung ron Reflexbewegungen durch eine Summe schwacher Rejze, 1880: also the review of this subject by S. Exner. Entwurf an einer physiologischen Erkliarmen der psyehischen Erscheinungen I Theil, Leipz. u. Wien, Svo (1894), ('np, it, S. 49.

[^105]: * Cf. v. menschliche Abhandl. d. (1896), No. 3
 \dagger Barker clektiver se viii (1895-9 pp. 348-360.
 \ddagger Goidse rapie im Lic

[^106]: *Cf. v. Frey, M. Untersuchnngen übe." die Simnesfunctionen der menschlichen IIaut. Erste Abhandlung: Druckempfindung und Schmerz. Abhandl. I. math.-phys. Cl. d. K. Näehs. Gesellseh. d. Wissenseh., Bd. xxiii (1896), No. 3, S. 168-266.
 \dagger Barker, L. F. Ueber einen Fall von einseitiger, umschriebener und elektiver sensibler Lähmung. Deutsche Ztschr. f. Nervenh., Leipz., Brl. viii (1805-96), S. 348-358. Also Transl, in J. Exper. M., Balt., vol. i (1896), pp. 348-360.
 \ddagger Goidseheider. A. Die Bedentung der Reize für Pathologie und Therapie in Lichte der Neuronlehre, Leipz. (1898), 8ro, S. 1-88.

[^107]: * For at to A. Goldseh sinnesnerven.

[^108]: ** Die hundgreilichen Unterschiede im Ban der Centralwindungen, der Rinde der Fissura calearina, des Gyrus hippocampi, ete., sind schon hage bekannt, wem much sonderharerweise nicht reelit gewürdigt." P. Flechsig, Gehirn und Seele, 11 Aull., Anm. 31.

 + Op. cit., Bd. ii, S. 803-813.
 \ddagger "So drïngt sich doeh zuletzt die Ueberzengung zwingend nuf, duss alle Nervenzellen von Hause aus wesentlich dieselbe Funktion besitzen, und dass das Inslebentreten derselben einzig und allein von den mannigfuchen ausseren Einwirkungen oder Reizen, welche dieselben treffen und von den vielen Müglichkeiten einer lBeant wortung dieser Erregungen abhiingt."

[^109]: *Irritability and conductivity, as has long been known, are not equivalent terms.

[^110]: * Wundt. W. Untersuchungen zur Mechanik der Nerven und Nervencentren, 8 ro, Stuttgart, 1871-'\%6.
 \dagger Von källiker. Hanthuch der Gewebelehre des Mensthen, Bu, ii, s. 58, 111-115, 120-128, 683, 184.
 \ddagger Op. cit., $\perp .135-143$.

[^111]: * Ramón y Cajal, S. Significación tisiologrica de las expansiones protoplasmáticas y mervosias de las cáblas de la sustancia gris. Rev. de eien.

 \dagger van Gehuchten, λ. La structure ales lobes optidues chez l'embryon de poulet. C'ellule, lierre et Louvain, t. viii (1892), fase. i, pp. 1-4).
 \ddagger C'alleja, C'. La rigion olfactoria del cerebro, Malrid, 189:3.
 \# Itogiel, $A . S$. Win besomberer Typus von Nervenzellen in der mittleren gangliösen Schieht der Vogel-iRetina. Anat. Inz., Jena, Bd. x (1895), No. 9:3, S. 750-760.

[^112]: * Flechsig, l^{\prime}. Ueber cine neue Fiirbugsmethode des centraten Nervensystems und deren Vrgebmise bezinglich des Zusmmmenhanges von Gamgrienzellen mid Nervenfasern. Arch. f. Anatt. u. Ihysiol. Leipz., Physiol. Abth. (1889), s. 53 \%.

[^113]: * (f. Mn Neeturus.
 \dagger Mislaw sioc. de biol.,

[^114]: * (f. Mall, F. P. Histogenesis of the Retina in Amblystoma and Necturus. J. Morphol., Bost.. vol. viii (1893), pI. 415-4:3.
 \dagger Mislawsky, N. Sur le rôle physiologique des dendrites. Compt. remul. soce de biol., Par. (1895), 10. s., t. ii, p. 488.

[^115]: * The suggestion that the peripheral sensory fibre is a dendrite was, I believe, first made by Ramón y Cajal, in 1889, in an article entitled (onnexion general de los elementos nerviosos, which uppeared in La medicitu prictiea, Madrid, in October of that yeur.
 † Retzins, G. Zur Kemutniss des centralen Nervensystems von Amphioxus lanceohatns. Biol. Uutersnch., Stuckholm, n. F., Bd. ii (1891), p. 29.

[^116]: * Bethe,

[^117]: * Bethe, A. Das Centralnervensystem von Carcinus Machas. Ein anatomisch-physiologischer Versuch, I. Theil, 2. Mittheilung. Areh. f. mikr. Anat., Bonn, Bd. I, S. 589-639.

[^118]: * Goteh, F ., and V. Horsley. (In the Man,malian Nervons System, its Fmetions, and their Localizations determined by mn Eilectrieal Method. Pi.il. 'Tr., 1891, L.oml. (1892), vol. claxxii (13.), III, 26i-526.

[^119]: * op. cit., p. 29:3.
 \dagger Hodge, C. F. Some Effects of Stimulating Ganglion Cells. Am. J. Psyehol., Bult., vol. i (1887-'88), pp. 479-486; Some Effects of Electrically Stimdating Ganglion Cells. Am. I. Psychol.. Balt., vol. ii (1888-889), pis. 376-402; The Process of Recovery from the Fatigue oceasioned by the Vlectrical Stimulation of Cells of the Spinal Ganglia. Am. J. P'sychol., Woreester, vol, iii (1890), pp, 530-543; A Mieroscopical study of Changes due to Functional Activity in Nerve Cells. J. Morphol., Bost., vol. vii (1890-93),

[^120]: * The objeetion has heen quite properly raised by van (iehmehten and by (Goblseheider and l'latan that lhe results obtained from eloedrionl stimulalion can sarcely be looked mon as equivatent to those deprobtent upon normul fatigue. Wlectricity can not of course be regariled us un "adequale" slimnlus.

[^121]: * Vas, r . Studien üher den Ban des Chromatins in der sympathischen Ganglienzelle. Arch. f. mikr. Anat., Bomn, Bd. xl (1892), S. 375-389.
 + Lambert, 11 . Note sur les modifications produites par l'excitation f́lectrique daus les cellules nerveuses des ganglions sympathiques. Compt. rend. soc. de biol., P'ar., 9. s., t. v (1893), pp. 879-881.
 \ddagger Mann, G. Histologienl Changes induced in Sympathetic, Motor and Sensory Nerve Cells by Functional Aetivity. J. Anat. and Physiol., Lond., vol. xxix (1895), p. 100.
 \# Lagaro, E. Sur les modifications des cellules nervenses dans les divers états fonctionnels. Arel. ital. de biol., Turin, t. xxiv (180-9-96), pp. $258-$ 281 ; ulso Sperimentale, Se\%. biol., Firenze, An. xlix (1895), pp. 159-193.
 $\|$ Pugnat, C. A. Sur les modifications histologiques des cellules nerveuses dans l’état de fatigue. Compt. rend. Aead. d. sc., Par.. t. exxx (1897), pp. 736-738.

 A Fve, F. C. Sympathetie Nerve Cells and their Basophile Consitnent in Prolonged Activity and Repose. J. Physiol., Cambridge, vol. xx (1896), 1р. 334-353.

[^122]: * Jacobsohn. L. Ueber das Aussehen der motorisehen Zellen int Vorderhorn des Rüekenmarks nach Ruhe und Ifunger. Nemrol. Centralbl., Leipz., Bd. xvi (1897), S. 946-948.
 \dagger Pergens, E. Aetion de la hunière sur la rétine. Ann. soc, roy. d. se. méd. et nat. de Brıx., I. v (1896), pp. 389-421.
 \ddagger Goldscheider, A., und E. Fhatau. Normale und pathologisehe Anatomie der Nervenzellen auf Grimd der neueren Forschungen. Berlin (1898), S. 35.

[^123]: * Lagaro, E. Sulle alterazioni degli elementi neposi negli arrelema menti per arser co e per piombo. Riv. di patol. nerv., Firenze (1897), vol. ii. pp. 49-64.

[^124]: * Braner, Kaninchens.

[^125]: * Brauer, L. Der Einfluss des Quecksilbers anf dus Nervensystem des Kaninchens. Deutsehe \%tschr. f. Nervenh., Leipz., Bd. xii (1897), S. 1-67.

[^126]: ＊Monrek，J．，ef P．Thess．Lásions times des cellules motrides de la moedte： épinitre dats bes divers itats demposomement．Rev．memod．，Par．，t．s． （18：5），No． $2: 3$.

 \ddagger Berk．A．Die Veriadermgen der Nervazellen bein experimentellen

 （1897）．1．708．

 0 （iohdseheider，A．，unul F．Flatan．Normale und phehologiselhe Anatomios der Nervenzellen mif（irmad der meneron Forsehngem．Bertin（18：3s）．

 \downarrow Nicholls， J ，Studies of＇lyphod Fever．I．Faper．Med．，N．Y．，vol．iv（IN09）．
 de la moelle dans lat mge hamane．S．ieonog．de la Sinduatrière，Par．，t．x （1597）．11．150－16．5．
 des matadies infertienses．Compt．remb．Soc．de bioh．，Pat．，10．s．，t．iv（180\％）， 11．795－798．
 $\dagger \dagger$ Aergisto，V ．．ed．Li．Posateri．Sull amomia patologia degti elementi

 la méthonde de Nissl．Amn．meid．－pisyehol．，P：ar．，8．s．，t．vii（1898），1pr． 448 － 450.

[^127]: * Ballet et Dutil. Sur quelques lésions expérimentales de la cellule

[^128]: * Nissl, F. Nervenzellen und grame Substanz. Mänch. med. Wehnschr., Bd. xlv (1898), S. 988: 1023: 1060.
 + In this country Hoch (Hoch, λ. On Chunges in the Nerve Cells of the Cortex in a Case of Acute I elirimen and a Caso of Delitimm Tremens. Am. J. Insan., Balt., vol. liv (1897), pp, 589-606) has tescribed one case in which the "acute cell disease" (acute Veränderung) nnd another in which the "severe cell disense" (schwere Veründerung) of Nissl existed. II is descriptions of the changes are the fullest and most aceurnte in the English languge.
 \ddagger Hoch, A. Nerve-Cell ('humges in Somatic Diseases. A Preliminmry Communication. Am. J. Insun., Balt., vol. Iv (1898), pp. 231-240.

[^129]: * Lort, J. R. A New Nisel Method ; Normal Cell Strneture and the Cytologienl Changes terminating in Fatty Degeneration ; some Remarks on Cell Physiology and its Relation to Insanity ; A Note on the Use of Picroformal Generally, and in Bevan Lewis's Fresh Method. .J. Ment. Sc.. Lond., vol. $x \operatorname{liv}(1808)$, pp. 693-600.

[^130]: ＊Marime condaires et

[^131]: * Marineseo, (i. Pathologie grmórale de la cellute morvense: lésions secombires et primitives. Presse mél., Par. (1897), pl. 41-47.

[^132]: * Sturied in tissues of experimental animals kindly supplied by my colleague, Dr. S. Flexner.

[^133]: * Warington, W. B. On the Strueturn Alterations observed in Nerve

 Sensory Nerves nom Novement mal Nutrition of the Limbs. Proes, Roy.

 trallbl., Leip

[^134]:
 14:5. 'Thet. in Fig. 1

[^135]: * Neppi, A. Sul" alternzioni endaveriche delle eellule nervose zilevabili col metodo di Nissl. Riv. di patol. nerv.. Firenze, vol. ii (1897), pp. 152-155.

[^136]: * Barbaeri, O., a (i. Campacei. Sulle lesioni cadaveriche delle collule: nervose. Riv. di patol. nerv., Firenze, vol. ii (1897), pr. 3:3i-347.

[^137]: * To gainan idea of the recent eonceptions concerning the relation of the muelens to nutritive processes in the cell the artiele of Haherhndt (Ueber die Beziehungen zwisehen Function und Lage des Zellkerns bei den Pflanzen, Jena, 1887) and that of Korschelt (Beitrige zur Morphologie und Physiologie des Zellkernes, Zool. Juhrb., Abth. f. Amat., Bi. xxvi, 1886) may be consulted.

[^138]: * Rumpf, 'Th. Zur Degeneration durchschaitener Nerven. U'ntersuch. a. d. physiol. hust. d. Vuiv, Ileidelb., Bal. iv (1882).

[^139]: * Strong confirmatory evidence has since been odduced by Warrington and van Gehuchten. Vide supra.
 \dagger ('f. Nissl's experiments.

[^140]: * Lagaro, K. Sulle alterazioni delle cellule nervose dei gangli spinali, in seguito al taglio della branca periferica o centrale del loro prolnuganento. Riv. di patol. nerv., Firenze, vol. i (1896), pj. 457-4\%0; also, Sul comportamento delle cellule nervose dei ganglê spinali in seguito al taglio della banca centrale de loro prolungamento. Ibid., vol. ii (1897), pp. 540-543.

[^141]: *This i. Woresester, vous System

[^142]: * This is apmarently true even inside the cental nervous system. (f. Worester, W. L., On Regemeralion of Nerve Fibres inside the Central Nervous System. J. Nerv, and Mont. Dis., N. Y., vol. xxv (1898), p. 694.

[^143]: * Edinger, L. Vorlesungen neber den Ban dor nervisen Contralorgane des Mensehen und der Thiere fïr Amate und stalirende. F. Aull., Daipz., 189\%, 398 pp., 8vo.

[^144]: * Cf. Tschermak, A. Ueber den eontralen Verlanf der anfstrigenden Ilinterstranghahnen und deren Beziehungen on den Bahnen in Vorterseitenstrang. Arch. f. Anat. I. Physiol., Anat. Abth., Leip\%. (1898), S. 291-400.

[^145]: * ('f. Ilell, II. Areh. f. Anat. h Physiol., Auat. Abth.. Leipz. (1893). \therefore S:36. Also the mumerons publications of Panl Flechsig und of W. von Bechterew.

[^146]: * In this comnection it must not be forgoten that the nenrones within the nerve centres can be and often are very signifieantly alfected by influences dependent upon alterations in the blood and lymph. It would be a grave error to assume that all the phenomena in the central nemrones are dependent upon reactions ealled forth by impulses coming in through the peripheral centripetal fibres. The respiratory mechanism, for example, is largely of a chemieal charaeter. This, however, is so obvions when one's attention is direeted toward it that further discussion here is unneeessary.

[^147]: * Blix, M. Experimentalle Baträge zur Lösung der Frage neber die specilisehe Energie der Hautnerven. Zhschr. f. Biol., Bd. xx (1N84), S. 141.
 \dagger Goldscheider, A Gesammelte Abhandlungen neber die Physiologie des Muskelsiunes. Leipz. (1898).
 \ddagger von Frey, M. Beiträge zur Sinnesphysiologie der Ilant, i, ii, iii, iv, Leipz: (1894-97). Aus den Berichten der math.-phys. ('l. d. k. Suchs. Gr'sellsch. der Wissensch., July 2 and Dec. 3, 1894, Mareh 4, 1895, and Aug. 2. 1597. Akso, Untersuchungen ueher die Sinnesfunctionen der mensehidichen Haut. Birste Abhandhang. Bruckempfindung und Schuncer. Ahharll. d. math.-phys. Cl. der k. Satchs. Gesellsch. d. Wissenseh., Leipz., Brl. xxii (1896), No. iii, S. 195-26io.

 \| Peger, J. Ueber din periphorischen Endigungen der motorisehen uad sensibun Fasern der in den Plexus brachatis des Kaminehens eintretenten

[^148]: * Kranse. W. Beitritge aur systematisehen Neurologie des mensehtichen
 3ñ.-Beitrige zur Nemrolngie der when Wxtremitial 4, Leipz. n. Heidelh. (18(0.0).-Die Amtomic des Kaminchen, in topegraphiseher und operativer liäeksicht bearmeitet. 2. Aufl., Laipz. (1884), 8vo.
 +Turck, 1. Vorlinfige Ergobnisse von Experimental-T'ule 'ungen
 Nervenpare. Sitzungsh, I. K. Akal. d. Wissenseh. Math.-haturw, di., Wien (180̃6), S. 3; also Denkschr. d. Wiener Akad.. Bd. xxxix (1869).

[^149]: * Walsh, I. The Amatony of the Bruchial Plexus. Am. J. M. Sc.,

 + Herringham, W. P'. The Minute Anatomy of the Brachial Plexus. Proc. Roy. Soc. Loml., vol. xli (1886), P1. 42:3-441: also Phil. Tr. Land., लlexvii (1885).
 \ddagger Paterson, A. M. The Grigin and Distribution of the Nerves to the Lower Limb, .J. Amat. and Physiol., Lond., wol. xxviii (1893-94), ip. 24: 169.
 \# Sherrington. (: S. Expuriments in Examimation of the Peripheral Distribution of the Fibres of the Posterior Roots of some Spimal Nerves.

[^150]: * Sherrington, C.S. Experiments in Examination of the Peripheral Distribution of the Fibres of the Posterior Roots of some Spinal Nerves. Part II. Phil. Tr. Loud., B. (1898), vol. exe, pp. 4ij-186. Absir. by L厶. Brurs int Neurol. Centralbl., Leipz., Bd. xvii (1898), S. 1041-1046.

[^151]: * 'This is in all probability not true of the sensory impulses collected by means of the neurones of the sympathetic system; these impulses, it is probable, pass through a chain or series of indivilual nemones before arriving inthe eerebrospinal system. They are carried by mems of the rami commaniemates into the dorsal roots of the spinal nerves. Their further fate is not yut dear. Some of the sympathetic axones end within the spinal ganglia about the bodies of spimal ganglion cells, and the centripetal inpulses wheh they aurry cond then be taken into the spimal corl by mems of the central prolongations of the spinal gamglion cells. It has been asserted by some investigators that a certain mumber of sympathetio axones fuss from the rami communicmate direetly through the ganglia, or past them into the dorsal roots and so into the spinal cord withont internption. Nore researeh is moeded before entirely satisfactory statements ean be made regarding these points.

[^152]: * ('f. Retzius, G. Ceber die neuen Prinzipien in der Lehre vou dor Einrichtung des sensiblen Nervensystems. Biol. U'ntersnch., Stockhohn, n. F., Bd. iv (1829), s. 49-56.

[^153]: * von Lenhossek, M. Ueher den Ban der Spimalgangliemzellen des Menschen. Arch. f. Psychiat. u. Nervenkr., Berl., Bd. xxix (1896-97). S. 346-380.
 \dagger Covazzani. E. Intorno ai gangli spinali. Arch. ital. di clin. med., Mihano, vol. xxxvi (189\%), ply. 41-in3.
 \ddagger lagaro. F. Sulle allerazioni delle cellule nervose doi ganglia spiati. Riv. di patol. nerv. e ment., Firenze, vol, i (1896), Nos. 8 and 12.

[^154]: * Kallins, E. Endigungen sensibler Nerven bei Wirbeltieren. Merkel Bonnet's Ergebn. d. Anut. n. Entwickelungsgesch., Bd. v. (1895), Wiesbaden, 1806, S. 55-94.

[^155]: * Retzins, G. Ueher die sensiblen Nervenendigungen in den Epithelien bei den Wirbelthieren. Biol. Untersueh.. Stoekholın. n. F.. Bd. iv (1892), S. 37-44.-Finige Beitrige zur Kenntniss der intraepithelialen Endigungsweise der Nervenfasern. Biol. Untersuch., Stoekholin (1894), n. F.. Bh. vi, S. 62-64.

[^156]: * Cohuheim, J. Ueber die Eutigung der sensibten Nerven in der Hornhaut. Areh. f. path. Anat., ete., Berl., Bd. xxxviii (186̃), S. 843-386.

