IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
 Corporation

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy availabla for filminy. Features of this copy which may be biblingraphically uniqua, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manyue
Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que tleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight blnding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre oli de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certalnes pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modificaxion dans da méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
 Pages de couleur

Page? damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire

Only adition avaliable/
 Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document eet filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity 0 : :

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entiraly included in one exposure are filmed beginning in the upper left hand corner, leff to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Dana Porter Arts Library

University of Waterloo
The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

L'exemplaire filmé fut reproduit grâce à la générosité de:

Dana Porter Arts Library
Unicarsity of Waterloo

Les images suivantes ont étd reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par le premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la derniàre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque ie document est trop g and pour être reproduit en un seul cliché, il es filmé à partir de l'angle supérieur gauche, de gatuche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

W Watizer Parterre Toronto.
$10-3-08$

TEXT BOOK
of
PHYSIOLOGY.

P
A

TEXT BOOK

0 F
P H Y S I OLOGY,
13
J. FULTON, M.D., M.R.C.S., Eng.; I.R.C.P., Lon.
PROFESNOR OF PHYGIOLOOY AND SANITARY SCIENCE IN TRINITY MEDICAL colleoe, toronto ; surokon to the toronto orneral
hompital, and physician to the home
FOR incurables, toronto.

SECOND EDITION, REVISED AND ENLARGED, with numerous illustrations.

"LABOR OMNIA VINCIT."
pillatbelpila:
LINDSAY \& BLAKISTON
TORONTO:
WILLING \& WILLIAMSON
1879.

Property of the Library
 University of Waterloo

Entered according to Act of the Parliament of Canada, in the Year One Thousand Eight Humlred and Serenty-nine, by J. Fulton, M.D., in the Office of the Minister of Agriculture, at Ottawa, D.C.

Entered according to Act of Congress, in the Year One Thousand Eight Humdred and Seventy-nine, by A. L. Fluros, M.D., in the Office of the Librarian of Congress, at Washington, D.C.

PREFACE TO THE SECOND EDITION.

The science of Physiology has been so much advanced in almost every department of the subject, since the issue of the first edition, that the preparation of the present one has been no easy matter. The very favorable reception, however, which was accorded the first edition, has induced me willingly to undertake the self-imposed task. Many of the chapters have been re-written, and much new matter added; but while every part has received careful revision, the original plan of arrangement has been rigidly adhered to, as that best adapted to the wants of those for whom it wis written.

My experience as a teacher in the department of Physiology during the last fifteen years, formerly in Victoria Medical College, and latterly in the University of Trinity College, has led me to the conclusion that Physiology can be best taught in connection with Histology, and with this view I have endeavored to supply a prevailing want in the ordinary text books, by the introduction of a concise history of this interesting subject. It has been truly said that a knowledge of Anatomy is the keystone to Medicine, and it is equally true that a knowledge of Histology is the keystone to Physiology.

Illustrations have been introduced wherever they appeared desirable, and in order to prevent the volume from being too expensive, such illustrations as did not appear necessary to the elucidation of the text have been omitted.

The illustrations are partly new and partly borrowed from recognized authorities, and special acknowledgment must be made of those obtained from. James Campbell, Publisher, Boston, U.S. It was not considered desirable, as a rule, in a work of this kind, to quote authorities for the statements in the text, as it would have required numerous references to home and foreign books and periodical literature, which would have been not only useless, but confusing to the generality of readers.

Notwithstanding the number of most excellent works on Physiology published, a well digested te t book on this subject, adapted to the wants of the advanced medical student and the general practitioner, is still a desideratum in medical literature. This work is chiefly intended for medical students, but it is hoped that it may also prove serviceable to medical practitioners, more especially those who have students under their instruction.
J. FULTON.

Elanis Plack, ;an Church St., 'Ioronto.

CONTENTS.

PAGE
INERODUCTION 11
CHAPTER 1.
Proximate Principles 14
Definition of a Proximate Prirciple 14
Classification of Proximate Principles 15
Proximate Principles of the First Class 16
Water 16
Sodium Chloride 17
Potassium Chloride. 18
Lime Phosphate 19
Lime Carbonate 19
Sodium and Potassium Carbonates 20
Sodium and Potassium Sulphates 20
Magnesium Phosphate and Carbonate 21
Gases 22
Proximate Principles of tife Seconi) Class 22
Starch 23
Glycogen 25
Sugars 26
Oils and Fats 29
Proximate Principles of the Tiilrd Class 33
Alhumen 35
Albuminose or Peptone 37
Fibrin 38
Casein 40
Globuline 41
Pepsine 41
Pancreatine 42
Ptyaline 42
Mucosine 42
Musculine 42
Cartilagine 42
Collagen 43
Elasticine 43
Keratine 43
Coloring Matters 43
Hemoglobine 43
Melanine 44
Bilirubine and Biliverdine 44
Urosacine or Urochrome 45
Luteine 45
Crystallizable Nitrogenous Mattees 45
Lecithine 45
Cerebine 46
Leucine. 47
CHAPTER II.
Elementary or Primary Forms of Tissue
dage 46
Protoplasm 47
Cells, shape, size and structure 47
Cytogenesis 51
Conditions necessary to Cell growth 53
Permanent Change in the Shape of Cells 53
Temporary Change in the Shape of Cells 54
Cause of Organization
Function of Cells 56
Manifestations of Cell Life 57
Granules 57
Simple Fibres 57
Simple Membranes 58
CHAPTER III
Tissues 60
White Fibrous or Connective Tissue 60
Yellow Fibrous or Elastic 'Tissue 62
Areolar Tissue 64
Adipose 'Tissue 65
Cartilage 66
Gelatinons and Reticular Tissue 71
Bone. 72
Teeth 79
Muscle 83
CHAPTER IV.
Membranous Expansions 96
Epithelium 97
Serous Membranes 101
Synovial Membranes 102
Mucous Membranes 103
Appendages of the Mucous Membrane 105
Integument 112
Appendages of the Integument 116
CHAPTER V.
Digestion 125
Prehension 132
Mastication 132
Insalivation 134
Deglutition 137
Chymification 139
Chylification 144
Defecation 156
CHAPTER VI.
Absorption 158
Villi and Lacteals 158
Lymphatic Vessels and Glands 159
Mechanism of Absorption 162
Absorption by the Villi and Lacteals 165
Absorption by the Blood Vessels. 166
Absorption by the Lymphatics. 167
Glandulæ Solitarix 167
Blool
Circu

CHAPTER VII.

PAGE
13Loon 168
Physical Character of the Bloodi 168
Microscopical Appearance of the Blood 169
Chemical and Structural Characters of the Blood 176
Difference between Arterial and Venous Blood 180
Conditions which Influence the Character of the Blood. 183
Coagulation and Vital Properties of the Blood 188
Circumstances which Promote Coagulation 191
Circumstances which Retard Coagulation. 192
Function of the Constituents of the Blood 194
Relation of the Blood to the Living Organism 198
CHAPTER VIII.
Circulation 200
The Heart and Circulation 200
Proofs of the Circulation 203
Action of the Heart 206
Arteries 212
Veins 219
Capillaries 222
Velocity of the Circulation 225
Fotal Circulation 227
CILAPTER IX.
Respratition 230
'The Lungs 230
Mechnnism of Respiration 233
Influence of the Nerves in Respiration 237
Modification of the Respiratory Movements 238
Changes in the Respired Air. 239
Changes in the Blood during Respiration 242
Effects of the Arrest of Respiration 243
CHAPTER X.
Animal heat, Light and Electrictty 244
Hea 244
Theory of the Production of Heat 245
Regulation of the Temperature of the Body 247
Light 248
Electricity 248
CHAPTER XI.
Secreting Glands and their Secretions 252
The Liver 252
The Kidney 256
Se.cretion of Urine. 259
The Mammary Glands 266
Milk 267
CHAPTER XII.
Ductlefs or Vascular Glanlis 270
The Spleen 270
The Supra-renal Capsules 273
The Thymus Gland 274
The Thyroid Gland 275

ChAPTER XIII.

PAGE
The Nervous System 276
Structare of the Nervous System 281
Ganglia of Nerves 284
Chemical Composition of Nerve Tissue 284
Origin and 'lermination of Nerves 286
Function of Nerve Fibres 289
Development of Nerve Tissue 292
Function of the Nervous Centres. 293
Reflex Action 295
Nerve force 295
The Spinal Cord 296
Function of the Spinal Cord 299
Encephalon 303
M: elulla Oblongata 303
l'ons Varolii 306
Cercbellum 307
Cerebrum 310
The Mind and its relation to the body 324
Cranial Nerves 329
Sympathetic Nervons System 336
CHAPTER XIV.
The Special Senses 340
Smell 340
Sight 343
Phenomena of Vision $35 I$
Accommodation of the Eye to Vision 352
Defects of Vision 356
Hearing 358
The Mechanism of Hearing 362
Sense of Taste. 364
Sense of Touch. 366
CHAPTER XV.
The Voice 370
Larynx 370
Compass of the Voice 373
Ventriloquism and Stammering 374
CHAPTER XVI.
REPRODUCTION 375
Action of the Male 377
Action of the Female. 378
Corpus Luteum 380
Action of the Oviducts 381
Development of the Ovum 382
Formation of the Amnion and Allantois 386
Formation of the Chorio 388
Preparation of the Uterus for the Ovum. 389
Formation of the Placenta 390
Umbilical Cord and Amniotic Fluid 391
Parturition. 392
General Development of the Embryo 392

Phy tion," gation bodies Vegets control the V divide parati Hun human the me mals, o tics. ledge o may be he is e

Anin possess and dis action tion of secrete also m the blo the hea

HUMAN PHYSIOLOGY.

INTRODUCTION.

Physiology, from фuats, " nature," and dojos, a description," in its general sense, has for its province the investigation of the active phenomena presented by organized bodies, and is divided into two parts, viz:-Animal, and Vegetable Physiology: the former treats of the laws that control the Animal Kingdom; the latter relates to those of the Vegetable Kingdom. Animal Physiology may also be divided into two parts, viz: Human Physiology, and Comparative Physiology, or the Physiology of the lower animals.

Human Physiology treats of the vital phenomena of the human species, and is of much more practical inportance to the medical student than the Physiology of the lower animals, on account of its relation to Pathology and Therapeutics. The study of Physiology requires an intimate knowledge of Anatomy and Chemist:y, in order that the student may be able to comprehend the character of the structure he is examining, and the substances of which it is composed.
Animate bodies, in contradistinction to inanimate, are possessed of organs, each of which has a special structure and distinct office to perform in the living organism. This action or office is called its function, for example, the function of the liver is to secrete bile, the salivary glands to secrete saliva, \&c. The functions of the different organs are also mutually dependent on each other. The aëration of the blood by the lungs, is dependent on its circulation by the heart and blood vessels, and the circulation of the blood
is dependent on the influence of the nerves, and the continuance of life is the result of the continued normal and harmonious action of all the organs of the body.

The different organs of the body are sometimes called systems, as the osseous system ; muscular system; nervous system; arterial system, etc. Each organ is made up of smaller parts or ultimate elements, which can only be seen and studied by the aid of the microscope ; these are called the "anatomical," "histological," or "microscopical elements; for example, the primitive fibrille are the ultimate or "anatomical" elements of muscular tissue, the axis cylinder and white substance of Schwann are the anatomical elements of nerve fibres, etc.
All living beings pass through the various stages of birth, growth, development, maturity, and decay. These are the so-called essentials of life. Birth means the separation from the parent, with power of independent life and existence, inherited from the parent. Growth is the power of increasing in size, but this is not limited to living beings. A stone or a crystal may also grow, but it is by the laying on of particles on the outside, or superficial, while the growth of living organisms isinterstitial, and has definite limits. Living organisms absorb the material required in growth into their interior, and assimilate it into their own composition. Development indicates the successive changes through which all living organs must pass, before they are capable of properly performing their functions. The brain of the adult idiot has grown, but it is incapable of the proper performance of its function, from want of proper development. Maturity is the attainment of complete growth, and is soon followed by decay or decline. In fact, decay may be said to be constantly taking place in our bodies, and life consists in making up for the loss attendant on it, by continual repair. The particles of our bodies die, and are replaced by new ones from day to day, although the individual remains the same, so that it may be said of our bodies "in the midst of life we are in death."

Some have endeavoured to draw a distinction between the animal and vegetable kingdoms, but while this is a matter very easy of accomplishment in the higher orders, it is very difficult to say where vegetable life terminates and animal life begins, lower in the scale. The distinction which is probably the most reliable, is the power of vegetables to live on inorganic matter, as water, carbonic acid, and ammonia, while animals cannot subsist without organic material. The distinctions sometimes given, based on the difference in chemical composition-the presence or absence of nitrogen ; the power, or absence of movement, and the presence or absence of a stomach in animals and vegetables respectively, while of value so far as the higher orders are concerned, are valueless as a means of distinguishing between the two classes, low down in the scale of life.

CHAPTER I.

PROXIMATE PRINCIPLIES.

Animal bodies are composed of solids and fluids : the formar erabrace the various textures and viscera; the latter the blood, chyle, lymph and glandular secretions. The same substance may be fluid in one part of the body and solid in another; for example, lime phosphate is in solution in the albumen of the blood, but is solid in the bones. Every animal tissue a:ad fluid contains a number of proximate principles mingled together in various proportions.

A proximate principle may be defined to be any chemical substance, which exists in the animal solids or fluids in its own form, and which may be extracted in an unaltered state by chemical process.

But it must not be suppused that every substance which can be extracted from an organized solid or fluid by chemical means is? proximate principle; for example, sodium chlorile is a proximate principle; but chlorine is not, because it does nt exist in its elementary form in the body. Lime phosphate is a proximate principle of bone ; but phosphoric acid is not, beeause it does not exist in a free state in the bony tissue; still less phosphorus, which is obtained only by the decomposition of phosphoric acid. Again, fibrous tissue, when boiled steadily for thirty-six or forty hours, yields a substance called gelatine; but this is not a proximate principle, since it does not exist as sueh in the body but is produced only by long-continued boiling.

In extracting the proximate principles from the animal body, only the simplest chemical means should be employed. First, evaporate the substance, to extract and estimate the
amou 100° of the water

Col alcoho remov cholat tate, f may, i ing th Someti entirel by hea separat hence t perman

The
1st. water, etc. Ti are fou and har
(In tl hydroge etted hy

2nd. nitroger They ar (excepti
They co
3rd.
"album
men, fib
classes i
exclusiv
and are
amount of water. The temperature should not be above $100^{\circ}\left(212^{\circ} \mathrm{F}\right.$.) because a higher degree would change some of the animal ingredients. Then dissolve out the salts with water.

Coloring matter, or pigments, may be extracted by alcohol ; oils and fats by ether. Some of the salts may be removed by double decomposition. Thus, sodium glykocholate or tauro-cholate may be precipitated by lead acetate, forming lead glyko-cholate or tauro-cholate which may, in its turn, be decomposed by sodium carbonate forming the original sodium glyko-cholate or tauro-cholate. Sometimes a proximate principle cannot be separated in an entirely unaltered state. Albumen requires to be coagulated by heat or nitric acid; the fibrin of the blood can only be separated by coagulation, which it does spontancously; hence they lose their original character of fluidity, and are permanently altered.

The proximate principles are divided into five classes:
1st. Crystallizable substances of inorganic origin, as water, sodium chloride, lime carbonate and phosphate, etc. They are derived mostly from exterior sources. They are found in organized as well as in unorganized bodies, and have a definite chemical composition.
(In this class may also be included the gases, as oxygen, hydrogen, nitrogen, carbonic acid, carburetted and sulphuretted hydrogen).

2nd. Crystallizable substances of organic origin, or nonnitrogenized substances, as starch, sugars, oils, and fats. They are found only in organized bodies, are crystallizable (excepting starch), and have a definite chemical composition. They contain carbon in large proportion but no nitrogen.

3rd. Organic substances proper, "nitrogenized substances," " albuminoid substances," or "protein compounds," as albumen, fibrin, casein, \&c. They differ from the two former classes in the fact that they contain nitrogen. They are exclusively organic in their origin, are not crystallizable, and are not definite in their chemical composition.

4th．Coloring matters，as hemoglobine，melanine，biliru－ bine，biliverdine，etc．

5th．Crystallizable nitrogenous substances，as urea，crea－ tine creatinine，lecithine，cerebrine，etc．

PROXIMATE PRINCIPLES OF THE FIRST CLASS．
Water， $\mathrm{H}_{2} \mathrm{O}$ ．－Water is the most important of the in－ organic principles，and is found in all parts of the body． In the solids it does not exist in a fluid state，but is incor－ porated with the substance of the tissue．It may be called ＂water c ，composition，＂in contradistinction to what is called in chemistry＂water of crystallization．＂It con－ stitutes about two－thirds of the entire weight of the body．

The following table shows the proportion of water per 1,000 parts in different solids and fluids ：－
quantity of water in $\mathbf{1 , 0 0 0}$ parts．

$\begin{aligned} & \text { 烒 } \\ & \text { ご } \end{aligned}$	Enamel of the Teeth．．．	芯	Blood．．．．．．．．．．．．．．．．．． 795
	Epidermis．．．．．．．．．．．．． 37		Bile．．．．．．．．．．．．．．．． 880
	Teeth．．．．．．．．．．．．．．．． 100		Milk．．．．．．．．．．．．．．． 887
	Bones．．．．．．．．．．．．．．． 130		Pancreatic Juice．．．．．．． 900
	Tendons．．．．．．．．．．．．． 500		Urine．．．．．．．．．．．．．．．．． 936
	Cartilage．．．．．．．．．．．． 550		Gastric Juice．．．．．．．．． 975
	Muscles．．．．．．．．．．．．．．． 750		Perspiration．．．．．．．．．．．．． 986
	Ligaments．．．．．．．．．．．．． 768		Saliva．．．．．．．．．．．．．． 995

Origin and Discharge of Water．－It is introduced with the fluid and solid elements of the food．It is also be－ lieved to be formed in the body from the union of oxygen and hydrogen，as they are liberated from organic combinations． The amount of water taken into the system by an adult，in the course of 24 hours．varies from $3 \frac{1}{2}$ to 4 pounds．It is dis－ charged from the body in four different ways－by the urine， fæces，perspiration，and breath－about 50 per cent．being dis－ charged by the urine and fæces， 30 per cent．by the per－ spiration and 20 per cent．by the lungs．These proportions will vary according to circumstances；for example，in warm weather，when the skin is more active，and the perspiration more abundant，the quantity of urine is diminished．The
rqua the Th var：
quantity of water discharged by the lungs varies also, with the state of the atmosphere and the pulmonary circulation. The water is not discharged pure, but is mingled with various salts, animal matters, and odoriferous substances.

Function.-It holds in solution different salts and substances of excretion, and gives fluidity to the blood and secretions. It is a most important article of diet, and is necessary both for the introduction of substances into the body, and their elimination from it. It gives to cartilage its elasticity, and to tendons their toughness and pliability, for, if water be expelled from a piece of cartilage by evaporation, it becomes dark in colour, semi-transparent, hard and inelastic. The same thing is true of musiles, tendons, etc.

Sodium Chloride, NaCl . - Sodium chloride is next in importance, and is found in all parts of the body except the enamel of the teeth. The entire quantity in the body has been estimated by Dr. Lankester, at one-quarter of a pound, avoirdupois. It exists in the greatest quantity in the fluids. In blood, for example, it is more abundant than all the other salinies taken together. The following is a list of the quantities in the most important solids and fluids.:-

QUANTITY OF SODIUN CHLORIDE IN 1,000 PARTS.

Origin and Discharge.-It is iutroduced with the different kinds of animal and vegetable food and fluids, and as a condiment. Being soluble, it is taken up by absorption from the intestines, and is deposited in different parts of the body. About $\frac{4}{5}$ is discharger from the body in the urine, fieces, perspiration and mueus, the remaining $\frac{1}{6}$ being supposed to be ehanged in the body ly double-decomposition
with potassium phosphate, resulting in the formation of sodium phosphate and potassium chloride. It is also sup. posed to furnish the sodium to all the salts of that metal.

Function.-It regulates, to a certain extent, the process of osmosis, for we know that a solution of sodium chloride permeates an animal membrane much less readily than pure water. In the blood it holds in solution the albumen and carthy phosphates, and preserves the integrity of the blood corpuscles. As an article of diet, it stimulates the secretion of saliva and gastric juce, and aids in digestion. The importance of sodium chloride in this respect has been demonstrated by Boussingault in the fattening of animals. A small herd of animals were experimented upon, ali of the same age, size and vigor. They were divided into two lots and all supplied with an abundance of nutritious food. One of these lots was deprived of this salt (except what was contained in the food), while the other received about $\mathbf{5 0 0}$ grains per day. No difference was observable for four or five months; from that time to the end of the year a marked difference was noticed. Those animals which received the sodium chloride had a fine, sleek, healthy aspect, contrasting strongly with the listless and inanimate appearance of the others. The animals of the forest, as the buffalo and deer have their"salt-licks" to which they resort from time, to time.

Potassium Chloride, KCl.-This substance is found in the muscles, liver, milk, chyle, blood, gastric juice, bile, saliva, mucus and urine, associated with sodium chloride. It is quite soluble in the fluids, and is more abundant in muscle and milk, than sodium chloride, less so in blood, gastric juice and perspiration.

Origin anid Discharge.-It is introduced with the food and is also supposed to be formed in the interior of the body by double-decomposition as previously stated. Potassium chloride is discharged in the urine, mucus and perspiration.

Function.-Its function is probably identical with sodium chloride.

Lime Phosphate, $\mathrm{Ca}_{3} \mathrm{P}_{4} \mathrm{O}_{8}$. - Lime phosphate is found in all the solids and fluids of the body, but is more abundant in the solids, and increases as age advances. It exists in a solid state, as in the teeth, bones; and also in a fluid state, as in the blood. It is insoluble in water; but is held in solution in the fluids of the body by albumen and the alkaline chlorides, In the urine, is is held in solution by the acid sodium biphosphate, so that when the urine is rendered alkaline the phosphates form a turbid precipitate. In bone or cartilage, it does not exist as a granular powder, but is intimately united with the animal matter, and may be dissolved out by maceration in dilute muriatic acid, leaving behind the animal substance. When a long bone like the fibula is inmersed in this way for some time, it loses its brittleness, and may be bent double, or tied in a knot, without breaking. If inmersed in a solution of lime carbonate, its rigidity may be again restored to a certain extent.
quantity of lime phosphate in 1,000 parts.

Origin and Discharge.-This substance is derived exclusively from exterior sources. It . introduced with the food, in nearly all forms of which it is found, and is eliminated by the urine, perspiration, and mucus; most by the urine, a small quantity only by the fæces and perspiration.

Function.-Its use is to give consistence and strength to parts; for example, in the enamel of the teeth, which is the hardest tissue in the body, it is most abundant, and in dentine more abundant than in bone. Its presence in milk is subservient to the growth and development of bone in the young of the mammalia.

Lime Carbonate, CaCO_{3}.-This substance exists in the
bones, teeth, cartilage, blood, sebaccous matter, internal car (otoliths), and in the urine. In bone it is not so abundant as lime phosphate, the proportion being about 113 parts in 1000. It is held in solution in the blood and urine by the free carbonic acid and alkaline chlorides.

Origin and Discharge.-It is introduced into our bodies with the food and drink. Spring water contains a variable amount, held in solution by the free carbonic acid which the water contains.
Function.-Its function is analogous to that of lime phosphate.

Sodium and Potassium Carbonates, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ Sodium and potassium carbonates are found in the bones, blood, lymph, saliva, and urine. They give to the blood its alkaline reaction. Claude Bernard has shown that the alkalescency of the blood is necessary to life; for if a mineral acid be injected into the blood of a living animal, so dilute as not to coagulate the albumen, death takes place before its alkaline reaction has been eompletely neutralized.

Origin and Discharge.-They are introduced in small quantities in the food, but are principally formed within the body by decomposition of other salts, malates, tartrates, and citrates of the alkaline bases. These salts when introduced into the body in the food are decomposed. Their organic acid is destroyed and replaced by carbonic acid, forming sodium and potassium carbonates. They are discharged in the urine and mucus.

Function.-Their function is to maintain the fluidity of the fibrin and albumen, to give alkalescency to the blood and secretions and to assist in preserving the form and consistence of the blood corpuscles.

Sodium and Potassium Phosphates, $\mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{~K}_{2} \mathrm{HPO}_{4}$, -These substances exist in all the solids and fluids of the body. They are soluble in water, possess an alkaline reaction and are known as the alkaline phosphates. These, togeither
with tl of the possess acid;

The deranc derance phosph nivora

Orig food, bo in the with th perspira

Fund give to t conditio bonic ac the lung water, e1 bonic ac

The a to that f phospha portion

Sodiu
These ex as in mi milk, sal more abs a little m are intro also form phates, b with the
with the alkaline earbonates are essential to the maintenance of the alkaline characeer of the fluids of the body, all of which possess an alkaline reaction except the following, which are acid;

$$
\begin{array}{ll}
1 \text { Gastric juice. } & 3 \text { Urine. } \\
2 \text { Perspiration. } & 4 \text { Mucus of the Vagina. }
\end{array}
$$

The fluids of the carnivorous animals eontain a preponderanee of the alkaline phosphates; the herbivorous a preponderance of the earbonates. The former is owing to the phosphates found in the animal tissues upon which the carnivora feed.

Origin and Discharge.--They are introdueed in the food, both animal and vegetable, and are also partly formed in the body by the oxidation of phosphorus and its union with the alkaline bases. They are discharged in the urine, perspiration and mucus.

Function.-Together with the alkaline carbonates they give to the blood and secretions their alkaline reaction. This condition of the blood increases its power of dissolving earbonic acid, and also favours the elimination of the latter by the lungs. A small proportion of sodium phosphate added to water, enables it to dissolve twiee the usual quantity of carbonie aeid, and the other alkaline salts have a similar action.

The acid sodium biphosphate, is found in urine, and gives to that fluid its acid reaction. It is formed from the sodium phosphate by the aetion of urie aeid which combines with a portion of the sodium.

Sodium and Potassium Sulphates, $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{PO}_{4}$ These exist in small quantity,-in some fluids only a trace, as in milk, saliva, \&c. They are found in blood, lymph, milk, saliva, mucus, perspiration, urine and freees. They are more abundant in the urine, than in any other fluid, being a little more than half as much as of the phosphates. They are introduced by the food and drink. A certain amount is also formed in the body in a similar manner to the phosphates, by oxidation of sulphur and its subsequent union with the alkaline bases.

Magnesium Phosphate and Carbonate, $\mathrm{MgHPO}_{4}, \mathrm{Mg}$ CO_{8}.-These salts are found in small quantities in nearly all the solids and fluids of the body. Associated with lime phosphate, they are known as the earthy phosphates, They are introduced in the food. They are dissolved in the fluids by the alkaline chlorides and phosphates, and in the urine by the sodium biphosphate The salts of magnesium are more abundant in muscles and brain, than the salts of lime. They are eliminated principally by the urine and freces.

The proximate principles of the first class exist in the animal tissues in the same form in which they oceur in the inorganic world. Lime carbonate in the bones is the same as thal; which is found in limestone rock; and sodium chloride is similar to that which is found in solution in sea water.

Gases.--Oxygen, nitrogen, hydrogen, carbonic acid, carburetted hydrogen and sulphuretted hydrogen, exist in a gaseous state, and also in solution in some of the fluids of the body.

Oxygen is necessary to the respiratory process. It changes the shape of the blood corpuscles rendering them biconcave, and gives to the arterial blood its bright-red colour. Arterial blool contains about 10 to $12 \frac{1}{2}$ per cent of oxygen. Nitrogen exists in very small quantity in the blood and lungs. It is also found in the intestines. Carburetted and sulphuretted hydrogen, also pure hydrogen, are found in the alimentary canal, and in small quantities occasionally in expired air. Carbonic acid is an excretion given ofí principally by the lungs. From 20 to 25 per cent. is found in venous blood.

PROXIMATE PRINCIPLES OF THE SECOND CLASS.

The substances of this class are all of organic origin, and exist both in vegetables and animals. They consist of carbon, hydrogen and oxygen only, and are therefore non-nitro-
genous. fatty ma the prop and hyd

Stan lizable, i perties, crystalliz principle sesses a the flowe tapioca, a

In Rice....
" Maize..
"Barley M
" Rye
" Oat

Physic

 der, consis and physi duces a er gers. Eac gled togetl is more al insoluble. to $\frac{1}{40 \pi}$ of shaped in rounding a near the s The grar more unifc to 50 mmm a circular p vary from ameter, neagenous. There are two divisions, the carbo-hydrates and fatty matters. In the former the hydrogen and oxygen are in the proportion to form water, and in the latter the carbon and hydrogen are in much larger quantity than the oxygen.

Starch, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$.-This substance, though not crystallizable, is so closely allied to the others in its general properties, and so easily couverted into sugar, which is crystallizable, that it is naturally included in the proximate principles of the second class. It is not amorphous, but possesses a distinct granular form. It is found in nearly all the flowering plaits, and is the principal ingredient in sago, tapioca, arrowroot, \&c.

QUANTITY OF STARCH IN 100 PARTS.

Physical Appearance of Starch.-It is a white powder, consisting of solid granules, which vary in shape, size, and physical appearance, in different vegetables. It produces a crackling sensation when rubbed between the fingers. Each starch granule consists of two substances mingled together, granulose and cellulose. The former, which is more abundant, is soluble in boiling water, the latter is insoluble. The starch granule of potato varies from $\frac{1}{1000}$ to $\frac{1}{40 \pi}$ of an inch (2.5 to 62.5 mmm .) in diancter, is pearshaped in its outline, and marked by concentric rings surrounding a minute pore, called the lilum, which is situated near the small extremity of the granule (Fig. 1.)

The granules of arrowroot are oval in shape, small, and more uniform, and vary frorr. $\frac{10}{2000}$ to $\frac{1}{500}$ of an inch (12.5 to 50 mmm .) in diameter (Fig.3). The hilum is in the shape of a circular pore or transverse slit. The starch grains of wheat vary from $\frac{10}{100 \overline{0}}$ to $\frac{1}{\sqrt{00} 0}$ of an inch (2.5 to 35.5 mmm .) in diameter, nearly circular in form, with a round or transverse
hilum, but without any distinct laminar appearance (Fig. 2). The granules of Indian corn are the same size as the preceding; they are irregular in shape, and present a crucial, (Y) or (T) shaped pore (Fig. 4). The gianules of rice are very small, uniform in size, polygonal in outline, and present a granular appearance (Fig. 5).

Fig. 1 Starch granules of potato. (2). Starch gramules of wheat. (3). Starch gramules of arrowroot. (4). Starch granules of Indian corn. (5). Starch grauules of rice.

Origin and Properties.-It is found in most vegetable substances used as fond, and in that way is introduced into the body. It is also found in the animal body in the lateral ventricles of the brain, fornix, and septum lucidum. It was first observed by Purkinje, and afterwards by Kolliker and Virchow. The granules are called corpora amylacea, and
 vary in size from $\frac{1}{4} \frac{1}{50 \pi}$ to $\frac{1}{1000}$ of an inch (5.5) to 22.5 mmm .) in diameter. They are transparent, softer than in vegetable starch, irregularly rounded, and present a faint laminar arrangement, having a circular pore near the centre, with lines radiating from itCorpora Anylacea. star-shaped.
Starch is insoluble in cold water, but the granules swell out, become gelatinous, and are readily dissolved in boiling
water. mechanic by torre stance w in soluti towards

Starch ent ways

Firstly acid for 3 dextrine its proper

Second stance, at mixed wi
Thirdl? mals and is convert randered plant duri

Functi sugar. the action necessary all periods

Test. letected color. O White pap in potassil taining oz the iodine paper blue Glycog ceous subs
water. It is then said to be hydrated. This is simply a mechanical change. Starch may be converted into dextrine, by torrefaction-a dry heat of 210° (400 F .) This substance which is of a gummy nature, is so named because in solution it rotates the plane of a polarized ray of light towards the right.

Starch may also be converted into sugar, in three different ways.

Firstly, by boiling in dilute nitric, muriatic, or sulphuric acid for 36 or 40 hours. The starch is first converted into dextrine and then into sugar, and at the same time loses its property of responding to the iodine test.

Secondly, by contact with an animal or vegetable substance, at a temperature of $37.5^{\circ}\left(100^{\circ} \mathrm{F}\right.$.) Boiled starch mixed with saliva is converted into sugar in a few minutes.

Thirdly, by the process of nutrition and digestion in animals and vegetables. The starch found in seeds and roots is converted into sugar by the presence of diastase, and thus rendered soluble before it can be taken up to nourish the plant during its growth.

Function.-Its office in the animal economy is to form sugar. Starch is converted into sugar during digestion by the action of the pancreatic and intestinal juices. It is necessary for the process of development and nutrition at all periods of life. It is the source of sugar in the vegetables.

Test.-In whatever state it exists, its presence may be detected by its reaction with free iodine, giving a blue color. Ozone test-paper is prepared on this principle. White paper is first saturated in a solution of starch, and then in potassium iodide. Whei exposed to an atmosphere containing ozone, the latter oxidizes the potassium and liberates the iodine which reacts upon the starch, and stains the paper blue.

Glycogen, $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$-This is the name given to an amylaceous substance found in animal bodies. It exists in the
liver of all vertebrate animals, also in the muscles and integument at an early period of development. It gives a violet-red color with iodine, instead of blue. It is soluble in water and is easily changed into sugar or glucose, by boiling with a dilute acid, or by contact with an animal substance. It is the source of sugar formed in animals, as starch is in vegetables.
Sugars.-These substances are soluble in water, crystallize on evaporation, and are converted into alcohol and carbonic acid in the process of fermentation. The ordinary varietios of sugar are: glucose or grape sugar, saccharose or cane sugar, and lactose or milk sugar. Saccharose is more soluble than any other variety, and is therefore sweeter. Glucose crystallizes with difficulty, but ferments readily ; while cane and milk sugar ferment with difficulty. Sugar is necessary in the process of nutrition at all periods of life, and is also supposed to assist in maintaining the animal heat of the body. It is never discharged from the body in bealth (except in the female during lactation); but in certain diseased conditions of the system, it is rapidly produced in the liver, in the form of glucose and is discharged in the usine, constituting diabetes mellitus.
table of quantity of sugar in 100 parts.

In Figs.	62.50	Wheat Flour.	2.33
"Cherries.	18.52	Rye do.	3.46
"Peaches.	11.61	Ind'n Corndo.	3.71
" Tamarinds.	12.50	Peas	2.00
${ }^{1}$ Pears.	11.52	Cow's Milk.	5.20
" Beets	8.00	Asses do.	6.08
"Barley	3.04	Human do.	6.50

It is an important article of diet. It is introduced with the milk in the food of the child. In the adult it is introduced partly in the food as sugar ; but mostly in the form of starch, which is converted into glucose during digestion by the action of the pancreatic and intestinal juices.

Glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$-This variety is named grape sugar because it exists in large quantity in ripe grapes and
sweet fi in the 1 fœotus d in the blood in verted i a moder boiling stances a of a nitr diastase. Tests. one or th it alkalin The whol it for a suboxide precipitat biue. .Th sugar has in the pre neutralize to cane or phuric aci readily. mer's test. tity of cop sufficient s

Organic test. This removed. mate princ
"Fehlin as in Tron The solutio

Copper St Potassium Sodium hy
sweet fruits. Glucose is found in the interior of the body, in the liver, blood, lymph, chyle, and in the placenta of the fæetus during the first three months of fæetal life. It is found in the portal and hepatic veins, but disappears from the blood in its passage through the lungs, being probably converted into lactic acid. It is readily soluble in water, and has a moderately sweet taste. It may be formed from starch by boiling with a dilute acid, by contact with animal substances at a temperature of $37.50^{\circ}(100 \mathrm{~F})$, or by the action of a nitrogenous substance in a state of decay, as vegetable diastase.

Tests.-Trommer's Test.-To the suspected liquid add one or two drops of a solution of copper sulphate; render it alkaline by the addition of a solution of caustic potassa. The whole solution then assumes a olue color. Then boil it for a few minutes, and if sugar be present, copper suboxide is thrown down as a yellowish or reddish-brown precipitate. If no sugar be present, the liquid remains biue. .The principle of this test depends upon the power sugar has in reducing the copper protoxide to the suboxide, in the presence of an alkali, which is added to liberate and neutralize the sulphuric acid. This test is not applicable to cane or milk sugar; but by boiling them in dilute sulphuric acid they are converted into glucose, which responds readily. Liver and milk sugar act promptly with Trommer's test. Care should be taken that only a small quantity of copper sulphate be added, as there might not be sufficient sugar in the solution to reduce it.

Organic substances, as albuminose, interfere with this test. This substance may be precipitated by alcohol, and removed. Albuminose will be described among the proximate principles of the 3 rd class.
"Fehling's Liquor" Test.-The principle is the same as in Trommer's test, but it is a much more delicate test. The solution is prepared according to the following formula:

The first two are dissolved in water, mixed with the alkaline solution and water added to make $1154 \not 4$ cubic centimetres $=(2$ pints.)

Add to the suspected mixture enough of the solution to give it a blue tinge, and boil. If sugar be present, the copper suboxide is thrown down, as in Trommer's test. A single drop of this liquid will detect $\frac{1}{15}$ of a milligramme
 from light and air, otherwise it will become changed and unfit for use.

Fermentation Test.-Add a few drops of fresh yeast to the saccharine liquid, and keep it at a temperature of about $25^{\circ}\left(77^{\circ} \mathrm{F}\right.$.), in this way the sugar is converted into alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$, and carbonic acid $\left(\mathrm{CO}_{2}\right)$; the latter should be collected in a vessel and examined. Every cubic inch of carbonic acid is about equal to one grain of sugar. The presence of carbonic acid may be proved by introducing into the vessel a lighted taper, which will be immediately extinguished; or by agitating with lime water, which will be rendered turbid by the formation of insoluble lime carhonate. The fermentation of glucose is due to the vegetation of a microscopic fungus, saccharomyces or torula cerevisice. The fungus is entirely cellular, the cells being rounded or oval, with one or two nuclei and about $\frac{1}{\text { घुढ }}$ of an inch, (10 mmm .) in diameter: They multiply by a process of budding, and occasionally two or three of them may be seen adhering together. They may be observed on the surface of diabetic urine, which has stood for some time. They break up after a time and fall to the bottom of the vessel, in minute oval spores.

Moore's Test, or, the Potash Test.-A little caustic potash in solution is added to the suspected liquid, and boiled in a test tube. If sugar be present it acquires a brownish color. This is not a very reliable test.

Saccharose, or cane sugar. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$-Saccharose is very soluble, readily crystallized, and the sweetest of all the
sugars. rarrots It is fo will th each ot vertible active 1 mer's te glucose acid, or

Lact sugar is It is less sweet. complete sugar is acid fer Fehling's catalysis

Oils animal a of fat w $\mathrm{C}_{57} \mathrm{H}_{104} \mathrm{O}$ $-\mathrm{C}_{57} \mathrm{H}_{110}$ sidered a base-gly

Oleine
Palmitine
Stearine. $\left\{\begin{array}{l}\$ \\ \$\end{array}\right.$
These n saponifica in a soluti acid, as ol
sugars. It exists in the sugar cane, maple, beet, parsnips, rarrots, turnips etc., and is chiefly used for culinary purposes. It is formed from glucose in the process of vegetation. It will thus be seen that starch and sugar are closely allied to each other in all their relations-and are mutually convertible, starch being the solid formation, and sugar the active liquid one. Cane sugar will not respond to Trommer's test, nor ferment until it has been transformed into glucose by boiling it for a few seconds with a dilute mineral acid, or by adding yeast to it.

Lactose, or sugar of milk, $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{12}$-This form of sugar is found only in milk, and is a constant ingredient. It is less soluble than the other forms, and therefore not so sweet. It undergoes alcoholic fermentation slowly and incompletely, and when it takes place in milk a part of the sugar is transformed into lactic acid-known as the lactic acid fermentation. It responds readily to Trommer's and Fehling's tests. It is supposed to be formed from glucose by catalysis in the mammary gland.

Oils and Fats.-These substances are found in both animal and vegetable tissues. The three principal varieties of fat which exist in the animal economy are: Oleine$\mathrm{C}_{57} \mathrm{H}_{104} \mathrm{O}_{6}$; Margarine or Palmitine- $\mathrm{C}_{51} \mathrm{H}_{93} \mathrm{O}_{6}$; and Stearine $-\mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}$. By the chemist these bodies are considered as salts, formed by the union of fat acids with the base-glyceryl-thus :-

These may be separated from each other by the process of saponification. When oleine, palmitine, or stearine, is boiled in a solution of caustic alkali, it is decomposed into a fat acid, as oleic, palmitic, or stearic, and a sweetish viscid fluid
the hydrate of glyceryl, or glycerine. The acid unites with the alkali and forms soap, and glycerine ($\mathrm{C}_{3} \mathrm{H}_{5} 3 \mathrm{HO}$.) is set free. The fat acid may also be separated from the oase, glyceryl, by passing steam through fat at a temperature of 300° ($572^{\circ} \mathrm{F}$.) The human body, when immersed in water for a length of time, becomes changed into a substance called adipocere, or saponified fat. This is supposed to be a process of saponification, caused by the union of palmitic, stearic, and oleic acids with ammonia, which is developed during the process of decomposition.

Physical Appearance and Properties of Fat.-It exists in two forms in the body. First, in the form of large cells or vesicles, varying in diameter from $\frac{1}{80 \overline{4}}$ to ${ }_{3}^{11} 0 \overline{0}$ of an inch (31 to 83 mmm .), as in adipose tissue, (Fig. 9.) Secondly,
 inch, (1.2 to 6 mmm.$)$ as in the chyle, in which it is said to be emul - fied, (Fig 7.) This is a mechanical subdivision of the fat.

Fig. 7.

Fa^{2} globules of chyle.

Fig. 8.

Fat globules of cow's milk.
cells, and is the only form in which it can be absorbed. Fats may be emulsified by means of alkalies, serum of blood, mucilage, or white of egg. The fat cell is characterized by a dark border surrounding a bright centre; usually no nucleusis seen, but it may occasionally be found attached to the cell wall. It is generally rounded in shape, but is found irregular in outline, depending on pressure. The small globules appear as minutely dark granules, so as to give the fluid in which they float an opalescent appearance. In cow's milk, the oil globules are ${ }_{4} \frac{1}{000}$ of an inch (6.25 mmm .) in diameter, have a pasty consistence, due to the palmitine they contain;
and w tender alway never of the nerve
also in phosph sue. I under are flui after d palmiti beautif are dep branchi soft, an ine is 6 $100^{\circ} \mathrm{F}$. ether a

Linseed . Eggs.... Liver of c Beef, aver: salmon. . Goat's mil
and when churned, are converted into butter, from their tendency to cohere. Oleine, palmitine, and stearine, are always found mingled together in the body; but they are never associated with any of the other proximate principles of the body, as water, sugar, \&c. The only exception is the nerve tissue, in which they are combined with albumen, and

Fig. 0.

Fat cells of adipose tissue.
also in the bile dissolved in the salts. They are united with phosphorus, constituting the phosphorized fats of nerve tissue. This union is supposed to take place in the lungs under the influence of oxygen. In the living body, the fats are fluid, or nearly so, being held in solution by oleine; but after death, they assume the solid condition. Stearine and palmitine are crystallizable, and sometimes present a very beautiful appearance. The crystals are needle-shaped, and are deposited in a radiated form, but sometimes curved and branching. Stearine predominates in hard, palmitine in soft, and oleine in liquid fats. The melting point of stea:ine is $60^{\circ},\left(140^{\circ} \mathrm{F}\right.$), palmitine $46^{\circ},\left(115^{\circ} \mathrm{F}\right.$.), and oleine 38°, $100^{\circ} \mathrm{F}$. They are insoluble in water, but are soluble in ether and hot alcohol.

TABLE OF QUANTITY OF FAT IN 100 PARTS.

Linseed)
Egg	7.00
Liver of calf.	- 5.58
Beef, average	. 5.19
Salmon.	. 4.85
Goat's milk..	- 3.82

EssCow's milk3.70
Human " 3.55
Beans 2. 50
Wheat 2. 10
Potatoes 11
Indian Corn 9

Origin and Function.-It is found in all parts of the body except in the compact tissue of the bones, teeth, tendons, beneath mucous membranes, in the cutis, between the rectum and bladder, beneath the epicranial aponeurosis, in the ligaments, serotum and eyelids. It is introduced in the food, and is emulsified by the panereatic juice during digestion and previous to absorption. It is also formed in the

Fig. 10.
 interior of the body. This has been: proved by experiments on geese, the result of which showed more fat in the body than could be accounted for by that which existed in the food. Another proof is, that it has been found in the form of globules in the interior of the eostal, laryngeal, and tracheal cartilage cells, and also in the muscular fibre cell of the uterus during involution (Fig. 10,) It also exists in the form of globules in the hepatic cells (Fig. 11,) sebaceous Cterine mussenlar fibro cells,
two weeks anter parturition
glands, corpus luteum and uriniferous tubes of the carnivora. In the marrow of bones, it exists both in the form of oil globules, and fat cells forming adipose tissue. In some parts, it is formed from blastema supplied by the blood vessels, as in adipose tissue; in others it is formed as the result of a retrograde metamorphosis, as in the muscular fibre cell of the uterus.

It accumulates in excess in certain diseased conditions, as in fatty degeneration of the heart, liver, kidney. Its function in the form of adipose tissue, is to give rotundity to
 Fig. 11.
 the body;form a nidus for delieate organs; fill up spaces otherwise unoccupied, and from being a bad conductor, to prevent the too rapid escape of the animal heat of the body. As an article of diet, it is necessary in the process of nutrition. It
supt geno favo in m eat. is fa body in co of th

C amon nervo from ficati of po paren in eth When a pect to vio 145°

The as the nomer not d not al gen, c these indivi witho perties teristic album action
supplies animal heat, and is a store of food in case of emergency, as in the hybernating animals. Certain kinds of food favor the formation of fat; for example, negroes employed in making sugar grow fat from the quantity of sugar they eat. It is said to accumulate more rapidly when the animal is fattened in a darkened room. Fat is absorbed from the body in some diseases, and its place supplied with serum, as in consumption. It is discharged by the sebaceous glands of the skin, and in the milk of the female during lactation.

Cholesterine, $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}$.-Thissubstance may be described among the oils and fats. It is found in bile, blood, liver, nervous tissue, crystalline lens, and meconium. It differs from ordinary fat in the fact that it is not capable of saponification, is volatile at a ligh temperature and rotates a ray of polarized light to the left. It crystallizes in thin transparent rhomboidal plates, is insoluble in water, but soluble in ether, chloroform, hot alcohol, and volatile and fatty acids. When treated with sulphuric acid and chloroform it produces a peculias red color, which soon changes on exposure to air to violet, blue, green and finally fades away. It melts at $145^{\circ}\left(293^{\circ} \mathrm{F}\right)$ and distils at $360^{\circ} .\left(680^{\circ} \mathrm{F}\right)$.

PROXIMATE PRINCIPLES OF THE THIRD CLASS.

The substances belonging to this class are very important as they have an intimate connection with the active phenomena of living bodies. They are not crystallizable, and are not definite in their chemical composition ; that is, they do not always contain the same proportions of oxygen, hydrogen, carbon, and nitrogen, but the relative quantities of these elements may vary, within certain limits, in different individuals, and in the same individual at different times, without changing in any material degree the peculiar properties of the substance which they form. This is characteristic of organic substances. They all closely resemble albumen, hence called "albuminoid substances". Their reaction is neutral. They were regarded by Mulder as com-
pounds of a theoretical radical, which he called protein. This gave them the name of "protein compounds". The albuminoid substances are all hygroscopic. In some parts of the body they are fluid, and in others semi-solid, or solid, depending upon the amount of water which they contain. When subjected to evaporation they lose water, and may be reduced to a solid state. Advantage is taken of this fact in the preservation of eggs,, milk etc., by evaporating at a low temperature and hermetically sealing in cans. When water is added, they again absorb it, and return nearly to their original condition.

They are all capable of being coagulated. Fibrin coagulates spontaneously, when removed from the vessels; albumen, on the application of a temperature of $71^{\circ}\left(160^{\circ} \mathrm{F}\right.$.); and casein on the addition of an acid. An organic substance, once coagulated, cannot be restored to its original condition. It may be dissolved by certain re-agents, as e. g., the caustic alkalies ; but in this it only suffers a still further alteration ; nevertheless it is necessary to resort to coagulation to remove an organic substance from the other proximate principles with which it is associated. Fibrin is obtained by switching freshly-drawn blood with a bundle of twigs. Thus obtained it is an unnatural condition, having lost its original character of fluidity.

These organic substances, when the vital force is removed, are liable to putrefaction. This process is peculiar to organic nitrogenized substances, and distinguishes them from all other proximate principles. When in a state of putrefaction, they are capable of inducing in certain other substances a process of fermentation, as for example, the decaying organic matters of the grape give rise to fermentation of the sugar, converting it into alcohol and carbonic acid. The putrescent body is called a ferment, and acts by catalysis, or by its mere presence, having nothing to do chemically with the process. The conditions necessary to putrefaction are, the presence of oxygen, heat, and moisture. If oxygen
be
me
or
the
ken
I
swa
the
(Fig
thei
sma
latte
min
sped
sant crea the so o as tt vege the plac germ putr
be excluded by boiling, and tho substance be placed in hermetically sealed vessels, in an atmosphere of carbonic acid, or nitrogen, putrefaction will not take place. The same is the case if the substance be dried, or if the temperature be kept near the freezing or boiling points respectively.
During the process of putrefaction, there will be observed swarms of minute microscopic organisıs floating about in the fluid, called bacteria and micrococci, (Fig. 12); the former are so named from their rod-like form, and consist of two small cells placed end to end; the latter are so called because of their minuteness, and appear like small specks. Both are in a state of incessant and rapid motion. Bacteria are in-
 creased by spontaneous subdivision of A.-Bacteria. B. - Mifrocececl. the cell into two, each of them again subdividing, and so on. The variety found in putrefying infusions is known as the bacterium termo. They are believed by some to be vegetable organisnis, which are spontaneously developed in the albuminoid substance, and cause putrefaction to take place. By others, they are supposed to be derived from germs floating in the air, and which become developed in putrefying substances.

Albuminous matters are found in most substances used as food, the proportion according to Payen being as follows:

QUANTITY OF ALBUMINOUS MATTER IN 100 PARTS.

Albumen.-This substance is named albumen from "Albus," white, on account of its appearance when coagulated. It exists both in the fluid and solid state in the body-fluid in the blood, lymph, chyle, cerebro-spinal fluid, serous and
synovial fluids, and milk,-solid in the brain, spinal cord and nerves. It is also found in mucous membranes, muscular tissue, and in the aqueous and vitreous humors of the cye. It exists in the white of egg, and can be easily coagulated or made to assume a solid form.
Composition and Properties.-The average chemical composition of the albuminous substances is as follows:(Fremy,)

Albumen does not coagulate spontaneously, but may be coagulated by any of the following re-agents, viz., heat at $71^{\circ}\left(160^{\circ} \mathrm{F}\right.$.), alcohol, mineral acids, as nitric, sulphuric, etc., tannic acid, potassium ferrocyanide in an acid solution, and the metallic salts. It is very readily congulated by bichloride of mercury, and hence it is used in cases of poisoning from that salt. It unites with it to form the so-called albuminate of mercury. The white of one egg is sufficient to neutralize four grains of the bichloride. Albumen coagulates at the negative pole of the battery, if not too strong a current, and at both poles when a strong battery is used. It is not coagulated by the vegetable acids, except tanuic acid. The fresh juices of vegetables contain a substance coagulated by heat, called vegetable albumen.

When albumen is evaporated at a temperature of $49^{\circ}\left(102^{\circ}\right.$ F.) it becomes solid and brittle, but otherwise unchanged, and may be re-dissolved in water. When coagulated by heat or the mineral acids, Sc., it cannot be re-dissulved or made to resume its original condicion. It is held in solution in the body by sodium chloride, sodium and potassium carbonates and phosphates, which give it an alkaline reaction. It exists in a neutral state in diseased blood, the egg, renal, splenic and hepatic veins. It parts with some of the soda in passing through the spleen, kidney, and liver.

Origin and Function.-It is derived from the albuminoid elements of the food, by a ccialytic process during digestion. It is the nutrient element of the blood, and the pabulum of all the tissues. When it is withheld from the food, or withdrawn from the body in disease, as in albuminuria, the nervous and muscular tissues suffer most. It is converted into fibrin through the agency of the blood-cells and oxygen ; this is probably a chemico-vital process. Albumen is never discharged from the body in health. In a diseased state of the kidney it is found in the urine, as in Bright's disease, also in scarlatina, diphtheria, and in the cold stage of cholera.

Tests.-These depend on its property of coagulation.
First. Heat.-When a solution containing albumen is heated in a test tube to $75^{\circ}\left(167^{\circ} \mathrm{F}\right)$, a precipitate, more or less abundant, is formed. If, however, the liquid be alkaline the albumen will not coagulate ; hence an acid, as acetic acid, should be used to neutralize it. The earthy phosphates of the urine, when in excess, are thrown down by heav, but these may be distinguished from a!bumen by the addition of a few drops of hydrochloric acid, which clears up the phosphates, but has no action on the albumen.
Secondly. Nitric Acid.-When this is added to a solution containing albumen, a precipitate is instantly formed. When the urater. ..re abundaut in the urine, nitric acid causes a depesition of uricacid, but this may be re-dissolved by an excess of nitric acid.
Albuminose or Peptone.-This is a colorless liquid found in the chyle and blood. It differs from albumen from the fact that it is not coagulated by heat, nitric acid, or potassium ferrocyanide. It is coagulated by alcohol in excess, and the metallic salts. When in solution in the gastric juice, it interferes with Trommer's test for grape sugar. It is found in the stomach and intestines, only during digestion. When Trommer's test is applied to a saccharine liquid containing albuminose, a purple color is produced on the ad-
dition of the re-agents, and when boiled, the color changes from red to yellow, but no copper suboxide is thrown down. This test may be made to apply, by evaporating the solution to dryness, and making an alcoholic extract, then a watery solution of the sugar contained in the extract will respond as usual. It also interfcres with the mutnal reaction of starch and iodine, no bluc color being produced.

Origin and Function.-It is formed from the organic nitrogenized elements of the food, as fibrin, albumen, and cascin, etc., by the action of the gastric juice during the process of digestion. It is absorbed in this state, and is converted into albumen in the blood. It is much more easily absorbed than albumen, on account of its superior osmotic properties. It is the soluble principle of fibrin, albumen, casein, \&c.

Fibrin.-Fibrin exists in the blood, lymph, and chyle as found in the lacteals. When blood is removed from the vessels, it soon separates into a solid portion, or clot, and a fluid portion, or serum. The clot consists of coagulated

Fig. 13.

Coagulated fibrin containing white blood corpuscles.
fibrin, containing red and white corpuseles entangled in it; meshes. When inflammation is present, the red corpuscles have a tendency to cohere, and sink to the bottom of the vessel, hence the fibrin is more abundant at the top, and from the
peculiar color it presents, is called the "buffy coat." Fibrin is difficult to obtain free from corpuscles. It may be obtained nearly pure, by switching freshly-drawn blood with a bundle of twigs. It coagulates on the twigs, and may be freed from impurities by washing. It is first washed with water, to remove the salts, then with alcohoi, to remove the pigment, and ether, to remove fatty matters. Another mode is to filter frogs' blood, the corpuscles of which, being large, are kept back ; but the liquor sanguinis passes through, and the fibrin coagulates, and may be washed as above. A little thin syrup, or a weak solution of an alkali, should be added to retard coagulation during filtration. It is sometimes found in a tolerably pure state, in the cavities of the heart and large arteries after death. It is also found arranged in laminæ, in the sacs of aneurisuns. It is regarded by some as formed by the union of two substances in the blood, fibrinogen and fibrinoplastin, and by others as resulting from the decomposition of a substance called plasmine.

Physical Appearance and Properties.-Fibrin is a greyish-white, tough, elastic and stringy substance, composed of microscopic fibrils. It possesses the property of "spontaneous coagulation," or fibrillation. It is insoluble in water, alcohol, and ether, but is soluble in the alkalies. Three-fourths of its weight is water. When treated with acetic acid, it swells out, becomes soft and gelatinous, and slightly soluble in water. It may be dissolved in cold concentrated hydrochloric acid, and after a time the solution acquires a blue color. When dissolved in the potash salts, it resembles albumen in its properties and reactions. When boiled in water, it forms binoxide and teroxide of protein. When boiled in hydrochloric acid, it yields "leucine" and " tyrosine." It is held in solution in the blood by the alkaline chlorides and carbonates.

Coagulation.-The coagulation of fibrin is a process of fibrillation. When the process of coagulation is viewed with a microscope, a granular appearance is first noticed ; some of
the granules become star-shaped by the addition of other granules, the arms being directed towards the corpuscles which are ultimately included in the meshes. When fully organized it is distinctly fibrous in structure. voagulation of the fibrin takes place more slowly in the absence of the corpuscles, as in filtered blood. Certain vegetable substances as wheat flour, contain an albuminous matter very similar to fibrin, called gluten, or vegetable fibrin.

Origin and Function.-Fibrin is formed from albumen, by the influence of the corpuscles and oxygen ; in other words, it is albumen in a ligher state of organization. It gives to the blood its property of coagulation, and it is through this property that "natural hæmostasis" is effected. It gives to the blood its viscidity, and prevents it from. exuding through the coats of the vessels. It was formerly supposed to be the material which was thrown out, and subsequently became organized, in the repair of wounds, and in inflammation, under the name of "coagulable lymph" Lymph is now generally believed to be the product of the white corpuscles, which have passed through the coats of the vesse's by virtue of their amœboid movement, supplemented by the proliferation of connective tissue elements in the wounded or inflamed parts.
Fibrin was by some considered as effete matter, formed from the worn out elements of the blood and tissues, and the argumenis adduced in favour of that view were, that it was increased in bleeding and starvation; that there was none found in the renal veins, having been discharged by the kidneys; that there was very little in the blood of the fæetus; none in the egg ; none in the chyle until it entered the lacteals, and then only as the result of the additions made to it from the blood or lymph.

Casein.-This is an albuminous principle found only in milk. It is held in solution by the alkaline carbonates, and when any of the organic or mineral acids, or magnesium sulphate is added, the alkali is neutralized, and coagulation
of
of the casein follows. It is also coagulated by a solution of rennet, the abomasus, or fourth stomach, of the young of ruminants. The pepsine contained in the stomach has the power of converting the sugar of milk into lactic acid, which neutralizes the alkali, and causes a precipitate of casein. This is a catalytic process. Casein is also coagulated during a thunder storm ; a substance called ozone is developed in the atmosphere, which acts on the casein and decomposes it. The decaying casein acts as a ferment, and converts the sugar of milk into laetic acid, which precipitates the casein. Casein differs from albumen; it is not coagulated by heat, and is precipitated by organic acids. The precipitate of casein may be re-dissolved by a solution of caustic alkali. It is insoluble in water and alcohol. An albuminous substance called vegetable casein is found in beans, peas, \&c.

Origin and Function.-It is formed from the albumen of the blood by a catalytic process in the mammary gland. It has been found in the blood of puerperal women. Casein may be obtained in a nearly pure state, by precipitating it with acetic acid, and then washing the precipitate with alcohol and water. It is the chief aliment of the young of the mammalia, and the substance from which all the tissues are formed.

Globuline.-This is a semi-solid substance found in the crystalline lens, in the blood globules, and in the structure of cells generally. It is coagulated by heat, alcohol, and the mineral acids. It is soluble in water, but not in the liquor sanguinis of the blood. The coagulum of globuline is partly soluble in hot alcohol; this distinguishes it from albumen. Acetic acid causes it to swell out and become transparent. The globuline of the crystalline lens is called by some "Crystalline." It is more easily coagulated than globuline.

Pepsine.-This is the organic principle of the gastric juice. It is coagulated by heat and alcohol, and is with
difficulty distinguished from albumen. It exists in the gastric juice in the proportion of fifteen parts per thousand, from which it may be precipitated and extracted by means of alcohol. The solvent power of the gastric juice depends on the presence of pepsine. This will be discussed in the chapter on digestion.

Pancreatine.-This substance exists in the proportion of ninety parts per thousand in pancreatic juice. It is a viscid fluid, coagulable by heat, alcohol, and strong acids. It is coagulated by magnesium sulphate ; this distinguishes it from albumen. It has the property of emulsifying oils and fats, and of converting starch into sugar during the process of digestion. It is formed from the albumen of the blood in the pancreas.

Ptyaline is an ingredient in saliva, and gives it the property of converting starch into sugar. It is not coagulated by nitric acid or acidulated potassium ferrocyanide. This distinguishes it from albumen. It is precipatated by alcohol and boiling, and in the latter case loses its power of converting starch into sugar.

Mucosine.-The organic substance of mucus is termed mucosinc. In some of its properties it resembles albumen. It is coagulated by alcohol and acids, but not by heat, or the metallic salts. It lubricates the free surface of mucous membranes, and is formed from the blood by the agency of the cells, which line the free surface of the membrane and its follicles.

Musculine or Myosine is a semi-solid substance peculiar to muscular tissue. It is insoluble in water, but is soluble in a mixture of ten parts of water with one of hydrochloric acid, and may be precipitated again by neutralizing with an alkali. It is a most important element of animal food, and is the great source of albumen and fibrin.

Cartilagine is the organic ingredient of cartilage. By prolonged boiling, it is transformed into a substance called
"chondrine." It is precipitated by acids and some of the metallic salts ; this distinguishes it from " gelatine."

Collagen.-This substance is peculiar to bones, tendons, ligaments, etc. It constitutes the principal part of the animal matter. By prolonged boiling, it is converted into "gelatine" or "glue," and is then soluble in water.

Elasticine.-This is the organic principle of the yellow clastic tissue. It is not soluble in water, alcohol, ether, or acetic acid, but is dissolved and decomposed in nitric, sulphuric and hydrochloric acids, and these solutions are not precipitated by alkalies.

Keratine.-This is an organic substance, found in the epidermis, nails and hair. It is not affected by boiling in water, alcohol, ether and dilute acids, except by continuous boiling in a Papin's digester at $150^{\circ}\left(302^{\circ} \mathrm{F}\right)$.

COLORING MATTTERS.

The sulistances of this group give to the tissues and fluids their distinctive coloration. They are all supposed to be crystallizable, and formed from the coloring matter of the blood. The coloring matter may be removed from the fluids of the body by filtering through animal charcoal, which lias the property of removing coloring matter from any fluid. Animal charcoal will also remove albuminous matter firom any fluid containing it. The most abindant and important of the coloring matters is

Hemoglobine.-It is analogous in many respects to chlorophyl in the vegetable kingdom, for while hemoglobine is the agent on the one hand by which oxygen is carried into the system, chlorophyl, on the other, is the agent by which carbonic acid and water are decomposed and oxygen set free in the vegetable. It exists in the blood corpuscles in the proportion of 25 to 30 per cent., and also in muscular tissue. It is soluble in water, dilute alcohol, and alkaline salts, but is insoluble in strong alcohol, ether and oils. It crystallizes out in rhombic or hexagonal plates or prisms,
differing in different species, and also in the same species under different circumstances. It is easily decomposed. Its characteristic property is its great power of absorbing oxygen, which it holds in a free state, until it yields it up to the tissues. When charged with oxygen it becomes bright red, and is called "oxidized" or searlet hemoglobine; when deoxidized, it assumes a purple color, and is called "reduced" or pur ple hemoglobine. It contains 4.2 parts iron per thousand, which is essential to the blood. This is not in the form of an oxide, but is combined with carbon, hydrogen, nitrogen, and oxygen of which it is composed. Iron is also found in the coloring matter of the hair, bile and urine. The blood of an ordinary sized man is said to contain 2.8 grammes (43 grs.) of iron. When the red blood corpuscles are broken down from any cause, the hemoglobine is set free, and the walls of the vessels and tissues are stained. This has been mistaken for arteritis. When the hemoglobine is deficient in the blood, as in anemia, etc., it may be restored by the administration of iron.

Melanine is a brownish-colored substance, found in those parts of the body where pigment exists, as in the choroid coat of the eye, iris, epidermis and hair. It is very abundant in the epidermis of the negro. It is formed from hemoglobine, but contains less irou. The coloring matter is the same in all situations, the different shades being produced by the arrangement of the pigment cells among the fibres and capillaries of the tissue. In some cases it is entirely absent, as in the "albino." It is insoluble in water alcohol, ether and dilute acids, but is soluble in caustic potassa.

Bilirubine is formed from hemoglobine in the liver, and constitutes the yellowish-red coloring matter of the bile. It is crystallizable, insoluble in water, but soluble in alcohol, ether, chloroform, and alkaline fluids. It responds readily to "Gmelin's bile test,"- nitroso-nitric acid. If a small quantity of nitric acid be dropped into a solution of bilirubine
to which nitrous acid is previously added, a play of colors is produced in order as follows,-green, blue, violet, red, and yellow. Bilirubine, if rendered alkaline, and exposed to the air becomes changed into biliverdine.

Biliverdine is the greenish coloring matter of the bile. It is more abundant in animals that feed upon vegetable food. It is insoluble in water, ether and chloroform, but is soluble in dilute alkaline solutions, alcohol, and acetic acid. It is believed to be formed from bilirubine. It is discharged from the body in the feces. It is often found in gall stones.

Urochrome or Urosacine is a yellowish-red coloring matter peculiar to the urine. It is found, also, in urinary calculi. It is probably the worn-out hemoglobine of the blood, which is being discharged by the kidney. Urosacine and the coloring of bile are both discharged from the body, the one in the urine, and the other in the feces. It is soluble in water and in ether, but only slightly so in alcohol.

Luteine is a yellow coloring matter found in yolks of eggs and the corpus luteum. It is crystallizable, insoluble in water, but soluble in alcohol, ether, chloroform, and oils. It is easily decomposed, and nitric acid added to it gives a blue color.

CRYSTALLIZABLE NITROGENOUS MATTERS.

The substances of this group are crystallizable, and with one or two exceptions are derived from the nitrogenous matters of the body as the result of retrograde changes. They are lecithine, cerebrine, leucine, and the substances found in urine and bile, as urea, creatine, creatinine, urates and hippurates of soda, glycocholate and taurocholate of soda. The latter will be described with urine and bile respectively.

Lecithine,formerly described as a phosphorized fat is found in blood, (. 4 parts per thousand), bile, spermatic fluid, yolk of egg and nerves, also in certain vegetables. It is
soluble in alcohol, ether, chloroform, and oils, and is easily decomposed. Water swells it up into a pasty mass, and gives rise to so-called "myeline forms," an appearance resembling " myeline" or medullary layer of nerve fibre. It contains phosphorus.

Cerebrine exists only in brain and nerves, and is more abundant in the white than the gray substance. It is a whitish substance, insoluble in water and ether, but is soluble in boiling alcohol and deposits again on cooling. Heated in the air it turns krown and burns readily.

Leucine is found in small quantities in the kidneys, spleen, liver, pancreas, brain and glandular system. It crystallizes in whitish glistening laminee, and is soluble in water and alcohol, but insoluble in ether. Little is known regarding the origin and physiological relation of these substances.

CHAPTER II.

ELEMENTARY OR PRIMARY FORMS OF TISSUE.
The elementary or primary forms of tissue are celis, granules, simple fibres, and simple or basement membranes. Of these, the cells are the most important, since they are the active agents in the performance of ail the functions of the animal body, as digestion, absorption, selection, assimilation, respiration, secretion, excretion and reproduction. They also constitute the fundamental elements of all the tissues, and are the active agents in all the catalytic and chemico-vital changes which take place in the animal economy. The agency of cells is not only exhibited in the healthy actions of the body, bat may also be seen in the development of various morbid growths, as fibroid tumors, cancer, etc. The form which organic matter takes when it passes from the condition of a proximate principle to that of an organized structure, is that of a cell, a simple fibre, or a simple membrane.

In all animal and vegetable tissues, there exists a soft gelatinous or albuminous substance called protoplasm, sarcode, cytoplasm or "germinal mutter." It is transparent, of the same consistence in all parts of the body, and by the action of the vital forces may be formed into small rounded masses or cells, or thin hyaline membranes. It possesses properties and exhibits phenomena which are called vital, such as the novement of molecules in its substance, and the changes in the shape of the mass itself.

CELLS.

A cell may be defined to be a semi-solid rounded mass of protoplasm, or it may assume the form of a membranous sae enclosing protoplasmic or other contents. In the interior of most animals cells will be seen a small body termed the nucleus, and within the nucleus, a nucleolus; or there may be two or more nuclei, each containing one or more nucleoli.

Varlation in Shape.-Cells are generally globular, but may assume various shapes, depending on internal and external circumstances, and the growth of the cell; for example, fat cells which are round when formed, may become polygonal as the result of mutual pressure (Fig. 9.) The specific gravity of the contents will also affect the shape to a considerable extent. When water is added they have a

(a) - Nerve vell. (b)-Nucleolus. (c)-Nucleus. (d) Ganglion eorpuscle with two muclei. (e) Multinticlear riant ecll from bone marrow, (Froy). (f) Blood corpuscle. (g) Fat glubule. tendency to swell out and finally burst. When evaporation or desiceation takes place, they become flattened and hardened, as in the epidermis. The shape of the cell may also be clanged by the absorption of gases and vapors, e.g., the blood corpuscles present a distinctly biconcave disk under the influence of oxygen, and become rounded again when
exposed to the influence of carbonic acid gas. The vapor of ether, when inhaled, produces an irregular appearance of the blood corpuscles. Chloroform vapor causes a serrated outline, and alcohol renders them oval, with an indentation on one side.

Fig. 15.

Cells may also assume different shapes, depending on their growth; for example, the pigment cell, which is at first spheroidal, throws out arms or projections in different directions, and becomes stellate during its growth. The nerve cell becomes unipolar, bipolar, or multipolar ; nonstriated muscular cell, fusiform. Epithelial cells are either cylindrical (columnar), or squamous (tesselated or pavement.) In some instances, hair-like growths take place on the free surfaces or extremities of cells, as is seen in the cilia of epithelial cells. Some cells undergo a spontaneous change in shape, as the amœebe, white corpuscles, etc.

Variation in Size.-Cells vary in size from $\frac{1}{3} \overline{\text { bu }}$ of an inch (83.5 mmm .) in diameter, the size of the largest fat cell, to ${ }_{\overline{2} \bar{\pi} \frac{1}{\overline{1}} \bar{\pi} \bar{\top}}$ of an inch, (1.25 mmm .) the size of the fat globule. Some are so large as to be called giant cells, as those of bone marrow (Fig. 14, e.), and abnormal tumors, as cancer, sarcoma, etc. The average diameter of the red blood corpuscle is about $5_{5}^{\frac{1}{\sigma} \overline{0}}$ of an inch, $(7 \mathrm{mmm})$.

 10 mmm .) in diameter. The cell may be divided into a cell wall, nucleus, nucleolus and contents.

Cell Wall.-The cell wall, when present, is substantially the same in all cells, and is formed by the consolida-
tion of the outer surface of the mass of protoplasm. It is a simple homogeneous membrane, composed of globuline, and although no pores can be seen by the highest magnifying power, yet it possesses the property of osmosis. In some instances it is extremely thin ; in others dense and unyielding. When the cell-wall is acted on by acetic acid, it swells out and becomes transparent, so as to bring into view the nucleus, when that body exists.

Nucleus.-In the interior of most animal cells is seen a small body, which is called the nueleus. It exists either in the form of a small vesicle, or as a small mass of protoplasm, containing one or more minute particles termed nueleoli. The nucleus is generally situated in or near the centre of the cell, but may be attached to the wall, or imbedded in it, as in the fat cell. It is generally rounded in form, but may be found elongated, as in the nonstriated muscular fibre cell. The size of the nucleus varies from
 more regular, both in shape and size, than the cell itself. In most instances each cell contains but one nucleus; cartilage cells frequently contain two or more. When two or more nuclei are found in one cell, it is generally an evidence of rapid growth, as in fibro-cellular tumors, cancer, pus, etc. In giant cells there may be a multitude of nuclei in each cell (Fig. 14 e.). They are, in these cases, formed by the subdivision of the original nucleus.

The nucleus resists the action of acids and alkalies better than any other part of the cell. It is readily stained by ammoniacal solution of carmine, and hence is regarded by Beale as germinal matter in contradistinction to the outer portion of the cell, which he calls formed matter.

Nuclei are sometimes found disconnected from the cells, when they are said to be free. They may be found floating in fluid as in certain secretions, or imbedded in a homogeneous pellucid substance, as in rudimental cellular tissue, or
on the surface of fibres, as in muscle and nerve fibres, in which they are either upon or immediately beneath the investing membrane. The nucleus is a most persistent little body, and retains its original form in many cases after the cell to which it belongs has ceased to exist as such.

Nucleolus.-This is situated. in the interior of the nucleus, and may consist of a single molecule, or a numberunited together. In some instances it is highly refracting, and not readily acted upon by most chemical re-agents. There may be one or more in each cell.

Conterts.-The contents of all cells consist of a certain amount of protoplasin mingled with other substances. Each cell has the power of generating in its interior a substance peculiar to itself, which is the result of its own secretion; one secretes bile, another milk, another mucus, another gastric juice, etc. The contents of the cell may be either solid, as in bone, nails, epidermis, etc., or fluid, as in blood, chyle, mucus, etc. The contents of all cells are fluid when formed, but become hardened hy secondary deposit, as in bone, dentine, etc. This takes place by the deposition of solid particles in the interior of the cell.'

Color.-Cells are generally colorless; a few only have color which depends partly on their refracting power, and partly on the hemoglobine, melanine, or pigment which they contain, as the red blood corpuseles, pigment cells, etc.

Protoplasm, or Cytoblastema.-This is the name given to the substance from which the cells spring, and is derived either from the fluid in which they float, as blood, chyle, lymph; or from the capillaries near the seat of growth. When the cells are situated on a basement membrane, as the epithelium of mucous and serous membranes, it is found surrounding them, having passed through the basement membrane from the capillaries immediately beneath. In all these cases the cytoblastema contains material not only to supply the wants of the present brood of cells, but also for the development of the new brood which is destined to take the place of the old.

The cell has also the power of choosing and refusing from the particles of nutrient fluid or cytoblastema in ite neighbourhcod, incorporating some of them into its substance, and converting others into new substances in its interior. For example, the blood corpuscle has the power of forming globuline and hemoglobine from the albumen and fibrin of the blood. It is cuntended by some physiologists that this power resides solely in the nucleus; but it must be borne in mind that this property belongs alsc to those cells which are entirely destitute of a nucleus, as the blood corpuscle, germ cells of the vegetable kingdom, etc.

Cytogenesis.—Kuros " cell" and revsis "generation." Crlls have their period of birth, growth, maturity, and decline. They spring up, perform their office, and then pass away. Some do so with great rapidity, while others are slower in their progress, or are longer lived. They are governed by certain laws, two of which we may here formulate.

1st Law. -In all tissues composed of cells, the new cells which are being developed must resemble the parent cells in all their distinctive features and properties. When the young cell deviates in its character from the parent cell, abnormal growth may be said to have commenced.

2nd Law.-Cell growth can only take place in or near its appropriate pabulum, and on living surfaces.

The mode of origin of cells takes place in several ways. Schleiden and Schwann, as far back as 1838, asserted that cells were developed de novo in an organizable blastema. According to this theory the cell was developed by the formation of granules in the blastema, their subsequent arrangement to form the nucleolus, around which at a certain distance was formed the nucleus, and lastly the cell wall and contents; or the order might be reversed by the formation, first of the cell wall, and subsequently the nucleus and nucleolus. This theory of free cell formation still has its advocates among many French physiologists, especially Robin.

According to the modern doctrine, which was first advocated by Virchow in 1852, every cell must originate from a pre-existing or parent cell (omnis cellula e cellula.) There are three different modes by which cells may be produced in this way.

1st. By Multiplication by sub-division, fission, or fissiparous multiplication of the cell. This process has been seen in the amoba, and in the blood corpuscles of the lower animals. The cartilage cell also furnishes a good example. The cell is originally rounded; but when the process of subdivision commences, it becomes oval, and subsequently presents a sort of hour-glass contraction, first of the nuclens, and afterwards of the eell. 'This continues mutil

Fig. 17.

A cell undergoing the process of multiplieation ly subdivision. (a)-Original cell. (b)-Oval. (c)-Hmur-glass contraction anld division of the pan eper in each
 direction or transversely, so as to form four new cells, and so on until a number have been produced. This is the mode by which segmentation of the vitellus takes place.

2nd. By subdivision of the mudeus or contents of the cell only, the so-called endogenous mode. In this mode the
 nucleus appears to separate into two or more parts, each of which is developed into a new cell, and in this way the parent cell may be filled by a whole brood of young cells, the so-
 development may be observed in bone cells, (Frey) also in structures of very rapid growth, as in cancerous tissue.

3rd. By gemmation or budding. In this case a node or swelling is secn ou one side of the cell which gradually in-
creasing, finally drops off by constriction at the base. The yeast cell is propagated in this manner.

Dr. Beale accepts the modern doctrine, and the term "protoplasm" as the substance from which cells are formed, but makes a distinction between the nuclens, which is readily stained with carmine, and the rest of the cell. He terms the nucleus " germinal" or living matter, in contradistinction to the outer portions of the cell, which he calls "formed matter," designating by the latter, the various tissues formed from cells.

Conditions necessarl to Cell Growth.-The conditions necessary to cell growth are the presence of protoplasm upon a living surface, a certain degree of animal heat, a requisite amome of water, oxygen, light and electricity. The dynamic agency of heat cannot be dispensed with ; too much would be injurions. The mysterious influence of light is necessary to healthy action, and a certain amount of water is required to preserve the integrity and promote the growth: of the cell; but too much would destroy it.

Permanent Change in the shape of Cells.-Cells umdergo changes in the formation of tissues, and in the propagation of their kind, by which they lose their individuality as cells, This may be seen:

1st. By the process of cytogenesis, as in multiplication hy sub-division etc., which has already been described.

2nd. By coalescence of the cell with the intercellular substance of temporary cartilage, as in the development of osseous tissue. (See development of bone.)

3rd. By the coalescence of cells, with the intercellular substance to form fibres as in fibrous tissue. The cells are originally round; but in the process of forming fibres they become elongated, and in some instances fusiform or stellate. They are then arranged longitudinally, sometimes slightly overlapping each other, and both the cells and the intercellular substance are broken up into tibrille.

4th. By the coalescence of cells in a linear manner to form tubes. In this instance the opposing walls of the cells, as
they are arranged in a line, break down, the cavities of the cells communicate with each other, and in this way a continuous tube is formed, as in the development of muscular and nerve fibres, also in the formation of sunall vessels; or the cells may assume the form of curved plates or segments, united or cemented together in such a way as to form a tube.

Temporary Change in the Shape of Cells.-Temporary changes in the shape of cells give rise to motion. The cause of motion in the vegetable kingdom was for a long time a matter of speculation. It was finally discovered that this phenomenon was due to the change in the shape of the cells when irritated, as in the mimosa or sensitive plant, the fly-trap of the dionce, and the berberis.

In the animal economy, muscular contraction is due to this temporary change. It occurs in both the striated and non-striated muscular tissue. In contraction of the fibrillæ the sarcous elements become shorter and broader ; the same is true of the non-striated muscular fibre cells. Temporary changes in the shape of the cells take place in the uterus, during gestation. The cells are largely developed during pregnancy, in order to give enlarged accommodation for the foetus, and increased power for the act of parturition. After birth the uterus undergoes the process of involution, by which the cells are diminished in size and number, and changed in their physical appearance. When examined by the miscroscope, oil globules may be seen in their interior at this stage. (Fig. 10.)

Fig. 19.

Amoba, In the centre is seen the muclens, and sur- The movements of the cilia of epithelial roindinis, in an num. cells are no doubt also produced by the spon-
mber of vacuoces. taneous change in the shape of the cells from which they
sprin alter the c

CA

 specu from of or due organ whicl is m paren wards zatior them, and f vite the cwhich prope exists produ parts of th speci
ence powe devel the p

Th
rives
orgar
orgat light exam its v
spring. These movements are probably caused by the alternate contraction and relaxation of the cells, and also of the cilia.

Cause of Organization, Vitality, \&c.-This is a purely speculative subject. Many theories have bcen advanced from time to time, to endeavor to explain the phenomena of organized bodies. Some suppose that organization is due to an "animating principle" which pervades every organized structure and regulates its functions, and by which the new organism for the production of the species is moulded into shape, from materials furnished by the parent. This was the theory of Aristotle, and was afterwards advocated by Harvey. Hunter attributed the organization of living beings, and the vital action manifested by them, to a "materia vite" diffused throughout the solids and fluids of the body. Abernethy supposed this materia vite to be of a species of electricity. Mûller supposed that the cause of organization was due to an "organic force" which resides in the whole organism, and possesses the property of generating each part. This "organic force" exists already in the germ, and is creative, as is seen in the production and arrangement of cells to form the different parts of the new organism. It is not under the influence of the mind, as instinet is as capable of reproducing the species as higher intelligence. Prout advocated the existence of an " organic agent," which possesses extraordinary powers in controlling and directing the organization and development of the living being. This is very similar to the preceding hypothesis.
There can be no doubt, however, that organic matter derives its vital properties from a previously existing vital organism. While these organic matters retain a perfect organization, and are supplied with their proper stimuli, as light, heat, moisture, etc., vital actions go on perfectly : for example, the fecundated egg, "omne vivum ex ovo," acquires its vital properties while in the body of the mother; and
when laid, if supplied with the vital stimuli, and the organization remain perfect, it is developed into a new being. But as soon as the structure is destroyed, or the vital stimuli are withheld or withdrawn, the organism dies, and its elements form new compounds, most of which are of an inorganic character.
Function of Cells.-The function of cells is exhibited in the plastic and metabolic, or vital and chemico-vital power of the cell. The plastic power of the cell is seen in its development from protoplasm; the proliferation, by multiplication of new cells, their subsequent growth and development, and their transformation in the development of the tissues of the body.

The metabolic or chemico-vital power of the cell is shown in the property it has of chemically changing the protoplasm within and without the cell. It is confined to the conversion of special substances, as in the formation of globuline and lemoglobine, by the blood corpuscle, bile by the hepatic cell, and pepsine by the gland cells of the stomach, etc. The cell of the yeast plant has also the power of converting sugar into alcohol and carbonic acid. These two forces (plastic and metabolic) may act together : in fact, it is diffcult to separate them, for while the cell is growing it is already beginning to perform its office. Both these forces act together in harmony, and through their united action the different secretions and excretions are formed. They are affected by nervous impressions, as fear, joy, grief, anger, etc. For example, the character of the milk is changed by a fit of anger, and the secretion of the gastric juice is arrested by fear.

The plastic and metabolic power of the cell may be arrested by powerful chemical re-agents, as arsenic, corrosive sublimate, acids and alkalies. It is also arrested by strong nervous shocks, as a stroke of lightning, or a powerful battery, and by septic poisons. The function of the cell is also further manifested in the permanent change it undergoes in the formation of tissues already described.

Manifestations of Cell Life.-These are exhibited :
First-In cell growth from protoplasm.
Second-In the multiplication or production of new cells. Third-In the chemico-vital transformation of protoplasm Fourth-In the permanent change in the cell. Fifth-In the temporary change in the cell.
Sixth-In the production of nervous force (vis nervosa.)
A cell is a living organism, and like all living bodies, has its period of growth, maturity and decay. It has the power of selecting matters from the nutrient elements, assimilating and organizing them into new substances found in its interior. This property resides in the cell as a whole, and not exclusively in any single part of it. The duration of the life of a cell depends on its activity ; those of slow development are long-lived, and vice versa. When a cell begins to decay, granular matter is first noticed in its interior ; the cell wall or outer portion dissolves, and the cell finally disappears.

GRANULES.

Granules or molecules are minute particles of matter from $\frac{10}{1000 \pi}$ to $\frac{1}{25000}$ of an inch (2.5 to 1 mmm) in diameter. Some appear as dark specks, while others present a dark outline with a bright centre; this latter is characteristic of fat globules. They may be found incessantly moving about in the interior of cells, or in the fluids, as the granules of pigment cells, called pigment granules. They may exist either in the free state, as in chyle, milk, blood etc.; inclosed in cells, or imbedded in the tissues as in bone, dentine, cartilage. They are present in great abundance in chyle and give to that fluid its opalescent appearance (Fig. 7.) The molecules of chyle are of low specific gravity, readily soluble in ether, and are known as fat globules or granules.

SIMPLE FIBRES.
A simple fibre is formed by the arrangement and coalescence of granules or molecules in a linear manner. They
 in diameter, and are rounded or prismatic in shape depending on pressure. They are formed in the coagulation or fibrillation of fibrin, and they constitute the primitive fibrillæ of striated muscular tissue. As coagulation of the fibrin takes place, star-shaped points are first formed, and the granules arrange themselves in a linear manner from one point to another and coalesce to form fibres, until the process is completed (Fig. 13.) This was formerly believed to be the mode of healing or organization in woundsandadhesive bands in inflammation, from the coagulable lymph or fibrin which was exuded from the blood-vessels for that purpose. The modern view regarding this subject, is that "coagulable lymph" is the product of the white corpuscles, which have passed through the coats of the vessels by virtue of their amœboid movements, supplemented by the proliferation of the connective tissue cells in the wounded or inflamed parts.

SImple or basempnt membranes.

These are formed directly from the nutrient fluid or protoplasm, by a certain arrangement of molecules peculiar to themselves. They are found in the walls of most cells, in the sarcolemma of muscular fibre, in the sheath of nerve fibre, in the covering of the vitreous humor, in the vitelline membrane of the ovim, and as the structure upon which the epithelium rests in membranous expansions. They exist under three different forms, which vary somewhat in microscopical appearance.

In the first variety, it is a simple pellicle of homogeneous appearance, and shows no sign of organization, as in the cell wall. A good example may be seen in the lining membrane of a bivalve shell. In the second variety, the membrane presents a number of minute granules irregularly scattered through the transparent substance. In the third variety, the membrane presents a number of distinct spots
or nuclei, and is capable of being torn up into portions of nearly equal size, each containing one of these spots or nuclei. From this it would appear that the first variety is formed by the condensation of a thin layer of protoplasm, the second by the condensation of a thin layer of protoplasm in which granules had been formed, and the third by the condensation of a thin layer of protoplasm in which nuclei had been formed.

Certain forms of membrane above described have been called by some basement membranes, because they are the foundation or resting place for the epithelial cells; by others, primary, germiral, or maternal membranes, because they furnish the germs of these cells. They are also called hyalinemembranes, because of theirstructureless appearance. Basement membrane is found on all the free surfaces of the body, giving support to the epithelial cells. It forms the outer layer of the true skin, and the inner layer of mucous serous and synovial membranes, blond-vessels and lymphatics. It is also prolonged into ali the ducts, follicles and tubuli connected with the mucous membranes. In all these examples its free surface is covered with cells, which receive their nutriment by osmosis, through the membrane, from the capillaries on its attached surface. Its office is to limit osmosis of the nutrient fluid, and to modify it in its passage. It also supports the cells, and probably deternines the formation of all the cells which are developed on its surface. In all probability, the spots, or nuclei, seen in the basement membrane are the germs of cells, which spring from them as from a centre.

CHAPTER III.

TISSUES.
There are seven distinct tissues in the body riz : white fibrous or connective, yellow elastic, adipose, cartilage, bone (including dentine and enamel), muscle and nerve tissue, to which may be added gelatinous tissue and reticular connective tissue of modern histologists. All other tissues are made up of a combination of two or more of these. All, except muscular and nerve tissues are considered by some to be modified forms of connective tissue, and are described as the connective tissue group.

WHITE FIBROUS, OR CONNECTIVE TISSUE.

This tissue enters into the formation of ligaments, tendons aponeuroses and membranes.

1st. As ligamients, it connects the bones together and preserves the integrity of the joints in their various movements. The ligaments assume three different forms: Funicular, which consists of rounded cords of fibrous tissue, as the ligamentum teres. Fascicular, which consists of flattened bands, as the ligaments of the ankle, knee, and elbow ; and Capsular, which forms tubular expansions, as in the shoulder and hip joints.

2nd. As tendons, it serves to connect the muscles to the bones and other structures to which they are occasionally attached; some of these are round-Funicular, as the tendon of the semi-tendinosus ; others flattened-Fascicular, as the semi-membranosus. The tendons, at their insertion into the bones, blend with the periosteum.
3 rd . As aponeuroses. These are tendinous expansions of considerable extent, as in the abdominal muscles. They serve to enclose cavities, and protect the contained organs.

4th. As membranes, it is used to cover, protect, and attach various organs, as the dura mater, sclerotic coat of the eye, pericardium, tunica albuginea testis, periosteum, perichondrium, fascia lata, \&c. In all the above, a few elastic fibres are found associated with the white fibres.

Physical Appearance and Properties.-It presents a beautiful, silvery-white appearance, when freed from extraneous substances, and is composed of bundles of fibres, which are parallel to each other in some cases, and cross or interlace in others. Exa ned under the microscope, it is found to consist of wavy bands about ${ }_{5}^{1100}$ of an inch (50 mmm) in diameter (Fig 20, a.) They are formed of numer-

Fig. 20.

Connective and elastic fibres. (a) Connective fibres, having some embryo ic alobules. (b) Elastic fibres. (c) Curly elastic fibres, like horse halr. (d) Nuclei of cells, with nucleoll, $\times 320$. (Todd and Buwman.)
(1.6 to 1.2 mmm .) The bands are, capable of being separated into fibrillæ, and have a tendency to split up in a
longitudinal direction. When a portion is exposed to the action of acetic acid, it swells out and becomes semi-trans. parent, the fibrillæ are entirely obliterated, and a number of connective tissue corpuseles make their appearance, showing that it has been developed from cells. At the same time some wavy transverse lines may be seen at regular distances, which somewhat resemble striped muscular fibre. These lines mark the junction or outline of the cells from which the tissue was originally formed. A number of wandering cells (white corpuscles) and connective tissue corpuscles, are always found in connection with fibrous tissuc. This tissue is somewhat elastic, and allows of a slight degree of extension from long-continued force. It possesses no contractility, and its force of cohesion is very great. It is said that the tendo-achillis is capable of supporting a weight of nearly $1,000 \mathrm{lbs}$. It coutains few vessels and nerves. The actual presence of nerves has not, as yet, been satisfactorily demonstrated, and its sensibility is very low. The division of a tendon is attended with very little pain. It yields gelatine,on boiling.

YELLOW FIBROUS, OR ELASTIC TISSUE.

It is .found in the ligamenta subflava, ligamentum nuchæ of quadrupeds, internal lateral ligament of the lower jaw, stylo-hyoid and pterygo-maxillary ligaments, chordæ vocales, crico-thyroid and thyro-hyoid membranes, posterior wall of the trachea, arteries, veins, thoracic duct, and in areolar tissue.

Physical Appearance and Properties.-This tissue, unlike the preceding, is of a yellowish color, highly elastic and consists of long, single, brittle fibres, with sharply defined dark borders, which show a disposition to curl upon themselves when broken (Fig. 20, b). They vary in size from 50, 2 © to Tठ竕可 of ain inch (5 . to 2.5 mmm .) the average diameter being about $\frac{1}{150 \sigma}$ of an inch (3.5 mmm .) and are round or flattened-depending on their situation or pressure. They
annstomose with each other, and are mingled in various proportions with the white, to form arcolar or connective tissue. It yields a modified form of gelatine on prolonged boiling; is not acted on by acetic acid, and is not readily dissolved by the gastric juice. The fibres are stained red, with Millon's re-agent (a solution of proto, and pernitrate of mercury). It resists the approach of disease longer than any other tissue in the body; e.g., an artery will remain intact in the interior of an abscess after the other structures are destroyed, and when the artery gives way, the walls present a honeycombed appearance, on account of the destruction of the white fibrous and muscular tissues with which it is associated. When dried it becomes dark colored, hard and loses its elasticity. It is sparingly supplied with blood vessels and nerves. The fibres are marked by transverse lines, in the lower animals, which shows that it is developed from cells. Its elasticity is impaired by age.