[^157]: * Macmlum, A. B. The Nerve Termintions in the Cutaneons Epithelimen of the Tatpole. Quart. J. Mier. S.e., Lond., n. s., vol. xxvi, pp. 53-50.
 + Schulze. F. F. Freie Nervenemten in der Epidermis der Knochenfische. Sitzangsb. d. k. Prenss. Akul. d. Wissenseh., phys-math. ('l. (1802), No. viii, S. 87, 88.
 \ddagger von Gehuchten, A. Les terminaisons nerseuses intra-ćpidermiques chea quelyues mammiferes. Cellule, Lierre et Louvain, t. ix (1893), fase. ${ }^{2}$, pp. 301-331.
 \# Saymonowič, W. Beitriige zur Kemntniss ler Nervenendigungen in Hautgebilden. Areh. f. mikr. Anat., Bomn, Ba, xlv (1895). S. 694-6int.
 || Bethe, A. Die Nervenendigngen in (iammen und in ler Zunge des Frosches. Areh. f. mikr: Anat., Bonn, Bd. sliv (1894), S. 185-20t.

[^158]: * Saymonowica, W. Beitrige zur Komntniss der Nervenendigungen in Hantgebiden. Ueber Ban und Einlwickehng der Nervonenfigungen in der Solmaze des Schweines. Areh. f. mikr, Jamt., Bomn, Bd. xhe (1895), s. 624-635.

[^159]: * Grandry. Recherches sur les corpuscles de Pacini. J. de l'mint. et plysiol., ete., Par. (1869).

[^160]: * Dogicl, A. s. Dic Nervenendigmgen in Tastkärperchen. Areh. f. Amet. n Physiol., Auat., Abth., Laipz., Jahrg. (1891), S. 182-192.
 f Geberg. A. Veber die Innervation der Gamenhat bei Schwimmvägeln. Internat. Monatschr. f. Anat. u. Physiol., Leipz., Bal. x (1893), S. 205-240.

[^161]: ＊Bonnet，R．Stulien neher die Innervation der Harbiaige der llans－ thiere．Morphol，Jahrb．，Leipr．，Bd，is（18is），s．3：3？－398．
 ＋Merkel，Fr．Tastzellen und Thstkëperehen bei den llaustieren und beim Menschen．Areli．l．mikr．Anat．，Bom，Bd．xi（18i6）．
 \ddagger Arnstein，C．Die Nerven der behanten Hant．Sitzungsb．d．k．Akat． （1．Wissensell．Math－－naturw，Cl．，Wien，Ill．Abt．，Oktober， 18.6.
 \＃Vian Gehuchten，A．Les nerfs des prils．Bull．Acad．roy．de se．de
 I＇Acal．roy．de Belg．，Brux．，t．xlix．1893．－Contributions a lótude de Jín－ nervation des poils．Anat．An\％，dema，Bd．vii（1892），st 341－34s．
 $\|$ Retzins，G．Leber die Nervenendignngen an den Haren．Biol．
 weise der Nerven an den hatren des Mensehen．Biol．L＇ntersuch．．Stoek－ holm，n．F＇．，Bd．vi，s．（61－6＇．

[^162]: * Orra, Li. La termimaione nowosa nei peli. Boll. R. acead. di Roma, Amo xix (1892-1893), Fise 7, pı, 762-76\%.

[^163]: * Ostrombow. P. Die Nerven der Simmshare, mitgeteilt v. Prof. Arnstein. Anat. Auz.. Jena, Bd. x (1890), 九. $781-790$.

[^164]: * Retzius, G. Zur Kenntniss der Nervenendigungen in den Ziihnen, Kleinere Mittheil. ans dem Gebiete der Nervenhistologie. Biol. Untersuch., Stockhohn, n. F., Bi, iv (1890), S. 65-66.-Uteher die Nervenendigungen in den Ziihnen bei Amphibien. Biol. Untersuch., Stockholm, n. F., Bil. v, S. 40-41.-Zur Kenntniss der Endigungsweise der Nerven in den Zähnen der Saügetiere. Biol. Untersuch., Stoekholm, n. F., Bht. vi, S. 54.

[^165]: * Morgenstern, M, Ueber das Vorkommen von Nerven in den harten Zahnsubsianzen. Doutsche Monatsehr. f. Kahnh., Leipz.. Jaheg. x (1892), Okiober, S. 436-43\%-Weiteres weber Vorkommen von Nerven in den harten Zahnsubsanzon mod neber eime Methote sie mufafinden und zu konservieren, [binl., Jithrg, xiii, S. 111-114.

[^166]: * Läse, (${ }^{\circ}$. Ubher die Nersenemdignugen in den Zailmen. Denatsche

 \dagger Coneati. (i. Norvi del pulmoni. Notapreventiva, presentata alla reatr Acemd. di bologm wella Sessione del to Gemaio, 188s.-Sopra il distribuimento e la terminazone delle fibre nervee nei pulmoni dela rana tempo-
 194-003.--latorno al modo onde i mervi si distrihniseono e terminano nei polmoni e nei musedi addominali del 'lriton cristatus. Internat. Momet-

 \ddagger Berkley, II.J. Studies in the Liver. Intrinsic Nerves. Johns Hopkins Hosp. Rep., Balt. (1sid)
 \# Korolkow. P. L'aler die Nervenendigungen in der Leber. Amat. Aпะ., Jema, BA, viii (1893), s. 751-753.

[^167]: * Müler, E. Kur Kenntniss der Ausbreitung und Eudigungsweise der Magen-, Darm- und Pankreasnerven, Areh. f, mikr. Anat., Bonn, Bd, xl, S. 390-409.
 + Dmitrijewski, P. Ueber die Nervan des Mileddrifisen. Itiss, Kism, 1894, alistracted by Stieda in Nerkel-Bomel's Frgebn. der Amat., Bh. v (1895), Wiesh., 1890.

[^168]: * Opl. cit.

[^169]: * Wuguer, R., und G. Meissner. Teher das Vorhandensein bisher unbekannter eigenthümlicher Taskörperchen (Corpuseula tactus) in den Gefühswirzehen der menschlichen Itant und ueher die Endansbreifung sensitiver Nerven. Nachr. v. il. k. Gesellseh, d. Wissenseh. u. d. Georg-Ang.-Univ. Götting., 1852, S. 17-39. Also Meissner. G. Beitrige zur Anatomie mul Physiologie der llant. Laprig. 1853.-Zarr Lehre vom 'Tastsimn. Ztsehr. f. rat. med., Ileidelb., n. F'.. BA. iv (1854), S. 2(00-280,-Untersuchungen ueber den T'ustsinu. Ibid., 3 R., Bd, vii (1859), S. 92-118.

[^170]: ＊Kranse，W．Die terminalen Kïrperehen der einfach sensiblen Nerren． Hanover， 8 vo，1860．－Die Nervenendigung in den Tustkörperchen．Areh． f．mikr．Anat．，Boun，Bd．xx（1881－89），S．212－221．
 \dagger Dogiel，A．S．Die Nervenendigungen in Tustköperchen．Areh．f．Anat． I．Physiol．，Anat．Abth．，Leipz．，1891，S．181－192．－Dic Nervenendignngen in Meissner sehen Tastkörperehen．Internat．Monatsehr．f．Anat．u．Physiol．， Leipz．，Bd．ix（1892），S．76－85．
 \ddagger Smirnow，A．Ueber Endkolben in der Maut der Planta pedis und neber die Nervenendigungen in den Tastkörperchen des Mensehen．Internat． Monatsehr．f．Anat．u．Physiol．，Leipz．，Bd．x（1893），S．241－247．

[^171]: * Dogiel, A. S. Die Nervenendigungen im Lidrande und in der Conjuuctiva palpbr. des Mensehen. Areh. f. mikr Anat., Bonn, Bd. xliv (1894-95), S. 15-25.
 \dagger Ruffini, A. Di un nuovo organo nervoso terminale e sulla presenza dei orpuscoli Golgi-Mazzoni nel connettivo sottocutnneo dei polpastrell delle aita dell' uomo. Mem. d. R. acend. t. Lineei, Amo eelxxxvii (1893).-Sur un nouvel Organe nerveux terminal et sur ln présence des corpuseules GolgiMazzoni dans le conjonetiv sous-cutané de la pulpe des doigts de l'homme. Areh. itnl. de biol., Turin, t. xxi (1894), pp. 249-265.

[^172]: * Sfameni, P. Recherches comparatives sur les organes uervenx terminaus de Ruflini. Anat. Anz., Jema. Bl. ix (1894), S. 671-676.
 \dagger Kruuse, W. Die terminalen Körperchen der einfach sensiblen Nerven. Hanover (1860), 8vo.

[^173]: * Herbst, G. Die Pacinischen Körper und ihre Bedentung. Ein Beitrag zur Keuntuiss der Nerveuprimitirfasern. Göttingen, 1848, 8vo.

[^174]: * Dogiel, A. Die Nervenendigungen in Tastkärperchen. Areh. f. Anat. u. Physiol., Anat. Abth., Leip\%, Jahrg. (1891), S. :81-192.
 \dagger Op. cit.
 \ddagger Retzins, G. Die Pacinischen Körperehen in Golgiseher Fiarbung. Biol. Untersuch., Stockholm, u. F., Bd. vi (1894), S. 65.

[^175]: * Rublini, A, Di una particolure reticelha uerrosa e di atemi eorpuscoli del Patini che si trommo in concessione cogli organi museolo temeline del

 -Siur un rétiende nervenx spécial et sur quelques corpuseles de lacini qui se tronvent en comexion avec les organes musculotendineux du chat. Areh. ital. de biol., Turin, t. xviii (1892), pp. 101-10n.-Also, Sur un nouvel organe nervenx terminal et sur lu présence des corpuseles Golgi-Mazzoni dans le conjonetiv sous-coutané de la pulpe des doigts de l'homme. Areh. ital. de hiol., Turin, t. xxi (1894). pr. 249-265.-Sopra dui peeciali modi d'innervazione degli organi museolotendinei di (iolgi con riguarto speciale allat st ruttura del tendincto del organo museolo-tendineo ed alla maniera di comfortarsi delle filire nervose vasomotorie nel perimisio del gatto. Nonitore $\%$ ool. ital., Firenze, vol, viii (1897), ip. 101-10.7.
 + Mazzoni. Oservazioni microscopiche sopra i eosidetti corpuscoli terminali dei tendini dell yomo e sopra aleune particolari piastre nervose sujurficiali che si trovano nei medisimi tendini. Mem. Accad. d. sc, d. Ist. di Bologma, S. 6, vol. 1 (1891).
 \ddagger Wrilhusthörperchen of the Germans.
 \# Letmins, (G. Ueber die Fhdignugsweise der Nersen in den Genitalnervenkïperchen der Kaninchen. Tuternat. Monatschr. f. Anat. u. Physiol., Leip\%.. Bi. vii (1×90), S. $329-333$.
 \| Dogiel, A. S. Die Nervenendigungen in der Want der aenseren Genitulorgathe des Menschen. Areh. f. mikr. Anat., Bomm, Bd. xil (1893), S. 588-619.

[^176]: * I'Abundo. La inuervazione della dura madre cerebrale. Communicazione fatta alla societa. Riforma med., Anno x, No. 42 (1884).
 † Jaeques, P. Note sur l'inuervation de la dure-mère cérébrospinale chez les mammifères. J. de l'unat. et physiol. [ete.], Par., t. xxxi (1895), pl. 596-609.
 \ddagger Aequisto, V., ed F. Pusateri. Sulle terminazioni nervose nella dura madre cerebrale dell' nomo. Riv. di patol. nerv., Firenze, vol. i (1896), pp. $267-270$.

[^177]: * Golgi, C. Ueber die Nerven der Sehnen des Mensehen und anderer Wirbeltiere und ueber ein nenes nervoses musculo-tendinöses Endorgan. Untersuchungen nebor den feineren Bau des centralen und peripherischen Nervensystems. Uebers, v. R. Theuseher., Jema (1894), S. 203-216.
 \dagger Ciaccio, G. V. Intorno alle piastre nervose fimali ne'tendini de'Vertebrati; muove investigazioni microseop. Mem. Aceal. d. sc. d. Ist. di bologna. 1889. 4 s., vol. x (1890), p. p. 301-324.—Sur les playues nerveuses fimales dans les tendons des vertébrés. Nouvelles reeherehes inicroseopiques [Transl.]. J. de microg., Par., t. xiv (1890), 172: 2101: 234.-Nuove investigazioni mieroseopiche intorno alle piastre nervose finule sui tendini delle 5 classi di vertebrati. Rendic. Aceal. d. se. d. ist. di Bologna (1890-9t), pp. 19-20.Sur les phaques nerveuses timules daus les temions des vertébrés. Areh. itul de biol., 'Turin, t. xiv (1890), pp, 31-it.

[^178]: * Smirnow, A. Veber die sensiblen Nervenendigngen in Heraro bri

 \dagger Cuceati, G. Lutorno al modo ombe i nervi si dist ribuiseono e terminano nei polmoni e uei museoli adilominali del Triton eristatus. Intermat. Momatsehr. f. Aunt. u. Physiol., Leip\%., Bi. vi (1889), S. S:3i-2.0.9. Also Bull. d. se. med. di Bologna. 6. s., vol. xxiii (1889). Ip, 304-30z.
 \ddagger Smirnow, A. Ueber Nervenendkniluel in ter Froschlinge. Anat. Anz, Jena, Bil. iii (1883), S. 258-961.
 \# Melkich. r Kemminis des Cilintköpers und der Iris bei Vogeln, mitgetheilt von Irof. Arnstein. Amat. Anz., Jenal Mal. x (1895). s $28-35$.

[^179]: * Agababow. A. Dic Imervation des C'iliurkörpers. Auat, Auz., Jena, Bd. viii (1802-933), S. 5月5-501.
 + Forster. Iamara. Zur Kemnoniss der Muskelspindeln. Areh, f. path. Amut., etc., Berl., Bd. exxxvii (1894), S. 121-154.

[^180]: * op. cit.

[^181]: * Ihorsley, V. Short Note on Sense Organs in Muscle and on the Preservation of Muscle Sipudles in Conditions of Extreme Mnseular Atrophy, following Section of the Motor Nerve. Brain. Lond., vol. xx (1897), p. 375.
 + Spiller, W. G. The Neuro-Muscular Bundles (Muskel-Knospen, Muskelspindeln, faisceanx nemro-musculaires). J. Nerv. and Ment. Dis., N. Y., vol. xxiv (1897), pp. 626-630.
 \ddagger Sherrington, C. S. On the Anatomical Constitution of Nerves of Nkeletal Museles; with Remarks on Recurrent Fibres in the Ventral Suinal Nerve-Root. J. Physiol., ('mubridge, vol. xvii (1894), pp. 211-258.
 \# Kerschner, L.، Op. cit., Anat. Anz.. Jena, 1888, S. 9.95.
 $\|$ Trinchese, S . Contribuzione alla conoseenza deifusi museolari. Mem. r. Aecad, d. se., d. Jst. di Bologna, 4. s., vol. x, 1889 [1890], pp. 715-725. Also Transl.: Contribution ì la eomaissance des fuseaux museulaires.

[^182]: * Ruffini, A. Sulla terminazione uervosa nei fusi museolari e sul horo signifiento fisiohgrioo. Noth preventiva. Alii d. r. Aecad. d. Lineri. ('l. di se. fis., mat, e mat.. Romm, D.s.. vol. i, 1892.-Sur la termination nervous dans hes faisecoux musculairesel sur leur signifieation physiologique. Areh.
 recenti studi dell mpparalo mervoso nei fusi maseolari. Anat. An\%., dena, Bd. ix ($1 \times 5: 3-04$), s. s0-88.-Sulla fina abatomin dei fusi nemro-muscolari del gatao e sul loro significato fisiologico. Monitore \%ool. ital., Firenze, vol. vii (1896), 1p. 49-52.

[^183]: * Ituber, (i, ('.. and Ladta M. A. De Witt. A Comtribution on the Motor Norve Eindingsand on the Nerve Eindings in the Musela Spindles. I. ('omplo Nemmol, (iranville, vol, vii (18:98). Ill 169-2:0.
 an Maskelfasern und (iediassen nachzuweisen. Areh. f. Anat. n, Physiol.,
 muskuliar Nemenmeligugen hei Schlagen und Frizehen. Areh. f. mikr.

[^184]: * Batten, F. E. The Muscle spindle under Patholegical Conditions. Brain, Lond., vol. xx (1897), lip. 138-179.
 \dagger (iriunbam, A.S. Note on Masele Spindles in Psendo-Hypertrophic laralysis. Brain, Lond., vol. xx (189\%), 1p, 367-367.
 \ddagger Berkley, II. J. On Complex Nerve Terminations and Ganglion Cells in the Musenlar Tissue of the Heart Ventricle. Anat. Anz., Jena, Bd. in ($1893-94$), s. 33-42.
 \# Dogiel, J., u. Tumarzew. Contribution to the Comparative Anatomy und Physiology of the lleart. (Russian) Medyeyna, Kasan (1893), Nos. 46 and 47. Abstract in Merkel-Bonnet's Ergebnisse der Auat., Bl, iv (1894), S. 299 ; also Dogiel, A. S. Die sensiblen Nervenendigungen im Herzen und in den Blutgefitssen der Saïgethiere. Areh. f. mikr. Anat., Bonn, Bd. lii (1898), S. 44-io.
 || Ileymans, J. F., et L. Demoor. Étude de linnervation du cour des

[^185]: vertébrés à Jaide de la méthode de Golgi. Mém. eouron. Aemb. roy. de méd. de Belg., Brux., t. xiii (1894).

 * Jacques, 1 . Recherehes sur les nerfs du cour chez la grenouille et les mammiferes. J. de J'unat. et physiol., etc., Par., t. xxx (1894), pp. 620-64s.
 \dagger The sensory nerve entings in the heart deseribed by smirnow are situated in the connective tissue, not in the museld.

[^186]: * Stammitiesprt of the (iermans.
 \dagger Lissaner. H. Buitrag zum Faserverlauf im Hinterhorndes menschlichen Rückenmarks and zum Verhaten dessethen bei Tahes dorsalis. Arch, f. Psvehiat. u. Nervenkr., Berl., Bil. xvii (1886), S. 3 亿九-488.

[^187]: (18;6) and expectially in his article Jot die Tabes dorsalis eine "systemErkranking." Nemol. Centralhl. Leip\%.. Bd. ix (15:00), S. :3:3 ; i2.

 + Von be hterew, W. Lhe Latmughahom in Gehirn mul härkenmark. I."jpig (1s94).
 \ddagger Kamsin, P. Das Fasprysm des Räcisemmarks, entwickelungsgesehichtlich untersucht. Moskan (180. Abstmet hy cieda in Merkel-

[^188]: * Earher, Flechsig helieved that the fibres of (boll's fasciculus have their origin also in the dorsal zone, and perhaps even more widely. They are mone momerons in the medial portion of the middle rowt zone than in the lateral portion. Fleehsig helieves, however, that the fibres of Goll's fasciculns really represent intramedullary continmations of dorsal ront fibres, and urges against von Bechterew's objection that the dorsal roots are all mednilated before Golls fascienlus, that his own observations show that when the fibers of Goll's faseiculus receive their myelin sheaths there are still many fibres in the forsal routs which are non-medultated.
 + It will be noticed that this reseription belongs to the perion preceding that in which collaterals were distinguinhed from terminals.

[^189]: * Singer, J. Ueber seconditre Degeneration im Ritckenmark des llmudes. Sitzungsib, d. k. Akad. d. Wissenseh., Math-r turw. Cl., 3. Abth., Wien, Bd. luxiv (1882), S. 390-419.
 + Kahler, O. Ueber die Verinderungen, welehe sich im Rïckemmarke in Folge einer geringradigen Compression entwickeln: nobst cinem die secundiare Dageneration im Räekenmarke des Hundes betreffenden Anhang. Atsebr. f. Indilk. Prag., Ba. iii (1882), S. 18i-\$32.
 \ddagger Tooth. II. II. The Goulstonian Lertures on Secondary Degeneration of the Spinal Cord. Brit. M. J.. Lond. (1889), i, Ip. 753; 825; 85:3. Also Reprint, London (J. A. Churchill), 1889.
 \# Singer, J., und E. Mïnzer. Beitrige zur Anatomie des Centralnervensystems insbremdere des Räekemmarkes. Denksehr. der Wiener Akad., Bd. Ivii (1N9)-'91), S. 5t6.

[^190]: * Schultze. Beitriage zur Lehre von dem sekumbiren Degeneration im Riuckemank des Menschen metst Bemerkungen neber die Anatomie der

 + Ilofrichter, R. Ueber anfteigende Degencrationen des Ritickemarkes auf (irmallage pathologisch-anatomiseher C'utersachung. Jena, 188:3, 8vo.
 \ddagger Op. cit.
 \# P'feiffer, R. Zwei Fialle von Lithmung der unteren Wurzeh des Plexus brachialis (Klumpke'sche Lähumgr). Dentsche Ztschr. f. Nervenh., Leipz., BI. i (1891), S. 345-370.
 || Gombant, A. Bull. Soc. amat. Je P'ur., t. lxvi, 1891.
 asontas, J. Sur lótat de la moelle épinime dans dens eas de compression thes raciues postéricures. Compt, rend. Sot. de biol., Par., 9. s., t. y
 consécutives aux lésions des racines postérieures. Rev. de méd.. P'ar., t. xiii (t : $: 3$), pp $200-313$.
 - Mayer, C. Zur pathologisehen Amatomie der liäckemmarkshinterstriagre. Jahrb. f. Psychiat., Leip\% u. Wien, Bi, xiii (18!4), s. si-10\%.
 \ddagger Nagentte, J. Étude sur min cas te tabes unimdiculaire che\% ma paraIytique général. Rev, neurol., P'ar., t. iii (1895), pp. 33it: 369: 401.
 t Souques. A. Dégénération avechdante du faisfeau de Burdach et du faisecau cunéform, "onséeutive à latrophic diune ratine cervicale posté-

 A Margulies, A. Zar Lehre von Verlaufe der hinteren Whreln beim Menschen. Neurol, Coulrallh., leipz., Ba. xv (1896). S. 34f-351.
 ** Dejerine d., et A. Thomas. Contribution is l'atude du trajet intra-médullaire des racines postérieures dans la région cervieale et dorsale superiente de la moelle épiniere ; sur hétat de la moelh "piniore dans un cas de paralysie fadicuhare inferpieure du plexus brachial dorigine syphilitique. Compt.

[^191]: * It is highly desirable that the spinal cord of any mdividual coming to antopsy with such a lesion should be removed carefully in toto. preserved in ten-per-eent formalin or fresh Müller's fluid, and handed over to a skilled nearologist for examination as soon as jossible after its removal.

[^192]: ＊The stadies of schalfer with Marchis methed（Arch．t．mikr，Amat．， Bomn．BI．sliii）show this to be probable．

 ## $+O_{p}$ ．cit．

 \ddagger Lewenthal．N．Nenerexperimentell－anatomischer heitragzurkmoniss einiger Bahnen im Gehirn und Raiekenmaris．Internat，Mematselr．f．Anat．

 \＃Paladimo，G，Contribution aux comaissances stre le mode se comporter des racines dorsales dans la moelle épiniere et sur les effets consíntifs à len： résertion．Arch．ital．de biol．Tmen，t．xxii（1894）．pp．5：3－i99．
 ｜｜Pellizzi，G．B．Sur les dégénérespences secondaires dmas le système ner－ venx central à la suite de lésions de la moelle et de la section de racines spinales：contribution it lamatomie et a la physiologie des voies cérébel－ leuses，Areh．ital．de biol．．Turin，t．xxiv（1895－96），pp．89－134．

[^193]:
 it? and Bd, lyix (18io), s. met.

 + Trunth. op. cit.
 \# op cit.
 logische Amatomie der Tabes forsalis. Arb, a. I. Inst. f. Anat. n. Physiol.

 || cip. cit., S. Ds?.
 Lubarsedp-()stertag's Lergebn, d. speriel. path. Morphol, u. Physiol. des Men-

 - Philippe. Cl. Contribution à létude anatominue et clinigue du tabes dorsalis. Paris, 180\%.

[^194]: * Marie. P. Leçons sur les matadies de la moelle, 8 , Par. (1s92), (G. Masson).-De lorigine exogene on endogine des lésions du corton postírient étudices comparativement dams le tubes et dans le pellagre. Semaine méd., Par.. t. xiv (1894). ן p. 17~20.
 \dagger Hoehe, A. Ueber secmadire Degeneration, speciell Wes Gowers'sehen Bindels nebst Bemerkugen ucher das Vehalten der Raflese hei Compression des Ritickemarkes. Arch. f. Psychiat. u. Nervenkr., Berl., Mel, xaviii (1896), S. 510-i)43.

[^195]:
 S. 1-66.
 \dagger Zappert, J. Beitrige zar absteigenden Dinterstrangsidegeneration. Neurol. Contralhl, Jap\%, Bid. xvii (1808), S. 102-107.

[^196]: * Itoche, A. Veber Verlanf mad Budigungsweise der Fasern des ovalen Hinterstrangeldes im Lendenmarke. Neurol. Centralbl., leipz., ibl. xr (1896), S. 154-156.-Ueber secundare Demeneration speciell des Gowersseben Biandels, nelst Remerknugen mbler dus Verhalten der Reflexe bei Compression des Ritekemmarkes. Arelı. f. Psyehint. u. Nervenkr., Berl., Bd. xxviii (1896), S. 510-543.

[^197]: * Bruce. A.. and R. Muir. On a Desconding Degeneration in the Posterior Columns in the Lumbar-Sacrul Region of the Spinal Cord. Brain, Lond., vol. xix (1896), pp. 333-345.

[^198]: * Dufour. Quelques eonsidérations sur le groupement des fibres endogènes dans les cordons postéricurs de la moclle, à propos d'un cas de compression des nerfs de la queue de cheval. Compt. rend. Soc. de biol, l'ar., 10. s., t. iii (1896), p. 449.

[^199]: * It must be pointed out, however, that such reliable observers as Dejerine and Spiller (Dejerine, J., et W. G. Sipiller. Contribution ì l'étude de la texture des cordons postérieurs de la moelle épinière: du trajet intamódullaire des rueines postérieures sucrées et louhaires inférientes. Comp. rend. Soe. de biol., Par.. 10.s., t. ii (1895). pp, 6き2-628) contest the extension of endogenous fibres into the triangle médiom, and von Lenhossék (op. cit., s. :93) believed (in 1895) that the middle part of the fusciculus cuneatus, athout the region of S'chultze's comma, and perhaps also the field on the dorsal periphery, are the areas in which the desecaling limbs of the dorsal root fibres run longitndinally. Whether or not, in view of the findings of Hoehe. Bruce and Muir, and Dufour in human cases studied since 1895, these observers have altered the opinions then expressed. I do not know. The carefully studied case of K. Schaffer (op. eit.) showed no degenerated fibres in the median zone of Flechsig, but this, as Hoche suggests, may be due to the fact that four months after the lesion is too late for satisfactory study by Marehi's methos.
 + Flatan, E. Das Gesetz der excentrischen Lagerung der langen Bahnen im Rackenmark. Ziselır. f. klin. Med., Berl., Bd., xxxiii (1897), S. 55-152.

[^200]: *Ramón y Gajal, S. Nuevas observariones sobre la estructura de la médula espinal de has mamiferos. Bareeloma (1890).
 \dagger Op. cit., S. 354-356.
 \ddagger Ehrlich mod Brieger. V'eber die Ausschaltung des Lendenmarkgrum. Ztsehr. f. klin. Med.. Berl., Bcl. vii, Suppl.-1lft. (188:3-84), S. 155-164.
 \# Minzer, L., und II. Wiener. Beitrige zur Anatomic u. Physiologic des Centralnervensystems. Lirste Milh. Veher dir Ansschaltung des Lembenmukgran. Areh. f. exper. Path. u. Pharmakol., Leipz., Bd. xxxy (18!in). S. 113.

[^201]: * This path to the corehellom apprewly corvesponts to v. Kïllikers
 dired to the cerohellum is desiguated bey some of tho German writers a

 forme following opon transwers lesion at innetion of the pars erevientis

 struetion par eompression lante de la gurne de eherad ed done terminal.

[^202]: * Golgi, C. Studi intologici sul midollo spinale, Areh, ital. per lo mat. nerv., Milano, vol, xviii (188t), pl. 155̄-165.
 \dagger Ramón y Cojal, S. Contribución al estudio de la extructura de la medula expinal. Rev. trimest. de histol. (1889), No. 3 y 4.
 \ddagger von K̈̈lliker, A, Leber den feineren Ban des Rä̈ckenmarks Sitzongsb, d. phys,-med, Gesellsch. zu Würzb., 1890, s. 44-i6.
 \# van Gehnchten, A. La moelte épiniere et le cervelet. Cellule, Lierre et Louvain (1491).
 $\|$ von Lenhossek, M. Op. cit.
 Δ Retzins, G. Biol. Untersuch., Stookholm, n. F. (1891 mad 189:3).
 \checkmark Peláez, I'. I. Anatomia normal de la médula espinal humana y algumas indicariones de amatomia comparada sobre el mismo orgamo. Matrid (1897), 569 рр., 12 mo .

[^203]: * The few enntrifngal fibres of dorsal roots met with in many animals form an exeeption to this rule. They have their origin in cells in the cord.

[^204]: * Ramón y ('abal. s. Las colaterales y bifuraciones de las races postoriones de la mónula expinal, demostratas eon el amble metilemo. Rev. de (lín., trap. y fam., Madrid, t. x (1896-95), p. 3-8; also, El aznl de metileno en los rentros nerviosos. Kev, trimest. mierog., Mahrid, wol, i, ip. 151-003.

[^205]: * Pierret's Bandeletles externes: Strimpell's W'urefzon"; Westphal's Wrurzeleintrillszone; von Bechterew's Grundbämdelu der Ilinterstränge; Flechsig's modere W'wzelzone; von Lenhossék's Einstrahlungszone or Retlexkollaceralenzone.

[^206]: * Mingazzini (Sulla fima struttura del midollo spinale dell nomo. Riv. sper. di freniat., Beggio-Fimilia, vol. xviii (1892), fisc. ii, Fig. i) has pietured collaterals which he assmes to be sensory passing throngh the vent ral commissure; but r. Lenhossek denies the existenee of any such fibres, and v. Källiker agrees with him.
 \dagger Possibly even in the eortex of the eerebellum.

[^207]:

 phits form purts of mits of whicle the cour ripetal path is one limb, while

[^208]: * Westphal, C. Veher einen Fall von chamiseher progressiver lailmmar
 glenzellengrupren im Be se des (ambomorinskerns. Areh. f. Esyehat. und Norvenkr.. Berl. IBd. xviii (188\%), S. Sis.

[^209]: * The observations of II. Ayers-A Contribution to the Morphology of the Vertebrate Ear, with a Reconsideration of its Funetions. J. Morphol., Bost.. vol. vi (1892), pp. 1-360; Ueber das peripherisehe Verhalten der Gehärnerven umd den Wert der Hanzellen des Gehörorganes. Anat. An\%. Jrma, But. viii (1892-9:3), S. 435-440-who formerly, at loast, helieved that aeonstic nerve fibres arise dircetly from the himir cells, is in disagreement with the findings of other investigators.
 + Retrins, G. Dir Endignngsweise des Gehörnerven. Biok. V'utersueh. Stockholm, n. F., BII. iii (1892), S. 29-36.

[^210]: * Bechterew, IV. Veber die innere Abtheilung des Strickköpers mod den achten Hirnnerven. Neurol. Centrabl., Leipz.. Bl. iv (1885), S. 145-147. \dagger Ilis, W. Zur (ieschichtedes Gehims sowie der rentralen und peripherischen Nervenbahnen. Abhur '. math.-phys. Cl. (I. k. sithe, (iesellseh. d. Wissenseh., Laipz, n. F', 135 (1sws), Bel. xiv.

[^211]: * This root, called by Meynert the innere Abtheilnug deve Striehkorpers. was earofilly studied and deseribed by C.F. W. Roller-Fine aufsteigende Aeusticuswurzel. Areh. f. mikr. Amat.. Bonn, Bd. xviii (1880). S. 403-408; and In Sachen der aufsteigenden Aeusticuswurzel. Areh. f. Psyehiat. u. Nervenkr.. Berl.. Bid. xiv (1883), S. 45x-460-but was erronenusly desiunatel by lim oufstfigende Wrazel. He believed that it hat its origin in the fiscriculus cunealus.
 \dagger Ounfrowie\%, B. Vxperimenteller leitrug zur Keuntniss des Ursprungs des Nervus aensticus des Kaninchens. Arch. f. Psychiat. u. Nervenkr.. Berl., Bd. xvi (1885), S. 711-742.

[^212]: * Sala, L. Sur loorigine du nerf acoustigue. Areh. ital. de biol., Turin, t. xvi (1891-90), 1p. 196-20i ; also in Monitore zonl. ital., Firenze, vol, ii (1891), p. ${ }^{2} 19$.
 + Iteld. II. Die centralen Balmen des Nervis acmstiens bei der Katze. Areh. f. Amat. und Physiol., Smat. Abh., Leipz. (1891), s. 271-291.-Die Emigungsweise der smsiblen Nerven im Gehirll. Areh. f. Amut. u. Physiol., Anat. Abth. Leip\% (1892), S. 33-39.-Veber cine directe aenstische Riadenbahn und den Ursprung des Vorderseitenstranges beim Menschen. Areh. f. Anat. th. Physiol., Amat, Abth., Leijz. (1892), s. 85t-264.-Die eentrale (io-

 \ddagger Martia, P. Zur Endigng les Norms acustiens in Gehirn der Katze. Anat. Anz., Jema, Bd, ix (18:33-94). S. 181-184.
 \# ('ramer, λ. Beitriagre zun leineren Amomie der Nedulan oblongata
 Jena, 18:

 Bresler, Leipzig, $18!\%$.

[^213]: * Sabin, Florence R. On the Anatomical Relations of the Nuclei of Reception of the Coohlear and Vestibular Nerves. Johns IIopkins Ilosp. Bull., Balt.. vol. viii, 1897, 1p. 253-259.
 + It is rather amusing to find that in the earlier history of the vestibular muelei the medinl nuclens was spoken of by Nehwnlbe as the Ifaupthern des Acusticus. Later the superior nuclens (v. Bechterew) was deseribed as the Hauptliern des Acusticus. It would be mofortunate if, in ureement with Kamon y Cajal und myself, still others, coming to the conclusion that the muclens of the descenting root is the principul meleus, should introduce a Hird Hauptkern des Acusticus!

[^214]: * For a study of the nuclens fustigii by (iolgi's method. see Rumon y Cajal. Ganglions cérébelleux. Bibliogr. unat., Par., t. iii (1895), p. 33.

[^215]: * Thomas, A. Les terminatisons econrabes de la racine labyrinthique. Compt. rend. Soe. de biol., P'ar., 10. s., t. v (1898), p1. 183-185.
 \dagger This ganglion in early embryonic life is a portion of the general fanshaped Ganglion acusticofaciale of IIis. The centripetal fibres arising from this ganglion decussate at the apex of the trimgular gunglionic mass. and enter the medulla in the form of two bundles-a lateral and a medial. The peripheral fibres diverge as the cochlear and vestibular nerves. The motor facial nerve, whose cells of origin are inside the pons, breaks through this ganglionic mass, carrying with it the group of cells corresponding to the geniculate ganglion. Cf. His, W. Die morphologische Betrochtung

[^216]: Allg. 'Itschr. f. Psychiut., cte., Berl., Bd, xlviii (1891-92), 心. 16-33.

[^217]: * Ohersteiner. H. Anleitung heim stadium de Banes der mervisen Cen-tral-Organe in gesunden on, kranken Zustiade. SI Aull, Letipaig (1896).
 + Op. cit., Bid. $\mathrm{ii}, ~ 心 . 』 80$.
 $\ddagger 11$ p. cit., S. 63)

[^218]: * Bregman. E. Ceber experimentelle anfsteigende Jegonemation motorischer und sensibler Himmerven. Arl, a, d. Inst. f. Amat. It Physiol. d. Centralnervensyst. an I. Wien. Unir., Leipz. u. Wien (18!2), S. 73-9\%,
 † IIm, II. - Analgesia, Thermic Anasthesia, and Ataxia resulting from Foei of Softening in the Medulla Ohlongata and Cerebelhm, due to Ocelusion of the Left Inlerior Posterior (erebellar Artery. A Study of the Couse of Sinsory and Co-ordimating Tracts in the Medulla Oblongata. N. Y. M. . ., rol. lxy (1807), pl. 513-in19.

[^219]: * In this comection the paper of A. F. Dixon-On the Course of the 'Faste Fibres, Edinh. M. J., n. s., vol. i (1897), 1p. 395-401-may be consulted with profit.
 \dagger These bodies appear to have been diseovered independently by Loven and sehwalbe in 186%.

[^220]: * Disse, J. Ueher Epithelknospen in der Regro olfactoria der Sänger.

 t von Lenbossék, M. Der feinere Ban mad die Nervenemdignngen der Geschmacksknospen. Anat. Anz., Jema, Bil, viii (1892-93), S. 121-127.
 \ddagger Retzins, G. Die Nimponendigumpon in dem Gesehmacksurgan der Silugetiere und Amphibien. Biol, L'ntersuch., Stockholm, n. F., Bd, iv (1892), s. 19-32.

[^221]: * It will thas be sern that in the nesal menens membrane of hman beings we meet with a sensory apparatus morphologically very similar to that which has been deseribed in the epilhelial surface of the fish worm,
 + Schulize. M. Ueherdie Eindigungsweise der Geruchsnerven und der Epitheliaggehide der Nasemsehlemhau. Ber, d, K, l'reuss. Akal. d. Wissenseh. \% Berlin (1856), S. E(04-in4.-Vutrrsuchugen weber den Ban der Nasenschleimhimt, namentlich die Structur und Lindigungsweise der Gernchsnerven beim Menschen und den Wirbeltieren. Abhand. d. Naturf. Gesellseh. an Halle, Bd. vii (1862) - Das Epithelium der Riechschleimhant des Mensehen. Centralbl. f. d. med. Wissenseh., Berl., Bd. ii (1864), S. $385-390$.

[^222]: * Ehrlich, P. Op. cit.
 \dagger Arnstein. Die Methylenbhufärbung als histologische Methode. Anat. Anz, Jena, Bd. ii (1887), S. 125-185.
 \ddagger Rumón y Cajal, S. Origen y terminación de las fibras nerviosas olfatorias, Gne, san. de Barcel. (1890).
 \# vau Gehurhten, A. Contribution i létude de la muqueuse olfactive che\% les mammiferes. Cellule, Lierre et Louvain (1891).

[^223]: * For interesting data concerning ineurate mensurements in the donain of the bulbus und tractus olfactorius, the reader is referred to the article by II. II. Donaldson und T. L. Bolton, The size of Several Cramial Nerves in Man as Indicated by the Areas of their Cross Sections. Ain. J. D'syehol, Worcester, vol. iv (1891-92), pl, 224-299.

[^224]: * von Brum, A. Beitrige zur mikroskopischen Anatomie der mensehlichen Nasenhöhle. Areh. f. mikr. Anat., Bomm, Bta, xxxix (1892), S. 68: 6.51.