Mode of Development.-This is now believed to be the same in both connective and clastic tissue. They were supposed by Henle to be developed by the process of fibrillation. Their real mode of growth was first pointed out by Schwann, to be from cells. The cells are at first round, and possess a nucleus, nucleolus and granular matter. They then become fusiform, or stellate, surrounded by intercellular substance, and being applicd or spliced in a linear manner, coalescence takes place, and fibrillæ are formed (Fig.21). At the same time the nuclei become elongated, and finally disappear, until brought into view by means of acetic acid. According to late observers a certain amount of material is formed by the cells, called tissue cement or intercellular substance, in which the cells become imbedded, and which serves to unite them together. This substance is Cells of human connective tisblackened by nitrate of silver (Frey.) ${ }^{\text {shiped }}$ eells. (b), coarsegranular

Arfolar Tissue, (Syn., cellular, connectivo or filamentous.) This tissue is found in all parts of the body except the brain, compact tissue of bone, teeth, cartilage, hair, nails, epidermis, etc. It consists of a network formed by a combination of white fibrous or connective tissue and yellow elastic tissue, together with a number of connective tissue corpuscles. Where great strength is required, the connective tissue predominates, and where motion is necessary, the elastie, as in the tissue of the lungs. The proportion of each may be easily demonstrated by acting on it with acetic acid, whin dissolves out the white, while it produces no change on the yellow. The interstices or meshes (improperly called cells) of areolar tissue communicate with each other. This tissue, therefore, may be inflated with air (the butchers take advantage of this circumstance in inflating their meat), or the meshes may be filled with fluid, as in anasarca. The interstices, especially in the subcutaneous areolar tissue, are partially filled with fat cells, and contain a small quantity of serous fluid of an alkaline reaction, composed of water, albumen (. 36 in 100) and sodium chloride. When the fat is absurbed by the demands of the system, its place is filled with serous fluid, as in phthisis.

Function.-Its function is to surround and connect various organs, and retain them at certain distances; at the same time allowing a certain amount of motion. It also forms a nidus for the vessels and nerves, fills up spaces between different organs, and when the meshes are filled with fat, gives rotundity to the body. In some parts of the body it is very dense, and has received the name of a fibrous membrane, as in the pharynx, sheaths of vessels, etc. It forms sheaths for the muscles, and the bundles and fasciculi of which they are formed. It also forms sheaths for the vessels and nerves. It attaches the membranous expansions as the rucous, cutaneous, serous and synovial membranes. to the structures which they surround and embrace, and receives the name of sub-mucous, sub-cutaneous, sub-serous and sub-synovial areolar tissue, respectively.

ADIPOSE TISSUE.

This was formerly described as areolar tissue, with fat cells imbedded in its meshes. It exists hovecver, in parts in which not the slightest trace of areolar tissue can be found, as, for example, in the cancellous tissue and marrow of bones. On the other hand, the areolar tissue in many parts of the body is entirely destitute of fat, as e. g., beneath mucous membranes, in the cutis vera, between the rectum and bladder, in the cranial cavity, eyclids, epicranial aponeurosis, scrotum, penis, etc, but in other parts of the body they are associated together. Adipose tissue is found in abundance in the subcutaneous areolar tissue, called panniculus adiposus. It is entirely absent in embryonic life.

Physical Appearance and Properties.-It is compoeed of cells or vesicles containing fat, which vary in size from ${ }_{5}^{10} \sigma$ to $\overline{5} \frac{1}{2} \sigma$ of an inch (83 to 31 mmm) (Fig. 22). They are usually deposited in cluscers, being held together by a mesh of capillaries, which surrounds them, and from which

Fat cells of adipose tissue. they derive their nutriment This constitutes a lobule. When the adipose tissue exists in considerable quantity, the lobules are held together by areolar tissue, constituting a mass of fatty tissue. It is abundantly supplied with blood-vessels, but nonerves or lymphatics have been traced into its substanee. At an early period of its formation, the cell or vesicle possesses a nucleus and nucleolus, the nucleus being imbedded in the cell-wall; but they disappear at maturity, being obscured by the oily contents of the cells. The cells or vesicles are round, when isolated, but become polyhedral from the flattening of their walls against each other. They are believed by some to ori-
ginate from connective tissue corpuscles by their transformation into fat cells. They are long-lived, and exosmosis of the fat is prevented by the constant moistening of their walls, by a thin serous fluid which surrounds them, on the same principle that a moist bladder will retain fatty matter, while a dry one allows it to exude. The cell wall in fat ceils can be distinctly seen in a collapsed condition, after dissolving out the fat by means of ether ; the nucleus is then also readily seen by tinging with carmine.

Origin and Function.-This tissue is formed partly from the fat used as food, and also by a chemical transformation from the starch and sugar present in the different articles of diet. This process is accelerated by an imperfect supply of oxygen, as is seen in the fattening of animals which are closely penned up. It is also formed in the interior of most cells of the body, when undergoing retrograde changes, as in fatty degeneration. It fills up spaces otherwise unoccupied, gives rotundity to the body, forms a delicate pard or cushion to facilitate the action of movable parts, as at the base of the heart, behind the eye-ball etc., and from being a bad conductor of heat, it prevents its too rapid escape from the animal body. This is exemplified in those animals possessing little hair on their skin, in which there is a large quantity of adipose tissue beneath the integmment. In other instances it gives ease to the gliding movements of parts, and protects them from the ill effects of sudden changes of temperature, as the adipose tissue of the onentum. As fat, it supplies combustible material for the maintenance of the animal heat of the body. It is stored away in the body, to be used, when necessary, to maintain animal heat, and as a souree of nourishment, as in the hybernating animals, the process of absorption of fat being facilitated by the alkaline condition of the serous fluid by which the cells are surrounded. (See oils and fats).

cartilage.

This is a very simple form of tissue, and is found in many parts of the body. In some of the lower animals, as fishes, the skeleton is formed entirely of this tissue, as the skate, sturgeon, etc.

Physical Appearance and Properties.--Its color varics from pearly white to light yellow, and it is possessed of a considerable degree of elasticity, flexibility and cohesive power. It yields chondrine, when boiled. Cartilage consists of cells imbedded in a hyaline or inter-cellular substance, or matrix. The cells are contained in cavities or lacune in the intercellular substance. Some of these cavities are lined by a thin membrane, the cartilage capsule; in other instances the cells appear to blend with the intercellular substance (Fig. 23). The cells are round

Fig. 23.

Ilyaline (temporary) cartilage becoming transformed into bone substance, Hyaline substance with eartilage cells imbedded in lt.
 to 12.5 mmm). Each cell contains a nucleus and one or more
 inch, (10 to 6.2 mmm .) and sometimes contains fat globules, as a result of some peculiar metamorphosis of the contents. Cell growth takes place by the process of multiplication by subdivision, and parent cells are frequently seen containing two or more young cells.

The intercellular substance is either homogeneous, granular, or fibrous.

Cartilage is divided into two great classes: Temporary and Permanent ; the former constitutes the original frame work of the body, except portions of the vault of the cranium and bones of the face; and is supplanted by bone during dev lopment and growth; the latter is found in
different parts of the body and is not transformed into bone.
It is also divided into three classes according to the character of the intercellular substance, viz.: Hyaline, elastic or reticular, and connective tissue or fibro-cartilage.

Hyaline Cartilage.-This variety of cartilage embraces temporary, articular and costal cartilage, also the cartilages of the nose, larynx, trachea and bronchi, except the epiglottis and cornicula laryngis. In all these situations the intercellular substance is homogeneous or finely granular, but occasionally in old costal cartilage a few indistinct fibres may be seen. In temporary cartilage the intercellular substance is not very abundant; but the cells are numcrous, and placed at nearly equal distances apart. They are
 inch, (16 to 12.5 mmm .) the nuclei being finely granular.

Fig. 24. Near the seat of ossification the
 cells are arranged in rows, run ning towards the ossifying part, and become hardened by interstitial or secondary deposit of calcareous salts (Fig. 24). In the cartilage of the ear in rats, mice, and other small animals, and also in the human chorda dorsalis in early foetal life, the interceliular substance is very small in quantity and the cells are closely packed together. This constitutes Cartilage celts in rows at the seat of the so-called cellular cartilage. ossification.
In articular cartiage which is found in joints, covering the articular surfaces of bones, the intercellular substance is more abundant than in temporary cartilage, and presents a finely granular appearance. The cells are rounded or oval, varying in size from $\frac{1}{130 \pi}$ to $\frac{1}{8} \sigma$ of an inch (19 to 27.8 mmm). Near the surface of the cartilage, the cells are
numer planes mistak In the directi explai in a d tilage, mottle larger б与 σ to contai others assume differe the cel sequen Calcifi deposi the wh appear not be

Ela ish col
thickn epiglo chian maint ages, witho force. the fil substa
work
are nt
Tउे
mmn.
numerous, and arranged in flattened groups, lying with their planes parallel to the surface. This appearance has been mistaken by some physiologists for a layer of epithelium. In the interior of the cartilage, the cells assume a linear direction pointing towards the surface. This serves to exexplain the disposition this form of cartilage has, to split up in a direction perpendicular to the surface. In costal cartilage, the intercellular substance is very abundant, finely mottled and sometimes indistinctly fibrous. The cells are larger than in any other cartilage of the body, being from ${ }_{\sigma}^{5} \bar{\sigma}$ to ${ }_{\pi}{ }^{5} \sigma$ of an inch ($\mathbf{3 8}$ to 55.5 mmm) in diameter. Some contain two or more nuclei, which are transparent, and others contain nuclei and fat globules. The cells often assume a linear arrangement, the rows being turned in different directions-probably the result of the growth of the cells by subdivision from the parent cell, and their subsequent separation from each other in a linear manner. Calcification of cartilage sometimes occurs. It consists in a deposition of lime salts around the cells or cell groups, until the whole intercellular substance presents a dark granular appearance (Fig. 29.) This calcified cartilage, however, d ues not become bone.

Elastic or R:ticular Cartilage.-This is of a yellowish color, arranged in the form of plates or lamellæ of various thickness, and enters into the formation of the external ear, epiglottis, cornicula laryngis, Eustachian tubes etc. These plates serve to maintain the shape of tubes or passages, which require to be kept open, without the expenditure of vital force. It approaches in character to the fibro-cartilage. The intercellular substance is permeated by a clear network of fine elastic fibres. The cells are numerous and vary in size from
 minn.) in diameter (Fig. 25).

Fig. 25.

Elastlc Cartilage: (a; cells; (b) Intercellular substance; (c, d, elastic fibres of the latter. Frey.

Connective Tissue-or Fibro-Cartilage-Fihro cartilage cousists of a mixture of connective tissue and cartilage cells in various proportions. It exists in four forms, Interarticular, Connecting, Circumferential and Stratiform.

The interarticular fibro-cartilages are flattened lanellie of different shapes, placed between the cartilages of the temporo-maxillary, sterno-clavicular, acromio-clavicular, wrist and knee-joints. They are free on both surfaces; thinner at the centre than at the ciremmerence, and are held in position by the surrounding ligaments. 'Their use is to increase the depth of the articular surfaces ; to moderate the effects of great pressure ; as a cushion, to deaden the intensity of shocks; to give ease to the gliding movements of these joints ; and to iccrease the extent of the synovial membrane for secretion.

The comecting fibro-cartlages are placed between the bony surfaces of those joints which possess very little mobility ; as between the bodies of the vertebre, and the symphysis of the pubes, and serve to connect them together. They are in the form of dises, composed of concentric rings of fibrous tissue and cartilaginous lamine placed alternately; the former predominating towards the circumference ; the latter, towards the centre.

The circumferential variety consists of a rim of fibro-cartilage which surrounds the margin of some of the articular surfaces, and serves to deepen the cavity ; as, e.g., the glenoid and cotyloid cavities.

The stratiform fibro-cartilage lines the grooves through which the tendons of certain muscles pass ; as e.g., the bicipital groove.

Vascular Supply.-Cartilage is chiefly supplied by imbition. It is covered by a layer of white fibrous tissue, containing vessels, called the perichondrium, which corresponds to the periosteum of bones. From this covering the cartilage receives its nutriment. When the cartilage is thin no vessels penetrate it; but when it is more than $\frac{1}{8}$ of an
inch i their

Art derive synov cartila bone, lar lar forwa loops, surfac the su
inch in thickness as in costal cartilage it contains canals for their transmission.

Articular cartilage is not covered by perichondrium. It derives its nutrition by imbibition from the vessels of the synovial membrane which skirt the circumference of the cartilage, and also from those of the cancelli of the adjacent bone, which are separated from the cartilage by the articular lamella. The vessels of the synovial membrane pass forward to the margin of the cartilage, and then return in loops, and those of the cancellous tissue pass to the internal surface of the articular lamella, form arches, and return to the substance of the bone.

Fitro-cartilage is supplied by the vessels of the synovial membrane and perichondrium, with which it is invested.

gelatinous and reticular connective tissues.

Gelatinous tissue constitutes the semi-solid substance which forms the vitreous humor of the eye, and the jelly-like substance which covers the umbilical cord (Whartonian jelly). It consists of a soft homogeneous intercellular substance in which are imbedded a number of rounded transparent cells. A higher development of the gelatinous tissue is found in the so-called enamel organ of the growing tooth. The cells in this case are stellate in form.

Reticular connective tissue is found in the lymph glands, and lymphoid organs, as the tonsils, thymus gland, Peyers glands, Malpighian corpuscles of the spleen, etc. It consists of a delicate areolar tissue in the meshes of which lie innumerable lymphoid cells (white corpuscles). It is sometines called adenoid tissue, and is believed to be a modified form of connective tissue. It is built up of stellate nucleated cells, the arms of which are united like threads, and form meshes in which the lymphoid cells are situated. The meshes are usually rounded, but may assume an elongated form.

BONE.

This constitutes the solid frame-work of the body. It forms organs of support, levers for motion, or it encloses cavities, and protects delicate organs, as the brain, heart, lungs, \&c.

Physical Appearance and Properties.-It is a hard, dense, opaque substance, of a whitish color, and possesses a considerable degree of elasticity. It consists of an organic or animal, and an inorganic or earthy material, intimately blended together; the animal matter giving to the bone its elasticity and toughness; the earthy part its hardness and density. The animal matter may be separated from the earthy, by steeping the bone in dilute nitric or muriatic acid. In this way the earthy matter is dissolved out, and the bone becomes quite pliabie-so much so, that the fibula, if so treated, can be drawn into a knot. The earthy constituents may be obtained by burning the bone in an open fire. By this means the animal matter is entirely consumed, and the earthy part remains as a white brittle substance. The relative proportion of these two substances varies in different persons, and in the same person at different periods of life. In the child, the animal matter forms about half the weight of the bone; in the adult about $33 \frac{1}{3}$ per cent., and in old age about 25 per cent. In certain diseases of the bones, as rachitis or "rickets" and mollities ossium, there is a deficiency of earthy matter, and in fragilitas ossium, a deficiency of animal matter. Bone, when boiled, yields gelatine, and from the earthy matter may be obtained granules,

[^0]giant
marrov
blood
if sepa
sends
numer compa the m pondin applied If a exami rounde apertu (name are sec roundi manne lacunæ

Structure of Bone.-Bone presents two varieties of osseous tissue. The one is dense, firm and compact, and always situated on the exterior of the bone, called the compact tissue ; the other, loose and spongy, enclosing cells or cancelli, and situated internally, is called the cancellous tissue. In the extremities of the long bones, the cancellous tissue is most abundant, while in the shaft the compact tissue predominates. In short and flat boues, the two varieties are more evenly distributed. The external surface of the compact tissue (except the articular lamella; is covered by a dense fibrous membrane, the periosteum. The interior of the long bones in adult life, presents a cavity called the medullary canal. This is filled with the so called marrow, which is of a reddish or yellow color, and consists of vessels, nerves, delicate areolar tissue, fat cells, and a number of lymphoid cells. The latter are believed, by some, to be transformed into red blood corpuscles. There are also near the surface of the bone marrow, a number of myeloplaxes or giant cells (Fig. 14 e.) The cancellous tissue also contains marrow. The periosteum is abundantly supplied with blood vessels, and is intimately attached to the bone; and if separated to any great extent, the bone perishes. It also sends prolongations, accompanied with vessels, through numerous foramina in the bone into the canals of the compact tissue for its supply. It is now settled that the medullary cavity is not lined by a membrane corresponding to the periosteum (endosteum), the marrow being applied directly to the bone.

If a transverse section from the shaft of a long bone be examined under the microscope, a number of apertures, surrounded by a serics of concentric rings, may be seen. These apertures are sections of the medullary or Haversian canals (named after the discoverer, Cloptou Havers), and the rings are sections of the lamellæ which surround the canals. Surrounding the Haversian or medullary canals, in a concentric manner, may be seen a series of dark spots or centres, called lacunæ. These communicate with each other, and with the

Haversian canals, by minute tubes, called canaliculi or pores. The whole constitutes a Haversian system, and is a provision made for the supply of the compact tissue.

Transverse section of the shaft of the humerus $\times 150$. Threo Inversian canals are seen with concentric rings ; also the corpuscles or lacunm with the camaliculi extending in all directions.

The Haversian canals in the long bones run nearly parallel to each other and to the long axis of the bone; but in the irregular and flat bones, they are irregular in their
 (125 to 12.5 mmm) and communicate freely with each other and with the outer and inner surfaces of the compact tissue, by means of transverse and oblique canals, (Fig. 27). They

Fig. 27.

Longitudinal section of bone, showing the Haversian eanats and their branches. give passage to small arteries and nerves for the supply of the bone. The small arteries are derived from the nutrient artery, the vessels of the periosteum and marrow. The laminæ which surround the Haversian canals vary in number from 8 to 15, and are called the Haversian lamellæ. Besides these, some appear to be arranged concentrically, row of the shaft; these are called circumferential, and others
are si stitia

Lic

 centri caviti towaare situated between the Haversian systems, called interstitial lamelles.

Licund-Tho lacunæ, or bone cells are arranged in concentric circles around the Haversian canals. They are small cavities of a semi-lunar shape, the concavity being turned towards the Haversian canals, and vary in size from 130\% to gato of an inch, (16.5 to 12.5 mmm). They are reservoirs for the plasma of the blood, previous to its ab-

Fig. 28.
 sorption by the tissue, and each contains a nucleated membraneless cell,or bone corpusele, which is homologons with the connective tissue corpuscle, and which in all probability sends prolongations into the camaliculi.

Canaliculi---These aresmall tubes or pores, which issue from all parts of the circumference of the lacune. They communicate with A hacuma from those from adjacent lacune, and some open on the the thendurse hasis substance ; \mathbf{b}, the bone cell.
 an inch (1.65 to 1.25 mmm .) in diameter.

In cancellous tissue, and in the articular lamella which supports the articular cartilage, there are no Haversian canals, and the lacune are larger than ordinary.

Development.-Bone is not directly formed from temporary cartilage, as was formerly supposed.

Ossification commences in the cartilage at certain points, called points or centres of ossification, but the calcified cartilage (Fig. 29) does not become bone. dissolves away, and in the system of cavities thus formed the
 bone substance is developed from the periosteum.

In long bones there is usually a central point for the shaft, and one for each extremity. The central point is called the diaphysis, the extremity the epiphysis. The point of ossitication of a process, as, e. g., the olecranon, is also called the epiphysis, and when finally joined to the shaft, an apophysis. The period at which ossification begins, varies in different bones. The earliest is the clavicle, which begins about the fourth week of foetal life ; next, the lower jaw, then the ribs, vertebre, femur, humerus, tibia, upper jaw, ete., in order of succession.
lig. 30.

Section of epiphysis showing the procers of ossification. 1.-Cartilage cells imbedded in hyallne substance. 2.-Cavernons tissue, the calcified cartilage having become liquefied. 3.-Ossifying portion. (a)-Cavernous or medullary spaces shown empty. (b)-The same filled with cells, (e)--Remains of the calcified cartilage. (d)-Medullary spaces in which lamelle of bone tissue lave been formed from the osteoblasts. (e)-Developing bone cell. ($\mathrm{f}, \mathrm{g}, \mathrm{h}$)-Imbedded sone cells or lacunce.

In the transformation of temporary cartilage into bone preparatory changes take place which consist in its becom-
ing so chond cal p other comin soon or are substa or me lium, These substa and t$]$ dented proces of cell pleted erent and in chond differe nent b the en order new f into w deny is due absorp perios osteob theory endocl grow blastteobla the ge
ing soft and vascular, the vessels growing in from the perichondrium. The cartilage cells multiply and form eylindrical piles or columns, (become ranked), separated from each other by trabeeule of intercellular substanes which is becoming ealcified (Fig's. 24 and 30). The calcified substance soon after liquefies in places so as to form cavernous spaces. or areole, which contain groups of cartilage cells, and basis, substance. The cells next the periphery of these cavernous or medullary spaces and which resemble a layer of epithelium, become altered in shape and are called osteoblasts. These coalesce with each other and with the intercellular substance to form the first lamella of bone tissue; while here and there one of the osteoblasts is pushed out of line or indented, and forms a lacuna or bone corpusele. This. process is again and again repeated by the production of cells from the basis substance until the formation is completed. Each lacuna throws out arms or projections in different directions, which meet others from adjacent lacune, and in this way canalieuli or pores are formed. This endochondral bone which is so irregular and cavernous, is very different however from the beautiful regularity of permanent bone tissue. It undergoes a change. According to some the endochondral bone beeomes liquified and absorbed in order to permit of the formation of medullary canals, and a new formation of bone takes place from the periosteum, into which the perichondrium has been changed. Others deny the liquefaction theory, and maintain that the change is due to interstitial growth alone ; we rather incline to the absorption theory. It is now a well known fact, that living periosteum has the power of generating bone tissue, from the osteoblasts of its deepest layer. According to the absorption theory, while the liquefying process is going on in the endochondral bone, the osteoblasts of the periosteum grow downwards in cones (osteoblast cones.) These osteo-blast-cones producethe Haversian lamelle, while the flat os teoblast layer immediately beneath the periosteum forms. the general or circumferential lamellæ. This also explains.
the increase in thickness of the bone during growth and development. During ordinary repair, absorption from within and deposition from without are continually going on.

The ossification in the vault of the cranium and bones of the face, in which there is no temporary cartilage, is called intra-membranous or cetosteal, in contradistinction to intiacartilaginous orendosteal. These bonesare formed from asoft, fietal conncetive tissue in which are found nuclei and osteeblasts, the process of origin of bone being the same as when formed from periosteum. Some modern investigators also favor the view that bone may be formed by the direct transformation of cartilage into bone tissue, or by the deposition of calcareous matter in connective tissue. The latter may be the explanation of the formation of the so-called callus in the repair of bone.

Growth.-The growth of bone takes place by layers formed in succession on its external surface-exogenousand also in an interstitial manner. Boncs increase in length by additions between the points of ossification, and by accessions of osseous tissuc to the extremeties. This may be shown by inserting metallic pegs in the shaft at certain distances apart, when it will be seen that, notwithstanding the increase in length of the bone, the distance between them remains the same.

Bones increase in diameter, by additions of osseous tissue on their exterior. The osseous tissue thas added is not a mere lamina of bone, but consists of complete Haversian systems, the earlier systems being covered over by the more recent ones. This may be demonstrated by feeding animals with madder. The coloring principle is precipitated with the lime phosphate, and on examination, beautiful crimson rings are seen encircling the Haversian canals. This appearance is confined chiefly, to the external or vascular surface. When the madder has been given at intervals, colored and colorless portions alternate with each other. The colorremains a long time, indicating a slow change of this tissue.

In
the
This

vanc

 is coIn early life there is no medullary canal in the shaft of the long bones, its place being filled with cancellous tissue. This tissue, however, becomes gradually absorbed as age advances, until about the twenty-fourth year, when the canal is completely formed and filled with marrow.

Teeth.-There are two sets of teeth with which the human subject is provided. The first set appear in childhood and are called temporary or deciduous teeth. They are twenty in number,-four incisors, two canine, and four molars in each jaw. The second set are called permanent, and are thirty-two in number,-four incisors or front tecth two cuspids (one on each side of the incisorss), four bicuspids two on each side), and six molars (three on each side), in each jaw. Each tooth consists of the crown or exposed part, the neek, the constrieted part beneath the gum, and a single or multiple fang or root imbedded in the jaw, and contains within it a pulp cavity. The bicuspids, and the molar tecth of the lower jaw, have each two fangs ; the molars of the upper jaw, three.

The pulp consists of vessels, highly sensitive nerve filaments and areolar tissue, which enter by an opening at the extremity of the fang. It also contains dentinal cells or odontoblasts, from which the dentine is formed. These odontoblasts are oval in shape, $\frac{1}{2} \frac{1}{200}$ to $\frac{1}{\square 00}$ of an inch (2 to 3 mmm) in diameter, and send some of their fine thread-like processes into the dentinal tubuli. The pulp cavity may be compared to the Haversian canals of bone. The solid structure of the tooth is composed chiefly of dentine, covered with a thin layer of enamel on the crown, and bone tissue (crusta petrosa) on the fang.

Dentine consists of minute, wavy tubes, dentinal tubuli, which lie parallel to each other and open into the pulp. eavity, being arranged vertically on the summit, and horizontally on the sides. The tubuli are about $\frac{25000}{}$ to Ta $\frac{1}{0}$ oб of an inch (1 to 2 mmm .) in diameter, and are imbedded in a dense, homogeneous substance-the intertubular tissue or matrix. They divide and subdivide dichotomously
as they pass towards the surface, sometimes terminating in

Fig. 31.
 inter-globular spaces resembling lacune, and convey nourishment for the supply of the enamel. The chemical composition of dentine is similar to bone, with a predominance of the earthy matter, in the proportion of seventy-two earthy, to twentyeight per cent. animal matter.

Sometimes the matrix presents lamella arranged concentrically with the pulp eavity.

Enamel is the hardest tissue of the body, and forms a covering to the dentine of the crown of the tooth. It consists of a congeries of minute, solid, hexagonal rods, which
Section of tooth fang. a, Crusta petrosa, or cement covering; b, gramblar or 'Tomes' layer with interglodular spaces; e, dentine; al, dentinal tusuli. are parallei to one another, resting by one extremity, on the dentine, the other being covered by a tough membrane
 called the cuticle of the enamel. They are arranged vertically on the summit, and horizontally on the sides, like the dentinal tubuli, and are about $5^{\frac{1}{0} 0}$ to $\overline{0} 0_{0}^{1}$ of an inch (4.5 to 3.6 mmm .) in diameter. Small spaces are left between the rods at the dentinal surface to allow of the permeation of fluids from the dentinal tubuli, for the supply of the enamel. It consists of 96.5 parts earthy, and 3.5 parts animal matter.

The bone covering the fangs is called crusta petrosa, or cement covering. In structure and chemical composition it resembles true bone, but without any lamellar arrangemont ne Haversian canals.

Development of the Teeth.-The teeth are essentially dermal structures which have become calcified, the
epithelium forming the enamel, and the subjacent tissue, the dentine and cement. About the sixth week of foetal life, a rounded thickening or projection of the superficial
 layers of the epithelium of the jaw, appears all around the free border. At the same time the deep layerdips down into the subjacent tissue in the form of a wedge, and forms the 'primary' enanel germ (Fig. 32). Here and there in the mucons tissue of the jaw, corresponding to the number of teeth, a convex papillary structure, the tooth
n, Epithelinm; 1, younger layer: e, inferior layer ; e, chamel organ; f, dentine germ or payilla; g and h, hner and miter layers of the forming sacenlus.
form of a cap or bell. of the teeth continue to grow and are soon enclosed in sacculi, (Fig. 33).

Development of Examel.-The enamel is developed from petrified or calcified epithelium. The enamel organ becomesseparated from the point of origin in the epithelium of the jaw. It is lined throughout with cylindrical and hexagonal epithelial cells, covering the surface of the tooth germ, and reflected at its base upon the imner surface of the sac-
n, Dental Ne; b, remains of the enamel germ ; c, enamel nergutined opithelinm on its onter (sacenkar) and inner (pipillary) dentine gels ; d, enamel germ of the permanent tooth; e, s, section of inferior thaxilla; g, Neckei's car- culus. The space between these two layers is filled with a
gelatinous tissue, which is the pabulum of the columnar enamel cells, and contains a few stellate cells. These columnar cells upon the surface of the tooth germ become calcified, and form the enamel rods which are completed by the superposition of cells, and their subsequent calcification.

Development of the Dentine.-The dentine is developed from the odontoblasts of the tooth germ, by a process of calcification. It commences as a dark area, at the base of the enamel germ. As development proceeds, the cells or odontoblasts become elongated and arranged in a linear manner vertically to the surface of the tooth germ; the outer portions of the cells become calcified and form the intertubular tissue or matrix, while the central part remains unchanged, and forms the dentinal canals. This process gradially extends inwards while the vessels, nerves, and areolar tissue recede until they come to occupy the central part, which is called the pulp cavity. About the fifth month, and prior to the calcification of the temporary teeth, a "secondary" enamel germ begins to form on the inner. side of the original one for the production of the "permanent" teeth. These pass through the same phases of development as those already described as the temporary set.

Eruption.-When the tooth is sufficiently hard to enable it to pass through the gum, the eruption takes place. The gum is absorbed by the pressure of the tooth against it, which is itself pressed up by the increasing size of the fang. The septa between the dental sacs, at first fibrous, soon ossify, and constitute the septa of the alveoli in which the fangs are lodged.

Periods of eruption of the temporary tecth. -The teeth of the lower jaw precede those of the upper.

Central Inci	7 th month.
Lateral "	7th to roth
Anterior Molars.	12th to 14th
Canines	14th to 20th
Posterior Molars.	18th to 36 th

Periods of eruption of the permanent teeth :

First Molar	$6 \frac{1}{2}$ years.	
Middle Incisors	7	"
Lateral "	8	،
First Bicuspids.	9	,
Second "	10	
Canines.	12	
Second Molars.		،
Wisdom Teeth (D		6

The teeth of the lower jaw, also precede those of the upper in the permanent set.

MUSCLE.
Many cells of the body, and certain tissues possess the power of changing their form, from time to time, as the white corpuscles, cartilage cells, cilia, spermatozoa, connective tissue, etc., but the muscles are alone those organs by which the various movements of the body are effected. They possess the property of contractility and are the active organs of locomotion. Muscular tissue is divided into two varieties, Striated and Non-striated. They may be distinguished from each other-1st. By their color; the striated are reddish in color, while the nonstriated are pale. 2nd. By the aid of a microscope; the striated muscular fibres are characterized by being marked with transverse lines or striæ; other striæ pass longitudinally, indicating the direction of the fibrillæ. The nonstriated muscular tissue consists of pale-colored fusiform fibre cells. 3rd. By galvanism. The striated respond to galvanism instantly, by a clonic spasm, while the nonstriated respond slowly by a tonic spasm. Muscular tissue is also divided into voluntary and involuntary, according as it is under the control of the will, or independent of it.

Striated.-This variety of muscular tissue comprises the whole of the voluntary muscles, the diaphragm, muscles of the ear, tongue, pharynx, upper part of the œesophagus, heart, and the veins, at their entrance to the heart. When
a transverse section of a muscle, as the sartorius, is examined by the microscope, it appears to be formed of a number of large bundles of muscular tissue, enclosed in a coat of areolar tissue, which constitutes the sheath or perimysium externum of the muscle. Each larger bundle consists of numerous smaller ones, enclosed in a similar covering of connective tissue, called the perimysium internuin. Each smaller bundle contains the primitive fasciculi or fibres, and each primitive fibre contains the primitive fibrilloe.

In the spaces between the bundles may be seen the vessels and nerves for the supply of the tissue.

The Primitive Fascicula on Fibres.- Each primitive fibre contains a number of primitive fibrillæ, and is surrounded by a sheath of transparent homogeneous membrane, the myolemma or sarcolemma. Resting upon, and sometimes beneath this membrane may be found here and there, oval nuclei surrounded by a small quantity of protoplasm. Thr primitive fibres are cylindrical or prismatic in shape, and vary in thickness from $\frac{1}{200}$ to ${ }_{5}^{\frac{1}{0} \sigma}$ of an inch (125 to 50 mmm); their length does not exceed on an average one inch and a half. They are marked by fine, dark, wavy, or curved

Fig. 34.
 Muscular fibre torn across: the sarcolemma
still connecting the two parts of the fibres. direction of the fibrille of which the fibre is composed. They have a tendency to split both in a transverse and longitudinal direction, but cohesion is greatest in the former direction.

The Primitive Fibrille.--These constitute the proper contractile tissue of the muscle. They are cylindrical or prismatic, sometimes flattened-depending on pressure-
vary mmn those fibril ticle toget amin prese appe or zo ated pond ones what strix, apart reptil
$\frac{1}{0500}$ exam a dar seen t Krau lar ap A wh the d searcl an ex of th muse heart that bund interl each there
 mmm. .), and are marked by transverse strice with which those on the surface of the fasciculi correspond. Each fibrilla consists of a single row of minute particles, named "sarcous elements," connected together like a string of beads. When ex. amined by the microscope the sarcous elements present a rectangular outline, and the fibrillie appear to consist of light and dark particles or zones placed alternately ; hence their striated appearance. The dark particles correspond with the sarcous elements, and the light ones with the junction of the pairs. They somewhat resemble a Volta's pile. The transverse
 apart in the human subject; in birds ${ }_{T 0 \frac{1}{4} \overline{4} \overline{0}}$, in reptiles $\frac{1}{11500}$, in fish $\frac{1}{11000}$, and in insects $\frac{1}{9.00}$ of an inch, (2 to 3 mmm .) When examined with a high magnifying power, a dark line, with granules above and below, is

Fig. 35.

Fibrilla magnified 800 diameters; a, a, larger, and b, b, smaller bundles;
e, still smaller; d, d, the smallest representing a single series of sarcous elements(Bharpey). seen to cross the middle of each light particle, known as Krause's transverse lines or intermediate discs. The granular appearances above and below, are called secondary discs. A white line has also been observed to cross the middle of the dark zones, known as Hensen's median disc. Late researches have also shown that each filmilla is surrounded by an extremely thin membrane. This is an argument in favor of the view, that the fibrilla is the anatomical element of muscular tissue. The striated muscle of the tongue and heart of the mammalia and man, is somewhat different from that generally met with. The fibres are not arranged in bundles, and surrounded by connective tissue, but weave or interlace among each other. They also anastomose with each other, so as to form a narrow-meshed net work, and there is no appearance of sarcolemma.

Nonstriated.-This variety consists of flattened bands,
or elongated fusiform fibre-cells, of a pale color, from $\frac{1}{4500}$ to to $\frac{1}{3000}$ of an inch (5.5 to 7.5 mmm) broad, finely granular and containing a rod-shaped nucleus, which sometimes appears as a streak (Fig. 36). These fibre-cells may assume different shapes; they are generally fusiform, but some are clubshaped, and others of a rectangular shape, with fringed ex-

Fig. 36.

Nonstriated muscular fibre cells. a, Developiny ecll from the embryo of the log: b, a moreadvanced cell, c , to g , various forms of human muscular fibre. tremities. The length of these fibre-cells is from $\frac{1}{50}$ to $\frac{1}{1000}$ of an inch (500 to 2.5 mmm .) They are held together by connective tissue, and the bands are applied to each other in such a way, as to encircle the organ into the formation of which they enter. This kind of tissue is found in all hollow organs (except the heart and veins attached), as the ducts of the salivary glands, trachea and br nchi, alimentary canal, from the lower part of the oesophagus to the internal sphincter, gall bladder and ducts, calyces and pelvis of the kidney, ureters and bladder, and in the urethra. In the female; in the vagina, uterus, Fallopian tubes and round ligaments. In the male; in the scrotum, epididymus, vas deferens, vesicule seminales, prostate and cavernous bodies, in the coats of arteries, veins and lymphatics; in the iris and ciliary muscle, and in the integument called the arrectores pilorum.

Mode of Development.-There is no difference in the early stage of development between the striated and nonstriated varieties of muscular tissue, both being developed from cells; but whilst the striated variety goes on to complete development into fibrillæ, the nonstriated retains permanently its cellular condition. The cellular elements are elongated and applied end toend, being held together by connective tissue, and in this way they encircle the organ into the formation of which they enter, or are arranged longitudinally or obliquely. The striated fibre is not formed as
form ment prok and unde grea prots into vers fresh main (the in th
formerly supposed by Schwann, directly from the arrangement and fusion of the cells in a linear manner (except prokably the fibres of the heart), but by the arrangement and fibrillation of the protoplasm or intercellular substance under the influence of the cells. The cells appear to increase greatly in length, the nuclei increase in number, and the protoplasm and intercellular substance becone transformed into the sarcous elements, etc. The fibre becomes transversely and longitudially striated, and increases in size by fresh additions of protoplasin upon the outside. The remains of the nuclei, surrounded by granular protoplasm (the muscle corpuscle) may be seen on the ouiside and within the sarcolemma, on the addition of a little acetic acid.

Attachment of Tendons.-Every muscle is attached at its extremity by means of connective tissue, which constitutes the tendon. The extremity of each muscular fibre, whether rounded, pointed, or irregular, is covered by sarcolemma, and is received into a corresponding cavity in the tendinous bundle to which it is firmly connected, by means of a cement substance. This union is so firm, that rupture of the tendon

Extremity of muscular fibre, showing the attachment of the tendon. or muscle will take place before separation at this point. It may be separated for microscopical examination, by means of a solution of potash.

Chemical Constituevts.-Muscular tissue consists as follows in 100 parts:

$$
\begin{aligned}
& \text { Water . } 76.50 . \\
& \text { Myosine, Albuminous substances and Hemoglobine.. } 18.20 . \\
& \text { Lactic acid.. : } \\
& \text { Gelatine. } 1.50 . \\
& \text { Creatine, Extractive, and Fatty Matter and Salts.... 2.So. } \\
& 100.00 .
\end{aligned}
$$

It swells out on the addition of acetic acid, and is partially dissolved. It is soluble in hydrochloric acid, and is
precipitated by ferrocyanide of iron. Muscular tissues is sometimes changed into a substance called codipocere. (See oils and fats.)

Vascular Supply.-The arteries intended for the supply of the muscle pierce the sheath, and divide and subdivide, giving off' small branches which pass between the bundles of which it is composed, until the ultimate twigs insinuate themselves between the primitive fasciculi or fibres, and terminate in the capillaries. Some of these, the longitudinal, course along the fibres, lying in the intervals between them, and others pass transversely across them. The length of the longitudinal capillaries is about $\frac{2^{\prime} 0}{0}$ of an inch (1.2 mm) the transverse vary according to the size of the fibres. The fibrillse are, therefore, supplied by imbibition through the sarcolemma.

Nervous Suppif.-The nerve fibres are distributed similarly to the arteries, until the filaments reach the fasciculi or fibres. They then form a series of loops, which either return to the same trunk, or join an adjacent one. It is stated by some observers, that the nerve fibres pierce the sarcolemma. As they pierce the fibre, their covering becomes continuous with the sarcolemma, and the axis cylin-

Fig. 33.
 der or essential portion of the nerves pass into the interior and are distributed among the fibrillæ, and terminate cither in free extremities, loops, or nerve buds (as they are called).

According to other observers the nerve fibres as they approach the Termination of a nerve firre sarcolemma form expansions, called by a motor end plate in muscuar flbre, (Longet). terminal, or motor end plates. The sheath of the nerve spreads out and blends with the sarcolemma, the white substance of Schwann terminates abruptly, and the axis cylinder spreads out beneath the sarcolemma on the surface of the fibrillæ, forming an oval
plate, eter.

Prd charar tility, draw a dist ever, almos baland tráctid tissue wheth maint tractil action Contra cous chang other, vegeta the mi If tou the sh positi travel fore, itself, stimu the ti vanis varies is ap those the m contr:
plate, from $\frac{1}{500}$ to $\frac{1}{1000}$ of an inch (50 to 25 mmm) in diameter. (Fig. 38).

Properties of Muscular Tissue.-The distinguishing characteristic of muscular tissue is its property of contractility, irritability or tonicity. Some have endeavoured todraw a distinction between these terms ; but, after all, it is a distinction without a difference. The term tonicity however, may be understood to express that insensible and almost constant contraction by which opposing muscles balance each other in a state of rest-a state of passive contraction. The primitive fibrilla is the proper contractile tissue of the muscle. Still, it is a disputed point as to whether or not it possesses this property in itself, somemaintaining that nerve is necessary to charge it with contractility; others that nerve is only necessary to call it intoaction, and that this property is inherent in the tissue itself. Contraction is caused by a change in the shape of the sarcous elements; they become shorter and thicker. This change travels rapidly from one end of the fibrilla to the other, and the muscle is thus very much shortened. Some vegetable structures possess an analogous property, as e.g. the mimosa or sensitive plant, and venus' fly-trap (Dionœa). If touched ever so slightly, the irritation causes a change in the shape of the cells, followed by a change in the shape or position of the whole leaf, in consequence of the change travelling from one cell to another. The property, therefore, of contractility is inherent in the muscular fibrilla itself, and may be called into action by various kinds of stimuli, as by nervous influence, by pinching or pricking the tissue, by the action of an acid or an alkali, or by galvanism. The effect of the application of any of these stimuli, varies according to the kind of muscular tissue to which it is applied. If a portion of striated muscle be irritated, those fibres which are touched will contract, and those only, the motion not being communicated to any other, and the contracted part soon becomes relaxed-the spasm is clonic.

If, on the other hand, a portion of nonstriated muscle be irritated, as the alimentary canal, the contraction takes place more slowly, the spasm is long continued, or tonic, and the movement is communicated to other fibre-cells, until a considerable part of the canal is affected. The muscular fibre is shortened and thickened during contraction, and sometimes thrown into a zigzag shape, and some observers, mistaking the effeet for the cause, concluded that the zigzags occasioned the shortening. Contractility continues for a short time after death. This may be demonstrated, by applying to the muscular tissue any of the abovementioned stimuli which are known to affect it during life. The duration of this property after death, varies in different animals. In birds, only a few minutes after death; in quadrupeds much longer; while in reptiles it remains for many hours, owing to the nutritive changes being more sluggish in these than in warm-bloods, and the sareous elements being slowly formed and sluggish in their action, are long-lived.

If irritation be continued, the contractility or irritability of the nuscle is soon exhausted. The circulation of arterial or oxygenated blood is not only necessary for the purposes of nutrition, but also to the continuance of contractility. The museles will therefore preserve their contractility after death, and the action of the heart itself will continue for a long time, if oxygenated blood be injected into the veins or if the circulation be kept up by artificial respiration. If the blood be charged with carbonic acid, or chloroform, ether, sulphocyanide of potassium, or a narcotic poison, as opium, etc., the contractility of the museles is speedily destroyed.

Every act of contraction involves the death of a certain amount of muscular tissue, and prolonged exertion causes fatigue, which is an evidence of an impaired condition. Rest is necessary to recovery, and recovery is due to the nutritive process; hence the more a muscle is used, provided it receives a sufficient amount of rest and nutrition,
the 1 arm othe them medi In sc

M dista movi soun pora nigh and
the more vigorous and bulky does it beeome ; as e. g., the arm of the smith, and the legs of the rope-walker. On the other hand, disease, as paralysis, or sedentary habits, cause them to become flabby and atrophied, but this may be remedied by exereise, and the use of friction and galvanism. In some constitutions they are liable to fatty degeneration.

Museular contraction produces a sound resembling the distant rumbling of carriage wheels. This is caused by the movements of the fibres upon each other. For example, the sound eaused by the contraction of the masseter and temporal muscles may be distinetly heard in the stillness of the night, by placing the side of the face and ear on the pillow, and elenching the teeth firmly together.

There is also an elevection of temperature of from 1° to 2° F. This dependy partly on the chemical changes which take place in the muscle, as a result of its action, and partly upon the friction consequent on the movements of the fibres upon each other.
Muscular tissue is also said to possess a certain amount of elasticity. This is exceedingly small, and is due in great measure to the elasticity of the sarcolemma and the elastic tissue associated with muscle. It is shown by suspending vertically a small weight to a portion of fresh muscle; it elongates with the weight and rccovers itself when it is removed.

Rigor Mortis.-This is the stiffening of the muscles which takes place after death, and is due to the coagulation of myosin. This condition is rarely absent ; but it may be very slight, and continue only a short time. Sometimes it comes on within 15 or 20 minutes after death, as in typhus fever. It commonly takes place within 7 or 8 hours after death; but in some cases it may be deferred for 20 or 30 hours. It continues for 24 or 36 hours; but it may jass off much more rapidly, or be continued for several dys. This rigor mortis is a sort of tonic contraction of the muscles, and in some cases it may be very violent-as after

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

leath from eholera and yellow fever-and has given rise to many absurd superstitions among the uninitiated. It begins in the neck and lower jaw first, next the upper extremities, and extends from above downwards until it reaches the lower limbs. It is most remarkably manifested in the nonstriated muscular tissue, as in the arteries and alimentary canal. In consequence of this contraction, the bowels are not unfrequently moved after death; the arteries are found empty, and so contracted that they cannot be injected until the rigidity passes off. When the rigor mortis suosides, decomposition of the muscular tissue begins; hence we may regard it as the last act of life, and in this respect it corresponds to the coagulation of the blood, when drawn from the body. The same causes that interfere with the coagulation of the blood after death, interfere, also, with the rigor mortis of the muscles, as in animals hunted to death, or killed by lightning, in which both coagulation and rigor mortis are imperfect.

Action of Muscles.-In the aetion of most muscles, and especially those of the extremities, examples of the three orders of lecers are afforded.

In the first order of levers the power is at one end, the weight at the other, and the fulcrum between the two.

In the second order, the power is at one end, the fulcrum at the other, and the weight between the two.

In the third order, the fulcrum is at one end, the weight at the other, and the power between the two.

The first order of levers, although the most powerful, is that least used in the animal economy, as its use is less productive of extensive motion. The action of the gastrocnemius muscle affords an e:ample of this order, as when the foot is raised from the ground, and extended to raise the os calcis and depress the toes: here the moving power is the gastrocuemius attached to the os calcis, the weight is the anterior part of the foot, and the fulcrum is the ankle joint.

The same muscle affords an example of the second order
of levers, as when the foot is placed on the ground and the body raised by the action of the muscle; here the moving power is the gastrocnemius, the fulcrum the anterior part of f the foot resting on the ground, and the weight or resistance the body resting on the ankle joint.

Fig. 39.

Fig. 40.

Fig. 41.

The upper three figures represent the three kinds of levers; the first illustrating the mode of action in two directions. The lower figirr represent tine foot when it takes the character of each kind of lever. F, fulcrum; P, wer; W, welght or resistance; M. muscle, affording the power.

The ankle joint also affords an example of the third order of levers, as when the foot is raised from the ground and flexed on the ankle joint; here the moving power is the tibialis anticus and peroneus tertius, the fulcrum is the ankle joint, and the weight the anterior part of the foot.

The biceps of the arm also affords a good example of the third order, as when a ball or weight is placed in the hand; here the moving power is the biceps inserted into the tuberosity of the radius, the fulcrum is the elbow joint, and the weight is in the hand. In this position, power is sacrificed to extent of motion, as in raising the hand and weight these pass through the arc of a circle of considerable dimensions, while the extent of motion at the insertion of the power is extremely limited. This is still more obvious when we hold a rod in the hand, as a fishing-rod or whip, the extreme end of which is made to pass through a space of con siderable magnitude compared with that of the part where
the power is app'? ${ }^{\prime}$. The great advantage derived from this disposition of levers in the hun:an body, whereby motion is gained at the expense of power, is seen in the various acts of walking, running, leaping, etc.

Locomotion.-In the act of walking nearly every muscle in the body is called into action, either in the movement of the limbs or in the maintenance of the body in the erect position. Two main kinds of leverage are employed in walking, one kind chiefly produced by the muscles of the calf which raise the heel, and with it the weight of the body which is pushed forward, and would fall prostrate, but for the other kind of leverage by which the opposite leg is pulled or planted in front of the body to support it. The advance of the opposite leg is effected partly by swinging, but chiefly by muscular action. The museles concerned are those of the thigh, the rectus, psoas and iliacus, which act in front; the hamstring museles which slightly bend the knee, and those on the front of the leg, as the tibialis anticus, extensor longus digitorum, extensor longus pollicis and peroneus tertius which raise the foot and toes, and prevent them catching on the ground. When this foot, which we will suppose to be the right, has reached the ground, the action of the muscles of the left leg has not ceased, but continucs to raise the heel and throw the body still more forward, until the weight is supported by the right leg, when the left in its turn swings around and is planted in front of the body. The two actions it will be seen, therefore, are taking place at the same time, and are assisting each other.

At the same tirra that the above movements are in progress, the body ; being supported in the erect posture and balanced on each leg alter: ttely. This is done by a slight rotation of the pelvis on the head of each femur alternately, so that the centre of gravity c_{i}^{p} the body shall fall over the foot of that side. This occasions a slight " rocking movement" which is more noticeable in females than males owing to the greater width of pelvis of the former. This rocking
movement may, however, be lessened, and made more graceful by a compensatory outward movement at the hip, and hence some may become more graceful in their walk than others. Running, and leaping or jumping are modifications of the act of walking.

In regard to the source of muscular force, it has long been observed that in active muscular exercise, there is an increase in the urea excreted by the kidneys, and it was supposed that this increase of urea was in exact proportion to the amount of muscular exercise. The latier has been found not to be the case ; the increase in urea is only very slight, and the waste of muscle cannot be expressed by its increased excretion; neither is the substance of muscle wasted in proportion to the work it performs. There is also no evidence that nitrogenous are superior to non-nitrogenous foods as a source of muscular power; both may afford the requisite conditions for muscular action.

CHAPTER IV.

MEMBRANOUS EXPANSIONS.

These are the serous and synovial, mucous and integument. The serous and synovial membranes, anatomically speaking, form shut sacs, with the exception of the peritoneum in the female, which communicates with the uterus through the Fallopian tubes. The mucous membrane lines cavities which communicate with the external surface, and is continuous with the integument. The integument covers the exterior of the body, and serves not only as a means of protection, but also as an organ of sensation. The mucous membrane and integument are convertible membranes.

Structure.-The structure of these membranes is very nearly the same in each instance. It consists of a basement membrane, lined by epithelial cells on the free surface, and presents vessels, nerves, and lymphatics, imbed-
 ded in areolar tissue which connectsit with the subjacent parts (Fig. 42). They therefore consist of three partsbasement membrane, with epithelial cells or one side,
Plan of a membranous expansion ; a, epithe-
Hum ; and blo basement membrano $;$ e, vessels
 tissuc. lymphatics, imbedded in areolar tissue, on the other.

1st. Basement Membrane.-The different varieties of basement membrane have been already described in Chapter II. Its function is to support the cells, and probably influence their development; to linit osmosis of the nutrient fluid from the subjacent capillaries, and modify it in its passage.

2nd. Epithelium.-The layer of cells which line the free
surf Tho the the
The by
surface of the membranous expansions, is called epithelium. Those which line tie serous and synovial membranes and the vascular system are sometimes called endothelium, and the stratified epithelium of the skin is called epidermis. The epithelial cells can be brought beautifully into view by staining with nitrate of silver.
'there are two principal varieties of epithelium, viz: 1st. Tesselated, pavement, squamous, laminated or scaly. 2nd. Columnar or cylindrical. In the serous, synovial, and mucous membranes therc is generally a single layer of cells, with a quantity of granular matter and a iayer of partially developed cells lying on the basement memb ane; but in the integument there are several ; the outer beng flattened, scaly, and hardened by secondary deposit. The cells which line the serous, synovial and mucous membranes, secrete a fluid which is intended to lubricate the surface, to prevent the ill effects of friction, and to give ease to the gliding movements of the parts over each other. This fluid is formed as a result of the growth, maturity, and decay of the cells.

1st. Tesselated, Pavement, Squamous, or Scaly Epi-thelium.-The cells of this variety are flattened and polygonal in shape, and vary in size from ${ }_{50 \bar{\sigma}}^{1}$ to ${ }_{\bar{\Sigma} 5 \delta_{\bar{\sigma}}}$ of an inch (50 to 10 mmm) in diameter. Each cell contains a nucleus, nucleolus, and granular matter. They are, in general, not very active, and are therefore long-lived. In health, they secrete only a limited quantity of fluid. Those which line

Fig. 43.

Tesselated epithelium ; a, epithelium of the peritoneum $\times 400 ; b$, epithelial eell of the mouth $\times 260$ (Henle). the synovial membranes, mucous membrane of the mouth, and parts of the body in which a greater supply of fluid is requisite, are somewhat rounded in shape and much more active. Tesselated or pavement epithelium lines all the serous and synovial membranes, the mucous membrane of the mouth, lower part of the pharynx, œsophagus, upper part of the larynx,
intercellular passages (so called), and air cells, lining membrane of the ventricles of the brair, tympanum, anterior and posterior chambers of the eye, conjunctiva and canaliculi, arteries, veins, and lymphaties, lower part of the vagina, bladder; and urinary passages, vesiculæ seminales, and vas deferens.

Those cells which line the bladder and urinary passages are somewhat spheroidal in shape, and would seem to be an intermediate variety.

2nd. Columnar or Cylindrical Epithelium.- This variety is cylindrical in shape, as the name indicates, and placed side by side, one extremity of the cell resting on the basement membrane, and the other forming the free surfac.:

Fig. 44.

Colmmar epithelimm; e, eolumnar epithelium of intestine ; d, columnar ciliated epithelium of the nose.
 of an inch (10 to $7.1 \mathrm{~m} . \mathrm{mm}$.) in thickness, and from $\frac{1}{600}$ to $\frac{1}{900}$ of an inch (42 to 28 mmm .) in length. Each cell contains a nucleus and nucleolus. In some parts, as in the gastro-intestinal eanal, there appears to be a double layer of cells; this depends on their rapid development in these parts, the lower layer being the new cells which are rising up to take the place of the old. These cells not only line the free surface of the membrane, but also dip into the follicles, at the bottom of which they become rounded or glandular. This is owing to their greater activity in the latter situation. In some instances their free extremities are club-shaped, in order to comport with their position, as when they stand on the angles formed by the dipping of the follicles.

This form of epithelium is found in the alimentary canal, commencing at the cardiae orifice of the stomach, in the ducts which communicate with it, the gall bladder, nose, nasal ducts and lachrymal sacs, frontal sinuses and antra, posterior surface of the palate, upper part of the pharynx,

Eustachian tubes, larynx-below the superior vocal cordstrachea and bronchi, upper part of the vagina, uterus, and Fallopian tubes.

Fig. 45.

Columnar epithelium of small intestine; a, leecher or goblet cells; b, ordinary cells.

Placed here and there at variable distances among the ordinary columnar cells are peculiar oval cells known as Becher or gobletcells (Fig. 45, a.) These are regarded by some as the commencement of the absorbent system; by others as mere shells of epithelial cells which have become emptied of their contents by manipulation, or as mucous secreting cells.

Cilia,-Both varieties of epithclial cells occasionally present a number of minute, conical-slaped filaments or prolongations attached to their free extremities or surfaces, termed cilia (Fig. 44, d). They are attached by their bases to the cells, their free extremities being tapered, and they vary in
 five to thirteen may be seen attached to each cell. The cilia may be considered as prolongations of the cell itself. They are not seen in the early stage of development of the cell, but make their appearance as it arrives at maturity. They are in continual motion; each filament appears to bend from its root to its point and return to its original state, so as to resemble the waving of a wheat fiell in a gentle breeze. This motion is independent both of the will and the life of the animal, as it is seen to continue after death. Epithelial cells of the nose may be seen to float about in water by the agency of their cilia, several hours after they have been removed from the mucous surface; and the motion of the cilia has also been observed in the body of the tortoise fifteen days after death. Ciliary motion continues in animals killed by prussic acid, narcotic or other poisons, and electricity; but is destroyed by chloroform, carbonic acid, mineral acids and strong alkalies.

The object of the ciliary motion is to propel fluids over the surface, in the direction which the secretion is destined to take, whether external or internal, the movement being generally towards the outlets. In fishes, the external surface of the gills is covered with cilia, which serve to propel the water, and bring fresh portions in contact, for the purpose of aërating the blood. In many of the lower animals, they serve not only to proiuce currents for respiration, but also to draw into the mouth minute particles which serve as food.

The motion of the cilia is due to the vitality of the cells from which they grow, or the vital contractility of the tissue of the cilia themselves, and not to the presence of a kind of delicate muscular tissue, or to nervous force, as some have suggested. It has already been shown, in the preceding ehapter, that the motion of muscular tissue is due to a change in the shape of the sarcous elements. Now, in the same way, the motion of the cilia may be produced by a change in the shape of the cells to which they belong, so that by an alternate contraction and relaxation of the cell the cilia would be made to wave as they are seen to do.

The epithelial cells are developed from the protoplasm supplied by the vascular layer, beneath the basement membrane.

Ciliated epithelium of the tesselated or squamous variety is found in the lining membrane of the ventricles of the brain, tympanum, intercellular passages (so called), and in the air cells.

Ciliated epithelium of the columnar variety is found in the cavity of the nose (except the roof), nasal ducts, lachrymal sacs, frontal sinuses, maxillary antra, Eustachian tubes, posterior surface of the palate, upper part of the pharynx, (extending as low down as the floor of the nares), larynx below the superior vocal cords, and the anterior part above, trachea and bronchi, upper part of the vagina, in the uterus, and Fallopian tubes.

SEROUS MEMBRANES.

The serous membranes are the arachnoid, pleura, pericardium, peritoneum, tunica vaginalis, and the lining membrane of arteries, veins, and lymphatics. Each membrane, respectively, lines the cavity to which it belongs, being attached to the wall by means of areolar tissue. This is called the parietal layer. It is then reflected upon the contained organ forming the visceral layer. The free surface is lined by tesselated or squamous epithelium, sometimes called endothelium, which in health secretes a limited quaitity of fluid for the purpose of moistening the surface, the process of secretion and absorption being exactly counterbalanced. The normal quantity of serous fluid in the various cavities is as follows ; in the pericardium one to two fluid drachms; in the peritoneum one to three ounces; in the pleural sac two to four fluid drachms. If the secretion be morbidly increased, or the process of absorption diminished it is retained in the cavity, and gives rise to dropsies which receive different names in different parts of the body; in the cavity of the arachnoid, hydrocephalus; in the pleura, hydrothorax; in the pericardiam, hydro-pericardium; in the peritoneum ascites; in the tunica vaginalis, hydrocele. The secretion is called serous fluid, and is similar to the serum of the blood. It has an alkaline reaction, and consists of water, albumen and salts. The quantity of albumen varies in different parts, depending on the activity of the part, the degree of motion and the amount of friction to be overcome. In the serous fluid of the pleura there are 2.85 parts in a hundred; in the peritoneum, 1.13 parts; in the arachnoid, .6 to .8 ; in the subcutaneous areolar tissue, .30 .

The serous membranes are lonked upon by some, as large sacs or cavities, which communicate by stomata or pores, with the lymphatic vessels (Klein.) These apertures, which are about seen between the epithelium. Milk and colored fluids have
been observed to pass through them into the lymphatic syscem. Short lateral passages of the lymphatics are also found to open into these apertures. There is also a considerable quantity of adenoid tissue imbedded in, or forming the walls of the serous membranes.

synovial membranes.

The synovial membranes are placed between the articular surfaces of the bones. In the foetus they are prolonged over the articular cartilage; but in the adult they cover merely the margin to the extent of a line or two, and are then reflected on the inner surface of the ligaments, to which they are attached by areolar tissue. In some instances they send fringe-like prolongations into the interior of the joints, as for example, the (so called) alar ligaments of the knee joint. They also form sheaths for the tendons of muscles. The free surface of the synovial membrane is smooth and moist, being lined by a layer of tesselated or squamous epithelium, which secretes the synovia, for the purpose of lubricating the joint, and preventing the ill effects of friction. If the secretion be morbidly excessive, the result would be hydrops articuli.

Synovia is a transparent, viscid, oily-looking fluid, and resembles the white of an egg, hence its name ($\sigma v \nu$, cum, wov, ovum.) It has an alkaline reaction, and contains water, albumen or synovine, and salls. It contains more albumen than serous fluid, more being necessary on account of the greater amount of motion in the joints.

Burse.-A reflection of synovial membrane in the form of a closed sac, is found beneath some of the tendons where they glide over bony surfaces. This is called a synovial bursa. When they are situated near a joint they sometimes communicate with its synovial cavity. They line the canal or groove and are reflected around the tendon forming its sheath, at the same time excluding it from the synovial
eavity. There is another variety of bursie situated between the integument and bony prominences, as between the integument and patella, olecranon, etc. These are called burse me:cose, and are nothing more or less than an enlarged mesh in the areolar tissue, surrounded by condensed fibres, and presenting a partial or incomplete secreting surface.

Synovial membranes are more readily reproduced than serous membranes. It is doubtful whether the latter are reproduced at all or not; but new joints are formed and lined by synovial membrane, as is seen in old-standing dislocations of the hip, etc. Serous membranes, when inflamed pour out a plastie substance, which has a tendeney to organize and form bands; but in inflanmation of synovial membranes there is a tendency to the formation of pus.

Structure of Serous and Synovial Membranes. They are very nearly alike. On their free surface is a layer of epithelium, of a polygonal shape, and more or less transparent. This rests on the basement membrane, which is also nearly transparent, and very thin. Beneath the basement membrane is a layer of areolar tissue, in which are imbedded the vessels, nerves and lymphatics; this constitutes the chief thickness of the membrane, and gives it strength and elasticity. The areclar tissue is more condensed beneath the basement membrane, and becomes more lax near the subjacent tissue. The vessels are arranged in a plexiform manner, running parallel with the basement membrane. In parts of the body where there is much motion, and a greater supply of blood is necessary, as beneath the pleura and the synovial membranes, the vessels are tortuous.

mucous membranes.

These resemble the serous and synovial, in lining cavities, but they are not shut sacs. They line the interior of the alimentary canal from the mouth to the anus, the ducts,
and interior of glands which communicate with it; the nose and the passages whieh open into it, the larynx, trachea, bronchi, and air cells, bladder and urinary passages, vagina, uterus and Fallopian tubes. The free surface of the mucous membrane is lined by a layer of epithelium, generally of the columnar variety; the exceptions are the mouth, upper part of the larynx, lower part of the pharynx, cesophagus, tympanum, intercellular passages and air cells, lower part of the vagina, bladder and urinary passages. The cells secrete a fluid called mucus, which is intended to lubricate the surface, and protect it from the contact of air, and any irritating substance to which it may be exposed.

Mucus is a transparent, viseid, tenaeious, semi-fluid substance, insoluble in water, but may be readily dissolved by any alkali. It is coagulated by weak mineral acids, acetic acid, and strong alcohol. A substance resembling mucus may be obtained from any inflammatory exudation, or even from pus, by treating it with licuor potassa and agitating it. Any irritation to the mucous surface, from whatever cause, will increase the secretion of mucus, as for example the use of snuff, etc. It consists of about 93 to 94 parts fluid, and from 6 to 7 parts solid matter. The organic matter is termed Mucine or Mucosine. Mucus of the nose consists of ;-(Robin)

```
Water93.3
Mucine..................................... 5.4
Fatty and Extractive Matter..................... 3
```

Salts.

Salts.

100,00

The salts consist of sodium and potassium chloride 6 parts; sodium and potassium phosphates, sulphates, and carbonates, and lime phosphate .4. The part of the body from which the mucus is obtained may be determined by the form of epitheliun. present in it, the result of desquamation, It has an alkaline reaction except in the vagina where it is acid.

Structure.-The mucous membrane, like the serous
and
eliur whic
whic
the
fibro mue orga lar The bran also The pend more Som
and synovial, consists essentially of three parts; the epith-clium-the basement membrane-and the arcolar tiseue, in which the vessels, nerves and lymphatics are imbedded, and which connects it with the subjacent parts. The latter gives the membrane its thickness, and is made up of white fibrous, and yellow elastic tissue, vessels, etc. In the mucous membrane of the erectile tissues, as in the organs of generation, some nucleated, fusiform, museular fibre-cells are seen imbedded in the areolar tissue. The epithelium not only covers the free surface of the membrane, but also dips down to line the follicles, ducts, etc. It also covers the surface of the villi and valvule conniventes. The relative amount of vessels, nerves, and lymphatics, depends upon the activity of the parts; the vessels are also more tortuous where a large supply of mucus is requisite Some parts of the mucous surface are not so sensitive as others; for example, the passage of food is not felt in the œesophagus, stomach, and intestines until the fiecal matter reaches the rectum, when a sensation is felt demanding its discharge. This depends on its nervous supply-the rectum being largely supplied by spinal nerves, while the rest of the intestines, stomach, and oesophagns, are more directly under the influence of the sympathetic system. Mucous surfaces are not disposed to form adhesions in inflammation, owing to the presence of the epithelium and mucus. These change the character of the plastic material, and cause it to degenerate into pus; but if the epithelium be entirely removed a partial organization takes place, as may be seen in the casts of the alimentary canal in dysentery, when not of a very low type.

appendages of the mucous membrane.

In most parts of the body the mucous membrane is provided with papillæ, and follieles, or glands. In the alimentary canal, the mucous membrane is thrown into folds called valvule conniventes. There are also velvet-like projections called villi. These are termed appendages.

Papluder:-Of these there are two kinds, spongy or vascular, as found in the tongue, ete, and rough or limy, as found in the integuments of the palmo of the havads and soles of the feet. Ir the integment they are the organs of tonch or tactile organs; in the tongue, the organs of the special sense of taste, and also of tonch; the former will be deseribed with the integument.

A papilla is a slight ele-

A. Cotaneons papilla of the hand; a, cortica inyer with cells and elastir fibres; b, tactile corpusele ; e, nerve fibres (liolliker). any irritation is applied. Some of the papilla are eleft, as for example, those in the back part of the dorsum of the tongue and in the hands.

The papilte of the tongue may be divided into simple and compoend. The simple papillee are dispersed over the surface of the tongue anong the compound forms. The compound are the circumrallate, fungiform, and ,iliform, and are visible to the maked cye.

The circumzullate papille are of a large size, and vary in number from eight to ten. They are situated on the dorsmn of the tongue, near its base, and consist of a row on each side, which rums obliquely backwards and inwards, to terminate in one large papilla situated in the median line, called the forumen cacum. The two lines resemble the letter V iuverted. Each papilla consists of a circular flatvation of the surface of the mentbrane of which it forms a part, consisting of the basement membrane covered by one or more layers of epithelimm, and containing within a reticula of capillaries, nerves forming loops, lymphatics, and in s e instances nonstriated muscular fibre cells, the latter causing it to contract and become prominent when
tene an i circı narr who smal the
tened projection of the mucous membrane, from $\frac{1}{25}$ to T^{\prime} g of an inch (1 to 2 mm .) in diameter, surrounded by a narrow circular fissure, this fissure being again surrounded by a narrow circular elevation of the mucous membrane. The whole surface of these papillie is studded with numerous smaller or secondary papille, and invested with epithelium, the deep layer being rounded, the superficial, scaly.

Fig. 47.

The tongue with its papillie and nerves, (Ilerschetd).
The fungiform papills are scattered irregularly among the filiform papillae on the dorsum of the tongue, but chiefly at the sides and apex. They vary from $\frac{1}{2} 5$ to $\frac{1}{3}$ of an inch (1 to .7 mm .) in diametcr, generally narrower at the base than the summit, and studded with numerous smaller papillie, like the preceding variety. They have a reddish color, owing to the thinness of the epithelial covering.

The filiform papille cover the anterior two-thirds of the tongue. They are conical in shape, and vary in thickness from ${ }_{50}^{1}$ to $\frac{1}{70}$ of an inch (. 5 to . 35 mm .) and are about $\frac{1}{10}_{10}$ of an inch (2.5 mm .) in length. They are pale in color, owing to the density of the epithelium, and are also covered with
numerous seeondary papille，som
hairs from घ $0^{1} \sigma 0$ to $\overline{0} 0^{1} 0.0$ of an is thickness and about $1^{1} 0$ of a lim papille，the mueous membrane with a number of follieles and g l cial organs of taste called taste－h

Follicles．－These are found
branes．＇Those of the tongue a
those of the stomach，gastric fil tines，simple follicles，or Lieber！ uterus，uterine follicles，etc．Is tially the same．They consist sions of the mucous membrane， of a glove，arranged perpendicu which they open by minute apen of a basement membrane lined 1 ． erally columnar on the sides and covered externally by the vess stances，as in the stomach nea subdivide into from two to foun
pouches，and are sometimes com instances they are arranged lik stem，and are termed racemose． of the pharynx，trachea，ete．

The mucous membrane of the
honcy－combed alpearance，con－ pits or depressions，from $\frac{1}{100}$ to mmm．）in diameter，separated
In the bottom of these depressions are soch cin pronng of minute tubes，the gastric follieles．These are divided into two varieties，mucous follicles，or those that secrete mucus，and gustric or peptic follicles，or those that secrete the gastric juice．These two varieties differ only in the character of the epithelium which lines them．The mucous follicles are lined by columnar epithelimm on the sides and rounded in the bottom．In the peptic follicles，the deep
redu
taini phat arou circu

Valfolde Conniventes.-The valvule conniventes are reduplications or foldings of the mucous membrane, containing between them vessels, nerves, and lacteals or lymphatics imbedded in areolar tissue. They pass transversely around the cylinder of the intestine for about $\frac{3}{4}$ or $\frac{5}{6}$ of its circumference, being about two inches in length, and from $\frac{1}{3}$ to $\frac{2}{3}$ of an inch (8 to 16 mm .) in depth at the centre. They begin at the hepatic flexure of the duodenum, and in-

I villus consists of a basement mema layer of columar epithelium, extern its interior a cs, nerves, and If the lacteal, f fat globules IA tomedher (1) Htains
(Fig . 50.)

system.
Duodenal or "Brunner's" Glands.-These are limited to the duodenum and commencement of the jejunum. They are small, ovoid, lobulated bodies, about T_{0}^{1} of an inch, (2.5 mm .) in diameter, imbedded in the submucous areolar tissue, and open upon the surface of the mucous membrane by minute excretory ducts. These glands are most nuinerous near the pylorus, and diminish from above downwards. In structure, function, and in the character of their secreFemamblatheratern

Abstract

 Hevomil layours of coll|

 lam in thieknme, lavinir vory thin in the groin and axilla, amd think in the pathes ol the hands and soles of the feet. 'Tho thickmess of the mbich, in some pates of the feet, gives rise to emons. 'The drvelopment of the colls takes place at tho hasmond memhnam, and ns thoy apponch the surface thry beemone changed in shape, and ultimately fink off hy a

 cerle, when expmad to the action of aceotic ancind, swell out and beenme rounded, showing their original shape. A solution of canntic potash also makes them romded, and completely destroys the deep or mucons layer, as it is called. The epidermis is pierced by the hair follicles, sudoriferous ducts and sehaceous follicles; these openings are called pores. In chenical composition it resembles hair, horn, nails, etc. In parts sulyjected to irritation, as the interrument of the laborer's hand, and beneath corns, the vascular supply of the cutis is increased, in order to supply the cells more abmulantly.

Pigment cells.
oi the fredy in fregnant women, nevi, fieckles, etc. They may assume different shapes; some are rounded, as those of the epidermis; others polygonal, as the epithelium lining the inner surface of the choroid coat of the eye; while those imbedded in the substance of the choroid ${ }_{x}$ resent a remarkably stellate appearance (Fig. 52). Those which line the inner surface of the choroid contain a large quantity of pig-

 color, and are sean to move abont when sot fire from the cell, sometiones even when contained in it. In their chemical uature they resemble the cuttle-fish ink, which derives its color from the pigment cells linit.g the ink-bag. Pigment contains from forty to sixty per cent. of carbon. In some persons there is an entire absence of pigment, as in the albino; the hair and skin are unusually white, and the iris has a pinkish hue.

Basement Membrane- The basement membrane covers the cutis or corimm, supports the cells of the epidermis, and regulates osmosis. It is distinctly sem in the intergment

[^1]

'These are the pupillere, mats, hair, selocerous and suloriferous glamels and ducts.

Papldid.-The external surface of the coriun is raised into papillary eminences, carrying with them the basement membrane. They are irregular in size and frequeney, except in the palms of the hands, soles of the feet, and surrounding the nipple. The average size of the papillae is tion of an inch in lengila, and $2 h_{n}$ of an inch in diameter at the base. 'The interior of the papiller consists of capillaries, nerves,

at large, sue, and are so arranged as to form ridges on the surface, which are generally more or less curved and separated by grooves. This appearance can be seen with the naked eye. Each ridge is produced by a single or double row of papilla projecting from the surface of the evtis, and covered with the epidermis. The papillie in each row are generally arranged in pairs side by side, each pair beirg separated from the next adjacent pair by transverse grooves which cross the rickes at right angles. In the centre of each

In a sumare mefl of the palan may ha ween twenty butere or forty rows of papillir, and rather more than sixty pair in each row.

The office of the papillae is sensation or touch, and to increase the surface for cell development. They are covered and protected by the epidermis, which also fills in the spaces between them.

Nams.-The nail is an extension of the epidermis, very much hardened, in order to form a protective covering for the dorsal surfuce of the terminal phatanges of the hands and feet. Each mail comsists of a root, borly, and extremity. 'The cutis is folled men itself' an as to fomm a groner, in

 surface. The vascular and nervous supply is very abundant in the matrix. In long illness, particularly of the mucous surfaces, the nails are marked by a transverse groove, the size of which is an index of the length and severity of the disease. It is caused by the abridgment of the nutritive process for the time being. This peculiarity is taken advantage of by fortune-tellers, gipsies, etc., who, hy examining the nail, are able to tell the person when he was sick, and the duration of tha illome tion the ion of the wow
and its distance from the root. The nail increases in length by the development of cells at the root, and on the under suiface of the body, which push it onwards in its growth. The finger nails grow at the rate of about $\frac{1}{5}$ of a line per week, and the toe nails about $\frac{2}{3}$ of a line per month.

Hair. - Hairs are found on all parts of the surface of the body, except the palms of the hands and soles of the feet, and vary in length, shape, and thickness. They are implanted in a saccular cavity called the hair follicle, which is formed by an involution or dipping of the basement membrane into the corium, carrying with it the epidermic cells, the superficial layers of which become rounded. This follicle is larger at the bottom ohan at the top, to correspond with the bulbous enlargement of the hair, and presents in the bottom a highly vascular papilla covered with cells, from which the hair grows. A hair Hair in its folltele, magnified 50 . a, teni cutt liont; b, boot; c, bulb; consists of a root-or that part im-
 of follicle $; \boldsymbol{i}$, pupilla, k, k, ducts of
sebaceous sebaceous ytands; 1 , corium; ; m, nu-
cous layer of epidernis ; n, upper flattened layers of epidermis; o, up. per limit of internal root-sheath. (Kölliker). ace ; and the extremity, which is thickest part, and presents a bulbous enlargement. The
 to 16.6 mmm .), and is divided into two parts-the cortical and medullary portion; the former predominates in the human subject. In structure it resembles the epidermis. On section it is seen to consisit of cells and cement substance. In the medullary portion they are rounderl: but toward the circumference of the cortical portion, they first becomo oval,
then elongated or fusiform, and finally flattened and hardened, and the latter are so arranged as to present an imbricated appearance (Fig. 54). If the finger be passed along the hair from the extremity to the root, a distinet roughness is felt, owing to this peculiar arrangement of the cells. The external surface presents fine, sinuous cross lines, and a jagged boundiry, caused by these imbrications. If a longitudinal section be

Fig. 54.

A section of hair magnified andshowing the imbricated appcaranne. made, the cortical substance presents a fibrous appearance, caused by the arrangement of the elongated cells in a linear manner. A few pigment cells may be seen scattered irregularly among the fibres of the cortex, but they are more abundant in the medulla. The color of the hair depends on their presence. The coloring matter consists of inelanine, and is readily bleached by chlorine. It is stated that the hair has grown white in a single night from the influence of some depressing passion, as fear, etc. It must, however, be a. very rare occurrence, and can only be explained upon the supposition that some peculiar fluid is secreted at the papiilæ, which percolates through the hair and destroys the coloring.

The hair is increased in length by the development of cells on the papilla at the bottom of the follicle, which push it upwards. The cells which are developed in the papilla are originally rounded, and those which grow on the summit continue so throughout the meduila to the extremity of the hair ; while those which grow from the sides soon become flattened and imbricated as they pass upwards on the exterior of the hair. In some animals the papillæ are large, and prolonged upwards in the central part of the hair above the surface of the body, and hence they bleed when cut or extracted. In the disease of the hair called plica Polonica, the papillte are said to be elongated, and bleed when cut close to the skin. The hair in these cases grows very fast, and becomes matted together by a glutinous secretion. Some
of the sebaceous glands open into the hair folliele, and pour ont an oily seeretion which keeps the hair smooth and glossy.

Development of the Hair Follicle.-At about the sixth week of foetal life, there is first seen a slight depression or inversion of the basement membrane lined by the epidermis, forming the rudimentary folliele. It then becomes deeper, narrower, and flask-shaped, containing cells; those in the centre, fusiform in shape, are arranged in a line, and form the rudimentary hair. At this time also, the papilla springs from the bottom of the follicle. The first brood of hairs are temporary, like the deciduous teeth. After birth the follicles deepen, and a new papilla is formed at the bottom of eaeh, from which the permanent hair is developed, the old hairs being east off. When a hair is plucked out, the follicle fills with blood, which after a little disappears, and ${ }^{\boldsymbol{F}}$ the papilla is not destroyed, a new hair will spring up aything that interferes with the vascular supply at the base of the hair, will affect its growth and cause it to fall out. The growth of the hair may he promoted by the applieation of certain stimuli, as tineture of cantharides, bay-rum, ete.; these form the bases of hair restoratives.
Sebaceous Glands.- These glands are found in most parts of the integument, except the palms of the hands and soles of the feet. They are very abundant on the scalp, face, axilla, groin, ete., and open either upon the general surfaee, as on the face ; or irto the hair follieles, as on the sealp (Fig. 51). Each gland consists of an involution of the basement membrane, lined by the rounded or mucous layer of epithelium. Sebaceous matter is seereted from the capillaries beneath the basement membrane by these cells, which at maturity break down, and throw out their seeretion either on the surface of the body, or into the hair follicles. In some cases the gland is lobulated or sacculated in order to increase the secreting surface. In the scalp
there are two of these glands to each follicle, into which they pour their secretion, for the purpose of lubricating the hair. The excretory ducts are generally short and straight, and in some parts of the body, as the face, they become the habitat of a parasitic animal the Steatozöon Folliculorum. These are more common about the time of puberty, and in those possessing a torpid skin. The sebaceous matter which covers the foetus is called the vernix caseosa.

The development of the sebaceons gland is similar to that of the hair-follicle. At about the sixth month there is seen a knob-like depression of the basement membrane of either the general surface or the hair follicle, as the case may be. This soon becomes deeper and narrower at the mouth, until it assumes a flask-shaped appearance, and is lined by the rounded layer of epithelium.

Ceruminous and Odoriferous Glands are varieties of the sebaceous. The ceruminous secrete a waxy material which entangles partieles of dust, inseets, etc., and prevents their access to the delicate membrane of the tyrupanum.

Sudoriferous Glands.-These are situated in the deep part of the corium and subcutaneous areolar tissue, being surrounded by adipose, and open by a duct upon the surface of the epidermis, (Fig. 51). Each gland is formed by a simple involution of the basement membrane, carrying with it the deep layer of cells, and terminating in a convoluted tube beneath the corium. Sometimes the tube is branched, the branches being rolled up in one clump, and held together by areolar tissue. The duct, as it passes to the surface, takes a tortucus course through the corinm, upon the surface of which it loses the basement membrane and is continued on through the epidermis in a spiral course, the calibre being larger, and the wal's of the duct being wholly formed by the layers of cells. It opens on the surface obliquely, by a valve-like aperture, formed by the scaly epithelium. The openings are called pores, ard as many as 2,800 on an average, exist on each square inch
of surface. The number of square inches of surface in an ordinary sized man is about 2,500 , therefore the number of pores will be about $7,000,000$. Each duct is about onefourth of an inch in length when unravelled, and the total length of tubing about twenty-eight miles. This is a very important and extensive excretory suríace.

Function of the Skin.--It serves as a protective covering for the body, and possesses, toughness, flexibility and elasticity-due chiefly to the presence of areolar tissue in the corium. It possesses both the function of absorption and secretion. Absorption is carried on through the lymphatics and capillaries of the corium. This may be proved by immersing the body in a bath, when its weight is found to be increased; and not only water, but also substances dissolved in it, may be thus introduced. In severe cases of dysphagia, life may be prolonged by the use of nutritious enemata, and baths of milk and water, beef tea, etc. It is in this way that the modus operandi of liniments may be explained. Certain preparations of mercury rubbed in the skin, are readily absorbed in sufficient quantity to affect the system. A secretion of watery fluid or perspiration is continually going on from the extensive system of glands. It generally passes off in the form of vapour, forming insensible perspiration, but when considerably increased, the fluid remains in the form of sensible perspiration on the surface of the skin. The perspiration is a colorless watery fluid, of an acid reaction, and has a peculiar odor, which varies in different parts of the body. It consists as follows:

$$
\begin{aligned}
& \text { Water . } 995.00 \\
& \text { Fatty Matter and Cholesterine . } 05 \\
& \text { Alkaline Sulphates and Phosphates.......... } 05 \\
& \text { Sodium and Potassium Chlorides... } 2.40 \\
& \text { Formic, Acetic and Butyric Acid. } 2.45 \\
& \text { Ammonia (urea). } 05 \\
& \text { Total........ } 1000.00
\end{aligned}
$$

The function of perspiration is to regulate the tempera-
ture of the body. The natural temperature is about 98° to to $100^{\circ} \mathrm{F}$., and a variation of from 8° to 9° from the natural standard usually proves fatal. When the surface is exposed to a high degree of heat, the glands pour out an increased amount of fluid. This is immediately converted into vapor, and in passing from the liquid to the gaseous state, so much heat becomes latent that the surface is cooled down to the natural standard. When the air is dry, so that evaporation is not interfered with, a very high temperature-from 300° to $400^{\circ} \mathrm{F}$.-can be borne with impunity; but if the air be saturated with moisture, evaporation is retarded, and the body suffers; and if the exposure be long continued, death is the result. The amount of perspiration may be diminished by a cold, damp, atmosphere, and increased by heat, exercise, or exeitement. The quantity of fluid thrown off by the skin varies very much, according to the state of the atmosphere and the action of the kidneys, the average amount thrown off in the course of twenty-four hours being from $1 \frac{1}{2}$ to 2 pounds. In cold weather, when the skin is less active, the kidneys take on increased action, in order to compensate the deficiency. Whatever tends to produce dilatation of the vessels of the skin, increases the quantity of fluid, and con' action diminishes it. Increased nervous action induces copious perspiration, as in great excitement, crises of disease, night sweats, etc., and any substance which will allay nervous action, as atropine, will diminish the amount of perspiration. When the act: of the skin is interfered with, as in burns, scalds, covering with large nlasters, coating with varnish, or in scarlatina, there is a determination of blood to the kidneys, and some of the albumen escapes. This accounts for albuminuria in the exanthemata.

An interchange of gases or process of aëration also takes place through the integument, carbonic acid being liberated and oxygen absorbed.

A most important function of the skin is the sense of
touch. This varies greatly in different parts, being greatest, at the extremities of the fingers, the lips, the tongue, and least in the trunk, arms and thighs. Thus the two points of a pair of compasses rendered blunt may be separately distinguished by the point of the finger when only onethird of a line apart; while they require to be thirty lines apart to be separately felt on the integument of the spine, arm, or thigh. This is owing to the unequal distribution of the papille of the corium. Parts that are sensitive to tickling, as the axillie and soles of the feet, are comparatively blunt in regard to the appreciation of distance. Impressions made on the integument continue perceptible for a considerable time after they have been removed, as e. g., the pressure of the ring, if long worn, is felt on the inger for some time after its removal, and is apt to deceive the individual.

The integument, when wounded, is not restored in all its integrity; the cicatrix presents no hair follicles or glands, and the sensation is abnormal.
for sist. sali defo diffe the Befo ous body

CHAPTER V.

DIGESTION.

Digestion is that process by which the food is prepared for absorption and assimilation. The digestive process consists of seven different stages, prehension, mastication, insalivation, deglutition, chymification, chylification and defecation. It will be most convenient to treat of these different processes in their order, giving the mechanism and the changes which each is capable of effecting in the food. Before proceeding, it will be profitable to examine the various kinds of food suitable to the nourishment of the human body.

Food.-The food of man consists both of organic and inorganic substances. The best classification is that of Dr. Prout, in which the different kinds of food are divided into four groups:

1st. The Aqueous Group.-This forms part of the food of all animals, and enters largely into the composition of the body.

2nd. The Saccharine Group. - This group is derived chiefly from the vegetable kingdom, and comprehends sugars, starch, gums, vinegar, \&c. They consist of carbon, hydrogen and oxygen, the two latter in the proportion to form water.

3rd. The Oleaginous Group.--It includes oils, fats and alcohol. They resemble, in elementary composition, the preceding group, except that the carbon and hydrogen exist in nearly equal projortions.

4th. The Vitrogenous or Albuminous Group. All srhstances belonging to this group contain nitrogen, as fibr..t, albumen, casein, gelatine, gluten, cte. They are chiefly derived fiom the animal kingdom. Gluten is the nitrogenous
principle of vegetables. They are sometimes called histogenetic substances. To these may be added a Mineral or Saline Group, as sodium chloride, calcium phosphate, etc.

Mill: is found to contain ingredients embraced in the preceding groups, and hence it is well adapted to the growth and development of the young. The aqueous group is represented by the water, the saecharine by the sugar of milk (lactose), the oleaginous by the butter, the nitrogenous by the casein, and the saline group by sodium chloride, calcium phosphate, etc., which the milk contains. From the above it will be seen that the food of man is naturally subdivided into two great classes; the non-nitrogenous embraced in the 1 st, 2 nd and 3 rd groups, and the nitrogenous, which embraces the 4th group; the former supplying a large amount of carbon.

Lievig styles the nitrogenous substances, the plastic elements of nutrition, and the non-nitrogenous, the elements of respiration. The latter term is objectionable, however, inasmuch as those substances are not actually required in the process of respiration. The terms nutritive for the nitrogenous, and calorifacient for the non-nitrogenous, as proposed by Dr. Thomson, are preferable, or the terms histogenetic and calorific. In colder climates, a large quantity of the calorifacient elements are necessary to maintain the proper temperalure of the body, and the natives instinctively feed on fats and oils; while the natives of warmer climates feed on fruit, which contains less carbon.

From the construction of the teeth, and digestive apparatus of man, a mixed diet would seem to be the most suitable. Both animal and vegetable food is necessary to his highest mental and physical develupment. Certain diseases may arise from the want of a proper admixture of fresh vegetable diet, as scurvy. This is due to the absence of the vegetable acids in the system, as citric and malic acid, and may be remedied by their administration alone.

If, on the other hand, the nitrogenous elements be defi-
cient or absent, imperfect nutrition shows itself in the form of ulcers in certain parts of the body, as in the cornea and alimentary canal and the animals die of emaciation. Magendic tried the experiment by feeding dogs for some time on sugar and water alone, and ulceration of the cornea ensued. The same results were observed when the animals. were fed on gum alone; and when feed on olive oil and water; or butter, the animals emaciated rapidly, but ulceration of ${ }^{-}$ the cornea did not occur.

Quantity of Food.-The absolute quantity of food required for the sustenance of the body in health varies with the age, sex, constitution, habit, and the cireumstances in which the individual may be placed. It is of considerable importance to know the average amount of food required by each individual. In the diet scale of the British navy, each seaman gets from 31 to $35 \frac{1}{2}$ ounces of dry nutritious food daily, 26 ounces of which is vegelable, and the rest animal, together with sugar and cocoa. This is found to be amply sufficient for the support of strength. The soldier is allowed one pound of bread, and one pound of meat per day, with vegetables in their season, and tea, coffee, or cocoa. In the English hospitals, full diet, upon which convalescents are put, consists of half a pound of meat, twelve to fourteen ounces of bread, half a pound of potatoes, one pint of milk, and one pint of beer, or half a pint of porter.

In prisons, if the prisoners are idle, they receive about 25 ounces of solid food per day, 5 or 6 ounces being meat. Some persons consume large quantities of food. The wandering Cossacks of Siberia devour from 8 to 20 pounds of ineat daily. It has been ascertained that from 25 to 35 ounces of solid food per day, one-fourth of which should be animal, is sufficient to maintain health. Prof. Dalton estimates the quantity of solid food necessary for a healthy man at $38 \frac{1}{2}$ ozs. avoirdupois per day, consisting of bread 19 ozs., meat 16 ozs., and butter or fat $3 \frac{1}{2}$ ozs. ; and the quantity of water at 52 fluid ounces.

It is also important to determine the proper diet suitable to particular maladies. Thus, in disease of the kidneys, liver or bowels, or in rheumatism, gont, dyspepsia, or fatty deposit, much good may be effected by a well regulated dietetic treatment. For exampio, in diabetes, a diet of animal food, and the avoidance of starch and sugar, are generally attended by good results. In disense of the liver, a well-regulated nitrogenized diet is more suitable than one abounding in carbon, which would inerease the work of elimination in this organ. In diarthoen and dysentery, bland unstimulating articles of food should be used, and substances containing very little excrementitions matter, and easily digested, as milk, eggs, beef ten, mutton broth, ete. Stareh and sugar are bad for the gouty, rheumatic and dyspeptic, for they are transformed into fat, lactic acid, and other substances in the system. When there is a tendency to obesity, a well regulated nitrogenized diet is the best adapted to obvinte it.

Quality.-The food should be in a wholesome or undecomposed state. Thase who are in the habit of eating decomposed food, or what is commonly called haut goat(highly seasoned)-are liable to zymotiediseases and disorders of the digestive organs, as diarrhoea, etc. These disenses are very prevalent among the inhabitants of the Faroc and Bird Islands, who are in the habit of eating what they call "rast," half-decomposed, maggoty flesh and fish. Prize fighters, in training, adopt a very striet regimen, consisting of the lean of beef and mutton, and stale bread, together with about three and a half pints of fluid per day, fermented liquors being strictly prohibited. Two full meals are allowed with a light supper daily, and plenty of vigorous exercise.

Drink.-Water constitutes the natural drink of man, and no other liquid can properly supply its place. The average quantity of water introduced into the system of an adult in 24 hours is about 50 ozs.; therefore its purity is a matter of great importance. Water conveyed in leaden pipes is dan-
gerous, in consequence of the formation of lead carbonate, which is held in solution by the free carbonic acid which the water contains. Salines in excess, produce derangement of the digestive organs; and, as in the case of deeomposed food, a small amount of putrescent matter in the water, insidiously introduced into the system, renders it liable to attacks of diarrhoer and to the ineeption of zymotic diseases.

The use of alcolul in combination with water, or with other substances in the form of fermented liquors, cannot serve as a substitute for water. It precipitates most of the organic compounds whose solution in water is nccessary to their assimilation. It cannot supply anything which is essential to nutrition, as it is incapable of forming albuminous compounds. It is merely useful as a calorific agent; but even for that purpose it is inferior to fats and oils. It is also a stimulant, increasing for the time the vital activity of the nervo-muscular parts of the body, and is followed by a corresponding depression of power. As a stimulant it is useful in low forms of disease, to inerease the digestive process, to raise the flagging powers, and carry the patient safely through a perilous disease. Beer and porter may also be found useful in various forms of indigestion ; the bitter principle which they contain is also slightly tonic in its action. The habitual use of alcoholic liquors is highly injurious. They are poisonous in large doses, and when used in excess, produce a morbid condition of the nervo-muscular parts of the body, as is seen in delirium tremens, and in fatty degencration of the muscular tissues of the body. Intemperate persons are also more prone to epideeninic diseases, as cholera, dysentery, fevers, etc., in consequence of the aceumulation of effete materials in the blood, which render it more liable to "fermentation." The power of the body to endure fatigue, or to resist the extremes of heat and cold, is also diminished by the use of intoxicating liquors.

Tea, when used in moderation, limits the loss of weight when the diet is insufficient; prevents the loss of substance
in the shape of urea; diminishes the amount of perspiration; and has no apprecinble effect on respiration or circulation; but when used in excess, is stimulating mad highly injurious to the nervous system.