[^225]: * 'Tartuferi, F. Sull' amatomiadella retina. Areh. per lese. med., Torius,

 histol, morm., cte., Malrid, Nos. 1 y D, Mayo, 1888. -Sur la morphologie et les comexions des chments de haŕtine des oismax. Anat. Anz., dena, Bd. iv (188:), s. 111-121.-Perquinas contribuciones al comecimiento ded sistema nervioso. 1II. La retina de los batracios y reptiles, Agosto (1891).-Notas prevemisas sobre la retima gran simpatico de los maniferos. Barechona Itic., 1891.-La retina de los Telosteos y alemas observaciones sobre la de los vertebrados superiores, Madrid, 1892.-Winnevo conceptode la histología de los eentros nerviosos. Rev. de cien, med. de Barcel. vol, xviii (1s92), pp. 361-376; 45\%-476, ete.-Lar rétine des vertébrés. Ceflule, bierre et Louvain, 1. ix (1894), pp. 121-2.46.-Nene Darstellmig vom histologisehen Bun des Centruluervensystems. Arch. f. Anat. u. Plysiol., Amat. Ahth., Leip\%. (1s93), S. 319-428.-Die Retim der Wirbethiere. Untersuchungen mit der GolgiCajal'schen ('hromsilbermethode und der Dhrlichsehen Methylenblanfirthungr. In Verbindung mit dem Verfasser zusummengestellt, nebersetat, und mit Einkeitung versehen von R. Greef, Wiesbaden (1894).
 \ddagger Dogiel, A.s. Ueber das Verhalten der nervizen Elemente in der Retima der Ganoiden, Reptilien, Vögrel, und Sïngethiere. Auat. Anz., Jena, Bd. iii (1888), S. 1:33-143.-Uebe: die nervösen Elemente in der Netahat der Amphibien und Vögel. Ibid., Bd. iii (1888). S. 342-347.-C'eber die nervösen Elemente in der Retina des Menschen. Areh. f. mikr, Amat., Bom, Bd. xxxvii, S. 31:-344--trber die nervösen Elemente in der Retima des Jenschen. Arch. f. mikr. Amat., Bomn, Bd. ©l (180) , S. s!-i88.-Zur Frage ueber den Ban der Nervenzellen und ueber das Verhailaiss ihres Aehseneyl-inder-(Nerven)-Fortsatzes zu den Protophasmafortsitzen (Demdriten). Areh. f. mikr. Anat., Bom, Bd. xli (189:), S. 62-87.-Neuroglia der Retima des Menselien. Areh. f. mikr. Anat., Bom, Bi. xli (189:3), N. 610-623.-Zur Frage neber das Verhalten der Nervenzellen an eimader. Arel.f. Amat. n. Plyysiol., Anat. Abth.. Leip\% (1893), s. 429-434.
 \# For one ganglion cell there are nbout one hundred rod and cone cells.

[^226]: * This view is all the more enticing in that recent studies tend to show that the outer limbs of the rods and cones represent structures formed of the eilia of the equalyual cells eoilent up and ghed together. ('I. Krmase, W. Uebersicht der Kemmtnise rom han der Relina in Jahre 1895. Sehmidt's Jahrh., Leipz., Bl. cexlix (1896), s. 96; 201.

[^227]: * Thomas, A. Les terminaisons centrales de la racine labyrinthique. Compt. rend. Soc. de biol., Par., 10 s., t. v (1898), No. 6, p. 183.

[^228]: * It should be mentioned, however, that some investigators, mong them Foster nnd Sherrington (Part III of Foster's 'lext-book of Physiology) and von Kalliker, mantan that the eochlear nerve is, by way of the strie neuslice and corpms restiforme, comectel with the cerebellum.

[^229]: * The nature of this decussation and its relation to the nuclei of the dorsal funiculi and to the lemnisems was long misunderstool. The myelinizntionstudies of Fleehsig first threw light on the subjeed. The Germans for a tomg time spoke of the decnssation as the obere Pyramidenkreuzuny to distinguish it from the molor deeussation or untere I'yramidenkrenzung.

[^230]: * Ramón y Cajal, s. Beirrag rum Studinm der Medulla oblongatn, des Kleinhirns und des Ursprungs der Gehirmerven. Deutsch von Bresler, Leip\%. (1896), s. 51.

[^231]: * von Bechterew, W. Die Leitugsbahmen in (ichima und Riaclenmark, Leipz. (189.4). S. 00.

[^232]: * For these the reader is referred to the large monograph on conduction paths published by I'. Flechsig in 18\%6, to his Plan des mensehliehen Gehirns, Leijra. (1883), and his articles in Neurol. Centralbl., Leijzz., Bd. iv (1885),

[^233]: S. 97 , and Bd. v (1886), S. 549 : and also to the following publicutions by W. von Bechterew : (1) Die Leitungsbahmen im Gehirn und Rückenmark, Leip\%. (1894), also 11 Aufl. (1899); (2) Ueber die hinteren Wurzeln, den Ort ihrer Endigung in der gramen Räckenmarksubstanz und ihre centrale Fortsetzung. Arch. f. Anat. u. Physiol., Anat. Abth., Leip\%. (1887), S. 126-136. Ueber die Sehleifensehicht auf Girmid der Resaltate ron much der entwiekelungsgeschichtlichen Methode ausgeführten Untersuchungen. Areh. f. Anat. u. Physiol., Anat. Abth., Leip\% (1895), S. 379-395. The valuable studies of myelinization by L. Ealinger: Zar Kenntniss des Verhafes der Hinterstrangfasern in der Medulla oblongata und im hinteren Kleinschenkel. Neurel. Centralbl., Leip\%., Bd. iii (1885), S. 73-76: of A. Bruce: Hhstrations of the Nerve Tracts in the Mid-and Hind-Brain, ete.. Edinb. and Lond. (1892) ; of 1. O. Darksehewitseh nud S. Frend: Ueher die Bezichmar des Strickkörpers anm Hinterstrang und Hinterstrangkern, nebst Bemerkungen neber awei Felder der Oblonguta. Nenrol. Centralbl., Leip\%, Bd. v (1886). S. 121-129; and of A. ('ramer: Beitriige \%ur feineren Anatomie der Meflulla oblongata. der Brïcke, ete., Jena, 189.4, should also be consulted.

 * I have not been able to satisfactorily locate this body, notwithstanding careful study of the serial sections.

[^234]: * The most medial bundles in the region of the lemniscus are mate up, in all probability not of eentripetal but of centrifugal fibres. They hecome medullated mueh later than the rest of the fibres of the kemniscus. The nature of these fibres will be disenssed in connection with those of the lemnisens medialis in general further on,
 † Singer, J., u. E. Mänzer. Denkschr. d. Akad. d. Wissensch., Wien, Math.-naturw. Cl., Bd. lvii (1890), S. 569.

[^235]: * Ferrier, 1)., and IV. A. Tumer. A Record of Experiments Innstrative of the Symptomatology and Degenerations following Lesions of the Cere-
 - Ilso. An Experimental Researeh nonn Cerebro-('ontieal Afferent nud Efferent Tracts. [hil. Tr., Lond., vol. exe (18:s). plp. 1-44.

[^236]: * 'Tsehermak, A. Veber den centralen Verlauf der aufsteigenden Hinterstrangbahnen umd deren Beziehaugen zu den Balmen in Vorderseitenst rung. Arch. f. Anat. u. Physiol, Auat, Abth.. Leipz. (1898). S. 291-400.
 \dagger The German terms ure: (1) Das ungekrenzte IFinterstrangkern-K7pinhirnsystem (ungekreuzte dorsule Nucteo-Cerebellarsystem): (2) Das kreuzende Ilinterstrongkern-Kleinhirnsystem (kreuzemde dorsale Niucleo-Cerebellarsystem) ; (3 u. 4) Die beiden krenzemden Ilinterstromykern-Grosshirnsysteme (Ilinterstranghern-Hanptschteifensysteme); (3)=Das IIinter-strangkern-Sehhïgelsystem; (4) = Das IIinlerstrangkern-Grosshirnrindensystem.

[^237]: * Iteh. II. Beitrige zur feineren Anatomie des Kleinhirns und des Itirnstmmes. Areh. f. Amat. u. Physiol,, Amat. Abth., Leipz. (1893), s. 43i-446.
 \dagger. Källiker, A. Handbuch der Gewehelehre des Menselmen, 6. Aull., Leipz. (1896).
 \ddagger Ranon y Cajal, S. Beitriige zum Studium der Meduln oblongata, ete. Dentsehe Teberset\%. Yon Bresler, Leip\%. (1896).
 \# Blumemu. Des moyunx du cordon postérieur et la substance de Rolando dans la bulbe. Neurol. Centrulhl., Leipz., Bil. xv (1896), S. 1129.
 $\|$ This nueleus, so designated by P. Fleelisig, appears to correspond to W. v. Bechterew's Nucleus reticularis tegmenti pontis: the latter anthor separates the ventral portion of the mucleus, that resting directly upon or even penctrating among the fibres of the medinl lemniseus, from the main mass, and calls it the medialer Schleifenkern, to distinguish it from the more laterally placed nuelens lemnisei lateralis, or lateraler siheifenkern.

[^238]: * Clarke, J. I. Phil. Tr., Loml. (18:51), Pt. II.
 \dagger Stilling, B, Neue Untersuehungen ueber den feineren Ban des Räekenumrks. Cussel (1859), 4to,

[^239]: * Mann, G. Struchme of Nerve Cells as shown ly Wax Models. Report of the Sixty-sixth Meeling of the British Assotiation for the Adrancement of Science, hold at Liverpool in 18:96. 少. 980-981.
 (1876). s. 90\%.
 \ddagger Mott, F. W. Dieroseopical Dxaminalion of Clarkes (ohtum in Man. the Monkey, and the Dog. .J. Anat, and lhysiol. Lomd. vol. xxii (188:-88).

[^240]: * Guaruieri, G., ed. A. Bignami. Ricerchi sni centri nervosi di un amputato, Boll. d, Soc, Lancisima d. osp. di Roma, vol, viii (188s), p. 16:3, The remder is referred also to the resarches of Bdinger and of Nott.
 t Gowers, W. R. Diagnosis of the Disemses of the Spinal ('ort. Lomblon (1897).-Bemerkingen upher die antero-laterale anfsteigedde Degeneration
 Bemerkngen neber den infsteigenden mbtero-fateralen sitang. Neurol. Centralbl, Lapa, Bil. v (1886), S, 150.-On the Antero-Iatemal Ascombing Tract of the Spinal Cord. Lameet, Lomal. (1886), i, p. 1153; also in A selepial, Lond., vol. iii (1886), plo. 278-281.

[^241]:
 Bol, xliii (1×04), s. 25:? 26.
 rachidian, dans le pont et dans l’ótare suprient de l"istlame. liev. méd. de

[^242]:
 der Vordermeitenatmareste. Areh, f. path, Amat., etc., Berl.. Bd. cxxi

[^243]: * Mott, F. W. Ascending Degencrations resulting from Lesions of the Spinal Cord in Monkeys. Brain, Lond., vol, xv (1802), pp, 215-829.
 \dagger Patrick, Ihugh T. Ueber anfsteigemde Degeneration nach totaler Queischung des Räckenmarkes (Amhang zu dem Aufsatze von Ir. Brans: C"ber einen Fall ron totaler tramatischer Zerstörmg des Raiekenmarkes, ete.). Arch. f. Psychiat. u. Nervonkr., Berl., lid. xav (1893). A. s:31-R44;

[^244]: * Russell, J. S. R. Contributions to the Study of Some of the Alferent and Efferent Tracts in the Spinal Cord. Brain, Lond., vol, xxi (1898), pp. 145-170.
 \dagger Hoehe, A. Ueber secundäre Degeneration, spectell des Gowers'schen Bündels, nebst Bemerkungen ueher das Verhalten der Reflexe bei Compression des Rückenmarkes. Arch. f. Dsychiat. n. Nervenkr., Merl., Bed. xxviii (1896), S. 510-543.
 \ddagger v. Sölder, F. Degenerirte Bahnen im Itirnstumme bei Läsion des unteren Cervicalmarks. Neurol. Centralbl., Leipz., Bd. xvi (1897), S. :308-312.
 \# Worotynski. 13. Zar Lehre von den seemetiren Degenerationen im Räckenmarke. Nentol. Contrabl., Leepz., ld, xvi (1897), s. 1094-1097.

[^245]: * Edinger, L. Veber die Fortsetzung der hinteren Rückenmarkswurzeln \%um (iehirn. Anat. Auz, Jena, Ba, iv (18s9), s. 1仓1-12s.
 \dagger Mott, F. W. Restlts of IEmisection of the Spimal Cord in Monkers. Phil. 'Tr., Lond. (1891): also, Ascending Deneneration, resulting from Lesions of the Spinal (ord in Monkeys. Brain, Lond., vol. xy (1802), pp. 215W9) ; also, Experimental Inquiry upon the Afferent Tracts of the Central Nervous System of the Monkey. Ibid., vol, xviii (1505), pp. 1-90; also, Die zuführenden Kleinhirubahnendes Rï̈ckemarks bei dem Affen. Monatschr. f. Psychiat. m. Neurol., Berl., Bl. i (1897). S. 104-121.

[^246]: * Op. cit. † Op. cit. \ddagger v. sülder, F., op. cit.
 \# 'Tschermak, A. Leher den centralen Verlauf der aufstaigenden IImterstrangbuhnen und deren Brziehungen zu den Bahmen im Vorderseitenstrang. Arch. f. Anat. u. Physiol., Anat. Abth., Leipz. (1898), S. 991-400.
 $\|$ Rossolimo, G. J. Ueber den centralen Verlanf des Gowers'schen Büntels. Neurol. Centralbl. Leipz., Bd. xvii (1898), S. 935-940.
 ${ }^{\wedge}$ Busch, C. Neurol. Centralbl., Leijzz, Bd. xvii (1898), S. 476.

[^247]: * 1 p. cit.
 + Ilis cufstpigrndes anterotuterales restiformales Cerebellarsystem.

[^248]: * The faseieulus ventralis proprins corresponds to the lordersfrumyrundbinndel of the Germans; their Seitenstrongreste inchudes the faseionlus lateralis proprins and Gowers' trucl. 'Thus, Fleehsig (Leitungshahnen, s. 909 ff.) deseribes the Seitenshrangreste as heing made up of two territories: (1) the rordere gemisehte Seiteastrangzone, and (2) the seitliche Grenzschicht der gramen Sultstatiz. As von Bechterew showed. Gowers' bundle corresponds to a portion of Flechsig's rordere gemischte Seitenstrangzone. The remander of the latter, tugether with the hateral limiting layer or fascienlus dateralis limitans (seitliche Grenzshicht der grouen Substanz), make up the Seitenstranggrundbundel or the fascionhes lateralis proprius (Fig. 399). The Germans often speak of the faseiculus ventralis et hateralis proprins logether as the Vorderseitenstrongreste.

[^249]: * Die seittiche (irenzschicht der grouen Suhstanz of Flechsig.
 \dagger von Becherew, W. Dir Laitmgshahnen im Gohirn und Rückemmark. Leipz. (1894).-Ueber das besontere, mediale bündel der seitenstringe. Neurol. Centralbi., Laipz.., Bd, xvi (1897), S. 680-689.
 \ddagger Mediales seitenstrangbiandel of won Bechterew.

[^250]: * Brace, A. Diun faisceau special de la zone latérale de la moelle épinière. Rev. metrol., P'at'. t. is (1896), No. 23, pp, 698-\%00: also, On a Special Tract in the Lateral Limiting Layer of the Spinal Cord. Scot. M. and S. J., Sdinb., vol. i (1897). No. 1.
 top. cit.
 \ddagger von Bechterew, W. Veber dio längsfaserzaige der Fommatio retienlaris medullie oblongita of pontis. Neurol. ('entralbl., Bal. iv (1880), s. $337-3.46$.
 \# Held, H. Die Beriehungen des Vorderspitenstranges an Mittul-und Hinterhirn. Abhamdl. der math. phys. ('l. der K. Sachs. Gesellseh, d. Wissensch., Bd. xviii, No. 6. Jeiprig (1892).

[^251]:

 ludimane (

[^252]: * Misslawsky's "respiratory mucleus," Oberstemer's hern des lorderstrougyrumbündels or, as I call it, the nuclens fumionli ventralis (Fig. 402).
 \dagger Nuclens centralis of Roller, the mass of formatio reticularis grisea seen in sections taken through the middle of the olive, situated midway between the pranids and the floor of the fourth ventricle and separating the faseiculus longitudinalis medialis from the stratmintrolivare lemnisei (Fig. 403).
 \ddagger A mass of formatio reticularis grisen mar the raphe in the pars dorsalis poulis. It corresponds in part at least to Flechsig's nucleus eentralis. of latratis medius.
 \# is the muclens centralis superior is meant the mass of gray matter seen on both sides of the raphe, ventral to the fascienlus longitminalis medialis in sertions taken at a level just below the collioulus inferior of the corpora qualrigemina. The nuclens centralis suparior extends from the decussation of the buthinm eonjumedimm above through the region of the cental tegmental mockens, being situated mainty dorsal to the lattor. The tibres of the formatio reticularis ،urve outwarl to give phace to this molens. Von berherew ealls it the innerer oberer efentroler hern (unclens centralis superior medialis), to distinguish it from a small mass of large cells (muelens ermintis superior lateralis) at about the level of the molens lemmisei lateralis, situated in among the white fibres of the midale of the formatio retienaris on ench side (Fig. 404). This latter nuelens lies in the angle mule by the main derussatio brabiif conjunetivi with the deenssating fibres of the commissura between the mucleii Nn, vestibulormm superiores of the two sides (Fig. 405).

[^253]: * Das aufsteigeude (centrala.rone) Spinoctrelralsystem im dorsalen Längsbündel of Tsehermak.

[^254]: * I'orderseitenstrangrest dei Mittellinie (Held).
 \dagger The superior lateral muclens is continuous headward with the contro médiun of the nucleus medialis thatami. It will be noted that the purs ventralis of the commissura posterior cerebri contains elossed fibres of the ascending spino-cerebral system which ron in the fascienlus longitudinalis medialis, while the pars dorsalis of the eommissura posterior cerebri contains axones from the nuclei of the dorsul funienli which arrive in this region by way of the lemniseus medinlis.

[^255]: * ('iagliniski, A. Lange sensible Bahnen in der granen Substanz des Rückenmarkes und ihre experimentelle Degeneration. Neurol. Centrulb., Leípz., Bd. xv (18906), 太. 773.
 t'f. also. Campbell, A. W. Oa the Tracts of the Spinal Cord and their Degenerations. Brain, Lond., wol. xx (1897), plp. 488-5:35.

[^256]: * op. cit., s. : 40 .
 \dagger Roller. C. F. W. Der centrate Verhuf des Nervis (ilossopharyngens: des Nuclens lateralis medius. Areh. f. mikr. Amat., Bonn, Bl. xix (1880-'81), S. 34ヶ-383.
 \ddagger Ilolm. 16. Die Amatomic und Pathologie des dorsalen Vaguskerns; ein Beitrag zur Lehre der Respirations- und Ilustenrellex- Centra, ihrer Entwickelmg und Degeneration. Areh. f. path. Anat., etc., Berl., Bl, exxxi (1893). s. 38-120.
 \# Ilolm, from his study of pathologienl cases, has concluded that the centre for the tracheo-bronchinl (eonghing) rellex is to be sought in the dorso-lateral purt of this dorsal melens of the vagus, while the true respiratory centre belongs exclusively to the ventro-medial part of the nucleus.

[^257]: * The central vestibular path running in the fasciculus longitudinalis, modialis is the one referred to by Ramon y Cabal as the "inure Vestibularishahn," or medial vestibular path.
 \dagger 'This longitmonal bundle is called by Ramon y Cajal "die laterale Vestibularisbahn."

[^258]: * von Bechterew. W. Op. cit., S. 117 ו. 135.
 \dagger Op. cit., S. 269 .ff.
 \ddagger Sala, L. Veber den Ursprung des Nervus acusticus. Arch. f. mikr. Anat., Bonn, Bd. xhii (1893), S. 18-is.
 \# Hehd, H. Beitrage zur feineren Anatomie des Kleinhirns und des Himstammes. Areh. f. Anat. u. Physiol., Anat. Abth., Leijz. (1893), S. 435446.
 || Ramón y Cajal, S. Beitrag zum Stulinm der Medulla Oblongata, etc. Dentsch von Bresler, Leipzig (1896), S. 67 If.

 A Russell, J. S. R. The Origin and Destination of Certain Afferent and Efferent Truets in the Medulla Oblongata. [Abstr.] Brit. M.J.. Loud. (1897), i, p. 1155. Also in Proc. Roy, Soe., Lond., vol. Ixi (1897), pp. 73-76.

[^259]: * Bruce, A. On the Connections of the Inferior Olivary Body. Iroc. Roy. Soc. Edinb, (1889-90), 1891, vol. xvii, pp. 23-27.
 \dagger Held, II. Die centralen Bahnen des Nervis acustious bei der Katze. Areh. f. Anat. n. Physiol., Anat. Abth., Leipz. (1891), S. 271-291.-Die Beziehugen des Vorderseitenstranges \%u Mahuen im Mittehirn, Mbhandl. d. k. Silehs. Gesellsch. d. Wissensch., Leipı, Bd. xviii (1892).

[^260]: * The afferent vestibular impulses in the fascieulas longitudinalis medialis probably exercise a controlling effect upon the eye muscle nuelei. In vestibular disease a peculiar form of nystagmas is not infrequently met with.

[^261]: * von Kölliker. Op. cit., S. 281 ff .
 \dagger Ramón y Caja, S. Beitrag zum Studiwa der Medulla Oblongata. Deutseh von Bresler, Leipz. (1896), S. 6 ff.

[^262]: * Op. cit.. Chapter xhvii.

[^263]: * Wallenberg, A. Zur seeundiaren Bahn des sensiblens Trigeminus. Anat. Anz, Jena, Brd. xii (1896), S. 95-110.

[^264]: * Van Gehn-laten's roie cervibello-cérebrale.
 \dagger The brachium conjunctivum was first pietured by Leveille. It was carefully desmibed by stilling as the processus cerebelli ad cerebrum. Silling's picture is reprolued in Fig. 428. In English books it is usmally referrel to as the superior cerebellar pedancle.

[^265]: * F'orel. A. T'ugebl. der Verhandl. der Naturf. in Salaburg, 1881, Sekt. xviii, Sit\%, Sepr.19.-von Monakow, ('. Sitria aeustion und untere Schleife. Arch. f. Psyehiat, n. Nervenkr.. Berl., Bul, xxii (18!f)), S. 1-26.-('ramer, A. Binseitige l゙leinhirmatrophic mit leichter atrophie der gekroaten Gross-hirn-Hemisphäre, nebst cinem Beitrag \%ur Amomie der Kleinhimstiele. Beitr. \%. path. Anat. u. \%. ullg. Path., J'ma, Bd. xi (18!1), S. 39-iex.-Mahim, A. Recherches sur la structure amomique du noyan ronge et ses connexions avee le pédoncule céréhellenx supérieur. Brox. (1804). F. Hayoz, 44 [ip. ${ }^{5}$ pl., 8 vo. Aso in Mém, comron. Acad. de roy. med. de Belg., Brux. (1894). t. xiii.

[^266]: * The derensalion (borse hoe commissure of Werockinels) is sitmated just ventral to the inferior enlliculas of the corporn 'pladrigemina (rigs, 42!) and f:10)

[^267]: * Vejas, P. Experimentelle Beitrige aur Komntuiss der Verbindangsbahnen des Kleinhirns und des Verlanfs der Funiculi graciles und cmeati, Areh. f. P'sychiat., ete., Berl., Bd. xvi (1885), S. 200-214.-Marehi. V. Des dégénérations consćcutives a l'extirpation totale et partielle da cervelet. Areh. ital. de biol. Turin, t. vii (1886), pp, 3in-362,-Mingazzini, G. Sulle degenerazioni conseculive alle estirpazioni emieerebellari. Ricerche n. lab, di anat. norm. d. r. Univ, di Roma, vol, iv (1894), pp. is-124,-Ramón y Cajal, S. Algunas cont ribuciones al conocimiento de los ganglios del encefalo.

[^268]: * von Monakow, C. Arehiv. f. Psyehiat. u. Nervenkr., Berl., Bd. xxvii (1895).
 \dagger op. cit.
 \ddagger Mirto. Sulle degenerazioni secundari cerebello-cerebrali. Areh. per le se. med., Torino, vol, xx (1896), p. 19.

[^269]: * von Bechterew, W. Die Leitungsbahnen im Gehirn und Räekenmark, Leipz. (1894), S. 135.

[^270]: * Ramón y Cajal, S. Beitrag zum Studium der Medulla Oblongata, etc., Leijz. (1896), S. 17 ; also Gunglions cérébelleux. Bibliogr. anat., Par., t. iii (1895), ןp. 33-42.
 † Martin, P. In Franck's Handbuch der Anatomie der Hausticre, Dritte Autlage, Bd. ii, Stutgart (1894), s. 278.

[^271]: * Mendel, E. (cited by v. Bechterew). Neurol. Ceutralbl., Leipz, (1885).
 $\dagger \mathrm{v}$. Bechterew, W. Ueber syphilitische disseminirte, cerebro-spinale sklerose nehst Bemerkungen mber die secundiare Degeneration der fasern des Vorderenkleinhirnsehenkels des centralen llambenbintels und der Sehleifenschieht. Areh. f. Psychint., ete., Berl., Bd. xxviii (1896), S. 742772.

[^272]: * Lagaro, Li. Sulla struthara del macteo dentato del cervelteto mell'

 + Kilimeff, I. A. On the Commetion of the Corehellmen with the Nuclons

[^273]: * 1 wish to thank Prof. Gildersleeve, of the Johns Ilopkins University, for suggesting this term as a snitable Wuglish equivalent for Monk's Körperfühlsphäre.
 \dagger Burdaeh, K. F. Vom Bate und Jdhen des Gehirns. Leipzig. 1819-0
 \ddagger Lenret et Gratiolet. Anatomie comparie du système nervens. Paris, 18:99-5\%.
 \# Lays, J. Recherches sar le système nervenx cérébrospinal. Paris, 1865; teonogruphie photographique des centres nervenx. Paris, 1873.

[^274]: * Meynert, Th. Vom Gehirne der Situgethiere. Article in Strieker's Itandbuch der Lehre von den Geweben, ete., Leip\%. (1871-'t2); also P'syehiatry, transhated into English hy B. Sachs. New York, 1885.
 † Forel, A. Beitrige zur Kenntniss des Thulamus optieus und der ihn ungebenden Gebilde bei den Siugethieren. Sitzungsb. d. k. Akucl. d. Wissenseh., Bal. Ixvi, Wien (1872), S. 25-58.-Uutersuchungen neber die Itumbenregion und ilare oberen Verknupfungen im Gehirne des Mensehen und einiger Siugethiere, mit Beitrigen zu den Methoden der Gehirmuntersuehung. Areh. f. Psyehiat. u. Nervenkr., Berlin, Bd. vii (1877), S. 393.
 \ddagger Ganser, S . Vergleichend-anatomische Studien neher das Gehirn des Manlwurfs. Morphol. Jahrb, Leipz., Bul. vii (1882), S. 59t-7e5
 \# Dejerine. J. Anatomic des centres nerveus. Paris, 1895.
 || von K̈alliker, A. Op, cit., ৯. 42ヵ.
 a Mills, C. K. Seetions of the Cerebral Gmglia, with Remarks on their Anatomy and Lesions. Tr. Path. Sue. Phila. (1879-81), vol. x (1882), pl. 179-182.

 0 von Monakow, (. Experimentelle u. puthologiseh-umatomisehe Vatersuchungen ucher die Itambenregion, den sehhïgel und die lecgio subthalamica, nebst Beitrigen anr Keuntniss früh erworbener Gross- und Kleinhirndefecte. Areh. f. Psyehiat. u. Nervenkr., Berl., Bd. xxvii (1895), S. 1, 386.
 \downarrow Op, cit., S. 417.

[^275]: * If one studies serial sections throngh the brain of the new-born babe, ath of these bumiles can be distinctly recognized.
 \dagger Op, rit., $\therefore .42 \pi$.

[^276]: * Forel's sections are cout at right anghes formaxis going from the froman pole to the occipital pole of the cerobrum, not at right angles to the axis uf Meynert.

[^277]: * Inuclaclis iuntrer hiern, Iuss' reutre mogen.
 \dagger Burdachs apusserver liern.

[^278]: * Burdachs oberor hern, Lays centre antérietr.
 \nmid von 'Tschisch, W. F'. Unterswhmgen zur Amatomie dor Gohimganglien des Mensehen. Por, d. matho-phys. (I. d. k. sitehs. Gesellsch. d. Wissenseb., 1886.
 \ddagger Op. cit., S. 434.
 \# Iftuhentü̈ulel des rothen herums.
 || Irenlernbïndel des Thatam"s.
 A ITanbremhüulel des himsthliernes.

[^279]: * Op, cit., S. 4;

[^280]: * Trehermak, A. Veher den centraten Vimbat der antisteigenden Itin-

[^281]: * Ventralkern im engeren Simu.

[^282]: * Die luterule pontime Bündeln der Schleife. With ragard to the P'ussschleife, Flechsig is now of the opinion that its fibres are not mong the centripetal fibres of the lemmisens metialis, but, on the eonl rary. represent descending (rentrifugal) fibres which pass downward with the fibres of the pyramidal tract and, entering in all probability into rebation with the most medial bundes of the lemmisens, pass with the lemnisens medialis by whe of the tegmentam to beminate in the mulei of origin of the motor cerehral nerves. On the contrary von lied herew believes that Flechsig's f'ussumfeife is identical with his (von Bechterew's) zerstrente uccessorisehe Bündel, part of which he considers to be centripetal, part centrifugal (laitungsahmen, Il.
 2:3i of von Behterew's book to correspond rather to the mediale scheife than to the zerslreute accessorische schleife.

[^283]: * IFirnschenkeldschlinge of Flechsig.

[^284]: * Bindertim-Limsenkiprnsitrehlumg.

[^285]: * Mreuptscheife.
 \dagger Haupttheil der Schleifenschicht.

[^286]: * Ohere Schlpife or ruhan de Reil supirieur.
 \uparrow Zurstreute accessorische Bündeln der Schleifenschicht, von Beehterew; Fussschleife of Flechsig.
 \ddagger Merliales accpssorisches Bäulet der Schleife, von Beehterew, or contimuation of the Bündel vom F'uss zur Schleife.

[^287]: * White this is the dessription usually given of the superion lemuisens, it must be pointed out that von Bechterew in his Leitungshahuen (1894), p. 113, states that the abre schleife of Forel arises from the muclens colliculi inferioris, and passes beumath the colliculas superior to become lost in the pesterior part of the thalamus.

[^288]: * ron Gudden, B. Beitrag zur kenntniss des Corpus mammillare und der sogemanten Sohenkel des Fornix. Areh. f. Psychiat. n. Nervenkr., Berl., Bel. xi (1881). S. 428-452.
 + Reifhert's schleife.
 \ddagger yon Monakow, C. Lixperimentelle Britrige zur Konntniss der Pyra-miden- mad schleifenbahn. ('or--Bl. f. schweiz, Aerate, Basel, Bd. xiv (1884), s. 189: 15%.

[^289]: * Cf. Spitzkn, E. C. A Contribution to the Morbid Anatomy and Symptomatology of Pons Lesions. Am. J. Neurol. and Psychint., N. Y., vol. ii (1883), pp. 617-661.
 \dagger Fleehsig, P. Zar Anatomie und Entwiekelungsgeschichte der Leithugsbahnen im Grosshirn des Mensehen. Areh. f. Anat. n. Physiol., Anat. Abth., Iseipz. (1881), S. 12-75.
 \ddagger Fleehsig, P., und O. ILoesel. Die Centralwindungen, ein Centralorgan der llinterstringe. Neurol. Centralbl., Leipz., Bd. ix (1890), S. 41\%-419.Hoesel, O. Die Centralwindnngen ein Centralorgan der Ilinterstriage und des Trigeminus. Areh. f. Dsyehint., Berl., Bu. xxiv (1802), S. 452-490.Fin weiterer Beitrag zur Lehre vom Verhuf der Rindensehleife und centraler Trigeminusfasern beim Menschen. Arch. f. Psy hiat., Berl., Bd. xxv (1893). ऽ. 1-17.
 \# Mahaim, A. Win Fall von secundärer Wrkrankung des Thalamus optiens mad der Regio subthalmica. Mreh. f. Psychiat. n. Nervenkr.. Beri., Bd. xxv (1893), 心. 343.

[^290]: * The dow rine mbanced by Flechsig and von Bechterew, of a participation of fibres of the lemmens in the formation of the ansa lentimularis, thes connecting with lays boly and the lemienlar muthes of the same side, se strongly oposed by von Monakow and Maham on the ground that the evidence from the study of secombary degemations negations it.
 \dagger von Monakow, C. Experimentelle und pathologiseh-anatomische Untersuchungen neber die Hanbentrgion den Sohhäged und die Regios subthalamica, nebst beitrigen zur K゙pminiss frîh erworbener Gross-und Kicinhimdefecte. Areh, f. Psyehiat. ו. Nervenkr., Berl.. BI, xxvii (i805), S. 1.
 \ddagger von Monakow does not absolutely exchude the total absorption of simgle fibres, but manatains that if actual secondary degeneration oeeurs at all it is minimal in amomet.

[^291]: * Since his satement was made the resarch of Trechermak has been pmblished. cide infre.

[^292]: *'Tschermak, A. L'eber den centrulen V'erhunf der anfsteigenden IInterstrangbahnen und deren Beziohungen an den Bahnen im Vorderseitenstrang. Areh. f. Anat. u. Physiol., Amut. Abth., Leipz. (1898), S. 991-400.
 f von Monakow, in his criticism, had assumed that a much larger amount of the white matter of the lobus parietalis had been involved.

[^293]: * Flechsig, P. Die Localization der geistigen Vorgainge. etc. Leipz. (1896).

[^294]: * Bielschowsky, M. Obere S'chleife und IDirnrinde. Nemol. Centralbl, Leipz., vol. xiv (1805), S. 205-207.
 \dagger Jikob, C. Ein Beitrag zur Lehre von Schleifenverlanf (obere, RindenThatamussehlejfe). Neurol. Centralbl., Leipz., vol, xiv (189.5), S. 30x-310.
 \ddagger Dejerine, J., ef Mme. J. Dejerine. Sur les comexions du ruhan do lieil avee la corticalité cérébrale. Compt. rend. Sor. de Biol., Par', 10, s., t. ii (1895), 所. 285-291.

[^295]: * Hoesel. Beitraige zur Anatomie der Schleifen. Neurol. Centrabh., Leipz., Bd. xiii (1894), S. 546-559.

[^296]: *Tschermak, A. Notiz betreffs des Rindenfeldes der Itinterstrangbahnen. Neurol. Centralbl., Leipä, L. Rd. xvii (1898), S. 159-162.
 \dagger Op. cit., Arch. f. Anat. n. Physiol., Anat. Ah(h., Leip\%. (1898), S. 991400.
 \ddagger von Bechterew, W. Areh. f. Anat. u. Physiol., Anat. Abth., Leip\%. (1890), S. 489.
 \# Ferrier, D., and Turner, W. A. A Record of Experiments illustrative of the Symptomatology and Degenerations following lesions of the Cernbellum, ete. Phil. Tr.. Lond., vol. elxxxy, B, p. $\stackrel{2}{2}$, p. 755.

[^297]: * Die beiden krenzenden Minterstrengkern-Grosshirnsysteme (Ifinter-

[^298]: * In the cat this structure is by no means so definite and compact a lensshaped mass as in man.

[^299]: * Inas lirenzember Iİinterstrangkern-firossh irmrimlensystem of T'schermak.
 + Dus lireuzende ILinterstrengliern-Thulemussaystem of Twehermak.
 \ddagger Meynert, Th. Die Windangen der eonvexen Oherfliche des Vorderhirns bei Menschen, Affen und Raubthieren. Areh. f. Psychiat., Berl. (1876), Bh. vii, S. 957.

[^300]: * Op. cil.
 \dagger Flechsig, P. Die Leitungsbuhnen im Gehirn und Ricekemmark, ete. Lejpaig, 8vo. ($\mathbf{1 8 7 6}$).-L'eher die Verbinhungen der Ilinterstrïnge mit dem (iehirn. Neurol. Centralbl.. Lejpz., Bd. iii (1885), S. 97-100.-Kur Lchure vom centralen Verlunf der Simesmerven. Ihid., Bul. v (1886), S. 5t5-5ish.Zur Amatomie und Entwiekelungsgesehichte der Leitungshahuen in (irosshirn des Menschen. Arch. f. Anat. u. Physiol., Anat. Abth., Leipz. (1881), S. 12-Tit.-Phan des menschlichen Gehirns. Anf Grand eigener U'atersuchungen entworfen., 8vo, Leipz. (1883).-Die Loculisation der geistigen Vorgiing mit besonderer Berïcksichtigung der Sinnesempfindungen des Men* schen. Leipz. (1896).
 \ddagger Edinger, J. Zar Kenntniss des Verliafes der llinterstrangfasern in der Medulla oblongata und im hinteren Kleinhirnsehenkel. Nenrol. Centralbl., Leipz., Bd. iif (1885), s. 73-76.
 \# von Bechterew, W. Untersuchnngen ueber die Sehlojiensehicht. Ber. d. math. phys. Cl. d. k. siiehs. (iesellsch. d. Wissenseh., Leipz. (1885), 4 Mai. -Ueber eine bisher untekannte Verbindung der grossen Oliven mit dem Grosshirn. Neurol. Centralbl., Leipz., Bd. iv (188ī), S. 194-196.-Ueber die Schleifenschicht auf Grunde der Resultate von nach der entwickelungsgeschichtlichen Methode nusgeflihrten Untersuchungen. Areh. f. Anat. u. Physiol., Anat. Abth., Lejpz. (1895), S. 379-395.-Dic Leitungsbahnen im Gehirn und lückemmark. Deutsch von R. Weinberg, II. Aufl., Leijzig (1899).

[^301]: ＊Darkschewitsch，l．，and s．Freud．Leber die Bezichang des strick－ kürpers zam Ilinterstrang und Hinterstrangsern，mebst Bemeri angen ueber zwei Felder der Oblongata，Neurol，Centralbl．，Leipz．，Bd．r（1880），s． 121－129．
 \dagger Cramer，A ．Beitrige zur feineren \therefore atomic der Medulla oblongata， der Brilicke，ete．Jena（189－S）．
 \ddagger Mever，P．Veber eimen Fall von Ponshimorrharie mit secomdaren Begenerationen der Schleife．Mreh．f．Psyehiat．，Berl．，Ba．xizi（1882），s．

[^302]: * Jakovenko, V. K. vopr. o stroenii zadnjago promol. puchka (faseiculus longitudinalis medialis). Vestnik klin. i sudebnoi psichint. i nevropatol., st. Petersh., vol. vi. pt. i (1888), pp. 89-98.

[^303]: * Cf. Darksehewitseh, L. Binige Bomerkungen ueber den Faserverlauf in der hinteren Commissur des Gehirns. Neurol. Centralh., Leipz., Bd. v (1886), S. 99-103.

[^304]: * van Gehnehten. A. Le ganglion basal. la commissure post-habénulaire, le faisceau longitudinal postériear et les cellnles médullaires dorsales du nevraxe de la Salamandre. Verhandl. d. amat. Gesellschl., Jem, Bd. xi (1898).

[^305]: * Ifrubenstrahlung, Alusstrahlungen des rothen Fermes of the Germans: Capsule du noyau ronge, rudiations de la catote of the French.