Cofres is more stimulating than tea. When used in moderate quantities, it prevents waste of the tissues, aronses nervous energy, and invigorates the circulation ; but in excess is decidedly injurions.
'Tonacco, though not an article of diet, should be referred to in this connection, as in excens it interferes very much with the proper assimilation of the food. Smoking, chewing, and sultfing, are the most barbarous customs of our race. 'To those macenstomed to the use of tobaceo, it canses nausea, vomiting and purging. In habitual smokers and chewers, it ereates thirst and increases the seeretion of the saliva and buccal muens, which, from being mixed with the juice, must be expelled from the month. 'To some people tho fumes of tobaceo are very disagreenble, and irvitating to the lining membrane of the lungs. The application of it to abraded surfaces is very dangerons, fund has been known to prove fatal. A substance called nicotine is obtnined from tobacco, which is very poisonous, almost equalling in activity hydrocyanic acid.

Hunger.-Hunger is the general want of nomrishment in the system ascribed to the stomach. The introduction of food into the stomach alone will not allay the sensation; it must be partially absorbed, and enter the circulation. Hunger is not occasioned by mere emptiness of the stomach ; neither can it be due to the seeretion of gastric juice, as some have supposed, because that fluid is not secreted, except during digestion, or when some substance is introduced into the stomaci. It is more probable that the sensation in the stomach is due to a congested condition of the capillaries, beneath the mucous membrane, excited by the influence of the sympathetic nerves, and communicated or telegraphed to the nervous centre. If the brain is actively
eng
the pne but
tem uall
engaged, the telegraphie message is not noticed, and thus the sensation may be dispelled for a time. Division of the pneumogastrie nerve annihilates the sensation of satiecy, but not of hunger.

Thanst.-Thinst is the general want of fluids in the system refered to the fances. This sensation may be as effectually allayed by the introduction of liquids into the stomach as by swallowing in the ordinary way, as is seen in cases of cut throat, where the osophagus is divided. It may also be relieved by injecting fluids into the veins, or by immersing the body in a bath.

Starvation on Inanition, - Ihis is the result of an entire deficiency, or an inadequate supply of food. In starvation the body is greatly emaciated, and usmally deprived of its adipose tissue. There is loss of weight, diminution of temperature, general weakness and bloodlessness. The most prominent symptoms of starvation are, first, hunger, which becomes painfinl, the pain being referred to the epigastric *egioni, followed by a sinking sensation. Next, an insatia--bie thirst, which is most distressing ; the comintenance becomes pale and haggarl, the eyes wild and glistening ; the body exhales a peculiar fetor, the secretions are offensive; the bodily strength fails, and the voice gets weak. The mental powers are at first blurted, and the sleep ecnsists of short naps, disturbed by dreams in which the individual fancies that he is in sight of plenty of food. 'Towards the close of the process, delirium gencrally sets in, and death closes the seene, either from sheer exhaustion or from the occurrence of convulsions.

Now, it will be observed that the above symptoms are common to all low forms of disease; and? the medical practitioner should be careful in such cases to supply nourishment and stimulants liberally; even the presence of delirium should not deter him from administering beef tea and brandy.

Life may be supported under entire abstinence from food or drink for a period of eight or ten days; but this period may be prolonged by the occasional use of water.

PREHENSION.

The organs of prehension are the hands, lips, teeth, and tongue. The tongue is used in suction, somewhat like a piston, so as to produce a vacum, and allow the fluids tc enter by atmospheric pressure. Suction cannot properly take place when the tongue is tied down at the tip, as in tongue-tied children, it being necessary that the tip and sides of the tongue should be brought in contact with the roof of the mouth. In drinking a fluid by means of a suction tube, as a quill or straw, it is found that suction will not take pluce if the tube is passed too far back in the mouth, behind the floor of the nares, because air enters through the nose, and no vacuum can be produced. The tongue of some animals, as the ant-eater, is covered with a slimy secretion, which entraps the insects. Dogs and cats lap the water by means of the tongue.

MASTICATION.

This is the first process which the food undergoes, and is entirely a mechanical one. It consists in the cutting and trituration of the food by the teeth. The principal organs are the teeth, tongue, and muscles of mastication.

Teeth.-The teeth in all animals are suited to the kind of food which each is destined to use. In the graminivora, some of the tecth are formed for cutting or cropping the food, but the majority of them are broad and flat, for the purpose of grinding it. In the carnivora, the principal teeth are strong, sharp, and pointed, for tearing the food, while the remainder are broad and flat. The teeth of man partake of the nature of both the graminivora and carnivora, as he is destined to feed on both animal and vegetable food. In some animais, as fish and reptiles, which swallow their food entire, the teeth are only organs of prehension, and are curved backwards to prevent the escape of their prey. Some of the lower animals, as the crustacea, are provided with teeth in the stomach. (For structure of teeth see page 79).

Tongue.-The tongue is an important organ of mastication, and being the seat of taste, it receives accurate impressions of the kind and quality of the food. While the food is being triturated, the tongue is engaged in moving it from side to side, in collecting the scattered fragments from different parts of the mouth, and bringing them within the range of the teeth. This action is accomplished by the muscles which belong to this organ. The cheeks also assist more or less in moving the particles of food, and keeping them within the range of the teeth.

The muscles of mastication are the temporal, masseter, external and internal pterygoid, and digastric. They all act upon the lower jaw, which is capable of being moved in different directions, for the purpose of triturating the food. The temporal, masseter and internal pterygoid elevate the lower jaw, and close the mouth. The posterior fibres of the temporal and the deep part of the masseter carry it upwards and backwards. The external and internal pterygoid, and superficial part of the masseter, draw it upwards and forwards. Both pterygoids draw it from side to side, and it is depressed by the action of the digastric muscle.

The contour and structure of the temporo-maxillary articulation are well adapted to the performance of these various movements. The presence of a plate of inter-articular fibrocartilage serves, by its clasticity, to distribute the pressure caused by the action of these muscles. It also gives ease to the gliding movements, and serves as a socket for the condyle of the lower jaw, when the latter is drawn forwards by the external pterygoid musele. Some of the fibres of this muscle are attached to the anterior margin of the plate of cartilage.

Mastication is partly voluntary, and also partly reflex or involuntary. The prineipal nerves concerned are the sensory branches of the fifti and the glosso-pharyngeal, and the motor iranches of the fifth and ninth cerebral nerves.

INSALIVATION.

The food in its passuge from nhove downwards is acted upon by tive diflerent fluids, viz., sulive, gustric juice, intestimal juice, panerettio juice, and bile, each of which is of a more or less complex mature. During the process of hastication, the food is mixed with tho smliva. This substance is a mixture of four distinct fluids which differ from each other in their chemical and physienl properties, viz. the seeretion of the parotid ghand, the submaxillary, the sublingual, and the buceal glames. The parotid gland is situated beneath the ear, close to the temporo-mmxillary articulation, and opens into the month by its excretory duct (Steno's), opposite the second molar tooth of the upper jaw. The submaxilhary gland is sitnated beneath the lower jaw, and commmicates with the month through Wharton's duet, which . .ens on the side of the fremon linguse. The sublingual gland is sitnated beneath the tongue, near tho symphysis of the lower jaw, and opens into the month upon an elevated erest of mucons membrane (which may be felt by the tip of the tongue), by fifteen or twenty openings (ductus Riviniani).

Smedeture of the Salivais Ganis. - The salivary glands consist of ummerons lohes made up of smaller lobules comected logether by areolar tissue, vessels, nerves, ete. Each lobule eonsists of momerons vesienlar pouches, or acimi which open into a common duct ; these vesienlar pouches are about sod of an inch in diameter (50 mmm.) lined by a layer of rounded or glandular epithelimm, and surrounded by eapillaries and nerves. The cells which line the pouches and ducts are smaller than those which secreto the saliva. The secretion of saliva is stimulated by the presence of food or other substances in the month; even the sight or idea of food, or its presence in the stomach, canses the mouth to "water." At other times the secretion is very limited in quantity. The amount secreted in twenty-four hours is
variously estimated at from ono to three pounds avoirdupis.

Sabiva, -Saliva is a slightly viscid, transparent flaid, depositing, on standing, a littlo focenlent sediment, consisting principrally of scaly epithelinm of the mouth, small nueleated cells from the glands or ducts, granular matter, and oil globules. Its specific gravity is about 1005 ; usually alknline, but often mentral, and sometimes slightly acid in its reaction. It is alkaline during digestion ; and noutral during finsting owing to admixture with the neid mucons of the month.

Composition of Saliva.-(Bidder \& Schmidt):

It is also stid to contrin a trace of albumen, and some oil crlobules; it therefore becomes slightly turbid on beiling, or by the addition of nitric acid. The pryalin gives the saliva its viscidlity; it is coagrulated by alcohol, but not by heat. Potassium sulphocymide may be detected by iron chloride, which produces the charncteristic red color of iron sulphocy:nide.

The suliva from the parotid gland is a clear, limpid, watery fluid, having a distinctly alkaline reaction. It may be readily obtained by introducing a silver canula, $\frac{1}{2} 6$ of an inch in diameter, into the orifice of Steno's duct. 'The quantity of organic matter in the parotid saliva is large, when compared with the mineral ingredients. The submaxillary saliva differs from the parotid secretion in being somewhat viscid, and more strongly alkaline. It may be secured by inserting a canula into Wharton's duct. The saliva from the sublingual gland is also alkaline, and more viscid than the preceding.

The secretion from the buccal glands and mucous membrane is obtained by ligating the ducts of the parotid, submaxillary, and sublingual glands, to exclude their secretion, and then collecting the fluid subsequently secreted in the mouth. This fluid is small in quantity, and much more viscid than either of the preceding sceretions.
Function of Saliva.-It possesses the property of converting boiled starch into dextrin and sugar, if kept in contact wish it a short time, at the temperature of $38^{\circ}\left(100^{\circ} \mathrm{F}\right.$.) This amylolytic action is due to the presence of the organic matter or ptyalin which acts as a ferment.* This, therefore, was formerly supposed to be the true physiological use of saliva, viz. : to dissolve or digest the starchy portions of the food. It was very soon noticed, however, that in the ordinary process of digestion the starchy matters do not remain long enough in the month for this change to take place, but pass at once into the stomach, where the further conversion of starch into sugar is retarded by the presence of the gastric juice. The most important use of the saliva is to moisten the food and facilitate its mastication, to lubricate the mass or bolus, and to assist in its passage during the process of deglatition. The watery fluid of the parotid gland is useful in the process of mastication; while the more viscid secretion of the other glands, and buccal mucus, serve to lubricate the triturated mass, and facilitate its passage down the œesophagus. The tonsils also secrete a viscid fluid, which serves to lubricate the bolus of food during swallowing. During mastication, the saliva is intimately mingled with the mass, and may in this way mechanically enable the gastric juice to penetrate more readily every part, as it enters the stomach. It was observed by Spallanzani that food enclosed in perforated tubes, and introduced

[^2]
int

into the stomachs of living animals, was more readily digested when previously mixed with saliva, than when mixed with water. The salivary glands are not very aciive in infants until the age of six months, and they are therefore incapable of properly digesting starchy food, corn flour, etc.

DEGLUTITION.

The organs of deglutition are the mouth, tongue, pharynx, and œesophagus. The mechanism of deglutition may be divided into three stages. In the first the food, when properly masticated, is formed into a bolus on the tongue, and carried backwards through the auterior pillars of the fauces, by that organ, and forced into the pharynx. This is done by the pressure of the tongue against the roof of the mouth -the pressure commencing at the apex, and ending near the basc. During the second stage, the hyoid bone is carried upwards and slightly forwards by the anterior belly of the digastıic, mylo-hyoid and genio-hyoid, the pharynx is raised by the stylo-pharyngeus and palato-pharyngeus to receive the bolns, the epiglottis is pressed over the aperture of the larynx, by the elevation of the pharynx and larynx towards the base of the tongue, and the bolus glides past. The base of the tongue is now drawn slightly upwards and backwards by the posterior belly of the digastric and stylohyoid, the palato-glossi (or constrictors of the fauces) contract, and prevent the return of the bolus into the mouth, the soft palate is raised by the levator palati, the palatopharyngei contract and come nearly together, the uvula filling up the space between them, and in this way the food is prevented from passing into the posterior nares. In the third stage, the constrictors of the pharynx contract upon the bolus from above downwards, and force it into the œesophagus, which, by virtue of its peristaltic action, urges it onwards to the stomach. The first act is voluntary; the second and third are involuntary. The nerve centre for
deglutition is the medulla oblongata; the nerves concerned in the act are, the sensory branches of the fifth, glossopharyngeal and pheumogastric nerves, and the motor branches of the fifth, facial, hypoglossal. pneumogastric and spinal accessory.

Vomiting. - In the meehanism of vomiting, the process of deglutition is exactly reversed. This may be caused by the administration of direct or indirect emeties, by mental emotion, as the sight of a disgusting olject, by any unusual motion, as sailing, swinging, \&c., ly nervous shoek, as in the case of severe wounds, by derangement of the system, or the presence of irritating substances of any kind in the stomach, or obstruction to the passage of the food through the bowels. Its rationale may be explained by the theory of reflex action. The irritation or impression being applied to the periphery of the nerves, is first conveyed to the nervous centres (medulla oblongata), and thence a motor impulse proceeds, by which an impression is made upon those parts concerned in the act of vomiting, through the nerves which are distributed to them. The medulla oblongata may be affected directly by the presence of particular substances in the blood, or causes acting directly on the centre itself. The motor nerves implanted in it are thus stimulated to action, and the abdominal museles, diaphragm, muscles of the larynx and pharynx, as well as the museular fibres of the stomach or espophagus, are thrown into contraction.

First, a deep inspiration is taken; the aperture of the glottis is closed, and the lungs being filled with air, the diaphragm is fixed. The glottis is closed by the elevation of the laryon against the base of the tongue. The pharynx is raised, the palato-pharyngei contract and close the posterior nares, the uvula filling the small interval between them, and thus the fluids are prevented passing through the nose. This constitutes the first act. Then the stomach contracts and is compressed against the diaphragin by the
contraction of the abdominal muscles ; the pylorus is closed, and the contents are forcibly ejected, their passage being facilitated by the anti-peristaltic action of the stomach, asophagus and pharynx.

CHYMIFICATION.

This process takes place in the stomach, through the agency of the gastric juice. The walls of the stomach consist of three coats; an external peritoneal or serous membrane; a middle muscular, consisting of longitudinal, circular and oblique fibres; and a mucous coat; with vessels, nerves and lymphatics, all held together by areolar tissue. A delicate form of connective tissue is found in, or iinmediately beneath the mucous membrane, called reticular or retiform tissue, the meshes of which contain lymph corpuseles. There are also some nonstriated muscular fibres called muscularis mucose. The mucous membrane of the stomach is lined by columnar epithelium, and when examined by a lens, it presents a peculiar honeycombed appearance, caused by a number of shallow depressions or alveoli of a polygonal or hexagonal form, which vary from tha to $5 \frac{1}{6}$ of an inch in diameter, separated by slight ridges. In the bottom of each alveolus may be seen the orifices of minute tubes, the gastric follicles. They are arranged perpendicularly, side by side, short, and tubular in eharacter towards the cardiac end ; but near the pyloric extremity, they are more thickly set, convoluted, and terminate in dilated saccular extremitics, or divide into from two to six branches, the object of which is to increase the extent of surface for secretion (Fig. 48). The follicles consist of an involution of the basement membrane, lined with cells, and are divided into two varieties, which differ only in the character of the cells which line them, and the secretion which they produce, viz: the mucous follicles and peptic follicles. The former predominate towards the pylorus, and the latter towards the cardiac end. The
mucons follicles are lined with columnar epithelium on the sides, and rounded in the bottom, and secrete the mucns. The deep part of the peptic follicle is filled with large granuiar spheroidal cells; nbove this it is lined by rounded epithelium, and the upper part of the follicle is lined with ordinary colummar epithelinm. These follicles are supposed to secrete the gastric juice. Besides these, there are the lenticular glands, which resemble in structure, function and general appearance, the solitary glands of the intestine. They are situated beneath the surface of the mucous membrane, and are found chietly along the lesser curvature of the stomach. The mucous membrane of the stomach is abuudantly supplied with blood-vessely. These break up into fine capillary plexuses, with oblong meshes, which surromad the follieles, and are prolonged upwards to the ridges of mucous membrane bounding the pits or alveoli. The nerves of the stomach are derived from the pneumogastric and sympathetic. In the submmeous areolar tissue of the stomach and intestines, there is a fine plexus of nonmedullated nerve fibres, known as "Meissner's plexus."

Gastric Juice-Gastric juice was obtained by Spallanzani from the stomachs of animals, by causing them to swallow sponges, attached to the end of a cord, by which they were afterwards withdrawn and the Huid expressed. It has since been obtained and experimented upon, by Dr. Beammont, of the U. S. Army, from Alexis St. Martin, a Canadian boatman, who had a permanent gastric fistula, the result of a gun-shot wound. Sehmidt has also had opportunities of examining it in a female named Catherine Kuitt, who had for three years a gastric fistula under the left mammary gland. It may aiso be obtained from any of the lower animals, by making an artificial opening through the abdominal walls and iuserting a canula.

Piysical Appearance and Properties-It is a clear, colorless fluid, of an acid reaction, secreted only during digestion, or as the result of some irritation applied to the
mucous cont of the stomach. Its specific gravity varies from 1001 to 1010 . It is not prone to decomposition, and may be kept for an indefinite length of time in an ordinary glass-stoppered bottle. After standing for two or three weeks, a confervoid vegetable growth shows itself in the Huid. This growth has a dendritic appearance, each branch or filament consisting of a single row of elongated cells. The total quantity of gastric juice secreted in twenty-four hours is from ten to tweniy pints (Brinton). This would seem almost incredible, did we not remember that the gastric juice is in part reabsorbed, together with the alimentary substances which it holds in solution, after the process of digestion is completed. 'The secretion of gastric juice is much influenced by nervous conditions. It is diminished by irritation of temper, fear, joy, fintigue, mental exertion, or any febrile distubance of the system. The gastrie juice does not act on the mucous membrane of the stomach during life; but s.fter death this membrane is generally found dissolved and disintegrated by its action. This, according to Pavy, depends upon the alkalinity of the the blood, which eireulates freely during life in the walls of the stomach, and which nentralizes the acidity of the gastrie juice and destroys its digestive powers on the coats of the stomach.

Cimmical Composition of Gastric Juice:

Water	Human. 994.40	$\begin{aligned} & \text { Ilog's. } \\ & 971.17 \end{aligned}$
Pepsine	3.19	17.50
Hydrochloric acid, (free).	0.22	2.73
Sodium, potassium, and calcium, chlorides	2.07	5.87
Magnesium, calcium and iron Phosphates.	. 12	2.73
Traces of Ammonia		
	100,00	100.00

It was formerly supposed that lactic acid was the acidifying agent of the gastric juice, and in all probability a small quantity is sometimes present; but hydrochloric acid is much the more abundant and important of the two. The
presence of free acid is essential to its physiological properties, for the gastric juice will not exert its solvent action upon the food after it has been neutralized by an alkali.

The organic matter, or pepsine, is next in importance. It is precipitated from its solution in the gastric juice by alcohol and various metallic salts ; but is not affected by potassium ferrocyanide. It may be coagulated by boiling. Gastric juice which has been boiled, or mixed with a small quantity of bile, loses its property of digesting substances.

Function.-It dissolves the albuminoid or nitrogenous substances (proteids) of the food, and converts them into a substance called albuminose or peptone. The liquefying process which the food undergoes in the stomach is thought by some to be, not a simple solution, but a catalytic transformation produced in the albuminoid substances by the pepsine, which acts as a ferment (hydrolytic). The gastric juice will exert its solvent action on the food outside the body, as well as in the stomach, if kept in glass phials upon a sand bath, at a temperature of $100^{\circ} \mathrm{F}$. In the digestion of cooked meat, the gastric juice tirst dissolves the areolar tissue, and thus sets free the muscular fibres, which are subsequently acted upon and dissolved. Some albuminoids, as casein of milk are first coagulated by the action of the gastric juice, and then acted upon similarly to the other solid principles. The albuminoid or proteid substances are acted upon so as to be changed into albuminose or peptone. This substance differs from ordinary albumen in not being precipitated by heat, nitric or acetic acid, or potassium ferrocyanide, and in being rendered diffusible, or easily absorbed. It is readily precipitated by tannic acid or hydrargyrum perchlorids. The peptones are closely allied to the crystalloids, which possess superior osmotic properties as compared with the colloids. Some authors describe three sorts, a, b, and c, peptones; other allied substances formed during digestion are named parapeptone, metapeptone, and dyspeptone. After entering the blood vessels, the peptones are
again transformed into albumen, a change which is necessary to prevent their passing out. The saccharine po:tions of food and dextrine are at once absorbed in the stomach. The amylaceous principles are prepared for the action of the pancreatic juice, by softening the external covering of the starch granules. Fatty tissues are also partly disintegrated and the fatty matter set free, by a solution of the areolar tissue and albuminous cell walls, but tl., fat itself undergoes no change. The gastric juice also possess antiseptic properties, which not only prevents the putrefaction of nitrogenous substances during digestion, but also corrects the effects of partly decomposed substances taken as food.

Influence of the Nervous System on Digestion.The function of digestion is arrested by strong mental emotion or serious bodily injuries, and the food is often rejected. The movements of the stomach are due to the presence of food acting as a stimulus to the periphery of the nerves, transmitted to the ganglia, and reflected to the muscular coat. Irritation of the pneumogastric nerves produces inereased peristaltic action of the stomach, and division retards or arrests it, and temporarily arrests the secretion of gastric juice. Galvanization of these nerves increases the secretion of the fluid, but diminishes it when applied to the sympathetic.

Rate of Digestion.-The time required for digestion varies in different animals. In the carnivora, fresh raw meat requires from nine to twelve hours. The average time required in the human subject varies from one to five and a helf hours, according to the nature and quantity of food taken.

Dr. Beaumont's table, taken from Alexis St. Martin.

Pigs' Feet.	1.00 hour.	Roast Beef	3.00 hours.
Tripe	1.00	Roast Mutton.	3.15
Trout. .	1.30	Veal..	4.00
Venison	1.35	Salt Beef	4.15
Milk..	2.00 hours -	Roast Pork	5.15
Roast Turk	2.30		

Artificial Digestion.-An artificial digestive fluid may be made by macerating portions of the mucous membrane of a fresh stomach in water or glycerine, or by dissolving pepsine in water and then adding hydrochloric acid (1 part in 1000.) The fluid thus formed will digest portions of food if kept at a temperature of 98 to $100^{\circ} \mathrm{F}$. Such a preparation is very useful in cases where deglutition is impracticable, and in which the body is being nourished by nutritive enemata. It is mixed with the nutritive fluid, which is injected into the bowels. Pepsine is administered with benefit in some forms of dyspepsia, but should be combined with hydrochloric acid.

Movements of the Stomach.-These are effected by the alternate contraction of the longitudinal and circular fibres of its muscular coat. The muscular fibres of the orifices also keep the stomach closed during digestion. The movements were observed by Dr. Beaumont, in the stomach of Alexis St. Martin by introducing the stem of a thermometer. This action is more energetic near the pylorus, the bulb being grasped tightly and drawn towards this orifice. The peristaltic action of the coats of the stomach produces a kind of double current of its contents, the circumferential portions being moved towards the pylorus, while the central portions are propelled in the opposite direction, towards the cardiac orifice. The action of the stomach produces a constant movement of the food, and secures its thorough admixture with the gastric juice, which penetrates every particle, and converts it into a greyish pulpy mass of a homogeneous appearance, called chyme, which then passes into the duodenum.

CHYLIFICATION.

This process takes place in the small intestine, but principally in the duodenum. For a description of the nucous membrane of the small intestine, see " mucous membranes." It has already been stated that only the
albuminoid substances are digested by the gastric juice. The starch, oils and fats, pass unchanged into the small intestinc. Here they conse in contact with the mixed intestinal juices, and are reduced to a state fit for absorption. The juices of the simall intestine are the intestinal juice proper, or the fluid secreted by Brunner's glands and Lieberkiihn's follicles, the pancreatic juice, and the bile. These fluids, in contradistinction to the gastric juice, have an alkaline reaction.

Intestinal Juice.-This may be obtained in a tolerably pure state by ligating the duodenum of some of the lower animals, as the dog or rabbit, just above the opening of the choledec duct, and establishing a fistulous opening into the duodenum. It is small in quantity, and consists of the secretion from Brunner's glands, mixed with the fluid from the follicles of Lieberkühn, and some mucus.

Physical Appearance and Properties.-It is a colorless, viscid fluid, of an alkaline reaction, closely resembling, in its physical characters, the saliva and pancreatic juice. It possesses the property of converting starch into sugar. The quantity obtained by experimenters has rarely been sufficient for a thorough investigation of its properties.

Function.-It is supposed to aid in the digestion of the amylaceous portions of food. By its action starch is converted into dextrin, and then into sugar (glucose), in which state it is soluble, and thus admits of direct absorption into the blood-vessels, or the sugar may be converted into lactic acid, and in this condition pass into the cireulation. The presence of free alkali is as necessary to these changes, as free acid to the solution of the albuminoids by the gastric juice. Boiled starch is more readily digested by all animals thau raw ; in fact, boiling is necessary to its ready digestion.

Pancreatic Juice.-This substance is intended to assist in the conversion of starch into sugar, and also to digest the oily portions of the food. It may be obtained from the
dog by inserting a canula in the pancreatic duct (major) through a fistulous opening in the abdomen. The pancreas in structure, resembles the salivary glands and is present in all the vertebrate animals. In the human subject, the pancreatic duct and choledoc duct usually open into the duodenum at the same point. In some of the vertebrata they open at some distance from each other, the pancreatic duct being usually below the biliary.

Physical Appearance and Properties.-It is a clear, colorless, viscid fluid, of an alkaline reaction, somewhat resembling, in its physical character, the salivary fluid. It is coagulated completely by heat, not a drop of fluid being left. It is also coagulated by nitric acid, alcohol, and the metallic salts. The precipitate may be redissolved by the addition of an alkali. The average amount secreted by the human subject in the course of twenty-four hours, is about 12 to 16 ozs. avoirdupois.

Chemical composition of the pancreatic juice of the dog, according to Schmidt; the following is the mean of three analyses:

Water.	Mean.	Extreme.
Pancreatine	12.71	90.44
Sodium and Potassium Chlorides.	3.43	7.37
Calcium, Magnesium and Sodium Phosphates.	. 09	. 53
Soda, Lime and Magnesia, combined with Pancreatine	. 32	. 90
Traces of Iron............................... .		
	1000.00	1000.00

The most important ingredient is the organic matter, or pancreatine. It is coagulated by heat, nitric acid and alcohol. It is also precipitated by magnesium sulphate, and this distinguishes it from albumen.

Function.-It acts upon the oily portions of the food and and fats, partly by splitting them up into fatty acids and glycerine, and partly by disintegrating them, and reducing them to a state of complete emulsion, the mixture being converted into a whitish, opaque, creany fluid, which is readily absorbed. In disease of the pancreas, which is ex-
ceedingly rare, or ocelusion of the duct, the patient invariably suffers extreme emaciation, and in some cases fat appears in the feeces. The pancreas is found in carnivolous as well as herbivorous animals, thus showing that the pancreatic secretion is chiefly intended for the digestion of fatty matters It also assists in the conversion of starch into sugar, and in this way promotes the digestion and absorption of amylaceous food. It further assists in the complete digestion of albuminous and gelatinous substances which have escaped the action of the gastric juice.

Secretion of Bile.-Bile is secreted by the cells of the liver from the blood of the portal vein, and may be readily obtained from its reservoir, the gall-bladder. It is secreted by the shepatic cells, which are situated in the interior of the lobules. When the cells become filled with bile, they break down, and the fluid is then taken up by the minute hepatic ducts which originate in the interior of the lobules. These small ducts, by frequent successive junctions, form two large ducts, each somewhat larger than a crow-quill, which emerge at the transverse fissure of the liver, one from the right and the other from the left lobe. These two ducts, together with the hepatic artery, the portal vein, nerves, and lymphatics, are enclosed in a little areolar tissue called Glisson's capsule, and about an inch below their exit they unite to form the hepatic duct, which soon unites with the cystic duct from the gall-bladder, and the union of the two constitutes the ductus communis choledochus. This is about two or three inches long, and passing down behind the first portion of the duodenum, it opens into the second or descending portion, on its inner side, a little below the middle, in connection with the pancreatic duct. The gallbladder is situated on the under surface of the right lobe of the liver, and serves as a reservoir for the accumulation of the bile. During fasting, the gall-bladder is found full, and it empties itself when digestion is going on. The mechanism is as follows: during the intervals of digestion
the duct below the junction of the cystic is closed by contraction of its muscular fibres, and the bile being secreted finds its way into the gall-bladder, but on the introduction of food into the intestine, the bile is discharged from the gall-bladder by the pressure of the contraction of its coats. Its presence is not essential, for in many animals it is entirely absent, as in some of the fishes, mammals, etc. The hepatic cells contain more or less fat in the form of globules, and this may be regarded as part of their secretion. It is also found to be most abundant when fatty matters are withheld from the food. The fat is formed by the cells, from certain clerrents of food, as starch, sugar, etc., and is discharged in to the duodenum to be reabsorbed by the villi, and carried to the lungs, where it is* decomposed by the oxygen in the production of animal heat.

Physical Appearance and Properties of Bile.-Bile is a thick, viscid fluid, of a greenish yellow color, a bitter taste, and a nauseous smell. Its specific gravity is about 1020 , and possesses either a neutral or slightly alkaline reaction, When agitated in a test tube it presents a peculiar soap-like foam, the bubbles adhering closely together and remaining for a long time without breaking. The average amount of bile secreted in twenty-four hours is from 30 to 40 ounces. It possesses antiseptic properties, preventing substances with which it is mixed from patrefying. When it is absent in the alimentary canal, as in cases of complete biliary obstruction, the fieces are found to have an intolerable fetor. Bile is constantly secreted by the liver but more actively from one to two and a-half hours after food is taken.

Chemical Composition of Human Bile.-Frerichs:
\qquad
Bile Salts (bilin). 9 . 9 . 5
Fat 9.2
Cholesterine. 2.6
Mucus and Coloring Matter........................ 29.8
Salts . 7.7
1000.0

A distinguishing feature of bile is the absence of proteids or albuminous substances. The most important ingredients are the coloring matter of the bile, and the bile salts or bilin. The coloring matter, bilirubine, is a yellow-ish-red crystallizable substance, of organic origin. It does not pre-exist in the blood, but is supposed to be formed in the liver. In cases of biliary obstruction it may be absorbed, and circulating with the blood, stains the tissucs and fluids of the body of a greenish-yellow or saffron color, giving rise to the state called jaundice. It is insoluble in water, very slightly in alcohol; its best solvent being chloroform, or a solution of soda or potassa. It becomes green on exposure to the air, and on the addition of an acid, deposits green flocculi resembling the chlorophyl of plants. This is called biliverdine, and a small quantity is found in bile. It is more abundant in the bile of the herbivora. Two other coloring matters are found in bile after remaining some time in the gall bladder; also in gall stones, named biliprasin and bilifuscin.

Cholesterine.-This substance may be removed from bile by agitation with ether, in which it is soluble. It is distinguished from fats, with which it is closely associated, by not being saponified by alkalies. It has also been found in the fluid of hydrocele, ascites, and in the interior of many encysted tumors. It is a crystallizable substance, the crystals having the form of thin transparent rhomboidal plates. Cholesterine is not formed in the liver, but is supposed to originate in the brain and nerve tissue, from which it may be extracted by alcohol or ether, and is discharged by the liver. It is also found in the tissue of the spleen. It is the principal constituent of gall stones.

Bile Salts (Bilin).-These consist of sodium glycocholate and taurocholate; the latter predominates in human bile, while the former is more abundant in ox bile. The bilin of the dog, cat and other carnivora, consists exclusively of the latter salt. They are soluble in water and alcohol,
but not in ether. The taurocholate possesses the property, when in solution, of dissolving a certain quantity of fat. These substances may be obtained as follows: the bile is evaporated, and the dry residue treated with alcohol and filtered; this alcoholic solution contains sodium glycocholate and taurocholate, coloring matter, and fats. Ether is now added until a precipitate takes place, which has at first a resinous appearance. After this precipitate has stood from twelve to twenty-four hours, it presents, when examined by the microscope, a number of acicular crystals of sodium glycocholate, and some drops or globules of sodium taurocholate, which resemble oil globules, except in their chemical properties. The glycoeholate may be separated from the sodium taurocholate by the foliowing means: The fluid containing alcohol and ether, previousiy used, is poured off, and the deposit in the bottom of the tube is dissolved in water. To this, lead acetate is added, which gives a precipitate of lead glycocholate, leaving sodium acetate in solution. The precipitate is filtered and decomposed by sodium carbonate, reproducing the original sodium glyeocholate. The filtered fluid which remains, containing the sodium taurocholate, is then treated with lead subacetate, which precipitates a lead taurocholate. This is filtered and decomposed by sodium carbonate, as in the former instance. It crystallizes in slender needles, much like the glyeocholate. The glycocholates and taurocholates are formed in the liver, being produced by the hepatic cells, and discharged by the ducts. They are not found in the blood. The acids may be separated from their respective salts by boiling with dilute sulphuric or hydrochloric acids, or caustic potesh, which also further splits up the glycocholic acid into glycine and cholic (or cholalic) acid, and taurocholic into taurine and cholic acid.

Glycogenic Function of the Liver.-The actual formation of glucose, or grape sugar, in the liver, was first discovered by Claude Bernard in 1848. A substance called
glycogen is first formed, and this is transformed into sugar by the action of a ferment formed in the liver. This substance is formed by the liver itself, and is a normal constituent of its tissue. Glycogen is identical in composition with starch, and is found in other tissues besides the liver, viz. : in the museles, placenta, and embryonic tissues. The liver, when removed from the body of an animal, and the sugar washed completely away, will be found, after a few hours, to contain sugar in abundance. Its presence may be determined in the substance of the liver, and in the hepatic veins, by means of Trommer's test, or by fermentation. It has also been found in the portal vein, owing to the reflux which, in the absence of valves, may take place after death. The sugar thus formed is carried to the right side of the heart, and thence to the lungs, where it is decomposed in the production of animal heat. Puncture of the floor of the 4th ventricle, section of the cervical sympathetic, or inferior ganglion, or irritation of the central extremity of the Sth pair, abnormally increas ae glycogenic function of the liver, and sugar is p.oduced so rapidly, that the lungs cannot decompose the whole of $i t$, and therefore it is thrown off by the kidneys, producing what i known as diabetes mellitus. Temporary glycosuria may also be produced by the action of various substances, as the inhalation of ether or chloroform, injection of curare, poisoning by carbonic oxide gas, or by injuries to the brain, and in the course of various diseases. Sugar and fat are both formed in the liver, irrespective of the kind or quality of the food. Pavy and others are of the opinion that no sugar exists in the liver during life, but only occurs after death.

Function of Bile.-During fasting, the bile is stored up in the gall-bladder, but if the fast be proionged beyond a reasonable time, the bile overflows into the intestine. The flow of bile into the duodenum is caused by the presence of food, or any irritating substance npon the mucous sur-
face of the small intestins. The bile is poured into the duodenum, never below it, a circumstance not very prebable if bile were solely an excrementitious substance, since it would have been quite as convenient for nature to have effected its discharge into the hepatic flexure of the colon. When the bile duct is tied, and this fluid prevented from passing into the duodenum, the animal becomes greatly emaciated, and ultimately dies from inanition. There can be no donbt, therefore, that the bile contributes in some way to the complete digestion and assimilation of the food. Bile cannot readily be detected in the fieces, and therefore it is supposed to be entircly changed in its passage through the bowels, or in part reabsorbed with the chyle, and thrown back into the system, to be used in the generation of heat by contact with oxygen in the lungs.

Bile is both an excrementitious and digestive substance. That it is excrementitious is evidenced in the comparatively large size of the liver and the active formation of bile in the foetus, ant the presence of meconium (biliary matter) as feces in the intestines. The freces of the adult also contain the coloring matters, some fatty matter, and a small quantity of bilin. Through the bile is eliminated carbon, hydrogen, and other elements from the blood, which if allowed to accumulate, would render it impure. Dr. Flint regards the excretion of cholcsterine, which is changed into stercorine in the bowels, as an important function of the liver. As a digestive it assists in emulsifying the fatty matters, and by reason of its alkalinity favors their absorption. The liver also performs an important office in removing substances which have been taken up by the portal vein during digestion, which would be injurious if allowed to enter the circulation. We may therefore conclude as follows: that the liver secretes a complex fluid, the "bile," which is poured into the duodenum. Its coloring matters and some of the fatty matter and salts, are carried off in the faeces forming the natural purgative of the body, and
by tion real part and tion nate mat as con
by virtue of its antiseptic properties, preventing decomposition of the feceal matters. Its fat and bilin are in great part reabsorbed. It also assists in the complete digestion of those parts of the food which have escaped digestion, as starch and fatty matters. It forms sugar and fat in the circulation, independently of the substances in the food. It eliminates carbonaceous matters; some directly, as the coloring matter, small quantities of fat and bilin; others indirectly, as fat, sugar, and bilin, which pass to the lungs, and are converted into carbonic acid and water by the oxygen.

Tests for Bile. - When nitric or nitroso-nitric acid (Gmelin's test) is added to a mixture containing bile, and shaken, a play of colors is produced, changing from green through various tints to red. This does not indicate the presence of biliary substances proper, but only the coloring matters.

Pettenkofer's Test.--This is the best test for the detection of bilin. A watery solution of the bile is mixed with a drop or two of a solution of cane sugar ; sulphuric acid is then added to the extent of two-thirds of the liquid, and a red, violet, and purple color are produced in succession. The reaction consists in the liberation of cholic acid from the glyco-cholic or tauro-cholic acid of the biliary salts. The sugar must be used in small quantities, for when added in excess, it is liable to be acted on and discolored by the sulphuric acid. The solution of sugar should be about one part sugar to four parts water. Foreign matters, not of a biliary nature, such as oleine, ethereal oil, amyl-alcohol, albuminous matters, and the salts of morphine and codeine, may produce a similar red or violet color. This may be overcome, however, by first extracting the suspected matters with alcohol, precipitating with ether, and dissolving the precipitate with water, before applying the test.

The spectrum of Pettenkofer's test presents characters which may distinguish it from the reactions produced by other organic substances. If some of the colored fluid to
which the cane sugar and sulphuric acid have been added be placed before the slit of the spectroscope, its spectrum shows a broad, dark absorption band at E^{*}, and extending to midway between D and E , the central part of the band being darker than the edges. When an alcoholic solution of Pettenkofer's test is examined as above, two absorption bands are seen; one at E , identical with the one seen in the watery solution; and the other at F , narrower and fainter than the one at E, (Fig. 55).

Fig. 55.

Spectrum of Pettenkofer's test with the biliary salts in alcoholic solution.
Bile is also dichroic, or presents two different colors when examined by transmitted light, according to the thickness or thinness of the stratum under examination It is also fluorescent, or faintly luminous with a color of its own, especially when examined by the more refrangible rays of the solar spectrum.

Summary.-The digestion of the food is not a simple operation, but consists of several different processes, which occur successively in different portions of the alimentary canal. The food is first subjected to the physical opera. tion of mastication and insalivation in the mouth. It then passes into the stomach, where it meets with the gastric juice, which converts it into a pulpy mass-the chyme. Here certain soluble elements of the food, as water, winc,

[^3]tea, saline matters, sugar, and a certain quantity of albuminose are absorbed by the veins and lymphatic vessels of the stomach. The food then passes into the duodenum, or small intestine, carrying with it the gastric juice, where it meets with the intestinal juices, pancreatic juice and bile. The albuminous matters which were not wholly digested in the stomach are now dissolved; starchy matters are converted into dextrine and sugar, the oils and fats are emulsified, and the fluid is converted into chyle. This is taken up by the lacteals or blood-vessels in the process of absorption, and the coarser portions of the food, or excrementitious matters of the body, are carried off by the large intestine.

Large Intestine.-Its office is mainly confined to the separation and discharge of the freces. The mucous membrane of the large intestine is destitute of villi, and valvulæ conniventes. Beneath the mucous membrane are found a few nonstriated muscular fibre cells (muscularis mucose.) The glands are of two kinds tubular or glands of Lieberkûhn, and lenticular glands. The former are larger than those in the small intestine, and the latter closeis resemble the glandulæe solitariæ, and are most numerous in the cæcum and vermiform appendix.

The ileo-crecal valve is situated at the junction of the ileum with the ceecum, and prevents reflux of the contents of the latter. It consists of two semilunar folds of mucous membrane, each of which contains vessels, nerves and lymphaties, together with some of the muscular fibres of the intestine. By dividing the longitudinal muscular fibres and peritoneum at the margin of the valves, they may be made to disappear, just in the same way as the sacculi of the large intestine can be obliterated, by a similar operation. The surface of the valve next the ileum is covered with villi, but they are entirely absent on the surface next the crecum.

It is supposed by some that a certain amout of digestion takes place in the cæcum. In some animals it is very large,
and would seem, without doubt, to excreise some special function in the complete solution of the food. But in man it is quite rudimentary, and has very little action upon the faces in their passage through. No material change takes place in the faces as they pass through the intestine, excepting that they become drier the longer they remain in the bowel, owing to the absorption which takes place. Nutritive enemata may also be absorbed by the large intestine. The feces are urged onwards to the rectum by the vermicular action of the bowel, where they accumulate, and are prevented from escaping by the contraction of the sphincter. The presence of the accumulated frecal matter in the rectum, causes a sensation demanding its discharge or defiecation.

DEFECATION.

This is the expulsion of the feces from the rectum, and it is effected by the contraction of the muscular fibres of the rectum, assisted by the contraction of the abdominal muscles and diaphragm, which diminish the size of the abdominal cavity, compress the intestines, and thus force onwards the fecal matter towards the anus. This force is at the same time quite sufficient to overcome the passive contraction or the sphincter. If the rectum be over-distended by feecal matter, its contractility will be diminished, and immense accumulations may take place. This is apt to occur in aged persons, and the fecal matter may require to be scooped out. On the other hand, when the fæeces do not accumulate in sufficient quantity to distend the rectum, the act of defrecation may be attended with difficulty, and the straining may cause prolapsus ani. Under such circumstances enemata are of great service, by distending the bowel and stimulating it to proper action.

The quantity of faeces depends on the nature of the food and the state of the system. Vegetable food produces a greater amount of freces than animal, because it contains much that is incapable of reduction in the stomach and duo-
denum. The quantity passed daily in health is from four to eight ounces; so that if we assume thirty five ounces to be the average quantity of food per day, it may be inferred that about thirty ounces are appropriated for the support of the body.

Analysis of Feces-

Water. 73.3

Excretine, stercorine, salts and fatty acid
Insoluble residue of food, coloring matter and other ingredients of bile, mucus and epithelium 26.7

Exchetine was discovered by Marcet and is associated with excretolic acid. It is a crystallizable substance, insoluble in water, but soluble in ether and hot aleohol, and is slightly alkaline. The crystals are in the Corm of foursided prismatic needles. It fuses at $20 t^{\circ} \mathrm{F}$.

Stercorine was discovered by Prof. Flint, Jr. It has the same crystalline form as excretine, is also soluble in ether and boiling aleohol, but fuses at a lower temperature. It is supposed to be formed from cholesterine.

Salis of Feces.-These consist chiefly of calcium and magnesium phosphates, iron, soda, lime and silica.

The peculiar odor of the feces is supposed to be caused by the secretion of the glands. Certain gases are also generated in the bowels. They consist of carbonic acid, hydrogen, carburetted hydrogen, sulphuretted hydrogen and nitrogen. They would seem to favor the passage of the fecal matter by their distension of the bowel. In some diseases, as hysteria, puerperal fever, inflammation of the bowels, etc., large quantities of gas are accumulated, producing tympanites or meteorism. The natural color of the fæces is yellow, but in biliary obstruction they become clay-colored and offensive. Again, when the bile is vitiated, or secreted in large quantity, they vary from green to dark brown.

CHAPTER VI.

ABSORPTION.

All the tissues of the body are more or less porous, and capable of absorbing fluids brought into contact with them; but the special absorbents are the blood-vessels, villi and lacteals, lymphatic vessels and glands, and probably the glandule solitarie.

Blood-Vessels.-The structure and general function of the blood-vessels will be described in the chapter on circulation.

Villi and Lacteals.-The structure of the villi has been already deseribed among the appendages of the mucous membrane, (page 111, Fig. 50.) In consequence of
their number and form, they increase greatly the secreting surface of the intestine. They hang out in the nutritious semi-fluid mass contained in the intestinal cavity, like the roots of a tree in its soil, and rapidly imbibe the soluble portions of the food.

The lacteals commence near the apex of each villus either by a blind extremity, or minute plexus, the precise manner is not known. In structure they resemble the capillaries, having an outer structureless or finely fibrillated membrane; and an inner endothelial lining. They form a network with close meshes in the submucous areolar tissue, and then pass between the layers of the mesentery towards its root,anastomosing freely with each other, and traversing the mesenteric

An intestinal villus; (a) columnar epithelium; (b) capillaries ; (c) nonstriated muscular tibre cells; (d) lacteal. glands in their way to the right side of the aorta, opposite
the selve: extre of th
upwa thora empt close two of ve of th sorb

Ly chief nearl brain brane They irreg lymp tem brane show which muni caviti or e: 101.) deep; the lower is con subel and n of th
the second lumbar vertebra, where they empty themselves, together with the lymphatics from the lower extremities into the receptaculum chyli, or commencement of the thoracic duet. The thoracic duct, which is continued upwards, lies between the aorta and vena azygos major in the thorax; it then passes behind the arch of the aorta, and emptics itself into the upper part of the left subelavian vein, close to the internal jugular, its orifice being guarded by two valves. The lacteals, are, however, not a special system of vessels by themselves, but may be considered as a part of the general lymphatie system. Their function is to absorb the chyle.

Lymphatic Vessels and Glands.-These constitute the chief system of absorbents of the body. They are found in nearly every part of the body, except the substance of the brain and spinal cord, eye-ball, cartilage, tendons, membranes of the ovum, placenta, funis, hair, nails and cuticle. They commence either in a closely meshed network, or in irregular lacunar spaces among the tissues termed the lympla canalicular system. The latter form a connected system of very irregular branched spaces beneath serous membranes, as the pleura and peritoneum. Recklinghausen has shown that the serous membranes are studded with stomata which are the openings of short vertical canals which communicate with the lymph canalicular system. The serous cavities are therefore looked upon as large lymph sinuses, or expansions of the lymph-canalicular system, (page 101.) There are two sets of lymphatics, the superficial and deep; the former are situated in the superficial fascia, and the latter accompany the deep blood-vessels. Those of the lower extremeties empty into the receptaculum chyli, which is continued upwards through the thoracie duct, to the left subclavian vein, and those of the upper extremities, head and neck, empty by a short trunk into the subclavian vein of the right side.

Structure--The lymphatic vessels are remarkable for the transparency of their walls. The larger vessels like the arteries and veins are composed of three conts. 1st, an imner epithelial, (or endothelial) and elastic ; 2nd, a middle, muscular and elastic, disposed transversely ; and 3 rd , an external, areolar and elastic coat. They are also provided with valves like the veins, arranged in pairs, which prevent regurgitation, and assist in the onward flow of the thid which the vessels contain. The valves are more numerous in the lymphaties than in the veins, and the walls of the vessels are thimer and more transparent. There is no direct communication between the lymph-capillaries and blood-capillaries, as was formerly supposed. The lymphatic vessels may be readily brought into view by injecting the n with mercury. The vessels, in their course, pass through certain gladular bodies-the " lymphatic" or "absorbent" glands.

A lymphatic gland and vessels filled with merenry; 1, afferent vessels; e. efferent vessels; (b) a lymphatie ressel showing the valves; (c) lymph corpuscles, one granular and three treated with acetic acid showing the cell wall and nueleus, also some flne granules and oil globules, (Mascagni) $\times 400$.

Limphatic Glands.-The lymphatic glands, among which may be included the meserieric glands, consist of an external layer of connective tissue, and glandular tissue within. From the inmer surface of the external layer thin septa or trabecutie are given off, which penetrate the interior of the gland in every direction, and mite with each other at various points, so that the substance of the gland is dividedinto numerousspaces or alveoli, which communicate with each other. The network is finer in the central or medullary, than in the coilical portion. These spaces are filled with a network of retiform or adenoid tissuc (p. 71), the interstices of which are filled with lymph corpuseles, and are penetrated like the solitary
glands by a network of capillarics. The lymph corpuscles chiefly occupy the central part of the alveoli, forming with the retiform tissuc, nodules and cords, leaving a space in the outer portion for the circulation of the lymph, called the lymph-path. Each lymphatic vessel, as it enters the gland, divides into a number of small branches, called the vasca afferentia which communicate with the lymph-paths; other similar twigs form the vasa efferentia, which leave the gland in the opposite direction. The lymphatic glands are arranged in chains, in various parts of the body, as in the groin parallel to Poupart's ligament, and along the posterior border of the sterno-cleido-mastoid muscle, etc. They vary in size from a millet seed to a pea. The vessels and glands contain a fluid termed lymph.

Lymph and Chyle-Lymph is a colorless, or pale-yellow, transparent fluid, of a slightly alkaline reaction, and a saline taste. It contains nucleated corpuscles, resembling those found in chyle, but less numerous, which are supposed ultimately to form blood corpuscles. It is spontanensing coagulable when removed from the vessels, owing to the presence of fibrin, which is more abundant in the iarge than in the small vessels. The albumen is smaller in quantity than in chyle, and there is searcely any fatty matter. The ingredients of lymph are chiefly the products of the exudation from the capillaries, and the waste of the tissues. It is identical in great part with the liquor sanguinis of the blood.

Chyle is a whitish, opaleseent fluid resembling milk, of an alkaline reaction, and

 meter, v hich constitute the molecular base of chyle. The fat globules are soluble in ether.

Fig. 58.
 Fat globules of chyle.

As the chyle passes onwards towards the choracic duct, it becomes more fully elaborated, the quantity of molecules or oil
 to 8.3 mmm) in diameter, called chyle corpuscles, are formed in it, and by the development of fibrin, it acquires the property of coagulating spontaneously. The higher it ascends in the

Fig. 59.

Molecular base and corpuscles of chyle from the receptaculum chyli of a man. thoracic duct, the more fully is it elaborated, the chyle corpuscles are more numerous, and advanced towards their development into red blood corpuscles, and the clot coagulates more firmly.

These two fluids-lymph and chyle-are nearly similar, as will be seen from the following table which is the result of an analysis of the lymph and chyle of a donkey by Owen Rees.

Chemical Constituents.-

	Lymph.	Chyle.
Water.	96.54	90.24
Albumen	1.20	3.52
Fibrin.	0.12	0.37
Fat.	A trace.	3.60
Extractive	. 1.56	I. 56
Salt.	. 0.58	0.71
	100.00	100.00

MECHANISM OF ABSORPTION.
Imbibition or osmosis is a!physico-chemical process, and occurs in inorganic as well as in dead or living organic bodies. It depends on the force of adhesion between a fluid and a porous solid, by which the fluid is drawn into the interstitial passages of the solid. The fluid chiefly concerned in this process is water, and the various other substances which are taken up in a state of solution, as fibrin, albumen, salts, gases, etc. The process of osmosis in the living body however, is regulated and controlled by the agency of cells, which have the power of choosing and refusing from the materials brought into contact or relation with them.

The quality of the fluid influences absorption. If water be brought in contact with the surface of the body, or taken into the stomach, it is readily absorbed, especially in the latter case, because it is brought nearer the blood-vessels; or if a quantity of warm-water is injected into the colon, it is rapidly absorbed and excreted by the kidneys. But if the water contain a quantity of sodium chloride, or any salt in solution, it will be absorbed more slowly, while if a saturated solution be used, the fluid portion of the blood will pass out of the blood-vessels to mingle with it. When the fluid passes from without inwards the process is termed endosmosis; when from within outwards, exosmosis. The term osmose or osmosis refers simply to the passage of a fluid in either direction, and is much more convenient. This property of endosmosis and exosmosis may be demonstrated by placing a membranous partition through a vessel of earthenware and placing pure water on one side, and a solution of salt and water on the other. It will be found that the water will pass more rapidly through the membrane to the side containing the salt and water, but that after a time both sides will be equally impregnated with salt. In this case the passage of the water to the salt is called "endosmosis," and the more scanty passage of salt to the water "exosmosis." The instrument used for measuring the rapidity of osmosis, is called an endosmometer. A very good one may be made from a common glass funnel by tying a piece of bladder over the lower end, and fixing a glass tube, open at both ends, in an upright position within the funnel. The instrument is next filled with a solution of salt or sugar, and put in a vessel containing pure water. The water will then pass through the membrane at the bottom of the funnel into the solution by osmosis, and cause the fluid to ascend in the tube, which may have been previously marked, or graduated, by a common file. The height to which the fluid rises in a given time, is a measure of the rapidity of endosmosis over exosmosis. Substances are divided into two classes according
to their facility of osmosis; those which pass through readily, and which are usually crystallizable, are called crystalloids, and those which pass with difficulty, colloids. The colloids are also distinguished from crystalloids by their inertness as n aids or bases.

The cha, acter of the membrane and its affinity for the fluids influence absorption. If a piece of bladder be placed between alcohol and water, the current is from the water to the alcohol, on account of the greater affinity of the water for this membrane; but if a membrane of India rubber be used, the current is reversed. It is necessary that the membrane should be fresh. If it be in a state of decay, or if it has been dried, it will not produce the desired effect. The position of the membrane causes a variation. In some instances, endosmosis is more rapid when the mucous surface is in contact with the denser solution. In other cases, it is exactly the reverse. The density or laxity, and the thickness or thinness of the membrane, also affect the result for obvious reasons.

Pressure influences absorption. It promotes the transmission of a fluid through a membrane, and the rapidity of osmosis will depend, "cateris paribus," on the degree of pressure employed. Since this promotes the flow in one direction, it also tends to retard the passage of fluids in the opposite direction ; for example, when the blood-vessels are distended with blood, as in plethora or inflammation, fluids enter with difficulty from without, while if the tension be removed by venesection, absorption takes place quite readily.

Motion of the fluid in the vessels influences absorption. The motion of the fluid within the vessels promotes absorption, by diminishing the pressure outwards on the walls and allowing the external pressure to predominate, and also by moving the particles onwards, to make room for those which are being absorbed.

Absorption by the Villi and Lacteals.--During the intervals of digestion, the lacteals contain a colorless transparent substance, similar to that which is obtained in other parts of the lymphatic system. If the food consists only of starchy and albuminous substances, very little change is noticed in the character of their contents. But if fat has been taken, the lacteals become filled with a white chyle or " molecular base," consisting of minute fat globules and a small quantity of fibrin, albumen, (or albuminose), etc. The presence of chyle in the lacteals is therefore not constant, but occurs during the process of digestion, or as soon as the fatty matters of the food have been disintegrated and emulsified by the intestinal fluids. The absorption of fat from the intestine is not performed exclusively by the lacteals but some of it is taken up by the blood-vessels, for it has been found by Bernard in the blood of the mesenteric veins of the carnivora during digestion. It has also been found in the blood of the portal vein. Fat being a non-osmotic substance, especially when the membrane is moist, a difficulty has been experienced in accounting for its absorption. It has been found, however, that the presence of an alkaline fluid, as bile, mixed with emulsified fat, will facilitate the process of osmosis, and secure the complete absorption of the fatty matter.

The chyle and other fluids are absorbed by the pro-ss of osmosis, which is regulated and controlled by the agency of cells. The epithelial cells covering the free surface of the villi are the first active agents in this absorption, for during the process of digestion they are found filled with chyle. They break down, and the fluid passes through the basement membrane by osmosis (endosmosis) into the adenoid tissue of the villi being regulated and controlled by the lymphoid cells which are found in its meshes, and in contact with the lacteals. The chyle then comes in direct contact with the lacteals through the coats of which it again passes hy osmosis, the process being determined by the cells
which line the interior of the lacteals. The fluid then passes to the receptaculum chyli, and thence though the thoracic duct to the left subclavian vein. Its onward flow is facilitated by the contractile tissue, which is found in the tissue surrounding the lacteals and in the thoracic duct, and it is prevented from regurgitating by the valves which are found in the latter vessel.

Absonption by the Blood-Vessels.-That the bloodvessels absorb, has been proved by the experiments of Magendio and Panizza. The latter observer opened the abdomen of a horse, and drew out a portion of the small intestine, eight or nine inches in length, which he enclosed between two ligatures. He then ligated the mesenteric vein, and made an opening behind the ligature, in order to allow the blood brought by the artery to pass out. An opening was also made in the intestine, through which was introduced some hydrocyanic acid, and almost immediately afterwards, it was detected in the blood which flowed from the opering in the vein. The above experiment was varied by simply compressing the vein, and introducing hydrocyanic acid in the intestine. In this case no effect was produced on the animal while compression was maintained, but as soon as the pressure was removed, symptoms of poisoning by hydrocyanic acid showed themselves. The rapidity with which the blood-vessels absorb certain substances may be seen in the administration of alcoholic and other soluble substances by the stomach, and also the hypodermic injection of morphine and other alkaloids. The blood-vessels not only perform an active part in the general absorption of fuids in various parts of the body, but are also specially engaged in the absorption of the alimentary fluids of the intestine. The albuminous and starchy portions (and even fatty matters) of the food are absorbed by them from tho mucous surface of the stomach and small intestine, in the form of albuminose and glucose. The substances taken up by the veins are thence conveyed by the portal system to the
liver, where some of them are acted upon by that organ in the production of bile, sugar, fat, etc., some of which are carried back into the alimentary system, and others are thrown into the general circulation. In the process of absorption, the substances pass through the basement membrane by osmosis, this process being regulated by the action of the cells, similar to that which takes place in the lacteals.

Aisonption by the Lymphatics.-That the lymphatics absorb, is perhaps best shown by the phenomena of disease; for example, the virus of syphilis is frequently carried from the chancre on the penis, to the glands in the groin, giving rise to bubo, and the matter from the abscess is capable of imparting the disease to other individuals. The glands of the axilla become enlarged and inflamed, in consequence of a poisoned wound of the hand or arm, or in erysipelas. Absorption takes place in the same way, and on the same principle, as in the lacteals and veins. In some animals, as birds and reptiles, the movement of the lymph is facilitated by the action of certain muscular sacs, called lymph hearts. The function of the lymphatic vessels is to absorb the ingredients of the lymph derived from the metamorphosis of the tissues, and to return it into the general circulation, in order to subserve some further purpose in the animal economy, or to be eliminated by the process of excretion. They also convey back the superfluous parts of the material brought by the blood-vessels for the supply of the tissues. The effete matters are not all absorbed by these vessels, for carbonic acid seems to enter the capillaries in a direct manner through their walls, since it is found in greater quantity in venous than arterial blood. The lymphatic glands are engaged in the process of elaborating the lymph in its passage through them.

The Glandulce Solitarice have been already described (page 111). They are regarded as the first row of mesenteric glands situated in the walls of the intestines.

CHAPTER VII.

BLOOD.
This fluid is prepared from the food by the proces of digestion and assimilation, and is constantly circulating through the vessels, during life. It supplies the material from which the tissues are built up and nourished; it contains the substance used in the combustive process, and also contains the effete particles which result from the disintegration of the tissues. The elements found in the blood may be divided into four classes, as follows :-

1st. The elaborative elements, as red and white corpuscles.
2nd. The histogenetic elements, as albumen, and fat. (Fat is used to build up the adipose and nerve tissues.)

3rd. The calorific elements, as sugar (or glucose) and fats.
4th. The depuritic elements, as lactic, uric, hippuric, and carbonic acids, urea, creatine, volatile fat acids, odorous substances, salts, and water.

Quantity.-It is very difficult to determine the exact quantity of blood in the human body; but from various experiments, it has been ascertained by approximation, that the quantity of blood in a human body weighing 144 lbs . would be about 16 or 18 lbs., or as 1 to 8 or 10 .

PHYSICAL CHARACTER OF THE BLOOD.
The blood, as it flows from the vessels, appears to be a homogenous, red fluid, of a slightly alkaline reaction, and heavier than water. The odor resembles the perspiration, or the breath of the animal. The temperature is about 100° F. The color of arterial blood is bright scarlet, and that of venous blood dark purple; but disease of the lungs, heart or
kidney, may cause the whole mass to assume a venous hue, owing to the circulation of carbonic acid and other impurities in it; or it may assume an arterial hue when the animal breathes pure oxygen. It is also stated by Dr. Davy that in warm climates the blood is venous in its character. This is due to the high temperature, which reduces the excretion of carbonic aeid, and is a fact of very great practical importance to the physician. The inhalation of ehloroform or ether produces a venous condition, by interferiug with the function of respiration.

The specific gravity of the blood varies from 1050 to 1050 , the average being about 1055. Any substance which will modify the relation between the solids and fluids will change the specific gravity. For example, it may be diminished by the introduction of water into the system, whilst, on the other hand, it may be increased by the administration of drastic purgatives. In anemia, the specific gravity may be increased by good liberal diet, and iron. The specific gravity of the corpuscles (solids) is 1088, the liquor sanguinis (fluids) 102s.

MICROSCEPICAL APPEARANCE OF THE BLOOD.

Bloud, when examined by the microscope, when still in the vessels, as in the frog's foot, or bat's wing is seen to consist of a solid and a liquid portion; the former includes the red and white corpuscles, the latter, the liquor sanguinis, or plasma. On the other hand, when the blood has been drawn from the body, and allowed to stand, it coagulates or separates into two portions-the crassamentum, or clot, and the serum. This coagulation depends on the presence of fibriu, which coagulates spontaneously, and forms a network of fibres, in the meshes of which are included the red and white corpuscles. The clot then contracts, and squeezes out the serum. The crassamentum, or clot, therefore consists of the fibrin and corpuscles; and the serum contains
the albumen, salts and water. consists of

SOLID.

Red and White Corpuscles.

Blood in the living vessels, LIQUID.
Fibrin.
Albumen......
$\begin{aligned} & \text { Salts........... } \\ & \text { Water }\end{aligned}$ or Pasmainis,

Blood out of the body consists of
sol.ab.
LIQUUD.

Bloon Corpuscles.-The human red blood corpuscles are circular or rounded biconcave dises, in the centre of which are seen bright or dark spots according as the microscope is within orbeyoud focus. These spots which have been mistaken,

Fig 60.

(a) Iuman red blood corpuscles; ; b) one seen edgewise ; (c) in rouleaus ; (d, d) white corpuscles; (e) white corpusele midergoing amaboid chanre of shape; (f) red blood corpuseles dried shrmiken and crenated; (g) red corpuseles as seen within the fochs of the microscope; (h) the same as seen beyond the foens. from drinking too much water; and from the bursting of the corpuseles, and the liberation of the hemoglobine, the arteries were stained, so as to give rise to the supposition of arteritis. In anemia and Bright's disease they become oval, and in the latter case granular. When the amount of fluid is diminished, or solids increased, as in plethora, the corpuscles become strongly biconcave and ragged on the
horders. The inhalation of gases also produces a marked change in their shape. When carbonic acid is inhaled they become rounded, and are again rendered biconcave by breathing pure air or oxygen gas. When chloroform is inlialed they become rounded and serrated. Ether produces an irregilar outline, and the administration of alcohol renders them oval and indented on one side. A solution of sodium chloride added to the blood, produces a prickly condition of the surface of the corpuscles, like the fruit of a horse-chestnut. When acetic acid is added, they become globular and pale, and alkalies cause them to swell up and disappear. Tanuin (2 per cent. solution) produces a small projection or button on some point of the circumference, which disappears again on the addition of acetic acid. The corpuscles may be changed in shape during circulation. In the capillaries, they sometimes become elongated, twisted orbent, in order to accommodate themselves to the narrow curved channels through which they have to pass. They consist of homogeneous masses of germinal matter or stromu infiltrated by a red coloring matter, termed hemoglobine, and have no distinctive cell wall.

The size of the red blood corpuscles varies in the human subject from $\frac{1}{3000}$ to $\frac{1}{4000}$ of an inch (8.3 to 6.2 mmm) in diameter, the average being about $\frac{1}{3500}(7.1 \mathrm{mmm})$ and the thickness about $\frac{1}{10000}(2.5 \mathrm{~mm}$.) The size of the corpuscles bears no relation to the size of the animal, e. g., those of the mouse tribe are larger than those of the deer, as will be seen from the following table:

In all of the above, the form and appearance of the corpuscles are the same, although they vary much in size. The
elephant, and sloth (Bradypus didactylus) are the only species in which the corpuscles are known to be larger than in man. In the camel tribe (camel dromedary lama) they are oval in shape, but do not possess a nucleus. In all the oviparous vertebrata, as birds, reptiles, and fishes, the corpuscles are of a large size, oval in shape, and contain granular nuclei. The nuclei may be distinctly seen on the addition of acetic acid, which clears up the outer portion. The corpuscle of the frog is from $\frac{1}{1000}$ to $\frac{1}{1200}$ of an inch (25 to 21 mmm) in diameter,'

Flg. 61.

Typical characters of the red-blood corpuscles in the main divisions of the Vertebrata (modified from Gulliver.) The average diameter in the longest axis is given in each case.
Color.-In a single stratum of red corpuscles no color is observed, but when two or three are superimposed upon one another, a reddish tint becomes apparent. The color depends partly on the shape of the corpuscles, but chiefly on
the hemoglobine they contain. They also have a tendency to adhere by their concave surfaces in the form of rouleaux. (Fig. 60, c). This is peculiar to the red corpuscles, and is very much increased in inflammation. If any of the salines be added to the blood, this pcculiar tendency is in a measure neutralized.

White Corpuscles.-These are so named on account of their white, or colorless appearance. They have a circular outline, appear granular within, and are tolerably uniform in size, theird iameter being about ${ }_{5}{ }^{\prime}{ }^{\prime} \sigma \bar{\circ}$ of an inch ($8 . \mathrm{mmm}$.) in warm-bloods, and ${ }^{5}{ }^{\frac{1}{6} \sigma \pi}(10 \mathrm{mmm}$.) in reptiles. In some of them a nucleus may be distinctly seen on the addition of acetic acid; in others the nucleus appears to be broken up, so as to give the cell a granular appearance, (Fig. 60, d). They are more highly refractive than the red under the microscope, and are generally observed in or near the margin of the field, while the red are grouped together in the central part. When examined in the circulating blood of a frog's foot, they are seen to occupy the exterior of the current, and adhere more or less to the walls of the vessels, or appear to pass from the centre to the walls and back again. The proportion of white to red corpuscles in man, is about one to 400 or 500 ; but in inflammation it may be one to ten. In certain diseases as anemia, leucocythemia, etc., the white corpuscles are relatively increased. In the oviparous vertebrata the proportion is higher than in man, being about one to sixteen; while in one of the vertebrata (amphioxus) the red corpuscles are entirely absent. In 'ra invertebrate series, on the other hand, the corpuscles are almost invariably white, and hence the socalled white blood of this class of animals. The white corpuscles have the power of spontaneously changing their shape, and of moving in certain directions, closely resembling those of the amœba, (Fig. 12), and hence termed amoeboid movements, (Fig. 60, e.) This is due to the contractile property of th \geqslant protoplasm. The amoboid movements are
arrested by the addition of water or acetic acid. The white corpuscles are reproduced by the process of fission. The blood also contains granules or molecules, हס'oण of an ineh, (3. mmm .) in diameter, similar to those found in lymph and chyle, some of them fatty, and others probably albuminous.

Origin of the Corpuscles.-The carliest blood corpuscles are formed from the primordial cells in the vaseular tract. The embryonic heart and aorta are formed by the arrangement of masses of the primitive cells, or germinal vesicles, of the mucous or vegetative layer, in the position, form, and thickness of the developing vessels respectively. The external layer of cells is converted into the walls of the vessels, while those in the interior form the first blood corpuscles. The primordial, or primitive vesicles, are large, colorless, spherical cells, each containing a nucleus, nucleolus, granular matter, and fat globules. These cells, gradually clear up, so as to bring into view the nucleus, become reduced in size, and develope the coloring matter (hemoglobine) as they pass into the form of red corpuscles. The blood corpuscles of the human embryo thus formed are circular, dise-shaped, full colored, and, on an average, about इडेण of an inch (10 mmm .) in diameter. They each contain a nucleus (and in some cases two), about ${ }^{\frac{1}{0} 050}$ of an inch (5 mmm .) in diameter, and slightly granular. They are reproducud by the process of multiplication by subdivision, or fission.

When the liver begins to be formed this multiplication of blood corpuscles in the mass of blood ceases, according to Kôlliker, and a new production of colorless nucleated cells takes place in the vessels of the liver. These nucleated cells undergo a gradual change into red corpuscles, similar to those of the fir t brood.

After birth, when the lymph and chyle corpuscles are thrown into the current of blood, they are developed into red blood corpusoles, so as to supersede thoso formed as
abov of ec thor Seco inte corp ovip tion be o
above described. This is evidenced-First by the formation of color, while the chyle and lymph are passing through the thoracic duct, due to the development of hemoglobine: Secondly, by the presence of corpuscles, which appear to be intermediate stages of development between the lymph corpuscles, and the nucleated red corpuscles in the blood of oviparous vertebrata. Thirdly, by the progressive trav:tion from lymph or white blood, to red blood, which may be observed in the ascending seale of animal life.

Development from Chyle and Lymph Corpuscles.Kôlliker and Paget regard the redblood corpuscles as being formed from the smaller of the lymph and chyle corpuscles by a gradual progressive metamorphosis; while Wharton Jones and Huxley maintain that they are foimed from the nuclei alone, the outer portion of the cells disappearing in the change. The weight of authority, however, appears to favor the former opinion. The change from chyle and lymph corpuscles to red blood corpuseles, takes place as follows:The chyle and lymph corpuseles are at first nucleated cells, the nuclei of which are generally more or less obscured by the granular matter which surrounds them, (Fig. 59.) They vary in size from $\frac{1}{2600}$ to $\frac{1}{3000}$ of an inch, (10 to 8.1 mmm .) in diameter. The granular matter clears up, and the nuclei disappear. They then become flattened or biconcave, contraction and consolidation of the cells take place, which reduce their size to a certain extent, and hemoglobine is developed.

The white corpuscles are also developed from chyle and lymph corpuscles. Lymph corpuscles are formed in the lymphatic glands, spleen, adenoid tissue, and medulla of bone. The red and white corpuscles are regarded by some as two distinct and complete forms, neither being capable of metamorphosis into the other, and each having its own specific purpose to subserve in the aniaual economy; the greater number of chyle and lymph corpuscles proceeding to the formation of red corpuscles, while a few of them are
developed into the white corpuscles of the blood. The argument in favor of this theory is, that the white corpuscles have been found in the blood in a state of decay, thus showing that they were not destined to proceed to a higher development. By others they are regarded as an early or embryonic condition of the red corpuscles, or an intermediate stage of metamorphosis between the chyle and lymph corpuscles, and the red corpuscles. The latter view is supported by the following arguments:
1st, The colorless corpuscles are intermediate in shape and general appearance.

2 nd . They are increased under circumstances unfavorable to normal changes, as in inflammation, or in persons of weak health, as in anemia, leucocythæmia, and in the tubercular diathesis.

The red and white corpuscles are supposed by some to be developed directly from the plasma of the blood in which they float, by the ordinary process of cytogenesis. Blood corpuscles, like other cells, have their period of growth, maturity and decay, and while some are undergoing the process of disintegration, others are rising up to take their plac s. They are, no doubt, formed very rapidly, as is evidenced in their rapid formation after great hemorrhage, and their growth and development may be facilitated by the administration of iron, and a liberal diet. When the corpuscles are beginning to decay, they generally present at first a granular appearance; after a little they break down, and the contents disappear. Many of them may be observed in a granular state in phthisis, albuminuria, and septic poisoning.

CHEMICAL AND STRUCTURAL CHARACTERS OF THE BLOOD.
Chemical Composition of the Blood.-The average proportion of the constituents of the blood in 1000 parts is as follows:-
$\left.\begin{array}{lllllllllll}\text { Water } \\ \text { Albumen (of serum) }\end{array}\right)$

These proportions are subject to considerable variation, even in health, depending on diet, mode of living, etc. The proportion of the various ingredients may be determined as follows:-The blood, as it flows from the vein, is received into two vessels of equal size, the first and last portions of the whole amount into the first, and the second and third portions into the second vessel, in order that the two quantities may be nearly alike, and then weighed. The blood in the first vessel is allowed to coagulate; that in the second is whipped with a bundle of twigs, to separate the fibrin, which is then washed with water-to remove the salts, with alcohol-to remove any coloring matter, and with ether-to remove any fats. It is then weighed. The clot which has formed in the first vessel is then taken out, and after the serum has drained away, it should be weighed. From the weight of the clot subtract the weight of the fibrin obtained from the second vessel, and this will give the weight of the corpuscles. The amount of albumen may be obtained by precipitating it from the serum, filtering and weighing. In this way it may be ascertained that in 100 parts blocd, about 78 parts are fluid,'and 22 parts solid material. In the latter, there are 13 parts corpuscles, 7 parts albumen, $\frac{1}{4}$ part fibrin, the salts, etc., making up the balance. In ordinary analysis, the corpuscles are estimated at about 13 per cent. by weight, of the entire blood. This refers, of course, to the dry erpuscles, from which the water has been removed. But it is easily seen, by a
microscopic examination, that the corpuscles, in their natural moist condition in the blood, constitute fully one-half of the entire mass; hence the discrepancy in the analysis of different observers. Lehmann and Schmidt put the moist corpuscles at 512 parts in 1000 , or about four times the weight as given above. Three fourths of their weight, consist of water.

The red blood corpuscles are composed of a transparent homogenous substance called the stroma, in which the hemoglobine is infiltrated. The stroma is tough and elastic, and consists of globuline, protagon, fatty matters, cholesterine, and salts. The most important of these is the glohuline. It is a semi-fluid substance, belongs to the albuminous compounds, and is formed from albumen. It is soluble in water, but not in the liquor sanguinis or fluid plasma of the blood, and is readily acted on by acetic acid, causing the corpuscles to swell out and finally burst.: It coagulates completely at $200^{\circ} \mathrm{F}$.

Hemoglobine is a kind of pigment matter which is found in the red blood corpuscles, mingled with the stroma. It is more abmudant than any other ingredient of the corpuscles. It belongs to the albuminous compounds, being developed from albumen or fibrin, and consists of $\mathrm{C}_{54} \mathrm{H}_{7}$ $\mathrm{N}_{16} \mathrm{O}_{21} \mathrm{~S}_{.6} \mathrm{Fe}_{.4}$ the latter of which is an essential ingredient. It is soluble in water, dilute alcohol and alkalies, but is insoluble in ether, strong alcohol and oils. It crystalizes in rhombic, or hexagonal plates or prisms, forming the so-called blood crystals. Although a crystalloid, and soluble in water, it is not diffusible, i.e., it does not pass through the pores of an animal membrane. When heated, it is decomposed into globuline and hematine. The distinguishing characteristic of hemoglobine is its strong affinity for oxygen, forming oxy-hemoglobine, which has a scarlet color; this readily parts with its oxygen again in the presence of reducing agents, and assumes a purple hue. On these qualities depend its most important physiological
properties, viz., as a carrier of oxygen. This also explains the scarlet color of arterial blood, and the purple tint of venous. It was formerly supposed that the scarlet color of the blood was produced by the oxygen rendering the corpuscles biconcave, and the venous condition by carbonic aeid which made them biconvex or rounded.

Fig's. 62 and 6.

a. Speetrum of oxidized hemoglobine. b. Spectrum of deoxidized hemoglobine.

The two varieties of hemoglobine may be readily distinguished by the spectroscope. A solution of oxy-hemoglobine or diluted arterial blood, presents two absorption bands in the spectrum, between the lines D and E , one in the yellow and the other at the commencement of the green, (Fig. 62, a). The former is narrow and well defined, the latter is broader and not so well marked. The spectrum of deoxidized hemoglobine on the other hand, presents a single absorption band intermediate in position between the rr two, (Fig. 63, b). When from any cause the red corpuscles are broken down, the hemoglobine is set free, and stains the coats of the vessels, so as to give rise to an appearance resembling arteritis. Rupture of the corpuscles may take place from drinking too much water, or in low forms of disease, as in typhoid fever, purpura hemorrhagica, etc.

Distinction between Human and Animal Blood.It is sometimes of the utmost importance in medical investigations to distinguish between human blood and the blood of animals. In a fluid, or blood stain, when the corpuscles have been dissolved or destroyed, the presence of blood may still be determined by the spectrum of hemoglobine, but the distinction between human and animal blood cannot thus be made. It is only by the use of the microscope that this can be determined. If the blood stain be found to contain oval nucleated corpuscles, it cannot be human blood, but that of a fowl, reptile or fish. If, on the other hand, the corpuscles are circular and without nuclei, then it will be impossible to say whether it is human blood, or the blood of some animal, as the cow, sleep, ape, dog, etc., whose corpuscles are nearly of the same size as the human.

DIFFERENCE BETWEEN ARTERIAL AND VENOUS BLOOD.

Arterial and venous blood differ from each other in general composition and color. The analysis which has already been given is of venous blood. In arterial blood the quantity of solid constituents of the corpuscles is less, but relatively they contain more hemoglobine and salts, and less fat. It also contains more oxygen and less cartonic acid. The liquor sanguinis is richer in fibrin, contains more water, and less albumen. The fatty matters of the serum are diminished, and the extractive matters increased. The phosphorus which exists in the venous blood, is converted at the lungs into phosphoric acid, which then unites with the alkalies of the serum, as lime, potassa, soda, magnesia, etc., forming phosphates. Phosphorus is used in the building up of nerve and bone tissue.

Blood of the Portal, Renal and Hepatic Veins.Blood drawn from different parts of the arterial system of the same animal is nearly always the same; but great variations exist in the composition of the blood in the different parts of the venous system. The portal vein contains blood
derived from the gastric, mesenteric and splenic veins. During digestion, the blood of the gastric and mesenteric veins is much diluted, and contains the soluble alimentary substances taken up from the stomach and small intestine, as sugar (glucose), albuminose, etc. The fibrin also found in these vessels is less perfectly elaborated than in the blood in general, and liquifies soon after c agulation. On the other hand, the blood of the splenic vein shows a diminution of the red corpuscles, an increase of the white corpuscles, and an increase of the albumen. The fibrin is also increased, but like that of the gastric and mesenteric veins it is not fully elaborated, coagulates imperfectly, and liquifies soon afterwards. The blood of the renal veins is the purest in the body, having, subsequently to its purification in the lungs, been deprived of other impurities by the kidneys, such as urea, creatine, salts, etc. It contains less water, the albumen is neutral in reaction, and the fibrin is scanty and will not coagulate, (Brown Sequard.) The blood of the hepatic veins contains an increased amount of sugar and fat, which are formed during the passage of the blood through the liver. It also contains less water, albumen and salts, and more corpuscles and extractive matter, than that of the portal vein.

GASES.-There is a remarkable difference in the amount of gases which arterial and venous blood respectively contain. The former contains from 16 to 20 per cent., by volume, of oxygen, while the latter contains about 12. The quantity of carbonic acid, on the other hand, is from 30 to 35 per cent. in arterial, and from 40 to 50 per cent. in venous blood. The quantity of nitrogen varies from 1 to 2 in arterial and venous blood respectively. There are also traces of ammonia. The difference between the amount of oxygen and carbonic acid respectively in arterial and venous blood, confirms the idea that an exchange of oxygen for carbonic acid takes place in the system, and an exchange of carbonic acid for oxygen in the lungs. The red
corpuscles carry oxygen from the lungs to the tissues, and return carbonic acid for elimination. The serum also possesses the property of absorbing or dissolving carbonic acid. A certain part of the oxygen is used directly in the formation of fibrin, from albumen. The proper development of fibrin does not take place when the due aëration of the blood is interfered with, as in double pneumonia, in which case it is very much diminished. The presence of oxygen seems to be essential to the production of fibrin, and it has been shown by experiments on rabbits, that when pure oxygen is breathed the quantity of fibrin is very much increased.

Dr. Gairdner examined the blood of six healthy rabbits, and found it to consist as follows, in 1,000 parts:
Fibrin. 82.35
Corpuscles . 46.30

He also examined the blood of three of these, which had been exposed to an atmosphere of pure oxygen for half an hour, and found it to contain as follows:

[^4]Another of these animals was exposed to the action of an electro-magnetic current passed between the chest and spine, which produced a great acceleration of the respiratory movements, and the blood was found to contain 2.9 parts of fibrin in a thousand. Although the corpuscles appear to be very different in the two tables, yet their relative amount in proportion to the albumen is almost exactly the same in both cases.

Color.-The difference in color between arterial and venous blood, is due to the hemoglobine which the red corpuscles contain and the change of color produced in it by the influence of oxygen. It is also partly due to the change of shape of the corpuscles. They are biconcave in arterial blood, and rounded in venous. The former is produced by the in-
fluence of oxygen ; but it may also be occasioned by contact with some of the salts in solution, without any direct exposure to oxygen. The blood is darkened in color by whatever tends to expand the corpuscles, so as to render them rounded, whilst it is brightened by whatever tends to render them biconcave. For example, arterial blood is darkened by the addition of water, which swells out the corpuscles and deprives them of some of their coloring matter.

CONDITIONS WHICH INFLUENCE THE CHARACTER OF THE BLOOD.

Influence of Venesection.-It has been found by experiment that, in bleeding, the corpuseles suffer most ; the fibrin is increased, and the water taken away is soon replaced by transudation from the tissues, so that the specific gravity is diminished, as will be seen from the following table, the result of the analysis of the blood of ten patients, by Becquerel and Rodier :

From the above it will be seen that the corpuscles are notably diminished, and that, bleeding has no effect whatever in diminishing the amount of fibrin. Fibrin is increased in all inflammatory diseases, and the most copious venesection is unable to check it, but rather increases it. The following table gives the result of bleeding, in a case of rheumatism, from Christison :
Water S_{44}
Solids of Serum 93
Corpuscles 57
Fibrin 4

Influence of Starvation on the Blood.-This is somewhat similar to prolonged venesection. The following tables show the result of bleecding upon a well-fed dog; and also the same, in a state of starvation. (Todd and Bowman) :

		Number of Bleedin			
		1st.	2nd.	3rd.	4th.
While being fed.	Water.	783.79	810.89	815.18	813.04
	$\{$ Corpuscles.......	142.85	113.54	110.58	106.95
	\{ Solids of Serum.	70.94	70.85	69.92	76.01
	Fibrin.	2.42	4.72	4.34	3.9

After these bleedings, the animal was allowed to recover, and was well fed for about three weeks. He was then starved for about four days, being allowed nothing but water, and bled each day, with the following result :

Number of Bleedings.

		Ist.	2nd.	3rd.	$4^{\text {th. }}$
	(Water	804.40	805.44	838.30	849.84
While being	Corpuscles	121.08	119.15	87.98	74.21
starved.	j Solids of Serum.	72.61	71.46	68.46	71.62
	(Fibrin.	1.91	3.95	5.26	5.1

In the latter case, the diminution of the corpuscles is more marked than in the former ; and it will be observed that the corpuscles had not entirely recovered from the effects of the first bleeding. It will also be observed that, in both cases, there is at first an increase in the fibrin, and afterwards a diminution-the latter being caused by the diminution of the red corpuscles, and consequent non-development of the fibrin.

Influence of Iron and Flesh Diet on the BloodThe quantity of blood corpuscles may be increased by the administration of iron and flesh diet. Fresh beef is the best diet for this purpose. It contains the most appropriate materials for nutrition, and is comparatively easy of digestion. The essence of beef, or beef tea, is still better, especially when the patient is very feeble, and the stomach unable to digest solid food. In anemia, the corpuscles have been increased from forty to sixty, and even ninety in a thousand, in a few weeks, by this mode of treatment.

Influence of Age on the Blood.-During the latter part of fæetal life, the solids of the blood, especially the red and white corpuscles, are increased, and remain high for a short time after birth. They then gradually diminish until puberty, when they are again increased, and remain so during the most vigorous period of adult life, after which they begin to decline, as old age advances. The object of these changes in the increase of solids, is to fit the blood more fully for the nourishment and growth of the body at these important periods, viz; immediately after birth, at puberty, and during the period of ovulation in the female, and the corresponding period in the male.

Influence of Sex on the Blood.-The solid elements of the blood, especially the red corpuscles, are increased in the male. In pregnancy, the blood has a lower $s p . g r$. than the average, owing to the deficiency of red corpuscles. On the other hand, the white corpuscles and fibrin are increased, the latter especially during the last three months. This may be considered a wise provision of nature to favor the formation of clots in the mouths of the open vessels after parturition and the separation of the placenta, and to prevent post-partum hæmorrhage.

Influence of Disease on the Blood.-It will be seen from the following table that the principal constituents of the blood may vary much, in health, in different persons; and in the same person, at different times. This may be due to various causes, as the kind or quality of the food, habits, amount of exercise, etc. According to Andral, the variations may be as follows:

In estimating the quantity of fibrin in the blood in diseased conditions, it should always be borne in mind that it may contain a number of white corpuscles. These are very

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

difficult to separate, and although not very numerous in a state of health, yet in many diseases, as inflammation, anemia, leucocythæmia, etc., they are so much increased as to add materially to the amount of fibrin. There is found to be an invariable increaso of fibrin in all acute inflammatory affections of a sthenic kind. This augmentation is so constant, that if more than five parts of fibrin in a thousand be found in the course of any disease, it may be positively affirmed that some local inflammation is present. The maximum proportion of fibrin in inflammation may be stated at about 13.3 (acute rheumatism), the minimum 5, and the average about 7 parts in a thousand. Even in anemia and chlorosis it rises to 6 or 7 in inflammation. In phthisis also, there is an increase, notwithstanding the deterioration of the blood. It is, no doubt, due to the local inflammation going on around the tubercles. In single pneumonia the fibrin has been found as high as 10.7; in acute rheumatism, 13.3. It is slightly increased in all the exanthemata. It is also increased in leucocythæmia. The increase in the quantity of fibrin does not depend upon the febrile condition present in inflammation, but upon the inflammation itself. For example, in continued fever it is lower than in health, but if local inflammatio: arise in the course of the disease, the fibrin is at once iacreased. In simple continued fever it has been found as low as 1.6. In typhoid fever it may vary from 3.7 to 0.9 , and in some cases the blood shows no disposition to coagulate, the fibrin either being entirely deficient, or very much lowered in vitality. In double pneumonia it is as low as 0.9 , due to the imperfect aëration of the blood. In scurvy it is sometimes increased, and sometimes diminished. In cholera the serum is first diminished next the albumen, and afterwards the fibrin. The vomited matters, and substances passed by the bowels are coagulable by heat and nitric acid. The fibrin is diminished in apoplexy, due probably to the arrest of nerve force. In purpura hemorrhagica it is 0.9 , and
sometimes entirely deficient. One of the effects of a diminution in the proportion of fibrin is a tendency to the occurrence of hemorrhage from slight causes, which is difficult to arrest.

The amount of red corpuscles is subject to greater variation within the limits of health than the fibrin. In plethora they may be increased to 180 or 190. Plethoric persons are not on that account more liable to inflammation; but they are very prone to congestion, especially of the brain, and apoplexy. This condition may be easily remedied by venesection. The number of corpuscles may be reduced from 180 to 144, or from 60 to 48 in one bleeding. In anemia, on the other hand, the corpuscles are diminished, in some cases as low as 27 in a thousand, but they may be rapidly increased by appropriate treatment. They have been increased in some instances from 40 to 60 , and even 90 , in three or four weeks. In diabetes mellitus, Bright's disease, disease of the heart, lead poisoning, tuberculosis, cancer, scurvy, leucocythæmia, etc., they are materially diminished, and often assume a granular appearance.

The colorless corpuscles are said to be increased in inflammation, but it is by no means constant. In the disease first pointed out by Dr. John Hughes Bennett, of Edinburgh, and termed by him leucocythæmia, they are largely increased. In this disease the specific gravity of the blood is low, and the fibrin is invariably increased.

The quantity of allumen seems to vary very little. It is reduced in cholera, albuminuria, etc., so that the entire solids of the serum have been found in some cases as low as 52 in a thousand. The diminution in the amount of the albumen in the serum, in albuminuria, is exactly proportioned to the quantity found in the urine.

The fatty matters are very much increased in some instances, so as to give the serum a milky appearance, as for example in tuberculosis, Bright's disease, hepatitis, dropsy,
etc., and also during lactation in the female. Very little is known regarding the variations of the alkaline salts in disease.
The proportion of water varies according to the amount of solids, being increased when the solids are diminished, and vice versa. In cholera, however, the drain is very great, and the reduction of the watery portion is most marked.

Blood Poisons.-Substances which should be excreted from the body, as carbonic acid, urea, bile, etc., may be retained in the circulating current, and be attended with serious and sometimes fatal results. The most serious cases of blood poisoning, however, are those in which the poison is introduced from without, producing fermentation of the mass of blood, and destroying its vitality, as the poison of malignant pustule, typhoid, glanders, venom of serpents, etc.

coagulation and vital properties of the blood.

The blood is the pabulum of all the tissues of the body. It is a living fluid, which possesses the power of reproducing and maintaining itself, and contains all the elements necessary for the supply of the tissues, and nothing deleterious.or poisonous; for the presence of pus, urea, venom of serpents, or septic poisons, would be alike destructive to the vitality of the blood, and also the tissues. It has a certain amount of viscidity, which seems necessary to its free circulation through the capillaries. Besides, it is observed that, when from any cause the albumen and fibrin are diminished, there is a strong tendency to transudation of the watery portions of the blood, resulting in dropsies in different parts of the body. The corpuscles are the vital clemente of the blood, and they endow certain other elements, such as fibrin and albumen, with vital properties.

The coagulation of the blood consists in a new arrangement of its constituents, which occurs when the blood is removed from the vessels, or when the body itself dies. It
depends upon the spontaneous coagulability of the fibrin, (or its constituent elements), during which it forms a network of fibres, in the meshes of which are included the corpuscles, in groups, like small piles of money. These are somewhat more numerous near the boitom of the clot. This crassamentum, or clot, then contracts, and squeezes out the serum, which contains the water, albumen and salts. The corpuscles exercise a certain inffuence in the coagulation of the blood, but their immediate presence is not absolutely necessary to its performance. This may be shown by filtering frog's blood, diluted with thin syrup, on a fine paper filter, by which the corpuscles are kept back, and the liquor sanguinis which passes through, will afterwards coagulate. This is due to the vitality which it carries with it from the blood corpuscles.

When coagulation is observed under the microscope, there are first seen minute granules which aggregate to form star-shaped spots; these send out arms or projections

Fig. 64.

Clot of fibrin containing blood eorpuseles entangled in its meshes.
in different directions, which are formed by the addition of granules in a linear manner. In this way the whole mass is converted into a fibrous net-work, enclosing the corpuscles in its meshes (Fig. 64).

The period required for coagulation varies much. It commences about two minutes after the blood is drawn, and
is completed in from half an hour to two hours after wards; but continues to contract for many hours. The degree of regularity, and the completeness of the coagulation, depends on the previous elaboration of the fibrin, and the character of the surface on which it takes place, whether dead or living, warm or cold, moist or dry, etc. It is not generally supposed to become organized. When it coagulates in the open mouthis of vessels, as in the arrest of hemorrhage from wounded arteries, the coagulum is absorbed and carried away, after the vessels have been closed, by the effusion and organization of lyisph.

Fibrin does not exist as such in the blood, but is supposed to be formed in the process of coagulation, by the union of two previously existing albuminous substances, fibrinoplastin (or paraglobulin), and fibrincgen, united under the influenee of a "ferment" formed in the blood after its removal from the body. This is the theory of Schmidt. As the basis of this theory it has been observed that if blood-serum, or the fluid of hydrocele, or any serous effusion, be added to any other similarly constituted fluid, as the fluid of ascites, or from the pleural cavity, coagulation takes place, resulting in the production of fibrin. Another theory is that of Denis, according to whieh a substance exists in the blood, termed plasmine, in the proportion of 25 parts per thousand, which separates into two substances when removed from the body. One of these is fibrin, which coagulates, and the other is metalbumen, which remains in solution. Plasmine however, is regarded by some as a mixture of fibrinoplastin and fibrinogen.