[^306]: * At least four cases of atrophy of the red nucleus after cortical lesions have been deseribed, one by Flechsig and lloesel, one by Mahaim, one by von Monakow, and one by the Dejerines.

[^307]: * Dejerine, J.. et Mine. J. Dejerine. Sur les comexions du noyan rouge avee la corticalité cérébrale. Compt. rend. Soc. de biol., Par., 10. s., t. ii, (1895), pp. 226-230.

[^308]: * hörperfühlsphäre of Munk and F'lechsig.

[^309]: * 'Turner, W. A. Note on the Course of the Fibres of Taste. Eidinb. M..J., vol, 1, n. s. (1892), 1. $\% 4$.
 + Article in Nothagel's Spez. P'alh. u. Therap., Ahth. iv, Theil ii, Bd. xi, Wien, 1897.

[^310]: * Broca, P. Localisutions cérébrales; recherches sur les eentres olfactifs. Rev. d'anthrop., P'ur., 2. s., t. if (1879), 口p. 385-455.
 \dagger Schwalbe, G. Lehrbueh der Neurologic, Bro, Erhungen (1881).
 \ddagger Zuckerkandl, E. Das periphere Geruchsorgan der Siugethiere, 8vo, Stuttgart (1487).-Das Riechbündel des Ammonshornes. Anat. Auz, Jena, Bd. iii (1888), S. 425-434.
 \# Cf. Turner, sir W. The Convolutions of the IIuman Cerehrum Topographically ('onsidered. Edinb. M. J., vol. xi (1865-66). pp. 1105-1102, and especially, The Convolutions of the Brain; A Study in Comparative Amatomy. J. Anat. and Physiol., Lond., vol. xxv (1890-91), pp. 105-153.
 \# Itis, W. Die Formentwiekelung des mensehlichen Vorderhirns vom Eade des ersten bis zam IBeginn des dritten Monats. Abhandl, d. math.phys. Cl. d. k. Siehs. Gesellseh. d. Wissensch.. Leipz, Bd. xp (1889), s. 673-736.-Kar algemeinen Morphologie des Gehirns. Arell. f. Anat. und Physiol., Anat. Abth., Leipz. (1892), S. 346-38:3.-Ueber die Entwickelung des Riechlapperns. Verhandl. d. Anat. Ges, (1898). In this eomection seo also Minot, (.S. The Olfactory Labes. Report of the Sixty-sixth Meeting of the British Association for the Alvmeement of Science at Liverpool in 1806, p. 836.

[^311]: * Broca's le bord fulciforme du lobe limbique, ichwalbe's Insolschuelle.

[^312]: * Retzins, (i. Has Menschenhirn. Stoekhohm, 189\%.

[^313]: * The rabbit, monse, and cat possess, in uddition to a main olfactory bulb, an aeeessory butb which lies on the dorso-medial surface of the posterior end of the main bulb, (von Gudden, von Kölliker).
 \dagger von Kölliker. Op. cil., S. 693.

[^314]: * Calleja, ('. La Region ulfatoria del cerebro. Madrid, is9:3.

[^315]: * Often spoken of as the psalterium or lyra.
 \dagger The flmbria hippocampi is sometimes spoken of as the limbus cornu ammonis. Von Kölliker calls it the formix inferior.

[^316]: * von K̈̈lliker, A. op, cit., S. 530.
 \dagger von Monakow, C. Experimentelle und puthologiseh anatomische Untersuchnngen veber die Beziehungen der sogenannten Sehsphite an den infra corticalen Opticuscentren und zum N. opticus. Areh. f. Psychiat. u. Nervenkr., Berl., Bhl, xvi (1885̃), s. 181.

[^317]: * Ramón y Cajal, S. Beitrar zum Studium der Medulh oblongata, ete. Deutsch von Bresler, Leipz. (1896), S. 111.

[^318]: * von (indden. Giswmmelte Abhandlungen, No, xxvii.

[^319]: * van (iehuchten, λ. ('ontributions a l'fude du systeme nervenx des Teleostrens. Cellule, Lierre et Lomvain (18:0), t. x.
 \dagger Ramón, D. S. Anales de la Sociedad espanola de historia natural., t. iii, : Ser. (1804), p. 185.
 ₹ op. cit., S. 483.

[^320]: * Curiously enough, the more peripheral fibres of Meynert's bumdle become medullated first, so that in horizontal sections stained with the Wei-gert-Pal methol the section of the bundle is colorless in the centre but deeply-stained blue-bhack at the periphery.

[^321]: * In the so-called N. opticus are many glia cells, similar to those of the substantia alba of other parts of the central nervous system.
 \dagger Luys, and with him Meynert (S. Stricker, A Manual of Histology, Am. transl., ed. by A. H. Buck, 8vo, New York, 18id, p. 688), compared the retima to the bulbus olfactorius, and suggested that the optic nerve was not an ordinary peripheral nerve, but in reality a central tract. Von Kölliker (Entwickelungsgeschichte des Menschen und der höheren Saïgethiere, ii Auflage) stated also that the nervus optieus is rally a part of the brain. He compared it with the tractus olfactorins and considered the optic tracts amalogous to the stria olfactoria.

[^322]: * The rontributions of Bemhard von thadden bearing upon the visual condaction paths are the following: (1) Ceber das Verbiiltniss der Centralgefiisse des Augrs zam (iesiehtsfelde. Areh. f. Amat., Physiol n. wissenseh. Med., Borl., 1849, S. 520-532.-(2) Experimentahutersuchungen neber das peripherische und centrale Nervensystem. Dreh. f. I'sychiat. u. Nervenkr., Berl., BL, ii (1850), S. 693-703.-(3, 4, 5 and 6) l'eher die Kreuzung der Nervenfasern im Chasma nervorum optieorum. Aroh. f. Ophth., Berl., Bd.

 onstration von Prifaraten ueber das sog. Ganghon opticum basale, Krenzomg der Sehmervasern in Chasma, vordere mad hintere Commissur des Chiasma. Allg. Ztsehr. f. P'sychiat., Berl., Bd. xxix (1873): Bo. xxx (18;4). -(8) Experimente, durch die mandie verschiedenen Bestandheile des 'Iractus optiens zat isoliren imstande ist. 'Tagebl. I. it Versamml. dentseh. Nuturförscher in Sinaburg (1881), S. 187.-(9) Ueber die verschiedenen Nervenfasersysteme in der Retina und im Nervus opticus. Thgebl. d. 55 Versamm. deutsch. Naturfirseher in Eisemach (188:), S. 307.-(10) Ueber die Schnerven, die Sehtractus, das Verhiiltniss ihrer gekrenzten und migekreuzten Biandel,

[^323]: * Gowers, W. R. P'athologischer Beweis ciner unvollstandigen Kireazung der Sehmerven beim Nensehen. ('entralbl. f. d. med. Wissenseh., Berl. (18is), Bd. xvi, S. 562.
 \dagger Keldermmon, II. Amomasche l'ntersuchmgen atrophiseher Sehmerven mit einem Beitrag zur Frage der Schmervenkreuzang im Chiasma. Stuttg. (1879). pp. 44, 8vo.
 \ddagger Op. cit.
 \# Purtscher. O. 'Triale sur le eroisement et latrophie des nerfs et des tractus visuels. Cong. period. intermat. Wophth. Compt.-rend. 1880, Mihn (1881), t. vi, pr.
 \| Baumgarten, P. Kar sog, Smbleonssation der Optiensfasern. Centralbl. f. med. Wissenseh., Berl., Bd. xvi (18:8). S. 561.-Zur Semidecusation der Opticusfasern. Arelı. f. Ophth., Berl., Bd. xxvii (1881), 1. Abth., S. 3.4-344.

 A Singer, J.. n. E. Vhazer. Denksehr. d. muth. maturw. Kl. d. Wiener Aknd., Bud. iv (1888).

 0 Burdach, F. Zur Faserkrenzung in Chiasian mad in den Tractus nervorum oplicorum. Areh. f. Ophth., Berl., Bet. xxix (188:3), 3. Abh., S. 135-14?
 \ddagger Wareham, F . Beitrag zur Kentmiss der homonymen bidateralen Hemianopsie und der Fuserkreuzung im Chiasma ophiemm. Arch. f. Ophth., Berl., BJ, xnvii (1882), 太. 6:3-96.
 \ddagger Schmidt-Rimpher, II. Semidecussationsfrage der Sehnerven. Dentsche med. Wehnschr., Berl., Bd. xxii (1N0t), Veremsheilag, S. 158.
 Leipz., Bd. xv (1896), s. 838-840.
 ** ('f. also Dreschfild, J. Pathological Contributions on the Course of the Gptie Nerve Fibres in Man. Brain, Loml., Vol. iv (1881-82), p. 543: vol, v (1882-'83), ן. 118.

[^324]: * von Gudten, B. Demonstration von Priparaten ueher das sog, Gip glion opticum Insale, Kremzug der Solmervenfasern im (hinsma; vorl : und hintere Commissor Iles ('hasma. Allg. Ztschr. f. Psychiat, Borl., . xxix and xax (187:3-07).

 4 Whames Maller believed that the identity of the redia in man and in animals is organically mombitiond. He'. holtz, on the other hand, thought that it might be a matter of edurat a. (anerzogene).

[^325]: * Ganser, s. Ueber die periphere und eoturale Anordnong der Schnervenfasern und ueber das (orpms higeminum anterius. Areh.f. Psychint. n. Nervenkr. Berl., Byt. xiii (1889), S. :341-381.
 \dagger Reich, M. On the Complete and Incomplete Crossing of Nervous Filaments (iu chinsma nerv, opticorum). Protok. masitic. Obsh. russk. vach. v. St. Petersh., vol. xli (1874), plo. 351-361. Ahsir. in Centralbl. f.d. med. Wissenseh., Burl., Ba, siai (1875), No. 29.
 \ddagger Mandelstamu, Fi. Ueher Sehnervenkrenzing und Hemiopie. Areh. f. Ophth., Borl., Bd. xix (18:3), 2. Abht., S. 39-58.
 \# Michel, J. Ueher den Batu des Chiasma nervorum opticorum. Areh. f. Ophth.. Berl., Bi, xix (1873), 2. Abth.. S. 59 ; 3. Abth., S. 3% \%-Wur Fruge der Solmerven-Krenzong im Chiasma. Hid., Bd. xxiti (18:7), 2. Abth., S. 2at-904.- Veberschorven-Degeneration und schnerven-Ǩreuzung, l'est-sehrift der med. Fuk. d. Vniv. W i rahurg \%. Feier des lxx Geburtsages d. Dr. A. v. Kölliker. Wiesthden (1s87).-Lahrbueh der Augenheilknmed, 2. Aull. (1890), S. 494.
 \& von Biesintereki. A. Ueher das Chiasman nervorum opticorum des Menschen und der Thiore. Sitzungsh, d. k. Akad. d. Wissenseh., unth.-muturwiss. (I.. Wien, Bd. xlii (IN(61), S. 86: und in Untersieh. z., Nalural. A. Mensch. n. 1. Thiero. (Giessen, Bd, viii (1862), S. 156-17\%.

[^326]: * The condition in which there is luss of the lateral visual diehl on one side. and of the medial visual fieh on the other.

[^327]: * Nieati, W. De lia distribution des fibres nerveuses dans le chiasma des nerfs optiques. Arch. de physiol. norm. et path., Par., D. s., t. v (18i8), pl. (fis8-6is.-I'reuve expérimentale du croisement ineomplet des fibres nervenses dans le chiasma des nerfs optignes; section longitudinale et médiane du chiasma non suivie de cécité. Compt. rend. Aead. d. L'e., Par., t. Ixxxvi (1878), pp. 14is-14it; also, Centralbl, f. d. met. Wissensch., Berl., Ba. svi (1878), S. 449.

[^328]: * (iruetzuer. P. Kritische Bemerkungen neber die Anatomie des Chiasmu opticum. Deutsche med. Wchnschr., Berl., Bd. xxiii (189\%), S. 2.
 + Siemerling, Li. Ein Fall gummöser Erkrankung der Llirubusis mit Betheiligung des Chiasma nervormon opticormm. Ein Beitrag zur Lehre vom l'aserverlauf in optischen Leitungsmparat. Areh. f. Psychiat. und Nervenkr.. Berl., Bll. xix (1888), S. 401-437.
 \ddagger Munk. II. Zur Physiologie der (iroshirurinde. Areh. f. Anat. u. Physiol. Physiol. Abth., Leipu (1878), S. 1tiz-178.

[^329]: * Pick. A. Untersnehugen neber die topographischen Beziehungen zwischen ỉetina, Opticus und gekreuzten Tractus Opticus beim Kaninehen. Nova actader Kaiserl, Deop-('arol., Deutschen Academie der Naturförsher, Bul. Ixvi. Ahsimel in Neurologisthes Centrathl., Bd. xx (1896), S. f91. ('f. akso liek u. Iterrenheiser. Untersuehnugen utber die topegraphischen Bezitehungen zwisehen Retina, optiens und gekreazten 'ractus opticus beim Kat ninchern. lhalle, 1895.
 † Hensehen, S. F. Klinische und anatomische Beitrige zur Patholugie des Gehirns. Zweiter Theil, Upsala (1892), 心. 216 ff .

[^330]: * Singer and Münzer. Beitrige zur Kemutniss der Sehnervenkruzung. Wien, 1888.
 + Ramon y ('ujal, s. Ama. de la socied. Fpanola di hist., mat., a. ser., t. iii (1894). p. 236.

[^331]: * IIme. J. Hamdbuch der systematischen Amatomie des Menschen, Nervenlehe (1879), s. :393.

[^332]: * Nonakow divides the corpus genicnlatum laterate in the dog into two main parts-(1) den sehsphärenantheil (a, b, b_{1}, and $\left.v^{(}\right)$, and (${ }_{(}^{(2)}$) den Retinaantheil $\left(a_{1}\right)$.
 \dagger Ganser, S. Ueber die Anatomie des vorderen Magels vom Corpus quadrigeminum. Areh. f. Psychiat, und Nervenkr., Berl., Bd. xi (1880). S. 298-281. -Ueber die periphere mul centrale Anordnung der Selunervenfasern und meber das Corpus higeminum anterilis. Areh. f. Psyehiat. und Nervenkr., Berl., Bd. xiii (188?), S. 341-381.

[^333]: * The principal eontributions of von Monakow as regards the optic nerve and optic centres are the following: Dxperimentelle und pathologisels-anatomische Untershehungen neber lie Bezielnugen der sogenammen sehsphaire zu den intracorticalen Optiensorentren und zum N. optiens. Arel. f. Psychiat. n. Nervenkr.. Berl., Bf. xiv, s. 699, and Bd. xwi, S. 151, 317.-Rimpes ueher die L'rsprongseentren des N. optiens und ueher die Verhindungen derseltorn

 optiseden C'entren und Bahnen (Neue Folge), Areh. f. Psydhint. n. Nervenkr., Berl., Bi. xs, S. ilt.-Experimentelle und path.-imatomisehe Untersmedh-

 Nerwenkr., Berl., Bal, xxiii, S. 609; Bil. xxiv, S. Ded.
 \dagger Ramón. P'. (1) (iaceta sambaria de Barechona, iii (180)). No. 1. p. 10 ; (2) Investig. sohere los centros ophieos de los vertobmdos. Tasis del doctorado (1890): (3) El encefalo de los reptiles. Barcelona (1891), pl. 11-92: (4) Invest. an el encefalor de tos hatracios y reptiles, cnerposs geniculatos y tuberroulos enalrigeminos de los maniferos. Karagoza (1×94).
 Hanituch der (ewebelehre des Menschen. Lajz. (1896), Bil. ii, s. se. if.
 \# Ramón y Cajal.s. Beitrag zum Stulinm der diohlalla Oblongata, des Kleinhims und des Ursprungs der Gehimmerven. bentseh von Bresher. Laipz. (1896), S. 101 If.

[^334]: * Ramón y Cujal, s. Sur la fine structure da lobe optique des oiseans et sur l'origine réelle des nerfs optiques. [Transl. from Lev. trim. de histol., 1889.] Internat. Monastchr, f. Anat, u. Physiol., Leipz., IBd, viii (1891), 太. 337-376.
 \dagger van Gehuehten, A. La strueture des lobes optignes chez l'mbryon de poulet. Cellule, Lierre and Louvain, 1. viii (1892), pp. 1-43.

[^335]: * op. cit.
 \dagger Edinger, L. Vorlesungen neber den Bun der nervösen Centralorgane. V. Auflage, Leipz. (1895), S. 268 ff .

[^336]: * Darkschewitsch. L., mal (i. Pribytkow. C'buer die Pasersysteme an Borden des dritten Ilimentrikels. Neurol. Centralth., Laipz., Bi. x (tsen), S. $4 t_{i}^{\prime}-429$.
 \dagger von Bechterew, W. Die Leitungshahmen im fiehirn und Rückenmark. Léръ. (1894), s. 103.
 \ddagger Meynert, T. Stricker's llmulbuch, iv Lief, s. T:32.
 \# Forel, A. Untersuehnagen ither die Itabenregion und ihre oberen Verkniipfungen im Gehime des Menschen mad einger Säugethiere, mit Beitritgen an den Methoden dar Gehirnmorsuchang. Areh. f. Psyehiat, und Nervenkr., Berl., BI. vii (18ĩ), S. 481.
 $\|$ Op. cit.

[^337]: * von Gudden, B. Op, cit.

[^338]:

[^339]: * von Monakow calls this "das laterate Marl" of the lateral geniculate body.

[^340]: * Sachs, II. Das Hemisphärmmark des menschlichen (Grosshirns. 1. Der Ilinterhuptlappen. Arb. a. d. psychiat. Klinik in Broshan, Leipzig (1892).

[^341]: * Flechsig. P. (iehirn und Seele, ii. Auft., Leipz. (1896), Anm. 29, s. is.

[^342]: * Ramón y Cajad. S. Sitpuchur des thatamus opticus. Beitray zum Studiun der Medulla Ohlongata des Kleinhirns und des C'rejrungs der Gehirnnerven. Leipz. (1896), S. 101.
 \dagger This stripe is also sometimes called Baillarger's hayer. In the cortex of the calcarine fissure it is split into two tmols of white fibres which ran parablel to one another, the su-culled intermal and extermal stripes of Ballarger.

[^343]: * Ramón y C'ajal, S. Veber den Bat der Rinde des imeren Hinterhanptlappens der Khium Sïugethiere. Ztsehr. f. wissensch. Zool., Brl. Ivi (149:3), Ileft 4.
 + ! thmarberg, C. Sthlier ofvar Ihliotiens Klinik wh Patologi Jiante Undersökoingur af Iljarubarkens Normala Anatomi. Upisaln, 189:3.

[^344]: der primairen optischen Centren und Bahmen im Fiallen von eougenititer Anophthalmie und Bubbusatrophie bei nengolmenen Kindern. Arelh. i. Psychiat, u. Nervenkr., Berl., Bd. xxviii (ts90), s. 3 .3-96.

[^345]: * von Monakow, C. Experimentelle und pathologiseh-amatomisehe Untersuelongen weber die optischen Centren mad Bahmen nebst klinisehen Beitrigen aur cortiealen llemimopsie mad Alexie (Nene Folge). Areh. f. P'syehiat. o. Nervenkr., Berl., Bd. xxiii (1891-92), S. 609; Bd. xxiv (1892), S . 299.
 + WilbranI, II. Die Doppelvepogmg der Macola lutha. Festschritt fïr Professor Förster, Widublen, 1895.
 $\ddagger O_{1}$, cil.
 \# Sachs, S. Das Gehirn des Försterschen Rindenblinden. Arb. ans d. pisyehat. Klinik in Brestan, 1407, S. 23-104.

[^346]: * llensehen, in a recent article (Ueber Loemlisation innerhalb, des aemsseren Knieganglions. Neurol. Centralbl., Leipz., Bd. xvii (1898), S. 19:f), speaks for a restricted loealization in the latema genioulate body, and eites a case in which the findings demonstrate that the dorsal portion of the lateral geniculate body corresponts to the thessal quadrunt of the retina.

[^347]: * In a very important case described by Förster (Arch. f. Ophth., Berl., Bd. xxxyi) and stadiod anatomically by Guchs (Arbeiten ans d. pryehiat. Klinik im Breslau (5895), 11, 2) the patient had had, in 1884, an attack with sudiden loss of the right half of both visual fields with the exception of from one degree to two degrees near the fixation point. Five years later hemianopsia iuvolving the left halves of the visual field set in. With this double hemianopsia, however, central vision was retained. Hearing and writing were not at all disturbed, although it is true that the sharphess of vision had diminished by one half, the power of distinguishing colors was lost, and there was imbility to rerognize the reeiprocal position of things in space. In 1803 the individual died, and at antopsy a dombled-sided lesion, involving the medial surface of both orecipital lobes, was foum. The brain was divided into serial sections, and it was discovered that pratieally the whole of the medial surface of both oreipital lohes mat the adjanenol white matter were destroyed, with the exerption of a small portion of the peduncle of the emens lying anteriorly and the most posterior part of the region of the calcarine fissure which had eseaped uninjured. This ense, more than any other in the bibliography, suggests that macular representation extruds bryond the medial surface of the oreipital lobe. But it is not impossible that the small area at the posterior extremity of the calcarine fissure suticed for the central vision. At any rate, until a ease has been studied in which there has been complete loss of the visual sense area in the region of both ealearine fissures, with retuntion of central vision, we may hold on to the view that the macular representation corresponds to the region of the catcarine fissure in its, whole lengeth.

[^348]: * In this connection the following articles should be consulted: (1) Peretti. Ein Fall von Atrophia Nervi optici descendens nach schaidel Verletzong. Dentsche med. Wehnschr., Leipz. u. Berl., Bd. xix (1893), s. :301. (2) Sachs, Z. Sinsehnïrming der Sehuerven durd gesamme Gefiisse der Hirnbasis. Arch. f. Augeuh., Wiesh., B4. xxvi (1892-93). 太. 2:\%-2:4.
 + Bogroff und Fhechsig. Neurol. Centralbl., Leipz., BI. v (1886), S. 551. Cited by von Bechterew.

[^349]: * Darksehewitsch, L. Leber fie sogenannten primiaren Optiensemtren und ihre Bezichmg zur Growshirnrinde. Areh. f. Anat. n. Jhysiol., Anat. Abth., Leipz. (1886), s. 249-270.
 † Bellonei. (i. Ztsehr. f. wissenseh, Zool., Bd. Ixsir, II. 1. S. 25.
 \ddagger vom Berhterew, W. C'ber den Verlaf der die l’upille verongenden Nerrenfasern itn Gehirn und ueber die Localisation cines Centrmas fïr die lris mul Contraction des Angemmuskeln. Arch. f. d. ges. Physiol., Bom, Bd. axxi (188:3). 今. 60-87.

[^350]: * Ifenschen, S. E. Ueber hemianopisehe Pupillenreaktion. Kilinische und anatomische Beitrige zur Pathologie des Gehims. Dritter Theil, I Haifte, Upisala (1894), s. 109.
 + Leyden, E. Beitrige zur topisehen Dingnostik der Gehirnkrankheiten. Internat. Beitr. z. wissensch. Med., Festsehr. R. Virehow . . ., Berl., Bl. iii (1891). S. 28:3-306.
 \ddagger The visual and pupillary paths have recently been reviewed by ki. Baas. Die Seh.- und Pupillen-Bahnen. Breslan (1898). The article has not thus, fal been aceessible to me.

[^351]: * Fledhsig, I. Kur lehre von centralen Verlanf der Sinuesberven.
 ten weher die Boziehungen des unteren Vierhagels zum Ibarmerven. Neurol. ('entralb)., Leipz, BII. ix (1890;, 98-100.-Dir Localisation der geistigen Vorginge, inshesondere der Sinnesemplindungen des Menselon. Laipzg. 1sini.
 f von Monakow, (. Veber einige durch Visstirption circumseripter Itirnrindenregionen bedingte Entwickelungshemmongen des Kaninchengehirns. Areh. f. Dsychint. u. Nervenkr., Berl., Bil. xit (1N8!), S. 141 ; 53\%. -Neue experimentelle beitrige aur Amatomie der Schleife Neurol. ('entralbl., Leipz., Bd. iv (1885). S. 260-268.-Cor. BI. f. S'llweiz. Aerat., 1887, No. 5.-Striae Acusticac und untere Schleife. Arch. f. l'syehint. u. Nervenkr., Berl., Bd. xxii (1890), S. 1-20.
 \ddagger Hold, II. Die centraton Bahom des Nervas acusticus bei her Katze. Areh. f. Anat. u. Physiol., Aunt. Ahth., Leipr. (1891). S. Sit-291.- Wie centrale (ichoilleitung. Areh. f. Amat. u. Jhysiol., Amat. Abth., Leipa, (1893), S. $201-248$.
 \# von Külliker, Op. rit., 心. 258 if.
 $\|$ Ramón y Cajal, S. Origines del neustico en los aves. Algnats contribuciones al emocimiento do los pauglios del encefalo. Madrid, 1894.Nervio cochlear y ganglios uensticos. Apuntes para el estodiodel bulbe raquítico, cerehelo y origen de los nervios encefaticos. Madrid, 189\%.

 A Sabin, Florence. On the Anatomical Relations of the Nuelei of Reeeption of the Cochlear and Vestibular Nerves. Johns Hopkins Ilosp. [3ull., Balt., vol. viii (189\%), pl, 9533-959.

[^352]: * bergmann, (i. II. Nene Vntersuchungen neber die innere Organisntion des (iehirus, llanover (1831), 8vo.

[^353]: * Forel, A. Vorliafige Mittheilung neber den Urspring des Nervus ucnsticus. Neurol. Centralbl., Leipz., Bd. iii (1885), S. 101-103.
 \dagger Onuf *owicz, B. Experimenteller Beitmg zur Kemntniss des Ursprungs des Mervus aensticus des Kiminchens. Areh. f. Psychiat., Berl., Bel. avi (1885), S. 711-749.
 \ddagger Thomas, Λ. Les terminaisons eentrales de la racine labyrinthique, Compt, rend Soc. de biol., l'ar., 10. s., t. v. (1898), p. 183.
 \# von Monakow, C. Schweiz. naturf. Versamml. in Genf (1586), and Arch. d. se. phys, et nat., Geneve, 1886 .
 $\|$ von Monakow, (1, Strite Aenstiea und mitere Schleife. Areh. i. Psychat., Berl., Bd, xxii (1890), s. 1-26.

[^354]: * L'utere Schleife of the Germams, ruluren de Reil inférieur of the French.

[^355]: *'This is diffient to bring into accord with von Monakow's statement that after section of the latemal lemisens in young amimals there is mo atrophy or degeneration of the trapezond body. The conflicting results of the various investigntors are carefnlly compared and subjected to a searching aritiesm in the article of Held, t 91.

[^356]: * For n report on an interesting case of pathological implicution of the nuclei of the corhlom norve the rader is refered to the article by Aholf Moyer, Amomionl Piodings in a Case of Facial Parnlysis of Ten Jays buration in a Genernl Paralytic, with larmorks on the 'lermination of the " Anditory" Nurves. J. Exper. Med., N. Y.., vol. ii (1897), pp. 60\%-611.
 † von Källiker. op, cit.. S. 'sf:3 If.

[^357]: * von Monkow, (\% Stria Mensice und untere Schleife. Areh. f. P'sychiat., Berl., Bh. xxii (1890), S. 1-26.

[^358]: * Stiel der hilrinen olive of the Germans.

[^359]: * Meyer, S. Leber eine Verhindmagsweise der Nemronen ; nehst llittheilungen urber die 'Teehuik und tie Brfolge der Mothote der subeutanen Methylenblaninjection, Arch. f. mikr, Anat., Bom, Bd. xhvi (1896), s. 734-748.
 \dagger Held, II. Beitrige zur Structur der Nervenzellon mad ihrer Fortsiaze. Zweite Abhandlmg. Arch. f. Anat. m. Plysiol., Anat. Abth., Leipz. (1807), II, iii and iv, S. 257 fr.

[^360]: * von Monakow, C. Op. cit.

[^361]: * von Sechtorew. Die Leitungsbahnen im Gehirn und Rückenmark (1894), S. 113.

[^362]: * von Bechterew. Op, cit., S. 114

[^363]: * von Monakow, C. Experimentelle und pathologiseh-anatomische U゙ntersuchungen ther die Ifanhenregion, den Sehhitgel und die Regios subthalamica nehst Beitritren zur Kemutniss frïh erworhener Gross- und Kleinhirndefecte. Arch. f. Psychiat., Berl., Bul. xxvii (1845), ふ. 454.

[^364]: * von Monakow. Op. cit.

[^365]: * Flechsig, P. Gehirn und Seele, ii. Ausgabe, Leipzig (1896), Anm. 29, S. 74.

[^366]: * Flechsig, P. Gehirn mud Seele, Leiprig (1896), S. 3.

[^367]: * 11 is to be noted that one trine embryological neuromere probably eorresponds to several of the segments or segmental gronps of nerve cells which the histologists have deseribed.
 \dagger Schiefferlecker. P. Reituige zur Kenntniss des Faserverlanfs in Räckemmark. Arell. f. mikr. Amat., Bomn, Bd. x (1sif), S. 4il-494.
 \ddagger schwalbe, (i. Ielarhueh der Neurologie, Rvo, Frlangen (1881), s. : 884.
 \# Lïderit\%, (C. Eeber das Rhekemarksegment. Areh. f. Amat. In. Physiol., Amat. Ahtli., Leipz. (1881).
 || Waldeyer, W. Ihs Gorilla-Ritickenmark. Abhandl. d. kgl. Akad. d. Wisselusch, zul Berlin, aus dem Jahre IK88, Berl. (1889), s. 91.
 Δ Kaiser, O. Die Fomkitomender Ganglienzellen des llalsmarkes. (iekrönte Preisschrift, Mang, Mart. Nijhoff (1891), p, 71.

[^368]: * ron Lenhussik. op. cit.. \&. 381 .
 + This is the group of cells which in the hibliography in frequently referred to ns the "medial anterior group of materion horn cells." They have been so described by Kaisor as an minterrupted column roming almost the whole length of the cord, supplying, he believerl, the long muscles of the baek. Aecording to von Lambossik, their axomes are in part short, terminating in the gray matar of the opposite ventral horn, in part longer, running out into the whte malter of the oppowite side of the cord-heteromeric neurones in the semse of val fehmeliten.

[^369]: * (iolgi has always combated the view of a definite lowatization of the motor cells in groups in the gray matter. I quote from his sulle fita ana-
 1845. p. 213: "As regards the distrimotion of the motor cothe in the gray substane of the spinal corol. I must here momark that it is a mistake lodry to establish the seal of these as the chiof charateristio for a julgment reis

[^370]: * Held (189\%) has suggested that these recurrent "antocellular " collaterals of the lower motor neurones may represent an important mechanism in councetion with the so-called muscle sense.
 +The uxones of ventral horn cells which puss through the rami communicantes in order to terminate by free end-arborizations about the cells of the varions sympathetic ganglia are believed to be motor and secretory in their function. The secreting glands and the smooth muscle of the blood-vessels, and of the viscera generally, are innervated by means of sympathetic axones. The exact relations here lave yet to be determined. Certain it is that the complieated local mechunisms of which the sympmthetic system is the seat are, to some extent at least, brought under the influence of the nenrones of the errebrospinal system. The motor nerve-cudings in smooth musele have been earefnlly studied by Berkley. The neurones of the cardine ganglia of the sympathetic are subordinated to centrifugal inpulses from the medulla oblongata.
 \ddagger J. Amat. und Physiol., vol. xxiii (1889).

[^371]: * Samdmann. Cobler die Verthoilung der motoriseben Nievenemdapparate

[^372]: Zeitschr. f. Biologio, BJ. xsiii, Pf. 1-149.

[^373]: * Ehrlich, IP. Ceber die Methylenblamreakion der lebenden Nerven-

 \dagger Dogiel, A. S. Mothylenblatinktion der motorjeben Nervenendigungen in den Muskeln der Amphibien und Reptilien. Areh. f. mikr. Amat., Bomm, Bl. xxxv (1890), S. 305-320.
 \ddagger Retzius, C. Zar Komntniss der motorischen Nervenendigangen. Bioh. Untersuch., Stockholm, n. F. BI, iii (1892), s. 41-5:.
 \# Kallius, E. Endigungen motoriselaer Nerven in der Maskulatur dor Wirbelthiere. Merkel-Bomet's l'rgelm. der Anat, n. Entwick., Bil, vi for 1896, Wiesbaden (189\%), S. : 2ti-43).
 \| Pamiza, B. Ricerehe purimentali spra i nervi, 8vo, Pavia (1834). Aso Abstr. in Edinh, N. and S. J., vol. xlv. (1836), pl. \%0-99.

[^374]: * Peyer, J. Ceber die peripherischen Endigungen der motorischen und sensiblen Fasern der in den Plexus brachialis des Kaniuchens ciatretenden Nervenwurgeln. Ztsehr. f. rat. Med., Heidelb., ${ }^{2}$ R., Ba. iv (1854), S. in-iz.
 \dagger Krause, W. Beitrige zur Neurologie der oberen Extremität, 4lo, Leipz, u. Heidelb. (1865).
 \ddagger Remak, E. Zur Pathogenese der Bleilahmungen. Arch. f. l'syehiat. u. Nervenkr., Berl. (1876).-Zur Pathologie der Lathmugen des Plexus brachialis. Berl. klin. Wehnschr., Bd. xiv (1875), S. 116-118.—Ueber die Localisation atrophischer Spinallahmungen und spinaler Atrophien; kliniscle Beiträge zur Pathologie und Physiologie des Ritckemmarks. Areh. f. Psyehiat.

 \# Ferrier, D., and G. F. Yeo. The Functional Relations of the Motor Roots of the Brachial nad Lambo-sacral Plexuses. Proc. Roy. Soc. Lomd, vol. xxxii (1881),]p. 12-20.

[^375]: * Bert, P.. el A. Marcacei. Communieazione preventiva sulla distribu\%ione delle radici motrici nei muscoli degli nrti. Sperimentale, Firenze, vol. xlviii (1881). pp. 356-358.-Compt. rend. Soc. de Biol. (1881); also Gaz. mid. de Paris (1881), p. 512.
 \dagger Forgue, E. Distribution des racines motrices dans les museles des membres. Gaz. hebd. d. sc. mód. de Montpel, t. v (1883), p. 253; 279; 329 ; 388.-Also Thise Montpellier (1883).

[^376]: * Russell, J. S. R. An Experimenal Investigation of the Nerve Ronts which enter into the Formation of the Brachial Plexas of the log. Phil. Tr. Roy. Soc. Lomi., vol. (lxaxiv (B.), Lond. (1894), IP, :3:-6:3.

[^377]: * Starr. M. Allen. Syringomyelia; its Jathology and Clinical Features, with a Study of a ('ase und Remarks upon its liaguosis. Am. J. Med. sic., Plitat., it. s., vol. x'v (1888), pp. 456-468.

[^378]: * Nissl. FF. Ueber eine nene Unfersuchungsmethode des Centralorgans speciell zur Feststellung der Localisalion der Nervenzellen. Centrabl. f.
 ulsoin Areh. f. Psychiat. n. Nervenkr.. Berl., Brl. xxvi (1894), 5. 59\%-612.

[^379]: * Flatan, L. Ueber Verinderungen im menschlichen Räekenmark nach Wegfall grösserer Gliedmasset. Deut. med. Wehnschr.. Bd. xxiii (1897), S. 278-279.
 \dagger van Gehuchten, A. L'Anatomie fine de la cellute nerveuse. Verhand. d. Intermat. Congr., Moscow, 1897.

[^380]:

 \%ur vergleme 3. 1895.

[^381]: * Fürbringer, M. Cehor the spino-oecipitalen Nerven der Selachier und Holocephaten und ihre vergleichende Morphologie. Festschrift f. Gegen-

[^382]: * Bregmano, I. E. Ceber Diplegria facialis, Neurol. ('entralb, Leipz.. BI. xv (1896), S. D40-048.

[^383]: * Dusal, M., of I. V. Labode De limervation des monsements assuria

 a. Nomenkr., Bd. avi (Astion).

 I von Käliker, A. T'uber den Ureprong des Wentomotorim: heim Man-

[^384]: * Op. cit., s. 299.

[^385]: * IIensen, V., und C. Völekers. Ueber den Ursprung der Accommodationsuerven, nebst lemerkungen über die Function der Wurzeln des Nervus oculomotorís. Areh. f. Ophth.. Berl., Bel. xxiv (18is), S. 1-26.
 + Starr, M. Allen. op, rit.
 \ddagger Leube, W. Ueher Iferderkrankingen in Gehirnsehenkel in der Gegend des hinteren Vierhingelpuares. Dentsches Areh. f. klin. Med., Leipz., Bd. xl (1886-87). S. 217-927.

[^386]: * Bemheimer, S. Innervation der Augemmakehn. Dentsche med. Welnschr. (1897), No. 35, S. 153.
 \dagger Schwabe, II. V'eber die Gliederung des Oenlomotorins-Hauptkerns und die Lage der den einzelnen Muskeln entsprechenden Gehjete in demselimens Neurol. Centrulbl., לeipz.. BhI. xv (1896), S. \%92-794.
 \ddagger Mendel, F. Loher den Kernursprung des Augen-Faciatis. Berl. klin. Wehnschr.. Bd. xxiv (1887), S. 913-916. Also, Neurol. Centralbl., Leip\%., Bd. vi (1887), S. 537-542.

[^387]: kr.. Berl.. Bh, xix (188i-'88), II. 1, S. 108.

 + Meyer. P. Ueher cinen Pall von Ponshamorrhagir mit seemataren Wegenerationen der shheife. Areh. f. P'sehiat. u. Nervakr., Berl., Bu, xiii (1889), S. (6:3-9\%.
 \ddagger. Bedherew. W. Teher den Olivenstrang des Halsmarkes. Neurol. Centralbl., Latip\%.. Bd. xiii (1N:4), No. 12, S. 4;3.

[^388]: II ．Tuil．，Léipz．（1899），s．99－100．

 + Dentseln Ztselur．f．Nervenh．，Laip\％．．BI．x，S． 900 ．
 \ddagger Pobk，A．Boitrige zur Pathologie mul pathologishou Amamio des

[^389]:
 do la sinisse rom. (tsef).

[^390]: * Thomas, A. Le cervelet ; Étude anatomique, clinique et physiologique, Paris, 1897.

[^391]: * Riv. sperim. (1896), vol. xxii, p. 11\%.

[^392]: * Marehi, V. Sull' origine e decorso dei peduncoli cerebellari e sui loro rapporti cogli altri cent ri nervosi. Bvo, Firenze (1891), pp. 1-38. Also in Riv sper. di treniat., Reggio-Emilin, vol, x vii (1801). pp. 357-368. Also Trmsl. in . Mreli. ital. de biol., 'Turim, t. xvii (1892), pp. 190-201.

[^393]: * Ferrier. A Reood of Experiments llastrative of the Symptomatology and Degenerations Following lesions of the Cerebedhum and its Pro dmele and Relatel Strmetures in Monkeys. Phil. Trans. Roy. Sor., Lond.. vol. elxaxy (B.) (1895). pp, 719-708.
 \dagger Rassell. J. S. R. Degeneration Consequent on Experimental Lesions of the Corebellam. Proc. Rov. Soc.. Vomd., vol, lvi (1894). pp. 303-305: and Fxperimental Researches into the Functions of the C'erebellum. Phil. Trans. Roy. Soe., vol. elxxxy (B) (1895), pp. 819-861.

[^394]: * Bie

 Bl. xiv (

[^395]: * Biedl, A. Absteigende Kleinhirnbahnen. Neurol. Centralbl., Leipz., Bl. xir (1895), S. 434, 493.

[^396]: * Rambin y ('ajal, S. Beitrag zom Simdimen der Moblulla Oblongata des Khinhiros und des I'reprong der Gehirmmerom. Dentseh von Bresler,

[^397]: * Strictly speaking, the pramidal frnet does not include the axones going to the muclei of the cerebal merves, bat only those going throngh the primmids of the medulla to the spinal cord. The temeney is beemong genmal, however, to extend the term.
 \dagger Tamburini has stated us a general law that motion amel sensation are represented together in the pallimm, and (iolgi has st romgly supported a similar view.
 \ddagger Martinolli, C. Di alcmi movi gruphi di cellule cerebrale simili ai cosidetti gramuli del corvelletto. Am, di freniat. e se. atf., etc.. 'Tumm

 Bl. vii (1890), 心. 69-90.

[^398]: * Lewis, B. On the Comparative Siruchare of the Cortex Cerehri. Bran, vol. i (1878-79), pp. $78-96$-Lewis, B., und II, ('larke. The Cortical hamination of the Motor Area of the Brain. Proe. Roy. Soc., Lond., vol. xxrii (1878), pp. 38-49.-lewis, W. B. Researehes on the Comparative Strueture

[^399]: * Flechsig, P . Ceber cine neue Fïrhongsmethode des centralen Nervensystems und deren Ergetmisse bezüglich des Zusammenhanges von Ganglieuzetlen mud Nervenfasern. Arch. f, Anat. u. Physiol., Phỵsiel. Abtheilang. Lecipz. (1889), s. 58%.
 \dagger Lenticular segment of Dejerine.

[^400]: * We have alrealy referred to, and shall farther on again point ont. the fiet that fibres to the nuclei of the molor cerebral nerves are, strictly speaking, to be separated from the fibres going to the spinal cord.

[^401]: * Flechsig, P. Veher einige Beaiehungen zwisehen semodiaren Degenertlionen und Entwickelungsvorgingen im mensehlichen Räckemanth. Ard. 1. Heilk.. Leipz., Bal. xiv (1873), S. 4(64-469.-Die laitungsbahnen in Gehirn und lïickenmark des Mensehen auf Grund entwickelungsgeschichtlichor Cntersuchmaren dargentellt. 8vo, Leipaig (18j6).-Vpher "System-Erkrankangen" im Räckemmark. Areh. d. Heilk., Leipz., Bt, xviii (18:7), S. 101; 289: 461: and Bd. xix (1878), S. 53: 4.41: ('putalbl. f. die medicinischon Wissensehaften (1875). Nr: 3.-Veher die ('mpula interna. Tageblat dur Naturförsher-Versammhng. Sänchen (187\%), S. 226.-Kinr Amatomie und Ent wiokehugsgesehiehte der Leitungshahmen im (irosshirn des Mensoben. Areh. f. Anat. It. Plỵiol., Anat, Abth.. Leipz. (1881), S. 10-7in.-Plan des mensehbehen (ibhirns mif (brumb eigemer Cobersurhangen antworfon. Laipz.. 8vo, 1883.-(ichirn und Seele, Laiprig (1896).-Die Localisation hur geistigen Vorgiluge, Leiprig (1896).

[^402]: * This was described by Chareot as the fuisceuu de Tiurck.
 \dagger It is surprising how J. Hughlings Jackson, by means of clinical and op atbological observation and a happy scientific imagination, arrived at very important conclusions concerning focalization, which have since been in

[^403]: of the Varions: Movements probued by stimulatiog in the Monkey Differ-

 153-167.-A Record of the Liesults whtained by libedrimal Excitation of the
 sulyrus). Phil. 'Trans. Roy. Sor., Lomi., vol. clsxxi (1800) (B.). pp. 199-15s. - A Further Minute Ambsis by lihertrial stimulation of the su-alled

[^404]: * Barholow, R. Experimental Investigations into the Functions of the Ihman Brain. Amer, Jomr. Med. Sce, Phila., n. s., vol. lxvii (1874), ple 305313.
 \dagger Sciamman, A , Gli aversari delle localizatzioni cerebrali. Areh, di priehiat.. ctc.. Torino, vol. iii (1882), pp. 20!-218.
 \ddagger Keen, W. W. 'Three Sucressful Cuses of Cerebral Surgery, incluling (1) the Removal of a Large lutracranial Fibroma; (${ }^{(2)}$ Exsection of Damaged Brain Tissue: and (3) Exsection of the C'erebral Centre for the Left Mand; with Remarks on the General Technique of surla Operations. Amer. Jour. Med. Sc., Phila., n. s.. vol. vevi (1888), p. 829): 452.
 \# Lloyd. J. II., and I. B. Deaver. A ('ase of Foen Epilepsy suceessfully trented by Trephining and Excision of the Motor Centres, Amer. Jomr. Med. Sc., Plila., n. s., vol, xevi (1888), 11י. 4if-48i.

[^405]: * Nancrede, C. B. Two Successfal Cises of Brain Surgery. Med. News, Philh., vol. liii (1888), pp, ist-in8.
 \dagger Beevor, C. E., and Victor Ilorsley. An Experimental Investigntion into the Arangement of the Excituble Fibres of the Intemal Cupsule of the Bomet Monkey (Macacus simicus). Phil. Trans. Roy. Soc. (1890), Lond., vol. (Ixxxi (1891) (B), pp. 49-88; A Record of the Results ohtained by Electrical Excitation of the So-ealled Motor Cortex und Intermal ('apsule in the OrangOutang (Simia satyrus). Phil. Trmas. Roy. Soc. (1890), vol, elxxxi (B.), Lond. (1801). pp. 129-158.
 \ddagger Sanderson, J. B. Note on the Excitation of the Surface of the Cerehral Ifemispheres by Induced Currents. Proe. Roy. Soc., Lond., vol. xxii (1873-"i4), 11. 368-3:0.
 \# Frunck, F . Leepons sur les fonctions motriees du efreau (réactions voluntaires et organigues) it sur l'épilepsie cérébrale. 8vo. Par. (1887), pp. 21-29.

[^406]: * (ind, J., und E. Flatan. Weher die grobere Localisation der flir verschiedene Körpurtheile bestimmten motorischen Bahen im Rüekenmark. Semol. Centralbl., Leipz.. Bed. xvi (189\%), S. 481.

[^407]: *Tarek, L. Ueber seknndäre Erkrankung einzeher Rabkenmarksstränge und ihrer Fortsetzungen zum Gehime. Ztsehr. d. k.-k. Gesellseh. d. Aerate zu Wien (1852), ii, 511 ; (1853), ii, 289.

[^408]: * Tïrck designated this the Hülsen- Vorderstrangbahn.
 \dagger Bonthard, C. Des dégénérations secondaires de la moelle épinière. Arch. gén. de méd., Par. (1866), i, pl. 2i2: 441; 561 ; 578; ii, 273.
 \ddagger ('hareot. J. M. Leçons sur les maladies du systeme nervenx faites in la Salpêtrière, 8vo, Paris (1872-7\%3).
 \# Pierret. Consilérations anatomiques et pathologiques sur le faisecaut postérieur de la moelle épinière. Areh. de physiol. norm. et path., Par., 1. v (1873), pp. 534-546.
 || Nothnagel. II. Nxperimentelle Untersuchungen neber die Funetionen des Gehirus. Areh. t. path. Anat., etc., Berl., Bd. Ivii (1873), pl. 184-914; Bd. Ix (18i4). S. $1^{3} 9(149$.

[^409]: * von Beehterew designated it the accessorische Schleife, Schlesinger ealls it the taterale pontine Bändel. It is not, however, identical with the temporal cerehro-corticopontal path of Flechsig: for in the hase of the peduncle Hoche's fibres lie between the tempral cerebro-corticopontal path of Flechsig and the fibres of the pyramidal tract.

[^410]: * Pick, A. Ueber ein abnormes Faserbündel in der Mensehdichen Medullat oblongata. Areh. f. Psyehiat. n. Nervenkrankh.. Bd. xxi (1 sio).
 \dagger lleard, J. D. Ueber abmorme Nervenbindel in der Medulla oblongatia des Mensehen. Arb. a. d. Inst. f. Amat. n. Physiol. d. Centrahervensyst. an d. Wien. Univ., Leipz., u. Wien (1894), II. ii, S. 86-90.
 \ddagger von Gudden. Cor.-13l. f. seliweiz. Aerzte (1872), No. 4.
 \# Experimentelle Beiträge anr Kemutniss der l'yramiden- und Schteifonbahn. Cor.-Bl. f. sehweiz. Aerzie, Basel, Bl. xvi (1884), s. 129) ; 157.
 $\|$ Franek, Franeois, el A. litres. Des dégénérations seeondares de la moelle épinière consécutive a l'ablation du gyrus sigmoïde che\% le chion. Gaz. méd. de Par., 6. s., i. ii (1880), pp. 152-154.
 a Moeli, C. Ueber seknodiare Degeneration. Areh. f. Psyehiat. 11. Nervenkr., Bd. xiv (1883), S. 173.

[^411]: * Marehi, V., e G. Algeri. Sulle degenerazioni discendenti conseentive a lesioni sperimentali in diverse zone della corteceia eerebrale. Riv, sper. d. freniat., Reggio-Emilia, vol. xii (1886-87), pp. 208-2.5.
 \dagger Muratoff, W. Secundiire Degenerationen naeh Zerstörung der motorisehen Sphaire des Gehirns in Verbindung mit der Frage von der Loealisation der Ilirnfunctionen. Areh. f. Auat. u. Physiol., Anat. Abth., Leipz. (1893), S. 97-116.
 \ddagger Mellus, E. J. Preliminary Note on Bilateral Degeneration in the Spimal Cord of Nonkeys (Maeacus siniens) following Unilateral Lesion of the Cortex Cerebri. Proe. Roy, Soc., Lond. (1894), May 23.-Experimental Degenerations following Unilateral Lesions of the Cortex Cerebri in the Bonnet Monkey (Macreus sinicus). [Mbstr.] Proe. Roy. Soe., Lond., vol. Iviii (1895), pp. 206-214.
 \# Langley, J. N., and (:. S. Slerrington. Secondary Degeneration of Nerve Tracts following Removal of the Cortex of the Cerebrum in the Dog. J. of l'hysiol., Lond., vol. v (1884-'85), pp. 49-65.
 || Sherrington, C.S. Note on Experimental Degeneration of the Pyramidal Tract. Lancet, Lond., i (1894), p. 265.

[^412]: * Ramón y Cajal, S. Les nouvelles idées sur la structure du système nerveux che: l'homme et chez les vertébrés. Par. (Reimwald et Cio), (1894), pp. 39-69.

[^413]: * von Monnkow, ('. Experimentelle und pathologisch-mmtomische 'tntersuchungen ueber die Hanhenregion, den Sehhligel und die Regio subhatami"a, nebst Beilriggen zur Kemntniss frlh erworhener Gross- und Kleinhirudefecte. Areh. f. I'syehiat. n. Nervenkr., Berl., BA. xxvii (1895), 心. 1; 386.

[^414]: * Redlich, E. Veber die anatomisehen Folgeerseheneinungen ansgedehnter Exstirpationen der motorischen Rindencentren bei der Katze. Neurol. Centralbl., Lajpa., Bd. xvi (1897), S. 818-832.

[^415]: * ('f. Section on Nervous Diseases in Osler. W. Principles and Practice of Medicine, Bd ed., New York (1898).-Gowers. W. R. A Manaal of Disenses of the Nervons System. Philadelphia (1890).-Mills, (: K. The Nervous System and its Diseases. Phihulelphia (1898).

[^416]: * Zacher, T. Beitrige zur Kenntniss des Faserverlanfes im Pes pedunculi sowie ueber die corticalen lezichungen des Corpus genieulatum internum. Areh. f. Psyehiat. u. Nervenkr., Berl., Bil. xxii (1800-'91), S. 654-698.
 \dagger Spiller, W. G. A Contribution to the Study of Secondary Degeneration following ('erebral Lesions. Trans. Am. Neurol. Assoc., 1897, New York (1898), pp. 210-228.

[^417]: * Dejorino. d. Sur lourigine cortiate ed le trajet int racérebral des libres de l'itage infórien ou pied du predoncule círéhal. ('ompt. rend. Sox. de hiol., P'ar., 9. s., t. v (1893). p. . 2, pp. 193-206.

[^418]: * Mills, C. K., and W. (9. Spiller. A Case of Cerebral Abscess Situated at the Posterior Part of the Fixtermal Capsule (involving the Medullary Substance of the First 'lemporal Convolution, atso the Posterior l'art of the Lenticular Nuclens, and extending into the subthalamic Region), with Some Considerations in Regard to the Constitution of the Fxternal Bundles of Fibres in the Cerebral Peduncle. Ned. and Surg. Reporter, Phila., vol. Ixxiv (1896), p. 72 ; ulso in the J. Nerv. and Ment. Dis., N. Y., vol. xxiii (1896), pp. 62:-628.
 \dagger von Beehterew, W. Zur Frage neher die seeundären Degenerationen des Hirusehenkels. Arch. f. Psyehint. u. Nervenkr., Berl., Bd. xix (188\%), s. 1-17.

[^419]: * Zacher. 'I'. Beitrige zur Kenntniss des Faserverhafes im Pes pedunenli sowie neber die corticalen Beaichungen des Corpus genievlatum intermum. Areh. f. Psychint. u. Nervenkr., Berl., Bd. xxii (1800-91). S. 654-698.
 tsioli. Veber die Fisersysteme inn Fuss des (irosshirnsehenkels mod Degeneration derselben. (entralh, f. Nervenh., Leipz., Bd. xi (1888), s. 438-441: ulso in !?ruslan aterztl. Ztseh., Bd. x (1888). S. 181.
 \ddagger Winkler, ('. Seemblaire neerdatende degeneratie van den meest hateral gregen bundel in den pars pednnenli cerehri (ben bundel van Tïrrek). Sederl. Tijdschr. v. Geneesk., Amst., 2. R., xaii (1886), 111, 585-591. Also see Nemrol. C'entrallo. (1887), s. 939.

[^420]: * Hamilton, D. J. On the ('oppus Cullowim in the Allult Hamma Brain. J. Anat. and Physiol., Lond., vol, xix (1884-85), P1, 385-414.-On the Sturture and Functional Signifienter of the lluman Corpus Callosum. [Summary]. Proc. Roy. Soc., Lond., vol. xxxvi (1883-'84). p.

[^421]: * These are the neurones the axomes of which were deseribed as fihme arcuatid hy Arnold and as ('shaped tibres by Meynert. They incluet alla) the external layer of thagential fihres, the so-entled stripe of comari, and the supereradial plexus of bilinger in the ext rimb zone of the cortex as well as the intermdial plexus sithated in the deeper portion of the cortex.

[^422]: * Wernicke, (. Lehrbuch der Gphirnkrankheiten für Aerate umd Stutirende. Kussel n. Berlin (1881-*83).
 \dagger Saehs, Il. Was Hemisphairmmark des mensehliehen Grosshirns. I. Der Hinterhaptlappen. Leipz. (1892), p,:31, 4to,-Vortrige neber Ban und 'Thiat igkeit des (irasshirns unt die Lehre von der . Aphasie mad seelenblindheit far Lerate un! Studirende. Breshan, p. 296, 8ro (1890).
 \ddagger Vialet, N. Las centres cérebrax de la vision et l’uphereil nervenx visnel intra-céréhal. Par. ($18: 33$). - Note sur lexistace à la partie infírieure

 79%.
 * Dejerine, d. Ahatomid des cent res nervenx. Par. (1890), pp. 742-786. || Stratmon proprime consexitat is of sams.

[^423]: * Stratum cunci transversum of Sachs.

[^424]: * This bundle was deseribed under this mane by Burdach. It was calted the fornix periphericus by Aruold.

[^425]: * Beevor. C. E. On the Course of the Fibres of the ('ingulun and the Posterior Parts of the Corpus Cinlosum and Fornix in the Marmoset Monkey. Phil. Trans. Roy. Soc., 1891. Lomul. (1892), vol. elxxxii (B.), pp. 135-1999.
 \dagger Fasciculus arenatus of Buaduch.

[^426]: * Stratum sagittale extermm (Sitehs) : fuiscean sensitif (Chareot, Ballet).

[^427]: * Forel, A. Fall von Mangel des Balkens in einem Idiotenhirn. Tageblatt d. 54. Vers. deutsch. Naturf. u. Aerate in Salzburg (1881).
 \dagger Kanfmann, E. Ueber Mangel des Balkens im menschlichen Gehirn. Arch. f. psychiat u. Nervenkr., Berl., Bd. xviii (1887), S. 769 ; 13d. xix (1888), S. 229.
 \ddagger Hoehhans. H. Ueber Balkenmangel im mensehlichen Gehirn. Dentsehe Ztschr. f. Nervenh., Leipz., Bd. iv (1893-94), S. $99-93$.
 \# Bruce, A. On a Case of Absence of the Corpus Callosum in the Human Brain. Proc. Roy. Soc., Edinb. (1887-88), vol. xv (1889), pp, 321-341.

[^428]: * Balkembüutel zur imueren häpsel (Wernicke).

[^429]: * Kaes, T. Beiträge zur Kemntniss des Reichthums der Grosshirurinde des Mensehen an markhaltigen Nerwenfasern. Areh. f. Psyehiar., Bert., Bd. xxy (1893), S. 695-758.-Ueber den Faserreiehthum der ii u. ii Meynert'1070

[^430]: schen Sehicht sowie neber vergleichende Messungen der gesammen Mirnrinde und deren einzeher Schichten. Neurol. Centralbl., Leipz., Bil. xii (1893), S. 119-122.-Ueher die markhaltigen Nervenfasern in der Grosshimrinde des Mensehen. Ibid., Bd, xiii (1894), S. 410-412.

 * Thomas, speaking in this comection, says: " Flechsig's association centres are what have been called the silent areus of the brain; but we are forced to believe that they are silent, not beeanse they do not speak, but because we are too chull of understanding to hear what they say." ('f. Thomas, H. M., and Keen, W. W. A Successful Case of Removal of a Large Brain 'Iumor, etc. Am. J. M. Se., Phila., n. s., vol, exii (1896), p户. 503-522.

[^431]: * It is surprising to find how closely many of the views recently expressed by Fleehsig aceord with some of the doctrines promulgated by the linghish neurologist Bromdbent.

[^432]: * As Flechsig remarks, however, it is not probable that its function is confined to the association of olfactory impressions with sensations which tell us about the condition of our bodies, for the olfactory sense in man is relatively little developed, while the frontal lobe is developed ad maximum.

[^433]: * (f. a very important case deseribed by Friedlander, C'., and C. Wornicke. Ein Pall von Taubheit infolge doppelseitiger Lasion des Schbafelappens. Fortsehr. d. Mel., Bd. i (1883).
 + For evidence as to the paramont importance ol the somansthetie area for the development of a personality, the realer is referred to the thorough studies which were made of the brain of Lawra Bridgman. Cif. I Monaldson, 11. 11. Anatomial Observations on the Brain and sereral Sense Organs of the Blind Deaf-Mutc, Laura Dewey Bridgman. Am. J. Psyehol., vol, iii (1890), рр. $293-3+2$.

[^434]: * Ramón y (ajat. S. Einige Itypothesen neber den unatomischen mechanismus der Ideenhildung. der Assoeiation und der Aufurerkamkeit. Areh. f. Anat. n. Physiol., Amat. Abth., Leipz. (1895), s. $36 \%_{i}^{\circ}$
 + Cf. Jaeohi, M. I. Considerations on Flechsig's "Gehirn und Seele." J. Nerv. and Ment. Dis., N. Y. (1897).