Cupped and Buffed Cóndition of the Blood.-This condition of the blood generally occurs in inflammation, but is not exclusively contined to it, for it has been found to occur in anemia and in the blood of preguant women during the last three months of gestation. It is occasioned by the increased tendeney of the red corpuscles in these cases to run together and sink to the bottom of the vessel, and
thus leave the fibrin in the upper part. The fibrin then contracts very firmly-a circumstance which is favored by the comparative absence of the corpuscles-and in consequence of this contraction taking place, first on the surface and sides of the clot, and thence extending internally, it causes it to assume a concave, or cupped appearance, both on the surface and sides. The "buffed "appearance is due to the predominance of the fibrin in the upper part of the clot, the characteristic color of which is light yellow or buff. The clot also sontains some white corpuscles in its meshes, and these are said to be increased in inflammation. The formation of the cupped and buffed coat, though favored by slow coagulation, is often observed in cases where the coagulation is more rapid than usual.

This condition of the blood is due, either to an absolute increase of fibrin, the corpuscles remaining the same; or to a diminution of the corpuscles, the quantity of fibrin remaining the same as in health. It has also been observed that, although the clot is firmer in inflammation, each single fibre is weaker and more easily broken down than that of a healthy clot. This is supposed to be due to the comparative absence of the corpuscles, from their having sunk to the bottom of the vessel d..ring the process of coagulation

Circumstances whice Promote Coagulation. - The natural temperature of the body, from which the blood is taken (in man 98° to $100^{\circ} \mathrm{F}$.) is most favorable to coagulation. Rest favors coagulation, but is not the cause, as some have supposed; for, although at rest, if air be excluded, as when it is within the living vessels, or covered with oil, coagulation is retarded for a considerable time. Exposure to air accelerates the process on coagulation; it takes place more readily in shallow vessels than in deep narrow ones. Also, the multiplicity of points; as in a lacerated, ragged wound, coagula are more readily formed than in clean, incised wounds. The addition of less than twice its bulk of water will promote the coagulation of the blood.

A low state of vitality of the vessels, from whatever cause, favors the formation of clots, or embolia, as they are called. These are, no doubt, frequently formed during life, as grooves, marked out by the current of blood, may be observed in clots found in the heart after death.

The contact of foreign matter promotes coagulation, even in the living vessels. Simon carried a single thread, by means of a fine needle, through a contiguous artery and vein, and allowed it to remain from twelve to twenty-four hours. A soagulum was formed in both artery and vein, that in the artery being pyramidal in shape, the base directed towards the heart, while that in the vein was larger and more irregular, the clot being chiefly collected on that side of the thread most remote from the heart.

The contact of dead animal matter accelerates coagulation in a remarkable degree, either within or without the living vessels. The presence of pus will produce coagulation in healthy blood, in from two to five minutes, and when injected into the veins it produces instantaneous death. When an artery gives way in the interior of an abscess, the hemorrhage is restrained, to a certain extent, by the presence of the pus which surrounds it.

Circumstances Which Retard Coagulation.-In some instances it would appear that the blood does not coagulate after death; for example, it was stated by Hunter, that in animals bunted to death, killed by lightning, electric shocks, or blows on the epigastrium, the blood did not coagulate ; but it is probable that, even in these cases, it is only retarded, and ultimately coagulates, though imperfectly. It is further stated, by Polli, that the blood invariably coagulates before putrefaction sets in. Nevertheless, in cases of poisoning by hydrocyanic acid, and in death from asphyxia, coagulation may not take place, in consequence of the complete paralysis of the corpuscles and fibrin. In inflammatory conditions the blood drawn is usually slow in coagulating, in consequence of the sinking of the cor-
puscles ; but the clot is preternaturally firm, especially at the upper part, where the buffy coat contracts, and produces the "cupped condition," which generally indicates a high state of inflammation. The coagulation of the blood is retarded, or altogether destroyed, by keeping it at a temperature of $120^{\circ} \mathrm{F}$., while th~ natural heat of the body $\left(98^{\circ}\right.$ F.) promotes it. It is also retarded by cold, but is not destroyed, even by freezing; for, if frozen as soon as it is drawn from the vessels, it will coagulate on being thawed.

The addition of more than twice its bulk of water retards the coagulation of the blood. Continued agitation also retards the coagulation for a time; but it ultimately takes place in the form of shreds, or strings. Blood while still contained in the living vessels, or effused in the living tissues, may continue in a fluid condition for a long period. Gulliver states that the blood included between two ligatures in a living vessel remained fluid three, four, or five hours. He also mentions one remarkable case, in which blood effused in the tissue of the loin, was found fluid when let out twenty eight days afterwards. In all these cases it coagulated in. from fifteen to thirty minutes when withdrawn from the livirg parts. Exclusion from the air retards coagulation, as may be seen by covering the blood with a stratum of oil so as to exclude the air. The addition of alkaline or earthy salts, added to fresh blood, have a tendency to retard, and sometimes to prevent coagulation; and the same effect is produced by many vegetable substances, especially those of the nareotic and sedative class, as opium, hyoscyamus, belladonna, aconite, digitalis, ete. Gulliver mentions that he has kept horses' blood in a ftuid state for fifty-seven weeks, with solution of potassium nitrate, and that it still coagulated, when diluted with water. The presence of bile retards the coagulation of the blood; and septic or animal poisons as the virus of serpents may retard or entirely destroy its coagulating power. It is also retarded by imperfect aëration of the blood during life, as in asphyxia.

FUNCTION CE THE CONSTITUENTS OF THE BLOOD.
Function of Fibrin.-It was formerly supposed that fibrin was that element of the blood which was directly drawn upon in the process of nutrition. This opinion was based on the then current theory that fibrin and muscle were identical in chemical composition; but it has since been shown, by Liebeg, that, so far from this being the case, the evidence is precisely the other way. There is no evidence whatever chat fibrin (or its constituent clements) is used in the formation of any of the tissues, while, on the other hand, there are negative evidences that their formation and growth do not depend upon its presence. Firstly, the general purposes of nutrition may be served by a fluid which does not possess the property of coagulating spontaneously. Secondly, the small amount of fibrin found in the chyle is simply the result of elaboration in the lymphatics. Thirdly, the vegetable cell, which is essentially the same as the animal cell, is formed from an albuminous fluid, there being no fibrin in the juices of the plant. As a component of the blood, fibrin is of importance in giving it its proper degree of plasticity, and in this way facilitating its how along the vessels. It also prevents the blood from exuding through the coats of the vessels, and arrests hemorrhage by plugging up the mouths of the open vessels. The want of the coagulating power oi the blood is strikingly seen in cases of purpura hemorrhagici, in which the blood is not able to form a clot sufficient to close the mouth of the smallest vessel, or to form a barrier to surround abscesses, and prevent the infiltration of pus in the tissues. The same thing may be seen in the hemorrhagic diathesis, in which there is almost an entire absence of coagulable material. Fibrin was formerly supposed to be the material thrown out in the healing of wounds, and in the formation of adhesive bands in inflammation.

Some physiologists and pathologists, among whom are Zimmerman, Simon, Jones and Sieveking, etc., have ad-
vanced the idea that fibrin should be regarded as among those substances which have arisen from the decay of the blood, or the effete matter thrown into it from the tissues. In support of this view they advance the following arguments. First, that fibrin is increased in bleeding, starvation, anemia, and other states of exhaustion, while, at the same time, the red corpuseles are rapidly reduced by the same means. This view is also favored by the fact that in improvement of the breed of animals, the red corpuscles are increased, and the fibrin diminished. Secondly, there is only a small quantity of fibrin in foetal blood, and in the renal veins; none in the egg, or the chyle until it enters the lacteals; and it is also smaller in quantity in the blood of the carnivora than in the herbivora.

Function of the Red Compuscles.-One great function of the red corpuscles is to elaborate the materiais of the blood which are to be used in the nutrition of the tissues, more especially those which supply the muscular and nerve tissues. They also assist in converting the albumen into fibrin, and in forming globuline and hemoglobine from the albumen and fibrin of the blood. They are also carriers of oxygen to the tissues, and deporters of carbonic acid from the tissues to the lungs, where it is eliminated. The former is due to the affinity of hemoglobine for oxygen. In anemia, when the corpuscles are very much diminished, the strength of the individual is correspondingly reduced.

The number of red corpuscles bears a close relation to the amount of respiratory power in the different classes of vertebrata: both of these are also found to be greatest in birds, less in mammals, and very low in most reptiles and fishes. The proportion of the corpuscles is greater among the carnivora than the herbivora. The want of red corpuscles in the invertebrata is compensated by the introduction of air through their tracheal apparatus, directly to the tissues themselves.
iunction of the White Corpuscles.-These are, no doubt, also concerned in the elaboration of nutrient material for the tissues of the body, more especially in the invertebrate classes of animals. These corpuscles, which are oat-shaped in the larve of insects, are fomed more numerous just before each change of skin, at which time a larger supply of nourishment is required. After theso changes have taken place, they are agnin diminished. The white corpuseles also contain a small quantity of iron, thus showing that the characteristic color of the red corpuscles is not due to this sulstance. In the vertebrata, on the other hand, the excess of colorless corpuseles is an evidence of unhealthy action; for example, they are very abomdant in the blood of frogs that are young, sickly, or ill-fed. In the hmman sulyect, they are increased in the disense called leucocythremia, in anemia, and also in inflammation according to some, although, in all probability, this only oceurs in sickly, serofulons, or tuberculous patients. When the circulation of the blood is examined in a bat's wing, or frog's foot, under the microscope, the white corpuscles may be observed rumning from the centre of the current to the circumference, and back again, and occasionally adhering to the sides of the vessels. They may also be oreasionally seen passing through the coats of the vessels by virtue of their amoboid movements, or diapedesis. In this process they throw ont arms or projections which enter the pores of the vessels and gradually force their way through. They thus pass out in large numbers in the healing process, and in inflammation, and are supposed to form the lymph. In this they are supplemented by the proliferation of comective tissue cells in the inflamed or wounded parts.
Function of Albumen.-This substance is the pabulum, from which the tissues of the body are formed. It is also used in the formation of the fibrin, globuline, and hemoglobine of the blood itself. Albumen by itself, however, is incapable of organization, and its conversion into the various
tissues must depend on their own power of appropriation. It also assists in holding in solution in the blood many of the metallic salts which exist in that fluid, or which enter the system. 'The albumen is derived from the food, and when my excess is taken into the system, it undergoes a retrograde change, and is eliminated by the liver and kidney. It is not excreted in health, but may be found in the urine in certain diseased conditions, as morbus Brightii, scarlatima, etc. Its presence in the urine may be detected by heat and nitric aeid, which canse a precipitate in the form of flakes. It may also be cound in the vomitce and dejecte in cholera and yellow fever.

F'ats.-The fatty matters taken into the system are intended in part, for the supply of the adipose and nerve tissue; but their chief use, however, is to aftord material for that combustive process which is necessary for the maintenance of animal heat. It also contributes to the formation of milk. That which is stored up in the body may be looked upon as the surplus. Fat is often detected in the fieces, and such cases indicate a diseased condition of the liver or pancreas.

The other organic compountls which have been found in the blood, as sugar, lactic acid, urea, uric and hippuric acids, creatine, creatinine, fatty acids and odorous substances, but which do not properly form a part of it, are the result of a retrogrado metamorphosis, either of the alimentary substances or of the tissues themselves, and are rapidly eliminated by the lungs, kidneys, liver, skin, etc.

The uses of the inorgranic salts are not positively known; but such as have been investigated were - ferred to in the chapter on the proximate principles or the first class. The alkaline salts as sodium and potassium carbonates and phosphates are necessary to give the blood its alkalinity, to hold in solution the albumen, and to facilitate the passage of the blood through the capillaries," The salts are necessary also for the proper nutrition of the muscular tissue. Lime
phosphate, lime carbonate, calcium fluoride, etc., are required to build up the solid tissues, as bone, teeth, etc. The lime phosphate, in particular, may be regarded almost as a listogenetic substance, as it seems to be almost invariably present in newly-forming tissues, but more especially in the bone and teeth. Iron is an essential ingredient of the blood itself, entering into the formation of the hemoglobine. Water exists in large quantities, and is liable to considerable variation.

relation of the blood to the living organism.

The normal proportions of all the substances found in the blood are maintained partly by the selective power of the tissues in the process of nutrition and growth, and partly by means of the excretory apparatus, which removes the surplus materials. Each part of the body takes from the blood the peculiar substance which it requires for its nutrition, and thereby acts as an excretory organ, by removing that, which if allowed to remain in the blood,would aet injuriously in the nutrition of the body generally; for example, the phosphates and carbonates which are deposited in the bones are as effectually removed from the blood as those which are thrown off by the urinary organs. Again, the rudimentary organs, as the hair in the foetus, the mammæ in the male, etc., may be looked upon as excretions serving a useful p rpose in the animal economy, by removing certain materials from the blood which might interfere with the proper nutrition of other parts of the body.

Although the blood may vary slightly in its composition and properties at different periods of life, yet we find that, taken as a whole, it presents such a constancy in its leading features, that we cannot fail to recognize in it some capacity for self-development, similar to that which the solid tissues possess. It retains its identity through life, just as a leg, an arm, or an eye. It has the power of maintaining itself from the new materials supplied to it from the food, and goes
through the successive phases of growth, maturity, and decay, similar to all vital organisms. The self-maintaining power of the blood is forcibly exhibited in the phenomena of disease, especially those of a febrile class, as the exanthemata, typhus, typhoid, ete. In all these cases the " morbid poison" would be eliminated by nature, if time were allowed to do so, the blood replenished, and the patient would resume his wonted health. In some instances, when a poisonour substance has entered the blood, the life may be saved by keeping up artificial respiration until nature has time to eliminate the poison from the system. In nearly all the toxic diseases of the zymotic class, there is a natural tendency to self-elimination of the poison, and of the products of its action on the blood either by the agency of the excretory organs, or by the local lesions which occur in these cases, and this oceurs with such regularity that we are able to predict with certainty when the changes may be expected to take place. From the very nature of the action of these poisons on the blood, it is evident that no reliance whatever can be placed on the action of antidotes in checking their course. The object of treatment lies wholly in promoting the elimination of the morbid poison, in subduing local action, and supporting the vital powers of the patient during the continuance of the disease.

CHAPTER VIII.

CIRCULATION.

The object of the circulation of the blood is to sarry to every part of the body the materials for its nutrition and growth, together with the supply of oxygen necessary for its vital actions; and also to carry away the effete substances which are formed as a result of the waste of the tissues. The organs concerned in this process are the heart, arteries, veins, and capillaries.

THE HEART.

The heart is the great central organ of circulation, situated in the middle mediastinum of the thorax, being placed obliquely, the base upwards and to the right side, on a level with the upper border of the third costal cartilage and corresponding to the interval between the fifth and eighth dorsal vertebre, the apex corresponding to the interspace between the cartilages of the fifth and sixth ribs, one inch to the inner side; and two inches below the left nipple. It is a hollow, muscular organ, which, like a forcing pump, drives the blood through the vascular systen. It weighs from 9 to 10 ounces, and is about equal to the size of the closed fist of the individual, It varies in size and shape, in different classes of animals, from a simple, muscular tube, as in insects, to the complex double heart of man. In all animals, the organs of circulation are adapted and modified in structure to correspond with the organs of respiration. In the lower order of animals, as insects, the heart consists of a simple muscular tube, provided with certain valves at short distances apart. Corresponding to the situation of these valves, there are distinct constrictions in the tube, so
that it has the appearance of a series, or chain of hearts. As we ascend the scale, we first observe the subdivision of the heart into two cavities, the auricles and ventricles, in the acephalous mollusks. In fishes, also, the heart consists only

Right auricle and ventricle opened, to show their interior. 1, superior vena cava; 2, inferior vena cava; 2 ', hepatic veins; 3 , right auricle ; 3 ', fossa ovalis, below which is the Eustachian valve; $3^{\prime \prime}$, coronary vein';,++ , auriculo-ventricular groove; 4 , 4 , cavity of the right ventricle, the upper figure is immediately below the semilunar valves; 4', large columna carnea or musculus papillaris; $5,5^{\prime}, 5^{\prime \prime}$, tricuspid valve; 6 , in pulmonary artery ; 7, aortie arch close to the ductus arteriosus; 8, ascending part orsinus of the areh covered at its commeneement by the auricular appendix and pumonary artery; 9 , the innominate and left cartoid arteries; 10 , appendix of the left auricle; 11,11 , the outside of the left ventricie, the lower figure near the apex.
of two cavities, the auricle, i.to which the blood is received from the veins, and a ventricle, which drives the blood into the main artery which supplies the gills. In reptiles, there are two auricles and one ventricle. One of the auricles
receives the blood from the lungs, the pulmonic; and the other, the blood from the veins of the body, the systemic auricle. They both open into a single ventricle, which propels the blood throughour ihe body, and also to the lungs.
In birds and mammals (including the human species) the heart consists of two auricles and two ventricles, separated by a complete septum, each auricle communicating with its corresponding ventricle, and \sim cich ventricle communicating with an arterial trunk. The course of the circulation is as

Fig. 66.

Diagram of the circulatlon. follows:-The venous blood is returned from the body by the superior and inferior venæ cavæ, and poured into the right auricle; thence it passes into the right ventricle, being prevented from returning by the closure of the tricuspid valves; from the right ventricle it passes to the lungs, through the pulmonary artery, the opening being closed behind it by the coaptation of the pulmonary semilunar valves. The blood being aërated in the lungs, is returned to the left auricle through the puimonary veins; this constitutes the pulmonic circulation. It next passes through the auriculo-ventricular opening into the left ventricle, being prevented from returning by the closure of the mitral valves; it is then propelled with con-
siderable force into the aorta, the opening being closed hehind it by the coaptation of the aortic semilunar valves, and is thence distributed to the various parts of the body, to be again returned by the veins to the right side of the heart. The latter constitutes the systemic circulation. On reference to the diagram there will also be seen a subordinate stream, or offset of the general or systemic circulation which passes through the liver; this is the portal circulation. The variation in the course of the blood during foetal life is called foetal circulation.

Proofs of the Circulation.-The circulation of the blood was discovered by Harvey in 1618. The main arguments by which he proved the circulation were as follows :- 1, The heart propels in half an hour, more blood than the whole mass in the body. 2, The blood spurts in a jetting manner from a wounded artery. 3, If true, the normal course of the circulation explains why the arteries were found empty after death. 4, If the veins were tied near the heart, it became pale and bloodless; if the artery were tied, the heart became distended. 5, If a ligature be drawn tightly around the limb, no blood can enter and it lecomes pale and cold ; if slightly relaxed, blood can enter but cannot leave the limb, hence it'swells. 6, The existence of valves in the veins, which permit the blood to flow only towards the heart. 7, The constitutional disturbance resulting from poisons introduced at a single point.

To these may be added proofs accumulated since the time of Harvey, viz. : the effects of wounds of arteries and veins respectively; in the former hemorrhage may be arrested by pressure above; in the latter, by pressure below the seat of injury. The direct passage of blood corpuscles from small arteries, through the capillaries into the veins, seen by the microscope in the web of the frog's foot, the tail of the tadpole, etc. The injection of certain substances into the veins, which have been detected in the arteries a short time
aiterwards. The valves of the heart are also so arranged as to permit the blood to pass only in one direction.

Muscular Structure of the Heart.-The heart consists of striated muscular fibres, and fibrous rings which serve for their attachment. The fibres are not arranged in bundles, but interlace with each other in an intricate manner, and adhere closely together, there being little or

Fig. 67.

Fig. 67. Muscular fibres of the heart, showitg their strix, divisions and junctions.

Fig. 68. Muscular fibres magnified, showing separate cells with their nuclei.
 none of that areolar tissue whi h exists in the external muscles, and there is no appearance of sarcolemma. The fibres are also smallar than those of other parts of the body, and the strie are less marked. The disposition of the fibres of the heart may be demonstrated by prolonged boiling, which hardens the fibres and facilitates their separation. The fibrous rings are four in number, the right and left auriculo-ventricular, the aortic and pulmonary. The former serve for the attachment of the muscular fibres of the auricles and ventricles, and also for the tricuspid and mitral valves; the latter for the attachment of the arterial vessels, semilunar valves, and muscular fibres of the ventricles. The walls of the left ventricle are 7 lines in thickness, those of the right about $2 \frac{1}{2}$ lines; the walls of the left auricle are about $1 \frac{1}{2}$ lines in thickness, the right 1 line.

The Fibres of thie Auricles.-These are divided into two sets or layers, a superficial, common to both, and a deep layer, proper to each. The superficial fibres run in a transverse direction across the bases of the auricles, and are most distinct on the anterior surface. The deep fibres consist of two sets, looped and annular. The looped fibres commence at the ariculo-ventricular rings in front, pass
upwards over the auricle, and return to the rings on the posterior part. The annular fibres surround the auricles in a circular manner, and are continuous with the circular fibres of the veins which open into them.

The Fibres of the Ventricles.-These consist according to Pettigrew, of seven layers, of which three are external, the fourth central, and three internal. In the left ventricle the fibres of the first or external layer, run almost vertically downwards, inclining somewhat fiom left to right, and are continuous at the apex with the seventh or internai layer, which pass upwards reversely from left to right; these two, are the only layers that are inserted into the auriculoventricular and tortic rings. Those of the second layer rnn more obliquely downwards from left to right, and are continuous at the apex with the sixth layer, which pass upwards with a corresponding obliquity in the reversed direction. The third layer is similar in course, but still more oblique in direction, and is continuous at the apex with the sixth layer. The fourth layer is horizontal or transverse (circular), and appears to be single. The internal layers are thicker than the external, so that the fourth layer is nearer the outer, than the inner surface of the ventricular wall. The fibres of the external layer curve around at the apex in a spiral manner, and form the whorl or vortex, constituting the entire thickness of the heart at this point. From the seventh layer are chiefly formed the musculi papillares. and columnæ carneæ. The fibres of the first four layers pass across the septum from one ventricle to the other; this is specially noticeable at the back where there are some transverse fibres-the " hinge-like" fibres of the back of the heart. The right ventricle is similarly formed, except that the external fibres are continuous with the internal, not only at the apex, but all along the anterior coronary groove. The septum is formed of fibres from both ventricles, and the left half is twice the thickness of the right.

The heart is covered externally by a layer of pericardium and lined internally by a smooth shining membrane, the endocardium, which is continuous with the lining membrane of the arteries and veins. Both these membranes are covered with flattened epithelium (endothelium) which gives them a smooth and glistening appearance. The valves of the heart are formed by reduplications of the lining membrane, strengthened by connective and elastic fibres, and are attached by their bases to the tendinous rings. The tricuspid and mitral valves which guard the right and left auriculo-ventricular openings respectively, are also attached by their ventricular surfaces and borders to the columnथ carnew by slender tendinous chords, the chorda tendinew, The semilunar valves which guard the orifices of the aorta and pulmonary artery, three in number for each, are placed side by side around the orifice, so as to form three little pouches, which lie flat when the blood is passing out, but immediately bulge out to prevent any return, the corpora Arantii closing in the space between the three segments in the centre.

Vessels and Nerves.-The heart is supplied by the anterior and posterior coronary arteries ; the nerves are derived from the superficial and deep cardiac plexuses, which are formed partly by the cranial nerves, and partly by the sympathetic.

Action of the Heart.-The blood is propelled in its course by the alternate contraction and dilatation of the muscular walls of the auricles and ventricless of the heart. The two auricles contract together, and afte wards the two ventricles; and in each case the contraction is immediately followed by a relaxation. The contraction is called systole; the dilatation, diastole. The auricles gradually fill with blood flowing into them from the veins, port of which passes at once into the ventricles. When the auricles are distended, they contract and force the blood into the ventricles, completing their diastole. The latter immediately contract,
and their contraction, or systole, follows so rapidly, that it appears as if continuous with that of the auricles. The ventricles contract more slowly than the auricles, and empty themselves more completely than the latter, which always contain a small quantity of blood. The contraction of the ventricles upon the blood, closes firmly the auriculo-ventricular valves and forces open the semilunar, and the blood is forced into the aorta and pulmonary artery. The musculi papillares by their contraction, and attachment through the chordo tendinea, prevent the auriculo-ventricular valves from being everted into the auricles. The closure of the tricuspid valve is not always complete, especially if the ventricle is too full, and a small quantity of blood flows bark into the right auricle. This has been called the safety vaive action of this valve. The semilunar valves, as previously mentioned, lie flat to allow the blood to pass out but immediately fill, bulge out and meet, so as to pre-' vent its return.

During contraction the heart appears to becom? longer and narrower, although, in reality, it becomes shorter and narrower. This may be demonstrated by placing the heart of a recently killed animal, as a frog or rabbit, on the table, and transfixing the base by means of a large needle, and inserting another at the apex, so as merely to touch it. "f the organ is then stimulated to contraction by pricking it, the apex will be observed to recede from the needle, while the heart at the same time becomes narrower and shorter.

Sounds of the Heart.-The action of the heart is accompanied by sounds. These are two in number; the first or systolic, and the second, or diastolic. They follow each other in quick succession, and are succeeded by a pause, or period of silence, after which the first sound again recurs. The duration of the first sound is double that of the second, and equal to that of the pause. Thus, if the whole period be divided into five parts, the first two would,
be occupied by the first sound, the third by the second sound, and the fourth and fifth by the pause, thus:

[^5]A very short pause must also exist between the first and second sound, otherwise two distinct sounds could not be heard. This order of succession is called the rhythm of the heart, which, in a state of health, is remarkable for its regularity. The first sound of the heart is a heavy, prolonged sound, synchronous with the impulse of the heart, and is most distinctly heard over the apex ; the second is a short, distinct sound, best heard over the base. These sounds somewhat resemble the sounds of the words "come" " up," whispered in rapid succession, the former representing the first sound, the latter, the second.

The first sound is in all probability, a compound sound, chiefly produced by the closure and vibration of the tricuspid and mitral valves, and the collision of the blood against the walls of the ventricles. It is also partly attributed to the muscular sound produced by the contraction of the ventricles, and the impulse of the heart against the walls of the chest.

The second sound is undoubtedly due to the closure and vibration of the aortic and pulmonary semilunar valves. They are forced back by the recoil of the blood, as one unfurls an umbrella-with an audible click as they tighten. This may be demonstrated by fastening one of the valves by means of a hook or ligature, to the side of the aortic and pulmonary arteries respectively, in some animal, as a calf, so as to allow regurgitation to take place, when it will be observed that a bellow's murmur takes the place of the second sound; but as soon as the valve is allowed to resume its play, the natural sound returns. It is thought by some that both sounds of the heart are produced by the same cause, viz : the tension of the valves. Disease of the valves
gives rise to murmurs which interfere with the distinctness of the sounds.

Impulse of the Heart.-The impulse of the heart is most distinctly felt in the space between the fifth and sixth ribs, two inches below and one inch to the inner side of the left nipple, and is sometimes called the apex beat. The force of the impulse varies in different individuals, and in the same individual at different times ; it is very distinct in emaciated persons, and especially in hypertrophy of the heart. It is produced by the contraction of the spiral muscular fibres of the ventricles, which causes a tilting of the apex against the walls of the chest, and also by its change of shape in contraction, during which it becomes firm and globular, and impinges upon the walls of the chest. In its movement the apex describes a spiral curve from left to right, and from behind forwards. That the impulse of the heart is not due to the tendency of the arch of the aorta to straighten itself when distended with blood, and the elastic recoil of the parts about the base of the heart, is shown by the fact that the tilting movement of the heart will take piace even when the apex has been cut off. The impulse of the heart corresponds with the pulse in the arterics, consequently the actions of the heart may be counted by the pulse at the wrist, or in any of the arteries. The beat is not a simple shock as it seems when felt by the finger, but may be shown by the cardiograph (a modified form of the sphygmograph) to be compounded of three or four shocks the strongest of which only, is felt by the finger.

Frequency and Force of the Heart's Action.-In a healthy adult, the pulsptions vary from seventy to seventyfive per minute. Thu frequency of the heart's action diminishes from the commencement to the end of life, as will be seen from the following table, which represents the average number of beats in a minute :-

In the fatus	150
At birth.	130
In infancy	110
In youth.	80
Adult age	75
Old age.	65

Posture exercises a most remarkable influence on the frequency of the heart's action. It is most frequent in the erect posture, next to that, in the sitting, and least in the recumbent position. The pulse is also most frequent in the morning, becoming slower towards evening, and is very much diminished during the night. It is more frequent in those of a sanguine temperament, than in the phlegmatic, and in females than in males. Its action is accelerated after a meal, and still more so after bodily exertion, or mental excitement. In health, there is a nearly uniform relation between the frequency of the heart's action and the respirations, the proportion being about four of the former to one of the latter.

A certain rate of movement must be maintained in the eirculation, and the impediment produced by friction must be overcome by the muscular force of the heart; and, since the left, ventricle propels the blood through the whole system, while the right sends it ouly to the lungs, the walls of the former are twice as thick as the latter, and the force of the one is double the force of the other. The force of the heart's action may be estimated either by ascertaining the height of the column of blood which its action will support (Haies' method), or by causing the blood to act on a column of mereury (the method of Poiseuille and Volkmam.) Hales introduced a long pipe inio the earotid artary of a horse, and found that the blood rose to the height of ten feet. From this and other experiments, on the lower animals, he: concluded that the human heart would sustain a colum: of blood seven and a half feet high, the weight of which would be about $4 \frac{1}{2}$ lbs., on the square inch. Poiscuille's experiments were made with a glass tube, bent so as to form a horizontal
(b) and two perpendicular portions (c.c.), the latter being shaped like the letter U (Fig, 69), named the hemudynamometer. The horizontal portion is adapted by a tube to the artery, and the perpendicular branches are partly filled with mereury, the rise and fall of which can be measured on scales placed behind them, and as the rise and fall are equal, the double of either will give the weight of the column which t foree of the strean is able to saintain. The results corresponded elcsely with Hales' estimate, being about 4l lbs. Volkmann passed a solution of sodium carbonate into the horizontal branch, to prevent the blood from coagulating on the sides of the vessel. From his experiments, it appears that the force of the stream is capable of supporting a

Fig. 19.
 column of mercury about eight inches in height, or a column of blood about nine fect. - But the foree which the walls of the heart must exert in order to impart such a pressure to the blood which it propels, is equal to a weight of about 13 lbs. A modification of the hæmadynamometer for registering the variations of the force of the heart, or arterial tension is called a kymograph (Fig. 70). The open mercurial column supports a floating rod and pen (a), in coatact with a revolving paper cylinder moved at an uniform rate by cloekwork. The movements of the pen, caused by the up and down movements of the column of mercury, are inscribed or registered on the paper cylinder:

Influence of the Nerves on the Heart.-The heart's action is governed by two sets of nerves, the excito-motor
and inhibitory. The ganglia and communicating nerve fibres which preside over its action, are situated in the

Fig. 70.

Mercurial kymograph; (a) floating rod and pen; (b) tube connected with an ulkatine solution; (c) tube and cannia for Insertion in an artory. walls of the heart. They have been carefully studied in the frog, in which there are three collections of ganglia, two excito-motor-Remack's, near the inferior vena cava, and Bidder's, in the left auriculo-ventricular septum, and one inhibitory-Ludwig's in the interventricular septum. The heart receives its excito-motor influence through certain fibres of the sympathetic (inferior cervical ganglion and cardiac plexus) from the medulla oblongata, and its inhibitory or restraining influence from certain fibres of the pneumogastric (superior cardiac). Stimulation of the sympathetic nerves supplying the heart, by the galvanic current, increases the heart's action ; while on the other hand, stimulation of the preumngastric nerve or its inferior cut end diminishes it, and if the current is sufficiently trong, arrests it altoge ther, in diastole. Voluntary muscle so

Fig. 71.

Before. Durlig.
After.
Tracing showing the effect of stimulation of the pueumogastric nerve. treated would iuluce tetanus, but the heart is completely relaxed; it knows no tetanus. The natural stimulus of the heart's action is the blood in its cavities, which excites reflex
action through the ganglia and nerves. The heart appears to be constantly acting, but it has also its constant pauses or intervals of rest, so that it differs from other muscles only in its shorter intervals of rest. The effects of temperature on the heart's action are interesting. In cold blooded animals the heart's action ceases at $25^{\circ} \mathrm{F}$. and again at 104° F. ; its frequency is increased from the lower until the maximum $72^{\circ} \mathrm{F}$. is reached, and then it declines irregularly. In warm-blooded animals, as the rabbit, it ceases at $114^{\circ} \mathrm{F}$. the frequency being increased from the lower to the maximum of $105^{\circ} \mathrm{F}$.

ARTERIES.

The arteries are cylindrical tubes which convey the blood to the different parts of the body. They are found in nearly every part of the body, except the hair, nails, epidermis, cartilage, cornea, and the ultimate elements of the tissues. They were formerly supposed to contain air, because they were found empty after death, hence the name arteries.

Structuri:-They consist of three coats, external, middle and internal. The external coat (tunica adventitia) is the thickest and consists of areolar and elastic tissue. In arteries of medium size, this coat is composed of two distinctlayers, an inner or elastic, and an outer or areolar. In the large arteries both these coats are very thin, and in very small arteries the elastic coat is entirely absent.

The middle coat is thinner than the preceding, and consists of muscular (nonstriated) and elastic tissue, disposed

Fig. 72.
 An artery in which the chiefly in the transverse direction. In the largest arteries the muscular tissue forms only about one-third or onefourth of the thickness of the middle coat, while in the
medium-sized arteries it predominates, and in the smaller it is purely muscular.

The internal is the thinnest, and consists of two layers, the inner or epithelial, (endothelial) and outer or elastic. The former consists of a single layer of tesselated epithelium, with round or oval nuclei ; the latter is a delicate, transparent, fenestrated membrane, which in medium-sized arteries is strenghened by several laminæ of elastic tissue.

The ariories are supplied with blood-vessels

Flg. 73.

Nonstriated muscular fibre cells; (a) cular fibre cells; (a)
developing cell ; (b) more advanced; (d, e, f, fibre cells of human arteries. . ing from being over-stretched. Again, by their recoil, which occurs during the diastole of the heart, they exert a pressure which in some degree replaces the action of the heart. This pressure is equally diffused in every direction, and tends to drive the blood either onwards, or backwards to the heart; but the latter is prevented by the closure of the aortic valves; hence they moderate the jetting movements given to the
blood by the systole of the ventricles, and also equalize the current of blood by maintaining pressure upon the stream during the diastole. In this we cannot but admire the beautiful simplicity and harmony in the laws of nature. There is no loss of the force of the ventricles, for that part of their force which is expended in dilating the arteries is restored in full, according to the law of action of elastic bodies, by which they return to the state of rest with a force equal to that by which they were moved. The elasticity of the arteries also gives them a capacity for receiving, under certain circumstances, more than the average quantity of blood, and it enables them to adapt themselves to the various movements of the different parts of the body. In consequence of their elasticity, the arteries are not only dilated, but also " sated. This is most apparent in arteries which are curveu.

Function of Muscular Tissue in Arteries. - When an artery is cut across, its divided ends contract, and the orifices may be partially or completely closed, owing to the contraction of the muscular tissue. This contraction is greater in the young than in the aged, and in animals than in man, and continues many hours after death. It is also increased by the application of cold, styptics, galvanism, irritation, or by torsion or twisting the cut ends of the artery. Owing to their contraction after death, the vessels cannot be injected until the rigor mortis passes off. The muscular tissue of the arteries can assist only in a very small degree, in propelling the onward current of the blood. The manner in which the arterial trunks taper towards their distal extremities, renders it mechanically impossible that the strong contraction of circular fibres would drive the blood onward; in fact, theltendency would be in the opposite direction. The principal use of the muscular tissue is to regulate the supply to different parts of the body, according to the activity of the function of each part at different times; for example, the brain does not require so much
blood during sleep as during mental labor; the stomach does not require so much blood during fasting, as during digestion, etc. The heart cannot regulate the supply to each part at particular poriods; but it may be regulated by the contraction of the muscular coat of the arteries, or its passive dilatation, so as to diminish er increase thesppply of blood according to the demand. The moscular tissue also assists the elastic in adapting the vessels to tho quantity of blood they may contain, giving uniformity to the amount of pressure exercised on the blood, and maintaining the tone of the blood-vessels. Again, the contraction of the muscular coat of a wounded artery, first limits, and then arrests the escope of the blood when assisted by the formation of fibrin in the mouth of the wounded vessel. This is nature's mode of arresting hemorrhage (natural hemostasis). The contraction of the arteries is determined chiefly by the influence of the great sympathetic system.
fiunction of the Arteries. - From what has been already stated, we may infer that the function of the arteries is-first, to convey and distribute the blood to the different parts of the body ; second, to equalize the current, and moderate the jetting movements given to the blood by the ventricles; third, to regulate the supply to tho different parts of the organism according to the demand.

Anastomosis of Arterifs.-The arteries have a remarkable tendency to communicate with each other in their course, in order more fully to supply the organs to which they are distributed. This is called an anastomosis. One of the simplest modes is the union of two arteries to form one, as the union of the vertebrals to form the basilar. Another mode is, the union of two branches to form an arch from the convexity of which other branches are given off, which may in their turn form arches, and this may be repeated until the resulting branches are reduced to a very small size, when they terminate in the capillaries, as for example, the mesenteric arteries. A third mode, which is the
mach g dieach the 1 its ly of also ty of nt of ne of cular the ibrin node tracce of iffer- sels by a distinet vessel passing from one to the other, as in the circle of Willis. Here the anterior cerebral arteries are united by a short cross branch-the anterior communicating, and the carotid on each side is united to the posterior cerebral by the posterior communicating. In this way the brain is protected in all its parts against loss of blood, if the circulation in any of the main channels should be arrested.

The most common form is found in the limbs, where the main trunk usually divides into two branches, from which smaller branches are given off, which communieate with each other at varions points, especially around the joints. These branches also communicate with others from adjacent arteries, as for example, the deep femoral with the sciatic, etc. By such an arrangement, the proper nutrition of the limb is secured by collateral circulation in the event of the main trunk being ligatured, or otherwise occluded. In the application of a ligature, the surgeon should always make allowance for the anastomoses in the vicinity of the wound. In consequence of the free anastomoses between the adjacent branches, it is always necessary when a large artery is wounded, to apply a ligature both above and below the wound, in order to prevent the occurrence of subsequent hemorrhage.

Pulse.-When the finger is applied to the wrist, or any of the arteries of the body, it is felt to beat or pulsate in correspondence with the systole of the heart. The sensation communicated to the finger is due to the dilatation and elongation of the part, caused by the jetting movements of ${ }^{\circ}$ the current of blood in the vessel. Each jet of blood erzates a wave, which moves along the whole arterial system. It is not supposed that the jet of blood from the ventricle imparts its pressure on the blood contained in the arteries so as to dilate the whole arterial system at once; but it displaces or propels the blood, and flows on by what may be called a hect-veave. A certain time will be required for the
wave to travel from the heart to distant arteries, so that although the wave corresponds with the systole of the heart yet it is not in exact synchronism with it, the difference varying according to the distance from the heart. The longest interval is about one-sixth to one-eighth of a second. I' \cap rapidity of the wave is about $28 \frac{1}{2}$ feet per second, or 20 to 30 times as great as the velocity of the stream.

Fig. 74.

Sphygmograph applied to the Arm.
An instrument for delineating the character of the pulse is termed the Sphygmograph. It is made fist to the arm and the movements of a small button, which takes the place of the finger, are communicated by means of a lever, and registered by tracings in ink upon a card moved by clockwork (Fig. 74). In a healthy pulse the up-stroke or percussion impulse is nearly vertical, while the down-stroke is very oblique, and presents a slight noteh or re-ascent; the more deficient in tone the pulse, the more distinct is the notch in the down stroke, and vice versa. In some instances, the re-ascent is so marked as to be perceptible to the finger, and is called a dicrotic pulse.
The character of the pulse will depend-First, upon the force of the heart ; second, upon the integrity of its valves and orifices; third, upon the quantity and quality of the blood in the system; and fourth, upon the condition of the walls of the arteries, whether rigid or yielding, tense or flabby, etc. The qualities of softness or fulness, or wiryness, of compressibility or incompressibility, etc., which are familiar to the practical physician, are determined by the yielding or the resisting condition of the arterial walls.

Influence of the Nerves on the Arteries. - The arteries in all parts of the body receive nerve filaments from the sympathetic, called vasomotor branches. These give tone to the muscular fibres of the arteries, and if stimulated, as e.g., by an electric current, the arteries contract and diminish the supply of blood to the parts; if divided, the arteries are paralyzed and become dilated. The vasomotor nerves come primarily from the gray matter of the medulla oblongata, but communicate with the various ganglia of the sympathetic. The medulla is called the "vasomotor centre," and the ganglia of the sympathetic, "secondary centres." The reflex impressions received by these centres may either result in contraction or dilatation of the vessels. If the impression received through the sensory nerve of a part is sufficiently strong, it leads to contraction of all the blood-vessels of the body, except those in the part from which the impression was received which become dilated, The former action is called excitomotor, the latter inhilitory. The redness which follows the irritation of the skin is a good example.

VEINS.

The veins return the blood from the various tissues and organs, to the right side of the heart. They are more numerous, and, with the exception of the pulmonic veins, more capacious than the arteries. They commence in the capillaries, and uniting form trunks, some of which are superficial, and others deep, accompanying their corresponding arteries.
Structure.-In structure they consist of three coats, which resemble the arteries, except that the outer coat is thicker and contains some muscular tissue, and the middle coat is thinner. Muscular tissue is, however, entirely absent in the sinuses of the dura mater, uterus, and corpora cavernosa, cerebral veins, retinal veins, and the veins of the cancellous tissue of bones. Most veins have valves which pre-
vent the reflux of the blood. They are more numerous in the superficial than in the deep veins, and in those of the lower than the upper extremity. The valves are formed by reduplications of the lining membrane, semilunar in form, and are attached by their convex margins to the walls of the veins. They are generally arranged in pairs,occasionally there are three, but sometimes only one. In very small veins they are absent; also in the venæ cavæ, pulmonary veins, hepatic veins, portal vein, renal, uterine, ovariau, cerebral and spinal veins, veins of the cancelli of bones, and in the umbilical vein. The veins are supplied, like the arteries, by little vessels (vasa vasorum) ; but the nerves are not so easily detected upon them.

Circulation in the Veins.-In the veins, the blood moves in a continuous stream, and the velocity of the venous current is considerably less than the arterial. The circulation is produced by the vis a tergo of the heart, the action of the capillaries, the sontraction of the voluntary muscles, and the inspiratory movements of the thorax.

The vis a tergo of the heart may produce, in certain conditions of the system, a distinct venous pulse, corresponding with the impulse of the heart, the wave having passed through the capillaries. This nuay be called the communicated or systolic venous pulse, and must be carefully distinguished from the regurgitant venous pulse, which is caused by the regurgitation which takes place, in some persons, into the venous trunks, during the systole of the right auricle. In health, the regurgitation is very small and indistinct ; but when the right cavities of the heart are dilated, a large quantity of blood is regurgitated, and a distinct venous pulse is visible in the superficial and deep veins of the neck.

The inspiratory movements of the thorax, by enlarging the capacity of the chest, tend to create a vacuum, which is chiefly filled by the rush of air into the chest, but partly by the afflux of blood, which must be principally venous,
since the closure of the aortic valves would oppose any reflux in the aorta. This may be demonstrated by introducing a bent glass tube into the jugular vein of an animal, the vein being tied above the point where the tube is inserted, and the other end inmersed in some colored fluid. It will be ouscryed that at each inspiration the colored fluid will ascend in the tube, while during expiration it will either remain stationary or sink. Or it may be shown by the hoemadynamometer. The effect of inspiration on the veins is only observable in the larger ones. Forced expiratory movements on the other hand, retard venous circulation, as may be seen by holding the breath for a few seconds, or by straining, when the veins about the neck and face swell up and become distended, but immediately return to their former size when breathing is restored. In surgical operations in the region of the neek, the wounding of an enlarged vein which romains patulous, is liable to be followed by the entrance of air into the circulation during a deep inspiration, and sudden death is the result.
The contraction of the voluntary muscles has a most marked effect in favouring the circulation of the blood in the veins, as may be seen in cases of venesection, when the patient is directed to move his fingers freely. During muscular action a portion of the veins is compressed, and as the blood is prevented, by the valves in the veins, from passing backwards in the small vessels, it is necessarily forced onwards towards the heart. As the muscles are relaxed the veins again swell out, to be re-compressed by the renewal of the muscular force, and so on. This force is an important agent in maintaining the circulation, since the voluntary muscles are more or less active in nearly every position of the body, and the veins liable to be compressed by them.
The contraction of the muscular tissue of the walls of the veins also exerts considerable influence in the circulation of the blood in the veins.

CAPILLARIES.

The capillaries are the connecting link between the arteries and veins, and are found in all parts of the body except the uterine placenta, copora cavernosa of the penis, hair, nails, epidermis, etc. In structure they appear under the microscope, to consist of a homogeneous, finely fibrillated membrane, with cell nuclei which adhere to or

Fig. 75.

1. Caplllary witt: a thin wall and nuetel a and $b ; 2$, one with double contoured walls; 3, capllary vessel after the action of silver nitrate solution ; a, endothelial cells; b, their nuclel; c, stomata. are embedded in it, at certain distances apart. This is lined internally by a layer of transparent, elongated and flattened nucleated cells (endothelium). At the point of junction of some of the endothelial cells, small openings or stomalu (Fig. 75, e) may be seen resembling those of serous membranes (p .101), through which the white corpuscles make an active exit, and the red ones are sometimes passively forced out. These appearances are readily seen after staining with solution of silver nitrate. The capillaries vary in diameter in the different tissues, the average being about ${ }_{\text {उ\%ुण0 }}$ of an inch, (8.3 mmm) and their length is about ${ }_{3^{\frac{1}{6}} \mathbf{5}}$ of an inch $(.8 \mathrm{~mm}$). The smallest are those of the brain and mucous membrane of the intestines; the largest are those of the skin and medulla of bones. They form meshes, which vary in different tissues; for example, they are rounded in the lungs, elongated in the muscles and nerves, and looped in the papillæ of the tongue and skin. The closest network is found in the lungs, and choroid coat of the eye. In the lungs, the interspaces are smaller than the capillaries themselves. The network is also very fine in the iris, ciliary body, and liver. As a rule the mure active the function of an organ,
the closer is the capillary network, and the larger its supply incly to or 1 dis-ntertrent, eated point endo-
or seen nemthe ctive omeChese after ilver difinch, mm). orane and erent elonpillæ d in the elves. and rgan, of blood. In the compound tissues the capillaries do not ramify among the ultimate particles of the tissues; thus in muscle the vessels lie between the fibres, but do not pierce the sarcolemma. In nerves, in the same way, they are separated from the nerrous matter by the tubular membrane. In mucous and serous membranes they are imbedded in the sub-areolar tissue, which forms a nidus for them.

Circulation in the Capillaries. - The current of blood flows through the capillaries with a constant equable motion, as may be seen under the micioscope in the frog's foot or bat's wing. In the central part of the current in the larger vessels may be seen the red corpuscles moving with considerable rapidity; while near the edges of the vessel there is a transparent stratum of clear plasma, in which may be seen some white corpuscles moving very slowly. The stream at the circumferenceis very sluggish, almost motionless, and is call-
 the smaller vessels the corpuscles pass along in single file and sometimes become bent and otherwise distorted in order to acommodate themselves to the curvatures of the capillaries. Whenever the current is obstructed or retarded in any way, the white corpuscles accumulate in the affected part, and become more numerous in proportion to the red. The circulation of the blood in the capillaries is partly due to the vis a tergo of
the heart, and recoil of the arteries, and partly also to the attractive or selective power of the tissues. The former has been already referred to, in connection with the heart and arteries. With regard to the latter, it is in the capillaries that those chemical and physical changes between the blood and the tissues take place, in which the phenomena of nutrition essentially consist. A certain force is generated by this interchange, which promotes the circulation of the blood through the capillaries. It is termed the attractive or selective power of the tissues, or by Carpenter capillary power. It may be explained as follows:-As the blood charged with oxygen and nutritious substances for the supply of the tissues appronches the capillaries, a rapid imbibition takes place with such energy, that it pushes before it into the veins, the blood from which the nutritious elements had been previously removed, and which also contains the effete matter. This force resembles that by which the circulation is maintained in plants, and in some of the lower order of animals.

The capillaries are surrounded by a plexus of nerves, similar to that of the larger vessels. Their contraction during anger and from fear, and their dilatation during blushing, can only be referred to the influence of the nerves, for in these cases the changes are so rapid that the heart has not timg to effect them. Under one kind of nervous emotion the vessels contract, and empty themselves, and the countena:nce becomes deadly pale, as in anger, fear, etc. Under another kind of nervous emotion the vessels dilate, become filled with blood, and the cheek is suffused, as in blushing.

The heart's action alone is sufficient to carry on the circulation of the blood, but it is aided by other forces which are supplementary. The combined forces by which the blood is propelled throughout the body, are, first and chiefly, the muscular force of the heart; second, the recoil of the elastic walls of the arteries; third, the attractive or selective power of the tissues; fourth, the pressure of the
muscles among which some of the veins lie; fifth, the action of the muscular tissue in the coats of the veins; and sixth. the inspiratory movements of the chest.

VELOCITY OF THE CIRCULATION.

The velocity of the current of blood at any given point in the system, is inversely proportional to the sectional area at that point. The united area of the capillaries is 400 times as great as that of the aorta, and hence the velocity of the blood in the capillaries is ahout $\frac{\sigma}{\sigma} \sigma$ of that. in the aorta.

Velocity in the Arteries.-The velocity of the circulation in the arteries, may be ascertained by an instrument. similar to that used for measuring the force of the heart. It is greater than in any other pari of the system. Volkmann estimates the velocity with which the blood moves in the carotid artery, at about twelve inches per second. It diminishes during the diastole of the ventricles and in arteries remote from the heart, as the metatarsal, in which it is 2.2 inches per second.

Velocity in the Veins.-The velocity of the venous current is to that of the arterial ..; two to three, or about. eight inches per second, as nearly as can be ascertained.

Velocity in the Capillaries.-The rate of movementof the blood in the capillaries may be determined by the microscope. It is slower than in either the arteries or veins, being on an average, about $\frac{1}{3}^{\frac{1}{0}}$ of an inch per second.

Velocity in the Body.-It is estimated that the ventricles and auricles are each capable of holding about. three ounces of blood, and that this quantity is propelled by either ventricle at each systole, and that the whole amount of blood in the system is about eighteen pounds. This would require ninety-six pulsations for its passage through either side of the heart, and allowing seventy-two pulsations to a minute, the time occupied in transmitting
the whole would be $1 \frac{1}{3}$ minutes. But it has been ascertained by experiments on animals, as the horse, that substances in solution, such as potassium ferrocyanide, barium nitrate, etc., may be detected in the blood drawn from the carotid artery within twenty seconds after it has been introduced into the jugular vein of the opposite side. In the dog, the heart's action may be arrested in eleven or twelve seconds, by the introduction of a solution of potassium nitrate in the jugular vein; in the rabbit in about four seconds, and in fowls in about six. The introduction of such poisons as hydrocyanic acid and strychnine, are equally rapid in their effects. Hence, it appears that the rapidity of the circulation is underrated in the estimate founded upon the capacity of the heart, and the number of pulsations in a minute. It has been estimated by Volkmann, that in man the whole circuit is completed in considerably less than one minute.
Peculiarities of the Circulation.-These are observed in the lungs, liver, brain, spleen and ercctile organs. The chief feculiarity in the pulmonic circulation is, that the artery carries venous blood to the lungs, and the veins return arterial. The portal circulation is peculiar in being a kind of offset from the general circulation. The peculiarity of the circulation in the brain is, that it is provided with a uniform supply of blood. This is secured by the number and tortuosity of the vessels, and their large anastomoses in the formation of the circle of Willis. The occurrence of large venous trunks or indistensible sinuses within the cranium, is also peculiar. It is also stated by Dr. Kellie, that in bleeding animals to death, the brain does not become exsanguine, owing to atmospheric pressure, unless an opening be made in the cranium. But this is disputed by Dr. Burrows, who concludes, from careful experiments, that the brain may become exsanguine. without any apparent aperture in the cranium, and that, in health, slight variations may occur in the quantity of blood sent to the
brain. In the spleen, the most striking peculiarity is that each of the larger branches supplies chiefly that part of the organ to which it is distributed, having no anastomosis with the adjoining branches.

The erectile tissues are the penis, clitoris, erectile tissues of the vagina, and the nipple in both sexes. The venous plexuses of the erectile tissue become filled with blood, which swells and distends the organ, causing it to assume an erect condition. This influx of blood may be caused by local irritation, or by certain emotions of the mind communicated through the great sympathetic system. Erectile tissue consists of a plexus of veins with varicose enlargements enclosed in a fibrous envelope, with trabecular partitions. There are also some nonstriated muscular fibres, which are connected in some way with the process of erection. They may either by their contraction prevent the due return of blood from the parts, or by their relaxation allow the plexuses to fill with blood, and remain so until the stimulus to erection subsides, when they contract and gradually expel the excess of blood.

Fgtal Circulation.-In the fæetus, the course of the circulation is modified in consequence of the inaction of the lungs. The aëration of the blood is effected by the placenta, through which also the fœetus is nourished, so that the placenta serves the double purpose of a respiratory and nutritive organ, or in other words, it performs the office of the lungs and stomach in the foetus. The course of the circulation in the fœetus is as follows:-The arterial blood is carried from the placenta to the foetus, along the umbilical cord, by the umbilical vein. It then enters the umbilicus, and passes upwards along the free margin of the lorgitudinal ligament of the liver to its under surface, where it gives off two or three branches to the left lobe, and others to the lobus quadratus and Spigelii. At the iransverse fissure it divides into two branches; the larger is joined by the portal vein and enters the right lobe; the smaller
passes onwards, under the name of the ductus venosus, which joins the left hepatic vein, where the latter empties into the inferior vena cava. Hence the blood reaches the vena cava in three different ways; most of it passes through the liver with the portal venous blood, and is returned to the vena cava by the hepatic veins; some passes through the liver directly, to be returned also by the hepatic veins; and the smallest quantity is carried on by the ductus venosus to the vena cava. In the inferior vena cava, the blood is joined by that which is being returned from the lower extremities and viscera of the abdomen; it then enters the right auricle, and guided by the Eustachian valve passes through the foramen ovale into the left auricle, where it is mixed with a small quantity returning from the lung. From the left auricle it passes into the left ventricle, from the left ventricle into the aorta, to be distributed chiefly to the head and upper extremities-a small quantity passing into the lescending aorta. From the head and upper extremities the blood is returned by the superior vena cava to the right auricle, where it is mixed with some from the inferior vena cava. It then passes into the right ventricle, and from the right ventriclo into the pulmonary artery, but the lungs of the feetus being almost impervious, only a small quantity is distributed to them by the pulmonary arteries, and is returned to the left auricle by the pulmonary veins; the greater part of the blood from the right ventricle passes through the ductus arteriosus into the descending aorta, where it is mixed with a small quantity of blood transmitted by the left ventricle into the aorta. It then descends along this vessel to supply the viscera of the abdomen, pelvis, and lower extremitiesthe greater portion, however, being conveyed by the umbilical arteries to the placenta.

When the child is born, and respiration established, an increased amount of blood is sent to the lungs, and the placental circulation is cut off. The foramen ovale gradu-
ally closes up, being completed about the tenth day. The ductus arteriosus contracts as soon as respiration is established, and is completely closed from the fourth to the tenth day. The umbilical arteries; between the umbilicus and the fundus of the bladder, become obliterated between the second and fitth days. The umbilical vein and ductus venosus also become obliterated between the second and fifth days. In some instances the foramen ovale does not close readily, and the blood continues to pass through into the left auricle after birth, giving rise to a bluish color of the surface of the body. This condition is called cyanosis or morbus cocruleus, and may be remedied by kceping the child a its right side for a few days.

There is also a peculiarity in the circulation of the blood in connection with the Malpighian bodies of the kidney, closely resembling the portal circulation, for which see structure of the kidney.

CHAPTER IX.

rispiration.

As the blood circulates through the different parts of the body, it is deprived of a certain amount of its nutritive elements and oxygen, and becomes loaded with impurities, resulting from the wear and tear of the tissues; hence it becomes necessary, not only that fresh supplies of nutriment and oxygen should be continually added to the hlood, but also that provision should be made for the removal of the impurities. One of the most important and abundant of the impurities is carbonic acid, the removal of which, and the introduction of fresh quantities of oxygen, constitute the chief purpose of respiration.

THE LUNGS.

The organs of respiration are the lungs. They are two in number, situated one in each of the lateral cavitics of the chest, separated from each other by the mediastinal space. They are provided with a single air tube, the trachea, which is divided into two branches, the right and left bronchus, one for each lung. Each bronchus, on entering the hilum of the lung, divides and sub-divides dichotomously throughout the entire organ until the branches terminate in the lobular bronchial tubes. Each lung is surrounded by a serous membrane-the pleura. That portion which covers the lung is called the visceral layer, and is connected to the lung tissue by the sub-serous areolar tissue; it is then refliceted around the inner surface of the chest forming the parietal layer. These two layers are sinooth, moist and covered with epithelium ; they are everywhere in contact,
and glide readily upon each other. It is only when filled with air or tluid that there may be said to be a cavity between them.

The respiratory apparatus consists essentially of a thin, moist membrane, with blood-vessels on one side, and air or aërating fluid on the other, through which osmosis takes place. The lungs of the newt consist of cylindrical sacs running the entire length of the body, into which the air is forced by a sort of swallowing movement, and is afterwards regurgitated to make room for a fresh supply. In the frog and turtle, the cavity is divided into smaller compartments by thin septa, all of which communicate with the central cavity. The same principle or plan of construction obtains in the higher animals; the walls of the cavity being folded and refolded in order to increase the extent of aërating surface. In fishes and most aquatic animals the respiratory organs are in the form of gills or branchice, which are foldings of mucous membrane, containing blood-vessels. 'These are moved by muscles so as to bring them into contact with fresh portions of water, for the purpose of aëration. In certain of the lower order of animals unprovided with ling cavities, and in the vegetable kingdom, tracheal openings, or stomata, exist for the interchange of gases.

Minute Structure.-Each lung is divided into lobes, three for the right and two for the left, and each lobe is subdivided into lobules, which are held together by areolar tissue. They vary in size form Th $^{\frac{1}{2}}$ to ${ }_{3} \frac{1}{9}$ of an inch (2 to .8 mm) in diameter. They also vary in shape ; those on the surface are large, of a pyramidal form, with their bases turned towards the surface; those in the interior are smaller, and of various forms. Each lobule is a miniature representation of the whole organ of which it forms a part, being composed of the terminal divisions of one of the smaller bronchial tubes and correspondiug air cells, blood vessels, nerves and lymphatics, all held together by areolar tissue.

Each lobular bronchial tube, on entering the substance of the lobule, divides into from four to nine branches according to the size of the lobule, diminishing in size until they

Fig. 77.

Louule of the human lung ; a, hronchial tube with lits divisions ; b, lnterceliular passages; c , air cells. reach a diameter of $\frac{1}{6 \pi}$ to ${ }^{\frac{1}{2} \sigma}$ of an inch, $(.5$ to .2 mm$)$. They are then continued onwards, their sides and extremities being closely covered by numerous saccular dilatations-the air cells -in consequence of which the tubes lose their identity, as cylindrical tubes, and present the character of irregular canals or passages-the so-called intercellular passages (Fig. 77).

The air cells are small alveolar recesses, which vary from to to $\frac{1}{2}$ 万万 an inch, (3 to .12 mm) in diameter, and are separated from each other by thin septa. They communicate with the terminal bronchial tubes which they surround by large circular openings; but do not communicate with each other except through the tubes. In these small bronchial tubes and air cells; the cartilaginous and muscular tissues are absent, and the mucous membrane is lined by squamous epithclium, while the trachea and bronchi are lined by

Air cells of Jungs, $\times 350 ; \mathrm{a}$, epithelium; b, fibres of elastic tissue; c, deficate lining membrane of air ceils, with elastic fibres attached t it.-(Kolliker.)
columnar ciliated epithelium, among which are to be seen some cup or goblet cells (p. 99).

Vessels and Nerves.-The pulmonary artery conveys the venous blood to the lungs for aëration. It divides into brancbes .which accompany the bronchial tubes, and terminates in a dense capillary plexus beneath the mucous membrane of the terminal bronchial tubes and air cells. Some of the capillaries also pass into the septa between the air cells so that both sides are at once exposed to the air. The blood, purified during its passage through the capillaries, is returned by the pulmonary veins to the left auricle of the heart. The bronchial arterics supply blood for the nutrition of the lung. They arise from the thoracic aorta, and divide into several branches, some of which accompany the bronchial tubes to which they are distributed, and terminate in the deep bronchial veins; others are distributed to the areolar tissue, and terminate partly in the superficial, and partly in the deep bronchial veins ; whilst a few ramify upon the walls of the terminal bronchial tubes and air cells, and terminate in the pulmonary veins, the blood having been purified in its passage through the capillaries. The bronchial veins, superticial and deep, unite at the root of the lung, and empty on the right side into the vena azygos major, and on the left into the superior intercostal. The lungs are also abundantly supplied with lymphatics. They commence in irregular spaces or lacunæ in the walls of the air cells, or bronchi, and in the lymph spaces of the pleura pulmonalis.

Nerves.-The lungs are supplied by the anterior and posterior pulmonary plexuses of nerves formed chiefly by branches from the pneumogastric and sympathetic nerves.

MECHANISM OF RESPIRATION.

The movements by which fresh air is taken into the lungs, and by which it is again expelled, are those of inspiration and expiration. This is called the mechanical
act, in contradistinction to the chemical which relates to the changes which take place between the blood and the atmospheric air.

Inspiration.-During inspiration the chest is enlarged in every direction, but chiefly in the vertical. The latter is effected principallyiby the contraction of the diaphragm, and its consequent descent towards the abdomen. The increase in the lateral and antero-posterior diameters is due to the elevation of the ribs, both in front and at the sides. The ordinary muscles of inspiration are the diaphragm, external intercostals (and the internal in front), levatores costarum, serratus"magnus, and serratus posticus superior. But in extraordinary or furced inspiration, as during a paroxysm of asthma, etc., the shoulders are fixed by the patient seizing'something firmly, and the serratus magnus, pectoralis major and minor, trapezius, subclavian and scaleni muscles are called into action. The scaleni muscles fix the upper ribs, from which the external intercostals act, as from a fixed point, and elevate the lower ribs, by which the cavity of the chest is enlarged laterally and antero-posteriorly. This action is also promoted by the action of the other muscles previously mentioned.

Expiration.-Expiration succeeds inspiration, after a brief interval, and is accomplished, in ordinary respiration, by the elastic recoil of the lungs and walls of the chest, after they have been dilated, and partly by muscular action. The ordinary muscles of expiration are the abdominal muscles, internal intercostals except in front, serratus posticus inferior, and triangularis sterni. The extraordinary are the quadratus lumborum, latissimus dorsi, sacrolumbalis, and those which assist in fixing the spine and pelvis. In difficult breathing, almost every muscle in the body is made subservie to the action of respiration. The duration of inspiration is generally less than expiration, although in some instances they are nearly or quite equal, and there is a slight pa e between the end of expiration and the com-
mencement of the next inspiration, and also between the acts. The succession of these acts constitutes the respiratory rhythm. During inspiration and expiration a sound is heard when the ear is applied to the chest, called the respiratory murmur. It is longer (${ }_{3}^{2}$) and more distinct in inspiration, and is best heard in children, hence the term puerile respiration. The rima glottidis is also opened at each inspiration by the action of small muscles, and is closed somewhat at each expiration by the elastic recoil of the parts. The force of expiration exceeds that of inspiration by onethird.

Frequency of Respiration and Ratio to the Pulse. -The number of respirations in a healthy adult vary from sixteen to twenty in a minute. The proportion of respiratory movements to the pulsations of the heart is about one to four, and when this proportion is departed from there is reason to suspect some obstruction to the aëration of the blood, or some derangement of the nervous system. Any great disproportion between the number of respirations, and the number of pulsations or the amount of blood sent to the lungs to be aërated, is attended with dyspnca. When the action of respiration is chiefly confined to the diaphragm and abdominal muscles, as in pleurisy, etc., the breathing is said to be abdominal; but when chiefly confined to the muscles of the thorax, as in peritonitis, etc., it is said to be costal or thoracic.

Quantity of Air Respired.-The quantity of air taken in at each inspiration varies from twenty to thirty cubic inches; this is called breathing or tidal air. The quantity which an adult of average size (five feet eight inches), can inhale in a forced inspiration is about 230 cubic inches the excess being called complemental air. After ordinary expiration, such as that which expels the breathing or tidal air, a certain quantity remains in the lungs, which may be expelled by a forcible expiration; this is called reserve or supplemental air. A quantity still re-
mains, which cannot be forced out; this is called residual air.

Fig. 79.

Spirometer for measuring the quantity of air taken into the lungs.

The respiratory capacity of the chest is called the vital capacity, and it varies according to stature, weight, and age. The vital capacity of an adult, five feet eight inches in height, is about 230 cubic inches; and for every inch in height above this standard, the capacity is increased about eight cubic inches. The influence of weight is not so marked as that of height ; but it tends to diminish the respiratory power, when beyond a certain limit. The vital capacity increases from. fifteen to thirty-five years of age, and from thirty-five to sixtyfive it decreases nearly onc and a half cubic inches per year.

The total quantity of air which passes through the lungs in twentyfour hours varies from 300 to 400 cubic feet, depending on the state of the health, bodily exertion, etc. If the same air be rebreathed several times, it becomes loaded with carbonic acid and animal matter, causing headache, languor and depression, and if continued, serious results will follow sooner or later. Experience has shown that the minimum quantity of air which ought to be allowed for each person confined in prisons, hospitals, schcols, etc., is about 1200 cubic feet. Provision should also be made for a constant supply of fresh air, and the removal of the impure, which is of even greater importance than the mere actual cubic space. The
ventilation should be such as will supply, at least from 1200 to 1500 cubic feet of fresh air for each person per hour.

Influence of the Nerves in Respiration.-Themovements of respiration are presided over by the medulla oblongata, into which may be traced the principal excitor nerves, and from which proceed the principal motor nerves. The chief excitor of the movements of respiration is the pneumogastric nerve. When this is divided on both sides in the dog, the number of respirations are diminished about one-half, and irritation of its trunk is followed by an act of inspiration. The respiratory movements are caused by the presence of blood, loaded with carbonic acid, in the capillaries of the lungs, which makes an impression on the periphery of the pneumogastric nerve. The other excitors are the nerves distributed to the general surface of the body; but especially to the face. A current of cold air, or cold water dashed on the face, is sufficient to cause a deep. inspiration; and a similar impression on the chest or body, or a slap on the buttocks, will excite inspiratory movements when they would not otherwise commence, as in the newborn infant, or in asphyxia. The first plunge into water, as in swimming, is usually accompanied by a deep inspiration. It is quite probable also, that the sympathetic nerves, which receive filaments from the spinal nerves and communicate with the pneumogastric, may be excitors of this. function. Tl e motor nerves concerned in the function of respiration are the phrenic, intercostals, facial and spinal accessory. The motor power of the respiratory nerves is exercised, however, not only in the muscles of respiration, but also on those which guard the entrance to the windpipe. Division or injury of the medulla oblongata is followed by sudden death from arrest of respiration. After division or injury of the spinal cord in the lower part of the cervical region, inspiration is performed by the diaphragm only, and when injured above the origin of the phrenic nerve, death occurs instantly, because of the inter-
ruption to all communication between the medulla oblongata and the diaphragm.

The respiratory movements, though partly voluntary, are in ordinary respiration essentially independent of the will, for example, during sleep, coma or amesthesia, the respiratory function is carried on, although the person is entirely unconscious of the movements. At the same time, it is necessary that the respiratory actions should be partly under the direction of the will, since they are subservient to the production of those sounds by which individuals communicate their ideas to each other, as in speaking singing, etc.

Modifications of the Respiratory Movements.These are coughing, sneezing, sighing, yawning, laughing, crying, sobbing and hiccup. Coughing is caused by any source of irritation in the throat, larynx, trachen or bronchial tubes. This act consists, first, in a full inspiration, the glottis is then closed and a violent expiration takes place, by which a sudden blast of air is foreed up the air passages by the diaphragm and abdominal muscles, forcing open the glottis and carrying before it any substance that may be present. In the act of coughing, the abdominal muscles act as forcibly on the abdominal viseera as on the lungs, and tend to the expulsion of their contents, but the voluntary contraction of the sphincters prevents any escape at the openings. The difference between coughing and sneezing is, that in the latter the blast of air is directed more or less completely through the nose, in order to remove any irritating substance there. Sighing is simply a deep inspir " in which a larger quantity of air than usual is mr .ter the lungs. Yawning is a still deeper inspira-
ad is accompanied by opening the mouth widely,
. contraction of the muscies about the jaws. In laughing, the muscles of expiration are in convulsive movement, and send out the air from the lungs in a series of jerks, the glottis being open. Crying is very nearly the same as
laughing, although occasioned by a different emotion. When the emotions are mixed, an expression is produced "between a cry and a laugh." Sobbing is caused by a series of short convulsive contractions of the diaphragm, the glottis being closed. Hiccup is caused by a sudden convulsive contraction of the diaphragm, the glottis suddenly closing in the midst of it; the sound is produced by the impulse of the column of air against the glottis.

In speaking and singing, the vocal chords are made to vibrate as the air passes over them, and produce sounds which are moulde i into words or notes by the tongue, teeth, lips, etc.

Changes in the Respired Air.-The air consists of a mixture of 20.81 parts oxygen to 79.19 of nitrogen, in 100 parts by volume, carbonic acid from .03 to .06 parts in a thousand, a variable amount of aqueous vapour, and a trace of ammonia. The changes produced on the atmospheric air by respiration are-1st, an increase in the temperature equal to that of the blood; 2nd, an increase in the quantity of carbonic acid and aqueous vapour; 3rd, a diminution in the quantity of oxygen. The nitrogen remains nearly the same, and a small quantity of organic matter is eliminated by the lungs. The air is heated by contact with the interior of the lungs to a temperature of about $98^{\circ} \mathrm{F}$.

Exhalation of Carbonic Acid and Water.-The presence of an increased amount of carbonic acid in expired air, may be demonstrated by breathing through lime water, which becomes milky by the formation of insoluble calcium carbonate. It has been ascertained that there are about 4.35 parts of carbonic acid in 100 parts expired air, and subtracting the quantity in the air when inspired, leaves about 4.30 parts per cent. by volume, which is eliminated from the lungs at each ordinary expiration. This would amount to about sixteen cubic feet per day of carbonic acid, or nearly eight ounces of carbon. The elimination of
carbonic acid may be modified by a number of circumstances.

Digestion has been observed to be attended with an increased exhalation of carbonic acid, most distinct about an hour after eating; while fasting, on the other hand, diminishes it. Alcohol, ether and chloroform introduced into the system, are followed by a diminution in the quantity of carbonic acid exhaled. Exercise increases the exhalation of carbonic acid to about one-third more than it is during rest. During sieep, on the other hand, it is diminished, owing to the quietness of the breathing; but directly after raking, the amount is increased. Age and sex influence the quantity of carbonic acid exhaled; in males it $i_{\text {L...eases }}$ from eight to thirty years of age, remains stationary from thirty to forty, and then diminishes to extreme age. In females, the quantity exhaled is always less than in males of the same age; it is increased from the eighth year to the age of puberty, and remains stationary as long as they continue to menstruate, but when menstruation ceases, from whatever cause, the exhalation of carbonic acid again augments, after which it diminishes to extreme $a_{i} e$. The temperature of the external air has an important influence on the exhalation of carbonic acid. Observations made at various temperatures between 38° and $75^{\circ} \mathrm{F}$. show that between these points every rise equal to $10^{\circ} \mathrm{F}$. causes a diminution of about two cubic inches in the quantity of this gas exhaled per minute. Cold, on the other hand, within certain limits, increases it. Moisture of the air also favors the elimination of carbonic acid very materially. The respiratory movements influence the exhalation of this gas. When the respirations are increased in frequency, more carbonic acid is exhaled, although the percentage in proportion to the amount breathed is less. If the air have been previously breathed, the quantity of carbonic acid exhaled is very much diminished. It slould also be borne in mind, that the continued respiration of an
atmosphere charged with the exhalations from the lungs and skin, is a most potent predisposing cause of disease, especially of the zymotic class.

The presence of an increased amount of aqueous vapour in expired air, may be shown by breathing upon a lookingglass, or polished metallic surface. The amount of aqueous vapour exhaled from the lungs in twenty-four hours may be estimated, in temperate climates, at from ten to twenty ounces. A certain amount of carbonic acid and water is also eliminated by the integument. Ammonia is an accidental constituent of expired air. The amount of organic matter given off fiom the lungs in twenty-four hours, is about three grains.

Amount of Oxygen Inhaled.-There is always less oxygen in expired air, than in the same quantity of air before respiration. Some of the oxygen unites with the carbon in the lungs to form carbonic acid; some is used in the chemico-vital changes which take place in the hlood and tissues, and some is also used in oxidizing other substances besides the carbon, as for example, sulphur and phosphorus, which are eliminated in the urine in the form of sulphuric and phosphoric acid. Its absorption depends on the strong chemical affinity of hemoglobine for it. The quantity of oxygen absorbed is about 542 grains per hour, but it varies in different persons, and in the same person at different times. It is increased by food, especially of the farinaceous kind, and is diminished during fasting. The interchange of gases in the lungs does not accord with the law of "diffusion of gases," otherwise the proportion between the oxygen consumed and the carbonic acid exhaled should never vary. Besides, the law requires that both gases should be free, and under equal pressure; while, in reality, the gas in the blood is dissolved, under pressure, and is also separated by a membrane from that into which it is to be diffused.

The nitrogen of the atmosphere serves only to dilute the oxygen, and moderate its action in the system. Under ordinary circumstances there is very little difference between the quantity of nitrogen inspired and exhaled. The absorption of nitrogen is increased by fasting; while, under opposite circumstances, it is diminished. There is also a small quantity of nitrogen given off in the form of ammonia.

Changes in the Blood in Respiration.-1st, its color is changed ; 2nd, it absorbs oxygen ; 3rd, it exhales carbonic acid and aqucous vapour, small traces of ammonia and animal matter ; 4th, it contains more fibrin, and the temperature is increased from 1° to $2^{\circ} \mathrm{F}$. The most obvious change is that of color, the dark venous blood being exchanged for the bright scarlet of arterial blood. The causes of this change have been already discussed in the chapter on blood. It is chiefly due to the absorption of oxygen, which is taken up principally by the hemoglobine of the corpuscles and partly by the plasma, and carried to the tissues; and to the exhalation of carbonic acid which exists in the blood. The colpuscles also assume a liconcave shape, which reflects the light in such a way as to modify the color. Both oxygen and carbonic acid exist in the corpuscles and plasma of the blood, partly in a state of solution, and partly in a state of chemical combination; but the corpuscles are the chief agents concerned in the absorption of the gases.

The exhalation of carbonic acid is favored by the moist condition of the membranes of the lung, which liquefies the gas. This fact may be demonstrated by filling a bladder with carbonic acid, and then placing it in water; it will soon be found to collapse and become completely emptied. Carbonic acid is being constantly generated in the blood, and is removed by exhalation from the lungs, as fast as it is produced; but if respiration is obstructed or seriously impeded, it accumulates in the blood, and may cause death
by its poisonous effects on the nervous system. Carbonic acid is formed in three different ways in the system: 1st, in the blood, by the action of oxygen on certain elements introduced in the food, as glucose and fats, giving rise to a certain amount of animal heat; 2nd, in the capillaries, by the union of oxygen with the carbon produced by the disintegration of the tissues; 3rd, in the lungs, hy the decomposition of the alkaline carbonates.
Effects of the Arrest of Respiration.-When resjiration is interfered with by any obstruction, or from whatever cause, the circulation of blood through the lungs is retarded, and at length arrested. This prevents tios exit of blood from the right ventricle, and is followed by verous congestion of the nervous centres, and all the other parts of the body. Besides, only a very small quantity of blood finds its way into the left side of the heart, and this is venous also. Hence, in death from asphyxia, the left side of the heart is nearly empty, while the lungs, right side of the heart and veins, are gorged with venous blood. The cause of the retention of blood in the lungs is due to the non-elimination of the carbonic acid; for blood loaded with this gas does not pass freely through the capillaries. The fatal result is due, to some extent, to the weakened action of the right side of the heart, in consequence of its over-distension; and also to the venous congestion in the medulla oblongata and nervous centres. The time which is necessary for life to be destroyed by asphyxia varies from one and one-half, to four minutes. In new-born and young animals, longer time is required than in older ones, because in the former the respiratory changes in the tissues are much less active. Animals will recover after simple deprivation of air for four minutes, but submersion in water for $1 \frac{1}{2}$ minutes destroys life completely. This is owing, in all probability, to the filling of the lungs with water. In drowning, very few persons recover who have been submerged more than three or four minutes. Cases have been
recorded in which recovery took place after the inpse of from fifteen minutes to half an hour ; but in these instances it is probable that a state of syncope had come on at the moment of immersion.

CHAPTER X.

ANIMAL HEAT, LIGHT, AND ELECTRICITY.

Heat.-This is closely connected with the process of respiration. The average temperature of the human body varies from 98° to $100^{\circ} \mathrm{F}$.; birds from 106° to $111^{\circ} \mathrm{F}$.; fishes and reptiles, about $51^{\circ} \mathrm{F}$. In mammals and birds the temperature of the blood and internal organs is always very much above the external air, and they are therefore called "warm-blooded animals." In fishes and reptiles, on the other hand, the temperature of their bodies differs but little from that of the medium which they inhabit, hence they are called "cold-blooded animals." In both classes, however, there is an interual source of heat, but it is more active in the one than the other. Even in vegetables a certain amount of heat-producing power is occasionally manifest, as for example, in the flowering of plants, malting of larley, etc. In discase, the temperature of the body may deviate somewhat from the natural standard, as e.g., in scarlatina, typhoid fever, etc., it rises as high as 106° or $107^{\circ} \mathrm{F}$. In cholera, on the other hand, it often falls as low as 78° or $79^{\circ} \mathrm{F}$. Continued high temperature in fever usually indicates a fatal issue, The highest temperature yet observed was reported by Dr. Teale, Eng. in a case of spinal injury, in which the temperature reached $122^{\circ} \mathrm{F}$. The patient recovered. In some cases of yellow fever, a remarkable rise
takes place very soon after death, in one instance as high as $113^{\circ} \mathrm{F}$., fifteen minutes after death. The temperature of the body in health, is about $11^{\circ} \mathrm{F}$. lower during sleep than while awake. It is raised by exercise, and also after eating. The temperature of the now-born child is $1^{\circ} \mathrm{F}$. higher than in the adult.

Theory of the Production of Animal Heat.-There have been many theories regarding this subject. Lavoisier supposed that the oxygen taken into the lungs combined with the corbon of the blood and formed carbonic acid which was at once eliminated, the same amount of heat being produced as if the oxidation of a similar quantity of carbon in wood or coal had taken place, und that the heat thus developed radiated to the different parts of the body. This view was, however, soon ascertained to be incorrect, inasmuch as the heat of the lungs was found to be no greater than the rest of the body. It was also shown that the carbonic acid is formed principally in the blood and tissues, and that the oxygen is taken up by the blood corpuseles and carried away in the general circulation. According to Licbig, the heat of the animal body is produced by the oxidation or combustion of certain elements of the food, while circulating in the blood, as sugar, and fats. He therefore divided the food into two classes,-1st, The plastic elements of nutrition, which are used in the building up of the tissues, as albumen, fibrin, cascin, muscular tissue, etc. 2nd, The elements of respiration, as starch, sugar, and fats, which are chiefly used in the production of animal heat, being oxidized in the ci sulation, and eliminated in the form of carbonic acid and water by the lungs. This theory, slightly modified, is the one which is most generally received.

The production of animal heat, then, is a phenomenon which results partly from the oxidation, or combustion, of certain elements of the food, and partly from the chemicovital changes which take place in the blood, and the difficr-
ent organs of the body. Every change in the condition of the organic constituents of the body, in which their elements enter into new combinations with oxygen, must be a source of the developement of heat; and the amount of oxygen consumed bears a certain relation to the amount of heat produced, the same amount of heat being produced, whether the union be rapid or slow. It is also found that the quantity of heat generated in the body is, "cocteris paribus," in direct proportion to the activity of the respiratory process. For example, in birds, whose function of respiration is very active, the animal temperature is very high ($111^{\circ} \mathrm{F}$.), while in mammals, whose respiration is less active it is less (98° to $102^{\circ} \mathrm{F}$.) In fishes and reptiles, both the respiration and the animal heat are much lower than in either of the preceding ($51^{\circ} \mathrm{F}$.). Besides, the quantity and quality of the food used are different in different climates and seasons, for example, larger quantities of fats and oils are used in the food in cold than in warm climates, in order to supply material for the maintenance of animal heat. Even in temperate climates, more fats are used in winter than in summer.

Influence of the Nervous Sistem in the Production of Animal Heat.-It has been observed that after the division of the nerves of a limb the temperature falls, and this diminution of heat is still more decidedly marked in cases of paralysis ; e.g., the hand of a paralyzed arm was found to be $70^{\circ} \mathrm{F}$., while that of the sound side had a temperature of $92^{\circ} \mathrm{F}$. Again, when death is caused by a severe injury, or removal of the nervous centres, or in poisoning by woorara, ete., the temperature of the body rapidly falls, even though artificial respiration be kept up. On the other hand, severe injuries of the nervous system are sometimes followed by the direct opposite effect. This is supposed to be duc to the dilatation of the arteries, in consequence of which the blood reaches the part supplied by those nerves in larger quantities; the nutrition is therefore more active.

Certain emotions of the mind may cause a momentary increase of temperature, while others cause a diminution. These circumstances, however, do not prove that heat is produced by mere nervous action independent of any chemical change. All the functions of the organism, as nutrition, secretion, excretion, etc., are under the influence of the nerves, and when they are divided, or otherwise injured, or paralyzed, chemico-vital action is in great measure suspended.

Regulation of the Templeature of the Body. The temperature of the body is rendered uniform partly by loss of heat by radiation, and conduction ; but chiefly by the ovaporation which is continually taking place on its surface and to a small extent in the air passages. The introduction of food and drink at a lower temperature than the body, and the removal of the excreta, also abstract a small amount of heat. Evaporation of the perspiration produces cold, on the principle that " when a fluid passes into a state of vapour heat becomes latent," and hence the loss of heat will depend upon the amount of evaporation. When the atmosphere contains much moisture the evaporation is partly suspended, and all the effects of excessive heat are made more apparent than in a dry atmosphere, in which a greater amount of evaporation takes place, and consequently a greater amount of heat is removed from the system. Persons have been known to remain for several minutes in a dry atmosphere, heated to $250^{\circ} \mathrm{F}$, without injury, the evaporation being sufficient to keep the temperature of the body within certain limits. Such a degree of heat in a moist atmosphere would be certain to cause serious injury.

In fevers and inflammation, the skin is hotter than in health, and is also dry ; this is owing to the arrest of the natural secretion or perspiration, in consequence of which there is little or no evaporation to produce cold. In such cases great benefit will be derived from sponging the body frequently with cold or tepid water.

LIGHT

The evolution of light from the living human body, is a phenomenon of rare occurrence. Luminous exhalations have been frequently observed in burial grounds, and a luminous appearance has been sometimos noticed in newly dissected subjects in the dark. This is due to the development of phosphoretted hydrogen during decomposition of the tissues. A luminous appearanco has been observed in old sores in the living subjeet, which were in a state of decomposition. It is also said that an evolution of light has been noticed, in two or three instances, in patients in the last stage of phthisis. The light in these cases, was observed to play around the face, and, in all probability proceeded from the breath, which had a peculiar smell, and was probably charged with phosphoretted hydrogen. The urine also, in some instances, has a luminous appearance, depending upon the presence of unoxidized phosphorus which it contains. The breath of an animal may be rendered distinetly luminous by injecting phosphorus dissolved in olive oil, in the proportion of two grains to the ounce, into the veins.

ELECTRICITY.

This is generated by chemical union or decomposition, heat, and motion or friction. There are no two parts of the body, except probably those of opposite sides, whose electrical condition is precisely the same. This depends on the difference in the functional activity of the parts; e.g., the skin, and most of the internal membranes, are in opposite electrical states. Electrical currents exist in museles and nerves; this may be demonstrated by means of the galvanometer. The direction of the current is constant in each muscle ; but different muscles have different currents, e.g., in the gastrocnemius of the frog, the direction is from the foot towards the body; while in the sartorius it is the reverse. But, taking all the muscles of the limb together, the differ-
ont currents are so unevenly balanced, that a constant current is established in one direction of the limb, and this, in the frog, is from the foot towards the body. The current of a man's arm is from the shoulder to the fingers.

When the two cut ends of a muscle are placed against the electrodes of a galvanometer, a very slight deflection of the needle is observed, and the same is the case with two points of a longitudinal section which are equally distant from the middle of the muscle. But the most powerful influence on the galvanometer is produced when to th. urface of a muscle is applied one of the electrodes, and the cut end brought in contact with the other, These results may be obtained with small portions of musele, even with a single fasciculus. Hence, it would appear, that each integral particle or sarcous element is a centre of electromotive action, and contains within it positive and negative elements, the arrangement of which represents a galvanic pile thus : It is supposed by some, that the light spots in the mus- $1 \pm$ cular fibrille are electro-positive, and the dark spots electro-negative. It has also been observed, that during contraction of the muscle the electric current is diminished. This may be exemplified by means of a common battery, It will be observed that when the poles are held tightly in the hands, and the muscles firmly contracted, the shock is not so readily transmitted as when they are held gently. Since clectricity is transmitted both by the muscles and nerves, it is probable that contraction of the former alters slightly the relative position of some of the positive or negative elements, and in this way the power of conducting by the muscles is, to a certain extent. destroyed.

There is also an electric current in nerves, similar to that in the muscles. When a small piece of nerve, recently obtained from the living body, is placed so that its surface rests. on one of the electrodes, and its cut extremity touches the other, a considerable deflection of the needle is produced in
a direction which indicates that the current is from the interior to the exterior of the nerve. If the cut ends are applied to the two electrodes respectively, no marked effect is observed. The most powerful effeet is produced by doubling the nerve in the middle, and applying both ends to one clectrode and the loop to the other. The nervous current, like the muscular, is due to the electromotor action of the molecules of the nerve. The term electrotonus is applied to the condition of the nerve which exists during the time of electric stimulation. The irritability of the nerve is increased in the region of the negative pole or kathode, and is known as katelectrotonus, while it is diminished in the region of the positive pole or anode and is known as the condition of anelectrotonus. Electric currents are conveyed by nerves as well in one direction as another. The body would become surcharged with electricity were it not that the equilibrium is maintained by the free contact which is continually taking place between it and surrounding bodies. It is only when the wody is insulated that it becomes apparent. The electricity of man is generally positive; of woman, more frequently negative ; and irritable men, of sanguine temperament, have more free electricity than phlegmatic persons. In some persons a crackling noise is produced when articles of dress, worn next the skin, are being removed, especially in dry weather. A case of a lady is mentioned in the American Journal of Medical Sciences (1838), in whom the generation of electricity was so great, that whenever she was insulated by a carpet, or any other feebly conducting medium, sparks passed between her body and any object she approached. Asmany as four sparks per minute would pass from her finger to the brass ball of the stove, at the distance of one and a half inches. This phencmenod was accompanied with a good deal of pain.

In some persons, a sufficient amount of electricity may be generated, when insulated by a carpet, to enable them to ignite a recently extinguished gas jet, by means of the sparks which pass from the fingers.

Some animals possess organs in which electricity may be generated and accumulated in large quantities, and from which it may be discharged at will. The most rernarkable examples are to be found in certain fishes, the best known of which are the torpedo, or electric ray, and the gymnoius, or electric eel. The shock of the gymnotus is sufficiently powerful to kill small animals; that of the torpedo is not severe, but sufficient to benumb the hand that touches it.

Sparks of electricity may be produced in most animals having a soft fur, by rubbing the surface, especially in hot weather. This may be easily clemonstrated by smoothing the back of a cat with the hand, in a darkened room, rubbing the horse in a dark stable, or by scraping sugar in the loaf in a dark pantry.

CHAPTER XI.
skCRETING GLANDS AND THEIR SECRETIONS.

THE LIVER.

This is the largest gland in the body, situated in the right hypochondriac region, and extending across the epigastric into the left hypochondrium. It measures from ten to twelve inches from side to side, and from six to seven from before backwards, and weighs about three to four pounds. It consists of five lobes, which are mapped out on its under surface by five fissures. It is mainly divided into two lobes, the right and left, by a longitudinal fissure, the anterior portion of which is called the umbilical fissure, and the posterior part, the fissure for the ductus venosus. The right lohe is six times as large as the left, and presents on its under surface the lobus quadre tus, lobus caadatus, and lobusSpigelii separated from each other by the transverse fissure, the fissure for the gal!-bladder and the fissure for the vena cava. The transverse fissure is sometimes called the hilum, and is situated, as in the 'ungs, kidneys, spleen, etc., nearer the posterior than the anterior border. The liver is inteuded mainly for the secretion of bile, and is also supposed to effect important chauges in certain constituents of the blood in its passage through the gland.

Minute Structure.-The liver is surrounded by a reflection of the peritoneum, which constitutes its serous covering. This is attached to the substance of the gland, except at its point of attachment to the diaphragm and in the
bottom of the different fissures, by fine areolar tissue. The substance of the liver consists of lobules held together by delicate areolar tissue, the ramifications of the portal vein, hepatic artery and ducts, hepatic veins, nerves and lymphatics.

The lobules (acini) are small, oval or roundish bodies, about the size of a millet seed measuring from $\mathrm{T}^{\frac{1}{\sigma} \delta}$ to $\frac{3^{\frac{1}{2}} 0}{}$ of an inch (2.5 to 1.2 mm) in diameter. They surround the the small sublobular branches of the hepatic vein, to which each is connected at its base by a small intralobular branch. When divided longitudian!!y, they present a foliated margin, and on a transverse section, they have a polygonal outline. When one of the sublobular hepatic veins is laid open, the bases of the lobules may be seen through the thin walls of the vein on which they rest. The base of each lobule presents a polygonal outline, in the centre of which

Longitudimal section of a portal eanal containing (p) portal vein ; (A) hepatic artery, and (D) hepatie duct. Lobules are to be seen to the right and left,and also shining through the thin wall of the vein; in the eentre of each lobule is seen the Intralobular vein ; a, a, portlon of the rnnal from which the vein has been removed; b, openings of the interlobular veins. may be seen the orifice of the intralobular vein. This gives them the appearance of a layer of tesselated or pavement. epithelium.

Structure of the Lobules.-Each lobule is a miniature representation of the whole gland of which it forms a part. It consists of a mass of cells, a plexus of biliary duets, an intralobular vein (which is the commencement of the hepatic vein), arteries, nerves, and lymphaties.

The hepatic cells form the chief mass of the substance of a lobule : they lie in the interspaces of the capillary plexus, so as to form rows, which radiate from the centre to the cir-

Fif. 81.

Hepatic lobule. In the centre is seen the intrulobular vein ; vp, temmation of the portal vein around the lobule, from which a eaplilary plexus proceeds towards the centre in the meshes of which ure seen the hepatle eells; b, b, biliary ducts, arising within the lobule. (Claude Beruard.)
cumference of the lobule (Fig. 81). They are generally spheroidal in shape, but may be polygonal from mutual

Fig. 82.

Hepatic (Cells. (Frey.) (25 to 12.5 nmm .) in diameter. Each cell contains a distinct nucleus, sometimes two, and in the interior of the nucleus a highlyrefracting nueleolus, and some granular matter. The contents of the cell are viseid, and contain yellow particles of colouring matter, and some oil globules.
Blilary Ducts.--These commence within the lobule by a minute plexus of ducts (bile capillaries), with which the cells ure in immediate contact. The ducts then form a
plexus between the lobules (interlobular), and the interlobular branches unite into vaginal branches, which lie in tho portal canals. These branches finally join to form two large trunks, which leave the liver at the transverse fissure, and uniting form the hepatic duct.

Portal Vein.-The portal vein, on entering the transverse fissure of the liver, divides into two branches, one for each lobe, which are situated in the portal canals, together with the branches of the hepatic artery and duct, nerves and lymphatics. These vessels are surrounded by areolar tissue, continued inwards from the transverse fissure of the liver, called Glisson's capsule. The portal veins, in their course in these canals, give off vaginal branches, which form a plexus. From this plexus and from the portal vein itself, small branches are given off,which pass between the lobules and cover their external surface, called interlobular; these then piere the lobules, and form a capillary plexus within each, from which arises the intralobular vein.

Hepatic Aitery.-This takes precisely the same course as the portal vein and hepatic duct. It is intended chiefly for the nutrition of the liver. It gives off in the portal canals the vaginal branches, which supply the coats of the portal vein and hepatic ducts, and also interlobular branches, which pass between the lobules; the latter pierce the lobules, and terminate in the radicles of the intralobular vein. They are supposed by some to terminate in the radicles of the portal vein, but this is improbable.

Hepatic Veins.-The hepatic veins commence in the interior of the lobules in the intralobular veins, which arise in the centre of the lobules, and leave them at their bases to join the sublobular veins. The sublobular veins unite to form larger branches, and these join again to form the large hepatic veins, which terminate in the inferiur vena cava.
Fur the secretion of the bile, and its function, see chapter on digestion.

THE KIDNEY AND ITS SECRETION.

The kidneys are intended for the secretion of urine. They are situated in the back part of the abdouinal cavity, one in each lumbar and hypochondriac region, extending from the eleventh rib to within two inches of the crest of the ilium. The right is somewhat shorter and situated a little lower than the left. They are invested by a thin, smooth, tibrous capsule, which is very easily removed from the surface of the gland, and weigh from four to six ounces each.

Structure.-The kidney consists of two different substances, an external or cortical, and an internal or medullary substance. The cortical substance forms about threefourths of the whole gland, is reddish

Fig. 83.

Longitudinal sectlon of the kidney; the swellings upon the surface mark the original constitution of the organ, as made up of distinct lobules. -1 . The supra-renal capsule. 2. The cortical portion of the kidney. 3, 3. Its medullary portion, consisting of cones. 4, 4. Two of the papiltæ projecting into their corresponding calyces. 5, 5, 5. The three infundibula; the middle 5 is situated in the mouth of a calyx. 6. The pelvis. 7. The ureter. - mids; these are called the cortical columns or columns of Bertini.
The Malpighian bodies are found only in the cortical substance. They are small round bodies, of a deep red color, and of the average diameter of ${ }_{\mathrm{T} 2 \pi}$ of an inch. They are capsular dilatations of the
commencing tubuli uriniferi, and are scattered irregularly in the columns of Bertini, but regularly arranged in double rows in the cortical arches. Within each body or capsule may be observed a vascular tuft or glomerulus, which consists of the ramifications of a small artery, the afferent vessel, which, after piercing the capsule, divides in a radiated manner into several branches, which ultimately terminate in a finer set of capillaries. The blood is returned from these by a vein, the efferent vessel, which pierces the caspule near the artery and forms a venous plexus with other efferent vessels around the adjacenttubuli(Fig84). The capsules are lined by a layer of epithelium, which is believed by some to be prolonged over the tuft of vessels; while others
 wholly uncovered. The tuft in the frog, and other reptiles is covered by ciliated epithelium.

The medullary substance, which forms about one-fourth of the gland, is pale-red in color, dense in texture, and presents a striated appearance on account of the number of diverging tubuli uriniferi. It consists of conical masses the "Malpighian pyramids", which vary in number from eight to eighteen, their bases being directed towards the circumference of the organ, and their apices towards the sinus, in which they terminate by smooth rounded extremities, called the papillæ of the kidney. The conical masses consist of the tubuli uriniferi, blood-vessels, nerves and lymphatics, held together by areolar tissue.

The tubuliuririferi commence at the apices of the cones by small openings ; as they pass towards the base they divide

Fig. 85.

A. Portion of uriniferous tube magniffed. B. Epithelial cells more highly magnified.
and sub-divide, and diverge until they reach the cortical sub stance, when they become convoluted and anastomose freely with each other and terminate in the Malpighian capsules. There are also some convoluted tubes in the Malpighian pyramids, the looped tubes of Henle, which descend to a certain distance in the medullary pyramid and return in loops to rejoin ihe convoluted tubes. The diameter of these looped tubes is ahout $\frac{1}{1800}$ of an inch (20 mmm). The number of orifices on a single papilla is about five hundred. The average diameter of the tubes is about $\frac{1}{0} \sigma$ of an inch (50 mmm) and they consist of a nearly homogeneous membrane lined with spheroidal ephithelium in some parts,and cubical in others. Each tube as it passes through the cortical substance, from the number of loops which surround and are connected with it, presents a pyramidal appearance; these are called the "pyramids of F'errein," or lobules of the kidney. The total number of tubes is about two millions.

Arteries and Nerves.-The kidney is supplied by the renal artery, which divides into four or five branches as it enters the hilum. These again sub-divide into the arterice proprice renales, which enter the kidney in the spaces between the papille (columns of Bertini). They here give off branches which supply the Malpighian pyramids, and cortical substance. Opposite the bases of these pyramids they make an abrupt bend, and give off branches (arteriolce rectec) which supply the interior of the pyramid, descending to the apex. They are then continued on between the "lobules," or pyramids of Ferrein, under the name of interlobular branches, until they reach the capsule. In their
course they supply the Malpighian bodies, giving them tufts as already described (Fig. 84). The afferent vessel after leaving 'he Malpighian body, joins the capillary plexus surroundit., the tubuli uriniferi, and from this plexus arise the veins which return the blood. The circulation in the Malpighian bodies is therefore an off-set from the ordinary circulation, and in this respect resembles the portal circulation. The nerves of the kidney are derived from the solar plexus, the semilunar ganglia, and the lesser and smallest splanchnic nerves.

Sinus of the Kidney.-This is a large cavity in the interior of the kidney which communicates with the tubuli uriniferi on the one hand, and the ureter on the other. It consists of three prolongations, the infundibula, one situated at each extremity of the organ, and onc in the middle. Each infundibulum is divided into from seven to thirteen smaller portions, the calyces, each of which surrounds, like a cup, the base of one or more of the papillæ. It is lined by spheroidal epithelium.

Secretion of Urine.--The secretion of urine from the blood is effected by the agency of cells. Some substances as urea, uric acid, etc., exist ready formed in the blood, and need only to be removed; but other substances, as the acid phosphates and the sulphates are formed by the agency of ${ }^{\text {f }}$ sells. It is probable, also, that the Malpighian bodies furnish chiefly the fluid portion of the urine, for it has been observed that in those animals which pass the urinary exerement in a semi-solid state, the tufts of the Malpighian bodies are very small. The secretion of urine is rapid, in comparison with other secretions. It passes down the ureters and enters the bladder drop by drop; this may be seen in some cases of ectopia vesicce. Some substances pass. sery rapidly from the stomach through the circulation, to be eliminated by the kidney; e.g, a solution of potassium ferrocyanide passed in one minute, while some vegetable
substances as rhubarb, occupied from sixteen to thirty-five minutes. The transit is slower, when the substances are taken during digestion.

URINE.

Healthy urine is a clear, limpid fluid, of a pale straw or amber color, with a peculiar odor, and saline taste. When first voided, it has an acid reaction, but after a short time it becomes alkaline from the development of ammonia during decomposition. In some instances the urine may become turbid on cooling, although clear and transparent at first. The specific gravity varies from 1015 to 1025, depending on the time at which it is secreted, the kind of food, drink, etc. In consequence of this, the secretion has been divided into three varieties:-1st, urina potus, or that which is secreted after the introduction of fluids into the body; 2nd, urina cibi, or that secreted after the introduction of solid food ; 3rd, urina sanguinis, or that secreted from the blood when neither food nor drink has been taken. For purposes of investigation, a portion of the urine passed during a period of twenty-four hours should be taken. In disease, as albuminuria, the specific gravity is diminished to 1004 ; while in diabetes it may be increased to 1050 or 1060. The quantity of solids in any given specimen of healthy urine may be determined approximately by doubling the last two figures of the $s p . g r$.; thus 1018, (18×2) $=36$ grains of solids in 1000 grains of the urine. The whole quantity of urine secreted in twenty-four hours varies, according to the amount of fluid drank, and the quantity secreted by the skin, from thirty to fifty ounces. The secretion of the skin is more active in warm weather than in cold, and consequently the quantity of urine secreted during winter is greater than in summer.

Chemical Composition of the Uiine.-The urine consists of water, holding in solution certain animal matters,
salts, coloring matters, etc. Its composition according to the most recent analyses is as follows, in 1000 parts.

Water.-The quantity of water varies in different seasons, and according to the drink, exercise, action of the skin, etc. In some diseases it is very much increased, as in hysteria, diabetes, etc. In other diseases, as albuminuria, diarrhœa and dysentery, it is very much diminished. In fevers, albuminuria, and in inflammation also, the quantity of water is almost invariably diminished.

Unea.- $\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)$. This constitutes more than half of the solid matter of healthy urine. The quantity is increased by a purely animal or highly nitrogenous diet, and slightly by exercise. The increase of urea in active muscular exercise was formerly supposed to be in exact proportion to the amount of muscular exercise, but this has been found by experiment not to be the case; the waste of muscle cannot be expressed by the increase in urea. Urea exists already formed in the blood, and is simply removed by the kidneys. It is formed from the decomposition of the nitrogenous elements of the food, and from the disintegration of the azotized tissues. It may be readily obtained by evaporating urine to the consistence of honey, and acting on it with four parts of alcohol ; then evaporating and crystallizing. It crystallizes in acicular crystals, which appear, under the microscope, as four-sided prisms, (Fig. 86). It is purified by filtering through animal charcoal. It may also be obtained in the form of urea nitrate ($\mathrm{C} \mathrm{H}_{4} \mathrm{~N}_{2}$ $\mathrm{OHNO} \mathrm{O}_{3}$), by evaporating urine to one-half, and then adding
an equal quantity of nitric acid, and crystallizing. Urea

Fig. 86. Crystals of urea. lig. 87. Crystals of uric acid. is identical in composition with ammonium isocyanate, $\left(\mathrm{N} \mathrm{H}_{4} \mathrm{C}\right.$ $\mathrm{NO}=\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$), and may be prepared artificially by the chemist, by double decomposition from potassium isocyanate, and ammonium sulphate. Urea is colorless when pure, and destitute of smell, neutral in its reaction to test paper, and soluble in water and alcohol. When urine stands for some time, the urea is decomposed, and forms ammonium carbonate. It is also decomposed, in some cases, before it leaves the bladder, as in paralysis, and some low forms of disease. An average of 500 grains (32.4 grammes) of urea are excreted from the body in twenty-four hours, when the kidney is in a healthy condition; but in some diseases, as, e. g., in desquamative nephritis, Bright's disease, or congestion of the kidney from any cause, a certain portion of the urea is kept back, and circulating through the system may, by its poisonous effects on the cells, give rise to dropsies in different parts of the body, or from its deleterious effects on the nervous system, occasion uræmic convulsions and coma.

Uric or Lithic Acid ($\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{3}$). -This substance is rarely absent from healthy urine. It is combined with sodium and ammonium in the form cf urates. It predominates in the urinary excrements of birds, serpents, and other reptiles; while urea predominates in the mammalia, especially the herbivora. In the urine of the feline tribe, uric acid is sometimes entirely replaced by urea. Uric acid and urea are, therefore, closely allied to each other, and each alone may represent the excretion of the two. The quantity of uric acid, like that of urea, is increased by the use of animal or highly nitrogenized food, and decreased by
food which is free from nitrogen. It is increased in all febrile conditions, and in gout it is deposited in and around joints, in the form of sodium urate, and constitutes the socalled "chalk-stones." Uric acid has been detected in the blood of healthy persons, and in considerable quantity in gouty patients. It is supposed to be formed in the system from the disintegration of the azotized tissues. Uric acid may be readily obtained by adding a few drops of hydrochloric acid to a portion of urine in a watch glass; after a few hours it is found erystallized on the sides and bottom of the vessel. In larger quantities it may be obtained from the thick, white, urinary excrement of serpents or birds, which consists almost entirely of ammonium urate. This substance is dissolved in warm water, and then decomposed by nitric or hydrochloric acid. The erystals of uric acid assume very various and somewhat fantastic shapes, most frequently rhombic or diamond shaped (Fig. 87). It is insoluble in alcohol and ether. When the urates are in excess in the urine, they appear as a "brick-dust" sediment in the vessel. They may be distinguished from other deposits by their not appearing until the urine becomes cold, and by disappearing again entirely on the application of heat.

Hippuric Acid ($\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{3}$.)-This acid exists in small quantity in human urine, probably in the form of sodium and potassium hippurates, but is very abundant in the urine of cows, horses and other herbivorous animals. It is closely allied to benzoic acid ($\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$), and this substance when taken into the system, is excreted in the form of hippuric acid. Hippuric acid is chiefly formed from vegetable articles of food, and

Fig. 88. Crystals of hippuric acid. Fiy; 89. Large prismatic crystals of triplo phosphates, among which are seen soine crystals of ammonium urate.
may be prepared from the urine of cows by precipitation with hydrochloric acid. It has a bitter taste, is slightly soluble in cold, but very soluble in hot water and alcohol.

Creatine- $\left(\mathrm{C}_{4} \mathrm{H}_{0} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ occurs in very small quantity in the urine. It is a coloriess c:ystalline body, with a pungent taste, soluble in water, but almost insoluble in alcohol. It may be obtained from the flesh of animals. It is most abundant in the flesh of fowls, and in the heart of the ox.

Creatinine- $\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\right)$ is also found in the urine. It crystallizes in colorless crystals, has a hot, pungent taste like caustic ammonia, and is soluble in water and alcohol. It may be formed from creatine, by the action of hydrochloric acid, and is probably formed from creatine in the system.

Urochrome or Urosacine, the coloring matter of the urine, has been already described, (see proximate principles). A substance termed Indican has been found in the urine by several observers; by its decomposition indigo blue, and indigo red are produced.

The urine also contains a certain amount of mucus and epithelial debris from the mucous surface of the urinary passages.

Salts.-The salts of the urine constitute less than half of the solid ingredients. Sodium and potassium chlorides form a large proportion of the salines of the urine, the former leing more abundant than the latter. They are derived in part from the food, and also partly from chemical decomposition within the body. They may be readily precipitated by a solution of silver nitrate after the urine has been acidulated by nitric aeid. When silver nitrate is added to healthy urine, a whitish precipitate of silver chloride and sodium phosphate is thrown down; the latter may be dissolved by the addition of a litile nitric acid. The silver chloride is readily dissolved by a little ammonia.

The sulphates are more abundant in the urine, than in the
fluids and tissues of the body. They are increased by exercise, and in diseases accompanied by muscular exertion, as in chorea and delirium tremens. They are also increased by the introduction of sulphur or the sulphides into the system. The sulphuric acid is formed by the oxidation of sulphur, which is derived from the decomposing albuninoid substances.

The phosphates are more numerous than the sulphates. Phosphorus is derived from the decomposition of nerve substance, albumen and fibrin, and like sulphur, is oxidized at the lungs, and then unites with the bases to form salts. The alkaline phosphates, or potassium and sodium phosphates are those salts by which most of the phosphoric aeid is eliminated in the urine. They are readily soluble, and never appear as a precipitate in urine. The quantity of alkaline phosphates is increased by_{6} a diet of animal food; also by great mental exertion, and in phrenitis. They are also increased by exercise, while the earthy are diminished. The earthy phosphates, or calcium and magnesium phosphates, are not very abundant in the urine. They are held in solution by the sodium biphosphate, and when this is absent or neutralized they fall as a precipitate.

The acid sodium phosphate, or sodium biphosphate gives the urine its acid reaction. It is supposed to be formed from the ordinary sodium phosphate of the blood by the action of uric acid, which unites with a part of the sodium forming sodium urate, leaving an acid sodium phosphate. Though freshly voided urine exhibits an acid reaction, yet it has no free acid, but within a few hours after its discharge it undergoes the so-called acid fermentation resulting in the production of free lactic, and sometimes oxalic acid, formed from some of the organic ingredients. The latter when formed is precipitated with calcium, forming a sediment of calcium oxalate (Fig. 90). In a few days these changes

Hig. 90 Crystals of calcium oxalate. l'ig. 91 Crysta's of eystin.
cease, and are followed by the so-called alkaline fermentation, during which some of the phosphates are thrown down. This ehange is brought about by the decomposition of urea and its transformation into ammonium carbonate. This causes a precipitation of the earthy phosphates which unite with some of the ammonium, and are deposited in the form of ammonio-magnesium phosphate (triple phosphate) Fig. 89. The urine at this time has a strongly ammoniacal odor. Cystin (Fig. 91), is occasionally found in unhealthy urine.

mammary glands and their secretion.

These are the organs whieh secrete the milk. They are large and hemispherical in the female, but are quite rudimentary in the male. They are situated in front of the pectoralis major, between the third and sixth ribs, and extend from the sides of the sternum nearly to the axillie. They are enlarged at puberty, increased during pregnancy and lactation, and diminished in old age. The outer surface of the mamma presents a iittle below the centre, a small conical eminence-the nipple-the surface of which is darkcolored, and surrounded by an areola, which has a rosy hue in the virgin, but becomes very dark-colored during pregnancy. Its summit is perforated by numerous openings, the orifices of the lactiferous ducts. It is also provided with a number of sebaceous glands, situated near its base and upon the surface of the areola, which secrete a peculiar fatty substance for the protection of the nipple during sucking. The nipple consists of numerous blood-vessels, nerves, lymphatics, ducts, erectile tissue, and nonstriated muscular fibre-cells, and is capable of slight erection during sexual excitement or irritation.

Structure.-The mainma consists of numerous lobes, which are made up of small lobules, connected together by areolar tissue, blood-vessels and ducts. There is also some adipose tissue between the lobules. Each lobule, which is a representation of the whole gland, consists of a cluster of rounded vesicles, which open into the smallest branches of the lactiferous ducts, and these, uniting, form larger ducts -the tubuli lactiferi. These vary in number from fifteen to twenty, and converge towards the areola, bencath which they form dilatations, or ampulle, which serve as reservoirs for the milk; they then become contracted, and continue onwards to the summit of the nipple, where they open by separate orifices, which are narrower than the ducts themselves. The entire surface of the gland is invested by fibrous tissue, from which numerous septa are derived, which pass between the lobes.

Milk.-The secretion of milk is usually limited to the period succeeding parturition, yet this is not invariably the case. Numerous instances are on record where young women who have never berne children, and even old women, have been able to act as wet nurses. In some rare cases, the male has been known to secrete milk in the breasts. A fluid resembling milk, may frequently be expressed from the mammary glands of infauts. Milk has an alkaline reaction, and the specific gravity varies from 1020 to 1030 . The speeific gravity alone is of no value as an indication of the richness of the milk. The average chemical composition of human milk is as follows, in 1000 larts:

When milk is examined with a microscope, a large number of minute particles may be seen, termed " milk globules,"
 $\mathbf{m m m}$) in diameter. They are coated with albuminous

Fig. 92.

Oil globules of human milk.

Fig. 03.

Oil globules of cow's milk.
mentation; and when lactic acid, or calcium lactate is allowed to stand for some time, it is changed into hutyric acid, or calcium butyrate, having undergone the "butyric acid fermentation."

The saline matter of the milk is nearly identical with that of the blood, with an increase i_{1} the calcium and magnesium phosphates. From what has been already stated, it will be observed that milk contains the four classes of principles which are required for human food, viz: The aqueous, the albuminous, the oleaginous, and the saccharine, consequently it is well adapted to the nourishment of the young animal. From 20 to 40 ounces of milk are secreted in 24 hours. Stimuiating liquors often used to incre se the quantity of milk, seldom act otherwise than prefudicial.

Certain medicinal agents, when administered to the mother, may pass into the milk, and in this way affect the child. As a rule, salines pass more readily than vegetable substances. Medicine may be administered to the mother, instead of the child, when it is desired to act upon the latter.

Emotions of the miud, as anger, grief, fear, ete., produce peculiar changes in the quantity and quality of the milk; for example, anger produces veryirritating milk, which car es griping in the child, and green stools. Grief diminishes the secretion, and frequently vitiates it. Fear also diminishes the secretion, and that which is seereted under such circumstances is highly irritating. Violent exercise, or great anxiety of mind, has also a bad effect on the secretion of milk. Cases are recorded in which children have had convulsions, and died shortly after sucking milk secreted undor the foregoing circumstances.

CHAPTER XII.

DUUCTLESS OR VASCUIAR GLANDS.

These are so named from having no excretory ducts; they are the spleen, supra-renal capsules, thymus and thyroid glands. They contain the same essential structures as the secreting glands, except the ducts. They are highly vascular, and are concerned in the elaboration of the blood. Their function, however, does not seem essential to life. They may become atrophied, or be removed from animals, without any serious consequences.

SPLEEN.

The spleen is situated in the left hypochondriac region, embracing the cardiac end of the stomach. It is of an oblong shape, highly vascular, very brittle, and of a bluishred color. It measures five inches in length, three or four in breadth, and one and a half in thickness, and weighs from four to six ounces.
Structure.-It is invested by two coats, an external serous and an internal fibrous elastic coat. The serous coat is derived from the peritoneum, and is intimately adherent to the fibrous coat. It covers nearly the whole organ, being reflected from it at the upper end on to the diaphragm forming the suspensory ligament, and at the hilum on to the great end of the stomach, forming the gastro-splenic omentum. The fibrous coat consists of white fibrous and yellow elastic tissue. It covers the exterior of the organ, and sends prolongations inwards at the hilum, in the form of vagine or sheaths, which surround the vessels. From these sheaths, and from the inner surface of the fibrous coat, numerous trabeculæ or bands pass in all directions, and these uniting
form the areolar framework of the spleen. The presence of the elastic tissue, permits of the great enlargement of this organ which is sometimes seen. The spaces or areolæ between the bands are filled with a soft pulpy mass, of a dark reddish-brown color, consisting of colorless and colored ele-ments-the proper substance of the spleen, or spleen pulpand some rounded bodies the Malpighian corpuscles.

The colorless elements form about one-half or two-thirds of the entire pulp, especially in well-fed animals, and consist of granular plasma, free nuclei, about the size of red blood corpuscles, and a few nucleated lymphoid cells. The colored elements consist of unchanged red blood corpuscles, and blood dises in various stages of decay. Besides these, may be seen a number of granular bodies or crystals, which in chemical composition resemble the coloring matter of the blood.

The Malpighian corpuscles are rounded bodies from $\frac{1}{3^{1}-5}$ to ${ }^{\frac{1}{\sigma} \sigma}$ of an inch (8 to .4 mm) in diameter, of a semi-opaque whitish color, and are more distinct in early life than in

Fig. 94.

Branch of the splenic artery, showing the Malpighian corpascles. white substance, consisting of granular plasma, nuclei, an 1 nucleated lymphoid cells similar to the colorless clements
of the pulp. Small capillaries pass into their interior and form a minute plexus.

The splenic artery is large in proportion to the size of the gland, tortuous in its course, and divides into from four to six branches, which enter the hilum. Each branch runs transversely from within outwards, and divides into smaller branches; these ultimately terminate in tufts or pencils, which lie in contact with the pulp. The most striking peculiarity is, that each of the larger branches supplies chiefly that part of the organ to which it is distributed, havirg no anastomosis with the adjoining branches. The capillariesterminate cither directly in the veins, or open into cæcal or lacunar spaces, from which the veins arise. The veins arise either in the ordinary way from the capillaries or by communicating intercellular spaces, or distinct cæcal pouches. They are much larger and more numerous than the arteries, and by their junction form from four to six branches which emerge at the hilum, and uniting form the splenic vein, the largest branch of the portal. From this it will be seen that the blood returning from the spleen passes through the liver before it enters the general circulation.

Function of the Spleen.-In consequence of the vascular arrangement and the large amount of elastic tissue which this organ contains, it is liable to undergo great changes in volume. Enlargement of the spleen is apt to occur from internal venous congestion, such as occurs in the cold stage of intermittent fever. When intermittent fever is long-continued, the spleen is generally very much enlarged, constituting what is commonly called "ague cake."

It was formerly supposed to act as a diverticulum of the liver, relieving its vessels from undue turgescence and preventing congestion of the liver, stomach and bowels; and also that it promoted the disintegration of the red blood corpuscles; but these views cannot be accepted in the present state of our knowledge. The spleen is
the into ilum. , and inate The nches s disches. open
The laries cæcd than o six n the his it oasses

on.

vas-
iissue great apt rs in ttent much ague
larger four or five hours after food is taken, and contains a larger proportion of finely granular albuminous material, than at any other time, therefore it is supposed that this organ is the receptacle for the increased quantity of albuminous material of the food, and which cannot be admitted into the system generally, without danger, until the volume of the circulating fluid has been reduced by secretion. In support of this theory, it has been stated that animals from which the spleen has been removed, are very liable to die of apoplexy, after taking large 'quantities of food. It would therefore appear to be a storehouse of nutrient material, which may be drawn upon as the system requires. The increase of the fibrin in the splenic vein would show that the nutrient material is elaborated during its withdrawal. It is also supposed to form the germs of future blood corpuscles, as there is found to be a large in. crease of the colorless corpuscles in the blood of the splenic vein.

SUPRA-RENAL CAPSULES.

The supra-renal capsules are situated one upon the upper extremity of each kidney, somewhat triangular in shape, the base being applied to the kidney, and the apex directed upwards. Each gland is about one and one-half to two inches in length, rather less in width, about one-fourth of an inch in thickness, and weighs from one to two drachms.

Structure.-Like the kidneys, they are divided into a cortical and medullary portion. The cortical portion, which forms the principal part of the organ, is of a deep yellow color, and consists of narrow, columnar masses, arranged perpendicularly to the surface, and held together by areolar tissue. These columnar masses measure about $\operatorname{To}^{2} 0$ of an inch (35 mmm) in diameter, and consist of oval spaces or parallel tubes, containing a finely granular plasma, a mass of nucleated cells with large nuclei, and oil globules. The medullary substance consists of areolar tissue, containing a
plexus of minute veins, having stellate or polygonal granular cells in its meshes. It is soft and pulpy, very dark in color, hence the name atrabiliary substance, sometimes given to it. These glands are more highly supplied with nerves than any other glands in the body.

Function.-Very little is known regarding their function. They were formerly supposed to be the diverticula of the kidney. They are probably concerned in elaborating some of the materials of the blood. They are developed at an early period in fœetal life, and are larger than the kidneys; but afterwards relatively diminish. It was observed by Addison that disease of the supra-renal capsules was associated with anemia, general weakness, and a peculiar change of color in the skin, the patient resembling a mulatto. The disease is called morbus Addisonii.

THYMUS GLAND.

This is only a temporary organ. It reaches its largest size at the end of the second year, and then declines until puberty, when only a small part remains. It is situated partly in the anterior mediastinum, and partly in the neck, extending from the lower border of the thyroid gland to the fourth costal cartilage. It is somewhat oval in shape, of a pinkish grey color, lobulated on its surface, and consists of two lobes. [t is about two inches in length, one and a half in breadth, three or four lines in thickness, and weighs about half an ounce.

Structure.-Each lobe consists of a central cavity or reservoir, around which are arranged numerous lobules, held together by delicate areolar tissue. The lobules vary in size from a pin's head to a pea, and each contains a smen!l cavity from $\frac{1}{18}$ to $\frac{1}{50}$ of an inch (1.4 to .5 mm) in diameter, which communicates with the central cavity or reservoir of the organ. Each lobule is surrounded by smaller or secondary lobules or acini, the cavities of which communicate with those of the primary lobules. If the capsule and areolar
tissue holding the parts together be dissected off, the gland may be drawn out into a tubular cord, around which the lobules are arranged in a spiral manner. The closed cavity of the organ, and the secondary lobules or acini contain a chyle-like fluid, consisting of nucleated corpuscles, granular nuclei and lymphoid cells.

Function.-This organ would appear to be connected with the preparation of matter for the pulmonary arteries in early life. In ill-nourished children the corpuscles become filled with fat, which is supposed to be added to the blood.

THYROID GLAND.

The thyroid gland is situated at the upper part of the trachea, and consists of two lobes connected by a narrow band (the isthmus), which crosses the second and third rings. Each lobe is conical in si:ape, about two inches in length, and three-quarters of an inch in breadth, the right being the larger. The whole gland weighs from one to two ounces. It is of a brownish-red color, larger in females than in males, and is increased during menstruation. It is occasionally very much hypertrophied, and constitutes bronchocele or goitre. In some countries, as in Switzerland and Northern Italy, bronchocele is very prevalent in both sexes. The children of goitrous parents are dwarfish, very defeccive in mental and moral faculties, and are known as cretins.

Structure.-In structure it consists of lobules, held together by areolar tissue. Each lobule consists of a number of closed vesicles, oblong or spherical in shape, each containing an albuminoid plasma, consisting of granules, oil globules, nuclei, and nucleated cells, the latter occupying the position of an epithelium within the vesicles. There is also some colloid substance, which is most abundant in enlargement of the gland. The vesicles vary in size from $\frac{1}{65}$ to $\frac{1}{\text { y }}$ od of an inch (300 to 12 mmm) in diameter.

Function.-The thyroid gland is supposed by some to act as a diverticulum of the cerebral circulation. When the brain is inactive, the thyroid gland takes on an increased action, and accommodates the blood that would otherwise go to that organ. This view is based on the fact that the arteries. which supply this gland arise in close proximity to those which supply the brain. The vesicles also probably remove, and store up from the blood, certain constituents which are not required in its passive state, to be returned to it when it resumes its activity.

CHAPTER XIII.

THE NERVOUS SYSTEM.

The nervous system consists of two portions, the cerebro-spinal, and the sympathetic or ganglionic system. The former was distinguished by Bichat as the nervous system of animal life; the latter as the nervous system of organic life.

The cerebro-spinal system includes the brain and spinal cord, the nerves associated with them, and their ganglia, viz: :-The ganglia of the posterior root of the spinal nerves, the ganglion of the fifth nerve, and those of the glosso-pharyngeal and pneumogastric nerves. It includes the nervous organs in and through which are performed the several functions with which the mind is more immediately connected, as those relating to common sensation, volition, and the special senses, as well as those concerned in many nervous actions with which the mind has no connection.

The sympathetic or ganglionic system consists of a double chain of ganglia connected by nervous cords, which
extend along each side of the vertebral column, from the cranium to the pelvis, and from which nerves, with ganglia upon them, proceed to the viscera in the thoracic, abdominal, and pelvic cavities. This system is more closely connected with the process of organic life than the cerebrospinal, but is less immediately connected with the mind.

In the lower orders of the animal creation, the nervous system is quite rudimentary. In the ascending series of animal life, it is first found in the medusæ or jelly-fishes. The ganglionic centres are situated around the free margin of the swimming bell. In these animals also, is seen the earliest appearance of muscular tissue in the animal kingdom. In its lowest and simplest form it may consist of single ganglionic centres, with sensory or afferent, and motor or efferent nerves (Fig 104), whose function is essentially internuncial, impressions being made and responded to without any intervention of consciousness, the movements being purely excito-motor. A simple ropetition of such ganglionic centres may exist to any extent without dissimilarity of function, or any essential departure from the mode of action just mentioned. A higher form of nervous system is that in which there is a multiplication of ganglionic centres to correspond with the diversity of functions, as in the higher articulata and mollusea, in which ganglionic centres are set apart for the actions of deglutition and respiration, as well as for those of motion, but their modus operandi is still the same-the actions being all excito-motor. In all but the very lowest invertebrata, the nervous system includes, in addition to the above, certain ganglionic centres which preside over the organs of sight, smell, hearing, etc. These sensorial ganglia constitute the " brain" in these animals. The highest degree of psychical perfection, as in the class of insects, consists in the exclusive development of the instinctive faculty, or of simple automatic powers, by virtue of which each individual performs those actions to which it is prompted by impressions
made upon its afferent nerves, without any self-control or self-direction, so that it may be regarded as entirely a creature of necessity.

In the vertebrated series, on the other hand, the highest degree of psychical perfection, as shown in man, consists in the highest development of the reason and the supreme domination of the will, to which all the automaticactionsexcept those which are essential to the organic functionsare subject, so that each individual becomes not only a thinking and reflecting, but also a self-moving and selfcontrolling agent, whose actions are performed with a definite purpose in view. During the early period of life, however, the mental faculties are but little in advance of those of the higher invertebrata; for example, the infant is prompted to seize the nipple, not from any knowledge gained by experience, that by so doing it will relieve the feeling of hunger, but in consequence of the impulse arising out of impressions made upon the afferent nerves. The super-addition of more elevated endowments in the vertebrated series is coincident with the addition of a peculiar ganglionic centre, the cerebrum, to the sensori-motor apparatus.

The superiority of the mind of man over the lower animals consists not only in the greater variety and wider range of his faculties; but also in that dominant power of the will which enables him to utilize them with the highest effect. When the thoughts and feelings of man are the mere result of the action of external impressions upon a respondent organism, he may be considered irresponsible for his actions, his character having been formed for him, and not by him. But, whenever he can exert a volitional power of directing his thoughts and controlling his feelings, he is morally and intellectually responsible for his acts. Some persons, however, in consequence of the weakness of their will, are so much accustomed to act directly upon the prompting of any transient impulse, that they can scarcely be said to be voluntary agents; and others allow certain
dominant ideas or habitual feelings to gain such a mastery over them as to usurp for the time the power of the will.

The fundamental part of the cerebro-spinal system is the cranio-spinal axis, which consists of the spinal cord, medulla oblongata, and the sensory ganglia, the latter consisting of those ganglia lying along the base of the skull in man, and in which the nerves of the special senses have their origin, viz., the corpora striata and quadrigemina, the thalami optici, etc. This cranio-spinal axis, which represents the whole nervous system of the invertebrata (except the rudimentary sympathetic they possess), exists without any super-addition in the lowest known vertebrated animal, as in the case of the little fish called the amphioxus. This condition may even be found in the human species, as in the case of acephalous infants, in which neither the cerebrum nor cerebellum is present; such have existed for several days, breathing, sucking, crying, and performing various other actions.
In man, however, and in all the higher vertebrata, large ganglia, which form the principal mass of the encephalon, are found superimposed upon and embracing the sensory ganglia. These are the cerebrum and cerebelluin; the former is the seat of the will, and presides over, controls, and regulates all the actions and movements of the body, except the organic functions and excito-motor actions; the latter is concerned in the regulation and co-ordination of the aetions of the spinal cord. The action of the cerebrospinal system may be elucidated by the following diagram -Carpenter.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

(713) 872.4503

In consequence of the peculiar arrangement of the nervous apparatus, excitor impressions travel in the upward direction; so in the left-hand corner of the diagram the impressions are represented as passing upwards. If they meet with no interruption, they travel upwards through the spinal cord until they reach the sensorium or sensory ganglia, where they make an impression on the consciousness of the individual, giving rise to sensations. These, passing from the sensory ganglia to the cerebrum, form ideus. If these ideas are associated with feelings of pain 0^{*} pleasure, they give rise to emotions; and either as simple or emotional ideas, they become the subject of intellectual. operations whose final issue culminates in an act of the will, which may be eaerted in producing or checking a muscular movement, or in controlling or directing the current of thought.

If this ordinary upward course be interrupted, or if the action be excito-motor, the impressions vill exert their power in the transverse direction, and a reflex action will be the result; for example, if the interruption be produced by division or injury of the spinal coid, below the sensory gangiia, reflex movements being produced without sensation will be purely excito-motor. So, again, if the connection between the sensory ganglia and the cerebrum be severed, or if the function of the cerebrum be in abeyance, they may react on the motor apparatus by the reficx power of the sensory ganglia themselves; such actions, being dependent on the promptings of sensation, are sensori-motor.
The afferent and efferent nerves, and their connection with the spinal cord, constitute an excito-motor nerve arc, and the spinal cord consists of a longitudinal series of excitomotor ares, since an impression may be made through the afferent nerve which produces action of the muscles supplied by theefferent nerve, the whole being consumed without leaving behind any impression on the nervous centre. The nerve are may be connected to a ganglion by means of a band or
commissure, through which a portion of the nervous influence passes to be stored up. This is called a registering ganglion, as, for example, the corpus striatum, thalamus opticus, etc., and these, in their turn, are connected to the cerebrum, this connection constituting what is called the influential arc. The registering ganglia are regarded as the sensorium, and correspond with the sensory ganglia. Their function appears to be to receive and retain impressions of ideas, events or occurrences, the time, place, and order in which they occurred, and other circumstances which are usually ascribed to the faculty of memory.

Structure of the Nervous System.-The organs of the nervous system are composed essentially of two different, elements, nerve fibres and nerve cells. The former, on account of their color, are often called the white or medullary substance; the latter, the gray or cineritious substance.

Nerve Fibres.-There are two different kinds of nerve fibres, the medullated and the non-medullated. They are intermingled in most nerves, the former being more numerous in the cerebro-spinal system ; the latter predominating in the sympathetic.

The medullated nerve fibres consist of tubules of simple homogeneous inembrane, the neurilemma, similar to the sarcolemma of striated muscular tissue, within which is contained the proper nerve substance, consisting of two different materials. The central part consists of a greyish material called the axis cylinder; the outer portion which surrounds the axis cylinder is usually opaque, and dimly granular, and is called the white substance of Schwann. It is the predominance of this substance which gives the cerebro-spinal nerves their white appearance. The axis cylinder consists of a large number of primitive fibrillæ, and is the conductor of nerve force. It is the essential element of the nerve tube, and may be compared to the "core" of the subunarine cable; the white sukstance of Schwam to
the insulating layer of gutta-percha, and the tubular membrane or sheath, to the outer coating of rope, merely affording mechanical protection, and serving to isolate it from the neighboring fibres. The axis cylinder is readily stained with carmine, the white substance of Schwann remaining unaffected; while chromic acid renders the latter brown and

Eig. 95.

Medullated nerve fibres; a, broad fibre; b, torn fibre with axis cylinder protruding ; e, fibre of medium width ; d, e, fine fibres. opaque, but has no action on the former. In the recent state the nerve tubes are cylindrical, and contain a transparent and apparently homogeneous material, but after death they present a dark double contour, the outer line being formed by the tubular membrane or sheath, the inier by the white sukstance of Schwann. At the same time the white substance and axis cylinder, which now appear granular, collect into little masses which distend portions of the tubular membrane, while the intermediate spaces collapse, giving the fibres a varicose or beaded appearance. The contents of the nerve tubes are very soft, and readily pass from one part of the canal to another, or escape from the ends of the tube on pressure. The nerves vary in size from
 trunk and branches of nerves, but are smaller in the gray matter of the brain and spinal cord, in which they are sel-

Non-medullated nerve fibres constitute the olfactory nerves, the principal part of the trunk and branches of the sympathetic, and are mingled in various proportions in the cerebro-spinal nerves. They differfrom the medullated nerves in their fineness, being ouly one-half or one-third as large
 rmed leath, nee of e the inder, sollect istend brane, s col2. The y pass m the e from in the e gray re selnmm). actory of the in the nerves large louble

Sympathetic aerve fibres, b, b, among which are seen two dark bordered nerve dark bor gray color. They present different shapes, some being spheroidal or apolar, others caudate or unipolar, and others bipolar, multipolar or stellate, some of the processes being continuous with a nerve fibre. They vary in size from $\frac{1}{3} \overline{0} \pi$ to $\frac{1 \pi}{} \frac{1}{0} \overline{0} \pi$ of an inch (83 to 2.5 mmm) in diameter. Each cell contains a vesicular nucleus, and nucleolus, the latter being generally clear and bright; and the cells. contents are finely granular, and of a reddish gray color.

Ganglia.-These may be regarded as separate and independent nervous centres, of smaller size than the brain, and less complex. They are found on the posterior roots of the spinal nerves; on the posterior root of the fifth nerve; on the facial, olfactory, glosso-pharyngeal and pneumogastric nerves; along the base of the brain, as the corpora striata,

Fig. 98.

A nerve ganglion, showing the arrangement of nerve cells and nerve fibres. nerve cells, and medullated and non-medullated nerve fibres. They are of a reddish-gray color.

Chemical Composition of Nerve Tissue.-Nervous matter of the brain is a soft, unetuous substance, easily lacerated, and contains about 75 per cent. of water, 15 parts of fatty matter, 7.5 of albuminous compounds, 1.5 of salts, and 1 of extractive matter. The fatty matter is more abundant iu the white than in the grey substance. Among the albuminous substances are to be found, cerebrin, lecithin myosin, creatin, xanthin etc. From the fatty matters may be obtained carbonic acid, cholesterine, phosphoric and oleophosphoric acids, traces of oleine, margarine, and fatty acids. The quantity of phosphorus is very large. The spinal cord is said to contain a larger proportion of fat than the brain.

Corpora Amylacea.-These are small, rounded bodies, identical with stareh granu-
 mmm) in diameter, which are found in the fornix, septum lucidum and lateral ventricles of the brain. They are transparent, soft, irregularly rounded and present a star-

Fig. 99.

Corpora amylacea.
shaped pore with a faint laminar arraigement. They give a blue color when treated with iodine and sulphuric acid. The physiological relations of these bodies are not known.

Distribution of Nerve Fibres.-Nerve fibres consisí of round or flattened cords, communicating on the one hand with the nervous centres, and on the other distributed to the various textures of the body, forming the medium of communication between the two. They are divided into two great classes, the cerebro-spinal, or nerves of animal life, distributed to the organs of the senses, the skin, and the muscles; and the sympathectic or nerves of organic life, distributed chiefly to the viscera, and bloodvessels.

The cerebro-spinal nerves consist of a number of primisive nerve fibres, enclosed in a simple membranous sheath. These are called funiculi, and if the nerve is of small size it may consist of only one funiculus; but if large, there may be several counected together by a common sheath formed of areolar tissue. Every nerve fibre pursues an uninterrupted course from its origin at a nervous centre, to its destination, whether this be the periphery of the body, in another nervous centre, or the same from which it issued. They anastomose or communicate with each other in their course, sometines joining at acute angles with others proceeding in the same direction ; but they never coalesec, or unite with the substance of any other tibre ; for although they cross and mingle with each other, yet each separate nerve fibre retains its identity throughout. The nerves, in certain parts of their course, form plexuses in which they anastomose with each other, as in the cervical, brachial, lumbar, and sacral plexuses. In the formation of a plexns, the component nerves divide, then unite, and again sub-divide, and in this way the fasciculi become intricately interlaced. The object of such interchange of fibres is to give cach nerve a wider connection with the spinal cord, so that the parts supplied may have
wider relations with the nervous centres, and aiso that groups of muscles may be associated for combined action.

Origin and Termination of Nerves.-The point of" connection of a nerve with the brain, spinal cord, or ganglion is called, for convenience of description, its origin, root, or central termination; the point of distribution its peripheral termination, or periphery.

With reference to their origin, some of them originate in nerve corpuscles, or their prolongations, others probably form

[^6] simple loops. As the nerve fibre approaches the nerve corpuscle or its prolongation, the white substance of Sehwann gradually disappears, the tubular membrane or sheath blends with the nerve corpuscle, and the axis cylinder becomes continuous with the contents of the cell. More'fibres have been counted leaving, than entering a ganglion, from which it may be inferred that some of them arise from the corpuscles. It has not yet been determined whether this relation of nerve fibres to nerve corpuscles is common to all kinds of nerve fibres. Some are of opinion that sensitive fibres alone are brought into this intimate relation with nerve corpuseles. It does not appear, however, to belong exclusively to either the cerebro-spinal or sympathetic nerves.

The peripheral termination is also exceedingly difficult to determine, but examples of five different modes have been observed.

1st. In loops or plexuses. In this mode of termination, each tibre, atter issuing from a branch in a terminal plexus, runs over or through the substance of the tissue; it then turns back and joins the same, or an adjacent branch, and pursues its way back to the nervous centre. This mode has been found in mucous and serons membranes, in the anterior epithelium of the cornea and in museular tissue.

2nd. In teiminal bulbs, called tactile corpuscles of Meissner and Wagner, (Fig. 100 A); end-bulbs of Krause, (Fig. 100 B) ; and Pacinian bodies, or corpuscles of Vater (Fig. 101.) The tactile corpuscles are oval shaped bodies, formed
of delicate connective tissue, around which the nerve passes in a spiral manner. They are found in the papille of the skin, especially in the palms of the hands and the soles of the feet. Their length is about $\frac{51}{5} \bar{\sigma}$ and their thickness ${ }_{5}^{1} \bar{\sigma}$ of an inch ($\mathbf{1 0 0}$ to 50 mmm). The end-luulbs of Krause resemble the tactile corpuscles in appearance, but are smaller and more simple in structure. They form a round or oval en-
rig. 100.

A. Cutaneous papilla of the hand; (a, cortical layer with cells and elastie fibres; (b) tactile corpuscle ; (c, d) nerve tibres. B. End bulbs of Krause; (a) covering of nerve, bulb; (d)

Fig. 101.

A Pacinian corpuscle. 1, base; 2 apex; 3, 3, substance fof the corpuscle, in layers; 4, 4, nerve penetrating the corpuscle; 5 , cavity of the corpusele; 6 , nerve; T, nerve, which has lost its medullary substance and sheath; Σ, termination of the nerve; 9 , sranular substance continuous with the nerve. (Sappey.) largement homogeneous in structure, at the extremity of the nerve, and are found in the conjunctiva, floor of the mouth, the tongue, the glans penis, and the clitoris.

The Pacinian corpuscles are small oval bodies, situated on some of the the cerebro-spinal and sympathetic nerves, especially the cutaneous nerves of the hands and feet. They are named after their discoverer Pacini. They are most distinctly seen in the mesentery of the cat. Each corpuscle is attached to the nerve on which it is situated by a narrow pedicle, and is formed of concentric layers of tine membrane, with intervening spaces filled with fluid. A single nerve fibre passes through the pellicle, and after traversing the
several layers of membrane, it terminates in the central cavity in a bulbous enlargement, or a bifurcation (Fig. 101). The function of these bodies is not known; they are probably reservoirs for nerve force.

3rd. In motorial end-plates, as described by Rouget and others. This is the mode of termination in striated musculartissue. As the nerve fibre approaches the muscular fibre it expands, the sheath blends with the sarcolemma, the white substance of Schwann terminates abruptly, and the axis

[^7] cylinder spreads out beneath the sarcolemma on the surface of the fibrille, forming an oval plate from $5^{2} \boldsymbol{o}_{0}$ to robe of an inch (50 to 25 mmm) in diameter (Fig's 38 and 102).

Termination of a nerve fibre by a motorial end-plate in a muscular fibre (Longet.)

4th. Some nerves appear to terminate in cells, or nerve corpuscles, as those of the eye, interal ear and other parts.
ath. In free ends as from the fine plexuses in non-striated muscular tissuc, and in the cornea.

Some nerve fibres appear to haveno peripheral termination. It has been shown by Gerber that nerve fibres occasionally form loops by their junction with a neighboring fibre in the same fasciculus, and return to the nervous centre without having any peripheral termination. He considers Fig. 103. these to be sentient nerves, for the supply of the nerve itself, the nervi nervorum, upon which the sensibility of the nerve depends. This is somewhat similar to those nerve fibres met with at the posterior part of the optic commissure, where a set of fibres pass from

The optic commissure. one optic tract across the commissure to the tract on the
opposite side, without having any connection with the optic nerves-the inter-cerebral fibres; others appear to have no central connection with the cerebro-spinal centre, as those forming the anterior fibres of the optic commissure-the inter-retinal fibres. These commence in the retina on one side, pass along the optic nerve, and across the commissure to the retina of the opposite side.

Medullated nerve-fibres lose the white substance of Schwann, before their final distribution, and bear a close resemblance to the non-medullated fibres.

The sympathetic nerves consist of medullated and nonmedullated fibres, intermingled in various proportions in different nerves, and are enclosed in a sheath of areolar. tissue. The mode of distribution of these nerves is essentially the same as that of the cerebro-spinal. The most striking peculiarity is the frequent formation of ganglia in the course of the trunk and their branches. They are chiefly distributed to the head and trunk, being very limited in their connection with the extremities.

Function of NerveFibres.-The functions of nerve fibres and nerve centres are determined by comparing their anatomy in man with that of the lower animals; by experiments on recently-killed or living animals, and by clinical observation.

The office of the nerves is to convey or conduct nervous impressions. The function is of a two-fold kind-first, they serve to convey to the ner vous centres the impressions made upon their peripheral extremities, or on parts of their course; and, secondly, they serve to transmit impressions from the brain, and other nervous centres, to the parts to which they are distributed. These impressions are of two kinds, viz., those that excite muscular contraction, and those which influence the processes of secretion, growth, ctc.

Those nerves that convey impressions from the periphery to the centre, are called sensitive, centripetal or afferent nerves, or nerves of sensation; and those which trausmit in-
pulses to the muscles, are called motor, centrifugal or efferent nerves, or nerves of motion. This peculiarity cannot be accounted for from any special variety of structure which

Diagram of reflex action; 1 , surface (cpithelium) ; 2, musele ; A, nerve of sensa. thon; B, central nerve cell; C, nelve of motion; $\mathrm{A}, \mathrm{B}, \mathrm{C}$, form the nerve are whlels presides over reflex action. the nerves possess, or the tissues to which they are distributed. The two kinds of nerves lie side by side in the same sheath. Those which have no peripheral termination are called intercentral, as those at the back part of the optic commissure. The nervous force (vis nervosa) by which secretion, nutrition, etc., are influenced, seems to be conveyed along both sensitive and motor nerves.

Nerve fibres require to be stimulated, in order to manifest their peculiar endowments, since they do not possess the power of generating force in themselves, or of originating impulses to action. The property of conducting impressions is called excitability; but this is never manifested until some stimulus is applied. The stimuli by which the action of nerves is ordinarily provoked, are of two kinds, mental and physical; the former relates to the will, the latter to the influence of external objects, and chemical, mechanical and electric actions or irritations. These stimuli when applied to parts endowed with sensation, or to sensitive nerves, produce sensations, and wher. applied to the nerves of muscles produce contractions. Nerves, though divided, when irritated or stimulated have, by virtue of their excitability, the power of exciting contractions in the muscles to which they are distributed; but when the continuity of the nervous matter is broken, or the fibre bruised, or serionsly injured, the property of propagating nervous force is destroyed. Nervous action is also excited by temperature; for example, any very hot substance applied to the borly produces muscular contraction, and a sensation of pain is transmitted to the nervous centre; the
application of a very cold substance has a somewhat similar effect. Chemical stimuli excite the action of both sensitive and motor nerves, when their effect is not so strong as to destroy the structure of the nerve to which they are applied. A similar manifestation of nervous power is produced by electricity. Nerve force travels along the fibres with immense rapidity ; its velocity has beon ascertained by Helmholtz and others at 111 fent per second in motor, and 140 in sensory nerves.
Lavis of Action in Nerve Fibres.-All nerve fibres are mere conductors of impressions. An impression made on any fibre is transmitted along it without interruption, and without being imparted to any of the fibres lying near it. This is probably due to the fact, that the contents of each fibre are isolated from those of adjacent fibres, by the membrane or sheath in which it is enclosed. It is also supposed that the white substance of Schwann acts as an insulator. No nerve fibre can convey more than one kind of impression; for example, the motor nerve conveys only motor impulse ; the sensitive nerve transmits only sensation when propagated to the brain, and the nerves of special sense, as the optic and auditory, convey only sensations of light and sound. Nerves of sensation are able to convey impressions only from the parts to which they are distributed, towards the nervous centre with which they communicate; for example, when a sensitive nerve is divided, and irritation is applied to that portion still connected with the nervous centre, sensation is perceived, or a reflex action ensues; but when the distal portion is irritated no effect is produced. When the trunk of a nerve is irritated, the sensation is felt in all the parts which receive branches from it ; for example, if the ulnar nerve be compressed behind the internal condyle of the humerus, a peculiar tingling sensation is felt in the little finger, and in the ulnar half of the ring finger. Even when part of a limb has been amputated, any pressure or irritation to the remaining portions of the
nerves which ramified in it, gives rise to sensations which the mind refers to the lost part, as well as to the stump, and tinglings and pains are complained of in the lost finger, toe, hand or foot, as the case may be. Again, when the relative position of the peripheral extremities of sensitive nerves is changed artificially, as in the restoration of the nose from the integument of the: forehcad, the sensation produced when the new nose thus formed, while connected by its isthmus, is touched, is referred to the forehead. This peculiarity may be exemplified by the following experiment:-Cross the middle finger of the hand behind the index finger so that the extremity is on the radial side of the latter, then roll the two fingers over a pea or marble, and a sensation will be produced which leads the mind to suppose the existence of two distinct bodies. This is owing to the impression being made at the same time on the sides of the fingers most removed from each other in the natura .position. Generally, however, the mind discerns the exact part of a nerve fibre that is irritated, and even when, as is the case in the retina, two or more impressions are made at the same instant on different parts of the same fibre, the mind can diseriminate and pereeive eaeh, and compare the one with the other.

Several of the laws of action in motor nerves are similar to the foregoing. For example, motor influence is transmitted only in the direction of the fibl ss going to the muscles, and irritation of a motor nerve exeites contraction in all the museles supplied by the branches given off below the point of irritation ; but those supplied by branches given off above this point are never directly affected. Again, since motor nerves are isolated as completely as sensitive, the irritation of a part of the fibres of a motor nerve does not affect the motor power of the whole trunk, but only that of the portion to which the stimulus is applied.

Development of Nerve Tissue.-Nerve fibres appear to be formed in the same manner as muscles. The primitive cells are imbedded in protoplasm or intercellular substance
which is arranged in the shape and form of the developing nerve fibre. The cells elongate, the nuclei increase in number, and the protoplasm and cell contents become transformed into the different parts of the nerve fibre- viz, the sheath, white substance of Sehwann, and axis cylinder or "band of Remak." In the nerve centres the cells remain in their primitive state, the only change being that they increase in size, and develope in their interior some pigmentary granules.

In the process of regeneration, after incision or injury, the extremities of the nerves are united at first by fibrons tissue, which after a time is replaced by nerve tissue, if the cut extremities are not too far removed. Perfect restoration of the action of the nerve, however, does not generally take place, owing probably to the want of exact coaptation between the cerebral and peripheral portions of the same fasciculi ; for example, the cerebral portion of a motor filament may unite with the peripheral portion of a sensitive one, and the action of each will be partially neutralized.

Vascular Supply.-The blood-vessels supplying a nerve terminate in a minute capillary plexus, disposed similarly to those of muscles, running parallel to the nerve fibres. They are connected together by short transverse branches, forming narrow oblong meshes.

Function of the Nervous Centres.-The nervous centres embrace all those parts of the nervons system which contain nerve corpuseles, as the brain, spinal cord, and the ganglia of the cerebro-spinal and sympathetic system. Their function is that of variously disposing and transferring the impressions received through their scveral sensitive nerves. Nerve fibres, as already stated, are simply conductors of nervors influence. Nervous centres are not only conductors, but also communicators and reflectors of nervous impressions. The brain sonducts, communicates, reflects, and perceives or takes cognizance of impressions.

Conduction.-When an impression is produced on the periphery of a nerve, as, $e . g$., in the mucous membrane of the intestines by the presence of a portion of food, it is conducted to the adjacent ganglia of the sympathetic, from which a motor impulse returns to the intestines and produces a movement of the muscular coat. If, however, any irritant substance, as a drastic cathartic, be mixed with the food, a stronger impression is produced, and this is conducted through the nearest ganglia to others more remote, and from all these, motor impulses proceed which excite a more forcible and widely extended action of the small intestine; or the impression may be conducted through the ganglia of the spinal cord, from which motor impulses may proceed to the abdominal and other museles, producing cramp. Besides, the same morbid impression may be conducted through the spinal cord to the cerebrum, where the mind can perceive and take cognizance of it.

Communication.-Impressions made on the nervous centres may be communicated from the fibres that brought them to others, and in this communication they may be either transferred or diffused. The transference of impressions may be seen in disease of the hip joint. The impression made by the disease on the nerves of the hip is couveyed to the spinal cord; it is thence transferred to the central termination of the nerve fibres of the knee joint; through these the impression is conducted to the brain, and the mind, referring the sensation to the part from which it is accustomed, through these nerves, to receive impressions, feels as if the pain were in the knee. In the same way, when the sun's rays fall strongly on the retina, a tickling may be felt in the nose, causing sneezing; or irritation in any part of the respiratory organs gives rise to a sensation of tickling in the glottis, and produces coughing. When an impression received at a nervous centre is transferred to many other fibres in the same centre, it is said to be diffused, the sensation extending far beyond the part from
which the primary impression proceeded, as is scen in toothache, in which the adjoining teeth and surrounding parts are similarly affected. The pain caused by the presence of a calculus in the ureter or bladder, is diffused far and wide.

Reflection or Reflex Aution.-The reflection of impressions exhibits an important function common to all nervous centres, and is the source of all reflex movements. The preceding examples are all instances of reflection, or reflex action, for the manifestation of which three conditions are necessary. First, sensitive herve fibres, to convey an impression. Secondly, a nervous centre, to which the impression may be conveyed, and in which it may be reflected. Thirdly, motor nerve fibres, upon which this impression may be conducted to the contracting tissue (Fig. 104). If any of these conditions be absent, a proper reffex action cannot take place. They are all involuntary, and in health they have a distinct purpose in subserve in the animal economy, as in the movements of the intestines, the respiratory organs, contraction of the pupils, closure of the glottis, etc.; but in disease many of them are irregular and purposeless, as in chorea, convulsions, etc. Reflex actions may be divided into primary, and secondary or acquired. As instances of the former, may be mentioned sucking in infants, contraction of the pupil, etc.; and of the latter, walking, reading, and writing.

Nerve Force (vis nervosa).-The special endowment by which nerves act and manifest their vitality is a peculiar one inherent in the structure and constitution of the nervous substance. It manifests itself in its effects on the muscles, in sensation, secretion, excretion, nutrition, etc. Nervous force, though not identical, presents many points of resemblance to Voltaic electricity. For the production of the latter, the ordinc"y requisites are two dissimilar metals, as zinc and platinum or copper, and an interposed compound fluid, as dilute sulphuric acid. When these metals are placed in contact with each other, chemical action com-
mences, a current sets in a definite direction, and a state of polarity or electrical tension is produced. The production of nervous force, or nervous polarity, may have as analogues two kinds of nervous matter, cells and fibres, and the presence of a fluid.

From the structure and peculiarity of the nervous centres, there is much to justify the opinion that each nerve vesicle, and fibre connected with it, together with the blood-vessels and fluid surrounding tiem, is a distinct apparatus for the development of nervous polarity. The whole nervous system is therefore in a constant state of nervous polarity, and is prepared at any moment to receive, conduct, or communicate impressions, or convey motor impulses. A slight meehanical or chemical stimulus to à nerve, is capable of producing in it a state of polarity, and rendering it eapable of conducting impressions or motor impulse; e.g., pain is excited by touching a sensitive nerve, and contractions may be produeed by irritating the inotor nerve of an amputated limb.

THE SPINAL CORD.

The spinal cord is a cylindrical column of nerve substance, counected above with the brain, through the medulla oblongata, and terminati below-opposite the first or second lumbar vertebra-in a slender filament of grey substance, the filum terminale, which lies among the leash of nerves forming the cauda equina. It presents two enlargements, one in the cervical region, extending from the third eervical to the first dorsal vertebra, and the other in the lumbar, opposite the last dorsal or first lumbar. The spinal cord consists of two symmetrical halves, united in the middle line by a commissure. They are separated in front and behind by a vertical fissure, the posterior fissure being deeper, but narrower than the anterior. On each side of the anterior fissure, a linear series of foramina may be seen, from which emerge the anterior roots of the spinal nerves; this is the
so-called anterior lateral fissure of the cord. On each side, near the posterior part of the cord, and corresponding with the posterior roots of the spinai nerves, may be seen a delicate fissure, the posterior lateral fissuric. On each side, and near the posterior fissure, is a slight longitudinal furrowthe posterior medio-lateral fissure. These fissures divide each half of the cord into four columns, anterior, lateral, posterior and posterior median columns. The anterior col$u m n$ is situated between the anterior median and the anterior lateral fissures. It is continuous with the anterior pyramid of the medulla oblongata, in which decussation of the anterior columns takes place. The lateral colurnn is situated between the anterior lateral end posterior lateral fissures, and is continuous above with the lateral tract of the medulla. The posterior column is situated between the posterior lateral and the posterior medio-lateral fissures, and is continuous with the restiform body of the medulla. The posterior median column is a narrow segment situated between the posterior medio-lateral and the posterior median fissures, and is continuous above with the posterior pyramid of the medulla oblongata.

Structure of the Cord.-The cord consists of fibrous and vesicular, or white and grey nervous substance; the former is more extensive, and situated externally ; the latter occupies the centre, and consists of two crescentic masses, connected together by a transverse band, the gray commissure. In the centre of this commissure, and extending the whole length or the cord, is a minute canal lined by columnar ciliated epithelium, which communicates above with the fourth ventricle. Both in front of and behind the gray commissure is a transverse band of white substance, the anterior and posterior white commissures; these connect the white substance of each lateral half of the cord, and form the floor of the anterior and posterior median fissures respectively. Each crescentic mass of gray matter presents an anteriur and a posterior horn; the former is short and
thick, and does not quite reach the anterior lateral fissure ; the latter is long and slender, and extends to the posterior lateral fissure. The anterior roots of the spinal nerves are connected with the anterior horn, and the posterior roots with the posterior horn. The white substance of the cord Fig. 105.

A, the anterior median fissure; B, posterior median fissure ; C. anterior lateral depression, over which the anterior nerve-roots are seen to spread; D, posterior lateral groove, into which the posterior roots are seen to sink; E, anterior roots passing the ganglion; E, the anterior root divided ; F, tho posterior roots, the fibres of which pass into the ganglion; G, the mited or compound nerve, and its division into anterior and posterior branches.
consists of transverse, oblique, and longitudinal nerve fibres, blood-vessels and areolar tissue; and the gray substance consists of smaller nerve fibres, nerve cells, blood-vessels, and delicate areolar tissue (neuroglia). There are a number of large multipolar nerve cells in the anterior and posterior cornu, and also midway between the two cornu, near the external surface of gray matter.

Spinal Nerves.-The spinal nerves consist of thirty-one pairs, issuing from the sides of the whole length of the cord. Each nerve arises by two roots, an anterior or motor, and a posterior or sensitive. The posterior root is larger than the anterior root, (except the first), and has a ganglion developed on it (Fig. 105). Immediately beyond this ganglion the two roots coalesce, and the trunk thus formed passes through the intervertebral foramen, after which it again divides into two branches, an anterior, which supplies the anterior surface of the body and the extremities, and a posterior, which supplies the posterior part of the body, each branch containing fibres from both roots. The anterior roots arise from the antero-lateral columns, and are also
connected with the anterior horn of the gray substance, and the multipolar cells found connected with it ; and the posterior roots arise from the posterior part of the lateral column and the posterior horns of the gray substance; the former consist exclusively of motor fibres, and the latter exclusively of sensitive fibres.

Function of the Spinal Cord.-The spinal cord transmits impressions from the periphery to the brain, and also enables the latter to bring into action the motor nerves. Division of, or injury to the spinal cord, causes an interruption of voluntary motion and sensation in those parts supplied by nerves below the part affected, while the functions of the parts above remain unimpaired. But thoughothe influence of the brain in receiving sensation, and exciting voluntary motion is cut off or interrupted, the portions of the cord below the affected part still possess excito-motor actior, and hence the cord may be regarded as a nervous centre; for example, in cases of paralysis, muscular action may be excited by tickling the palms of the hands, or soles of the feet with a feather. It has been shown, by experiment, that irritation to the anterior columns of the cord is followed by convulsive movements of all the parts supplied with motor nerves below the irritated part, but no signs of pain are manifested; while irritation of the posterior columns appears to cause excruciating pain, without producing any muscular movement besides such as may be produced by the will or reflection. Again, when the spinal cord is completely severed, irritation of the posterior columns of the severed part produces no effect; but irritation of the anterior columns is followed by violent movements. On the other hand, irritation of the posterior columns of the portion of the cord connected with the brain causes acute pain and reflex movements; while irritation of the anterior columns of the same produces no effect. Again, when both anterior columns alone are divided, the power of voluntary motion is lost in parts below, the sensibility remaining per-
fect; and when both posterior columns are divided, sensation is lost in the parts below, the power of motion remaining unimpaired. From this it would appear that the anterior columns are motor, and the posterior sensitive; nevertheless, the result of injuries, and disease of different parts of the cord, are not always in accordance with, but in some instances directly contrary to it ; for example, cases have been seen in which complete loss of motion occurred without any impairment of sensation, as the result of lesion of the posterior columns of the cord, the anterior being wholly intact. Injuries to the posterior columns are invariably attended with hyperosthesia (Brown-Sequard).

The spinal cord has a crossed action for both motion and sensation; for example, in cerebral apoplexy the paralysis and loss of sensation are always on the side opposite to that on which the lesion has taken place. The decussation of the fibres of motion occurs between the anterior pyramids of the medulla oblongata and the opposite lateral columns of the cord and may be seen with the naked eye, (Fig. 105). The discovery of the crossed action for sensation is due to Brown Sequard. His experiments show that a decussation of sensitive impressions takes place between the posterior columns throughout the whole extent of the cord. The sensitive impressions reaching the cord, ascend for a short distance, and ultimately pass across to the opposite side of the spinal cord to reach the brain, so that if the posterior column of one side be impaired, sensation is lost on the opposite side of the body.

The spinal cord,'as a nerve centre, or aggregate of many nervous centres, has the power of conducting and communicating or transferring impressions received, and of exhibiting reflex action. The two former have been already referred to in a general way. Impressions are conducted through the gray matter of the cord, there being in all probability, separate parts for conducting motor and sensory impressions. The spinal cord does not posess any power of
automutic or independent action, like the higher nerve centres.

The reflex function of the spinal cord is essentially similar to that of all the other nervous centres, and may or may not be under the control of the will. In health the will can, in a great degrec, control and prevent the development of reflex actions in the extremities. If ons of the legs be paralyzed, as in hemiplegia from disease of the brain, and a stimulus be applied to the sole of the foot in the paralyzed limb, reflex actions are readily produced; but on applying the same stimulus to the sound limb, no such wovements occur, the patient being able to resist the tendency to action which it produces. In cases of paraplegia from disease of the spinal cord, even where the loss of motion and sensation is complete, patients are sometimes tormented with involuntary movements of the lower extremities at night, which not only prevent sleep, but also occasion pain and distress. It is no doubt caused by irritation at the seat of the lesion.

The reflex action of the spinal cord is essentially involuntary ; for example, the respiratory movements are performed while the mind is occupied, or during sleep or anæsthesia; yet, the mind can by a voluntary act direct and strengthen them, and adapt them to the several acts of - eeech, effort, etc. Some reflex actions may be controlled, or entirely prevented by the will, which thus exercises an inhibitory action over them; for example, when the sole of the foot is tickled we can by an act of the will control the reflex action which it occasions. When the limb is pinched or pricked, it is involuntarily withdrawn from the instrument of injury, and the eye is involuntarily closed when a blow on the face is threatened; but both these reflex actions may be controlled by an effort of the will. Many reflex actions are entirely involuntary as for example, the contraction of the pupil, the movements of the intestines (except defecation), the action of the uterus in parturition, etc.

The spinal cord, with its encephalic prolongation, may be said to supply, by its reflex power, the conditions requisite for the maintenance of the various muscular movements which are essential to the continuance of the organic proeesses ; and, as Marshall Hall has pointed out, it especially governs the various orifices of ingress and egress. Thus, the act of deglutition is entirely dependent on the spinal axis (medulla), and the nerves procceding from it. The action of the cardiac and pyloric orifices of the stomach is wholly regulated without the consent of the will. The movements of the intestines are influenced by the spinal cord through the sympathetic system. The sphincter ani and sphincter vesice are under its influence, although partly subject to the control of the will. The reflex action of the spinal cord is also exhibited in the expulsion of the generative products as the semen, in defecation, micturition, and in parturition in its second stage.

The phenomena of spinal reflex action in man are more marked in disease than in health ; e. g, in tetanus a slight touch on the skin, or a breath of air, is sufficient to throw the whole body into convulsions; a similar state is induced by the introduction of strychnine or opium in frogs. In these instances, the spinal cord is in a state of polar excitement, and is kept so by the constant irritation propagated to it by the wounded part, on the one hand, or the poisonous substance circulating in the blood, on the other, there being no inflammatory or congested condition either of the cord or its membranes.

The spinal cord is constantly in activity ; in all periods and phases of life, the movements which are essential to its continued maintenance are kept up without sensible effort. "The spinal system never sleeps;" it is the brain alone which is torpid during sleep, and whose functions are affected by this torpidity. It has, however, its periods of momentary rest, similar to other organs of the body, as the heart, lungs, etc., which appear to be constantly in action.

ENCEPHALON.

The encephalon is situated in the cranial cavity, and consists of the medulla oblongata, pons Varolii, cerebellum and cerebrum.

Medulla Oblongata.-The medulla oblongata is the cephalic prolongation of the spinal cord, and connects it with the brain. It is larger than the spinal cord, and is divided into segments, which are continnous with the columns of the spinal cord below. It is
separated into two lateral halves by fissures, which correspond with the anterior and posterior fissures of the cord; and exch lateral half is again subdivided by minor grooves into four columns, the anterior pyramid, lateral tract and olivary body, restiformbody and posterior pyramid. These are continuous with the anterior, lateral, posterior, and posterior median columns of the spinal cord respectively.

Structure.-Theanterior pyramid is composed entirely of white fibres derived from the anterior column of the cord of its own side, and from the lateral clumns of the opposite half of the cord, and is continued upwards into the cerebrum and cerebellum. The cerebellar fibres pass

Anterior view of the medulla oblongata and pons Viarolii. 1. infundibulum ; 2, tuber cincreum ; 3, corpora albicantia; 4, cerebral peduncle; 5, pons Varolii ; 6, origin of the middle peduncle of the cerebellum; 7, anterior pyramids of the medulla oblongata; 8, decussation of the anterior pyramids; 9, olivary bodies; 10, restiform bodies; 11, arciform fibres; 12, upper cxtronity of the spinal cord; 13, ligamentum dentleulatum; 14, dura mater of the eord ; 15 , optic tracts : 16, optic commissure or chiasm ; 17, nıotor oculi ; 18, pathetic; 19, fifth nerve; 20, abducens; 21, facial ; 22, anditory; (23, nerve of Wrisberg); 24, flosso-pharyngeal ; 25, pheumogastric ; 26, 26, spinal accessory; 27, hypoglossal ; 23,29, cervical nerves. (Sajpey). beneath the olivary body, join the restiform body and
spread out in the cerebellum; some of the cerebral fibres inclose the olivary body and enter the pons as the olivary fasciculus, but the mass of the fibres enter the pons Varolii in their passage upwards to the cerebrum. The decussation between the anterior pyramids may be distinctly seen with the naked eye.

The lateral tract is continuons with the lateral column of the cord. Its fibres pass in three different directions; the external join the restiform body, and pass to the cerebellum; the internal pass forwards, pushing aside the fibres of the anterior column, and form part of the opposite anterior pyramid, and the middle fibres ascend to the cerebrum, forming the fasciculi teretes in the floor of the fourth ventricle. The olivary body presents on a transverse section, a whitish substance externally, and a grayish-colored body in the interior-the corpus dentatum-which presents a zigzag outline, and contains some white substance in the interior, which communicates with that on the external surface by means of an aperture in its posterior part.

The restiform bodly is continuous below with the posterior column of the cord, and receives some fibres from the lateral and anterior columns; superiorly, it divides into two faseiculi ; the external one enters the cerebellum ; the internal one joins the posterior pyramid, and blends with the fasciculi teretes as it passes up to the cerebrum.

The posterior pyramids are continuous with the posterior median columns of the cord. Opposite the apex of the floor of the fourth ventricle, they present an eulargement (process clavatus), and diverging, form the lateral boundaries of the calcmus scriptorius. They then join the external fasciculus of the restiform bodies, and pass with them up to the cerebrum.

In the lower part of the medulla the gray matter is arranged as in the cord; but in the upper part it becomes more abundant, and is disposed apparently with less regularity.

Function of the Medulla Oblongata.-The general function of the medulla oblongata is similar to that of the spinal cord. It may be regarded as a conductor of impressions, in which respect it has a wider extent of function than any other part of the nervous system, since all impressions between the brain and spinal cord pass through it. In consequence of the decussation of the anterior pyramids, motor impressions proseeding from the brain pass across to the opposite side of the spinal cord; for example, in injury to one side of the head, producing paralysis, the loss of motion is always on the side opposite to that on which the injury was received.

Besides the function of conduction, the medulla oblongata, acting as a nervous centre, presides over the functions of respiration, deglutition, etc. The brain of the lower animals may be wholly removed above, anc yet life may continue, and the respiratory function be carried on. The same is the case when the spinal cord below the phrenic nerve is removed ; and even when both the brain and spinal cord are removed, the function of respiration may be continued; but whenever the medulla is wounded the function is instantly arrested, and the animal dies as if asphyxiated. The medulla oblongata may continue to discharge its functions as a nervous centre after the power of conduction has ceased to act; thus, in coma from apoplexy or compression, and in anesthesia from ether or chloroform, patients continue to breathe, although they are wholly insensible. The reflex action of the medulla is peculiar from having a very wide range of connection. The principal centripetal nerves engaged in respiration are the pneumegastrics; but that these are not the only ones may be shown by their division when respiration becomes slower, but is not arrested. The wide range of connection which belongs to the medulla is further shown by the fact that impressions on the surface of the body may induce respiratory movements, as e.g., dashing
cold water on the face or body is instantly followed by a deep inspiration.

From the medulla arise the movements required in the act of deglutition. This may be shown by the persistence of the power of deglutition after the removal of the cerebrum and cerebellum, and by its complete arrest when the medulla is injured. The reflex power of the medulla in deglutition is much simpler and more restricted than in respiration. It is also the centre for the movements required in speech and nastication; for the special senses of hearing and taste ; for regulating the action of the heart (p.212); the action of the iris and ciliary muscle; and the secretion of the saliva. It is likewise the chief vaso-motor centre from which fibres pass down the cord, accompanying the spinal and sympathetic nerves, and are distributed to the bloodvessels (p. 219.) The gray matter in the floor of the fourth ventricle when irritated produces glycosuria, and is therefore called the diabetic centre (p.151.) This is probably the result merely of stimulating the vaso-motor centre.

Pons Varolif.-The pons Varolii, meso-cephalon or tuber annulare, is the bond of union between the cerebrum, cerebellum, and medulla oblongata. In structure it consists of longitudinal and transverse fibres, intermixed with gray matter. The longitudinal fibres are continued up through the pons from the anterior pyramids, olivary bodies, lateral and posterior columns of the cord. The transverse fibres connect the two hemispheres of the cerebellum, forming the transverse commissure, and are divided into a superficial and deep layer ; the former passes aeross the surface of the pons, and the latter, situated deeply, decussates with the longitudinal fibres.

Function of the Pons.-It acts as a conductor and also as a nerve centre. As a conductor it is the channel through which impressions are conveyed from the spinal cord to the cerebrum and cerebellum, and also between the two hemispheres of the cerebellum. It is the nervous centre for stasis
and progression, and may also be regarded as the connecting link between the different portions of the encephalon, for when the cerebrum and cerebellum are removed in one of the lower animals, it may still have sensation of painful impressions and power of motion, (Vulpian.) It is a nervous centre for higher and more definite reflex actions than the medulla or any part of the spinal cord-reflex actions of an emotional and instinctive character.

In hemiplegia from disease of the corpus striatum, there is paralysis on the opposite side of the body, and paralysis of the face on the same side as that of the body (cognate). This shows that the cranial nerves have a crossed action as well as the spinal nerves. Unilateral disease of the pons Varolii is liable to involve the facial nerve, before decussation has taken place, and the paralysis of the face will then be on the opposite side to that of the body (alternate). Hence in lesions of the brain above or in front of the pons, there is cognate paralysis, and in lesions of the pons, celternate paralysis.

Cerebellum.-The cerebellum consists of two lateral hemispheres connected together by a transverse commissure or band, the vermitorm process. It is situated in the posterior fossa of the cranium, beneath the posterior lobes of the cerebrum, from which it is separated by the tentorium cerelelli. It is oblong in shape, measuring from three and a half to four inches transversely; from two to two and a half from before backwards, and two inches in thickness, and weighs from five to six ounces. Each hemisphere is divided into several lobes, of different sizes, and its sturface is marked by numerous curved furrows or sulci, which vary in depth in different parts. Its surface is covered by the pia mater.

Structure.-It consists of gray and white matter ; the former, darker than that of the cerebrum, occupies the surface ; the latter the interior. When divided vertically it is seen to consist of a central stem of white matter, which con-
tains in its interior a grayish mass-the corpus dentatum. The central stem of white matter sends forth lamine towards the surface, which are surrounded by the gray matter so that the cut surface.of the organ presents a folinted appearance to which the name arbor vite has been given. A vertical

Flg 107.

Vertical serthen or congs cerehellam: pm, pin mater; 1 , corpuscles of lurkinje: s, laver of sanglionic corpinseles; f, layer of nerve llbres with a few senttered corpuscles. section of the gray matter or cortical substance presents the following appearance. Externally is a thick layer of fine conneetive tissue in which is seen a number of spherieal corpuseles like those of the gramular layer of the retina; next is a single layer of branched nerve cells (cells of Purkinje) the branches of which pass upwards into the external layer and blend with the corpuseles, and some singlo branches downwards. Beneath this is the so-called gramular layer which consists of a dense layer of rounded corpuscles, resembling the nuclear layer of the retina ; and lastly a layer of nerve fibres with a few scattered corpuscles; this layer partly belongs to the white substance.
The cerebellum is connected with the rest of the encephalon by processes or prolongations, called peduncles. These are three in number, the superior, middle and inferior. The superior peduncles connect the cerebellum with the cercbrum. They pass upwards beneath the testes to the crura cerebri and optic thalami, each peduncle forming part of the lateral boundary of the fourth ventricle. Beneath the corpora quadrigemina the imnermost fibres of each peduncle decussate with each other, some fibres from one side of the cerebellum commonicating with the opposite side of the cerebrum. The middle peduncles, the largest of the three, connect together the two hemispheres of the cerebellum, and form the transverse fibres of the pons Varolii.

The inferior peduncles (crura cerebelli) connect the cerebellum with the medulla oblongata. They pass downwards to the back part of the medulla, and form part of the restiform bodies.

Function of the Cerfbeldum.-The cerehellum is insensible to irritation, and may be cut away without causing pain; but if any of the crura be tonched, pain is instantly felt. Its removal is not attended with any loss or disorder of sensibility; the animal can seo, hear, smell, etc., as before its removal ; but he has lost the power of springing, flying, walking, standing, etc., and his actions are like those of a drunken man. The action of its two halves must always be balanced, for if one-half of the cerebellum be removed, or one of its crura divided, the animal exhibits a tendency to r : , ver upon its longitudinal axis, and from the side injurus. From the above circumstances it would appear, that the function of the cerebellum is to regulate and co-ordinate the muscular movements of the body. The influence of each half of the cerebellum is directed to museles on the opposite side of the body. It is also the organ through which the mind acquires a knowledge of the state and position of the muscles, and exerts a will upon them-the organ of muscular sense.

The cerebellum is supposed by some to be the organ of sexual instinct, or of amativeness. The facts adduced in favor of it are-1st, cases in which atrophy of the testes and loss of sexual passion have resulted from injuries to the cerebellum ; 2nd, disease of the cerebellum has been attended with almost constant erection of the penis, and frequent seminal emissions; 3rd, that it has seemed possible to estimate the degree of sexual passion in different animals by the comparative size of the cerebellum. In reference to the first class of facts, the loss of sexual passion may have been the consequence of atrophy of the testes, and hence these facts have little bearing on the question, unless it can be shown that the loss of sexual passion followed the injury of
the cerebellum, before the testes began to diminish. Disease of the cerebellum proves nothing, because the same thing more generally occurs in disease of the medulla and spinal cord. On the other hand, cases are recorded in which the whole of the cerebellum has been disorganized, or completely absent, without loss of the sexual passion. Besides, among animals there is no proportion between the size of the cerebellum and the development of the sexual passion, and castration in early life is not followed by any diminution of this organ. The cerebellum of the cock is no larger than that of the hen, although the sexual passion is many times greater. The cerebellum in frogs and toads is only a small bar of nerve substance, yet the sexual instinct is very strong.

The Cerebrum.-The cerebrum occupies the upper part of the cranial cavity, resting upon the anterior and middle fosse of the base of the skull, and is separated posteriorly from the cerebellum by the tentorium cerebelli. It is ovoidal in shape, and is divided into two lateral hemispheres, which are connected together by a broad transverse commissure of white matter-the corpus callosum. The average weight of the brain is about fifty ounces in the male, and forty-five in the female. The weight of the brain increases rapidly up to the seventh year, more slowly up to twenty, and still more slowly up to the fortieth year. When it reaches the maximum, it remains stationary for a few years, and then declines as age advances about one ounce for each subsequent decennial period. As a rule, the size of the brain bears a general relation to the intellectual capacity of the individual. The brain of Cuvier weighed rather more than sixty-four ounces ; Dr. Abercrombie sixty-three; Ruloff, a celebrated linguist, executed for murder in 1879, fifty-nine ; James Fisk, Jr., fifty-eight ; Spurzheim fifty-five; Daniel Webster, fifty-three; Agassiz, fifty-three ; Dupuytren, forty-nine (Cruveilhier). The brain of the Hon. D'Arcy McGee, the celebrated Canadian statesman, weighed fifty-

Disease me thing ad spinal hich the mpletely s, among the cereand casuution of o larger is many is only a t is very
per part d middle steriorly is ovoidispheres, se comhe averhe male, prain iny up to When a few e ounce size of al caparather -three; n 1879, ty-five; PupuyD'Arey
fifty-
nine ounces. Cromwell's brain was said to have weighed eighty-two ounces, and Byron's seventy-nine ; but these figures are not generally accepted by physiologists. On the other hand, the brain of an idiot seldom weighs more than twenty-three ounces. Wagner, however, mentions a case of an idiot whose brain weighed fifty-four ounces, and Dr. Tuke reports a case in which the brain of a congenital epileptic idiot weighed sixty ounces, but these are exceptional. In only two animals is the brain larger than in man, viz., the elephant and the whale.

The mere comparative size of the brain, or quantity, however, does not always give an accurate measure of the amount of mental power, for not unfrequently men possessing large and well-formed heads are seen, whose mental capabilities are not greater than those of others whose crania have the same general proportion, but are much smalier. Large brains, with deficient activity, are commonly found in persons of a lymphatic temperament; whilst small brains, and great activity, characterize the sanguine and nervous temperaments. The quality of the nerve tissue in regard to fineness of nerve fibres, and cells, the degree of vascularity, and the number and extent of the convolutions, bear an important relation to the intellectual capacity of the individual.

Structure.-The cerebrum consists of two kinds of nerve tissue, the gray and the white; the former is situated externally, the latter internally. The surface of the cerebrum presents a number of convolutions or foldings, separated from one another by depressions or sulci of various depths. The outer surface of each convolution is composed of gray matter, which is sometimes called the cortical substance, and the interior consists of white matter. The convolutions are admirably adapted to increase the extent of surface or amount of gray matter, without occupying much additional space. The gray matter of the convolutions, when closely examined, however, appears to consist of from
four to six layers of gray and white tissue placed alternately, from two to three layers of gray substance, and an equal

Fig. 108.

Vertical section of the cortical substance of the cerebrim ; pm, pia mater ; c, capillaries ; ne, nerve cells in the neuroglia; pe, pyramidal cells (Schofield). che in in in close relation to the intellectual power of the individual. They are entirely absent in some of the lower orders of mammalia, and increase in number and extent as we asecnd the seale. The largest and most constant convolutions of the human brain are the convolutions of the corpus callosum, supra-orbital convolutions, and the convolutions of the longitudinal fissure.

Each hemisphere is divided into five lobes: the frontal, (F), parietal (P), temporo-sphenoidal (\mathbf{T}), occipital (O), and central lobe, or island of Reil, which are separated from
rnately n equal cupying of these resented horizonfibres: nerve cells of isting of s downum; they inferior ards, and nerve fiirregular n ; 6th, a fusiform about an different the same the outer couvoluof inteland exi, bear a dividual. orders of re ascend utions of rpus calutions of
frontal, (O), and ted from
(ach other by the following fissures: the fissure of Sylvius, (S), fissure of Rolando (central fissure) (e), and parieto-occi-

Fig. 100.

\mathbf{F}, frontal love ; \boldsymbol{P}, partetal lobe; \mathbf{U}, occipital lobe; T, temporo-sphenoidal lobe; S , fissure of Sylvius; S^{\prime}, horizontal, $S^{\prime \prime}$, ascending ramus of the same; e, sulcus centralis (fissure of liolando) ; f1, superior, i2, inferior ; f3, precentral fissure; ip, interparietal fissure; po, parieto-occipital fissure; t1, first; t2, second temporo-sphenoidal fissures (Eeker).
pital fissure (po). (Fig. 108.) The lobes are again subdivided into lobules. The frontal lobe is bounded behind by fissure of Rolando, and below by the fissure of Sylvius; the parietal lobe, in front by the fissure of Rolando, and behind by the parieto-occipital fissure, which in man appears as a notch in the inner margin of the hemisphere; the tem-poro-sphenoidallobe is situated beneath the horizontal branch of the fissure of Sylvius ; the occipital lobe is situated behind the parieto-occipital fissure; and the central lobe, or island of Reil, is situated upon the under surface of the
anterior part of the cerebrum at the bifurcation of the fissure of Sylvius. The under surface of the frontal lohe occupies the anterior fossa of the base of the cranium, the parictal and temporo-sphenoidal the middle fossa, and the occipital the posterior fossa. They were formerly named anterior, middle, and posterior lobes respectively.

The figures in the accompanying diagram of the human brain are made to correspond with the areas of the brain of the monkey as determined by the experiments of Ferrier, and the effects of stimulating the various areas refers to the brain of the monkey.

1 (On the superior parietal lobule). Movement of the opposite hind foot as in walking.

2, 3, 4, (The fissure of Rolando). Complex movements of the opposite leg and arm, and of the trunk, as in swimming.
a, b, c, d, (Postero-parictal convolution). Combined movements of the fingers and wrist of the opposite hand, closure of the fist, and prehensile movements.

5, (Superior frontal convolution). Extension forward of the opposite arm.

6; (Upper part of the antero-parietal convolution). Supination and flexion of the opposite forearm.

7, (Median portion of the same convolution). Elevation of the opposite angle of the mouth-zygomatic action.

8, (Lower down on the same convolution). Elevation of the ala nasi and upper lip, and depression of lower, on the opposite side.

9, 10, (Inferior extremity of the same convolution, Broca's convolution). Opening of the mouth with (9) protrusion and (10) retraction of the tongue. Region of aphasia. Bilateral action.

11, (Between (10) and postero-parietal convolution). Action of platysma.

12, (Posterior portions of superior and middle frontal convolutions). Elevation of eyelids, the pupils dilate, and the head turns toward the opposite side.

13, 13', (Supra-marginal lobule and angular gyrus). Theeyes turn to the opposite side with an upward (13) or downward (13') deviation. The pupils generally contracted. (Centre of vision.)

14, (Superior temporo-sphenoidal convolution). Pricking of the opposite ear, the head turns to the oppo ite side, and the pupils are dilated. (Centre of hearing.)

Ferrier places the centres of taste and smell at the extremity of the temporo-sphenoidal lobe, and that of touch in the gyrus uncinatus and hippocampus major.

The points of difference between the brain of man and the apes, and those of all other animals, consist in the rudimentary character of the olfactory lobes, the well-defined fissure of Sylvius, the larger size of the posterior lobe completely covering the cerebellum, and the presence of posterior cormua in the lateral ventricles. The distinguishing features between the brain of man, and the ape, consist of the larger size of the brain, the greater number and complexity of the convolutions, and the blunted quadrangular contour of the frontal lobes in man ; and the greater prominence of the temporo-sphenoidal lobe, the distinctness of the parieto-occipital fissure, and the upward oblique direction of the fissure of Sylvius in the ape.

The white matter of the cerebrum consirts of three kinds of fibres; diverging or peduncular, transverse and longitudinal commissural fibres. The diverging or peduncular fibres connect the cerebrum with the medulla oblongata and spinal cord, and constitute the crura cerebri. Each crus consists of two bundles, superficial and deep, separated by a dark gray mass in the interior-the locus niger. The superficial fibres are continued upwards from the anterior pyramids to the cerebrum. The deep fibres are continued upwards from the lateral and posterior columns of the medulla and the olivary bodies. As the peduncles of the cerebrum enter the hemispheres, they diverge from one another to enclose the inter-
peduncular space, and the fibres of eacin pass through two large masses of gray matter, the ganglia of the brain, called the thalami optici and corpora striata, which project from the upper and inner side of each peduncle. Above these masses is situated the great transverse commissure-the corpus callosum-which connects the hemispheres together. The space bounded by the peduncles and ganglia on the sides, and the corpus callosum above, forms the general ventricular cavity. The upper part of the cavity is divided into two lateral ventricles by the septum lucidum, and the lower part constitutes the third ventricle, which communicates above with the lateral ventricles, and behind with the fourth ventricle, through the iter a tertio ad quartam ventriculum. The fifth ventricle is situated in the space between the two layers of the septum lucidum. The transverse fibres connect together the two hemispheres, forming the corpus callosum, and the anterior and posterior commissures.

The longitudinal fibres connect together different parts of the same hemisphere. They form the fornix, tænia semicircularis, peduncles of the pineal gland, strie longitudinales, gyrus fornicatus, and the fasciculus uncinatus.

Vascular Supply.-The blood-vessels of the brain are numerous and capacious, it being supplied by fcur large arteries, the two internal carotids and the two vertebral arteries. These vessels, in their passage, pursue a winding course to reach the brain, the object of which is to increase the extent of the surface over which the blood passes, and thus add to the amount of impediment produced by friction, in order that the supply may be more equable and uniform. These curvatures in the vessels also tend to moderate the force with which the blood may be sent to the brain under certain circumstances, as during great excitement, violent exercise, and the like. These vessels also anastomose freely with each other after entering the cranial cavity. This takes place not only between the smaller branches, but also between the primary trunks; the former
is seen all over the surface of the encephalon; the latter constitutes the well-known circle of Willis. This is formed in front by the anterior communicating and anterior cerebral arteries; on each side, by the trunk of the internal carotid and the posterior communicating; and behind by the posterior cerebral and point of the basilar. These vessels divide and subdivide upon the surface of the brain, until they terminate in very small arteries, which are connected together by some areolar tissue, constituting the pia mater, from which very small vessels are given off that pierce the brain substance. No large vessels pierce the cerelral substance, except at the perforated spaces; but prolongations of the pia matter, carrying with them the blood vessels, pass into the interior of the brain at the tranverse fissure, to form the velum interpositum and choroid plexuses which are situated in the ventricles.

Function of the Cerebrum.-From its anatomical relation, the brain does not appear to be one of the essential or fundamental portions of the nervous system, but is a superadded organ, receiving all its impulses to action from the parts below, and acting upon the body at large through them. But its great size, its position at the summit of the cerebro-spinal system, and the vesicular substance of its convolutions affording a termination to the fibres in connection with it, mark it out as the highest in its functional relations, and as the organ through which all the processes of thought, reason, and intelligence are carried on. It is the organ of intellectual action, emotion, ideo-motor action and volition, the seat of which is the gray matter of the convo? utions.

There is a very close correspondence between the relative development of the cerebrum, in the several tribes of vertebrata, and the degree of intelligence they respectively possess. In the lower animals it is difficult to say what part of their actions may be regarded as instinctive and what as intelligent. Intelligent actions are exhibited: 1st, in the
variety of means used to accomplish the same ends by different individuals, and by the same individual at different times; 2nd, in the improvemen's in the mode of accomplishing the object, which results from experience; 3rd, in the adaptation of means to altered circumstances. The difference between the intelligence of lower animals and pure instinet, is well seen in comparing birds with insects. Their instinctive propensities are nearly similar; but in the adaptation of their operations to peculiar circmustances, birds display a certain degree of intelligence. Certain tribes of birds, especially the parrot and its allies, are eapable of being taught to perform trieks and to pronomece words, in which they exhibit simple acts of reasoning, similar to those of a child when first learning to talk. Some of the domestic animals, as the dog and the horse, manifest a considerable degree of intelligence. There is no ovidence, however, that any of the lower animals have the power of directing their mental operations in obedience to the will.

With reference to the sensibility of cerebral matter, it has been ascertained by experiment that no sensation of pain is produced by irritation of the vesicular or fibrous substance. In fracture of the skull, accompanied by protrusion of the cerebral matter, it may be excised without exciting either sensation or convulsive motion. When one of the hemispheres is removed from an animal, it is followed by temporary weakness of the limbs on the opposite side of the body, and a loss of sight in the opposite eye, but the pupil remains active. When both hemispheres are removed from a pigeon, the animal remains motionless and, appears to be in a sleepy state, from which it cannot be fully aroused, but consciousness still remains, the persistence of which proves that the cerebrum is not its exclusive seat. In the frog removal of the eerebrum is attended with similar results. The animal remains motionless unless when disturbed. It sits up naturally and breathes quietly; but when pricked it jumps away, or thrown into the water it lifferent mplish, in the e differpure inTheir the ades, birds ribes of e of berords, in to those : domes-onsiderowever, lireeting
er, it has tion of fibrous by prowithout hen one followsite side but the removand, apoe fully tence of ve seat. h simios when y; but ater it
swims. In this state a reptile or bird may survive many weeks if its physical wants be supplied. The influence of disease on the cerebrum is somewhat anomalous. In some instances extensive disease has occurred in one hemisphere, without any obvious injury to the mental powers, or interruption of the infiuence of the mind on the body ; but morbid phenomena are invariably present when both hemispheres are affected. On the other hand a sudden lesion, although of a trifling character, may occasion very severe symptoms; for example, a slight effusion of blood in or around the substance of the corpus striatum is followed by paralysis and loss of sensation in the opposite side of the body. Although there are two hemispheres, and each appears capable of diseharging in a general way the functions of both, yet the mind combines the impressions derived from both, and the ideas or impressions become single. The theory is steadily gaining ground that each faculty of the mind has a special portion of the brain appropriated to it, just as other compound organs or systems in the body, in which each has its special function. This is supported by the difference in the mental functions in different individuals, and at different periods of life; also by the phenomena of some forms of ' sanity. In the latter it is not often that all the faculties are disordered; some are increased while others are diminished. The phenomena of dreams, in which some of the faculties appear to be awake, while others are at rest, also support this view to some extent. In cases of hemiplegia, in which the posterior part of the third frontal convolution of the left side is diseased, it is frequently associated with aphasia or loss of power of expressing ideas in language. It has therefore been inferred that this portion of the brain is the centre for language, or rather that its healthy condition is essential to the faculty of speech. The empirical method by which Gall first fixed upon certain parts of the brain as the seat of certain faculties, is exposed to the serious fallacy that a part
on the surface of the brain may appear largely developed in consequence of the large size of some subjacent or neighboring part,-for example, a thick neck and large oecipital region may indicate a large pons and medulla more frequently than a large cerebellum. Again, with respect to the cranium itself, large prominences just above the eyebrows may indicate large frontal sinuses rather than a large development of "certain organs" on the anterior lobes of the cerebrum. Gall divided the whole cerebrum into twenty-seven different organs to represent different faculties, and Spurzheim divided it into thirty-five. In some diseases, as for example, in typoid fever, the mind is more or lessobtunded, and unable to combine the impressions received through both hemispheres, and the patient fancies himself as two individuals. He also sometimes holds converse with the alter ego he fancies is lying alongside of him and constitutes a part of himself, or requests some attention to be given to the person beside him, when in reality the attentions are required for himself.

The capacity for performing mental acts is known as the intellect, or reasoning power; and the capacities for those various forms of intellectual activity which pertain to the mind are called the intellectual faculties. These are perception, imagination, memory and judgment. When impressions are made upon some part of the body that is supplied with afferent nerves, they are transmitted through them to the sensorium, and occasion affections of the consciousness, which are called sénsations Every impression which affects the consciousness produces some change in the nervous centre, by which that inpression is perpetuated in such a manner as to permit of its being again called up before the mind at any future time. The nature of the change by which sensory impressions are thus registered is not understood, and probably never will be. The acuteness with which particular sensations are felt, depends on the degree of attention they receive from the mind; for
veloped r neighoceipital nore frespect to the eyea a large lobes of um into nt faculIn some is more is receivies himconverse him and ention to y the at-
pn as the for those n to the are perWhen that is through the conpression ange in petuated alled up of the stered is cuteness s on the nd ; for
example, ordinary impressions are not felt during sleep, or when the mind is engaged in some deep subject of study. On the other hand, impressions which are in themselves very slight may produce painful sensations, when the mind is directed strongly towards them. They are also much modified by the influence of habit. Sensations not attended to beeome blunted by frequent repetition; whilst sensations attended to beeome much more readily cognizable by the mind. Every student knows that the effluvia of the dissecting room becumes tolerable, after the nose has become habituated to it.

In some instances, sensations may be produced by internal causes; these are called subjective sensations, in contradistinction to objective, which are caused by a real material object. The most common eause of these subjective sensations is congestion or inflammation; e. g., congestion in the nerves of common sensation gives rise to pain or uneasiness; in the retina or optic nerve, it produces "flashes of light;" and in the auditory nerve it oecasions "a noise in the ears." Again, subjective sensations may be produced by sensations originating in objeetive impressions on other parts, as e.g., a calculus in the bladder gives rise to pain in the glans penis; disease of the hip occasions pain in the knee.

The mental recognition of the cause of sensation is called perception. For the production of a sensation a conscious state of the mind is all that is required; but for the exercise of the perceptive power, the mind must be directed towards the sensation, and henee, when the mind is inactive, or eugaged in study, the sensation may not be pereeived or remembered. The perception of sensation gives rise to ideas; some of thess partake of the nature of feeling; others relate to knowledge. An idea is a mental representation of an oljeet which has been perceived by the mindsomething grasped by the mind, and held up before it is an intelligible object of contemplation. Ideas may be com-
municated and rendered intelligible to other minds by means of visible signs, or by spoken language, in whinh certain combinations of sounds are used to express ideas; and the nearer the signs or sounds employed are to the natural expressions of the ideas which they represent, the more readily are they comprehended.

When ideas are associated with feelings of pain or pleasure, they give rise to emotions. These, unlike ideas, cannot be communicated or expressed in language to others; they are unutterable. Those emotional states of the mind which determine a great part of the conduct of individucis, are the result of the attachment of the feelings of pleasure and pain, and of other forms of emotional sensibility to certain classes of ideas. Thus, grief is the painful centemplation of loss, misfortune, or evils of any kind. Joy is the pleasurable feeling which accompanies success, good fortune, or good prospects, etc. Fear is a painful emotion excited by an expectation of future evil. Hope is the pleasurable exnectation of future enjoyment. Benevolence is the pleasurable contemplation of doing good to others. Malevolence is a positive pleasure in the contemplation of the misfortunes of others, and so on. The emotions are partly under the control of the will, and partly independent of it.

The determining power of the will acts both upon the body and the mind; but the only sensible effect which the strongest effort of volition can produce on the bodily frame is that of contraction of the voluntary muscles. The immediate operation of the will is not upon the muscles, but upon the brain, in which it excites nerve force, which is transmitted along the nerves, and stimulates the muscular tissue to contraction. With reference to the action of the will upon the mind, it may be said that it possesses the power of recalling ideas which are present in the mind, excluding some and bringing others more prominently before it. This is effected by the power of voluntary attention,
nds by a whinh ideas ; to the ent, the pain or e ideas, , others; se mind viduals, pleasure jility to ful conJoy is ss, good emotion is the evolence others. ation of ons are pendent
oon the ich the y frame The imles, but hich is uscular of the ses the nd, exbefore ention,
which is the chief means through which the sequence of our thoughts is directed by the will. When the will is most strongly exerted, it causes the consciousness to be so completely engaged by one train of ideas that the mind is, for the time, incapable of receiving any other idea or impression, the individual being as insensible as if he were in a profound sleep. This power of concentration of the mind on the subject of study, is of very great importance and advantage in the acquirement of knowledge and the pursuit of truth, and one which is capable of cultivation to a considerable extent by habitual exercise. Sometimes the cerebral processes are carried on unconsciously, as for example, when one has tried in vain to remember some particular date, ocurence or nume, and has given it up, and hours or days afterwards, it suddenly and unexpectedly flashes across the mind. This is called unconscious cerebration.

The crura cerebri are the principal conductors of impressions to and from the cerebrum. When one of them is divided, the animal moves round and round on a vertical axis from the injured to the sound side; this is caused by a partial paralysis on the side opposite the injury. In each crus cerebri is found a small mass of gray substance, the locus niger, from which arises the third cranial nerves, so that this may be looked upon as the nervous eentre for the chief movements of the eyeballs.

The corpora quadrigemina, including the corpora geniculata are the representatives of the optic lobes in birds, reptiles and fishes, and may be considered as centres of the sense of sight, since their removal or diseased condition is accompanied with blindness. Injury or disease on one side is followed by blindness of the opposite eye, and a slight rotatory motion, as after the division of the crus cerebri ; the pupil is also dilated. They are not only the centres from which the optic nerves arise in part, but also the organs through which the mind perceives the sensation of light The centres for en-ordination of the movements of the eye-
balls, and contraction of the pupil, lie in the nates or anterior tubercles of the corpora quadrigemina.

The thalami optici are also concerned to a certain extent in the function of vision, for part of the fibres of the optic tracts may be traced to their surfaces. In persons born blind, the optic thalami, and also the corpora quadrigenina, are found extremely small. Destruction of one of them produces effects similar to those of division of the crus cerebri ; the auimal remains standing, and turns continually round.

The corpora striatce were supposed by Magendie to be the centres of motor power for backward movement, and that forward movement was excited by the cerebellum, these two powers being exactly counterbalanced, and hence division of the corpora striata caused an irresistible tendeney to run forwards. This, however, has not been confirmed by other experimenters. Longet and others assert that animals remain stupid and inmovable after division of the corpora striata, and it is only when irritated by pinching or pricking that they exhibit any disposition to move. Lesion of both thecorpora striata aud optic thalami on one side of the human brain, is attended with loss of sensation and voluntary power on the opposite side of the body and face. The corpora striata are regarded by some as motor, and the optic thalami as sensory ganglia, but this division of functions has not yet been clearly proved.

The corpus caliosum connects together the two hemispheres of the cerebrum. It is entirely absent in birds, reptiles and fishes. Its division is followed by severe general injury. It probably enables the two sides of the brain to act in harmony in the performance of its highest functions.

The Mind and its Relation to the Body.-With reference to the relation of mind and matter, and the nature and source of mental phenomena, there are two theories, that of the materialist and the spiritualist. The materialist supposes that all the operations of the mind are but
" expresions of material changes in the brain;" that thus man is but a thinking machine, his whole conduct being determined by his original constitution, his character being formed for him and not by him, his actions being simply the result of the reaction of his cerebrum upon the impressions which called it, into play. According to this doctrine, the highest elevation of man's psychical nature is to be attained by proper attention to those circumstances which promote his physical development. The arguments in support of this theory are :-1st, the dependence of the normal activity of the mind upon the healthy nutrition of the brain, and its proper supply of pure blood; 2nd, the peculiar effects of lesions of the brain upon the intellectual operations, as is seen in loss of speech, memory, etc., after severe injury to the head; 3rd, the production of mental imbecility as a result of disease in the parents, or defective nutrition in the offspring during childhood ; and-4th, the complete perversion of the mind and moral feelings which is produced by intoxicating agents. Now, though this doctrine recognizes some great facts regarding the dependence of mental operations upon the organization and functional activity of the nervous system, yet there is beyond and above all this a self-determining power which can rise above the promptings of external suggestions, and which can suit external circumstances to its own requirements, instead of being completely subjugated by them.

The spiritualist regards the mind in the light of a separate immaterial existence connected with the body, but not in any way dependent upen it, except as deriving its knowledge of external things through its agency, and as making use of it to execute its determination so far as these relate to material objects. According to this theory, the operations of the mind, having no relation to those of the body, are never affected by its irregularities or defects of functional activity; and the mind, thus independent of the body, is endowed with a complete power of self-govermment, and is
responsible for all its actions. But nothing can be more plain than that the introduction of intoxicating agents into the system really perverts the action of the mind, and occasions many strange results at variance with its normal action. So that, however true it may be that there is something in our mental constitution beyond and above any agency which can be attributed to matter, the operations of the mind are in a great degree determined by the material conditions with which they are so intimately associated. The whole system of education recognizes the importance of external influences in the formation of the character; and it is the duty of every teacher to foster the development and promote the right exercise of that power by which each individual becomes the director of his own conduct.

Hence it will be seen that any attempt to bring mind and matter into the same category is attended with difficulty, since no relation of identity can exist between them. But although no relation of identity or analogy subsists between mind and matter, a very close relation may be shown to exist between mind and forcs, or between mind-force and nerve-force. In the phenomena of voluntary movements the will operates upon the nervous matter, and developes nerve-force, the transmission of which along the nerve trunks is the determining cause of muscular contraction. Here is cvidence of the excitement of nerve-force by mental agency. The converse of this is equally true, viz, that mental activity may be excited by nerve-force. This is the case in every act in which the mind is excited through the instrumentality of the sensorium ; the impression is first conveyed to the sensorium (or sensory ganglia), in which it produces a certain active condition of the nervous matter, which is the immediate antecedent of all consciousnesswhether of emotions or ideas. And since the will can develope nerve-force, and as nerve-force can develope mental activity, there must be a correlation between the two forces, not less intimate than that which exists between nerve-force
more is into ud occormal somee any ons of aterial ciated. rtance acter ; velopwhich uct. id and iculty,

But stween wn to ce and ments elopes nerve action. nental that is the gh the is first nich it natter, nessin denental forces, -force
and electricity. The nervous matter of the cerebrum is the material substratum through which the metamorphosis of nerve-force into mind-force, and mind-force into nerve-force is effected, and like all other changes, every act of the mind involves the disintegration of the nervous substance which ministers to it.

The influence of the mind over the body is a most remarkable phenomenon, and one well worthy of attention. Many of its effects are quite familiar ; for example, fear or great anxiety of mind produces a desire for frequent micturition, and not unfrequently the bowels are moved also. The announcement to the patient of the arrival of the accoucheur, suspends for a time the labor pains The sight, or even the thought of very unpalatable medicine, produces nausea, and sometimes vomiting. Under the influence of the mind, opium pills have been known to produce catharsis, when the patient supposed that he had taken a cathartic. In this way also, persons have been much benefited, and in some instances entirely cured, by the simplest remedies. Much of the success of the homoopathist is no doubt due to this fact. In all modes of treatment, therefore, it is absolutely necessary to have the entire confidence of the patient. It has also been observed, that when the mind is directed to any tumor or growth of the body, its increase is greatly accelerated.

In consequence of the waste of nerve tissue during its activity, it is necessary that a periodical suspension should take place in order to permit of nutritive regeneration; this is called slcep. In deep sleep there is a state of complete unconsciousness, and the body may remain for a considerable time motionless ; but the individual is capable of being aroused by external impressions. In this it differs from coma, which is generally the result of some pressure upon the brain, in which the patient is incapable of being aroused. The tendency to fall asleep is favored by a succession of dull, monotonous sounds, as a dull, prosy speech or sermon;
or by sounds accompanied by gentle movements, as is seen in putting infants asleep. Another method is to close the eyes and fix the attention upon some object, or repeat a certain word until the mind becomes completely lost or unconscious. The average amount of sleep required by a healthy adult is about eight hours in twenty-four ; children require more. On some occasions the sleep is more or less disturbed by dreams. These generally refer to something that has engaged the attention previously ; but in some instances they would appear to indieate things that are to happen ; at all events, there is in many instances a singular coincidence between dreams and occurrences which follow them. An uneasy or anxious state of mind is unfavorable to sleep. It is said that criminals under sentence of death sleep badly while they have hopes of a reprieve, but as soon as they are assured that their death is inevitable, they usually sleep more soundly.

Derangerrent of the digestive organs, or a disturbed state of mind, in some instances, gives rise to a dreaming state called somnambulism. In this state the individual acts as if he were awake, and as if all the phenomena presented to him were real. He answers questions rationally and with readiness; he walks with precision and avoids obstacles; yet, not unfrequently, accidents happen which show that he has not full command of his senses.

A state remarkably analogous to somnambulism may be induced in some persons, which has been called mesmerism. The production of this state requires the apparent influence of another individual, who looks directly in the face of the person experimented upon, and makes certain movements before him called passes ; or the person is required to gaze sterdfastly upon a piece of metal or other substance held in
. hand, until a state of unconsciousness is induced. Remarkable statements have been made, implying that in these cases the faculties are very much exalted, and the pers. n acquires powers of a superhuman kind. Such state- scious. r adult more. ed by as enes they at all cidence n. An eep. It badly hey are sleep d state g state acts as nted to d with siacles; that he
nay be nerism.
fluence of the ements to gaze held in 1. $\mathrm{Re}-$ hat in nd the I state-
ments, however, are made by those interested in such séances, or by those who are ignorant of the deception resorted to in order to obtain notoriety.

CRANIAL NERVES.

The cranial nerves include those nerves which arise from some part of the cerebro-spinal centre and are transmitted through foramina at the base of the brain. There are in reality twelve pairs of cranial nerves, but they are arranged in nine pairs in the following order from before back-wards:-
1st Olfactory
2nd Optic
3rd Motor Oculi
4th Pathetic \quad 7th $\left\{\begin{array}{l}\text { Facial or portio dura } \\ \text { Anditory or portio mollis } \\ \text { 5th Trifacial or trigemini } \\ \text { 6th Abducens }\end{array}\right.$

The nerves of the 7th and 8th pairs are so combined in their distribution, that it is almost impossible to separate them in either their anatomy or physiology. The cranial nerves may be subdivided into four grouns, according to the peculiar function of each, viz., 1st, nerves of special sense, as the olfactory, optic, auditory, the lingual branch of the trifacial, and part of the glosso-pharyngeal ; 2nd, nerves of common sensation, as the greater portion of the fifth, and part of the glosso-pharyngeal ; 3rd, nerves of motion, as the motor oculi, pathetic, part of the trifacial, abducens, facial, and hypoglossal; and 4th, mixed nerves, as the pneumogastric and spinal accessory.

The olfactory nerve arises from the cerebrum by three roots, and presents a bulbous enlargement which rests upon the cribriform plate of the ethmoid bone, from which delicate filaments are given off which supply the nose. It is the nerve of the special sense of smell. In structure it differs
from the other nerves, in being soft and grayish in color, and destitute of the white substance of Schwann.

Fixternal walf of tho nose. a, olfuetory nerve; b, olfactory bull upon the eribritorm phate of the ethmodi ; below is seen the distribution of the branches unon the יןper and the middle turbima bed bon; c, lifth ne: ve with Gasserian gunglion ; v, its palatine branhes.
The optic nerve is distributed to the eye, in which it expands to form the internal layer of the retina, and is the nerve of the special sense of sight. Division of the optic nerve produces total blindness and dilatation of the pupil, but does not destroy ordinary sensibility or paralyze muscular action.

The auditory nerve (portio mollis) is the special nerve of the sense of hearing. It conveys to the brain the sensation of sound, and is incapable of transmitting any other, being entirely destitute of ordinary sensibility. The flaments are distributed to the coehlea, semieircular canals and vestibule.

The motor-oculi is a nerve of motion, and is distributed to all the museles of the eyeball, except the superior oblique and external rectus. It also supplies motor filaments to the circular fibres of the iris. In paralysis of this nerve, the upper eyelid falls down over the eye, so that it appears half closed (ptosis), the pupil is dilated and insens-
ible to light, the movements of the eyeball are nearly suspended, and the eye is direeted outwards, owing to the action of the external rectus. Owing to the irregularity of the axes of the eyes, double sight is often experienced. The stimulus of light on the retina produces contraction of the circular fibres of the iris, and partial elosure of the pupil. This is a reflex action, the stimulus being conveyed by the optic nerve to the brain, and thence refleeted through the third nerve to the iris; consequently the iris ceases to act when either the optic or third nerve is divided or destroyed, or the nervous centre injured or compressed. The radiuting fibres of the iris are supplied by filaments from the fifth cranial nerve and the ophthalmic or eiliary ganglion.

The pathetic nerve, the smallest of the cranial nerves, is also a nerve of motion distributed to the superior oblique muscle. When the nerve is irritated the muscle acts spasmodically, and its division causes paralysis and a loss of rotatory motion of the eyeball on its axis, and sometimes double vision

The abducens supplies the external rectus with motor power. Irritation of this nerve produces convulsion of the muscle, and the eye is turned outwards. Division or injury is followed by convergent strabismus.

The trifurial nerve closely resembles the spinal nerves. It arises by two roots an anterior, smaller or motor, and a posterior or sensory, which has a ganglion (the Gasserian ganglion) developed on it. The functions of this nerve are various; it is the great sensitive nerve of the head and face; the motor nerve of the muscles of mastication (except the buccinator), and its lingual branch is one of the nerves of the special sense of taste. This nerve, within the cranium, is divided into three branches-the oplthalmic, which passes through the sphenoidal fissure, the superior maxillar'y, which passes through the foramen rotundum, and the inferior muxillury, which passes through the foramen ovale. The first and second divisions are purely sensory;
the third division contains filaments of special sense, sensation and motion. It is the most intensely sensitive nerve in the body, andirritation of its sensory filaments is followed by intense pain. Any irritation to this nerve, or any of its branches, as e.g., a carious tooth, may give rise to neuralgia of the corresponding side of the face, and in many instances one-half of the tongue is found covered with a white fur, while the other half is perfectly clean. Division of the fifth nerve produces loss of sensibility and motion in the parts supplied by it, and is followed by inflammation of the corresponding eye ; the cornea becomes opaque, and a low destructive inflammation of the conjunctiva, sclerotic, and interior of the eye occurs, which usually goes on to complete and permanent destruction, and sloughing of the organ; the senses of smell, hearing, and taste, are at the same time impaired or lost. Injury to the fifth nerve, or some of its branches, is sometimes followed by total blindness in the corresponding eye. These phenomena may be due to the trophic influence of the nerve on these organs, and the defective nutrition which follows its injury. Paralysis of the third nerve may also follow neuralgia of the fifth nerve.

The facial nerve (portio dura) supplies all the muscles of the face, the platysma, buccinator, the muscles of the external ear, digastric and stylo-hyoid, the palate, stapedius and laxator tympani muscles. It also supplies the parotid gland, and through the chorda tympani it gives branches to the submaxillary gland, lingualis, and other muscles of the tongue. It is a nerve of motion, and not of sensation, and therefore its division, which was formerly resorted to in anses of tic douloureux, is incapable of relieving neuralgic $r \quad$ ut is followed by paralysis of the muscles which it
res. Division or paralysis of the facial nerve pre-
onts the eye from being closed, and its continued exposure to the air, and particles of dust, is apt to produce inflammation. The sense of hearing, taste, and smell may also be impaired. In facial paralysis there is an absence of
expression on the affected side, the angle of the mouth is lower, and the eye has an unmeaning stare. In drinking, the fluids flow out at the corner of the mouth, and the food lodges between the eheek and gums. When the tongue is paralyzed, it is drawn to the sound side when protruded, in consequence of the paralysis of the muscles on the affected side.

The glosso-pharyngeal nerve is distributed to the tongue and pharynx, being the nerve of sensation to the mucous membrane of the pharynx, the fauces and tonsil ; of motion to the pha yngeal muscles, and a special nerve of taste to the posterior part of the tongue. It also supplies filaments to the fenestra ovalis and rotunda, the Eustachian tube, carotid plexus, and spheno-palatine ganglion. The tongue is supplied by two special nerves-the lingual branch of the fifth, and the glosso-pharyngeal; the former supplies the anterior and lateral parts of the superior surface, and the latter the posterior and lateral parts. This may be proved by division of either of these nerves, when the sense of taste is lost in the part supplied by the injured nerve.

The hypoglossal nerve is a nerve of motion. It is distributed to the museles which belong to the hyoid bone and tongue, and is concerned in articulation. Irritation of this nerve produces contraction in the muscles supplied by it, and is sometimes attended with pain, the sensibility having been borrowed from the nerves with which it communicates. Its division or injury is followed by paralysis.

The pneumogastric nerve is one of the most remarkable and important in the body. It supplies the pharnyx, epiglottis, glotti; larynx, trachea, œesophagus, heart, lungs, liver, stomach and spleen. It possesses motor, sensitive and sympathetic or ganglionic nerve fibres, and is therefore regarded as a triple-mixed nerve. The pharyngeal branch is the motor nerve of the muscles of the pharynx; the superior laryngeal is chiefly sensory, and supplies the mucous membrane of the larynx; the inferior or vecurrent laryngeal
is for the most part motor, and supplies the muscles; the oesophageal branches supply its muscular tissue; the cardiac branches constitute a channel through which the influence of the central organs and the cmotions of the mind are transmitted to the heart; the pulmonary branches form a channel through which the impressionson the lungsaro conveyed to the medullaoblongata; the motor filaments of the pneumogastic nerve supply the motor influence by which the function of deglutition is performed. In the functions of the larynx, the sensitive filaments supply that acute sensibility by which the glottis is guarded against the ingress of foreign bodies or irrespirable gases. These are instances of "reflex action."

The cardiac branches of the pneumngastric have an inhiwuory or restraining influence upon the heart (p. 212). When divided the heart's action is increased; while on the other hand when stimulated, as by a galvanic current, the heart's action is diminished, or if a strong current be used, it is arrested altogether in diastole.

Division of the pneumogastric nerve or its inferior laryngeal branches produces loss of voice, by paralyzing the museles of the larynx which act upon the vocal chords. Division of the pneumogastric nerves is also followed by a diminution of the frequency of the respiratory movements. In young animals it is often quickly fatal, owing to the closure of the glottis, which is due to the yielding nature of the cartilages; but inolder animals death ensues more slowly, owing to the rigidity of the cartilages which surround the gleitis. Death takes place in from one to six days after the operation, and is caused by the engorgement of the lungs. They are commonly very much congested, nearly solid, and the bronchial tubes are filled with a frothy, bloody fluid, and mucus. This is due in part to the slowness of the respiratory movements, the imperfect aëration of the bluod, and the accumulation of carbonic acid in the air cells, and also in part to the paralysis of the blood-vessels themselves.
s; the cardi-inflund are form a nvey-pneuch the ons of sensiress of tances an in212). on the nt, the e used,
larynig the hords. d by a ments. to the cure of lowly, ad the ter the lungs. d , and d , and espirad , and d also selves.

Since respiration is still carried on after the division of the pneumogastric nerves, it is evident that though they are the chief agents by which the respiratory stimulus is conveyed to the medulla oblongata, they are not the only ones.

The secretion of gastric juice is temporarily suspended after division of the pneumogastric nerve, and the digestive function is more or less disturbed in various ways, but the sensations of hunger and thirst still remain. In many instances the food taken by the animal never reaches the stomach owing to the paralysis of the œesophagus, but is regurgitated in a few moments afterwards-this action being excited by the influence of the sympathetic nerves. The muscular coat of the stomach is also paralyzed by section of this nerve.

Division of the peumogastric nerve also interferes with the proper function of the liver, and irritation of the central extremity of the divided nerve is followed by the rapid development of sugar in this organ, probably by eausing paralysis of the hepatic vaso-motor nerves.

The spinal accessory nerve arises partly from the medulla oblongata, and partly from the spinal cord. It is essentially a motor nerve; but it also contains sensitive fibres, and is conmected with the ganglion of the pneumogastric. From these circumstances it may be regarded as a mixed nerve. It supplies the sterno-mastoid and trapezius muscles, and it is also connected with the vocal movements of the glottis. If the spinal accessory nerve be divided on both sides, or its branch of communication with the pnenmogastric nerve, the voice is instantly lost, the animal being incapable of uttering a single sound. Division of the pneumogastrics or their inferior laryngeal branches, paralyzes both the movements of respiration and phonation, while section of the spinal accessory paralyzes the movements of phonation alone, or those muscles which narrow the glottis and approximate the vocal chords, the movements of respiration, which open the glottis and sepa-
rate the vocal chords remaining intact. It may be stated as a general law, that when any part of the body receives nervous filaments from two different sources, it is for the purpose of enabling it to perform two different functions. This is exemplified in the muscles of the larynx. These muscles are concerned in the respiratory movements, the nervous stimulus for which is conveyed by the facial, hypoglossal, and pneumogastric nerves; but they are also concerned in the formation of the voice, the nervous influence for which is conveyed by the spinal accessory.

SYMPATHETIC NERVOUS SYSTEM.
The sympathetic system (or nervous system of organic life), is so named because it was formerly supposed to be the system through which distant organs manifested sympathy with each other in morbid action. It consists of a series of ganglia connected together by intervening cords, extending on each side of the spinal column, from the base of the skull to the coccyx ; some of the ganglia may also be traced into the cranium. These two gangliated cords lie parallel to one another as far as the coccyx, where they communicate through a single ganglion-ganglion impar. It is also stated that they communicate at their cephalic extremity through a small ganglion, situated on the anterior communicating artery-the ganglion of Ribes.

They are arranged as follows:-In the cephalic region there are four ganglia on each side (and the ganglion of Ribes); in the cervical region, three ; in the dorsal region, twelve; in the lumbar region, four ; in the sacral region, five; and in the coccygeal region, one-the ganglion impar. Each ganglion may be regarded as a distinct centre from and to which, branches pass in various directions, as follows -1st, communicating branches between the ganglia; 2nd, communicating branches to the ccrebral or spinal nerves; 3rd, primary branches of distribution to the arteries in the vicinity of the ganglia, to the viscera, or to other ganglia in
the thorax, abdomen, and pelvis. The latter consist of two kinds of nerves, the sympathetic and spinal, and have a remarkable tendency to form intricate plexuses which surround the blood-vessels, being conducted by them to the viscera. Many of these primary branches, however, pass to a series of ganglia in the thorax and abdomen, the chief of which are the cardiae and semilunar ganglia. Fibres of the sympathetic are distributed to the nonstriated muscular tissue of the intestines and other hollow organs, and to the blood-vessels (vaso-motor nerves); to the heart-excito-motor; and to the various glands. Centripetal fibres also pass to the vaso-motor centre in the medulla oblongata. The difference between the cerebro-spinal and sympathetic nerves has been already stated (i). 282). Both kinds of nerves are distributed to all parts of the body.

The ganglia of the sympathetic system are regarded by some writers as reservoirs of nervous force, which they equalize and correctly balance, by storing up all transient excesses, and furnishing all transient deficiencies. In structure they are essentially similar, containing nerve fibres entering and emerging, nerve cells, or ganglion corpuscles, and other corpuscles that appear free (Fig. 98). Complex as the whole sympathetic system appears, however, each of its parts exhibits a wonderful simplicity; for each ganglion with its afferent and efferent nerves forms a simple nervous system, and might serve for the illustration of all the nervous actions with which the mind is unconnected.

Function of the Sympathetic System.-The sympathetic nervous system is endowed with sensibility and the power of exciting motion exactly similar to the cerebrospinal system ; but in the excreise of these functions it is less active. When irritation is applied to a sensitive nerve in one of the extremitics, the evidence of pain or motion is acute and instantaneous; whiie, on the other hand, irritation of the sympathetic nerve is felt distinetly enough, but is only responded to arter somewhat prolonged application.

This comports very much with what is known of those organs, supplied chiefly by the sympathetic system, e. g., the movements of the stomach and intestines are not felt under ordinary circumstances; but any excessive or prolonged irritation may cause them to be exceedingly painful. The general processes which the sympathetic system appears to influence are those of involuntary motion, secretion, and nutrition. The ganglia have the power of conducting, transferring and reflecting impressions made on them similar to the cerebro-spinal system, and the sympathetic nerves are conductors of impressions. Parts chiefly supplied with sympathetic nerves are usually capable of only involuntary movements, as, e.g., the heart, stomach and intestines, and these parts may still continue to move for a short time after the death of the animal. Thus, in the mammalia the heart continues to beat for one or two minutes after it is taken from the body; in reptiles and amphibia for several hours; and the peristaltic action of the bowels is continued for a prolonged period.

Division of the sympathetic nerve produces immediately a vascular congestion in the parts supplied by it. This was first pointed out by Bernard; he divided the sympathetic nerve of a rabbit in the middle of the neck, and found that congestion of the corresponding side of the head immediately followed, which was most distinctly marked in the ears; and the venous blood returning from the part had a ruddy hue. The pupil is also contracted and the eye partially closed, owing to the increased sensibility of the retina from vascular congestion of the parts. The congestion appears to be caused by the dilatation of the vessels and consequent increased rapidity of the circulation, for when any irritation is applied to the divided end of the nerve, the vessels contract and the congestion disappears. The vessels therefore appear to be under the influence of the sympathetic nerves, which accompany them in all their varied distributions and minute ramifications. They are
distributed to the muscular coat of the vessels, the function of which is to regulate the supply of blood to the various organs. The congestion of the vessels caused by division of the sympathetic nerve is also accompanied by an elevation of temperature in the affected part; this increase of heat has been found as ligh as 8° to $9^{\circ} \mathrm{F}$., and like the vascular congestion, to which it is due, may last a considerable length of time. The sympathetic system has also some connection with the special senses, espeeially with the sense of sight. The ophthalmic ganglion gives off small branches to the iris, and receives a communicating motor branch from the third nerve. The contraction of the pupil under the influence of light, and iis dilatation in the dark, are affected through this ganglion.

With reference to the influence of the sympathetic nerve in the processes of secretion and nutrition, little is known except that it is in great measure connected with the supply of blood to the parts. It serves as a medium of reflex action between the sensitive and motor portions of the digestive, excretory and generative organs, and it also takes part in reflex actions which may be referred to the cerebro-spinal system ; for example, the contact of food in the intestine excites, through the medium of the sympathetic nerves, a peristaltic movement in the muscular coat. The irritation produced by undigested food in the alimentary canal may give rise to diarrhœea, or it may produce, through the medium of the sympathetic and cerebro-spinal systems, epileptic convulsions, especialiy in children.

CHAP'IER XIV.

THE SPECIAL SENSES.

The special senses are five in number,smell, sight hearing, taste, and touch. The last two have been already casually referred to.

Smble.-The sense of smell is limited to the nasal cavity, and is confined to that portion on which the olfactory nerves are distributed, viz, the roof, the septum, and the upper part of the lateral walls (Fig. 110, p. 330). The nasal cavity is lined by mucous membrane, called also the pituitary or Schneiderian membrane; it is covered with columnar ciliated epithelium, except in the upper part and roof-the olfactory region, in which it is non-ciliated. The filaments of the olfactory uerves pass through the formina in the cribriform plate of the ethmoid bone, and are distributed beneath the mucous membrane; they convey the sensitive impressions made by odoriferous particles upon the mucous membrane to the sensorium, which give rise to the sense of smell. The sense of smell is contined to the olfactory nerves, as has been shown by their division, after which the sense of smell is completely lost, while sensibility still remains, and their irritation is not followed by any muscular action, either of a direct or reflex character. Division of the fifth nerve, or some of its branches, which supply the nose, is followed by impairment of the sense of smell. It cannot be inferred from this, however, that it is a nerve of the special sense of smell ; the result is to be attributed to the dry and otherwise deranged state of the mucous membrane, occasioned by the altered nutrition of the parts.

The meatuses and sinuosities of the nasal cavities are well adapted not only to increase the extent of mueous surface, but also to impede the air and odoriferous particles

Fig 111:

Nose, mouth and pharymx ; a, cribriform plate ; b, spine ; c, soft palate ; d, lower jaw ; e, hyoid bone ; f, cavity of the laryux; l, tongue; m, n, 0 , superior, midde and uferior turbinated bones, heneath whieh ure the meatuses; q, frontal sinuses; s, narrow part of the pharynx; t, tonsil; u, anterior pillar of the fauces; v, posterlor pillar; y, the epiglottis; z, orifiee of the Eustachian tube.
which it may contain, in their passage through them, so as to bring them into more immediate contact with the mucous surface, by means of which their peculiar characters are more fully impressed on the olfactory nerves. The frontal sinuses are supposed to assist in the extension of the sense of smell ; but since they do not receive filaments from the olfactory nerves, and are largely developed in some animals,
as the grey-hound, in which the sense of smell is by no means acute, it is highly improbable. The sense of smell varies much in different individuals, and, like all the senses, may be improved by frequent practice.

It may become blunted by long-continued exposure to one kind of smell, as, for example, the effluvia of the dissecting room. Various odors also affect it differently, as musk, asafœtida; and some produce nausea and even fainting.

The irritation produced by the contact of substances which act mechanically or chemically on the mucous membrane, as ammonia, nitrous acid, etc., must not be confounded with the sense of smelling. These impressions are conveyed to the sensorium by the fifth nerve, which is the nerve of sensation. The senso of smell may be impaired or destroyed by a dry state of the mucous membrane; by the obstruction of the air passages, as in the case of polypi ; by chronic inflammation, as catarrh, ozena, and by the frequent use of snuff, which tends to blunt its acuteness and cover the surface with its particles.

Besides the olfactory and fifth nerve, there are some filaments from the spheno-palatine ganglion distributed to the nose. The function of these is not very well known; but from the connection with the fifth nerve and the sympathy between the sense of smell and taste, they are probably nerves of associate function. All animals have not the same facility for perceiving odors. Carnivorous animals have the faculty of detecting readily, animal odors, and tracking other animals by the scent. Herbivorous animals, on the other hand, possess the power of detecting readily the odor of vegetable matters. The sense of smell in man is not so acute as in most animals, but it is more uniform and extended. The extreme delicacy of the sense of smell is shown by the fact, that ${ }_{\overline{3} 0, \bar{\sigma} \bar{\sigma} \bar{\sigma}, \bar{\sigma} \bar{\sigma} \bar{\sigma}}$ of a grain of musk may be distinctly smelt. Some odors are pleasant, and some are offensive, but the cause of the difference is not known ; many smell ienses, ire to e disly, as even tances memunded veyed rve of royed action ic inase of e sur-
e filato the ; but pathy bably t the imals , and imals, eadily man iform smell may he are many
odors also which are agreeable to one individual, are offensive to another. Certain sensations also frequently produce a smell, for example, electricity produces a smell like phosphorus, and the negative pole of the battery applied to the nose a smell of ammonia, while the positive pole produces an acid odor. In disease or derangement of the olfactory nerve, subjective sensations of smell frequently occur.

SIGHT.
The eye is the organ of the sperial sense of sight, and is situated in the cavity of the orbit. It is spherical in form, having the segment of a smaller and more prominent spliere engrafted on its anterior surface. It measures about an inch in the antero-posterior dianeter, and a little less transversely. It consists of three coats : an outer, consisting of the sclerotic and cornea; a middle, consisting of the choroid coat, ciliary processes, and iris; and an internal, the retina; and three refracting media,--the aqueous humor, the vitreous humor, and the crystalline lens and capsule.

The sclerotic is a dense fibrous membrane, thicker behind than in front, which covers the posterior five-sixths of the eye. It is continuous in front with the cornea, and behind with the sheath of the optic nerve, which is derived from the dura mater. Behind, it is pierced, a little to its nasal side, by the optic nerve, around which are openings for the passage of the ciliary vessels and nerves.

The cornea projects forwards, somewhat resembling a watch-glass, and covers the anterior sixth of the globe. It is concavo-convex, the degree of curvature varying in different individuals. and in the same individual at different periods of life, being generally more prominent in youth than in advanced age. This differencein the curvature influences considerably the refractive power of the eye, and is partly the cause of long and short-sightedness. The cornea in health, is perfectly transparent, contains no bloodvessels, and consists of five layers;-the cornea proper.
a central fibrous structure; in front of this, the anterior clustic lamina, covered by the conjunctiva; behind, the

Fig. 112.

Vertical section of the eye ball. 1 , sclerotic; 2, choroid: 3, retina; 4, crystalline lens; 5, hyaloid membrane; 6, cornea; 7 , iris; 8, vitreous body. elastic laminæ, consist of a thin, transparent homogenous membrane, and have a tendency to curl upon themselves, with the attached surface inwards, when separated from the cornea proper. The cornea proper cousists of finely fibrillated bundles of transparent connective tissue, in the spaces of which the branched cornea corpuscles iie. The branched cornea corpuscles are capable of passing from one space to another by their amœeboid movement. When this tissue is injured in any way, it presents an opaque milky appearance. The posterior elastic lamina and the single layer of epithelium which covers it, is known as Descemet's membrane. The nerves that supply the comea are derived from the ciliary nerves.

The choroid is a thin, highly vascular membrane, of a dark color, which covers the posterior five-sixths of the globe, and is situated between the sclerotic and retina. It is pierced behind by the optic nerve, and terminates in front at the ciliary ligament, where it bends inwards and forms

The epitheof sevf cells, ll ones d and deeper ar or The ansterior homoupon when a pro-anspah the ea corher by ared in The helium The ciliary e, of a of the
the ciliary processes. It is composed of three layers, the external, which consists of the larger branches of the ciliary arteries, but chiefly the veins and some star-shaped pigment cells; the middle, which consists of a fine capillary plexus (tunica Ruyschiaui); and the internal or pigmentary layer, which is made up of a single layer of hexagonal cells, loaded with pigment granules, so arranged as to resemble tesselated epithelium. The principal use of the choroid coat is to absorb the rays of light which pass through the retina, and prevent them from being thrown back to dazzle the images formed on the retina. In perfect Albinoes the cells contain no pigment, and they can she best in moderate light, or twilight.

The ciliary processes are formed by the folding inwards of the middle and internal layers of the choroid around the margin of the lens, behind the iris. They vary in number from sixty to eighty, and are about one-tenth of an inch in length. They are similar in structure to the corresponding layers of the choroid.

The iris ($2 p 25$, a rainbow) is a thin, circular-shaped contractile curtain which regulates the quantity of light transmitted to the retina. It is suspended in the aqueous humor behind the cornea, and in front of the lens, and presents, at the nasal side of its centre, a circular opening, the pupil, for the transmission of light. It separates the cavity for the aqueous humor into two parts, the anterior and posterior chambers. It consists of a fibrous stroma, muscular fibres, and pigment cells. The muscular tissue is involuntary and consists of circular fibres which surround the pupil, and radiating fibres which converge from the circumference of the iris to the margin of the pupil; the former contract the pupil, the latter dilate it. The circular fibres are supplied by the third cranial nerve, and the radiating fibres by the fifth and sympathetic (p.331). The fibrous tissue forms a delicate net-work in which the pigment cells, vessels and nerves are contained. The pigment cells are found in the
stroma, and also as a distinct layer on the anterior and posterior surfaces, and give rise to the different color of the iris in different individuals. On the posterior surface of the iris there are several layers of round cells filled with pigment granules. These are called the uvea, from their resemblance in color to a ripe grape. The iris is connected to the choroid and to the external coat, of the eyeball at the junction of the sclerotic and cornea, by means of a circular band of white fibrous tissue, the ciliary ligament. At its point of junction with the selerotic a minute canal is seen, the sinus circularis iridis.

The middle coat of the eye is also connected to the external, by means of a circular band of nonstriated muscular

Fig. 113.

tissue, the ciliury muscle. It is about one-eighth of an inch broad, thicker in front than behiud, and is attached anteriorly, or arises at the point of junction of the sclerotic and
cornea, and passing backwards is inserted into the choroid in front of the retina. By its action it draws the ciliary processes towards the line of junction of the selerotic and cornea, and compresses the lens, increasing the curvature of its anterior surface, and in this way arljusting the eye to the vision of near objects.

The retine is the delicate nervons membrane upon the surface of which the images of external objects are received. Behind, it is continuous with the optic nerve; in front it terminates by a serrater margin, the ora servata ; its inner surface i_{i} in contact with the hyaloid membrane which surrounds the vitreous humor ; externally it is in relation with the choroid. In the centre of the posterior part, corresponding to the axis of the eye, is seen a round, yellowish spot $\frac{1}{2}$ s of an inch in diameter (1 mm .) called the limbus luteus, or the yellow spot of Sommering. In its centre is a minute depression, the foce centralio. The motina in this part is very thin, and the sense of vision is most perfect. About one-teuth of an inch to the imner side of this spot is seen the entrance of the optic nerve ; here the power of vision is entirely absent.

The retina is comr sed of tirree principal layers, together with blood-vessels and delicate areolar tissue; the external or columnar; the midelle or grenulur; and the internal or nervous layer; each of these is agrain subdivided into sublayers, as shown in Fig. 114.

The external or columnar layer is exceedingly thin, and consists of solid columnar rod-like bodies, with cones filled with fluid interspersed at regular intervals (a, b). These are separated from the granular layer by a transparent humogeneous membrane, the membrara limitans externa. The middle or granular layer is transparent, finely fibrillated and comprises one-third of the thickness of the retina. It consists of two layers of rounded nuclear particles (c, e) separated by an inter-granular layer (d). The external granular layer is the thicker, and its particles are globular, 20
and comected with the rods and cones by fibres passing through the membrana limitans, The intermal granular layer

Fig. 114.

Verfieal section of the lumath retina. a, Rowls: l, cones, resting upher the membrama limitans externa: c, extermal gramblar later: d, fintergmanlar heser ; © infernal gramblar later; f. molecular layer ; fr, lity er of ganylion wells ; h, expansion of the opthe nerve tibres; 1 , membrana limitans incerma. is the thimer, and its particles are flattened, looking like pieces of money scen etgeways, hence called the nummular layer. These cells are, however, bipolar sending one process outwards through the inter-gramular layer, and another inwards through the molecular layer, to reach the expansion of the optic nerve. The internal or nervous layer is thin, semi-tramsparent and consists essential? y of the expansion of the terminal fibres of the optic nerve, and nerve cells. It also presents three layers ; the moleculur or finely gramular layer, resembling the molecular matter found in the gray substance of the brain and spinal cord; the layer of ganglion cells or cellutur layer, which consists of multipolnr cells, some of the processes of which pass outward to the molecular layer and others inwards to the librous layer; and the fibrous layer or expansion of the optic nerve. The nerve fibres of this l.tyer consist only of the axis cylinder, and some of them become continuous with the prolongations of the ganglion cells. 'The imner surface of the retina is lined by a transparent homogeneons membrane, which separates it ifom the vitreons body, the membrana limitans interna. Bloodvessels are only found in the internal layer, and extending to the internal granular stratum of the middle layer. In the external or rod-and-cone layer of birds, the cones predominate, while in man the rods are more numerous. In nocturnal animals, as the owl, bat, mole, ete., the cones are entirely absent. In the fovea centralis, where vision is most acute, lar layer are flatrey seen nmular bipolar through ther inyer, to c nervo. is thin, ential!y I fibres $\mathrm{Il}_{\mathrm{s} \text {. It }}$ lerulur mbling 10 gray al conel; cllulur Itipolar ch pass \because and layer; of the of this them thglion transom the Bloodending In the domi-octurtirely acute,
all the layers of the retina are thinner except the rods and cones which are increased, from which it would appear that these are more especially concerned in the function of vision.

The aqueous humor occupies the anterior part of the globe, and eompletely fills the anterior and posterior chanbers of the eye. It is a clear, thin fluid, having an alkaline reaction, which is due to the presence of chloride of sodiun. In the adalt, the anterior and posterior chambers communicate through the pupil ; lint in the foetros, before the seventh month, the pupil is closed by the membrann pupillaris. The persistence of this mevibrane sometimes occasions congenital blindness.

The vitreous humor occupies the posterior four-fifths of the globe. It is perfectly trassparent, of the consistence of jelly, and consists of numerous layers of simple membrane with the intervening spaces. filled with fluid. It is surrounded by the hyaloid membrane, and is hollowed out in front for the reception of the erystalline lens. It refracts the rays of light, and fills the globe of the eye so as to keep the retina at a proper distance from the lens. The vitreous humor contains some salts and a little albomen. In the foetus, a minute artery passes through the centre to the posterior part of the capsule of the lens, the arteria centralis retine ; but it disappears in the adult.

The crystalline lens, enclosed in its capsule, is situated in front of the vitreous humor and behind the pupil. The capsule is a transparent brittle membrane, highly elastic, and is disposed to curl inwards upon itself when ruptured. It surrounds the lens, to which it is connected by a layer of nucleated cells, and is held in position by the suspensory bigament, which connects it to the anterior margin of the retina. The suspensc y ligament consists of two layers blended together; the outer, a milky, granular layer, comes in contact with the inner surface of the ciliary processes; the inner, is an elastic transparent membrane. This liga-
ment forms part of the boundary of the posterior chamber of the eye ; its posterior surface is separated from a hyaloid membrane by a triangular interval-the canal of Petit. This canal is about one-tenth of an inch wide, bounded in front by the suspensory ligament, iehind by the hyaloid membrane, and the base is formed by the capsule of the lens.

The lens itself is a transparent double convex body, being more convex behind than in front. It measures about four lines transversely and three lines from before backwards. It appears to consist of concentric laminæ, like the coats of an onion, the central ones forming a hardenec nucleus. It also appears to consist of three triangular segments ; this is readily demonstrated by boiling, or immersing it in alcohol. The laminæ consist of minute parallel fibres, hexagonal in shape, the edges being dentated and fitting into each other, and are about ${ }^{\text {sotō }}$ of an inch (5 mmm.), in diameter. The refracting media of the eye are the cornea, aqueous humor, crystalline lens,and the vitreous humor.

There are two forms of the lens in the human cye, viz., the concavo-convex or meniscus, as the cornea; and the double convex, as the crystalline lens. The essential parts of the eye, appear to be: 1st, a dark coat to absorb the rays of light-the choroid; 2nd, a nervous expansion to receive and transmit to the brain the impression of tightthe retina; 3rd, a concavo-convex lens to collect the rays of light from the object and direct them inwards, and a double convex lens to collect the rays of light and bring them to a focus, so as to form a correct image on the retina -the cornea and the lens; 4tin, a contractile curtain with a central opening, to regulate the quantity of light entering the eye-the iris. The eye is thus a simple optical instrument, endowed with vitality, and acting as required without assistance. It is abundantly supplied with blood-vessels. In addition to the conjunctival vessels, there
chamber
.c hyaof Petit. inded in hyaloid e of the es about e backlike the nec̀ nular segmersing parallel ted and an inch eye are vitreous
ye, viz., and the al parts ;orb the n to re-lighthe rays ; and a bring retina in with ; enterical insquired with there
are the vessels of the sclerotic, choroid, iris and retina. The latter are derived from the short, long, and anterior ciliary arteries, and the arteria centralis retinæ.

Phenomena of Vision.-In order fully to understand the physiology of vision, it will be necessary to refer briefly to some of the laws which regulate the transmission of light.

1st,-LLight travels in parallel rays through a medium of uniform density.

2 nd ,-When the rays meet with a medium of increased density, they become refracted, or changed in direction, towards a line which falls perpendicularly to the surface of the body which they enter.

3rd,-When the rays of light meet with a medium of diminished density, they are refracted from the perpendicular line.

4th,-When the rays of light fall upon a convex lens, they are collected; and if this be a double convex body, they come to a point or focus at a certain distance, depending on the degree of convexity of the lens; the greater the convexity the shorter the distance and, vice versa. The image formed by the refraction of the rays of light in coming to a point or focus will be an inverted one.

5th,-If the convexity of the lens be too great, the focus will be formed in front of the mirror or reflecting body. If too slight, the focus will be formed beyond it.

Vision is accomplished by the formation of an image of the object looked upon, on the internal surface of the retina. The impression made upon this produces a sensation, which is conveyed to the sensorium by the optic nerve, and the mind takes cognizance of it.

The image is formed in the following manner:-The rays of light are reflected from the object (л. в.), and impinge on the outer convex surface of the cornea (c. c.), through which they pass, becoming refracted towards the perpendiculer. Those which fall on the circumference of
the cornea impinge upon the iris, and are reflected, showing the eolor of this structure ; those which pass nearer its

Fir. 115.

centre, converge and enter the pupil. They now penctrate the crystalline lens (e. e.), by means of which they are still further converged, their convergence h sing completed by their passage through the vitreous humor, and are brought to a focus on the inner surface of the retina (a and b.). If the retina be not at f., but at G. or H., certain luminous spots, e and o, or c and f, will be seen; for at if the rays have not yet met, and at G they have crossed and are again diverging. Since rays of light come from all points of the object, and are refracted in their passage, they must cross each other, and thus the image of the object on the retina (F), will be inverted, but this is corrected by the sensorium. The angle of crossing is called the visual angle.

Accommodation of the Eye to Vision.-It is quite evident that some arrangement of the refractive parts of the eye is necessary to adapt it to the vision of near and distant objects. The precise manner in which this accommodation is effected is a disputed point; some maintain that it is due to an alteration in the position of the lens; while others regard it as being due both to an alteration in the position and shape of the lens. The eye, in its normal state, is accommodated for distant vision, under the guidanco of the recti muscles; this may be called its passive condition. The
active accommodation of the cye for the vision of near objects is caused by the advance of the crystalline lens towards the cornea, and also by the increased convexity of its anterior surface. It is advanced towards the cornea chicfly by ;., action of the ciliary musele, and partly by the compression exercised upon the posterior threc-fourths of the eyeball by the recti muscles. It may therefore be inferred that the recti muscles adapt and adjust the eye for ordinary vision; while the ciliary muscle may be regarded as the fine adjuster, which regulates the eye for the vision of near or very small objects.

The rays of light which pass through the margin of a lens are more refracted than those which pass through the centre, and owing to this unequal refraction the rays do not all meet at the same point. This defect is called spherical aberration. The formation of distinct and correct images on the retina is favoured by the action of the pupil, which prevents the rays of light from passing through any part of the lens but its centre, and thus preventing any tendency to spherical aberration. In optical instruments, as the microscope, telescope, etc., spherical aberration is prevented by the use of a diaphragm with a circular aperture, which shuts out all the marginal rays. Distinctness of vision is further secured by the black coating of pigment on the inner surface of the choroid, which absorbs any rays of light which may be reflected within the eye, and prevents them from being thrown back again upon the retina, so as to produce dazzling of the inage there formed.

When a ray of light passes through an ordinary lens it is partly decomposed into its elementary colors, and a colored margin appears around the image owing to the unequal refraction of the elementary colors. This is called chromatic aberration, and is corrected in optical instruments by the combination of two or more lenses, differing in shape and density. The combination usually consists of two lenses of unequal refraction, a convex lens made of crown glass and
and a concave one of flint glass, but the number may be varied to suit the circuinstances. Such combinations of lenses are called achromatic. The unequal refractive powers of the different media of the eye prevent chromatic aberration. If a ray of white light be passsed through a prism the different colors are refractec! in different degrees, and a colored band appears, called the spectrum, arranged as follows: violet, indigo, blue, green, yellow, orange and red. The violet rays are most refrangible; the red the least; hence the image of a small white object appears as if surrounded with a yellowish or bluish fringe, because it cannot be accurately focused on the retina, This is called irradiation. For this reason a white figure on a black ground appears larger than a black one of the same size on a white ground.

The inverted image of any bright object, as the windows of the room may be distinctly seen in the eye of any albino animal, as a white rabbit; or if an opening be made at the superior surface of the eye so that the retina can be seen through the vitreous humor, a reversed image of any bright object may be seen on the posterior wall of the eye. Impressions once produced on the retina remain for a short time afterwards; their duration depending on the intensity of the impression they have left. A momentary impression of moderate intensity continues about oneeighth of a second. This is the reason why the act of winking does not interfere with the continuous vision of surrounding objects. The spectra which remain on the retina after viewing colored objects are always of the opposite or complemental color; e. g, the spectrum of a red object is green, that of violet, yellow, etc. This is because the retina becomes fatigued by the color looked at ; but remains sensitive to the other rays.

There is in front of the eye a certain space within which objects are perceived, and beyond which nothing can be distinctly seen ; this is called the circle or field of vision
may be tions of powers ic aber－ a prism s ，and a as fol－ nd red． least； if sur－ cannot d irra ground white indows of any pening at the versed sterior retina nding ment－ t one－ wink－ ound－ ，after com－ reen， a be－ sitive rhich n be sion
and varies in extent in different circumstances．For ex－ ample，if the eye is intently fixed upon one word in the middle of the page，this word and those that immediately surround it，which are in the circle of vision，are distinctly visible，while those at the circumference are imperceptible while the eye remains fixed．It is largest when the view is not contined to any near object．

The distinctuess with which an object may be seen， appears to depend largely upon the number of rods and cones covered by the retinal image，hence，the nearer an object is to the vision of the eye，the more distinctly are its details seen．The images of two points require to be at least Tर्⿱亠䒑⿱日一 separately．That portion of the retina which corresponds to the entrance of the optic nerve is insensible to light，and is called the blind spot．It we close the left eye，and direct the right steadily upon the circular spot here shown，while
the page is about six inches from the eye，both marks are visible．If the distance be gradually increased，the cross disappears from view，and if the book be still further re－ moved，it comes in sight again．

The eye，in the uneducated state，cannot comprehend the properties of the objects seen，as color，form，etc．， or the distance of the object；this is acquired by experience．

Simultaneous Action of the two Eyes．－Although an image of the object is formed on each retina，yet the impression of the object conveyed to the mind is single．This is，no doubt owing to the fact that the image is formed on identical points of both retinæ，giving rise to but one sensation，and the perception of a single image－the result of a mental act． This unity of action may be favoured by the continuation of the optic filaments across the anterior part of the chiasma of the optic nerve，but is not dependent on it；for，if the visual axis of one eye be altered，objects are seen double．

This may be demonstrated by pressing the eycball on one side with the finger in order to rotate it upon its axis, while the eyes are fixed upon some object, as a book or lamp; two images of the object are seen as in diplopia from strabismus. This is owing to the formation of images of the objects on different parts of the two retinæ. The power of combining the two images is subservient to the faculty of obtaining a proper conception of bodies raised in relief. When a solid object as a cube is viewed, a different perspective of it is seen by each eye, and more of the surface of the body is seen than if viewed with one eye; in other words a stereoscopic effect is produced.

Defects of Vision.-The normal, or emmetropic eye brings parallel rays of light exactly to a focus on the retina (Fig. 116, 1) and all objects except near ones (within 20 feet), are seen without any effort of accommodation. In looking at near objects the cye is accommodated by the action of the ciliary muscle, and the rays which would otherwise mcet behind the retina are correctly focused ujon it, (Fig. 116, 2, dotted lines). The defects of vision are myopia, hypermetropia, presbyopia and astigmatism.

Myopia is due to an abnormal elongation of the eye ball, and too great a degree of convexity of the lens. The rays of light are brought to a focus in front of the retina, and the images are indistinct and blurred (Fig. 116, 4). The eye is naturally accommodated for a near point, and objects near the eye are exactly focused, while those beyond the far point cannot be distinctly seen. This defect is remedied by wearing concave glasses. On the other hand, when theeye isshort, and the lens flat, parallel rays are focused behind the retina; the eye is naturally accommodated for distant objects (Fig. 116, 3). This is called hypermetropia, and may be remedied by wearing convex glasses which converge the rays of light Preshyopia is an error of refraction, and must not be confounded with hypermetropia. It is the gradual loss of the power of accommodation which occurs with advanced age, xis, while mp; two abismus. bjects on mbining taining a n a solid of it is body is a stereopic eye he retina 20 feet), looking ction of ise meet 116, 2, ypermeye ball, rays of und the e eye is ts near ur point r wearsshort, retina; ; (Fig. nedied f light e conof the d age,
and is likewise remedied by the use of convex glasses. Astigmatism, first discovered by Airy, is due to a greater curvature of the eye in one plane than in another, so that vertical and horizontal lines crossing each other cannot be

Pig. 116.

focused at the same point, and the images are blurred and indistinct. It may be remedied by using glasses curved only in one direction-cylindrical glasses.

Daltonism, or color blindness, is also a defect of frequent cocurrence ; many persons are wholly unable to distinguish between red, green and yellow. This would appear to arise from some defect in those elements of the retina which receive the impressions of these colors.

hearing.

The ear is the organ of hearing, and is composed of three portions, the externcl, middle and internal ear.

The external ear consists of an expanded portion, the pinna, the meatus auditorius txternus, and auditory canal. Its use is to collect the vibrations of the air, and conduct them to the membrana tympani, or drum, which separates the external from the middle ear. The canal contains some fine hairs at its outer part, and also a number of sebaceous glands throughout its whole extent, which secrete a waxy substance termed cerumen.

Fig. 117.

a, Pinna; b, external auditory passage; c, membrana tympani (section); d, insertion of membrana tympani in bony canal ; e, insertion of malleus in membrana tympani; f, base of stapes, inserted in the fenestra ovalis ; g, ineus, joining stapes and malleus, and completing the chain of ossicles; h, cavity of the tympanum ; i, Eustachian opening of tympanum ; j, opening of Eustachian tube in the pharynx ; k, posterior part of pharynx $; \boldsymbol{l}$, semicircular canals ; m, n, cochlea; o, trunk of anditory nerve.

The middle ear or tympanum is situated in the petrous portion of the temporal bone, between the membrana tympani externally, and the internal ear or labyrinth internally. It is filled with air, and communicates with the
pharynx throngh the Eustachian tube，which opens at the back part of the inferior meatus，（ Fig 111）．It also com－
of three
fion，the y canal． conduct eparates ins some baceous a waxy 1 complet－ g of tym－ arynx；l， th in－ th the municates posteriorly with air cavities in the mastoid process of the temporal bone，the mastuin cells．It is crossed by a chain of movalle hones，which reeeive the impressions from the membana tympani，and serve to Fis． 118.

Interior of the osseous labrinth．V．Vestibule，av．Aqueduct of the vestionle．中． Fovea hemieliptica．r Fovea hemispherica，s．＇Senictrenlar cauals．\％．Superior．$\%$ Posterior．i ．Inferior．a，a，a．The ampullar extremity of eadl．C．Cochlea．ac．Aqueduct of the cochlea．$s v$ ．Osscous zone of the lamina spiratis，abovo which is the seala vertibula， communleating with the vestibule．wt．Scala tympani below the spiral lamina．
transmit them to the internal ear，upon which the auditory nerve is distributed．The bones of the ear are the malleus， incus，and stapes；the handle of the mallens is received between the inner and middle layers of the membrana tympani，and the stapes is implanted in the fenestra ovalis． The cavity of the tympanum and its chain of bones are lined with mucous membrane，continuons with the pharynx through the Eustachian tube，and covered with ciliated epithelium．

The internal ear or labyrinth，is the essential part of the organ of hearing，and consists of the vestibule，semi－
circular canals, and cochlea. It consists of a series of cavities hollowed out of the petrous portion of the temporal bone, communicating externally with the middle ear through the fenestra ovalis and fenestra rotumba, and internally with the cranial cavity throug? the meatus auditorius internus, which transmits the anditory nerve.

The vestibule is the central organ and middle cavity of the labyrinth. In its inner wall are several openings for the entrance of the branches of the auditory nerve; in its outer wall is the opening of the fenestra ovalis which receives the stapes; in its posterior and superior walls are the openings, five in number, of the semicircular canals; and in its anterior wall the opening into the cochlea. The semicircular cancls are three arched bony canals which open at both ends into the vestibule, two of them first coalescing. One end of each, more dilated than the other, is called the ampulla.

The cochlea is situated in front of the vestibule, and is shaped like a snail shell. Its axis presents a conical column, the modiolus, around which winds a spiral canal, making about two and a half turns from the base to the apex. At the base there are three openings, the vestibu!ar opening, the fenestra rotunda and the aquaductus cochlea. The spiral canal is divided into passages or scalze, by the lamina spiralis ossea which consists of two laminse of bone between which are canals for the entrance of the nervus cochlearis. One of these passages communicates with the vestibule, the scala vestibuli; the other with the tympanum, the scala tympani. Between these is a thirl space called the scala medico, or canalis cochlere (Fig. 119, cc) The lamina spiralis ends at the apex of the cochlea in a small hamulus, the inner and concave surface of which, when separated from the modiolus leaves a small aperture, the helicotrema through which the scalæ, separated in tho rest of their extent, communicate. The lamina spiralis ossea extends only
series of the temindle ear ida, and meatus y nerve. savity of uings for e; in its hich res are the ; and in semiciropers at lescing. lled the
ale, and conical canal, to the tibular cochlea. by the f bone nervus ith the anum, called lamina mulus, arated trema ir exs only
part of the distance between the modiolus and the outer wall of the cochlea, and swells up at the outer end, forming the limbus lamine spiralis, the border of which is grooved, the sulcus spiralis.

From the inferior margin of this groove a membrane stretches across to the bony wall of the cochlea completing the lamina spiralis, called the membrana basilaris, the outer attachment of which forms a thick triangular structure the ligamentum spirale. From the upper margin of the sulcus spiralis stretches across another

Section through one of the coils of the cochlea sp, scala tympani; sv, scalia vestlbuli ; ce, scala medla or eamalis cochlea; k , membrano of Relssmer, with its slogle layer of nueleated flatoned cells; lla, limhos lamine spiralis ; $8 x$, suleus - . Iralis ; $9 x$, ganglion spirale seated on ne, tho nerviss eochlearls, ludleated lyy the black line; lso, lamlna spiralls ossea; t, membrana tectoria of Cort ; b, membrana basilaris; Co, organ of Corti ; lsp, ligamentum spirale; 1, Internal rod of Corti; 2, external rod of Corth.
membrane which covers over the organ of Corti, the membrana tectoria, or membrane of Corti. Further inwards is another thin membrane, the membrane of Reissner, which stretches across and forms the scala media, or canalis cochlece. The organ of Corti is situated upon the membrana basilaris. It consists of the rods of Corti, arranged in a series of arches formed by the internal and external rods roofing over the zona arcuata (Fig. 119. i, 2.). They incline inwards towards each other, and each ends in a swelling termed the head, the convexity of one fitting into the concavity of the other like an articulation. It has been estimated that there are about 3000 of these pairs of rods or pillars from the base to the apex of the cochlea. On both sides of these rods are cylindrical epithelial cells, some of which are provided with cilia (cells of Corti.)

Within the osseous labyrinth is contained the membran-
ous labyrinth, upon which is distributed the filaments of the auditory nerve. 'The membranous labyrinth is filled with a transparent fluid, called endolymph; while between it and the osseous covering is a fluid called perilymph, so that the sonorous vibrations which reach the auditory nerve in these parts are conducted through fluid, to a membrane containing thuid. In the vestibular portion of the membranous labyrinth are two cavities; the upper and larger is named he utriculus, and the lower the sacculus. They are situated respectively in the fozen hemielliptice and the fovere hemispherice and contain small masses of ealcareons matter, the ofoliths (Fig. 118). The utricle communicates with the membranous semicircular canals and the saccule with the canalis cochlere.

The Mechanism of Hearing.-The aulitory neme as it enters the ear divides into two branches, one to the vestibule and the ampulle of the semicirentar canals, and the other to the cochlea. 'The branches of the cochlear nerve enter' through opening'; at the base of the modiohss, and pass into canals between the plates of the lamina spiralis, in which they form a plexus containing ganglion cells (Fig. 119, (gs), and terminate in the organ of Corti. The extenal ear favors the propagation of sound by collecting the somorous undulations, and conducting them to the membrana tympani, and also by the resonance of the column of air contained in the aulitory canal. The elevations and depressions of the pinna serve a useful purpose, for sonorous undulations from whatever direction they come, must fall perpendicularly upon the tangent of some one of them. Sonorons vibrations are conducted to the ear by three different media, the air, the ossicles of the ear, and the fuid of the labyrinth. The propagation of the sounds to the fluid, is marle more perfect ly reason of the ossicles being fixed in the middle of a tense vibrating membrane, with air on both sides, as the tympanum. Sounds are collected by the extemal ear and are transmitter to the membrana tympani. They led with tween it , so that nelve in ane conbranous s named we siture foven matter, vith the vith the
re as it estibule te other e enter ass into which (19, $!/(s)$, nal car onorous a tymir conessions lations eularly vibralia, the yrinth. more middle : sides, temal They
are here modified by the tense or lax state of this membrane, proauced by the action of the laxator and tensor tympani museles. The modified vibrations from the membrana tympani are thence conducted along the chain of bones to the fluid of the labyrinth, and through it transmitted to the auditory nerve, which receives the impressions: and conveys them to the sensorium. Fron various experiments which have been performed, it appears that tension of the membrana tympani is unfavorable generally to the propagation of sourds, especially those of a low pitch. This may be shown by making a continuous effort of expiration or of inspiration, while the mouth and nostrils are closed by the hand. The effort of expiration causes the air to be forced into the tympanum through the Eustachian tube, the membrana tympani is made to bulge out and become tense, and the hearing is indistinct. The effort of inspiration exhausts the air from the cavity of the tympanum, and the pressure from without causes the membrana tympani to bulge inwards and become tense, and is followed by temporary deafness.

The action of the chain of bones, as conductors, is enhanced by the presence of air in the cavity of the tympanum. It serves to isolate the bones so as to propagate the vibrations with concentrated intensity, and prevent the dispersion of sound. The air is supplied through the Eustachian tube, which communicates with the pharynx just behind the posterior ares. When persons are listening very intently, the mouth is usually partly open, in order to allow a free current of air to pass through the Eustachian tube.

The semicircular canals collect the sonorous undulations from the bones of the cranium andconduct them to the anpullæ and utriculus, where the auditory nerve is distributed. The cochlea is intended for the spreading out of the nerve fibres over a wide extent of surface, and for the perception of sounds by the solid parts and the walls of the labyrinth. The memiranous labyrinth of the vest 'le and semicircu-
lar canals is suspended free in the perilymph and receives the sounds through the medium of that fluid, while on the other hand the lamina spiralis upon which the cochlear nerve is expanded is continuous with the solid walls of the cochlea from which it receives impressions directly. The function of the rods of Corti is probably to receive impressions of various notes and tones, and communicate them to the brain through the filaments with which the rods are connected. The intensity of a sound is due to the length of the vibrations, the pitch to the number in a second, and the quality to the number of secondary notes. The power of determining the direction and distance of sounds is acquired by experience.

Any irritation or excitement of the auditory nerve, as congestion, cerebral disease, etc., may give rise to ringing or buzzing sounds in the ears. These are called subjective sounds, because they are produced by internal causes.

The sense of hearing varies much in different individuals, and in the same individual at different times; some will discern the most delicate sounds without the least difficulty, whilst others are wholly incapable of receiving similar impressions. Hearing may be impaired by a preternaturally dry state of the membrana tympani, or the partial clusure of the external meatus by collections of wax, particles of dust, etc. In some of the lower animals, the sense of hearing is very acute.

SENSE OF TASTE.

The principal organs of the sense of taste, are the tongue and fauces. The conditions necessary are the presence of special nerves to convey the impressions received, and the excitation of these nerves by sapid matters in a state of solution. The nerves are the lingual branch of the fifth, and the glosso-pharyngea: (p. 333). The tongue is a muscular organ, covered with mucous membrane and presentsnumerous papillæ. These have been already described (p. 107). The muscles are divided into intrinsic, or those that form the
receives e on the cochlear lls of the ly. The o impresthem to rods are length of , and the power of is is ac-
nerve, as , ringing ubjective jes. ividuals, ome will lifficulty, nilar imaturally clusure rticles of of hear-
e tongue sence of and the state of ifth, and nuscular umerous 7). The orm the
greater part of the substance of the tongue, as the linguales; and extrinsic or those which attach it to surronnding parts, as the hyo-glossus, genio-hyoglossus, stylo-glossus, etc. The epithelium of the tongue is of the squamous variety,

Fis. 120.

The tongue with its papilla and nerves. 1, Hypoglossal nerve. 2, Lingmal branch of the trifacial. 3, Lingual branch of the glesso-pharyngeal nerve. 4, Chorda tympani. 8, Sub-maxillary ganglion. 11, Anastomoses of the lingual with the hypoglossal terve. 12, Facial nerve. 13 Mueons membrane detached and thrown upwards; thy circumvallite papillw are seen behlud. (Hirschfeld.)
and covers every part of the surface, but is thinner in some parts than others, as on the fungiform papille. Peculiar structures, known as taste buds or taste goblets, have been discovered in the circumvallate papille and on the posterior surface of the epiglottis. They are oval in shape, and consist of narrow fusiform gustatory cells surrounded by a layer of broader fusiform or encasing cells (Fig. 121). A depression exists in the epithelium over the goblet, and the gustatory cells present hair like processes which resemble cilia. These bodies are found side by side in considerable numbers, and are believed to be gustatory in function, but as yet no nerves have been traced into them.

The fauces, uvula, tonsils, and upper part of the pharynx, all of which are supplied with branches of the glosso-
pharyngeal nerve, are endowed with the sense of taste. In most persons the sense of taste is most acute in the tip and edges of the tongue; while in the middle of the dorsum it is feeble.

The tongue also possesses an accurate sense of touch, and

Fig. 121.

Taste goblet: a, depression in the epithelium over the goblet; b, nuclei of encasiur cells; e , two nuclei of the gustatory cells. is capable of receiving impressions of heat or cold, pain, mechanical pressure, and the form of surfaces. Its common sensibility may be impaired or lost, and the sense of taste still continue. The nerve fibres for these two sensations, although found in the same papillæ, are distinct, just as the are orves of common sensation in the nose are dis tinct. The senses of smell and taste are closely associated, for if the former be impaired or lost as in disease, the latter is rendered less acute. Taste appears to be governed to some extent by the same principles as that of sight ; viz. that those tastes which are opposite or complementary, render each other more distinct, as sweet and bitter acid and alkaline, etc. The sense of taste is very delicate, though not to be compared with the sense of smell. It may be rendered less distinct in regard to any substance by constant contact with it, in the same way as the eye becomes fatigued with the constant perception of a siagle color. Subjective sensations of taste frequently occur in diseased conditions of the nerves of taste, or their associate nerves.

SENSE OF TOUCH.

The sense of touch has a wider range than the other senses, and varies greatly in the different parts of the body. It is greatest at the extremities of the fingers, lips and
taste. In te tip and rsum it is
ouch, and iving imor cold, pressure, faces. Its y may be and the continue. for these although e papillæ, as the and the are disclosely in disease, urs to be as that of compleand bitter y delicate, smell. It stance by e becomes gle color. diseased nerves.
the other the body. lips and
tongue, and least in the integument of the trunk, arms and thighs (p. 124). There are no special nerves of the sense of touch; they are simply the nerves of common sensation supplied to all parts of the body, and hence it is that all parts are endowed with this sense. Touch is simply an exaltation of common sensation. Some are of the opinion, that common sensation and tactile sensation are communicated to the sensorium through different sets of nerves. Those parts of the body in which the sense of touch is most acute are abundantly provided with papillæ, which increase the extent of surface for nerve distribution: These papillie
 nerves distributed to them are destitute of the white substance of Schwann, and appear to terminate in ovalshaped bodies, formed of connective tissue named tactile corpuscles (Fig. 122, A). In some of the papillæ, as those of the lips, tongue, palate and integument of the glans penis, the nerves terminate in small round bodies, бठб of an inch (42 mmm ,) in diameter, the end bulbs of Krause (Fig. 122,B). In the

A. Tactile corpuscle; 13, end-bulbs of Krause (see page 2sí). palms of the hands, points of the fingers and soles of the feet, tho papillæ are arranged in rows, and form ridges and furrows which may be seen with the naked eye (p. 116). The sense of touch is peculiar from being widely distributed; even the eyelashes, hair (near the root), nails and teeth exhibit this sense in a manner peculiar to themselves. The integument is endowed not only with the sense of touch, per se, but also with the sense of pressure, temperature and pain; the latter being a highly exalted seusation of the three former.

Some parts of the body are sensitive to tickling as the axillæ and soles of the feet, but are comparatively blunt in regard to the special sense of touch.

The sense of touch enables the mind to become acquainted with the condition of bodies, whether hot or cold, rough or smooth, hard or soft, wet or dry, and their size, form, etc. The organs by which touch is chiefly exercised, are the hands, and especially the points of the fingers, which are abundantly provided with papillæ for that purpose. The variation in sensibility in different parts may be determined by the aid of a pair oí compasses. Thus the two points of a pair of compasses may be separately distinguished by the point of the finger when only about one-third to one-half a line apart, while they require to be twenty to thirty lines apart, to be separately felt on the integument of the spine, arm, thigh, sactal or gluteal region. The two points are falt separately on the tip of the tongue when $\frac{1}{2 \pi}$ of an inch apart, on the middle of the dorsum of the tongue, $\frac{1}{3}$ of an inch, on the lip $\frac{1}{6}$ of an inch, and on the tip of the nose, when $\frac{1}{4}$ of an inch apart. The cesthesiometer, an instrument for determining the relative sensibility of the arms or legs in paralysis, is constructed on this principle. The sense of touch inay be very much increased by constant practice, as is seen in the case of the blind, who acquire a remarkable facility for reading raised letters, by the aid of the fingers.

The sense of pressure is produced by weight or tension, and is intensified according to the increase of the weight or tension. In lifting a body we judge of its weight partly by the pressure on the hands, and partly by the amount of muscular force used in raising it. The latter is callod the muscular sense (p. 309). These two faculties give us the power of discerning the relative weight of bodies. We have also the power of estimating beforehand, and reguiating the amount of muscular force required in lifting heavy bodies. If we attempt to lift an object which we have conceived to be heavier than it really is, we are liable to be
the axillæ in regard called the ive us the odies. We reguiating ting heavy h we have liable to be
overturned by the muscular effort unnecessarily put forth to overcome the supposed resistance.

The sense of temperature is distinct from that of touch, and may remain unimpaired when the latter is for the time in abeyance, as when a nerve is pressed upon or partly injured. The sensations of temperature, however, are very deceptive, and cannot be relied upon; as e.g. in the cold stage of disease, the patient feels excessively cold, while the thermometer shows that the temperature is over $100^{\circ} \mathrm{F}$. Again, if one hand be put in cold water, and the other in water at a temperature of $110^{\circ} \mathrm{F}$., and both are then immersed in water at $80^{\circ} \mathrm{F}$., it will feel warm to the hand previously in the cold water, and cold to the other. In examining patients in cases of fever or inflammation, in regard to the heat of the skin, no reliance can be placed on the sensation of heat communicated to the hand, and therefore the thermometer should always be used. Some parts of the body will bear a higher degree of temperature than others, e.g., the hand will resist a temperature which would be intolerable to the body. Only ordinary temperatures can be discriminated, viz., from 50° to $120^{\circ} \mathrm{F}$. ; very high or very low temperatures produce a burning sensation. 'Subjective sensations of touch, arising from some internal causes, are of frequent occurrence, as heat, cold, rigor, neuralgic pains, itching, formication, etc.

CHAPTER XV.

voice.

The Larynx is the organ of voice, and is situated at the upper part of the air passage, between the trachea and base of the tongue, at the upper and anterior part of the neck. It is narrow and cylindrical below, but is wide and triangular at the upper part. It is composed of cartilages, which are held together by ligaments, and acted upon by numerous muscles. It is lined by mucous membrane, covered with columnar ciliated epithelium below the superior vocal cords and the upper part in front; the rest of its extent is covered with squamous epithelium. The upper part of the larynx presents a triangular-shaped orifice, wider in front than behind-the glottis. This opening is guarded by the epiglottis, which is situated in front, between the opening and the root of the tongue. The epiglottis closes the orifice during the passage of food or fluids, and prevents their passage into the larynx. Within the cavity of the larynx, on each lateral wall, may be seen two elevated bands, the superior and inferior vocal cords, separated by an elliptical depression-the ventricle of the larynx (Fig. $111 f$,) p. 341. Of the two vocal cords, the inferior consists of a band of yellow elastic tissue, covered by mucous membrane, and is called the true vocal cord; while the superior, which is formed entirely by a folding of the mucous membrane, is called the false vocal cord, because it is not concerned in the production of the voice. It is in the larynx that the sounds areoriginally produced; but they may be modified during and after their production by the tongue, palate,
teeth, lips, etc., constituting, in man. the faculty of speech.
The interval between the true vocal cords in the median line is called the rima glottidis, or chink of the glottis, the narrowing or widening of which, and the tension or laxity of the cords, produce those variations of sound which are characteristic of the human voice. The narrower the opening and the tenser the cords, cateris paribus, the higher the pitch of the note. The tension of the vocal cords and the size of the aperture, are regulated by muscles which are situated in the larynx. It has been proved by observation on the living

Fig. 123.

Glottis seen with the laryngoscope during the emission of high-pitched sounds. $-1,2$, base of the tongue; 3 , 4, epiglottis; 5, 6, pharynx ; 7, arytenoid cartilages; 8 , opening between the true vocal cords; 9 , aryteno-epiglottidean folds; 10, eartilare of Santorini; 11, euneiform eartilage; 12, superior vocal cords; 13, inferior subject, as well as by experiments on the larynx of the dead body, that the sound of the voice is caused by the vibration produced by the currents of expired air passing over the margins of the true vocal cords. For example, if a free opening be made in the trachea, the sound of the voice ceaces, but returns as soon as the opening is closed. Again, distinct vocal sounds may be produced in the dead subject by forcing a current of air through the larynx, and this will occur even when all the structures above the vocal sords are removed.

The essential parts of the larynx are the thyroid cartilage, the cricoid cartilage, the two arytenoid cartilages and the true vocal chords. The latter are attached behind to the front portion of the base of the arytenoid cartilages, and in front to the depression between the two alæ of the thyroid cartilage, so that all movements of the arytenoid cartilages produce an effect on the vocal cords. Movements of the cricoid cartilage also produce an effect on the vocal cords indirectly, since the arytenoid cartilages rest upon its poste-
rior part. Those muscles which act upon the arytenoid cartilages either directly or indirectly, nine in number, are called the intrinsic muscles of the larynx, viz. : two cricothyroid muscles, two thyro-arytenoid, two posterior cricoarytenoid, two lateral crico-arytenoid, and one arytenoid muscle. The crico-thyroid, produce tension and elongation of the vocal cords by drawing downwards and forwards the thyroid cartilage over the cricoid. The thyro-arytenoid draw the arytenoid cartilages forwards towards the thyroid and relax the vocal cords. The posterior crico-arytenoid rotate the base of the arytenoid cartilages outwards and backwards, separate the vocal cords and open the glottis. The lateral crico-arytenoid rotate the arytenoid cartilages inwards and close the glottis. The arytenoid muscle approximates the arytenoid cartilages and closes the glottis, especially at its posterior post. The nerves which govern these actions are the branches of the pneumogastric and spinal accessory (p. 333).

The combined action of the muscles places the vocal cords in the various positions necessary for breathing and the production of sounds, as in singing, speaking, etc. In ordinary tranquil breathirg the opening of the glottis is wide and triangular, and becomes a little narrower at each expiration. In the production of sound it is narrowed, and the tension of the vocal cords increased. In the production of higher notes the vocal cords are more closely approximated and rendered more tense (Fig. 123). In the space between the arytenoid cartilages at the posterior part of the glottis, no regular vocal sound is produced, nothing more than a mere rustling or gurgling sound. The tone of the voice is somewhat lowered by the action of the epiglottis when it partially covers the cavity of the laryux. The ventricles of the larynx are for the purpose of affording free space for the vibrations of the vocal cords.

The modes of sequence of the netes of the voice are three in number ; 1st. The monotonous, as in ordinary speaking,
oid carber, are o crico-cricoytenoid ngation rds the ytenoid thyroid ytenoid twards en the ytenoid id musses the which gastric ng and tc. In ottis is it each ed, and luction oproxiз space ; of the ; more of the iglottis e veng free aking,
with occasional intonation for the sake of accent ; 2nd, the transitional, from high to low notes and vice versa without intervals; such as in crying in man, and the howling of animals, and 3rd, the musical, in which each note has a determinate number of vibrations.

The compass of the voice varies in different individuals from one to three octaves, and some singers may even exceed three octaves. Before puberty, the pitch of the male and female voice is nearly the same, the male voice being a little louder; but at this period the laryux of the male undergoes certain changes, during which the voice is said to "crack," and the pitch falls about one octave. This change does not take place in eunuchs, and they retain the puerile character of the voice. The different pitch of the male and female voice depends on the different length of the vocal cords in the two sexes, viz. : as three to two respectively. The lowest note of the female voice is an octave higher than the lowest note of the male voice, and the compass of the two is about four octaves. There are two kinds of male voice, the bass and tenor, and also two kinds of female voice, the contralto and soprano, all differing from each other in tone. The bass voice reaches lower than the tenor, and its strength lies in the low notes; while the soprano reaches the highest in the scale. The essential distinction between the different voices, however, consists in the tone which distinguishes them when they are singing the same note. Most persons have the power of modulating their voices through a double series of notes of different characters, viz.; the chest notes or the notes of the natural voice, and the falsetto notes. The former are produced by the ordinary vibrations of the vocal cords and are much stronger ; the latter, in all probability, by the vibration of only the inner border of the vocal cords, and are of a flutelike character.

The voice is principally used in man in the formation of speech. The tone of the speech depends much upon the

IMAGE EVALUATION TEST TASGET (MT-3)

Photographic Sciences Corporation
state of the chordæ vocales, and the development of the larynx; but articulation, or modification of the sounds, is effected by the lips, teeth, mouth, tongue, fauces and nose. Articulate sounds, or the sounds produced in speech, are commonly divided into vowels and consonants; the former are sounded by the larynx, while the latter are produced by tine interruption of the current of air above the larynx. All vowel sounds can be expressed in a whisper, without vocal tone-mutely. During the production of the vowel sounds the posterior nares are closed, and no air issues through the nose. The consonants cannot be sounded except consonantly with a vowel, hence the name. They are divided into labial, dental or guttural, according to the interruption to the current of air required in their formation, as by the lips, teeth, palate or pharynx. They may also be classified according to the character of the movements which give rise to them, as explosives, as p, b, t, d, etc., aspirates, as f, v, s, l. z, etc., resonants, as $m, n, n g$, etc., and vibratory as r.

Ventriloquism appears to consist in the varied modification of the sounds produced in the larynx, so as to imitate the voice as heard from a distance. It is accomplished by taking a full inspiration, then keeping the muscles of the neck and chest fixed, and speaking with the mouth almost closed and the lips motionless, while air is slowly expired through a narrow glottis, care being taken that none of the expired air passes through the nose. The attention of the audience is at the same time generally directed to that part of the room from which the sound is expected, a circumstance which adds inaterially to the success of the performance.

Stammering, in most instances, is an affection of the nervous system, and not of the articulating organs. It consists in an imperfect power of co-ordinating the muscles of speech, associated with a spasmodic action of certain muscles concerned in the formation of the roice. Some stammer only on attempting to articulate certain !etters; others
do so at every attempt to speak. It is much increased by any mental excitement, surprise, etc. Females seldom stammer, although more subject to nervous disorders generally than males. The cure of stammering is best effected by training the muscles in the production of the sounds most easily formed, and thence proceeding to the most difficult; to avoid all causes of excitement to the patient, and prevent him from thinking about his condition as much as possible Some have recommended the use of pebbles in the mouth, or small pieces of ivory; but it is very doubtful whether or not these can be of any great service.

CHAPTER XVI.

REPRODUCTION.

The process of reproduction comprises the several provisions made for the multiplication of individuals and the propagation of the species. There are three modes by which the multiplication of individuals takes place in the lower orders of organized beings, while in the higher forms it is restricted to one of these types.

The first and simplest mode consists in the division of the being into two, each of these again subdividing into two others,'and so on. This is multiplication by subdivision; or fissiparous multiplication (Fig. 124). It is seen in the lowest plants, as in the cells of fungi and lichens, and also in cartiageand other cells of the human body. The amœeba also furnishes a good example of this mode of reproduction. It throws out a large process in a certain direction, becomes contracted at or near the middle, and divides into two or more parts, each containing a portion of the original nucleus, Some organizations, as the polyp, when divided artificially
into segments, have the power of developing into a perfect form from each segment.

The second mode takes place by a process of gemmation, or budding from the parent stalk. These buds, which consist of a mass of cells, are at first entirely nourished by the parent stalk, but gradually become less dependent, and at

Fig. 124.

A cell undergoing the process of multiplication by subdivision; a, original cell; b, cell becoming oval; c , undergoing hour-glass sontraction ; d, division of the cell into two.

Fig. 125.

Amæba; in the centre is seen the nur- eus and surrounding it a number of vacuoles and granules
last detach themselves and maintain a separate existence. This is termed multiplication by gemmation or gemmiparous multiplication. The hydra affords a good ex..nple of this variety. The tirst change which is observed is a slight elevation on the surface, which assumes a globular form ; a cavity is then formed in the interior, which communicates with the parent. After a time this channel of commnnication closes, the newly-formed polyp drops off, and a new creature is formed. The joints of the common tape-worm multiply in this manner. This process is also common among the Bryozol, and leads to the formation of colonies.

The third mode is called irue generation, and consists in the union of the contents of two different cells, the sperm cell and the germ ceil, from which is produced a new being differing from both. The simplest form of this process is seen in the Alga in conjugation. At first the opposite cells of two filaments form a process on the sides next each other ; these at length meet and fuse, and the contents of the two cells become mixed and form a new body termed a spore or sporangium, from which the new plant is formed.

In the higher plants and animals distinct organs are set apart for the formation of the sperm cells and germ cells; the former are produced by the male organs of generation, the latter by the female. Through the action of the contents of the sperm cell the ovum becomes impregnated, and an embryo is formed from which the adult animal is gradually developed. In some instances, however, as in the class of insects, several distinct changes or metamorphoses are passed through before the animal is fully developed, as the larva, chrysalis, and perfect animal. In other instances the embryo, instead of being developed into the perfect animal, only attains a sort of larval condition, and there may be several series of these imperfect or larval forms, each larva producing other larvæ, until at last they give rise to perfect forms, which propagate ouly by the production of ova. This is called by Prof. Owen rietagenesis.

Action of the Male.-The male furnishes the spermatic fluid or sperm, which is secreted by the testes. This fluid contains the sperm cells in which are developed the spermatozoa; also an albuminous substance, various salts and an animal substance resembling fibrin termed spermatine. The sperm cells are large spherical vesicles, in which are contained from two to nine smaller cells or nuclei, in each of which is found a spermatozoon. The spermatozoa a, Human spermatozoo magnifled are the sential matic fluid, and are set free by the the partial untoiling, it the sperbreaking down of the sperm cells (Fig. $126, a)$. They are transparent filamentous bodies, about б̄̄б of an inch (42
 25 mmm .) in thickness, being thicker at the anterior extremity or head than the posterior or teil. Their movement is accomplished by the constant vibration of the tail ;
they are said to move at the rate of one inch in seven and one-half minutes. Their movem?nts may be suspended, and their power of impregnation destroyed by profuse leucorrhœal discharges or acrid secretions of the vagina, and by the action of solutions which act chemically upon them, as solution of silver nitrate, zinc sulphate, zinc chloride, etc. In the female organs of generation the movements continue longer than in any other situation.

In the act of coition the seminal fluid is deposited in the vagina, and the spermatozoa make their way into the uterus and meet the ovum at or soon after its discharge from the ovary. One or mors are supposed to pierce the vitelline membrane and pass into the interior of the ovum or germ cell, and unite with it, after which they disappear. It is also supposed by some that they enter through a small opening or micropyle, and by others that they perforate the vitelline membrane. The fecundation of the egg may take place either in the uterus, Fallopian tube, or ovary, in each of which situations spermatozoa have been found after coition. The high degree of nervous excitement which attonds the act of coition, is followed by a corresponding amount of depression, and the too frequent repetition of it is very injurious to the general health. This is still more the case with that solitary vice, which it is to be feared is practised by too many youths. Nothing is more certain to reduce the powers both of body and mind, than excesses in this respect.

Action of the Female.-The essential parts of the female organs of generation, and counterpart of the testes, are the ovaries, in which the ova are developed. Each ovary is about an inch and a half long, three-fourths of an inch wide, and half an inch in thickness, and is attached to the uterus by the ligament of the ovary, and to the Fallopian tube by one of the fimbriæ, the rest of the surface being covered with columnar epithelium, beneath which is the proper covering of the organ-the tunica al.buginea-
in seven - be susroyed by ns of the hemically hate, zinc the moven. ed in the the uterus from the vitelline m or germ It is also a small perforate egg may r ovary, in ound after ent which responding fition of it still more e feared is certain to excesses in
ts of the the testes, ed. Each rths of an ttached to the Falloface being ich is the buginea-
which is a dense, firm membrane, enclosing the parenchyma or stroma. The stroma consists of two parts, an external or cortical portion, whitish in color, and an internal medullary or vascular zone, reddish in color, and consisting of vessels elastie fibres and connective tissue among which are a number of non-striated muscular fibres. The external portion consists of a network of comeetive tissue in which the Gratian vesicles are frimed. There are also a large number of nuclei in the interstices. The Graafian vesicles or ovisacs, exist in very large numbers from the earliest periods of life, and in all stages of development. They vary in size from a pin's head to a pea, and contain the ova. Each Graafian vesicle consists of an external vascular, and an internal serous coat, named the ovicapsule. The internal coat is lined internally by a layer of nucleated cells, called the membrana granulosa, and within this is situated the ovum. The cells of the membrana granulosa are accumulated in large numbers around the ovum, forming a

Graxfian vesicle: 1, stroma; 2, peritonemm; 3 and 4, eoats of the Graatian vesicle; 5, membrana granulosa; 6, fluid of the Graafian vesicle; 7 , diseus proligerus : granular zone, the cumulus, diseus proligerus, retinacula or chalaza. The cavity of the Graafian vesicle is filled with an albuminous fluid in which granules float.

Fig. 128.

Ovum: 1, germinal spot; 2 , germinal vesicle; 3, yolk; 4, zona pellucida ; 5, discus
proligerus; 6 , adheproligerus; 6, adhe-
rent granules or cells.

The ovum is a small spherical body, about ${ }^{\frac{1}{2} \sigma 0}$ of an inch $(.2 \mathrm{~mm})$ in diameter. It consists externally of a transparent envelope, the zona pellucida or vitelline membrane, and within this is the yolk or vitellus. Imbedded in the substance of the yolk is a small vesicolar body, the germinal vesicle, and within the germinal vesicle is the germinal spot. The latter is about ${ }_{{ }_{5}{ }^{2} 0}{ }^{2} \overline{0} \overline{0}$ of an inch (8 mmm .) in diameter. The vitelline membrane is a colorless transparent membrane, which appears as a bright
ring with a dark border externally and internally, and is about ${ }^{\frac{1}{5} \delta^{1} \sigma}$ of an inch (10 mmm .) in thickness. The yolk consists of granular protoplasm, the smaller granules resembling pigment, and the larger, more numerous at the periphery, fat globules. The germinal vesicle contains a watery fluid in which are found a few granules.

At the approach of the menstrual period, one (or probably more) of the Graafian vesicles enlarges, approaches the surface of the ovary, and when mature, forms a small projection on the surface. It finally bursts, the ovum escapes, and is caught by the fimbriated extremity of the Fallopian tube, and by it conducted to the aterus.

Corpus Luteum.-When the Graafian vesicle has matured, and is about to burst and expel the ovum, it becomes highly vascular and opaque, and its coats are thickened by ε glutinous looking substance. As the ovum escapes, it leaves behind it the external vascular and the internal serous coats of the Graafian vesicle, the cavity of which is immediately filled with a bloody fluid which soon coagulates, and the cicatrix presents a yellowish appearance; hence it has been called the corpus luteum (Fig. 129). After a short time the

Fig. 129.

Corpus luteum, natural size, eight days after conception: a, external coat of the ovary ; b, stroma of the ovary ; c, conro. luted wall of the Graafian follicle; d, clot of blood. coagulum contracts, and the membranes become convoluted and hypertrophied, so that when the corpus luteum is divided transversely, about three weeks after its formation, it is seen to consist of a central firm coagulum surrounded by a convoluted wall of a reddish yellow color. Corpora lutea are divided into true and false ; the former are found only when conception has taken place; the latter are met with in the unimpregnated state. They are both produced in the same way, and for the first three weeks there is no distinction between them; but the true corpus luteum becomes
rally, and ess. The granules us at the ontains a r probably es the surall projecm escapes, Fallopian
e has mait becomes kened by es, it leaves erous coats nmediately ss, and the it has been rt time the the memand hyperthe corpus rsely, about ration, it is al firm coaconvoluted olor.
ed into true found only re met with produced in e is no disum becomes
larger and remains longer than the false, in consequence of the increased vascularity of the parts after impregnation.

At the end of the third week they each measure about one-half or threefourths of an inch in diameter. After this the false corpus lutemm begins to diminish, and entirely disappears in the course of about two months, while the true increases in size, until about the fourth or fifth month, and then gradually declines ous envelope of the eorpus liuteuntil after parturition, when it rapidly disappears.

Action of the Oviducts.-In the human subject the oviducts commence by a wide fringed expansion-the fimbriated extremity of the Fallopian tubes. The ovum, in passing through the Fallopian tube to the uterus, absorbs a certain quantity of fluid, increases in size, and if impregnated soon presents a number of minute villi on its surface which give it a shaggy appearance. This is called the chorion.

In fowls, as the ovum leaves the ovary it enters the oviduct, and in passing the first portion, which is about two inches in length, it absorbs fluid and becomes more flexible and yielding. In the secoud portion, which is about nine inches in length, the mucous membrane is thick and glandular. In the upper part, it secretes a viscid fluid which surrounds the yolk and forms a gelatinous deposit around the vitelline membrane, and from the rotation given to the egg by the oviduct the two ends become twisted in opposite directions from the poles of the egg and form the chalazo. The membrane which connects the chalazo, is called the chalaziferous membrane. In the rest of this portion, au albuminous secretion is poured out to form the albumen or white of the egg. In the third division, which is about three inches in length, a material is poured out which condenses and forms three fibrous membranes, an internal, middle and
external. The egg then passes into the fourth division, which is about two inches long. This pours out a secretion containing calcareous matter, which is deposited in the meshes of the external membrane of the egg, forming the shell. After the expulsion of the egg, evaporation of some of the watery ingredients takes place through the pores of the shell, its place being filled with air. The air cavity is situated between the internal and middle membranes, at the large end of the egg. The vitellus is the essential part of the egg, the white simply contributing to the nourishmert of the chick until it leaves the shell, and the membranes and shell affording the protective coverings.

Development of the Ovum.-After the ovum is impregnated a remarkable change takes place, which is known as the spontaneous division or segmen ation of the vitellus. A furrow first shows itself surrounding the vitellus in a vertical direction, which gradually becomes deeper until it

Fig's. 131-4.

has divided into two portions. Each of these portions is again subdivided into two, and the four segments thus produced are divided into sixteen, and sixteen into sixty-four, and so on, until the whole mass has assumed a mulberry appearance, and is finally converted into "vitelline spheres" or "true animal cells," which adhering together, form the blastodermic membrane. These cells are also sometimes called the \hat{p} rimordial or primitive cells, or germinal vesicles. The albuminous matter liquefies, and gradually passes by osmosis through the vitelline membrane into the interior of the egg. The blastodermic membrane then divides into two layers, the external blastodermis, serous or
division, secretion ed in the ming the of some e pores of cavity is nes, at the al part of rishmert embranes
m is imis known e vitellus. slus in a r until it sixty-four, lberry apbsheres" form the sometimes germinal gradually into the ane then , serous or
animal layer, and the internal blastodermic, mucous or vegetative layer, both of which are composed of cells. The former produces the spinal columu and organs of animal life; the latter the alimentary canal and organs of vegetative life. Up to this stage, the process is the same in all animals, birds, fishes, reptiles and mammalia.

The simplest form of development is seen in the egg of the frog. The egg, when discharged from the body and fecundated, is deposited in the water, surrounded by a layer of albuminous matter, and is freely exposed to the light and heat of the sun. The first sign of organization is the thickening and condensation of the external blastodermic membrane in one part, forming an elongated oval spot with opaque edges. This is called the embryonic spot. Enclosed

within this is a narrow transparent space, the area pellucicle, in the eentre of which is a longitudinal line, the primitive trace. On each side of the primitive trace in the area pellucida, the blastodermic membrane rises up in two plates, called the dorsal plutes, which at last meet and enclose a foramen, the spinal canal, in which nervous matter is deposited to form the spinal cord, being enlarged anteriorly to accommodate the brain. At the same time the external blastodermic membrane grows outwards and downwards, to form the abdominal walls which embrace the internal blastodermic membranc and the fluid in its cavity. Beneath
the spinal canal is formed a cartilaginous cord, which is called the chorda dorsalis, from which the vertebre are subsequently developed. As the whole mass grows rapidly,

Fix. 137.

Diagram of a section of the embryonshowing the forination of the spine; a, epiblast: b, hypoblast ; c, mesoblast; d, margin of the lamina dorsalis; e, mediliary groove ; f, chorda dorsalis or notochord; in, primsive or protovertebra.
the head becomes thick and voluminous, while the tail begins to project backwards, and the embryo assumes an elongated form. The internal blastodermic layer forms the alimentary canal, the mouth and anus being developed by atrophy and perforation of the external layèr of the blastodermic membrane at these points respectively. The young tadpole then ruptures the vitelline membrane and escapes, after which the extremitiss are developed by a process of budding or sprouting, and when fully formed, the tail atrophies and disappears. The animal at first breathes by gills; but these are subsequently replaced by the lungs.
In the development of the chick which has been studied very carefully by various observers, the blastodermic mem-. brane, or blastoderm divides into three layers, the two layers already referred to in the frog, and an "intermediate layer" or mesoilast. These three layers are designated by some, the epillast, mesoblast or middle layer, and the hypoblast. The epiblast forms the epidermis and appendages, cere-bro-spinal nerve centres, sensorial epithelium of the nuse, eye, ear etc., and the epithelium of the mouth and salivary glands. From the mesoblast is formed the tissues of the body, connective, muscular and nervous tissues, vascular and genitourinary systems, and digestive canal except its epithelium ; and from the hypoblast is developed the epithelium of the alimentary canal and the ducts that open into it, and also the parenchyma of the glands, as the liver and pancreas. In the egg of the fowl, a whitish circular spot is seen, about t of an inch (5 mm) in diameter, immediately beneath the vitelline membrane, the cicatricula, in the centre of which
which is ebre are s rapidly, hick and the tail ackwards, umes all o internal orms the e mouth eloped by he blasto'he young 1 escapes, process of tail atros by gills; mic mem-. two layermediate gnated by the hypo-ages,cerenc se, eye, ry glands. oody, connd genitoithelium ; im of the , and also creas. In n, about $\frac{1}{8}$ neath the of which
is the germinal vesicle. When the egg is fecundated, segmentation begins in the cicatricula in the manner already deseribed, until the blastoderm comes to occupy the place of the cicatricula. It then separates into the three layers above mentioned, in which certain prominences and foldings take place which mark out the commencing development of the different parts of the enbryo, as the "headfold," "tailfold," etc., (Fig. 138.) On each side of the primitive trace (Fig. 135), the epiblast rises up to form the dorsal plates (laminæ dorsales), which soon meet and close in the spinal or medullary groove, and form a canal for the reception of the spinal cord and brain (Fig. 137, d). Beneath this canal in the mesoblast is formed the chorda dorsalis or notochord, whieh ultimately becomes the spinal column; on each side of the chorda dorsalis, a longitudinal thickening of the mesoblast takes place from which is formed the primitive vertebre (protovertebre). These structures form the bases out of which the spinal column and muscles are afterwards d veloped. On the outer side of the primitive, or protovertebre, the mesoblast splits into two laminæ, one joins the epiblast (somatopleure) and forms the parietes of the trink, and the other joins the hypoblast (splanchnopleure) and forms the alimentary canal and other parts. The general cavity of the body is formed by downward foldings of the blastoderm, somewhat resembling the formation of the nervous canal (Fig. 138). These downward foldings are called the visceral plaies. In the frog these plates close in the whole of the vitellus.

In the chick, fish, ete., the internal blastodermic membrane is divided into two parts by a constriction, one of which forms the intestinal canal, while the other, remainingoutside, forms the umbilical vesicle, which is surrounded by a portion of the external blastodermic membrane, and is gradually atrophied as development proceeds.

In the human embryo the umbilical vesiele becomes more completely separated, and forms a cord by its constriction,
at the distal extremity of which is situated the vesicle, which contains a clear transparent fluid (Fig. 139, g). The umbilical vesicle may continue until the end of the third month, after which it gradually disappears in the advancing development of the adjacent parts (Fig. 141).

Formation of the amnion and Allantois.-These are two accessory organs which belong to the higher order of animals, and their development has been carefully studied in the chick. The amnion is formed from the external layer of the blastodermic membrane, and the allantois from the internal ; the former encloses a cavity or sac containing fluid in which the foetus floats; the latier is a vascular structure destined to bring the blood of the embryo to the

Fig. 138
Fig. 139.

Diagram of the formation of the amnion and allantois:-a, vitelline membrane covered with the vili of the chorion; b, folds of the ammon surcinding the embryo; c, point of meeting of amniotie folds ; d, onter layer of the ammiotic fold; e, inner do.; f, amniotic cavity ; g, umbilical vesicle ; h, allantois; i, cavity of the intestine; . b^{\prime}, space between the two layers of the amnion ; o, situation of the heart and vessels.
external sources of nutrition and atmospheric influence. These are not necessary to the development of the egg of the frog and fish, since absorption can readily take place through the vitelline membrane, from the media by which they are surrounded.

The amnion is first formed ; this takes place by foldings of the external blastodermic membrane, which pass upwards from the abdominal surface on all sides of the embryo, until they meet and fuse at a point over the back which is called
ne vesicle, g). The the third idvancing
s.-These her order y studied external tois from ontaining vascular yo to the
the amiaiotic umbilicus (Fig. 138, c). Atrophy and separation then take place at this point, the inner layer of the fold forming the amnion; the outer, blending with the vitelline membrane, and forming the external investing membrane of the ovum. A shut sac is thus formed between the amnion and the fæotus called the amniotic cavity, which is filled with a clear fluid-the liquor amnii (Fig. 139, f).

About this time the allantois commences as a prolongation or diverticulum from the posterior part of the intestinal canal, and follows the course of the amniotic fold which preceded it, lying between its two layers (Fig. 139, h). It gradually increases in size until it covers the body of the embryo, together with the amnion; it then meets and fuses over the baek as did the amniotic folds (Fig. 140). It therefore lines the whole internal surface of the investing membrane of the ovum with a flactened vascular sac, the vessels of which come from the interior of the body of the embryo. The cavity of the allantois is continuous with the cavity of the intestines. The umbilical vesicle is

Formation of the allantois:-a, inner layer of ammion; b, onter layer of amnion ; c, auniotic cavity; d, vessels of the allantois; e, umbilical vesicio. situated between the amnion and allantois. In the chick the allantois comes immediately in contact with the shell membrane, taking the place of the albumen which has been liquenied and absorbed; and through the pores of the shell an interchange of gases takes place, oxygen being absorbed from the air, and carbonic acid exhaled from the blood-vessels of the allantois. It will be seen, therefore, that a true respiration takes place by means of the allantois throuich the external covering. When the chick arrives at maturity, it breaks open the shell and escapes from its confinement; the allantoic vessels are torn off at the umbilicus, and the allantois remains behind in the abandoned egg shell.

Formation of the Chorion. - In the human embryo the obliteration of the cavity of the allantois takes place very early, so that it does not enclose a cavity, but fuses together, and uniting with the outer fold of the amnion and the vitelline membrane, constitutes the chorion. Hence there are two membranes in the foetus, the amnion and the chorion, and the umbilical vesicle is situated between the two. The chorion in the human subject is identical with the allantois of the lower animals, its chief peculiarity being that its opposite surfaces are adherent instead of enclosing a cavity. The next peculiarity of the chorion is that it becomes shaggy, owing to the number of minute villi or "villosities" which are found on its surface (Fig. 139). The villi may be distinctly seen as soon as the ovum has reached the uterine cavity, even when it is still very small. They continue to grow and elongate, and divide into a number of branches by the process of sprouting, each filament terminating in a rounded extremity. The whole tuft bears a certain resemblance to some varieties of seaweed. The vessels of the chorion pass into the villosities, forming

The human ovum at about the third month, showing the enlargement of the cavity of the amnion, the formation of the placental portion of the chorion, the commencing formation of the umbilical cord, and of the second month the villi become atrophied, except at the part which corresponds with the insertion of the foetal vessels, and the chorion becomes partly bald (Fig. 141). Those villi which
an embryo takes place but fuses mnion and on. Hence ion and the etween the atical with peculiarity instead of he chorion of minute rface (Fig. the ovum still very divide into ; each filawhole tuft f seaweed. s, forming 1 the villii The villi of r a slight the small any other and their r its disred as a
through plied from existence. e second art which , and the illi which
remain, continue to grow, and ultinately form the placenta, which attaches itself to the uterus (Fig. 142).

Preparation of the Uterus to Receive the Ovum. -As the impregnated ovum is about to descend into the cavity of the uterus, the mucous membrane becomes greatly

Fig. 142.

Vertical section of the womb, containing a developed orum; a, neck, filled with a gelatinous plug; $b b$, orifice of the Fallopian tubes; $c c$, decidua v $\boldsymbol{r} a ; d$, uterine cavity, almost entirely filled with the ovum ; ee, decidua vera continuous with the decidua reflexa; f, placenta; g, allantois; h, umbilical vesicle and its pedicle in the umbilical cord; i, amnion; k, decidua reflexa and chorion.
hypertrophied, tumefied, and vascular, and projects in rounded eminences into the uterine cavity. The tubules or follicles are elongated, and enlarged so that their open mouths may be seen with the naked eye. The hypertrophied mucous membrane is called the decidua vera. When the ovum reaches the uterus it insinuates itself between the opposite surfaces of the mucous membrane, and becomes lodged in
one of the depressions between the projecting eminences of the decidua, where it subsequently becomes fixed. At this point a rapid development of the mucous membrane takes place, and a folding or prolongation of the decidua surrounds and envelopes the ovum, called the decidua reflexa.

It was formerly supposed that the decidua was an entirely new product, thrown out by exudation from the surface of the uterus, similar to the inflammatory exudation of croup, etc., which surround \approx d the whole internal surface of the uterus, and was called the decidua vera. As the ovum passed from the Fallopian tube into the uterus it pushed before it a folding of the decidua vera, which formed the decidua. reflexa. The closure of this folding behind the ovum, was called the deciducu serotina. This was the theory of William Hunter. It is new known to be no other than the mucous membrane itself, very much thickened and hypertrophied.
Formation of the Placenta.-The placenta is formed partly by the vascular tufts of the chorion, and partly by the hypertrophied mucous membrane to which they are connected. 4 bout the commencement of the third month, the villi which are destined to enter into the formation of the placenta continue to elongate, and penetrate or are pushed into the fo. "cles of the mucous membrane, (like the fingers into a glove), which are enlarged for their reception. The growth of the villi and that of the follicles go on simultaneously, and keep pace with each other. The capillaries of the villi are enlarged and become tortuous, and those on the exterior of the follicles enlarge excessively and become dilated into wide sinuses, which are filled with blood derived from the arteries of the uterus, so that two membranes intervene between the capillaries of the villi and the sinuses of the uterus, viz., the covering of the villi and the lining membrane of the follicles. These afterwards fuse together and blend with the walls of the capillaries cas the one hand, and the walls of the sinuses on the other. The tufts of the villi
are prolonged into the sinuses, pushing before them the walls, and are everywhere bathed with the blood of the mother. The process of osmosis takes place through the thin fused membrane, there being no direct communication between the foetal and maternal vessels. The placenta is fully formed about the commencement of the fourth month, and constitutes the channel through which nourishment is conveyed from the mother to the fœetus. The nutritive material passes from the blood of the mother through the intervening membrane by osmosis, and enters the blood of the foetus. Besides, the placenta is an orgau of exhalation as well as of absorption. The impurities circulating in the blood of the foetus are here discharged into the maternal vessels, to be removed by the excretory organs of the mother; so that the placenta may be said to fulfil the double office of the lungs and stomach in the foetus. In consequence of the intimate relation existing between the mother and the foetus, there is no doubt that nervous impressions experienced by the former, such as fear, anger, disgust, etc., which disturb the circulation, may occasion deformities and deficiencies of various kinds, nevi, warts, etc., in the latter. The circulation in the foetus has been already described (p. 227).

Umbilical Cord and Amniotic Fluid.-The umbilical cord, or funis, is the connecting link between the fœetus and placenta. In early life it is very short, and consists of that portion of the allantois or chorion next the abdomen. The umbilical vesicle is situated between the amnion and chorion, the rest of the space being filled with a gelatinous fluid. The amnion continues to expand, the quantity of liquor amnii increases, and about the beginning of the fifth month the amnion comes in contact with the chorion, the umbilical vesicle and gelatinous fluid gradually disappearing. The umbilical cord at the same time elongates in proportion to the increasing size of the amnion, and towards the close of gestation the amnion and chorion blend together and constitute what is commonly called the "membranes." As the
cord lengthens it twists from right to left. It consists of the two umbilical arteries, the umbilical vein, the urachus, and the remains of the umbilical vesicle, imbedded in a gelatinous material (Whartonian jelly) and surrounded by a folding of the amnion. The cord at full term varies in length from one to three feet.

Parturition.-The discharge of the foetus is termed parturition. This is effected by the contraction of the muscular fibres of the uterus, rissisted in the secr,nd stage by the contraction of the diaphragm, abdominal, and other muscles of the body. The placenta is separated from its attachment to the inner surface of the uterus, during which the sinuses are lacerated and a certain amount of hemorrhage occurs, which, however, is soon arrested by the contraction of the uterus and consequent closure of the mouths of the vessels leading to the sinuses.

Fig. 143.

Muscular fibre eells of th uterus two weeks after parturition.

GENERAL DEVELOPMENT OF THE EMBRYO.
The development of certain parts of the body from the blastoderm, has been already casually referred to. The several organs, and systems of organs will now be considered in their order of succession.
consists of e urachus, edded in a ounded by n varies in ermed parte muscular age by the her muscles attachment the sinuses lage occurs, ction of the the vessels erus undertion. This the size of the appearcells. The erus, during increased in rance. After o undergo a obules make terior of the ssue becomes bed, its place

Ryo.
ody from the red to. The be considered

Development of the Spine, Cranium and Nervous System.-.The epiblast as has been already stated, rises up in the form of plates, and encloses the medullary or spinal canal (Fig. 137). Beneath this in the mesoblast is formed the chorda dorsalis, or notochord, and at each side the protovertebre which increase in size and grow up around the notochord and form the spine. The spinal canal becomes enlarged anteriorly, corresponding to the brain, and terminates by a pointed extremity. The cranium is developed from the protovertebre, surrounding the upper extremity of the chorda dorsalis. At the same time a growth of nervous matter takes place in the interior of the canal. At first the canal has an oval shape on section, and presents an elongated slit, but presently the opposite sides unite in the centre, forming the gray commissure and rig. 144. dividing it into an anterior and posterior portion ; the former becomes the central canal, and the latter forms the posterior fissure. The anterior fissure is formed by an inward folding of the anterior part. At this stage the cord consists chiefly of gray matter. White matter is now developed from the cells of the mesoblast, and covers the outer surface dipping into the bottoms of the fissures to form the commissures. The anterior bulbous enlargement, or brain, separates into three portions, the cerebral vesicles anterior, middle and pos early afe showing

 the encephalon are ceveloped. The anterior, anterior mididie, forms the hemispheres and optic thalami, the rebral sisicies; middle, the corpora quadrigemina, and the pos- vesiece, $\begin{aligned} & \text { on protor } \\ & \text { of }\end{aligned}$ terior, the cerebellum and medulla oblongata. barternare, e, iment At this period the size of the different parts of | (Longet) |
| :---: |
| $\substack{\text { optic }}$ | the encephalon is different from the same organs in the adult; e.g. the hemispheres are only slightly larger than the corpora quadrigemina, and the cerehellum is smaller

than the medulla oblongata. As development proceeds, however, the relative size of the different parts soon changes, convolutions begin to make their appearance, and the hemispheres are divided by the longitudinal fissure.

Development of the Face.-As the cerebral extremity of the foetus becornes developed, it bends forwards upon its axis and forms the cerebral and frontal prominences and four depressions, the cervical fissures. Between the fissures are four foldings or arches, called the visceral or pharyngeal arches, in which are developed the bones of the face. Between the first pharyngeal arch and the frontal prominences, is the opening of the mouth. The first pharyngeal areh divides into a superior and an inferior protuberance on each side; the latter unites very soon with its fellow of the opposite side to form the lower jave The superior protuberances which form the upper jaw un. ite in the median line, with the fronto-nasal or intermax lary process. The growth of these parts diminishes the size of the oral cavity; a lamella grows inwaris from

Flg. 145.

Head of a human fotus at the 5th week; 1 , frontal prominen. ces; 2, cerebral prominences; 3 , frontonasal process; 4 lateral frontal process;5, eye; 6, superior maxillary process ; 7, lower jaw; 8, ear; (Ecker).
 the lamellre whi may be cleft also. The second pharyngeal arch forms the stapes, stapedius muscle, pyramid, styloid process, styloid ligaments and the lesser cornu of the hyoid bone; from the
procecds, changes, and the re. bral exit. bends oral and vical fishes, called developed arch and th. The n inferior son with als, The uisite in max lary sizere the arris from ty, joins forms the ause, the llary pro, hare-lip lit. This is always single or naxillary teeth is ior maxeft palate on of the ft palate orms the s, styloid from the
third is formed the greater cornu and body of the hyoid bone; and from the fourth, the soft parts of the neck. The cervical fissures all disappear in a short time except the first, which forms the meatus auditorius, Eustachian tube and tympanic cavity.

Development of the Eye, Ear and Nose.-The eye is formed from the primary optic vesicle, an outgrowth from the first cerebral vesicle (Fig. 145.) It is at first an open cavity communicating by a hollow stalk with the general cerebral cavity, but as development proceeds it is filled up and becomes the optic nerve. The lens is formed by a thickening of the epidermic layer, and is received into a depression in the primary optic vesicle. After a time a secondary cavity is formed behind the one for the lens, in which the vitreous humor is secreted. The lens is at first surrounded by a vascular capsule, connected with the arteria centralis retinæ, and forms the membrana pupillaris. Vessels pass into the ball and form the choroid coat. The epithelium of the cornea is developed from the epiblast, and the cornea and the sclerotic are developed from the mesoblast. The iris is formed from a projection of the choroid. The pupil is at first closed by the membrana pupillaris, but it disappears in the human foetus about the seventh month. The ear is developed in the form of a vesicle, the primitive auditory vesicle, on, ${ }^{\prime}$ outside of the third cerebral vesicle over the second pharyngeal arch (Fig. $146,8)$. The cavity of the vesicle forms the internal ear, and the auditory nerve is formed from the mesoblast which unites the cerebral with the auditory vesicle. The middle ear and Eustachian tube are formed from the first pharyngeal fis $3 u r e$, and the tympanum from a membrane stretched across the fissure. The pinna is formed from the solt parts of the first pharyngeal areh, and the ossicles from the second pharyngeal arch. The nose arises from a depression in the epiblast at each side of the fronto-nasal process, the oljactory fossc. These deepen except at the lower part where they
lead by the olfactory groove into the cavity of the mouth. After the formation of the palatine arches, this cavity is divided into two parts; the lower forms the mouth; the upper, divided by a septum, the nose. The olfactory nerve is derived from a prolongation of the anterior cerebral vesicle.

Fig. 146.

Area vasenlosa of an embryo, ventral surfuce, 1, Terninal sinus. 2, Omphalu-mesenteric vein. 3, Its posterior branch. 4, Heart in the form of an S. 5, Primitive aorta, or posterior vertebral arterles. C, Omphalo-mesenteric arteries.-Bischoff.

Development of the Extremities. - The upper and lower limbs are formed as buds from the anterior and posterior part of the embryo, by a projection of the somatopleure covered by the epiblast. The division of the extremity of these buds into fingers and toes, which have a webbed appearance, takes place at an early period, and soon after, a constriction or groove marks the situation of the wrist-joint. As growth procceds another groove shows itself, at the elbows
me mouth. cavity is outh ; the ory nerve cerebral mitive aorta, or
pper and and pose somatoextremity a webbed on after, a wrist-joint. the elbows
and knees. In all animals, the anterior extremities precede the formation of the posterior.

Development of the Vascular System.-The vascular system assumes three different forms during different periods of life, viz., the vitelline, placental, and complete. The vitelline circulation commences at a very early period in the chick, and consists of a number of vessels which ramity over the surface external to the embryo, and form a plexus, the "area vasculosa." The vessels are formed from the cells of the mesoblast, which become elongated, or branched, unite with each other and become hollowed out to form the capillary walls (p. 222). The blood corpuseles are formed from the nuclei of these cells. The function of this structure is to absorb the nutrient material from the vitellus. About this time the heart begins to make its appearance. This organ and the larger blood-vessels are formed on the same plan. Masses of embryonic cells of the splanchnopleure are arranged in the position, form and size of the developing structures; the external layers of cells are converted into the walls of the organs and the internal form the first blood corpuseles (p. 174). The heart may now be seen as a minute red pulsating point, even before the muscular fibres have been formed; this is the "punctum saliens" of Harvey. The heart is at first cubular in form, and receives posteriorly the two omphalo-mesenteric veins, and opens anteriorly into the primitive aorta, which divides into two vessels, the vertebral arteries. These form a series of arches; and give off the two omphalo-mesenteric arteries to the area vasculosa. It then becomes curved or bent upon itself like the letter S or a horse shoe, and partly divided by constrictions into three cavities. The one corresponding with the arterial end, is the bulbus arteriosus; the one at the venous end, the auricle; and the one in the middle is the ventricle, which becomes

Heart of the shick at the third day of incubation -1 , the veins; , the uuriele; 3 the ventricle ; 4, the bulbus arteriosus. - Thomp80 n .
as the Amphibin, this form remains, no other division by septa taking place ; but in the higher animals and man, both auricle and ventricle are subdivided by septa, and the bulbus arteriosus disappears in the ventricles.

In man and the higher animals in which the vitellus is small, the vitelline form of circulation soon disappears, and is replaced by the placental or allantoic circulution. The two omphalo-mesenteric arteries become blended into one artery, and the corresponding veins into one vein. They are called omphalo-mesenteric arteries because they supply in part the "omphalos" or umbilical vesicle, and partly the mesentery and intestine. After a time the umbilical vesicle and its vessels diminish, the mesenteric vessel. increase, and the allantois grows out from the posterior part of the intestinal cavity, carrying with it the allantoic or placental vessels. There are two umbilical arteries and at first two corresponding veins, but after a time one of the veins disappears, and the whole of the blood is returned from the placenta by one vein.

The complete circulation takes the place of the placental circulation, which is abruptly terminated by the separation of the placenta at birth. This transition is more abrupt than the preceding ; but has been duly provided for by the gradual development of the necessary organs.

The blood vessels first commence to form, as previously stated, in the area vasculosa external to the body of the embryo. The ftrst aortic arch is formed by the division of the primitive aorta into two branches, which arch backwards, and, after descending, unite into one vessel in front of the vertebral column (Fig. 148). Other pairs of arches are formed in succession behind the first, to the number of five. These are not all to be seen at the same time, for as some develope, others disappear. In fishes they all persist through life and form the distribution as seen in the gills. In man and the higher animals, the anterior ones disappear and the posterio: ones become transformed into the carotids (5),
vision by man, both d the bulvitellus is pears, and ion. The I into one They are supply in artly the lical vesi3 increase, art of the placental : first two veins disfrom the
placental separation re abrupt or by the reviously dy of the ion of the hckwards, nt of the rches are er of five.
as some through
In man pear and tids (5),
subclavian (4), arch of the aorta, puhnonary artery, ductus arteriosus, and descending aorta (Fig. 148). The veins that first appear are, as already stated, the omphálo-mesenteric which soon unite to form one. Next is formed the two umbilical veins, which return the blood from the placenta, the left enlarging, while the right disappears. When the liver begins to be formed branches pass into that organ, and give origin to the hepatic veins. This organ receives blood from two sources, the portal, and the umbilical veins. The systemic veins are formed frota four trunk veins, two above, and two below, which unite into a canal (sinus of

Fir. 148.

Aortic arehes; five pairs are shown, the upper ones disappear, the three lower remain, and represent the carotids (5), the subelavian (4) and arch of the norta (3). 1, Trunks whieb spring from the ventricles; 2 , descending aorta, the left (2) is finally obliterated; the ductus arteriosus is seen at the junction of the areh with the descending portion (6).

Fig 149.

Diagram of the develope ment of the vens: c, e, cardinal veins; j, j, jugular veins; h, hepratie veins; de, ducts of Clwier; sv, sinus venosis.

Cuvier) on each side, and open into the rudimentary auricle. (Fig. 149). The two above are called the anterior cardinal, or jugular veins, and the two below are called the posterior or inferior cardinal veins. When the umbilical vein is formed, it at first communicates with the sinus of Cuvier, but after the inferior veala cava is developed, it empties into the latter. The auricle now receives blood from the inferior vena cava, and the sinuses of Cuvier which now become the right and left superior vena cava respectively. The left vena cava finally disappears and its
orifice is converted into the coronary sinus; the right, forms the superior vena cava. An anastomosing branch between the anterior jugular veins becomes the left innominate, and the termination of the right jugular the right innominate vein. The inferior cardinal veins return the blood from the Wolffian bodies, vertebral column, and parietes of the trunk. The inferior vena cava is formed about the fifth week, and finally receives the blood from the inferior cardinal, and the crural veins. The upper part of the cardinal veins remains, the right m mas the vena azygos major, and the left as the vena azygos minor and superior intercostal. The middle portion disappears, and the lower becomes the hypogastric.
Devflopment of the Alimentary Canal and Glands. -The alimentary canal is formed at a very early stage. It is at first closed at each end, by the blastodernic layers, and communicates with the umbilical vesicle. It consists of three parts ; the anterior, which forms the pharynx and œesophagus ; the middle which forms the stomach, intestines, and upper third of the rectum; and the posterior which forms the middle third of the rectum. The lower end of the rectum and buccal cavity are formed by a depression in the middle and external layers of the blastoderm, and do not communicate with the common cavity till a later date, hence the occasional occurrence of imperforate anus and imperforate œesophagus. The middle portion of the intestine, is at first a wide groove, which becomes converted into a straight tube, and is gradually separated from the umbilical vesicle. It now becomes divided into the different parts, as the stomach, small intestine, and large intestine, and is suspended in the abdomen by the mesentery which attaches it to the spine.

The principal glarids are the liver, pancreas, spleen and sulivary glands. The liver is developed from two prominences of the blastoderm in the form of hollow cones, which involve the omphalo-mesenteric vein, from which they re-
ight, forms ch between ninate, and innominate od from the the trunk. week, and ala, and the ns remains, left as the The middle ypogastric. d Glands. stage. It nic layers, It consists arynx and , intestines, rior which r end of the ssion in the and do not later date, nus and ime intestine, rted into a e umbilical int parts, as and is susattaches it
spleen and two promiones, which ch they re-
ceive branches. These prominences are developed into the right and left lobes. This organ is of large size in proporticn to the body, and secretes a substance which is poured into the intestine, termed the meconium. The gall bladder is developed as a pouch from the hepatic duct. The salivary glands are developed from the epiblast lining the mouth, in the form of simple canals with bud-like processes, surrounded with protoplasm and communicating with the mouth. The canal becomes more ramified as development proceeds. The pancreas is developed from the hypoblast lining the intertine, in a similar way, and the spleen is developed from the mesoblast, proceeding from a segment of the peritoneum.

Development of the Respiratory Organs. - The lungs first appear as small tubereles iit front of the œesophagus. They are formed from the hyyoblast of the alimentary canal. They at first open into the cesophagus, but, soon a separate tuke is formed at their point of junction ; this is the trachea. The primary tubercles thus formed next send off secoudary branches into the surrounding mesoblast, and these again tertiary ones
 The diaphragm appears early, in the form of a fine membrane separating the lungs from the Wolffian bodies, stomach and liver.

Development of the Urino-sexual Organs.-I'hese organs are formed from the mesoblast. The Wolffian body or primitive kidney may be seen as early as the third week. It has a glandular structure, in many respects similar to the kidney, is provided with an excretory duct, and secretes a fluid containing urea which is conveyed to the bladder. It attains its highest development. about the sixth week; it then diminishes, to be replaced by
the kidney, iby ppdad sanears the end of the third month The duct of the Wolftian body is formed in the mesoblast behind the pleuro-p eritoneal cavity. The duct is first

Fir. 151.

A, kidney ; n, ureter ; c, Bladder ; D, urachus ; E , constriction which becomes the urethra; \mathbf{F}, Wolftian body; a. Wolftian duct, with its opening below, a^{\prime}; 11 , duct of Minler, united below, from the two sides, into a single tube, J^{\prime}, which presconts a single opening. I, between the openings of the Wolffian ducts; k, ovary or testicle; L , цułernaculum testis or round ligan ent of the uterus; M, genito-urinary sinus; \mathbf{x}, o, external genitalia. hoilowed out, and then the tubes of the Wolftian body begin to form as branches of the duct which terminate in Malpighian bodies. Next a thickening occurs between the Wolffian body and the mesentery, termed the Wolfian ridge or "germ epithelium" from which the testis or the ovary is developed, as the case may be. A groove is now formed internal to the Wolffian duct, called the duct of Müller. These ducts, together with the ureter, when formed, open into the urogenital sinus, or termination of the intestinal cavity. The Wolffian ducts remain in the male, and form the epididymus, vas deferens and ejaculatory duct on each side. A small portion of the Wolffian body remains in the female termed the parovarium, while the remains of the Wolffian duct which descends to the vagina forms the "duct of Gærtner." The ureter is formed in the mesoblast in which the kidney commences to develope, and leads down to the urachus. The kidney is developed from a series of elub-shaped mases, in which are formed the calices. It has therefore a lobulated appearance which continues for some time. The supra-renal capsules are developed from the same mass as the kidney, Fand are at first much larger.
ird month mesoblast ct is first the tubes begin to the duct Nalpighian ing occurs dy and the Wolffian um" from e ovary is nay be. A internal to d the duct s , together on formed, al sinus, or intestinal ducts reform the rens and each side. Wolffian male termiile the reluct which forms the mesoblast and leads ed from a prmed the ace which psules are iney, rand

The bladder is next developed from the urachus; this is a hollow tube which connects the posterior part of the intestines with the allantois. As the abdomen closes at the umbilicus, the part of the urachus outside the body forms part of the cord, while the portion included in the abdomen becomes dilated and fusiform at the lower part, and forms the bladder; the upper part becomes obliterated and forms a fibrous cord which extends from the summit of the bladder to the umbilicus. Sometimes, though very rarely, this part remains pervious and permits of the escape of urine at the umbilicus. The testes or ovaries which are formed on the inner side of the Wolffian bodies, soon begin to descend, the former to the scrotum and the latter to the pelvis. This was formerly supposed to be caused by the action of a muscular organ, the gubernaculum testis, but this is not now generally supposed to be the case. The means by which it is effected are not known. The testicle in its descent pushes before it a pouch of peritoneum, behind which it lies, which ultimately forms the tunica vaginalis or serous covering of the testicle.

The uterus, Fallopian tubes, and vagina are developed from the ducts of Miiller, already described. The union of the two ducts below form the vagina, cervix, and lower portion of the uterus, while the upper portions form the upper part of the uterus and Fallopian tubes. This explains the occurrence of an occasional bicornute condition of the uterus. The external organs of generation are, at an early stage, the same in both sexes. The urino-genital opening, or sinus, is formed at the same time as the anal cavity, by a reflection of the epiblast inwards. There is first seen a tubercle in front of the sinus, the genital tubercle, which is soon surrounded by two folds of integument, the gerital folds. The tubercle is surmounted by a glans, and is grooved upon the under surface (Fig. 151), yet no distinction of sex can be made out. As development proceeds, the urinogenital sinus in the female remains and communicates with
the vagina; the genital tubercle retracts and forms the clitoris, and the foldings of integument are converted into the nymphæ and labia majora. In the male, the genital tubercle elongates, the glans is developed, and the margins of the sinus meet on the under surface to enclose the urethra. The large cutaneous folds form the scrotum, which receives the testicles about the eighth month. When the urethra fails to close, hypospadias results, and an appearance of hermaphroditism is present, which is increased by the retention of the testicles in the abdomen.

forms the erted into he genital te margins the ureum, which When the in appearreased by

APPENDIX.

METRIC SYSTEM OF WEIGHTS AND MEASURES.

Equivalents.

Gramme

THE METRIC SYSTEM IN MEDICINE.
Old Style. Metric

The decimal line instead of puints makes errurs impossible. A teaspoon contains 4 gms. ; a tablespoon 20 gms.

average sizes of various histological elements.

Fractions of an inch.

AVERAGE SPECIFIC GRAVITY OF VARIOUS FLUIDS.

$$
(\text { Water }=1000) .
$$

Bile 1020 Milk 1025
Blood 1055
Cerebro-Spinal Fluid 1006
Chyle 1024
Gastric Juice 1005
Intestinal Juice. 101I
Lymph 1020
Pancreatic Juice 1012
Saliva 1005
Serum 1026
Sweat J004
Urine 1020

Lungs when fully distended with air, $\mathbf{1 2 6}$; when deprived of air, 1056 ; ordinary postmortem condition, 345 to 746.

AVERAGE QUANTITY OF VARIOUS FLUIDS SECREIED IN TWENTY-FOUR HOURS.

7.1 mmm

IC mmm
31 mmm
I mmm
12 mmm
.4 mmm
I mm
.2 mm
.4 mm 50 mmm
5.5 mmm
2.5 mmm

2 mmm 4 mmm .2 mm
1.7 mmm .1 mm .3 mmm .1 mm
50. mmm .1 mm

IDS.

1025
1012
1005
... ... 1026
........ J004
....... 1020
deprived of

ETED
ozs gms.
$30=930$
$25=780$
$40=1250$

REACTION OF THE VARIOUS FLUIDS.
All the fluids of the body have'an alkaline reaction, except the following, which are acid :

Gastric Juice.	Urine.
Sweat.	Mucus of the Vagina.

CLASSIFICATION OF THE ANIMAL KINGDOM.
 (Gegenbauer.)
 INVERTEBRATA.

Protozoa :
Cœlenterata: $\left\{\begin{array}{l}\text { Spongir; } \text {; sponges. } \\ \text { Acalephx; hydra }\end{array}\right.$
\ Acalephæ; hydra, coral, sea-anemone, polyps, medusæ, beroe.
Vermes: \quad leeches, earth worm, round worm, thread (worm, tape worm, guinea worm, bryozoa.
Echinoderma : star-fish, sea-urchins, sea-cucumber.
Arthropoda: \quad Branchiata; crab, lobster, barnacle.
\{ Tracheata; scorpion, spider, beetle, cockroach, bee, ant, butterfly.
Brachiopoda: $\{$ Ecardines; lingula.
Mollusca: $\quad\{$ Placophora; chiton, cryptochitor.
\{ Conchifera ; oyster, cockle, whelk, snail,clio, argonaut, cuttlefish, nautilus.
$\{$ Copelata; oikopleura.
\{ Acopa; salpa; pyrosoma.
VERTEBRATA.
Acrania: Leptocardii ; amphioxus. Craniota: $\left\{\begin{array}{l}\text { Cyclostomata ; myxinoidea, petromyzontes. } \\ \text { Gnathostomata. }\end{array}\right.$
(a) Pisces.
(a) Anamnia: Amphibia; frog, newt, triton, salamander.
$\left\{\begin{array}{l}\text { Reptilia; lizard, snake, crocodile, } \\ \text { chameleon, tortoise. } \\ \text { Aves. . } \\ \text { Mammalia. }\end{array}\right.$

Specimen of blood showing marked leucocythemia. The proportion of white to red cerpuscles is as one to seven.

I N D EX.

A PAGF.
Ablucens 331
Absorption 158
Mechanlsin of 163
by villi and laeteals. 165
by blood vessels 166
by lymphatics. 167
Acini of Liver 253
Adipocere 30
Adipose tissue. 65
Appearanco and properties of 65
Function of 66
Esthesiometer 368
Alr, changes in respired 239
Quantity respired 235
Breathing or tidal 235
Complemental 235
Supplemeutal 235
Residual. 236
Nimmum quantity in schools. 236
Air Cells. 232
Allinoes 4, 115
Albumen 35
Composition of 36
Function of 196
Tests for 37
Albuminose. 37,142
Urigin and functio: of 38
Albuminoid substances 33
Alcohol. 129
Ammlon and allantois 386
Amwbia 54
Ampulla 360
Anelectrotonus 450
Aphasia 319
Aponenroses. 60
Apophysis 76
Aqueous humor 3.4
Area pellucida 35
Areolar tissue 6
Function of (4
Arrectores pilorum 115
Arteries, structure of 218
Function of elastie tissuo 214
Minsenlar tissue of 215
Vasa vasorum of 214
Anastomosis of 216
Pulse of. 217
Inluence of nerves on 210
Velocity of cireulation 225
Articulation 374
Asphyxia 243
Associate function of Nerves. $3: 36,342$
Astigmatism. 357
Auditory Nerves 330
Auditory vesicle 395
Automatic action 27
Axis-eylinder 281

B

Bacterinum
Bascment membranes 5

Page.

Basement membranes, Function of.... 59
Bernard on the function of the liver... 150
Bile. 147
Appearance and propertles of...... 148
Chenical composition of 148
Bile salts or bilin. 149
Function of........................ 151
Tests for. 153
Bilirubine . 44, 149
Biliverdine. 45. 149
Blastodermie membrane... 382
Bleeding, effects of, on blood. 183
Blood, Elements of 168
Quantity of......................... 168
l'hysical character of. 168
Microscopical appearance of. 169
Red corpusclen of................... . . 170
White corpuseles of 173
Origin of Corpuseies of 174
Development of Corpuseles of..... 175
Chemical composition of........... 177
Itemogholine... 17
Distinction between humun and
animal blood.....................
Difference between urte:inl and
venots....................... 180
Portal, renal, ani hepatic venous
blod......................... 180
Gases of............................. 181
Canses of Color of. 182
lufluenee of venesection on........ 183
" 6 Starvation on......... 184
" Iron and flesh dict.... 184
" Age und sex. 185
Blood Poisons............................. 188
Congulation and vital properties of. 188
Time required tor coaynlation..... 189
Theorics of eoagulation............ 190
Cupped aud Paffed condition of... 191
Cougulaiton of promoted.......... 192
Function of librin of.................... 194
" red corpuscles of.... 195
" white corpuscles of... 196
" albumen of........... 196
" fats of. 197
salts of... 197
Relation of, to liviug organism.... 198
Globuline of 178
Increase of fibrin of. 185
Circulation of blood............ . . . 200
Changes of in respiration.......... 242
Bone....................................... 72
Appearance and properties of. 72
Chemical constituents of.......... 72
Structure of
Hasersisn eanal
Lacuua and canaliculi of............ 75
Articular lamella of. 75
Development of...................... 75
Paur.
Bone, Growth of 78
Brain 310
Average weight of 310
Stricture of 311
Vaseular supply of 316
Ventricies of. 316
Function of, se 317
Centre for languge. 319
" vislon. 315
henring 115
Bronchotele or goitre 275
Brown-Séquard on spinal cord. 301
Brinner's glunds 111
Burste 102
-08
Butter acids
C
Canalicuil 75
Canai of L'etit 85
Capillaries, Structure of 222
Circulation in. 223
Influence of norves upon. 224
Velocity of Circulation in 225
Carhonic neid, Inlaalation of ©33)
How affected 240
How favored. 24
Cardinal veius 309
Cardiograph 209 67
67
Cartilage
Cartilage
Appearance and projerties of
d
d
Temporary and lermaneut 18
lyaline
lyaline (6)
Fibro-eartilage 70
Vascular supply of 70
Cartilayine or Chondrine. 40,268
Origin mud function of 41
Cauda Épuina 296
Cause of Organization 55
Cells47
Definition of a Cell 47
Varintion in shape and size. 47
Structure 48
Cell nuelei 49
Cell eontents 50
Color $\begin{array}{cc}\because 1, & 50 \\ 53\end{array}$
permanent ehange of shape 53
Temporary change of slmape 54
Function of Cells 50
Manifestatlen of cell life
308
Cement subst 08,113
Cerebellimn 307
structure of 307
Peduncles of (erura) 308
Cercbral vesicles 393
Cerebrine
276, 28.5
Cerebro-spinal nerves. 310
Average weight of 310
Structure of 311
Convolutions of 311
Sulci of 312
Lobes of 312
Fissures of 313
Areas of (Ferrier) 314
Ventricles of 316
Vasenlar supply of 316
Function of323
l'agr.
Cerebratlon, unconscious 323
Cermminous glands. 121
Cervical fissures. 3134
Cerumen of ear. 358
Chalaza . 37 3), 381
Chulazlferous ucmbrane. 381
Cholesterine . 33 , 149
Chorda Ionsalis or Votochord........... 384
Chorlon, formation of. 388
Choroid . 3.34
Chrouatic aberratlon..................... 353
Chyle, Molecular base of. 161
Composition of. 162
Chylifleation . 144
Chymifleatlon......... 130
Cinatricula 384
Ciliary Ligament. 346
Cllary Musele .. 346
Clliary Processes . 345
Cilin.... $1 . .$. 99
Growtl) and motion ofst, 90
Cilinted quitheliumı........... 100
Circulation....... 200
Course of, in the alult.. 202
Proofs of 208
Peenliarities of....................... . . . 226
Velocity of 225
Vitelline circulation................ 387
Fictal.................. 227
Cleft palate................................. 394
Courulable lymplı. 58, 196
Cochler 300
Coffec . 130
Collagcı . 48
Colaring matters. 43
Colloids and Crystalloids. 164
Colostrunı . 268
Coletblooded animals. 244
Communication of nervous impressions 294
Conduction of hervous impressions. ... 204
Conjugration..... 376
Connectlve tissuc. 60
Corinn or cutis vera..... 115
Corvea, strueture of..................... . . 343
Comom amplacea. 24,284
Corpora striata.. 324
Corpora quadrigemina 323
Corpus luteunt.. 380
Corpus eallosim. 324
Corpuseles of the Blood................ . . 170
Origin of 174
Development of............ 175
Coughing. 238
Cranlo-spinal axis. 279
Cranial nerves....... 329
Creatine and creatinine................. . . 264
Cretinisin. 275
Crying 238
(rystalline lens and caps $n \cdot$.
C'umulus. 379
Cyanosis . 229
Cytoblastema 50
Cytogenesis............ 51
Laws of... 51
Modes of.............................. . . 52
Conditions necessary to............ 53
I
Daltonisin . 357
Deeidua Vera. 389
Reflexa . 300
Serotina....... 390
l'age.

Faelal uerve, l'araiysis oi 333
Faeuities, intellectuai 320
Fraces, Analysis of 157
Fats and olls.
l'hysical appearance of.. 30
Function of. 32,99
Fenestra ovalis and rotunda............ 300
Fermonts.. 34, 136
Fibrous tinsue. 00
Fibrocartllage. 70
litbrine .. 38
Plyysical appearance of... 39
Coaruiatlon of........................ 39
Function of... 40, 194
As effete materiai. 40, 198
Filım terminale . 296
Flssion, or Fissiparous multipliea-
Fine adjuster of the eyo.................... 353
Foctal eirculation. 227
Changes in, after birth 229
Follicles. 108
Food. 125
Classilleation of. 125
Ilistogenetic substanees of 126
Quantity of. 127
Quality of............................... 128
Forec, nervonw.. 205 , 326
Fovea centralis... 347
Frontai sinuses. 341
G
Galvanic pile. 249
Ganglion impar. 336
Gangiton of libes.. 333
Ganglia of the Nervous System........ 276
of the Sympathetle. 337
Structure of.. 284
Gases. 22, 181
Gastrie jniee.... 140
physical appearance of............. . . 140
Chemical composition of........... . 140
Function of.. 142
Gelatine... 43
Gelatinous tlssue. 71
Gemmiparous multiplication.........52, 376
(ieneration, True......................... . . 376
Genital tubercle and fold................ 403
Germ Cell 379
Germinal Vesicle. 379
Spot... 279
Membranes 59
Matter.. 47
Qlobuline.. 41,178
(dlottis.................................... . . . 370
Glossopharyngeal Nerve.... 383
Glycogen... 25
Glycogenie function of Liver.. 150
Goblet or liecher cells. 99
Crannles or Molecules................... 57
Graafian Vesicles................... 379
Growth of Bone................. 78
Nails . 118
JIair. 119

H

Hemadynamometer. 211
Hair. 118
lare-lip... 394
Haversian system. 74
Canals.. 74
'age.
Heurt 200
Structure of 204
Vessela antl Nerves of 200
Action of 206
Sonnis of 207
Rhythm of 2018
Causes of sounds of 20
Words representing sounds of 208
lanpulse of. 209
Fresfueney and foree of actlon. 000
Ivilluenee of neryes on 211
Wxeito-motor and luhlbitory nerves 211
Hearlug. 358
Mechanlsm of 362
Sense of, impaired 364
Ileat 244
Theory of proditetion of 245
Influence of nerves 246
Lose of, by evaporation. 247
Latent. 24
Development of, in muscle. 17
Ilematine. 178
Hemoglohlne
, 178
, 178
Hepatic eells 25.4
Iltceup. 239
Hippuric aciel 203
IIistogenetic substanees of food. 126
Elements of blood 168
Ifumor, aqieous 349
Vitreuns. 349
IIunger. 130
Hypermetropia 356
Hypohhast 384
Hypoglossal herve. 333
Hypospalias. 404
I
Ideas 321
Ideo-notor action 279, 317
Inmintion 131
Imare formed on tho retina 351
Impulse of the heart 209
fmpressions $289,32 \theta$
Registration of 281, 320
Inhibitury nerve action. ..212, 218, 301, 334
Insalivation 134Inspiration
Muscles of. 234 234
Instinct amblintelligence
Intellect 318 318
Intellectuai faculties 320
Interument 112
Epithelium of 113
Color of 114
Corium of 116
Appentages of 116
Papilla of 116
122
Intestine (large) 155
Intestimal fuice. 145
Appearance and properties of 145
Function of 145
Intestine, villi of 110,158
Inter-cellular passares in lungs. 232
Involution of the uterus 54,392 345
354
lris, structure of
lris, structure of
Irradiation
K
Fatelectrotonus 250
lieratine 43
Kidney 256
Pailk.
Kidney, Structure of 200
Malpighian bofles of 257
T'ubuif uriniferl 257
Pramide of 258
Papillie of 257
Vessels antl nerves of 258
Sinus of. 259
Function of 250
Kymograph 211
Labyrinth L 350
Vestibular portion of. 35
Lacteals. 158
Absorptlon by 165
Lactose, or sugar of milk 29,268
Lacunse of bone 75
Laryinx, organ of volee. 370
Strieture of 370
Vocal cortls of 371
Ventrieles of. 370
Muscles of 374
lamghing 238
Laws of eytogenesis 51
of Nerve action 91 91
regulating transmission of light. 351
of nervous distribution. $30: 3$
Lecithilıe 45
Lenticular glamas. 140. 155
censes. 350
Leuetise 46
Levers 02
Lieberkthin's follicles. 109 109
dight. 248
Ligaments. 60
Limbens luteus 347
Gime phosphate. 19
Curbonate 19
diguor Anmili 387
Liver 25.2
Structure of 253
Hepratle cells of 254
Function of 47
Vessels of. 254
Locomotion. 94
hangs 230
Structure of. 231
Air celly of 232
Vessels ant nerves of. 233
Actien of. 233
Exhalation of Carbonic Asid by 233
Inhalation of Oxyren hy 241
Luteine. 45
Lymph, composition of 160,162
ymphatic vessels 159
Stricture of 160
Absorption by 167
Lymphatle glamds 160

M

Magnesium phosphate and carbonate. 22
Malpighan bodies, Kidney 256
Bodies, Splcen. 271
l'yramids 57

l'agk.
Marwhail Hall on mplual cord.......... 309
Mantleution . 134
dinscles of. 123
Maternal membranes. is
Materlalist doctrino 324
Meconium. 162, 298
Medulla oblongata. $30: 3$
structure of.. 30:3
Fimetion of. 30 .
[Jectussation of., 304
Medullated nerve filres................. . . $\$ 81$
Melssner's plexus 140
Melanine 140

Structure of 96
Membranes (simple).....................
Membranes of the feetus. 391
Membrana (iranulosit 374
Membrana fimpanh..................... . . 358
Mesenteric dilunds. 158, 160
Mesmerism 160
328
Mesohแıst. 384
Моянесериแон . 300
Metamorphosls it aninals. 377
Metagenesis. 375
Mind-force 326
Mind, and its relation to the body 324
Morbus Cheruleas 222
Microcoed
Meropyle . 378
Mind, Influence over the bedy 327
Morbus Addisonil 274
Motion, cause of. 8 , 8

Motorinl end-phates. 85, 288
Motor revil . 3330
Ducons دlembranes 103
Structure of 100
Appendages of 10.
Muens 104
Chemienl comstituents of 104
Mucine or Mucoslne
42,104
Mulberry Mass
882
Multiplicatlon by subaivision $2,8,375$ ly gemmation 52,376
Musclo
Striated.
Primitive fibres of.
Fibrille of
Nou-striuted
Mode of development
Attachment of to tendons
Chemical composition of
Vascular and nervons sulply.
Properties of
Sound in contraction of
Heat in eontriction of
Elasticity of
Rigor mortis of
Action of
308
Alnsenlar sense. 309, 308
Musenline or myosine 49
Muscularis mucoste $13!$
myolemnia . 84
Ayориа
Nails.
117
Nervons system.
2.6
of lower animals 276
Crunio-spinal axis of 279
D.agram of action of 279

Nervous aystem, Nerve are. 280 , 24.0 structure of 281
Nerve lliuren.. 281
Nerve tells.. 285
(lunglia of 284
Chemital composition of.......... $2 s 4$
Dintributlon of nerve llires 285
Plexuses of . 28.5
Origin mul termination of 286
Finnetion of nerve illbres 289
of nerve centren 29:3
Alferent nul efferent nerves 289
Fixeitability of nerves.......... .. . 290
laws of netion of nerves.......... . . 201
Development of nerve tlssuc. 2 git
leyreneration of 20.

Alitomatie uctlon of 277
Force (vls uervosn) 295
Nervous polarity $2 \boldsymbol{2 m}$
Nervl hervorumi. 288
Nerve frtc. 2811
Centres, finction of 883
Conductlon . 994
Commmalcaifon 2 ght
Neurilemma . 2.31
Neuroglia. 253
Nitrogenous substances 15
Non-medullated nerve flores.......... . . 2 St
Notes, of vulee, chest. 373
l'alsetto 37.1
Nucleus 4
Nueleolıs.. .
Odorlferous glands 121
Oils and fitts
Oleino
Olfactory nerves $32:$
Optic nerves 830
Chiasma of 2 ess
Optle thalamus 324
Optle vesiele . 395
Ora serruta . 347
Organle substances 15
Putrefaction of 35
Osmosis . 1683
Osteoblasts 77
Ovaries . 378
Ovicapsite 389
OWiducts, action of. 380
Oxum 379
Development of 382
Negmentation of $3 \mathbf{3 s}^{2}$
оxукен... 22
I'
l'acinian corpuscles 987
Pancreatie juice. 145
Appearance and properties of..... $1+6$
Cliemlanl composition of. 146
Flanction of............. 140
l'ancreatine 42 , 146
Pambiculus adiposus..................... 65
Papilise . 106i, 116
Paralysis, altemate. 307
Cognate . 307
Prrovarium........... 402
Piarturition 302
Patae.

Pithetic nerve 331
Pavement epitheliom${ }^{-1}$
Pepsine 41, 142
Peptic follicles. 108, 139
Peptono :37, 142
creeption 321
erspurution 122
Chemical constituents of 122
Function of 123
leyer's gliunds 111 394
haryngeal arches
haryngeal arches
Phrenolugy, absurdity of :11!
Pigment cells 114
Placenta, iormation of 390
Plastle elements of nutrition 126,2
Pheumogastric nerve 333
Function of 333
Division of 237, 334
Inhibitory aetion of. 212, 334
timulation of 212, $3: 34$
Pons Varolit 306
Structure and function of 306
Potassium ehloride 18
Prehension 132
Presbyopia 356
Pressure, sense of 368
Primitive trace 383
Primitive or primordial cells 382
Primary forms of tissue 46
Primary membranes. 59
Protein compounds.
$47, \quad 50$
lrotoplasin
Protovertebre 3×5
Proximate prineiples 14
Definition of 17
Hole of extration 14
Chassification of
15
15
first elass of 16
Secontl class of 2.2
Third elass of 33
Ptosis 330
Palse 217
teal-wate of 217
Venous 220
Puncturn saliens 397
Putrefaction of nitrogenous matters. .
35
Pyrminils of Ferrein42,135
l
Red bload corpuscles 170
Function of 195
size of, In different animals 71
Color of 172
Reflex action 095
Reglstering ganglia 281
Reprodnction 37.5
Thrue modes of $3: 5$
Action of male in 377
Action of female in 3.8
Respiration 230
llechanism of 233
Frequeney of 235
daintity of air respired 235
Breathing air $2: 35$
Complemental air 235
Reserve air 235
Residual air 236
nfluence of nerves in 237
Modifleation of movements of 238
Thanges in air during 2:39
Changes in the hlood by 4.
Respiration, Effects of the arrest of ... 243 Elements of (Liebig) 106, 245 Retina, structure of 347
lmpressions on. 351, 354
Retleular connective tissue. 71
Retimaeula 379
Rigor mortis 91
Rima glotthdis. 371
Rods of Curti 361
Rhythin of the heart 208

S

Saccharose 28
Salivary glands, structure of 134
Saliva 135
Composition of 135
Function of 136
Saponification $2!$
Sareode 47
Sareous elements. 85
sarcolemua 8
Sclerotic 343
Sebaceous slands 120
Secondary deposit 50
Seereting glands. 252
Segmentation 331
Semen or spermatic fiuid 320
Semicircular canals 3 to
Sensations. 320
Subjective and 'objective 321
Serous membranes 101
structure of 103
As lymph sacs $101,15!$
Sight 34:
Sighing 238
Siuns of Cuvier 399
Simple fibres. 57
Membranes. 8
sleep. 327
Smell 340
Sneezing 338
Sobbing 239
Sodium chloride 17
Function of 18
Sodimm and potassimm earbonates 20
Phosphates 20
Sulphates. 21
Solitary glands 111, 117
Somnambulism. 328
Somids, subjective 364
Articulate 374
Museular 91
Special senses 340
Spectrum of bile. 153
spectrum of hemoglohi:c 179
Suerm cell. 876
Spermatozoa 377
Spherical aberration 353
Sphygmograph 218
Spinal aecessory nerve. 335
Function of 335
Spinal cord 206
Structure of 297
Spinal nerves 298
Finction of.

Page.
Vitelline membrane......... 379
Vitelline spheres. 382
Vitreous humor. 349
Vocal cords. 370
Voice . 370
Tones of voice. 372
Compass of
Modiflcations
Voluntary attention. 322
Vomiting, mechanism of............... 138
Vowels and Consonants................... 374
W
Warm-blooded animals. 244
Water 16
Function of......................... . . . 16
Whartonian Jelly....................... 71,392
White fibrous tissue...................... 6 Appearance and properties of 61

CATAIOGUE
 of LINDSAY \& BLAKISTON'S PUBLICATIONS.

MEDICAL, DENTAL,

CIIEMICAL, PHARMACEUTICAL,

AND

SCIENTIFIC BOOKS.

Javing for many years given their whole attention to the publication and sale of Medical Books, and keeping on hand as large an assortment as any other house, they are always prepared to fill orders promptly, whether for single books by mail, or in larger quantities by express, at the lowest prices.

Being Special Agents in the United States for Messrs. J. \& A. CHURCHILL, of London, and importing many of their Medical Publications in quantities, they are able to offer them to the Trade or Profession at low rates.

IMPORTATION OF BOOKS. As the result of the resumption of specie payments, their rates per shilling for the importation of books have been much reduced. They have also made arrangements to receive packages more frequently by STEAMER and EXPRESS, so as to avoid all unnecessary delay in filling orders entrusted to them.

THE SYDENHAM SOCIETY'S PUBLICATIONS, for which they are Agents in the United States, will hereafter be supplied to subscribers at Nine Dollars per annum, payable in advance, and forwarded by mail postage paid.

BOOKS BY MAIL will be sent postage paid, and carefully wrapped, upon the receipt of the retail price ; or by Express C. O. D. at the usual discount.

COMPLETE CLASSIFIED LISTS will be furnished upon application.

MAY, 1879.

LINDSAY \& BLAKISTON,

 Medical Publishers and Booksellers, 25 South Sixth St., Philadelphia.
IMPORTANT NEW ILLUSTRATED WORKS.

FOX'S ATLAS OF SKIN DISCASES.

COMPLETE in Eighteen Parts, each containing Four Chromo-Lithographic Plates, with Descriptive Teyt and Notes upon Treament. By Tilbury Fox, M.D., F.R.C.P., Physician to the Department for Skin Diseases in University College Hospital. Folio Size. Price, $\$ 2.00$ each, or complete bound in cloth, Price, $\$ 30.00$.
No Allas of Skin Diseases has been issued in this country for many years, and no complete work of the kind is now procurable by the Profession. This one, lrought out under the editorial supervision and care of Dr. Tilloury Fox (the most distinguished writer on Cutaneous Medicine now in the English language), is partly based upon the classical work of Willan and Bateman (now entirely out of print), but completely remodelled, so as to represent fully the Dermatology of the present day.
"Preference will be given to this work over Hebra; not simply, however, because it is a home production, but by reason of the manner of its exceution, the excellent delineation of disease, and the natural coloring of the plates. . . The letter-press is entircty new. In the accuracy of the latter the subscriber may have the fultest coafidence, since it is from the pen of Dr. Tilbury Fox."-British and Foreign MedicoChirurgical Review.

HUTCHINSON'S ILLUSTRATIONS OF CLINICAL SURGERY.

Consisting of Plates, Photographs, Woodcuts, Diagrams, etc., illustrating Surgical Diseases, Symptoms, and Accidents; also Operations and other Methods of Treatment. With Descriptive Letter-press. By Jonathan Hutchinson, F. R. C. S., Senior Surgeon to the London Hospital, Surgeon to the Moorfiedds Ophthalmic Hospital, and to the Hospital for Disenses of the Skin, Blackfriars. In Quarterly Fasciculi. Imperial 4to. $\$ 2.50$ each. Ten Fascicull bound in one volume, cloth, complete in itself, Price, $\$ 2500$. Parts Eleven, Twelve, and Thirtefen Now Ready.

BENTLEY AND TRIMEN'S MEDICINAL PLANTS.

Maing Descriptions, with Original Figures, of the Principal Plants employed in Medicine, and an Account of their Properties and Uses. By R. Bexrley, F. L. S., Professor of Botany in King's College, London; Professor of Botany and Materia Medica to the Pharmaceutical Society; and H. Trimen, M. B., F. L. S., Department of Botany, British Museum; Lecturer on Botany in St. Mary's Hospital Medical School. To be completed in about Forty two Monthly Parts. With Colored Illustrations (natural size). Large 8vo. Price, \$2.00 each. Turty-Six Parts Now Keady.
*** This work will serve especially as an illustrated Botanical Guide to the British, United States, and Indian Pharmeupexias; it will atso include other species employed, or in common use though not official. Some others which afford Iool subituces, of value chiefly to invalids, have also been added.

Each Plate will be accompmial by tetter-press comprehuding a full description of the plant in plain scientific languige, its nomenclature, ysograp'ical distrbution, etc., as w w as an accoun of its properties and uses, with futt references to previous descriptions and ligures and to more special treatises.

HEATH'S 0PERATIVE SURGERY.

A Course of Operative Surgery, consisting of a Series of Plates, each plate containing Numerous Figures, Drawn from Nature by the celebrated Anatomical Artist, M. Léveillé, of Paris, Engraved on Steel, and Colored by Hand, under his immediate superintendence, with Descriptive Text of Each Operation. By Christopher Ileath, F.R.C.S., Surgeon to University College Hospital, and Holme Professor of Clinical Surgery in University College, I oondon. Complete in Five Quarto Parts, each containing Four Large Plates, and Numerous Figures. Price per Part, $\mathbf{\$ 2 . 5 0}$, or bound in one volume, cloth, \$14.00.
The author has embodied in this work the experience gained hy him during twenty years of Surgical Teaching. It comprises all the operations that are required in Ordinary Surgical Practice. He has selected for illustration and description those methods which appear to give the best results in practice, referring to the errors likely to occur and the best methods of avoiding them.
jic Plates, with I.D., F.R.C.P., Iospital. Folio
rs, and no comught out under ished writer on on the classical remodelled, so
it is a home prouse, and the natural ther the subscriber nd Foreign Medico-

SURGERY.

.rgical Diseases, reatment. With enior Surgeon to ital, and to the iculi. Inperial mplete in itself, dy.

ANTS.

yed in Medicine, A. S., Professor of a Medica to the ment of Botany, ical School. To astrations (natural keady.
, United States, and though not official. drled.
of the plant in plain unt of its properties rcatises.
plate containing minal Artist, M. er his immediate By Cifristopher olme Professor of ive Quarto Parts, - per Part, \$2.50,
im during twenty uired in ()rdinary se methods which to occur and the

An Atlas of Human Anatomy, illustrating most of the ordinary Dissections and many not usually practised by the Student. Accompanied by References and an Explanatory Text. By Rickman Joun Godlee, M.S., F.R.C.S., Fellow of University College; Assistant-Surgeon to University College Hospital, and Senior Demonstrator of Anatomy in University College. To be completed in Twelve or Thirteen Bi-Monthly Parts, Large Folio Size. Containing Four Plates, Two Figures to each Plate, Colored, and Twenty-four Octavo Pages of Letter-press, forming, when complete, a large Folio Volume of Plates, with References, and an Octavo Volume of Letter-press. Parts I. to VII. Now Ready. Price of each Part, $\$ 2.50$.

SCHULTZE'S LECTURE DIAGRAMS.

Lecture Diagrams fur Instruction in Pregnancy and Midwifeky. Twenty Plates of the largest Imperial size, printed in colors. Drawn and Edited with Explanatory Notes, and a 4 to volume of letter-press. By Dr. B. S. Sciulitze, Professor of Midwifery at the University of Jena. Prices, in sheets, \$15.00. Handsomely mounted on rollers for hanging up. I'rice... \$30.oo

BRAUNE'S ATLAS OF TOPOGRAPHICAL ANATOMY.

Containing Thirty-Four Full Page Photo-Lithographic Plates, after Plane Sections of Frozen Bodies, and Forty-Six large Wood Engravings. The Photo-Lithographic Plates have Marginal References, and each Plate is accompanied with Full Explanatory Text. By Wilhelm Braune, Professor of Anatomy in the University of Leipsic. Translated by Edward Bellamy, F.R.C.S., Senior Assistant-Surgeon to, and Leeturer on Anatomy and Teacher of Operative Surgery at, the Charing Cross Hospital. Forming a large Imperial Octavo volume. Price, bound in eloth, $\$ 12.00$; half morocco, gilt head, \$14.00.

SAVAGE'S FEMALE PELVIC ORGANS.

The Surgery, Surgical Pathology, and Surgical Anatomy of the Female Pelvic Organs. In a Series of Elegantly-Colored Plates and Diagrans taken from Nature; with Commentaries, Notes, and Cases. By Henry Savage, M.D., one of the Consulting Medical Officers of the Samaritan llospital for Women. Third Edition, revised and greatly extended. With an additional Plate, Thirty-Six Engravings, and Special Illustrations of the Operations on Vesico vaginal Fistula, Ovariotomy, and Permeal Operations. A large 4to volume. Price, \$12.00.

ROBERTI FRORIEPI ATLAS ANATOMICUS.

Atlas Anatomicus Partium Corporis Humani Per Strata Dispositarum Imagines. In Tabwhas XXX. Ab Augusto Andorffo Delineatas Ferroque Incisas, Exhibens. Editio Sexta, non Mutata. The Thirty Plates contain in all Seventy-six Figures, with Very Full References to all the Muscles, Arteries, Ligaments, etc. Making one of the Finest Anatomical Works ever Published. Printed on Heavy Paper. 1 Vol., Quarto. Plain Plates, $\$ 4.00$; Colored. Price.
\$10.00

FERBER'S DIAGRAM OF THE THORAX.

A Model Diagram of the Thorax and Upper Part of the Abdomen. By A. Ferber. This is a Colored Lithographic Representation in a Dissected Form, or four leaves showing the above organs as they are met with in the different stages of an Autopsy or in Dissections, and will prove of service in showing the exact Position of the Large Viscera and Blood-Vessels in l'ost-Mortem Examinations. It also possesses the great merit of Clearness and Portalility. On Heavy Paper. Bomnd on Canvas and in Wooden Frame. 4to size. Price.
\$2.25

JONES' AURAL ATLAS.

In Atlas of Diseases of the Membrana Tympani. With Sixty-three Colored Figures, and appropriate letter-press. Quarto, bound in eloth. Price.................. \$6.oo

THE STUDENT'S GUIDE SERIES.

Under this general title the publishers are issuing a New Series of Medical Text-Books, or Hand-Books for Practitioners, Moderate in Size and Price, and comprising a Series of Treatises on the Elementary and Practical Branches of Medicine. Each one complete in itself. Prepared by Men of Established Reputation. Containing a Condensed Summary of the Existing State of the Science adapted to the wants of all classes of Medical Men. Sold Separately.

NOW READY.

1. The Student's Guide to the Practice of Miduifery. By D. Lloyd Roberts, M. D., Vice-President of the Obstetrical Society of London, Physician to St. Mary's Hospital, Manchester. With 95 Engravings. Price, $\$ 2.00$

2. The Stuleut's Guide to Mumen Osteology. By William War
wick Wagstaffe, F. R. C. S., Assistant-Surgeon to, and Lecturer on Anatomy
at St. Thomas's Hospital. With 23 full-page Colored Plates, and 66 En
gravings
3. The Sturlent's Guiale to Dental Auntomy abial Surgery. By
Henry E. Sewill, M. R. C. S. Eng., L. D. S., Dental Surgeon to the West
London Hospital. With 77 Engravings.
4. Surgical Emergencies. A Manual Containing Concise Descriptions of Various Aceidents and Emergencies, with Directions for their Immediate Treatment. By W. P. Swain, M. D., Surgeon to the Royal Albert Hospital, etc. With 82 Wood Engravings.
5. A Mramal of Minor Surgery amel Bamdaging, for the Use of House Surgeons, Dressers, and Junior Practitioners. By Christopher Heath, F. R. C. S., Surgeon to University College Hospital, etc. With a Formule and 86 Illustrations
 W. B. Dalby, F. R. C. S., Aural Surgeon to St. George's Hospital. With 21 Illustrations. 1.50
6. The Stulemt's Matul-Book of the 1'ractice of Medicine. With Nicroseopic and other Illustiations. By Prof. Cirarteris, of Glasgow Uni- versity 2.00
7. Pirceticell Gyuacology. A Hand book for Students and Practitioners. With Illustrations. By Heywood Smitif, M.D., Physician to the Inospital for Women, etc 1.50
JUST PUBLISHED.
Proctical Surgery. Including Surgical. Dressings, Bandaging Ligations, and Amputations. By J. Ewing Mears, M.D., Demonstrator of Surgery in Jefferson Medical College, etc, etc. 227 Ilhstrations. 2.00
Athill's Clinieal Lectures on Disedses Peculirn to Women. Fifh Edition. Revised and Enlarged. With numerons Illustrations, 2.25

MEDICAL, DENTAL, PHARMACEUTICAL AND SCIENTIFIC BOOKS

pubushed by

LINDSAY \& BLAKISTON, Philadelphia.

AITKEN (william), M. D.,
 Professor of Pathology it the Army Medical School, \&c.

THE SCIENCE AND PRACTICE OF MEDICINE. THIRD American, from the Sixth London Edition. Thorotghly Revised, Remodelled, many portions Rewritten, with Additions almost equal to a Third Volume, and numerous additional Illustrations, without any increase in bulk or price. Containing a Colored Map showing the Geographical Distribution of Disease over the Globe, a Lithographic Plate, and nearly 200 Ilhustrations on Wood.
Two volumes, royal octavo, bound in cloth, price,
$\$ 12.00$
" " 6 " leather, . . 14.00
For eighteen months Dr. Aitken has been engaged in agatin carefully revising this Great Work, and udding to it many valnable additions and improvements, amonnting in the aggregate almost to a volume of new matter, included in which will be found the adoption and ineorporation in the text of the "New Nomenclature of the Royul College of Physicians of London;" to which are added the Defuitions and the Foreign liquivalents for their English names; the New Classification of Disease as adopted by the Royal College of Physicians, de.

The American editor, Meredith Clymer, M. D., has also added to it many valuable articles, with special reference to the wants of the American PracTITIONER.

The work is now, by almost universal consent, both in England and the United States, acknowledged to be in advance of all other works on The Science and Iractice of Medicine. It is a most thorough and complete TExT-Book for students of medieine, following such a systematic arrangenent as will give them a consistent view of the main facts, doctrines, and practice of medicine, in aceordance with aceurate physiologrical and pathological prineiples and the present state of science. For the practitioner it will be found equally acceptable as a work of reference.

ALLingham (william), F.R.C.S.,

Surgeon to St, Mark's Hospital for Fistula, \&c.
FISTULA, HEMORRHOIDS, PAINFUL ULCER, STRICTURE, PROLAPSUS, and other Diseases of the Rectum, their Diagnosis and Treatment. Third Edition, Revised and Enlarged by the Author. Price
This book has been well reeeived by the Profession ; the first cdition sold rapidly; the present one has been revised by the author, and some additions made chiefly as to the mode of treatment.

The Medical Press and Circular, speaking of it, says: "No book on this speeial subjeet can at all approach Mr. Allingham's in precision, clearness, and pratetical good sense."

The London Lancet: "As a praetical guide to the treatment of affections of the lower bowel, this book is worthy of all commendation."

The Edinburgh Monthly: "We cordially recommend it as well deserving the careful study of Physiciaus and Surgeons."
cine. With jlasgow Uni-

Practitioners. the Hospital
\qquad
ir Immediate bert Ilospital,
r the Use of Curistopher etc. With a

ATTHILL (Lombe), M. D.,

Fellow and Examiner in Midwifery, King and Queen's College of Physiclans, Dubiln.
CLINICAL LECTURES ON DISEASES PECULIAR TO WO. MEN. Fifth Edition, Revised and Enlarged, with numerous Illustrations. Price
$\$ 2.25$
The value and popularity of this book is proved by the rapid sale of the first edition, Which was exhausted in less tham a year from the time of its publication. It appears to possess three great merits: First, It treats of the diseases very common to females. Second, ft treats of them in a thoroughly clinical and practicnl maner. Third, It is concise, original, and illustrated by numerons cases from the unthor's own experience. His style is clear and the volume is the result of the unthor's large and accurate clinicul observation recordein a remarkable, perspicuous, mul terse manuer, and is conspicnms for the best qualities of a practical guide to the sludeut and practitioner. - British DIedieul Journal.

ADAMS (wilíinm), F. R.C. S.,

Surgeon to the Royal Orthopedic and Great Northern Hospitals.
CLUB-FOOT: ITS CAUSES, PATiHOLOGY, AND TREAT. MENT. Being the Jacksonian Prize Essay of the Royal College of Surgeons. A New Revised and Enlarged Edition, with 106 Illustrations engraved on Wood, and Six Lithographic Plates. A large Octavo Volume. Price

ADAMS (robert), M. D., Regius Professor of Surgery in the University of Dublin, \&c., \&c.
RHEUMATIC GOUT, or CHRONIC RHEUMATIC ARTHRITIS OF ALL THE JOIN''S. The Second Edition. Illustrated by numerous Woodcuts, and a quarto Atlas of Plates. 2 Volumes. Price $\$ 7.50$

ALTHAUS (Julius), M.D.,

Physician to the Infirmary of Epilepsy and Paralysis.
A TREATISE ON MEDICAL ELECTRICITY, Theoretical and Practical, and its Use in the Treatment of Paralysis, Neuralgia, and other Diseases. Third Edition, Enlarged and Revised, with One Hundred and Forty-six Illustrations. In one volume octavo. Price . $\$ 6.00$
In this work both the scientific and practical aspects of the subject are ably, concisely, and theroughly treated. It is much the best work treating of the remedial effects of electricity in the Euglish language. - New York Medical Record.

ARNOTT (henry), F.R.C.S.

CANCER: its Varieties, their Histology and Diagnosis. With Five Lithographic Plates and Twenty-two Wood Engravings. Price \$2.00

> AGNEW (D. HAyES), M. D.,
> Professor of Surgery in the University of Pennsylvania.

TH. LACERATIONS OF THE FEMALE PERINEUM, AND VESICO-VAGINAL FISTULA, their History and Treatment, with numerous Illustrations. Octavo. Price
$\$ 1.50$
Prof. A_{4} iw has leen a most indefatigable laborer in this department, and his work stands deservedly nigh in the estimation of the profession. It is well illnstrated, und full descriptions of the operations and instruments employed are given, --Canada Lancet.

Mr. Acton has done good service to society by grappling manfully with sexual vice, and we trust that others, whose position as men of seience mud teachers enable them to spenk with anthority, will assist in combating and arresting the evils which it entails. The spirit which pervades his book is one which does credit equally to the head and to the heart of the author.-British und Foreign Medico-C'hirurgical Review.

AVELING (J. H.), M. D.,

Physician to Chelsea Hospital for Discases of Women.
THE INFLUENCE OF POSTURE ON WOMEN IN GYNECIC AND OBSTETRIC PRACTICE. Octavo. Cloth. Price . $\$ 2.00$

ANSTIE (francis e.), M.D.,
Lecturer on Materia Medica and Therapeutics, etc.

STIMULANTS AND NARCOTICS. Their Mutual Relations, with Special Researches on the Action of Alcohol, Ether, and Chloroform on the Vital Organism. Octavo.
$\$ 3.00$

> ANDERSON (m'CALL), M.D.,

Professor of Clinical Medicine in the University of Glasgow, \&c.
TIC ARTHRIn. Illustrated by ites. 2 Volumes.

- $\$ 7.50$

Theoretical and euralgia, and other vith One Hundred Price $\$ 6.00$ rea ably, concisely, and ial effects of electricity
hosis. With Five hgs. Price $\$ 2.00$

RINEUM, AND d Treatment, with $\$ 1.50$
AND TREAT Royal College of h io6 Illustrations A large Octavo $\$ 5.00$

cc., \&c.

BEALE (lionel s.), M.D.

 DISEASE GERMS: AND ON THE TREATMENT OF DISEASES CAUSED BY THEM.> Part I. SUPPOSED NATURE OF DISEASE GERMS PART II. -REAL NATURE OF DISASE GERMS. PART IH. -THE DESTRUCTION OF DLSEASE GERMS.

Second Edition, much enlarged, with Twenty-cight full-page Plates, containing 117 Illustrations, many of them colored. Demy Octavo. Price
$\$ 4.00$
This new edition, besides including the contents revised and enlarged of the two former editions published by Dr. Beale on Disease Germs, has an entirely new part added on "The Destruction of Disease Germs."

SAME AUTHOR.

BIOPLASM. A Contribution to the Physiology of Life, or an Introduction to the Study of Physiology and Mcdicine, for Students. With Numerous Illustrations. Price
$\$ 2.25$
This volume is intended as a Texp-Book for Students of Physiology, explaining the nature of some of the most important changes which are charaeteristic of and peculiar to living beings.
PROTOPLASM, OR MATTER AND LIFE. Third Edition, very much Enlarged. Nearly 350 pages. Sixtcen Colored Plates. One volume. Price $\$ 3.00$
Part I. dissentient. Part II. demonstrative.' Part iif. suggestive.
HOW TO WORK WITH THE MICROSCOPE. Fourth Edition, containing 400 lllustrations, many of them colored. Octavo. Price

Abstract

This work is a complete manual of inicroseopical manipulation, and contains a ful! deseription of many new processes of investigation, with directions for examining objects under the highest powers, and for taking photographs of microseopic objeets.

ON KIDNEY DISEASES, URINARY DEPOSITS, AND CALCULOUS DISORDERS. Inicluding the Symptoms, Diagnosis, and Treatment of Urinary Diseases. With full Directions for the Chemical and Microscopical Analysis of the Urine in Health and Disease. The Third Edition. Seventy Plates, 415 figures, copied from Nature. Octavo. Price $\$ 10.00$
THE USE OF THE MICROSCOPE IN PRACTICAL MEDICINE. For Students and Practitioners, with full directions for examining the various secretions, \&c., in the Microscope. Fourth Edition. 500 Illustrations. Octavo. Much enlarged. Price . . $\$ 7.50$

BLOXAM (C. L.), Professor of Chemistry in King's College, London.
CHEMISTRY, INORGANIC AND ORGANIC. With Experiments and a Comparison of Equivalent and Molecular Formulæ. With 276 Engravings on Wood. Third London Edition, revised. Octavo. Price, in cloth, $\$ 4.00$; leather, $\$ 3.00$

SAME AUTHOR.

LABORATORY TEACHING; OR PROGRESSIVE EXERCISES IN PRACTICAL CHEMISTRY. Third Edition. With Eighty-ninc Engravings. Crown Octavo. Price . . . $\$ 2.00$

NT OF DIS-

MS.
is.
ull-page Plates, Demy Octavo. $\$ 4.00$ of the two former part added on "The
ife, or an IntroStudents. With $\$ 2.25$
xplaining the nature d peculiar to living
d Edition, very ed Plates. One $\$ 3.00$
II. SUGGESTIVE.

Fourth Edition, avo. Price
ontains a ful: descriping objeets under the

S, AND CAL-
Diagnosis, and for the Chensical ad Disease. The d from Nature. \$10.00
ICAL MEDIctions for examFourth Edition.
$\$ 7.5^{\circ}$

With ExperiFormule. With revised. Octavo. $\$ 5.00$

SSIVE EXEREdition. With $\$ 2.00$

BENNETT (J. henry), M. D.
NUTRITION IN HEALTH AND DISEASE. A Contribution to Hygiene and to Clinical Medicine. Third Edition, Revised and Enlarged. Octavo. . Cloth. Price
$\$ 2.50$
BY SAME AUTHOR.
THE TREATMENT OF PULMONARY CONSUMPTION BY HYGIENE, CLIMATE, AND MEDICINE. With an Appendix on the Sanitaria of the United States, Switzerland, and the Balearic Islands. The Third Edition, much Enlarged. Octavo. Price . $\$ 2.50$

BUCKNILL (john charles), M.D., \& TUKE (daniel h.), M.D. A MANUAL OF PSYCHOLOGICAL MEDICINE: containing the Lunacy Laws, the Nosology, (Etiology, Statistics, Description, Diagnosis, Pathology (including Morbid Histology), and Treatment of Insanity. Fourth Edition, much enlarged, with 'Ten Lithographic Plates, and numerous other Illustrations. Octavo. Preparing.
This edition will contain a number of pages of additional matter, and, in consequence of recent advances in Psychological Medicinc, several chupters will be rewritten, bringing the Classification, Pathology, and 'Treatment of husanity up to the present time.

BROWNE (j. h. balfour), Esq.

MEDICAL JURISPRUDENCE OF INSANITY. Second Edition, very much Enlarged. With References to the Scotch and American Decisions, etc., etc. Octavo. Price $\$ 5.00$

BIDDLE (JOHN в.), M. D.,

Professor of Materia Medica and Therapeutics in the Jefferson Medical College, Philadelphia, \& a,
MATERIA MEDICA, FOR THE USE OF STUDENTS. With Illustrations. Eighth Edition, Revised and Enlarged. Price $\$ 4.00$
This new and thoroughly revised edition of Professor Biddle's work has incorporated in it all the improvements as adopted by the New United States Pharmacopeia just issued. It is designed to present the leading facts and principles usually eomprised under this head as set forth by the standard authorities, and to fill a vacuum which seems to exist in the want of an elemeutary work on the subject. The larger works usually recommended as text-books in our Medical sehools are too voluninous for convenient use. This will be found to contain, in a condensed form, all that is most valuable, and will supply students with a reliable guide to the course of lectures on Materia Medica as delivered at the various Medical schools in the United States.

BALFOUR (G. w.), M. D., Physici:n to the Royal Infirmary, Edinburgh, Lecturer on Clinical Medicine, \&c. CLINICAL LECTURES ON DISEASES OF THE HEART AND AORTA. With Illustrations. Octavo. Price . . . $\$ 4.00$

> BYFORD (w. н.), A. M., M. D.,

Professor of Obstetrics and Diseases of Women and Children in the Chicago Medical College, \&c.
PRACTICE OF MEDICINE AND SURGERY. Applied to the Diseases and Accidents incident to Women. Second Edition, Revised and Enlarged. Octavo. Price

> SAME AUTHOR.

ON THE CHRONIC INFLAMMATION AND DISPLACEMENT OF THE UNIMPREGNATED UTERUS. A New, Enlarged, and Thoroughly Revised Edition, with Numerous Illustrations. 8vo. \$2.50
Dr. Byford writes the exact present state of medical knowledge on the subjects presented; and does this so clearly, so concisely, so truthfully, and so completely, that his book on the uterns will always meet the approval of the profession, and be everywhere regarded as a popular standard work. -Buffalo Medical and Surgical Journal.

BLACK (D. Campbell), M. D.,

L. R. C. S. Edinburgh, Member of the General Council of the University of Glasgor', \&c., \&c. THE FUNCTIONAL DISEASES OF THE RENAL, URINARY, and Reproductive Organs, with a General View of Urinary Pathology. Price
Tho style of the author is clear, ensy, and agreeable, . . . his work is a valuable contribution to medienl science, and being penned in that disposition of unprejudiced plitiosophient inquiry which should always guide a true phssician, admirably embodies the spirit of its opening quotatiou from Professor Muxley. - Philada. Med. Tïnes.

BY SAME AUTHOR.

LECTURES ON BRIGHT'S DISEASE OF THE KIDNEYS. Delivered at the Royal Infirmary of Glasgow. With 20 Illustrations, engraved on Wood. One volume, octavo, in Cloth. Price . $\$ 1.50$

BENTLEY and TRIMEN'S

MEDICINAL PLANTS. A New Illustrated Work, now Publishing in Monthly Parts. Thirty-seven Parts now ready. Eight Colored Plates in each Part. Price, each, .
This work includes full botanical deseriptions, and an account of the properties and uses of the principal plants employed in mediene, especinl attention being paid to thase which are officimal in the British and United States Pharmacopeias. The plnuts which supply foorl and substmnees required by the sick and convaleseent will be also included. Lach species will be illustrated by a colored plate drawn from nature.

BEASLEY (hEnRy).

THE BOOK OF PRESCRIPTIONS. Containing over 3000 Prescriptions, collected from the Practice of the most Eminent Physicians and Surgeons-English, French, and American ; comprising also a Compendious History of the Materia Medica, Lists of the Doses of all Officinal and Established Preparations, and an Index of Diseases and their Remedies. Fifth Edition, Revised and Enlarged. Price \$2.25 BY SAME AUTHOR.
THE POCKET FORMULARY: A Synopsis of the British and Foreign Pharmacopœias. Tenth Revised Edition. Price . $\$ 2.25$ THE DRUGGIST'S GENERAL RECEIPT BOOK and VETERINARY FORMULARY. Eighth Edition. Just Ready. Price, \$2.25
BIRCH (s. B.), M. D.,
Member of the Royal Colleg of Physicians, \&.,
BOWELS; the Various Causes and the Different
Third Edition. Price $\$ 1.00$

BRAUNE-BELLAMY.

A^{N}. . S OF TOPOGRAPHICAL ANATOMY. After Plane dons of Frozen Bodies, containing Thirty-four Full-page Photo${ }_{5}$ raphic Plates and numerous other Illustrations on Wood. By Wilhelm Braune, Professor of Anatomy in the University of Leipzig. Translated and Edited by Edward Bellamy, F. R. C. S., Senior Assistant Surgeon to, and Lecturer on Anatomy and Teacher of Operative Surgery at, the Charing Cross Hospital, London. A large quarto volume. Price in cloth, $\$ 12.00$; half morocco, .
$\$ 14.00$
gor; \&c., \&c,
, URINARY, ary Pathology.

- \$2.00
a valuable contri. liced philosophicn! es the spirit of its

KIDNEYS. - Illustrations, rice . $\$ 1.5^{\circ}$
now PublishEight Colored $\$ 2.00$
rroperties and uses aid to those which mits which supply cluded. Each spe-

1g over 3000 Eminent Physicomprising also the Doses of all of Diseases and Price $\$ 2.25$
e British and ice $\quad \$ 2.25$ nd VETERIPrice, $\$ 2.25$

1 the Different $\$ 1.00$

After Plane Ill-page PhotoBy Wilhelm eipzig. Transor Assistant Surerative Surgery quarto volume.

COHEN (i. solis), M. D.
Lecturer on Laryngoscopy and Diseases of the Throat and Chest in Jefferson Medical College,
ON INHALATION. ITS THERAPEUTICS AND PRACTICE Including a Description of the Apparatus employed, \&c. With Cases and Illustrations. A New Enlarged Edition. Price . . $\$ 2.50$

SAME AUTHOR.

CROUP. In its Relations to Tracheotomy. Price

> CARSON (JOSEPH), M. D., Professor of Materia Medica and Pharmacy in the University.

A HISTORY OF THE MEDICAL DEPARTMENT OF THE UNIVERSITY OF PENNSYLVANIA, from its Foundation in 1765 : with Sketches of Deceased Professors, \&c.
$\$ 2.00$

CHARTERIS (mathew), M. D.,

Member of Hospital Staff ard Prifessor in University of Glasgow.
STUDENTS' HAND-BOOK OF THE PRACTICE OF MEDICINE. With Microscopic and other Illustrations. Price . $\$ 2.00$
This book forms one volume of the Students' Guide Series, or Text-Booke, now ha course of publication.

CARPENTER (w. b.), M.D., F.R.S.

THE MICROSCOPE AND ITS REVELATIONS. The Fifth London Edition, Revised and Enlarged, with more than 500 Illustrations.
$\$ 5.00$

> CORR (L. н.), M. D.

OBSTETRIC CATECHISM, or Obstetrics reduced to Questions and Answers. With Numerous Illustrations. Price . . \$2.00

CHAVASSE (p. henry), F.R.C.S., Author of Advice to a WIfe, Advice to a Mother, \&c,

APHORISMS ON THE MENTAL CULTURE AND TRAINING OF A CHILD, and on various other subjects relating to Health and Happiness. Addressed to Parents. Price
$\$ 1.00$
Dr. Chavasse's works have been very favorably received and had a large circulation, the valuc of his adviee to WIVES and MOTHERS having thus been very generally recognized. This book is a sequel or companion to them, and it will be foum both valuable nud important to all who have the cure of families, and who want to bring up their children to become useful men and women. It is full of fresh thoughts and graceful illustrations.

CLARKE (w.fairlie), M. D., Assistant Surgeon to Charing Cross Hospital.

CLARKE'S TREATISE ON DISEASES OF THE TONGUE. With Lithographic and Wood-cut Illustrations. Octavo. Price $\$ 4.50$ It contains The Auatomy and Physiology of the Tongue, Importance of its Minute Examination, Its Congenital Defeets, Atrophy, Hypertrophy, Parasitic Diseases, Inflammation, Syphilis and its effects, Various Tumors to whieh it is subject, Accidents, Injuries, \&c., \&c.

> COOPER (s.).

A DICTIONARY OF PRACTICAL SURGERY AND ENCYCLOPÆDIA OF SURGICAL SCIENCE. New Edition, brought down to the present time. By Samuel A. Lane, F.R.C.S., assisted by other eminent Surgeons. In two vols., of over 1000 pages each. \$12.00

CLAY (charles), M. D.

Fellow of the London Obstetrical Society, \&c.
THE COMPLETE HAND-BOCK OF OBSTETRIC SURGERY, or, Short Rules of Practice in Every Emergency, from the Simplest to the most Formidable Operations in the Practice of Surgery. First American from the Third London Edition. With numerous Illustraticns. In one volume.
$\$ 2.00$

CHAMBERS (тномas к.), M. D.,

LECTURES, CHIEFLY CLINICAL. Illustrative of a Restorative System of Medicine.
CORMACK (sir john rose), K. B., F. R.S. E., M. D.
Edinburgh and Paris, Fellow Royal College of Physiclans, Physician to the Hertford British Hospital, Paris, \&c. CLINICAL STUDIES, Illustrated by Cases observed in Hospital and Private Practice. With Illustrative Plates. 2 Volumes. Octavo. $\$ 5.00$

COBBOLD (t. spencer), M.D., F.R.S.
WORMS: a Series of Lectures delivered at the Middlesex Hospital on Practical Helminthology. Post Octavo. \$1.75

CLEAVELAND (с. н.), M. D.,

Member of the American Medical Association, \&c.
A PRONOUNCING MEDICAL LEXICON. Containing the Correct Pronunciation and Definition of Terms used in Medicine and the Collateral Sciences. Improved Edition, Cloth, \$1.00; Tucks, \$1.25 This work is not only a Lexicon of all the words in common use in Medieine, but it is also a Pronouncing Dictionary, a feature of great value to Medical Students. To tine Dispenser it will prove an excellent aid, and also to the Pharmaceutical Student. It has received strong commendation both from the Medical Press and from the profession.

COLES (oakley), D.D.S.

Dental Surgeon to the Hospital for Diseases of the Throat, \&c.

A MANUAL OF DENTAL MECHANICS. Containing much information of a Practical Nature for Practitioners and Students. INOLUDING
The Preparation of the Mouth for Arificial Teeth, on Taking Impressions, Various Modes of Applying Heat in the Laboratory, Casting in Plaster of Paris and Metn, Precions Metals used in Dentistry, Making Gold Plates, Various Forms of Porcelain used in Mechanical Dentistry, Pivot Teet'1, Choosiug and Adjusting Mineral Teeth, the Vulcanite Base, the Celluloid Base, Tr'satment of Deformities of the Mouth, Receipts for Making Gold Plate and Solder, etc., etc.
With 140 Illustrations. Price
ON DEFORMITIES OF THE MOUTH, CONGENITAL AND ACQUIRED, with their Mechanical Treatment. Second Edition, Revised and Enlarged. With Illustrations. Price,

> DOMVILLE (Edward j.), M. D.

A MANUAL FOR HOSPITf $/ 2$ NURSES and Others engaged in Attending the Sick. $\mathbf{1 2 m o}$. Price

SURGERY, the Simplest to Surgery. First nerous Illustra$\$ 2.00$
a Restorative

E., M. D.

Ish Hospital, Paris, \&c.
n Hospital and
Octavo. \$5.00

S.

lesex Hospital
$\$ 1.75$
aining the CorIedicine and the ; Tucks, \$1.25 Medicine, but it is lents. To tie Disnt. It has received pn.
training much Students.
mpressions, Various f Paris and Metal, Forms of Porcelain Mineral Teeth, the he Mouth, Receipts
$\$ 2.00$
NITAL AND nd Edition, Re-
ers engaged in $\$ 1.00$

CLARK (f. le gros), F. R. S.,
Senlor Surgeon to St. Thomas's Hospital.
OUTLINES OF SURGERY AND SURGICAL PATHOLOGY, including the Diagnosis and Treatment of Obscure and Urgent Cases, and the Surgical Anatomy of some Important Structures and Regions. Assisted by W. W. Wagstaffe, F. R. C. S., Resident Assistant-Surgeon of, and Joint Lecturer on Anatomy at, St. Thomas's Hospital. Second Edition, Revised and Enlarged. Price
$\$ 2.00$

> COTTLE (e. wyndham), M. A., F. R. C. S., \&c.

THE HAIR IN HEALTH AND DISEASE. Partly from Notes by the late George Nayler, F. R. C. S., Surgeon to the Hospital for Diseases of the Skin, \&c. 18 mo . Cloth. Price
$\$ 0.75$

> CURLING (T. в.), F. R. S.,
> Consulting Surgeon to the London Hospital, \&c.

A PRACTICAL TREATISE ON THE DISEASES OF THE TESTIS AND OF THE SPERMATIC CORD AND SCROTUM. Fourth Revised and Enlarged Edition. Octavo. Price. . $\$ 5.5^{\circ}$

BY SAME AUTHOR.
OBSERVATIONS ON DISEASES OI THE RECTUM. With Illustrations. Fourth Edition, Revised and Enlarged. Octavo. Cloth. Price

CAZEAUX (r.), M. D., Adjunct Professor of the Faculty of Medicine, Parls, etc.

 A THEORETICAL AND PRACTICAL TREATISE ON MIDWIFERY, including the Diseases of Pregnancy and Parturition. Translated from the Seventh French Edition, Revised, Greatly Enlarged, and Improved, by S. Tarnier, Clinical Chief of the Lying-In Hospital, Paris, etc., with numerous Lithographic and other Illustrations. Price, in Cloth, $\$ 6.00$; in Leather$\$ 7.00$
M. Cazeaux's Great Work on Obstetrics has become elassical in its character, and almost an Encyclopredin in its fulness. Written expressly for the use of students of medicine, its teachings are plain and explicit, presenting a condensed summary of the leading principles establighed by the masters of the obstetric art, and such clear, practical directions for the management of the pregnant, parturient, and puerperal states, as have been sanctioned by the most authoritative practitioners, and confirmed by the author's own experience.

DOBELL (horace), M. D.,

Senior Physician to tio Hospital.
WINTER COUGH (CATARRH, BRONCHITIS, EMPHYSEMA, ASTHMA). Lectures Delivered at the Koyal Hospital for Diseases of the Chest. The Third Enlarged Edition, with Colored Plates. Octavo. Price
$\$ 3.50$
BY SAME AUTHOR.
ON LOSS OF WEIGHT, BLOOD-SPITTING, AND LUNG DISEASE. With a Colored Frontispiece of the Lung, a Tabular Map, \&c., \&c. Octavo. Cloth. Price $\$ 3.25$

DIXON (james), F. R. C. S.
 Surgeon to the Royal London Ophthalmic Hospital, \&c.

A GUIDE TO THE PRACTICAL STUDY OF DISEASES OF THE EYE, with an Outline of their Medical and Operative Treatment, with 'Test Types and Illustrations. Third Edition, thoroughly Revised, and a great portion Rewritten. Price

- \$2.00

Mr. Dixon's book is essentially a practical one, written by an observant author, who brings to his special subject a sound knowledge of general Medicine and Surgery.-Dublin Quarterly.

DILLNBERGER (DR. Emil).

A HANDY-BOOK OF THE TREATMENT OF WOMEN AND CHILDREN'S DISEASES, according to the Vienna Medicnl School. Part I. The Diseases of Women. Part II. The Diseases of Children. Translated from the Second German Edition, by P. Nicol, M. D. Price
$\$ 1.50$
Many practitioners will be glad to possess this little manual, which gives a large mass of practical hints on the treatment of diseases which probably make up the larger half of every-day practice. The translation is well made, and explanations of reference to German medicinal preparations are given with proper fulness. - The Practitioner.

DUNGLISON (richard j.), M. D.

THE PRACTITIONER'S REFERENCE BOOK. Containing Therapeutic and Practical Hints, Dietetic Rules and Precepts, and other General Information Useful to the Physician, Pharmacist, and Student. Octavo. Cloth. Price $\$ 3.5^{\circ}$

DUCHENNE (DR. G. b.).

LOCALIZED ELECTRIZATION AND ITS APPLICATION TO Pathology and Therapeutics. Translated by Her. bert Thbits, M.D. With Ninety-two Illustrations. Price . $\$ 3.00$
Duehenne's great work is not only a well-nigh exhanstive treatise on the medical uses of Eiectricity, but it is also an elaborate exposition of the different diseases in which Electricity has proved to be of valne as a therapentic and diagnostic agent.

Part II., illustrated by chromolithographs and numerous wood-cuts, is preparing.

DURKEE (silas), M.D.,

Fellow of the Massachusetts Medical Soclety, \&c.
GONORRHEEA AND SYPHILIS. The Sixth Edition, Revised and Enlarged, with Portraits and Eight Colored Illustrations. Octavo. Price $\$ 3.50$
Dr. Durkee's work impresses the reader in favor of the author by its general tone, the thorough honesty everywhere evinced, the skill with which the book is arranged, the manner in which the facts are cited, the elever way in which the author's experience is brought in, the lucidity of the reasoning, and the care with which the therapentics of venereal complaints are treated. - Lancet.

DRUITT (robert), F.R.C.S.

THE SURGEON'S VADE-MECUM. A Manual of Modern Surgery. The Eleventh Revised and Enlarged Edition, with 369 Illustrations. Price. .

EASES OF

 ve Treatment, ghly Revised, - $\$ 2.00$thor, who brings nulin Quarterity.

MEN AND edic-1 School. s of Children. Nicol, M. D. $\$ 1.50$ ves a large mass e larger half of erence to German

Containing Precepts, and harmacist, and $\$ 3.50$

PLICATION lated by Her. rice . $\$ 3.00$ e medical uses of in which Electric.
s preparing.
tion, Revised ions. Octavo. $\$ 3.5^{\circ}$
general tone, the ranged, the manerience is brought of venereal com.

DALBY (w. в.), F. R. C. S.,
Aural Surgeon to St. George's Hospital.

LECTURES ON THE DISEASES AND INJURIES OF THE

 EAR. Delivered at St. George's Hospital. With Illustrations. PriceWe cordially reeommend this admirable volume by Mr. Dalby as a trustworthy guide in the treatment of the afteetions of the ear. The book is moderate in price, beautifully illus. trated by wood-ents, und got up in the best style. - Glasyow Medical Jourmul.

DAY (william henry), M. D., Physician to the Samaritan Hospital for Women and Children, \&c.
HEADACHES, THEIR NATURE, CAUSES, AND TREATMENT. Second Edition. 12 mo . Cloth. Price . . $\$ 2.00$ DUNGLISON (robley), M. D., Late Professor of institutes of Medicine, \&c., in the Jefferson Medical College, A HISTORY OF MEDICINE, from the Earliest Ages to the Commencement of the Nineteenth Century. Edited by his son, Richard J. Dunglison, M. D. $\$ 2.50$

ELLIS (Edward), M. D.,

 Physician to the Victorla Hospital for Sick Chlldren, \&c.A PRACTICAL MANUAL OF THE DISEASES OF CHILDREN, with a Formulary. Third Enlarged Edition, Revised and Improved. One volume. $\$ 2.00$
The author, in issuing this new efition of his book, says: "I have very earefully revised each chapter, adding several new sections, and making considerable aditions where the subjects seemed to require fuller treatment, without, however, sacrifieing eonciseness or unduly inereasing the bulk of the volume."

FOTHERGILL (j. milner), M. D., Assistant Physician to City of London Hospital for Diseases of the Chest, \&c.

THE HEART, ITS DISEASES AND THEIR TREATMENT, including the Gouty Heart. Second Edition, Entirely Rewritten and Enlarged, with Two Full-Page Lithographic Plates and Forty other Illustrations. Octavo. Price
"Dr. Fothergill's remarks on rest, on proper blood nutrition in Heart Disease, in the treatment of Sequele of it, and on the action of special medicines, all indieate that in studying the pathology of Heart Disease, he has earnestly kept in view the best means of mitigating suffering aud of prolonging life." - Lancet.

> FOX (cornelius b.), M. D.

SANITARY EXAMINATIONS of Water, Air, and Food. gravings. 8vo. Price
$\$ 4.00$

> FOX (tilbury), M. D., F. R. C. P.

Physiolan to the Department for Skin Diseases in University Coilege Hospital,
ATLAS OF SKIN DISEASES. Consisting of a Series of Colored Illustrations, in Monthly Parts, together with Descriptive Text and Notes upon Treatment ; each Part containing Four Plates, reproduced by Chromo-Lithography from the work of Willan•\& Bateman, or taken from Original Sources. Now Complete in 18 Parts. Price, per Part, $\$ 2.00$; or in one large Folio volume, bound in cloth. Price . . $\$ 30.00$

FENNER (c. s.), M. D., \&c.
VISION: ITS OPTICAL DEFECTS, and the Adaptation of Spectacles ; embracing Physical Optics, Physiological Optics, Errors of Refraction and Defects of Accommodation, or Optical Defects of the Eye. With 74 Illustrations. Selections from the Test Types of Jaeger and Snellen, etc. Octavo. Price
$\$ 3.5^{\circ}$
FOSTER (balthazar), M.D., Professor of Medicine in Queen's College.
LECTURES AND ESSAYS ON CLINICAL MEDICINE. Revised and Enlarged by the Author. With Engravings. Octavo. Price

FRANKLAND (e.), M. D., F. R. S., \&c.
HOW TO TEACH CHEMISTRY, being the substance of Six Lectures to Science Teachers. Reported, with the Author's sanction, by G. George Chaloner, F. C. S., \&c. With Illustrations . \$1. 25

FENWICK (samuel), M.D., F.R.C.P.
THE MORBID STATES OF THE STOMACH AND DUODENUM, AND THEIR RELATIONS TO THE DISEASES OF OTHER ORGANS. With Ten Plates.
$\$ 4.25$
FLINT (austin), M. D.,
Professor of the Principles and Practice of MedicIne, \&c., Bellevue Hospital College, New York.
CLINICAL REPORTS ON CONTINUED FEVER. Based on an Analysis of One Hundred and Sixty-four Cases, with Remarks on the Management of Continued Fever; the Identity of Typhus and Typhoid Fever; Diagnosis, \&c., \&c. Octavo. Price . . $\$ 2.00$

GANT (frederick j.), F. R. C. S.,

 Assisted by Drs. Morrell, Mackenzie, Barnes, Erasmus Wilson, and other Specialists,THE SCIENCE AND PRACTICE OF SURGERY. Second Edition. 1700 Pages. 1000 Illustrations. 2 Vols. Price, cloth, $\$ 11.00$; sheep .
$\$ 13.00$
DISEASES OF THE BLADDER, PROSTATE GLAND, AND URETHRA, including a Practical View of Urinary Diseases, Deposits, and Calculi. Fourth Edition, Revised and Enlarged. With New Illustrations. Now Ready. Price .

AN ATLAS OF HUMAN ANATOMY. Illustrating the Anatomy of the H:mian Body, in a Series of Dissections. Accompanied by References and an Explanatory Text. To be completed in Twelve or Thirteen Bi-monthly Parts, Folio Size, each Part containing Four large Colored Plates, or Eight Figures. Seven Parts Now Ready. Price per Part
$\$ 2.5^{\circ}$
tion of SpecErrors of Rects of the Eye. of Jaeger and
$\$ 3.5^{\circ}$

CINE. Re1gs. Octavo. $\$ 3.00$
ge, New York,
R. Based on h Remarks on f Typhus and $\$ 2.00$

pecialists.

RY. Second cloth, \$11.00; \$1.00
AND, AND eases, Deposits, With New Il$\$ 3.5^{\circ}$
the Anatomy companied by 1 in Twelve or ing Four large ly. Price per
$\$ 2.50$

GROSS (samuel d.), M. D., Professor of Surgery in the Jefferson Medical College, Philadelphia, etc. AMERICAN MEDICAL BIOGRAPHY OF THE NINETEENTH CENTURY. With a Portrait of Benjamin Rush, M.D. Octavo. \$3.50

GREENHOW (e. headlam), M. D.,
 Fellow of the Royal College of Physiclans, etc.

ON CHRONIC BRONCHITIS, Especially as Connected with Gout, Emphysema, and Diseases of the Heart. Price . . . $\$ 1.5^{\circ}$

BY SAME AUTHOR.

ADDISON'S DISEASE. Being the Cronian Lectures for 1875. Delivered before the Royal College of Physicians. Revised, and Illustrated by numerous Cases and 5 full-page Colored Engravings. One volume, octavo. Price .
$\$ 3.00$

HARLEY (George), M. D., F. R. C. P.,

Physician to University College Hospital,
THE URINE AṄD ITS DERANGEMENTS: With the Application of Physiological Chemistry to the Liagnosis and Treatment of Constitutional as well as Local Diseases. New Revised and Enlarged Edition preparing. With Engravings.

We have here a valuable addition to the librery of the practising physician; not only for the information which it contains, but also for the suggestive way in which many of the subjects are treated, as well as for the fact that it contains the ideas of one who thoroughly believes in the future capabilities of Therapeuties based on Physiological facts, and in the important service to be rendered by Chemistry to Physiological investigation.

American Journal of the Medical Science.
HEATH (christopher), F. R.C.S., Surgeon to University College Hospltal and Holme Professor of Clinical Surgery in University Cołtege. OPERATIVE SURGERY. Elegantly Illustrated by 20 Large Colored Plates, Imperial Quarto Size, each Plate containing several Figures, drawn from Nature by M. Léveillé, of Paris, and Colored by hand under his direction. Complete in Five Quarterly Parts. Price, per Part, $\$ 2.50$; or in one volume, handsomely bound in cloth. Price $\$ 14.00$

HEWITT (Graily), M. D.,

Physiclan to the British Lying-In Hospltal, and Lecturer on Diseases of Women and Children, \&c. THE DIAGNOSIS, PATHOLOGY, AND TREATMENT OF DISEASES OF WO IEN, including the Diagnosis of Pregnancy. Founded on a Course of Lectures delivered at St. Mary's Hospital Medical School. The Third Edition, Revised and Enlarged, with new Illustrations. Octavo. Price in Cloth . . . $\$ 4.00$ " Leather . . . 5.00 This new edition of Dr. Hewitt's book has been so much modified, that it may be considered substantially a new book; yery much of the matter has been entirely rewritten, and the whole work has been rearranged in such a manner as to present a most decided improvement over previons editions. Dr. ILewitt is the leading elinieal teacher on Diseases of Women in London, and the characteristic attention paid to Diagnosis ly him has given his work great popularity there. It may mquestionably be considered the most valuable guide to correct Diagnosis to be found ia the English language.

HILLIER (thomas), M.D.,
 Physician to the Hospltal for Sick Children, \&c.
 A CIINICAL TREATISE ON THE DISEASES OF CHILDREN.
 Octavo. Price
 $\$ 2.00$
 We have said enough to indicate and ilfustrate the excellence of Dr. Hillier's volume. It is eminently the kind of book needed by all medical men who wish to cultivate clinical aceuracy and sound practice. - London Lancet.

HOLDEN (luther), F.R.C.S.

HUMAN OSTEOLOGY, comprising a Description of the Bones with Delineations of the Attachments of the Muscles, \&c. With numerous Illustrations. Fifth Edition, carefully Revised. Price, $\$ 5.5^{\circ}$ HOLDEN'S MANUAL OF DISSECTIONS OF THE HUMAN BODY. Fourth London Edition. With Illustrations. Price . LANDMARKS, MEDICAL AND SURGICAL. Second Edition, Revised and Enlarged. Price
$\$ 1.00$

HARRIS (chapin a.), M. D., D. D.S.

Late President of and Professor of the Principles and Practice of Dental Surgery in the Baltimore College, \&cc. THE PRINCIPLES AND PRACTICE OF DENTBTRY. Tenth Revised Edition. . In great part rewritten, rearranged, and with many new and important Illustrations. Including-1. Dental Anatomy and Physiology. 2. Dental Pathology and Therapeutics. 3. Dental Surgery. 4. Dental Mechanics. Edited by P. H. Austen, M.D., Professor of Dental Science and Mechanism in the Baltimore College of Dental Surgery. With nearly 400 Illustrations, including many new ones made especially for this edition. Royal octavo. Price, in cloth, $\$ 6.50$; in leather
This new edition of Dr. IIarris's work has been thoroughly revised in all its parts-more so than any previous edition. So great have been the advances in many branches of dentistry, that it was found necessary to rewrite the artieles or subjects, and this has been done in the most efficient manner by Professor Austen, for many years an associate and friend of Dr. Harris, assisted ly Protessor Gorgas and Thomas S. Latimer, M. D. The publishers feel assured that it will now be fonnd the most complete text-book for the student and guide for the practitioner in the English language.

> SAME AUTHOR.

A DICTIONARY OF MEDICAL TERMINOLOGY, DENTAL SURGERY, AND THE COLLA'TERAL SCIENCES. Fourth Edition, Carefully Revised and Enlarged, by Ferdinand J. S. Gorgas, M. D., D.D.S., Professor of Dental Surgery in the Baltimore College, \&c., \&c. Royal octavo. Price, in cloth, $\$ 6.50$; in leather

The many advances in Dental Seience rendered it necessary that this edition should be thoroughly revised, which has been done in the most satisfactory manner b! Professor Gorgas, Dr. Harris's successor in the Baltimore Dental College, he having added nearly three thonsand new words, besides making many additions and correutions. The closes of the more prominent medicinal agents have also heen added, and in every way the book has been greatly improved, and its value euhanced as a work of reference.

> HABERSHON (s. o.), M. D., F. R. C. P.,

Senior Physician, Guy's Hospltal.

ON DISEASES OF THE ABDOMEN, STOMACH, and Other Parts of the Alimentary Canal. Third Edition. 8vo. Price . \$5.00

CHILDREN.

$\$ 2.00$
llier's volume. It cultivate clinical
of the Bones les, \&c. With d. Price, $\$ 5.5^{\circ}$ HE HUMAN Price .
econd Edition, \$1.00
altlmore College, \&\&. TRY. Tenth and with many il Anatomy and 3. Dental Suren, M.D., Prosore College of ling many new Price, in cloth, $\$ 7.50$ all its parts - more anches of dentistry, as been done in the and friend of Dr. The publishers feel adent and guide for

Y, DENTAL Fourth Edition, Gorgas, M. D., ollege, \&c., \&c.
$\$ 7.5^{\circ}$
edition should be
y Professor Gorgas, natirly three thondoses of the more ook has been greatly

CH , and Other Price . $\$ 5.00$

HÁRDWICH AND DAWSON.
HARDWICH'S MANUAL OF PHOTOGRAPHIC CHEMISTRY.
With Engravings. Eighth Edition. Edited and Rearranged by G.
Dawson, Lecturer on Photography, \&c., \&c. 12mo. . . \$2.00
The object of the Editor has been to give practieal instruction in this faseinating art, and to lead the novice from first principles to the higher branches, impressing him with the value of eare and exactuess in every operntion.

HEADLAND (f. w.), M. D.,
Feliow of the Royal College of Physicians, \&c., \&c.

ON THE ACTION OF MEDICINES IN THE SYSTEM. Sixth American from the Fourth London Edition. Revised and Enlarged. Octavo. Price
$\$ 3.00$
Dr. Headland's work gives the only seientifie and satisfactory view of the aetion of medicine; and this not in the way of idle speeulation, but by demonstration and experiments, and inferenees almost as indisputable as demonstrations. It is truly a great seientifie work in a small eompass, and deserves to be the haul-book of every lover of the Profession. It has reeeived the approbation of the Medical Press, both in this connry and in Europe, and is pronouneed by them to be the most original and practically useful work that has been issued for many years.

HOFF (o.), M. D.

ON HÆMATURIA as a Symptom of Diseases of the Genito-Urinary Organs. Illustrated. 12mo. Cloth. \$0.75

HEATH (christopher), F.R.C.S., Surgeon to University College Hospital, \&c.
INJURIES AND DISEASES OF THE JAWS. The Jacksonian Prize Essay of the Royal College of Surgeons of England, 1867. Second Edition, Revised, with over 150 Illustrations. Octavo. Price, $\$ 4.25$
SAME AUTHOR.
A MANUAL OF MINOR SURGERY AND BANDAGING, for the Use of House Surgeons, Dressers, and Junior Practitioners. With a Formulæ and Numerous Illustrations. 16mo. Price . $\$ 2.00$

HAYDEN (thomas), M. D.;

 Fellow of the King and Queen's Collage of Physicians, \& \& c, \& c.THE DISEASES OF THE HEART AND AORTA. With 8i Illustrations. In two volumes, Octavo, of over $\mathbf{1 2 0 0}$ pages. Price, $\$ 6.00$

HUFELAND (c. w.), M.D.
the art of prolonging Life. Edited by Erasmus Wilson, M. D., F. R.S., \&c. 12 mo . Cloth.
$\$ 1.00$
HAY (тHOMAS), M. D.,

HISTORY OF A CASE OF RECURRING SARCOMATOUS TUMOUR OF THE ORbIT IN A CHILD. With Three Full Page Illustrations, representing the Tumour in its Various Stages. Price, $\$ 0.50$

HEWSON (addinell,) M. D.
 Attending Surgeon Pennsylvania Hospital, \&c.

EARTH AS A TOPICAL APPLICATION IN SURGERY. Being a full Exposition of its use in all the Cases requiring Topical Applications admitted in the Surgical Wards of the Pennsylvania Hospital during a period of Six Months. With Illustrations. Price $\$ 2.50$

HUTCHINSON (jonathan), F. R. C. S.

Senior Surgeon to the London Hospital,
ILLUSTRATIONS OF CLINICAL SURGERY. Consisting of Plates, Phetographs, Wood-cuts, Diagrams, etc., Illustrating Surgical Diseases, Symptoms and Accidents, also Operations and other Methods of Treatment. With Descriptive Letter-press. io Parts Bound, complete in itself. Price, $\$ 25.00$. Parts 1 I and 12 now ready. Price, $\$ 2.50$ WOPProspectuses furnished upon application.

HODGE (hugil l.), M. D.
Emeritus Professor In the University of Pennsylvania.
HODGE ON FQETICIDE, OR CRIMINAL ABORTION. Fourth Edition. Price, in paper, 30 cents; in cloth, . \$0.50
HODGE'S (h. lenox) NOTE-BOOK FOR CASES OF OVARIAN TUMORS. With Diagrams, etc. Price, . . . \$0.50

> HOLDEN (Edgar), A. M., M. D., Of Nowark, New Jersey. CONTAINING THREE iundred illustrations.
THE SPHYGMOGRAPH. Its Physiological and Pathological Indications. The Essay to which was awarded the Stevens Triennial Prize in the College of Physicians and Surgeons in New York, April, 1873. Illustrated by Three Hundred Engravings on Wood. One volume octavo. Price.

HOOD (г.), M. D.
 A TREATISE ON GOUT, RHEUMATISM, AND THE ALLIED AFFECTIONS. Crown octavo.

JONES (h. macnaughton), M. D., M. Ch.
A PRACTICAL TREATISE ON AURAL SURGERY. Illustrated. $\mathbf{r} 2 \mathrm{mo}$. Price . $\$ 1.50$

> JONES (T. wharton), F.R.S.

DEFECTS OF SIGHT AND HEARING. Their Nature, Causes, Prevention, \&rc. Second Edition. Price

JONES, SIEVEKING, and PAYNE.

a MANUAL OF PATHOLOGICAL ANATOMY. By C. Handfield Jones, M. D., F. R. S., Physician to St. Mary's Hospital ; and Edward H. Sieveking, M.D., F.R.C.P., Physician to St.Mary's Hospital. A New and Enlarged Edition. Edited by J. F. Fayne, M.B., F.R.C.P., Assistant Physician and Lecturer on Morbid Anatomy at St. Thomas's Hospital. With Numerous Illustrations.

By C. HandHospital ; and St. Mary's Hosfayne, M.B., Anatomy at St. - . $\$ 5.5^{\circ}$
JAMES (Prosser), M. D., M. R. C. P.,

SORE THROAT: Its Nature,Varieties, and Treatment, and its Connection with other Diseases. Third Edition. Colored Plates. $\mathbf{1} 2 \mathrm{mo}$. Price
$\$ 2.00$

JONES' AURAL ATLAS.

AN ATLAS OF DISEASES OF THE MEMBRANA TYMPANI. Being a Series of Colored Plates, containing 62 Figures. With appropriate Letter-Press and Explanatory Text by H. McNaughton Jones, M.D., Surgeon to the Cork Ophthalmic and Aural Hospital. 4 to. Cloth. Price
$\$ 0.00$

LAWSON (george), F.R.C.S.,

Surgeon to the Royal London Ophthalmic Hospital.
DISEASES AND INJURIES OF THE EYE, THEIR MEDICAL and surgical treatment. Containing a Formulary, Test Types, and Numerous Illustrations. Price $\$ 2.00$
This Mannal is admirahly elear and eminently p rtieal. The reader feels that he is in the hands of a teacher who has a right to speak w1. authority, and who, if he mry be said to be positive, is so from the fulness of knowledge and experienee, and who, while well acquainted with the writings and labors of other authorities on the matters he treats of, has himself practically worked out what he teaches. - London Medical Times und Gazette.

LEBER \& ROTTENSTEIN (DRs.).

DENTAL CARIES AND ITS CAUSES. An Investigation into the Influence of Fungi in the destruction of the Teeth, translated by Thomas H. Chandler, D.M.D., Professor of Mechanical Dentistry in the Dental School of Harvard University. With Illustrations. Octavo. Price

$$
\$ 1.25
$$

This work is now considered the best and most elaborate work on Dental Caries. It is everywhere quoted and relied upon as authority by the profession, who have seen it in the original, and by authors writing on the subject.

> LEGG (J. WICKHAM), M. D.
> Member of the Royal College of Physiclans, \&c.

A GUIDE TO THE EXAMINATION OF THE URINE. For the Practitioner and Student. Fourth Edition. 16mo. Cloth. Price, \$0. 75
Dr. Legg's little manual has met with remarkable suceess; the speedy exhaustion of two editions has enabled the author to make certain emendations which add greatly to its value. It can confidently be commended to the student as a safe and reliable guide.

LEARED (arthur), M.D., F.R.C.P.
IMPERFECT DIGESTION: ITS CAUSES AND TREATMENT. The Sixth Edition, Revised and Enlarged. $\$ 1.50$

> KOLLMEYER (A. H.), A. M., M. D.
> Professor of Materia Medica and Therapeutics, Montreal College,

CHEMIA COARTATA; or, The Key to Modern Chemistry. With Numerous Tables, Tests, \&c., \&c. Price,
$\$ 2.25$

> LIVEING (EDWARD), M. D.

ON MEGRIM, SICK-HEADACHE, AND SOME ALLIED DISORDERS. With Colored Plate. Octavo . . . $\$ 5.25$

LEWIN (DR. GEORGE).
Professor at the Fro-Wilh. University, and Surgeon-In-Chief of the Syphillic Wards and Skin Diseases of the Charity Hospital, Berlin.
THE TREATMENT OF SYPHILIS by Subcutancous Sublimate Injections. With a Lithographic Plate illustrating the Mode and Proper Place of administering the Injections, and of the Syringe used for the purpose. Translated by Carl Pragler, M.D., late Surgeon in the Prussian Service, and E. H. Gale, M.D., late Surgeon in the United States Army. Price
$\$ 1.5^{\circ}$
MASON (francis), F. R. C. S., Surgeon and Lecturer on Anatomy at St. 'Thomas' Hospltal, \&c.
THE SURGERY OF THE FACE. With 100 Illustrations, Engraved on Wood, of Various Operations Performed. Octavo. Cloth. Price, \$2.25

MEIGS and PEPPER.

A PRACTICAL TREATISE ON THE DISEASES OF CHIL-

 dren. By J. Forsyth Meigs, M.D., Fellow of the College of Physicians of Philadelphia, \&c., \&c., and Whllam Pepper, M.D., Physician to the Philadelphia Hospital, \&c. Sixth Edition, thoroughly Revised and greatly Enlarged, forming a Royal Octavo Volume of over 1000 pages. Price, bound in cloth, $\$ 6.00$; leather$\$ 7.00$
It is the most comblete work on the subject in onr languge. It contains at once the resulis of personal, mid the experience ot others. Its quotutions from the most recent anthorities, e^{\dagger}, home und ubroad, are anple, mud we think the authors deserve congratulations for having produced a book nuequalled for the use of the student and indispeusable as a work of reference for the practitioner. - American Medical Journal.

MEARS (J. ewing), M. D.,
Demonstrator of Surgery in Jefferson Medical College, \&c.

PRACTICAL SURGERY: Including Surgical Dressings, Bandaging, Amputation, \&c., \&c. 227 Illustrations. For the use of Students. Price, $\$ 2.00$
the Eighth
$\$ 0.50$ ral characterislebrated profegdenee, de., \&e.

Coilego, Calcutta. The Third ous Colored od, Snellen's $\$ 4.00$
aration and inence being ons. Cloth. Price, \$0.60
uses, SympCases. With $\$ 2.00$
R.

With an With New II-

Including Neck, \&c.

Price, \$0.75 EASES OF ulæ for Gar-

MENDENHALL (george), M.D.,
 Professor of Obstetrics in the Medical Collogo of Ohio, \&c,

MEDICAL STUDENT'S VADE MECUM. A Compendium of Anatomy, Physiology, Chemistry, the Practice of Medicinc, Surgery, Obstetrics, Diseases of the Skin, Materia Medica, Pharmacy, Poisons, \&c., \&c. Eleventh Edition, Revised and Enlarged, with 224 Illustrations. In cloth $\$ 2.00$

MAXSON (Edwin r.), M.D.,

Formerly Lecturer on the Practice of Medicine in the Geneva Medical College, \&c. THE PRACTICE OF MEDICINE.
$\$ 3.00$

MARSHALL (Jonn), F.R.S.,

Professor of Surgery, University College, London,
PHYSIOLOGICAL DIAGRAMS. Life-size, and Beautifully Colored. An Entirely New Edition, Revised and Improved, illustrating the whole Human Body, each Map printed on a single sheet of paper, seven feet long and three feet ninc inches broad.
No. 1. The Skeletom abd Ligaments. No. 7. The Brain and Nerves.
No. 2. The Muscles, Joints, and Animal Me- No. 8. The Organs of the Senses and Organs chanies.
No. 3. The Viscera in Position. - The Struc- No. 9. The Organs of the Senses. Plate 2. ture of the Lungs.
No. 4. The Organs of Circulation.
No. 5. The Lymphaties or Alsorbents.
No. 6. The Digestive Orgams.
No. 10. The Mieroscopic Structure of the Textures. Plate 1.

Price of the Set, Eleven Maps, in Sheets, $\$ 50.00$
" " " " handsomely Mounted on
Canvas, with Rollers, and varnished,
$\$ 80.00$
An Explanatory Key to the Diagram. Price $\$ 0.50$

MADDEN (т. м.), M. D

Author of "Climatology and the Use of Mineral Waters."
THE HEALTH RESORTS OF EUROPE AND AFRICA for the Treatment of Chronic Diseases. A Hand-llook the result of the Author's own Observations during several years of Health-Travel in many Lands, containing, also, the substance of the Author's former Work on Climatology and the Use of Mineral Waters. Octavo. Price
$\$ 2.50$

MAUNDER (c. f.), F. R.C.S.

Surgoon to the London Hospital; formerly Domonstrator of Anatomy at Guy's Hospltal.
OPERATIVE SURGERY. Second Edition, with One Hundred and Sixty-four Engravings on Wood. Price . . . $\$ 2.25$

BY SAME AUTHOR.

SURGERY OF THE ARTERIES, including Ancurisms, Wounds, Hrmorrhages, Twenty-seven Cases of Ligatures, Antiseptic, etc. With 18 Illustrations. Price . $\$ 1.50$

MAYNE (r. g.), M. D., and MAYNE (j.), M. D.
MEDICAL VOCABULARY: An Explanation of all Names, Synonyms, Terms, and Phrases unod in Medicine and the Relative Branches of Medical Science. 4th Edition. 450 pages. Price, $\$ 3.00$

MAYS (thomas j.), M. D.
ON THE THERAPEUTIC FORCES. An Effort to Consider the Action of Medicines in the Light of the Doctrine of Conservation of Force. 12 mo . Cloth. Price
$\$ 1.25$

MARTIN (Jонм н.).

Author of Microscopic 0bjects, \&c.

A MANUAL OF MICROSCOPIC MOUNTING. With Notes on the Collection and Examination of Objects, and upwards of One Hundred and Fifty llustrations. Second Edition, Enlarged. Price, \$2.75

MEADOWS (alfred), M. D.

Physiclan to the Hospital for Womon, and to tho General Lying-in Hospital, \&c.
MANUAL OF MIDIVIFERY. A New Text-Book. Including the Signs and Symptoms of Pregnancy, Obstetric Operations, Diseases of the Puerperal State, \&c., \&c. Second American from the Third London Edition. Revised and Eillarged. With 145 lllustrations. $\$ 3.00$
This book is espeeially valuable to the Student as containing in a condensed form a large amount of valuable information on the subject which it treats. It is also elear aud methodical in its arrangement, and therefore useful as a work of reference for the practitioner. The Illustrations are numerous and well excented.

> MILLER (James), F. R. C. S.
> Professor of Surgery University of Edinburgh.

ALCOHOL, ITS PLACE AND POWER. From the Nineteenth Glasgow Edition. 12mo. Cloth flexible. Price . . . \$0.50

LIZARS (john), M. D.
THE USE AND ABUSE OF TOBACCO. Price . . \$0.50

MILLER and LIZARS.

ALCOHOL: Its Place and Power. By James Miller, F.R.S.E., late Professor of Surgery in the University of Edinburgh, \&c.-THE USE and abuse of Tobacco. By John Lizars, late Professor to the Royal College of Surgeons, \&c. The Two Essays in One Volume. 12 mo .
$\$ 1.00$
loopital.
Hundred $\$ 2.25$
s, Wounds, , etc. With $\$ 1.50$

D.

Il Names, the Relative Price, $\$ 3.00$
onsider the iservation of $\$ 1.25$
th Notes on of Onc HunPrice, \$2.75

A, \&c,
ncluding the , Diseases of e Third Lontions. $\$ 3.00$ fed form a larye ar and methomiactitioner. The

Nineteenth $\$ 0.50$
$\$ 0.50$
R.S.E., late -THE USE rofessor to the One Volume. $\$ 1.00$

MARSDEN (alexander), M. D.
A NEW AND SUCCESSFUL MODE OF TREATING CERTAIN FORMS OF CANCER. Second Edition, Colored Plates. . $\$ 3.00$

Abstract

MACDONALD (ј. д.), M. D. Deputy Inspector-General of Hospitals, Assistant Professor of Hyglene, Army Medical School, \&c. A GUIDE TO THE MICROSCOPICAI EXAMINATION OF, Drinking Water. With Twenty Full-page Lithograjhic Plates, References, Tables, etc., etc. Octavo. Price . . . \$2.75

NORRIS (george w.), M. D.,
Late Surgeon to the Pennsyivania Hospital, \&c.
CONTRIBUTIONS TO PRACTICAL SURGERY, including numerous Clinical Histories, Drawn from a Hospital Scrvice of Thirty Years. In one Volume, Octavo. Price
$\$ 4.00$
OTT (ISAAC), M. D.,
Late Domonstrator of Experimental Physiology in the University of Pennsylvania.
THE ACTION OF MEDICINES. With Twenty-two Illustrations. Octavo. Cloth. Price
$\$ 2.00$
OGSTON (francis and francis, jr.), M. D. Profasenr of Medical Jurisprudence, and Assistant Professor in tho University of Aberdeen,
LECTURES ON MEDICAL JURISPRLDENCE. With Copperplate Illustrations. Octavo. Cloth
$\$ 6.00$
PHYSICIAN'S VISITING LIST, PUBLISHED ANNUALLY. sizes and prices.
For 25 Patients weekly. Tucks, pockets, and pencil, . . . $\$ 1.00$

interleaved edition.
For 25 Patients weekly, interleaved, tucks, pockets, \&c., . . $\mathbf{x} .25$

This Visiting List has now been publishel Twenty-8even Years, and has met with such uniform and hearty approval from the Profession, that the demand for it has steadily increased from year to year.

POWER, HOLMES, ANSTIE, and BARNES.

REPORTS ON THE PROGRESS OF MEDICINE AND SURGERY, PHYSIOLOGY, OPHTHALMIC MEDICINE, MIDWIFERY, DISEASES OF WOMEN AND CHILDREN, MATERIA MEDICA, \&c. Edited for the Sydenham Society of London. Octavo. Price

PARKES (Edward a.), M. D.,

Professo، of Military Hyglene in the Army Medical School, \&c. A MANUAL OF PRACTICAL HYGIENi:. The Fifth Revised
and Enlarged Edition, for Medical Officers of the Army, Civil Medical
Officers, Boards of Health, \&c., \&c. With many Illustrations. One
Volume Octavo. Price

This work, previously unrivalled as a text-book for medical officers of the army, is now equally unrivalled as a text-book for civil medical officers. The first book treats in successive chapters of water, air, ventilation, exan:ination of air, food, quality, choice, and cooking of food, beverages, and condiments; soil, habitations, removal of excreta, warming of houses, exercise, clothinc, elimate, meteorology, individual hygienic management, disposal of the dead, the prevention of some common diseases, disinfection, and statistics. The second book is devoted to the scrvice of the soldier, but is hardly less instructive to the civil officer of health. It is, in short, a comprehensive and trustworthy text-book of hygiene for the scientific or general reader.- London Lancet.

POWER (henry), M. B., F. R .C. S.,
Senlor Ophthaimio Surgeon to St, Bartholomew's Hospital. 'THE STUDENT'S GUIDE TO THE DISEASES OF THE EYE. With Engravings. Preparing.

PENNSYLVANIA HOSPITAL REPORTS.

EDITED BY A COMMITTEE OF THE HOSPITAL STAFF. J. M. Da Costa, M. D., and William Hunt, M. D. Vols. i and 2 ; each volume containing upwards of Twenty Original Articles, by former and present Members of the Staff, now eminent in the Profession, with Lithographic and other Illustrations. Price per volume . $\$ 2.00$
The first Reports were so favorably received, on both sides of the Atlantic, that it is hardly necessary to speak for thein the universal welcome of which they are deserving. The papers are all valnable contributions to the literature of medicine, reflecting great credit upon their authors. The work is one of which the Pennsylvania Hospital may well be proud. It will do much towards elevating the profession of this country.-American Journal of Obstetrics.

> PAGET (JAMES), F. R. S., Surgeon to St. Bartholomew's Hospltal, \&c.

SURGICAL PATHOLOGY. Lectures delivered at the Royal College of Surgeons of England. Third London Edition, Edited and Revised by William Turner, M. D. With Numerous Illustrations. Price, in cloth, $\$ 7.00$; in leather
$\$ 8.00$
A new and revised edition of Mr. Paget's Classical Lectures needs no introduction to our readers. Commendation would be as superfluons as criticism out of place. Every page bears evidence that this edition has been "carefully revised."-American Medical Journal.

PEREIRA (jonathan), M. D., F. R. S., \&c.

 PHYSICIAN'S PRESCRIPTION BOOK. Containing Lists of 1 Terms, Phrases, Contractions, and Abbreviations used in Prescriptions, with Explanatory Notes, the Grammatical Constructions of Prescriptions, Rules for the Pronunciation of Pharmaceutical Terms, a Prosodiacal Vocabulary of the Names of Drugs, \&c., and a Series of Abbreviated Prescriptions illustrating the use of the preceding terms, \&c. ; to which is added a Key, containing the Prescriptions in an unabbreviated Form, with a Literal Translation, intended for the use of Medical and Pharmaceutical Students. From the Fifteenth London Edition. Price, in cloth, ${ }^{\text {I }}$.00; in leather, with Tucks and Pocket, . . \$1.25th Revised ivil Medıcal itions. One $\$ 6.00$ e arny, is now reats in suceesce, and coroking mint of houses, disyusal of the s. The seeond the civil officer aygiene for the

THE EYE.

TS.
L STAFF. I and 2 ; each es, by former ofession, with $\$ 2.00$ that it is hardly ng. The papers credit upon their 3 proud. It will nul of Obstetrics.

Royal ColEdited and Illustrations. $\$ 8.00$
roduction to our Svery page bears l Journal.
c.

Lists of Prescriptions, ; of Prescriprms, a Prosoies of Abbrerms, \&c. ; to inabbreviated Medical and ition. Price, $\$ 1.25$

PARSONS (charles), M. D.,
Honorary Surgeon to the Dover Convalescent Homiss, \&c., \&c.
SEA-AIR AND SEA-BATHING. Their Influence on Health a Practical Guide for the Use of Visitors at the Seaside. r8mo. \$0.60

PARKER (iangston), F. R. C. S. L.
THE MODERN TREATMENT OF SYPHILITIC DISEASES. Containing the Treatment of Constitutional and Confirmed Syphilis, with numerous Cases, Formulæ,\&c.,\&c. Fifth Edition,Enlarged. \$4.25

PRINCE (David), M. D.

PLASTIC AND ORTHOPEDIC SURGERY. Containing I. A Report on the Condition of, and Advances made in, Plastic and Orthopedic Surgery up to the Year 1871. 2. A New Classification and Brief Exposition of Plastic Surgery. With numerous Illustrations. 3. Orthopedics: A Systematic Work upon the Prevention and Cure of Deformities. With numerous Illustrations. Octavo. Price . . . $\$ 4.50$
This is a good book upon an imprrtant practical subject ; carefully written and abundantly illustrated. It goes over the whole ground of deformities - fro \mathfrak{a} cleft-palate and club.foot to spinal curvatures and ununited fractures. It appears, moreover, to be an original book.-Medical and Surgical Reporter.

SAME AUTHOR.
GALVANO-THERAPEUTICS. A Revised reprint of A Report made to the Illinois State Medical Society. With Illustrations. Price,

PIESSE (G. w..sEPTIMUS), Analytlcal Chemist.
WHOLE ART OF PERFUMERY. And the Methods of Obtaining the Odors of Plants ; the Manufacture of Perfumes for the Handkerchief, Scented Powders, Odorous Vinegars, Dentifrices, Pomatums, Cosmetics, Perfumed Soaps, \&c. ; the Preparation of Artificial Fruit Essences, \&c. Second American from the Third London Edition. With Illustrations.

PIGGOTT (A. SNowden), M. D.,
 Practical Chemist.

COPPER MINING AND COPPER ORE. Containing a full Description of some of the Principal Copper Mines of the United States, the Art of Mining, the Mode of Preparing the Ore for Market, \&c., \&c. \$r.oo

> PAVY (F.

DIABETES. Researches on its Nature and Treatment. Third Revised Edition. Octavo
PHYSICIAN'S PRESCRIPTION BLANKS; with a Margin for Duplicates, Notes, Cases, \&c., \&c. Price, per package, Price, per dozen

RINDFLEISCH (Dr. edward).

Professor of Pathological Anatomy, Iniversity of Bonn.
TEXT-BOOK OF PATHOLOGICAL HISTOLOGY. Ás Intro. duction to the Study of Pathological Anatomy. Translated frum the German, by Wm. C. Kloman, M.D., assisted by F. T. Miles, M.D., Professor of Anatomy, University of Maryland, \&c., \&c. Containing Two Hundred and Eight elaborately executed Microscopical Illustrations. Octavo. Price, bound in Cloth,
$\$ 5.00$

> Leather,
6.00

This is now confessedly the leading book, and the only connplete one on the subject in the English language. The London Lancet says of it: "Rindfleiseh's work forms a mine which no pathological writer or student can afford to neglect, who desires to interpret aright pathological structural changes, and his book is consequently well known to readers of Gierman medical literature. What makes it especially valuable is the fact that it was originated, as its anthor himself tells us, more at the microscope than at the writing-table. Altogether the book is the result of honest hard labor. It is admirably as well as profusely illustrated, furnished with a capital Index, and got up in a way that is worthy of what must continue to be the standard book of the kind."

ROBERTS (frederick t.)., M. D., B. Sc.

Assistant Physician and Teacher of Clinical Medicine in the University College Hospital ; Assistant Physician Brompton Consumption Hospital, \&c.

A HAND-BOOK OF THE THEORY AND PRACTICE OF MEDICINE. Second Edition, Revised and Eniarged. Cloth, $\$ 5.00$ Leather, 6.00

This work has been prepared mainly for the use of Students, and its object is to present in as eondensed a form as the present extent of Medical Literature will permit, and in one volume, such information with regard to the Principles and Practice of Medicine, as shall be sufficient not only to enable them to prepare for the various examinations which they may have to undergo, but also to guide them in acquiring that Clinical Knowledge which can alone properly fit them for assuming the active duties of their profession. The work is also adapted to the wants of very many members of the profession who are already busily engaged in general Practice, and consequently have but little leisure and few opportunities for the perusal of the larger works on Practice or of the various special monographs.

REYNOLDS (J. Russell), M. D., F. R. S.,

Lecturer on the Principles and Practice of Medicine, University College, London.
LECTURES ON THE CLINICAL USES OF ELECTRICITY. Delivered at University College Hospital. Second Edition, Revised and Enlarged. Price $\$ \mathrm{I} .00$

RYAN (michael), Mĩi. D.
Member of the Royal College of Physiclans,
PHILOSOPHY OF MARRIAGE, in its Social, Moral, and Physical Relations; with an Account of the Diseases of the Genito-Urinary Crgans, \&c. Price
$\$ 1.00$
This is a philosophical discussion of the whole snbject of Marriage, its influences and results in all their varied aspects, together with a medical history of the reproductive functions of the vegetable and animal kingdoms, and of the nbuses and disorlers resulting from it in the latter. It is intended both for the professional and general reader.

RADCLIFFE (charles bland), M.D., Fellow of the Royal College of Physiclans of London, \&c.

Ans Intro. ed frum the 1LES, M.D., Containing ical Illustra$\$ 5.00$ 6.00 the subject in : forms a mine interpret aright readers of Gerwas originated, le. Altogether sely illustrated, must continue

Issistant Physician
CTICE OF Cloth, $\$ 5.00$ eather, 6.00
its object is to ure will permit, and Practice of for the various in in acquiring ning the active of very many 11 Practice, and al of the larger

-,
 ondon.

CTRICITY. tion, Revised $\$ 1.00$

LECTURES ON EPILEPSY; PAIN, PARALYSIS, and other Disorders of the Nervous System. With Illustrations. . . \$1.50
The reputation which Dr. Radeliffe possesses as a very able authority on nervous affections will commend his work to every medical practitioner. We recommend it as a work that will throw much light upon the Physiology and Pathology of the Nervous System. - Canada Medical Journal.

ROBERTSON (a.), M.D., D.D.S.

A MANUAL ON EXTRACTING TEETH. Founded on the Anatomy of the Parts involved in the Operation, the kinds and proper construction of the instruments to be used, the accidents likely to occur from the operation, and the proper remedies to retrieve such accidents. A New Revised Edition.
The author is well known as a contributor to the litcrature of the profession, and as a clear, terse, and practical writer. The subject is one to which he has devoted considerable attention, and is treaced with his usual care and ability. The work is valuable not only to the dental student and practitioner, but also to the medical student and surgeon. - Dental Cosmos.

REESE (john J.), M. D.,

 Professor of Medical Jurisprudence and Toxicology in the University of Pennsyivania. AN ANALYSIS OF PHYSIOLOGY. Being a Condensed View of the most important Facts and Doctrines, designed especially for the Use of Students. Second Edition, Enlarged. $\$ 1.50$> SAME AUTHOR.

THE AMERICAN MEDICAL FORMULARY. Price . $\$ 1.50$ A SYLLABUS OF MEDICAL CHEMISTRY. Price . $\$ 1.00$

RICHARDSON (joseph), D. D. S.

Late Professor of Mechanical Dentistry, \&c., \&c.

A PRACTICAL TREATISE ON MECHANICAL DENTISTRY.

Second Edition, muçh Enlarged. With over 150 beautifully executed Illustrations. Octavo. Price, in cloth, $\$ 4.00$; in leather, . $\$ 4.50$
This work does infinite credit to its author. Its comprchensive style has in no way interfered with most elaborate details where this is necessary; and the numerous and beautifully exeeuted wood-cuts with which it is illustrated make the volume as attractive as its instructions are easily uuderstood. - Edinburgh Med. Journal.

ROBERTS (Lloyd d.), M. D.,
Vice-President of the Obstetrical Society of London, Physician to St. Mary's Hospital, Manchester.
THE STUDENT'S GUIDE TO THE PRACTICE OF MIDWIFERY. With 95 Illustrations. Price $\$ 2.00$

RUTHERFORD (william), M. D., F.R.S. E.
Professor of t^{\prime} 'e Institutes of Medicine in the University of E:Anburgh.
OUTLINES OF PRACTICAL HISTOLOGY FOR STUDENTS and OTHERS. Second Edition, Revised and Enlarged. With Illustrations, \&c. Price
$\$ 2.00$

RIGBY and MEADOWS.

DR. RIGBY'S OBSTETRIC MEMORANDA. Fourth Edition,

 Revised and Enlarged, by Alfred Meadows, M. D., Author of "A Manual of Midwifery,' \&c. Price$\$ 0.50$

ROYLE'S MANUAL OF MATERIA MEDICA AND THERA-

 PEUTICS. The Sixth Revised and Enlarged Edition. Containing all the New Preparations according to the New British, American, French, and German Pharmacopoeias, the New Chemical Nomenclature, etc., etc. Edited by John Harley, M. D., F. R. C. P., Assistant Physician and Lecturer on Plysiology at St. 'Thomas's Hospital. With 139 Illustrations, many of them new. One vol., Demy Octavo. \$5.00STOCKEN (james), L. D. S. R. C. S.,

Lecturer on Dental Materia Mzdica and Therapeutics and Dental Surgeon to National Dental Hospital, THE ELEMENTS OF DENTAL MATERIA MEDICA AND THERAPEU'IICS. With Pharmacopoia. Second Edition. \$2.25

SANDERSON, KLEIN, FOSTER, and BRUNTON.

A HAND-BOOK FOR THE PHYSIOLOGICAL, LABORATORY. Being Practical Exercises for Students in Physiology and Histology, by E. Klein, M. D., Assistant Professor in the Pathological Laboratory of the Brown Institution, London; J. Burdon Sanderson, M. D., F. R. S., Professor of Practical Theology in Uliversity College, London; Micifael Foster, M.D., F.R.S., Fellow of and Prælector of Physiology in 'Irinity College, Cambridge; and 'I'. Lavder Brun ron, M.D., D.Sc., Lecturer on Materia Medica in the Medical College of St. Bartholomew's Hospital. Edited by J. Burdon-Sanderson. The Illustrations consist of One Hundred and Twenty-three o stavo pages, including over Three Hundred and Fifty Figures, with appropriate letter-press explanations attached and references to the text. Price, in one volume, Cloth, $\$ 6.00$; in Leather, $\$ 7.00$; or in two volumes, Cloth, $\$ 7.00$. Vol. I., containing the Text, sold separately, $\$ 4.00$.
We feel that we cannot recommend this work too highly. To those engaged in physiological work as students or teachers, it is almost indispensable: and to those who are not, a perusil of it will by no means be unprofitahle. 'The execation of the plates leaves noding to be desired. They are mostly original, and their arrangement in a separate volume has great and obvious advantages. - Dublin Journal of Medical Sciences.

SIEVEKING (E. н.), M. D., F.R.C.S.
THE MEDICAL ADVISER IN LIFE ASSURANCE. Price $\$ 2.00$
This book supplies, in a coneise and available form, such facts and figures as are required by the Plysicimin or Examiner to assist him in arriving at a correct estimate of the many contingencies upon which life insurance rests.

SWAIN (willinm paul), F.R.C.S.,

Surgeon to the Royal Albert Hospital, Devonport,
SURGICAL EMERGENCIES: A MANUAL CONTAINING CONCISE DESCRIPTIONS OF VARIOUS ACCIDENTS AND EMERGENCIES, WITH DIRECTIONS FOR THEIR IMMEDIATE TREATMENT. With numerous Wood Engravings. In one volume, z 2mo. Cloth. Price $\$ 2.00$

Edition, hor of " A $\$ 0.5^{\circ}$

THERAContaining American, Nomencla., Assistant ital. With tvo. $\$ 5.00$
ntal Hospital.
ICA AND
on. $\$ 2.25$
TON.
RATORY. listology, by Laboratory son, M. D., 'ollege, Lonctor of Physnron, M.D., e of St. Bar-

The Illusctavo pages, appropriate t. Price, in wo volumes, ly, $\$ 4.00$.
din physiologiwho are not, a leaves no:hing ate volume has

Price $\$ 2.00$ as are required te of the many

SMITH (william robert), Resident Surgeon, Hants County Hospital.

Abstract

LEC" "JRES ON THE EFFICIENT TRAINING OF NURSES FUR HOSPITAL AND PRIVATE WORK. With Illustrations. 12mo. Cloth. Price $\$ 2.00$

SMITH (heywood), M. D., Physician to the Hospital for Women, \& \& .
PRACTICAL GYNAECOLOGY. A Hand-Book for Students and Practitioners. With Illustrations. Price $\$ 1.50$
"It is obvionsly the work of a thoroughly intelligent praetitioner, well versed in his art." -British Medical Journal.

SANSOM (arthur ernest), M.B., Physician to Klng's College Hospital, \&c.
CHLOROFORM. Its Action and Administration. Price $\$ 1.50$ BY SAME AUTHOR. LECTURES ON THE PHYSICAL DIAGNOSIS OF DISEASES GF THE HEAR'T, intended for Students and Practitioners. \$1.50

SCANZONI (f. w. von),
 Professor in the University of Wurzburg.

A PRACTICAL TREATISE ON THE DISEASES OF THE SEXUAL ORGANS OF women. Translated from the French. By A. K. Gardner, M.D. With Illustrations. Octavo. . $\$ 5.00$

STOKES (william),
Regius Professor of Physic in the University of Dublin,
THE DISEASES OF THE HEART AND THE AORTA. Octavo.
$\$ 3.00$
SYDENHAM SOCIETY'S PUBLICATIONS. New Scries, 1859 to 1878 inclusive, 20 years, 8 r vols. Subscriptions received, and back years furnished at $\$ 9.00$ per year. Full prospectus, with the Reports* of the Society and a list of the Books published, furnished free upon application.

SANKEY (w. н. o.), M. D., F. R. C. P.
LECTURES ON MENTAL DISEASES. Octavo
$\$ 3.00$

SWERINGEN (hiram v.).
 Member American Pharmaceutical Assoclation, \&c.

PHARMACEUTICAL LEXICON. A Dictionary of Pharmaceu-

 tical Science. Containing a concise explanation of the various subjects and terms of Pharmacy, with appropriate selections from the collateral sciences. Formulæ for officinal, empirical, and dietetic preparations; selections from the prescriptions of the most eminent physicians of Europe and America; an alphabetical list of diseases and their definitions; an account of the various modes in use for the preservation of dead bodies for interment or dissection; tables of signs and abbreviations, weights and measures, doses, antidotes to poisons, \&c., \&c. Yes:gned as a guide for the Pharmaceutist, Druggist, Physician, \&c. Royil Octavo. Price in cloth$\$ 3.00$
" leather 4.00
SEWILL (h. e.), M. R. C. S., Eng., L. D. S., Dental Surgeon to the West London Hospital.
THE STUDENT \mathcal{S} UUODE TO DENTAL ANATOMY AND SURGERY. . With 77 Illustrations. Price
\$1.50

SHEPPARD (edgar), M. D.
 Professor of Psychological Medicine in KIng's College, London.

MADNESS, IN ITS MEDICAL, SOCIAL, AND LEGAL, ASPECTS. A series of Lectures delivered at King's College, London. Octavo. Price $\$ 2.25$

SAVAGE (henry), M. D., F. R. C. S.
Consulting Physiclan to the Samaritan Free Hospital, London.
THE SURGERY, SURGICAL PATHOLOGY, and Surgical Anatomy of the Female Pelvic Organs, in a Series of Colored Plates taken from Nature: with Commentaries, Notes, and Cases. Third Edition, greatly enlarged. A quarto volume. Price . \$12.00
\qquad -

SAVORY and MOORE.

A CONDENSED COMFENDIUM OF DOMESTIC MEDICINE AND COMPANION TO THE MEDICINE CHEST. With Engravings. 12 mo. Cloth. Price $\$ 0.50$

SUTTON (francis), F. C. S.
A SYSTEMATIC HAND-BOOK OF VOLUMETRIC ANALYSIS, or the Quantitative Estimation of Chemical Substances by Measure, Applied to Liquids, Solids, and Gases. Third Edition, enlarged. With numerous Illustrations. Now Ready. Price . . $\$ 5.00$

SMITH (eustace), M.D.
Physician to the East London Hespital for Diseases of Children, \&c.

harmaceu-
ous subjects ie collateral reparations; ysicians of their definiervation of id abbrevia$\mathrm{s}, \& \mathrm{c}$., \&c. ysician, \&c.
$\$ 3.00$
4.00

MY AND $\$ 1.5^{\circ}$

EGAL. ASge, London. $\$ 2.25$

TANNER (тhomas hawkes), M. D., F.R.C.P., \&c.
THE PRACTICE OF MEDICINE. Sixth American from the last London Edition. Revised, much Enlarged, and thoroughly brought up to the present time. With a complete Section on the Diseases Peculiar to Women, an extensive Appendix of Formulx for Medicines, Baths, \&c., \&c. Royal Octavo, over 1100 pages. Price, in cloth, $\$ 6.00$; leather
$\$ 7.00$
There is a common charaeter about the writings of Dr. Tanner-a characterstie whieh eonstitutes one of their chief values: they are all essentially mud thoroughly practieal. Dr. Thuner never, for one monent, allows this utilitarian end to escape his mental view. He aims at tetching how to reeognize and how to cure disease, and in this he is thoroughly successful. . . . It is, indeed, n wonderful mine of knowledge. - Medical Times.

SAME AUTHOR.

A PRACTICAL TREATISE ON THE DISEASES OF INFANCY AND CHILDHOOD. Third American from the last London Edition, Revised and Enlarged. By Alfred Meadows, M.D., London, M.R.C.P., Physician to the Hospital for Women and to the General Lying-in Hospital, \&c., \&c. Price .
$\$ 3.00$
TANNER'S INDEX OF DISEASES AND THEIR TREATMENT. Second Edition. Carefully Revised. With many Additions and Improvements. By W. H. Broadbent, M. D., F. R. C. P., Physician to the London Fever Hospital, \&c., \&c. Octavo. Cloth. $\$ 3.00$
A MEMORANDA OF POISONS. A New and much Enlarged Edition. Price
$\$ 0.75$
TYSON (james), M.D.,
Lecturer on Microscopy in the University of Pennsylvania, \&c.
THE CELL DOCTRINE. Its History and Present State, with a Copious Bibliography of the Subject, for the use of Students of Medicine and Dentistry. With Colored Plate, and numerous Illustrations on Wood. Second Edition. Price
$\$ 2.00$
BY SAME AUTHOR.
A PRACTICAL GUIDE TO THE EXAMINATION OF URINE. For the use of Physicians and Students. With a Colored Plate and numerous Illustrations Engraved on Wood. Second Edition. Just Ready. Price

TAFT (fonathan), D. D. S.,
Professor of Operative Dentistry in the Ohio Coliege, \& c_{1}
A PRACTICAL TREATISE ON OPERATIVE DENTISTRY. Third Edition, thoroughly Revised, with Additions, and fully brought up to the Present State of the Science. Containing over 100 Illustrations. Octavo. Price, in cloth, $\$ 4.25$. In leather, . . $\$ 5.00$

TURNBULL (laurence), M. D.
THE ADVANTAGES AND ACCIDENTS OF ARTIFICIAL AN ÆSTHESIA. A Manual of Anæsthetic Agents, Modes of Administration, etc. Second Edition, Enlarged. 25 Illustrations. Cloth.
\$1.50
THOMPSON (e. s.), M. D.,
Physician to Hospital for Consumption, etc,
COUGHS AND COLDS. Their Causes, Nature, and Treatment. 12mo. Cloth. Price $\$ 0.60$

TROUSSEAU (А.), Professor of Clinical Medicine to the Faculty of Medicine, Paris, \&c. LECTURES ON CLINICAL MEDICINE. Delivered at the Hôtel Dieu, Paris. Translated from the Third Revised and Enlarged Edition by P. Victor Bazire, M. D., London and Paris ; and John Rose Cormack, M.D., Edinburgh, F.R.S., \&c. With a full Index, 'Table of Contents, \&c. Complete in Two volumes, royal octavo, bound in cloth. Price $\$ 8.00$; in Leather
$\$ 10.00$
Trousseau's Lectures have attained a reputation both in England and this eountry far greater than any work of a similar character heretotion written; and, notwithstanding but few medical men could afford to purchase the expensive edition issued by the Sydenham Soeiety, it has had an extensive sale. In order, however, to bring the work within the reach of all the protession, the Iublishers now issuc this edition, eontaining all the leetures as contained in the five-volume edition, at onc-half the price. The London Lancet, in speaking of the work, says: "It treats of diseases ot daily oceurrence and of the most vital limterest to the practitioner. And we should think any medical library absurdly ineomplete now which did not have alongside of Watson, Graves, and Tanner, the "Clinical Medicine' of 'Trousseau."
The Sydenhum Society's Edition of 'Tronsseau can also be furnished in sets, or in separate volumes, as follows: Volumes I., II., and III., \&5. 00 each. Volumes IV. and V., \$4.00 each.

TILT (edward john), M. D.

THE CHANGE OF LIFE IN HEALTH AND DISEASE. A Practical Treatise on the Nervous and other Affections incidental to Women at the Decline of Life. Third London Edition. Price, $\$ 3.00$ SAME AUTHOR.
A HAND-BOOK OF UTERINE THERAPEUTICS AND OF DISEASES OF WOMEN. Fourth London Edition. Price, $\$ 3.5^{\circ}$

TOYNBEE (J.), F.R.S.

ON DISEASES OF THE EAR. Their Nature, Diagnosis, and Treatment. A new London Edition, with a Supplement. By James Hinton, Aural Surgeon to Guy's Hospital, \&c. And numerous Illustrations. Octavo.

THOMPSON (sir henry), F.R.C.S., \&c.
ON THE PREVENTIVE TREATMENT OF CALCULOUS DISEASE, and the Use of Solvent Remedics. Second Edition. \$1.00 PRACTICAL LITHOTOMY AND LITHOTRITY. Second Edition, with Illustrations. .
$\$ 3.5=$
THORNTON (w. Pugin), M. D.
Surgeon to Hospital for Diseases of the Throat, \&c.
ON TRACHEOTOMY, Especially in Relation to Diseases of the Larynx and Trachea. With Photographic and other lllustrations. Price

THOROWGOOD (јонм с.), M. D.,
Lecturer on Materia Medica at the Middlesex Hospital.
THE STUDENTS GUIDE TO MATERIA MEDICA. With Engravings on Wood. $\$ 2.00$

TYLER SMITH (w.), M.D.,
Physician, Accoucheur, and Lecturer on Midwifery, \&c.
ON OBSTETRICS. A Course of Lectures. Edited by A. K. Gardner, M.D. With Illustrations. Octavo. . . . $\$ 5.00$

THOROWGOOD (ј. c.), M. D.,

Physician to the City of London Hospital for Diseases of the Chest, and to the West London Hospital, \&c. NOTES ON ASTHMA. Its various Forms, their Nature and 'Treatment, including Hay Asthma, with an Appendix of Formulæ, \&c. Third Edition. Price
$\$ 1.50$
TIDY (с. меумотt), M. D.,
Professor of Chemistry in London Hospltal.
A HAND-BOOK OF MODERN CHEMISTRY, Organic and Inorganic. 8vo. 600 pages. Cloth, red edges. Price . . $\$ 5.00$

TOMES (јонл), F.R.S.
Late Dental Surgeon to the Middlesex and Dental Hospitals, \&c,
A SYSTEM OF DENTAL SURGERY. The Second Revised and Enlarged Edition, by Charles S. Tomes, M.A., Lecturer on Dental Anatomy and Physiology, and Assistant Dental Surgeon to the Dental Hospital of London. With 26_{3} Illustrations. Price . . $\$ 5.00$

> TOMES (c. s.), M. A.

Lecturer on Anatomy and Physiology, and Assistant Surgeon to the Dental Hospital of London.
A MANUAL OF DENTAL ANATOMY, HUMAN AND COMPARATIVE. With ${ }^{179}$ Illustrations. Now Ready. Price . $\$ 3.50$

> TRANSACTIONS OF THE COLLEGE OF PHYSICIANS OF PHILADELPHIA. New Series.

VOLUMES I., II., \& III. Price, per volume $\$ 2.50$

THUDICHUM (john L. w.), M. D.,
Lettsomian Professor of Medicine, Medical Society, London, \&c.
LCULOUS
tion. \$1.00 econd Edi\$3.5c
ases of the llustrations. $\$ 1.75$
A. With $\$ 2.00$

TIBBITS (herbert), M. D.

Medical Superintendent of the National Hospital for the Paralyzed and Epilentic, \&c. A HANDBOOK OF MEDICAL ELECTRICITY. With Sixty-
four large Illustrations. Small octavo. Price . . $\$ 1.50$ The author of this volume is the translator of Dueheme's great work on " Localizel Elertrization." Avoiding contested points in elcetro-physiology and therapeuties, he has prepared this handbook as containing all that is essentinl for the busy practitioner to know, not only when, but in Explicit AND FULL DETAIL, how to use Electricity in the treatment of disease, and to make the practitioner as much at home in the use of his eleetrical as his other medical instruments.

ARTHUR VACHER, Translator and Editor of Fresenius's Chemical Analysis,

WARING (edward john), F.R.C.S., F.L.S., \&c., \&c. PRACTICAL THERAPEUTICS. Considered chiefly with refer- . ence to Articles of the Materia Medica. Third American from the last London Edition. Price, in cloth, $\$ 4.00$; leather
There are many features in Dr. Waring's Therapeuties which render it especially valualle to the Praetitioner und Student of Medicine, mueh important and relinble informution being found in it not eontained in similar works; also in its completeness, the convenience of its arrangement, and the greater prominence given to the medicinal application of the various articles of ihe Materia Medicn in the treatment of morbid conditions of the Iltaman Body, \&e. It is divided into two parts, the alphabetieal arrungement being adopted throughout. It contains also an excellent INDEX OF Diseases, with a list of the medieines applieable as remedies, and a full Index of the medicines and preparations noticed in the work.

WYTHE (јoseph н), A.M., M.D., \&c.

THE PHYSICIAN'S POCKET, DOSE, AND SYMPTOM BOOK. Containing the Doses and Uses of all the PrincipalArticles of the Materia Medica, and Original Preparations; A Table of Weights and Measures, Rules to Proportion the Doses of Medicines, Common Abbreviations used in Writing Prescriptions, Table of Poisons and Antidotes, Classification of the Materia Medica, Dietetic Preparations, Table of Symptomatology, Outlines of General Pathology and Therapeutics, \&c. The Eleventh Revised Edition. Price, in cloth, \$r.00; in leather, tucks, with pockets,

THE MICROSCOPIST, a Compendium of Microscopic Science, Micro-Mineralogy, Micro-Chemistry, Bfology, Histology, and Pathological Histology. Elegantly Illustrated. Price . . . $\$ 4.5^{\circ}$

WILKS and MOXON.

LECTURES ON PATHOLOGICAL ANATOMY. By Samuel Wilks, M.D., F.R.S., Physician to, and Lecturer on Medicine at, Guy's Hospital. Second Edition, Enlarged and Revised. By Walter Moxon, M.D., F.R.S., Physician to, and late Lecturer on Pathology at, Guy's Hospital.

WILSON (erasmus), F.R.S.
HEALTHY SKIN. A Popular Treatise on the Skin and Hair, their Preservation and Management. Eighth Edition. Cloth. . . \$1.00
WILSON (george), M. A., M. D.Medical Officer to the Convict Prison at Portsmouth.
A HANDBOOK OF HYGIENE AND SANITARY SCIENCE.
With Engravings. Third Edition, carefully Revised. Containing Chapters on Public Health, Food, Air, Ventilation and Warming, Water, Water Analysis, Dwellings, Hospitals, Removal, Purification, Utilization of Sewage and Effects on Public Health, Drainage, Epi- demics, Duties of Medical Officers of Health, \&c., \&c. Price $\$ 3.00$

WAGSTAFFE (william warwick), F. R. C. S.

Asslstant-Surgeon and Lecturer on Anatomy at St. Thomas's Hospltai.

THE STUDENT'S GUIDE TO HUMAN OSTEOLOGY. With Twenty-three Lithographic Plates and Sixty Wood Engravings. 12 mo. Cloth. Price $\$ 3.00$

WARD ON AFFECTIONS OF THE LIVER AND INTESTINAL CANAL; with Remarks on Ague, Scurvy, Purpura, \&c. $\$ 2.00$

> WHEELER (c. GILBERT), M. D.,
> Professor of Chem'stry in the University of Ch'cago.

MEDICAL CHEMISTRY: Including the Outlines of Organic and Physiological Chemistry. Based in Part upon Riche's Manual De Chimie. Octavo. Cloth. Price $\$ 3.00$

WILSON (erasmus), F. R. C. S., \&c. CONTAINING THREE HUNDRED AND SEVENTY-ONE ILLUSTRATIONS. THE ANATOMIST'S VADE MECUM. A Complete System of Human Anatomy. The Ninth Revised and Enlarged London Edition. Edited and fully brought to the Science of the day by Prof. George Buchanan, Lecturer on Anatomy in Anderson's University, Glasgow, with many New Illustrations, prepared expressly for this Edition. Price
$\$ 5.00$
WEDL (carl), M. D.
Professor of Histology, \&c., in the University of Vienna,
DENTAL PATHOLOGY. The Pathology of the Teeth. With Special Reference to their Anatomy and Physiology. First American Edition, translated by W. E. Boardman, M.D., with Notes by Thos. B. Нıтснсоск, M.D., Professor of Dental Pathology and Therapeutics in the Dental School of Harvard University, Cambridge. With 105 Illustrations. Price, in Cloth, $\$ 3.50$; Leather, $\$ 4.5^{\circ}$
This work exhibits laborious researeh and medical eulture of no ordinary character. It eovers the entire field of Anatomy, Phriology, and Pathology of the Teeth. The anthor, Prof. Wedl, has thoroughly mastered the subjeet, using with great benefit to the book the very valuable material left by the late Ir. Heider, Professor of Dental Pathology in the Uni versity of Vienna, the result of the life-long work of this eminent man.

> WILKES (SAMUEL), M. D.

LECTURES ON DISEASES OF THE NERVOUS SYSTEM. Delivered at Guy's Hospital. With Additions. Numerous Illustrative Cases, etc.

WOODMAN and TIDY.

A TEXT-BOOK OF FORENSIC MEDICINE AND TOXICologgy. By W. Bathurst Woomman, M. D., St. And., Assistant Physician and Leeturer on Physiology at the London Hospital ; and C. Mfenott 'lidy, M. A., M. B., Lecturer on Chemistry, and Professor of Medical Jurisprudence and Public Health, at the London Hospital. With Numerous Illustrations. Now ready, cloth, $\$ 7.50$; leather, $\$ 8.50$

WELLS (J. saciberg),
 Ophthalmic Surgeon to KIng's College Hospital, \&e.

TREATISE ON. THE DISEASES OF THE EYE. Illustrated by Ophthalmoscopic Plates and numerous Engravings on Wood. 'The Third London Edition. Cloth, $\$ 5.00$; leather . . . $\$ 6.00$ This is the author's own edition, printed in London under his supervision, and issued in this country by special arrangement with him.

> SAME AUTHOR.

ON LONG, SHORT, AND WEAK SIGHT, and their Treatment by the Scientific Use of Spectacles. Fourth Edition Revised, with Additions and numerous Illustrations. Price
$\$ 2.25$

> WRIGHT (henry g.), M. D.,
> Member of the Royal College of Physicians, \&c.

ON HEADACHES. Their Causes and their Cure. From the London Edition. Seventh Thousand .
$\$ 0.50$
WILSON (joseph), M. D., Medical Director, U. S. N.
NAVAL HYGIENE - Human Health and the Means of Preventing Disease. With Illustrative Incidents derived from Naval Experience. Second Edition. With Colored Lithographs and other Illustrations. Octavo. Price
$\$ 3.00$

WALTON (haynes),

Surgeon in Charge of the Ophthalmic Department of, and Lecturer on Ophthalmic Medicine and Surgery In, St. Mary's Hıspital.
A PRACTICAL TREATISE ON DISEASES OF THE EYE, Third Edition. Rewritten and enlarged. With five plain, and three colored full-page plates, numerous Illustrations on Wood, Test Types, \&c., \&c. Octavo volume of nearly 1200 pages. Price . $\$ 9.00$

WATERS (п. т. н.), M. D., F.R.C.P., \&c.

DISEASES OF THE CHEST. Contributions to their Clinical History, Pathology, and Treatment. Second Edition, Revised and Enlarged. With numerous Illustrative Cases and Chapters on Hæmoptysis, Hay Fever, Thoracic Aneurism, and the Use of Chloral in certain Diseases of the Chest, and Plates. Octavo. Price
$\$ 4.00$

WALKER (alexander),
 Author of "Woman," "Beauty," \&c.

INTERMARRIAGE; or, the Mode in which, and the Causes why, Beauty, Health, intellect result from cer!ain Unions, and Deformity, Disease, and Insanity from others. With Illustrations. 12 mo . \$1.00

LINDSAY \& BLAKIS' 10 N, PHILADELPHIA.

For Sale by all Booksellers or mailed FREE on reccipt of price.

Roberts's Hand-Book of the Practice of Medicine. Uniformly commended by the Profession and the Press. Uctivo Price, bound in cloth, $\$ 5.00$; leather, $\$ 6.00$.
Troussenu's Clinical Medicine. Complete in two volumes, octavo. Price, in cluth, \$3.00: leather, \$10.00.
Aitken's Science and Practice of Medicine. Thurd American, from the Sixth London Edition. 'I'wo volumes, royal netavo. Price, in cloth, $\$ 12.00$; leather, $\$ 14.00$.
Sanderson's Hand.Book for the Physiological Laboratory. Exercises for Students in Playsiology and Histology. 353 Illustrations. Price, in one volume, cloth, $\$ 6.00$; leather, $\$ 7.00$.
Cazeaux's Text-Book of Obstetrics. From the Seventh French Edition, Revised and greatly Enlarged. With Illustrations. Cloth, \$6.co; leather, \$7.00.
Waring's Practical Therapeutics. From the 'Third Londen Edition. Cloth, $\$ 4.00$; leather, $\$ 5.00$.
Rindfleisch's Pathological Histology. Containing 208 elaborately executed Microscupical Illustrations. Cloth, 85.00 ; leather, $\$ 6.0$,
Meigs and Pepper's Practical Treatise on the Disenses of Children. Sixth Edition. Cloth, 86.00 ; leather, $\$ 7.00$.
Tanner's Practice of Medicine. The Sixth American Edition, Revised and Eularged. Cloth, \$6.00; leather, \$7.00.
Tanner and Meadow's Diseases of Infancy and Childhood. 'Ihird Edition. Cloth, \$3.0n.
Bicldle's Materia Medica for Students. The Eighth Revised and Enlarged Edition. With lllustrations. Price, \$4.00.
Harris's Principles and Practice of Dentistry. The Tenth Revised and Enlarged Edition. Cloth, 86.50 : leather, \$7.50.
Soelberg Wells on Diseases of the Eye. The Third London Edition. Illustrated by Ophthalmuscopic Plates and other Eingravings. Cloth, $\$ 5.00$; leather, 86.00 .
Woodman and Tidy's Forensic Medicmeand loxicology. Illustrated. 8vo. Cloth, $\$ 7.50$: sheep, \$8.50.
Byford on the Uterus. A New, Enlarged, and thoroughly Revised Edition. Numerous, Illustra. tions. P'rice, \$2.50.
Hewift's Diagnosis and Treatment of the Diseases of Women. Third Edition. Cluth, 4.00 : leather, $\$ 5.00$.
Headland on the Action of Medicines. Sixth American Edition. Price, $\$_{3.00}$.
Atthill's Diseases of Women. Fifth Edition. Numerous Illustrations. Price, $\$_{2.25}$.
Mea 'ow's Manual of Midwifery. Illuntrated. 'Third Finlarged Vidition, including the Signs and Symptoms of Pregnancy, etc. P'rice, \$3.00.
Bloxom's Chemistry. Inorganic and Organic. Third Edition. 276 Illustrations. Cloth, sidno: leather, $\$ 5.00$.
Walton's Practical Treatise on Diseases of the Eye. The Third Revised and Enlarged Edition. Numer us Illustrations, Test Types, etc. Price, Sg.oo.
Jones and Sjeveking's Pathological Anatomy. A New Enlarged ldition, edited by J. F. Pavne, M. D. With Illustrations. Price, \$5.50.

Wilks and Moxon's Pathological Anatomy. Second Edition, Enlarged and Revised. Price, $\$ 6.00$.
Carpenter's Mieroscope and its Revelations. The Fifth Edition, very much Enlarged. With 500 Illustratious. Price, $\$ 5.00$.
Wilson's Anatomist's Vade Mecum. The Ninth Filarged London Edition. Price, §5.00.
Parke's Manual of Practical Hygiene. The Pifth Enlarged Edition. Pricc, \$6.o.
Richardson's Mechanical Dentistry. Second Edition, much Enlarged. With over 150 Illustrations. Price, in cloth, $9_{4,00}$; leather, $\$_{4.50}$.
Beale's Use of the Microscope in Practical Medicine. Fourth Edition. 500 Illustrations. Price, $\$ 7.50$.
Sweringen's Dictionary of Pharmaceutical Science. Octavo. Price, §3.co.
Mackenzie's Growths in the Larynx. With Numerous Colored Illustrations. Price, §2.00,
Tanner's Index of Diseases, and their Treatment. A Nuw Edition. Frice, \$3.00.
Tidy's Hand-Book of Modern Chemistry. Organic and Inorganc. J'rice, Bis.oo.
Charteris' Hand-Book of Practice. Illustrated. I'rice, $\$ 2.00$.
Causes why, nd Deformity, 12 mo . $\$ 1.00$

AMGRICAN HMATHH PRIMGRS:

Edited by W. W. KEEN, M.D.,

Fellow of the College Physicians, Philadelpila, Surgeon to St. Mary's Hospital, \&c.
It is one of the chief merits of the Medical Profession in modern times that its members are in the fore-front of every movement to prevent disease. It is due to then that the Science of what has been happily called " Preventive Medicine" has its existence. Not only in large cities, hut in every town and hamlet, the Loctor leads in every effort to eradicate the sources of disease. These efforts have been ably seconded by intelligent and public-spirited citizens of many callings. The American Public Health Association and the Social Science Association, with their manifold and most useful influences, are organizations which have sprung from, and still further extend and reinforce, the efforts to improve the public health.

But the great mass of the public scarcely recognize the importance of such efforts, or, if they do, are ignorant of the facts of Anatomy, l'hysiology, and liygiene, and of their practical applicatiol to the betterment of their health and the prevention of disease. Such knowledge does not come by nature. In most cases, in fact, it is a direct result of the most laborious research and the highest skill. Accordingly, it is the object of this series of American 1Iealth Primers to diffuse as widely and as cheaply as possible, among all classes, a knowledge of the elementary facts of Preventive Medicine, and the bearings and applications of the latest and best researches in every branch of Medical and Hygienic Science. They are not intended (save incidentally) to assist in curing clisease, but to teach people how to take care of themselves, their children, their pupils, and their employés.

The serics is written from the American standpoint, and with especial reference to our Climate, Arehitecture, Legislation, and modes of Life; and in all these respects we differ materially from other nations. Sanitary Legislation especially, which in England has made such notable progress, has barely begun with us, and it is hoped that the American Ilealth Primers may assist in developing a public sentiment favorable to proper sanitary laws, especially in our large cities.

The subjects selected are of vital and practical importance in every-day life. They are treated in as popular a style as is consistent with their nature, technical terms being avoided as far as practicable.' Each volume, if the subject calls for it, will be fully illustrated, so that the text may be clearly and readily understood by any one heretofore entirely ignorant of the structure and functions of the body. The authors have been selected with great care, and on account of special fitness, each for his subject, by reason of its previous careful study, either privately or as public teachers.

Dr. W. W. Keen has unclertaken the supervision of the series as Editor, but it will be understood that he is not responsible for the statements or opinions of the individual authors.

The following volumes are in press, and will be issued about once a month.
I. Hearing, and How to Keep It. II. Long Life, and How to Reach It. III. Sea Air and Sea Bathing.

IV. The Summer and its Diseases.

V. Eyesight, and How to Care for It.
VI. The Throat and the Voice.
VII. The Winter and its Dangers. VIII. The Mouth and the Teeth.
IX. Our Homes.
X. The Skin in Health and Disease.
(By CHAS. H. BURNETT, M.D., of Philada., Surgeon in charge of Phila. Disp. for Discases of the Ear, Aurist to I'resbyterian Hospital, etc. \{ By J. G. RICHARDSON, M.D., of Phitada, l'rof. of liygiene in University of Penna., etc. \{ By WILLIAM S. FORBES, M.D., of Phila., Surgeon to the Episcopat Hospital, ctc. (By JAMES C. WILSON, M.D., of Phitada., Lecturer on Physical Diagnosis in Jefferson Medical College, etc.
By GEORGE C. HARLAN, M.D., of Phila., Surgeon to the Wills (Eye) Hospital. (By J. SOLIS COHEN, M.D., of Philada., Lecturer on 1 iscases of the Throat in Yeferson Mrdical College.
By HAMILTON OSGOOD, M.D., of Boston, Editorial Staff Boston Med. and Surg. Jourual. \{ By J. W. WHITE, M.D., D.D.S., of Philada., $\{$ Elitor of the Dental Cosmos. f By HENRY HARTSHORNE, M.D., of Phila., formerly Irof. of Hygiene in Unizer, of Penna. By L. D. BULKLEX, M.D., of New York., Physicien to the Skin Department of the Dentilt Hispensary and of the New Iord 1lospital.

XI. Brain Work and Overwork.

Other volumes are in preparation, including the following subjects: "Preventable Diseases," "Accidents and Emergencies," "Towns we Live In," "Dict in Health and Disease," "Th Art of Nursing," "School and Industrial Hygiene," "Mental Hygiene," etc., etc. They will be 16 mo in size, neatly printed on tinted paper, and hound in
cloth, 50 cents. Mailed free ujon receipt of price.

LiNidsay d blakiston, Publishers, Philadelphia.

HRS:

pital, \&c.
at its members them that the ace. Not only , eradicate the public-spirited Social Science ns which have public health. 1 efforts, or, if of their praclisease. Such ilt of the most this series of ng all classes, gs and appli. ienic Science. teach people yès.
erence to our ects we differ land has made erican Ifealth sanitary laws,
fe. They are being avoided illustrated, so tirely ignorant ed with great evious careful
t it will be unidual authors. .
O., of Philada. . for Diseases of inn Hospital, etc. , of Philada., of Penna., etc. D., of Phila., al, ctc.
, of Philada., is in Yefferson
D., of Phila., sital.
Philada., -oat in Yuerson D., of Boston, iSurg. Yournul. S., of Philada.,
M.D., of Phila, nizer, of lenna. New York., nt of the Demilt 'ork Hospital.
Philada., Diseases in the itc.
reventable ""Diet in ustrial Hy-
neatly printed oth, 50 cents.
delphia.

$$
\nabla
$$

[^0]: Chemical Constituents.-In 100 parts :-
 Organic matter-Areolar tissue, Blood-vessels, Nerves and Fat 33.30

 Lime Phosphate 5 . 5.04
 Inorganic or Earthy matter.

 Magnesium Phosphate............... 1.16 Soda and Sodium Chloride......................... . 1.20

[^1]:
 surround the papillee and har-bulls, and give rise to that peculiar roughness of the surface called cutis anserina, as is seen in the cold stage of intermittent fever. They are very abundant in the cutis of the scrotum (the dar: ${ }^{\prime}$). Fat is found in the meshes of the deeper parts of the corium, forming a soft bed on which the skin rests, giving rotundity and symmetry to the body, and from being a bad conductor, it prevents the too rapid escape of caloric. The integument may be tamed hy any substance whieh will precipitate the

[^2]: *There are two classes of ferments, organized and unorganized. The action of the former is dependent on the life of the ferment, as for example the yeast plant whose fermentative activity depends on the life of the yeast cell; the latter is not a living organism.

[^3]: * The solar spectrum is crossed by vertical lines known as Frauenhofer's lines, and designated A, B, C, D, E, F, G and H. The situation of an absorption band is indicated by reference to one or more of these letters.

[^4]: Fibrin.
 2.40

 Corpuscles 69.56

 Albumen. 40.23

[^5]: 2 Parts occupied by the first sound
 I Part occupied by the second sound........................
 2 Parts occupied by the pause. .
 Rhythm.

[^6]:

[^7]:

