

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original ccpy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutéss lors d'une restauration apparaissent dans le texte, r.ais, lorsque cela était wossible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exer plaire qu'il lui a été possible de se procurer. Les détaiss de cet exomplaire qui sont peut-être uniques du point de vue bibliographique, qui peu:ant modifier une image reproduite, ou qui peuve it exisgr une modification dans la méthode norriale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or lamiriated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impiession
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à ottenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrems illustrate the method:

L'exemplaire filmé fut reproduit gráce à la générosité de:

Health Sciences Library
University of Western Ontario

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premiar plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVAE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à dioite. et de haut en bas, en prenant le nombre ¿̈images nécessaire. Les diagrammes suivants illustrent la méthode.

CYCLOPEDIA

of The

Diseases of Children

MEDICAL AND SURGICAL.

THE ARTICLES WRITTEN ESDECIALLY FOR THE WORK BY AMERICAN, BRITISH, AND CANADIAN AUTHORS.

EDITED BY
JOHN M. KEATING, M.D.

> VOL. IV.

$$
I L L U S T R A T E D .
$$

J. B. Lippincott company.
1890.

Copyright, 1890, by J. B. Lapincoty Company.

1515

16.4

Contents of volume iv.

PART.
THE EAR.
diseases of the Ear in children. By Charles h. Burnett, page M.D., Philadelphia, Pa., l'rofessor of Otology, Philadelphia Polyclinic, etc. . . I

mARTI.

THE EYE.

AFFECTIONS OF THE EYELIDS, LACHRYMAL APPARATUS, CON -

 JUNCTIVA, AND CORNEA. By (iso. K. de Schweinity, M.I., Phyladelphia, Pa., Ophthalmic Surgeon to the Philadelphia Hospital and to the ChitWren's Hospital ; Ophthalmologist to the Orthopedic Hospital and Intimate for Nervous Diseases; Dispensary Surgeons to the Lowitnl of the University of Pennsylvania, etc.
diseases of The eye. By Cables S. Turnhula, M. I), Philadelphia, Pa., Ophthalmic Surgeon to the German Hospital, to the Mary J. Drexel Ifome, rte, and (George M. Gould, N.D., Philadelphia, Pa, Ophthalmic surgeon to the Philadelphia Hospital; Chief of Clinic, Ophthalmic Department of the GerOPHTHALMOSCOPY: LOCAL DISEASES AND FUNCTIONAL DIS. ORDERS OF THE CHOROID, OPTIC NERVE, AND RETY:ZA By Charles A. Oliver, M.D., Philadelphia, Pit, Ophthalmic Surgeon to St. Agnes' Hospital; Consulting Ophthalmic Surgeon to St. Mary's and Maternity Hospitals

of Pemsylvania; F'ellow of the College of Physie:ans of Philadelphia, ete.PROPHYLAXIS OF DISEASE IN CHILDREN. By d. WelitinaronBybies, M.I)., Charhte, N.C.332
SCHOOL-HYGIENE. By D. F. Laveoln, M.I., Bontom, Mass., firmerly In- and Massachonetts, ate. 813
CONSTRUCTION OF CHILDREN'S HOSPITALS, Etc. by LINH.EY Jomsen, l'hihelelphia, l'a., Arehitent, École des Bomux-Arts, laris 409
JUVENILE CRIME, AND PUBLIC METHODS OF PREVENTION AND RECLAMATION. By J. I'eber Keatinu, bisq. (Gorgetown), of the Jhim- delphia Bar 422
MEDICO-LEGAL TESTIMONY. BY JERome WA.Kvir, M.I., Browkly,Lecturer on Hygiene, Lomg Johand Colloge Iluspital ; Dhysicim to the BrooklynSaside IIome tor Chiddren mod to the Bromlyn sowiety for the Irevention ofCruclty t Childem.435
PAR「IV.
DISEASES OF THE NERVOUS SYSTEM.
GENERAL INTRODUCTION TO THE DIAGNOSIS OF DISEASES OF, THE NERVOUS SYSTEM. By Aldan Mclane llambion, M. D., New Yosk, ond of the Consulting lhysiemus to the Hopitai for Nervous Dis- eases; Comsmaing loysician to the Now York City Asylum for the lasane, IIudson River state Itospital for the lasame, Itoipital for lapotured and Crippled, Now Lork, cte. 447
HYDROCEPHALUS: DROPSY OF THE BRAIN, WATER ON THE BRAIN. By Fib.aveds T. Miles, M.D., Baltimore, Md., I'rofessor of Physiol- ogy and Clinionl Profesor of Diseases of the Nervons System, Univensty of Maryland; former President of the Americm Nemelowieal Somiety 166
CEREBRAL PALSIES AND SUPPURATIVE MENINGITIS. By LaN- don Cabter Gray, M.D., New York, Professor of Nervons and Mental Diseases in the New Vork Polvelinie; former President of the Amevemn. Neurolegient Soeety; fimmory President of the New York Nemologieal Soceety; President of the Neurologial section of the New York Acmomy of Medieine; President of the society of Medical Jurispudenere, eic. 479
MULTIPLE CERERRO-SPINAL SCLEROSIS. By Whlaam broandusPritciabd, M.D., New York, Leeturer on Mental and Nervous Diseases, NewYonk l'olyelinic495
tUbercular meningitis. By A. Jacour, M.D., New York, ex-President of New Sork Aendemy of Medieine; Cliniend Professor of Diseases of Chidren in the College of Physicians and Sucgeons, New York, ete. 514
CEREBRAL HEMORRHAGE, THROMBOSIS, AND EMBOLISM. By l3.SAcus, M.D., New York, Professor of Mental and Nervous Disenses in the NewSork Polyelinie; Neurologist to the Montefiore Home for Chronie Invalids, ete.525
 fossor of J)isenseg of tho Wind mal Nervons System, Cullege of Physiditus ame surureons, New Y゙ork, ate.

AFFECTIONS OF THE NERVOUS SYSTEM IN HEREDITARY SYPH LLIS. By Ansear Pust, M.I., Boston, Mas., Instructor in siphilis ht Ilarvurd University, eic.
TOXIC AFFECTIONS FROM ARSENIC AND LEAD. By J.J. I'UTNAM,

 tho Massichusetts (bebmml IIospital
50.9

MYELITIS, SPINAL MENINGITIS, AND HEMORRHAGE INTO THE SPINAL CORD OR MEMBRANES. By MARY IUTNAM JAcout, M.J.,

POLIOMYELITIS ANTERIOR, By WHarton Sinkler, M. W., lhibulelpha,

EPLLEPSY. By Landon Gabtelb (ibsy, M.D., Now Yonk, Professor of Norvousand Mental Disenses in the Now Vork Dolyedinice former President of the Amer-isan Nempodogient society; formerly President of the Now York Nemological

"th.
 "te. 913
ATHETOSIS.-CATALEPSY.-THOMSEN'S DISEASE. By (ieora民 W, Japons, M.D., Now Vork, Physician th the Department of Neroms Diseases, (9, mum Di.pensary, 'te. 937
EXOPHTHALMIC GOITRE. By Jom; K. Mtmula, M.D., Phihdelphia, P'al., Physician to St. Agnes' Itospital; Assistant Physician to the University Inspital mad to the Inthmary for Nervous Disenses; Assistant Demonstrator of Clinieal Medicitn in the University of Pennsylvania, ete. 952
HYSTERIA. By ('harles K. Mble, M.才), Philmblyha, Pa., Lecturer on Mental Dismanc, University of Pennsylvana; Nemologist to the Philudephia Hospital; Professer of Disenses of the Mind und Nervols System, Philatelphin Polyelinic und Colleqe for Graduates in Medieine, ete. 958
THE DISORDERS OF SLEEP. By Chables 1’. Putnas, M.D., Boston, Mass., Playsician to the Massaehusetts Infiants' Asylum, ote. 1008
idiocy and imbecility. By Edward N. Brusit, M.D., Pbiladelphia, Pa, Assistant Physician to the Pennsylvania Ilospital for the Insane, ete. 1019
INSANITY. By E. C. Spitzka, M D., New York 1038

LIST' OF CLLLSTRATIONS TO VOLUME IV.

PLATES.
Miero-Pbotugraph from a Sention of Dermoid Thmor of the Cornen, showinerthe (ienemal structure (FHg .14)
Miero-l'hotograph from same Rection, mon highly magnifel (Fig. 1b) fitcing 118
 118lithograth)
Retained Nerve-shenths 158
Colobomat of the Chomid 1152
ITudue Torthosity of the Retimal Vesads $16: 3$
Anomalous Vemons Distribution on the Disk (Photo. IV.) 165
Po:t-Oeular Sarroma of the Optic Nerve (Photo. V., Firs. 174
 17.4
Optic Neuritis of General Amemiar (Photo. Vil.) 178
Progressive Dewlopment of Hemorlages in Pernicions Anemia 178
Retinal (kdema and Vascuhar Opmeity in Lencoeythamia (lhoto. $18:$V11I.)
Sume Eye-Gromal Nine Weeks later (Photo. IX.) betwey 182 and $18: 3$" 182 und 183
Neuro-lietinitis of Intracmial Tumor (Photo. X.)
Partial Post-Neuritic Atrophy (Photo. XI.) tacing 188
Regressive Neuro-Retinitis of Intracranial 188
Aente Nephritio Retinitis (Photo. XIII.) 188
Chronie Retinal Chames in Albmminurin (Photo. XIV.) 211
Partial Absorption of Hemorrhagic Opacities in the Vitrenns 211
Tuberenlosis of the Retina and Choroid 213
Retinitis Pigmentosa 228
Glateomatons Exenvation 235
Walking Chikd (Photo. I.) 237
Running lligh Jump (Photo. V.) 266
Ruming Cliild (Photo. II)
266
266
Running Bays (Photo III.) between 268 and 260
Rowing Man (Photo. IV.) 268 and 269
Swedish Gymnastie Morements.-Neek Rest Standing, IMeels Rising Position(Photo. VI.); Neek Rest Standing, Trunk Change Turning Position(Photo. VII.); Stretch Standing, Trunk Sideways Beading Position(Photo. VIII.) ; Stretch Stride Standing, Trunk Forward Bending Posi-tion (Photo. IX.)
Swedish Gymnastic Movements.-Half Streteh Walk, Standing Position(Photo. X.) ; Stretch Walk Standing, Trunk Turning Position (Photo.XI.) ; Yard Walk, Fall Standing Position (Photo. XII.) ; Stretch Standing, Heels Rising, Knee Bending Position (Photo. XII.) ; Streteh Stand-
Plan of First Floor of a Twenty-Bed Hospital323
Sketch of a Small Country Hospital bet ween 418 and 419
Plan of a Country Hospital " 418 and 419
Three-Ward Fiospital (Fig. I facing 420
page
Sketch of at small Comntry IIespital facing 421
Case of Spastic biplugh (Bhoto. I.) hetween 5 -fic und 6.47
(ase of ('ongenital Diplegin (1'hoto. I1.) 5.14 und 5.47
 lacing 1699
Cave of Lr bicelveteh's λ taxia " 72
(Fig. D) ; Butimeyer und Quincke, Virchow's Arehiv, Bal.
 betwen 721 and 72.5

(Vig. 8) ; Erlitki and Rilmalkin, Arehiv i: Psyeh., 188ij (Fig. 9) 724 und 725
FIGURES
Infant's 'Temperal Bone (Gray \because
Latt 'lympuie Cuvity laid aken (Bumett). 3
Hand- Mirror 7
Forehemb-Minror 7
 1.1
looltzer's inthation-Buy 20
Aphleation of the Inflation-Bag 20
Cetton-Hoder 21
Burnett's Mathot of insuflating Powder into the Ear 22
Paramontesis-Knile 2
Norvons ('onnetion betwern the Troth and the Ean (Woakes) 23
Bermetts Polyp-suaro 25
Bivalve speculam for examining the Anterior Nates 34
Eetropion the lisult of a Wound from the Tine of a Fork 63
Ectropion of V'lixer Lim after lajury to the Brow 6i)
Symblepharon of 'Tpuer Lid tollowing P'aralent Gphthamin fi. 4
Epicumthes (atter Vom Ammon) ${ }_{6} 7$
Coloboma Palpelnarum (after Manz) (is
Phlegmonons Ducryocystitis 73
Ophtaluia Neonatorum 80
Symblepharon of Upper Lid following Pornlent tophthalmia 81
Phlyctomalar (ophthalmia 94
1)inhtloritic (phithulmia 97
Esential Shrinking of the Conjunctiva 100
Stanhyl, ma of the Cornea 107
Dermoid Tumor of the Cornea 119
Antero Postering Vertical Section through the Globe and Orhit (Fig. 1). Frontal socetion of the Ere und Orbit (Fig. 2). Schematio section of the Globe of the Eve (Fig. 3.) 122
Persistene of the Pupillary Mrimbrane 124
Symmetrical "etopia Lentis 126
Diagrammatic Hlustration of Emmetropia 140
Diarrummatic Illustration of Hyperopia 14
Diagrammatic Illustration of Myopin 142
Diagrommatic Illustration of Astigmatism 144
Wharton Jones's Operation for Eetropion 152
Hasner d'Artha's Blepharoplastic Operation 163
Gperation for Corneal Staphyloma 164
Iridectomy 154
Diseission, or Needling (Fig. 16); same with Two Needles (Fig. 17) 155

Diagram representing Iteight, from Actual Measurment of Four Ifundrell and Thirty English Public-School Buys fown Eleven to Twelve Yare Old

Rise and Fall nul Guward Mavement off Hend in Walking (Fig. 2 (1). Lataral 206

 26:
Rises und Full of Itand in Rowving 270
Rise mut Fuh at Inull in Rowing 2
Rise and Finl mil Onwnol Novement of Risht Foot in 1 Iigh Jumping 273
Swedish Cammatic Dositiont and Movements:
Font Grasp, Wing Furwarl, Fulling Pasition 301
Wing Balances Standine, Kuce broding and Extending 805
Batance Wabking on Horizemtal Rar 805
Wiags standing, Lages Lifting Sideways $30 ;$
Stroth Stridn standing, Trumk Backward Bending with Support 801
Aroh Suphort standing, Kue floxing mad Extending 807
Honging P^{2} asition 319
Underhanging, Doulde Am Flexion 808
Bent Inunging, Doublo Kine Extending 803
Bent Underhanging, Hand Willking 309
andined loppe Climbing Cpward 810
Yurd Stride Standing, Trulk Porward Bonding 810
Yard Forward laying, Arun Bemding and Stretchine Sideways 811
Streteh Foward Laving, Arm Brading and Stething Upard 811
stretell lying, Legs Elevating 311
Stretch kince Stride Standing, Trunk Back warl Bending :13
Feet Fixed, Wing Siting, 'Trunk Backword Bending 813
Fret Fixad, Ams Stretela Sitting, Trank Buckward Falling 313
Stoop Fulting Position 814
Horizontal stomp Falling Pisition 314
Reverse stoop Falling Position 314
Arms Bent, Suphort Folling, Leg Elevating 316
Foot Fixed, Stretwh Balamee Standing, Trunk Sideways Bending 316
Arms Bent, Trunk Turn, Stride Stumding, Arm Extending 316
Hald streth, Hulf suphort, side Falling, Legs Blevating 817
Sideways It anging Position 317
Jumping in Height on the Place 818
Running Jump 319
High Jumping 319
Vaulting. 320
Diagram showing how the Body is supported on the Legs (Fig. 1). Diagram show- ing the Pelvis or Mip-Bone and the Lower Part of the Spinal Collumn tilted to the Right when the Right Leeg is shomtened (Fig. 2) 355
Curviture of Spine, eamsed ly the Raising of the Right Shoulder by a lligh Desk or Table 356
A Comfortable Sehoul-Chair (Fig, 4). Liebreieh's Desk and Seat (Fig, 5). Varren- trapph Desk and Aljustable Sent (Fig. 6). Varrentrapp's seat and Desk compared with a Boston School-Chair und Desk (Fig. i) 360
Anerican Curvid-Back Sat and Dek, an: Buchmer's Pattern, for Correspoding Ages. 362
Amerienn Model of Varrentrapp's Sent and Desk (Fig. 9). Belgian Model in the Philadelf ina Exhibition of 1876 (Fig. 10) 363
Dingram illustrating Proper Position of Mranuseript on Desk in Writing 3154
Mott's System of 'school-Ventilation by Flues 382
PAOE
Section of the Bridgeport High School 382
Purtial Scetion from Front to liear of the Bridgeport IIigh School (Fig. 14). Cellar- Plan of smme School (Fig. 15) 383
Diagrams illustrating the Principle of Ventiation by Hented Fhues (Figs. 16, 17) 384
Diagram illustating the Method of Ventilation of Two Stories 385
Wolpert's Λ_{p} puratus for testing P'urity of $\mathbf{A i r}^{\prime}$ 392
Requirements for the Druinage- Pipes of a House 897
Compound of Water-Closet und Latrine 899
System of Deodorizing School P’ivies (Figs 22, 23) 401
Temperary Arragement for Deodorizing School l'rivy 402
Movalio 'lrough for Cleming school l'rivy 402
Biock-Plans of Lending Pawilion Hospitals, showing Varions Treatments of the Wiard 411
Faulty und Proper lsolation of Ward Annex (Figs. 7 and 8) 413
Ordinury Floor 417
Mill-Constructed Floor 417
Huspitul Wults 418
Plan of a Cotage Hospital, Twelve Beds 420
Method of Asecrtaining Condition of Reflex in the Tendo Achillis 454
Electrode 455
Method of Diagnosing Pamalysis by Electricity 458
Examination of Retlexes with Pereussion-LIanmer 459
Brissand's Apparaths for legistering the Knee-Jerk 459
MeLane Hamilton's Denamograph 462
Seglin's Thermometer 465
Steward's surface 'Thermometer 415
Meningead Hemorrhage in a New-Born Child (after Dr. Sarah J. MeNutt) 526
Extent of Paehymeningitis IIemorhagica over Superior surfaces of Hemispheres in " Case of Cerebol Hemorrhage (Nachs and Peterson) 527
Extent of Process on luferior Surfaces of the Left Hemisphere in the same case (Sith und Peterson) 528
Cyst formed by Softeming of Brain-Substance secondary to Obstruction of Middle Cerebral Artery beyond the First Branch (after Ashby and Wright) 533
Deformities in Case of lafantile Cerebral Pilsy (F'igs. 5, 6, and 7) 536
Movements of the Normal and of the laretic Ihand 539
Case of l'andegia. Photographed during an Epileptic Seizure 540
Corticnl Sonsory-Mitor Areas and Visual Areas. 565
Cortical speceh Areas 570
Lateral V'iew of the Brain 573
Ataxiagram-Thanges in a Cnse of Friedreich's Disense, latient standing, with Eyes closed Thirty Seconds (Fig. 1). Name latient, Sitting, with Eyes elosed (Fig. : 2) 221
Atuxiagrams of a Case of Tynical Locomotor Ataxia of Seven Years' Standing. Patient Standing, Eyes closed Thirty Seconds (Fig. 3). Siune Patient, Sitting, Eyes closed (Fig. 4) 721
Case of Meningocele (Fig. 1). Section of Skull (Fig. 2) 731
Bihateral Symmetrieal Porencephalus. - Left llemisphere. Atrophy of the Aseend- ing Frontal Convohtion, of the Aseending Purietal Convolution, of the Pura- central Lobule, and pessibly of the Auterior Part of the First 'emporal Con- volution (ubout Two-Thirds Actual Size) 737
Bilnteral Symmetrial Porencephalus.-Right Hemisphare. Atrophy of the As- eonding Frontul Convolution, of the Ascending Purietal Convolution, und of the Paracentral Lobule (about Two-Thirds Actual Size) 737
Bilateral Symmetrical Porencephalus.-The Right Hemisphere viewed from nbove 738
Bilateral symmetrical Porencephalus. - Vertical Section, showing the Atrophied Pracentrmi Convolution 738

CYCLOP※DIA
 OF THE
 DISEASES OF CHILDREN.

PARTI.

THE EAR.

DISEASES OF THE EAR IN CHILDREN.

By Charles H. Burnett, M.d.

DISEASES OF THE EXTERNAL EAR.

In the following pages those under fifteen years of age are considered children. The pereentage of children in ear-cases varies in different countries, or in different parts of the same country. Marian, of Bohemia, states that twenty-five per cent. of his cases of ear-discase are eliildren, about equally divided between the sexes. Bürkner, of Göttingen, places the percentage at forty-seven and three-tenths, and Bezold, of Munich, places it at twenty-one and two-tenths, respectively, in their experience.

In this country, Blake, of Boston, finds that twelve per cent. of his cases are children. Speneer, of St. Louis, states that in private practice seventeen per cent, of his eases are children, while in the public clinie children constitute twenty-seven per cent. of the cases. In New York A. II. Buck finds twenty per cent. of his cases in private practice are children, and Sexton gives fifteen per cent. My own experience shows that in Philadelphia twenty-two and a half per cent. of the cases in the Polyelinic are
children, while in private practice the percentage is cight and a half in my last two hundred conseentive cases.

The auditory apparatus of a child differs in some respeets from that of an adult. In the child the auricle and the anditory canal are much smaller than in the adnlt, while the membrana tympani and the ossicles in the middle car are of full size at hirth. The drum-cavity is of the same size in the new-bom child as in the adult, but there is no mastoid process in comection with it, as the mastoid cells are developed at a later period. The internal ear is the same in the child as in the adult, thongh the semicirenlar canals stand ont in the cranial cavity, free from the dense osseous tissue which finally eneases them in the older bone. These differences, especially those in the external ear, shonld receive a little eloser regard. Therefore the reader's attention is called to the following anatomical deseription.

The external car of the child consists of the auricle and a fibrocartilaginous anditory canal, the latter being terminated at its fun.lus by the membrana tymmani. In the adult we find between the auricle
 and the membrana tympani an osscous canal, an inch or more in length. In the child, however, there is no osseous anditory canal in its complete state. Between infuncy and maturity the annulus tympanicus may be said to be gradually transformed into an osscous tube. Natural dehiscences persist in the anterior wall of the auditery canal, sometimes until the fifth year. They are analogues of the incisure Santorini.

At birth the temp ral bone consists of three separate parts, -the prramid, the squama, and the amulus tympanicus. (Fig. 1.) By the end of the first year of life osscous union has taken place between these parts. The child's temporal bone, however, is very different from that of the adult. Development continues until the age of puberty, when the bone is complete. In the pyramid of the young child, in that part containing the internal ear, the semicircular canals are not covered in by the cancellated tissue which is found later in life. In the squama we find no developed mastoid cells,-merely the trace of an antrum. The external osseous anditory canal does not exist, exeepting in the amnolus tympaniens, which finally develops outwardly into the bony canal. The antiele is jomed to the anmus tympaniens by fibrous tissuc, is
very pliable, but quite short, which brings the conchat of the anricle very much nearer the drum than in ohder children or in adnits. Hence the membrana tympui in the infant may be said to be superticially phaced, and easily reached-sometimes very unfortunately so-by any one manipulating in the external meatus.

The middle carr, or tympanic eavity, is the sace lying between the onter surface of the pyramid and the inner surfare of the ammens tympanicns, and the membrama tympun, and bomded behind by the mion of the squama and the pyramid in the region of the mastoid antrum. Anteriorly the tympanic cavity is open to the Eustachian tube.

In the tympanic cavity are swung the three auditory ussicles,-the mallens, the inchs, and the stapes. The first is inserted ly its so-called handfe into the membrana tympani, and by its heal articulates with the body of the inens. The incus by its long process is attached to the stapes. The stapes by its foot-plate is inserted into the oval window, thus completing the jnnction between the membrana tympani and the internal carr.

Left Tympanu Caytty latd Ohen. (Burnett.) -1 , mastoid cells luld (1pen; 2 , hend of malleus: 3, malleus; 4 , sunulus tympanicus; 5, membrana tympani ; 6 , lower mastord cells: 7 , mastold process; 8 , the vestibule: 9 , stupes in the oval window: 10, position of eoehlea, removed; 11, jugular tossa.

Couses of Eitr-Disease in Children.
-The commonest causes of aural disease in childhood are the acnte exanthemata, acute and chronic catarrh of the nares and naso-pharyux, diphtheria, diseases of the heert, and hereditary syphilis; while in older ehildren typhoid fever hats muel to answer for. Neasles and diphtheria together, however, do not affect me-quarter as many ears as scarlet fever.

Malformations.-Shallowness of the niches, of the round and oral windors, on the imner wall of the drum-eavity, favors a retrogression of swelling in the mucons membrane of these parts. A greater depth of these niches, esprecially in that of the oval window, where the stapes sits, is unfavorable for healing and favors chronieity of disease. Thus may be explained many cases of profound deafinss, even deaf-dumbness, in children, without resorting to an hypothesis of disease in the int nal ear, or labyrinth.

In hydrocephalus the temporal bone is pushed downward by the superincumbent water, the external auditory canal being foreed in the same direction.

An arrest of development may occur in the middle car, the external ear being normal ; and the reverse may also be fonnd.

In infancy and up to the fourth year (Huschke) a deficiency or a gap in
the bone of the external anditory canal at the anterior lower wall may be found, closed, however, by connective tissue. Through this opening inflammation may extend from the external car, by uleration of the skin, to the parotid gland and the lower jan. Defects in ossification are frequent in the tegmen tympani, with normal dumater, in the carotid canal, near the front part of the tympanic cavity, and in the facial canal. These explain the ready ocenrrence of facial palsy in otitis medin. Defeets in the bone are found also in the floor of the tympanum over the jugular fossin, in the rudimentary eortex of the mastoid, and in the squama. Inflammation may, throngh these deficiencies in the bone about the car, be cansmitted to the brain, inducing a fatal termination of an aural disease in a child.

Hyperemia of the petrons bone oceurs markedly in variola and in typhoid fever. The ear-disease so often following these maladies may be thus accounted for.

Hyperostosis of the petrons bone may be the result of ossifying periostitis in feetal life or in early childhood. It always leads to great deafness and deaf-dumbness.

Carics, or ulcerative ostitis of Schwartze, attacks the petrons bone most frequently of all the cranial boncs. It is usually the result of an acute or ehronie suppuration of the soft tissues of the ear, which las extended to the adjacent bone. It is rarely the result of primary periostitis. Caries of the temporal bone often heals withont much loss of hearing if the labyrinth has escaped the attack. Necrosis is mnch less common than earies. However, nearly the whole temporal bone may be thrown off, and yet the patient survive. The fatal results of caries and necrosis usually are due to puritent meningitis, abscess of the brain, phlebitis of the simuses, with pyæmia, or to a combination of them all. Death sometimes results simply from oedema of the brain, caused probably by interference in the eirenlation by a remote phlebitis and embolism. It is now admitted that brain-abseess is the result and not the cause of aural necrosis. ${ }^{1}$

True tubercles are rarely found in the petrons bone, but they do exist, as shown by Zanfal.

Malformations of the Auricle.-Complete absence of one or both amreles may be the result of arrested development. There may also be absence of parts of the atriele, or there may exist simply a microtia, the parts being perfeet in form. Usually with great deformity of the auriele, malformations in the deeper parts of the car exist,-e.g., atresia, stenosis, or absence of the meatns or the labyrinth. Such anomalies are referred by Virehow to disturbances in the closure of the first branchial cleft, and are often associated with eleft palate and milateral atrophy of the face (Schwartze). Sometimes excessive development of the anricle is olserved.

Fistula auris congenita of Hensinger is not meommon, and may be regarded as a remnant of the first brachial sleft. It is characterized by a

[^0]small opening one centimetre above and in front of the tragns. Sometimes the opening is fonnd in the lobule (Betz). The cicatricial depressions in the skin in the same region are also due to imperfect closure of the branchial fissires. These defects are sometimes associated will other nurienlar malformations and with fistula in the neck. The fistula auris congenitn sometimes discharges a ereany matter containiag pus.

Inftemmuation and its Reselts,-Erythema, eczema, and intertrigo of the auricle are common in early childhood. The latter is nsmally seen behind the auricle. Gangrene of a spontancons nature may be found in murslings, but is not common (Schwartze). Syphilitic lupus, pemphigns, and congenital iehthyosis are often seen in the auricle. In fact, all skin-disenses which affect the integument near the auricle may also affeet the latter. Ecrema is the must common affection of the skin attacking the auricle, both in the aente and the chronie form. If allowed to become very chronie, it may permatnently thicken and discolor the auricle. One of the most amoying results of cezema of the auricle is the matting of the hair brought about by the discharges from the broken skin. This skin-disease is often due to disorders in the chilh's digestion, but in most cases the disease is greatly aggravated by the loeal irritation and interference from the patient's fingers, and the improper management of others.

Very often wearing a cap leads to maceration of the baby's aurriele and the side of the head behind it. Intertrigo is the first step, and then eezema. Even in this first stage, the parts shonild not be washed with soap and water, nor even with water alone. The parts affectel may be smeared with bland sassafrals or quince-seed mucilage, or, still hetter, sprinkled with a powder composed of equal parts of Hubbue's oxide of zine and stareh. The pellicle, or crust, which this forms with the secretions from the eezematons skin, should be allowed to remain, as it protects the inflamed skin and favors healing. If the yellowish crusts of hardened serum get very thick, and must be removed, in the more elromie form, then soften with sweet oil, and gently remove then ; but avoid this in the acute stages. In acne eezema the skin must be proteeted as in buns. Aclhesions between the auricle and the side of the head may be prevented by anointing the parts with sweet oil, cosmoline, vaseline, or lanoline. In children who are eating solid foods-in those from finur to fifteen years of age-all highly nitrogenized foods must be avoided. In elildren of the age of ten years I have found chronic cezema of the auricle kept up by cating pies, cheese, sweets, and piekles.

For the treatment of all other skin-discases of tue child's auricle the reader is referred to works on entaneons diseases,-with this caution, that the various applications to the diseased skin of the external ent must not be allowed to elog the external auditory canal nor to run down mon the drummembrane.

Boxing the ears, pulling the ears, and swabbing the canal for imaginary wax and dirt must he most carefully avoided. Boxing the ears is apt to
proluce rupture of the drum-membrane, by the force of the column of air driven. suddenly against it. The mere rupture of the normal drim is not ans serions an injury as many euppose, as merely the protector of the macous dining of the drom-cavity has been ruptured, and not an important factor in hearing. Therefore, if this should ocemr, healing by first intention will generally ensue if mothing is wopped into the eat, ind if the means is tilled with cotton to prevent the ingress of air. The injury to hearing which may attend the rupture of the drom by a blow on the enr is not attributable to the rent in this membrane, but to a concomitant concussion of the auditory nerve. These important differential facts should be borne in mind in the consideration of the medico-legal aspects of rupture of the drum firom a "box on the car." It must also be shewn in any ass"rted case of injury of this kind that the membana tympani ano the rest of the anditory apparatus were in good order before the blow, and a. 'so whether immediately after the ingury any ferm of remedy was put into the ear by the patient, his friends, or his physician, as such treatment, by entering the drum-eavity through the hole, would certainly injure the middle ear, and cause the real malady in this important organ.

Pulling the cars is open to nearly as much objection as "hoxing" them, since the attachments of the auricle to the anditery canal are of such a nature ${ }^{1}$ that traction upon them is communicated to the sensitive fundus of the canal, and even to the membrana tympani. Henee pain and injury are often the result of this rude and culpable manipulation of the ear.

On the other hand, an excessive care of the ear, by washing away the wax from the meatus, often abrales and inflames the concha and the meatus. This should be avoided, as was is not dirt, and should remain where nature puts it. The superflnous wax will roll out in little erumbs, every day or two, and removes itself by rolling into the concha. But more on this topie will be given when considering the affections of the external auditory canal.

Wounding the cotrilage in piereing the lobule for ear-rings sometimes oceurs. This is due to the fact that this remnant of barbarous adornment is relegated to jewellers for preparation, and, as they are ignorant of anatomy, they are not aware that sometimes the cartilage of the anvicle extends far into the iobole. This is womded in the piereing and usually eanses severe inflammation. The ears had better not be piereed at all.

With the exception of the auricle, the varions parts of the auditory apparatus camot be seen without special manipulation and the use of instruments. Hence a short consideration of the means of examining the auditory canal, the membrana tympani, and in some instances the middle car, is now in order.

[^1]
EXAMINATION OF THE EAR.

This can be done properly only by means of good reflected light, as it is neither easy noin saitsfactory to "camine the car by direct rays of any kind of light, excepting those from un e'eetrie light held on the head by means of a forchead-boud. Usually the reflected light of day or of a candle or lamp, will be found amply sufficien.. A specenlun or ear-fumnel is always necessary, even in infunts. Down this speculum the light may be thrown or reflected from either a hand-mirror or a fore-head-mirror (see Figs. 3. and 4).

The anuicle must be drawn slightly upward aud backward, white the speculum is directed downward and forward. Care must be taken not to push the speculum too far into the child's meatus, for reasons already given,-viz, the shortness of its anditory canal aur the proximity of the membrana tympani
 to the extermal meatus. Hence it is casy with a slender speculum to touch and wound the drummembrane. The speenlum must have a diameter of from two to three millimetres for infants, and, as a rule, no child's ear will take a speculum with a dianeter of more than four or five millimetres. If the meatus and canal are filled with seere-
 tion, syringe these parts gently with warm water, or mop them out gently with absorbent cotton on a cotton-holder. After syringing the external canal, it should be mopped dry by means of absorbent cotton.

Cerumen collects sometimes, but not often, in the meatus of children. Masses of epider ${ }_{1}$ is and wax also sometimes collect here and form the socalled keratosis obturans. It is said by Von Troeltsch that atter searlet fever the external anditory canal may become filled with desquamated epithelium. If so, syringing with warm water will remove the obstruction.

At birth the so-ealled vernie caseosa fills the external auditory canal. The membrana tympani is at this time covered with a thick layer of epithelium or caul, and it seems to lie nearly horizontal, as the auricle and its fibrous canal are pushed upward on the infant's head, which brings the lower wall of the auditory canal nearly, if not quite, in contact with the
membrana tympani. Hence to get a view of the membrana the cye must be directed upward, or the auricle must be pulled somewhat downward in order to struighten the camal.

From this neculiar condition of the extermal ene in the new-born, it is probable that at birth all cliddren hear poorly. This, however, is soon overcome by the lowering of the auricle and the extermal canal, and by the drying of the aforesaid mutters in the canal and their exfoliation and dropping from the ear. They could be syringed out if necessary, which, however, is rarely the case.

Syringing the Eur:-In syringing the car of a child or an adult, but especially in syringing an infint's ear, the nozzle of the syringe must be larger than the meatus of the ear, in order to prevent the entrance of the instrument into the canal. Hence the so-called ear-syringes which are made with a kind of nipple-like prolongation of the nozzle are especially reprehensible, as they can enter the moctus, and, from their length of half an inch or more, can reach and wound the membrana tympani. That this, and brising the meatus by this mems, are done, the author knows well. Hence the ordinary hard-rubber enema-syringe, No. 2, the so-called mete syringe, is not only amply sufficient, but the only safe syringe within the reach of all. With this an ounce or two of warm water may be thrown into an infunts or a young child's ear, and the return current caught on a towel held closely under the ear. To hold a cup of any kind under the car of a young patient will be found very inconvenient.

THE AUDITORY CANAL.

Following the anatomical order, the next part of the car after the anriche is the external anditory cemal, or meatus. Its peculiar fibrous nature and freedom from bone in the infant have been deseribed. Gradually, as the child grows, the outer surface of the annulus tympaniens, in which the membrana tympani is inserted, grows outward, and we find the indications of the formation of an osseous canal between the auricle and the membrana. This is not complete in development before adult life, though practically, and hence clinically, we must regard the child of five years as having already an osseons external anditory camal. The skin which is reflected from the anricle and lines this canal is exquisitely thin and sensitive, and is hekd closely to the bony canal by dense, tight fibrous tissue. In fact, the skin lining the external anditory canal is very much like a periosteum.

Malformations may orenr in the anditory canal, with malformations elsewhere in the head. The canal may be entirely absent, a congenital condition, with entire absence of auricle and membrana tympani. Also a congenital atresia caused by membranous or osscous tissue may be detected in some instances. Of course such cases are hopelessly deaf-mates.

Foreign Bodies in the Ear:-This is a subject which is of great importance to the general practitioner, because he is generally the first to see a child who has got something in its car. Afterwards, the specialist's aid is
invoked if, as is generally the case, the monipulation of the car has leen either useless or harmfinl. Let it be written at the outset in the most emphatic manner that the mere entrunce of a foreign sulstance into the env is, in itself, of very little importunce. In no case has injury to the child ever arisen from the mere presence of " foreign substance, like a bad, a seed, or a button, in its emr. It is the miskilful, rough, und lacemting efforts at its removal which have invariably produced the real injury.

In mdition to these statements, let it be remembered that whatever the child has put into its own car, or had put there by other children, is certainly small conght to come ont, and can be removed easily if the methoxls are moderstood and there is no swelling of the meatus or canal brought about by previons rongh affionts at removal.

No child ever comphains of pain from the entrance into the car of the substanes named, or of those similar in form and surfiee. A rough, jagged sulstance can never get into the ear, becanse the endeavor to pint it there hurts and eanses the child to resist, or desist. I have known beads and small seeds to lie for years in children's cars, withont any diseomfort.

The first adviee, therefore, to the patient—and the family physician too, moless he can make a diagnosis in the case-is to let the car alone, when a child says there is something in it. Usmally at this print the parents get alarmed, run for the first doctor, and frighten him into the belief that something is in the car. Instead of calming their fears by statiag how harmless is the mere presence of such a thing in the car, and assuring himself by careful examination with mirror and speculum whether there is any fureign body in the canal, he too often proceds directly to proke the car or to look in by direct light, and concludes by thinking that he sees something, and increases the alarm of parents and child by dwelling on the serious consequence of allowing anything to remain in the car. He proceds now from bad to worse by using improper instruments to remeve sometimes an object which is not in the ear at all. In fact, no one but an aurist of experience should ever touch an car with any kind of metallie instrument, even of the most alelicate and special form. At this stage of the case we have sketched, if there is a small bead or seed in the ear, a few syringefuls of wam water will bring out the foreign substance. This I have done, even when the anditory meatus and canal were swollen and tender from antecedent rough handling on the part of others.

First, then, do not be alarmed yourself, and you will allay the fears of ${ }^{\text { }}$ the patients' parents.

Second, do not do anything but aseertain whether there is really, as asserted, anything in the ear.

Third, do nothing but syringe the ear for the removal of the olject if really there.

Should yon not be able to diagnose its presence,-and I trust you will know enough to diagnose between a pearl button and the membrana tympani, -invoke the aid of some one who you think can. Duty to yourself and to
your patient commands you to be quiek to see your own ignomnce in many catses, and you do the best service to your young putient by acknowledging, at lenst to yon"self, your imability to make n dingnosis in a case of foreign body in the cur. Yon con never injure the patient ly gently syringing the car with warm water. But you dare non do more with you limited knowledge, withont incurving the risk of doing the child irreparable ingury -perhaps of destroying its life-hy your mismangement. I know mary instanest where the hembing has been entirely destroyed and the child tortured with pain, not by the presence of the foreign boxly in its arr, hat by utterly unjustifiable efforts at its removal by prober, forcups, etce, in the hamds of those whose common sense shonld have taught them better. It is impossible for my one not a specintist to diagnose positively the prosence of a foregn body in the car, if it lats gone beyond the montus, and of couse it follows that he is also mable to remove it, execpting by worm-water syringing. Therefore, I have given all the treatment necessary for the successfinl management of such cases by the general practitioner. If you connot remove the foreign body by syringing, let it remnin in the car, nutil the patient can consult an amrist. No foreign bocly can ever reach the brain, unless pashed there hy the hand of the surgeon.

When roaches, fleas, or insects of any kind get into the ear, a few drops of sweet oil, or any fixed oil, will smother them, and relieve the suffering caused by their movements. The removal of the dend inseet falls nuder the same form of proceding as alrady given for heads, cte. Use no instroments; for nothing worse than temporary deafiess will result from its remaining in the ear, but death may result if the physician should forget his unfitness for such work and attempt its removal by picks, pincers, etc. The sooner this conservative proceding is followed by the general pactitioner in cases of foreign body in the ear of chidren, the somer we shall cease to read of the disaster attending the entrance of a foreign substance into the ear, which in reality is a very trivial matter if not improperly treated at the ontset.

In some very rare instances maggots have been known to get into the ears of children affected with otorthea. If' such an aceident oecur, a drop n.. wo of chloroform or ether will destroy a maggot's life instantly, whereas : anging the ear with warm water only makes the magrot more lively and the pain in the ear more intense.

Reflex Phenomena.-In rare instances epileptiform phenomena have arisen from the presence of a foreign body in the ear. Sometimes paretic symptoms have also shown themselves on the side of the body corvesponding to the ear in which the foreign substance lies. Whenever such phenomena not otherwise easily explicable arise in ehildren, the ears should be examined as the possible seat of the cause of irritation. Of ecurse the line of action is plain if a foreign body is found in the ear: it must be taken out. But all the precautions already given as to this procedure must be carefully observed.

H'as in the Ear:-Wix, or cermmen, ravely acemmatates in plugs in a child's ear to such mu extent, as to interfere with henring. If, however, such masses form, syringing with warm water is all that is required for their removal. All forms of spoons, pieks, ete., will hurt the ear, mad act just as unfortumately as in nttempts to remove any other foreign substance from the ent.

Acemmalations of wax in the car may be softened by instilling into the car, a few times before syringing, five or ten drops of the following :

$$
\begin{aligned}
& \text { B siodii biearlo, gr. xx; } \\
& \text { Glycerini, } \mathrm{f}^{1}{ }^{\text {; }} \\
& \text { Aqua, f } 3 \text { vii. } \\
& \text { Misee. } \\
& \text { S.-Apply warm to the ear. }
\end{aligned}
$$

Now and then there are foum in the ears of children from five to ten years old hard, leathery, or even horny phugs composed of lamine of epithelinm with a little cermmen in the onter end, nem the meatus. These phigs quite fill the camal and render the ear totally denf. Their removal is telions, and can be aceomplished only after continned use of the abovemaned solvent drops mad patient syringing. If this does not accomplish their removal, it must be done by means of special instruments under illumination from the forehead-mirror. It is needless to say that by this time the case should pass into the hands of one specially qualified to trent it. I have known the deafness and pain arising from the pressure of these hard phugs in the anditory canal to be treated for years as due to other causes, -of course, without bencfit. Finally, when the true cause was found ont by one able to make an examination of the ear and a diagnosis, restoration to hearing and health soon followed.

Boti these aceumulations-of wax and of lamine of epithelimm-often owe their beginuing to the efforts of parents and nurses at cleming the ears of children. It is a mistake to regard wax as dirt, and a greater error to make efforts at its removal from the auditory canal. Some wax is needed for the protection and comfort of the ear, and the superflaons wats will roll out into the concha every day or two, and can be casily removed from that part of the cat. If, however, a swab or any form of spoon is used for removing wax from the cumal, as much as, or perhaps more than, is removed by such implements will be pushed into the canal and gradually paeked down upon the drum-membranc. At the same time more or less abrasion of the delicate skin of the canal oecurs. When wax and pieees of epithelium are pushed down upon the drum, deafness is soon the result, of which the very young child is unconseious, the natural escape of tlakes of dead skin and pieces of wax from the ear is interrupted, and as more epithelium is thrown off hehind the mass the latter gradually grows to one of the aforesaid keratosis plugs. Beneath these plugs sooner or later maceration and ulecration take place, polypi spring up, and the membrana tympani may be eroded and tympanic inflammation finally result from improper efforts at a
toilet of the ear. Furthermore, the presence of these plugs of wax and skin, when they have begun to press upon the skin of the canal and irritate the external car and the membrana tymani, may induce epileptiform phenomena in any one, but especially in children.

It is certainly wise, therefore, to refrain from any toilet of the ear, which is not only not required but may even lead to a direful train of phenomena.

Aspergillus.-If the wax is removed from the external auditory canal, the fungus called the aspergillus, a variety of monld, may grow in the fiundus of the ear upon the membrana tympani. The spores of the plant do not flourish in the presence of ear-wax, as I have tested by experiment, but readily enter the car and grow upon any morbid secretion found there if the wax has been wiped away and if in so doing the patient or the attendants have abruded the skin and permitted the escape of a little blood or serum into the canal. This furnishes the fitting soil, and soon the spores of the aspergillus spront from it, form a mycelial web upon the drummembrane, and bring about a dermatitis of the fundus of the canal and the membrana tympani.

The car now becomes painful, deaf, and from it a watery discharge soon ensues. Syringing with warm water will generally remove the false menbrane and the spores, atter detachment sets in, which usually takes place soon after the discharge appars. In these cases, again, successfin treatment depencis much mpon the corrert diagnosis at the outset ; otherwise no treatment is of value. Any olaginous or greasy application is injurions, because it favors the giowth of the fungres, and the ear goes on to a condition of painful eczema in iittle children, with many disagreeable symptoms from the nervons irritation so casily set up in the ear, and felt in the gencral nervons system.

There are many drugs which have been cited as destroyers of the aspergillus, but I have found only one that is pronpt and painless as well as efficient,—viz, salicylate of chindine, cae part to sixteen parts of boric acid. This powder should be insufflated into the car after all the casily-detachable picees of the false membrane have been removed by warm-water syringing. Usually one application of this powder to the affeeted membrana tympani destroys the aspergillus and enres the disease.

Otitis Erterna Diffusa.-This name is applied to the diffuse inflammation attacking the skin of the anlitory canal as a result of the irritation arising from the ingress of improper medicaments, cold air or cold water, from picking and swabbing the ear, and also from the continned presence of the fingus aspergillus. Direct violence, from putting snow in the ear in rude play, blowing into the ear, and subjecting the child to sudden changes of temperature, will also have to be held accountable for this discase, in many cases. It is a very painful affection, and, by its tendency to involve the subentaneons tissues and even the periosteal lining of the osseons part of the anditory canal, it assumes very often all the features of a periostitis. The skin
rapidly becomes red and swollen, and, from its confined position in a cartilaginous and osseons canal, is thrown into several thick folds or ridges, which uniting in the centre of the canal soon obstruct all view of the drumhead and render the patient hard of heuring. Morement of the auriele by the hands of another becomes very painfinl at this point of the disease. Tinnitus is also complained of, as well as intense pain. Severul days usually clapse, with all these painfll amoyances to the patient, before secretion sets in. Then the skin often exudes, at first from several points, a bloody sermm, followed in a day or two by a purulent discharge. The quantity of serum discharged in such cases is often very eopions, wetting a number of towels or cloths in the course of twenty-four hours. Sometimes the inflammation may extend to the membrana tympani, and involve it, so that perforation ensues and mucus is found in the discharges of the car.

Treatment.-When seen in the first stages, while the skin of the canal is swollen and tender, the best treatment is to make one or two deep incisions, down to the bone if necessary, into the congested skin. This will often cut short the disease; but the method is painful. The next best means of relief will be to apply a dossil of cotton moistened with the following mixture:

> R Black wash, fōi; Glycerin, f $3^{\mathrm{i}} ;$
or with a fifteen-per-cent. solution of ichthyol in water. I have known each of these to abori boh the circumscribed (firmoles) and the diffinse form of otitis externa. These applications usually control pain mueh better than morphine drops, cocaine, or atropine, which are in my experience nearly impotent to allay prain in such cases of earache. If, however, suppuration is fully established, the ear must be gently syringed with weak silt-and-water, warmed, or with boric-acid solution, or with a two-per-cent. solution of carbolic acid, or with plain warm water, and then gently mopped with absorbent cotton ; and, if the acute stage has fully passed and the ear is no longer sensitive to touch, boric acid in fine powder, or boric acid seven parts and iodoform one part, may be insufflated. If the car is thus eleansed onee or twice daily while the discharge is copions, and then once a day or every second day as the discharge diminishes, the organ will soon heal. But all fats, oils, vegetable matters, and poultices must be kept away from the ear, at this time and at all others. They only macerate the tissues of the ear, promote gramulations, and cause breaking down and sloughing of the fundus of the canal and the membrana tympani.

As the discharge ceases, granulations or small polypi may be seen on the walls of the canal and on the membrana tympani, while the latter may be found perforated. The granulations, if not yet pediecelated, will generally disappear under the use of the powders named above,-muder the so-called dry treatment. If they do not, they may be removed, under proper illumination of the canal, with forceps or suare. The perforation also generally closes under proper treatment as just marked out, and the hear-
ing becomes normal. Unfortunately, as soon as the earache stops the ear is often reglected and allowed to remain filley with decomposing and irritating matter, until a chronie otorrhea is established.

Effect of Teething on the External Auditony Canal.During teetbing the external auditory canal may become congested and painful. Not uncommonly the engorged vessels are relieved by an eseape of pinkish ssrum, or suppuration may ensue, after considerable fretting or great erying on the part of the child. This erying is too frequently referred to the grms, which, in fact, are rarely the seat of pain. If the car is fomd congested or inflamed by this canse,-the irruption of a tooth,dry heat applied to the external car of the little patient gives great relief and favors resolution of the congestion. The simplest, and often most effieient, means is a bottle of hot water held against or in front of the auriele.

The effects of diseased teeth are often reflected upon the skin of the auditory camal and tympanic cavity of large children and adults. The reflex effect of dental irritation upon the drum-eavity and the membrana tympani of infants will be conndered when disenssing diseases of the drum-cavity in childres.

MEMBRANA TYMPANI.

This part of the conducting auditory apparatus is of the same size in a child as in the adult. Its general apparance is represented in che aceompanying wood-cut (Fig. 5). This

Fic. ${ }^{5}$

Outer Surface of the Drum-Mmbrane. Magnified 3% tlmes. (Polltzer.)-1, 1, the flaceld part of the drum-membrane; 2, the shor process of the bammer-bone; 3 , back fold of the drummembrane; 4 , the long limb of the anvil-bone, shlning through the membrane: 5,5 , the true membrana tympani, or membrana vlbrans: 6, 6, 6, 6, imer ent of boby canal, forming frame for drum-membrane: 7 , the pyramid of light $: 8$, lower part of the hammer; 9 , front fold of the drummembrane. is the air-tight hourulary between the anditory canal and the middle car. It serves the double purpose of protecting the latter from the external air, and of broadening the surface of the handle of the mallens, the great factor in the leverage of somd-waves mon the other ossieles and the fluid of the labyrinth.

Congenital malformations of the membrana tympani are sometimes seen in early life, as a small opening in the upper part of the drom-membrane over the short process of the malleus, the so-called formen Ri vini. This is an arrest of development or a failme to close, like harelip, coloboma, ete. If such an opening in the membrana of a child is observed, care should be taken to avoid the entrance of water into the ear, as it might inflame the dimm-avity, should it find its way into this space.

Appearances.-Owing to the thick dermis of the membrane in children, their membrane rarely possess the lastre of the adult's drum-membrame. In general terms, it may be said that inspection of the membana trmpani of an infant or very young child, ly means of the so-called speenlum or car-fumel and a hand- or forehead-mirror, reveals at the bottom of the fundus a grayish or peard-colored, cirenlar, membranous diaphragm, with a lighter-colored ridge rmuning in one of the radii from in front and above lackward and downward. The latter is the handle of the ham-mer-bone. It terminates above at the so-called short process, a prominent knob, and below it ends at the umbo, or central depression of the memhama tympani. Backward and forward from the short process of the hammer, or mallens, to the periphery of the membrane run the so-calied folds of the membrana tympani, and above these folds lies the membrana flaceida, or Shrapuell's membrane. This is free from fibrous tissue, and is composed of the skin layer of the drum-membrane and the mucons memsane of the attic of the drum-cavity, which here come together and form a loose membrane in ${ }^{2}$? so-ealled segment of Rivimis.

The pyramid of light, a reflection found in the lower anterior quadrant of the drum-membrane of larger children and adults, is not fomed always in infants. It is plainly visible, however, at two or three years of age.

The membraa tympani forms an hermetical diaphragm between the external and the middle car. It aets as a protector to the mucons membrane of the middle ear, and undoubtedly angments the leverage of the mallens, in the chain of ossicles, by its expansion about the handle of the hammer-bone, which is thus enabled to catch somud-waves which fall upon its comparaiively broad surface. But, as perforation or even large destruction in the membrane does not appear to affect the hearing in mumerons cases, it cannot be considered a very important factor in the chain of somndconductors. It probably acts as a supporter to the malleus and enables it to maintain itself from locking too firmly with the inens.

Not only the cutancous surface but also the mucous layer of the membrama tympani of a young child is thick and highly developed. Hence its vaseularity is readily angmented by irritants from without and within, and a myringitis, or inflammation of the drum-membrane, is excited at this age more easily than in later life.

Diseases.-The diseases of the membrana tympani may be named as follows: tramatic perforation, aente inflammation, chronic inflammation, with or without perforation, and myringitis from the growth of aspergillus in the funduc of the canal. Being composed of skin from the external canal and mucous membrane of the middle ear, it readily partakes of the affections of these parts, but rarely is the seat of a purely idiopathic disorder. A strict myringitis is, in fact, very difficult to define, yet elinically it has practical existence.

Tranmatic perforation of the drum-membrane from "boxing" the car has been considered under Injuries of the Auricle, to which the reader is
referred (1. 5). The other forms of tramatic perforation oceuring in children are dur to the aceidental thrusting of slemder objects, like pencils, knitting-nealfes, pens, ete., into the canal and throng! the membrana. In addition to the womm of the mombrana, injury may be done to the ossicula or even to the internal car throngh the oval window, by the penetrating instrument.

If only the membrana tympani is perforated, the same cautions proceeding must be observed as to avoidance of putting anything into the canal, as was recommended when speaking of hoxing the ear. At the same time the meatus of the canal must be protected by cotton, and the air thus kept from falling directly upon the exposed mucous membrane of the drom-cavity. If no trammatic inflammation cusuc, the wound in the drum-membrane will heal, often in a few hours. If the penetrating wound has dislofged or injured any of the ossicula, a serions result may be looked for. And if it has extended to the internal car, cerebral symptoms soon show themselves, and are followed sooner or later by profound deafness. As rarely anything more than a perforation of the membrana oceurs from the violence alluded to, it will not be necessary to refer to the graver complieation of injuy to the ossicula or the internal ear, except to say that, if it oceur, only a skilled aurist cun manage it.

Sometimes the membrana tympani is ruptured by diving and by loud and sudden noises, and sometimes, though rarely, by coughing.

The perforation looks like a red line, or a gaping slit, either before or behind the mallens. The latter is, as a rule, larger and more plainly visible than the former. The perforation whistle can always be heard if the Enstachian tube is pervious. There is generally a little pain at first.

Perforation of the Flaceid Membrane-Sometimes a perforation is detected in the flaceid membrane above the short process of the mallens, accompanied by little or no discharge. This may be due to crosion, from a foreign substance in the external auditory canal. More frequently, however, such a perforation gives exit to a discharge of offensive pus, and indieates grave, purulent disease in the upper part of the drum-cavity,-in the so-called attic of the drom. This form of tympanic disease will be considered when diseussing affections of that part of the ear.

Via in li bifigh
 are especially common in childhood, furnish most of the cases of so-called "carache" among the young, and lie at the foundation of nearly all eases of permanent deafness.

Pathology of the Middle Ear.-We find here also congenital malformations, as, for example, an abnormally small tympanic cavity, absence
of the ossicle to be middl in chi hiscen

Tl child mucou middll dura than i these region

Tl betwe childr nicater
of the fenestrue, one or both, or contraction of them by hyperostosis. The ossicles of hearing may be absent, or abnormal in size. The stapes is said to be most frequently at fault. (Von Troeltsch.) Malformations of the middle ear are usually associated with malformations in the external car.

The Eustachian tube is rarely malformed. A mastoid cavity is fom in children, but it is very small and its cortex is filled with matural dehiscences. This grows until puberty, when it is fully developed (p. 2).

The tympanic cavity of a new-born child does not contain air if the chik has not breathed. It is not filied with mucus, but with a thiek mucous membrane in a hyperplastie state. In the first years of life the middle ear is more disposed to discase than later. In carly childhood the duat mater and the tympanic mucous membrane are more closely connected than in later life. This is effected by the direct tissue-cirenation between these parts through the petro-squamous suture. Hence affections of one region influence the other.

The middle ear is further inclined to disease because of the connection between the Eustachian tube and the naso-pharynx. The latter region in children is very susceptible to "colds," and these effects are casily communicated thence to the middle car.

The naso-pharyux is very rich in blood-vessels and glandular sulstance. Lying between the pharyngeal monthis of the two Enstachian tubes is the so-called pharyngeal tonsil. These vasenlar and glandular structures become congested and ahnormally active in coryza and in the exanthemata. Then the Enstachian tubes become closed, acration of the drum-cavity ceases or is greatly impeded, a vacumm is formed in the tympanum, and the membrana tympani is pushed inward ly the external air. Swollen palatine tonsils and naso-pharyox act in the same way, by indueing stasis of circulation near the Eustachian tubes, and thus maintain an irritation in this delicate region.

Unimpeded masal respiration is of the greatest importance, as thus acration of the middle ear is maintained. The naris is often impeded for a long time before it is discovered, and the car on that side becomes deaf before the cause is found out. The quality of the air respired is most important, as each respiration, swallowing, gaping, or sneezing fores air into the middle ear, if the Enstachian tubes are not tightly elosed. If they remain closed long, extravasation oceurs in the drum-cavity, which can, however, be removed by inflation or by paracentesis. When the nose is stopped, air is more readily forced from the naso-pharyux into the Eustachian tubes and middle ear than when the nares are free. The same condition prevails in expiration, coughing, or swallowing when the nose is stopped. Hence, when the child sucks the breast, swallowing with its nose stopped and its mouth closed by the teat induces in its middle ear what is known as the negative effect of aeration of the naso-pharynx,-viz., an exhanstion of air from the tympana ; the membrane are then drawn inward, causing subjective noises, diseomfort in the ear, and even pain and deafness.

Vol. 1V.-2

The same condition of the nares which thus fitrors the entrance of air from the fances into the Eustachian tubers may also favor the entrunce of water. Hence vomiting, as in whooping-congh, may force the contents of the stomach into the middle enr, and canse otitis media. Mucus also may be tims forced into the Enstachian tubes and middle car.

Pus in the tympana of very young children (from two days to two weeks

1) may be regarded as physiological and due to metamorphosis of the
uss enshion alluded to on p. 17. Dissections of the ears of children an weir first year indieate that inflammation and exudation in the middle car are very common in carly life.

The most usial form is the acute catarmal otitis media, which may develop into the acute purulent, or may assume the form of chronic catarmal otitis media withont purnleney. But no sharp line can be drawn between acute otitis media catarthalis, which leads to rupture of the membrana tympani, and otitis media purnlenta acuta, since when perforation of the mombrana ensues some pus will be found in the discharge from the drom-cavity, thongh the quantity may be so slight and so evanescent as to permit the discase to be named a eatarrhal one, with lypersecretion of mucus as its chief result.

OTITIS MEDIA CATARRHALIS ACLTA.

A very young child with a severe coryza and stopped nares is practically in the first stage of otitis media catarrhalis. Very often infants in this condition ery greatly, but the true cause of their discomfort is not known. Usually only one ear is attacked at a time. If a diseharge of mueus or pus oceur in a few days after the great erying-spell, then it is recalled that the earache may have been the canse of the child's lamentation. Very often, however, the pain in the early stage of catarrhal otitis media is not grent, the congestion in the tympanum soon modergoes resolution, no discharge comes from the ear, and it is never known that the ear has been the seat of discase, unless the liearing is dulled by the attack and the child is old enough to permit detection of this altered function. This failure in hearing soon passes off, and many cases never show any snbsequent defeets in hearing.

On the other hand, with a coryza the child may soon begin to ery bitterly, and if a yar old will put its hand to its ear, indicating the seat of pain. When able to speak, it will state that its ear aches. If suppuration does not ensue, the pain is relieved either by proper treatment or by a rupture of the membrua tympani and an eseape of sero-muens.

Treatment.-When it is diseoverel that a child with coryza-for it is such who are usnally attacked with this form of ear-disease-is suffering from earache, an endeavor should be made to free its nostrils and open the Eustachian tubes, for it is the swollen state of the latter and the vacuum formed thereby in the middle ear which canse the pain. If the tubes are not opened and air thus allowed to re-enter the tympanum, passive exuda-
tion ensues in the drum-cavity and soon leads to rupture of the drum or further complications in the middle ear.

A camel's-hair pencil anointed with sweet oil or cosmoline may be passed gently backwarl towards the fances, -not upward towarls the frontal sinas. This will promote sneezing or coughing and tend to open the Enstachian tubes. Still better, inflation of the tympana be Politzer's air-bag should he done. With infants and very young children this is a simple and efficient operation. It is required simply to place the nose-picee in the nares, and inflate. No swallowing of water nor any other effort on the patient's part is required, as it generally eries, and this lifts the relum and shuts off the nares from the pharynx. A gentle puff from the air-lag will now usually inflate the tympana, and often banish the carache. It must be done, however, very gently in the aente stage, or the car is mate more painful by the concussion it receives.

The pain may often be entirely relieved in a short time by the application of dry heat to the auricle or in front of the ear. A fom-ounce bottle filled with hot water and held to the aching ear I have known to relieve soon, and I have seen the child fill asleep to wake with no further eardisease. A hot stone, a hot salt-hag, a hop-pillow, or a hot-water hag will accomplish the same.

But beware of dropping anything into the ear in this stage of the disease, or of putting anything moist, resembling a poultice, in or about the car. If you doubt this, just apply to your own well ear any of the great variety of domestic remedies so often ruthlessly applied to an inflamed ear, and you will perceive how quickly an acnte otitis externa is excited, and how often this is added to the catarhal inflammation in the middle car. From my own experience I believe that very few catarrhal cases would ever pass into any very painful or serions stage if they were properly treated at the outset. It is certainly a fact that many are made worse by what is improperly and ignorantly put into the external ear. It does not reach the inflamed middle ear, but it inflames the external ear and increases the general congestion and pain in the organ. When I have seen a catarrhal otitis media at the outset and have had the control of all the treatment, I have never known the inflammation to fail to yield promptly to treatment. On the other hand, I have seen what was at the begimning a simple and manageable disense turned into a very painful and sometimes chronie one by improper treatment.

Politzer's Method of Inflation: the Air-Douche.-As this method of inflating the tympana is frequently mentioned in these pages, it should be said that it consists in blowing air throngh the nostrils into the nasopharynx by means of a soft rubber bag made for the purpose, and held in the hand of the surgeon. (Figs. 6 and 7.)

The nose-picee being inserted into one nostril, the other nostril is elosed by pressure with the fingers of the surgeon. Then the ala of the nostril in which the nose-piece is, is gently pressed in front of the nose-piece,-not
down upon it. Then the patient, having previonsly had some water given him, is told to swallow. This act lifts the velmm, shuts off the nasopharynx from the phargnx, and opens the Eustachian tubes. If at this

Fia. 7.

Fig. 6.

Applleation of the inflation-bag.
moment air is thrown into the naso-pharynx by squeczing the ir-bag, inflation of the tympana takes place. Instead of swallowing water, distention of the cheeks with air will accomplish the same object.

In very young children neither method ean be used. Sometimes simple inflation by means of the air-bag, without any aid on the child's part, will force air into the tympana. Crying on the part of the child, by lifting the palate, will greatly aid inflation.

In addition to the measures for relief already named, the child must be kept warm, and, if possible, in the same room, while the ear is at all painful or sore. The temperature of the room nanst not be belew $70^{\circ} \mathrm{F}$. The patient must be kept warmly dressed, and, if able to walk, must be kept off the floor, if the weather is cold. A mild sudorific may be given, and the food must be light. Such management will usually bring about resolution of the inflammation in the naso-pharynx and middle ear in the eourse of a few hours or a day. The dulness of hearing may remain for several days, and, if so, Politzer's inflation should be performed once a day
until the hearing improves, and less frequently as the hearing further improves.

Sometimes, however, though the pain may be made to abate, the exudation in the tympanum may be sufficient to canse rupture of the membrana tympani, and a yellowish muens or muco-pus will be found escaping from the meatus into the concha of the auricle or even out upon the check. The disease has now hecome subacute, and may undergo a spontancons cure in a few days, as evidenced by cessation of the discharge and improvement in hear-ing,-the latter being discernible only in children who can talk,-or it may pass into chronic muco-purvent otitis media.

The ear shonld now be mopped with absorbent cotton on the cotton-holder, or syringed with warm water, in order to remove all septic matter. After such cleansing one of the following powders may be blown gently into the car : finely-powdered boric acid; or iodoform, one part, and boric acid, seven parts ; or borie acid treated with calendula or hydmastin. This treatment should be carried out every day if the discharge is copious, and less frequently as the discharge diminishes.

It is well to state here that the borio aed is combined with calendula or hydrastin in the following mamer. Mix tincture of calendula and boric aoid together, minim for grain, and dry over water-bath. Then repowoer the dried mass and mix it with one or two parts of boric aoid as desired. The hydrastin-boric-acid powder is prepared in the same way.

This treatment, if begum at once, will usnally check the discharge from the ear in a week or two. If the discharge is neglectca, a eure is effected much less rapidly. The cure is also hastened by the use of Politzer's inflation-hag. When the discharge has ceased, the membrama may still be found perforated or it may have healed. The perforation in the mucons form of otitis media is usually smaller than in the purulent forms.

The insufflation of boric acid in any of its combinations must not be done while the ear is tender or painful, as such

Fig. 8.

Cottonholder. treatment undoubtedly increases the pain. Its use is indicated, however, as soon as the pain and soreness leave the ear. In fact, during the painful stage of otitis media the less put into the ear the better it is for the patient. Before the membrana ruptures or is incised by the surgeon, the local application of dry heat and the systemic treatment are all that can be done. Some have obtained good results from the administration of small doses of tincture of aconite root. Locally cocaine has been vaunted by some, but I have gained no aid from it in acute otitis media. As I have already said, the catarrhal cases, if seen soon and before various improper home remedies have been applied, yield to the applieation of dry heat to
the painful eur: The hot-water lag, the bottle filled with hot water, a hot stone in flamel, a hot sand-bag, "thot salt-bag, or a hot enshion of dry hops will give the best aid and eertainly do no ham. Moist applications in the form of poultices macerate too much and tend to harm the carr, just

Fits. 9.

as they do when applied to the eve. One or two Swedish leeches applied near the tragns or leneath the auricle will often ent short an acute catarrhal process and prevent the formation of mueo-pus.
l'arucentesis of the Membreme.-Even in the catarrhal cases of otitis nedia, paracentesis of the membrana may be performed,--thongh this operation is more likely or be demanded in the purnlent form of otitis media.

Fig. 10.

This must not be attempted, however, unless the surgeon can illuminate the ear with the forchead-mirror and conduct the delicate paracentesisknife down to the bulging membrana. An ineision may then be made in that part of the drum-membrane which is most distended by the products of inflammation in the drum-cavity. Such an operation usually gives speedy relief to the sufferings of the patient.

OTLTIS MEDIA PURULENTA ACUTA.

In many instanees the catarrlul form of otitis modia cannot be relieved by any of the remedies I 'ave indiated, but panses into otitio molia purulente. The pain in these cases will have defied all mensures adopted for its relief, mad terminates only when the membrama tympani ruptures spontaneonsly or is incised by the knife. If pus forms, it can be seen behind the membana, and the latter will usually bulge outwod. It is this form of ear-disense which usially canses the distressing earache of chideren. In very yonug children the pain is so intense as to camse convulsions. In infants a coryza or teething will bring on this discase in the em. In larger children the exanthemata, exposure to inclement weather, or phaying in the snow, or in stmmer excessive bathing in cold water or rapid cooling of the heated body by lying on the gromad, will cause otitis media.

In searlet fever or mensles this disease may come on insidionsly withont much pain. In such cases it seems to be of a chronic nature from the outset. The perforation is usmally large, as the membrana tympani sloughs easily in the exanthemata, especially in scarlatina.

The mode of reflex artion concerned in the purnlent otitis morlia of teething descrves onr consideration. "A considerable portion of the blood-supply of the membrana tympani isderived from an artery that haves the internal carotid in the carotid canal, and proceeds by a very short course directly to its destimation. Being thus closely connected with a large arterial tunk, this small tympanal branch (Fig. 11 at 3) of the internal carotid artery possesses very favorable circumstances for a speedy angmentation of its blood-supply. Now, the nervi vasormm constituting the carotid plexus at this

Nervots Connection between the Teetil and tife E.ar. Woakes.)-1, tympanle eavity : 2 , auricular brunch of anriculo-temporai nerve; 3, branch from the ganglion furnishlug vaseular nerves to the internal carotld artery and lis branch the tympanle artery: 4 , otle ganglion; b, hraneh from otic gangllon johing inferior dental nerve; 6 , midale mentugeal artery: 7 , anriculo-temporal nerve; 8 , Inferior dental nerve to leeth mal gums: 9 . short lympanie branch of intermal carotid artery. part of its course come largely from the otie ganglion (Fig. 11 at 4). The third branch of the fifth nerve is eut through in the diagram to show this ganglion. On the other hand, the inferior dental uerve (Fig. 11 at 8) supplying the decayed tooth or gums, as the ease may be, also communicates with this ganglion (Fig. 11 at 4, 5). We thus arrive at a direct channel of nerve-communication, through the otic ganglion, between the somree of irritation, the tooth, and the
vascular smpply of the drom-hend. The eflect hen of the irritating impression proceding from the deraved tooth or swollen gums will be to excete waves of vessel-dilatation in the corvelated area, the drum-head. Its vessels now become largely distended, acnte congestion is thas establisherl, with its attendant stretching of the sensitive and tense tianne in which it oecors, and so occasions the pain experieneerl by the subjeet of these conditions, If the irritation be sutficiently prolongerl, effinsion into the tissues masues, which under favorable ciremistances will pass into smpuration and constitute a true otorrhoas. Owing to the fiee inosenlation of the versells of the dromhand with those supplying the tympanie cavity, it will not be long ere this region participates in the inflammatory process, so that this eavity may also berome fillet with pus or muco-purulent fluid." (Wioakes.) Of comse this acommation must either escape by the Eubachian tube, as it can very casily in children, from the companatively large size of this tube in them, or it ruptures the membrama and roms out at the extermal anditory meatus. Before diseharge takes place from the drum-cavity, the pent-up matter may pross upon the fenestrae and thence upon the contents of the immer enr, and may excite convolsions.

Before suppuration ensues in the drom-avity, inflammation may extend from the drum to the meninges of the bran, by the way of the petrosquamosal suture, through which a fold of dura mater dipes into the tympanic cavity and mites with the muco-periosteal lining of the latter. This fissine is wide and the portion of dura mater entering the tympanm throngh it is large in infimey. Towards adnlt life this fissure beromes marrowed or obliterated, but the vascolar comection between the drom-convity and the brain contimes.

Treatment.-Since otitis media prululenta begins as a catarrhal inflammation, the remerlies suggested for the relief of the hatter malady (pp. 18-20) may be applied in this.

But I camot too urgently object to the use of poultices or hot drops of tinctures and acids in this disease. By such procedure the car is usually made worse, as an artificial otitis externa or a myringitis is hronght on, and the original discose is masked. Very often this is the condition of the car when the physician is called to the patient, becanse of the indiseriminate use of a host of senseless household remedies. Examination of the membrana tympani reveals a bulging either below or above the folds, in the membrana flaceida, rarely in both regions. In either condition it is best to perform paracentesis.

There are no "drops" which can relieve earache in ehildren. If dry heat, inflation, or treatment of the inflamed nares will not do it, nor rest in bed in a warm room with antiphlogistic and sudorific treatment accomplish it, only the eseape of pms, either spontanconsly or by means of the para-centesis-knife, will give the desired relief.

After the discharge of pus has set in, the ear must he gently moperd with absorbent cotton, once or twice daily, or oftener, to keep it clean and dry.

[^2]This is preferable to the syringe. If, however, the discharge is copious aud tenacions, the cur may be syringed at the beginning of the discharge, but not as the dischurge diminishes. After the ear is clemused, insufllations of borie acid alone or of borice acid and iorloform combined may be employed, if the ear has lost all pain nud tenderness. If the discharge keeps up for a fortnight and is very purulent, the ear may be mopped with a two-mind-a-half-per-cent. solution of mubolic acid, previous to the insufflations.

The surgeon must be on the lookout for granulations and polypi. If the former appara, the above treatment will often canse them to disappear; if not, they may be gently touched with as much fluid chromic acid as will eling to the end of a bare cottonholder. If true pedicellate polypi form, either gentle torsion of the polyp by means of' a probe, under perfect illumination, or

snaring it with the polyp-snare, will remove the growth.

CHRONIC PURULENT OTITIS MEDIA.

Unless acute puruleney of the midille ear stops spontameonsly in a few weeks or is cheeked by proper treatment in an equal period of time, the patient becomes the subject of chronic purulent catarth of the middle ear.

This disease is usually the result of neglect, and is casily established in the cachectie or debilitated. The majority of cases are the result of severe searlatina. Measles and intense coryzas at the time of teething furnish their share also.

If the canal is examined, it will be fomd either partly or entirely filled with pus and, in the carlier stages, strings of muens from the Eustachian tube. I would say here that a discharge from the ear, especially if a copions one, is prima facie evidence of the existence of a perforation in the membrana tympani. After this discharge is removed from the canal, either by syringing with warm water or by mopping with absorbent cotton, the membrana tympani may be seen. Inspection will reveal that the membrane is perforated, usually at one point only, and that in the lower and hinder part. The perforation is sometimes large enough to permit a view of the red mucons membrane of the inner wall of the drum-cavity beyoud.

Very often the entire membrana is gone, only the peripheral annulus tendinosus and the malleus being left. The latter is indrawn, and its lewer end is seen lying against the promontory. If the perforation is smaller, the malleus will be seen to be entire and in normal position. The remnant of the membrana is then macerated, and in some cases dennded of its epithelium. In other cases the dermis of the membrane is intaet, but thiekened and white. If the perforation is large and extends far into the upper and posterior quadrant, the inens-stapes joint may be seen easily. Polypi are often found in this form of ear-disease, extending beyond the plane of the membrana tympani, outward into the external auditory canel. Their protrusion in this direction leads often to the idea that they are attached to the walls of the auditory canal; but, in reality, they originate from the mucons membrane of the drum-cavity, either from that on the inner wall or from that on the imner surface of the membrana tympani. The lining of the anditory canal is skin, and not mucous membrane. Hence polypi do not readily originate from it.

Treatment.-If in a case of chronic puruient otitis media a polypus is found, it should be extracted before any attempt is made at checking the diseharge. In fact, a discharge cannot be checked while a polypus is in the ear. A polypus may be removed by delicate forceps, or it may be twisted off its stem ly the use of forceps, but the surest way is to suare it off by means of the polypas-snare (p. 25). This instrument should be very slender, so that it can be passed down the canal to the polypus muder the eye of the operator. "his can be done if the instrument is slender enough to permit plenty of ught from the illuminator to pass into the canal at the same time. A fine brass piano-wire, or the fine brass wire used by saddlers, is better than steel or siber wire, hecanse it is more, sliable and the bright color enobles the operator to keep sight of the loop which he is endeavoring to place over the polyp. After the polyp is removed from its pedicle, th? latter shonld be touched with a minute quantity of fluid (i.e., deliquesced) chromie acid. Just as much as will eling to the end of a bare metal probe will suffice for the purpose of cauterizing the perlicle. The hemorrhage is ineonsiderable in all cases. If neither the wall of the anditory canal nor the mueons membrane of the dram-cavity be touched, the patient will experience no pain. In fact, as the polyp has no sensibility, if the parts named be not tonched, the patient will net know that anything is being done to him. After the removal of the polyp and the canterization of the pediele the ear may be insufflated with finely-powdered boric acid, alone or combined with iodoform as previonsly suggested (p. 21).

After the removal of a polypus from the ear the discharge usually stops, -sometimes even without further treatment. However, some form of treatment is usually demanded for a few weeks. If the diseharge does not then cease, we may suspect that a concealed polypus exists in the upper part of the tympanic cavity,-the so-called attic.

The best treatment for ehecking the discharge after the polyp is removed
is the dry form, by the powders named. Sometimes strong solutions of nitrate of silver inay be required. Nothing weaker than fifty grains to the fluidounce of water will be of avail, and solntions of one hundred grains are otten most efficient. 'These must be put into the car by the surgeon,not by the patient or an attendant. It is not neeessary to nevitralize them by salt water. Let the car be gently and thoronghly syringed with plenty of tepid water a few moments after the application has been made. If this treatment has not a deeidedly good effect after two or three applications have been made, it shonld be discontinned, or stronger solutions tried, even up to satmrated solutions. But, of eourse, these must be arrived at with cantion : the last-named strength will be needed rarely.

If fluid applications are demanded instead of powders, alcohol stands first in the list, in the treatment of chronic purulent otitis media. This may be used in the form of spirits of wine, or of alsolute anhydrous alcohol. An application of ten drops may be made once or twice a day, after the ear is cleaused either by absorbent cotton or by syringing.

Solutions of sulphate of copper, one grain to the ounce of water, sulphate of zinc, from one to three grains to the fluidounce, and nitrate of lead, ten grains to the fluidomee, will be found of valne in checking the discharge. As, however, the discase does best under the dry treatment, all fluid applications are but second choice. But cases may present themselves in which fhe dry treatment camnot be carried out, ance in such the fluid applications I have named will be found of service.

Gramuictions, with broad base, need not be ent or scraped away. They will generally disappear under the autiseptic and dry treatment. But no fluid application exeepting alcohol will be of use when granulations are present. In fact, the fluid treatment is contra-indicated when gramulations are present, as moisture promotes their growth and development into polypi.

Chbonic Pubulency of the Attic of the Tympander--Chronic purulent disease in the attic appears under two forms: (1) in conjunction with chronic stppuration of the atrium, or lower and larger part of the tympamm, the latter being aceompanied by perforation of the membrana tympani ; and (2) as a chronic purulent disease limited to the attic, the membrana fluceida, the part ahove the short process of t_{i}. lammer, alone being perforated, the membrana vibrans, the part below the line of the folds, being intact and often normal in apparance. In the first case the diselarge is copious, while in the sceond form it is nsmally scanty.

The attic contains the heal and neck of the mallens and the body of the inens; its upper wall is the tegmen tympani, the boundary between the tympanum and the cramial eavity. It is therefore manifest that disease in this space threatens the meninges by extension through the dehiscences which usually exist in the tegmen tympani. A combination of the two forms-i.e., the coexistence of a perforation in the membrana flaceida with one in the membrana vibrans-is the rarest exception. The membrana flaceida is that part of the membrana tympani bounded alove by the semi-
circular bony edge of the segment of Rivinus-i.e., the imer edge of the upper wall of the auditory canal-and below by the folds of the membrana and the short process. As it is composed of two layers only,-skin and mucous membrane, being devoid of fibrous tissue,-it is loose, and has received the name of flaceid membrane. It is also called the membrane of Shrapuell, after him who first deseribed it.

The sceond form exists uarely in children, but there is reason to believe that the first form, in which the atrimm is also diseased, is often for \mathbf{d} is: them. In such cases as the latter the inens is often partly or entireny destroyed by necrosis. The mallens also is partly destroyed in the handle, the upper parts alone remaining in mion with the remnants of the membrana tympani. The stapes is usually intact, as it seems most resistant to purulent disease and necrosis.

Treat nent.-The first form of attic disease demands, in addition to the treatment already laid down for chronie puruleney of the drum, a thorongh drainage of the attic. This is best accomplished by removal of the semnants of the membrana tympani, the mallens, and the incus. The stapes shonld be left undisturbed. This operation of excision of the remnants of the membrana and ossienla anditns is performed with the patient under ether. The illumination of the ear is accomplished by means of an electric lamp arranged to be worn on the forehead. If the incns-stapes joint is visible, the latter should be separated from the former, by means of a knife specially devised for this purpose. If this joint is hidden by the still extant upper posterior quadran th of the membrana tympani, it should be exposed or sought for, by the excision of the obseuring part of the drommembrane. If discovered by this act, the joint should be severed as stated above. The next step will be to sever the tendon of the tensor tympani musele, by means of another form of knife, specially devised for this act. Then all remaining attachments of the membrana tympani to the ammulus tympanicus should be severed by means of a blunt-pointed knife, when the mallens, being seized by delicate foreeps or by a polyp-snare, can be lifted from the ear. The incus in these cases is generally destroyed by necrosis, but, if not, it can be removed by foreeps, or by a hoe-like instrmment if the ossicle has slipperl high up in the attic.

If we are dealing with the second form,-viz., one in which the perforation is in the membrana flaceida only, through which the pus escapes, while the membrana vibrans is intact,-the procedure is a little different. In this form the incus-stapes joint is necessarily unexposed : at most, only the neek of the mallens can be seen. The first act, therefore, will be to exeise the upper posterior quadrant of the membrana tympani and expose the inens-stapes joint. Then disarticulate these two bones, sever the tendon of the tensor tympani, and cut away all attachments of the intact membrana to the amulus tympaniens, by a circular cut embracing the entire periphery. The malleus, with the remnants of the membrana, can then be removed as stated above.

 cot
 foa
 cea
 of
 thi

This operation may be the only means of obtaining a radical cure in some cases of chronic suppuration in the attic. ${ }^{1}$ Much relief, however, and even long periods of immunity from the offensive purulent discharge, may be obtained by the use of various fluid remedies applied to the attic, through the perforation, by means of the tympanie syringe. The latter is a syringe holding about a fluidonnce, to winich is fitted a slender nozzle, which is introduced into the attic through the perforation. B_{j} this means the diseased cavity may be syringed with proxide of hydrogen, and then by solutions of carbolic acid, sulphate of copper (gr. iii to fzi), alcohol, etc., those named being the preferable ones.

Peroxide of hydrogen, having a peculiar affinity for albumen, breaks up pus as soon as it comes in contact with it, making by such action a copious foam. This not only is a great cleanser, but it reveals by this foan.: the presence of pus even in very small quantities. When the form ceases to appear it may be concluded that all pus has been removal.

Mastom Disease.-Affections of the mastoid, being usually the result of chronic purnlent disease in the tympanic cavity, may be considered at this point.

For clinical convenience mastoid inflammation may be divided into :

1. Periostitis of its outer surface.
2. Congestion and inflammation of the mucons membrane lining the air-cells of the mastoid cavity.
3. Caries and necrosis; followed by thrombosis of the lateral and other simuses of the brain, general embolism, pyemia, or cerebral abscess.

The first form is not uncommonly observel as an attendant of acute inflammation of the middle car, with consentive inflammation in the external anditory canal. It may also appear during chronic suppuration in the tympanum. An abseess may form over the mastoid as a result of this periostitis, and in a strumous diathesis caries of the onter table of the mastoid may be induced. This latter, asthenic form is characterized by its painlessness; the former, os stieuic type, by great pain. The asthenic form may occur as a sequel of liphtheria in children.

When the sequestrum is found, it should be removed at once. Such a disease as this, ocurring over the outer wall of the mastoid in a child, becomes of moment not only to the hearing but even to the life of the patient ; because in children there is much greater probability of an extension inward of such a discase than there is of its passage outward, for the tissnes over the mastcid in young children are much more resistant than the thin and somewhat eribriform outer table of their partly-developed mastoid. Sometimes that which appears to be an alseess pointing over the mastoid undergoes resolution by ordinary poiltices.

The sthenic variety of mastoid periostitis is characterized by pain and

[^3]tenderness in the mastoid portion, with some relness of the skin. It may mislead the observer into the idea that it is inflammation of the mastoid cells. But the less deep-seated pain in the car and head and the readiness with which the periostitis yields to lecehing or a deep incision (Wilde's ineision) will serve aj diagnostic points. It must be borne in mind, however, that inflammation of the external periostenm may be associated with deeper inflammation in the mastoid cavity. This, however, is hardly the case in young children, as they do not possess largely-developed mastoid cells. Hence the second and third forms need not be expeeted in them. Yet chronic purnlent inflammation of the drum-cavity is often followed in children by thrombus in the cerebral sinnses, general pyemaia, and absess in the brain.

After a pirulent inflammation has existed for some time in the middle ear, there may suddenly arise an acute and violent inflammation in the organ. This usually ocenrs after exposure to cold air or to a cold water bath, or after a blow on the ear. The first result of the engorgement of the vessels is a diminution or checking of the discharge. The pain is often severe, and of a throbbing or horing kind. Pain is often felt in the brow, in the parietal and in the mastoid region of the affeeted side. Facial paralysis is quite a common ocenrence in these forms of inflammation in the middle ear. It is che to pressure of the greatly-swollen mueous membrane or the inspissated pus non the facial nerve through a dehiseence in its canal. The discharge, which had at first ceased, may now be renewed, though altered in quality, being thinmer and very offensive. The facial paralysis is, however, by no means the worst symptom in such cases, as it usually disappears if the patient survives. A more alarming symptom is swelling and pain in the jugular region on the side of the affeeted ear. This symptom indicates involvement of the lateral and other sinuses of the brain, and is apt to be followed by embolism in various parts of the body. If an abscess forms in the mastoid antrom of a child, it will much more readily discharge itself through the thin, eribriform outer plate of the mastoid process and point in the soft parts of this region.

Such a termination is a usual one in childhood. Cerebral abseess is a not uncommon result of chromic inflammation of the tympanic cavity with involvement of the mastoid. It is due to purulent absorption, as is shown by its ocenrrence sometimes on the side opposite the diseased car.

Treatment of Mastoid Disease. -Inflammation of the mastoidal periosteum will usually yield to the local abstraction of blood by means of lecehing or a deep incision-down to the bone. The incision is to be kept open for a day or two. An artificial perforation of the mastoid cortex will rarely, if ever, be demanded, in children. When the abscess makes its way to beneath the skin and points over the mastoid, the treatment is the same as for an abscess in any other part of the centancons surface. In fact, if the chronic purulent disease of the drum-cavity were more frequently heeded and promptly received proper treatment, there wonld be no mastoid involve-
ment in children. Even when it does appear, ordinary ponltieing will often give desired relief in children, on account of the soft and open mastoid cortex in them.

CIIRONIC NON-PURULENT OTITIS MEDIA.

The onset of this discase in children is usually insidions. Infants may be attacked by it and their hearing greatly impaired before it is known that sucla a change has oceured. After a severe cold in the licad and an aente catarrh of the Enstachian tube, the mucous membrane does not regain its normal state, but remains in a condition of chronie inflammation, which gradnally assumes the form known as hypertrophic catarrls. This may set in withont much or any pain. If the child is an infant, it may be remembered that it onee had a bad attack of "smuffles or a bronchitis," but it was not noticed to be deaf. In an older child-one who has learned to talk-it will be observed that it does not hear well after a cold in the head. This may pass away, to retum with another cold ; and at last it is observed that the child is permanently dull of hearing, and perhaps growing worse. If at sehool, it falls behind in its studies, or it is supposed, often very mujustly, to be heelless, and gets blame which it does not deserve.

If in this carly stage the cars, the nares, and the throat be examined, changes peenliar to the disease will be found to have taken place. The drum-heads, the membrane, will be found more retracted than normal, perhaps less shining, and the color transmitted through them will be red or pink, from the congested mucous membrane over the inner wall of the drum-cavity.

The nares will present at this time a swollen and red mucons membrane over the turbinated boues, and the respiration through them will be impeded. A more or less stieky and copions discharge will come from the anterior nares and also flow backward into the fances.

The months of the Enstachian tubes will be found swollen and closed and blocked by mucus. The fances are not always affected, like the nares and the Eustachian tubes, but usually they present a follienlar pharyngitis and a swollen velum palati.

If these conditions of the nares, Eustachian tubes, and middle cars have been present for several months, the little patient may have had attacks of not severe earache, or at times may have complained of sharp darts of pain. The child now breathes through its month and presents the very injurions condition known as " month-breathing," the nares having nearly ceased to do their usual work, and the alæ being eollapsed, giving the nose a pinched look. The hearing may now have become very much reduced and lead the parents to seek medical aid. Children five years old or more will often complain of subjective noises in the cars. By the repetition of isolated words, like " man" or "pin," or " four" or " more," it will be found that the hearing is rednced to a few feet or even inches, in serions cases. The con-
sonant sounds are lost first, the patient saying "tin" for " pin" when tested. A watch is a poor test, and I never employ it. The toming-fork or a small masic-box is much better as an aerial test. But the best test is the voiee, in speaking words, as I have just indicated.

If the nares are badly impeded, the words with narals in them will be mispronomeced, as the nasal resonance is cut off: e.g., the word "nose" will be pronomiced "doze."

Many cases of deaf-muteness arise in this way. The infant has a chronic anral catarrh, the process being identical with that in an adult. In the infant the process is not recognized until a year or two atter its inception, when the child shonld begin to talk. Inspection reveals all the symptoms of chronic aural catarrh, but too often when all attempts at restoration of hearing are in vain, beeanse the thickening of the membrana tympani, and more especially the selerosis in the drum-cavity and in the joints of the ossicles, have become indelibly fixed.

Many cases of deaf-dumbness are supposed to be congenital. More than half have really become such after birth. Perhaps not more than twenty-five per cent. can be justly called congenital. The majority certainly originate from diseases occurring after birth, in carly childhood, and those ocenuring in carly infancy are donbtless due in many cases to an insidious chronic aural catarrl, especially when no other distinct and probable cause can be assigned for the deafiness.

There seems to be some tendeney to transmission of chronic catarth of the middle car from parent to child. When a deaf parent seeks advice regarding a child with catarrhal deafness, the prognosis is always less encouraging. There is in such eases a transmission of the tendeney for the nares and Enstachian tubes to assume a hypertrophie catarmal condition, just as in some families there exists the tendeney to catarrhal diseases of the bowels or of the lungs.

The cerrmen of the anditory canal is diminished in quantity and sometimes brittle in quality in the carly stages of chronic anral catarth.

The membrana tympani, as stated, undergoes changes in color and temuity. Instead of a thickening there may be a thinning of the membrane, especially if there is a tendeney to ozena in the case. The color of the membrane often appears red, fiom the transmitted tint of the congested mncous membrane beyond. Calcareous spots are rarely found in the membrana tympani of a child affected with eatarrhal deafness.

The position of the membrana tympani changes, from the retraction it undergoes, after the catarrhal discase has affected the middle ear for some time. The mallens then appears foreshortened perspectively, and the short process seems unusually prominent. The manubrium of the mallens is not only drawn inward, but is pulled upward and back ward, and, the eurves of the membrana being thus altered, the pyramid of light, normally found in the antero-inferior quadrant, is either thrown upwed in the anterior half of the membrane or disappears altogether. In fact, the normal pyramid
of light is usually one of the first features of the membrana to change in chronic aural catarrh.

The mambriam of the mallens not only is indrawn in this disease, but it is rotated about its long axis, so as to pull the posterior half of the dromhead into greater prominence and to drag the anterior half into a greater depression. This is seen, however, only in older children and in adults.

The Phargnx and Naso-pharynx.- [n children the moist form of hypertrophic eatarth is usually met, in which the nares, the pharyox, and the naso-pharyux are in a state of hypersecretion. The tonsils are usually enlargel, the nares impedel, and month-breathing is going on. If the case has assumed the atrophic state (ozena), the seeretion of all these parts will be found seanty, and the mucous membrane dry and covered with seales of inspissated muens and pus. In these cases the mucons membrane of the posterior pharyngeal wall looks as if varnished, the turbinated bodies are atrophied, the space in the mares is thereby increased, and the nares, not being able to clear themselves by normal respiration, are filled with decomposing and highly malorlorons scales of dried mucus and pus.

In some instances the velum palati shows a peculiar paresis if the case is at all chronic. The uvula then, instead of hanging in the median line, is drawn towards one side. This latter is fom to be the side of the better ear, because the catarrh has not yet weakened the musenlar structures of the velum and the Enstachian tube on this side. The loss of normal mobility in the velum is further seen when the patient is told to phonate the somm of broad a. Then the velum and uvula, instead of rising quickly to shat off the lower from the upper pharynx, will fail to perform this act as quickly or as well as the normad organ.

When the child blows its nose or when its Enstachian tube is artificially inflated, it often complains of cracking in the ear. This is caused by the air thus foreed into the tube forming bubbles with the mueus. The mucons membrane of the nares and naso-pharynx may become very much congested and swollen, and so irritated thereby as to puff up and close the mouths of the Enstachian tubes, cansing vertigo and faintness, if it is subjected to any irritant.

Adenoid growths often oceur in the naso-pharynx in northern and stormy latitudes. These growths are benignant in nature, are more or less leaf-like and conical in form, and are usually placed high in the pharyux. They are friable, and hence bleed casily. Their beight or length rarely exceeds three centimetres, and their thiekness varies from a few lines to one or two centimetres. These growths interfere not only with normal respiration and ennnciation, but also with the normal ventiation of the Eustachian tubes and the tympana. The pharyngeal tonsil, sitnate in the vanlt of the naso-pharyox, often becomes enlarged in children, and is prodnctive of chronic catarrh of the naso-pharynx, Eustachian tubes, and middle cars, with resultant hardness of hearing.

Causes of Chronic Catarrh of the Middie Ear.-Very few parents Vol. IV.-3
can assign a satisfinctory canse for chronie middle-car catarrh in their children. Chronic cold in the head, or frequent colds in the head, are undoubtedly the fundamental canse of such chronic catarimal deafiess in children. Chronic anral catarrh is often fond associated with and doubtess is aggravated by chronic cutarrhal diseases in the mucous membrane elsewhere : by phthisis, by hereditary syphilis, by continued fever, by all eruptive fevers, and by eczematons conditions of the general integument. Whoopingcough and mumps are often followed by chronic deafuess. After these two diseases, however, there is reason to believe that the anditory nerve is often primarily affected. It has also been observed that the children of AngloSaxons born in tropical countries seem specially liable to chronic anral catarrl.

Treatment of Chronic Catarrhal Otitis Media.-The treatment of this affection of the car will depend upon the form of the disease in the ease presenting itself. It must first be decided whether the
Fig. 13. disease partakes of the hypertrophic nature or of the atrophic. The treatment for the first is very different from that demanded by the latter. Let it be said at the ontset that the nasal douche should never be used.

If' the patient is an infant, it will not be easy to determine the degree of deafness. If able to talk, the patient's hearing ean easily be determined, as already shown on p. 31.

Let us suppose we are confronted by a case of the hypertrophic form of catarrh of the nares, naso-pharynx, and middle ear. The membrana tympani must be examined, after the hearing is tested ; then the nares and naso-pharynx, as far as is possible in young patients. We must note whether the turbinated bodies are in the first and active stage of hypertrophic catar!!, or whether a selerotic and contracted stage has been reached. The condition of the fauces must also be noted, as well as the state of the tonsils.

If a hypertrophic catarrh of the nares and maso-pharynx in the active, secretory stage is found, we may spray the mares and naso-pharynx with a solution of sulpho-carbolate of zine, three grains to the fluidounce of water, with a fluidrachm of glyeerin. Or we may employ a spray of a modified Dobell's solution, consisting of the following :

> B Sodii bibor., Sodii bieurb., āa gr. ii; Acid. carbol., gr. $\mathrm{i} ;$ Glycerini, f 3 ss; Aque, fõi.

Another excellent spray is obtained by using a solution of iodide of zinc, two or three grains to the fluidomee of water.

These solutions are most casily and very efficiently atomized by using
what is known as the Magic Hand-Atomizer No. 2, made by the Davol Mamfacmuring Company, of Providence, Rhode Island. 'There are, however, numerons forms of hand-atomizers which act perfectly well.

After the application of the watery spay it is advantageons to spray into the nares some liquid abolene. This is especially necessary in cold weather if the patient is likely to be exposed soon to the open air.

- If a more advanced stage of catarh of the maso-pharyox and middle ear has been reached, and there are evidenees of selerosis in the mucons tissues, a more stimulating spray may be employed. In my opinion, we are at this stage well served by a spray of the following:
$\mathbf{1 R}_{x}$ Listerine (Lumbert's), t'今us;
Aquæ, fīiv.
Misce.

Or
B Acid. boric., gr. x;
Glycerini, tzi; Aqua, fōi.
Misce.
It may be said, however, that in children the active secretory stage, with puffed and red turbinated mucous tissnes, is mueh commoner than the pale, contracted, selerotic form.

The fances will usnally be benefited by the treatment applied to the nares, becanse some of the medication reaches these lower parts, and also becanse, the nasal respiration being improved by the nasal treatment, the child does not breathe through its mouth as much as previously, and the fances thus escape the irritation of direct month-breathing.

After the application of spmy to the mares, the Enstachian tubes and the tympana should be inflated by the air-douche, according to Politzer's method or its modifications. This is the only form of inflation of the middle ear practicable in children, and, fortmately, no other is needed.

If the patient be an infant, we have only to insert the nose-piece of the inflation-bag into one naris, and, with the two fingers of the left hand, gently compress the other naris and the ala of the one in which the nose-piece is (see p. 20). A moderate compression of the inflation-bag, in the right hand, will usmally suffice to send air into the tympana. If the ehild cries, the velum is elevated and cats off the maso-pharyon from the pharynx, thins facilitating the inflation of the tympana. In larger children this is readily bronght about ly asking them to swallow a little water, previously taken into their mouth, at the moment we desire to inflate, or by telling them simply to distend the cheeks,-according to the suggestion of Dr. Holt, of Portland, Maine. If this is done gently and deliberately, the child will not be hurt and will not resist the surgeon's subsequent efforts for its relief.

Here let it be said that no applications made to the external ear and the outer surface of the drum-membrane will do any good in chronic eatarrh of the middle ear.

Excision of the tonsils is not demanded as an aid to the cure of ehronie
catarrhal deafness. Applications of iodine mud glycerin, erpal parts, may be of value as tending to diminish the size of the tonsils. If follicular pharyngitis is present, upplications of tincture of chloride of iron and water, in equal parts, may aid.

Treatment of the Atrophic Form.-If we are called upon to treat a chse of deafiness dependent upon or associated with the ntrophic form of masopharyngeal catarrl, the local treatment must be a stimulating one. This is neeomplished by spraying the nares with a solution of iodine and carbolic acid, known as Bonlton's solntion, or with a solution of bicarhonate of sodimm and biborate of sodimm, of each half a drachm, to four fludonnces of listerine.

In larger children with well-marked ozena, there may be employed a spray of thymol, from half a grain to a grain to the onnce of water. Some alcohol may be required to make a perfect solution of this last-named drug. Its application stings a little, but this is allayed by spraying with fluid albolenc, which should always be done after each act of spraying the nares and naso-pharynx. After the nares have been treated as explained, the tympana should be inflated.

This treatment which I have sketched for the varions forms of nasoanral catarrh, if applied properly and in time, will resene an infant from the onset of deaf-dumbness, as set forth on p. 32.

Deaf-1huteness.-If the chronic aural catarrh prodnetive of deaf-dumb)ness in an infant were discovered in time, it conld, as I lave observed, be eured, or sufficiently alleviated to prevent the child from being a mute. But if the ease gets no treatment mutil the child is two years of age, its deaf-dumbess is ineurable.

When chronic amal catarrh ocenrs in children who have already learned to talk, they should be encomaged to go on talking and not to make signs. Young children from three to five years of age will stop talking if they get deaf. They must now be foreed to go on talking, while being treated for their chronic catarrhal deafuess. If this is in part or entirely curable, they will retain their speech; but they must be carefully watehed, to see that they do not begin to make signs or mispronomee words. If their deafness continnes, they may nevertheless be resenel from being mutes by the precautions I have named as to their contimed practice in the use of speed.

The same care in excreising their speech must be given to young children who become deaf from diseases of the internal ear, like that oceurring in ecrebro-spinal meningitis, in mmps, and from blows or falls on the hearl. These forms of aural disease will be considered farther on in this article.

Great assistance in making the child hear, and thus teaching it to perfeet its power of speceh, and also to retain and improve its hearing, can be gained by the employment of cither a good tin car-trumpet or, what is in my opinion still better, a Maloney otophone. ${ }^{1}$ This latter instrument con-

[^4]veys speech to the deaf an not only with the most power, but also with the greatest purity of somb, hemuse it is free from mopleasant resomane and the interference of somud-waves. limthermore, it hats the very good feature of not being inserted into the meatns, but its moral end is provided with a disk-like expansion three inches wide, which is held ngainst the auriche, and therefore does not cause pain in the car. If a child retains duy haring, this will be improved and the dhild's speed developed by the intelligent use of the above-named instroment, to convey the words of a parent or tacher to its emr.

Adenoid growths and enlarged pharyngeal tonsils, as deseribed on p. 33, may demand removal by ernshing, evolsion, or canterization. It should be borne in mind, however, that these eularged glands and adenoid borlies mudergo a spontancons retrogression towards puberty, and therefore, unless they are productive of great aural irritation and deafness, a conservative course of treatment should be pursued, and violent surgical interference in the maso-pharyus avoided, for such irritation of itself may set up an acute otitis media and aggravate, rather than ameliorate, the condition of the ears.

Eurtuhe and Chronic Catarrh of the Middle Butr.-I am often asked, What should be done for earache? As earache is commonly due to subacute attacks of catarrh in a child who is the subject of chronic catarrh of the maso-pharyns, I will try to answer the important question here. In all cases of earache the proximate canse should he determined, as well as the seat of the inflammation. Sometimes earache is due to a myringitis, the middle car being very slightly or not at all implicated, as shown on p. 15. But most cases are catarthal, and a child who has one attack of carache is very apt to have another, unless the nares and maso-pharymx are treated, and the child is kept from imprudent exposures to bad weather and wet feet in wintertime and from cold hathing and exposure to draughts of air in summertime. If, however, a child has carache in spite of all that is done for its nares and middle car, it should at once be honsed, or even kept in its room and in bed if the pain is severe or long continued and there are symptoms of an acnte "cold." Nothing should be dropped into the ear, for that is generally worse than useless: it always irritates the inflamed tissues.

The bowels shouk be in a normal condition. If confined, a laxative or at purgative may be given, though this is not imperative unless the constipation is excessive. If the child is feverish, a mild febrifuge should be given. If the child scems to have simply a grombling pain in the ear, in addition to keeping him in the honse or in a warm room, dry heat should be applied to the painful car, as set forth on p. 19. If in spite of this treatment the pain grows worse, the lowal abstraction of blood may be resorted to. But, as I have already stated, if the car is not improperly treated by various drops at the begiming of the pain, which invariably make it worse at last, the very simple plans I have given, if promptly pursued, will give rehicf.

At the beginning of an sarache in a child who is already the subject
of nasi-mmal catarth, am inflation of the tympanm, by Politzer's or other methods, will give relidf by oproing the middle ear and overcoming the retraction of the membram tympani.

Hygiene of the E'ar:-Prevention of earache and further enr-disease, in such cases as I huve doseribed, is far more valuable than any attempte at enre, just as it is elsewhere in the brely. A child who has one been the sulject of an carache fiom caturial causes has received a valuable warning; or, at least, its parents have.

Of course its mares and maso-pharynx must be carefully watehed and trented until nomal respimation through them is established and mouthbeathing prevented. A month-beather is ahways threatened with earmeche and deatiness. Such a child must have plenty of exereise in the open air, must not be in a badly-ventilated sehool-room, nor must its study-hours be ans long as those of the child free from such defeets.
fis miderelothing must be of wool-all wool, not merino-at all times excepting the very hottest wenther. Even at such time, if it enn encure very thin wool, so much the better. But, as children are very active even in summer-time, they may be permitted to wear merino at that time. The feet and ankles must always be kept dry.

In summer-time cold-water bathing should be indulged in with the greatest caution, while diving must be most strictly prohibited. Bathing in the abl in winter-time must be done not too frequently,-onee a week is enough for clenniness,-always in a warm room (not lower than $70^{\circ} \mathrm{F}$.), and preferably just before going to bed. If the hair is washed, as it often is i. girls, it must be carefully dried with a towel,-not before a fire nor ant open window, -and it would be safer to remain in the house the rest of the day. Λ fire is too beating and congesting, and a dranght from an open window is of conse very liable to canse a cold in the hoad, even in summer-time.

The sleeping-apartments should be well ventilated, but no dranght should be felt blowing on the head at any time of year. When in a perspiration, the greatest caution should be exereised at all seasons of the year reg;) soling. The child should be taught that this should never be d. araught nor rapidly in any way.
regard to blowing the nose, as it is termed, I wonld say that the
e should never be blown violently, but rather wiped, and sneezing should always be suppressed as far as possible, because both of these acts when done foreibly tend to further congest the nares and naso-pharynx and make the catarrh worse. I am sure many a so-called cold in the head could bein fact, has been-prevented by avoidance of violent sneezing and blowing the nose at the begimning of the irritation. Henee catarrh snuffs and all forms of catarrh remelies of a sternutatory nature should be most carefully avoided by those afflictel with a catarrh in the nares or cars.

The shoes and clothing, like trousers in boys and skirts in young girls, should not become damp. But if these get wet from unavoidable exposure,
they should be taken off and dried as soon as possible. Wet feet are especially injurions to the fances, nares, mul middle ents of children.

Month-brenthing in chiddren must be stopped as soon as possible. In those who are six yars old and over it is often merely a habit, originating in past "colds in the head." In such cases mexercise of their volition will overome it in the daytime and tend towards correcting it when they are aslecp at night. All such eflorts on the patient's part will be furthered by thentment of the nares by the remedies suggesterl for chronic hypertrophic mud other forms of masal and meno-pharyngeal catarth. The masal donche should never be used. The reader is also referred to the part of this work having especind reference to masnl and pharyugend diseases and their treatment.

DISEASES OF THE INTERNAL EAR.

By the intermal ar is meant the so-called labyrinth, composed of the vestibnle in the middle, the cochlea in front, and the semicirenar cmals behind. These parts are all intercomented. The anditory nerve sends branches to all three of these divisions of the labyrinth, but most generously to the cochla. The nerve-filaments in the semicirenlar conals have not been traced beyond the ampulle. In the vestibnle they distinctly supply the sacenli, the chief soft contents of that part of the labyrinth which is nearest the conductors of sound, being just behind the foot-plate of the stapes, where it is received into the oval window. The romad window is practically the distal boundary of the eochlea, while the oval window may be considered the point of the initial impression made on the endolymph in the labyrinth by the oscillations of ine r uductors of somd-vibrations, the ossienla auditus.

These labyrinth structures and their mechanism are extremely delicate and snsceptible of derangement by foree from within the cranimm and also from withont. Many of the processes of disense in the internal ear have their origin in eatarthal discases in the mucons membrane of the middle ear. The vascularity of these two parts is intimately and directly conneeted, and hence a morbid process in the middle ear-the part of the ear most likely to be primarily affected-is very casily commmicated, by vasentar changes, to the labyrinth.

The deafness in such cases is slow in its approach, but permanent and incurable. Such are the forms of deaf-dumbness from chronic catarth of the middle ear (see p. 32).

In other instances the disease of the labyrinth originates within that eavity, and in such cases the affection is characterized by sudden and permanent deafuess. The canse of this form of labyrinth-disease is cither an nopoplectiform hemorrhage into the contined bony case containing the audi-
tory nerves, producing a destructive pressure upen the nerve-tissues, or it is a sudden displacement and tearing of the nerve-structures by concussion, as from a fall or a blow on the head. Doubtless this latter cause is a frequent one in children.

This second variety is very important, from the fact that its prevention should be most carefully aimed at, as a cure in such cases is very difficult, if indeed it is at all possible. Hence all spor:e which include standing on the head, or hanging by the heels with the head down, shonld be prohibited, as tending to produce congestion and hemorrhage in the heed. Furthermore, a child in this prition, or in that of so-called wising on the hands, is exposed to the risk of suddenly falling on its head, or striking its head from its disturbed eoordination. A blow on the head, which most be con-
sted while in such a position, is very likely to bring about destructive concussion of the soft tissutes in the bony labyrinth. Hemorrhage and effinsion into this cavity ensue, the nerve is suddenly and hopelessly impaired, and the child becomes absolutely and permanently deaf. Such cases I have observed.

A third class of labyrinth-diseases is produced by intracranial processes, and also b_{3} the effect of some general systemic disorders upon the internal ear. In this division we find the effects of mmms, scarlet fever, typhoid fever, cerebro-spinal meningitis, meningitis in general, hydroeephalus, otitis labyrinthica, hemorrhagic otitis, cte.

Mumps.-Under this third division we may first consider the effect of mi. ps on the ear. That the nervone apparatts of the internal ear is sometimes suddenly and permanently injured by the poison of mump, the proeess being most probably a metastatic one, has been recognized and described by a number of writers, from Toynbee and Hinton to the present time. Usually the aural symptoms consist in a simultancous timitus aurimm, vertigo, and deafuess. Whe two first-named symptoms disappear sooner or later, but the deafness remains. When no disturbance in equilibrimm oceurs, the metastatic process is probably limited to the cochlea, the semicirenlar canals escuping. These peenliar symptoms may not develop, matil the fiftenth day, and then only after subsidence of metastatic processes elsewhere. Usually there are no symptoms in the external nor middle car to accoms for the sudden deafness following mumps. The diagnosis of the stigin of the failure of hearing is aided by the timitus, mansea, vomiting, vertigo, and sometimes the alte:ed gait, ensuing suddenly either during or after an attack of mamp. Sometimes there is pain in the car and head, and in a day or two deafness, first in one ear and then in the other. It is supposed that in sone instances the deafness and other unral symptoms are due to a scrous exudaion into the labyrinth. It is, fortunately, a rare sequel of momps. No treatment has shown itself capable of either preventing or curing the deafness.

Cebmbo-spinal Meningitis is often attended with deafness during the fever, and this failure in the function of the ear very frequently is
perma: ent. At the termination of the disease or during convalescence the patient is found to be profondly deaf, usnally in both cars. There is also in many cases an alteration in the walk, so that the little patient assumes a sailor-like gait. The lesion seems to be due to a nemitis descendens,-i.e., a slow encroachment of the inflammation in the interion of the cranimm, upon the labyrinth, along the perineural vessels of the auditory nerve. Moos (1881) shows that in sixty-four cases of car-disease following cerehrospinal meningitis, as observed by him during eighteen years, fifty per cent. showed disturbances of equilibrimm and hearing, fifty-nine per cent. were totally deaf in both ears and henoe berane deaf-mutes, thirty-one and a half per cent. were totally deaf bit retainel sperd, while one and a half per cent. eseaped withont an anral lesion. He also observed that those left with hearing for high notes, but with duluess of hearing or absolute deafiness for low notes, stood a better chance of retaining hearing for spoken words. If absohate deafness persists for more than three months after the cerebral disease, the prognosis is mafarorable, without exeeption.

Treatment.-Chareot has proposed to treat the dizziness and staggering with large doses of quinine. His phan consists in legegning with thirty centigrammes of the sulphate of quinine in an adult, and gradnally increasing until one gramme is taken daily. This method of administering quinine may be kept up for a month; then a pause for a fortnight should oceur ; the treatment may then be resumed for another month. Of course in chidenen the dose must be proportioned to their age. Chareot's theory of the mode of action of the quinine in these cases is that it destroys any remaining function in the anditory nerwe. This, however, is not accepted by Moos, who elaims that quiniue acts simply by antagonizing the inflammation. In cases where the hearing is not entirely destroyed, the constant electric eurrent applied to the car offers some hope of improvement, if made at once, as soon as convalescence sets in.

Otitis Labymintinea.-In some respects closely resembling the otitis interna of cerebro-spinal meningitis is an aente inflammation of the membranous labyrinth, deseribed by Voltolini as ocemring in young children. He reported (1872) some eases of a disease dosely resembling ande meningitis, which he clams is a discase of the labyrinth peenliar to children, and as specific as croup.

The symptoms may be briefly deseribed as follows. A child five years old, with perfecet hearing, may be attacked suddenly with vomiting, which lasts for several days, with intermissions, and there will be accompanying chill and fever. No canse can be assigned by the parents. On the first day of the illness the child still heas, bat on the second day the haring is entirely gone. The intellect remains clear during the entire disense, and there are no spasms, paralysis, nor opisthotomes. The wrine and feeces are in no way ahnomal. The child may complain of the suljeetive noises in its head. By the fourth day the appetite returus and the child begins to play. Upon attempting to walk, in the course of two or three weeks, the gait is very un-
steady and the child has to be led about. An examination of the external auditory eanal and membrana tympani reveals no alterations to account for these distressing symptoms. As death has never occurred in any of these eases, the precise lesion has never been determined. There are some points of differential diagnosis between this disease and the anral disease following cerebro-spinal meningitis. In the latter disease convaleseence is slow and herpes labialis is an almost constant symptom, while it rarely appears in otitis labyrinthica. This latter disease is ushered in by vomiting, whieh is absent in cerebro-spinal meningitis. Then, too, the hearing is quickly and entirely destroyed in otitis labyrinthica, while in cerebro-spinal meningitis it is destroyed much less rapidly and partial audition is maintained for some sommes. Treatment is of no avail in otitis labyrinthiea.

Closely related to the foregoing process in the laloyrinth-probably identieal with it-is the so-called

Primary Otitis Interna.-Toyebee, Moos, Steinbrïgge, Politzer, and Gradenigo ${ }^{1}$ have demonstrated changes in the labyrinth, of an osteoplastic form, consecutive to a destruetive pathological process in the soft tissues of the labyrinth.

Toynbee fomd besides changes in the middle ear an osscons deposit near the vestibule, lying on the lamina spiralis, which entirely filled the scala tympani, and covered the inner surface of the membrane of the round window. Moos and Steinbrïgge found, in a girl who had been deaf many years, inftammation of the labyrinth and the nerve-structures entirely wanting in the first whorls of the cochlee ; also partial ossification and formation of comective tissue. Politzer deseribed a case of total ossification of the labyrinth, found in a boy who had berome deaf at the age of two and a half years, after an attack of fever, accompanied by great restlessness, convulsions, and a discharge from both cars, the latter lasting until the child was seven years old. At the age of thirten years the ehild died of acute peritonitis, and then the post-mortem examination of the ear was made. In Gradenigo's case the patient was a deaf-mute girl fifteen years old. She died of pulmonary phthisis, and the post-mortem examination revealed complete destruction of the membranons labyrinth of both cars and the elements of both labyrinth windows, with new farmation of fibrous and osscous tissue, most marked in the left car, where there was an accompanying ehronie purulent otitis media. The new-formed bone-tissue was developed partly from the endosteum of the labyrinth eavity, and partly by direct metamorphosis of new-formed fibrons tissue. There were no traces of semieirenlar canals : the vestibule was narrowed. In the cochlea the new osseons tissue diminished in quautity as the eupola was approached.

Gradenigo ${ }^{2}$ further shows that otitis interna may be due primarily to 1 ditary syphilis, and secondarily to eerebro-spinal meningitis, and

[^5]sometimes, though rarely, to otitis media suppurativa (pauotitis) in children.

Hemorrhagic Inflammation of tie Labybinti in Children.-- It has been demonstrated by post-mortem examination ${ }^{1}$ that hemorrlages and hemorrlagie inflammation ocenr in the labyrinth of ehildren. This may be best understood from the following history of a case.

A boy three and a half years old was affected with symptoms of a mild cerebro-spinal meningitis. On the tenth day he had begnn to manifest symptoms of improvement, but the day after he became suddenly deaf. For three days preceding this event he had complained of intense timitus aurium. Symptoms of meningitis, with strabismus, now returned. Three weeks after the relapse the patient was enaciated, voniting, and insensible. Eighn weeks atter the begiming of the illuess the patient died, apparently in consequence of tubereular meningitis. The post-mortem examination revealed signs of interual hydrocephalus and a tendinous thickening of the pia mater at the base of the brain. The dura mater covering the petrons boue was reddish, blue, and green, especially in the region of the semicircular camals. The osseons semicirenlar canals were filled with thid blood and dark-red congula. The vestilules also were filled with blood ; the coehlex contained less. Pus was found in the canals and in the brokendown membranous parts of the labyrinth generally. The vessels of the lamina spiralis were greatly congested, and Corti's membranes in both cochlea very much thickened. There were no evidences of tubereles in the labyrinth.

Careful examination seemed to show that the discase had reached the labyrinth by means of a reduplication of the dura mater, very rieh in bloodvessels, which extended into the hiatus subarcuatus, the space beneath the superior semicireular canal, which exists in children, not yet having been filled up with bony tissuc. There was also an osteo-myelitic condition of the spongy tissue of the bone about the labyrinth, which had induced the hemorrhagic inflammation of the membranons labyrinth. It seems prolable that this is the way of transmission of inflammation from the meninges to the labyrinth in many eases, and it may explain instances of sudden deafiness in children.

Disease of the Labyrinth in Typhoid Feyer.--In typhoid fever the entire labyrinth is often affected upon one or both sides. The parts more usually affected are the utriculus, the saceulus, the ampullae, and the lamina spiralis membranacea. The semicirentur canals are not so likely to be affected. Histologically the affection consists in a small cell-infiltration,一i.e., an infiltration of small lymphoid cells (Moos).

The Labymintil in Scarlet Fevele, etc.-Ambilateral inflammation of the labyrinth has been fomed in cases of scarlet fever complicated with diphtheria, suppuration of the parotid gland, otitis media purulenta,

[^6]and periostitis of the left squama, in which death oceurred from secondary meningitis (Moos). The condition of the labyrinth in such cases is held to be an explanation of all cases of great harduess of hearing after searlet fever, in which an analysis of the other clinical symptoms meonditionally excludes the supposition that a concomitant cerebral affection has caised the destruction of hearing.

Purulent inflammation of the labyrinth has been found in children who have died of variola.

Effects of Quinine and Salieylic Acid upon the Internal Ear.-Large doses of quinine produce congestion of the membrana tympani, the middle ear, and the labyrinth. Fifteen grains given at once to an adult will prodnce all the well-known symptoms of quinine-poisoning, and may be followed by permanent alteration in the function of hearing. Of course smaller doses will produce sinilar bad effects in children. It has been demonstrated by the experiments of Kirchner ${ }^{1}$ that hyperemia and hemorrhages in all parts of the labyrinth may enste from large doses of quinine and salicylic acid. Thus, in a cat to which large doses of quinine had been given, a copious extravasation of white and red blood-corpuseles extended over large areas of the cochlea. In a preparation taken from a rabbit an extravasation could be seen extending from the semicirenar canals to vessels of the surrounding osscous tissue. In a woman who had taken for a long time large doses of salieylic acid Kirehner found, in addition to symptoms of labyrinthine congestion, an exudation into the middle ear, which necessitated paracentesis of the membrana tympani. In cases of acute quinine-deafness it may be assumed that paralysis of the vessels and exudations ensne in varions parts of the anditory apparatus.

Salicylate of sodimm and salicylie acid do not seem to affeet the ear as quiekly nor as extensively as quinine. However, doses of fifteen grains every hour for five hours may induce permanent changes in hearing (Schwabaeh). To overeone the vessel-dilating effeet of these two drugs it is recommended by Schilling that the vesseleontracting drug ergot be given shortly after these two drugs are administered. In eighty-seven cases in which salicylate of sodimm was combined with ergot seventy-six per cent. of the cases were entirely free from effects of the drug unon the hearing. In nine cases in which ergot was combined with quinine no aural symptoms were observed. The antirheumatic and antifebrile effects of these drugs are not diminished by their combination with a controlling drug. In this comection it will be well to recell the suggestion of Finkler and Prior ${ }^{2}$ that amorphons borate of quinine is an efficient antipyretic and antiperiodie remedy, and possesses, besides, the great advantage of not inducing timitus aurium to the same extent as the muriate of quinine. This was demonstrated by experiments upon themselves by the above-named observers.

[^7]dary ld to arlet mally nitsed

1 who

Therefore, when the clinician resorts to large doses of quinine at a time, a controlling drug should be employed, in order both to give the patient comfort and to save his internal and middle ears from permanent injury.

Mafformations of the Internal Ear.-For a detailed accomet of malformations of the ear and the litemature of this subject the reader may consult Von Troeltsch's "Discases of the Ear in Children," and Schwartze's "Pathological Anatomy of the Ear," both of which are translated into English by J. Orne Green, M.D., of Boston. It is sufficient to note here a condensation of facts as presented in the above-named works.

The entire labyrinth may be wanting, or it may be but partially developed; in the latter case some of its parts, most commonly the semicircular canals, are absent, or they exist only in a rudimentary form. Variations in the form and size of certain parts are very common, but these variations are said to be symmetrical. The possibility of a malformation or arrest of development being confined to the inner ear is explained by the development of the ear, the labyrinth being formed from its own socalled labyrinth-vesicle in the region of the cerebellum, while the middle ear and the anditory canal are formed from the first branchial fissure, and the ossicles from the two first branchial arehes. The ossification of the labyrinth is said to be finished sooner than that of the external portions of the petrons bone. In some very rare cases eongenital absence of the anditory nerve has been olserved in connection with defects in the labyrinth.

DEAF-DUMBNESS: THE NERVOUS LESION.

The lesion in congenital deaf-dumbness may be an cadly periostitis of the petrons bones. This is shown by the selerosis in the substance of the bones, the ankylosis of the ossicles, the partial hyperostotic condition of the bony walls of the tympanic cavity, and the closure of the fenestra rotunda. A colloid substance may be found in the labyriuth in such cases. In some instances the semicireular canals, the ampulle, and the cochlea are wauting. The anditory nerves may be atrophie and contain coneretious of phosphate of lime. In such cases the auditory vesicle alone is arrested in development. In other cases an examination of the labyrinth on both sides reveals a large quantity of otoliths and mumerous colloid bodies in the ampulle, in the saceuli, and on the membranons lanna spiralis. The abolition of hearing is often directly due to colloid degeneration in the labyrinth.

Iu some cases of congenital deaf-muteness some of the imer convolutiuns of the posterior lobes of the cerebrum are considerably atrophied, discolored yellow, and redematons, as shown by post-mortem examinations (Moos, Steinbriigge, Lays, and others).

Aural Hygiene in Deaf-Mutes.-Deaf-dumbness may be either congenital or acquired ; in some instances the two forms may be united. The congenital form of deaf-dumbness was once considered the commoner ocenrence. But later investigations have shown that this is by no means the truth. Thus, in the Pennsylvania Institution for the Deaf and Dumb
in Philadelphia, within three years one hundred and thirty-seven children were admitted who had lost their hearing from fevers and other known caluses, and had thus become deaf. These constituted two-thirds of the entire number of admissions, thas demonstrating that, in this institution at least, congenital deaf-muteness is considerably less frequent than the acquired form.

Every physician may be called upon to decide whether a child is deaf and dumb, and, i. it be, to suggest, if not a cure for the deafness, at least a plan for the proper care and education of the little patient.

Mute children are very apt to suffer from carache and sometimes from chronic discharges from their ears. These symptoms should be most carefully combated according to plans ahrady given, in order to make the child more comfortable and to retain or improve any remaning hearing.

In very young children it camnot be readily determined, except by an expert, whether total deafness exists or not. But whether or not the child is totally deaf,-mand very few mutes are entirely deaf,-it may be too deaf' to learn to talk by hearing others speak. An opinion on this point is rarely sought for until, the child having reached the age when most children begin to use words intelligently, it arouses suspicion as to its defect by showing no evidence of learning to talk. The mere utterance of the words "mamma" and "papa" is no proof that the child hears, as these elementary somuls may be made quite involuntarily by very young children.

The child having reached the age of two years and given evidence of being a deaf-mute, it remains for us to consider what can be done for its education.

In all civilized communities there are provisions for the proper corporeal, moral, and intellectual traning of the deaf and dumb. Deaf-mutes naturally commmicate with one another by means of a sign-language, which in most respects is common to mutes of all nations. This method, seientifically elaborated, is termed dactylology, or finger-talking. Until within a few years it has been the only chief method of instructing deafmutes in England and the United States.

The system of cducating mutes by teaching them to urderstand and to use artienate speech by observing and imitating the speech of others, in which method the pupils are not tanght to use the sign-language at the same time, has heen employed for a long time in most of the countries of Continental Europe. There are records which prove thes in England at the beginning of the eighth century mutes were taught to understand the motions of the lips, and again in the seventeenth century Bulwer and Wallis, of the University of Oxford, induced some teachers to devote themselves to the instruction of deaf-mutes by means of lip-reading. In order to become edueated by this mamer the child must possess ordinary intelligence and normal vocal organs, and must begin its studies in this direction at not later than seven years of age. The average length of time demanded in the study of this method, before the pupil can understand and commmicate with any one
it may meet, is abont eight years. But great attainments are thus made. English children thus skilled have learned to speak French and German. In Vienna I have conversed in Gernan with mutes who understood me and replied in their own tongne. Their proficieney was such that they perceived I was a foreigner by my speech.

The writer feels very sure that many mutes retain more hearing than is supposed. Thin function remains, as it were, latent, becanse it is diffieult to use it and hence develop it by ordinary vocal sounds of conversation. If, however, a speaking-tube is used, even in those who have long been mutes, more or less hearing is discovered. Of course what is said to them is often heard better than is supposed from their imperfect reproduction or translation of what is said. This is very much as it is when a foreign and unknown language is spoken to any one with good hearing. He hears what is said, but, being unaceustomed to utter the sounds of the foreign tongue, he eannot repeat them. So it is with the mute who hears a little: he cannot reproduce what he hears, or he does it imperfectly. If, however, a little patient labor be bestowed in speaking to him every day through a good cartrumpet, his latent hearing can be developed, and it will become an immense aid in teaching lip-reading and artieulation. For this purpose no better instrument exists than Maloney's otophone, already mentioned (p. 36).

hygiene of deaf children.

1. There is a large nmmber of children, all of whom have learned to talk, but who are too deaf to go to school or to learn anywhere by hearing the ordinary speech of other people. Many of these drift into institutions for the deaf and dumb. Those who enter these institutions soon lose their ability to speak or become very imperfeet in it, from want of hearing others and from laek of practice. The inducement to talk soon goes when hearing what others say is no longer possible or is possible only with great diffienlty.
2. There is also a large number of speaking children who hear very poorly, and will become semi-mutes or very imperfect users of speeeh unless earefully watched, both as to what they hear and how they speak. Such deaf children find it very diffienlt to keep up in their studies with children who hear well. They should, however, continue to go to school with hearing children, as it perfeets their speeeh and their hearing if these are exereised as they must be in schools of hearing children. If they eontinue in such schools, however, they must be favored by seats near the teacher. The latter most be fully apprised of the amonnt of defieieney of hearing in any deaf pupils, and fully aronsed to the importance of making some simple efforts at favoring hearing on the part of the deaf. It is a great advantage for the deaf child who hears some and knows how to speak to struggle on with children who hear and talk well, rather than to be consigned to a school for deaf-mutes, where it may lose all ability to hear, and will certainly lose the ability to talk.

In regard to the first elass it may be said that at present there is no
provision for their proper instruction. The poor of this class are forced to enter institutions for deaf-mutes, where they learn much and are also tanght some trades. The rich of this class are now tanght lip-reading and articnlation, either by private tutors or in private schools. All of this class, both poor and rich, should be taught in a special way, or at least their instruction should be largely conducted, by making them hear throngh sponkingtrumpets. This method should be begon carly, as soon as the child gets too deaf to hear in the natural way. By doing so, the hearing may be not only kept from going entirely, but even improved.

In order that this plan of instructing the deaf child and improving his hearing and his speech may be appreciated, let me recall the mechanism of hearing and the anatomicul basis of it.

Sound-waves falling on the membrana tympani foree it inward and at the same time carry inward the mallens. The hammer bonelet, articulating with the inens, carries it inward also, and the latter forces the stapes into the oval window. Thas, then, we have sketched the mechanism of an inward exenrsion of the three anditory bonelets in the middle ear, articulated to one another in the so-called chain of ossicles. By such an excursion the labyrintlo fluid and the anditory nerve in the labyrinth are impressed. It is now seen that hearing depends on the movement of joints, like those between bones in any other part of the body. If these grow stiff, as they do in catarth of the middle ear, their mobility is impaired and hearing grows dull. If this impeded motion continues long, the nerve of hearing falls into disuse and fatty degeneration ensues. Just as in the case of ankylosis of any other joints, passive motion will overcome the impaired function. Instead of using our hands and arms to promote this passive motion, as in other large joints, in the car the joints are movalbe only by soundwaves falling on the drum-membrane, upon the membrane of the round window, or upon the lonelets themselves if the membrana tympani be destroyed or perforated. In the deaf ear, the ordinary vocal sounds do not produce sufficient impression to overcome the ankylosis in the ossicles, and the patient is said to be deaf. If, however, ordinary sounds or louder ones be concentrated and conducted to the drum in more than ordinary quantity and intensity, the ankylosis is overcome temporarily and the child hears. If this is repeated systematically, the ankylosis, like such an imperliment elsewhere, is overcome, and the hearing is made permanently better than it would 'se if allowed to remain unexercised.

I am fully convinced of such good result of a rational use of artificial mears to convey sonnd to the deaf. It must be done patiently and systeratically, but it has been done by placing the month close to the ear of the very deaf, by parents for their children, and by wives for their husbands. What may not be done for a number of deaf children brought together and tanght by conducting the voice of the teacher to their ears by good eartrumpets! They will be rescued from great deafness, and be improved in hearing and saved from being mutes.

In regard to the second class (p. 47) it may be said that, in order to make allowance for their defective hearing, a careful examination shonld be made in each case, in order to determine the extent of deafiess. ${ }^{\text {D }}$ This is done by finding ont at what distance the voice of the teacher can be heard, in ordinary conversational tones. Tests shonld also be made to discover tho distance at which consonant tones are hearl by the deaf ehild. The child to be tested shonld be placed in front of the teacher, who shonld be in his acenstomed place in the school-room. Then, with the ears alternately stopped, let the child be gradually brought to a point in the room where it hears and repeats the tests employed. Here the child should have its permanent seat. The tests to be employed are isolated words,-not sentences, becanse the latter ean often be guessed by the context.

This test might be made by an expert, who can also examine the ears and discover whether any remediable disease be still present in the organs of hearing.

Dr. Samuel Sexton, of New York, has suggested that teachers often have defective hearing. This shonld be guarded against as far as possible by examining orally candidates for admission to the ranks of teachers in the publie sehools.

[^8][^9]
PART II.

 THE EYE.
affections of the eyblids, lachrymal apparatus, CONJUNCTIVA, AND CORNEA.

By G. E. ve SCIIWEINITK, M.D.

AFFECTIONS OF THE EYELIDS.

Disorders of the eyelids naturally divide themselves into affections of the eyelid border and its tissnes, new growths, affections of the muscles, affections of the eilia, vices of conformation, and congenital faults.

BLEPHARITIS.

Synonymes.-Many mames are ellrent for the various types of the disorder blepharitis. The late Prof. Frederic Horner ${ }^{1}$ deseribes this affeetion under two headings: 1. Seborrhoet of the ciliary border, Blepharitis simplex, Blepharo-adenitis, Blepharitis ciliaris. 2. Eezema of the ciliary border (Blepharitis ciliaris, Blepharitis uleerosa, Psorophthalmia, Lippitudo ulcerosa, Tinea tarsi, etc.). In a work by De Saint-Germain and E. Valude ${ }^{2}$ the following classification is adopted: Scrofulous blepharitis and Eezematous blepharitis. The former varicty is discussed under the two headings Hypertrophic serofulous blepharitis and Ulecrative serofulous blepharitis.

Definition.-Blepharitis is a general term which describes the various types of acute and chronic inflammation of the border of the lid.

Etiology.-Blepharitis is quite distinctively a disease of childhood, and often begins long before the age of puberty. It consists either in hyperaemia, a hypersecretion of the sebaceous glands, or an eczema of the lid-

[^10]margin. Children with patlid complexion and light hair and of strmous constitution are particularly liable. It often follows an ntaek of measles. Lack of cleanliness and imperfert hygienie surroundings are exeiting canses, While insufficient length of the skin of the upper lid, in some instanese, aceording to Fuchs, is a predisposing condition. Since Roosa's ${ }^{2}$ investigations, refraction-error, especially hypermetropia, is known to originate the disorder in many instances, thongh certain writers, like Swanze and Bery, while ready to believe that anctropia may keep up the afferetion if present, are disindined to look upon this as a basal canse. Just as blepharitis is an imependent disorder and may give rise to seondary changes in the other parts of the eye, so it may also originate from any long-standing hyperremia of the coujunctiva, affections of the lachrymal apparatus, and coexisting masal disease. Exatly what role bacteria play in the production of this complaint cammot be definitely stated. In the hands of Gallenga ${ }^{3}$ cultures made from abseresses in a case of ciliary blepharitis gave origin to colonies of staphylocoecus amens and allous ; and Widmark 'found in the little absersses at the roots of the lashes in cases of Dlepharo-adenitis staphylococens pyogenes albus and anreus. Hirschberg,' under the name raceine blepharitis, reports the appearance of vaceine vesides on the middle free border of the lids of a man who played with children recently varcinated; an inguiry instituted among nearly a th onsamd anses of vacemation done in this eity discovered no similar instance. ${ }^{6}$

Symptoms.-The discase may vary from a simple rechess, the hypersemia of the lid-border of some writers, to severe ulecration. In the milder types the eiliary margins are slightly thickened, red, and son , while small scales and occasionally pustules appear, and if these be removed a yellowish sebaceons matter is seen benath. The nutrition of the lashes is not serionsly interfered with in this variety, which is often spoken of as morginal eczema or blephuritis simplex. To that form in which the eyeliels under the slightest provocation grow red, the eyes weep and feel hot, the lids swell, and the conjunctiva is injected, while erinsts are but seautily present, the term raso-motor blepharitis has been applied. In another common and stubborn varicty, which has its origin in the follicles of the eyclashes, the border of the lid is thiekened, dusky, and congested; the edges are smeared with tenacions secretion ; the lashes are gathered into little tufts by the col-
' Wien. Klin. Wochensehr., 1888, Nos. 38 and 39.
${ }^{2}$ Trausactions of the American Ophthalmologicul Society, 1876.
${ }^{3}$ Annales d'Oeulistique, xerini. 51.
${ }^{4}$ Nord. Ophth. Tidsskrift, Nos. 1 und 2, 1888 ; Archives of Ophthalmology, December, 1888.
${ }^{5}$ Centrolbhatt f. prakt. Augenheilkunde, 1885, ix. See also another case of vaceine Hepharitis, Hirsehberg, Archives of O_{p} hthalmology, xv.
"Under the title "Vuccimul Ophthalinin," S. T. Knaggs (Tramsactions of the Ophthulnologienl Society of the United Kingdom, i. 16) has deseribed violent ophthalmia and later hypropyon-keratitis in a mother whose recently-viceinated cliild inoculnted her eye.
lection of matter at their bases; seabs covering small uleers and pustules appear, while the cilin are loosened and their removal is followed by bleeding ; the lashes become misplaced, stmoted, and deficient ; cicatricinl changes follow the subsidence of the swelling and canse slight eversion of the lids, as a result of which their borkers are deprived of eilia, are raw and tender, and the appaanme thins produed has received the mame lippitudo. In the severest types, all four lid-br.ders may be attacked simultaneonsly, the lids are redematous and highly congested, the margins beset with thick yoflow crusts through which grouns of hashes, glued together, push their way. Removal of these revenls beneath bleding and ulecrated pits which extend inward as firr as the tarsus ; in short, the entire lid-horder is lined with small erater-like abscesses. This blepharitis ulcerose, as well as the less aggravated forms, not inferenently is assoeiated with eezema of the auricle and nares, masal catarin, and diseases of the hachrymal apparatus, each standing in relation to the other either us canse or ats effect, the whole forming what not inaptly has been deseribed as a vicions eirele.

Prognosis.-The carlier the ases come under proper tratment, the more favorable the prognosis, and hence it is particularly in childhoor that radieal cures may be effected. Loug-standing cases that have resulted in romeded, everted lid-margins, deprived of lashes, and with closed and misplaced lachrymal puncta, are rebellious to all forms of medication.

Treatment.-The lowal measures in the milder forms consist in the use of a lotion of boric acid and the application to the edges of the lids of a salve of the yellow oxide of meremry (gr. i-3i). In that variety, however, deseribed under the term vaso-motor blepharitis the use of salves is contraindicated, and the best results, according to Koenigstein, ${ }^{1}$ are reached by donehing the closed lids with water at a temperature of $60^{\circ} \mathrm{F}$. from a vessel raised a short distance above the head of the patient, the fluid being combucted through a small apparatus in the form of the rose ordinarily seen upon watering-emis. Whenever seales are present these must be taken away, either by means of warm alkaline solutions, of which bicarbonate of sodium (gr. viii.-f $\mathfrak{z i}$) and biborate of sodimm (gr. iv-fai) are the best, with a five-per-cent. solution of chloral, as recommended by Gradle, ${ }^{2}$ or with forceps. Gradle advocates a three-per-cent. mixture of milk of sulphur with vaseline and the addition of three per cent. of resorein. During severe inflammatory attacks, and even in old cases, results surprisingly bencficial follow the removal of all the lashes with a cilia-foreeps. In uleerated hlepharitis, after the removal of the erusts and loose cilia the ulecrs should be painter with a solution of nitrate of silver, and may even be cautionsly tonched with the point of a mitigated stick. Michel advises that unguentum diachylon Hebre with oil of sweet almonds be spread upon pieves of lint so shaped as to cover the lids, and containing apertures
siona the a
cases twelv
amon
Norri

[^11]through which the cilin, if present, may pass, and allowed to remain overnight. Kroll recommends that Pagenstecier's ointment (hydrarg. oxid. flav., gr. i ; cosmotine, 3 i) be rubbed in until the sanles are removed, and then the lid-horder pencilled with nitrate of silver, one to fifty. In the hands of Schweigger iodine on the edges of the lids has proved beneficial. In all cases the lachrymal passages and the masal cavity should be examined, and, if epiphora exists, the canaliculus slit. Any error of refiaction, after the eyes have been arefinlly atropinized, is to be corrected with suitable glasses.

The best constitutional measures are quinine, iron, especially in the form of the iodide, cod-liver oil and malt, together with appropriate nourishing diet. Fresh air and a daily salt buth are lighly desirable.

PIITHIRLASIS PALPEBKARUM.

Synonymes.- Blepharitis pedienlosn, Phthiniasis eiliarium.
The pediculus pubis (crub-louse), besides its seat of predilection, ocasionally intests the eyobrows, and very rarely the eyelashes. The rarity of the affection is attested by the fact that Hirsehberg ${ }^{1}$ among forty thonsand cases of eye-discase met with only three instances. Despagnet ${ }^{2}$ during twelve years of Galerowski's service found but two recorded examples ; and among more than ten thousand patients in the service of Prof. Willian F . Norris at the University Hospital only two instances have been observed. ${ }^{3}$

Symptoms.-On superficial examination the lashes appear to be covered with small, dark spots like grains of powder, which apon closer inspection resolve themselves into the lice clinging closely to the lids, white the eggs, darker in color, are fastened with great regularity along the roots of the cilia; in many instanes the parasites are buried head-foremost in the hair-follicles. Their presence canses severe irritation, and the case may the mistaken for an ordinary marginal blepharitis. A magnifying lens will at once clear up the diagnosis.

Treatment.-Cleanliness, together with halsam of Pern, or meremial ointment, or a cautions pencilling with a solution of corrosive sublimate, will remove the intruders.

HORDEOLUM.

Synonymes.-Stye, Hordeolosis.
Hordeolum is an inflammation of the tissues of the edge of the eyelid or of one of its sebaceons glands. Exposure to artificial light, to dust, and cold winds are the most usual exeiting causes. Eyes that are subject to siyes are often ametropic, liypermetropia being the most usually observed refraction-error. Styes tend to appear in crops, and occasionally produce great swelling and oedema of the lid until an appearance like the commence-

[^12]ment of purulent ophthalmiat is produced. By observing the circumseribed character of the swelling and the absence of purulent secretion from the conjunctiva, an error mar be avoided. In like mamer a stye may simulate an acute inflammation of the lachrymal sac. Usually the small infor, ned swelling ont the calge of the lid increases in size for a few days and then resolution or suppuration oceurs.

Treatment.-Warm fimentations, especially in the form of hot-water compresses, give speedy relicf. If suppuration oceurs, the contents should be evachated with a knife. Satmated solutions of boric acid, according to Abadic, canse a rapid cure. A stye oreasionally may be aboted by painting its surface with collodion, and the vigorous application of a salve of the red or yellow oxide of mercury has produced the same result. The refraction of the eye shonh hes examined in all cases, and if this is amomalous, as it usmally is, the proper correcting glass is to be ordered. Associated conjunctivitis must be treated with a mild astringent or antiseptic wash, while internally irom and quinine, and, if the styes come in gromps, the sulphide of 'alcium, as recommended by Webster, may be exhibited. Constipation mast be relieved by suitable remedies.

CHALAZION.

Synonymes.-Mcibomian eyst, Tarsal tumor.
A chalazion is amall trmor or retention-eysi due to a chronie inflammation of a Meibomian gland together with the smrounding tissue.

The etiology of these little growths is ohsemre. They may be assoeiated with inflammation of the border of the lid, which aids in closing the duct of the Meibomian gland. Poncet and Boucheron ${ }^{1}$ have described mierobes in comection with chalazia, though Vassanx ${ }^{2}$ and other observers have failed to find them except in such as already had modergone suppuration. They are more common in adolescence than in very yourg chitdren or in wd age, but are not infrequently fomed in infiats.

Pathological Anatcmy.-Aecording to Felix Lagrange, ${ }^{3}$ the chalazio:a has three periods of development, -retention of the products of the Meibomion gland ; consecutive adenitis and periadenitis, with destruction of the cartilage ; and passage of the tumor to the conjunetiva (internal chalazion) or to the skin (external chalazion). Lagrange believes that mierobes play only a secondary part in the production of the affection. If examined, the eysts contain pus, puriform Huid, and cholesterine erystals, together with surromeling gramation-tissuc. There is no true evst-wall.

Symptoms.-The tumor grows slowly and forms a firm swelling, tightly attached by its under surface to the tarsos; over it the skin is usmally freely movable; occasionally adhesions between it and the integel-

[^13]ment oceur. On the conjunctival surface of the lid a bluish pateh marks its position. Suppuration may take place in the cyst, and, like styes, these tumors tend to come in crops.

Diagnosis.-A chalazion is to be distinguished frome an ordinary sebaceons tumor by the firmness of its attachment to the tarsus, and, if it suppontes, from a stye ly the more cireumsuibed character of the inflammation. It may be mistaken for a round-celled sarooma of the lici, an interesting instance of which has been recorded by Randall,' where the microscope was necessary to settle the diagnosis.

Treatment.-If the growth points towards the conjunctival surface, it is to be removel from this side; if not, the incision should be made over it in the skin parallel with the musele-fibres, and the mass emrefully disseeted out, eare being taken not to perforate the comjunctia. Operation is facilitated by having the lid steadied with a clamp (Desmarres, Snelle:i, or Kmpp). The assiduons use of hot water and the application of yellow oxide of mereury salve are often resorted to with the hope of producing resolution. Removal by the knife or seoop is the only practical measme, though the iocal mems above mentioned may be useful to aid in the dissigation of any inflammatory thickening which remains atter the operation.

Pest-vamolous Ubebs of the Eyehans.- 1 fivorite spot for the pustule of small-pox is the border of the lid. Not only may this result in the ordinary scar, the sequel of cicatricial contraction, with loss or faulty position of the cilia, but occasionally a long time after the eruption has disappeared uleers remain which stubbornly resist treatment. Horner (loc. cit.) has seen such variolous ulcers ten years after the original disorder.

Furuncles are not infrequently seen in children, especially in the outer half of the eyebrew as well as within the tissue of the lid. They ocem as a red swelling, move with the skin, are mattached to the bone or periostem, and are soon eapped with a yellow point of suppuration. They should be treated by warm fomentations or flasseed poultices, and early incision shortens their existence.

Edema of the Eyblins.-This is an affection characterized by an edematons condition of the collular tissue of the eyelids, which may be fugitive or persistent, and is not infremuently recorrent. R. W. Doyne ${ }^{2}$ reports the case of a ginl aged fifteen, the subject of migraine and myopia, with recurring swelling of the upper eyelids, the edema sometimes standing out on a level with her brows. Mr. Gum ${ }^{3}$ believes these cases are all of the nature of urticaria. They may appear in commection with the cstab)lishment of menstruation but sometimes oceur in otherwise bealthy children, spontancously and , thout caluse, and in boys, as reported by W. J.

[^14]Collins ${ }^{1}$ and others. CEdema of the eyelids, when present as part of a general condition-renal or cardiac-or from injury, shonld be distinguished from these cases of transient oedema by observing the history of the case. If the case calls for treatment, this mav consist in bathing the parts with dilute lead-water and laudanm and the internal administration of Basham's mixture. Cdema of the eyelids when associated with general disease necessarily receives the same treatment as that direeted to the relief of the constitutional disorder.

Erysipelas may attack the eyelids, and in this situation does not differ materially from this disease in other portions of the body. It is much, less seldom peculiar to this region than it is as part of an attack of general facial erysipelas. It is one of the eanses of orbital cellnlitis.

Phlegmonous Inflamiation (Pseudo-Erysipelas) and the formation of lid-abseesses of a mild type is not an unnsual disorder during the carly months of ehildhood: it is confined almost exclusively to the upper lid, which becomes red and swollen, and in a few days palpation reveals the presence of pus. In other cases a much more severe type is manifest. It begins with the formation of a pustule, quiekly followed by great swelling and accompanied by high fever. The skin and subcutaneons tissue may become sphacelons after the formation of one or more pustules of dark color (odeme malin of French writers). Hilbert ${ }^{2}$ has described cases of a peenliar gangrene of the lid in children who were well nourished, rosy, and never before ill,-"ases which bore no resemblanee to noma, malignant pustule, cedema malignum, phlegmon, or multiple eachectic lid-abseesses.

Etiology.-If secondary lid-abseesses, and especially aente conjunetival processes, are excluded, the origin of these cases may be looked for either in a traumatism or as the result of an infections process, although the causes are by no means always evident. Lid-abseess has been reported as a sequel of influenza by Landolt. I have observed similar instances. ${ }^{3}$ In many cases contact with infections disorders in anmals gives rise to the disease,-an explanation not so readily applied to children as to adults. Michel, however, quotes a case in which a child was snddenly seized with this affection of the lids after coming in contact with straw that had been used for horses suffering with glanders.

Treatment.-This natmally direets itself to lessening the constitutional disturbance and to the local condition. The latter should be treated with warm fomentations, carly incision, and antiseptic dressing. Subeutaneous injections of carbolic aed have proved useful in the hands of Horner, and Delens has reported snceess with similar injections of iorline. If deformity of the lid result from the disease, this must be restored by a plastic operation.

[^15]
SYPHILIS OF THE EYELIDS.

Syphilitis: affections of the eyelids may be divided into ulcerations and eruptions, and may exist as the primary sore or in the form of sceondary or hereditary manifestations. A chancre upon the lids may have its seat on any portion, but the delicate skin of the ciliary border is the favorite region. Among one humdred and eighteen cases of all ages colleeted by Alexander,' the skin of the eyelid was affected sixty-five times, the tarsus sixteen times, and the conjunctiva thirty-seven times. Issociated with the local lesion in the eyelids, the lymph-glands in front on dhe car and at the angle of the jaw are much enlarged. Contagion usually oceurs from an infected attendant, not infrequently the mother. J. V. Solomon ${ }^{2}$ has recorded an instance of an indurated syphilitie ulcer at the inner end of the eyelid edge, which occurred in an infant eight months old, who had been inoculated by an aunt at that time suffering with specifie ulecration of the tonsils. A primary syphilitic sore on the upper cyelid of a boy aged six is deseribed by Mackay. ${ }^{3}$ A papular eruption appeared six weeks after the initial lesion; the origin of contagion was prohally from a diseased mother. The frequency with which chancres in the cyelids ot children have oceurred (in ninety-four cases colleeted by De Beck, ten were fomd among infants or young ehildren) led M. Baudry, ${ }^{5}$ of Lille, to investigate their etiology. In one case, a female child twenty-two months old, an indurated chancre appeared on the free edge of the lower eyelid. Investigation showed that the infant was nursed by a woman who wiped its eyelids with her saliva, the woman being at the time the subject of syphilitic uleeration of the mouth. Inquiry chicited the fact that women among the prasant folk were accustomed to eleanse the eyelids of children in this mamer when they were glued together with discharge from the conjunctival cul-de-sae.

Infants the subjects of hereditary syphilis are sometimes affected with an eruption of papules upon the external surface of the lids, which appear several weeks after birth. Hutchinson ${ }^{6}$ deseribes a form of blepharitis in which sharp-bordered ulcerated plaques appear at the roots of the eilia, and instances in which absence or falling ont of the eyelashes was a manifestation of hereditary syphilis in children. ${ }^{7}$

Treatment.-Locally the uleer may be dressed with black or yellow wash, while internally the ordinary antisyphilitic remedies are to be exhibited. Especially efficacious is the employment of unguentum hydrargyrom spread upon flanel in the form of a binder.

[^16]
TUMORS AND HYPPERTROPHEE OF THE EYELIDS.

Milium- Milia are small sebaceons elevations sitnated in the skin, varying in size from a pin-point to a pea, and find their favorite seat in the forehead and about the eyclids. They are common in children about the age of puberty. They consist in an acemmatation of sebmm within the distended but closed sebaceons glands; in this respect they differ from a comedo, in which the duct of the gland is patnlons. They are cansed by improper care of the skin, and may be connected with general constitutional disturbanees, dyspepsia, and constipation. They should be opened with a knife or nedle and the contents removed.

Gebaceous Tumons (Atheroma) are not usually fond upon the eyelid, but ocenr especially in the onter portion of the eyebrow. (See page 69.)

Molduscum Contagiosum.-This is a disease of the sebaceons glands, or, aceording to some observers, of the rete mucosum, in which rounded papules, usually about the size of a pea, but often much smaller, appear in the skin of the eyelids. The common seat of the discase is upon the face, and especially the eyelids, but it often appears on the neek, breasts, or genitalia. Each little prominence may have the normal pinkish color of the skin, or it may be of a distinctly waxy hue, with a flattened summit which contains a depression. This disease, usually non-inflammatory, ocenrs chiefly among ill-nomrished children, and may appear as an epidemic in homes and asylums. Two such epidemics have been well described by Mittendorf. ${ }^{1}$ The contagions nature of the disorder has been largely entertained, but so high an authority as Duhring ${ }^{2}$ denies that the evidence on this point is conclnsive, while Neisser ${ }^{3}$ believes that it is really an epithelioma contagiosum cansed by a parasite belonging to the class of coceidia. The contents of the bodies is a yellowish material which consists of fat and fatty epithelial cells.

Treatment.- Wach mollusemm shomld be ineised and the contents forced out. Nitrate of silver may be applied to the cavity, but this is not nsually necessary.

Prosis Lapomatosa is an affection of the lids in which these drop over the cornat, owing to an abormal acemmbation of fat in the comective tissue. The deformity is considerable, and gives the patient a disagreeable expression. The fat shonld be removed through a horizontal incision. In one case reported by Schell ${ }^{4}$ seventy-one grains were thus taken away. A reasonably good result may be antieipated; but in a case recorded by Norris, although the removal of the fatty tissue improved the apparance of the patient be levator palpebrarm failed to regain its power, and full

[^17]aetivity in the movement of the upper lid was not sechred. Care must be taken not to mistake cedema of the lid for a ciremmseribed tumor, an error readily avoided by palpation, which will reveal a characteristic difference in the resistance of the two affections.

Angomas (Nievi) when they appear in the eyelids may exist either as simple bright red spots or in the form of cavernous growths. They are congenital tumors. It is important that they should be dealt with early in their existence, as they may take on rapid growth with the development of the child and extend far into the orbit. Such operative interference as promises the least subsequent deformity of the lid should be practised. When small, they may be readily excisel; if of the larger variety, some measure whieh destroys their blood-vessel structure will be the proper procedure. The methods employed are the galvano-cantery, which yields the best results; injections of liquor ferri subsulphatis, a method whieh has been followed by slonghing of the lid; and cauterization with red-hot needles or with nitric acid.

Plexiform Neurona is an unusual form of thmor occasionally seen in the egelid, consisting of a convoluted mass somewhat corded bencath the skin. In a collection from the literature of seventeen such cases fonr were noted as occurring in the cyelid. ${ }^{1}$ 'The growth is entirely benign in its nature, and its removal by an erdinary dissection with antiseptie precantions is unattended winh diffienlty.

Molluseda Fibrosum is a comective-tissie new growth, either sessile or pedunenlated, situated bencath the skin. The tumors may appear singly or in great numbers all over the body, and oecasionally are seen mon the eyelids. They are fomod at any time of life, but especially in childhood. In a remarkable case of this kind deseribed by Michel the whole booly was beset with these tumors, the largest of which grew from the upper lid and hung down below the lower eyelid.

Sarcoma ocents ats a primary tumor in both the upper and lower lids of children, and has been seen as carly as the tenth month of life. It appears as a somewhat elastic growth, over which at first the integument is movable, but it tends to rapid growth, ulecration, and involvement of the orbit. As has already been pointed out (page 55), this growth may be mistaken for a Meibomian cyst. Indeed, Samelsohn ${ }^{2}$ has reported one instance. occurring in a child two years of age, which the microscope showed to be a sareoma of the round-cell variety which had its origin in a proliferating tarsal eyst. The prognosis is grave. Thus, Vian Duyse ${ }^{3}$ has recorded a case of myxo-sareoma in a seven-yenr-old child, which followed a contusion. After extirpation at the end of three months the loeal return required another operation. Four months later a seeond return developed, and the

[^18]whole orbit was cleared out; in spite of which, a third return took place, and the tumor grew to the size of a child's heal. Early excision, which is the only proper treatment, unfortunately, is not able in most instances to prevent the two chief dangers of this form of malignant tumor, especially in this region,-recidivity and metastasis.

Lupus may secondarily attack the eyelids in its destructive mareh from a seat of origin in the face, and occasion ulceration of the lids, ectropion, or ankyloblepharon.

Leirna, according to Michel, who quotes the observations of Carron du Villards, may appear in the eyelids among its earliest manifestations: Bnll and Hansen ' have observed the first symptoms in leprosy to be the falling ont of the hair of the eyebrows, and E. Lopez ${ }^{2}$ analyzed forty-five cases of leprosy and found absence of the cyebrows and lashes the sole oenlar lesion in the youngest subjeet, ten years of age.

Elephinttasis Arabusy has appeared in the upper lid in consequence of an injuy. C. du Villards saw this affection in a seventeen-year-old girl on the left upper eyelid as the result of a contusion. Elephantiasis may be congenital. Van Duyse ${ }^{3}$ records an example in a girl of eight.

Elephanthasis Teleanglectodes, or a disease which consists in an hypertrophy of the skin and the comective tissue, together with fatty tissue and distended vessels, has been observed in the upper cyelid as a congenital affection. Cases are on record by Patuli, ${ }^{4}$ Von Gracfe, ${ }^{5}$ Liston, ${ }^{6}$ and other observers. ${ }^{7}$ The growth should be removed by the knife in such degree as is permissible with the preservation of the form of the lid.

BLEPHAROSPASM.

Blepharospasm, or an involuntary contraction of the orbicularis, asually clonic, but sometimes tonic in its nature, is a constant symptom of diseases of the cornea and conjunctiva, and will be referred to again under these headings. Aecording to Schmbert, ${ }^{8}$ it may arise in the manner of a reflex action in individuals whose susceptibility is increased by hereditary influence, anemia, over-cexertion, etc., so that a slight irritation sends a stimulation to the facial branches of the orbicularis. Fissure at the angle of the lids is given by Koller ${ }^{9}$ as a cause of reflex blepharospasm. As has been known since Von Graefe's historic case, a persistent lid-cramp occurs in children, murelieved for weeks at a time, and when the eyes are finally opened there may be blindness, temporary in its character and with normal ophthalmo-
${ }^{1}$ Leprous Diseases of the Eye, 1873.
${ }^{2}$ Arelives of Ophthalmology, December, 1889, p. 404.
${ }^{3}$ Annules d'Oculistique, t. ii., 1889.

* Schmidt's Jahubuicher, xxi. 84.
${ }^{3}$ Kilin. Monatsbl. f. Augeuheilkunde, 1863.
${ }^{6}$ Canstutt's Jahresbericht, ii. 153.
${ }^{7}$ Cousult Gruefe u. Saemiseh, Handbueh des Augenheilk., iv. 409.
${ }^{\text {y }}$ München. Med. Wochensehr., No. 28, 1887.
${ }^{9}$ Trumstetions of the Ameriem Ophthalmological Society, 1888.
${ }^{5}$ Trat
scopic appearances, or loss of vision, permanent, and with gross changes in the eye-gromd. In a case recorded by Silex, ${ }^{1}$ a serofnlons child two and a half years old kept the eyes closed for twelve weeks, and was blind for twelve days, with normal ophthahoscopic apparances, sight returning on the thirteenth day. The reporter argues in favor of the blindness being a species of cortical blindness, owing to the long absence of peripheral stimulation. Samelsolm, ${ }^{2}$ who among sixty thousand cases of eye-disease has observed five instances of blepharospasm lasting for months and followed by loss of sight, seeks for an explanation of the blindness which follows this long-continued eramp-like shinting of the lids, in an example of the forgetting volition (Vergessenurollens) of the sensory perceptions analogons to the intentional suppression of the sense of sight of an eye in alternating strabismus. This explanation would apply only to such cases as have normal ophthatmoscopic appearances and recover, not to the instances of which Samelsohn has seen two, in one of which a true atrophy and in the other a glaucomatous atrophy was present. In these cases a peripheral canse must be sought for, and the theory of Von Graefe, which explained the blinduess by the almormal pressure of the lids, is applicable.

Not infrequently children in their carly school-days are affected with an undue winking of the eyelids, associated, perhaps, with jerky movements of the facial and other muscles. 'This is the form of nervons disorder which has been called habit chorea by Weir Mitchell, ${ }^{3}$ habit spasm by Gowers. ${ }^{4}$ Almost invariably blepharitis, follicular conjunctival catarrh, and anomalies of refraction, usnally hypermetropia, will be fomed to be the exciting causes. In a series of eases in my own practice the correction of the refraction-error and the treatment of the conjunctival disorder were productive of the most happy results, when the ordinary antichoreic remedies had proved valueless. ${ }^{5}$ In persistent forms of lid-eramp hypodermie injections of morphine will relieve the peripheral (trigeminus) irritation, and in stubborn varieties section of the supra-orbital nerve has been performed. The general condition must be relieved by appropriate remedies.

Lagophthalmos, or an inability to close the eyelids, as usually seen, is the result of paralysis of the facial nerve, hut oceurs also in comection with tumors of the orbit, in those rave instances of exophthalmie goitre which are seen in children, and with staphyloma. As a congenital defect, when the lids themselves are wanting and the entire orbit is divested of any covering for the bulb, the highest grade of lagophthalmos oceurs. The cornea may suffer from ulceration, owing to exposure,-a danger greatly increased if with the affection of the facial nerve paralysis of the trigemi-

[^19]nus also exists, but rendered less likely to ocemr in the single palsy, because, when the effort to close the lids is made and during sleep, the eyeball is rotated upward under the upper lid, owing to the associated action of the superior rectus.

Treatment. - In paralytic lagophthalmos the primary canse of the disorder must be treated; in the non-paralytie varieties and in any form in which the vitality of the comea is threatemed, the operation of tarsormaphy, which consists in uniting the margins of the upper and lower lids in the neighborhood of the external commissure, should be employed.

AFFECTIONS OF THE CLLAA AND CLAARY BORDER.

Trichiasts, Destrmeasis, Extropon.-Trichasis is that condition in which the lashes are turned inward against the eyeball ; distichiasis, where incurved supplementary rows of cilia are developed from the intermarginal part close to the opening of the tarsal glands. The most usual cause for trichiasis in children is discase of the lid-horder,-the varions forms of blepharitis. Distichiasis in rate instances appears as a congenital affection; sometimes associated with other defeets, as in the instance observed by Sehweigger ${ }^{1}$ where epiemuthus and ptosis existed. The supplementary row of eilia is produced when the ordinary follicles are generated, although it is quite probable that in some instances the supernmmerary lashes do not appear until the age of puberty, the extra hair-follicles having remained quiet until that time, now springing forth under the same impulse which the growth of hair elsewhere receives.

Entropion, or inversion of the lid, is conveniently divided into musenlar, organic, and the so-called bulbar entropion. The former variety is seen oceasionally at birth, owing to undue development of the orbicularis, and is present as spasmodic entropion in conjunctivitis, keratitis, and when foreign bodies lodge on the comea. By far the most common canses of organie cutropion are gramular lids and essential slorinking of the conjunetiva. It also follows diphtheritic ophthalmiat. The bulbar entropion appears when the eyeball is shrmken or even absent (anophthalmos), and there is consequent falling in of the lids.

Treatment.-Trichiasis.-If not too numerous, the fanlty lashes may be removed with a cilium-foreps, and when they reappear the procedure repeated. Destruction of the lair-follicles with galvano-puncture is recommended by Mitchell ${ }^{2}$ of Missouri, Benson ${ }^{3}$ of Dublin, and other surgeons. Strangulation of the roots of the ineurved lashes, when only a few are out of order, may be accomplished ly means of a fine subcutaneous ligature (Snellen) ; or complete removal of them by excision of the corresponding portion of the ciliary margin, a practice to be deprecated if the trichiasis is at all extensive. Finally, in severe eases, the whole ciliary border must

[^20]be transplanted by either the single or donble transplantation operations. Those most in vogue are the methods devised loy Jacsehe and molified hy Arlt, and the double operations of Spencer Watson, Dianomx, Gayet, and others, or the more recently advocated methorl of Vim Milligen,' which consists in the transplantation of a piece of murous membrane from the lip into the intermarginal space after the lid has been split.

Eutropion.-In temporary entropion gool results may be obtained by painting the lid with collordion, which by its contraction draws out the inverted border, or by simply fastening this with a strip of plaster. The same effect may be obtained by pinehing up a longitudinal fold of skin and muscle with a serre-fine and keeping it in place, oceasionally changing the position of the instrument to aroid irritation. In spasmodic entropion excision of a transverse fold of skin and muscle and stitching the cdges together may be practised, while in the organie forms more derided measures are necessary, and those most frequently employed are such ats have already been referred to in connection with trichiasis; in addition to which may be mentioned the Streatfeild-Snellen operation of grooving the tarsus, and the modifications devised by Green, Hotz, Berlin, Panas, and other surgeons. (For the methods of performing these and all operations upon the lids, see pages devoted to deseribing operations.)

Ectropion, or eversion of the lid with exposure of the conjunctival surface, oceurs most frequently in the lower, but is also seen in the upper

Fig. 2.
Fig. 1.

Ectroplon the result of Ω wound from the line of a fork. (Children's ILospital.)

Eetreplon of upper lid after Injury to the beow. (Phitadelphia llospital.)
lid. This may be partial, or there may be complete eversion with displacement of the puncta lachrymalia. The disorder is usually divided into the aente (e. mnsenlare, e. spasmodicum) and the chronie form, or that which results from organic changes. The most usial canses of acute ectropion in children are oplithalmia neonatormm, and diseases of the cornea associated with blepharospasm, where the lids, during examination or in spells of erying, become everted and remain so until replaced. One form of mnsenlar ectropion is always seen in facial palsy, during which the lower lid is partially everted. The common causes of the second form of cetropion are
${ }^{1}$ Ophthalmic Review, 1887, p. 309 ; also Centralblatt f. prakt. Augenheilkunde, July, 1889.
wounds, especially such as are produced by the laceration of dog-hites or by the lid being caught upon a sharp instrment, by burns and subsequent cicatricial contraction, by ulecration of the lids, and by caries of the orbital border and the malar bone.

Treatment.-This must vary aceording to the character and eause. In the spasmodic forms it is sufficient to replace by manipulation the everted lid and treat the conjunctival or corneal disease which cansed the tronble. If there be eversion of the punctum lachrymale, the canaliculas shonld be slit and the lachrymal passages probed. In the organic forms of ectropion a plastic operation which will relieve deformity and restore the lids to a normal position should be undertaken. A great variety of these procednres have been deseribed and performed, but the plan adopted must be modified aceording to the existing deformity. Those commonly employed are such as include the vicions cicatrix in an excision, the remaining gaps being supplied by flaps taken from the surromoling tissne. Among these may be mentioned the methods of Adams, Wharton Jones, Arlt, and Richet. Complete destruction of the lid requires for its reformation a bepharo-plastie operation, which consists in the transplantation of a flap removed from some adjacent part to which it remains attached by its base, a method, however, which is being superseded by that introduced by Lefort and advocated by Wolfe, where a non-pedieulated flap is taken from the arm to supply the defeet. (Sce pages devotel to deseription of operations.)

Symblepharon, or a cohesion betreen the cyelids and the ball, may be complete or partial. It occasionally oceurs as a congenital defect, owing to

Symblepharon of upper lid following purulent ophthalmia. (l'hlladelphla llospllal.) an imperfect separation of the cutancous folds which form the eyclids, on account of failure in development of the ball or funetioning of the eyc-muscles. The most usual canses are injuries, especially burns with arids or lime. Symblepharon also follows diphtheritic conjunetivitis, trachoma, pemphigus, ${ }^{1}$ and oceasionally purulent ophthalmia. ${ }^{2}$ The attachment may be merely slight bands between the eonjunctival surface of the lid and ball, or the cornca also may be involved in the cicatrieial union, in which case vision is materially disturbed. It is the lower lid which is most usually involved in the process; the upper may also participate (see Fig. 3).

Ankyloblepharon is that condition in which the borders of the two

[^21]lids have grown together. This may be congenital or acquired, and, tike symblepharon, either partial or complete. When merely the outer angles of the lids are involved, the disorder has received the name blepharo-phimosis, white sometimes only the middle portions of the lid-borders are attached to one another, as, for example, in a case recorded by Von Hasner,' where this attachment oceurred in the form of a throad as a congenital defect. The same canses which operate in the prodnction of symblepharon are here netive. Arlt ${ }^{2}$ and Dnjardin ${ }^{3}$ have described varieties in which the vicions muion was not due to a growing together of the lids, but probably to the organization of a membrane the result of eronpous conjunctivitis.

Treatment.- After an injury or a disease which is likely to be followed by one of these results, serupulous care must be exereced to a a oid the complication. During the formation of gramuation-tissue this should be repeatedly broken up with a probe, and adhesions owasionally may be prevented by introducing between the lids and the ball a piece of gold-benter's skin. If the attachments liave formed and are slight, these may be cut through, and readhesion prevented in the manner just stated. In extensive symblepharon a formal operation must be done, and many methods have been devised, among the best of which may be mentioned Arlt's, in which the mass of adhesion is reversed, Teate's, where the raw surfiees left after the separation of the lid from the ball are covered by flaps from the neighboring healthy conjunctiva, and Prof. Wolfe's procedure of transplanting rabbit's conjunctiva. In ankyloblepharon the adhesion shonld be divided with a fine knife. Blepharo-phimosis is corrected by canthoplasty. (See pages devoted to deseription of operations.)

Sudden Turning Gray of the Eyblasurs.-Sufficiently definite observations have shown that occasionally the hairs of the head can be deprived of their color suddenly, either universally or in places, forming locks of gray or white hair. Hirsehberg ${ }^{4}$ has recorded an instance in which the eyelashes of a girl, aged fourteen, turned white without apparent cause in fourteen days. The child formerly had been under his care for styes and phlyctenular disorders, but otherwise was in good health. The discoloration took place in the middle thirl of the upper lid, while in the under lid white bundles were commingled with dark ones. I have seen an exactly similar case in a healthy, dark-haired young woman of eighteen. Within one week the middle portion of the cilia of the right upper eyelid turned perfectly white, white single white lashes altermated with dark ones in the lower lid. There was no reason to believe that this sudden change in color had been produced by artificial means. ${ }^{\text {s }}$

[^22]Vol. IV.-5

CONGENITAL DEFECTS OF THE FYELIDS.

Congenitat Prosis.-This is not muncommon affection, and may be either unilateral or bilateral. The lid droops over the eyehall, and its edge eovers the upper border of the pupil, its middle, or sinks still lower, but cannot be elevated above these points. Horner (loc. cit.) hats observed this affection in the first days of life, and has seen it in three generations of a fimily. It maty be associated with limitation of the movements of the superior rectus, as well as with vices of conformation in other organs of the borly. In a case under my own care ptosis of the left eye was combined with divergent squint from paresis of the internal reetus. The patient was six years old. The defect had been present since habyhoorl, and when the child attained the age of four he became the subject of epileptiform convulsions. The fundus of each eye was normal. Ginnn has recorded a remarkable case of peculiar associated movements of the affected lid. When the jaw was moved to the right laterally, the left upper lid was raiserl, or, in other words, there was eontraction of the levator palpebre in connection with the external pterygoid. ${ }^{2}$

Under the name celopia tarsi J. T. Streatfeild ${ }^{3}$ has deseribed, as a congenital defect, a sloped condition of the palpebral fissures, the lids being apparently drawn down wholly and evenly at the inner or nasal side.

Etiology.-P'tosis usually is divided into two varieties,-one in which a positive hypertrophy of the connective tissue exists, and one in which the drooping is due to absence or imperfect development of the levator palpebrarum, or to paralysis of this muscle. Its presence also has been attributed to the pressure of the forceps during birth, a cause which Horner denies, inasmuch as this affection is seen during the first days of life without any mark of the instrument upon the face of the child, and because it occurs through several generations of one family. It furthermore frequently is associated with other congenital defeets. Ptosis the result of paralysis of the oculo-motor nerve is referred to on page 135 of this volume (article on diseases of the eyc).

Treatment.-It is usual to attempt to remedy this defeet by the removal of an elliptical piece of skin. To avoid the risk of shortening the lid which attends this operation, methods have been devised for producing cieatricial bands by means of subeutancous sutures passed from the brow to the tarsus. Among these may be mentioned the plans of Bowman, Pagenstecher, De Weeker, and the more recently devised method of Panas.

Epicanthus.-Von Ammon ${ }^{4}$ gave this name to a somewhat rare af-

[^23] of the of the nbined nt was ren the m conarded a When d, or, in mection ds being le. in which in which levator has been ich Horss of life 11 heeause nore freresult of s volume
removal lid which sieatricial he tarsus. echer, De
rare af-
ndon, 1883,
, on "Syn-
enschlichen
fection in which, owing to an excessive development upon the bridge of the nose, a fold of sisin passes from the inner end of the brow to the side of the nose and covers the intermal canthus. It is usually bilateral, and generally associated with congenital ptosis.

Horner (loc. cit.) has pointed out that an examination of this regrion in new-born children might readily lead to the beliet' that a low grade of epicanthis was very common. This, however, lessens and disappears as the child develops. The fact

Fipicanthus. (After Von Ammon.) that the free border of the nbnormal fold of skin nearly covers the selera gives rise to an appurance as if convergent squint was present.

Etiology.-V In Gracfe ${ }^{1}$ believed that epicanthus depended not so much upon the development of an abnormal zold of skin as upon insufficieney of some of the twigs of the oullo-motor nerve, and Hirschberg ${ }^{2}$ has demonstrated a conmertion in one case between epicanthus and ophthalmoplegia, in which the defert appeared to be due to a congenital aplasia of ${ }^{*}$ the gray nuclei below the aquednet of Sylvins, while Man» ${ }^{3}$ has sought for a common origin of this and similar anomalies in the development of the bones of the fare which are concerned in this region. The abnormality may appear in several members of the same family. Under the name epicanthus extermus a somewhat analogous affection has been described in which the foll of skin was observed to cross the outer angle of the eye.

Treatment.-The usual method for the relief of this deformity is to exeise a piece of skin from the bridge of the nose, with or without a canthoplasty, according to the circumstances. It is important to obtain firm primary union, lest, as has been pointed out by Knapp, the subsequent stretching result in unsightly scars. Arlt has obtained good results from the excision of the vertical fold of skin itself. I have seen an interesting case of partial epicanthus associated with a mole growing over the bridge of the nose, in which Dr. W. F. Norris effected a good result by excising the mole and covering in the skin-deficiency with a flap taken from the forehead.

Coloboma of the Eyelids appears in the form of a fissure which may be confined to the upper lids, either one or both, but which also hes been noted in the lower lids and even in both upper and lower lids.

[^24]In the observations of Dor ${ }^{1}$ of Lyons, and Jules Nicolin, ${ }^{2}$ in twentyseven instances a single eyclid was involverl, twice the two eyelids of the same eye, sixteen times one lid of ench eye, and once the deformity appeared

Fig. 5.

Coloboma palpebrarlun. (After Manz.)
on all four lids. In the majority of instances the defect is found in the upper lids.-according to D'Oench, ${ }^{3}$ twenty-three times in thirty-three cases. Coloboma of the eyclids may exist as a single malformation, but more frequently has been seen in conjunction with hare-lip (fourteen times in forty-seven cases), absence of the lachrymal puncta, dermoid tumors of the cornca, and clefts of the iris, pharynx, lip, and nose.

Etiology.-Many theories have been advanced to explain this anomaly: a primordial defect of organization ; the action of amniotic strands (Van Duyse) ; heterotopic tissne-formation (Manz) ; intra-uterine inflammation (Osio) ; an arrest of development, owitig to the failure of the joining of the two halves of the first branchial areh together with the frontal prominence (Nicolin and Dor).

Treatment-This consists in freshening the edges of the gap and uniting the opposing surfaces by sutures. The extent of cach deformity and it. redation to the cornea necessarily determine the character of operation which must be mulertaken.

Absence of the Lids.-Sometimes children are born with eomplete or partial absence of the eyelids,-ublepharia totalis and partialis, or congenital lagophthalmos. At other times the eye is hidden, owing to an adhesion between the eyclids, and we have the condition to which Mans (loc. cit.) has given the name eryptophthahos, a term which, as Van Duyse ${ }^{4}$ has observed, should be preserved for those cases where the exterior integumeni passos in fro.tt of an eve more e. less developed,--that is, wher there is ec apete absence of the lids and papebral fissure. It is a congenital anomaly of extreme rarity. Finchs ${ }^{5}$ has reported two cases of a? cermal shortness of the lids so that the patients conld case them only with the strongest presse ${ }^{\text {a }}$, and Pfliger has obscrved an instance of ab-

[^25]
norm

 sible produ S the eyTh neighb disease attack Tw baccóns upon il They ar of the o ceous fo growths, eycbrow, tion, it have a si be empti nostic poi structure The r pation the being takt excision o periostenn orbit.

AFF?

Statistic common al this system hundredths at the Chil ex!ibited a mal structu
normal length of the fissure of the lids where complete closure was possible only by the greatest effort. Ectropion was not present. Tarsorrhaphy produced a cure in the first case.

Symblepharon, ankyloblepharon, and distichiasis also ocenr as congenital anomalies, and have been deseribed. A rave defect is complete absence of the cyelashes.

DISEASES OF THE EYEBROW.

The cyebrow may be involved in any diseased process which attacks the neighboring skin or the scalp; and no separate description of injuries or diseases of the skin, especially seborrhoea and eezema, which are prone to attack this region, need be appended.

Two forms of eystic growth affeeting this area are seen in children. Sebacoóns cysts (atheromatons cysts) fiequently appar as congenital growths upon the outer portion of the eyebrow, and may rach a considerable size. They are deeply situated, and not infrequently attached to the periostem of the orbital margin. A eyst of this chameter takes its origin in the sebaceous follicles of the region. Dermoid eysts exist as painless, spheroidal growths, most frequently at the outer angle of the orbit on a level with the eyebrow, less usually at the inner angle above. When in the latter situation, it is possible to mistake the affection for a meningocele which may have a similar situation. As Juler ${ }^{1}$ has pointed ont, the meningocele can be emptied on pressure, has a slight impulse, and is not movable,-diagnostic points whieh do not oltain in the case of the dermoid eysts. The structure of a cyst of this kind is composed of the clements of the skin.

The r^{\prime} atment is the same for both classes of cysts, and consists in extirpation through an incision made parallel to the border of the orbit, care being taken not to rupture the sac-wall. It ought to be remembered in the excision of these growths that sometimes they are attached firmly to the periosteum, and that they may even erode the bone and extend fir into the orbit.

AFFECTIONS OF THE LACHRYMAL APPARATUS.

Statisties show that affections of the lachrymal a! paratus are liss common among child on than among adults. In Horner's list discases of this system among chidren are set down as constituting one and sixteonhundredths per eent. Among seventeen hundred and eight recorded ases at the Children's Happial in Philadelphia one and one-tenth per cent. exbibited affections, the lachrymal apparatus. Diseases of the lachrymal structures naturally divide themselves into those which have their seat

[^26]in the lachrymal gland, and those which affect the drainage-system,-i.e, the puncta canaliculi, lachrymal sac, and nasal duct.

Dacryoadenitis, or an inflammation of the lachrymal gland, is comparatively a rare affection, and may be either aente or chronie. Hirschberg, ${ }^{\text {, }}$ among twenty-two thousand five hundred cases, found only one instance of suppurative dacryoadenitis. He reports a case of acute, nonsuppurative dacryoadenitis in a girl of fifteen, which on account of its analogy to bilateral parotitis he called "mumps of the lachrymal gland." ${ }^{2}$ The chronic-especially, according to Knapp, ${ }^{3}$ the monolateral-form is more common, and has been observed among serofulous children, and may be caused by an injury or follow diseases of the conjunctiva and cornca. If' the gland is chronically enlarged, palpation will reveal its lobulated border ; if the inflammation is acute, there are pain, tenderness, and swelling at the upper and outer part of the eyelid, with chemosis of the conjunctiva bencath. This may go on to suppuration, and the abscess usually points uponi the skin, but occasionally through the conjunctiva.

Treatment.-Warm applications and poultices to relieve the pain, and at the first appearance of pus early incision, either throngh the integument paifllel to the eyebrow or through the coujunctiva, must be practised. If indithtion of the gland occur, this is to be treated locally with iodine or inunc 解n 2 of iodide-of-cadmium ointment.

Fisfylay of the Lachirymal Gland may remain on account of the rupture of an abscess, but has also been recorded as a congenital defect,-for instance, in Steinheim's ${ }^{4}$ case, mentioned by Horner (loc. cit.), which was situated at the outer third of the upper lid, one-third of an inch from the eiliary margin, and surrounded by a tuft of hair. This may be closed by repeated cauterizations, by a plastic operation, or, in the event of failure, by extirpation of the gland.

Dacryors is an musual affection caused by a cystic distention of one of the gland hats, and may be recognized by the presence of a bluish, translucent swelling bencath the conjunctiva at its upper and outer part.

Hypertrophy of the Lachrymal, Gland has been observed at birth, but usually is seen in later years, and consists in an indurated, lobulated tumor.

Spontaneous Prolapse of the Lachrymala Gland in the form of a soft movable tumor under the upper lid has been described. In a case recorded by Noyes ${ }^{5}$ this condition was found in a girl of twenty, who for nine years had a swelling bencath the upper lid of this character, which on removal proved to be the lachrymal gland itself. The treatment is extirpation of the prolapsed organ.

[^27]SyP^{3}
gularly
describer mnder a woman dular ele bacilli.

Tume and malis seen in t half ycar osteochon have reco Hayes Ag patient wi this region of a girl as in all insta

Anms congenitai observed, : others, whi structures, four lachry represented wanting.

The slig the eye, aga flow of tear: are the varis ritis, granul: of this regio symptom no the lid, espec away of the
${ }^{1}$ British M
${ }^{2}$ Ann. di
${ }^{3}$ Centralbla

- Oplathalm
${ }^{5}$ Transuctia
${ }^{6}$ Trunsatio
${ }^{7}$ Archives
${ }^{8}$ Wiener M
${ }^{9}$ Epiphorn, lachrymarum is jurpose is served

Syphilis of the Lachrymal Gland.-The lachrymal gland is singularly free from syphilitic affections, but specific inflammation has been described by Streatfeild ${ }^{2}$ and others in adults, the inflammation subsiding under antisyphilitie remedies. Albini ${ }^{2}$ observed in a syphilitic young woman a tumor of the lachrymal gland which was composed of glandular elements, organized comective tissue, giant cells, but no Lustgarten bacilli.

Tumors of the Lachrymal Glanb.-The several varieties of benign and malignant growths whieh have their seat in glandular tissue have been seen in the lachrymal gland. Samelsohn ${ }^{3}$ found in a child three and a half years old a lithiasis of the gland, the coner tion proving to be an osteochondroma. Snell ${ }^{4}$ has scen an adenoma in a girl of eight, and I have recorded a similar instance in a young man, a patient of Dr. D. Hayes Agnew, who removed the growth. ${ }^{5}$ Power ${ }^{6}$ had a sixteen-year-old patient with encapsulated fibro-sarcoma. Tuberele has heen discoyered ins this region, as, for instance, in a case reported by Abadie, where astland of a girl aged sixteen was found to be tuberculous. Excision of hangrow in all instanees is the only treatment.

Anmmalifs of the Puncta Lachrymalia and Candmeleli FAs congenitai anomalies double puncta lachrymalia and canalicubifhavesten observed, as in the cases recorded by Mooren, Galezowski, Horist and τ others, white Emmert and Fienzal have seen congenital ab cucsis thy structures, and Von Reuss, ${ }^{8}$ in a boy aged twelve, noted the :Nence of four lachrymal points, while the papille were present and the canats were represented in the lower lid by furrows; in the upper lids they were wanting.

The slightest change in the ratural relation of the lower punctum to the eye, against which it is directed backward, causes epiphora, or an overflow of tears. ${ }^{9}$ The most fruitful sources of such abnormal relationship are the various chronic inflammations of the lid and conjunctiva,-blepharitis, granular conjunctivitis, and ectropion ; and facial palsy and wounds of this region. In facial paralysis watering of the eye is sometimes the first symptom noted, and is ceused partly by the loss of compressing power in the lid, espeeially in the fibres of Horner's muscle, and partly by the falling away of the punctum. Epiphora further results from the presence of a stye

[^28]or tumor of the lis near the punctum, or, if the canalieulus is closed, by the presenec of a foreign body like a hair, usually a cilinm, a mass of fungus (leptothrix), ${ }^{1}$ a so-called tear-stone, as in a case of Kipp, ${ }^{2}$ or even, as Paul ${ }^{3}$ has recorded, by the development of a polyp. Finally, an overflow of tears may follow an abnormal position of the carnncle, as in the observation of Horner (loc. cit.), where in a five-year-old child this was so misplaced as to be situated below the lower punctum upon the iuner surface of the lid, which was pressed away from the eycball. Enlargement of the carmele, as Von Gracfe observed, may produce a like symptom, and its removal has been followed by the disappearance of the difficulty.

Treatment.-In cases of epiphora without disease of the lachrymal sae or stricture of the nasal duct, a simple slitting of the canaliculns is usually suffeient. If a fureign body is present, this should be removed. This treatment does not apply to cases of facial palsy.

Anomalies of the Lachrymal Sac and Nasal Duct.-Among ehildren about one-third of the cases of lachrymal affections belong to the aente form of diseases of the sae; Horner (loc. cit.) states that this oceurs in from thirty-six to forty-eight per cent. Deheme ${ }^{4}$ has reported a case of congenital tumor of the lachrymal sac which appeared in the form of an abseess. Terson and Galczowski ${ }^{5}$ have observed similar examples, the latter surgeon having successfully treated his cases by injections of water. .

Dacryocystitis.-The miversal symptom in aflections of the lachrymal sate and duct is epiphora. The cye swims in tears, and these are exeited to overflow by exposure to dust, cold, or wind. The caruncle and plica are swollen, the neighboring conjmetiva hyperemic and injected,-the lachrymal conjunctivitis of Galezowski,-the skin macerated, and the margins of the lids, especially nasal-wad, show signs of bepharitis. Pressure upon the region of the lachrymal sac, which may be distended (mucocele, lachrymal tumor), expresses throngh the puncta the retained fluid, which is a dear or semi-tramsparent viscid mucus (dacryoystitis catarrhalis), or turbid from admixture with purulent material (daeryocystitis blemorrhoica). The lachrymal sac thus chronically distended is liable at any time to take on a suppurative intammation, producing acute dacryoeystitis, which may be preceded by fever and chill; the lids and region of the nose become tender to the touch and tense with a red and brawne swelling, resembling erysipelas, for which it not infrequently has been mistaken. When there is added to disease of the sac a phlegmonous inflammation of the cellular tissue (laneryoerstitis phlegmonosa) whieh surromels it, the pus burrows in front of the sae, forms ponches in the comective tissue, and in most in-
${ }^{1}$ Consult Goldzieher, Centralbl. f. prakt. Augenheilkunde, 1884, p. 33, and A. v. Reuss, Wiener Med. Presse, 1884.
${ }^{2}$ New York Medical Record, xxiv. 289.
${ }^{3}$ Quoted by Schirmer, Graefe u. Saemisch, Handbuch, vol, vii.
4 Recueil d'Ophtalmologie, 1883, p. 122.
${ }^{6}$ Ibid. ; also Archives of Ophthalmology.
stances the abs into the Ohst ally ante situated upper en thal dae stricture into the nucons dense cie impermea the rougl must not lachrymoe.g., in the case record and one m Fistule a congenita Schreiber, ${ }^{2}$ internal pal Agnew. ${ }^{3}$ of a lachry condition of centimetre 1 runs outwar with the sa the lower ea and later th opening, wh which sppea The conditio of the orbit, the latter the one-eighth to but only dow purulent.

Pre-luchr:

stances the lachrymal absecss points below the tendo oculi. If ummolested, the abscess ruptures externally, with the formation of a fistulous opening into the sac, the mouth of which is surromeded by pouting granulations.

Obstruction of the nasal duct, which generally antedates the affection of the sac, may be situated at any part, but is usually found at its upper end. In the carly stages of the catarrhal daeryocystitis there is probably no true stricture of the duct, but the flow from the sac into the nose is prevented by swelling of the mucons tissue ; later, and in other instances, dense cientricial strictures ocemr. The most impermeable obstructions follow injuries,the rough use of bongies, and the like. It

Phlegmonous dacryocystitis, (Chlldren's Itosplat.) must not be forgoten that stoppage of the lachrymo-nasal duct may be caused by pressure from neighboring tumors,e.g., in the antrum of Highmore,-or by foreign bodies, as in the curions case recorded by Haffiner,' where a lumbricoid worm three centimetres long and one millimetre thick ocenpied the left lower lachrymal camal.

Fistula of the Lachrymal Sue.-This occasionally has been observed as a congenital anomaly. It may be present only on one side, as in the case of Schreiber, ${ }^{2}$ where in a child ten weeks old the orifice was directly under the internal palpebal ligament, or on both sides, as in the instance reported by Agnew. ${ }^{3}$ Usually a fistulons opening into the sae is caused by the rupture of a lachrymal abscess, and Parinand ${ }^{4}$ has seen this result from a carions condition of the upper canine tooth. The opening may appear about one centimetre below the punctum, but also in various spots along a line which runs outward parallel to the lower orbital border. It usually communicates with the sac, but, as Rampoldi has reported, the opening may lead into the lower canal only, the sac above being shrunken. Pus or muco-pus, and later the tears, which should descend into the duct, exude from the opening, which for a long time persists as a fine orifice, at the mouth of which appears a drop of clear fluid. This is the so-called copillery fistula. The condition is to be differentiated from a buccal fistula below the margin of the orbit, which, according to Scheff, may be done by observing that in the latter the situation is never aceurately at the orbital margin, but from one-eighth to one-fifth of an inch below, that a sciund never passes upward, but only downward, laterally or posteriorly, and that the secretion is always purulent.

Pre-lachrymal Absecss.-As has been especially pointed out by C. S.

[^29]Bull,' a swelling may exist above the internal palpebral ligament and a little external to the region of the lachrymal sac, associated with a fistulous opening from which pus flows, having no connection with the site itsclf. In his case this pre-lachrymal abscess was cansed by a blow from a cane at the inmer angle of the eye, and was associated with caries and perforation of the lachrymal bone. The same condition I have observed in chidren without injury, the subjects of hereditary syphilis. The condition is to be distinguished from a true lachrymal absecss by the fact that there is no interference with the passage of the tears from the conjunctiva into the sac, by the pain on pressure, and by the absence of acute inflammation. The treatment is that of an abseess, together with such constitntional measures as may be indieated by the dyserasia of which the patient is the subject.

Etiology of Diseases of the Lachrymal Sac and Duct.-Disease of the lachrymal sac rarely is primary. In young infants dacryocystitis, often double, arises without apparent canse. Kipp ${ }^{2}$ found during two years three and six-tenths per cent. of lachrymal diseases, and six per cent. of these were muder one year of age, the affeetion even having been seen shortly after birth. In the majority of cases blemorrhoa of the sac is cansed by retention of the secretion from stricture or obstruction in the nasal duct and participation of the lining of the sac in an inflammation of the naso-pharynx. In other instances strictures result from, rather than cause, blennorrhoa. The proper appreciation of the pathologieal conditions of the nasal mucous membrame in relation to diseases of the lachrymal apparatus, and as an ctiologieal factor, is of the utmost importance. This relationship has been especially dwelt upon by Harrison Allen, ${ }^{3}$ Nieden, ${ }^{4}$ Zien, ${ }^{5}$ Gruening, ${ }^{6}$ and Grut. ${ }^{7}$ Although it might seem natural that conjunctivitis, especially purulent conjunctivitis, should eause lachrymal discasc, this is by no means frequently the case. Horner (loc. cit.) in one instance only wats able to observe a blemorrhoa of the sac arise from a similar inflammation in the conjunctiva ; and conjunctivitis and blepharitis, so coustantly accompanying disorders, follow rather than canse the lachrymal affection. Obstruction of the duct and disease of the sac follow measles, scarlet fever, and especially variola, because these exanthemata are accompanied by inflammation of the nasal mucons membranc. Periostitis and caries of the lachrymal bone, the result of syphilis. are important canses. Gummy growths may block the sac (osteo-periostitis gummosa of Panas) and go on to rapid suppuation. The relation between asymmetry of the face and disease of the naso-Jachrymal duct deserves mention. Finally, traumatism

[^30]accoun infrequ of' iulh Prc the mo: may red the con meabilit the resu may be

Trea restoratic the most especially with a fi cerlures a into the 1 an approp The which is until the p rymal sate. turned slig lower caua upper cana plan is to the site. I cations hav along the ea raised to the the direction should nev to dividing slitting the Stilling. T lachrymal s. boracie acid, It is adv this fails, a s cmployed, th used at first intervals may large lachryn diversity in t months.
accounts for certain cases. Fistulas, especially those seen in infints, not infrequently depend upon disease of the bones, which in turn is the result of inherited syphilis.

Prognosis in Lachrymal Disease.-The well-known fact that under the most skilful treatment affections of the tear-passages often resist healing may render a guarded prognosis neeessary. This depends entirely upon the condition of the nasal chambers, the duration of the malady, the permeability of the stricture, and the canse of tronble. When the latter is the result of injury, the prognosis becomes especially grave, and the malady may be irremediable.

Treatment.-Manifestly, the success of all treatment centres upon the restoration of the calibre of the duct, if this be strictured, and the relief of the most important canse of the disease of the sac. Occasionally it suffices, especially in new-bom children, to dilate the punctum and wash out the sae with a fine Anel syringe and an antiseptic solution. Usually three procedures are necessary, -slitting up the canaliculus, introducing the probe into the nasal duct, and washing out the sace and naso-lachermal duet with an appropriate syringe.

The slitting of the canienlus is best done with a Weber's knife, which is introduced, the lid being drawn down and out with the thumb, until the probe point of the instrument touches the inuer wall of the lachrymal sac. It is then raised to the vertical line with the cutting blade turned slightly inward, and the roof of the camalienlus thus divided. The lower camal is most frequently elosen. Some surgeons, as a rule, split the uper canaliculns; if there is much distention of the sac (mucocele), a good plan is to enter the upper passage and to incise both this and the wall of the sate. The probe (Bowman's probes are the best, though useful modifications have been devised by Theobald and Tansley) is now introduced along the cunaliculus until its point tonehes the lachrymal boue. It is then raised to the vertical position and pushed into the duct, remembering that the direction is downward, slightly backward, and outward. Undue efforts should never be employed. If the strieture resist, recourse may be had to dividing this with a knife, either the one which has been employed in slitting the canaliculus, or, still better, the specially-devised instrument of Stilling. The duct and sae should now be washed ont thoroughly with a lachrymal syringe and some antiseptic fluid, either a saturated solution of boracic acid, or a one to five-thousand solution of bichloride of mercury.

It is advisable to make the tirst trial with a No. 2 Bowman probe; if this fails, a smaller one may be tried. Either rapid or gradual dilatation is employed, the latter being the preferable methorl. The sound should be used at first every second or third day, but as the case progresses longer intervals may clapse. Theobald has recommended the introduction of very large lachrymal probes, a method not always applicable, owing to the great diversity in the size of the bony duct. The whole treatment often oceupies months.

If a lachrymal abseess supervenes, and is seen carly, the canaliculus should at once be slit, and, if possible, the secretion evacuated, with retention of the passage into the nose. Frequently the pain and swelling are such as to render this impossible, and the opening must be made upon the faee about one centimetre below the palpebral tendon, entting downward and ontward. In the highly inflammatory stage, probing must not be employed, but the sat and abscess-cavity should be freely irrigated with a solution of hichloride of merenry. An excellent practice is to nse hot compresses over the swelling, preferably of carbolized water of a temperature of $120^{\circ} \mathrm{F}$., freenently changed, and applied for five or ten minutes at a time. Iater, the restoration of the passage into the nose must be undertaken by probes in the matner already described, but if the patient is refactory, which is almost invariably the case in young children, excellent results will follow the introduction of a style made of lead wire, slightly hooked over the inner canthns to prevent its slipping into the sac.

Swelling over and around, together with fistulons comection into, the lachymal sae, occasionally will subside under the judicions use of a compressing bandage. I have tried this method, again recently advocated by Bothen' and others, quite often in the Children's Hospital and in the Philadelphia Hospital, with very good results. My plan is to put a graduated compress of ioloformated cotton over the swelling, seeuring it firmly with a roller bandage.

In addition to the local measures already mentioned for the purpose of producing healing in case of lachrymal discase, weak solutions of nitrate of silver, salieylie acid, iodoform, and creolin, with which latter drug I have had but indifferent sucecss, have been advocated. In case of acnte inflammation with abseess-formation, quinine, and iron in the form of Basham's mixture, are indicated ; in syphilis with disease of the bone and gummatous deposit, the manal remedies are to be exhibited, and the best of these in children is the merenry binder ; in struma, cod-liver oil, hypophosphites, and iron in the form of the syrup of the iodide are the most trustworthy remelics. Scrupulous attention to the nose and maso-pharyox is necessary, and any local lesions which present themselves must be treated. In the absence of a special line of treatment for this region, I have achieved excellent results by simply spraying out the parts with Dobell's solution and listerine, while carrying on the regulation measures for the relief of the lachrymal disorder.

If a fistula remains, this may be healed at times, as already stated, by compression. In the event of failure, freshening the edges and the galvanocautery may be tried, the surrounding pouting granulations being removed by scraping. The capillary fistulas are productive of no ineonvenience, and may be allowed to remain medisturbed. In stubborn cases which have resisted all reasonable treatment, extirpation of the lachrymal gland has

[^31]been do as more portion, Under ures oug CHa Conditi conjumeti if stoppe Widmark oculation if' a soluti presence or These may hypopyon and, finally of the ope three cases tained ; if mal sac, if i The import the eornca tion of the 1 this age of 1 tance of the s applied at the nine years ha, eonjunctival a lesion belongit

The most inflammations,

Synonyme rhea of the cor Definition.

[^32]been done, tas was originally recommended and performed by Lawrence, or, as more recently has been advocated by De Wecker, excision of its palpebral portion, or the lachrymal sac maty be obliterated by means of caustics. Under judicions treatment, the necessity for these somewhat heroie measures ought not to arise.

Character of the Lacimpmal Sechetion under Pathological Condrions.-The lachrymal sace is a reservoir for the flaid seereted by the comjunctiva, and, this fluid being more or less loaded with miero-organisms, if stopped by stricture of the duet the sat becomes stuffed with micrococei. Widmark ${ }^{1}$ found in dacryocystitis streptococens pyogenes, which by inoculation caused phlegmonons inflammation. If the cornea is abraded, or if a solution of continnity in this membrane is necessary by operation, the presence of pathogenic organisms in the fluid becomes a serions complication. These may turn a simple abrasion into a slonghing uleer and an aggravated hypopyon keratitis; they may forlid the haling of an ordinary keratitis; and, finally, they may inoculate an operative wound and defeat the olject of the operation. For this reason it is most important that in any of the three cases just quoted the permeability of the nasal duct should be ascertained ; if it is strictured it should be opened, and the walls of the lachrymal sac, if inflamed, as speedily as possible brought into a healthy condition. The importance of this relation of the lachrymal apparatus to diseases of the cornea will be again referred to in the section devoted to the consideration of the latter affection.

DISEASES OF THE CONJUNCTIVA.

The great frequency of diseases of the conjunctiva and cornea during ehildhood-according to Horner, half of all the affeetions of the eye during this age of life belong to this group-sufficiently emphasizes the importance of the sulject. Nearly sisty-three per cent. of the patients who have applich at the Eye Dispensary of the Children's Hospital during the last wine years have come on account of one or other of the types of corneal or conjunctival affection, in thirty-six and a half per cent. of the cases the lesion belonging to the conjunctiva alone.

The most important group of diseases of the conjunctiva iucludes the inflammations, to which the general term ophthalmia may be applied.

OPHTHALMLA NEONATORUM.

Synonymes.-Purulent ophthahnia, Gonorrhœal ophthalmia, Blennorrhoea of the conjunctiva, Purulent conjunctivitis.

Definition.-This is an inflammation of the conjunctiva charaeterized

[^33]by great swelling of the lids, serons infiltraion of the conjunctiva, and the free seceretion of contagions pus.

Etiology.-The prevailing opinion is that this affection is ennsed by the introduction into the eye of the infecting material from some portion of the genito-urinary truet of the mother at the time of or shortly after birth. It is equally well ascertained that the majority of cuses and all severe forms are due to the presence of the gonococens of Neisser. Exceptionally inocubation appears to have taken place in ntero. Magms ${ }^{1}$ reports an instance of' oplothalmia neonatorm, with involvement of the cornca, of such origin, where the membanes were ruptured three days before birth and permitted the entrance of the gonocoeci. Fuehs ${ }^{2}$ has observed in a ehild at birth perforation of the cornca as the result of congenital ophthalmia. A high degree of penetrating power is ascribed to this special miero-organism by Mules, ${ }^{3}$ who hats seen an infint born at the seventh month after an exceptionally casy labor with well-marked ophthalmia neonatornm. The child was bronght eight hours after delivery, exhibiting the symptoms of the second stage of the discase: so that infection in utero mist have oceurred at least two days before birth or rupture of the membrames.

The gonococens is generalls; although, according to Widmark ${ }^{4}$ and Weeks, not invariably, present in the secretion, being specially momerous during the muco-purulent stage. According to Cohn, two varieties of ophthalmia neonatorum may be distinguished,-a severe type, supplied with the micro-organism, with a tendency to inerease in severity and involve the cornea; and a milder type, non-specifie, with a tendency to recover.

The presence of a virulent vaginal diseharge in the mother is not necessary to produce this condition, as it probally may arise from the introduction of any mueo-purulent discharge during the birth; while careless bathing of the child after birth and the use of soiled towels and sponges are fruitful sources of infection, and it is even possible that later contact with the lochial discharges may originate the disorder. Andrews, ${ }^{6}$ Zweifel, ${ }^{7}$ and others, however, have failed by inoculation of healthy lochia to produce the disease.

Opinions differ in regard to the exact time of the inoculation, which probably is more likely to oceur in retarded labors and with face-presentations. Mules (loc. cit.) thinks the pus may be introduced into the eyes by the edge of the perineum, the anterior edge of which becomes an elastie curved cord, which, after slipping over the forehead, presses for a shorter or longer time on the eyelids, depositing thus vaginal sceretion within them.

[^34]Boys are more frequently nttacked than girls. Emmert,' of Bern, lus demonstrated a relation between the temperatime and this disease. In cold climates ophthalmia neonatorum is especially freyuent in the summer months; in hot countries, in the spring and autumn.

Pathology and Pathological Anatomy.-Horner examined an eye which for forty-eight hours had been the sulyert of ophthalmia neonatorum, and fomed that the cedematons swelling limited a general laminated strueture of the tarsal congunctiva. The epithelimm of the bulb was tolerably preserved; the superficial layer of that covering the tarsus was curled, irregular, and wanting; the swollen vessehs were exposed and hemorrhages present; the papille were swollen, and there was much lymphoid infiltration.

The gonococei are seen in the nuclei and at the margin of the epithelial cells and on the surfaces of and within the pus-edls; later they penctrate the epithelime and enter the lymph-spaces. The infections secretion introduced into an eye will produce purulent ophthalmin, so the pus from it can be in turn inoculated into the urethra with the production of a purulent inflammation.

Symptoms.-Ophthalmia neonatormm usimally begins on the third day after birth, but may set in as curly as from twelve to forty-cight hours after inoenlation, or be delayed, when it is the ressult of a secondary infection from soiled fingers or sponges or cloths, to a much later date. Almost always both eyes suffer, the one being earlier and frequently more decidedly affected than its fellow. Four stages of the disease are common, but, as these vary in different cases and more or less rapidly shade the one into the other, no very sharp lines need be drawn. A slight redness of the conjunetiva, with a trifling discharge in the corner of the eye, is rapidly sneceeded by great cushion-like swelling of the lids, with intense chemosis and congestion of the conjunctiva, accompanied hy severe pain and discharge ; the surface of the swollen lid is hot, dusky red, and tense ; the upper lid overhangs the lower, and at first can only with difficulty be everted. The discharge, which in the begiming is slightly turbid, soon changes to a yollow or greenish-yellow pus, and is seereted in great quantities. If the lids are everted during the first day or two of the disease, the conjunetiva will be found to be swollen, red, and velvety, and that upon the eyeball intensely injected; upon the surface easily-detached flakes of lym m h are found; later the conjunctiva becomes rougher, of a dark-red color, spots of cechymosis appear, or it is sncenlent and easily bleeds. Marked chemosis and infiltration of the ocular conjunctiva succeed, forming a hard rim ; at the bottom of the crater-like pit thus produced, the cornea may be seen; the thick eream-like diseharge increases, and either flows out from bencath the overhanging upper lid on to the check, or is packed up in the conjuncival cul-de-sac.

[^35]
IMAGE EVALUATION TEST TARGET (MT-3)

The lids now may 'ose much of their tense character, and can be more casily everted; the conjunctiva is puckered into folds and papilla-like elevations, and the discharge contains an admixture of blood and serum.

Fia. 7.

Gradually the disease declines, and in from six to eight weeks the discharge ceases. The relaxed palpebral conjonctiva is thick and granular, looking like the grantation-tissue which surrounds wounds. The ocular conjunctiva is also thickened, and positive eicatricial changes may remain.

The chicf danger is destruction of the vitality of the cornea, the danger of which is materially increased if this membrane becomes lustreless, dull, and hazy within the first day or two of the disease. Frequently small, oval ulcers form near the limbus, either trasparent or surrounded by an area of cloudy infiltration. In many mild eases the cornea escapes without harm. The changes which take place in the cornea are due in part to strangulation of the vessels by the swollen tissue, but largely to direct infection of its substance by the presence of the discharge.

In the formation of a corneal ulcer, either its healing with regeneration of the corneal tissue takes place, or else perforation occurs. The result of perforation will depend upon the amount and character of the destruction of the corneal tissue. When the ulcer is central and perforates, the aqueous humor escapes, the lens is pressed forward against the posterior suiface of the cornca, and the opening becomes closed with lymph. This renders the re-collection of the aqucous possible, or, when it occurs, returns the lens to its proper position, leaving upon its anterior capsale a little mass of lymph, and the formation of a pyramidal cataract results.

Perforation of an uleer peripherally situated, especially below, is followed by adhesion of the iris to the opening. The aqueous escapes, and, as the iris and the lens fall forward, the former becomes entangled in the perforation and is fixed by inflanmatory exudation. The adhesion is either on the posterior surface or in the cicatrix, and the resulting dense white scar receive the name adherent leucoma. If the region of the scar is conjunche dauger less, dull, tly small, ded by an es without n part to to direet e result of lestruction , the aqueior suiface his renders nes the lens e mass of pes, and, as in the perm is either dense white the scar is
bulged forward because it is mable to resist the intraocular tension and pressure, anterior staphylome results. The effect of extensive necrosis and sloughing of the corneal tissue with total prolapse of the iris, matting together of the parts by exudation and protrusion of the cicatrix, is the formation of a total anterior stophylome. In rare instances an adhesion between an uleerated spot upon the cornea aud the surface of the tarsal conjunctiva takes place, resulting in the production of a symblepharon, even in the absence of any diphtheritic processes in the ulecration. Hutchinson ${ }^{1}$ has seen in a child of five years donble ptosis which had followed an attack of purulent oplıthatmia in infancy.

Finally, perforation may be followed by inflammatory involvement of the ciliary body and choroid, and the rapid destruction of the eye through panophthalmitis, or a slower shrinking of the tissue with atroply of the bulb. Dense opacity oceasionally appears in the cornea during convalescence, and may go on to softening and uleer-

Symblepharon of upper lid following purulent ophthalmla. (Phlladelphia lospital.) ation, or elear up perfeetly. It may arise with great suddenness, and, when it occurs in the lower half of the cornea, a deep indentation, owing to the pressure of the margin of the lid, is iikely to oceur.

Ophthalmia neonatorum does not always follow the course jnst deseribed. In many instances the inflammation is mild, and the secretion and general appearance of the eye are not far different fiom those of an ordinary case of catarrhal or mueo-purulent ophthalmia. In these instanees the cornea escapes injury.

The appearance of the conjunetiva materially differs in different cases. Its surface may be covered over, not merely with easily-detached flakes of lymph, but with a positive, gray, false membrane, and even, more rarely, with a deep infiltration like that scen in diphtheritic conjunctivttis. Constitutional disturhance is not laeking, with restlessness, fever, and distinet depression. Lucas ${ }^{2}$ has seen an eightecu-months-old haby suffering from ophthalmia neonatorum have at the same time syovitis of the knee and wrists of the same character as such complications during gonorhoa. Analogons cases have been reported by Saswornitzky, ${ }^{3}$ Debierre, ${ }^{4}$ and Darier. ${ }^{5}$

Diagnosis.-The onset and character of the disease, its symptoms and
${ }^{1}$ Ophthalmologieal Hospital Reports, vii. 43.
${ }^{2}$ British Menical Journal, 1855, ii. 57, 699.
${ }^{3}$ Abstruct in Archives of Ophthulmology, vol. xv.
${ }^{4}$ Revac Générale d'Ophtalmologie, 1835, iv. 290.

- Arehives d'Ophtalmologie, Mars-Avril, 1889.

Vol. IV.-6
course, render any mistake in regard to its nature practically impossible. The only word of cantion necessary is to avoid any indifference in regard to what at first may appear to be only a trivial inflammation in the eyes of a new-born child, remembering that with great rapidity a virulent and destructive inflammation may follow.

Prognosis.-This is always grave, the gravity inereasing in direct proportion to the violcnce of the inflammation and the condition of the cornca. Under the newer meihods of treatment, more eyes are saved than was formerly the case, and still more would escape were it possible to impress upon the attendants of children this afflicted the necessity of secking capable medical advice at the very moment of the appearance of any tronble. If, as only too freguently is the case, treatment has been neglected until extensive slonghing of the cornea has oceurred, no form of medication can do more than relieve the violence of the inflammation, which, when it subsides, leaves the child with sight hopelessly marred, perhaps destroyed.

Prophylaxis.-One of the most fruitful causes of blinduess is this form of intlammation of the eyes of new-born infants. Thirty per cent. of the immates of institutions in the United Kingrlom lave lost their sight from this canse. According to Prof. Magmus, of Bresleut, 71.99 per cent. of all who become blind during the first ycar of life are rendered so by purulent ophthalmia; even of those who become blind before the twentieth ycar of life it constitutes 23.5 per cent. ; in other words, of every ten thousand children under five years of age, 4.28 per cent. lose their vision by ophthalmia neonatorm. In the blind asylums of Switzerland the proportion is 26 per cent. ; in those of Austria, Hungary, and Italy, about 20 per cent. ; while in Spain and Belgiom it falls to about 11 or 12 per cent. ${ }^{1}$. In the face of these facts, and with the knowledge, as Howe's statisties show, that, owing to the carelessness of the emigrant population of this country, blindness is on the increase, the prophylaxis and treatment of this affection are of the highest importance. Crede's method of treating the eyes of the new-born child is the one which is followed by the best results. This consists in dropping into the conjunctival sac one drop of a two-percent. solution of nitrate of silver, the lids having been wiped dry. Ocrasionally deeided reaction has followed this applieation, requiring the use of cold to allay the irritation, and Pomeroy ${ }^{2}$ has related a case in which severe hemorrhage followed the use of nitrate of silver in an eye already inflamed. This method reduced the percentage of the disorder in Crede's service from 7.8 to 0.31. Other methots, like that first employed by Bisehoff, in Basel, of washing out the vagina before birth with injections of carbolic acid, and the eyes of the newly-born with salicylic acid, or the later Kaltenbach method ${ }^{\prime}$ f washing the vagina with a 0.4 -per-eent. bichloride solution after

[^36]each examination, and cleansing the eyes with distilled water, have not eempared favorably with Crede's procedure. L. Korn ${ }^{1}$ has concluded, after a careful examination of this matter, that Crede's plan is absolutely safe and certain, although painstaking cleanliness during the birth and also in childbed may reduce the possibility of this disease to a minimum. Mnles (loc. eit.) quotes from Fuchs the following statistics, which are interesting in this connection. ${ }^{2}$

	Number of Cillddren.	Opithalmia Neonatorum.
No treatment	- 1092	19.26
One-per-cent. carbolie reid	1541	7.42
Crede's method.	1250	5.44

Of not less importance is the necessity of searching for somses of infection in the hands of the mother and the child. Not only should all antiseptic precautions be taken during the labor and immediately afterwards, but, if infection is known to exist, the child should be removed from the immediate surromblings of the lying-in woman and the possibility of contamination by utensils and towels.

Treatment.-Naturally, this deals with three conditions,-the inflammatory swelling of the lids, the state of the conjunctiva, and the corneal complications.

1. During the carlier stages, when the lids are tense and the secretion laciing in its later ereamy character, in addition to absolute cleanliness, local application of cold is the most useful agent. Kries ${ }^{3}$ has shown that the coceus develops only slowly at a temperature of 90° to $92^{\circ} \mathrm{F}$., and Weeks (loc. cit.) has demonstrated that the temperature of the conjunctiva may be reduced to 88° or 94° accosding to the amount of swelling of the lids. The cold should be applied in the following manner: upon a block of ice square compresses of patent lint are laid, which, in turn, are placed upon the swollen lids and as frequently changed as may be needful to keep up a uniform cold impression. This is far preferable to the use of small bladders containing erushed ice; indeed, the use of ice for infants is not advisable. The length of time ocenpied with these cold applications must vary according to the severity of the case. Sometimes they may be almost continnonsly used, and sometimes frequently for periods of half an hour at a time. On the other hand, hot fomentations are oceasionally better than cold, especially when the corneal complications exist. These are employed in like manner with squares of antiseptic ganze wring out in carbolized water of a temperature of $120^{\circ} \mathrm{F}$. and frequently changed.
2. Constant removal of the discharge must be assiduonsly practised. The lids are to be gently separated, the tenacious secretion wiped away

[^37]with bits of moistened lint or absorbent cotton, and the conjunctival sac freely irrigated with an autiseptic solution. For this purpose a saturated solution of boracie acid, or one of corrosive sublimate, a grain to the pint, inasmuch ats a solution of one to ten-thousand will materially retard the vitality of the cocens, may be employed. Special and ingenious forms of lid-irrigators have been devised by Story and others for this purpose. The cleansing process must he repoated at least every hour, day and night, but, if necessary, should be much more frequently used. Many solutions other than those mentioned have fond favor with surgeoss; for instance, alum (gr. viii-f zi_{i}), sulphate of rinc (gr. ii-f $\mathfrak{z i}$), carbolic acid in one-lialf- to tive-per-eent. solution, weak solutions of nitrate of silver, solutions of quinine, as recommendel by Twedy, aleohol aud hichloride-of-mereury solution, advocated by P. H. Mules, ${ }^{1}$ jodoform ointment of four-per-cent. strength, ereolin in one-per-cent. solution, and cocaine, either dropped frequently upon the eonjuctiva or introdneed in the form of a salve.
3. The local application of nitrate of silver to the conjunctiva must not be employed in the carlier stages before free discharge is established, nor in those cases, no matter what the stage, where the lids are tense and board-like and the surface of the conjunctiva is covered with a gray film or a positive false membrane. When the secretion is free and creany, when the lids are relased, when the conjunctiva is dark-red and puckered into papillaike exerescences, the time for its application has come. Onee a day the coniunctiva should be brushed over with a solution, ten or twenty grains to the onnce, its surfice first having been carefully freed from any adherent diecharge, and all excess washed away with water. In severe cases the mitigated stick and even the solid peneil of nitrate of silver may be employed, geat care being taken to nentralize the excess with a solution of common stilt. All strong applications mest be made by the hand of the surgeon himseli. Ulecration of the cornea d es not alter the treatment deseribed, except that all pressure upon the globe while manipulating the eye is to be avoided. S. long as the discharge is abundant the use of the eanstic is indieated.

At the first appearance of corneal haze a solution of atropine is to be dropped two or three times daily into the eye. If, however, a marginal uleer forms and danger of perforation is irmminent, or even if this has occurred, good restilts will follow the use of a solution of sulptate of eserine. When the vitality of the cornca is threatened or the surface of the conjunctiva is covered with a gray film, better results follow the useof hot applications instead of cold, and I have more than once seen eases apparently very hopeless go on to reeovery under the use of serupulous antiseptic elcansing and the almost continuous application of hot compresses. Persistent swelling of the conjunctiva is sometimes treated by scarification. Division of the outer commissure to relieve pressure, lecehing, and indeed any form of

[^38]treatment followed by deeided loss of blood, are hardly applicable to young infants, althongh they may be indicated in adnults.

If one eye alone is affected, stitable protection for the somid eye should be provided. This may be acomplished by antisepitic bandaging of the minflamed organ (Buller's shichl is diffienlt of application in infants). Fraenkel ${ }^{1}$ has suggrested the daily use in the unaffected eye of a drop of a two-per-cent. solution of lunar canstic.

On the whole, that treatment which has in view reduction of the inflammation with cold applications, for which muler the conditions named hot affusions are sulostituted, absolute cleanliness, frequent irrigation with antiseptie solutions, and at the proper stage nitrate of silver, will meet with the best suecess. The attendants must be impressed with the faet that upon their faithful carrying out of directions and upon their unremitting care much, if not all, of the hope of bringing the case to a suceessful termination depends. The attendants must further be impressed with the contagions nature of the phs: all bits of rag and pledgets of lint used in the treatment must be destroyed, and after cach treatment the hands of those engaged must be thoronghly washed and then disinfected with a solution of bichloride of mercury.

MUCO-PURULENT OPITTIALMIA.

Synonymes.-Catarrhal ophthalmia or eonjunctivitis.

Deflnition.-This is an inflammatory discase of the conjonetiva characterized by congestion, dread of light, spasm of the lids, and free mucopurulent diseharge.

Etiology.-The disorder is commonest in warm and changeable weather; it is markedly contagions, and will pass rapidly from one member to another of a household, varying much in severity with each. In the severe forms micro-organisms are found, which may be the cause of the contagion. Very tronblesome ophthalmia follows or aceompanies the exanthemata (exanthematous ophthalinia), especially measles and scarlet fever; serofelous and anmemie children are most liable; neglected hyperemias and the presence of follicular granulations increase the susecptibility to infection.

Symptoms.-There is at first reduess of the edges of the lids, with inereased vascularity of the conjunctiva and gritty sensation in the eye, some pain, and a free discharge, which glues together the edges of the lids, which are slightly swollen. Usually the comea does not suffer, but in young ra, idren, especially those who have had measles, superficial uleers for the photophobia then becomes intense. The disease varies in type...m a mere hyperemia to a severity of such degree that it is no readily distingnished from purulent ophthalmia, into which type it may pass by negleet.

There is a large group, of cases of acute conjuncticitis (simple or catarrhal conjunctivitis) which docs not conform to the above description ; those, for example, where there is more or less redness, little or only slight dis-

[^39]charge, and where local irritants like wind and dust or the strain occasioned by neglected ametropia are evilently the canses of its existence,-cases, in short, which correspond to hyperemia of the conjunctiva.

In other varieties exposure and even rhematism seem to be the causes: and sunong other factors catarth of the nose and of the bronchia and eezema deserve mention.

In that form of conjunctivitis which is seen especially in the spring and fall, and to which the meaningless name "pink eye" has been applied, Weeks" has deseribed and isolated a special bacillus which he considers the aneo of the trouble; and, according to E. Schmidt, ${ }^{2}$ epidemic comjunctivat caturth is due to a cocens identical with the staphyloeocens pyogenes albus.

Children frequently suffer with marked muco-purulent ophthahmia coineidently with the appeatance upon the face of the vesico-pustules of impetigo contagiosa. Mueo-purnlent ophthalmia of any type becomes a grave disorder if it breaks ont in schools, homes, or anv institution where numbers of children are gathered together. It is a markedly infections disease, and is ahmost certain to run through the establishment ; the importance of the trouble is rendered all the greater if gramular lids are present. ${ }^{3}$

Diagnosis.-The diagnosis presents no diffienlty. Inspection will reveal the characteristic congested, opaque, and velvety appearance of the conjunetiva, and the presence or absence of epithelial uleers or phlyctemula, while the mobility of the iris and the preservation of its normal color and the character of the coarse bulbar injection (not fine and pericorneal) exclude iritis.

Prognosis.-This is good, but the cases following measles are sometimes very intractable. So, also, when the ophthalmia has existed for a long time, and if neglected, the papille of the palpebral conjunctiva become hypertrophied, and loops of vessels upon the ocular conjunctiva lie so closely together that an almost uniform red surface is the result, forming one : ype of chronic ophthalmia.

Knapp ${ }^{4}$ saw pterygium superius as a sequel of an attack of purulent ophthalmia in a girl aged eleven years, an inmate of a home in which the disorder was epidemic.

Treatment.-The eye should be frequently and thoroughly cleansed with a weak solution of bichloride of mereury (one grain to the pint) or a solution of boracic acid (fifteen grains to the onnce). The lids may be everted and the surfaces brushed over with nitrate of silver (five grains to tire ounce, or stronger if the discharge is copions). In the later stages,

[^40]when the discharge is seanty, the nitrate of silver may be discontimued, and some other astringent collyrium substituted; zine and alum answer very well. Dusting in calomel or iodoform or subnitrate of bismuth acts very well occasionally in stubborn casess, Photophobia calls for tark glasses or a sarge slade, but the cyes must not be bundayed. The permicions habit of using poultices, tea-leaves, seraped protatoes, and the like cannot be condemued too strongly. Atropine drops, provided they canse no irritation, are usefinl if phlyetenule complicate the tromble.

Good diet, fresh air and exereise, iron, if there is anemia, quinine, especially if the patients come from damp and possibly malarions quarters, and cod-liver oil, if scrofila is present, are all indicated.

FOLLICULAR OPHTMALMIA.

Synonymes.-Follicular conjunctivitis (Sacmisch), Conjunctivitis follicularis simplex (Rachlmam), Trachoma follieulare (Mandelstamm).

Definition.-This is an affection of the conjunctiva characterized by the presence of small pinkish prominences in the eonjunctiva, for the most part in the retro-tarsal folds, and usually arranged in parallel rows.

Etiology.-The disense arises under the influence of bad hygienie surrousdings, and is especially engenderel in pauper schoods, asylums, and prisons, under which cireumstances it may appear as an agrgavated epidemic ; but it is frequently seen in mild form among children generally. Much difference of opinion exists as to whether follicnlar conjunctivitis should be placed in a separate category from gramular discase, as has been done by Sacmisch, ${ }^{1}$ Swanzy, ${ }^{2}$ Meyer, ${ }^{3}$ and other authors, or should be looked upon as an early stage of granular ophthalmia, as is taught by Nettleship ${ }^{4}$ and other writers. Reich ${ }^{5}$ looks upon this affection as a mild form and an early stage of trachoma, into the severe types of which it frequently passes, and Stilling ${ }^{6}$ in endemic follicnlar ophthalmia has observed the disorder in school-children pass into the condition of gramular lids. Bacteriologically, Kucharsky ${ }^{7}$ considers trachoma and follicular disease identical. Admitting the not infrequent apparent transitional form, the evidenee, clinically at least, that this is a vary distinct discase, widely different from granular ophthalmia, warrants a separate deseription.

Symptoms.-The children (for it mostly oceurs in children and young people) complain of slight dree i of light and inability to continue at close work, and inspeetion reveals mmerons round elevations in the conjunctiva, chiefly along the fornix, which are tumefied lymphatic follicles. Their color

[^41]varies from nearly white to a decided pink. They are usually massociated with decided symptoms of catarthal conjunctivitis, and the bulbar conjunctiva is not greatly reddened, althongh they sometimes give rise to uleration of the margin of the comen, deeded hyperemin, and swelling of the conjumtiva. Uncorrectel anetropia aggravates the disorder. After the disappearance of the charged follides the conjunctiva remains in its natural state.

Diagnosis.-This disorder is to be distinguished from granular lids by ohserving that the small boties are neither so prominent nor so highly colored as hepertrophied pupille, that the musous membrume is not affected more deeply than the lymphatic follicles, and that cicatricial changes are not present.

The prognosis is good, in so far that the discase will disappear and leave the mucons membrane in a smooth condition; but the affection is troublesome, in that it lasts for months, and mender indifferent hygienie surroundings, especially in crowded asyhmes, is likely to prove a stubborn endemic.

Treatment.-The patiant should be put in the best possible healthful surroundings, and given good food, iron, and quinine. Locally, boric acid, weak bichloride solutions, and oceasional dusting in of iodoform and subnitrate of bismuth and calomel, equal parts, are the best measures. A salve of one-half grain of sulphate of copper to the drachm o." vaseline has been highly extolled. If refraction-error exists, appropriate glasses should be ordered. Vossins ${ }^{1}$ urges the nceessity, especially if the disease is endemie in asvoms, of excising the affected areas. Galezowski and Sehneller have practised similar procedures.

GRANULAR OPIITHALMIA.

Synonymes.-Granular conjunctivitis, Egyptian ophthalmia, Trachomal.

Definition.-This is an inflammation of the conjunctiva in which this 1 sembrane loses its smooth surface, owing to the formation of rounded gramulations, which, after absorption, leave cieatricial changes: it may be studied conveniently under two forms,-acute granulations and chronic gramulations.

Etiology.-Acute granuations may arise primarily under the influence of bad hygienic surroundings, and appear endemieally in institutions where the immates are crowded together. The disease is contagions by the contact of the secretion from one eve with another, and also probably through the atmosphere. The chronic form may result from the imperfect disappearance of the acute granulations, but much more frequently appars as a primary disorder. Certaia races are strongly predisposed to the affection, -the Irish, Jews, and Eastern races; chidren are attacked less commonly
than a immu the dy years. ing, be Since to pro work 1 definite trachon

[^42]than adults. Aceording to Burnett, ${ }^{1}$ the negro race enjows a comparative immmity from trachoma, and he believes the disease shonth tre clased with the dyserasias. Jakson ${ }^{2}$ has seen gramalar lids in a negro boy of ten years. The Indians are frequent sufferers from gramiar if is. Overerowding, bat ventilation, depresseal health, are all factors in its probuetion. Since the priblication in 1881-82 of Sattlen's work in which he attempted to prove that trachoma was due to the presence of a micrococens, mach work has been done in this line, but we are not yet in a position to state definitely the relation of miero-organisms to this discase, nor has the trachoma-eocens been positively isolated.

Pathology.-Two views have been prominently held in regard to the pathological anatomy of the "trachoma gramules,"-the one that they are derived from the natural lymphatic vesides, the other that they are to be looked uron as new growths of special pathological chatacter. The latter view is the one which in reent times has received the widest aceptance. The presence of the grambations provokes thickening and vascularization of the conjunctiva, the cellular elements change into connective tissuc, and eicatricial alterations take phace, so that in the advanced discase the submucons tissue is involved, and finally fatty change in the tarsus arises. With the disapparance of each grambation in a cicatricial mass, shrinking of the conjunctiva takes place, resulting in contraction and atrophy, with hypertrophy and distortion of the lid.

Symptoms.-Acutc Granulations.-The lids are swollen, the conjmetiva reddened, the papillw hypertrophied, between which are fomd nonvasenlar romedish gramulations. The dread of light is intense, the lids are spasmodically closed, and, on their foreible separation, scalding tears gush out. The bulbar conjunctiva is intensely injected, superfieial vascularity of the cornea arises, and ulceration, especially of its margin, may appear, Severe eye-, temple-, and forcheal-pain results. At first there is little discharge, but later a mueo-purnlent stage begins, and the proeess terminates either favorably by the absorption of the gramuations, or unfavorably by rumning into a chronic form.

Chronic Gramulations.-Often withont antecedent inflammation these appear, usually first on the lower lid, in the form of grayish-white semitransparent bodies, whieh, accordingly as they resemble minute grains of boiled sago, or vesicles, have been called "sago-grain" or vesicular granulations. At first there is little diseharge, perhaps only gluing together of the lids; later, with fresh development of new granulations and thiekening and hypertrophy of the papille, the secretion becomes freer, and mucopurulent or purulent in character. Gramular disease maty at any stage take on an intense acute inflammatory reaction, with the production of a copious contagious discharge.

[^43]Sequelæ of Granular Lids,-The most important results of longcontinued gramular lids are trichitsis, distichinsis, and entropion, conditions already described (page 62), atrophy and shrinking of the conjunctiva from eicatricial changes (page 81), clondiness of the cornea, and pemms. 'The latter is due to the formation of a vasendar tissine beneath the epthelimm of the cornen, and begins below the upper lid, but maty in severe casses involve the entire membrane. The proper corncal tissue may be maffected, or ulecration and softening may secon. lammes is nsually tanght to be cansed by the friction of the gramulations; but, aceording to Rachham, it is a sperial implantation of the trachoma-i wocess upon the corma, a view which reccives some support from the olservation of Hansen Grat that with the granulations of spring catarth pamms never ocens (page 93).

Diagnosis.-This presents no dilficulties. Acute granulations must be distinguished from purulent ophthaluia, but the chronio form is made evident by the direct inspection of the everted lids.

Prognosis.-Under the best ciremmstances, gramular disease of the conjunctiva, when well established, is a tedions discase and areatly endangers the useful vision of the patient. Relapses are frequent, and the disorder at any time is likely to assme an intense inflammatory action. Its contagions chameter renders the affection especially dangerous in panper schools or any institution where large numbers of inmates are gathered together. The maco-purnkent discharge, even when present in slight degree, is likely to be conveyd from one subject to the other by the careless use of towels o. common utensils. Great caation is necessary under such cireumstances to prevent a disastrous epidemic.

Treatment.-Acute Gramulations.-These must be managed upon the principles which govern the treatment of acute ophthalmias generally, and in the inflammatory stage require soothing remedies rather that strong astringents and caustic applarations.

Chronic Granulations.- When the height of the inflammation has subsided, or in the chronic stage, the treatment is directed to the alssorption of the gramular condition of the lids. For this purpose numerous caustic and astringent applications have been recommended. For routine treatment prohably no better ones exist than nitrate of silver (ten grains to the oance) and a crystal of sulphate of copper. Tommin and glycerin in a strength of twenty grains to the ounce is an excellent application in the milder forms, or after an impression has been made with more deeided remedies. Liquid carbolic acid is prased by E. Treacher Collins. Betanaphthol, iodoform, hydrastin, and an ointment of the yellow oxide of merenry are all worthy of trial. Very satisfactory results follow the use of strong solutions of bichloride of mercury, one to one hundred and twenty or one to three hundrel, applied to the everted lids with a mop of absorbent cotton, the patient at the same time using a tepid collyrium of the same ding of the strength of a grain to the pint.

More vigorous procedures are scarification of the conjunetiva, abscission
of t with forni the surro pamm of a twice stitute pus.

M_{1}

togethe
contim
prevent
patient. hygieni on, witl operatio

CHirs elderly 1 conjunct of the p and sore this resu velvety f ness, and with a st the best I Toxit of the cor among w the form swelling o Conjuncti by Kip ${ }^{2}{ }^{2}$ the same

LYMP of small usually gat readily mo
of the gramulations, ${ }^{3}$ and squeering them ont between tire thmonb-nails, or with a specially-devised forceps as advouated by Hotz. Excision of the fornix conjunctive hats been proposed and practised by some surgeons, and the operation of peritomy, of the excision of a ring of comjunctival tissue surrombling the corneal margin, is also advised. Any ases of stubbor" pannus without uberation of the morne may be treated n, the production of a violent conjunctivitis withat three-per-cent. infosion of jequirity appleal twice a day to the everted lids, a method introdueerl by De Weeker to sultstitute the odd-fashioned inoculation of the conjunctiva with blemorrherie pus.

Much patience is required for the sucecssfu! treatment of gramular li:ls, together with frequent changing of the lowal appliations, and anre to discontinne the severe cunstics and apply sedative lotions with atropine to prevent iritis if' high-grade inflammatory symptoms should set in. 'The patients usually require a tonie, and must be placed in the best possible hygienie surrondings. If at any time severe swelling of the lids comes on, with dangerons pressure upon the cornea, this should be relievel by the operation of cauthoplasty.

Cimonic Ophmamia (chronic conjunctivitis), a common disease in elderly people, is more rately seen in children, either as the sen wed of ante conjonctivitis or of independent orgin. There are hypermmia, thickening of the panillary layer of the tarsal conjunctiva, swelling of the carmucle, and soreness of the edges of the lids, especially at the outer canthus. If this results from a chronie blennorthea, the conjunctiva is thrown into velvety folds and involutions from one end of the lid to the other. Cleanliness, and the application of "lapis divinus," the alum crystal, or painting with a strong solution of bichloride of mereury (one to five hundred), are the best local measures.

Toxic Consuxctiviris is a name applied to that form of inflammation of the conjunctiva caused by the prolonged use of certain drugs, prominent among which are atropine and eserine. The disoase usinally appears in the form of follicular granulations, sometimes associated with considerable swelling of the lids and an eezematous appearance of the smrroming tissue. Conjunctivitis produced by the prolonged use of cocane has been deseribed by Kipp ${ }^{2}$ and Mittendorf, ${ }^{3}$ and W. C. Ayers ${ }^{4}$ reports granulations from the same cause. These cases oceurred in adults.

Lympilangiectasis of the Conjunctiva consists in the appearance of small blisters in the conjunctiva filled with semi-transparent fluid and usually gathered together in masses. Thiey are situated superficially, and radily move with the conjunctiva over the suljacent tissue. The explana-

[^44]tion of their apramate is the probable interference of the matural lymphflow, ame the consequent distemtion of the lymphespares. Aceorling to Berry, this affection is most frequently met with in chiddren, and, as it disuppears spontaneorsly, it requires no treatment.

Synenymes. - Vriblyahsuatarh (Encmish), Phlyctana pul'ida (Hirschberg), Hypertrophie pericératique de la congonctive (Desmarres), Hypertrophin epithelialis astiva (Emmert), Spring eatarth.

Defnition.-Whis is a form of conjuntival disense manally seen in chidden, and chameterizal by photophohia, stinging pain, eonsiderable muens secretion, and an hypertroply of the tisme surroundiug the limbus of the coment.

Etiology.-The present state of onr knowledge don's not yithld definite information in regatd to the amse of this perentian distase. The chanateristic behavior of the disonder is its retu"n with the carly spring, abont April, and its smbidence in the fall and winter; althongh Hamsen Grat ${ }^{2}$ doubts if the spring and smmor exancrbations are the most marked features, and points out how phlyctemular conjunctivitis thomishes in the smmer. It is seromost frequently between the ages of tive and fonrteen years, usaally in boys, althongh burnett ${ }^{3}$ says the largest contingent of casch comes from the fomale sex. Emmert has observed a case in an individual aged tifty-one, and Samish amother in a child of there. In Emmert's collection of twenty-nine asses sedn during ten years, the greatest number ocumed in Jme, then in May, July, and Angust; single aises occurred in all the other months exept Fehruary, March, and A pril, when none apparcel. I have seen one ease which began in the child's fifth yeare, mod has rappared cach spring for four years, mutil last year, whon it logan in bebonary. It may be areompanied with the disorder kanwn as hay fever. Some writers, like Adoph Bromere, derdine to consider vermal congunetivitis as a distinet disease. but look upon it as a hepertrophie form of ehronic coujuntivitis.

Pathological Anatomy.-Anatomically. spming catarth is a chonic epithelial overgrowth, with simultaneons hypertrophy of the comective tisme, the deeper layers of the conjunetiva remaining tolemaly nomat. An analogy bet wern it and perviass has been pointed ont.

Symptoms.-The attietion begins like mordinary eomjunetivitis, and is always hilateral. There are photophohia and more or less mueons soaretion, with viremmseribed perteoneal ingertion and the formation in this

[^45]region of small, gray, semi-trauspment noklules, which swell up and overlap the cornea, which is usially matfected, although ite limbus may herome thickened and eorneal opheity result. The diseme is menst strikingly observed in the hulbar ronjunetiva, but three varictios are deseribed,- the limbens, palpeloral, and mixed torms. The compurtiva of the bulb is injected, and firom the onter and the inner commisare superfietal vessels rum and empty into the swelling at the limbus. The cominnetiva palpebrarmm is slightly thickened, and of a pale, dull color, as if hroshed over with a thin layer of milk (Homer). In severe rases the tassal eonjonetiva is covered with thatiencel grambations with dep furrows between; the lids droep and give the eyes a slepy look. A pernlianty of this disease in the negro, as pointed ont by Burnett (her. cil.), is the hownish pigmentation of the seleral base of the hypertrophiot masees.

Diagnosis.- The disease is to le distinguished from trachoma he the Hattenerl appearance of the gramulations, and the absenee of intiltation and of panms, a fact which tends to prove that the pamms of gramblar lids is not of medaniend origin. The peroliarity of the disease and its tendeney to return with the early spring and subside in the fall and winter are finther points to aid in a diagmosis.

Prognosis. - The prognosis of the disorder is not unfavomble, exeept in so far as the remrence is conemod. The comea is not usually atfiected, althongh a slight opacity of the border may ocemr. Its comse is a long one, and may last from eight to ten years.

Treatment.-This appears to be efthecions only in so tar as relief of the symptoms is concemel, and net in preventing the reenrence. The eyes may be protected with dark glasees, -a proedure, however, deprecated by Homer. Loeally, the use of a mild astringent lotion and dusting in ealomed are recommended. Dr. I. Wehster Fox, of this city, informs me that he has obtained good results with the use of boro-glyeeride. Hamsen Grut employs the aetual cantery to destroy the grambations. Internally, Fowler's solution shonld be exhibited.

PHLYCTENULAR OPHTHALMAA.

Synonymes.-lhlyetemular conjunctivitis, Scrofulons ophthalmin, Eezema of the conjunctiva.

Definition.-This is a form of intlammation of the conjunctiva characterizad by the appemance of one or more white-topped vesicles sitnated dhetly upon the bullar portion.

Etiology.-The disease is beleved to be of eonstitutional origin, and has for its subjects strmmons and badly-nourished enildren. Errors of diet, the over-indulgence in pastries and nuwholesome foods, the use of tea and coffee, often net as predisposing eanses. It frequently follows in the

[^46]wake of the exanthemata, especially measles. Miero-organisms have been deseribed; Gifford ${ }^{1}$ found seven varieties of mierocosci, three of which seemed to bear some causal relation to this disease; and E. Schmidt (loc. cit.) has described five varicties of microbes in comection with phlyetenular conjunctivitis, but inoculations with then were negative.

Symptoms.-The pimples or phlyctenula often lie near the corneal margin. They are usually from one to three millimetres in diameter. At first clear, the summit soon becomes turbid and may break down. The disease may exist in a single or

Fig. 9.
 a multiple form; usually caeh phlyctenula is supplied by a leash of dilated vessels.

Sometimes the vesieles are large and yellow, and the disease receives the name pustuler ophthalmia. Under any circumstances, it is accompranied by pain, dread of light, and increased lachrymation. It is sot infrequently associated with muco-purulent ophthalmia, especially when one or other of the exanthemata has preceded its appearance. In a multiple form numerous minute phlyctemule are scattered over the conjunetiva, and are accompanied by decided red injection, irritation, and photophobia. When the phlyetenule border on the cornea, they frequently invade its substance and form the so-calied phlyctenular uleers, and larger cnes are often the startingpoint of severe marginal corneal ulceration (see page 104). "The disease ordinarily runs a mild course, but tends to recur, just as do the relapsing corneal ulecrs. The phlyetenule generally break down and disuppear in ten dilys or two weeks.

Diagnosis.-Direet inspection will reveal the characteristic lesions of the disorder.

Prognosis.-This is perfectly good under proper treatment, but neglected cases or such as have been treated by injudicions applications may become the starting-point of severe inflammations.

Treatment.-Locally, the mild antiseptic washes previonsly deseribed are to be employed, the most generally applicable being a lotion of boric acid. Much irritation calls for the use of atropine drops and the occasional instillation of cocaine. The eyes may be protected with colored glasses. Most important is attention to the condition of the alimentary camal. An excellent regulation treatment is a mild course of mereurial laxatives. Simple nourishing diet, good air, excreise, and internally quinine,
iron, arsenic, and, in cold weather, cod-liver oil, complete the therapeutic measures.

CROUPGUS OPHTHALMIA.

Synonymes.-Membranous er croupous conjunctivitis, Croup of the conjunctiva.

Definition.-This is an inflammation of the conjunctiva characterized by a soft, usually painless, swelling of the lids, a membranous exudation upon the surface of the comjunctiva, and a scanty sero-purulent discharge.

Etiology.-No distinct canse is known : some relation exists between the disorder, scrofula, and eczema, and a definite age of childhood. The affeeted patients may at the same time be suffering from a similar condition of the respiratory tract (Knapp). The contagionsuess of the disease has not been proved. In forty-five per cent. of the cases collected by Arnold Lotz, ${ }^{1}$ one eye only was affected. Aceording to Horner (loc. cit.), between birth and four years, among eight thousand cases of eye-disease, only one pure instance was seen. The rarity of the affection is further shown in that eighty-two cases only were seen during twenty years of the Basel Clinic. It is never fond among the new-bom, and never among grown-up people. In Lotz's analysis, two of the eighty-two cases were under one-half year, seventy-four per cent. between one-half year and three years, and very few among older subjects.

Pathology.-This consists in the formation of a psendo-membranous deposit of fibrinons character interspersed with lymphoid cells, which is deposited upon the conjunctiva and does not infiltrate the deeper tissues. The formation of the membrane is like that seen in tracheal croup; with this there is a proliferation of the papillary body of the conjunctiva.

Symptoms.-These usually begin with an acute ophthalmia, succeeded by swelling of the lids, which, however, remain soft and pliant and usually not painful to the touch. In a few days the deposit of a characteristic false membrane takes place. This membrane, composed of coagulated fibrin, is rather translucent and porcelain-like in appearance, and begins upon the retro-tarsal folds coating the inner surface of the lids, but does not invade the bulbar conjunctiva. The exudate is often in layers and can be removed easily. After the first removal the conjunctiva beneath is only catarthal and does not bleed, but later becomes dark, granular, and bleeds freely. The mombrane is quickly reproduced, and later there is proliferation of the papillary layer of the conjunetiva. The discharge, which may have been at first profuse, grows scanty. The cornea, except in severe eases, always escapes.

Diagnosis.-The disease may be confounded with ophthalmia neonatorum and diphtheritic ophthalmia. From the former it is to be distinguished by the absence of profuse purulent discharge and the age of the

[^47]patient, and from the latter by the soft swelling of the lids and the superficial character of the membrane.

Prognosis.-It is often a light affection, and in the absence of corncal involvement the prognosis is good. Severe cases, however, occur, Healing takes place in from ten to thirty days. Occasionally the membrane is formed again and again, and the course of the disease may continue fot months.

Treatment.-Causties like nitrate of silver must not be used: Horner states that the only case in which he saw corneal ulceration was where this dring had been employed. The eyes should be cleansed with a solution of boric acid, the membrane removed, and the swelling rechuced by the application of cold compresses satnrated with plain water, or, better, with dilute lead water. After the removal of the membrane, subnitrate of bismuth has been dusted upon the surface and yielded good results. Quinine has been used in the same way,-a doubtful expedient. The presence of corneal complications calls for the same treatment as that described under ophthalmia neonatorum.

DIPHTHERITIC OPHTIIALMIA.

Synonymes.-Diphtheritic conjumetivitis, Diphtheria of the conjmetiva.
Definition.-This is characterized by a board-like, very painful swelling of the lids; a seanty sero-parulent or sanious discharge; an exudation whin the layers of the conjunctiva, which leads to death of the invaded tis: ins, and tends by spreading to the ocular conjunctiva and by pressure to dest the nutrition of the cornea.

Etiology.-The disease is contagions, and may originate from a similar case or arise in the course of a purulent conjunctivitis: it has oceurred, though rarely, with ophthalmia neonatorum. In certain localities in the south of France and the north of Germany it is endemic. It appears at times in connection with cezema of the face and borders of the lids, and, especially in the diserete form, is an occasional accompaniment of some acute illness like searlet fever or measles, when the diphtheritic type of the inflammation becomes engrafted upon the conjunctiva. Finally, the most severe forms of the disease are seen during epidemics of diphtheria, and it may be part of a process which passes from the nose to the conjunctiva, or be tue to direet inoculation with the diphtheritic poison. The cause of the discase is to be sought in the presence of the micro-organism which is the probable origin of the diphtheritic process. The disease is commonest between the ages of two and eight years, and is rare in young infants.

Pathology.-The condition varies accordingly as the inflammation is superficial, or deep and parenchymatous. In the former class the damaged blood-vessels pour out an exudation rich in albumen, which saturates the dead epithelial cells, forming a coarse mesh-work, while the subepithelial layer is invaded by fibrin and leucocytes. In the parenchymatous form a greate: extent of tissue is affected, and there are coagulation and
death not only of the epithelial but also of the deeper strinctures. After the extrusion of the membrane, healing oceurs through granulation-tissue, with the formation of cicatrices. Horner has compared the process to the destruction protuced by a severe lime-hurn. The invasion of the mucous membrane in this disorder is associated with hacteria, and elusters of mierococci, as in diphtheria elsewhere, are found.

Symptoms.-The patches either appear in a diserete form, or the membrame covers the whole imner surface of the lids, and more rarely, in the severe confiuent varieties, extends to the ocular conjunctiva. The lids are swollen, vely painful, board-like in hardness, atd eversion is well-nigin impossible. The false mombrane is of a dullgrayish appearance, is torn off ouly with difficulty, leaving bencath a raw and bleeding surface if the process is superficial, but if it is deep the subjacent structure is pale and infiltrated, and when cut into may be anemic and lardaceons. If the diphtheritic inflammation has been engrafted upon a case of purulent conjunctivitis, the abundant secretion ceases, or becomes thin, irritating, and sanious. More than in any other discase of the eye the nutrition of the cornea is threatened, and all the destructive tendencies described with ophthalmia neonatorum are ap-
 dren's IIospital.) parent. In the severe cases sloughing of the cornea is almost inevitable, coming on with such rapidity that destruction may take place in twentyfour hours. The diphtheritic inflammation may be primary on the conjunctiva, or be part of a process which is seen also in the nose and the nasopharynx. If the skin of the face is the seat of eczematous ulecrations, these also are attacked and covered with patches of false membrane.

Restlessness, fever, generally higher in the evening, alimentary derangements, and nervous phenomena are the usual constitutional disturbances; even fatal cases are on record. When healing oceurs, the cornea is found almost invariably to have suffered, and lencomata, adherent or otherwise, may be exprected. Conjunctival cicatrices form, and even extensive symblepharon. In a remarkable ease which I have deseribed, in addition to the damage to the cornea the patient exhibited a series of nervous phenomena resembling catalepsy. ${ }^{1}$

Diagnosis. - This disorder should be distingיished from croupons ophthalmia and from cases of purulent ophthalmia in which coagulation of the seeretion takes place, with which latter affection it has nothing in common. In croupous ophthalmia the lids are supple and painless, the

[^48]exudation superficial and casily peeled off, the surface soft and congesterl, the comea usually free from ingury. In diphtheritie ophthalmia the lids are hard and painful, aud the exudation removed with difficulty, leaving beheath a pallid and ragryed ourface, while the whole process tends to mortification of the invaded tissnes and destruction of the cornea. The presence of an abundant seeretion is the distinguishing feature in cases of purnlent oonjunctivitis.'

Treatment.-During the earlier stages the best local measures are cold compresses applied in the manner already deseribed. If, however, the cornal involvement is imminent, or ahrady at hand, hot compresses are to be employed frequently for ten to swenty minutes at a time, or even, as I did in one of my own cases, well-nigh sontinuonsly. The eyes should be frequently cleansed with a solution of horic acid or bichloride of mereury (one to eight thousand), and atropine drops instilled three times a day, for which, if the ulecration of the cornea is peripheral, eserine may be substituted. Searifieation of the conjunctiva, on accomnt of the speedy infection of the spots, is not advisable, and bleeding from the temple in young children is to be avoided. Besides the collyria mentioned, solutions of salicylic acid and carbolie acid have found tavor. Vossius ${ }^{2}$ has recommended a fonr-per-cent. solution of salieylie acid in glycerin to be painted every half-hour upon the conjunctiva. Fienzal ${ }^{3}$ uses the simultancous application of lemon-juice, which is then washed away, aud a two-per-cent. solution of nitrate; and Abadie ${ }^{4}$ speaks of the applieation of citric-acid ointment as preferable to the antiseptics. Galezowski ${ }^{5}$ has employed oleum eadini (one to ten), Tweedy quinine, s:nd Bergmeister the flowers of sulphur. I tried in one case powdered boric acid, but the result was not favorable. Internally, the most useful remedies are quinine, iron, and mereury; the former should be given in suppositories, the iron as the tineture of the ehloride, and merenry either as calomel or the bichloride. Of the latter, half a grain daily may be continned for days, and should be exhibited in milk or water hourly in the duse of one-sistieth to one-fortieth of a grain to children from three to six years of age. Milk paneh may be added if there is depression, and if naso-pharangeal diphtheria coexists the appropriate local measures are to be nsed, espeeially as Jacobi ${ }^{6}$ has advised nasal
${ }^{1}$ I have deseribed croupons and diphtheritic ophthahia as separate forms of conjunetival inllamation, althourh many modern writers, like Netteship, are disinclined to maintain the classical distinction of A, von Graefe, which has also been insisted upon by De Wecker, Tweedy, Knapp, and others. It is perfectly true that eroupous inflammation and superficial diphtheritis, here as elsewhere, are closely related, and Juler has examined nicroseopically cases of diphtheritic and membranous ophthalmia and in each found closely similar apparances; nevertheless, ulthough eases intermedinte between the two clusses oceur, a sufficient number of each class distinetly marked arise to render the maintenance of the diflerentiation scientifically worthy.

[^49]
, the

injections of the bichloride of merenry, one grain to the pist. If one eye only is attacked, its fellow should be guarded by a bandage in young children, by Buller's shield in older cases. The patient mast be isolated, especially if other children are at hand who are suffering from facial eezema or any form of eatarrhal ophthalmia.

Tubercle of the Conjunctiva is a manifestation of a similar affection of the lymphatic system of the same side, and by preference has its seat upon the palpebral conjunctiva, and rarely upon that of the globe (Hormer). Examination of the yellowish :masses reveals a granular-like tissue with giant cells, and Fuchs ${ }^{1}$ has observed the presence of tuberclebacilli. The chicf symptoms are a somewhat resisting thickening of the lids, and upon the conjunctiva, especially between the tarsus and the retrotarsal folds, yellowish or gray-red masses, and sometimes, as Rheim ${ }^{2}$ has noted in four cases, ulecration with a lardaceons floor. A decided secretion is present, and occasionally swelling of the tear-sac and of the neighboring lymphatie glands; the nose may also be involved; general tubereulosis is sometimes absent. The treatment consists in exeision of the masses, the galvano-cautery, or the application of iodoform in powder or salve. A general treatment of tonies, and especially arsenic, is indicated.

Xerosis Conjuxctive.-Synonymes.-Keratomalacia, Necrosis corneæ, Infantile ulceration of the comea, with Xerosis of the conjunctiva.

Definition.-This disease is characterized by drying of the conjunctiva and destructive ulecration of the cornea, and ustally appears in infants under one year of age.

Etiology.-Von Graefe ${ }^{3}$ tanght that this disorder was denendent upon encephalitis, a position which is no longer tenable since the rescarches of Jastrowitz ${ }^{4}$ and Fricdlander. ${ }^{5}$ It oceurs only in amemic, badly-nourished individuals. It has been seen accompanying measles and variola, and is especially common among sickly children with diarrhoa, and among those immates of homes whose hygienic surroundings are bad. Leber found and described a double bacillus, but the researches of Weeks, ${ }^{6}$ Sattler, and others have failed to confirm this mierole as the cause of the disease.

Symptoms.-In the beginning there is conjunctival congestion, with lachrymation, but the peculiarity of the disorder is the dryness and lacklustre appearance of the conjunctiva, with the formation of cheesy flakes, while the ocular conjunctiva becomes dry, greasy, and is thrown into folds. A gray haze rapidly turning into ulecration appears in the cornca, followed by involvement of the iris, with the formation of hypopyon. Perforation

[^50]and destruction of the eyehall may result. Both eyes, as a rule, are affected, -one carlier than the other.

Prognosis.-Whis is very unfavorable, hot only in so far as the eye is concerneci, but als, in regard to the lives of the patients: they usually die of the wasting disease which has oceasioned the trouble, or of an intercurrent phenmonia

I'reatment.-This resolves itseff, besides the local measures of cleanliness, with anti eptic warhes and the use of atropine, into the administration of such internal remedies as are called for by the general state of the paticut.

Esemtial. Shmineing of the Condunctiva is a mave disease, in which this membrane atrophies and modergoes contraction until the con-

Fig. 11.

From a photograph of a patient suffering from essemint shrlnking of th. conjunctiva. (Children's Jlospital.) junetival ent-le-sae disappears and the free br ders of the lids are fixed to the ball ; theough exposme the comen becomes dry and opaque. The process has been mistaken for gramular lids, with which, however, it has no association. Some have believed this to be a form of pemphigus of the conjunctiva, and Nettleship (loc. cit.) has seen this condition accompany an ontbreak of general pemphigns. In other cases no association of this kind was found, and Juher ${ }^{1}$ thinks essential shrinking of the conjunctiva and pemphigus quite distinct processes ; there is occasional coincidence of the two affections in the same patient. I have observed an instance of this character in a chitd the subject of hereditary syphilis, who died of phthisis. ${ }^{2}$

Treatment.-This avails but little. It has been attempted to keep the conjunctiva moist with glycerin, and rabbit's conjunctiva has been transplanted, but without result.

Pemphigus of the Conjuxotiva is a rare affection, characterized by the formation of bulle associated with pain and lachrymation, and, after succeeding attacks, degeneration and cieatrization of the conjunctiva. It is doubtful whether this oceurs as an independent disorder ; it is usually seen in connection with pemphigus of the rest of the body. The course of the disease, which tends to reeur from time to time, is destructive to the nutrition of the conjumetiva, and later of the cornca. The former undergoes cicatricial change and may grow fast to the ball ; the latter becomes opaque and staphylomatous. Interesting examples of this affection in children

[^51]have been reported by Cohn,' hy Baemmer, ${ }^{2}$ and, in this country, by Tilley, ${ }^{3}$ ho has well deseribed one of the three Americm cases.

Treatment.--This is practically of no avail, Sight, if lost through this disease, camot be restored, and the best that can be necomplished is reicien of the local in "tation.

Xerosis (Xerophthalmos) is the name employed by systematie writers to describe the dry, Istreless, and shrmiken apparance of the emponctiva which may appear either in the parenelymatons or in the epithelial finm. The former variety oceurs under the influence of trachoma and pemphigus, or in the form of a primary disense just deseribed as essential slorinking of the eonjunctiva. The epithelial type of the disorder is seen wihh infantile necrosis of the cornea (page 99), and in debilitated snlyects, accompanied by night-blirdness (which see).

Lupus of the Cosjusiotiva oceurs as a primary disease or extends to the membrame from the surrounding integnment (page 60). It appans in the form of red, gramulation-like patches. In a case reported by Grandmont, ${ }^{4}$ inoculation exjeriments with the exeised growth resulted in appearances similar to those produced where tubereulons human lung was employed.

Amylod Degeneration of the Condunctiva is a rare disorder, in which pate-yellowish masses appear chiefly in the patpebral conjunctiva. It has heen supposed to arise from gramular ophthalmia, but, according to Rachlmann, these growths are independent of trachoma. They disappenr after extirpation, which is the proper treatment, and their strueture is the same as that of lymphoid tumors in which a layaline degencration may be found, which is in all probability an antecedent condition.

Chemosis of the Consunctiva oecurs when the connective-tissue layer is distended with serum, and is often associuted with inflammatory exudate. It is mostly a symptom of some other disease,-for example, aente conjunctivitis, choroiditis, iritis, or orbital cellulitis. Severe cedemat of the conjonetiva, with great swelling and hyperemia, may appear withont any apparent cause and with marked suddemess. In paralysis of the external straight museles the overlying conjunetiva is often decidedly odematons and may be an early symptom of such an aceident. I have seen atente chemosis ${ }^{5}$ in young adnlts follow the administration of ascending doses of iodide of potassinm, and in oue instance suceeed a gencral outbreak of urticaria.

Treatment.-The s:: eling may be reduced by the application of cold, possibly by pricking the tissues, and later by the use of come astringent, like alum.

Hemorrhage from the Conjunctiva.-Tinis nimally oceurs as an

[^52]eechymosis beneath the conjunctiva selene, the meshes of the connective tissuc being filled with blood-elot as the result of some violent straining during a paroxysm of whooping-congh. It may arise from injury or without obvions canse, and has been seen oceurring spontaneonsly about the menstrual epoch in young girls. Pomeroy 'has recorded a well-nigh fatal hemorrhage following the instillation of nitrate of silver, and SelmmidtRimpler ${ }^{2}$ has seen death follow hemorvage from this membane, but the canse of the bleeding was not determined. Ordinarily, subconjunctival hemorthage will subside by nhsorption, and requires no treatment.

Prerygum is a hypertrophie fold of conjonctiva extending fiem tise periphery of the globe towards the edge of the cornea. It varies in color and thickness aceording to the amount of hypertroply and the presence of blood-vessels. Its most frequent situation, corresponding to the course of the recti muscles, is at the inner side of the eyeball, more rarely at the outer, very exceptionally at the upper or lower. The disease, never of frequent occurrence, is rare in children. Individuals whose ocenpation exposes them to slight injuries of the eye are predisposed to its formation. Poncet has deseribed mierobes in connection with the formation of pterygia. They occasionally arise as the result of a blennorrhoa, during which the conjunctiva has become attached to a enrump' weer. Knapp (loc, cit.) has reported one such case where the pterygiun had the superior situation after purulent ophthalmia. Thickenings of the conjunctival membrane in all particulars resembling pterygium have been deseribed as congenital affections. In one such case, recorded by Strawhridge, ${ }^{3}$ the growth sprang from the outer commissure and covered the cornce to fully one-half their surface. The treatment consists either in excision, transplantation, strangulation by means of a ligature, or evulsion as recommended by Prince.

Tumors of the Conjunctiva.-As congen.al forms, angiomas, iymphangiomas, dermoid growths, and pigmented spots have been described. Although the latter may be congenital, it should be remembered that they appear after the healing of variolous pustules when they occur upon the conjunctiva. The other tumors which have their habitat upon the conjunctiva are lipoma, fibroma, osteoma, papilloma, and' sarcoma. Lipoma, according to Von Graefe, appears to be most common in the region between the superior and the external rectus, and may be mistaken for the dermoid growth (Horner). Osteomas appear as small nodules of bone surrounded by fat and firm conneetive tissue (Snell, Schweigger). Loring ${ }^{4}$ saw a case of this nature in a child eight months old. Papillona arises from the limbus conjunctiva. I have scen one instance apparently follow a burn of the conjunctiva. ${ }^{5}$ Cysticerci have been extracted from the subconjunctival tissue

[^53]
AFFECTIONS OE THE CORNEA.

Equal in importance to the gronp of diseases just concluded are the affeetions of the corvea. In Horner's statistics they constitute twenty-seven and two-tenths per cent. of tho whole number, and among one thousand seven hundred and eight recorded cases in the Children's Hospital of this eity twenty-five and six-tenths per cent. were treated for the various disorders of the cornca. Many types of corneal inflammation exist, and, although it is enstomary to divide these diseases into suitabe groups, it is by no means possible to refer in each instance to one or other of these divisions. Under the general term keratitis we include the divers forms of inflammatory affections of the comea, and to all of the 1 , if ilceration is present, certain well-marked symptoms belong,-pai.., congestion of the vessels of the cirenmeorneal area, photophobia and blepharospasm, and loss of the substance or transpareney of the cornea.

PHLYCTENULAR KERATITIS.

Synonymes.-Strumous keratitis, Pustular keratitis, Vesieular keratitis.

Deflition.-This is characterized by the formatica upon some portion of the cornea of small papules or pustules, and is accompanied by dread of light and blepharospasm.

Etiology.-The disease is quite constantly scen in strumous subjects. It often follows in the wake of an attack of measles or other acute exanthem. It is distinctly under the influence of climate, and is usnally aggravated by warm, moist weather. Miero-organisms probably play a role in its production, and Burchardt ${ }^{5}$ has described cocei which greatly resembled the coccus flavus desidens (Fluegre) and to which he attributed a cansative action. There is a close comection between this form of keratitis and inal tissue flammatory lesions existing in the nasal fossa which are the souree of an

[^54]infections phs. Thas, in twenty-six observations Angrgener fomm the phlyetemules on the cornea suceerded a minitis of this chanacter. Martin ${ }^{2}$ has attempted to demonstrere a relation hetween keratitis mul astigmatism.
symptoms.-The phlyctemiles, which consist in the carly stage of minute subepithelial collections of round cells, appar upon the cornea usually at or near the corneo-selemal junction. 'The vary in size from a poppeseed to a millet-seed ; their tops, at first gray, speedily grow yellow, break down, and form sumperficial nderes. They are aceompanied by deeded lowal congestion, increased hacheymation, and photophohia. The palpehmal conjunctiva, ahwas hyperemic, may remain transhocont and batleed in tears, or the disorder is not infremently acempanicel hy mon-purulent discharge and a velsety combition of the conjunetivn, under which circumstance ${ }^{\text {at }}$ is spoken of as phlyedcultur keratitis with catury. When the photophobi : severe, the child buries its head deeply in the hedelothes; the lids are spas morlically doserl, rendering inspection of the eye difficult, at times well-nigh impossible. The dread of light and the hepharospasm are prohally due to direct inviation of the comen nerves, as I wamoll fomed the cellular intiltattion situated along the course of the nerves. The phstuke, when it breaks down, forms a phlyctenuler ulecr, whoh may remain at its origimal seat near the margin, or creep towards the centre of the comea, followed by a bundle of thickly-erowded blood-vessels (fiscientar keratitis). These, when the uleer heals, disappenf, bat a stripe of opacity remains. Under the name maryinal keratitis a variety of this inflammation exisis where numerons phlyctembes extend along the rim of the cornea, giving rise to a process which may cease here, or may ly further invasion produce vaseular uleers. More dangerons than any of the other varieties is the formation of a single pustule just at the corneal bereder, which spectily ulecrates and is surrounded by a yellow area of infiltration, with a strong tendency to perforate. If these inflammations constantly recur, the cornea becomes chonded, meven from loss of epithelinm, and covered by numerons superficial vessels, the whole forming the so-called $p^{\text {hlly }}$ deteneter pannus.

Diagnosis.-This presents no difficulties, the appearance by direct inspection rendering the nature of the discase evident.

Prognosis.-The conse varies greatly; in mild cases healing takes place with conly a slight loss of substance, and the resulting scar is seared, discernible. Not so with the severe forms, in which there has been deeided loss of substunce and a distinet scar-tissue remains, or in which deep sulceration with perforation occurs, or where constantly-recurving vascular ulceration leaves an uneven and roughened surface. In children of the strumons type, especially if their surroundings are unfarorable, phlyefenular keratitis may be one of the most stubborn of comeal diseases.

Treatment.-In order to make a thorough application of the loeal

[^55]remodies, the child's luad should be taken lnetween the surgeon's knees, while the attembat hodds the hands and berly, and the lids are separated: the comea will usmally roll ont of sight, hut may grodnally be coaxed into view. Sometimes a lideclevator is useful, and a few whiffs of ether or of chloroform may be neessany. If' much secretion is present, boric aced solution is to be employed, and atropine drops sulficient to maintain mydrinsis. Comine, judicionsly used, will allay the photophohia, but its continnons application when corneal uleers exist is to be depreated. Later, an ointment of the yellow oxide of mereny, either with or without the addition of atropine, or calonel, provided no form of iodiate is being exhibited, dusted into the conjunetiva, may be employed. The eyes shomblat be protected with goggles, and the child conemraged not to bury its head in the beddothes. The best possible hygienie surroundings mast be obtained, with fresh air and wholesome foxd. Corl-liver oil, iron, quinine, often suitably given with pepsin, and arsenic, are the most aceptable internal remedies. Donching the eyes with cold water will sublue the dread of light, and tonching the nkerated exteraal commisinre, which atmosi invariably exists in these cases, with a crystal of bluestone, as Koller (loce. cit.) has suggested, helps to relieve the blepharospasm. The urine should be examined in all these cuses ; and sernpulons attention to the condition of the alimentary camal is an important factor in the treatment. If rhinitis is present, this must be attended to: for this purpose Angagneur employs a powder composed of equal parts of pulverized camphor, borice acid, and subuitrate of hismotlo. I can recommend this treatment, especially if the nasal fosse are thoroughly cleansed with Dobell's solution before the insufflation of this powder. In stubborn forms of reenring vasenber ulcer and deep ulecration, the use of the thermo-cantery in the mamer later deseribed is productive of excellent results. After healing, any refractionerror should be corrected.

CORNEAL ULCERS.

In addition to the varieties of corneal ulcers just deseribed, others remain which may be classified under four headings:

1. Sinall Central Ulcer.-This appears as a gray or gray-white opaeity in the centre of the cornea, and is not accompanied by much cascularity or dread of light. The elevation is slightly cone-shaped until the whicish top breaks down into a shallow depression. Usially single, this form of ulecr.may be multiple, and nuder any circumstances it tends to recur. It is scen in young children who have been poorly nourished and are of a strumons habit. While healing generally ocurs with promptuess, the tendency to recurrence leaves permanent opacity, which, from its central situation, may serionsly impair vision. If neglected, and in patients of bad nutrition, this uleer occasionally forms an abscess of the cornea.
2. Excarated or Gouged-out Uleer:-This form of uleer, often seen in children, most troublesome because it is so rebellione to treatment, has its
seat near the cornenl margin. Its preseh may be entirely overlooked, on acconnt of the alsence of congestion, and bexanse in appearance it is a small punched-out excavation, with transparent bottom and free from any opaque surrounding infiltration. The disease probably depends upon some failure in the nutrition of the cornca due to nervous disturbance. When healing is about to take place, the floor of the ulcer loses its translncency and a few vessels of repair pass to its margin.
3. Shallow Central Uleer.-In a certain number of eases a shallow nearly central ulcer appears, with a slightly turbid base, unattended with any considerable pain or photophobia. It is essentially chronie in its course, and when healing finally takes place a faintly opaque facet remains. It is found in anemic or serofulous patients, and is occasionally seen in subjects of long-standing gramular lids.
4. Infecting or Sisughing Uleer (I'wulent Keratitis).-Uleers mattended by vessels of repair, which spread widely from one border and become readily eomplicated with hypopyon and iritis, and which are often the result of a trifling injury, usually affect elderly people and those whose mutrition is clepressed. Most important among these are the serpiginous or creeping uleer of Sacmiseh, and the ciroulur uleer. But sloughing ulcers are not contined to aged subjects: the small central uleer, as already noted, may spread and form an abscess. Usually in the early stage a nearly central gray area forms, over which the epithelium may be unbroken, though discolored. This specdily becomes yellow, notches laterally, bulges forward, and finally bursts entirely, leaving a more or less ragged uleer covered with tenacions pus and forming the condition spoken of as abseess of the cornea ; or it may evacuate posteriorly and cause a collection of pus in the lowest part of the anterior chamber, or an hypopyon. This combination of suppuration in the cornca with pus in the auterior chamber is often called hypo-pyon-keratitis, a name originally suggested by Roser, while ony.c is the term applied to that condition when the suppuration passes between the layers of the cornen and settles in its most dependent portion. Purulent keratitis is usually accompanied by severe pain in the brow the eye is intensely tender, and the vision is reduced to mere light-perception. The iris becomes hyperamic, intlamed, and posterior synechia form if unchecked; the entire cornea is reduced to a softened mass, which, when it separates, allows the iris to fall forward and become adherent in the lymph which ultimately closes the aperture, and all the results of perforation follow. (See page 80.)

Etiology.-Sloughing uleers of the character described are dependent upon local infection, and most frequently result from an injury to the cornea from a chip of stone, a chestnut-burr, or the like, which of itself may cause an insignificant wound, but, in an individual unfavorably disposed to kind healing, may terminate, through the microbie infection, in this dangerous form of inflammation. A rertain mumber of cases have been aseriber to cold, and in still others no definite cause can be aseertained. Most violent forms of suppurative keratitis occur during attacks of smull-pox ; the pus-
al, on small paque failure caling a few in its cmains. seen in ittended become the rese nutrior creeps are not tell, may y central ough disforwarl, cred with e cornea ; he lowest n of supHed hypos the term layers of ceratitis is ly tender, comes hythe entire allows the ultimately page 80.) depeydent the corne: may cause ed to kind dangerous iscribed to ost viouent ; the pisis-
tules, however, rarely form non the cornea. Indeed, it has been said that they are never so situated, though Horner in one instance observed a single uleer the origin of which he believed to have heen a corneal pustule.

Abseess of the cornca oceasionally accompanies sealatina, measles, and typhoid fever ; its association with violent types of conjunctival inflammation has already received attention. A variety of abseess of the cornea, non-inflammatory in character, has been deseribed by Von Graefe ${ }^{1}$ as oceurring in scrofulons children muder eight years of age, without any healing tendency with almost an entire alsence of subjective symptoms. The chancter of the inflammation and the constitution of its suljects have led some to consider it a form of tubereulosis of the cornea, the possibility of which the experiments of Panas and Vasseanx ${ }^{2}$ have demonstrated.

Results of Corneal Ulceration.-Opacities more or less permanent follow all ulceration of the cornea. If the opraity is slight, it is spoken of as a nebule or macula; if dense, as a lcueoma, whieh, aceordingly as the iris is or is not attached to its posterior surface, is deseribed as adherent or non-adherent. It is evident that upon the position of the opacity in the cornea depends its influence upon vision. The more central it is, or rather the more directly it encroaches upon the pupillary region, the greater will be the disturbance of direct vision. Irregularities in the curvature of the cornea distort the retinal images and are fruitful sourees of mixed astigmatism. When perforation has followed uleeration and the iris has remained entangled in the aperture, an anterior synechia results. An eye thus aflicted may become quiet, and even retain, either with or without operative interference, useful vision; but it may equally well be a continual source of amoyance, subjeet to reeurring attacks of inflammation, and breed sympathetie irritation in the fellow-eye.

The distention of a cicatrix to whose imner surface the iris is attached constitutes a corneal staphyloma, which is called total when the entire cornea is involved, and partial when only a portion is included. The mechanism of this formation is briefly as follows. A perforation takes place, and the iris falls forward and attaches itself to, or protrudes through, the opening, becoming fixed there by the lymph thrown ont in the process of repair. The scar-tissue whieh remains fails to withstand the intraocular tension, and that portion of the cornea is pushed forward beyond its normal enrvature, forming a pouch-like deformity, or per-

Staphyloma of the eornea. chance including its entire surface. The protrusion may flatten down, and under the influence of fresh inflammation bulge forward again, or may extend between the palpebral fissure and prevent the lids from closing.

[^56]${ }^{2}$ Arch. d'Oph., 1885, v. 198.

Treatment of Ulcers of the Cornea.-It is manifestly impossible to lay down hard-and-fist lines for the treatment of corncal ulecration; this must be governed by the exigencies of each case ; but certain principles of local treatment are common to the various types.

Pain, photophobia, and congestion are to be relieved by the plans already suggested in treating of phlyctenular keratitis. In mild cases atropine, e nbined, with due cantion, with cocaine, a lotion of boric acid, and a pair of smoked glasses usualiy suffice. In chronic cases a seton in the temple has been advised.

After the subsidence of the acute symptoms, or when the ulece from the begiming is unaccompanied by these, local stimulation should be practised. This is best done with an ointment of the yellow oxide of merenry, a small portion being introduced hetween the lids morning and evening. Calomel dusted into the eye is likewise of excellent repute, provided the patient is not taking iodide of potassinm. Direct stimulation of the uleer with nitrate of silver (five grains to the ounce) bas been recommended, an application of great valne if cantionsly and properly used. Wh-iver ir corncal ulecution is accompanied by conjunctivitis, the inner surfe of the lids should be daily brushed over with a weak solution of nitrate of silvet, and the cul-de-sac carefully cleansed with a boric-acid solution or the collyrinm of bichloride of mercury.

In all forms of severe corneal ulecration, in sloughing and spreading ulcers, either with or without hypopyon, other aad more deeided methods are applicable. It has been and is a miversal practice to instil atropine drops, becumse of their anodyne effect, and becanse they lessen the liability to iritis, mitigating at the same time the severity of the inflammation through their power to contract tac vessels of the ciliary region and diminish the supply of mutritive material to the cornea. In many cases, however, eserine is the better dring, cither because it has the power of stopping the migration of white blood-corpuscles, or promotes absorption through dilatation of the eiliary vessels, or aets locally upon the ulecration, limiting the slonghing process. Furthermore, if thr tension is raised, it lowers this, but not otherwise. The solution employed may be from one-half to two grains to the omnce. Deep uleers near the margin of the cornea are those most suitable for its application. Pain is relieved and the process of repair enconraged by the frequent application of hot compresses in the manner already described. (See page 83.)

When by extension of the uleer perforation of the coruca is imminent, an antiseptic compressing bandage should be applied, to be removed when the necessary local applications are made. Long-eontimued use of the handage is often followed by the appearance of an cezematons eruption upon the skin of the lids. This should be treated by dusting the parts with calomel. Catarth of the conjunctiva contra-indicates the use of the bandage unless the danger of perforation is imminent.

If, in spite of such treatment, the local infection continues to spread,
this must be checked by seraping or by the use of the actual cautery. The
le to this es of rening. led the e ulcer ded,- latter may be either a small Paquelin or galvano-cantery: when neither of these is at hand, a knitting-needle or platinum probe, as recommended by Gruening, heated white-hot in the flame of a Bunsen burner, will suffice. The edge and afterwards the floor of the uleer should be well burned, and, as Mr. Nettleship has suggested, the burn may be extended a trifle beyond the edge. In like manner an uleer may be carefully seraped with a blunt eurette and thus stimulated to healing. Cocaine renders cither of these little operations painless; but in young and restless children a few whiffs of ether are neeessary. I have had the most satisfactory results with the actual cautery, and recommend the treatment. A fter both of these methods iodoform should be dusted into the conjunctival culde-sac. The direet application to the floor of the uleer of a solution of uitrate of silver has already been referred to, and has many advocates.

The formation of an alscess of the comea or of an hypopyon is the signal fer the evacuation of the pus. This may be done by a simple paracentesis of the cornea in its lower portion, or by the more formal procedure of Saemisch, in which a cataract-knife is entered on one side of the cornet with ite cutting edge upward, carried aeross the anterior chamber to the other side of the uleer, and the section made directly through the discased area, evanationg thas at the same time the collection of pus in the layers of the cornea and at the bottom of the anterior chamber. A great objection to this operation in children is the difficulty of keeping them quiet after its performance, and thus increasing the liability, always present, of prolapse of the iris. Moreover, it is surprising how in them absorption of the products of an hypopyon keratitis will follow the non-operative treatment already describerl. The use of the actual cautery has largely substituted the operation of Saemisch.

If perforation occurs, and the vigorous use of atropine or eserine, according to the situation, fails to restore the prolapsed iris, this should be drawn forward through the aperture and excised, or, in the event of a failure, a later iridectony may be made through an incision in another part of the cornea. The most useful antiseptics during corncal ulceration are boric acid, bichloride of mercury (one to eight thousand), and iodoform in the form of a salve. Stimulating drops of laudanum or chlorine-water are oceasichaily employed. According to Delenne ${ }^{1}$ and others, irrigation of the lachrymal canal with a four-per-cent. solution of boric acid is of material aid in treatment.

Constitutional Treatment.-Attention to hygiene, diet, and judicious internal medication are of paramount importance. The child should not be penned up in a dark room, but, with the eyes properly protected with goggles, should go out into the fresh air every day. The diet must be nutritions and easily digested : tea, coffee, candies, and pastries are to be strictly

[^57]forbidden. If struma is present, cod-liver oil, lacto-phosphate of lime, and iodide of iron are indicatel ; nuemia is best treated with the tincture of the chloride of iron ; any suspicion of malarial taint requires the use of quinine and arsenic, while the syphilitic heritage calls for the iodides and mereury, especially in the form of the bichloride ; the best laxative is calomel. The urine should be carefully examined for albumen and for the products which indicate imperfect assimilation, and the remedies directed according to the findings. The teeth should always be inspected, and, if faulty, the case turned over to a competent dentist. Bad teeth and proper mastication and digestion of the food are not compatible, and the occasional relation of carious tecth to discases of the eye is too well cstablished not to render their examination in all cases of corneal uleeration most necessary. In young children the irritation of a new dentition has caused abseess of the cornea, and in the hands of Galezowski ${ }^{1}$ the simple lancing of the gums in an eighteen-months-old child was followed by a cure of the corneal ulceration. I have more than once obtained valuable results by snch methods. ${ }^{2}$ Careful inspection of the naso-pharynx is necessary here, as well as in diseases of the lachrymal apparatus and conjunetiva. This is especially true in the cases of phlyctenular keratitis which are so often aceompanied by an irritating rhinitis. For this purpose I have found the powder recommended by Augagneur (loc. cit.) very serviceable. (See page 105.)

Treatment of Results of Corneal Ulecration.-Opacities, especially in young children, will often clear up in a surprising manuer. By far the most satisfactory results follow massage of the cornea, as originally introduced by Pagenstecher and recommended by Suell, ${ }^{3}$ Pfalz, ${ }^{4}$ and others. The massage movement should be made upon the closed lid of the cornea after the introduction of a small piece of the yellow oxide of mercury salve. Some irritation accompanies the method, which may be allayed by the oceasional use of a boric acid and cocaine wash. I have employed massage of the cornea with excellent results. ${ }^{\text {b }}$

Dense leucoma cannot be influenced by such practice. Here vision may be improved by an iridectomy for a new pupil, and the appearance of the eye improved by tattooing the cornea with India ink, or, as has been recommonded by Vacher, De Wecker, and Levis, the colorings of the irts may be imitated by using for this purpose many colored pigments. In recent years attempts have been made at transplantation of the rabbit's cornea for the relief of these central opacities, and the results of Von Hippel have in one or two instances been encouraging. Martin of Bordeanx, and Strawbridge of this eity, have proposed under similar circumstances to trephine the sclera, and thus create a new pupil.

[^58]In partial staphyloma of recent date a compressing bandage is to be applied and escrine drops used daily. If, in spite of this, the bulging continnes, paracentesis of the anterior chamber, or an iridectomy opposite the elearest part of the cornea, may be performed. When the staphyloma is complete and unsightly, or if it is the seat of pain, is a sonvee of danger to the fellow-cye, and its vision is destroyed, excision of the globe is indicated, an operation which in children is likely to be followed by a good deal of deformity, owing to the shrinking of the orbit and a failure of development of the bones upon that side. Varions substitutes for the excision of the eyeball are practised. Abscission, or the removal of the staphylomatous eornca, leaves a movable stump for carrying an artificial eye. Evisceration is highly recommended ly Mules of Manchester and Graefe of Holland. Optico-ciliary neurotomy is an operation not free foom danger, and not to be recommended.

Vascular keratitis

Vascular keratitis is a superficial vascularity and opacity of the cornea, and is seen in pannus cansed by gramular lids (page 90), and in the phlyctenular panmus the result of many relapses of phlyctenular keratitis (prage 104). Another and the true form of vascular keratitis is characterized by the formation of two opposite vascular areas at the upper and lower nargins of the cornea, which approach each other until the vascularization is complete. This disease is met with in young adults and in unkealthy and underfed children. The second eye is usually attacked, and, as Mr. Carter ${ }^{1}$ has pointed out, the anatomical disorder indicates a perverted action of the nerves which govern the areas affected, and places it in an analogy with herpes. The symptoms hegin insidiously with slight intolcrance of light, preceding the appearance at the upper margin of the cornea of a creseent of closely-arranged blood-vessels, which as they advance push before them a border of corneal opacity. Simultancously the same appearances become manifest at the lower margin. Clearing begins at the borders, and the whitish opacity which remains leaves the centre last of all. The diagnosis is readily made by the appearances pointed out, but in its early stages the lesion may be mistaken for an ordinary conjunctivitis. All the cases must be regarded with anxiety, and some do not clear up entirely.

Treatment.-The principles already laid down with reference to proper diet and excreise should be practised. All local irritants are contra-indicated, but atropine and cocaine and warm fomentations are indicated during the acute stages ; later, the yellow oxide salve and calonel may be tried. The best internal treatment is a prolonged course of iron and bichloride of mereury. Iridectomy for a new pupil may be necessary, and, as Mr. Carter has suggested, the convex side of the vascular crescent may be touched with the galvano-cautery.

[^59]
INTERSTITLAL KERATITIS.

Synonymes.-Syphilitie, Inherited, Specific, Parenchymatous, Strumons, and Diffuse Interstitial keratitis.

Defnition.-This is a difluse keratitis in which a chronic inflammation of the whole thickness of the cornea takes phace, until, without ulecration, the cornea passes into a condition of miversal thick haziness.

Etiology.-Tl. majority of cases of interstitial keratitis, as was originally pointed out by Hutchinson,' are due to inherited syphilis; in rare instances, to acquired syphilis. In spite, however, of the not infrequent ocenrrence of this affection, which composes, according to Horner (loc. cit.), one-half per cent. of all gathered eye-discases, and which Hirsehberg ${ }^{2}$ has found six times in cach one thonsand cases among sixteen thousand eight hundred observations in eye-disorders, the proof' of the cause is not always of ready demonstration. This must be searched for in the family history, the aceompanying symptoms, and the affeeted eye.

Nettleship, ${ }^{3}$ writing concerning this point, says, "I have found further personal evidences of inherited syphilis in fifty-four per cent. of my cases of interstitial keratitis, and evidence in the family history in fourteen per cent. more ; total, sixty-cight per cent.; aud in most of the remaining thirty-two per cent. there have been strong reasons to suspeet it." The pereentage of eases in which inherited syphilis is the canse is given by Saemisch as sixty-two, Homer sixty-two, Michel fifty, ard Hirschberg sixty-one, and according to the latter observer the percentage wonld probably be higher if the separation of typical cases was made from such as were similar in appearance. ${ }^{4}$ A. Tronsscau, ${ }^{5}$ among forty eases of interstitial keratitis, fomed three only in which syphilis could be positively exehuded. On the other hand, the influence of hereditary syphilis in the causation of this discase has been called in question by a number of observers, and Panas, because of the configuration of the teeth, has sought to bring the disorder in association with rachitis.

Poncet, ${ }^{6}$ Javal, ${ }^{7}$ and Landolt ${ }^{8}$ have seen interstitial keratitis result from malarial cachexia, and Sedan ${ }^{9}$ of Toulon analyzed thirty-four eases, finding sixtcen times syphilis of the parents, nine times scrofula of the patients, and twenty-seven times malaria. I have seen two cases of this disorder of quite typical course, in one of which inhericed syphilis was present, but in the other this could not be demonstrated. In both malaria was evident by direet history and by periodical temperature-ranges. Struma, however, as

[^60]Netteship and others have shown, probably does not in any way originate this disease, becanse its subjects are not oftener serofinlous than other children, nor do strumons children suffer more from this form of keratitis than from others, while the well-recognized scrofinlons eye-disenses are seldom associated with this form of diffuse keratitis.

It is most frequently seen between the ages of five and fifteen, ocasionally as early as three years, but rarely after thirty. Among one hundred observations Hirschberg (loc. cit.) found thirty-one cases in the first decade, thirty-seven in the second, and sixten in the thirl. Power ${ }^{1}$ states that an examination of the ward-books of the Ophthatmic Department of St. Bartholomew's Hospital shows interstitial keratitis to be more frequent in females than in males: the average age for males to be attacked is $17 \frac{9}{25}$ years, while the ayerage for females is $15 \frac{31}{8}$ years; whence it is seen that women are attacked a year and a half carlier, the average being reduced by the greater number of cases oceurring about the supervention of menstruation. The greater immmaity of the male sex from this disease does not appear in the statistics of A. W. W. Baker and J. B. Story, ${ }^{2}$ where in a list of forty-eight cases there were twenty-four instances of each sex. P'ower has seen interstitial keratitis improve by the development of menstruation, but Mooren ${ }^{3}$ has observed the same disease greatly aggravated by the menstrual epoch. The possibility that the affection occasionally may arise in utero has been raised. R. L. Randolph ${ }^{4}$ reports a congenital clourling of the cornea affecting two sisters which he looked upon as a congenital form of interstitial keratitis, not differing from the ordinary, or what he called, in contradistinction, the post-natal, form of the disease ; and Saltani ${ }^{5}$ deseribes diffuse comeal opacity in three brothers and sisters which he considered the remuant of an intra-uterine interstitial keratitis.

Symptoms.-After a few days of slight ciliary congestion and watering, a faint cloudiness, usually, but not always, near the centre of the comea, appears. The spots of haze, if carefully examined, will be found to be interstitial opacities,-that is, within the structure of the cornea itself, and not on either surface. In two or three weeks they spread until the whole cornca is invested with a diffuse haziness, veiling or completely hiding the iris, exeept perhaps through a narrow rim at the margin of the cornca. The steamy surface has often been compared to ground glass. Careful inspection, however, will reveal that the opacity is not uniform, but contains saturated whiter spots seattered through it, or, as Mr. Hutchinson remarks, "centres, as it were, of the disease." There are always at this stage ciliary congestion, some pain, and dread of light. Blood-vessels derived from the

[^61] 1888.
ciliary vessels, and formed in the layers of the cornea, are thickly set, and produce a dull-red color, or the "salmon pateh of Hutchinson." These patches may be small and crescent-shaped, or large and sector-like. In one type, already deseribed under vaseular keratitis, the vasenlarity creeps from above and below until the entire cornea is cherry-red, a type seen probably when the patient is strumons as well as syphilitie. The subjective symptoms of irritability and photophobia are more pronomeed in strumons children. Uleention rardy ocemes. Hatchinson in only one or two cases was able to discover uleers of distingnishable size. Collins ${ }^{1}$ saw four instances, all of which commenced with opacity of the cornea, followed by intense vascularity, which extended over the entire surface except at the central part, which ulecrated, and in one of the suljects perforated. Candron ${ }^{2}$ has recorded cxamples presenting the appearance of pus in the layers of the cornea ; and I have scen in the Children's Hospital of this rity, in the eye of a child eight years of age, a dense central opacity with a yellowish collection in the anterior chamber helow, resembling an hypopyon.

Iritis and the formation of synechiee are not uncommon; indeed, Hirschberg (loc. cit.) thinks they are practically always present, and that the fundus is more frequently involved than is supposed,-sisteen times in his one hundred cases. Not only may posterior syncelie form, but Sehweigger ${ }^{3}$ has reported a case of interstitial keratitis in which, owing to the swelling of the iris, punctiform attachments (anterior synechiæ) formed between it and the cornca without any perforation of the latter membrane. Inflammation of the ciliary region is occasionally cncomntered ; secondary glancoma and shrinking of the eyeball may follow.

In the course of time, varying in accordance with the treatment, the eye begins to clear, usually from the periphery. Perfect recovery of the transparency must be rare, but often the remaining haze is so slight as to canse but little interference with vision. In bad cases a dense central opacity remains, but even this in time may elear up in a surprising manner. Years after an attack of interstitial keratitis, minute vessels, nearly straight, branching at acute angles and short bends, may be detected in the connea. Aecording to Hirselherg, the vessel-formation never subsides entirely, and with the aid of a corneal loup he has seen this thirteen years after an attack. The presence of these vessels and the deposits in the retina after the disease may be utilized for the diagnosis of inherited syphilis.

The suljects of typical forms of this discase often present a remarkalle combination of physice' defeets. The dwarfed stature, the coarse flabby skin, the sumken nasal bridge, the scars at the angle of the month and the ale of the nose, the malformed permanent teeth, in which espeeially the central incisors have vertically notehed edges (Hutehinson's teeth), indelibly

[^62]stamp the inheritance of the patient. Baker and Story (loc. cit.) fomd this chancter of teeth present thirty-one times among forty-eight cases. The presence of deafuess, cicatrices in the pharyux, chronic periostitis of the tibia, and induated post-cervical and epitrochlear lymphatic glands, still further emphasize the syphilitic taint.

Diagnosis.-A mistake in diagnosis camont readily occur. The course is usially quite typical, and the nssociated symptoms chatacteristic. The tension of the ball aud the age of the patient help to exelude primary glaucoma, while the history and chatacter of the inflammation differentiate it from old corneal maculas and from the difluse infiltation of the cornea which is sometimes seen as the result of injory. The presence of the minnte straight vessels is always good evidence of former interstitial keratitis. These vessels must be distinguished from those which remain after pamus: in the latter they are more superficial and pass into the anterior conjunttival vessels, there are well-formed anastomoses, the broader veins are aceompanied by finer arteries, and there are peculiar ramifications of the smaller decp vessels. The versels seen in comeal scars after nlecration are confined to these; the rest of the comea is free.

Prognosis.-The duration of the discase is always lengthy; from six to eighteen months are usually consumed in the development of its varions stages. The second eye is almost certain to be attacked in from a few weeks to two montlis; .n rare instances the interval is many months, or even a year, and, aceording to Hirschberg, may be delayed from tive to six years. The patient or his friends must be warned of this fact. A return to perfeet transparency is musual ; the vessel-formation in the cornea probably never subsides entirely, but even long-continued opacity may often, in the conrse of time, markedly lessen, and reasonable vision eventatly be restored. The occasiomal onset of deep-seated inflammation in the ciliary region, and the fact that, after the cornea has cleared, the ophthalmoscope may discover evidences of former choroiditis or of glancomatons cupping of the disk, must not be forgotten in rendering a prognosis. Relapses are frequent, and, as Hirschberg has pointed out, ocem not always of the corncal discase, but in inflammations of the iris and retina. Abadie' and De Wecker ${ }^{2}$ consider the disease more severe than it was formerly thonght to be.

Treatment.-All irritating applications are harmfil. Atropine, to maintain mydriasis, prevent iritis, and allay inflammation, is to be systematically employed ; if the irritation is great, this may be cantionsly combined with cocanc. Any high grade of inflammation calls for the frequent use of hot fomentations, and tenderness in the ciliary region will be relieved by a leech placed upon the temple. The eyes may be protected from dust and light by goggles or a dark shade. The best general medication is a long-continued course of mereury. Certainly in children, and probably in all instances, the most satisfactory method of administration in the carly
stages is by innaction,--one drachm of the ointment rubberl into the skin once or twice a day, according to the circumstances. It is a grool phan to order the mercurial ointment put up in one-drachm masses, thiss seenring the immetion of a definite quantity. The usmal precautions in regand to changiag the spots for the rubbings mist be ohserved. Whenever slight tenderness of the gums is apparent, the remedy shonld be discontimed, and the patient put npon a comse of ionlide of potassimm. During the administration of the innotions, cond-liver oil may be advatageonsly exhibited; later, a long-continued course of bichbride of mercury is the most valuable remedy, and, as many of the patients are anemic, this is readily combined with tincture of chloride of iron. A suspicion of malar:a calls for quinine and arsenic, and in muy event they are usefnl adjuvants. When all irritation has subsided, absorption of the remaining opacity is fiteiiitated by the use of a salve of yellow oxide of mercury, together with massage of the cormen. Iridectomy, if the tension rises and glaneoma threatens, may be follawed by excellent results: that it should be employed for new pupil when stubborn central opacity remains is manifest. Any line of tonic treatment, and due precantion in regard to mourishing diet, exereise, and health ful surroundings, in short, all measures which elevate the standard of the sufferer's general health, are indicated. Ahadie and others have recommended that the merenry be given in the form of hypodermic injections. A trial of this plan has not caused me to abandon the older methods.

Keratitis Punctata.-This affection is almost always secondary to disease of the iris, choroid, or vitreons, and is characterized by a precipitate of opaque dots, generally arranged it a triangular manner, upon the posterior elastic lamina of the cornea (Deseemet's membrane). The same name is also applied by some writers to those cases in which isolated whitish spots surrounded by a clondy area appear in the parenclyma of the cornea. The disease is secn in children before puberty, and is probally syphilitic in origin. Inflammatory evidences, the appearance in the cornea of the white dots, and the later development of initis with more diffuse corneal infiltation, characterize the discase. Iodide of potassium and bichloride of mercury are the proper intemal remedies. A continued atropine mydriasis shonld be maintained ; later, iridectomy may be required to check the iritis, or for optical purposes.

Malarial Keratitis.-Any form of keratitis may be aggravated and sustained by the presence of malaria. The relation of this cachexia to inflammatory diseases of the cornea has been especially studied in this comntry by Kipp ${ }^{1}$ of Newark. E. van Milligan ${ }^{2}$ has described an essential form of keratitis in association with intermittent fever similar to the kera-

[^63] Iminisibited ; nluable mbined or quihen all ated by sare of us, may for new of tonic cise, and ndard of e recomnjections. uls.
ondary to precipitate the poslume name tish spots nea. The ,hilitic in the white al infiltrale of mermydriasis the iritis,
avated and exia to inthis com1 essential the kera-
titis dendritica of Hock, Grut, and Emmert. This appars as a superficinl erosion of the cornen, with local pain, photophobia, pericornal injection, mad amesthesia, together vith the evidence of malaria in the spleen, ete. Milligan's cases ocenred in adults. In Kipp's anses the diserase was ohserved chiefly in persons hetween twenty and fifty years of age; five oce emred in persons meder five years, and one in a mursing baby whose mother had intermittent fever. The treatment of such enses, in addition to lowel sedative measures, resolves itself into the management of the malaria which is their culuse.

Herprs Connef. - In herpes zoster of the first divisior of the trifacial, the eye may become affected, especially if the eruption oceme upon the parts supplied by the masal branch. The pain and swelling of the affected area are so great as often to resemble erysipelas, and ulecration of the cormea and initis develop. Ilerpes zostor ophthehmicus prevails for the most part among adults, but, as Horner lats pointed ont, the cornen may abso suffer in connection with herpes labialis when this appears in childhood.

Symptoms.-The disease begins with a series of transparent vesides upon the cornca, mostly near its margin, with pain and marked lachiomation. After a time the vesides burst, and an irregular area of comeal opacity remains. Iritis may oceur. The disease is slow in progress, and, after recovery, opacities remain. Horner ohserved the disorder in conjunction with labial herpes associated with phomonia, brouchitis, and catarrhal conditions of the respiratory tract.

Treatment.-This consists in relieving the general condition, together with the local application of atropine and antiseptic washes.

Conical Cornea (Keratoconus). -This consists in a cone-shaped bulging forward of the cornea, and is rarely congenital. It is mostly seen in young. women, and usually does not develop until after the age of tifteen. Exhausting illness and especially chronic dyspepsia have been assigued as exciting canses, the immediate canse being a disturbance in the relation of the intraocular pressure to the resistance of the cornea. The eye becomes myopic and highly astigmatic. Although cylindreal lenses may not avail in advanced cases, certainly, as Thomson ${ }^{2}$ and Wallace ${ }^{3}$ of this city have well shown, in some instances their employment increases markedly the visual acuity. If the apex of the cone appears to be thinning, the use of a weak solution of sulphate of eserine and of a pressure-bandage is indicated. Iridectomy and the substitution for the apex of the cone of a contracting eicatrix are the operative measures which have been employed.

[^64]Bupithamos.-Synonymes.-Hydrophthahos congenitus, Kerutoglobns, Megalocornea, Glancoma cougenitum.

In this rare affection there is aslow but progressive enlargement of the eye in all its dimmeters; the cornea is flattened, mad the materion chamber much depened; the temsion is mised. In the conase of time the cormea may become clondy, aldhongh this participation is not always present. The uffection appears at birth or shortly nterwards, and its incipient stuges are believel to be intra-mterine. The precise canse is not acoutaty determined ; it has ben aseribeal to an intra-nterine indo-kenatitis with inerensed introcular tension,-in other words, a form of congenital ghancoma. In megrahophthatmic eyes, necording to M. Durr,' the oblique muscles present a greater obliguity than is ordinarily the case, and pronluce n moticeable compression upon the emergent veins. The prognosis is mufavomble : the affection usually progresses to blinduess. Eserine and iridectomy are recommended methods of treatment.

Abcus Sexhis, or a circle of fatty degeneration just within the margin of the cornea, is, ass its name mplies, almost invariably fo.ad in old persons. Ocationally, however, a genmine example of this affection appars to have been noted in children. H. F. Hansell ${ }^{2}$ reports an instance in at mulatto boy three and a half yours of age, resembling in all particulars the arens of adult life. Canton ${ }^{3}$ doubts whether this has ever been seen at birth, and thinks it likely that instances so reported have been due to areiform opacity the result of ulceration. The affection requires no treatment.

Tumons of the: Connea.-These are very rare, and include such growths as develop from the epithelimm, as epithelioma, or invade it by extension from neighboring tissues, as sarcoma. Benson ${ }^{4}$ has reported an instance of fibroma of the cornea in a girl aged nineteen.

Dermoid tumor occurs as a firm, hemispherical, yellowish-white growth lying partly upon the comen and partly upon the conjunetiva. The apex, often paler than the rest of the growth, is covered with short hairs. These, however, occasionally grow to an musual length, as in Wiadrop's ${ }^{5}$ case, where they protruded through the fissure of the lids and lung down upon the cheeks. If undisturbed, the tumor may slowly enlarge ; and Graefe has recorded one instance where the size of a walnut was attained. Bilateral dermoids have been recordel, as in Wallenberg's ${ }^{6}$ patient, a child of eight years, the point of origin being the conjunctiva in the neighborhood of the external rectus. It is a congciital growth, and is sometimes associated with

[^65]
PI.A'IE: 1 .

1'16. 11.

Fig. 15.

Micro Piotograpli fhom tie same Section, more highly magnified.
other anomalies of the lid and eyes. Picqué has collected ninety-fonr eases of dermoid tumors of the cornea and conjunctiva, eighty-five of which were observed in human eyes. These dermoids have been aseribed by Van Duyse to the remains of amniotie adhesions; but Picqué, basing his view upon the faet that the structure of the growths very often agrees with that of the lidborder, thinks they resuli from the coalescence of the eyelids in such a way that at the moment of separation one lid attracts to itself a portion of the other.

Microscopically, the growth represents the

Fig. 13.

Dermold tumor of cise cornea. (1'hiladelphia Hospital.) structure of the skin and its appendagrs. The presence of striped muscle-iibre and acinons glands analogous to those in the conjunetiva has been deseribed in dermoid tumors growing from the caruncle. ${ }^{2}$

Congenital Anomalies of the Connea.-Microphthalmos is that condition in which the entire eye remains in a more or less rudimentary state, and in which the cornca is too small in all its diameters. Pure eases of microphthalmos, according to Mauz, are among the greatest of rarities; usually one or other of the component portions of the globe is wanting. Numerons theories have been expressed in regard to the etiology,-retarded growth of the cerebellum (Kundrat), incomplete closure of the foetal ocular cleft (Arlt), feetal illness in orbita (Wedl and Boeh), intra-uterine selero-chorio-retinitis (Deutschmann). This affection has also been aseribed to the influence of heredity.

Megalophthalmos has been deseribed on page 118.
Sclerophthalmia is that condition in which the opacity of the selerotic eneroaches upon the cornea in snch a mamer that only the central portion remains transparent. It is due to an imperfect differentiation of the cornea and sclera at an early periol of foetal life.

Congenital opacities of the cornea are seen either in the form of milky spots which may elear up in later life, or as dense lencomas. They are due either to intra-uterine inflammation or to an arrest of development.

Congenital staphyloma of the consa appears in the form of a true staphyloma, and is a rare affection. The abnormality depends not so much upon a malformation, or an arrest of development, as upon a foetal inflammation which, according to Pineus, ${ }^{3}$ takes place in the second half of foetal life. Heredity probably plays some role in this and similar affections of the cornea. Bernheimer has seen congenital staphyloma of the cornea associated with dermoid formation.

[^66]
DISEASES OF THE EYE:

THE ORBIT, SCLEROTIC, IRIS AND CILIARY BODY, VIT'REOUS, LENS, EXTERNAL OCULAR MUSCLES; REFRACTION ; WOUNDS AND INJURIES; SURGICAL OPERATIONS UPON THE EYE.

By Charles S. Turnbull, M.D., AND

GEORGE M. GOULD, M.D.

THE ORBIT.

Anophthalmus, or Congenital Absence of the Eyeball.Althongh this and other congenital anomalies of the globe of the eye, considered as a whole, may not always be comected with orbital abnormality, they are sometimes so related, and may therefore be conveniently classed in this place. Collins ${ }^{1}$ has gathered the details of all the cases of this affection that have been published. They number thirty bilateral and twelve monolateral instances, ${ }^{2}$ of which there were post-mortem examinations in nine. As to the primary canse, neither hereditary influences nor consanguinity of the parents existed in a large majority of the cases. There was a maternal impression of fright in a number of the cases, and Collins is inclined to allow this as a possible canse. However well the appendages of the globe are developed, no trace of the globe itself is :-smally to be found, and the defect seems due to an carly developmental cessation, the primary optic vesicle failing to bud from the anterior primary encephalic vesicle. Ten cases are reported as dying within two months from birth, and bodily and mental defeets were more or less frequent.

Chyptophtialmus, a congenital mion of the eyelids, usually over imperfeet eyes.-In this defect ${ }^{3}$ the developmental failure seems to be arrested at the formation of the lens: the lids, comjunctival sacs, etc., are wanting or are malformed.

[^67]Micropititialaus, or Abnormal Smalleness of the Eyfbali.This abnormality is not infrequently coincident with musnal smallness of the head, or defeetive cerebral and mental development, and is still more commonly associated with such imperfections as cataract, nystagmus, strabismus, corncal, retinal, or nerve disease, subnormality of vision, and even blindness. Deutschmann thinks the canse of these anomalies is to be sought in feetal inflammatory processes; Hesse ${ }^{1}$ melines to Arlt's theory of a non-closure of the optic cleft; Kundrat supposes a cerebellar failure of development ; and Becker concludes that there was a failure of the eetodermal invagination. It is, of course, only in the case of the cataractous complication that any theraputical or surgical procedure promises to be an advantage. When it is certain that a functional retina and nerve exist, the cataract should be needled as early as possibie,-before vision has been lost or deteriorated, and before nystagmus and squint have become fixed habits.

Cyclopia.-Fusion of the two orbits into a single cavity in the median line of the forehead, with misformed and functionless remains of one or both globes, is a rare vice of development.

Congenital Absormalitifs of tife Orbital Walls.-These are usually the result of a general asymmetry of the head, and may be so extreme as to interfere with the development of the eye. In some cases the fissures are abnormally placed, confluent, or constricted, and cases have been reported wherein the optic foramen was wanting. Failure in the lamina eribrosa or upper part of the orbital wall may result in a cerebral hernia into the orbit, the sac being composed of the dura mater.

Acquired Anomalies of the Orbit.-These may arise from osteomatous and other tumors, from tubereulous disease, or from hereditary syphilis of the walls of the orbit. The symptoms of osteoma will depend upon the position of the neoplasm. If it attain a considerable size, the globe will be pushed either forward or to one side, and, if the pressure upon the globe become so great that the circulation and function of the eye are hindered, visual failure consequent upon atrophy will speedily follow. This is especially true when the tumor extends towards or abont the optic furamen. From the uncertainty as to the diagnosis and the impossibility of any therapentic measures except surgical ones, it follows that blinduess usually precedes enucleation, just as enucleation must precede removal of the tumor.

In reference to orbital tuberculosis, the coexistence of foci of tubereular derosits or processes elsewhere should lead to the earliest possible diagnosis of the retrobulbar affection. When the diagnosis is certain, no delay must be allowed, and complete surgical removal of every infeeted tissue is necessary to avoid what is not infrequently a sequel of delay,-thrombo-phlebitis of the orbital veins, and meningitis.

Syphilitic disease of the orbital walls has been rarely observed. The
well-known genemal symptoms of syphilis should, in case of ocular affections of this kind, lead one to the diagnosis.

Fia. 2.
Fia. 1.

Antero-losterior Vertical Section through tile Globe and Orbit.-a, b, superior and iuferior eonjunetival cui-de-saes: c, adipose and other tissues of the orbit; d, tendons of the externai ocuiar muscles.

Frontal Section of tife Eye and Orbit.-a, external reetus muscie; b, internal rectus; c, superior rectus; d, inferior reetus; e, superior obilique; f, inferior obllque; g, levator palpebre; h, supra-orbital nerve; i, lachrymai giand; k, infra-orbitai nerve; l, temporai musele.

To aid in a more exact comprehension of the relations of the orbital walls and the contents of the orbit, three illustrations are inserted, the first (Fig. 1)

Fia. 3.

Schematic Section of tie Globe of the Eye.-a, eornea; b, irls; c, eiflary body; d, crystaline lens; e, sclerotic ; f, chorold; g, retins; h, optie nerve.
slowing a perpendicular median section through the globe and orbit from before backward; the second (Fig. 2), a similar section made laterally; and the third (Fig. 3), a sehematic section of the globe of the eye.

Tumors and Cysts of the Orbit.-These in children are far less frequent than in adults, and consist, so far as tumors are concerned, almost exclusively of sarcomata. Cases of metastatic myxo-sarcomata and of cerebral sarcomata growing into the orbit have been reported, also echinococeus and eysticerens eysts. The symptoms will depend upon the location and growth of the tumor. Exophthalmus and papillitis are the more probable ones, and, where they are not too depply located, prompt surgical interference may stve the eye.

Vascular Diseases of the Orbit.-These in the young are rare affections, and almost without exception sceondary to trammatism, to conenssion of the brain, or to wasting diseases. Orhital aneurism iollowing some injury will produce pulsating exophthalmus, and ligation of the carotid may become necessary. Venons thrombosis with septic infection is rare and of difficult diagnosis. The exophthalmos of exophthalmic goitre may be classed among vascular affections, but the local abnormality requires no attempt at local therapentics.

Orbital Cellulitis.-This severe affection may oceur in the young as a result of traumatism, following surgical operation, secondary to septic phlebitis, or accompanying panophthahmitis. There will be exophthahme, inflammatory swelling of the lids, pain, ete. Unless the products of inflammation fiad an outlet, the pressure upon the globe may endanger its function or existence, so that upon any indication of a pointing of the abseess it should be carefilly but speedily evacnated. In lancing Tenon's capsule or the œedematous lids, caution is requisite not to injure the globe. The eye should be kept dressed with hot bichloride dressings, frequently renewed, and the patient's general strength supported by the free administration of tonies, a liberal diet, ete., while the kidneys, skin, and bowels should be kept active.

DISEASES OF THE SCLEROTIC.

The only primary or idiopathic disease of the sclerotic is seleritis or episcleritis, and this, infrequent in adults, is yet more so in the young. Perhaps it is most commonly met with accompanying keratitis serofulosa (inherited syphilis) with conjunctivitis lymphatica (Arlt), and is often mistaken for phlyctenular eonjunctivitis. Iritis and cyclitis are rarely, if ever, seen in these cases, mnless of tramatic origin. Scleritis and episeleritis begin with a localized focus of congestion near the corneal margin. The inflammation is differentiated from conjunetival affections by making traction upon the conjunctiva or lid, and the violet-red, inflamed structures are seen to be beneath the normal conjunctiva. The affection shows a curions tendeney to change its location and move circle-wise about the cornea, the former seat becoming normal as the advance is made to a new position. There is little pain, but tenderuess to the touch. The greatest danger consists in the liability of implication of other organs,-the cornea, iris, and ciliary body, -and to avoid this the treatment should be prompt. It is better to prevent the irritation arising from the functional activity of the iris and ciliary
musele by using a mydriatic solntion of atropine, withont a bandage. This will usually serve to cut short the affection. But it will commonly be found that these children have some systemic dyserasia, and if syphilitie or scrofulons taint exists, or if there is other evidence of defective nourishment, special emphasis should be laid upon the correction of these things. With coincident or resultant iritis, eyclitis, or keratitis the same treatment is almost entirely directed to the important structures threatened.

DISEASES OF THE IRIS AND CLILARY BODY.

Colohoma of the Ims.-Congenital defects of the iris from developmental failure are occasionally met with, and such gaps or breaks in its continuity do not usually interfere with good vision, unless they extensively involve the choroid. They are beyond operative treatment.

Persistence of tife Pupilialiy Membiane.-De Weeker and Landolt, ${ }^{1}$ Collins ${ }^{2}$ and Wickerkiewien, ${ }^{3}$ have described this congenital anomaly, consisting of fibrillar bands or filaments stretching aeross the pupillary area and inserted into the anterior surface of the iris. It is chicfly of importance from the faet that it might be mistaken for synechise or old iritic affection. Vision is slightly impaired. An illustration of this interesting remuant of fietal ocular life is given in the accompanying cut (Fig. 4).

Corectopia, or Displacement of the Pupil.- In many cases the pupil is congenitally misplaced, so that it is not accurately behind the centre of the cornea nor in front of the lens. In rare instances this cetopia is so great as to become a source of imperfect vision and of mosightliness. As a consequence of trammatism and of operations upon the cornca, the pupil may likewise be drawn to one side, greatly distorted, or even obliterated. In such cases an artificial pupil or an optical inidectomy is advisable, though the results are often unsatisfactory.

Intis anin Irido-Cfclitis.-The iris and the ciliary body are in the young exceptionally exempt from acute or primary inflammations. Almost the only exception to this rule is the rare iritis of hereditary syphilis and of tuberele, and in such cases the existence of other symptoms will be suffieiently pronomeed to give the che for diagnosis. The choroid is almost certain to be implicated in the inflammatory process, and the existence of the eye itself greatly endangered. The somewhat obscure form of iritis

[^68]This found scrofment, With ent is nsively
er and genital oos the into the

It is the fact or syneVision ustration of fextal ompanyhind the is ectopia ghtitinces. the pupil , iteratecel. e, though
are in the Almost hilis and 1 be suffiis almost istence of of iritis
called serous iritis, or irido-choroiditis serosa (the keatitis prrecipitata of Aplt, and aquo-(apsulitis or punctate keratitis of the oller writers), is oecasionully observed in the yomg. There is little or no tendency to plastic exudation, and the chief signs consist in minute punctate flecks upn Descenet's membrane, turbidity of the aqueons, increasel tension, impaired vision, pain, and a sluggish, somewhat contractel pupil. To these symptoms Horner adds hyperamin of the papilla and fuluess and tortusity of the eiremmapillary retinal veins. The affection is usually a product of some systemie dyserasia, occurring most frequently in girls approaching pulerty, in the scrofulous, the amemic, ete. The general indications for treatment will therefore depend upon counteracting the systemic abnormalism. If the pressure in the anterior chamber becomes so great that atropine does not produce mydriasis (the pressure preventing its absorption), paracentesis is urgently indicated. The incision should be made with a needle, and sudden or extensive drainage carefully avoided. This may be repeated as often as the tension or pain again becomes extreme. Moderate catharsis, dinresis, and, in severe cases, artificial diaphoresis (hy pilocarpine) are advisable.

Septic or mettastatic irido-cyclitis may arise in infants, and has been called puerperal panophthalmitis. It is almost alsolutely fatal, and is properly to be classified as an embolic or suppurative choroiditis.

Horner observed one case of tuberculosis of the iris in fonr thousand cases.
Plastic iritis, common in adults, is of great rarity in children, and, when it exists, is secondary to traumatisn or affections of the cornea or other neighboring tissucs.

As regards the treatment of iritis, there are few exceptions to the rule that it is of primal importance to prevent adhesions of the iris to the lenscalsule, or, if they have already formed, to break them up. For this purpose atropine-instillations are demanded. Should these not succeed, or if persistent atropinization produce local or general irritation, mercury by the mouth or by inunction may be pushed until found useless or no longer advisable. We must not neglect to be on the lookout for possible atropineproisoning in certain idiosyncrasies.

Glaucoma.-This is a disease characterized by abnormal increase of intraocular tension or pressure, and, though occurring extremely rarely in children, a few eases have been met with, and a mention of the fact may be made here. The diagnosis depends prineipally upon the tactus cruditus, a sensation of unusual hardness being imparted when the globe is delicately palpated by the fingers. When this excess of tension has reached a considerable degree, there will be pain of the eyeball, radiating to deeper parts, anesthesia of the cornea, dilatation of the pupil, a shallow anterior chamber, etc., and, with the ophthalmoscope, a cupped disk. The etiology of the affection is obseure. The treatment consists first in repeated instillations of a solution of salicylate of eserine (gr. $\frac{1}{4}-\frac{1}{2}$ ad $\frac{z}{i}$). When this has been proved to give no relief, a broad, large iridectomy should be made at the superior part of the iris.

DISEASES OF THE VITREOUS.

Persistent hyaloid artery is almost the only abnormality of the vitreons in children, and that needs but a mere mention, since the anomaly admits of no treatment. Indeed, in the majority of cases it does not greatly interfere with the visual function, and is more an ophthalmologionl cmiosity than a disease. Ophthalmoscopically it appears as a translacent mobile fibril extending from the ceatral artery of the retima, or from a branch of the same, throngh the vitreons to the posterior capsule of the lens. It is the remnant of the artery which in foetal life nourished the lens and capsule.

DISEASES OF THE LENS.

The diseases of the crystalline lens consist in defeets of form,-colobom:e, ete.,-defects of position,--luxation, -aud defects of transparency, or cataract. The lens, not being nomished by hlood, and being withont nerves, is not subject to true inflammatory action.

Defects of Form.-These arc, of course, congenital, and, as the resultant impairment of vision is usually slight, and the condition itself is not remediable by operation, except by extraction of the lens, it follows that but a passing mention is required. Several cases of asymmetry of the lens, of coloboma, etc., have been reported, caused by developmental defect either of the ligament of the lens or of the lens itself. The condition called anterior lenticonus or crystalloconus consists in a (transparent) pyramidal exaggeration of curvature of the anterior portion of the lens, the anterior chamber thus being more shallow and partially filled by the lens. The obverse of this condition may sometimes exist, and is called posterior lenticonus.

Defects of Position.-The lens may be congenitally displaced, and this class of positional defeets is called ectopia lentis. It is usually symmetrical, and a notewortly peculiarity is that the displacement is generally upward, or upward and inward. It is more rarely laterally displaced, and never directly downward. An illustration is appended of a case of

Fig. 5.

symmetrical ectopia lentis that was recorded some years ago. (Fig. 5.) The direct cause of the abnormality is doubtless some imperfection in the insertion or inequality of the length of the fibres of the lenticular liga-

[^69]ment or zonule of Zinn. Indirectly the influence of heredity is clearly manifest as an etiological factor. In a large majority of the cases the lens remains transparent or semi-transparent. If the ectopia is considerable in extent, the iris may be distinetly seen to be pushed forward by the lens-edge, and that part of the iris that is masupported by the lens exhibits a tremulonsness with jar or motion of the globe. The disturbance of vision will depend entirdy upon the extent and the kind of the malposition. Visual acnity will usually be improved by high refractive lenses, concave if the erystalline lens be nsed as a part of the dioptrie system, convex if the fumetional part of the system be aphakial. All the cases we have seen have been practically aphakial, the lenses being too far removed from the axis of vision to be nseful in secing. Sometimes the lens is not stationary, but, owing to a lax zomule, moves with or follows motions of the eyeball or head. Cases have been reported wherein the lens still in its capsule has passed throngh the prpil. In such instances the operation of extraction is elcarly indicated. An abnormal position of the pupil may sometimes exist, and create mueh the same result as an abnormal position of the lens. This pmpillary anomaly may be congenital or traumatic,-cetopia pupillaris congenita seu troumatica,-and the treatment by operation, if any be advisable, will depend upon many varying circumstances.

Acquired abnormalism of position of the lens is usually cansed by blows, concussion, or injuries of the cycball or head, and is called luxation or dislocation.' When the displacement is only slight, it is called subluxation. The immediate possibility of luxation depends upon a rupture of the lensligament or capsule, so that the lens usually becomes cataractous, either slowly or quickly, from defective mutrition, or from the admission of the aqueous or vitreous humor to its substance, eansing molecular and chemical changes that destroy transpareney. When the dislocated lens is in the vitreous chamber, its extraction becomes impossible. In such cases, acting, as it does, as a foreign body, the accident may be followed by symptoms of irritation and glancoma, that may necessitate the enucleation of the globe. Where the luxation is into the anterior chamber, the prevention of sueh symptoms by means of a prompt extraction is strongly indicated. In this position, or when but partially so misplaced and held in position by the iris, the abnormal position of the lens, if still transparent, may be diagnosticated by the aid of the ophthalmoscopic mirror and from the peculiar position or configuration of the iris. When the lens has become cataractons, its position is casily recognized. In this connection consult also the section on wounds and injuries of the eye, also that on traumatic cataract, and on extraction of cataract.

Defects of Transparency,-Cataract.-Cataract may be either congenital or acquired ; partial (the entire lens not affected) or complete;
(Fig. 5.) on in the ular liga-

[^70]hard or soft ; capsular (the capsule deficient only in transparency) or lenticular ; central or peripheral ; anterior or posterior ; trumatic or pathological, cte.

The diagnosis of cataract is a simple and easy procedure, effected by the aid of reflected and of transmitted light. The pupil should be diInted by a drop or two of comane solution (gr. vi ad $\tilde{3}_{3}:$ "nstilled ten minutes prior to the examination, whereby a larger purt of i , Icns is brought into view. By placing the patient so that the sonree of light is behind and at one side of the hend, the light is reflected into the pupil by a twelve-inchfocus ophthahnoseopic mirror, through a central perforation of which the eye is observed. If in place of the usual reddish glow of the fundus-reflection the entire pupillary area is dark or neutml-colored, we conclude-the cornea and remaining ocular media being supposed to be clear-that complete cataract is present. If the crimson fundus-reflex is interrupted by dark spots, strie, or breuks, a partial cataract is probably to be inferred. Turning the paticnt so that the light falls a little obliquely into the pupil whilst our own view is more or less direct, and concentrating the illuminating rays by means of a two- or three-inch biconvex lens, we can readily verify the diagnosis. Instead of dark or negative spots as before, we shall now see, by the light reflected from the cataract, light-colored or porcelain-like images of the opacity, whilst the transparent portions of the lens appear dark or invisible. By varying the position and foens of the illumination we can judge of the mature, position, and extent of the opacity. The magnification of the image by a second convex lens may also be found an advantage.

Varieties of Congenital Cataract.-A primary diagnostic distinction between congenital cataracts consists in determining if the opacity be complete or partial.

Complete Congenital Cataract is comparatively rare, and not seldom accompanied by microphthalmus or by other bodily or mental defect. The condition itself is an evidence of developmental failure, is binocular, and uystagmus is almost certain to follow sooner or later. As seen by reflected light, the lens appears of a "milky" or opaque-white color. At an early age we cannot always be certain to what extent the retina and nerve may be functional ; but if there exists any sign of light-perception, such as that shown in following with the eyes a bright light, or if there are indications of irritation from sudden exposure to such a light, then the plain duty is to proceed with the needle-operation as early as possible. By so doing the development of nystagmus may be prevented or checked, and the possible decay of the deep-seated visual organs, with amblyopia, obviate? by bringing them into their normal usage.

Of Incomplete or Partial Congenital Cataract the prineipal varieties are the central, the lamellar, the stellate, the punctate, the axial, and the anterior and posterior polar.

In congenital central cataract we find a white opacity occupying the
tades.
must be children, sistency after the extract th possible d

The
tate, and
The stella tion of th scattered axis or rec clondiness torial exte regards thr fied obtain

Anterio catariset.
central part of the lens, the rest of the body being normally transparent. The visual andy is better than wonld be supposed. The origin of the defect wats in some mutritional failure or abnormalism of development in the sixth or seventh week of intro-nterine life, when the unclens of the lens was in process of firmation. Other cenlar defects, as microphthahmes, (apsular opacities, ete., may also be present. If the opacity be of considcrable size and interfere with vision very greatly, or if nystagmus be established or even threntened, cither an optical iridectomy or the necelleoperation should be advised nt once.

Lamellar or zomutar cataruct probably arises in the same way as the central variety, but at a later period of fietal life. The lens, as is well known, is composed of stratn or layers, sometimes likened to the layers of mu onion. Some developmental or trophic disorder of intra-nterine life intervening at the period of formation of a layer renders it translucent or opaque either in part or entirely. The defect is, therefore, of both eyes. By attentive observation the transparent melens and the tramsparent external layers may he distinguished from the stratum of clondy tissue. If for any genemal renson operative measures may not be carricel ont at onee, continnons artificial mydriasis may be temporarily usefinl in giving better vision or in preventing lastagmus. But this, for obvions reasons, is oljectionable for any grent length of time, and, supposing that vision is decidedly subnormal, it is advisable to operate as soon as possible, for reasons alrealy given. If the opacity be limited in extent and an artilicial pupil promise to give a dear space for the light to enter, an optical iridectomy is to be preferred to the needle-operation, since in the latter case the power of accommodation is destroyed and the patient heneeforth becomes the slave of two pairs of speetacles. But if an iridectomy promise or give no satisfactory result the lens must be broken up and given over to the preess of alsorption. In older children, when the lens-substance has attained a considerable degree of consistency or hardness, it has been proposed, after breaking up the lens, and after the resultant softening and partial liquefaction have taken place, to extract the lens-matter by a suction-operation, thus obviating the delay and possible danger of the absorption-process.

The varicties of congenital partial cataract denominoted stellate, penctate, and axial indicate peenliarities in the position or form of the opacity. The stellate opacity consists of a star-like figure ocenpying the anterior portion of the lens-substance. In the punctate the opacities are small, and scattered like dots throughout the lens. In axial or fusiform catarat the axis or region of the antero-posterior diameter of the lens is occupied by a cloudiness or opacity that interferes with vision in proportion to its equatorial extension or the degree of opacification of the affected tissues. As regards the advisability of operative measures, the indications already specified obtain also in these cases.

Anterior capsular cutcract is also called anterior polar and pyramidal catarict. The opacity is at the anterior pole, and is composed of a hyperVol. IV.-9
phasia of the capsular epithelimm, which is covered by the cupsule, the lens itself' remaning nomally trmasparent. 'The defert may be limiterl in aren, -that is, not extending fine towarls the eqnator of the lens ; and this is the more usnall finm. It may also be even with the rest of the rapsale, elevated, or extending forward from it. In ome ease, a child of tell years, that came moder our obsewation, the pramid extembed forward like " glistening white rome through the pupil and minter chamber, the medkelike point seeming almest to tombly Desernct's mombane, and the contracted iris apparently hugring the base of the pyramid.
'The etiology of this form of catanat is peenliar, and is probally to $l_{\text {a }}$ explanel in this way. It is known that the combition may arise after birth from the contate of the anterion surtare of the nomal lems with an inflamed cornea, cither perforated or mot. The same finctors are suppesed to oprath in intra-nterine life. 'The fiet that after birth no deffed of the comen is to be fimend does not seem to negative the surposition. Whether the abormal contact of the two surfaces be lwought abont by the emptying of the anterion chamber succeding ulderons perforation of the comen, or by smporary shallowness of that cavity, or ly abmomal pressure cither in frout or from behind, the essential merhanism remains the same: the comeal infammatory pronluct passing through the capsule sets up a hyperphasia of the intermal epithelimm, which results in the rapsular opacity, whether the bater be pramidal or simply leave the normal contome imehangerl. The deepening of the anterior chamber by re-fomation of the agneons, or the removal of pressure, cte, again pushes the lens hack to its normal position, but carvies with it the lasting spot or cone of opaque tissue.

The treatment is, of course, omerative, and if, as is usmal, the omeity is limited to the central pupillary area, an optical iridectomy shonld be eflected at an early date. The position of the ridectomy should be in the superion segment of the iris amd slightly to the nasal side, becemse in this position the upper lid covers the large peripheral part of the opening and leaves the more central aperture for visual purposes. The iridectomy should be as small as pasible in all such cases. In this mamer the function of aceommodation is preservel. But if this position is covered by a segment of opague corncal tissue, another must be chosen. It may also ravely happen that the capsular opacity extends so far towards the equator of the lens (shown by extreme mydriasis) that no good conld come from an iridectomy. In such eases the lens must be extracted by needling and absorption.

Congenital Posterion Polar Catabact.-Sometimes a dense white opacity is fomd at the posterior pole of the lens, limited in area, and in apparance like that just ieseribed, but pointing into the vitreons chamber. Morcover, like the anterior variety, it is confined to the capsular tissue, and the lens is not implicated. Its etiology, however, is very different, since it consists, anatomically, of the remains of the vaseular strictures and connections with the foetal hyaloid artery, that have not atrophied or become transparent, owing to sotne disturbance of the normal development. The
visunal disturhance is in this defiet mot generally considerable, nud will seldom require operative interfirence.

One form of congenital membranons metferact not yet deseribed is seen in poorly-developed eyes: in cases where one ere is microphthablaie we often find a bough membrane like a collapeed lens-apsule without ang contained lens-sulstane ocenpying the position of the lens, and, althongh we have what we comsider gord light-pereption, opeative interference yidds no satisfactory results. The membrme hats no clasticity, and tears but does not gaper. Mydriaties have but little effect, the irides seeming to be undeveloped, and we are not to poison our little pationts before we secoure murh, if ans, effect. Such cases require the entire removal of a piese of the tomgh membane before a nefinl pupil is sudured. Wore, then, our prognosis most be guarded, for after having serured an excellent pupil the retima may be defective in development. The teeth of such children are frequently ill devehped, few, and shark-like, hat in no way like syphilitio teeth. Several operations may follow, and an immense amomet of time and patience be sacriticed for little if any result, and prow a hitter disappointment both to operator and to parents.
 also in the acroniord, the most morked distinction lies between the total or complete and the partial or incomplete. In the first class we have to consider wo primeipal sarieties, -the soft, including the lluid or "milky," the Morgarnian, and the membanaceons ; and the hard, similar in matme to senile catamet. Of acquired partial eataract the chicef matieties are the lamellar, the anterior polar, and the posterior polar. 'Tramatio calaract may be reckoned with total catanacts, but, owing to the complieations of the case, it is desimble to classify it atone.
 the lens, as well ats its masistener, may vary withon wide limits. The lens may be of a miform obrathe white, or present a delicate striationa at the auterior pole; it may lowk like milk slightly tirged with a blue cast,
 may consist of a more solid muclens floating in a lignefied cortical mass (Mrgognian) ; or, lastly, it may give evidences of' a shrmken and fobled lens-capsule (membramect). Nutritional disturhance undoubtedly phays the chief role in the prohluction of sott catamet. Any constitutional disturbance or affection, anremia, wasting or infections discases, cardiac discase, etc., may, by depriving the lens of nommal quantity or gnality of nomishment, superinduce opracification of its substance. Heredity has also been found to exerese a powerful influence. The direct mechanism of its production consists in the superabmant imbibition or collection of fluid within the capsular cavity or among the lenticular fibres. With a functional retina and good general health, discission of soft cataract should be madertaken as en. $-\frac{1}{-j}$ in life as possible.

Hard Acquired Total Cataract.-It is often difficult to decide in
the case of the young whether catarat be hard or soft. The differential diagnosis is important only in reference to the choice of the method of extraction. The large majority of all cataracts in the young are solt, anusually there is a milk-white and as it were swollen appearance of the lens. Oceasionally, and especially, it is believed, in disense of the vessels, particularly of the carotid and its branches, catamet in the young approaches the harduess of the senile variety. In such a case it should be extracted in the same mamer as acfuired senile cataract.

Thaumatic Cimana" - Any injury, whether by direct penetration of a foreign substance or be indirect concussion, that breaks or ruptures the capsule of the lens and pernite the ingress of the extra-capsular fluas of the eye, will produce cataract. (Oceasional cases have been reported in which a small penetrating body has produced only a lin 'ted and as it were enersterl area of opacifiation, leaving the rest of the lens permanently transparent.) With the entrance of the external thuid the lens-fibres swoll and break down, until finally the entive benly of the lens has been liquefind and carried oft by the excretory chamels exactly the same as after the discission operation. During this absorption-process the eye should be kept at rest by pardyang the accommodation with atropine, wherehy, also, the iris will more certainly be kept fiee from entanglements with the capsular or cortical remains. It is possible that a portion may resist the solvent action of the aqueons and require needling. While the lens-matter is swelling, symptoms of increased teusion of the eychall must be watehed for and proceeded against as in glancoma. We must also see that no seraps of lens-substane fall agrainst and adhere to Deseemet's membranc, thus causing a large central opacity. Rest for a few days in bed after cach needling is advisable in the majority of cases.

Acquimed Lameldar Cataract.-This variety is also called zombler or perinuclear catamact, and is the most frequent of acquired types. It arises in precisely the same way as the congenital. During youth new lenslayers are being formed, and systemic nutritional failure or abnormalism during the formation of a lamina results in its partial or complete opacification. Subsequent strata formed during better health are again normally tamsparent, so that if the defective layer is not so opaque as to prevent observation of parts beyond it, we may with widened pupil trace the double layer of semi-transprent fibres enclosing a trameparent nuelens and smrombled by more extermal transparent strata. The greater mumber of these cases may be traced to rachitis. In one hundred and eighty-nine case Von Arx found that over eighty per cent. showed signs or gave historics or this affection. In the greater number of instances the coexistence of rachitie teeth or cramial asymmetry will point out the general causal mexns, Nystagmus and strabismus are mot frequent, but are sometimes complicating results. The advisability of operative moasures, and the choice of operation to be carried ont, depend apon the extent of visual defect. If not more than one-half the normal, and particularly if the defect be binocular, thod of soft, arr the lens. sels, parproaches tracted in
cuctration - ruptures ular flums eported in as it were amanently fibres swell an liquetiol ter the disald be kept y, also, the he eapsular the solvent 15 -matter is watched for no scr:ups of thus ceusing necalling is

Illed zonultur 1 types. It the neev lensthnormalism plete oprailiin normully sto prevent as the double Mis and surnber of these ty-nine cates ave historics existence of causal nexus, complicatin. ice of оремаfect. If not be binoenlar,
it will be advisable to operate if we are convinced that the defective vision is entirely due to the cataract. Shonld mydriasis expose a clear lens-sprace at the superior or inferior and nasal segment of the lens, an iridectomy should be done at this place. But when no such elear space exists, or when the opacity is extensive and extreme, extraction of the entire leus is sedom done, diseission usually being the preferable methorl.

Postemon Pomar Catabact.-The ampuired type of posterior polar eatamet differs from the congenital in etiology and in the tissue affecter. It will be remembered that in the congenital type only the capsule is affected, the lens-substance remaining elear. In the acquired variety the posterior layers of the lenticular fibses are disensed, the capsule preserving its normal clemness. From this fact the latter class is sometimes designated as true, and the congenital as spurious, or false, posterior polar cataract. Aequired or true posterior polar cataract is secondary to chronic choroidal discase, hemorrhage into the vitreons, and other affections of the vitreons. Retinitis pigmentosa is in its later stages very apt to be associated with this trpe of catamact. The prognosis is grave, and operation, either from its uselessness or from its danger (the eye being usually otherwise serionsly diseased), is generally inadvisable.

Acquiren Anterion Polar or Capelar Cataract.-The opaeity is timited to the capsule, and consists of a proliferation or hyperplasia of the capsular cpithelimm, caused by the absorbed products of a perforating comeal ulceration. It is not thought that actual contact of the lens-cupsule with the posterior surface of the cornea is always necessary, though this is the most common origin. A perforating uber makes an outlet for the aquens fluid; the anterior chamber is thereby evacmated and the lens pushed forward againsi Deseemet's memhrane, where it comes in contact with the toxic matter of the uleer, and this being absorbed by the capsule induces the opacifieation. With the closme of the uleer, and re-fomation of the aqueons humor, the lentienlar systemi is again pushed back to its normal position. The catanact being usually limited in superficial area repuires only a small optical iridectomy at the superior and slightly inner aspect of the iris, by which nearly normal vision will be preserved and the accommodative finnction retained.

DISEASES OF THE EXTERNAL OCULAR MUSCLEN.

The diffenties and perplexities experienced in euleavoring to arrive at an understanding of the abmomalities of the ocular museles arise from three prineipal somrees. In the first place, the disturbances are excedingly complex in origin and kind; then, they are in many directions entirely inyohed in mystery, and extensive and painstakng researeh is required for their thorongh comprehension ; and lastly, due in great part to our ignorance of the real nature and origin of the pathologie proeesses, there is an unfortunate difference of opinion among writers non a majority of the subjects comected with the study. Add to all this a nomenclature that is
often misloading, neariy always illogisal and inexpressive, and always unscientific, and we have a consensus of diffenties encomotered immediately on entering upon the subject. In a work of the present kind, however, designed not for ophthahic specialists, we may ignore the more recondite and execptional phases or aspeets, and point ont the simpler and more common examples of disease which the generai practitioner will enemonter. These may comveniently be gromped under fomr heads,- ipasms, paralyse, strabismus, and insufficieney; thong? the last two nanes are in many respeets highly objectionable terms.

Spasms of the Oculan: Muscles.-Like other miseles of the body, the external museles of the eye may be seized with either clonie or tomic spasmodie activity. The only example of chome sperm that we need to comsider is the mysterions and chronic form called mystugmus, consisting in, or rather evidenced by, eontimons pendulum-like, ascillatory, or the .dions motions of the eyoball. Both eyes are affected, and the movements may be of all degrees of rapidity, am! may he from side to side, -horizontal uystagmus, - lotatory, vertieal, ete. The affection may arise from vismal defeet of many kinds, whether cansed by comeal disease or danage, by cataract, on by affections of the deeper structures; or it may be produced by eerehal disease of any kind that interferes with the nomal function of the centres. It is not infrequently associated with developmental defeets and anomalies of the brain and montal faculties. In so far as nystagmas is dependent npon peripheral ocular defeets that are remediahle,-ciy., in cataract,prompt action should at once be taken to give the patient the best vision possible before the visual function has been irreparably damaged and before the nystagmus has berome too firm a halbit. When dependent upon chrouid ecrebral or spinal discase, as in hydrocephalne, meningitis, neoplasms, hereditary ataxia, ete, the prognosis and treatment are usually hopeless.

There may also be noted a temporary form of chome spasm due to aente nervons or cerebral disease, as in epileptic attacks, apoplexy, etce.

Tonic spesm of single muscles of an eye hats been observed as a reflex from local irritation cither of the ere or of adjacent parts, and in arole localized cerebral disorders. Spasm of the corresponding museles of the two eyes is called comjugute deriution, and is an evidenee of central discase. -tumors, apoplexy, meniugitis, syphilis, tramatism, hysteria, ete. The lateral muscles are those usually afferted, the eyes tumed cither to the right or to the left. Sometimes the superior recti are seized and the eyes arr rotated upward. The cerebul lesion may be either in the cortex or in the pons, or in the internal capsule. The direction, right or left, towards which the eyes are turned in spasm may indicate the location of the cerebral lesion. In spasm the eyes, as it has been expressed, look away from the lesion, in paralysis they look towards it. Spasm of the orbicularis is called blepharospasm, and is usmully of reflex origin, esperially from astigmatism.

Pabalisis of the Motor Museles of time Eive-It may be safely said that few affections or none offer the physician more recondite
problems and require more skill and knowledge in diagnosis than those pertaining to the etiology and lowation of the lesions cansing the paralyses of the varions ocular muscles. It is, for example, with our present kow ledge, ofien quite impossible to decide whether the lesion is focal or peripheral, temporary or permanent, direst or indirect, ete, and whether thempentic or operative treatment is the more advisable.

I'arelysis of the external rectus is the most frepuent of single-minsele paanlyses, due, as Gowers points out, to the long combe of the sixth nerve orer the pons, which remders it peenliarly subject to aceidents of pressure. The paralyses may therefore be upon one or um both sides. The function of the extermal rectu. is to rotate the eye outward. If the paralysis be complete, and mot, as sometimes happens, partial, the diagnosis is easily made: the eye camot be rotated outward past the median line. If the paralysis te recent, diplopia will be complained of, the distance of the images apart increasing the farther the objeet fixed is carried towards the side of the paralyzed muscle. 'The objeet being held towards the affected muscles and above a horizontal line, the image of the msonnd eye is seen ats if directed away or indined fiom that of the somed eye, whilst helow a horizontal line the false image is inclined towards the ofler. This is caused by the torsional action of the obligue museles. Compled with paralysis of the opposite side oi the body, paablysis of the exterval rectus almost certainly points to a hemorrage or other lesion of the pons.

The superior oblique is the only remaining musele whose sulply is the sole function of a single canial nerve,-the fourth. P'analysis of this muscle is not of great clinical importance, and may exist withont complaint. It is chiefly exideneed by interfereme with motion downward when the globe is at the same time turnod to the nasal side.

Petulysis of the thind nerve may be partial or complete. If complete it is called ophthalnoplegia externa, and, unless plainly orbital in origin, points to cerebmal basal or erus lesions. This nerve, as is well kaown, supplics all the remaining museles of the eye exeept the external rectus and superior oblique. Therefore, when completely paralyed, we have a striking symptomcomplex, consisting of complete ptosis, immobility of the globe inwat, upward, and downward, stabile mydriasis, and paralyzed accommodation. Pambese of individual hranches of the thited nerve supplying separate musdes are comparatively cesy of diagnosis. Pamalysis of the inferior oblique alone is rare and mimportant. In paralysis of the superior reetus, motion upward is impairel ; in that of the inferior rectus, the corresponding motion downward ; in that of the internal rectus, the intermal rotation is defective. In all such cases, if acote, there will be diplopia corresponding to cabl, with increase of the distance between the images ass the object is moved towards the side of the paralyzed musele, chamateristic inelinations of the images, ete. In determining the seat of the lesion we have to consider the history, the coincident affections or paralyses of other muscles, including thuse of the face and the whole body, the completeness and duration of the
paralysis of the affected museles, the existence of other diseases, as tuberele, syphilis, tumor', etc. 'The evident existence of orbital disease, the preceding history of exposure to severe eold or of orbital injury, the history of a foreps-delivery of the child, and other considerations of a like nature, may at once show the lesion to be peripheral. Other symptoms of cerebral or basal disease seme to locate the lesion beyond the orbit. The therapentie measure to be adopted will of course depend upon the diagnosis and location of the lesion. Lecally three plans of treatment are oflered, - the electrical, the orthopaedic, and the oprative. Galvanization or faradization of the affereted muscles has in some instances seemed to do good. The same may he said of the plan of passive exercise by seizing the conjunetiva at the corneal border with the fixation foreeps and rotating it in the direetion of the weakened musele. Exereise with prisms, the stereoseope, or atropine may prove beneficial. Operations are advisable only when other means have failed and when a vear or more has dapsed without improvement. Then temotomy of the antagonistic musele, or tenotomy with adsancement of the paralyed one, may be mudertaken.

Strabismes,-Gquint or " Cross-Efe."-This term properly denotes a symptom, and, in fact, strabismus is a symptom of paralysis of the ocular muscles, of tonie spasm, ete. Some authors make the word cover cases of insufficiency. We shatl use it only to express the finct that in non-paralytic (ases when observing an object with both eyes mocovered, the visual axes do not cross upon the ohjeet. Instead of the term latent strahismus, often met with, the word insufficieney may be taken to denote those cases in which the visual axes do ment at the object, hat only by a strain or an excess of contraction or imnervation umon the part of certain maseles of one or both eves. If the visual axis is displaced to the nasal side, it is called convergent strabismus; if to the temporal side, divergent. The rare conditions in which the vismal line is abormally directed upward or downward are called respectively sursim vergens and deorsmm vergens. If the strabismus is of one eye, it is cailed monocular or monolateral ; if of both eyes, bimocular or bilateral. If one aye always deviates, it is called persistent; if either eye suceessively, alternating. Sometimes the deviation only takes place at more or less regular periods of time, and it is then called periodic. In extreme degrees the fact of deviation is phainly evident, but in lesser degrees it may be shown by directing the patient's gaze at an oljeet and alternately covering and exposing first one and then the other eye. When the deviating eye is forced to fix upon the oljeet lyy covering the somnd eve, the motion of the globe beomes easily recognized. The amome of deviation may be mensured by the strabometer or the perimeter. When the deviating eye follows the other in its movements, it is called concomitant strabismns, in contradistinction to paralytie strabismus, in which the motion of one eye is absolutely limited in certain directions. The devintion of the squinting eye is called the primary deviation. If in a given position the squinting eye be forced to fix the object by covering the somnd eye, it will be fonnd that
the sound covered eye is now squinting. This is called the secondary devintion, and is due to the fact that an excess ot immervation is required in the acting musele of the squinting (though temporarily fixing) eye, and the sume excess is also supplied the somed covered eye, becanse both are dominated hy the sume contre. Concerning the origin of strabismus and of the amblyopia of the squinting eye, there is at present much difference of opinion. Aecording to the view of Donders, convergent squint arises from the excess of accommodative ation in hyperopia, convergence and accommodation being always associated actions. Schweigger, on the other hand, explans the dofect by the matual prepomerame of the interni ower the externi. A thind view, but one that, so fir as hyperopia is comcerned, is in fact bat a logical extension of that of Donders, consists in what hats been called the imervation theory, advaned by Grut, aceording to which not the museles but their imervation is made to areome for the strabismus, whether convergent or divergent, and whether associated with hyperopia, emmetropia, or myopia. The question as to whether the amblyopia of the squinting eye is a result on a caluse of the strabismus is also a disputed one. The probability is that it is both, the one aiding and exaggerating the other. Concerning this vexed question a parenthetionl remark may be interposed that, acrording to the theory of one of the writers, ${ }^{1}$ the long-eontinued existence of ametropia by supplying the macula with an mophysiological and irritating stimulus itself produces a chronic form of macular choroido-retinitis (" central choroiditis") or pigmentary degeneration and amblyopia, regardless of whether strabismus exists or not, but certainly inereased by insufficiency. If fomed true, this theory will aeromet for many cases of amblyopia heretofore considered as the result of disuse (amblyopia ex anopsia).

The following facts therefore stand ont clear and undisputed: that most cases of convergent strabismus are associated with hyperopia, or hyperopie astigmatism, and most cases of divergence with myopic defects, and that the most defective eye ametropically is nsually the squinting eye.

When a patient with recent paralysis of the external oblique comes for treatment, the first complaint is maturally of diplopia. But in cases of concomitant strabismus there is no such complaint, though the two images are formod upon nom-identical points of the two retina. How is it that, as is demonstrably the case, the patient sees with the deviating eye and yet does not see donble? One explanation is that the mind suppresses the image of the squinting eye, a fact illustrated by the mieroseopist or ophthalmologist, who keeps both eves open while using his instrument. Another explanation is also given, tha: by long habit the mental projection of the image of the deviating eye is such that it corresponds to the true position of the object. Unconscionsly the mind makes proper allowance for the malplaced retimal image.

[^71]In the treatment of strabismus the first and most important proceeding is to correct the ametropia and thas establish the momal relationship between accommodation and convergence or divergence. It has been customary to say that this is of little avail, but it is our opinion that this latter opinion is not always to be justified, aud because of these reasons: 1. That an acemate correction of the ametropia has mot been ordered. Reliance has been placed upon the fact that some physician has ordered glasses, prohably withont the use of a mydriatic and by ophthahoscopie examination alone,-in which case no reliance whatever is to be phaced upon the acenracy of the so-called refiaction, regardless of what the skill of the adviser may be. 2. Sulficient time has not been given the muscles to reassume a condition of equipoise or co-ordination. 3. The weaker musele has not been added and partially relieved of its strain by a partially-correcting prism combined with the spectades. By carying ont these measures we can bear witness to the relief of stabismns, in many cases of quite decided long standing and convergence. It hardly needs to be said that in the most pronomeed cases, and especially in older children, only operative measmes, as a rule, promise suceress. The cases in which the spectacles do sueced in keeping the visual axis fixed illustrate and prove the innervation theory of the origin of strabismus negatively as well as positively, since, at least for a long time after begiming to wear them, disuse is at once followed by a resmmption of the original squinting position. The eye having the greater total lateral motility is the squinting eye, whether the squint be convergent, divergent, or alternating ; and this eye is also the more amblyopie of the two.

It is simply a necessary corollary of what has been said that the carlier in life a tendeney to squint is arrested by the "atropine-treatment," or by the spectacle-correction of the eoincident ametropia, the more promising the result and the more certain that the abommalisms of amblyopia and squint will not become fixed. The question ot once arises, what shall be done with children too vomg to wear glasses? If the strabismus is convergent, stop all studies and near work. If the convergence still continue, institute the atropine-treatment,-ice, paralyze the acommodation of the nom-squinting eye by a weekly or bi-weekly instillation of a strong solation of atropine, and thus force the squinting eye to assme a permanent normal position mutil glasses can be wom. It may he added that, if the speetades be sul)stantial and fitted with judgment and care, children may safely wear them at a much younger age than is eommonly supposed. It is not unsafe to preseribe spectacles for a child of five to seven years if the optician and mother (or murse) are properly instructed and do their respective duties. Prior to this age, if the atropine-treatment has been judicionsly carried eut, neither the amblyopia nor the deviation has probably become extreme or eontirmed. We wish particularly to emphasize the value of what we have called the "atropine-treatment," which may be instituted in babes as soon as squint has made itself manifest. In this way a couvergent may be turned into on
ulternating squint, and both the amblyopia aud the extreme loss of muscletalance and development be preventel until an age is reached when spectacles can be worn. But it must be added that for the snceess of this plan of treatment watchfulness on the part of the physician mast be supplemented by systematic, persistent, and intelligent co-operation on the part of the mother and nurse.

When the strabismms continmes despite the spectacles, long worn, tenotomy of the overacting muscle may be carried out, but never, of conrse, without first having acenate anctropie-correction spectaches ready to be worn from the time of the operation. The extent to which the indired fibrous attachments of the musde are to be ent depends upon the degree of ${ }^{\circ}$ the squint. But, since the operation is both painless and without great danger, it is best to err upon the safe side and eut too little rather than too widely. While the tendon is knitting in its new position, all near work shonld be absolntely forbidden execpt when under the atropinc-tratment explained above. Experience shows that the permanent results of the operation are not settled for several months. There shomhl, therefore, he no haste to repeat or do other operations when at first the results seem menatisfactory. So long as frequent testing shows the masele-halance to be in a state of change for the better, no second operation shonld be modertaken. But if at last it is seen to be necessary, we have to choose between reentting the same tendon and a tenotomy of the corresponding muscle of the other eye, with an adrancement of the tendon of the comterbalancing musele of the squinting eye. It may be neressary to mite advancement to tenotomy of the first operation when the deviation is so extreme-thirty degrees or more-that even a large single tenotomy will not give motion enough to the globe. After the operation atropine shonld be ased in the nom-operated eve, in order to hold its fellow in function and by use strengthen it. In divergent squint tenotomy of the externus is ravely useful withont advancement of the intermis.

Insufficiency, sometimes called latent strebismus, is a term used to express those incoördinations of the external ocular maseles in which the visual lines of binoenlar vision still meet upon the objeret, bat in which this is effeeted by an abnormal strain upon or imervation of certain of the museles. It may be called immature strabismus, or strabismms may loe called adult insufficiency. It is evident that it is a more patent form of ocular irritation or "eye-strain" than strabismns, sinee in it the museles only keep the visual lines joined at the object by abnormal or over action, whilst in strabismus strain is renomeed with the fact of the squint and the giving up of binocular fixation. Insuffecieney is almost always present in greater or less extent when there has been long-existing uncorrected ametropia. As in strabismus, so here also, the interni are generally the overacting and the externi the underacting or insufficient muscles in hyperopia and hyperopic astigmatism, the reverse being the condition in myopic defects. There are also in the majority of such cases
ophthalmoscopic evidences more decided in one eye of macular injury, with pigmentary stippling and abnomalism and subnormal visnal aenity. The defect is roughly estimated in decided cases by fixing the gaze first upon a distant and then upon a near object, and noting the lateral deflection of the eye when it is shat out from beholding the object. The more aceurate masurement is made by placing a six-degree or an cight-degree prism, base up or down, before one eye (with ametropia also corrected), and a plame colored lens before the other. 'The two resnltant images of a flame placed twenty feet away appar to nomal eyes in vertical aligmment. The deviation from verticalness in eyes with incoörlinate muscles is measmed by horizontally-placed prisms, and gives in degrees the measure of the insufficiency. Where the interni are weaker than the externi, or where a prism with its base to the nose, axis one hombred and eighty degrees, is required to align the two images verticully, it is best to give at once finf correction of the insufficiency when ordering the refraction correction, the amonnt being divided between the lenses of the two eyes. Where the externi are the weaker of the two museles, and especially if the evidences of eye-strain have not been promomed, the ametropice may be prescribed withont the prismatic correction. In all low degrees (3-5) of external insufficiency it is well to try non-correction for a considerable period first. When the amonnt is high, partial correction may be at onee given. Tenotomy, either complete or "partial," is rarely necessary in insufficicney, and a good, thorough mydriatic refraction will correct both ocular and muscular asthenopias.

REFRACTION.

Emmetropha, or refractional perfection of the visual mechanism, exists when the image of a distint object (theoretioally at an "infinite" distance, —practically twenty feet away) is, with paralyzed accommodation, correctly

Fig. 6.
 and sharply foenssed upon the macula. This comdition is diagrammatically illustrated in Fig. 6, in which paraltel rays of light (that is, those nearly or supposedly so) from a distant object are united at a point upon the retina. Ametropia, or refractional abmormality, exists when the image is not so foconssed. The reason that it is neressary to paralyze the accommodative apparatus to determine these conditions is that the function of the accommodation consists in bringing to a focus rays from an object nearer than the horizon or the so-ealled "infinite distance." In measurements of the refraction of the eye, this function must therefore be left ont of the comt, in order that by our correcting lenses we may put the ametropie eye into a condition such that the full amont of the accommodation may be left in reserve for "near work." Such a condition may be called artificial emmetropia. The varicties of ametropia are hyperopia, myopia, and astigmatism.

Hyppropla, or Hypermetropia, commonly called far-sightedness, is that condition of the eye or its media in which, with suspended accommodntion, the focus of rays of light from a distunt object is, or tends to be, hehind the retina. It may arise from a sulmormal refiactive power of the ocular modia (cornea, aqueous, lens, and vitreons), or from an abnormally short antero-posterior diameter of the eye. The effects in both cases are the sume, so that elinically the distinction is withont interest. From the definition above it is radily seen that even for distant objects the aceommodative aparatus of the eye must exert itself heyond the normal in order to bring the foces forward upon the retima. When the object is placed within a foot of the eye, the rays from it are of couse more divergent and require still greater power on the part of the accommonative apparatus to keep the focus at the retim. From this excess of work and strain arise most of the manifold evils of eve-strain.

An illustration of the hyperopie condition is annexed (Fig. 7). From this it is seen that snela an eye is only capable (with suspended accommodation) of focalizing convergent mys. But such mys do not exist in nature. Hence the reason for the excess of foxalizing power required of the hyperopic eye. Hyperopia is the normal condition of the animal, savage, and infant eye, and from the fact that the antero-posterior diameter of the eye may
 inerease with growth and age, or that the veular media may gain additional refractive power, it is clear that it is possible for a hyperopic eye to become emmetropic, or to progress thence into myopia. But these steps ean never be retraced: myopia an never develop into emmetropia or hyperopia.

The diagnosis of hyperopia, if the child can read letters or figures, is made, and the degree estimated, by means of the test-types and test-lenses, the accommodation having been previonsly paralyzed. Any refraction, of whatever mature be the defeet, is not to be relied upon as aceurate that has been estimated with the accommodation fienetional. The biconvex lens that gives normal vision " $\frac{20}{20}$ " or greater, is the measure of the absolute refraction. But we ean be sure of this result only when we have proved that no astigmatism coexists, and this, if possible, more mexceptionally demands accommodation paralysis. Each eye must be tested separately. The work as estimated in this way may be "provel" by other methods, - by retinoscopy, the ophthalmoscope, the prisoptometer, ete. ; but perfect reliance cannot be placed upon any method except the one first briefly deseribed. In the ease of the illiterate and of young ehildren who have not learned their letters, purely objective methods will have to be pursued. Physicians vary in their choice in such cases, and the judgment of a skilled specialist is required to make a diagnosis close enough to accuracy to promise relief.

In myopia, or " near-sightedness," the globe is too long or the refraetive media are relatively too powerful. This condition is illustrated in Fig. 8.

Fio. 8.

The natural media focus the rays in front of the retina, the eye being adapted only for very divergent rays, or those from very nenr oljects. Hence to see distant ohjects a concave lens is used, or one rendering the rays more divergent, so that the matural focus is put back upon the retina. In both hyperopia and myopia it is the diam eter of the globe along the visual axis that usnally decides the condition, rather tham amomalonsmess or discase of the ocular modia. The eye, as is well known, is always monder a physiologital tension from within ontward. If, therefore, the selerotic be weakened beyond the foree reguired to resist the ontward pressure, there follows a distention at this weak point. Sueh bulging is usually at the pristerior pole of the globe (" posterior staphyloma"). The result is myopia. Many theories have been evolved to accoment for the existence and increase of myopia, but almost all investigations point to the baneful influence of work at short range that is a result of on educational, social, and commercial habits of life. Lispecially to schoolpressure, with poor light, improper desks, and other mhegrienic eiremmstances, is eredited a large share in the increase of myopia particularly in European comntries. It shomld not be forgotten that myopiu in the young, is itself a puthological comdition, and should be looked upon as a disease whose tendeney to increase is to be avoided by all possible saferuards.

The subjective symptoms of myopia are simple inability to see distant objects clearly, and in high dearees of myopia a necessity of bringing the book and near work close to the eye. It should be remembered that in hyperopic and astigmatic defects we may have precisely the same symptoms, but there will in such cases be also one or many of the varions reflex and irritative symptoms of eye-strain. In myopia nocomplicated by astignaltism and insufficiency there is a noteworthy absence of reflex symptoms. This is becanse, properly speaking, no eye-strain exists. The endeavor of the eye is to render the lens flatter or less convex, to relax the accommodation beyond its extremest point. Strain may arise from overaction of the interni caused by the great proximity of the work at near range.

Objectively the ophthalmoscope reveals choroidal changes and degeneration in the neighborhood of the optie disk ("coms" or posterior staphyloma) and the macula which in maliguant or progressive myopia may proceed to large atrophic patehes, hemorrhages, ete., and even to retinal detachment. The diagnosis of myopia is proximately made by the ophthalmoscope, but only with certainty by the test-lenses and distant test-letters. The accommodation must be paralyzed in order to be sure that astigmatism is not present, or, if present, to estimate it correctly. It is commonly said
that a mydriatic is not necessary for the correction of myopia. We would not refiract child nor adult withont it, for we have had many patients who had passed through other hands, and who throngh reliance upon this erroneous rule had missed correction of the complicating astigmatism that was the source of the reflex troubles. The weakest bironeave lens which, with the astigmatic correction added, gives the lest nenity at sixtern inchess distance, will be found the most satistactory for constant use. Full correction is another and a fatal common error. In degrees nbove three diop tries reduction of nearly one-half mast be made from full correction, in order to give the eye its least straining action for hahitual use. The full monsure of the myopia throws noon the ciliary musche the same excess of work that exists in hyperopia. The amount of the reduction mist remain a matter of judgment; the size of the defeet, amoment of aceommodative power, nature of the occupation, ete, are nhways to be considered.

Where myopia exists in children and shows a tendency to incerase (mosgressive or maligmant mỵopia, -a sad and unfortunate condition), strict instruction shoud be given as regarls the light in near work, which must be clear, steady, and strong, and strike the page from behind and one side. large-type books only should be allowed. The book on work must be held ligh and well away from the eye, as nearly upon a lewel with the eye as possible, writing-desks must be sloped and high, the hours of near work reduced to a minimum, froquently interrupted, ete. If the myopia, despite these precantions, still continne inereasing, all near work should be forbidden, and the child made to live as much as possible in the open air, being allowed to "rmon wid." The eyes are certainly more valuable than the so-called ducation. Perhaps after a few years the myopia may become stationary, and then studies can be cout usly renewed. But such a stationariness does mot usually arrive before adult life.

The word Astigmatism is derived from is, "withont," and atifuk, "a point,"-becanse a cone of light-rays proceeding from a point is, by an astigmatic eye, not brought to a point upon the retina, the focus of the rays in one meridian being either a little in advance of or a little behind the retiad. This condition is usually the result of corneal asymmetry, the envature of the different corncal meridians being unequal, and the retinal image (with suspended accommodation) being, as a consequence, irregular and imperfect.

The cut on the following page may help to a comprehension of this defect. The horizontal lines H, H enter the eornea at its least enrved meridian, and hence their foens is behind that of the more eurved meridian $\mathrm{V}^{\prime}, \mathrm{V}$. It is thas seen that the figure or image never makes a true point, but is shaped as shown by the sectional views in $1,2,3,4,5$, ete.

It is evident that astigmatism may complicate either hyperopia or myopia, and in fact it does do so in the great majority of cases. Astigmatism is said to be regular when the two meridians of greatest and of least refraction are at right angles to each other. Irregular astigmatism is rarely
met with, and is usually the result of womds or injuries of the cornen. When one meridian is emmetropie and the other astigmatie, the variety is culled simple; when the general refrnetion is hyperopic or myopio with

Fia. 0.

eocxisting astigmatism, the terms compound hyperopic and compomd myopie are nsed ; when one meridim is hyperopie and the other myopic, the astigmatism is designated as miret.

It can be aecurately diagnosticated only by suspension of the aceommodative apparatus and the use of the test-lenses, with whatever other deviens the individual choice of the oculist may prefer. The existence of macorrected astigmatism is a prolifie souree of mischief, and its complete and acenrate estimation often demands the greatest skill, patience, and judgment. The ciliary muscle by its unequal and partial contraction seeks to nentralize the cfleets of the misymmetrical eornea upon the traversing eone of light, and this mmatmal action is often the prineipal sonrce of the consensus of morbid symptoms called eye-strain. Full correction of the astigmatism is always to be prescribed for constant use.

The Consequences of Uscombected on Improperny-Conrected Ambrropla.-Their name is legion. Few subjeets in medicine are more disastronsly and inexplieabl! misunderstood and ignored than this. Numberless lives have been wreeked in consequence, and there are in every city thousmals of living examples of the fatal neg'ligence or ignorance of the evil influence of eye-strain upon the growing organism and gencral health. Physicians may vainly continue for years to treat their patients with every article of the materia medien in the hope of delieving a headache that springs from ametropia, a chorea due to eye-strain, or an amemia or a dyspepsia that arises from the malassimilation and anorexia whose proper nane would be a reflex ocular neurosis. Limitations of space prevent a complete exposition of the subject here, and we can only refer to articles previously published.'

Concerning headache, it is at last becoming a matter of common knowledge among the laity that it may be "due to the eyes." That it is gener-

[^72]ally due to them, and that its true origin is frequently unsuspected by the genema pratitioner, is a daily experience of every ophthaluologist. But it is a somewhat novel nod apparently absurd thought that the gastric and assimilative fimetions are asually profomilly impaired in the majority of cases of severe irvitational ametropia. We have found clinically that headache usually precedes, and is usually continuous with, the gastrie tromble. This last commonly consists first in an unaceomitable loss or fickleness of appetite. As the irritation has erented an abommal amomet of nervons energy, nature seeks an equipoise by lessening the production at the point of origin. The mechanism might be not imptly likened to the governor of a stam-engine, - the greater the speed the more the stean is shint off below. An amiogons but reverse process physiologically is the antomatic mednaism whereby deoxygenated blood, by its netion now the centres of respiration and cardiac inhibit:on, quickens the aetion of the heart and longs. With failing mutrition there is genervl diminution of vitulity, a growing languor and malaise, alternating with periods of exessive hyperasthesia of the nervons system. The irritation contimuing, the anorexia proceeds to fits of namsea, and ceen vomiting, ending finally in ote of the many forms of chronic dyspepsia, or "sick headache." The physician has been appealed to, and long courses of dieting, artificial foods, bitters, mineral acids, or tonies, have been tried in vain. Donbtless every phesieian vividly remembers a number of such puraling eases. We have had a great many such eases in which, within a week or two atter the wearing of proper spectacles, the gastralgias, dyspepsias, and loss of appetite disappeared, and within a few months the body-weight increased from ten to twenty pounds. If the spectacles are aceidentally broken, the symptoms quickly recur.

In the young the consequences of eve-strain are excedingly prone to arise or become ingravescent about the time of puberty. There can be little doubt that delayed menstruation may be due directly or indirectly to eye-strain. Another complaint of parents, and one almost always existing in children who are choreic, nervons, and anemie from ocular irritation, is night-terrors, and restlessness. "Has no more nightmare and erving out in sleep since getting the spectacles," is a frequem report. We have also noted the cessation of noctumal enuresis, in a few cases under like eiremmstances. In several cases coming under our observation habitual "carsickness" has disappeared with the wearing of spectaeles. It mey be worthy of question if some causal relation may not exist between ocular defeet or finction and sea-sickness. That chorea may be of ocular origin is now admitted by the best diagnosticians. We have had cases of several years' standing in young girls who had been persistently but unsuceessfully treated with arsenic, the bromides, ete., and in whom all symptoms disappeared almost immediately after the wearing of glasses. In others great excitability, irritability, nervousness, lack of self-control, ete., ranished in the same way. These deleterious effects upon the emotions and disposition mayVoL. IV.--10
and, if long continued, must-have their effect upon the entire character and after-life.

Eye-strain may also influcuce the life in another way, so that oceupation and pursuits in life are unconsciously governed by it. Study and literary labor become so wearisome that the child's mind is influenced against them. The parents are grieved that the taste is slowly but irrevocably turned from intellectual pursnits and the mind directed to physical activities for ontlets of its energies. The bearing of' such facts cannot be overestimated when we think of onr school system; our high-pressare civilization; the suddemess of the strain, since the invention of printing, thrown at once upon the maturally hyperopic eye; the incerblending of ocular functions with every act, physieal and psychical ; and the fact that the enormons load is thrown upon the young organism just at its most plastic and formative period.

A strange faet relating to this whole class of disorders is that the patient may not, and usually does not, feel or exhibit any signs that the eye is the source of all these manifold and seemingly distant results. Sometimes the cye or its appendages may show the results of its own irritational work. In children, styes, blepharitis, and conjunctivitis sometimes exist as the evidences of anctropia, but more frequently the reflexes are to the head, to the digestive system, o: to other special or general organs.

We have elsewhere attempted an explanation of this peeuliar fact in one class of cases, especially applicable to girls approaching puberty. The essence of the thonght is that in the sensitive, emotional, and intellectual of both sexes, but particularly in girls and young women, the irritational eye-strain reflex that normally or physiologically wonld return eyeward is inhibited, with the result that headaches follow ; or it is derouted to other organs that suffer vicarionsly. The reason of this inhibition, overflow, or deroutation is to be looked for in the enormons importance of the function of vision to the organism in general, and to an exceptional degree in the attion of sexual selection, clear and healthy eyes being of the highest importance in influcncing sexual choice through beauty. Hence the corollary that the smallest amomet of ametropia in girls and women shonld be corrected, an amount that in men conld be salely ignored. According to the fineness or delicaey of nervous organization and the preponderating quality of sexual instincts will eye-strain be disastrous to the general health. All this applies with less foree to non-eity-bred children or to those who are not pushed by their own ambition, their parents, or the cramming systems falsely called educational of many schools, to an excess of book-work and accommodative effort as harmful to the eyes as it is, both positively aud negatively, to the body and bmin. However much of the mischief (eun or will be obviated by relief of the eye-strain,-and certainly much can,-a liberal surplusage will certainly remain.
ye
aris
be
of
in t
dire
same
form
lidn
and
how
rema
wrinl
Often
the er howev
cocain
it maly
beddei slould ramd instron
decply
commor from w

Wh
anterior it cau bo ment, ac geon.
entered
${ }^{1}$ Arlt
bull, M.D.

WOUNDS AND INJURIES.

It should not be forgotten that it is in the treatment of woands and injuries that the general physician will be called upon for prompt and skilful service, that upon the results of immediate measures will often depend the question of the patient's vision or blindness, and that every case may hase possible medico-legal complications. In reference to the latter aspect, the excellent instruction of Arlt ${ }^{1}$ is worthy of the study of the careful practitioner.

Fonmign Bodies.-On the part of grown people there is usually a dear hist ry and conscionsness of the facu when a foreign body is "in the eye," but in children this is not so frequently the ease. When there has arisen sudden congestion of the conjunctival capillaries of one eye, we must be on our guard, aid at once institute a therough searlh for some particle of dust, ete., that may be lodged upon or in the congianetiva, the cornen, or in the enl-de-sacs. It is necessary to illuminate the cornca from different directions, that a body may be thrown into relief when it is perhaps of the same color as the iris-background, or as the tissue itself. If nothing is found in the exposed parts of the eye or in the inferior enl-de-sac, the uper lid must be everted by grasping the lash, directing the patient to look down, and carefully turning the lid upon itself. It is always at couse of wonder how small a foreign body can produce such discomfort and pain, and the remark illustrates the necessity of serutinizing every part, of unfolding all wrinkles, and of looking at different anglns in order not to miss seeing it. Often a two-inch condensing lens will help to illuminate the object. Before the examination, or at least before attempting removal of a foreign body however superficially located, it is best to use a drop of a two-per-cent. cocaine solution. If the particle be loose upon the conjunctiva or cornca, it may he brushed off with a moist wisp of absorbent cotton ; but if embedded, a corneal spud will be necessary for its removal. The instrument should be so held that any spasmodie motion of the eve or head will not wound the part. When irritated, the eye is rolled upward, and hence the instrument should be lightly held. When a cinder or a particle of steel is deeply embedded in the cornea, great care and judgment are required. A common but a reprehensible practice has been to use astringents in eyes from which a foreign body has been removed. It is in no case advisable.

When a foreign body has penetrated the glohe and can be seen in the anterior chamber, it should be removed by incision in such a manner that it cum be best reached either by a magnet, if it be steel, or any other instrument, according to the ciremmstances and the choice of the painstaking surgeon. The patient should be anasthetized. Removal of borties that have entered ". vitreous chamber requires ex aptional skill, and is certainly

[^73]not to be undertaken by any but the most experienced hand. If such a person can see the patient within a day or two, and before the body has become encysted or covered with lymph, it may be removed. But where operation is not at once possible or is for any reason inadvisable, it is best to have the patient lie rigidly still npon the back and with the head high, in the hope that the body will settle in the lower and least-used part of the vitreous chamber and there become eneysted and stationary. A few cases have been reported where foreign bodies have entered the lens and remained there withont setting in, cataract. Of conse any attempt to remove such would almost always result in rupture of the capsule with the consequent cataract.

Buns of the Eye, either by dry or by moist heat or by chemicallyacting substances, are diffienlt of treatment, and are of such varions nature that few hints can be given for guidance in this respeet. If the iujury be seen at once and if it be caused by acids, then an alkaline lotion-say, a tanspoonfinl of bicarb nate of sodimm to a cupfinl of water-is indicated, with which the whole cye should be freely irrigated. When the iujury has been cansed by alkalies,-as, e.g., by lime,-then an acid wash-e.g., vinegar diluted with one-half water-will be very useful. But in either case no time should be lost in waiting for or preparing these things. Water is almost always at hand, and with this the eye shouk be cleansel and thoronghly washed. The greatest danger in all cases of burns is that the conjunctival surfaces of the opposite lids and globe may have become demoded and in hasing they may grow together in an incurable symblepharon. The most promising way of preventing this is to keep the eye bathed and the sulei filled with castor oil, and to break up the adhesions that may begin forming by frequently passing a probe or spatula between the surfaces. If the pain become intense, cocaine must not be used, but anodynes and cold compresses, with paralysis of the accommodation, wiil be fonnd most efficacions.

Iniuries of the Eyblins require more care and watchfinhess than are usually given them, owing to the fact that motehes and subsequent cicatrization are very apt to distort and evert the lid, with consequent lachrymal troubles, or to invert it, with all the sequele, pamms, ete., that follow upon entropion or inversion or malposition of the cilia. In a general way they are to be treated as an injury elsewhere would be, but with especial reference to the peenliar function of the tissues and the dangers we have adverted to. Gaping wounds should be most carefinly and accurately sutured in place, instead of using court-plaster. Owing to the extensive areolar tissuc, extravasation of blood is common. If the cedema be great, fracture of the orbital walls or border should be reekoned among the possibilities.

Rupture of the Globe is rare, and is usually the result of contusion with a blunt body. Owing to the fact that the nasal side of the globe is more protected than the temporal, the blow is more commonly upon the latter side, but by reason of the transmitteri force, or "contreconp," the rupture is more frequently in the choroid and non the nasal side.

Permanent recovery from a rupture through the eiliary region will never take place. The subsequent eicatrization will induee eyclitis and such irritation that enueleation must follow sooner or later. So that the rule is without exception that, where the eiliary body has been certainly broken or cut through, immediate enuclation is the better procedure. Evr if the globe be saved, there is apt to be little vision, and the danger or sistent cicatricial irritability and sympathetie inflammation is great. In such eases, also, the lens is frequently dislocated and the capsule ruptured, so that cataract is a common complication. If the lens be in the anterior chamber, it should be extracted at once. If the lips of a purely sclerotic ent or rupture show a tendeney to gape, a few delicate stitehes may be taken through the extermal edges of t lips of the wound and the conjunctival tisues. When the cornea is extensively ent or ruptured and a large part of the iris protrudes, this should be drawn out as far as possible and excised. This may even have to be repeated one or more times, in order to aroid extensive eicatricial inclusion of the iris in the lips of the womd. According to the location of the wound, the use of escrine or of atropine may be advisable to aid in the retraction of the iris. The bandage should be firm, but not tight.

Penembating Woendg and Sympathetic Inflammation.-Many remarkable cases have been reported of the retention of large foreign bodies that lave penetrated the orbit. In such cases, therefore, one must be on his guard not to overlook them, by inquiries as to the exact nature of the object causing the trammatism, by careful examination of the wonnd, ete. In perforating wounds of the cornea there will probably be hemia of the iris. If this be extensive and camnot be reduced, the protruding portions must be excised as deeply within the lips of the womd as possible, and the eye atropinized and firmly bandaged. If the hemia recur, the same operation must be repeated, since extensive inclusion of the iris in the round is to be avoided at all hazards, a fact that necessitates a subsequent iridectomy to release it and to keep the eye from constant pain, iritis, and irritation. But if the hernia be of only a small portion of the iris, it is best to try the effect of atropine, rest, ete., rather than mutilate the iris, and also beeanse if only slight adhesion take phace a subsequent iridodialysis or iridectomy may remedy the trouble. When the ciliary body has been cut through, there is the same danger as that to which we have adverted in the preceding paragraph, and cancleation must follow.

Whether to ennclate at once or not in cases of doubtful implication of the ciliary body is often the most perplexing of questions. If not done, and fatal sympathetic inflammation ensue, it is of course the saddest of results. Therefore it is better to eir on the side of sufety and enucleate, thongh the condition of the injured eye promise some slight chance of recovery. The existing complications, the extent of the injury, the condition of the other eye, the genemal bealth of the patient, ete., must all be considered. At all events, and iu all eases, careful seareh must be made for possibly retained
foreign bodies, thorough cleansing and antiseptic treatment instituted, perfect quiet enjoined, ete.

Sympathetic trouble may not only follow tranmatisn, but may also result from any destructive disease of the eye, especially of the ciliary body. In such cases, that primarily injured is cailed the excitor, the other the sympathizer. Sometimes the excitor is a shrmken glove that in consequence of extensive choroidal or ciliary discase has become affected with phthisis bulbi or progressive atrophy and shrinking. It is customary to divide sympathetie trouble into two groups, -sympathetie irritation and sympathetic inflammation. The method by which the somed eye is affected by the excitor is a matter not yet wholly made manifest. Clinically, the period of irritation-eonsisting (in the sympathizer) in limitation of the accommodation, sharp pains, photophobia, lachrymation, congestion, ete.-is of extreme importance, as heralding the probable approach of a true inflammation, an irido-eyclitis. In either stage the earliest possible enucleation of the excitor is imperative.

SURGICAL OPERATIONS UPON TIIE EYE.

In all operations nom the eyes of children, it is better to anesthetize the patient. The operation can frequently be done during the primary effect of ether or chloroform, when properly given. The stomach should be empty, food having been forbidden for several hours prior to the operation. Subsequent to the operation, we should see that gastrie pain does not arise, cansing the child to ery, and thus endangering the suceess of the operation. Paregoric is probably the best anodyne in such cases. A small mustard plaster over the epigastrimm, and other measures, may be orderel, according to the ciremmstances or the preferences of the physician. It is generally useless to attempt bandaging the eyes in the case of an infant, on aceoment of the alsence of hair, the smoothness of the scalp, ete. Where a bandage is necessary, it may be retained in place when placed over a tightfitting cap or hood. A dark room is usually preferable to bandages.

Operations to Reheve Obstrechions of the Lachrymal Excretony Apparatcs.-Epiphora may arise from an excessive secretion rather than from an impeded outflow, and doubtless operations upon the canaliculi and duct have sometimes been carried out where more carefinl search would have shown sone reflex or other source of local irritation to account for the excess of tear:; in the eyc. Sometimes, also, the canaliculus and duct are normally patent, but the puncta are either slightly everted, or closed be a foreign body, or stenotic from inflammation or eicatricial contraction. In these cases it is monecessary to slit the canaliculus or to probe the duct, and where there is not positive evidence of uasal disease or dacryocess titis, it is better to begin by opening or extending the opening of the puncta. When there is not perfect apposition of the puncta to the globe, a simple proceeding corsists in inserting the sharp point of the scissors into the opening and dividing the conjunctival surface vertically downward for one or two
pose
rare
When
by ele
in drav
The tis
the inn
If
requires
removit
the port
the upp
The margina taining skin of allel wit sponding the eilia
millimetres. Where this is insufficient, or where it is necessary, on accomnt of purulent disease of the sae, to divide the canal lengthwise, a pectuliar blade is used-Weber's canalienlus kuife-with a tiny bulbous point which guides the advancing knife along the tube. The physician, standing over the amesthetized patient, uses one har do withdraw the lid from the globe and make it tense, steady the head, ete. The bulb having entered the puncta, the knife is held horizontally and is advanced along the canal mutil the bulbons point reaches the lachrymal sac; then, while the lid is held by the thmmb of the other hand firmly to the temporal side and kept teuse, the knife is raised to a vertical position and the canaliculus is divided up to the month of the sac. Constriction of the nasal dnet may be incised by now rotating the cutting edge of the blade anteriorly and pushing the knifo downward and slightly forward into the cavity of the duct. Sometimes the duct shows a persistent tendency to constriction and elosure, thongh this is seldom seen in children. If' so, a probe made for the purpose may be used till the duct remains patent. Care must be used that the probe do not form a false passage, and also that it be inserted properly. Aente abscess of the lachrymal sae should be immediately and freely opened, and after this watchfulness exereised that a lachrymal fistnla do not form.

Meibomian Cyst.-Upon everting the lid we sometimes find the cause of conjunctival congestion in a localized purplish discoloration and swelling of the subconjunctival tissues. The duct of a Meibomian gland having become oceluded, its retained secretion canses distention and inflammation of the part. It shonld be freely incised upon the conjunetival surface, and the contents removed by scoop and seraped with a sharp spoon.

Biepinaroplasty.-Plastic operations upon the lids are for the purpose of correcting entropion, ectropion, cieatrices, or injuries, and for the rare congenital ptosis from lack of development of the muscular fibres. When in entropion only a few hairs are ineurved, they are best destroyed by electrolysis, or given a different direction by illaqueation, which consists in drawing each lash through a needle-hole by a lasso or loop of ligature. The tissue containing the hair-bulls of the lashes may also be excised from the inner margin of the lid after dissecting away the conjunctiva.

If a large extent of the lid is turned in, more radical measures are required. The most common mode of correcting this in the sower lid is by removing a strip of skin parallel with the lid-edge, the width and depth of the portion of exeised tissne heing proportional to the effect desired. If of the upper lid, the choiec lies between several operations.

The Jacsehe-Arlt operation consists in splitting the lid along the intermarginal edge three or four millimetres deep. The anterior portion containing the cilia is made free except at the ends by an incision through the skin of the lid about three millimetres from the edge of the lid and parallel with the same. Above this a fold of skin is removed entirely, corresponding in size with the effeet desired, and the ribbon of tissue containing the cilia is brought up and fastened in the space of the excised tissue by
sutures, thus bringing the edge of the lid with its eilia into a normal position. Von Graefe's operation is similar, except that vertical incisions onethird of an inch long are also made from the two extremities of the ribbon of eilia-tissue, and the ends of the same near the canthi are better elevated by sutures into the outer lips of the vertical incisions. Hotz excises a layer of muscular fibres over the tarsus three or four millimetres in breadth at the upper border of the tarsus of the upper lid or the lower border of the tarsus of the lower lid, and sutures are passed throngh the upper edge of the tarsis. In Dianonx's operation two parallel hands, one containing the cilia, the one above it simply the skin, each abont three millimetres broad, are made by splitting the lid and by an ineision parallel to the lid-edge extending to the cartilage. The upper is drawn moder and below the lower, and its lower edge sutured to the conjunctival edge of the lid ; the ribbon of cilia-tissue is thas rased from the border of the lid, and its upper margin is sutured to the lower of the superior incision of the lid. Streatfeild and Snellen remove a V-shaped wedge of skin, muscle, and tarsus, parallel with the lid-edge; and Von Burow's operation consists in a conjunctival incision of the cartilage three millimetres from the border of the lid, cansing gaping of the womd and moderate eversion of the free clge.

Wharton Jones's operation for ectropion is illustrated in the annexed cuts (Figs. 10, 11). A V-shaped incision is made with the limbs extending

Fig. 10.

Fig. 11.

Wharton Jones's operation for ectropion.
toward the canthi. The enclosed triangular flap of skin is then dissected up and rednced by excision to the desired extent, and the lower part of the incision bronght together ber sutures, so that the final appearance of the womel is that of the letter Y. The contraction thas produced by the eicatrix brings the lid into apposition with the globe. Argyll-Robertson's operation consists in inserting into the lower enl-de-sae a piece of sheet-lead abont the size of the lid and conforming to the parts in shape, against which the fid is brought into apposition and the normal position by tension upon ligatures passed from without through the free edge of the lid, thence through the bottom of the enl-de-sac out upon the cheek below. Bits of rubber tubing
are used under the external loops of the ligature, to prevent their cutting through the integument, before traction is made. If the lid be thickened by an overgrowth of subeonjunctival tissue, a V-shaped mass may be excised the length of the everted lid, prior to the ligation.

It may be said that operations of this kind are vare in children, thongh sometimes necessary or possible in those approaching puberty. The cartilage in children is not futly developed, and this fact must be considered when operations are done on the lids.

Trammatic or cicatricial eetropion can ouly be cured by transplantation of a flap with pedicle from the adjacent forehead, temple, or cheek, or from the arm, or by transplantation withont pedicle from the arm. The unsightliness of the facial wound thus produced gradually grows less in time, and the flap from the face usually gives the best result. It must be larger than the freshened or denuded space it is to fill. An ingenions method of repairing a loss of tissue at the canthus is shown in the amexed cuts (Figs. 12, 13). The space a being denuded and freshened, the flap b is

Fig. 12.

Fig. 13.

Hasner d'Artha's blephazoplastic operation.
dissected up, twisted upon the pedicle c, and the points d and e are sutured to the lower and upper lid so as to form the normally-shaped angle between.

Peritomy, the object of which is to relieve pamms by a dam of cicatricial tissue about the corvea, is performed loy dissecting off a riblon of conjunctiva one or two millimetres wide close to and encireling the cornea. It is rarely requived in children.

Dense corneal stapiryona, or bulging of the weakened cornea from the intriocular pressure, may be removed in several ways, one of which is shown in the illustration following (Fig. 14). The main body of the staphyloma having been removed by two incisions through the dotted lines, the sutures are at once tightened and a movable stump thus obtained. Another method is to run a strong contimons ligature through the healthy loosened and undermined conjunctival tissue and sclem surrounding the staphyloma, so that, after excision of the latter, traetion upon the ligature acts like a "puckering-string" and at once closes the conjunctiva over the space of the excised tissue. Mules, of England, advises clearing out the entire contents of the globe and filling the cavity with a glass ball.

In cases of dense corucal leneoma the unsightliness may be greatly improved by tatcoong the connea, by which a elose approach to the appearance of a pupil may be made.

The inersioh for inidectomy, or to make an artificial pupil, is shown in Fig. 10. \cdots The knife used is a triangular keratome, and is entered at the

Fia. 15.

corneal limbus or border from above and to a depth requisite for the proposed operation. The iris is then seized at the pupillary border by the
iris-forceps, withdrawn, and a picce, of the size and shape desired, excised by one stroke of the scissors. Atropine, to pull the iris ends out of the wound, is perionlically instilled, and the eye kept hamdaged for two or three days. 'ilhis operntion is uscful in anterior or posterior syuchin, to make an artifieial pupil in case of partial opacity of the comea, und also as a therapentic measure in glancomatous tension caused by adherent lencomata.

Discission, on Nefiding, is an operation frequently required in congenital cataract of the young. The adjoining cut (Fig. 16) gives a good

idea of the proceeding. The point of the stop discission-needle is passed into the anterior chamber from the side of the cornca and past the dilated pupil until it pierces the anterior capsule and the substance of the lens; by movement of the point the capsule must be freely ruptured and the lens broken up to the desired extent so that the ayueons shall gain admission to

Fig. 17.

e for the ler by the
it, cansing it to swell and become opaque and finally to break down and be ahsorbed, leaving an unimpeded path for the light. In recurrent or cap-
sular cataract after an extraction of the lens the sume operntion is made use of to break through and depress out of the way the central portion of the opaque capsule. 'Two needles are commonly used for this purpose, as shown in Fig. 17, wherely an upening is more certainly and acemately made by rupture and disphacement outward of the apsule by the two needles meeting first at the centre of the pupillary space. No reaction usually follows the operation.

Tenotomy in Case of Strabismes.-Grmefe's subeonjunctival operation is the proper one in these cases. The opening is made at a point tangent to the lower calge of the comen. 'The conjunctiva and Tonon's eapsule are vertically cut across over the lower edge of insertion of the muscle-tendon, and the opening widened sufliefently for operative purposes. The stra-bismus-hook is then inserted beneath the temdon, which is drawn forwath, and. by inserting the blades of the seissors (blunt points and eurved on the flat) between the hook and the globe, the tendon is divided chase to the globe. If the most extreme effect possible is desired, the lateral and posterior attachments of the eapsule of 'Tenon may be divided. A suture may be used to close the conjunctival opening and drawn more or less tight to reduce the eflect of the operation. Put atropine into the fellow-eye, or use correcting aquectacles at once.

- Advanoemper.-When the effeet of a tenotomy is insufficient to give the desired change in the visual axis, it must be repeated when the opposing muscle is advanced. To do this, a ligature passed about the tendon at its, insertion firmly seen.res the muscle by the loose ends of the ligature. The tendon is then divided close to the selcrotie and its lateral attachments are freely divided. Another ligature is now passed through the musele behind the one grasping the ent end, which last is excised with as mueh of the tendon itself' as is desirable to grive the effect of increased power over the globe. The free ends of the ligature pa-zed through the musele are now passed throngh the pericorneal conjunctival and subeoujunctival tissue above and below, and traction and knotting secure the divided tendon in its new position till mion has taken place. Jt is generally considered best to make about one or two millimetres of over-effeet at first. If the strength of the sutures is doubtful, a stay or anchor suture may be made from the skin of the imner canthus.

Prince's "pulley" operation is perhaps preferable. A ligature is passed vertically in and out several times through the conjunctiva one millimetre from the cornea in the line of the muscle. An opening is then made over the tendon-insertion, and, without dividing it, the muscle is loosened from its attachments behind its insertion, so that a second ligature may be passed through the conjunctiva and muscle at this place. The tendon is then eut at a point removed from the insertion proportionally to the effect desired. The first or anchor suture near the cornea is now made into a loop by tying, one end of the suture through the muscle having first been passed through or muder the loop to be made. It is obvions that traction upon the ends of
the ligature through the muscle acts now like a pulley to draw the ent end of the moscle forward. The amount of adsance may at the time or subserpuently be regrulated at plassure.

If vomiting is threatened during an operation for tenotomy or advancement, the speculam should be quickly removed and firm compression made by the hand protected by cotton or a bundage. This is done in order to avoid subeonjunctival hemorhage and the rare but possible and disastrons result of a hemorthage into 'Tenon's space, whereby mobility of the eye is destroyed and other complications may ensue from the presence of an extensive clot.

Enucleation of the Eveball.-The patient is anesthetized, as in every case of manipulation of the eyes of children, the cyelids are held apart by a speculam, aud the globe is hold by the fixation-foredes. The conjuctiva is separated from the eorneal attachment as close to the corvea as possible, with a pair of eurved blunt scissors. 'Tenon's capsule is then opened over the insertion of the extermal rectus, which is now caught with the strabismus-hook and divided close to the globe. Each of the muscles is in turn then severed in the same way nutil the globe is held only by the optic nerve. Passing the seissors on the nasal side between the eapsule of Tenon and the globe, and pressing the globe upward, the nerve is divided close to the globe in ordinary cases, but as far lack as possible in case the enneleation is made during or following malignant disease. Antiseptic sponges or a pleflget of sublimated cotton may be used to arrest the slight hemorrhage. After thoronghly elemsing the socket, the lashes shonld be softened by vaseline, to keep them from becoming matted together. A firm bandage shomld be applied for twelve hours, and the socket cleansed and dressed for several days until healing is well adranced.

Artificial Eyes can be wom in two or three weeks after entucleation. In all eases the eye should be too small rather than too tight or promiuent. It should be removed every night, kept in an antiseptic liquid overnight, and anointed with vaseline prior to insertion. When it becomes rough from long wear, it should be repolished or another substituted for it. The socket should be cleansed with an antiseptic lotion onee a day. It may be added that the art of choosing and fitting artificial eyes requires exceptional skill, judgment, and experience. The stoek to choose from must be very large, and the conformation of the soeket studied in order to give comfort to the patient and an approximation to the normal mobility and appearance, which is sure to follow a properly-removed globe.

OPH'THALMOSCOPY: LOCAL DISEASES AND FUNCTIONAL DISORDERS OF THE CHOROID, OP'TIC NERVE, AND RET'INA.

by CHARLES A. OLIVER, M.D.

Hughinges Jackson once said, " It is, I submit, imperative in all cases of severe cerebral disease, at all events in cases of an acute kind, to examine the eye with the ophthalmoscope, whether the patient complains of defective sight or not:" this assertion he hats since made much stronger loy adding the words "even if" he affirms that he can see well, and if he reads small type readily." To this we may add that proper and carefinl ophthalmoseopic examination shonld be made in all cases where organie disease of any relaterl kind is suspected. With the present inadequacy of knowledge of the exact relationship between certain visible intraocular changes, and the many varietics of supposed cansative systemic disturbance, it is, of course, impossible to give any typical description of the changes that may occur in the two most important ocular registers (the retina and the optic nerve), althongh in any definite disorder this diffienlty will modonbtedly be greatly removed by strict, frequent, and painstaking observance of the method.

Here, idiosynerasies, like those in any other part of the organism, are So numerous, and congenital aboormalities, thongh slight and often unnoticed by the incompetent observer, atre so frequent, that mistakes must for a long time in the future be expected, until thorough systematie exereise with instruments of greater power has rendered the metlood a certainty.

With the present plan of study by means of the ophthalmoscope, a background comprising nerve-tissue, connective material, and a portion of a peripheral vascular cirele is stretched before us. Its varions parts are all arranged in a definite way. The intracular bulbar ending of the second nerve-the so-called optic disk-is most frequently recognized as a small oval expanse of lighter color than the rest of the gromd situated to the imer side of the ophthalmoscopic field. From some part of its surface can be seen an entering vessel dividing into mmerous stems, whieh by the color and reflex of its contained blood, its comparatively smaller size, ame

 arts are - second a small 1 to the surface
by the ize, and

 der Anown, Ths. 1.
its lesser tortuosity, can be readily differentiated as an artery from the branches and main trunk of the ontgoing veins: one is the central retinal artery, and the other is its corresponding vein.

Systematic and careful study will soon render an observer able to note the many differences in the appearance of these structures, and to draw proper conclusions as to whether there are departures from what is understond to be normal. First studying any change indicative of abmormality and of local disease alone, we will finally consider those alterations which ofttimes indicate the existence of systemic disease.

The instrmment should be ot the best pattern, and the observer should be sufficiently tanght to note understandingly what he sees. Careful record should be made of the details of the fundus, no matter whether they are pathologically interesting or not. Every detail should be written, so that if there be any future change the comparison will becone at once apparent. ${ }^{{ }^{1}}$

The elassification which follows has been made not only becanse there is at least some anatomical correlation between the special form of local disease and the gross systemic lesion, but also for convenience of handling the material whilst in search of related changes. Of course, in the present chaotic state of etiology, it won id be impossible to assert dogmatically the position of any symptomatic form of disease of the choroid, optic nerve, and retina, as having origin in any certain strncture; but wherever the position is fairly definite, or the symptomatology points more especially to the sitnation of the general disease, the changed condition of these portions of the ocular apparatus will be noted in the text.

1. LOCAL DISEASES.

malformations and abnormalitirs.

Malformation in the shape of the disk, irregularities of size ind pendent of refractive error, changes in the apparent surface not the result of pathological condition, and alterations in the character of the physiological excavation, have all been mentioned by varions anthors.

Both Fuchs ${ }^{2}$ and Loring ${ }^{3}$ have seen the disk covered by a thin opaque membrane, which eoneealed the entrance and exit of the retinal vessels: this anomalous condition of the head of the nerve does not seem to interfere with vision in any way, on account of its sitnation in the blind spot

[^74]of Mariotte in the vismal field. The writer has recollection of a very interesting example in the right eye of a young girl treated in the out-dow patient department of Dr. William F. Norris's service at Wills Eye Hospital. Vision and acemmodation were both momal after correction of an existent ametropia, and the visual fieds were apparently not reducel or disturbed in any way.

One of the most frequent variations in the choroidal structure is that of the pigment. Instead of heing ideally perfeet in distribution, as is so frequently seen in diagrammatic sections of the human eve, it often forms areas of aggregation, ete., as, fin instance, aromed the edges of the optic disk. Here, an we so frequently mote, the masses assme definite forms, such as rings, loops, and erescents; these, as is vell known, are by far the most common upon the lateral borders of the aerve-head, especially to the onter side. If these grompings are wot more than ordinarily pronomecel, the case camot be considered atepienl. Again, in many instances, where there are no special appeazances of chonvidal inflammation, the heavy blark interspaces between the choroidal vessels are plainly visible in the peripheral portions of the findus. Moreover, isolated aggregations of pigment may from time to time appen in cases that do not present any assignable canse or reason for such ocemrences, axept the possibility of low grades. of choroiditis during the child's intra-nterine existence. Loring ${ }^{1}$ eites a remakable instance, and Jacger ${ }^{2}$ gives an almost similar case, exeppt that in his case the massings of pigment were situated in the superior temporal portions of the fundus.

Just as in the lower forms of anmal life, where we have individual instances of great deficiener of general pigmentation, so here in the useal tract, the choroid is made to suffer. Athough grading from the most promomesed types of I fitienn negro to the lightest Cancesian the amonnt of pigment is constantly decreased, yet in both of these extreme types of man we not unfrequently hatve exeputional examples of great deerease of the amome of pigment; these cases being rlassed under the gencralizing term albiaisin. Here the fundus is almost brilliant in appearance, the underlying vessels of the choroid being plainly visible. Jacker (loc. cit.) gives us a beautiful chromo-lithograph of this andition. Menst frequently the region of the macula suffers the least, there generally being a fair amont of pigment situated in this protion of the fiundes.

Comycuital reposits of pigment upon the rlisk-surface, fiom the very minute quantities so ordinarily seen, up to the dense massings depicted as such by Jacger, ${ }^{3}$ should not be confonded with pathological change. Similar pigmentations ans seen by Liebreiel ${ }^{4}$ are sometimes met with in varying amounts, from the narrow concentric and line-like aggregations bordering

[^75]the edge of the nerve, down to almost entive defieicney, as in albinism, where the muderlying choroidai struetures are plainly visible.

Abnormal tint of the disk-substance has been mentioned, as, for instance, in Case V I. of Jacger's collection, which if studied by artifieial light (the (ondition mader which it was sketched) gives a distinet bluish east.

Jacger ${ }^{1}$ and Manthner ${ }^{2}$ have deseribed what they term an abnormal transparency of the nerve-fibres, giving the disk an appearance of greater depth than usual: this, which might be supposed to be due to transpareney of the transverse hands and vessels of the lamina, is explained by Loring ${ }^{3}$ on the supposition that the lamina is really situated more posteriorly. Loring says that he has never seen this condition, but has recognized what appeared to be an abormal transparency of the nerve, "in which minute vessels appeared to be embedded as if in some gelatinons substance." This he attributed "to a lack, or almost entire want, of connective-tissuc elements, and to a paucity of the smaller vessels." If carefully scarched for, this condition will be found to be more frequent in children than may be supposed. In not a few instances, small irregnlar areas can be distinctly discerned, especially to the temporal side of the nerve-heal, in which the nervesubstance appars normally more transparent than in the aljacent parts: these in most cases being bilateral, and seemingly massociated with any apparent pathological change.

Cases of retuined nerve-shecthe are sometimes seen, where instead of the opacities of the medullary sheaths teminating at the eribriform phate of the optic nerve, they either gradually lessen and cease at different distances ont in the retina, giving somewhat the same apparance that is normally seen in the fundus of the eye of the rablit, or the fibres seem to become transparent and opaque in turn, leaving islets of whitish striated massings, as deseribed by Beekmann ${ }^{4}$ and Von Reeklinghausen, ${ }^{5}$ in which special cases the condition was substantiated by post-mortem examination made by Virdhow. Selmidt ${ }^{6}$ reports a similar case confirmed by antopsy. Jacger ${ }^{7}$ depiets an instance in an otherwise healthy eye. Liebreich ${ }^{8}$ gives two instances, the first of which is remarkahle not only for its immense area and thickness, but also as exhibiting a small isolated spot far removed from the general mass. Jnler ${ }^{9}$ gives two musually well marked examples. In both of his cases the merlullation scemingly begins at the edge of the disk, and is curionsly divided into four comet-like processes extending along the lines of the larger retinal vessels some distanee into the periphery of the fundus.

[^76]Noyes' also exhibits a dowing of the same condition. The accompanying phototype firon a sketeln whech was kimdly made for the writer loy Dr. B. Alexander Ramdall shows one of the most marked examples seen in tho writer's wollection. 'The boy, aged nine yars, applied for the correction of an error of reffaction ($I I+\lambda h$), never having had any suljective symptoms: of the condition.

The diagnosis, which is quite easy after having onee comeontered a case, is based upon the peculiar ghistening chanater of the whitish-ydow striation (slightly greenish at times) and the fringe-like border of the distal extremities. As a rule, the opaity secme to prefer astociation with the conse of the retimal vessels, whed it more or less conceals. In the ammar variety (as in the sketch) the eentre of the nerve, as a rule, is visible, and presents, most probably ly survonding eontrast, a very peouliar green tint. The calibere of retimal vessels :serme in no way impared, and the color of the eontaned hood appars momal. The minvolved pertions of the fimdus do not show any indications of patholerical proecss, and, corionsty, the matentar region is seddom involved. Ravely and only in the extreme cases is defeetive vision complainel of; this, when present, in the opinion of Mauther, ${ }^{2}$ appearing to be partally the result of high hepermetropia with so-called "amblyopia ex ampsia." be this ats it may, it is positive that if careful examination of the vesselfields be made in all such cesce, corresponding defects will be fomal, whilst the maffered areas of the ground seem to project normal color-differentiation. In most of the cases seen by the writer the amomaly has been milateral, and in mome of the few instaness searelaed for hats be been able to find a similar eondition in the parents. (if ronsec, treatment is out of the question.

As it is well konen that the ereatest amone of optic meree messimgs is fomed at the immer uper and lower portions of the disk, thas practically giving greater devation to the nerversulntane in the sithations, it may the interesting to mote an instance in a boy described by Manthor, ${ }^{3}$ in which the fibes appeared to be canght into two bandes, one afove and the other below, hodling the contive retinal cirenlation within their gramp this apperring in an cye where astigmatiom of sufficient amoment to prochece a similar picture did not exist.

Culobome of the choroid, which is gruerally sithated inferionly, is mashally associated with eolobomata of the iris and lens. The delect apperss an a large cetasia or series of depressions, separated from the non-colobomatoms portion of the eve-gromed by an irregular black line of pigmentation. If carefulty looked for, the retilna apeans as a thin tiluy haze stretehed owe the entire surface. If the colohoma be typical, it gives the effere of a laree. grlittering, whitish, and irrogulaly comeave piece of enamel, containing in phaces a fine radiating net-work; the whole leeng fovered by a dolimate

[^77]

PUOTO. II.

Coloboma of the Choroid. (Jaeger, Beiträge zur Pathologie des Anges, Plate XLVI.)
grayish veil carrying a scries of interlacing, larger, hright- and dark-red lines. Most frequently the ectatie portion is divided into a series of irregular depressions into which the retinal vessels may dip. At times the nerve-head itself, especially if it be partially or wholly included in the colobomatons area, appears of a peonliar greenish-gray tint (gas-light), with very little capillarity in its sulstance. In such cases the retinal circulation is impaired, and the vessels themselves are small and irregular. Agrin, many small seleral shoots firom the posterior ciliaties may appear at points, showing themselves, as Laring says, ${ }^{1}$ as a fine delicate net-work, of which isolated hamehes here and there can be traced divectly into the selera or finllowed over the white surfiee of the eoloboma into the normal district of the choroil. Should the choroid show signs of disturbanee, on shonk the depressed areas contain much pigment-massing, it is most prohable that the case is not one of true defect, but is the result of inflammation during fetal life. Vision is always affected in a position corresponding with the area of defieieney. Benson ${ }^{2}$ adds a case of miocular colohoma of the chorod with colobomata of the iris and lens in a twelve-year-old hoy. The fimdus in the colohomatons area was fone diopters lower than the sonnd portion, which itself was highly myopie, whilst the normal backgromed of the fillow-eye could be secn with a convex lens. The areompanying reprodaction of the ordinary comdition seen is from Jacger (Plate XLVI.).

Colobomata of the shereths: of the optie neree, deseribed by Liebreich, ${ }^{3}$ Makrokoki, ${ }^{4}$ Nieden, ${ }^{5}$ Randall, ${ }^{6}$ and others; colobomate situated in the mereter region, as seen by Burnett and Reich, ${ }^{7}$ and the questionable one of ${ }^{\text {B }}$ laring; ${ }^{8}$ the emrions colohoma to the nasal side of the eye-gromed, associated with aequired changes, seen by De Schweinit\% and Randall, and one very interesting, still umpublished case by the writer, where there is a small ectasia utterly devoid of any inflammatory products, situated just up and in from the left disk of a young girl, are all extremely rare. The pietures they present are so typieal of malformation that when carefully studied it is impossible to confond then with apparently similar conditions dependent unon tranmatism or discase. Two additional cases involving the macular region are deseribed by Silex. ${ }^{10}$ Here, however, as the author says, the changes are most prohably dependent upon intra-uterine choroiditis, and are not caused by faulty development.

Itliosyncrasies in reseular distribution to the optic nerve and vetina are so

[^78]IMAGE EVALUATION TEST TARGET (MT-3)

\square

Photographic Sciences WEBSTER,N '. 14580
$(716) 872.4503$ Corporation (716) 872-4503

pronounced and frequent that it is sometimes questionable whecther to legiti mately class them as abnormal or not. Curions twistings, reloublings, end intertwinings of the retinal vessels, especially near or on the disk, are of frequent notice. An excellent example of this occurring in the irferion artery of the retina is described by Little ${ }^{1}$ minder the title of " A Case of" Persistent Hyaloid Artery." Czermak ${ }^{2}$ reports an almost similar instance. Under the title of " A Case of Tortuosity of Retinal Vessels, in Connection with Hypermetropia," Mackenzic ${ }^{3}$ gives a sketch of curionsly twisted fand relombled retinal vessels which he saw in the left eye of a twenty-yearold girl.

Post-natal persistence of the hyaloid artery of fectal life, nsually present, according to Müller, ${ }^{,}$in oxen and some other animals, such as swine, the moose, and the sheep, has been seen and deseribed in man by Hamover, ${ }^{4}$ De Wecker, ${ }^{5}$ Little, ${ }^{6}$ Kipp, ${ }^{7}$ and others. It appears gencrally as a wavy slender cord running forward fiom the exeavation of the disk out into the vitreous, sometimes extending sufficiently far, as in one ease observed by the writer, to spreal out over the posterior pole of the lens into a scries of minute capsular branches. It is very seldom patulons, as in a case of ${ }^{\text {b }}$ Zchender's. ${ }^{8}$ Secley ${ }^{9}$ gives the sketeh of one in which the detachment ocenrred at the nerve. Manz ${ }^{10}$ has deseribed an almost similar condition post mortem. Despaguet" cites a case of monocular persistence of the canal of Cloquet without other abnormality of the eyes: this is very instructive in view of the fact that Everbusch thinks that many so-termed instances of persistent hyaloid artery are in reality nothing but the ordinary canal of Cloquet as found in man, rendered visible to the ophthalmoscope by intraocular irritation and inflummation. Liebreich (vide article by Little, loc. cit.) instances a supposed case of persistent hyaloid vein, but, as Little justly asserts, there is no anatomical proof of the existence of such a venous trmes. The condition is usually milateral, although Kipp's ease (loc. cit.) was binoenlar. Care should be taken to avoid confusion with new blood-vessel formations, which from time to time have been noted by most conupetent observers,- -these later conditions being nothing but part and pareel of coexistent inflammatory results. Of course, if the embryonic remains are large and extensive, and the case one of long standing, consentive irritation changes might arise, and thous easily mask the original

[^79]PHOTO. III.

Unde Tortcosity of the Retinal Vessel.s. (Benson, Transactions of the Ophthalmological Sociefy of the United Kingdom.)
condition and give rise to confusion in diagnosis. Careful study of the rase, with speciat attention to the state of the related tissnes, will frequently give clne to the proper answer.

Actual decrease or increase of the normal number of retinal ressels, thongh probahly more freyuent than has been noticed in ophthalmic writings, shombl always be looked for and considered. Mooren's case ${ }^{1}$ of complete want of retinal vessels in an infant, and Von Gracfe's 'nstance ${ }^{2}$ of fanly development of the retinal vessels in a young lad, are typieal extremes of the former type, whilst Benson's ${ }^{\text {a }}$ and Nettleship's' deseriptions and pietures of three cases in which both the retinal arteries and veins were so extremely tortnons, large, and mumerons as to give the eye-ground the appearance of commeneing inflammation, well illustrate the latter. The accompanying reproduction shows this condition very well in Mr. Benson's case. Two of the reported cases were subjected to trammatism, though whether this constituted any cansal relationship, or whether the conditions noted were mere intratocular expressions of some obscure congenital or neural disturbance, it is impossible to determine.

Anomulous vasculet anastomoses, thongh comparatively infrequent to any manked degree, should be carefully studied and noted, so as to prevent improper deductions as to result in cases where the usual symptoms of discase are changed by collateral cireulation through anomalons channels. Here vessel-distribution aud blood-supply, as elsewhere, are subject to so much variation that constant guard must he kept upon the possibility of intercommmication. Benson ${ }^{5}$ gives a drawing showing an anomalous distribution of the retinal arteries. There were evidences, however, of some past pathological process in the retina. He believes his case mique "where three-fouths of the retina received its blood-sinply from the inferior artery, and only one-fourth from the superior artery of the disk." Photo. IV., facing page 174, gives an excellent idea of this remarkable preenliarity in the venous distribution on the disk as seen in a case by Randall, ${ }^{6}$ who gives an interesting review of venons anomalies upon the optic disk.

Lang and Barrett ${ }^{7}$ found in forty-eight unselecterl cases that eight (sixteen and seven-tenths per cent.) gave distinct evidences of cilio-retinal ressels. They define the anomalons condition as one in which the vessel "dips into the nerve near the margin of the optic disk, and which can be seen to areh outward, that is, away from the disk, before it finally disappears from view." Randall ${ }^{8}$ reports some very interesting cases, and thinks

[^80]that "abont one cye in every five examined shows some form of the condition in question."

Gumn details an instance of direct arterio-venous commmication of the retinal ressels in one eye, the case being complicated with cilio-retinal anastomosis in the fellow-eye. Under the title of" Persistent Hyaloid Artery," Wells and Liebreich instance a casc' in a sisteen-year-old boy, "where, arising from one of the arteries of the disk, was seen a small arterial twig ruming with a slight bend for a short distance into the vitreous humor, conding in a loop and passing over at once into a vein, which, twisting itself like a corkserew three times around the artery, terminated in one of the large central veins."

Spontancous pulsation of retinal arteries is quite ware in healthy children, and, when present, is generally dependent upon anatomical !eenliarities on the disk-surface or slight unaceontable changes in the character of intraocular tension. Venous pulsation, which is readily provoked by inereased cardiac action throngh excitement or sudden movements, mist not be mistaken for a sympton of pathological change. A few moments' rest will ofttimes dissipate it, so that when the fellow-eye is examined all trace of it wili be iost.

Thongh eomparatively rare in children, yet irregular isolated thickenings of all grades of opacity in the vessel-walls are met with, and sometimes of' suffieient moment to render the contained eurvent invisible. These changes are most pronounced mipon the main stems and at the vessel-entrance. In marked cases, the intervening extents of vessel-wall have their density sufficiently increased to change the color of the underlying blood-columa, and to pernit the side walls of the vessel to be distinetly seen as transhucent bands.

Areas of glittering reflexes known as "shot-silk opacities," which move with every turn of the ophthalmoscope, especially along the course of the retinal vessels and in the macular region, are frequently seen. They manifest themselves only in the young, and gradually disappear after adolesenee. They are dependent upon a normal increase of comective-tissue elements with increased power of reflection.

TRAUMATISM.

Rupture of the choroid the result of contrecoup has often been described. Immediately following a blow upon the eye, which has not been of sufficient moment to disfigure the organ externally in the least, there is more or less complete loss of sight. Curionsly, however, the apparent gravity of the accident does not seem to bear any relation to this small, though, of course, most important, traumatism. Thus, Manthner ${ }^{2}$ relates a case of double rup-

[^81]ture prolue of breakage retina at thi maisises betw a musket fill White Coop ly a wooden

If attem ophthalmosice :ations as to diagnosis is insolved in t or clse, althor choroid is con disturl nee, s

Sometimes and limited matism. If ${ }^{\circ}$ terior pole of is concentric , gencrally bou hemorrlages fundus otherw area looks dist cipal one, or a days the hemor

Vision, esp account of the : :gain with ti , of cicatrization

Treatment, blood-absorptio combined with

Breakage of extravasation of rejorts an inter a thisteen-yeaw-

[^82]ture produced by a blow with the fist, whilst Von Ammon's classical case ${ }^{1}$ of breakage of the choroid in the yellow-region spot, with bulging of the retina at this point, and no other extravasation within, exeppt a few isolated masses between the choroid and selerotic, as the result of a discharge of a musket fillel with water, gives us an example of a very umsual method. White Coopres interesting judicial case, where an eye was forcibly struck hy a wooden missile, alfords another peenliar mode of aucedent.

If attempts be made to examine the interior of the organ by the ophthalmoscope, the path of view may be so ohstructed with bhood-extravasations as to render this procedure impossible. In such instances either the diagnosis is a fanlty one, as necessarily showing that the relina must be involved in the break so as to allow the passage of blood into the vitreous, or else, although the diagnosis is correct, the trine condition of break of the choroid is complicated by implication of some of the other structures in the disturl nee, stech as involvement of the iris or of the eilary borly.

Sometimes, however, the amount of blood-extravasation is so trifling and limited that the fundus details can be seen directly after the tranmatism. If so, the break may gencrally be found somewhere in the posterior pole of the organ, appearing as a C- or S-like white stripe which is concentric with the temporal border of the optie disk. This break is generally bounded by irregular depusitions of pigment, whilst small fresh hemorthages may be seen scattered near and over it. Ordinarily the fundus otherwise appears normal, though in some instances the neighboring area looks disturbed. Sometimes narrow tears may comect with the prineipal one, or even seprated multiple braks may be noticed. In a few days the hemorthages disappear, leaving their usual characteristie signs.

Vision, especially central, which at first may be even amnihilated upon account of the blood-extravasations, gradually partially recovers, to decrease again with ti vordinary signs of metamorphopsia, ete., as secondary changes of centrization set in.

Treatment, which is of but little use, and which is directed towards blood-absorption alone, consists in loeal rest of the organ and lecehing, combined with the intermal administration of alteratives and absorbents.

Brecalege of the retina in association with rupture of the choroid and extravasation of blood into the vitreous has often been observed. Shaffine reports an imeresting case in a boy. Noyes ${ }^{2}$ details a most curions one in a thirteen-year-old girl, where, in addition to the retimal detachment, there

[^83]was a laceration of the membrane at the macula lutea. In nearly all of these cates there is no evident external lesion. The prognosis is dependent npon the position and the amome of the distmbance, thongh, unfortmately, by reason of the contrecoup, as just shown, the break is generally situated in or near the macular region. No treatment, exeept rest and quict, with the possilde use of alteratives, can be advised.

In almost every catse of injury to the retine from a foreign borly whieh hews gainet access to the interior of the globe, the associated results are so severe: that it is impossible to deeide the mosition of the offending material. IIere, if the substance be irom or steel, the magnetized neodle of Pooley will be of service in its detection, and it the case be seen enly, the electro-magnet may be of use in extraction. If the particle be of any other nature, such ats stone, glass, cte, operative attempts should also be made for its removal, provided there be any possibility of suceess. As an example of the pessible freedom of the organ at times from the series of dangerous after-symptoms usually sten in such instances, the writer hats in mind a case seen in consultation with Dr. James 'Tyson, in May, 1888, of a lad in whose left retina a small sliver of steel beame embedded, the passage of the stroke being through the cornca, the lens, and the vitreons. Fortunately, the foreign body cseaped striking the iris or the ciliary region, and in consequence, with the exception of a slowly-forming cataract, the eye has remained perfectly quiet and painless from the date of the accident to the present writing, nearly two years. Althongh many cases conld be quoted where foreign bodies have become encapsulated in the membrane and remained quiescent for long periods of time, yet active inllammation, resulting in destructive pamophthahitis. is so prome to ocenr, that it is best to give a guarded prognosis in every case. If possible, and most certainly if under the immediate care and control of a competent observer, enncleation or evisecration should be postponed mutil the child's skull has sufficiently developed to prevent faciai asymmetry. If the slightest well-grounded suspicion of involvement of the opposite organ be entertained, it is best to sacrifice all question of cosmeties and get rid of dangerous tissues. ${ }^{1}$

Detuchment of the retina may oceur from blows, as in Brailey's case ${ }^{2}$ of a twelve-year-old boy who reecived a blow upon the eye with a stone; from penctrating wounds of the eyelall, posterior to the ora serrata; or as a sequel of subretinal hemorrhage, as was most probahly the canse in Suell's case ${ }^{3}$ in an eleven-year-old boy. It has also leen seen as one of the sequede of progressive inflammation and stretching of the reular tunies, as, for instance, in malignant myopia, or it may even appear as a symptom of eircumseribed malignant disease of the choroid, as shown by Poncet. ${ }^{4}$ The theories of its pathogenesis, which are manifold, can be best studied in the

[^84]noble work of the vitree troverted by is made in association w sion. The p ishment, witl (an be resorte operative pro formation ma

Choroidal experience, hat thomsind new he has failed of: thus, Von nate as to be a seppically, i... into the vitreot face is minter lying material whilst shoorld i alvances, intrad ophthalmitis wi guish it from although aspirat

In a peeulia eve itself and at sequent involver moscopie eviden come on are opt tention, hemorrh optio nerve, as in the coutral re bony optic canal nerve, as shown degenerative chan intravaginal space ophthalmoscopic s
noble work of Nordenson,' in which he sustains Leber's heliof of shrinkage of the vitreous with traction,-a theory supported by De Wecker ${ }^{2}$ and controverted ly Boncheron and Ahadie. ${ }^{3}$ The diagnosis, which is very easy, is made in most instances hy direct evidence with the ophthalmoseope, in ansociation with correspomding loss of the visual fiedd, and diminished tension. 'The prognosis is very untavorable. Eijoined rest, the hest of nomrishment, with remedial agents such as pilocarpine to promote absorption, can be resorted to, and if, as in almost miversally the cone, no good arises, operative procedure to dislodge the fluid and proxluee localized plastic fomation may be tried. Tratment, however, is mstally of no avail.

Choroidal detachment is extremely rate. Noyes, atter a long and large experience, has never had a case to come under his motice. In over twenty thonsand new cases of eye-disease personally seen by the present writer, he has failed to find a single instance. Cases, however, have been spoken of: thus, Von Gracfe ${ }^{5}$ deseribes such a case, and I wanoff ${ }^{6}$ lats been so fortumate as to he able to study an eye affected with this condition. Ophthalmoscopically, in 'solated area of choroid can be seen protroding markedly into the vitreons, the bulging portion being fixed and immobile. Its surface is unintermptedly traversed by the retimal vessels. Should the muderlying material be serous in character, the bulge may be somewhat pallid; whilst should it be blood, the area will be dark-colored. As the condition allvances, introocular tension falls, inflammatory symptoms set in, and panophthalmitis with phthisis bulbi ensues,-these sequela serving to distinguish it from neoplastic formation. Treatment is of no practical value, althongh aspiration or drainage in the carly stages may be tried.

In a peculiar variety of cases, where the trammatism has aroided the eye itself and acted upon the bony wails of the orhit, there is often a subsequent involvement of the optic nerve and retina without carly ophthalmoseopie evidenee of intraocular disturbance. The after-changes which come on are optic neuritis with consecutive atrophy, retinitis, venous distention, hemorthages, ete., which suggest either direct pressure upon the optic nerve, as reported by Knapp, interference with the passage of blood in the central retinal artery, as suggested by Noyes, ${ }^{7}$ or fracture of the bony optic canal with extravasation of blood into the sheaths of the optie nerve, as shown by Von Hölden. ${ }^{8}$ Pigment-deposits upon the disk, from demenerative changes in the blood which has been extravasated from the intravaginal spaces in the optic nerve, have been seen. In a few cases no ophthalmoseopic sigus have been observed. In this last grouping, Schweig-

[^85]ger's saying,' that "the anatomical condition of the nerve-tronk in nentits has been examinel often enongh to prove that changes not visible by the ophthatmoserepe may phay an important part in eansing the disturbanes of vision," mast be borne in mind. If the nerve be injured sulfiesently forward to indude the central artery of the retima, the ophthalmoseopice signs simulate those of embolism. Pagensteder cites the history of a very interesting casc in a young girl. Treatment is cither purely surgial or tu be directed against the special descrasia on condition, combined with oentar rest.

A case of metamorphopsia following a blow on the eye hats been deseriber by Aub, ${ }^{2}$ which cum probalby be attribnted to a how grade of inflammatory change in the wetima in the region of the mavena lutea, cansing a dishocation of the position of the rods and cones. The writer has scen two asist of tramatism withont apparent extemal lesion, exerpt an irregular thickening of the coneal epithelinm, where the ophthalmoseope showed a circomseribed area of disturbance in the choroid and retina between the macnla and the disk; this comblition of the fumber rapidly disalpparing in a few days' time upon protecting the eye firem light and undue exposure. Jackson ${ }^{3}$ gives two chromo-lithographs of a similau thongh more markel condition seen in ti e eye of an adult.

Damexing effece upon the retine from exposure to dircet solere rays has been olseresed. Ceatral seotoma is the initial symptom. Examination of the fundus shows a bright whitisil spot at the macula lutea, survounded by a rel rim. The permaneney of damage to the tissnes is in direet relation to the amome of primary injury. In Dentschmam's experiments upon the retima there were changes in the vascular walls, with coagulation of retimal albmon. Exalted sonsibility of the retima from the same canse has been noted. In three patients who were moduly exposed to direct solar rays, Magawly ${ }^{4}$ has noticed central scotomata for red with reduction of vision to one-fourth of normal. The symptoms soon ceased upon placing the patients in the dark and protecting their intraocular tissues by dark ghasises. Lubinsky ${ }^{5}$ has seen thirty cases of suffering from nudue exposine to the electric light. Besides daily exacerbation of photophe lian and lachrymation, the ophthalmoscope revealed a slight congestion of the optic nerve tip. Maklakoff' has studied the personal effects of the "voltaic light" upon the eyes. He concludes that such a light nearly always acts by its chemical propertics.

Ametropia as found in abused and stretching eyes may give all the evidences of low choroiditis with retinal disturbance, and even optic nerve

[^86]swelling, w dition.

Direct i inflemmator: (mmorr, cte:, (alluses rapid deseribed by sules of the Here, at firs of the disk : reyrion, is the generally as: globe or whe befief that t may be dete it would be , suspected cass minals may lefore the ey diminution of hinducss ens Mgain, an int with all the o ophthalmoseo extraocular s (ases of cereb dyscrasia. In certainly poin that the write itself or in th nemal disturl ized inflamma as symptomati tions are iden intraorbital po of vision. Ay the orbit, cans True orbital a mam P'agenst of the optie mi sponding vein,
swelling, withont any suljective acknowledgment of the intranenlar condition.

Direct implication of the oplic wore with extension to the retine from other inflummutory perocesses in the orfit, such as wellulitis, periusteal disease, tumor, ete, may oedre, where either pressine fiom the morhifie material (eansess rapiel loss of sight fotlowed by atrophie dhanges in the disk, as deseribel by Allbutt, or invasion of the prodnets of the disease into the tissurs of the nerve itself may give rise to a similar ophthalmoseophe sign. Here, at first, rapid monocular failure of vision, with lmat little congrostion of the disk and adombtfinl haze of the retina aromed and mear the mambar region, is the symptom usually noted. With this faihure of sight there is gromeally associated periorbital nemralgia, with pain upon motion of the globe or when decided palpation of the organ is made. In view of Itork's' belief that the position of pressure or the localized retro-cenlar nemitis, may he determined by the direction of motion giving the greatest pain, it wonld be well to apply this diagnostice procedure to a careful test in all suspected cases. If the case progresses, paralyses of contignous nerve-terminals may ocenr, atrophic changes in the disk, with incroasing "fog" lofore the eyes, central scotomata, and rapidly-lessening fied of vision and diminution of central color pereption take place, mitil at last atrophy with hlindness ensucs. Nettleship ${ }^{2}$ details some instrnctive cases in adults. Again, an intraorbital point of infection may produce a descending nerritis with all the ordinary sulajective and objertive signs of inflammation. The ophthalmoseopie pieture in these cases is discriminated t, y the concomitant. extracoular symptoms from similar fumdus changes that may appear in "ases of cerebral disense, or which are seen in the cemse of some genemal dysemsia. In fact, in all cases of monocular nemitis suspicion should most eertainly point towards locall disturbance. In every case of this character that the writer has seen there has been some local tronble either in the orbit itself or in the cranial cavity just at the optic formen to accome fia the nemal disturbance. Of eourse it will be readily moderstood that a localizel inflammatory condition of the tissues of the orbit can casily appear as symptomatic of some general dyscrasia. Here the intracenlar conditions are identical. It must be remembered that mere stretehing of the intraorbital portion of the optie nerve may also give rise to deterioration of vision. Ayres's cases, ${ }^{3}$ in which there wats extravasation of blood in the orbit, cansing both pressure and stretching, furnish good illustration. True orbital ancurism may be productive of the same condition. Hermann Pagenstecher ${ }^{4}$ relates an almost mique instance of direct injury of the optie nerve, with rupture of the central retinal artery and corresponding vein, by an iron rod. The patient, a gint of twelse years, was

[^87]completely blind. Ophthulmoseapirally, the optie disk could not be seen, on accome of a latge, dense, glistening offinsion, apparently several times greater in area than the nerve-head itself. A single retinal vessel wats alome visible. In sevemal days' time absorption took place, which revealed the disk-surface, whilst collateral retimal ciremation ensued. Hocken' fuotes from Mackenzie an historical case rolated ly Horstins in the seventenoth century, where a fimerten-yen-ond boy was remberel blind, without any perepotible oenlar lesion, by an arrow-tip which had been driven into the orbit. The foreign body remaned in situ for more than thirty years. 'The present writer remembers an instructive case of retro-hulbar brakage of the optice nerve anterior to the entrance of the central betimal atery, which he saw in his service at St. Mary's Hospital. The womed, which was self-inflicted, was cansed by the upward entrance of a No. 22 pistol(artridgre, which passech through the lower outer part of the right orbit into the cramal cavity. Eight hours after the ingury, the optic nerve entrance seemenl whitish, swollen, and puffed, whilst the pertion of the retina that could be seen peripheratly appeared utterly devoid of capillarity. In tho few days that remained for study, mo changes, exept a slight subsidenee of the disk-swelling, with a gradually-inervasing haze of the untlying retina, took plate. Retimal cirenlation never reappeared. The cornea became hazy and dry, the eonjonetiva seemingly thiekened and beame slightly covered with exereta. Death took place in four days after the injury.

TUMORS OF THE CHOROID, OPTIC NERVE, AND RETINA.

Tumors of the Choroid. - Although it is well known that almost all choroidal tumors are sarcomatons in character, which form of neophasm is eminently one of adnlt life, ${ }^{2}$ yet it is deemed of sufficient importance not moly to speak of the ocenrenee of choroidal thmor during childhood, as a disease which should be carefilly differentiated from subretinal effision, with which io has been unfortmately confomaded, but also to give a short exposition of its chanacteristics, ly which recognition of its presence may be obtained in time to dfect a ready and specdy removal of a nidus of general infection. The disense itself is comparatively rare in Germany, ome in fiften hundred cases,-as Fuchs ${ }^{3}$ tells us, with a still lower propor-timb-one to two thousand two hundred and eighteen cases-in the English hospitals, as shown by Berry. ${ }^{4}$

Of slow growth, with a broad fomblation, and generally first appearing between the disk and the macula, it gradually pushes the retima formard into the vitreous. Frequently this elevat:on is surrounded by a serous effusion, though this, if carefully looked throngh, is generally insufficient

[^88]to hide the covered ly a level tham th K Kıир ${ }^{2}$: the neoplasti the ciliary ve stoner appea ormbar and ci (mharge, the a hilated: in fat thathoseopic objective chat second stage reached. The ulecrates. Tl become involve stage" (Knapp) As our stur of this insidion been said befor Exeept in the ve (an harilly fail t treatment is
arise. With ch this form of cho general type of t. of growths, the the color aud the increasing pressu fiom that of the first with retinal retinal effusion be simple retinal de and forces the lis canals which serve the pathognomoni octular tension ine detachment intrao over, at first some of the overlying re

In children the

[^89]to hide the brownish mass beneath.' Often this protuberame can be seen rovered hy a faint mud irregular comgerice of verseds, situated npon a deepre level than the overying retinal stems. This tage of the disense is known hy Khapl" as the first-the "quicesernt or nom-irvitative"-stuge. Shond the nemplastic formation be sitmatel nearer the equator of the eye, townels the ciliary region, the second stage, in the "inflamatory" (Kapp), much sooncr appears. Here glancomatons symptoms nrise, tension inerenses, ownlar aud ciliary neuralgia ensue, the lens opacifies, the anterion wins colarge, the cornea becomes anesthetic, and the anterior chamber is amihilated : in fact, all the symptoms of increased pressure are present. Ophithalmoseopie examimation now heemez impossillde. In varions grades of objective change, some in one case more pronomeer than in another, the scromd stage gradnally ceases, and the "extraombur stage" (Knalpy) is rached. The mass now perforates the globe and rapidly increases and ulcerates. The exterual appendages and the surromding tissues soon berome involvel, whilst the pain recommences, until at last the "metastatie stage" (Knapp) is reached. Finally the case leads to fatal termination.

As our sturly in this section is limited to the ophthalmoseopie diagnosis of this insidious and secret discase, it will be only necessary, from what has been said before, ta give a few differential points whith denote its presence. Exeept in the very rare form of leneo-sareoma, the most ineompetent olserver can havelly fail to distinguish it from glioma of the retina : moreover, as the treatment is acsame in these two diseases, no great therapentie error can arise. With choroidal tubereulosis the problem is more diffentt. In fare, this form of choroidal disease has heen mistaken for sarcoma; yet here the general type of the oatient, the ordinary relative positions of the two varieties of growths, the nimal greater multiplicity and smaller size of the tubers, the color and the long persistence of the sarcomatons growth, with its usmal increasing pressure-signs, all serve to separate the diagnosis of one disanse from that of the other. Complicated as choroidal tumor is alnost from the first with retinal detachment, the observer must be well traiied, or the subretinal effusion be very transparent, to enable him to differentiate it from simple retinal detachment. Later, however, as the choroidal mass grows aurd forees the liquid and solid contents of the globe against the varions canals which serve to maintain normal equilibrium between fluid and solid, the pathognomonic pressure-symptoms of new growth appear, and intraocular tension increases, with all its dire consequences; whereas in retinal detaelment intraccular tension, as is well known, gradually lessens. Moreover, at first some value may be set upon the almost absolute immobility of the overlying retina, as well as upon its comparative smoothess.

In children the subjective symptoms at first are seldom, if ever, broughi
${ }^{1}$ The fact that IIirschberg (Archiv für Cphthalmologie, xvi. 304) reports an instance of leuco-sarcoma in a girl of twelve years. should render us careful in this differential point.
${ }^{2}$ Die Intruoculären Geschwülste, 1868.
to attention, and it is only as the second and later stages are reached that the disease is recognized. Prognosis, as a rule, is bad, whilst treatment resolves itself into an immediate enncleation, even thotgh vision be comparatively good.

Grameloma, angiomuth, and enchombront of the choroid have all been seen. The cases have almost miversally been fomed among adults.

Tumors of the optic nerve, comparatively rave themselves, are more frequent in childhood than in adult life, Sym having fomm sixty per cent. of sixty-nine cases in patients muder twenty years of age. 'They appear both in the intraceular ending and in the nerve during its passage through the orbit. The most frequent forms are saromata and gliomata, with their related tepes, and nemromata, as in Perle's case. Sutphen ${ }^{1}$ notes an extraordinarily large-sized and peculiarly-shaped sarcomatons growth of the smallcell variety. Syphilitic gummata are said also to have been seen. The left werve seems to be the one the more frequently attacked. Von Gractio gives a case ${ }^{2}$ in which, oplathalmoscopically, there could the seen a swelling confined to the masal half of the disk, with dilatation and tortuosity of the retinal veins and contraction of the arteries from a myxoma of the nerve posterior to the globe, and Lawson ${ }^{3}$ gives the elinical history of a ease with the pathological report of a post-oeular sarcoma of the optic berve undergoing myxomatous degencration in a twelve-year-old boy, who for months had gradually lost vision, assoriated with steadily-inereasing proptosis. These two instances may be cited as very interesting examples of such growths. The aceompanying phototypes give excellent ideas of the appearance of the tumor in the latter case, both before and after seetion. Frothingham ${ }^{4}$ gives the histories and the results of examination by the microscope of his cases of round-celled sarcomata in children. Ayres ${ }^{5}$ records a most cureful study of a case of sareoma of the small round-celled varicty in a twelve-vearold hoy. In view of Michel's observation ${ }^{6}$ of ${ }^{6}$ hyperplasia of the intracranial portion of the optic nerve, and the chiasma itself, in a case of elephantiasis in a man, it would be of interest and value to have a serics of careful ophthalmoseopie examinations made by those who are favorahly situated anong a large number of infected children (or adults), in orier to determine the exact mature of the resultant physical changes and the character of the fimetional distmbance produced.

Diagnosis is, in the main, dependent upon the following symptoms: progressive ontward, upward, and forward, and sometimes downard, protrusion of the eyeball ; rapid loss of vision, with frequent ophthalmoseopic signs of infiltration ; pressure and atrophy; long continuance of seemingly

[^90]PHOTO. IY.

Anomalols Venots Distribution on the Disk. (Randall, Transactions of the American Ophthalmological Soclety, 1888.)

PHOTO. V.
Fig. 1.

Post-Ocllar Sabcoma of the Optic Nerve. (Lawson, Royal London Ophthalmie Hospital Reports,
free ocular every instan If the eyeb excised. Ty be taken to infiltrated n remembered, place in case where such 1 instances hav lowed the tra Glioma o disease of int Withont enter tration, and a will be sufficie identical with in any of the " external gran that retinal glic and fancies " tl life."

During the but it a later pe just back of a 1 of the "amauro carlier, as has b would have bee of the retina. I coalesced. Shon retina itself wou giving rise to ei containing more would generally 1 plieated portions detached.

It is at this tir is perceptibly iner appear, and more are pushed agains comes dilated and
${ }^{1}$ Arehiv für Ophtl
${ }^{2}$ Die Krankhaften
${ }^{3}$ Transactions of th

- Archiv für Ophth
free ocular motion ; and, generally, complete absence of pain. Treatment in every instance should consist in early extirpation of the entire tumor-mass. If the eyeball is not affected, the nerve itself, as Knapp suggests, may be excised. This rule is especially applicable to children, though eare should be taken to watch carefnlly the slightest tendency to reenrrence from some infiltrated nerve-tissne which may be inadvertently left. It should be remembered, however, that fatal septic meningitis has several times taken phace in cases where the eycball has been allowed to remain, and that even where such brilliant suecess has followed as in Schicss-Gemussens's case, ${ }^{1}$ instances have been reported where suppurative panophthalmitis has followed the tramatism.

Glioma of the retina, as Virchow ${ }^{2}$ terms it, is almost essentially a disease of infaney and childhood, rarely, if ever, appearing in the adult. Without entering into the varions disputes as to the initial point of infiltration, and avoiding any discrussion as to its exaet pathological nature, it will be sufficient to state that the bulk of opinion shows that it is practically identical with small romed-eclled sareoma, and that, although it may begin in any of the retinal layers, it most frequently first manifests itself in the "external gramular." In regard to its etiology, Brailey ${ }^{3}$ is of the opinion that retinal glioma rums a much slower course than is commonly supposed, and fancies " that it always takes its rise within the period of intra-nterine life."

During the early stages there are no symptoms visible to the naked eye, but it a later period a peculiar whitish-yellow reflex, often metallie in tint, just back of a partially-dilated pupil, manifests itself, giving the appearance of the "amaturotic cat's eye" of Beer. Should the case have been examined carlier, as has beer done by Von Gracfe, ${ }^{4}$ numerons small white swellings would have been seen in one of the gramular layers (or in the fibre layer) of the retina. These would soon have inereased in size and their surfaces coalesced. Shonld the disease have commenced in the gramular layer, the retina itself would have become detached in areas at its outer portion, giving rise to circumseribed masses of protuberant vaseular vegetations containing more or less broad, smooth surfices. If not, the massings would generally have projected into the vitroons, and have carried the implieated portions of the retima with them before the membrane had become detached.

It is at this time the case is generally seen. The tension of the globe is pereeptibly increased. The intraocular ehanges continue, secondary foci appear, and more intense pressure-symptoms ensue. The lens and the iris are pushed against the cornea, the lens rapidly degencrates, the pupil becomes dilated and immolile, and the cornea is "steamed" and anesthetic:

[^91]in fact, all the symptoms which are fomed in aente attacks of glaturoma ensuc. Often, at this point, suppurative inflammation takes place in the interior of the ghobe, and the eye soon becomes atrophie and degenerated, allowing the neoplasm to eseape and invade the aljarent structures. If not, the tumor gradnally seeks its way out hy either erepping along the nerve-tissues or actually hreaking the oenlar walls. Onee free, it rapidly becomes a projecting mass of deep red tint, constantly oozing blood and secreting pus. New foci form and coalesee into large, irregular masses. The infiltration passes up into the brain-cavity, the orbital walls become iusolver?, and metastases oceur, until, at last, from exhanstion, or from some interenrent compliation, the patient is relieved by death.

In spite of ieported eases of long remission, recurrences ${ }^{1}$ and metastases are so frequent and so increasingly formidable that proguosis is truly grave.

Treatment.-If the neoplasm be even extremely minte and confinel to the interior of the globe, immediate enncleation, taking care to excise the optie nerve as far back as possible, should be practised. After the removal of the eyelrall, its exterior should be carefully studied, as Bull ${ }^{2}$ has shown that small secondary tumors on the outer side of the selera may exist withont any visible microscopie connection with the intraocular growth. If the orbit be invaded in the least, or if the globe show marked signs of internal inflammatory reaction without breakage, total evacuation of the entire orbital contents should be done. If donhte gliomata exist, donble enncleation must be resorted to, or exenterat : 11 if necessary. ${ }^{3}$ In all such cases, however, we can do no more than rep."t Frost's question, "Are there any cases in which life has been actuais. veserved by the excision of both eyce?" "

Sarcoma of the retina in the young is practically unique, althongh there can be but little doubt of its possible existence. It generally results by extension from the choroid, as in Williams and Ayres's case of a twelve-yenrold ginl, where Knapp ${ }^{5}$ after careful cexamination found that the choroidal nooplasm had extended to the retina by direet propagation. Enucleation of the infected organ should be advised and immediately done, and the child's parents warned of probable distant metastases.

Tubereles in the retina will be considered under Tuberenlosis.

[^92]LESION:
Vatsenla pictures of which are peirers of a tmsision so ea or ine depart

In conye giving, accor des contribn reports the o and Letuer ${ }^{3}$ seins were di

Atequired changes in tl tributed to th

In some firmed by Bea diantolie palin through the fi pulsation may

Aly coudi and producing tention with ap dilitation of t homorthage la dowarditis. Gc and seem to be of the heart, es elots and vegrer tritery of the ret Gowers says, oo sec anl infimt of apparance in

[^93]
1I. SYMPTOMATIC DISORDERS.

LESIONS DEPENDENT UPON DASORDERA OF THE CIRCULATORY SYSTEM.

Vascular discase in the young is not so prone to give ophthatuoscopie pietures of changed and altered retinal eiventation as it is in ohder eyes, which are less elastic and in which the tissues at large have not the same prowers of realy compensatory action. Even in exteene cases intranular temsion so carefinly protects the retinal vessel-walls as to allow very little or no departure from the nomal.

In congenitel cyenosis the retinal veins lave been fomed greatly dilated, giving, aceoding to Gowers,' proof that the distention of the wemos audides contributes to the general cyanotic tint of the chilal. Stanghacier ${ }^{2}$ reparts the ocenrence of retinal henorrhage immediately preceling death, and heber ${ }^{3}$ has seen cases where both the retinal anteries and the retimal reins were distended.

Acquired relvelar disease may show itself in the retina by marked danges in the retinal circulation, and, in fact, these changes have contributed to the diagnosis of the comelition.

In some cases of cortic insufficiency with regurgitation, Quincke, ${ }^{4}$ confirmed by Becker, has shown that there is an altemate systulic flush and diastolic paling of the disk, comparable with the capillary pulsation seen through the finger-mails of such subjects. In other cases the intracoular pulsation may be sem in the larger veins and anteries of the retina.

Auy condition, such as mitcel disectse, cansing pulmonary ohstruction and producing gencral venous engorgement mast naturally give rise to distention with apparent increase, and tor nosity, of the retinal weins. Extreme dilatation of the right heart may cause similar appanaces. Choroidal hemorrhage has been noted by Westphal ${ }^{6}$ in what is termed malignant endomaritis. Gencrally, however, such cases are foond in the female adult and seem to be assonciated with the post-puerperal period. Valvular discase of the heart, especially where there is a tendeney to the formation of blooddots and regetations, is sometimes prodnctive of embolism of the central urtery of the retina, or of one of its branches within the eye. It can, as Gowers says, ocem at any age. Warren Tay ${ }^{7}$ has had the good fortune to see an infant of twelse months that, without definite history, presented an apparance in cach macular region whieh closely simulated embolism of

[^94]the central artery of the retina. Four months later he notes that although the matular changes remain the same, yot "the disks are now undombledly becoming retroplic." Later,' he notes a third instanee in the same family.

If the embolns should becone longed in the main trmak, the chith will complain of a sudden loss of vision,--gencrally upon the left side. If one of the minor stems be involvel, the loss of vision may not be observel. Should the former case be seen immediately after the aceident, the nerve will appear pallid, the arteries greatly contracted, and either empty or containing very thin stationary columns of light bood; the veins will appear reduced in size, tapering as they enter the affected region, and holding enrrents of immobile dark blood, whilst no visible pulsation in the retimal vessels ean be produced by artificial inerease of introcular tension from pressure of the finger upon the globe. In a few hours the disk-edges disappear beneath the retinal clements, which have hecome transformed intera large, irregular area of cedematons and semi-opaque swelling extendiug leyom the marelar region. By reason of the thinness of the membane in the region of the yellow spot, the choroid is seen more plainly at this place, and gives the characteristic cherry-red spot. This spot, as a rule, is surromuled by a corona of small vessels. Beadel columns of blood now begin to pass through the most patnlous veins, whilst the arterial currents become re-established in the same way. The calibre of the veins inereases. Small hemorthages ocenr, and remains of old hemorrhages appear. The oedema, which may have become greater, gradually lessens, until at last the diskedges again appear, the cherry-colored maenle fades entirely, and the original retinal level is reuched. If, however, the process continues, atrophy of the nerve ensucs, and degencrative changes in the affeeted region take place, mutil the eye, if not entirely blind, is rendered useless for all practical purposes. The accompanying reproduction from a donbtful case of Jaeger ${ }^{2}$ gives an exeellent idea of the condition during the height of the attack.

If the cmbolus be confined to one of the smaller twigs, the localized results may be of such little moment as not to interfere with uscful vision.

Prognosis is bad in direct proportion to the size and situation of the embolic mass. It may be interesting to note in this connection that Benson reports one case ${ }^{3}$ in which the presence of a cilio-retinal artery offered suffieient collateral circulation to preserve good central vision, whilst the periphcral fiek entirely disappeared. Massage to promote re-establishment of cireulation has lreen tried, and, although as yet with no practical value except in a few instances, is wortly of repetition. Absorbents, or drugs which have effect upon the size of vessel-calibre, minht be tried. The attack should act as a warning, and the parents should have certain hygienic measures as to the management of the child and a system of dietetics as to its care given to them towards the prevention of the danger of the lodge-

[^95]PIIOTO. VI.

Embolism of the Central Artery of the Retina. (Jaeger, Beiträge zur Pathologle des Auges, Plute XXX.)

PHOTO. VII.

Optic Necmitis of General Anemia. (Gowers, Medical Ophthalmoscopy, 1882.)
ment of physician out. the macolat to cmbolism nltimately Discase direretly gin deseription as the wite dicerease s the usuan hardly be ea destroy the Gowers's. ${ }^{3}$

Phlebiti contral retin membrane h ophthalmose are said to b thrombosis t rile, enormo more numer vitreons may and improven

It must servation that indeed, prove

The treati
Choroiditis
sequelae of em thalmic veins. have been obs common after temination of blindness, with So-called i description of
ment of other emboli in more serions planes, such as the brain; whilst the physician should exereise due care that the rules : \because : 'a are faithfintly carried ont.

In two cases of eardiac disense, where sudden hlinduess, resolving itself into a temporary eentral seotoma, followed by a roturn to normal visa in, whe associated with a peenliar retinal haze and rongestion extending fron the macnlar resion to the disk, Knapp' aseriberl the introcolar appearames to embolism of the choroidal vessels. Both subjective and objective symptoris. ultimately disappeared.

Diseased condition of the coats of the vessels may either directly or indirectly give rise to thrombosis of the central retiual artery. No, anthentie deseription of its early ophthalmoscopic appearance in children has, so far as the writer is aware, been made. The probable primary change would te decreasen size ot the retinal artery and its banches. Unfortmately, from the usian character of the vessel-disease, camalization of the thrombus can bardly be expected, and atrophie changes in the globe would soon ocelur and destroy the orgen, either partially, as in Virehow's ${ }^{2}$ case, or totally, as in Gowers's. ${ }^{3}$

Phlebitis from mitral and aortic disease may proluce thrombosis of the coutral retinal vein in the young. Looal disturbance in some part of the membrane has prodnced thrombi in the walls of the retinal veins. The ophthalmoseopic appeanances are somewhat like those of embolism, but there are said to be certain distinctive differenees between the two affections. In thrombosis the arteries are never empty; the veins, although, as a gencmal rule, enormonsly dilated, may be normal in size; hemorthages are much more numerous; venous pulsation can sometines be provoked, and the vitrens may become opaque. Vision, as a rule, is never completely lost, and improvement may take place.

It must be conceded by those who have had much opportunity for observation that differential diagnosis is often exceedingly diffient, and may, indeed, prove impossible, on accomet of association of the two conditions.

The treatment is practically the same as that for embolism.
Choroiditis of a purulent type has sometimes been seen as one of the sequele of emboli in the choroidal arteries, or even of thrombi in the ophthalmie veins. Although of infrequent oceurence in children, yet cases have been observed. The eutire grouping of panophthalmitis signs, so common after traumatism, are repeated in all their severity, whilst the temination of the case, as is well known, is almost su' to be absolute bliudness, with destructive and atrophic degeneration of the globe.

So-called ischemia of the retina is quite rare. Von Graefe's ${ }^{*}$ carly description of a case in a girl of five and a half years, who suddenly

[^96]Inemme hind in bath exes, is at dinical interest. 'The optie disks were

 Sizht spechly returued to nomalab, and all the ophthalmoseopie changes disapparal. The combition of the weme in these cases wombld lead the writere to think that the trum callose is must probably comprossion of the cent mal
 smali thombus which has berome hatged in the comerespording vein during the passige of the vessel themgh the werve pasterine to the ghote. 'Tlue
 are ohtaimed.

 structure of the wethal haver in whid they have oredored. In a dew werks' time they gradually fade, leaving, in many instanese, either faint pigmentmasinge or spots of disturbal choroid and degemerate retina.

The paremosis is dirently proportionate to the pasition, the momber, and the size of the hemomhages.

 taking eare to kepp the pationt as quide as pasible, the emmetories wedl

 ciaterl with mpistaxis and comstipation. They aphan at on just atier adolesernere. Ill the rases sern were in malres. The rextravasation generally cones on during a paroxsm of cougl ...ger or langhing, but may ensue without any assiguble camse. No evil results semem to bollow, the blood gradmally ciearing anay and allowing a dear view of the fimdns. One perlllantry notiond was a temdeney to tortusity of the priphoral pertions of the retimal veins. The writer has been so fortmate as to see one of the

[^97]"maxis memiti rhagin extre: tha' putic'mt Small: of the revtian the somus, dysurasize of rillur as lary howad dilatatio ancos. IHx:

Intractiol ("llise ally vis
 atr foumd in:
siadelen groutly-impuit diciederel oplithe mose of the double in alke sulygerts and ophethilmuserop bx impossilla. plisution with veins, and totis whemercrs. ${ }^{2}$ I disks manifest

The treatime
In groneral " Gowerss ${ }^{3}$ has ser rheme Photo. nerve-head in 11 murnal, and the disks were parti per cent, and the similar comblition arterial pulsation impowerished, all vessel to be plait of the upper one. mrlhays are vare.

[^98]

 ans fimmd in a similan ennation.
 groutly-impared strengh, may give rise to hass of sight, wilh or wilhout
 most of the reported "asise have beon wern in adnles. Thar hinding is

 veins, and total alseme of semptoms, have ah beron moted bey comperent
 disks manifest themselves, and the exes berome promanemty dind.

The treatment comsists in attention to the pareial disurder.
 Gowers has seen nemitis in two dharotie sisters sullering fom amenorthas. Photo. Vil., facing page 178, represents the appatane of the
 nomatal, and the hemoghoin thirty per eront. After ons remereme "tho disks were perfectly momal," whilst the hamoghobin had risen to eighty pere cent, and the compusches to ninety-six per eent. Bitsoch ${ }^{4}$ reports a similar condition in a girl of sixteen. Beckers has ohserved spontancoms arterial pulsation in similar cases. As a rule, the blood-currents appear imporerished, allowiug in some instances the envent of an moderlying vesel to be plainly reogrnized throngh the contained material and walls of the npper one. Buth sides of the vessel are flat and broadened. Hen:orthares are rare.

[^99]The prougusis is fisomable.
The treatment consists in hygieme, nomishing mad casily-digested forens, itom, etc.

The condition in prenicions amemia is tofnlly different. The chunges are more promomed. The diask is pallidand its celges are oftimes obsenred. The urterio are palle, reduced in size, and frequently wase. The veins are broal, fat, and torthoms, and eomain pate blook. Striated hemorrhages appear along the course of the vessels. 'Whis is excellently shown by the neompanying reprohnctions of Jemnings's diagrammatio sketehes showing the progressive development of hemorrhages in the left retina of a case of an cightem-yar-ohl patient seem muder the rare of Dr, Mackenzie.' 'Thes pont-mortem examination left no doult as to the gemumeness of the diargmosis, althongh, "the yucstion might be mised whether suphilis should In_{n} Wamen for uriginating the hood-disemse."
'The colon of the entire fimdus semons somewhat lighter than normal. Freguently, and more especially in the region of the nerve-entrance, there appear small whitish, irregular spots (lymphoid-edh agghomeration). Curims "irvegrila"ly romo or ovoid hemorrhages with yellowish-white centers" have been seen by Norris. ${ }^{2}$ 'These centres, aceording to Manz, ${ }^{3}$ may either be compusend of romad, colorless cells enclosed in sacenlations of the capillavies, we the empty dilatation of the vessel-terminals themselves. Quineke has seen both recinal oedema and stellate whitish oprecities in the macular regron. Marked optic nemritis has been fomed by Mackenrie. ${ }^{5}$

There is mo specian treatment for the ocnlar changes, exeept rest of the eres. Attention shonld be given to the gencral comdition.

In leneocythemia the conditions noticed in the varions forms of anmemia appear to be much agrowated, and in many instances may pass into actual inflammation of the retina. Not only has the choroid become lighter in tint and the retinal cirenlation more pallid in hue, giving the eye-ground an "orange-yellow" reflex, ${ }^{6}$ but hemorrhages are extremely apt to take place. Associated with these changes, isolated white and yellowish thickenings, probably due to aggregations of eseaped leneocytes, with localized degencration of tissue, may be frequently seen in the periphery of the findus and
 arcas are "edged by a hato of ..lvasation." (Edema of the retina, with white patehes in the adventitia of the vessels, has atso been noticed. This is beantifully show ia the accompanying reproductions from Beekers most instructive case ${ }^{7}$ in 1 adnult female. The sketches were made nine wecks

[^100]

PHOTO. VIII.

Retinal Edema and Vascular Opacities in Levcocythemia. (Beeker, Archives of Ophthalmology and Otology, vol. 1., No. 1.)

P!O'TO. LX.

Samp Eye-Ground Nine Weers later.
apart.
a seler
Thiron studen
y(ar-o)
tion th
this, be
and th
He
old chi
swellin
medicat
must br Pu
into the
followi
theship
rather t
disk-chi
a numb
ent upo
treatmer
attention l.aw
cluded
girl whe
side of
iuvolvin
of the of
ressels
the tumi
Mill
with ne
right ey
calse, hor
tion exis
of the r
the retina is report
${ }^{1}$ Arch
${ }^{2}$ Tran
${ }^{3}$ Ibid.
${ }^{4}$ Loe.
${ }^{5}$ Tran.
apart. Examination with the microscope in some of the cases has revealed a sclerosed and degenerate condition through the entire retinal structures. Throngh the kindness of Dr. John B. Shober and Mr. John Sailer (medical student) the writer has had opportmaity to study the eye-grounds of a seven-yen-old boy suffering from this form of discase. At the time of examiatation the child had been under treatment for several months, but, in spite of this, both the arteries and the veins of the retina were somewhat tortuons and the venous currents appeared slightly pallid.

Heinzel' has given a beantiful clinical pieture of a catse in a four-yemold child, in which, in addition to the other symptoms, there was intense swelling of the optie disks.

The fimetional ocular trouble, of course, does not demand any special melication, rest of the organs being all that is necessary. The treatment must be directed towards the genemal eondition.

P'urpura hamorrhagica and seuroy may both give rise to hemorrhages into the retina. Lawford ${ }^{2}$ gives an interesting case of double optie neuritis following purpura in a girl of twelve years. In the discmssion, Nettheship thinks that the symptor sinted towards a localized papillitis rather than towards a descending ditis, though it is remarkable that the disk-changes were not by any means so marked, even at the climan. Quite a number of cases have been reported. The prognosis for vision is dependent upon the amonnt and the situation of the extravasation. So special treatment is required, the intraocular condition being best combated by attention to the general condition.
l.awford ${ }^{3}$ gives a most instructive section ef a portion of choroid indeluded in an area involved by a nevos; this occurred in an eight-y ear-ohd girl whose left eye was enncleated for glancomatons symptoms. The left side of the child's face was oceupied by a large dull-red capillary nevus involving the eyelids ; the bulbar conjunctiva was not implicated. In front of the opposite ear a small pateh existed. Uuder the mieroseope the bloodvessels of the choroid could be seen throughout the whole thickness of the tunic.

Miller ${ }^{4}$ gives a case of nevus of the right temporal and orbital region with nevus of the choroid associated with detachment of the retina in the right eye. Mieroscopically it appeared as a cavernons angioma. In this (ase, however, as Brailey remarks, it is curious that sequele of inflammation existed. A case of most probable venous angioma involving the skin of the right side of the face, the right sclerotic ("anterior ciliary"), and the retinal veins of the same side, oceuring in a nine-year-old epileptic girl, is reported by Horrocks. ${ }^{5}$ In connection, it is of interest that left hemi-

[^101]plegia, more marked in the upper extremity, existed, and that the convulsive seizures cansed clonie spasm of the left side of the tronk and its limbs.

Local pulmonary disease cannot give my more than the ophthalmoseopic pietures indicative of disturbed vascularity.

LESIONS DEPENDENT UPON DISORDERS OF THE NERYOUS SYSTEM
Brain and Envelopes.-In cacbral anxmia, according to Gowers, ${ }^{1}$ permanent anamrosis, probably dne to an affection of the retina, may oreur in cases which have had loss of sight during the attack. During the tonic portion of an attack of epilejsy, which presimmes a probable amemie condition of cerebral substance, the findus has been described as comparatively bloodless, the disk pallid, and the retinal vessels in a state of tomic spasm, Althongh this a priori is most certainly true, yet the chances for observation have been so few and the attendant difficulties so many that it will be necessary to observe a great mumber of cases before full credence can be pheed in the few isolated and individual instances given.

In opposition to the findings in a number of well-observed cases, it is most probable that there is an increase of retinal circulation and a sulfinsion of the disk during the active stage of cerebral hyperamia. Doubtfinl cases have been alluded to, hint, as no distinctive changes of such a character have been aceurately noted by competent observers, the subject must remain sub, judice until a great number of similarly phaced eases are associated in combined study. Extended and repeated ophthalmoscopic examinations of the fundus during ordinary syncopal attacks would go far towards a solution of this much-disenssed problem.

When cerebral hemorrhage takes place, which, of course, is very rave in children, oecurring, for instance, as in Marshall's case, during an attack of pertussis, not only may there arise defeets in the visual fiedd, due to cortical pressure in the oceipital region or pressure upon some portion of the intracramial extension of the optie nerve and tract with subsequent degenerative changes, but true retinal hemorrhages may exist. These conditions, however, are relatively so infrequent that some authors give them but little place among the possible ocular symptoms in this disease.

Based upon well-gromoded clinical studies, we can confidently assert that no time of life, except the first few months of infaney and the very oldest age, is exrmpt from the formation of intracromial growths. The great prevalence of recognizable cases in childhood and adolescence (with those of early and full maturity) can be well understood when we consider that at these times mental activity, with its necessary accompaniment of marked and oftentimes intense cerebral action, is at its greatest,-a condition in which the slightest pathological formation in the cerebrum would make itself known by the many objective and subjective changes so common in these disorders. Although it is safe to assume that the intra-

[^102]ocular disturbance is usually more pronounced and of longer duration' in childhood and infancy than it is in similar disease during the later periods of lite, yet it is so much more frequently overlooked, by reason of the youth of the subject and the greater difficulty of ordinary examination in such cases, that statistics fail to give any higher pereentage of ocenrrence. If cureful ocular examination shombld be made in every suspected instance of erebral disorder, much more light would be thrown upon the true character and significance of the case,-additional symptoms which might prove of inestimable value in the acenate determination of such disenses.

In childhood the tuberenlar, the gliomatons, and the sareomatous types of intracranal growth are probally the most common; the first especiatly permitting the choroid and the retina to share in the dejosition. That this is truc, and that some growths are more prone to express their presence peripherally in the eye-ground than others, is distinctly shown ly Starr. ${ }^{1}$ He thinks, for instance, that as the gliomatons varicty of tumor is very raseular and, as it were, erectile, variations in its disposition to erection mean corresponding increases in intracranial pressure, which in the majority of instances. canse "sudden changes of intensity in the symptoms, aceompanied by visible changes of circulation in the retina;" this intraocular eondition being shown by such radical measures as "hot baths, eodld douches to the spine, mustard baths to the feet, or fire watery purgation." It is also quite probable that the cerebellar tumor is mach more prevalent in childhood than in later life.

Gowers's opinion, ${ }^{2}$ which is coneurred in by Bramwell, ${ }^{3}$ that optic nenritis is present in at least eighty per cent. of all eases, is most probably nearly correct, in spite of the higher ratios of Ammske ${ }^{4}$ and Reich. ${ }^{5}$ Whilst the condition seme to be more prevalent when the neoplasm either involves the cerebral base or is embedded in the substance of the brainmass itself, yet cerebellar growths seem to be remarkably prone to give the most iutense forms of optic neuritis. Almost all observers angree that the presence and the degree of optie-nerve swelling and inflammation are in direct ratio with the rapidity of development and the quickness of growth of the tumor, and are not dependent apon the size of the mass.

In the great majority of cases the optic neuritis is donble. Sometimes, however, daring the course of the discase, the acute conditions in one eye maty subside sufficiently for a careless or an incompetent ohserver to assert that there has never been any previous inflammation in the nerve, and that the intraocular expression of the disorder is limited to lout one organ; thas unfortunately invalidating mueh of the usefulness of the condition as a localizing symptom. As markedly illustrative of this, the writer has had

[^103]the opportunity to watch the progress of a cerebral case for a long time, where a uniocular optie neuritis had been diagnosed, and yet where there were at times unequivocal symptoms of a low grade of nemro-retinitis in the fellow-eye, not only as shown by the ophthalmoseope, but also as evidenced by slight thongh pronomeed contraction of the visual fields, with decided diminution of eent vision for both form and color.

In those rave instanc seems to point towards the of
ne unilateral type, clinical investigation , mackson, Broadbent, ${ }^{2}$ Pagenstec aer, ard others, who have shown that the inftammation of the nerve is on the side opposite to the brain-lesion. Bramwell ${ }^{4}$ doubts this, and is of opinion that the present number of such eases is "too small to allow of any very definite gencralization being made." In partial confirmation of the statement of the former observers, the writer has recently seen two cases of double optie neuritis-both in children-in which the lesser degree of nemo-retinitis was upon the same side as the intracrmial growth. A third ease, also in a child, just studied at present writing with Dr. Morvis J. Lewis, in which the choking of the left optie nerve was one diopter higher than its fellow, showed a tumor of the pons which was more marked on the right side. In further support, the writer has just had another curious ante-mortem coineidence in an adult, where in a yet umpublished case, seen in association with Dr. Francis X. Dereum, all the general and special localizing symptoms pointed towards a left-sided gross lesion. Here the right eye contained a large splotch-like hemorrhagie extravasation upon and aromat the optie disk, with an madue tortnosity of the retinal vessels, whilst the disks themselves appeared to be fice from any coarse change. At the autopsy, a sarcomatous growth was found deeply embedded in the left cerebrum, involving the pulvinar and contignous portions of the internal capsule and the striated body.

This can probably be best explained upon the supposition advanced by Broalbent in partial explanation of the monocular type of the optic neuritis, that the mechanical impeliment to the passage of fluid into the intravagimal shaths of the optic nerve by the growth is greater upon the affected side of the brain tham it is upon the opposite.

It must be distinctly understood, however, that this rule can only be true when the optic-nerve extravasation has been secondary, as it were, to the great inerease of cerebral bulk. An illustration of the opposite cendition is to be found in Dr. James J. Putnam's ${ }^{5}$ most interesting exeeption, where a sarcomatons tumor, involving the posterior half of the right mithlle frontal convolution, gave a much greater optic nenritis upon the same side as the tumor-mass. Here it is most probable that the extravasation of the

[^104]inereased cerebral fluid into the optic-nerve shaths was quite carly in the later history of the case, this allowing the greatly angmented after-pressure from the studten and excessive exacerbation of the thmor-growth upon the right side, at the time when first seen at the hospital, to bloek the previous extravasation, and push it more forward into the interior of the right eye than into the left eye, and thas give the greater intracolar swelling upon the right side. This supposition is strengthened by the post-mortem examination, at which "the surface of the right hemisphere was found pushed atross the median line," "the base of the brain appeared normal, except that the optic tracts were excessively flattened by pressure," and "the right optie nerve was somewhat larger than the left, and reddish in color."

From the time of Von Gracfe's suggestion ${ }^{1}$ of inereased intracranial pressure exerted non the cavernous simus, causing stasis in the ophthalmic vein,-a theory which was soon cast aside on accome of anatomical reasons,-to the latest modifications by Bramwell ${ }^{2}$ of the combined notions of Leber ${ }^{3}$ and Dentschmamn, ${ }^{4}$ of the presence of irritant micro-organisms in the cerebro-spinal fluid produced by the neoplasm, which, passing down the intravaginal space of the optic nerve, produce peripheral inflammation, many theories have been evolved for the cansation of the condition. Thongh Bramwell's assertion (loc. cit.) that " the pressure-irritation theory of Leber and Deutschmann is . . . the most likely explanation in the majority of cases," is most probably true in explanation of many instances, get we most agree with the same author when he states, "I may at once say that, for my own part, I think it probable that the donble optic-nerve nemitis of intracranial tumors is not alwas produced in the same manner." Besides, it mast be distinctly muderstood that there are many similar instances of intmeranial growths where, without any assignable canse of differentiation, optic neuritis is present in some and absent in others. Again, it must be remembered that there are examples on record of actual descending neuritis either in the contignity of the nerve-tissue itself or in its trabeconke. In fact, the subject is still sub judice, and not intil we shall le in possession of a long series of carefinlly-made dinical histories in assodiation with post-mortem examination of involved tissues by expert microseupists, combined with lahoratory experimentation, will any legitimate greneralization as to the causation of peripheral optic neuritis be possible.

No sharp divisions can be given as to the age of the nenritis by the apparent grossuess of objective alteration. Neither can any decided difference between the ultimate result of two apparently diverse conditions be vouchsafed by the visible results alone. So much must be taken into consideration besides the ophthalmoseopic appearance, so many of the finer and almost impereeptible details of physical change seen must be carefully dif-

[^105]ferentiated and understoon by the ophthahoseopist, and conditions vary so comstantly in the same case, that numerons examples must be presenterd to the same thaned eys lafere adequate data of sufficient diagnostic importane and prognostie: moment can be giver.

Roughly, a type maty be made from which all mamer of departure most be expertent. Thus, for exampe, in either a slight attaek or in the ine ipiency of a more promomed ane, the nerve-head will appare somewhat haze; the seleral ring is fainter and at times covered with a marse thickening of the retimel fibes,-this latter condition being more promonned to the imer, upper, and lower lumders of the nerve. Oftimes the retinal arteries witl be a trifle tom wavy, and possibly almost imperecptibly contracted near the disk, whilst the eorresponding veins will be more than ordinaty torthons, and will carry mather darker bood than masial.

If the case be more promomed, the disk will be actually swollen ame pushed forward into the vitroms, the greatest amont of swelling being notieed in the upper, inner, and lower portions of the papilla; the adjaerent retinal substance will be prominent, and sitnated nom a higher leved than that of the periphere of the member ore; the seleral ringe, with the aljowing pigment-masings so commonly seen to its imer and outer borders, will be absolutely lost to view beneath the swollen substance ; the retinal veins will be markedly torthous, cularged, and lost to view at many points, in and just beerond their pasauge into the nerve; the correspombing arterice will appar creatly contracted whilst dipping in and out of the swollen tiwner dark vemons blowl, and at times pallid arterial corrents, are seen in the twisted and partially-blowhed blonel-chamels; fine striated hemorrhages, fam-like and flame-shaperl, - eperially at the bifurcation of the rethal vessels, -wme and go, whilst small vescels which remain unaplarent in health bereme planly visible. This enn be well seen in the arempanying phototypes, reproduced from (iowers's "Ophthalmoseopy" (2d colition, 1. 359).

When the active remditions have reased, the involved tisesmes showly
 the onter or temporal horders being those that are first secen. The redibat prominence lowers, carrying the retinal vesels to their proper levels. The vessels themselves beome more menty nomal in apparance, and the bowd extravazations slowly fade away. This (ean lo plainly seen in the seromd pinture (lor. cit.). Should, however, more contraction of tissue take place, the nerve-material will still further squece the retinal cireulation in its grasp, the retimal vessels, especially the arteries, will diminish more markedly, the borders of the disk will become more or lass promone and the surfiace of the nerve will sink into irregular monldings. The third sketel (loe cit.) well illustrates this. Should the case still progrese, the ehanges of degeneration will become more and more manifest to the ophthalmoseope, until at last, in not a few cascs, so-called "total atrophy" will take place.

As has been abmodantly proved by most competent and painstaking

PHOTO. X.

Neuro-Retinitis of Intracranial. Tlaor. (Gowers, Medleal Ophthalmoscopy, 1882.)

PHOTO. XI.

Partial Post-Neuritic Atropigy. (Gowers, Medical Ophthalmoscopy, 1882.)

PHOTO. XII.

Regressive Neuro-Retinitis of Intracra. nal Tumor, (Gowers, Medieal Ophthalmoscopy, 188:.)
with a mor

Whervers, no dependence em be pheded upon the state of vision ats an exnet index of the amome of disturhance. Berys,' Bramwell, ${ }^{2}$ and others have all reported "goorl," "perfect," mad "nomal" vision in cases where the uphthalmoseope has shown intense nemro-retinitis. I5 ghlings dacksons hat seen instunces where momentary attacks of blindness have been asserted, -these most probably the result of momentary increnses of pressure. buring the couse of a newritis a mind permanent failure of sight in a few hours' time has even been moticel. Mackenzie ${ }^{4}$ broadly nsserts that he "would go so far as to say that in the practice of physicians who examine ell their eases with the oplithalmoseope, whether the case was a cerebral one or otherwise, —whether there were or were not ocular semptoms, - in at least onc-half, if not more, of the cases in which optic memitis was disemered, it would be fonnd masociated with any marked, and often without appreciable, defect ol" sight."

As an example of one of the more constant oljective symptoms of infracramial neoplasm, optic nemitis becomes one of the most vahable and important to the clinician. Usually mennally bilateral, it is ahmost certain to appear in some stage of the diseasc. Taken alone, not much dependence ean be placed upon it ats a lowaizing symptom. In monjunction with other oenlar groupings and general motor and sensory disturbances, it becomes imvaluable. ${ }^{5}$ Again, we must remember that, as Hughlings Jatekson states, ${ }^{6}$ "optic mourtis points to the general mature of the local discase, not to its partienlar nature." It indicates, as he most pertinently says, the presence of a "foreign body" alone. Noreover, we can understand that the exact position of the mass camot be determined from this symptom alone, because, as we well know, a foreign body, rapidly growing, will eanse hoth direet and indirect pressure, with all their results, no matter in what intraeranial point it may be situated. Certan it is that the nearer the mass is to the large fluid cavities and their intereommunications, the more certainly are we to have peripheral expressions of meedanical interference, whilst the less removel the neoplasm is from the associated intracranial tissues of the second nerve and its internal prolongation, the more certainly must we expect to have results of pressure and even destructive change: thus, roughly, cerebellar, decply-sented cerebral and basilar growths seem the most prone to promuce optic nemritis.

The fact that inerensel intraocular pressure has time and again been shown not to be the sole canse of optic neuritis does not in any way mili-

[^106]tate ngainst these views. It canot be denied that in some cases of neoplastic fogmation with promone deal denctive changes there can lo an athal dessent of the inflammatory material along the tissmes of the nerve itself. Travelling be mems of the meninges along the urteriondes, ama at last rembing and inflaning the optie-move commetive-tissue material itself, the intraocular expression of optie nemotis is obtaned. Buth Bailey amb Edmunds have distinetly proved this. ${ }^{1}$ Still further, Edmands ${ }^{2}$ believes that it is a coexistent basilar meniugisis from the Iman-tumor wheh phays the role of cansation of the domble optice nemritis in such cases.

Secondary optic atrophy is most probably prodaced ly either direet on indirect pressure of the neoplastic formation upon some intractuial pention of the optie nerves themselves, or their prolongations backwad.

Prognosis.-If vision be momentarily impaired, as we sometimes find, especially in the so-ealleel "chokenl disk" variety of optic neuritis, the ultimate visual result is alwars in direct relation with the amonnt of inHammatory tissuc-ehange or degenemation, which lessens phesiological action to a degree in proportion with the amount of nervetissue left alter the primary gain from the orgigul amont of oedema has loeel effected ; that is, there is a marked primary loss of physionl attion, the result of the initial changes, immediately followed by a gain of perecption dependent upon the amome of restoration of physiological absility of the discused nerve-tissme. Followiag this gain, there is a slowly-decreasing vision, the result of post-nemitic change, the amonut of the final sight being dependent upon the degree of consentive inflammation or degenerative change. Where the neuritis has taken plate without previous choking, the vision gradably fades from the berimaing without any intermediate gain, only to siop an a point which indicates ecssation of the optic-nerve change. If the case be me of simple atrophy (either primary or secondary) ${ }^{3}$ from the first, the gralnal failure of vision is much more steady, and, as a rule, more pronounced.

As treatment of the neoplasm ly drugs is eminently unsatisfactery, and as the recent advances in cereloral localization with the lurilliant results of autiseptic surgery render operative procedure for the removal of intracranial tumors so justifiahle in many of the eases of accessible growths, careful study for such treatment should always be instituted. If syphilis be the suspected souree of the growth, a proper course of alteratives with sarsaparilla, as Wool ${ }^{4}$ suggests, should be tried. Should the mass lee inacecssible, morphine injections, local applications of cold, as recommended by Bramwell, ${ }^{s}$ or free watery purgation, as spoken favorably of by the

[^107]same muthor,' may be nsed. Of conrse, linal treatment of the optic anmitis itself-one of the effects-is out of the question.

As cerebral abserss is genemally the sequel of suppumative processess about the bones of the emr, it is nsually sitmated, as shown by Barr, ${ }^{2}$ in the tempro-sphenoidal lobe of the same side. Cuses of tranatic ahseress, acote loxalized meningitis with pos-formation, mul metustatic abseresses have been reported by Harrism, ${ }^{3}$ Barker, ${ }^{4}$ and Fraenked. ${ }^{5}$ Extension firom masal and orbital disase has abso beenseen. It is not minteresting, therefise in this (onnection, to note Keen's worls: "The presence or absence of doked disk does not seem to be pathognomonic, as it is sometimes present and sometimes absent. When present, even if bilateral, it is almost alwass more marked on the side of the lesion, thongh this is sometimes reversed." Thus associated with ent-discase it at times alfordy an important dhe to the form of intractanial lesion.

Thongh generally a disease of adolescence and car'y adult life, yet the proportion of ocenrence in childhood is so high that its presence shonld be carefully considered in every case of neuro-retinitis where there is a probability of intracranial mi hief. It is certain that if the pus-formation be rapiol and extensive, marked pressure will soon ensue, and give rise to optie neuritis. As distinguished from that of thmor, the optie neuritis of abscess is nsually not so marked, is more disposed to be muilateral, and is, as a yule, more decided in its onset. When the abscess is situated posteriorly, the introocular symptoms are generally wanting. As Keen says (supre), "Optic neuritis is not frequent in cercbellar abscess." Pflüger,' however, has seen one ease of abscess of the left hemisphere of the cerebellum in which donble optic neuritis with both optic nerve and retinal hemorrhares existed.

As vasenlar disease procluctive of thiming of vessel-walls is almost essentially a disease of alult life, intracranial anewrism as one of the results is almost unique in children. For this reason intracular change expressive of the condition is comparatively unknown and seldom recorded. "Probably an ophthalmoscopic examination," as Gowers says, ${ }^{8}$ "would have revealed it in a larger proportion of cases." Miehel ${ }^{9}$ reports a donble optie weutitis from pressure of a varix-like aneurism of the two internal earotids. Mitelell gives ${ }^{10}$ a most interesting case in an adult of an aneurism of an anomalons artery, causing antero-pusterior division of the chiasm of the

[^108]optie nerves and producing bitemporal hemianopsia. The eye-gronuds, which were studied by Dr. William Thomsom, showed " no changes exeept at cad papilla, where the vessels of the retima appened periaps somewhat attemated, whilst the nenroglia, especially of the left eye, was pale, the porus optiens cularged, and the apparances those of partial atrophy. There was no swelling of either papilla, nor any change in the retina that would indicate a previonsly 'choked disk.'"

In either instance, whether the case he one of actual nerve-inflammation, as in Michel's case, or of secondary nerve-changes from pressure, as in Mitchell's case, increased or continued growth of the anemrismal dilattation must produce degenerative changes in the optic nerve.

The prognosis as to sight is truly grave, and cheek of loss of visual power can only be expected from sume radical surgical or manipulative procedure addressed to the main vessel or trunk itself.

As the incrase of the secretion of the choroid plexus in the lateral ventricles, ete., taking place in simple internal hiydrocephalus, becomes very pronounced, there may be some dilatation in the calibre of the retinal veins; this, however, upon account of the comparative elasticity of the bony and cartilagimons structures and the yiedding of the cranial sutures to intermal pressure, is quite infrequent. In a few instances atrophie nervechanges have taken place with and withont signs of previons nenitis; the latter being most probably dependent epon pressure upon the interinal prolongations of the optic nerves themselves. In an aequired case in a three-and-a-half-yemrole boy seen with Dr. W. W. Keen, the writer foum a slight dimimition of the retinal arteries with a corresponding eulargement of the retinal veins; the nerve-substane : .ing entirely too gray for the age of the patient. In this case there were no gross evidences of past optic nemitis.

Pachymeningitis, cither external or internal, is so excessively rave in children that no unquestionable case of consequent optic-neive inflammation, as far as the writer's ohservation goes, is on recorl. This can be well understood when it is considered that small localizel inflammations of the dura mater may he so trifling in their indirect results upon contignous tissue, and exert such a minor degree of increased pressure, that neither marked iuflammatory extension nor ocelusion of outgoing lymph-channels by pathogenie material may ever take place during the course of the disease. If present, it is probable that in most instances it has heen caused by ditact implication of the optic nerve anterior to the chiasm, thas giving rise to the miocular form of intraocular inflammation or degeneration. In association with Dr. Charles H. Burnett the writer has studied one such probable case in an adult. ${ }^{1}$

In hematoma of the chera mater, its ocenrrence is rather more often noted, not only upon aceount of the slightly greater frequency of the disease in

[^109]dildhood, but also becanse in these eases there is more changeability in the foreign and offending material. Optic nebititis may thus ocenr carly, with the appearance of other acite symptoms, especially if the formation of the clot be rapid and extensive.

Acute lepto-meningitis of all forms, which is so common in children, is more prone to give ophthalmoseopic signs of its presence when the membane is inflamed at the cerebral base. Its form of optic-nerve disturbance may be either some variety of descending nemitis, as regarded hy Von (iraefe, or even perinemitis, as has been deseribed by both Alt and Von Ziemssen, though so-called "papillitis" has been seen and noted be competent observers.

As distinguished from the optic nemitis of brain-tumor, Bramwell ${ }^{1}$ believes that " the prillitis associated with thmor is, as a rule, more intense than that due to meningitis;" whilst Inghlings Jackson thinks that the swelling of the disk in tuberealar meningitis is slight and not extensive, the disk appearing suceulent. Gowers ${ }^{2}$ says that the swollen nervehead is paler than that which is usually found in similar conditions. In the few cases observed by the writer the optic disk appeared somewhat swollen, its edges were haze, and the venons engorgement was slight ; the retinal hemorthage ordinaril seen in optic neuritis being but once present. Oceasionally, whitish areas with white points can be notied in the retina.

In the iubereular varicty (see scetion on Tuberculosis) aggregations of tubers may be observed in the choroid. With the exeeption of the purnlent type of meningeal inflammation, where intraocular evidences of thrombi and emboli may appar in addition to the nemitis, this form of the disease is most apt to give the most pronomeed pieture of nerve-head change ; this, no doubt, being in a measure due to intracranial aggregations of tubereles, which thus practically form tumors themselves. By careful and periodical semeh, Garlick ${ }^{3}$ ascertained its presence in twenty-one out of twenty-six casce.

It is probable that were all eases of meningitis earefully examined ophthalmoscopically during the attack, many of the cases coming to the oplhthalmologist later in life, with a history of past symptoms of cerebral disorder and consequent defeet of sight, would show ophthalmoscopic signs of optic nemitis. In the ehronic form of the disease the disks may become more and more atrophie after cach subsequent slight exacerbation. In this case the value of the symptom is very great, as the disense may be so insidions, and its general symptoms so masked, that it is diffienlt to oltain any certainty as to the correct diagnosis. If the child be old enongh, periodical examination of vision ard the fundus oenli, with careful perimetric study, should be made, especially if any vague general symptoms indicative of the disorder appear from tirne to time.
noted,

[^110]Vol. IV.-15

In the syphilitic form, more especially in infants, where the region of the posterior fossa is invaded and internal hydrocephalus from intraventrisular closure takes place, ophthahmoseopie signs of optie nomitis should be searched for in every instanee. It is possible that Case II. of Hutchinson's clinical studies, "Amarosis with White Atrophy of the Optic Nerves in Comnection with Inherited Syphilis," bedongs to this eategory.

In the equidemie corcho-spinal varicty of meningitis, optie neuritis appears late in the disease (abom the fonth day), possibly partly owing to the comparative involnembility of the larger nerve-bundes to either peripheral nemritis ${ }^{2}$ or descending nemitis itself. Atter the primary attack of inflammation, the nerve rapidly passes into a state of conserotive atrophy; this is most probably due to the passage of a specifie form of blood-poison acting so as to produce localized inflamatory reaction, which is often distinctly proved by the post-mortem apparances of , mralent depositions in the uveal tract and the presence of there nbi and embolic infarets in the veins of the retiat. Both retial and ciliary-body indammation have been seen by Ocller. ${ }^{3}$

The grave form of the diseaz, where ophthalmoseopie changes are to be expected, is so rapid in its termination, and the patient is usually so restless, that it is often difficolt, even when the pupils become dilated, to obtain any satisfactory view of the fumdus oculi. In all sueh cases some mydriatic, such as homatropine or cocaine, should be employed. If the physician be at all expert, he will be able readily to examine the eve-gromal whilst the patient is in a supine position. ${ }^{\text {. }}$

If the media be sufficiently elear, the eve-gromed generally gives all the conditions of the lodgement of embeli or thrombi to a greater or less degree.

In spite of these conditions, cases have been reported where useffel vision has remained, and where consecutive atrophie changes have stopped sufficiently carly (o prevent total ammililation of sight.

In insolution, or thermic fercer, while meningitis (even in the young) hats been bronght on by the direct action of heat eamsed by patalysis of either the heat-centres or the vaso-motor nerves throngh inereased stimulns from exposure of the lowey to increased temperature, ${ }^{5}$ both optie nemritis and conseentive atrophy may be seen. Iotz, ${ }^{6}$ who reports several such cases, gres finther than this, in asserting that choroiditis of exudative type hats been seen, its presence being due to extension of inflammatory material along the optic-nerve sheath. As Gowers, ${ }^{7}$ however, says, "the alhsence of choroiditis

[^111]ithe ricind be son's es in
in other cases of such extension renders the explanation diffenlt to aerept." Fortmately, the disease is very rarely, if ever, seen in children.

Insular selerosis, an atfection of every age of life, though more particularly found among young aldults, is a discotise which is very apt to attack the second or optic nerve. Here we should expect to find degrees of visual loss of power is exact relationship with the rumber and the extent of the sederote patehos in the sensory portions of the visual apparatus. Curiously, however, as Cowers' says, "the nerve-fibes passing throngh are not destroyed, cir avis erlinders persist, and retain impaired functional power, althongh their medullary sheath mey disappear." If the pateh be sithated far back, impaiment of sight, followed be secondary changes which may become visible ophthalmoseopically, can take plare. Should the islet of shlerosis be near the oenlar globe, inflammatory signs in the region of the disk may manifest themselves. Usmally hoth nerves are afferted, though, as a mole, they are distmber mevonly.

As nearly fifty per cent, of the cases of mighoine or hemicrana, are foum during the period of adolesernee, and as its subjective ornlar symptoms, which are so ummerons, varied, and frequent, simulate those of serions orranic discase, it has been thought well to give them in some detail. Temporary bemianopsia of a thin fog-like area which slowly sweeps across the lateral fichs of vision, dense central spots which extend peripherally and lose their central density, and "large dim specks which either move latmally or diagomally," genemally either usher in the vismal manifestations or matk the termination of a series of speetral appeanaces. At times there are vague impresions of moving water, or the apparance as if "the air itself' were somehow visihle, being romposed of tine luminons grains which do not ohstruct the vision" (loc. cit.). If the hypernesthesie oecur first, white or light zigzags, revolving concentrie whecls, changing and blending robors,--in fact, as one pationt says, "all mamer of kaleidoscopic forms and colors that will not hold long enongh to be camment,"-are visible. ${ }^{3}$

In children these conditions may be associand with considerable rise of temperature, which, npon aceount of the general andjectiveness of the symptoms, may ofttimes mishend one in the proper diagnosis of the case, and tend apparently to inerease the erravity of the conditions.

[^112]These, which are hut a part of sensory disturbances, may at times low associated with motor derangements about the cye.

One perenliarity seen in a case of the writer's was that the intensity of the colomation of the spectra derveased and their chanacter changed as the attacks became less frequent and less intense: the whors became less vivid, and changed to those which are ordinarily sem with less periphema nr external stimuli; ${ }^{1}$ the forms herame less pronounced, and the blind spots and blind areas less tromblesome.

Be the pathology what it may, though most prohahly some change directly or indiretly comectid with cortex irritation and disturbance, it is possible that even here visible retinal damges may exist which are so slight, and so masked by ametropie and other local conditions, that wo chamacteristie eye-gromed expressive of the distmbance can be noted. As the catse advances, however, and may pass through the stage of chorea (:') into epilense (?), the fundus oculi changes may beome more and more marked, until at last the perenliarties of retinal fibre thickening with slight perivaseulitis, vessel tortusity, and incipient red-gray deremenation are finally established as the visible resulte of a process which has been taking place within the intramanial substance, and which may be readily seen post mortem by rarefin exammation with the mieroseope. ${ }^{2}$

Stanford Morton ${ }^{\text {a }}$ makes the curions observation of apparent obstrustion of retimal cirenation in the right eye of a yomg woman of twenty years who was sulfering from migraine. No evidence of cardiac lesion was obtaimalle, thongh the patient had had chorea for sevemal years. No mention is made of the existence of rhemmatism.

Chorea.-In ordinary cases of chorea during childhood, fumdas lesions have been generally regrarded as negative: thus, Gowers ${ }^{4}$ emphatically says, after deseribing thre compliated cases where slight optic neuritis existed, "During the last twolve years I have examined with the ophthatmoscope a large momber of cases of chorea, but have met with morhid dhanges in no other instance," ${ }^{5}$ and De Schweinitz in a later communica-

[^113]tion' presents the following as one of his conchusions: "Embolism, atrophy of the disk, and optie nemritis may ocem during or after attacks of chorea, but appeananes in the fimbus ocoli chanateristic of the discase have not been fomdi."

That these comelusions are the there ean be no dombt, Int emrionsly, in addition, in several cases where, throngh the kindurss of Dr: Wharton Sinkler and others, the writer had opportmity afforded him to study the eye-grounds of sumberse the fimdus in menty every instance examined presented ant appeatance simulating, thongh to a minor degree, that seen in the cye-ground of children of the sume are who were suffering from ppileptic seizures, these fumlus-changes loping associated with a dombtind blood-pallor, and sermingly so pronomored and fised, eren after corredion of refiadion-error, as mot to be wholly explaned by any existent ametropia. This eoincidonee, for at present it must be so eonsidered (since insulficient material has as yet been seen from: which to draw any positive romelnsion), confirms the writer in the belief' in the close relationship-if he may so term it-betwern migraine, choren, cpilepser, and genem paralysis of the insane (temporary and permanent cortex irvitation, disintegration, and (leath).

Another eurions fact in these ases, not exactly appropriate here, hut which the writer intends to explain more fully in a more suitable place, is a decided elonicism of the eiliary musele in a few cases, giving rise to apprent momentary increases of refiaction. ${ }^{2}$

The two cases of embolas of the central artery of the retina seen by Swanzy ${ }^{3}$ and Fencrster (quoted ly Gowers ${ }^{4}$) ean be possil)ly explained upon the supposition of ardiac disease, which has been found to be so prevalent in such cases. Sym's case ${ }^{5}$ prohably lelongs in this eategory.

For the whef of any eve-strain we should see that every ametropie child has its reftaction-error thoroughly corrected by the use of a mydriatie, taking care to know that both the lenses and their momtings are properly and carefully readjusted every few months. The Weir Mitehell phan of rest-cure may be made of great use in these eases, together with short semees of jodicious mosements "slowly done with force and completely finished," as suggested by Sequin. ${ }^{6}$

In spite of Gowers's helief" that "the apparance of the findus omi between the paroxysms is, as a rule, normal" ${ }^{8}$ in epilepsy, yet it is absolutely

[^114]rertain that if a series of carefinl observations be made in any variety of this discase, a type of eye-gromm will som manifest itself to the ohserver, this being the more prononned in those cases where the seizures have taken phace over a long period. Not only has the perentian condition been fome :mong adnlts, but it is plainly manifest in younger subjects.'

The nerve-head appars dull med-gray, whist its edges are hazy amb hidden above and below bey fine (sometimes coave) retinal striation which extends far ont into the periphery of the fumbins. Both the arteries and the veins of the retina are torthons and a trifle large in size, whilst the vesselwalls appear thiekencd. 'The choroid itself' sems somewhat disturbed. This pieture is so constant in varying degrees, and is seemingly so miformly in direet relation with the gravity and the mmber of the paroxysns, that it can be only considered as the visible ophthatmoscopie resolt of at similar condition in the related cerebal cortex, which may be seen post mortem in these suljects by carefinl stmly with the microsenpe. ${ }^{2}$ Knies ${ }^{3}$ has since found identical changes in the retina and optie nerve. As most of these cases were idiopathic in type where post-mortem examination bailent to reveal any gross macroscopie lesion of either the intracmaial or the oenlar contents, but where the mieroscope showed signs of cortex irritation and inflammation, with similar changes in the retina, it mast be concelerl that the slight and atsily-overlooked intraombar expressions noted bore wo redation whatever to the seguclae of old syphilis, such as choroiditis, chomior retinitis, ete., or to the results of coarse organic lesion of the bain, such ats nemro-retinitis, retinal hemorrhage, cte.

Morcover, Norris" suss, "In several of the ehronie cases which the writer has hatd an (pportmity of examining, there has been a low grade of atrophy of the disks, with comentrie limitation of the fiedd of vision." In confimation of this latter statement, the present writer, in an analysis of the ocular symptoms obtanable in epilepsy in the male aldult, ${ }^{5}$ has fomul the visual fields for form and color reduced to from one-third to one-twentieth of normal areas. Both Allbutt and Bonchut hold that the disks appene congested during the "interparoxymal state." Kostl and Memetscheli's assertion ${ }^{6}$ of the emparative frequency of spontaneons vemons pulsation
is an masmal equality in size of the retinal arteries and voins. The latter are not, ats a rule, larger than normal, and the arteries appear as if harge from a lax state of wall."
${ }^{1}$ Through the kinduas of Dis. Isame N. Kerlin mal A. W. Wilmarth, the present writer has been omabled in the past two yours to engage in shadies upon this and kiadred subjects at the Pemsylvaia Insitution for Fechle-Minded Children at Ehwy, Pemsyb vania. As soon as the records are sulliciently complete for proper genemazation they will be published.
${ }^{2}$ See Seeond Ammal Report of the Pathologieal Department of the State Lowpital fin the Insaue for the Nonth-eastern Distriet of Pennsylvania, by Dxs. Francis X. Dereum and Ita V. Reel. Published in Seventh Anumal Report of the Impital, 1886.
${ }^{3}$ La Semaine Médicale, Jume 13, 1888.
${ }^{4}$ Pepper's System of Medicine, vol. iv.
${ }^{5}$ Philadelphia Medieal Times, February 5, 1887.
${ }^{6}$ Prager Vierteljahuschrift, SS. 106 u. 107.
has not heen sulstantiated by so careful an observer as Gowers;' it is likewise certain that in a large mumber of motings of cates which have been \%alomily and painstakingly studied by the present writer there camot be found a single reoord of such a symptom.

During the convulsive seizure, ophthalmoseopie examination is so diflienlt that diverse opinious have been sedulonsly contended for by varions olservers. Pallor has been the most frequent, as noted by Hughlings dackson, ${ }^{2}$ Schreiber, ${ }^{3}$ and Arlidge, ${ }^{4}$ whilst both congestion and pallor have bewn recognized by Allbutt. ${ }^{5}$ In the tonic stage of the paroxysm (iowers ${ }^{6}$ hats noticed increase in both size and darkness of the retimal veins. In one mase sen by the present writer, where a convolsive seizure ensued during the time that the ere-gromed of an epileptic patient was being studied by the direct method, an imperfert view of the findus ocnli was obtained during the eranotic stage, whieh not only revealed a questionable inerease in size of the retinal vessels, but also gave a donbtfill enlargement of the size of the entire details of the fimdus; this, if eorrect, may be attributed to a possible tonic contraction of the ciliary muscle during the grmeal tomic spasm, which proxheed a temporary inerase in the convexity of the ervstalline lens, with apparent enlargement of the ophthalmoncopis image, -a solution of a problem akin in a metsure, thongh probably more plansible, to that suggested ly K Kies ${ }^{7}$ to exphain the apparent change in the size of the retinal vessels. ${ }^{8}$ Finkelstein, ${ }^{9}$ who has studied the fields of visim immediately following epileptic scizures, has fomm some very curions and interesting temporary changes in order, size, ant perversion, and believes that these pecoliarities, in association with some similar conditions of ordianay color-preeption, may prove of value in the differential diagnosis of true and simulated epilepsiv.

The eye-gromuls in idiocy, which are now being studied by the writer, have in a considerable momber of instances given chamacteristie congenital anmalies with pictures of products of inflammatory change.

The mental grade of imbecility-i.e., the ability of the sulject to make contined nse of the eyes for prolonged near work-seems to bear greatly "pon the condition or apparance of the fundus ocnli. In the lower grades, where mentality is of such a chamater that the eyes are seldom, if ever, nsed, the fundns in most instances fails to present those changres, such as "dirty red-gray apparance of the optie disk; invegulanity of physiological exavation; non-visibility of the smperior and inferior portions of the

[^115]seleral ring; absorbing connses in all of their varieties; increase in density and thickening of the retinal fibres; opacities of the vasenlar lymphsheaths; distmbed states of the chorod ; and gross errors in astigmatism, with changes in indices of refraction," 'which are so ordinarily fomm in the abused eye of the mentally healthy at the same age. ${ }^{3}$

The case is far different when the little patient lans been placed in the highest grade of school training. Here not only do we see the abosed tissues of the overused ere of ehildhood, but we find that the changes in refaction-error, with all the consequent fimdus peenliarities, are much more prevalent and promomeed than among the mentally healthy placed mader the same condition of school hygiene.

Spinal Cord and Corcrings.-Contrary to common belief, aente inflammation of the spinal cord proper (myclitis) has most certainly at times eyegromel symptoms associated with it. Noyes ${ }^{3}$ gives a remarkable instance in a young man. Steffin, ${ }^{4}$ Estb, ${ }^{5}$ Chisolon, and Segnin have all seen cases. The intracolar symptoms are deseribed as low-grade optic nemritis, assoneiated with all degrees of lowering of central vision and deeided though changeable diminution in the visual fichlds.

Sharkey and Lawforl ${ }^{6}$ add a case of acute optic nempitis with aente inflammation of the spinal corl. 'Their case (in a seventeen-year-old girl), which happily embated both an extended elinieal history and a most carefinl stuly with the microsenge of the involved tissnes, showed intense inflammation of the optie disks, nerves, and chiasma, with a less involvement of the tracts, whilst the adjacent meninges gave slight evidences of inflammatory change.

According to some observers, spinal concussion has been prodnctive of failure of vision. Allbutt, ${ }^{7}$ who believes in an association beiween the two conditions, attributes the fundus-lesions to the effects of meningeal distmbance. Noyes ${ }^{8}$ relates a case in an adult, where, after the recept of a sudden and severe blow upon the lower end of the spine causing intense pain at the base of the skull and along the spine, there were defective vision and contracted fichls. Ophthalmoseopically, "there was extreme hyperemia of the optic disk both in the latge and small vessels." He believes that a paralysis of the fibres of the sympathetie might well be assimed as the cause of the vascular dilatation. Eriehsen ${ }^{9}$ asserts that in the vast majority of cases mattended by fracture or dislocation there was distinct evidence of visual impairment. Examination of his cases shows

[^116]that vision was impaired in about one-sevently of the total number. Necessarily this proportion must be accepted cem grano setis, unen accomen of the omission of careful ophthalmice examination in the greater mmaner of his recorded and quoted instances.

The symptoms generally complaned of are a species of hemeralopia, museular asthenopia and insufficiency, and donhle sight, followed by muse volitantes and colored vision. Conjunctival congestion has also been moted. As all these conditions are subjective, care must be taken to aseertain that there is no malingering, especially in cases of yomarg hysterical persons. (arefin tests for all maner of deception, with close examination and consideration of every related ophthalmie symptom, shombld be made before any opinion is given as to the relation of donbtfal canse and apparent effect. (See section on malingering.) 'Thorburn,' after a comparison of some fresh investigations with the past conclusions of others, says, "From the above summary we are led to the conclusion that the occurrenee of optic nemritis is extremely rare in the cases formerly desuribed as concussion of the spine, and that even when present there is no indication whatever that it bears amy relationship to a lesion of the spimal cord." He has no faith ${ }^{2}$ in the association of the intramenar disease with a donbtinl spinal tramatism in Thorowgood's ohservation, ${ }^{3}$ where "choked disks" appared in a yomg healthy girl twelve years of age, one month alter a blow received upon the lower part of the back. ${ }^{4}$

Philip C. Knapp ${ }^{5}$ has written a most eareful paper upon the whole suly ject.

The pathology and etiology of Fricdreich's ataxia are still obsenve. Aceording to Friedreich, ${ }^{6}$ Möbius, ${ }^{7}$ Grasset, ${ }^{8}$ and others, it is merely a species of tabes dorsalis cansed by primary degenemation of the posterior coltums of the cord with secondary meningitis. Bonrneville ${ }^{9}$ and Rosss, ${ }^{10}$ however, associate it with insular selerosis, whilst Gowers " finds a correlation between it and ataxie paraplegria.

In this probally the only ordinary form of tabes dorsalis seen in childhoowl, ${ }^{12}$ intraocular signs of sensory distmbance have, according to the most

[^117]earefill analyses of recorded enses by Griflith, ${ }^{1}$ been very rarely seen, if at all. Ont of one humdred and forty-three (asess, he fomm ophthalmoseopic examination noterl in thirty-eight instances, and in none of these were there any changes of importance exept in Power's cases," in which the disks were rather white, and in one of Segnin's," in which there was "partial atrophy of both optie nevese." Contimuing, he satys, "The condition of the color-fiedde might prove of interest in showing the possible relation of the disease to locomotor ataxia. Very little has been done in this direction, thongh Oliver made a carefinl examination of one of Sinklers cases ${ }^{4}$ and fomd marrowed fields, loading him to believe that there existed ocular changes allied to those of taloes." In this instanee, which was most carefinlly studied, the writer found incipient optic-nerve degeneration, as evidenced by the ophthahoscope and shown ly slight subnormal colorperecption for grem, with marked contraction of the vismal fiedds, more pronomered on the left side. These sensory changes in association with at pronomerd horizontal nystagmus induced him to conclude that he was dealing with oeular conditions which were related to some peculiar form of locomotor ataxia.

Through the kindness of Dr. J. P. Crozer Griffith, and with the assistance of Dr. H. W. Cattell, the writer has been able to study the ocolar conditions of two of the personal cases mentioned in Dr. Griffith's "Contribution to the Study of Friedreich's Ataxia" (supro). In the case S. J. he wats enabled to verify Dr. 'Tumbull's original statement, "The result of the ophthalmoseopic examination of the eve-gromed . . . was entirely negative." In the thind ease (Amie C.), where Dr. 'Tumbull two years previonsly had reported "ischamia of the retina and venoms pulsation in both eyes, but wo other alteration of the eye-gromeds," there was deededly less capillarity to the temporal pertions of the optic-nerve substance, though the disks appeared otherwise halthy; this loss of capillarity being mowe pronomed in the left eye. Vision with the right eye was redued to two-thirds of normal, whilst that with the left eye was but one-third of normal. Fiolds of vision for form were contracted to one-fifth (right) and one-sixth (left) respectively; there being a series of indentations in the periphery of the eolor areas, especially down and in. Tension was normal in cach eyc. Media were chenr.

It would be both interesting and instructive to have a carefinl ophthalmoscopie reoord with a painstaking perimetrie examination made in every case falling muder observation, so that if the optic-nerve changes be constant they may be included in the symptomatology of the discase.

[^118]In luteral selerosis ophthahossopio changes are said by Gowers' to be pory rare. He nevertheless moles minstane of repeaterl transient attacks of amblyopia followed by optic-nerve atrophy ; the symptoms nppearing in an adult male whom he supposed to be sutfering from the disense. In a nineten-reur-old girl seen hy the writer through the courtesy of Dr. G. Betton Massey, repan ophthatmoscopie examination extembing over several years showed that t. ght optice nerve continned slighty the healthier in apparance ${ }^{2}$ and gave somewhat better vishal results through the entire prous ; thongh the vismal acuity, eolor-pereption, and visual fields of the lett eye were always but slightly behow nomal.

C'uchassified Newroses.-As hereditury optic-nerve atrophy is signifiemnt of a form of kesion which most certainly appens to be associated with heredity, there can be mo doubt of the corvectness of the nise of the term in this comection. As curly as 1817 it was reongnized ly Bere, who gave a detailed aceont of three generations in whom the females beemme blind abont the time of menopanse, and where, curionsly, the brunetes of the family were those affected. I'ravers ${ }^{3}$ instances another series in two generations, whilst Sealgwiek ${ }^{4}$ gives a most peobliar family grouping, where the blindness appared at sixty in the father and where the sons bereme surecssively carlier and eadier affected. Habershons gives an exhanstive account of the literature and a résumé of a large number of persomal instances. Four genemations of the disease are noted by Haswell. ${ }^{6}$ Wardrop ${ }^{7}$ mys that he has "known several instances of this kind." Weller ${ }^{8}$ cites an interesting example where an antopsy showed that the "medullary matter of [the optic] nerves had been eompletely removed." Thomsen's ${ }^{9}$ ase, which developed melancholia later in life, is interesting by reason of a supposed seventeen years' remission. Jacohson ${ }^{10}$ attempts to explain the condition in a child born of a seemingly nomal-eyed mother, as dependent upon an intra-nterine pathologieal proeess that had disturbed the already finished (1ptic nerve. Lether (loc. cit.), who has given us a systematie study of the whole question, believes that a peenliar neuropathie tendeney, such as nemmigias, dizainess, amesthesias, and even epileptiform sejzures, exists in all these cases. He thinks that it generally manifests itself a short time after adolescence, thongh it has been observed quite carly in life. Consanguinity does not seem necessary, and in fact it is not usually found.

1 Medical Ophthatmoscopy, 1882, p. 168.
${ }^{2}$ Lehre von den Augenkmakheiten, ete., 1817, ii, 442.
${ }^{3}$ see Leber's paper, Arehiv tür Ophthahologie, xvii. 2, S. 249.
4 Medical Times and Gavette, Mareh 22, 1862.
${ }^{5}$ Transactions of the Ophthahologicnl Society of the United Kingdon, viii. 190.
${ }^{6}$ British Medical Jonrmul, December 3, 1887.
${ }^{7}$ Esays on the Morbid Anatomy of the Luman Lye, 1818, ii. 183.
${ }^{8}$ Manmal of the Diseases of the Muman Eye, 1821, ii. 79.

${ }^{10}$ Centralblatt fuir praktische Augeuheilkunde, Decenber, is87.

Norris' has had the mare opportunity of making a most curefol ophthalmor seopie sthely of seven mases (four hogs and three girls), the children of an matiedent mother who was the sister of two atfeeted brothers and mes madienter sistor, the gromehother of this genemtion being uffeeted. Itis

 the marliest.

Most writers look ipon the disense as ame manifesting itself uhome tho time of puberty, whilst others have failed to remgnize it motil hater in life. Littell" motes an instance where "fone on live children in ore lanily were born blimd, the parents themselves cojoging perfert vision."

The sulyedive symptoms are quite chatacteristio: : more or less fomtal hombache; dizainess; attacks of" "fogrging of vision" daring perspitation, withont watering of the eres; varions-colored phosphemes (red mat home stars, etc.) appearing in the centere of the visual fied ; gradnal diminntion
 markerlly and inregularly montactand, with varying sizes and demsities of cental seotomata; gradually decrensing mormal eolor-perereption, passing thromg the varims colors, green, resh, blue, and yollow, matil at last mothing but "phal intensities of color are laid side by side, withont referene to tiat."

Ophthalmoscopiatly, the rhanges in the optie werve which are so wetl described by Norris (silpra) may be smmmed up ats follows: " 1 . The stage of clondy and cedematoms swellita," where the disk is still capillary and haser, its mormal ondines partly or entime hidhen, and its substamee slighty swollen. "2. That of lymph reflexes, where the haze and swolling have kessoned, and the disk has "recome slightly grayere" In this stage there appar momerons silvery and yellowish-white reflexes sithated in front of the retinal vessels, mostly marked in the marentar region, which, aceording to the anthom, are "probably partly due to capillary vessels of the retima which hase become visible ly the thickening and clouding of their walls, partly to the enlargement of the lymph-thameds of the rethal tissme." "3. That of gemeral death of the nerve-tissme;" here the reflexes lesesen, the retinal resels dwindle, and the tissme of the disk gradmatly beromes atrophic and assmes a gremist,

It will thas he seen that ; carefuluess of clinical stu changes in the fimdus.
recognition in children depends upon what has been sail, it is fair to nssmme that the disease is as truly proseasive in its early stages ats later on, when eren almost incompetent stndy ammot fial to expose its existence. The child of seven or eight years is as truly a sufferer, and in need of as much hygione

[^119]mid therapy to endenvor to prolong the life of one of its monst valumble organs, as the man of tifty yous. 'The child of three on tive yours belouging to such a fimily, even thongh not presenting any macroscopic signs of disumse th our ordimary instrments on prevision, is even more to be protected mud cared firs, in the herge of averting such a calamity, than the one of wher yeurs. 'The comblitions men in yonth are just ans intiontive of this terrible haithom as are the grosser lesions and their mowe dire conserpueness when finad in the relaterl adolt. Barly youth and infiney are the only tims in the individual's life when we may hope by most carefish and even extramdinary regimen and stadied prophylasis to mitignte or suppress the manifestation of this dreal disorder. As ench yan in lifi is passerl, the grevere the changes heome, and the less likelibant is there for repair or bettement of condition. What its true pathology may be-axial nemitis or vascular distmbane-antopsy will alone show. So far we are in the dark. Mang theories might be prope ald, carlh Iooding a grain of trath, but the knife and the micmosenpe cans alon give the maswer.

Strychmine, as advosated by Moren, Leber, and Norris, probably ants, as the last-mancel anthor states, by inereming moterial pressure, so as to give greater llow of mutriment throngh shrivefled optic-nerve apilharies.

Whether it be tre or not that raphlhalmies goitre has its pathogenesis in the cerchmb mass, ${ }^{2}$ yet aceording to Gowers ${ }^{3}$ the finulins in this disense is, with the exception of anterial pulsation and odema of the disk, usually quite normal ; elsewhere be satys that "the retimal ateries partiejpate in the gemeral arterial dibatation which oecors son mifinmly in the disense and is aseribed to a paralysis of the sympathetic vaso-motor fibnes." Berry ${ }^{5}$ asserts that in his experionce " !ulsation, at any mate, is much less frequent than is ansimed by some writers on this smbeet, and than might perhaps bee expected from the evident want of tone in the artories of the head and the exeited state of the heart's actions." Norris ${ }^{6}$ says that "ophthalnoseopie examination usmally shows a slight thickening of the fibre-hayer of the retima in and around the disk, with dilatation and tertnosity of the veins, a state of alfiairs which may often be fairly attributed to a venons stasis cansed by the swolling tissues." He further remarks, "In addition to these symptoms, there is sometimes, as Becker hes pointed ont, a dilatation of the arteries, which may almost equal the veins in calibre. At times there is an arrerial pulse." This arterial pulsation, which has been seen and deseribed by Becker, ${ }^{7}$ is both spontancous and variable.

In an analysis of thirty-two cases of Graves's disease oceurving at the

[^120]Manchester Royal Eye Hospital, Hill Griffith ' fomed but three cases under twenty years, ${ }^{2}$ in one of which, although the eye-gronnds were designatel as normal, with no arterial pulsation, yet the disks were byperemic. Spontameons arterial pulsation was not foumd in a single case. West ${ }^{3}$ denies any retinal changes "exeept some fulness of the veins in a few." Lang and Pringle ${ }^{4}$ give a case in a fourteen-year-old boy whose fundus was suid to be normal.

There can be no dotibt that in the majonty of cases, when carefully studied with the upright image, there can be detected a true venons stasis, associated with pronomeed retinal striation. In some instances, where there is but little associated intracoular change, this venous tortnosity and dilatation may he fairly attributed to genemal vasculer distmbance,-thus forming an intraocular gnide, as it were, to the condition of the patient. In the notes of the few examples that the writer has seen, there is no remord o.s. siontancous arterial pulse on margement of the arteries. These finduschanges, of course, need nos special treatment, as they merely represent some of the minor and st important symptoms in the discase. In fact, they form, as it were, a part of the natmal history of the disorder.

Nimerous eases of prohable reflex sensory disturbance of the serond nerve or its internal prolongation from irritation or injury of large adjaernt nerve-trmaks, surh as the trigeminus, have heen recorded. The writiugs of the older ophthahologists, sueh as Beer, ${ }^{5}$ Wardrop, ${ }^{6}$ and Midellemore, ${ }^{7}$ abomed in enrous instances. The last-named anthor reports a remarkalhe though questionable casc. ${ }^{8}$ De Weeker, ${ }^{9}$ Hutchinson, ${ }^{10}$ Widmark, ${ }^{11}$ Galpzowski, ${ }^{12}$ and others relate instances, both in adults and among children, where amblyopia is supposed to has arisen from dental irritation.

All such cases should be most carefully studied before a diagnosis is vouchafed. Acenrate ophthahmseopie records, with repeated examination of the visual fields and color and form pereeption, should be made in every suspected instance, so that more arenate data as to the ophthalmic groupings may be obtance. These studies, in association with careful exploration of the gencral system, may prove of the utmost value in determining a question which must remain undecided until all doubtful points of differ ential diagnosis have been definitely settled.

[^121]
LEEIONS DEPENDENT UPON DISORDERS ORIGINATING IN TIIE SECRETORY AND EXCRETORY SYSTEMS.

Temporary diminution of vision with an ophthalmoscopic pistare of optic-nerve congestion has been found as a sequel of perotitis. Brundt ${ }^{1}$ has noticed tortnosity of the veins of the retina. Noyes ${ }^{2}$ quotes a very interesting case of optic-nerve thmor seen by Liddell in a young woman of twenty years, which first manifested itself by dimness of vision five montlos after a protracted attack of mumps, followed by exophthalmons and blindness six months later. "The patient was in good health five years later, with no return of the growth." Metastante choroiditis is also said to follow the discase sometimes, this condition being most probably the result of enbolic infarction with resultant localized inflammation.

Very rarely retinal changes indicative of embolism have been noted in association with tonsillitis: Von Gracfe is said ${ }^{3}$ to have once seen such a calsc.

Gastric hemorrhage, as, for instance, in Asiatic cholera or in any organic lesion of the stomach, may give rise to sudden loss of visual power, just as might oceme in any other form of hemorrhagie dyserasia. Galczowsia clams to have seen grave disturbance of vision following atrophic changes in the optic nerve from gastrie troubles; asserting improvement of the ocular condition by attention to the stomachic disorder.

Hepetic disease, especially of the isteric type, not only produces conjunctival discoloration and xanthopsia from bile-pigment deposition, but may also give an ophthalmosenpic pirture of apparent yellowish diseoloration of the blood of the retimal and choroidal vessels. Jaeger has seen this latter condition, which Gowers believes to have been merely an apparance caused by the tint of the media. Both Junge ${ }^{5}$ and Buchwald ${ }^{6}$ have noted instanees of retinal hemorrhages in organic disease of the liver: these hemorrhages are believed by Litten ${ }^{7}$ to be present only in eases of janudiece.

Intestinal disease associated with gencral wasting and blood-impoverishment from local hemorrhages or profuse diarrluea is at times productive of bindness, as noted in Ziegler's case ${ }^{8}$ of a man who died after a severe dundenal hemorrhage, where ophthahoscopic symptoms of thrombosis were senn; in Schweigger's instanee, ${ }^{9}$ where the optie disks were pale and "cloudy," followed by degenerative changes ; and in Von Graefe's case ${ }^{10}$ of increasing pallor of the mere-head and lessening of retinal-artery calibre:

[^122]or it may be cansed by irritants, such as impacted faeces, as seemingly, though doubtfully, shown in Wishart's case,' where a ninc-year-eld boy was made completely blind in the left eye for some months "by a loaded state of the bowels," the patient being cured by clearing the aliment "y camal ; ${ }^{2}$ or by the presence of worms, as related hy Vandermonde, ${ }^{3}$ in which instance a gitl is said to have lost both vision and speech, or, again, where strabismns and "amanrosis" were doubtfully due to the presence of ascuris, lumbricoides, as in the case mentioned by Hogg. ${ }^{+}$It is also of interest tu mention Immermann's adult case, where a patient, believing himself to have a tape-worm, took such enormons doses of eatharties as to bring on exhanstion from exeessive diarhoa. There was no intestinal hemorrhage At first ophthahmoscopic signs were negative, thongh optic atrophy soon menifested itself.

The blindness which mapidly takes place does not generally ensue until several days after the loss of blood: this fact militates very moch against the belief in mere anemia as the causative factor, and possibly suggests, as Von Graefe ${ }^{6}$ taught, that it is in a measure dependent upon some disturbing process in the optic nerve itself. Morcover, as shown by the same anthor, ${ }^{7}$ other signs of anemia were not present in such cases. In fact, the whole subject is still sub judice, and motil more accurate clinieal studies have been made, with proper post-mortem examination, answer must be looked for not only in the vascular but also in the nervons system.

As eatir be readily understoon, no special treatment is of any value, except in the prevention of rare local complication. All efforts should be directed towards the amelioration of the general condition and the removal of the exciting cause.

In many cases of organic remal disease, no matter of what variety, both the choroid and the retina share in the general vascular disturbance found: especially is this true of the interstitial form of inflammation. While it is certain that the cirrhotie kidney is eminently a disease of middle adult age, it must not be forgotten that instanees of this condition have been reported in the young. Moreover, as Tyson ${ }^{8}$ has shown the powerful influence of heredity as a cansative factor, and eites a remarkable grouping of related eases, in which it is noted that not only a twenty-year-old brother of his patient had Bright's discase for six years, but also that two shildren of another brother had the disease when respectively four and seven years of age, this factor must not be forgotten.

[^123]Be the initial pathology of the disease what it may,-lesion of the ganglionic centres ${ }^{1}$ or changes in the vasenlar intima, ${ }^{2}$-it is certain that in the chronie form there are localized changes through the entire bloodressel system which lead to degenerative changes of a fatty nature.

In spite of the fact that Brailey and Edmunds ${ }^{3}$ have found constant alterations in the retinal vessel walls where there were no apparent ophthatmoseopic changes before death, it must be conceded that these pathologioal pictures can be nowhere better seen ante mortem than in the retina. The membrane laid open to the carefin ophthalmoseopist will frequently show alterations and peruliaritics of appeanance that will enable a competent observer to note them as pathognomonic. Care should be taken to lay sufficient stress upon minute and apparently insignificant changes. The writer has a distinct recollection of a voming girl of cighteen, supposed to have been sulfering from general cold, wion was sent to him from one of the wards of a large general hospital into the ophthalmic dispensary service for the purpose of ordinary ophthalmoseopic study. In each macular region he diseovered a few very faint and questionable flecks and points, which seemed to him to be sufficient to excite grave suspicion of renal disease. Upon so informing the attending physician, he was rewarded with a seeptical shrug of the shonders. Careful exanination and re-examination of the urine, with negative results, made the writer more and more mucomfortable. Six months later, he had the great satisfaction-scientific, at least -to receive a note of the result of an antopsy upon the patient, which had become necessary by reason of an uncontrollable attack of uremia,--granular kidneys, with cardiac hypertrophy. ${ }^{4}$

Roughly, we shonld generally expect to find evidences of carly oedema, points and areas of fatty degeneration, hemorrhagie extravasations, and even true nemro-retinitis, with consecutive atrophy, in all manner of variations and intensities. At first one or more of these conditions is so marked as to cause some authors to designate it as the pecoliar form of retinal change, but later in the affection the other conditions begin to show themselves, and even ontbursts, as it were, may give rise to sudden attacks of neuro-retinitis with hemorrhagie extravasation: again, the inflammation of the nerve-head, with its immediate eonsequences, may appoar primarily, and mislead an observer who does not take the precantion to sarch the entire fumdus for other related macroseopic changes. The star-like radiate patches so generally seen in the maenlar region should be carefully searched for in every suspected instance. Local atrophic changes now appenr, vessel-calibre lessens still more, vasenlar walls become more thick-

[^124]ened and more opaque, blood-supply diminishes, the nerve becomes more pallid and shrunken, and the fatty degenerations pass away, until at last the entire color of the fimdus pales, and the ground assumes an appearance of optic-nerve atrophy with degeneration. Usually this stage is seldom reached, the patient, as a rule, rapidly suceumbing, as shown by C.S. Bull,' to the general disease after the retinal changes of "ehronie endarteritis" have been made sufficiently gross to be visible by the ophthalmoscope.

At times the choroid may be involved, showing atrophic patehes from hemorrhages produced by breakage of the choroidal vessels. Aecording to Gowers, ${ }^{2}$ Poncet has figured "a peculiar choroid degeneration of the vessels of the choroid in old cases of albuminuric retinitis," which condition leads on to thickening of the tissue of the choroid. Liebreich (loe. cit.) has called attention to changes in the epithelium, appearing as "small angular gray spots of pigment," these being grouped, and "appearing first in the periphery."

If carefnl inquiry be not made into associated symptoms, and special attention not drawn to a few differential points, the ophthalmoscopic symptoms may at times be confounded with those that are dependent upon other causes, especially cerebral disease.

Treatment, which of course is to be directed towards the hygiene, ete, of the general system, need only be supplemented by protection of the irritated organs of vision from undue exposure and strain.

In the acute form of the disease, where a single blow, as it were, from a renal congestion alone, withont involvement of the arterial system itself, apparently canses disk-choking with a few isolated "plaques," or where sudden blinducss ensucs with no evident iutraocular lesion, it is most probable that either the presence of nitrogenons matter in the blood, with consequent uremic poisoning, acting locally upon the optic-nerve and retinal elements or upon the visual centres of the cortex themselves, or causing simple cedema from watery extravasation in the blood, is the direct cause of the conditions. This is the form of intraocular disturbance from nephritis so generally found as a factor in the various exanthemata and general dyscrasie of children, rendering it, as can be casily imagined, the most likely form of setinitis to be associated with childhood. Fortunately, however, it apparently much more rarely affects the optie nerve and retina than the chronic vanety, though it is most probable that were the eye-grounds of all the children affected with the various dyscrasie and exanthemata to be studied in a routine manner, there would be fomud a definite amount of retinal and optic-disk oedema in every case of any moment,an amount which could be realized only after long experience and study among such cases,-an objective symptom which, by long training of the clinician, might often be of immense collateral advantage in deciding the

[^125]

Acute Nephritic Retinitis. (Gowers, Medical Ophthalmoscopy, 1882.)

PHOTO. XIV.

Chronic Retinal Changes in Albuminuria. (Gowers, Medical Ophthalmoscopy, 1882.)
questio Transig even ed of prog retinal present they sea nerve d

Her directed easily un words's acute ne are main

The in the an disease or phritis." example amaurosis passing, blyopia d increasing ment, and disk, hem ances, and

Davids
detachmen the paragr: failed to r lesion: , of retinal deta month late be contract but one ou Granular el

It is e "chronic sk rence of ret
${ }^{1}$ A Treat
${ }^{2}$ Medicul
${ }^{5}$ Loc. cit.
Trunsact
${ }^{5}$ Ophthult System of Me
question of the gravity of the special disease under care at the time. Transient decreases of vision, too, expressive of either cortical, retinal, or even condneting-fibre celema or irritation, may be of value in the question of prognosis and treatment. Ophthalmoscopic signs of optic-nerve and retinal irritation should be sought in every such case. That they are present in the majority of instances there can be no logical doubt, and were they searched for in every case, finer differeni- tion of retinal and opticnerve disorder would be better known.

Here the treatment of the local symptoms, which must, of conrse, be directed towards the general condition of the patient, must, as can be casily understood, be both heroie and prompt. In every instance 'Tyson's words' shonld be borne in mind: "There is no doubt that many cases of acute nephritis recover while the conditions of rest, quietude, and warmth are maintained."

The first of the accompanying monotints, taken from Govers, furnishes, in the author's words, " "a good example of the diffuse retinitis of Bright's disease ocenrring in the last period of chronie, supervening an acute, nephritis." The case illustrated by the second monotint presents ${ }^{3}$ a typical example of the two forms of amblyopia of Bright's disease: 1, uremic amaurosis, sudden in onset, accompanied by other evidence of uremia, soon passing, and unattended by visible changes in the fundus oculi; 2, amblyopia due to the special changes in the retina, gradual in onset, persistent, increasing. The retinal changes could be followed from their commencement, and ran a subacute course. It is noteworthy that congestions of the disk, hemorthages, and small, soft-edged patches were the earliest appearances, and preceded the zone of dots around the macula.

Davidson ${ }^{4}$ reports a most instractive case of renal retinitis with total detachment of the retina (very much like Andersou's case described under the paragraph upon Rubeola) in a fourteen-year-old girl. The mine, which failed to reveal casts, was albminons. Each fundus gave characteristic lesions if renal disease. Upon the increase of albumen, blindness from retinal detachment came on. Death followed after a convolsive seizure one month later. Upon post-mortem examination, both kidneys were found to be contracted, that of the right side being extremely atrophie and weighing but one ounce. Both capsules were adherent, leaving a gramular surface. Granular changes in the cerebrum were also visible.

It is exceedingly donbtful whether Mooren's statement, ${ }^{5}$ that when "chronic skin cruptions have their seat in the sealp they favor the oceurrence of retinitis by maintaining a constant hyperemia of the meninges,"

[^126]cmin be fully aceeptel. Gowers' helieves that "if such it sequence aecme, it is possibly by the production of a lecal orbital cellalitis."

Before any definite opinion an be given as to the probability of the: relationship between the two conditions, more data are meessany. The co-operation of those interested in dermatology will be of great assistance in obtaining proper statistics upon this all-important thongh as yet extremely vague subject.

LESIONS DEPENDENT UPON DISORDERS ORIGINATING [N THE GENERATIVE APPARATUS.

As the physiological adion of the generative system remains inert until puberty, it is seldom, if ever, that we find any ophthalmoscopie symptoms which can in any way be said to have relation with the sexnal apporatus before the ablolescent period of life. At this time, however, the whols being changes, and every portion of the organism seems to conter into pror foum redationship with the genemative health and fination of the individual. The differene of matne development and the peenlianties in the activity of the sexual organs of the two sexes seem to exert special mysterious inflnences upon ophthalmic symptomatology; these being by far more profonnd in woman than in man.

Disorders of Menstruation.-In spite of Allbutt's inability to associate any ocular disturbane with menstral demagement, there can be no dombt that disorders of menstruation are not infrequently the canse of retinal irritation and optic-nerve inflammation. Kollock ${ }^{2}$ gives a brief aceome of a momber of cases where, besides asthenopia, oenhar pains, ete., which ooenred during female puberty, retino-choroiditis appeared. Norris ${ }^{3}$ eites an instance in a thirteen-year-old girl, where, in addition to the ordinary external congestion, with inability to use the eyes, "the retinal fibres wer swollen and cedematous, hiding the outlines of the disk, while the lymphsheaths of the retimal vessels at their point of emergence from the disk presented an almost snow-white appearance." Moreover, he says, "the disks and the retina have never quite recovered a normal appearance." Gowers ${ }^{4}$ says that "in chronic menstrual irregularities optic nemritis of chromic course has been fomnd, and occasionally other disturbances, such as retinal hemorthages." The writer has at the present time a most interesting example of sudden intense neuro-retinitis, with great reduction of vision and limitation of color ficlds, appearing in a young amenorrheie girl, which rapidly subsided, leaving both fair eentral and excentric vision, through prompt re-establishment of the menstrual function. R. II. Derhy ${ }^{5}$ eites an instance of an intense monocular neuro-retinitis which appeared in a twelve-

[^127]

PHOTO．XV．

Partial．Absomption of itemonrhabic Opacitifs in the Vitreois．（Powers，Trbashetions of the opphthamological Soclety of the linled Kinglom，188s．）
（＂lise，
mat！！
must
pilss
＂ば心
mally marke silpery：
was il
restora
if not p
and resion having
the men
turned．＇ not regi gives till yeur－old the cond be the b diffisedt Progl patholongi In the colugist，l dralmologr dients of of dysmen As an 1 stein ${ }^{5}$ alsse form and verches its manier at 1 diminution

Masturl
male sex，is and retinal
${ }^{1}$ Thèe de of the United
${ }^{2}$ Essays on
${ }^{3}$ A New ${ }^{1}$
${ }^{4}$ Recueil d
${ }^{6}$ Inaugurul
${ }^{6}$ Archives
yemreold girl who had never menstrmated. In comelnding the rejort of his rase, he salys, "That the optie mentitis bere some relation to the eflints of mature to entablish the calamemial preverd sems more than probable." In must of the casses the fimelns-dhanges are very slight, and would probahly

 mally lead to admal intammation and degremeration. 'Tham' mends a wellmatked atse of nenro-retinitis with "mmeroms white patches along and sulperyanent to the vessels, with some large musere in the viturons. Vision was abolished in the upper thised of the fiedd. 'Preatment direded to the restomation of the mences was followed in this case begeat improvernent, if not perfect recovery." Sometimes profise intranentar hemorrhages aly
 having seen "a young woman who had amanrosis daring a supperession of the menstrad discharge, which was removed the moment menstration we turnel." St.-Y'ves ${ }^{3}$ quaintly says that "it gromerally attacks matids that are not regular." Dor relates a most instructive rase, whilst Power (supmen) gives an exquisite chromo-lithorraplo of a similar condition in a thirtern-yen-old girl suffering firom menorrhagia. The amompaying sketch shows the condition of the finmbes "ather the opacities in the vitreone orvasioned hes the breaking "p of the bord-rlot behind the iris had hooken up, and difftised throngh the vitreons."
longusis is favorable in due proportion to the amoment of resultant pathologitall change.

In the majority of instances the tratment mast be given to the gymemolugist, laving dangerons local compliations to the therapy of the ophthalmolegist. In the hands of the writer, varying propertions of the ingredients of Dewees's mixture have proved of great advantage in a few cases of dysmenoriow and amenorrhea with oenlar sympoms that he has seen.

As a matter of enriosity, it may he worth while to state that leinkelstem ${ }^{5}$ asserts that a eoncentrie narrowing of the fiedd of vision for both form and color takes place during the ordinary menstroal period, which reaches its greatest degree during the height of the epoch, this being aceompaniod at times with falty pereption of yellow for green, and a slight dimimution of central vision withont change of refraction.

Mesturbetion.-This vice, which is probably of greater frequency in the male sex, is undeniably shown to be at times associated with optic-nerve and retinal change. Cohn's ${ }^{6}$ seven cases, three of which were girls, gave

[^128]pronomed photopsise as suljective evidences of retimal irritation, these symptoms rapidly subsiding upon cessation of the lubit. Fitagerald ${ }^{\prime}$ gives the details of the cases of two yoming women who were vietims of the habit, in both of whom the optic disks were slightly hazy, insociated with pallor, which condition was followed by "total atrophy" of the nerve in one of the cases; whilst Power ${ }^{2}$ has seen with MacKinlay a hemorrhage upon or in the retina in a nineten-year-old lad, whose only cansative symptom seemed to be firequent masturbation.

The dingoosis, which is often extremely difficult, especially in the femalo sex, is to be determined by allied symptoms. In contradistinction to the results of Fitagerald's and Power's cases, the prognosis ordinarily may lxe said to be favorable. Treatment should be directed towards the moral and physical hygiene of the patient, and care shonld be taken in all inveterate cases to institute search fir mechanical irritants, such as phimosis, vulvitis, vaginitis, ete.

The blindness of hysteria ${ }^{3}$ is but another among the multitudinous real and fancifnl symptoms which are so frequently spoken of by a most unfortumate dass of subjeets. As with all other forms of disease which are more or less closely related with the condition of the sexual apparatus, the male sex is certainly freer than the female, althongh, as Charcot says, ${ }^{4}$ hysteria in the male is far from being rare. Harlan ${ }^{5}$ gives the details of the case of a boy of eleven yoars who persisted in supposed blindness of one eye for more than eighteen months. St. Johm ${ }^{6}$ notes an almost identical instanes, though only of five weeks' dmation, in a ten-yen-old boy with decided neuropathie antecedents. Another case by Harlan ${ }^{7}$ of ten years' duration had its exciting cause in the assertion of an ophthalmice surgeon of a " paralysis of the optic nerve" from tramatism ; the whole delusion being dispelled by a few moments' eareful ophthalmic examination. Moore ${ }^{8}$ gives an instance of a fifteen-yen-old lad with blindness in the right eys, which ocemred after disappointment at sehool. Under ether and electricity recovery was both rapid and permanent. Sehweigger ${ }^{9}$ associates the monocular type, as just given, with meonscions psyehic deceit upon the part of the subject. Glascott ${ }^{10}$ and Suell," muder the title "Amanrosis fugas," (ads describe instances of the bilateral variety. Griffith ${ }^{12}$ reviews the subject

[^129]and adds some elinieal data. Both Jackson ${ }^{1}$ and Marlow ${ }^{2}$ refer to cases in the male sex ; the former's case being that of a delicate colored lad of twelse years. Charcot ${ }^{3}$ deseribes a variety in a boy of sixteen years, in whom, in association with anesthesia in patches and blunting of hearing, smell, and taste on the left side, there was donble contraction of the visual field, more pronomeed on the right side, "pon which side the putient did not distinguish violet; the fields for red were larger than those for blue. In spite of all treatment, the convulsive erises, the hysterimal stigmata, and the sensorial and sensitive amesthesias contimued. A second and somewhat similar instance, in an eighteen-year-old boy, is cited by the same author. ${ }^{4}$

In the female these symptoms are more common, as has been incontestably shown at La Salpetrière, at which place Charcot finds frequent coineident or cansative ovarian derangement. Applying the significance of Weir Mitchell's expressive words, that "the symptoms of real disease are painted on an lysterical backgromad," ${ }^{5}$ to the reasoning of the causation of the many curions suljective ocular changes seen in such cases, the sperial symptomatology of the organ as seen in ordinary discase nay be said to be alsolutely and entirely given. Varying contractions and perversions of the visual fields, temporary losses of perception of certain colors, marked lowering of direct vision, appar,-all probably, in a measure, the result of sensory fatigue in association with the ordinary motor impaiment of both the intraocular and the extraocular series of museles. Even retinal hyperesthesias, with eolored phosphenes at times, in conjunction with the almost inmmerable varicty of elonicisms, frequently oceur, whilst crossed amblyopias and hemianesthesias seemingly appear. Many cases could be given, but it hardly scems necessury to cite in detail what so many neurologists and ophthalmologists see so frequently. An interesting case, however, of this character in a young girl has recently come under the observation of the writer, in which, in addition to the ordinary symptoms of greatly-lowered vision for form and color (the former of which eould not seemingly be improved by careful correction of an existent refmetion-error) and the genemal chanacteristic conditions, there was a peeuliarity of the fields of vision, which at first seemed to tally with the so-called "perversion of color-fields" so frequently noted by various authors, but after repeated and painstaking trials at several hours' intermission proved to be nothing more than an abnormal fatigne of the sensory structures, by which at every trial any order of ficlds conld be obtained, -this order always coineiding in extent with the first colors tried. One day the green, which was tried first, gave a mueh larger area than white, blue, yellow, and red, in the order named ; on the following morning

[^130]green was made the smallest aren and red muk greater in extent than any other color-fiedd, simply by trying the green last and the red first. In other words, the color first tried gave the largest area. On the third and fourth days the colors were tried at fifteen-minute intervals, at which examination the ' al order of white, yollow, blue, red, and green was followed, thongh in every instance the areas were more and more contracted, just as the dirent vision for form and for color was found more greatly impaired after repeated trials. Fleeting scotomata for every color could be obtained in any part of the vismal fieds, hat at no time were the colors miscalled or comfom ded with one another. The questions thus arise, May not many of the so-called perverted color-fiedds in this disease be simply due to improper field-taking, and camot the order of sequenee of color-alreas be obtained much more fequently by earefulness to awoid sensory fatigue? In a second thongh still meertain case, seen in the practice of Dr. Robert M. Girvin through the contesy of Dr. John II. Musser, in which there was blindness upon the left side, with a perverted order of irregularly contracted and excentrie color-fields upon the right side, the yollow' was persistently desirgnated as "pale green" in every part of its visuad field except at one small point in the centre of the combined color-areas up and on', where it was properly mamed. In this ease the retina of the left (blind) eye showed a slightly odematons condition, with some tortuosity of its veins, as descriterd by Landolt. De Schweinitz also reports "a somewhat distended and slightly tortnons retinal vein, with mudue prominene of the eentral lymphsheaths," in a sixteen-year-old girl, with complete hystericel analgesia and aphonia. In this case the visual fields were normal.

In two eases recently studid throngh the kindness of Dr. William Goodell, carefin perimetrie examination showed more than one-thirtieth reduction of both form- and color-vision from nomal, this in each instane being more pronomed upon the left side. The same is trie of another example of the same type seen in eonjunetion with Dr. Wharton Sinkler. All three cases were in yonng female adults. In no instance was there any perversion of the order of the fiedts a' vision.

From these groupings it ean be seen that with the coneomitant symptoms the diagnosis is comparatively easy, thongh when the manifestations are limitad to the oenlar appanatus alone the disense beomes diflient to diseover. Enongh, however, has been said to show that the very mutability of the special symptoms affords an exeellent ariterion for the recognition of" "that domestie demon which has produced untold discomfort in many a honsehol l , and, I am ahmost ready to say, as much monappiness ats the husbond's dram." ${ }^{3}$

With the execption of retimal-vessel dilatation and odema, true ohjective

[^131]fundus changes have never been noted, ahough it may be fair to presume that in the hystero-epileptic form of the disease, where the seizmes have been boil: many and severe, physical alterations like those so constantly found in old epilepties (even in young suljects) may berome visible.

No absolute data can be given as to the propuosis. Some cases recover vision spontanconsly withont any assignable canse; others are almost momentarily treed from this disturbance by profomd psychic impression; others, again, linger for a long time withont aly aparent gain, it: spite of all hegiene and judieions care; wiilst a muber seem pushed, as it were, into absolnte darkness, to remain forever binded.

All that contributes to the genemal wellare of the patier (not forgetting Dr. S. Weir Mitelell's highly suceessfal "combination of therapentic measures," ${ }^{1}$ which "consists in an effort to lift the heath of patients to a hisher plane by the use of seclusion, which ents off excitement and foolish sympathy; by rest, so complete as to oxelude all canses of tire; by massage, which substitntes passive exereise for exertion ; and by deetrical muscular exeitation, which acts in a somewhat simikr manner to massage, and with it by depriving rest in bed of its essential evils," ${ }^{2}$ in any case that hats resisted the advantages of out-door exereise in a new environment) shonld be conscientionsly tried, and ofttimes apparently grave oenlar symptoms will disappear as the physeal and the moral tone of the patient improve. Simulation of both the conscions and the nuconscious types can be readily detected by repeated and carefinl testing.

LESRONS DEPENDENT UPON SPECIAL DYSCRASIA.

In enteric or typhoid ferer, which is especially an aflection of carly adult life and adolescence, ophthalmoseopic lesions are not wanting. IIntchinson ${ }^{3}$ gives an instance of a boy who developed double optic neuritis two or there weeks after an attack of fever which was complieated by marked diarthan and exphalalgia,-a condition of eye-nerve no donbt due to an associated meningitis. Fortmately, however, as Wilson tells us, "actual meningitis is exceedingly rare, notwithstanding the companative frequency of symptoms suggestive of its presence."

Cases of secondary atrophy withont ophthamoseopie appeatanees of previonts inflammation of the nere-head are on reeord, as, for instanee, the interesting one noted hy Haddacus ${ }^{5}$ and others. The present writer has sem at ten-year-old ginl in the gencral wards of St. Agnes's Iospital, who, two werks after the exsation of all active symptoms of typhoid fever without :my seming complication, showed extremely pallid disks, especially to the temporas sides, with marked reduction in the calibe of both the arterial

[^132]and venous enrents. The query arises, Was a low-grade meningitis th mischief-maker in chis instance ?

As cardiae thrombi are present at times, it is not difficult to monderstand how intraocular vasendar changes, such as embolism of the central artery of ${ }^{\circ}$ the retina or of one of' its retinal branches, may at times be found. Gakenowski ${ }^{1}$ cites such a "ase.

Typhus fever, which is numally mild in children, is not very apt to have marked intraocular changes associated with its symptoms. Where optic nerve-head changes have been found, it is most probable that they have been either the results of meningeal inflammation or the consequeners of lodgement of embolic or thrombotic massings: thas, the cases of Chisolm ${ }^{2}$ and Teale, ${ }^{3}$ quoted by Gowers, ${ }^{4}$ probably belong to the former chas. According to Norris, ${ }^{5}$ Larionow's statistics of fifty-seven patients with typhus exantlomatismus show one instance of nenro-retinitis and two cases of contraction of the fied of vision. Pepper, ${ }^{6}$ who has had opportunity to study the affection during an epidemic in Philadelphia, salys that eye-symptoms were very rarely scan.

Independently of the presence of a definite spirillum in the blood of patients suffering from relopsing fever, which of itself may be productive of disturbance in the vasenlar chamels of the eve, metastases from splenie, abseess, septic peritonitis, or even hemorrhagie infarets from varions viserm, ete., which are at times fomed in this discase, may all give rise to profomad inflammation of the more deeply seated tissues of the nveal tract. Choroiditis with consequent hyalitis, eyclitis with pus in the posterior chamber? ${ }^{\text {? }}$ and retial and optic-nerve complications, may all appear. Trompetters has determind the presence of these conditions in nemply six and a half prep eent. of over three lumdred cases seen by him.

Scarlet fecer, or semlatina,--the dreal disease of the yomg,-is so apt to have renal derangement as one of its symptoms that it is not infrequent to have some form of intraocular expression of the eomplication. More especially is this noticed with the amblyopie form of disturbance, where, without warning, at the time of the utmost severity of the attack, domble blimdness suddenly appears, to last but a few days. The ophthalmoscope seemingly tolls nothing of the cause, except a possible slight obsemation of the border of the head of the optie nerve. Ebert, ${ }^{9}$ quoted by

[^133]Norris', gives a series of elinieal histories of such instances. In the discussion of these cases, Graefe ${ }^{2}$ makes the important observation that as there is alway proper motion of the irides to light-stimnlns, the lesion must be posterior to the quadrigemina: the symptoms of such a condition thus may prove of immense mollateral value in the prognosis of vision. Ittuger's note ${ }^{3}$ of a ten-year-old child who became gradually blind in three days' time three weeks after an attack of searlet fever, is interesting in showing "double papillo-retinitis" withont the presence of albmmen in the urine. In five months sight had returned to almost normal. It is probable that mening: in inflammation was the canse, as was partially evidenced by "considerable headache" during the fever. Bayley ${ }^{4}$ gives the histories of progressive failure of sight in two sisters who had momplicated attaeks of scarlet fever. In cach instance pigment-massings in the fundus oenli were visible, whilst the optio disk is noted as merely "pale." Cases of diveet implication of the optic nerves, with seeming eonsecutive atrophy from desending optic neuritis, are on record. More rarely, inflammatory changes in the choroid, with liquid effusion between the choroid and the retina, giving rise to grave intraocular destruction, have been noted.

In ail these latter forms of oenlar disease the prognosis is truly grave. Labinski ${ }^{5}$ is said to have fonnd evidences of irido-cyclitis with vitreous opacities in twenty-two ont of six handred and forty patients. 'The ocular' affection oeenrs as a late sequela of the fever. In the lighter form hyperæmia of the disk is noted. All the cases seen were in male adnlts. ${ }^{6}$ Alterative and absorbent treatment, with attention to the general hygiene of the little patient, is all that can be judicionsly recommended for the preservation or improvement of the remaining sight.

In marked cases of diphtheria, especially where moltiple paralyses ensue, ophthalmoscopic pietures of grave optic-nerve disease with eonseentive atrophic changes lave been seen. Bouchut ${ }^{7}$ has found such instances, one of which was unilateral in type. Gowers ${ }^{8}$ satys, "The congestion and odema are usmally bilateral, lint may be more intense on one side than on the other." In partial confirmation of this statement, the writer las published ${ }^{9}$ an aceonnt of a twelve-year-old boy who, five years after an attack of diphtheria and paralysis which confined him to bed for three months, ${ }^{10}$ whilst presenting an ophthalmoseopie appearance of donble chorio-retinitis

[^134]with partial degeneration of the optic nerve, associated with enrious lymphextravasation into the retina and vitreous, more prononned on the right side, gave but one-fiftieth of normal vision with the right eye and nearly one-fifth with the left. At that late time the patellar tendon reflexes were almost abolished. An examination of the urine failed to reveal any abnormal deposits.

It is probable that most of the fundus-lesions sometimes met with in rubcola are dependent upon meningitis or some other form of cerebral complication Wudsworth ${ }^{1}$ reports three such instances. Stephenson ${ }^{2}$ cites at case of uble optic neuritis which was aecidentally diseovered in a fouryentold boy who had just reeovered from an uncomplicated attaek of measles. Whether there was any causal relationship between the two in this case it is impossible to say, althongh there was an entire absence of amy other apparent organic disturbance. Coggin ${ }^{3}$ gives the history of several cases. He says, "The lesion is supposed be be a eireumseribed basal meningitis, and non-tubercular, thongh rarely tuberenlar deposits are present." Both Von Graefe ${ }^{4}$ and Nagel ${ }^{5}$ give cases-especially the latter -which are expressive of cerebral disturbance.

Shond uephritis set in, the fundus-lesions may become guite prononnced : thus, a rare ease of isolated retinal detachment from subretinal effusion subsequent to a severe hemorrhagic nemro-retinitis is reported by Anderson ${ }^{6}$ as having been seen in a six-year-old girl who was suflering from chronie nephritis, which seemed to follow an attack of rubeola, with sulsequent brouehitis and "consmmption of the bowels," at eighteen months of age. Uremia terminated the patient's life three months after the ophthahuscopie signs became manifest. The neeronsy revealed advancer fibroid contraction of the kidneys. The ease is worthy of record not only on account of its comparative rarity, but also as most probably having had the exanthem as its starting-point.

Here, as shown in all the aente exanthemata, the solution of the whole problem is to be found in pathological changes which affect the nervous and vascular systems.

In view of Edwards's observation ${ }^{7}$ that he has seen "one instance of tuberenlar meningitis develop as a complication of rubelle" (rötheh), fundusoculi lesions indicative of this condition may at times be expected. As renal disturbace has also been met with by Cutman (loc. cit.), ophthalmuscopic épression of such an ocenrrence may not be wanting ; in fact, all the intraocular expressions of other exanthemata, which are visible to the
${ }^{1}$ Boston Medical und Surgical Journal, 1880, p. 636.
${ }^{2}$ Transactions of the Ophthatmological society of the United Kingdom, viii. 150.
${ }^{3}$ Americun Journal of Ophthalmology, Junamer: 1890.
${ }^{4}$ Archiv für Ophthnmologie, xii. 2, 138.
${ }^{5}$ Behandlung der Amaurosen, S. 24-30 (quoted by Norris).
${ }^{6}$ Transuctions of the Ophthnlmologicul Society of the United Kingdom, 1888, p. 141.
${ }^{7}$ This Cyclopactin, i. 697.
ophthalmoscope, may be safely asserted to have proper placing among the possible ophthalmic symptoms seen from time to time.

The sudden blindness which sometimes appears during the convolsive stage of pertussis is a priori genemally associated with hemorthagic extravasation into the interior of the eye from vessel-rupture during a paroxysm. Case III. of Landesberg's series ${ }^{1}$ most probably belongs to this gronping. Knapp ${ }^{2}$ fomm all the symptoms of "ischamial retine" in a three-year-old boy who suddenly beame blind during an attaek of whoopingeough. Curiously, "both pupils, however, responded promptly to changes of light." A donble paracentesis seemed to restore both optic nerve and retinal cireulation to a sufficient degree not only to give objective signs of betterment, but even to allow the patient to recognize ordinary oljects. Six weeks after the operation the child died from lobular pnemmonia : a confirmation of a remark made to the observer by Prof. Loomis, of New York, who informed him " that blindness in whooping-cough had been observed, but almost exclusively in children who afterwards died from Jobular pueumonia." Case I. of Landesberg's list ${ }^{3}$ reads very much like a case of embolism of one or two of the upper arterial branches in the right retina: vision is said to have been restored to one-lhalf of normal. Alexander ${ }^{4}$ contributes two examples. The first, which was followed by death, gave proper pupillary reaction ; here cerebral oedema between the oceipital lobes and the quadrigeminate bodies is supposed to have been the cause. The sceond showed optie nemritis with consecntive partial atrophy. In this instance the irides were immobile. Meningitis is named as the canse.

Except by direct infection or extension of purely local changes, deep lesions of the eye as complications or sequelæ of variola are very infrequent. Gowers ${ }^{6}$ instances a man of fifty who had atrophy of the right optic disk dating baek to an attaek of small-pox at twelve years of age. When seen, the patient exhibited some gencral and local signs of ataxia. He also eites Leber ${ }^{6}$ as observing diffuse neuro-retinitis during the stage of drying of the eruption.

Taricella, the most benign of all the acute exanthemata, fails to present any lesion of the optic nerve or the intraocular tunics except in the gangrenous variety of the disease. In this class of cases Hutchinson ${ }^{7}$ has seen loss of sight from purulent irido-choroiditis, a condition no donbt depeudent upon metastasis of pathogenie material from some infected organ, causing the formation of a local inflammation somewhere in the ureal traet, with consequent abscess.

[^135]As mentioned by Hirsehfelder in vol. i. of this Cyclopedia, p. 778, "Amaurosis has been prodnced by retrobulbar abscess," in erysipeles, both of the face and of the head, this being caused by extension of the exterual inflammation into the tissues of the orbit, with involvement of the optic nerve. Both Knapp ${ }^{1}$ and Jaeger report cases where the eycgrounds presented pietures indicative of thrombosis. In some of the worst cases the veins of the orbit become pus-hearing, leading to brain-complications, which cause the patient's death. Weiland ${ }^{2}$ has had a marked case where recovery was extremely slow. At times there is no other decided symptomatic evidence of pus-formation in the orbit with extension, or proof of pressure from inflammatory material, than a rapid loss of vision. This decrease of sight generally begins either both centrally and peripherally, leaving the so-e i damolar field, or eentrally alone. In such cases intraoeular changes c consecutive atrophy are apt to manifest themselves ohjectively later. ${ }^{3}$ Oeller's ${ }^{4}$ case is of much interest.

The prenliarity of the ophthalmoseopie pieture, in every instance, is merely indicative of the kind of offending inflammatory material, and is dependent upon the amount and position of the pressure-changes.

As endocardial disease is more prone to appear in the rheumatism of childhood than it is in that of adult life, ocular symptoms expressive of the complication should be more frequently expeeted among children than among older patients. These changes, as might be expeeted, belong to the vaseular type of disease : thus, embolism of the central retinal artery, or even choroiditis of the metastatic type, may appear. Direct implication of the post-ocular portion of the optic nerve from irritation in the orbit may give rise to pressure-signs or inflammation-symptoms in the interior of the eve.

Not iafrequently, when a new or a weakly subject is pushed, as it were, into a paludal district, the series of symptoms indicating muterin produced by the specifie blood-poison are increased by an ocular grouping which not only embraces the superficial form of inflammation but also includes changes in the deper and denser motor and sensory nerve-structures of the organ. These changes in the eye are probably due either to the passage of some of the foreign substance in the blood into the oenlar tissues

[^136]themselves, or to the lodgement of pathological products in such a position in the intraocular apparatus as to cause undue pressure upon some important part, with irritation and inflammation of adjacent material. In more marked cases brain and spinal-cord disturbances may ensue, the former giving rise to complications which make themselves known by varions peripheral neuroses. Rarest of all these affections is that of the optic nerve itself. At times its disturbance is made apparent by attacks of transient amhlyopia, which probably by frequent repetition canses gradual degeneratiou of nerve-material. Such symptoms generally manifest themselves very som after a severe attack of the fever, especially if the patient be in a hot dimate. In these cases the capillary cirenlation of the optic disk is almost or quite gone, leaving the substance very pallid and white. At times the retinal vessels are small, whilst limitation of the visual field, even of the hemianopsic varicty, and great diminution of central vision, for both form and color, manifest themselves. C. S. Bull ${ }^{1}$ describes two such cases in adults.

In another elass of cases, which oceurs almost exclusively in the tropies, and in which hemorthagie retinitis with perinemritis exists, the fumbus oculi shows numerous striated and stellate hemorrhages either situated along the larger retinal stems or scattered in small areas between the disk and the fovea, the nerve-head itself varying in degree of swelling and serons infiltration. De Mussey ${ }^{2}$ relates one such instance.

Mackenzie ${ }^{3}$ gives the deseriptions and drawings of the eye-gronnds of two young men with the quotidian type of the disease. In each instance large superficial hemorrhages were found, the first having a mumber of pin-point opacities scattered about the eye-ground. A third case, of the tertian type, in a patient aged eighteen years, also showed hemorrhagic extravasation into the retina. In none of the instances was the optie nerve very much disturbed. In all the retinal-vessel calibre appeared normal.

According to Gowers, ${ }^{4}$ Ramorius ${ }^{3}$ has had the good fortune to study the vascularity of the fundus oculi during a series of paroxysmal attacks of periodical amblyopia in two cases. During the paroxysm the nerveheads were pallid and the arteries of the retina were thread-like and almost bloolless, whilst the veins were nearly invisible. Curiously, this attack was accompanied by "great congestion of the face and ears and a sensation of heaviness in the head." Other vaso-motor and sensory symptoms were present. Quinine rapidly cured both of the eases.

Aceepting Guiteras's conclusion, ${ }^{6}$ " that the foei of endemicity of yellow fever are essentially maintained by the ereole infant population," and agrecing with his belief ${ }^{7}$ "that yellow fever in its native hannts is essentially a

[^137]disease of childhood, the adult mative being protected by a previons attack," it at once becomes apparent that the ocular symptoms of the discase, moclified by the age of the patient and the gross peculamity of the general symptons, are to be fomut here just the same as in the alnto.

Althongh the conjunctival injection and ecelhynotic spots are very rare in this elass of subjects, yet their very presence, just as in older pationts, may serve to explain in some instances rapid failure of sight as pussibly cansed by intraocular extmasation. In graver cases, though fortumately, from the nature of the disease, its pathology, and the age of the paticut, very rarely, emboli or thrombi from hemorrhagie foed in the cardiae and pulmonary cavities may at times appear and give rise to pronomed visual and ocular disturbance. Again, temporary blindness and dimmess of vision at the onset of the disense, or pmpillary diatation and extraocular muscle enerration seen later in the disorder, as shown by Rush ${ }^{1}$ to have been foumd in adult cases, may at times be expected in some cases where umsuab nerve symptoms followed by coma ensue.

Were the oplithalmoscope employed regularly in every instance of the pyretic stage of dengre as seen in children, ophthalmoseopic symptoms indicative of cerebral change might at times be manifest. Should endocarditis or even arthritis appear, intraocular manifestations, as previonsly mentioned in speaking of some of the other fevers and dyscrasie, may show themselves. Aceording to Thomas, " glaneoma, amanrosis, . . . and other evidences of the profombl impression of the poison . . . are more deserving of attention."

In cholere, as Norris says, " the retinal arteries are much diminished in size, and the veins, althongh not dilated, are filled with blackish bloorl." Continuing, he tells us that, "owing to the great feebleness of the circulation, the slightest pressure with the finger on the eyeball produces arterial pulse." Von Gracfe ${ }^{4}$ has found instances where artificially induced increased intraocular tension caused the arterial blood-currents to disappear, this being especially noticeable in cases where the cardiac action was so enfeebled that the ordiary radial pulsation conld not be determined. He has also found the optie nerve head reddish blue in appearance.

In spite of the declaration of some authors that they have been mable to find a special form of retinitis in cliabetes, the affection is of such great frequency in the glyeosuric variety of the disease and the changes are so peculiar that there can be no reasonable doubt of the existence of the association. If it be true, as Ellis ${ }^{5}$ says, that both forms of the disorder are excessively rare in children, and if clinical results support Fenwick's asser-

[^138]tions' that when present in early life the disease "is schlom protracted beyoud three or four yems," and that most patients "die within a year or eighteen months," it may be fairly presumed that orular disturbance shonld be expected in the great majority of such cases,-a presmmption that can only be made a certainty, however, by painstaking study of every case. Rolland ${ }^{2}$ goes so far as to say that he has never found a glycosurie who did not have some visual disturbance.

In a mumber of instances there is nothing more than a binocular dimming of eentral vision, with the retention of fair peripheral sight, and without any appreciable ophthalmoseopie lesion. In others, following this conditim, the nerve-head gencrally loses some of its capillarity and appears partially atrophic. In some of these cases, as shown by the great disposition to hemorthagic extravasation, ${ }^{3}$ it is possible that the degencrative changes that have been found post mortem in the optic nerve ${ }^{4}$ are the results of ancurismal dilatation with breakage of the vessel-walls of the eapiltaries of the optic nerve in such a position as to give rise to the appearance of central scotomata.

In another varicty, espeeially where probable nephritic change has taken place, as expressed by the presence of albumen in the urine (though by no means invariahly), the hemorrhages seem to take place intraocularly; here the ophthalmoscopic pieture is totally different : instead of a comparatively healthy eyc-gronud, the retina is puffed and swollen, the disk is hidden, whilst numerous hemorrhagic striations in the retina and masses in the vitreous prevent any usefinl sight. Again, small cireummacular dottings have been noticed, apparently bearing no relation to albuminuria. Relapses are apt to oceur. At times the influenee of a cerebral tumor producing either direct or indirect pressure upon the fourth ventricle may be suspected as the causative factor, especially if other localizing symptoms, such as ocular paresis and paralysis, he present.

Prognosis is always bad. Treatment is to be directed towards the systemic tronble alone.

Ocular changes in the insipidus variety of the disease are very much rarer than in the mellitus form. The only unequivocal case that the writer has had opportunity to study failed to present any coarse ophthalmoscopse chunges whatever. The patient was a young girl who suffered intensely from general symptoms of the disorder. Her mother died of diabetic coma

[^139]following the birth of a child，－a low－grade female imbecile，－who dien of organic heart－disemse eight years hater．

Although acquired syphitis in the goung is rather infrequent，yet as the early recognition of its symptoms and their treatment are so essential to tho fiture welfare of the patient，a brief mention of the various ophathatmoseopic signs will be made here．

In this discose，as in all other dysemase，the oveal tract seems extremely prone to disturdanes．Inflammation of the choroid of cither a disseminate or a manalar varicty rapidly involving the retina，and associated with fine vitreons opacities，is the most common form that this should be so is very matural，as the choroid being partically a part of the useal that，and rich in vasculanty，like the iris and the ciliary boxly，this tumie is very apt to loe compelled to bay the bront of the ravages of this dread discase．Shombd the inflammatery changes in the doonid be primary and extend forwand into the ciliary and iris regions，grmmatous swellings，descemetitis，and turbidity of the aquoms hmmor，with the usmal pupillary and iritic changer， may all manifest themselves．

Prognosis in all these cases is lad．Treatment should be directed towards the dyserasia；taking care to prevent the patient from employment of the eyes and to keep them at rest by the use of mydriaties and dark glasses．

Diffise retinitis（prohably at times choroidal in nature）；showing itself as a fine transluent veil－like opacity in the retina，extending far out into tho retinal periphery，with slight obsemation of the optie disk，is often seen． Here the retinal cirenlation is somerwhat disturbed，ass shown by ．onoms torthosity and distention，with arterial narrowing at times．Frequently， new blood－vessel fomation，either with or withont the association of whitish membranoms bands，extends ats irregnlar loops and net－work forward iuto the vitreons．Sometimes faint，almost invisible oparities can be seen in the vitreous humor ；at other times innmerable flocenli float with every move－ ment of the globe．

Vision is generally afferted，but as a rule，in the minor cases，rapidly rises to normal in young aud sthenie subjects moder judicions alterative treat－ ment．${ }^{1}$ Phosphenes，mieropsia，and metamorphopsia have all been noticed． Prognosis，especially if the case be seen early and promptly treated，is faromble．Relapses，mentumately，are apt to take place．

When the prison attacks the optic－nerve tissue itsolf，either perifheral neuritis appeats or simple atrophy takes place．In these cases there is generally some cerehral or spinal－cord inwolvement，Surh cases，however， are almost mique in children．

In the congenital type of syphilis，choroidal and retinal changes expres－

[^140]＇At the at Wills Eye
${ }^{2}$ Trunsuc．
＂In this
Plute V．，Fig．
＊Archio
${ }^{5}$ Ibid．，ix
${ }^{6}$ Archiv
＇Transact
${ }^{8}$ Transact
${ }^{9}$ Ocsterrei
${ }^{10}$ Archiv
sive of inflammation as a part of intranterine ombar disturbance may be recognized in addition to the other permanent sequelae, such as posterior synerhin, complicate catamot, ete.

In the hererlitary firm of the disease, where the ophthatmie symptoms apear in a semingly healthy organ some time nfter birth, coarse changes in the choroid, retima, and optic nerve have all been moted by many oltservers. Irmegular atrophic areas bordered by backish pigment at times; dull, dirty red-gray disks, with diminished ealibre of the retinal vessels; proliferation of pigment eppthelinm intu the tymin-chamels of the vencels of the retima, giving pietures closely simulating pigmentary retinitis, ${ }^{1}$ have all heen fomed.

Retinitis, not only as an extension from ehoroidal inflammation, as in Nettheship's most interesting case, ${ }^{2}$ in a nine-y mor-ohd boy who gave an undeniable family history of contagion, ${ }^{3}$ but also as a probable idiopathie disonder, has been recorded. Optie atroply, without other gross ophthatmustopic change, probably the resilt of some intracranial lesion or distmblance of the optic nerve, has also been seen.

In opposition to Cohnheim's assertion 'that he las failed to detect tubereles in the choroid in similar comditions of the intestines and longe, the same observer has incontestably shown their presence in miliary fulurernlosix ; this latter assertion being substantiated ly both Manz ${ }^{5}$ and Busch. ${ }^{6}$ After most carefin and painstaking investigation, Lawford ${ }^{7}$ has even demonstrated the presence of the bacillas tuberenlosis in the choroidal deposits. ${ }^{8}$ Watsworth also reports bacilli in a similar growth which had its initial point in the ciliary region. From this it is probable that the failure to find them by so many writers is dependent either upon the character of the tubereles, the peculiar idiosyuerasy of the patient examined, or the fault of the olserver.

Prolably the first ophthatmoscopic deseription of the presence of tuberdes in the choroid was made by Von Jacger, ${ }^{9}$ followed by Von Gracfe. ${ }^{10}$

They appear as nodules with whitish smmmits, gradually fading into a yellow tint, and at last assmming the color of the choroid. In size they are extromely variable, ranging from less than a millimetre to an area larger than that of the disk itself. 'Their momber is very ineonstant, ranging, as

[^141] gations are ofter presem. If such massings be large, as in the newornpanging mometint, taken fiom lawford's mase, the retha will be markedly.
 are invisible "pon acemot of the werlying epithedinm. As they grow,
 culons mates to berome more and mowe visible, mitil at last firom a dombetial shimmering area the modnle larsts into vide as a prominent mingigmentend

 exerption, and Stelfin' has seron them six weeks before the onthust of a tuberembar meningitis. In viow of these tacts it is pasitive that were

 the knowloge of their presenes, to determine if this were the trowe chamaco tor of the intraramial disturbance. In such instanes amoner dihdren,

 quite different ; the beuro-retinitis quickly misthasishes itself, the refinal
 choke, and tine striated hemornhages may exen appour themghont the

 belore the patient's death from acole tuberenlosis, Wrills ${ }^{5}$ fomme an almust
 the presence of the tuberdes in the chomod lee the micerseope. Bearing in mind Strickers ohsorvation (quoted ly (Gowess and Norris), that they may herome rerogizathe in from twede to twenty-fome homs, we shand not rest content with a single stady of the fimdus when it is important to note their preseme.

Whether it would be wise fo follow MeHady's example ${ }^{7}$ ia embleating
 bocalized tulerembesis of the chorod, in owder to prevent genemal infertion, it is immosilk to say. Both Mules ${ }^{8}$ and Eperon ${ }^{9}$ strongly advocate this
${ }^{1}$ Burliner Klinische Worhemerthifl, 1869, No. 4.
${ }^{2}$ Trunsuctions of the Ophthalmolorical Society of the United Kingrdom, 1886, J. 348.
${ }^{3}$ Jahrbueh tür Kiuturheilkunde, Bd. ii.
${ }^{4}$ Op. cit., 1870.
${ }^{5}$ A Trentise on the Discases of the Eye, Amer. ©d., hy C. S. Bull, 188:3.
${ }^{6}$ Royal London Ophithalmie Inspital Reports, ii. 163.
${ }^{7}$ Trumsactions of the Ophlmhological Society of the United Kingdom, viii. 197.
${ }^{8}$ Ophthatmice Roview, humarry, 1885.
${ }^{9}$ Archives d'Ophtalmologie, 1883, p. 485.

PHOTO. XVI.

Trberctiosis of the Retina and Chobodd. (Lawford, Transactions of the ophthatmological soctety of the l'uited Kingdom, Iski.)
procedure, hygicuic m to decide t at least, a opinion fro

Of' mul Very fo in tissines o in which th an instance head to be serond-nery of a five-ve greater deta nemritis and the situation were minvo

Leprosy. rare in this eye-sympton the tissues 1 Nothing see peculiar cellas exhibited choroid and servers, do m of the eyoba chowoid and loss of sight In most case: of the organ some others may ensuc.

Upon ace part of the a aprearanems
${ }^{1}$ Medieal T
${ }^{2}$ Archiv tiou
${ }^{3}$ Wiener A

- Anat. Pat
${ }^{5} \mathrm{~K}$ 'inische
${ }^{6}$ 'Trunsactio
${ }^{7}$ Krankhaft
${ }^{8}$ The Lepro
${ }^{9}$ Leprosy us
10 Op. cit., p
procedure, the latter deeming it lost time to resort to either medicines or hygienic measmres. At any rate, one mont he very carefinl in attempting to decide this most difficult problem, which seems, to the writer's mind at least, a question that can be decided only by obtaining a consensus of opinion from several anthoritative persons in each individual case.

Of much interest is Mules's instance in a ten-ycur-old girl. ${ }^{1}$
Very frequently the presence of the grey tubercle has been demonstrated in tissues of the retina and the optic raere. One case is noted by Perls ${ }^{2}$ in which the uveal tract seemed to be partially implicated. Chiari ${ }^{3}$ reports an instance where the disk-tissue appeared infiltated, cansing the nervehead to become quite prominent. Bohh Cruscilhier ${ }^{4}$ and Hjort ${ }^{5}$ show serond-nerve deposition as far batk as the chasma. Lawford ${ }^{6}$ cites a case of a five-year-old boy suffering from tuberenlar meningitis (see the case in greater detail in the setion on the Choroid), where, in spite of the optic beuritis aud the large aggregation of tuberenlar material in the choroid at the sitnation designated in the monotint, the retina and the optie nerve were uninvolved.

Leprosy.-This dread disease, with its definite bacillus, fortumately is su rare in this conntry that in reality it is known to us as a emriosity only. Its eyc-symptoms, ats a part of the general destructive conditions throngh which the tissues pass, are as multitudinons as the struetures of the organ itself. Nothing seems to escape; nerve-sinstance becomes infiltrated with the peenliar cell-form, as shown by Virchow ; corneal tissne becomes invaded, as exhibited beneath the microseopes of Bull and LIansen ; ${ }^{8}$ whilst the choroid and even the retina, aceording to the resemenes of the same observers, do not escape. Althongh l'ollock ${ }^{9}$ justly tells us that "the disense of the eyeball is langely ciliary in .igin," yet by contimity of tissue the choroid and retina at last beeome infiltuated, and in some instances total lass of sight and even destruction of the globe itself are bronght abont. In most cascs, however, the degenerative processes in the anterior segment of the organ cause the ordinary serpulae of shrinkage to appear, while in some others inerased intracular tension, with all its evil consequences, may ensuc.

Upon atecont of the early disorganization of the tissnes in the anterion part of the eye, the ophthalmoscope often fa's to give any of the initial appeamers of intiltation in the choroid and retima. Pollock, ${ }^{10}$ however,

[^142]asserts that mo atrophic or pigment spots in the choroid have ever been observed ophthalmoseopieally. Bull and Hansen' state that they often saw "a light grayish obsenation of the parts of the retina which surround the optic disk, with a relative temity of the retinal arteries, at post-mortem examination."

LESIONS DEPENDENT UPON TOXICS INTRODUCED INTO THE SYSTEM.

In countries where quinine is used extensively, eases showing the toxie eflects upon the second nerve have been noted. Thus, Knapp ${ }^{2}$ gives an adeonnt of a female child of seven years, suffering from malaria, in whom frequently-repated enemata of ten-grain doses of the dring cansed blinduess in six days, followed ly phophenes. Upon cessation, central vision gradnally returned, but peripheral vision remained somewhat impaireel. He cites two additional cases in boys, aged seven and eight years, where blindness soon supervened upon large doses of quinine, the loss of vision only grablually and imperfectly returning. E. Williams (loc. cit.) reports a similar instance after a single ingestion of a large dose, in a fourteen-year-old kal, who beame totally blind in four days.

The blindness, which is sudden, is generally associated with a temporary deafuess with timitus, whidh lasts about a day. The blindness, which is mond more persistent, gradually lessens matil good central and fair peripherie vision are obtained. Curionsly, during the comvaleseence central eolor scotomata are said to appear. ${ }^{3}$ At first the ophthahmseope shows a retinal condition which closely simulates embolism. ${ }^{4}$ The retinal vessels (both arteries and veins) are greatly eontracted, and their contents can be removed by very slight presince. Vorhies (quoted by (Gowers) asserts that he has fomed the choroidal vessels also empty. Gradual, thongh inomplete, restoration of both form- and color-vision takes plaer, the first appearing to be regained much the sooner. What the rationale may be it is not possible to say, though most likely it is dependent upon vasomotor disturbines, giving rise to local changes. We mist remmber, however, as Norris ${ }^{6}$ mats, that "in many of the reported cases it is diflicult to decide positively how much of the amanosis is due to the guinine and how much to the disease for which the patient is moder treatment;" he believing that "this is esperially" true where the patient has been sulfering from severe intermittent fever or from exhansting hemorrhages eomplicating uterine disease, which are well known fremently to produce complete atrophy, with shrinking of the vessels."

[^143]One peculiarity of the disorder as spoken of by Gowers ${ }^{1}$ is that, "whilst the symptoms are passing off, relapses may be produced by insignificant duses of quinine."

As amblyopia from tobaceo, comparatively so common among uale adults, may at times be fom in younger subjects, thongh of course very rarely in children, a brief deseription of the symptoms will be given.

From the time of Mackenzie's assertion that most cases of amanrosis were caused by tolaceo, which wats considerably modified by Hutchinson, ${ }^{2}$ to the latest analyses by Browne, ${ }^{3}$ much has been written for and against it. The latest and most important researches by Uhthoff ${ }^{4}$ show that the lesion is an axial inflammation with consecutive atrophic changes of the retrobulbar portion of the optic nerve, gencrally close behind the globe itself.

In the incipieney of the attack, the optic nerve head appears somewhat edematons and the veins of the retina are apparently tortnous. As the mase progresses, signs of atrophic degeneration become manifest, the disk appears of a peenliar red-gras, with a decided loss of capillarity to the temporal side, and the retimal vessels diminish in calibre. ${ }^{5}$

Negative color scotomata, especially for green and red, either centrally or somewhat excentrically placed, are fomd eanly in the case. Later, they become larger, and either unite with the blind spot of Mariotte or extend some distance aromd the fixation-point. Both blue and yellow now rapidly disappear, until at last the scotomata beome positive in type and eanse a conseions defect ${ }^{6}$ in the visual field. At this time the concentric limitation of the various fields, which has been progressively inereasing, beromes very great for both form and the remmants of color-pereption left.

Prognosis is always good when the case is seen carly. Treatment consists in total abstinence from tobacco. Strychnine and the best of hygiene should be emploved.

Alcohol amblyopia is rarely, if ever, seen in children. The ophthalmoserpie signs and the visual symptoms are almost identical with those of tobaceo. In fact, this is to be expeeted, since the toxic effects of the drug are most probably upon the same strands of optic-nerve fibres.

Prognosis is favoraule. Tratment consists in abstinence from the employment of the toxic agent.

A donbtful case of theine amblyopia is reported to have been seen in Russia.?

Sulicylic acid, either by itself or in conjunction with some base, is

[^144]said by Reiss to have given ocular symptoms simulating those of quinine. Gatli ' notes an instance of temporany dimuess of vision from a dose of one humdred and twenty grains of salieylate of sorlinm. The patient, a sixtern-year-ohd girl, wats suffering from an acute attack of articular rhematiom. The fundus-oculi changes were limited to madue finluess of the retimal veins. Both pupils were dilated. Schiffer ${ }^{2}$ gives an aceount of hallucinations of vision, lasting one day, following an enemat of seventy-five grains of the same drug.

It frequently oceurs, and in fact constitutes one of the physiologival proofs of the assimilation of the drug, that sentonin, given ordinatily ats a vermifuge in chiddren, proxheres xanthopsia, which lasts several hours. Of some importaner, however, are the results upon the findus oculi which are oceasioned by modil larger doses of the drug. In such instanes, subnormal color-pereption, associated with marked diminution of central vision, is more profoum and lasting.

Mittendorf ${ }^{3}$ reports an instance of visual impairment, with central sontomata for green and red, in an adult patient who had been taking from forty to sixty grains of chloral hydute daily for six months. The morvohoud appared "mudely." Upon the patient's ceasing to use the drug, imed after the administration of stryehnine, vision rapidly improved and the seotomata disappeared.

Noyes ${ }^{4}$ mentions that "great and sudden amblyopia" has been cansed by osmic acid.

Mytilotorine, the perisonons ptomane said to originate in diseasel mussels (with physiologieal effects strongly resembling those of curare), is said by Intertre ${ }^{3}$ to produce vistal troubles.

A very curions instanee of blue discoluration of the eye-gromends has been sem by Litten ${ }^{6}$ in a patient poisoned by nitro-benzol containing emiline. In this case the entire surface of the borly was similatly discolorent.

The toxie action of lect, like that of many of the other poismons agents, produces either temporary bhinduess without any visible funduslesion, optie neuritis, or simple atrophy. The first, which is generally. both sudden and extremely transient, fails to show any distinctive ophthalmoseopice signs. The secomd, which is unite promomed on both sides as a rule, with mumerous feathery hemorthages from both conthacted arteries and distended veins, is frequently reenerent in its intersity. At times there may be almost total amililation of sight, lasting for a day or two. These losese of vision appen to have me relation to any visible ehanges in the fundus oculi, and seem to be assoeiated with

[^145]the first fi teresting cai poisoning (son ${ }^{2}$ report attrophy. manifested ncrlver, witlı lose. Wolls consechtive at present a (oming blins the nasal mat of'certain ${ }^{\text {er }}$ tion of the fi vision in this

In all the visible that tl nosis is given the other path drop, colic', etr

In manys c suffer to sumb deterted in the tion mean end frepuently to

In both th The amblyopie potassium.

The sympt system are wel atrophy ${ }^{5}$ have upon the kidne

True argyr staining ats shon tions of strong : have existed in "silver-poisonin"

1 Tramsacti
${ }^{2}$ Royal Lo
${ }^{3}$ A Treatis

- Galezows
${ }^{5}$ Gatli, Cat
${ }^{6}$ Ophthalm
${ }^{7}$ Quoted in
${ }^{8}$ Op. cit : p.
the first form of visual disturbance. Wadsworth ${ }^{1}$ reports a very intrresting case of double optic neuritis with ophthahoplegia from leadpoisoning (complicated by typhoid fever) in a nine-year-ohl boy. Hutchinsom ${ }^{2}$ reports several instances of optic nembitis which were followed by atroply. The thind form, which may be cither simple or consentive, is manifested by a gradual decrease of the capillarity of the head of the nowe, with lessening of the retinal-vessed calibre, until sight is alnsolutely lost. Wells ${ }^{3}$ gives the notes of a case of complete blindness from the conserentive type in a yomg woman, a worker in lead. The writer hats at present a most interesting case of this type in an adnlt, who is fast beerming blime. Careful amalysis of definite molumes of the urine, the saliva, the masal muens, and the tears, by Dr. Johm Marshall, vevealed the presence of certain percentages of lead in every exeretion but the last. The dexiphtion of the findus-changes and the transiont peculiarities of the fiedds of ${ }^{-}$ vision in this case will be reserved for future publication.

In all the cases, cephalopathic symptoms are so fremently apparently visilhe that the ntmost caution must be exerised before any absolnte diagmusis is given. In fact, the presence of leal in the tissues and exereta, and the other pathognomomic symptoms of saturnine intoxication, such ats wristdrop, colic, etre, are the only certain cridences of the cansative factor.

In many cases of prolonged peisoning, the renal apmatus is made to suffer to such a degree that both allomen and tuhe-casts ean be vealily detected in the wrine. From this fact the query arises, Does lead-ahsorp. tion mean endarteritis, with all its dire consequenees, just as is fomed st firmuently to be the case in so-called Bright's disease?

In both the neuritie and the atrophic form the prognosis is very bat. The amblyonie variety ean be fremontly bettereal by the use of iondide of ${ }^{\prime}$ potassimm.

The symptoms of the action of volatilizel merowy upon the nervons system are well known. As a part of these, both optie nemitis ${ }^{4}$ aml atrophy ${ }^{5}$ have 1 an ohserved. The doubt ful influence of acute hydragy yia upon the kidneys mist be bowe in mind in these cases.

True argyria, imelepondently of the beantiful pietures of comjunctival staining as shown by Grossman ${ }^{6}$ to have been prodnced by topical applications of strong solutions of nitrate of silver, has been fomed le Reimer ${ }^{7}$ to have existed in the selerotie sheath of the optic nerve. Gowers ${ }^{8}$ states that "silver-prisoning is said to be aceompanied by amblyopia in addition to the

[^146]other symptoms of argyria." Again, it must be remembered that kidneyaffections and vasenlar disense, which are so prevalent in certain forms of chronie metallic poisoning, may play important parts in the production of visual disturbance and optic-nerve inflammation.

Arsenical poisoning, like lead-poisoning, is apt to give rise to mallend nervons symptoms. As with mereury, the usual morle of entrance of asemis into the system is by inhakaion. Dama, however,' reports a case of optin nemritis with other nervons gronpings following an acnte poisoning le the drug. Segnin, ${ }^{2}$ in speaking of chorea and its treatment by arsenir, says that he has never seen symptoms of multiphe nempitis or of optic nempitis from the medicinal ne of arsenic.

In addition to the ordinary toxic effects of the emstant inhalation of the vapor of bisulphitlo of ctubou and chloride of sulphur, ophthalmie symptoms have been noted. Nettleship ${ }^{3}$ cites an instance of a young man of twenty years who had been employed in an india-rubber works for ten monthe, whose vision had failed to $\frac{5}{70}$, with a central defeet for red. The visual fields were said to be nomal, whilst the optie disks were pale and slightly hase, these symptoms leing partly relieved by diseontinuance of work. Huguenin' gives two cases, the first in a fifteen-year-old boy, who, after four months' exposure, had failure of vision and was mable to reengnize green. Nine months later vision was bettered. The second calse, a givl who had been exposed for two years, had "chromopsia" (red and green), with failure of sight. Becker ${ }^{5}$ notes a most instructive instance.

In nearly every instance the patient gazes as it were through a four, this symptom beeoning more pronomed when the patient is tired or filsting. Central scotomata have been found, whilst the optie nerve itzolf frequently shows signs of a low grade of chronic inflammation. I'rognosis, is, as a rule, good. Treatment consists in the avoidance of the fumes of the drugs, together with the use of both local and general hygiene. During the attack, Nettleship employed strychnine in his case, seemingly to advathtage, after having misnceessfully tried "the constant eurrent." Lavigerie ${ }^{6}$ claims good results from the use of stryehnine and iodide of potassium.

U NCLASSIFlED.

As shown by Leber, ${ }^{7}$ retinitis pigmentoste is a chronic disturbanee, whid consists in proliferation of comective material associated with degeneration of nerve-tissue and wandering of pigment-massings into the sulstance of the retima. From this last oljeetive condition of the disorder, which in reality is sometimes wanting (?), the disense reecives its name.

[^147]PHOTO. XVII.

Retimitis Pigmentosa. (Jaeger, Beltrage zur Pathologle des Auges, Plate xxxyi.)

Thuse co of the retina Atrophic de itselff ophithat layond the p

Ophthaln shown in the mentary depe (") mavatively laving a mucl The pigmenta (")puscle-like course of the : pronounced in ment cpithelim plainly visible. tions apperss : with thickening the macular reg which at first is last it atsumes :

In the early in dim light ma ing itself by the tomed places. ing of the area, central vision f ensines. ${ }^{3}$ Fortm reaching a cortain

The disease in life. There writer has motes being from an aff graind-daughter (unaiffected) of th affected. Consan!

Prognosis as t has been found o
'The sketch dues
${ }^{2}$ Even in the earri (w)wr-preption be ma tion can be determincel the fin has heen asserte of :lipht exacerpations of
${ }^{3}$ At times these chl anomalous symptoms.

These conditions, whith are more extensive in the peripheral portions of the retima, gradnally mance towards the region of the yellow spot. Atrophic degenemation of the optie nerwe extending ontwarlly som shows itself ophthatmoseopinally, whist the degeneration areas even pass inwardly leyond the print of int racranial erossing.

Ophthalmoseopieally, the fimelus-axili damges are wey apparent. As shown in the acempanying monotint, taken from Jacger's Atas, the pigmentary deposit lies fin out in the periphery of the gromen and stands mompatively well forward in the retimal hayers, -the massings, as a rule, having a moch less deciderl preference for the temporal side of the gromed. The pigmentation itself, as cen bo readily seen, assmues a distinctly home(m) puscle-like appearance. Oftimes these masings serm to follow the (muse of the main retimal stems. 'Thromehont the eye-gromud, thongh less promonued in the marular region, there is marked absorption of the pigment (epithelimm, which allows the larger underlying chomodat vessels to be phanly visible. At times the retina itself between the pigment-agrgregatimes appears as a grayish tilm. Both series of retimal vesseds are small, with thickening and opracifation of their walls. ${ }^{1}$ Curionsly, the tissues in the macentar region seem to remain intact for a long time. ${ }^{2}$ 'The nerve-head, which at first is reddixh gray in tint, becomes more and more gray, until at bat it assumes a dull-white appenamee.

In the carly stages of the disease, in inereasing inability to sce properly in dim light manifests itself, this incompeteney of vision frequently showing itself hy the patient's stumbling over large olyects situated in macenstumed places. Again, the patient will assert that there is a gradual lessening of the area of vision. As the case grows worse, both peripheral and central vision fade, mutil at last absolute (or almost complete) blinduess ensurs. ${ }^{3}$ Fortmately, in some cates the condition remains stationary after rearhing a certain point.

The discase is said at times to be congenital, or it may appear carly in life. There can be little doult that it is distinetly hereditary. The writer has notes of six cases in four gencrations, the order of sequence being from an affeeted mother to three affecterl grandsons and one affected groud-daughter by an maffected father; another (the first) danghter (maffected) of this father having one boy and one girl,--the boy being affected. Consanguinity existed in this gromping.

I'rognosis as to leeterment of sight is always bad. Althongh treatment has been fomed of little of of no value, yet Hasket Derly's and Myles

[^148]Standish's suggestions ${ }^{1}$ for the use of electricity should be conscientionsly tried in every instanee. Alteratives in associntion with the best hygienic masures must always be employed.

The works of the older writers term with impreffect histories of casech of so-called hemeratopia. Wionderfinl, however, is the acemmey with which intracolar conditions were guessed at without the nse of the uhbthalmosedpe, and most interesting are the areomets of sailors, soldiers, workers before bright glares, travellers muder the tropie sun and through the aretie snows, who are supposed to have becol subjeets of the disease.

The conditions sometimes appear connected with semev, interferchere with the fimetions of the liver, starvation, etc. Forry ${ }^{2}$ thiuks that it is rare in the United States, and that it is much more prevalent in the Southern States than in the Northern.

In the great majority of cases ophthalmoscopic signs are wanting, though Wedls ${ }^{3}$ has seen a slight dilatation of the retimal veins. The pupils are said to bedilated, and the irides are generally moted as sluggish to lightstimulus.

The patients declare an inability to revognize objeets by feeble illumination. At times both peripheral vision and eentral eolor-perecetion seem to be below normal.' Both negative and positive seotomata have hem foumd in the visual fields. Phosphenes and sulgective after-eolors lave been noted. Both eyes are affected.

The discase appears suddenly. Prognosis is good. Treatment consists in tonics, taking care to give the patients the best of hygiene and to place them under the inflnence of subdued light, as, for instance, in cool, comfintable, darkened chambers, or, better, to protert their eyes by smoked glases.

Nettleship ${ }^{5}$ notes the case of a patient with "stationary night-blindness with minute white spots at the fundus." In this case the fumdus oenli seemed to be stulded with small non-pigmented white dots, these being less promonncel in the macolar region. The patient, aged twenty-ome years, complainet that he had had difficulty in seeing in the dark for as long a time as he couk remember. Gayet ${ }^{6}$ has described two similar instances under the supposititious title of "Retinitis Pigmentosa."

On accomen of the clasticity of the ocmlar tissues and the freedom of fluid interchange, glatecome in childhooxl is very rate. Most of the few instances recorded show either progressive myopia with stretched oeular walls, or incarceration of inflammatory material in sitnations where constant secretion and exeretion are taking place.

[^149]
IMAGE EVALUATION TEST TARGET (MT-3)

Pinotographic Sciences Corporation

PEOTO. XVIII.

Glaucomatous Excavation. (Jaeger, Beiträge zur Pathologie des Auges, Plate XVIII.)

The other of partment and the d rior porti study ace was incre

In th right eye tension w tracted to and the eye equal for a low qlanemat could be on of opac which wa: tracted in extent. indicated intraocula orgill, the

Many seen in the sulbjects m

The op by the ace ervased int lackward elge, again pathologica that rende weakening the bottom comet of t^{\prime} to the arte the corresp

Often temporal si

[^150] interni.

The writer has seen two instances, one of the secondary type and the other of meertain origin, at Dr. Wm. F. Norris's ont-patient service department at Wills Eye Hospital. Both patients were boys, one aged eleven and the other thirteen years. In the younger child the changes in the anterior portion of the globe were so pronomeed ${ }^{1}$ that it was very diffienlt to stuly acenately the pathological excavation in the nerve-lead. Tension was increased.

In the second ease, withont any history of aceident, the sight of the right eye was said to have locen "always poor." Here also intranemar terision was increased (+T 1). The field of vision was markedly contracted to the masal side: the pupil was larger than that of the left eye, and the iris was somewhat sluggish to light-stimulus. Vision with this eye equalled one-ninth, which was inereased to one-sixth ly a correction firr a low amomnt of mixed astigmatism. A shallow ${ }^{2}$ thongh well-marked ghatomatous exeavation, more pronomed to the temporal side of the disk, conld be plainly seen with the ophthalmoscope. No marks of trammatism on of opacity were discernible. The fellow-ere had a vision of one-half, which was bettered by a weak convex cylinder. The vismal fiedd was contracted in the same way as that of the opposite eye, but not to the same extent. Accommolation was fair, though, as in the other eye, it plainly indicated spasm. No glateoma enp conld be determined positively. The intracenlar tension was apparently normal. The better eye was the fixing organ, the fellow-eye wandering out during the act. ${ }^{3}$

Many of the eases of ciliary and corneal staphylomata and buphthatmos seen in the young are mere expressions of what would be glatcoma in older suljects under similar cireumstances.

The ophthalmosiopic picture of glancoma, which is so well represented by the acempanying reproduction of one of Jaeger's plates, is typical of increased intraocular tension. The soft sulstance of the nerve-head is pushed backward against itself, exposing the selerotie ring with its sharply-ent cllge, against which the retinal vessels are furced. In the bottom of the pathologieal excavation the flattened veins ean be dimly seen with the lens that renders the seleral edge of the nerve plainly visible. By gradually weakening the focussing power of the ophthatmosecpic lenses, the details of the bottom of the pit ean at last be brought into distinct view. Upon accomat of the inerease of the intraoenlar tension giving grea's winatuction to the arteriai current as it enters the globe, the arteries appear small, whilst the corresponding veins, for the same reason, seem wider and more flattened.

Often the excavation is only partial ; in such cases, as a rule, it is to the temporal side of the disk. Again, an original physiological eupping with

[^151]an moderlying or a ciroumseribing pathological excavation may give a torraced appearance to the depression. Spontaneons veroms pulsation is oftern present, and an arterial pulse may be casily obtaiaed by pressure with the tinger "pon the eyelall.

The vismal field is frequently chameristic, the contraction, as a rule, first apparing to the masil side. Vismal aenity is usmally very fanlty.

Prognosis is cortainly bat, and treatuent to be of any value mast comsist in iridectomy. This, however, shonld not be done without the advice of some competent anthority and withont giving the patient's friends a clear moderstanding of both the immediate and the remote dangers of the operation.

In conntries such as North Germany, where varions preparations of raw pork are caten, the parasite cysticcous celladowe has been fomed between the retima and the choroid. When in this position the retina rapidly brcomes detached aml the overlying tissues grow opaque and turbid, whilst surrombling inllanmatory change and atrophic degeneration soon take place. In all such eases, even before any gross lowal changes have appeared, the presence of the parasite cunnot be determined with any degree of accuraer, althongh Stellwag ${ }^{2}$ says, " In some rare cases the head and neck are ravely seen throngh the opacity as a movable, deeply-clouded mass." Ofttines the entozoon becomes encapsnlated. Beeker, ${ }^{3}$ Schweigger, ${ }^{\text {a }}$ Jacobson, ${ }^{5}$ and Devencentiis ${ }^{6}$ have all seen such cases.

Prognosis is always bad, even though a considerable number of surcessful attempts at extraction of the parasite have been made by Alfred Graefe and others.

As gross congenital subnormal color-perception (color-blinduess) exists among us in so great a degree, a few words are necessary for its stme and recognition. The colors most frequently confounded are green and red; for instaner, a red berry is not so distinctly separated from the green leaves by its colon difference as it is by the comparative intensitics or strengths of the colors themselves and the differences of form of the two objeets. The proper color-tesignation may be given in each case, but shonld color-comfarison be attempterl, as, for instanee, with a momber of red and green berries of the same intensity of eolor, or a quamisy of red and green leaves of similar intensities, both the berries and the leaves wonld be hopelessly confomded, sinee here, in each case, color-pereption alone is called into play.

Many acomate acoomes both of historic and of scientific interest cond be given, ass, for instanee, Itaddart's "ase ${ }^{7}$ of the shoemaker Harris, who

[^152]when a child cotidd distinguish ripe cherries from green leaves in no other way than by their difference in size and shape, and Nicholl's case ${ }^{1}$ of a buy who was fomd to possess submormal color-perecption for both green and red.

Is examination of the color-sense has not been made a routine measure in any of our publie or private educational institutions, the comphaint is most frequently bronght to our notice by the suljecet himsedf. Examination Ly some one of the phans of lonse-wool selection, if conseientionsly done, will soon reveal the defect. Treatment is of no avail ; but carcful training smong colors and shades should be given to all young fersons who are known to have such a defect, in order that a compensatory power, in an absility to recognize color-differentiations by the finer and more delicate choices of shades and intensities, especially in employments which require such discrimination, as, for instance, photographing, engraving, etching, ette., may be imparted to them, -a training that will reader them better able to perform such work than those who possess ordinary color-perecption.

Ir will be remembered that whilst speaking of hysteria and its blindness the mintentional type was noted as of frepuent ocemrence. Here, howeser, pure malingering, or conscions simulated blinduess, which is more difibent to detect, will be briefly considered. Odd as it may appear, scholars desirons of escaping rontine school-work, and children with a wish for sympathy or condonement, have calmly but strenuonsly persisted in the assertion of cither complete or partial blindness, without any detection by ordinary means at hame. If the child be old enongh, varions procedures with prisms which produce donble and erroncons projections of objects, or convex lenses and mydriatics which either so ather the foenssing power of the two eves as to render binocular fixation impossible, or exclude the avowedly good eye from action, should be makle ly sme competent person. Artificial anaesthesia may also be tried, so that an atractive oljowt may be offered to the supposed malingerer before he has sufficient command of his intellect to contime the frand.

Is it may be not only of interest, but possibly of medico-legal value, to have additional means of recognizing the certainty of general dissolution in the young beyond the persistence of museular exeitability to electrie stimuli and the failure of the ordinary signs of decomposition, it has been thonglit fit to insert a few worls giving some of the most important ophthulmoseopic changes which can be seen in such eases. Should carefnl study be made, the retimal arteries will be found to decrease steadily in size during cach suceessive weaker impulse of the heart ; the disk-eapillarics will rapidly disappear: the substance of the nerve-head appears more and more blanched; the choroid pales; the blood in the retimal reins breaks into beaded currents and disappears; and, lastly, the retima

[^153]becomes rapidly opaque. This last change, which may be made more noticeable for sewal homs after death by constantly moistening the surfaco of the coment is mequisonal in its signiliance. At this point, howerer, the media beome so oproue that finther examination of the find ins is impossible.

Gayet' has been so fortumate as to notice a red spot at the macula lutea of the same chanater as that which ean be seen in eases of embelis of the centai artery of the retina,- -this condition, wo donbt, being dependent upon the increasing haze of the retina permitting the reddish-yellow reflex of the moderlying dhorod to be last seen at the thimest portion of the sentiont membane, the fowa centabis. Kyerson, ${ }^{2}$ who was emabled to study the findus-changes in the eye of an injured man who was dying, gives a most interesting accomnt of the ophthalmoscopie details. In this instaner it is noted that there 11 as oceasional venons pulsation. Carefin studies have also been made by Bouchut, ${ }^{3}$ Poncet, ${ }^{6}$ Schreiber, ${ }^{5}$ Arlidge, ${ }^{6}$ and others.

[^154]
PART III.

 HYGIENE.
PHYSIOAL DEVELOPMENT.

By J. M. KEating, M.D., and
J. K. YOUNG, M.D.

Is eonsidering the sulject of physieal development in children, the nomal development of the chih, the physical type of man, inereased physimal development, and the influence of physion! development in the treatment of deformity and disease, will all be included.
M. Laine, Darwin, Chailé, and others have investigated the dawn and development of the intellectual faculties; Russow, Itialmer, Zaising, Stephenson, and others have observed the general increase in stature and weight; the physiology of infancy has been dealt with elsewhere. There remains the normal physieal development through the suceeding perioods of infancy, childhoorl, and youth.
"If we are to devote our attention, before all things, to what can be measured and weighed, the living man is the first olject which demands our investigation." (Carl Vogt.)

MEANUREMENT OF THE HUMAN BODY.

This leads naturally to the ensideration of the physical proportions of the body, of the measurement and strength of different individuals, or of those of the same individual at different periods of life. This investigation, or the study of anthropometry, does not at this early period assume the importance which it has in adoltt life. Later, the politieal aspeet of the subject, bearing on the recruiting for the army and mavy, the scientifie Vol. IV.-16
importance of the effect of climate, semsons, and peruliar lyygienie conditions, and the classifieation of the varions raves of makime, are to bo considered. It is, howerery, of distine sorial importance in asertaining the proportions most favorable to bealth, longevity, and physioal andurane, in the diagnosis of diseasers, ate idents, and deformities, and in the insurance of lives and the fitness for certain duties.

Naturalists have conduled that the best mems of classifying the rates and varieties of mankind are measurements of the different dimensions of the booly, and, in a more restricted view of individual interest, measurement constitutes the best means of ascertainug the changes ocemring in the emformation of the body under the iulluence of age, sex, murture, orenpation, samitary conditions, and the general offects of physieal culture and athletie sports unom the cemomy.

Anthropometry has at the present day a voluminous literature of it, own.' Its entire history is an attempt to establish a stamdard ly which to determine and compare the proportions of the luman body. From preo historic antiguity the hamd, foot, and culit (foremrm) have been comsentent standards, possessed by every one and of sufficient acenracy to emable man to adjust his dealings with his fellow-man and construct his places of residence or of worship. These rude standards servel for ages, and are still retained by civilized mations, notwithstanding the precise standard whid they now possess through the perseverance and skill of the French mathematicians.

The carly attempts made to ascertain the average foot and average culbit for the purrixises of trade led to series of measurements, which, being addmitted as standards, maturally indued artists and seuptors, in the carliest days of art, to cudeavor to deduce the exact propertions of the perfect human form.

In the "Silpi Sastrif" or Tre atise on the Fine Arts, the carliest known Sanserit manuseript, the homan figure is divided into four hundred and eighty parts, the head being nearly a sevent!? part, conforming to the best standards of the present day:

PROPORTIONS OF THE IIUMAN BODY, FROM TIIE "SILPI SASTRI."

It is highly prohable that the Egyptians carly possessed a standard of proportion, for Rosellini and Lepsins, after a carcful examimation of the

[^155]figures fo rigoroms ("Atons o

IWhil for exam (ireok all hive bee Higurons Sirulus is of which S'mos all that of perfece The C'anoי," Bearcr," bolieved profect in lons and treatise d

Vitru partial alc He writes
"The fare, whis where the the same from the pit of tin one-sixth the fare is one-third to the roo ane-sixth shouldersis
"The which the signal hot of a t temp
"So, be laid n taken for the extren
"Not scheme of
fixures fommed upon lixyptian momments, showed that the artists conformed rigoronsly to a definite sale of proportions, and Lepsins las derlued there (anons of meastre in nee at different poriokls.

While one natmally turns to the matehless works of the (ireek artists for examples of perfert symmetry, it is to be regretted that no writings of (imek anthors treating esperially upen the propertions of the haman bexly have heen preserved. It is known that at a very early period a system, rigoronsly minnte in detail, had been introdued fiom Vigyte for Diodorns Siculas informs us of the constrution of the l'ythian Λ pollo, the two hatves of which were executed by two sentptors in different citis, one heing at Fimos and the other at Ephesins. So exact were the detaids of the sestem that mon miting the separate portions the stathe proved to be a maryed of perfection and symmetry.

The statue of the relebrated senptor Polykleitns known as "The Canor," but ealled also, from the sulyent, Doryphom, or "The SpearBearer," was constrneted npon an adminalle theory of proprortion, and was believed by the senlptor and his pupils and admirers to be absolntely perfert in form. Its effeet mon Greek and homan writings was marvelFons and longecontinned, althongh neither the statne nor a eopy of the treatise deseribing it remains.

Vitmvins, the Roman writer on architecture, has incidentally given a partial aecount of proportions whide were long considered anthoritative. Ho writes:
"The hmman body, as nature composal it, has this proportion, that the face, which includes the space from the ehin to the top of the forehead, where the roots of the hair begin, is a tenth part of the whole height; it is the same length from the wrist to the tip of the middle finger. The head, from the chin to the top of the skill, is one-eighth part ; the same to the pit of the neck. From the top of the chest to the roots of the hair is one-sixth part, and to the top of the head one-fonth. The thitd part of the fare is frem the bottom of the chin to the lowest part of the nostrils ; one-third from there to between the eyelrows; one-third from this latter to the roots of the hair, where it begins on the forehead. The foot is me-sixth part of the whole height, the enbit one-fourth, the chest (across the shoulders?) the same.
"The other members have each their measmes ad proportions, by which the greatest of the ancient painters and scolptons who have w, signal homors have gnided themselves. In the same waty the jarts and body of a temple have definite laws of proportion.
"So, too, the navel is maturally the centre of the body; for, if a man he laid upon his back, with hamds and feet extended, and his navel be taken for the centre, the cirommfernce of a circle so drawn wonld toneh the extremities of his fingers and toes.
"Not only is the seheme of the eirele fomed in the body, but also the sheme of the square; for, if the distance from the soles of the feet be
taken to the sammit of the head, and be applied to the hands ontetretehent, it will be fomel that the length and breadth wre equal as a perfeed squatre:"

Though serving as the gromblwork for subsement works, many of these measmements are mombally ineorreet ; motahly, the position of the umbilicus as the centre of height in the adult, and the distance from the top of the sternum to the smmmit of the emminm.

The statement that the perfection of dreek stathary was due to tha superiority of the living models from whom they were designed rerevere in the cxant statistiand data of mam-mensurements in our day a more dedided denial than asthetie eriticism conld erer have produced.

Wh have the authority of M. (Quctrlet for the statement that the phesique of man to-day eompares lavorahly with that during the time of the early Greeks. After a "urefinl compratison of the dimensions of the best masterpieces of antiguity with the arerage results of mondern statistical rescarel men the living, he dechares, "It is, then, wrong to smpose that man in our elitae difters essentialiy from the strueture observer in tha Greek statues. The delicarey and beanty of fealure, the expressivences of conntenance, the alogane of form, may be inferior withont the proportions of figure being different on that aceome. Everything ands to establish, on the contary, that the hman type in om clime is identical with that dedered from observation of the most symmetrical ancient statnes."

The carly anthors emplowed but fow models to determine the size and conformation of the parts, but took inlinite precantions to unite exactitude of form wit's elegatace of proportion. Phidias employed twenty mendels, it is satel, to arrive at eleganee, selecting from caeh the most beantifal parts, and arraging them aceording to his knowledge of the hman form.

Doring the em of the lienassane the camon of Polyleitns retaned its inflomer, ats is shown by the artifeed nature of all the systems propomberl. A part of the borly, the cubit, hand, foot, head, faee, or nose, was sedered ats the mit or basis of calcolation, amb every oher part had a foreed relation thereto. ${ }^{\text {a }}$

The character and limets of this sketeh will mot permit more than an allusion to the artists, semptors, anatomists, mathematicians, and others who since the Romaissance have contribated theories or treatises upon the proportions of the hmman body, but a short deseriptio, of the models and
 seulpors mal artisk were taken from different parts of the body; mat, althomgh they are not of much value to science, they are fall of interet th th se whon nperefate their incomparable works of art. They weye the cubit of the Eigyptians, or the distance betweren the Nlow wnd the extremity of the fungers ; it forms the fourth part of the height of man. The fors, which forms the sisth part. The herd, which, aceording to Viturius, forms the "ighth part; lut, properly spaking, the head is contaned seven and n half times in tho beight. The face (volto), which is equal to tha length of the hand, and is the ninth purt wit the total heitght." (loberts, lor. cit.)
truatimes of will serve 1 Alherti the finot tor dediedive. sytrim of

The pere sont llure anthor of t the result o semence trpical form fiolls from (1) oulb view bemishes a of these for objects of th cerning wha iden of lxam hy her more than :my ond parison of $t l$ form firom have laid do invariable or are various and yet are a the beanty of which makes these figures representation ral form wh classes there of the varion forms of dill rhildhood ant remote from perfeet forms and superior of' the huma Hereules, no is taken from Gladiator, of the Merenles. which may 1
treatises of Allerti, Albredt Dürer, Reymolds, (arms, Story, and Quctelet will serve to illustrate the prougress of the suljeet to the present day.

Alberti may be said to have followed the camon of V'itruvins in taking the finet to be one-sisth of the entire height, ane thets remederd his sitheme defertive. 'The adoption by him of the werage or mean and of a derimal system of division is, however, motewenthe.

The peroliar feature of the mensurements of biater is that they represent three points of view,-protile, front, and back; and schadow, the author of the "Polyedet," expresses the opinion that his moded tigure wats the result of "alculation, and not of' actual mensurements of living subjecets.
seence ares to sir Joshala Reymolds the idea of the existence of a typial form in man, and the order which prevails in the apparent variations from that type. "All the objects," says: he, "which are exhibited to our view hy Nature, upon chase examination will he finmed to have their bemishes and defeets. It must be ann eye bong used to the comparison of these forms, and which, loy a long habit of olseerving what anys set of ohigents of the same kind have in common, lats anguired the power of discerning what cach wants in particular. By this means we a"puire a just idea of beantiful forms; we correct Nature hy herself; her imperfect state by her more perfect, and make out an abstract idea of forms more perfecet than any one original. . . From reiterated experience and a clowe comparison of the oljects of Nature, the artist hecomes prosessed of a 'entral form firm which every deriation is deformity. . . . To the principle I have laid down, that the idea of beanty in earh species of loeing is an invariable one, it may tre objected that in every particular species there are varions central forms, which are sepurate and distinct from coch other, and yet are mudoulbtedly beautifinl ; that in the human figure, for instance, the heanty of Herenles is one, of the Glatiator another, of A pollo another, which makes so many different ideas o. lwauty. It is true, indeed, that these figures are each perfect in their kind ; but still none of them is the representation of an individual, but of a class. And ats there is one general form which belongs to the human kind at lavge, so in cach of these clasess there is one common idea and central form which is the alstract of the sarions individual forms belonging to that class. Thus, though the forms of childhoorl and age differ execelingly, there is a common form in dhildhood and a common form in age, which is more perfect ats it is more remote from pecenliaritios. But I must add fiuther, that, though the most perfect forms of each of the gencral divisions of the haman figmre are ideal, and superior to any individual form of that class, yet the highest perfection of the homan figure is not to he fomud in any one of them. It is not in Hercules, nor in the Glatiator, nor in the Apollo; but in that form which is taken from them all, and whieh partakes equally of the activity of the Ghadiator, of the delieacy of the Apollo, and of the musenlar strength of the Iterenles. . . . There is, likewise, a kind of symmetry or proportion which may properly be said to belong to deformity. A figuce lean or
 wertain minu of the varions parte which miny contribute to make them 'm the whok mot minheasiug."

 sibe and painstaking observation miving monds.

 whinh is based on the dednetive methen of invertigation.

 collum, consisting of twentr-finur fies sertehne,-"the true organie all, divided inte twenty-four ind hes." He confirmen! !is view ly olserving that in the egeg of mammals the first indiwation of the finture animal was a mavel
 that a ration of leagth exists in the vertedmal colum of the new-hern infant and the ablate, the lengit of the fermer laing exactly one-thive the length
 spunens promess of the last lombare wertena in the aluti. This standari,
 divided be the authontative measme of twenty-fone, all the dimensions repuired to dexluce the perfine firm. I'pon this he emstrueted a fie a, a sexless statue, but onc capable bey a slight variation of being molified to represent either sex, and (apable also, by the aphlication of certain rules, of representing a dwaif' or a gitant, a pret, a philuspher, or an athlete. 'Tho "modulns" may, inded, be theoretically correer, hut for seientifie purpusess it renders no assistane to the knowladge of the progrensive devedpment of the body, as the different parts of the body do not develop with the same rapidity.

In 1866 Mr. Story, the suluptor, proposed a new canon, which in ingemity of detail and beanty of result is eynal to any of its predecessors. To obtain this canom he directs that one-fourth of the entive height of the intended figure be baid down as the side of' an equilatemat triangle. "The triangle being completel, from its apex a line is to be dropped, bisecting the base, and extending below it a distance equal to one-third of its length above it ; this line forms the diameter of a circle, in which cirele is inseribul a square. The diagram thes consists of a trimurle and a square enclosed in a circle; and wien the lines of these figures are divided into thirds, fourths, ete, a vast mumber of dimensions are obtained, and in them all the measurements of the intendel figure are to be fimul."

From the "Silpi Sastri" of India to the "improved camon" of Story, it is instroctive to olserve what ingemity and labor have been expended in these attempts to reduee human proportions to an exact system, and to notice the fallacy which pervalles them all,-"that the key to the theory
is to be fo metrimal il

It mint tribia, dise (all firm adtal me: tlu" "cernt" ""allon" " " A l 1 "have att" (\%)llasive, in dromenist aly
"Il" th not from th Mxisterl :mm withont alli :
" 1 l', 1 n
sume monk acridental, their mumet lw: suljeret t 111111 (:ill be precial case nats lelong Another con vations the (ual type, w in the homat with, at leas the mos: mot mumber; al Newton! wh is vorified various men ans yuality

[^156]is to be fomm in the exoult relation of ammanes an in the parts of a grou-

It remained tor observers like M. Queteler, the distinguished mathema-

"If" there were ats absence of type, and if" men were molike one sumether,
 existerl among them, they might be measmed, as regerms height, for : mstames, withont all the individual mensuremonts oflering any pationlar chatacter or atuy definite ummerical redation.
 sume monld, and if they issue foom it with difleremes which are purely andental, the gromps will mo longer be fimed in an aratic mamore, but theile monerial values, in areorlane with the theory of probabilities, will be suljeet to pre-established latws, so that the mombers which represent eath man can be detemined e priorio. There exist, therefore, for this marely special case, chanacteristies by which we may recognize whether individmals belong to the same type and only difler awing to fortuitons canses. A mother conseguence of the theory is, that the greater the mumber of obsersations the more do fortnitons canses explain cach other, and make the genarall type, whielu they at first feme to sereen, stand out prominently. Thus, in the homan rare, when individuals only are eonsidered, all heights are met with, at least within certan limits; those who come nearest the average are the most momerons; those who deviate the most firom it form the smallest muber ; and the grompe follow monerically a law (the binomial law of Newtom, which may be laid down beforehand. In the case of man this law is verified mot only in relation to the entire height, but also ats regards his varons nembers; and the same is the ease with the weight, or strength, or any quality w!ich can be measured and reduced to mmbers." ${ }^{2}$

[^157]The following diagram, taken from Roberts's "Anthrownetry," reproscenting the heights from actual measmement of fou homered and thirty English public-school boys from eleven to twelve years old, will illustrate Quetelet's views:

Fig. 1.

"It will he seen," says Roberts, " that the members arrange themselves aecording to a very biform rule ; the most muncrons groups are in the middle of the colum, at 53 and 54 inches, white the groups at 52 and 55 inches are less in number, and those at 51 and 56 inches are still fewer, and so on till the extremely small member of the very short and very tall boys of 47 and 60 inches is reached. It is thees ascertained that the mon or typical boy of the class and age given is 53.5 inches, and, ats representing the most numerous group, he forms the standard, from which the other groups of boys decrease in number as they depart further and further from his proportions.
"In the diagram, which has been drawn to a sate, the length of the horizontal lines (abscise) represents the numbers of hoys in each group, and the curved line binding the ends together is the well-known 'binomial

[^158]mure, or this curve the dwarf it will be f consequent of the val morel, whit instance is inches, lout portent that consists mu

Indeed, been discover coal cistimatr -are found sale of han! matron of il number of o

While 1 the only scie statisticians, any practical aud the stat 17,000 ohser Britain, the 1 wive observati one million m (1,232,256), mission, have the "mean" or

The great have no dive correct the ob data upon whit treatment of a fact, the staten same size at two statement that than hoys, may

Metrions. certain rules m quint reference extremity of the although some sufficiently defin
curve, or the 'curve of the frequeney of error.' Now, it will be seen that this corve is not guite miform, and that the lower half (from the mean to the dwarfs) is less regular than the upper; and if the momhers are comuted it will be fomed that there are ten more boys below the mean than above it, romserpuently the arereye (ohtained in the nimal way, by dividing the sum of the values observed by the mumber of observations) is lower than the mecte, which is represented be the largest gromp. The difference in this instance is not very great, the aserage being 53.43 and the mean 53.5 iuchere, but in some instances it is much greater ; and it is exceedingly important that the difference here indicated should be herne in mind, for in it consists. much of the practical value of Quetelet's methorl."

Indect, so exact are the methods of M. Quetelet that a curions fact has been discosered in redation to dwarfs and giants, which, though in the genexal (extimate considered at monstrosities, -amomalies of the human specese, -are fomme to fall into their phaces as necessary factons in completing the scale of human stature. Moreover, it would be possible, if a correet estimation of the mean proportion of a population were mode, to declave the mumber of each, and even the actual stature.

While MI. Quetelet's method of studying the propertions of the hody is the only scientifie one yet propomeded, and is the one now employed by all statisticians, the nmber of ohservations made by him are too few to be of auy practical value, and the tables of Mr. Roberts, those of Prof. Bowditeh, aul the statistical results of the olseervations of Dr. Solm Beddoe, of 17,000 observations obtainel throngh the medieal profession of Great Britain, the 12,740 Bavarian solliers examined by Dr. Meyer, the extensive olservations upon reernits of M. Bondin, and the examination of over one million men conlisted in the war of the rebellion in our own country ($1,232,256$), particularly the 23,624 men examined by the Sanitary Commission, have been cmployed in arriving at a correct scientifie astinate of the " mean" man.

The greater bulk of these observations is uron men, and, while they have no direct bearing upon development in chidren, they improse and correct the observations made upon children, and furnish more acemate data upon which to estimate physieal enlture, perverted development, and treatment of disease at this muly period of existence. To emphasize this fact, the statement of M. Quetelet that children of the same sex are of the same size at twelve, and its eorrection by Drs. Roberts and Bowditel by the statement that at thirteen and fontecn sears girls are taller and heavier than hoys, may be cited.

Mermons-In recording syatematic measurements of the human body fertain rules must be noserved, in order to seeme exactness, and for subseguent reference and comparison. Prominent bony points-as the acromial extremity of the clavicle or the trochanter-are to be depended upon chiefly, althongh some soft parts, as the nipples in makes, and the umbiliens, are sulficiently defuite and fixed to be available. All measurements, if pos-
silole, must be taken upon the maked body, and heights taken without tho shoes. The height is best obtained ly measuring from the gromed upward, although the varions dimensions of the head are lest oltained by measinving downard from the vertex. The diancters and circumference of the tronk are readily secured by means of callipers and a plain tape-measure markend in English incles and tenths of an inch. As the varions tronk-measuroments vary much with the state of the respir: ion, these are best determined when the chest is empty and at rest, a condition easily secured by directing the person to coment ten slowly in a lond voice immediately before the measurements are taken. The strength is best determined by making with the dymameter several (three or fimer) trials each of grasping, puiling, and lifting, and estimating the averages. For recording all measurements the best methods and chart are those given by Mr. Roberts in his "Manual of Authropometry," to which the reader is referred, or the blank forms pubdished by the Anthropometrical Committee of the British Association, 2: Albemarle Street, London.

The methot extensively used in Germany, which consists in recording on a separate paper all the memoranda and observations relating to each individual case, reduces the labor of tabulation to a minimum and facelitates the estimation of aur particular observation. It should, therefere, always be employed.

The following table may he taken as a groed form upon which to reeorl measurements. These should be repeated every three to six months, and comparisens made, or they may be plotted upon a percentage chart, such as are soll by dealers in general iporting goods, and compared with a staudard or with hundreds of others similarly examined.

TABLE FOR MEASUREMENT.

${ }^{1}$ From Physical Culture, A. J. Reach Co., Philadelphia.

The rela already beet There remai trink, and telet has ase ple) of the prevails as t

As in h ("Illeses, there of the diffe mationality the mode of
M. Bouc tions, to det of France, ings, and el allair of rac

Mr . Rol classes are al of the labor four inches, gencons in c grencons, mo marked. D cludes that t children is a

The diffe at different Carus's " cal developed a reason, donl the adult its adult life it three or four lesecuce.

TABLE FOR MEASUREMENT.-(Comtimed.)

The relative and average growth in weight and increase in height have already been fully disenssed in the article upon the physiology of infancy. There remain the general proportions and development of the bead, neek, trunk, and extremities. It may be interesting here to observe that Quetelet has ascertained that in a large number of men (ten thousand, for example) of the same nation, age, and external surroundings, the same uniformity prevails as to weight that has been demonstrated to exist as to stature.

As in height and weight, in addition to a large mmmer of aceidental ranes, there are at least three factors which direetly atfeet the development of the different portions of the body in the growing child. These are mationality or race (Bondin), the occupation of the parents (Roberts), and the mode of life (Bowditch).
M. Boudin, after comparing the results of his very extensive observatimas, to determine the mean height of the inhabitants of different districts of France, with the researeles of Broca, coneluded that soil, local surroundings, and climate exercise little inflnence on height, which is always an athair of race or hereditary descent.

Mr. Roberts has demonstrated that the sons of English non-laboring dasses are deeidedly taller, and at most ages also heavier, than the children of the laboring classes; the difference amomating at thirteen years to nearlyfour inches, and this in a population comparatively stationary and homogencous in eharacter. In one own comtry, where the population is heterogeneous, movable, and without class distinction, this principle is much less marked. Dr. Bowditch has, however, pointed out its existence, but condludes that the influence of mode of life in determining the size of growing whildren is at least equal to and possibly even greater than that of race.

PROPORTIONS OF TILE BODY.

The different portions of the human body develop with varying rapidity at different periods of life, an observation already made in referring to Prof. Carus's "eanon" of proportions. Of all these the head is most completely developed at birth and varies least during subseqnent growth, for which reason, doubtless, it was carly adopted as a standard of meatstrement. In the adult its relation to the entire height is one-seventl. From birth to adult life it doubles its height, while the remainder of the body inereases three or four times, the growth being almost terminated at the age of adolescence. At birth the antero-posterior diameter (oceipito-frontal, $11 \frac{3}{4}$
eentimetres) is a little greater than the transverse (biparietal, 91 eentimetres), and this ratio is mantaned thromgont life. The height varios little in the two sexes at different periods of existence, as shown in the following talls, taken from (Quetelet:

A(ies.		M E.s.			Women.		
		Torn! llelght, Inclies.	$\begin{aligned} & \text { Height of } \\ & \text { 1leat, } \\ & \text { !aches. } \end{aligned}$	Ratio.	Total Helutıs, luclies.	Height of lead, luches	llato.
Wirth	.	19.68	4.37	4.50	19.44	4.37	4.45
1 yatr	-	27.48	6.01i	4.53)	27.16	6,003	4.48
2 vends	.	31.11	6.81	4.57	36.74	6.77	4.51
$3^{\prime}{ }^{6}$	34.03	$7.11 ;$	4.74	33.6 t	7.08	4.74
5) 6	, -	$38.8{ }^{\circ}$	7.50	5.14	38.31	7.40	6. 18
10 "	50.11	8.05	6.21	4!).37	7.111	6.21
15 6	-	59.613	S. 41 ;	7.04	68.58	8.88	(i.91!
2016	-	65.74	8.193	7.3.)	61,96	8.69	7.15
	-	60.37	8.97	7.39	(6゙3.20)	8.80	7.15

The lower part of the face appats relatively to grow more rapidly than the upler ; the nasal incision, which at matmity divides the fare into two equal parts, at birth is nearer the chan, -a ciremmstanee which may be arcomited for by the development of the alveolar proecesses and of the teeth, especially the molars.

Nesk.-At birth the nerk in about one ind in length, but later, owing to the fatness of the infint shin, it apparently shortens, and does not appear to grow pereptibly till sixth or seventh year, doulling its length by the time adolasence is reachad. Its diameter develops rapidly during the first year, and again at puberty, and is practicully the same in both sexes, being more rapidly attained, however, in the female, the diameter taken just above the devicle measuring at hirth abont 1,81 inches, at six years 2.25 inches, and when fully developed athont 4.75 inches.

The development of the laryon in the male increases somewhat the upper cirmmference, and the development of the thyroid body in the female the lower eiremberence.

Thexk.-The trank includes the chest, abolomen, and pelvis, and is boumded above by the davides and below by a horizomal line on a beve with the perinem. In length and transverse diancter the trimk-mensurements from birth to maturity are tripled, white the head-and neek-measmements are donbled. The antero-posterior diameter, howeser, grows with less rapidity, increasing very slowly and regularly from birth, and dombling only at puberty. The circumference grows with the same rapidity as the transerse diameter: it is much modified after puberty in the two sexes, the shonlders being proportionately wider in the male, the pelvis in the female, the dispropertion, which is, hovever, slight, being much enhanced in woman by the development of the beasts and by the modifying influenee of her costume. This relative growth of the tronk in height and diameters is well
shown in the in Rolerts'

The eire it comtains, mine the ph^{h} puldic dutice. lue over-estin a direet rati and age, and ascertain fro howerer, to prove that 1 when appliect representing the figures di tmy instemee

If the m garded as a d thorrough phy dillerent indi larly the upl healthy mata': 3.05), but mat served in a ma vars of age, inclues in heig girth, and hat

Ubpere E am, and han apue corered (anly life,-七 however, in m \%outal mectsur wightly grate condyle, increat the :udnlt, and however, being

The adult arrents. The termal coudyle the infint to 9 O.5 inches in t? much influence

[^159]shown in the diagrams Nos. 2 and 3 opmosite pages 97 and 113 respectively in Roberts's "Manal of Anthropemetry."

The circomference of the chest, on aneoment of the important organs which it contains, has been selected, together with the height and weight, to determine the physieal capacity of the individnal for military, naval, and other public duties. The importance of these data in life insurane can hardly he over-estimated. From extended olservation it has been aseertaned that a direet ratio exists betweel the height, weight, eitemmerence of thest, and age, and formulas have been arranged somewhat arhitarily be which to ascertain from the stature the ciremmerence of the chest. It is not well,
 prove that Mr. Hutchinson's and Mr. Breut's formulas do not correspond when applied to the examination of immense mombers of able-bodied men, representing the pieked men of the mation. From these it is onserved that the figures do not rise alowe the minimum size of the chest, now do they in (my instence attain the medium size.'

If the mobility of the chest be very limited, this should also be regarded ats a disisualification for military service, or else should lead to more thorough physical examination. The degree of mobility saries much in different individuals, and is also modified by sex, the female chest, particularly the upper pertion, heing more adive, but limuted in extent. The healthy mats expansion, aceorling to Hutchinson, is three inches (Baster, 3.08), hut may reach even seven inches. A remarkable instance was ohserver in a native of New Jersey admitted to the service, who was eighteen years of age, weighed one houdred and fourteen pomeds, and was sixty-fion iuchers in height ; his chest at expiration measured twenty-nine inches in girth, and had an expansion of seren inches.

Ubea Extacmoses.-The upper extremity, including the arm, foream, and hand, varies much in develoment. The popular idea that the spare conced by the extended arms is equal to the height is correet only for early life,-before pmberty,-being the same in both sexes. After puberty, however, in man, owing to the inereased breadth of the shonders, the horigontal measurement exceeds the perpendienlar, and in woman it is also wighty greater. The arm, measured between the acromion and the exteraal conlyle, increases in longth from 3.5 inches in the infant to 13 inclies in the adult, and in circumference from 4 to 12 inches, these measurements, however, being greatly influenced ly exercise, sidkness, ete.

The adult forcarm (enhit) was the unit of measurement among the ancents. The growth of the forearm in leagth, measured from the ex termal condyle to the styloid process of the radins, is from 2.25 inches in the infant to $9 \frac{1}{2}$ inches in the adult, and its increase in ciremmference from 2.5) inches in the child to 1838 inches in the adult. Its ciremmference is also much influcured by exereise.

[^160]The hand, as employed by artists, senlptors, and others, represents tho vatio of 1 to 9 of the entire height. It develops slowly, being dombled in length by the seventh year, and triphed at matnity. It is a little broader and plumper in proportion to length in women than, st men.

The length of the entire upper extremity, metsined fiom the acromion extremity of the elavicle to the tip of the middle finger, is domblal between the ages of four and five, triphed by paberty, and quadrupled by maturity, -growing with less rapidity than the lower extremity, which during the same periox is quintupled.

Lower Exthemithes.-The lower extremity includes the thigh, the leg, and the foot, and is the most important factor in deternining the height of the individual. The thigh, incluted between the trochante 'and the patella, increases in length from 2.75 inches in the infant to 18 inches in the adult, an inerease of nearly sevenfold, the greatest increase of growth observerl in the borly. After puberty the increase is relatively greater in the female, owing to the inereased width of the pelvis and the development of the upper thigh. For the same reason, the angle forment laterally at the knee, between the thigh and the leg, is also relatively greater in the female.

The leg, incheded between the lower edge of the patella and the internal malleolns, inereases from 3.4 inches in infaney to 15.3 inches at maturity, an inerease which is much modified by exereise and somewhat also by sex.

The foot has been much employed as a min of measurement, its length being in both sexes and at all ages from .15 to .16 of the entire height. The belief that its length corresponds to the height of the head and the ciremmference of the fist is fallacions. It grows in height from 1 ineh at birtl to 3.25 inches at maturity, and in length more rapidly than in height, from : $3-3.5$ inches at birth to $8-10$ inches at maturity. Its width is proportionately greater in the male, and is much influeuced by race-pectilarities and by dress.

The length of the lower extremity increases more rapidly than that of any other portion of the body, being doubled before the third yarr, (funlrupled before puberty, and increased fivefold by maturity, the thigh growing more rapielly than the leg, and the leg than the foot.

In this comection it must be borne in mind that the human frame is suljaceted to many influences that toud to prolnce minor deformities, congenital and acquired, all, however, within the bonods of health, as merpual development of the lower extremities, transposition of visecra, exeessive development of the right side, ete.

The relative proportions of a perfect female form, as deduced by modern seulptors from the Greek statues, may be stated ats follows. With a height of five feet five inches, one hundred and thirty-eight poumds is the proper weight, which, however, conld be inereased ten ponnds withont greatly destroying the proportion. When her arms are extended, she
should mea feet five, ex: tenth of that fifth. Fron mensines fir come exactly the allowe to dhow to the should be ju between the twenty-four measured fir The upper : calf of the la five, and the

When fut a perfect mal

Showing th
heigit.

5 fiet,

The term of the booly coulition, hut

[^161]should measure from tip of middle finger to tip of middle finger just five feet five，cxactly her own height．The length of her hand shom ld be just at tenth of that，and her foot just a seventh，and the diameter of her chest a fifth．From har perinemen to the ground she should measise just what she medsures from the perinemm to the top of the had．The knee should cone exactly midway between the perinemm and the heel．Tha distmee from the ellow to the middle finger shonld be the same as the distance from the dhow to the middle of the chest．From the top of the head to the chin should be just the length of the foot，and there shomld be the same distance betwern the chin and the ampits．A woman of this height should measure twenty－finer inches about the waist，and thirty－four inches abont the bust if measured from moder the arms，and forty－three if measured ore them． The upper arm should measure thirteen inches，and the wrist six．The calf of the leg should measme fourten and a half inches，the thigh wenty－ five，and the ankle cight．

When fitl development has been attained，the relative proportions of a perfect male may be summarized as follows：

TABLE ${ }^{1}$
Showing the Bropar Weight，Height，und Measurement of a Folly－Deteloped Men

ineight．	烒	兌		矣	安	关	＋	$\frac{3}{30}$
if fert，	103－107	111	$2!$	ก2－33	$\stackrel{ \pm}{ \pm}$	$8{ }^{7}$	15	き
5．＂1 inch，	107－111	11.1	$2!!$	3：－34	\cdots	41	16	\cdots
5 ：． 2 inches，	111－116	12＇	30^{-}	$3+-83$	－	6^{6}	17	言
$5{ }^{5} 3816$	116－1：1	12！	$80!$	35－36	\％	10	18	\％
5 ＂ 4 ＂	121－127	18.	31	319－37	$\stackrel{\sim}{ \pm}$	$10 \frac{3}{4}$	19	$\stackrel{\sim}{4}$
5） 160	127－183	13！	$81 \frac{1}{2}$	37－88	E＊	10	20	500
5 ＂ 6 ＂	138－140	14	S2	34－39	辰	11.	21	光
5＂ 7 ＂	140－147	14］	32！	36－10	$\stackrel{\square}{\square}$	$11 \frac{1}{2}$	2.	苞
5 ＂ 8 ＂	147－155	15°	3：${ }^{-1}$	4（1－4）	\％	117	2：	杜
． 169	155－164	15．）	83！	41－42	$\stackrel{\text { E }}{ }$	121	24	荺
［5 ${ }^{\text {a }} 10$＂	164－174	$11 ;$	34	42－43	\pm	123	25	$\underset{\sim}{3}$
5 $\quad 11$ ،	174－185	16.5	$3 \cdot 1 \frac{1}{2}$	4：3－44	E	13	23	E
$0{ }^{3}$	185－196	17	3．）	44－45	免	$13{ }^{3}$	27	号

EXERCISE．

The term＂exercise＂is applied physiologically to any exertion or action of the body for the maintenance of its organs or functions in a healthy condition，but in a more restricted and genemaly aceepted sense applies to

[^162]certain movernents of the borly effected by the eontraction of the volnutary muscles made with sulficient forere and rapidity to quieken the breathing and aceelerate the circolation of the bhool, -in other words, musenlar exercise. The museles acted upon during exoreise are all ot the striperl vorety,-the skeletal muscles, heart, diapharm, ete. ; but a marked distinetion mast be observed between these museles, from tho fiut that, whongh practica!ly of the same s acture, the nervons control differs, the heat and diaphamm not heing muler the control of the will, and thaid action being only seenred serondarily hrough the effeets of the action of the volnntary muscles.

The muscles consist essentially of the sateons suhstance, with its moled or muscle-enpuseles enclosed within compartments, and surronnded by the satreolemma and rmbomysinm and perimysimm, so as to consist of hascienti or bundles of fibres smrounded by comective tissue. These faseienli are commerted nltimately by tendinons fascias or bands with the oss ms struetures upon which they are intended to operate. 'The sareolemn. thonght a single opening receives the axis-eylinder of a nerve-fitore, which altor forming a flat protuberance-or motor end-plate-is distributed in fine fibrils thronghont the eell-contents. Sensory as well as motor merve-fiberes are distributed to the minsele-substanere, to convey impressions to the rentrally sitnated nerve-cells. By a tine mesh-work of capillaries lying between and upon the fibves and cells, but withont penctrating the sarcolemma, the muscles are bountifully supplied with blood.

Muscles are at rest neutral or slightly alkaline in reaction, and eonsist chemically by weight of three-fourths water and one-fourth nitrogenoms and non-nitrogenous matters and salts. The most important nitrogemons element is the coagulated substance which becomes in dead musele myonim, which is fomb in moch smaller quantities in infants than in alults. Among the non-nitrogenons matters, paralactic or sareolatic aed may he mentioned, white the salts are principally the alkaline compounds found most abumdantly in the blood, these salts and other extractive matters being much more plentiful in infant than in adnlt life.

Funcrion of Voluntamy Musches.-The chameteristic physiological property of muscle is its eontractility, by virtne of which all its arts are performed. The musenlar system in infaney is very poorly eleveloped, so that during childhood and youth the increase, both relative and absolute, is emomons. In its elongated condition of rest, musele is still muler a slight degree of tension (musenlar toms, or muscular tonicity), and under the intuence of appropriate electrical or nervons stimulas it becomes shorter and thicker and its extremities are approximated. With inereased stimulation the eorresponding contraction will be fornd to inerease, and finally will diminish until contraetion ceases entirely throngh the muscle being fatigued from repated stimulation. The more rapid the contration the more quiekly does the fatigne manifest itself' and the longer is the period of rest required to recuperate its full power. As might also be expeeted, a musele
will beco contracts force suff exerted by of the ${ }^{10}$ hand, this section of The vibm scope or n biceples, or

During from a co sct free. strength, exhibited ballet-dan mueh, it ever, is no as Parke

Musco resents but the entive as it is co digestion, calorie wor bodily tem membered the eireulat inal chergy function did blowel and in amount, souree be d when it lif moved mul

It has the amount fifty pound thousand ff sand four 1 (two thons: animal tem Coree (two
will become fatigued much sooner when it does work than when it simply contracts without doing work. The muscles in contracting must exert a force sufficient to $c r^{-}$rate the opposing museles, must overcome the force exerted by the tomicivg of the antagonizing museles, and must lift the weight of the portion of the limb to which they are inserted. When, on the other haud, this force, known as s.atagonistic force, is withdrawn by paralysis or section of the tendons, undue action is at anee manifested in the opponents. The vibrations of musenlar contraction caa be distinctly heard if the stethoscope or myophone be applied over a powe:fully-contracting musele, as the bieceps, or the heart during its first sound.

During contraction the reaction of the museles becomes distinetly acid, from a considerable amonnt of carbonic or lactie or sarcolactic acid being set free. With use the muscles inerase in size, in firmness or tone, and in strength, and respond more quiekly to stimuli, good examples of which are exhibited in the bulky biceps of the blacksmith and the colossal calf of the ballet-dancer. When a single musele or a group of museles is exercised too much, it will, after increasing greatly in size, begin to waste. This, however, is not the case when all the museles of the body are exercised, probably, as Jarke suggests, because no one muscle can then be over-exercised.

Muscular Work.-The work performed by musenar contraction represents but a fractional part-abont one-ninth, or over ten per cent.-of the entire work done in the body; the nervons energy, or internal work, as it is called,-the force required to regulate the varions processes of digestion, assimilation, and secretion, for intellectual pursuits, ete., and the caloric work, or the foree required in the production of heat to maintain the bodily temperature,-constituting the larger proportion. It must be remembered that the heat-mits employed in the internal work of regulating the cirenlation and perspiration are only temporarily converted into meehanical energy, the latter being almost entirely reconverted into heat by the function developed by various ohstructions offered to the movement of the bloxl and respiratory organs. However expended, or however it may vary in amount, the fore is the same, and its amount may ie estimated and its smure be discovered. "The work done by a muscle in a given contraction, when it lifts a weight vertically against gravity, is measured by the weight moved multiplied by the distance throngh which it is moved." ${ }^{1}$

It has been found, from calenlations made by different observers, that the amount of foree expended daily by an adult weighing one humdred and fifty pounds in the performance of these three forms of work is abont three thousand four hundred foot-tons,-or a foree required to raise three thousund four hundred tons one foot in height,-the greater amount of which (two thousand eight hundred and forty) is employed in maintaining the animal temperature, the remainder leing distributed between the internal force (two humdred and sixty) and muscular activity (three hundred).

[^163]Vol. IV. -17

Estimates made upon the actual lalkor expended in performing certain mannal acts by men of the same weight, such as eight hours' pile-driving, turning a wrend, carrying a peddler's pack, paving, etce, demonstrute the same fact. From estimates of this charaeter, and considering that the type of the most healthy life is that of a man engaged at moderate labor in the open air, at which work he will probably average between two humdred and fifty and three humdred and fifty foot-tons, Prof. Parkes has conduded that a healthy adult shoull bear without the risk of over-fatigue what wond be equivalene to a walk of nine miles, from which must be deducted the exertion used in ordinary business pursuits.

The sonree of this force or cuergy must be songht in the molenalar life or combustion going on through the entire economy. In every netion of the human Iody,--whenever we make a movement, draw a breath, chauge a musele of expression, or conceive a passing fancy,-molecular death has ocenrred, and a puantity of potential energy (foree) has been liberated. This force, having previonsly entered the body in a latent state as food, was stored by means of the blood in the cellular strostures awaiting the demand for its ignition with the oxygen cirenlating in the blood. These disintegrated cellular elements, removed by the blool to be eliminated from the system, are replaced by new active cells, and thas the mubroken circle of physiological phenomema-latent potential energy, motion or activity, celldestruction, cell disintegration and climination, eell-renewal, more latent force, and so the same succession of events-is maintained, and at every revolution vital, ative (kinctic) force develops. This, in a word, constitutes "life;" and upon the eelerity and thoronghness with which these processes are reprated-upon the "newness," as Maclaren has expressol it, of the individual cells-will depend the health and strength of the individual.

Monlon and Heat.-This foree, then, which is the result of the nxygemation, death, or burning up of the cellular elements of the borly, suggests at once the relationship which exists between heat and motion, the correlation existing between them, and the consersion of one into the other. Coneeived by Sadi-Camot, clearly formulated by R. Mayer, brilliantly demonstrated by Jomle, the theory of the equivalence of forees may now be said to be admitted by all physicists, and the mechanical equivalent of heat be considered as 425 .

As befiore stated, newty sixty per cent. of the work performed in the body is employed in the production of heat or in musenlar exercise, and we shall now see that probably three-fourths of the heat developed is produced in the muscles at the moment of musenlar contraction. Daily observation and special experiments teach us that the whole body is heated by muscular exereise, and Davy fomul that after a walk in the open air, the temperature of the surrounding atmosphere being $40^{\circ} \mathrm{F}$., the temperature of the urine was devated one degree, 一from 100° to $101^{\circ} \mathrm{F}$. This development of heat by muscular contraction is also weli seen under certain
pathologi derlich, t ature can

The
Instion, sutatched by Lavois visw of 11 of the the the chemi

Natur inter heat of which the varion mally mac and oxyg museles a possibly 1 aund loodily value and

To asc motion inc be mans heat devel outside th were as 11 while the sumed, cor the same p sclf. Fro arcurate es formed.

Accord
" If, th of fatt, 490 ble of liftin will be de calculated tons." Th furce was
pathological conditions,-for example, in tetams rising, aceording to W'underlich, to the extreme height of $112.5^{\circ} \mathrm{F}^{\circ}$, although this extreme temperature om hardly be attributed entively to museniar action.

The theory of the close relationship between calorification and combustion, poetimally expressed by the philosophers of antiquity as the fire smatched from heaven, the flame of Promethens, and deseribed so acemately by Lavoisier more than a century ago, remains sulstantially the acepted siow of moklern times, the only modifications consistmg in the implieation of the theory of caloric, and in considering the lungs not alone the seat of the chemical interchange.

Nanmal philosophy finnishes numerous examples of motion converted inter heat by friction, ete, and also of the conversion of licat into motion, of which the stean-engine is a practical example. In the haman emonomy, the varions systems, but particularly the muscular, may be regarded as so many machines for converting the potential mengy derived from the forml anl oxygen into mechanical force, with this exeeption, however, that the musdes are more economical in their action than the finest engine conld possibly be. Food and oxygen are taken into the system, potential energy and bodily temperature are produced, and it remains to estimate the heatvalue and force-value of the different principles of foorl.

To aseertain the heat-mits, and to deduce the fore-value or units of motion trom these, Favre and Silberman first, and heer Prof. Frankland be mons of the calorimeter, determined by experiment the amonnt of leat developed by the combustion of different artides of foorl wit. in and outside the boly. It was fomux that the fatty and carbolydrate foods were as thoroughly burned in the borly as without, though more slowly, while the nitrogenous (allominons) substances were but imperfectly consumed, corresponding exactly with what oceurs within the system. Upon the same principle lanke performed his admirable experiments upon himself. From these and the experiments of Vierordt and Voit a suffieently aremate estimate of the force-value of the different elements of food may be formed.

According to the redued table oŕ Prof. Frankland as given by Ralfe,-

$$
\begin{array}{ll}
15 \text { grains of dry ulbumen (flesby matter) } & =13,851 \text { foot-pounds } \\
& =27,716 \\
& =2 \\
15 \text { grains of fat of heef' } & =11,720
\end{array}
$$

"If, therefore," says Ralfe, " 1800 grains of dry albumen, 1350 grains of fat, 4900 grains of starch, be daily consumed, an amount of foree capable of lifting $7,910,045$ ponnds to the height of one foot, or 3530 foot-tons, will be derived from the food; a result elosely corresponding with the ralconlated estimate of the total work done in the body,-viz., 3400 foottoms." The former popular fallacy that the principal source of muscular force was from the combustion of the aibuminous, fleshy principle has
lappily been dispelled, and the relative value of albumen, fats, and stareheri is appreciated.

It will be recollected that the strongest men are not always meat-eaters, and that the rhinoseros nurd the clephant, amimals noted for their strength, are strictly vegetarians. Indect, the opinion has ' in expressed by a goont anthonity that different monenlar qualities are developed by flesh and fartimaceons food, the leopard and the deer Ising given among animals as illustrations: the leopard with the quick action engendered by fleshy fool has the advantage of the deer, but the latter with the slow force developed by its larinareons diet em ontstrip, the leopard in fair chase.

While the limits of this article will not permit of any discussion of gencral museular movements, involving necessarily a detailed description of the museles and genemal anatomical structures of the joints and the thorongh consideration of animal mechanies, a short acconnt of how the ordinary movements are meomplished would seem an appropriate introduction to a description of the varieties of exereises employed in physiral culture. The skeletal museles may be regarded for the most purt as so many sonrees of power arranged to act upon the bones and cartilages as levers. The three forms of levers recognized in ordinary mechanies, from the relative position of the power, the weight to be moved, and the axis of motion or fulerum, are all represented in the human cconoliy, examples of the first kind being rare, and those of the third kind being more common than the second.

This preponderanee of the thirl class of levers is probably due to the fact that the movements of the body are chiefly direeted to moving comparatively light weights through a great distanee, or through a short distance with grat preeision, rather than to moving heavy weights through a short space. A familiar example of the first order, where the power is at one end, the weight at the other, and the fulermm in the middle, ocelus when the body is raised from the stooping position by the aetion of the hamstring museles attached to the tubera ischii. The second order, where the power is at one end, the fulorm at the other, and the weight in the middle, is illustrated in the depression of the lower jaw in opening the month, the temporals and masseters representing the weight. The thirel ord vhere the fulcrum is at one end, the weight at the other, and the powe. in the middle, is best represented by the action of the biecps muscle upon the forearm.

All these orders g_{2}^{2} levers may be beantifilly illustrated in the different movements of the foot,- the first where the heel is raised and the toe is tapped uron the floor, the heel representing the power, the ankle-joint the fulerum, and the toe the weight ; the second where the body is raised upon the toes, the ground representing the fulermm, and the bor? the weight; and the third where the foot is flexed and elevates a weight resting upon the toes, the ankle being again the fulermm.

There are few movements of the body in which one muscle only is
concerned. nll the mo with refer the power

Anim upon the force as of the exe To appree which the of the enti tractions the mainte time till action.
perfectly a a dead borl from the v of the tent hip-joints, centre of a for the enti heald and t tenth dorsa prosition is the aren of aren, the ter action.

In main the lower ex ity remains little more t neek are m action of the transversalis spine, inter: acting as be mistoid, rect colli. scalem thyroil, ome position later mastoid, tray rectus capitis

The line dency of the
concerned. In the majority of cases several muscles act together, nenrly nll the movements are co-ordinate, and generally the power is so disposed with reference to the finlermon that in nepuiring a grenter range of motion the power is diminished.

Animal, Mechanics. - Deery movement of the berly depends as meh upn the proper co-ordimation of the muscles for its neenracy, grace, and forre as upon the strength of their contraction ; and particulndy is this true of the exceedingly complex movements of walking, ruming, jumping, ete. To mprecinte these best, some knowlege mist ine had of the manner in which the upright position is maintained. In the erect posture the weight of the entire body is borne by the plantar arches, by a series of musenlar contractions of the lower extremities, tronk, and neek, having for their object the maintenance of the booly in such a position that the line of gravitntion tial reithin the area of the feet. That this is the result of muscular artior. - me time denied, is proved by the facts that a person standing perfectly at rest in a balanced position falls when unconscions, and that a dead borly cannot be balaneed upon its feet. The line of gravity passes from the vertex of the head in front of the occipital articenlation, in fromt of the tenth dowal vertebra, behind a line joining the centres of the two hij-joints, a little behind the knee-joints, to reach the earth in fromt of the centre of a line drawn between the two aukle-joints. The centre of gravity for the entire broly is located at the end of the sacrim, and for the combined head and tronk about the level of the ensiform cartilage in front of the tenth dorsal vertebra. The somewhat unstable equilibrium of the erect prosition is mantained without much difficulty by keeping this line within the area of the basis of support; otherwise, when the line falls outside this aren, the tendency of the body is to fall, muless overcome by strong musentar action.

In maintaining the body in this erect position almost all the museles of the lower extremity, trunk, and week are concemed. While the line of gravity remains within the area of the feet, the slight musenlar effort required is little more than the tonicity contained in all living muscle. The head and neck are maintained from falling forward or backward by the combined action of the trapezius, levator anguli scapule, splenins, cervicalis ascendens, trausversalis colli, trachelo-mastoid, spinalis colli, complexus, multifidus spinte, interspinales, rectus capitis posticus minor, and obliquus superior, acting as hackward flexors against the platysma myoides, sterno-cleidomistoid, rectus capitis anticus major, rectus capitis anticus minor, longus colli. satalems anticus medius and posticus, digastric, sterno-hyoid, sternothyroil, omo-hyoid, mylo-hyoid, and genio-hyoid as forward flexors; the position laterally being maintained by the platysma myoides, sterno-cleidomastoid, trapezins, splenius, trachelo-mastoid, complexus, the three scaleni, rectus capitis posticus major, intertmusversalis, and rectus lateralis.

The line of gravity falling in front of the occipital condyles, the tendency of the head is to fall forward, demanding naturally greater action of
all the posterior group of museles and ligaments (particularly the ligamentum nuche), which of neeessity are better developed.

The tronk is maintained from falling backward by the aetion of the rectus abdominis, pyramidalis, obliquos extermes, obliquus internus, aud psoas magnus and parvus, assisted by the pectoralis major and minor, serratus magnus, transversalis, peetineus, adductor longns, adductor brevis, rectus femoris, sartorius, and all those muscles which pass from the pelvis to the internal condyle and shaft of the femur ; and from falling forward by the aetion of the glutei (magnus, medius, and minor), latissimus dorsi, serratus posticus inferior, and all the larger dorsal muscles, assisted by the scapular muscles,-rhomboidei, infericr portion of the trapezins, etc., which fix the scapule backward and approximate them to the skeleton. It is maintained laterally by the obliqums externus, obliques internus and transversalis, quadratus lumborum, longissimus dorsi, and sacro-lumbalis.

The rigidity of the body upon the thighs is secured by the contraction of the psoas magnus, iliacus, sartorius, peetineus, three addnetors, gracilis, gluteus minimus, obturator externus, tensor vagine femoris, and rectus femoris, as flexors acting against the gluteus maximus and medius, pyriformis, obturator interuus, gemelli superior and inferior, quadratus femoris, long head of biceps, posterior portion of adductor magnus, semi-tendinosus, and semi-membranosus acting as extensors; the position being secured laterally by the three glutei, tensor vagine femoris, pyriformis, gemelli, sartorius, and obturator internus, acting as abductors against the three adductors, psoas magnus, iliacns, pectineus, quadratus femoris, obtmrator externus, gracilis, semi-tendinosus, semi-membranosus, and long head of biceps acting as adductors.

The rigidity of the legs upon the thighs is maintained by the bieeps, semi-tendinosus, semi-membranosus, gracilis, sartorius, gastrocnemius, plantaris, and poplitens acting as flexors, and the quadriceps femoris (rectus femoris, vastus externus, and crurens) acting as extensors.

The relation of the foot at an angle of ninety degrees to the leg is maintained by the gastrocnemins, solens, plantaris, and peroneus longus, as extensors ; the tibialis anticns, peronens tertius, and extensor longns digitorum, as flexors; the tibialis anticus, tibialis posticus, and flexor longus digitorum, as adductors ; and the three peronci (peroneus longus, brevis, and tertius), as abducters; the arch of the foot being supported principally by the peroneus longus, the interosseous ligaments (chiefly the inferior calcaneo-scaphoid and ralcaneo-cuboid), and the plantar fascia.
"It may be instructive here to review briefly the anatomical construction and mechanism of the natural foot. The foot includes all that portion of the inferior extremity below the tibio-tarsal articulation, consisting of the tarsns, metatarsus, and phalanges, and in the adult has the form of two arehes, an antero-posterior and a transverse, each with its convexity or dorsal surface above and its concavity or plantar surface below. The antero-posterior, the most important, is supported upon two piers or pillars,
and has i further d line draw inner por onter, anc parts of t joint, and The ante imner met clastic, sc The head and its pc os calcis, respects fi is strengt canco-scal portion of of the ant cuboid, at caneo-cub arches ar museles, 1 the inner antero-pos ent portic It affords The weigl the arch, posterior tips of the the borly through tl natural tr weight ul actions of flexion th anticns, p by the act both the e the foot is are each \mathbf{r} Gros Clar the foot, it tar arch, on the ev
nud has its summit at the astragalus and ankle-joint. This has been still further divided into two arches, an onier and an inner, by an imaginary line drawn posteriorly between the third and fourth metatarsal bones; the inuer portion of the antero-posterior arch is much more curved than the outer, and forms the instep. The posterior pier, formed by the posterior parts of the astragalus and os calcis, is shorter, more curved, has but one joint, and is more solid, receiving the greater part of the weight of the body. The anterior pier, composed of the scaphoid, three eunciform, and three inuer metatarsal bones, is longer, less curved, has many joints, and is more elastic, serving to diminish th- force of shocks transmitted to the arch. The head of the astragalus fitting into the concave surface of the scaphoid, and its postero-inferior surface articulating with the anterior surfice of the os calcis, it may be regarded as the keystone, thongh differing in many respects from such bodies as usually employed. The weak part of the arech is strengthened by the interosseous ligaments, particularly the inferior cal-caneo-scaphoid, which supports it from below, while those beneath the inner portion of the plantar fascia add additional strength. The outer portion of the antero-posterior areh consists of the outer portion of the os calcis, the cuboid, and the two outer metatarsal bones. It is strengthened by the cal-caneo-cuboid ligaments and the outer portion of the plantar fascia. Both arches are still further maintained by the tibialis posticus and peronei muscles, particularly the peroneus longus. The transverse areh, formed in the inner and outer sides by the bones entering into the inner and outer autero-posterior arches respectively, varies in degree of curvature in different portions of the foot, being most marked across the cuneiform boncs. It affords protection to the soft parts of the sole, and adds to the elasticity. The weight of the body is received by the astragalus as the highest part of the arch, and transmitted to the ground through the two piers of the anteroposterior arches. The foot in extension rests normally upon the heel, the tips of the metatarsal bones, and the outer side of the sole, the weight of the body in standing, walking, rumning, or dancing being transmitted throngh the heel, the ball of the great toe, and that of the little toe,-the natural tripod of the foot,-in the order named. Thus the direction of the weight upon the arches is constantly changing, and it is only through the actions of certain museles that the normal arches are conserved. Thus, in flexion the antero-posterior arch is increased by the action of the tibialis anticus, peroneus tertius, and extensor longus digitorum ; and in extension, by the action of the gastrocnemius, soleus, plantaris, and peroneus longus, both the enrves are diminished and the foot is flattened. Then, also, when the foot is markedly flexed, the foot is adducted, in which josition the arches are cach respectively increased and diminished. In this connection Mr. Le Gros Clark says, 'In reviewing the actions of the varions museles around the foot, it is obvions that their attachment is designed to preserve the plantar areh, and that such healthy condition must depend in a great measure on the evenly-balanced action of those museles apon their several attach-
ments. Thus, the peronei and tihial museles antagonize each other, and the expanded insertion of two of them into the tarsal bones is very instrumental in preserving the trunsverse as well as the antero-posterior arch.' "

Loconotion.-It is necessary here to refer briefly to the methods employed in the study of animal locomotion, in order to obtain a proper coneeption of this important sulject. While the work of the Weber brothers and the carlier studies by means of the graphic methol of MM. Marey, Carlet, and Mathias Duval were excellent so far as they extended, they gave but an imp fect idea of 't. complieated meehanism of animal locomotion. To remedy the defeets of the graphic method, Marey first and Demeny later invoked the aid of photography, but even the results thus; obtained give but meagre information of the lateral sway. The earlier authors employed the zoctrop-an ingenions optical instrument invented by Platean, which presents to the eye a series of successive images so coordinated by rapid revolution as to bring before the eye all the phases of a movement-to overcome these defects; and Marey, well aware that his photographs gave no information of the direction or extent of the lateral sway, endeavored to remedy this by an ingenious application of the stereoscope to his photographic wheel. This addition to the pietures gave the impression of an undulating white band extending through space, the midulations being in three directions, forward, vertically, and laterally, hut did not admit of detailed stridy of the curves.

It remained for Mr. Eadweard Muybridge, of Philadelphia, so to utilize photography and clectricity as to produce results almost, if not entirely, perfeet. These possess the decided advautage over all similar efforts of admitting of a detailed study not only of the curves, but also of the forward, vertical, and lateral movements of the various points of the body.

Notwithstanding the various slight sources of error in Mr. Muybridge's methods, pointed out by Deremm, these photograpas have contributed more than anything else in modern times to facilitate the study of animal motion and locomotion. These photographs, when placed in the ingenious instrument, invented by Mr. Anschuetz, known as the tachyseope, -whieh consists of a series of prictures so placed on a cireular glass plate revolving rapidly on its axis that whenever a picture appears before the aye of the observer it is lit up by an electric spark,-produce a bit of life with a degree of truth and aceuracy that are absolutely bewildering. Take, for example, the hurdle jump of a race-horse, which oceupies seventy-two onchundredths of a second, or the slower movement of a man on a galloping horse: the illusion is perfect. One sces not only the legs move according to the gait, but the dust rise, the horse's mane and tail fly, the nostrils dilate, the rider urge his horse, pull the curb, and move back his leg to apply the spur.

Mr. Muybridge's method consists in making simultaneons serial photo-

[^164]graphs o right ans arecurate taken all which th direction study of ings fron of the w through ti

Wal
forward, In walkin is support action of of the op obliquely fle ${ }^{\cdots-\cdots}$ 10
left wot, thigh, leg, weight of museles, a flexed by the gluten tens; to a like by the the thigh : contraction of the rig leugth of heel, the si with the g

On thi of the ext lateral mu lateral eur action of a

With : again read and the le movement dhing swin iliacus, assi rator exter
graphs of a moving man or animal at from two to four points of view at right angles with one another. While the serial method gives slightly less accurate results regarding the rise and fall and onward movement of a limb, taken all in all it more than eompensates for the slightly-varying angle at which the photographs are taken, by permitting the determination of the direction and amount of the lateral sway, and gives an opportumity for the study of a part which a wheel photograph could not furnish. The drawings from Dereum exhibit the squares and display the scientific character of the work, but in the other original drawings these have he n omitted, though they are none the less correetly drawn.

Walking.-Walking has been deseribed as heing "a constant falling forward, where the weight of the body is received by each leg alternately." In walking there is in each step a moment when the weight of the trunk is supported upon the foot of one extremity (say the left) by the combined action of the flexors and extensors of the extremity and the abductors of the opposite side (see p. 261), while the other (the right) is inclined obliquely behind, the heel raised by the action of the gastrocnemius, solens, fle..- - ongus pollicis, flexor longus digitorum, tibialis posticus, and peroneus lo and the toe resting upon the ground. The body balanced upon the left wot, ly the combined ution of the flexors and extensors of the hip, thigh, leg, and foot, and the abduntors of the right side of the body, the weight of the body is thrown priacipally upon the glutei, inferior dorsal museles, and abduetors of the right side of the trumk. The right thigh is flexed by the psoas magnus, iliacus, biceps, ghateus medius, anterior part of the gluteus magnus, gracilis, sutorius, gastroenemins, plantaris, and popliteus; to avoid contact with the gromel the leg is swong forward pendulumlike hy the relaxation of the flexors, and the contraction of the extensors of the thigh and of the knee, principally the quadrieeps extensor femoris. This contraction of the extensors of the knee makes the pendulum-like motion of the right leg, and contributes to the forward motion in walking, the length of the swing varying with the length of the limb, and the right heel, the side of the foot, and the ball of the great toe are brought in contact with the ground.

On this right toe as a fulcrum the body is moved forward by the action of the extensors about the hip, particularly the glutens maximus, and the lateral museles of the trunk (see p. 261), deseribing both a vertical and a lateral curve, the right leg becoming straight and rigid by the combined action of all the museles of tho lower extremity.

With another forward movement of the pelvis the starting-point is again reached, the body supported vertically upon the right foot as before, and the left foot directed in an oblique position behind. This forward movement of the right foot carries the pelvis beyond the vertical, and in so doing swings the left leg forward by the action of the psoas magnus and iliacus, assisted by the sartorius, pectinens, gracilis, gluteus minimus, obturator externus, tensor vagine femoris, and rectus femoris, matil its heel, side
of sole, and ball of great toe in turn form the fulerum on which the pelvis moves, and the right leg is again swing fierward. In this mamer the head and pelvis deseribe a series of concentric curves with their convexities upward. (See Phototo. I.)

This regular and alternate movement of the support of the body from one foot to the other in walking necessitates a lateral displacement of the line of gravity, so that the centre of gravitation is constantly deseribing a consecutive series of horizontal (lateral) curves in addition to the vertical ones already described. This is particularly noticeable in the gait of a person walking slowly away from the observer.

Fig. 2 п.

a, rise and fall and onward movement of head.
Fig. $2 b$.

b, lateral sway of head.
Fig. 2 c.

c, rise and fall and forward movement of right hip.
Fig. $2 d$

d. lateral sway of hlp.

These curves are best understood by observing (see Fig. 2) the line a, which represents the rise and fall and onward movement of the white button in the cap, worn by the subject, and the line b, which represents the direction and amount of the lateral sway of the same, while the line e represents the

rise and Which is plitude increaser hats been the pubi
being m interest represent forward nal mal 'This coll number bev Dere it is be: begins, e, ing wow of which the great stant the transferre tore. The up to its sult of th of the for pelvis; t pact of th the eurve complex three prin tinguishal movement third, a fo latter beir ment forw whole. T are those foot theref other thin the line of "A fo served in rise oceurr previous te We notice
rise and fall of the right anterior superior spinous process of the ilinm, which is observed to be similar in general course to the line a, but the amplitude of the wave is greatly increased. The spinous process has been selected in preference to the pulis employed by Marey, as lxing more definite. Of greater interest still is the line e, which represents the rise and fall and forward movement of the external malleelus of the left foot. This curve really consists of a mumber of elements, as elaborated ly Deremm, in whose own words it is best given: "The enrve begins, e, by the malleolns sweeping upward on an are the madins of which centres in the ball of the great toe. At the next instant the centre of rotation is transferred to the tip of the great toe. The balance of the curve up to its highest point is the result of the flexion of the leg and of the forward movement of the pelvis; thence to the final impact of the heel upon the ground the curve is the resultant of a complex movement, in which three principal elements are distinguishable: first, a pendulum movement; sceond, a fall ; and, third, a forward movement, the latter being due to the movement forward of the body as a whole. The first two elements are those of a cyeloid, and the foot therefore falls to the ground, other things being equal, along the line of swiftest descent.
" A fourth element is observed in the slight secondary rise occurring in the eurve just previous to its termination. The significance of this rise is as follows. We notice that the heel of the passive leg in swinging forward in its
cyeloid-like deseent does not immediately strike the gromnd, but that just previous to the impact it again makes a slight ascent. This is shown not only in the curve, but also in all the phates illustrating the normal walk."

From a carefinl study also of the lateral sway of the foot, f, its extent was found to be much less than was expeeted, and, being the least possible with the working of the limb, shows a conservation of energy. It is thus found in the normal walk, taking all the trajectories together, that the three movements forward, laterally, and vertically are correlated, and that the greatest economy of foree and time results when the secondary (lateral and vertical) movements are reduced to a minimum. This conelusion is still further strengthened by observing the advent of fatigne in ordiuary marehing and when partienlar methods of marching, demanding increased vertical or lateral movements, are attempted. ${ }^{1}$

In slow walking there is a period when both feet are on the gromad together, a ciremmstance which does not exist in fast walking, in which one foot leaves the ground the moment the other tonches it, whieh aceonnts for the fact that slow walking fatignes more quickly than rapid walking. The length of the step depends upon the length of the swinging leg, though this may be diminished or increased by direct museular effort, as when soldiers of unequal height keep step,-a mode of mareling obviously fatigning and involving an unnecessuly expenditure of energy.

Running.-The slort interval described in slow walking when both feet touch the earth at the same time is in running replaced by an interval when both feet are off the ground at the same monent. To prevent the body from falling during this interval, a quick short leap, or kind of jerk, is given to the borly by quickly flexing the active leg at the commencement of the step and foreibly extending it. The duration of the pressure of the feet upon the ground is less than in walking, this being proportioned to the energy with which the fect tread. These two clements which characterize rumning-foree and brevity of pressure-increase gencrai y with the speed, as does also their frequeney, though the extent of space travelled may depend upon the extent of each fall rather than upon their number, ats in some forms of rumning.

From the vertical trajectories furnished by the graphic method of Marey, he believed that the suspension of the boly at each impulse of the feet was not effeeted by a quick leap, as is gencrally supposed. These show that the body executes each of its vertical elevations during the downward pressure of the foot, and begins to rise as the foot touches the ground, "attains its maximum elevation at the midale of the pressure of the foot, and begins to deseend again in order to reach its minimum at the moment when one foot has just risen, and before the other has reached the ground." From the relation of the vertieal oseillations to the pressure of the feet, he plainly shows that the time of suspension does net depend on the faet that

[^165]

the bedy, withdenw at the mon IlI., IR!n

Fig. 3 malleolus
course to slowing th, walking. it displays The slight this rise, alws:s pres :rise, in the

The mo the action 1

Rowine all the mus the lower a the tubera The handle componind secondly the forward to : The second the retractic which, by a feathering is forward swi by the psot vagine fem plished by t the triceps a boat is prop perius, latiss mulis major, forty-five de muscles, and chialis antie
the lecly, projeeted into the air, has left the gromed, but that the legs have withdrawn from the ground by the effect of their flexion, which takes place at the moment when the loxly is at its greatest elevation. (See Photos. II, and Ill., Ruming.)

Fig. 3 represents the rise and fall and onward movement of the right malleolus of the first ruming hoy. The curve is similar in its general

Fif, 3.

enurse to the line c in walking, exept that its amplitude is much less, showing that the upward movement is more quickly acemplishod than in walking. Its comparative height is also greater. Compared with line c, it displays dearly the difference between these two modes of progression. The slight rise just before the eompletion of the movement has been added: this rise, on account of its great rapidity, is lost in romming; but it is always present in all slower movements, as in walking. It is fomed, like:iise, in the motion of the horse.

The museles eoncerned in ruming are those deseribed muder Walking, the action being more severe and extensive.

Rowng.-Rowing is one of those exercises which call into play almost all the museles of the body, those of the trmak, as well as those of both the lower and the upper extromities. In sitting npright the hody rests upon the tubera isehii, upon which, as pivots, it swings backward and forward. The haudle of the oar being grasped by both hands, the first action is a componud one, involving first the movement of the trink or boly, and serondly that of the entire upper extremity on the trink : the boxly is swong forward to an angle of forty-five degrees, and the arms are fully extended. The second action consists in the recovery of the trouk simultaneonsly with the retraction of the shoulder and the flexion of the arm, supplementary to which, by a rapid extension of the wrist by the three extensors of the thumb, feathering is accomplished. Simultaneonsly with the commencement of the forward swing the abdoninal museles contract, and the body is drawn forward by the psoas and iliac museles, supplemented by the sartorins and tensor vagime femoris. The extension of the arms to their fullest length is accomplished by the combined action of the serratns magnus and peetoralis minor, the triceps and anconens. The oar is now lowered into the water and the boat is propelled by the retraction of the scapule or shoulders by the traperius, latissimus dorsi, and rhomboidei, aided in some degree by the peetoralis major, the drawing backward of the entire trunk from the angle of forty-five degrees to the upright (ninety degrees) by the powerful glutei muscles, and the flexion of the arm at the elbow by the triceps and the brachialis anticus. It will be observed in this deseription that but little action
is attributerl to the recetor spine and oflere muscles of the back：these appar simply to monler the spinal columin inflexible，as their greatest muge of atian camot exereal from one to two inders．

The important action of the masides of the lawer extremity as adju－ vants in gonel rowing is exhibited in the fillowing mamer．In the forward swing the extensor gradriops and logg flexurs are slighty relased and the knees lexud a little watward．Then foshows the contraction of the biepme semi－tombinsins，semi－membransus，gracilis，and satorins，and，later，at tho commemement of the revocers，in conjundion with the glutei，first the guadrineps and then all the mustles of the thigh and leye are powerfally
 viding a fuldrom mon which the powerfing ghteri（an act．A considerabla munker of small museles of minor importance are also contimumsty broght into phay．（Sow Ploto．IV．）From this brict sketh it will beobserveel that the maseles of the hips，of the thighs and legs，of the hombar rexion，of the uppur ani donsal region of the chest，of the arm and ferearm，and of the interior pertoral rugion，ato all exercised in rowing，their impertane lxing in the owder named．

The first tajeretory of rowing（Fig．4）represents the risc and tatl of the top of the hand．It commeneme just as the lasly is thrown farthest forward，

Fin． 4.

Rise amid fatl of hem th rowhys．
and gradually rises until in mumber five，when the arms are filly extended and the greatest fine is being exertert，the highest point is readhed．It is lowered slightly during the mext there figures，when the final ellowt is made，
 ment，reaching the how initatory peint again．

Kばン－mat fill of haml in rowing．
The seomen tragetory of rowing（Fig．5）represents the rise and fath of the first kumble on the left hand．
＇This correpponls in some respets to the former，but the amplitule of the carve is greater，and in the seeond portion of the curve the same down－

ward cur thought t ment is a Swas
must serv aul aequi water, an nsually r dfforts of are imme the movel are precis horizontal surfaens of the best a

The p with the shoulders levator"sea The ul and drawn idly extenc resembling movement which, as filmished I In the flexion, des ellipses, wl and, if a s verted into The alt the angles and angme faces, and

Flexion made to rc diminish th contributins During sides of the partion of slightly rou
ward curve is observed, due to the lowering of the body. This was at first thought to be due to the position of the hand in feathering; but this movemont is accomplished during the last two and first two figures.

Swrmang.-Swimming is an act umnatural to man, to learn which he must serve a longer or shorter apprenticeship to a new form of locomotion auld acquire a new order of movements. The human body is lighter than water, and the difficulty first experienced in keeping the body afloat is nsually referable to nervous agitation, and to spasmodic and ill-directed efforts of the extremities. Most quadrupeds can swim the first time they are immersed, not only because they are lighter than water, but also because the movements of locomotion employed ly them in their horizontal position are precisely those required in swimming. Man, likewise, must assume the horizontal position upon the water, either upon the dorsal, vertical, or lateral surfaens of the body. In this position the extremities can be employed to the best advantage, and the body may be propelled in any direction.

The position most commonly employed in swimming is the prone one, with the vertical surface directed towards the water, and the head and shoulders and upper part of the back kept up by the trapezius, rhomboidei, levator seapulæ, serratus postiens superior et inferior, multifidus spinæ, ete.

The upper and lower extremities are simultancously and slowly flexed and drawn towards the body, after which they are simultaneously and rapilly extended and directed away from the body, these movements closely resembling those employed by the frog in swimming. These simultancous movements of the extremities describe a series of ellipses, an arrangement whiel, as pointed out by Pettigrew,' inereases markedly the area of support furnished by the moving parts.

In the ellipses the continnous lines represent extension, the dotted lines flexion, deseribing as the extremities are flexed and extended a series of ellipses, which as the boly advances are opened out and formed into loops, and, if a sufficiently high rate of speed be attainel, these loops are converted into waved lines, as in flying or walking.

The alternate flexion and extension of the limbs decrease and inerease the angles made by heir several parts with each other, thus diminishing and augmenting the degree of resistance experienced by the swimming surfaces, and enable the extremities to ehde and scize the water by turns.

Flexion is more slowly performed than extension, and the limbs are made to rotate in the direction of their length in such a mamer as to diminish the resistance during flexion and inerease it during extension, thus coutributing force to the propulsive effort.

During the extension of the arms the palms of the hands and the inner sides of the arms, directed downward, assist in booying up the anterior prortion of the body. Towards the end of extension the hands are serewed slightly round, and the palms are pronated and directed ontward and back-

[^166]warl, assisting the posterior portions of the arms in the propulsion of the body. During flexion the palms of the hands are direeted ciownward, and at the elose of the movement they are slightly depressed, forcing the bexly upward, and giving to the head the bobbing or vertical wave-movement so often observed.

When the lower extremities are extended, the soles of the feet, the anterior surfaces of the legs, and the posterior surfaces of the thigh, directed outward and lackward, propel the body forward. This propulsive effort is increased by their becoming more or less straight, and by the greater rapidity: with which the extension is performed. The imer surfaces of the lower extremities act upon the water in sustaining the posterior par of the borly, assisted also by the slightly-inclined position of the body in the water in conjunction with the forward movement.

The flexion of the inferior extremities likewise is performed more slowly than the oprosite movement.

Several grave objections urged against the ordinary or old method have led to the adoption of new methorls. The prone position of the body upon the water exposes a large resisting surface; the extremities in the lateral position are applied at a disadvantage as propelling agents; but one-fourth of the ellipse is available during the propulsive effort, threc-fourths being lost, with inereasing friction ; and the simultaneons action of both extremities leads to dead-points. To overcome these objections seientifie swimmers have adopted the orerhand morement, the method employed by the Indians, in which first the arm and leg on one side of the body are moved, and then the arm and leg on the opposite side. The direet advantage of this mode of swimming consists in the body being thrown more or less on its side at each stroke, the body twisting and rolling in the direction of its length, thereby reducing the amonnt of frictic: experienced in forward motion. In the overhand movement the swimmer is enabled to throw his body forward on the water and employ his extremities in a nearly vertical instead of a horizontal plane, a position best calculated for developing their power and reducing friction. The length of the effective stroke is doubled, being equal to nenty half an ellipse ; the alternate operation of the sides not only contributes to continnity of motion, hut also prevents dead-points or halts, and reduces friction. For these reasons it is the most expeditions mathol of swimming yet discovered ; but it is so fatigning that it can be indulyed in only for short distances. The speed attained by man even by this methot contrasts very unfavorably with that of seals, and still more unfavorably with that of fishes, owing to the small hands and feet possessed by him, and to the awkward manner in which they must be applied as propellers.

For long distances an improvement on the overhand movement is what is known as the side-stroke. This consists in swimming upon the side of the body; one arm, say the left, advanced in a curve, deseribes the upper side of an ellipse, while the right arm and both legs by a powerful backward stroke propel the body forward. The extension of the lower
extromi away fi directed mathmer propuls man!ner ties are be altere moverne the ruer

It w hody ar accomple chronon:

Hig) off the this peri effort of being rai solvis, p

The louly, bu tremities standing iug a pea jump is the body carried a Fig. ternal m
extremities accomplishes a double movement. When extended or pushed away from the body, they include within them a fluid wedge with the apex directed forward, and when fully extended they are converged in such a maner as to foree the borly away from the welge and so contribute to the propulsive movement. The upper arm may also be extended in such a mamer as to act as a cut-water, being alvanced as the other three extremitiss are flexed, and cice versa. Either side may be employed, or they may be altermated. This plan reduces the amome of resistance to the forward movement, secures in grent measure continnity of movement, and conserves the energy and resourees of the swimmer to a pre-eminent degree.

It will be seen from the foregoing account that all the museles of the body are more or less exereised in swimming, but the forward motion is accomplished by the extreme foree of all the extensors alternately or syndhrononsly of the upper and lower extremities.

Higi Jumping,--The interval deseribed in running when both feet are off the ground at the same time is in leaping much prolonged, and during this period the body is propelled both forward and upward by a violent effort of the extensor museles (extensor quadriceps) of the thigh, the heels being raised by the contraction of the powerful calf muscles (gastroenemins, solens, plantaris, flexor longris, etc.).

The leap is usually preeeded by a short rme to give momentum to the body, but the upward movement is accomplished entirely by the lower extremities, as above described. In some forms of leaping, particularly the stauling high jump, much greater heights have been attained by employing a peculiar form of jumping copied after that of the cat. In this the jump is made sideways, the full force of both lower extremities is secured, the body is partially rotated during its flight, and the limbs drawn up are mariced aeross the bar together. (See Photo. V.)

Fig. 6 represents the rise and fall and onward movement of the external malleolus of the right foot in high jumping, Its general outline

Rise and fall and onward movement of right foot in high jumping.
resembles line c in walking, but the amplitude is much greater even than this, and it will be especially observed that in the first portion of the curve the rise is nore quickly accomplished than the descent. The lower curve terminates abruptly when the feet reach the ground together.

By continuing this exereise great skill will be attained, and the extensors will be wonderfully developed, so that a person can jump easily not only to an inereased height but also a considerable length, and land in any position desired. As an exhibition of skill the length of the run may be diminished, or the jump be repeated immediately. A good jumper is a VoL. IV.-18
practical exmmple of what may be aromplished by continued exerecise of certain museles; but the most important factor-the development of the chast and its contents-has been neglected, and very , "tem such persons suffer from consmption or heart-discase because the chest is constantly contracterd to fix the ribs. True gymastics are fommed n on an amatomical and physiological law,-that in every position or exereise the fill expansion of the thoman must be first considered, and the heart must not be over-stimulated. Harthelins says that in the Swedish system of gymastics every movement, from the above lan, may be looked upon as a respiration movement.

Vabieties of Exbretse- - Among the auly Greeks the five favorite excreises constituting the pentethlon-ruming, leaping, wrestling, hurliug the lanee, and casting the disens-were admizably adapted to develop the body with strength and vigur, and to confer the grace, celerity, and acematey of movement which were so muld coveted. These exereises were supple mented lyy games of ball, lifting and earrying weights, swimming, pugilism, and other manly and athletic sports, and revealed the recognition of the great principle of variety, there being no sudh potent cause of fatigne as monotonous repetition of the same act, whether physinal or mental.

The tendency of all forms of exercise is to develop some portion of the borly at the expense of the rest. In walking, rmoning, and rowing, undue emplorment is given to the museles of the tronk and the lower extremities. Indect, it is difficult to find a varioty of exereise that can be sufficienty repeated to exereise the muscles of the upper extremity so as to counterbalanee the exeressive development of the lower, or that calls ergually into action all the museles of the body. No system of physical chlucation can be complete muless it aims at the symmetrical development of the whole body.

To the matural varicties of games and exereses emploved by boys-base-hall, frot-ball, cricket, rowing, swimming-should be added systematic physieal instruction in schools and gymmasimes, directed particularly with a view to develop, the noglected and weak parts and to add to the symmetry of the whole.

The different varieties of exereises may be emmerated as follows: those exereising narly all the maseles of the boxly,-climbing, sparing, fencing, and swimming; those exoresing both the upor and the lowerextremitios, -foot-hall, rowing, shooting, temnis, rackets, lacrosse, and ricket; and those exereising chicfly the lower extremities,-rmaning, walking, riding, dancing, and leaping.

Effects of Exbrcise.-The diveet offect of exereise-which has already been deseribed as a death or borning up of the cellular (dements of the body-is an increased demand for oxygen to prodnce this combustion, which mast be supplied through the lungs, thereby producing a quiekened breathing. The respirations quicken, the pulmonary cireulation is aceelerated, the quantity of air inspired and of carbonic areide expired is marvellously increased. The inereased quantity of air inspired muder a variety of movements has been carefully investigated by Dr. Edward

Smith, ${ }^{1}$ with the following resalt : taking the amomen of air inspired in the recombent position as 1 , it increases on standing to 1.33 , on walking one mile per hour to 1.9 , on walking six miles per hour to 7 , on riding or trotting to 4.05 , and on swimming to 4.333 .

Not only are the respimatory efforts deepened with exercise, but the fromeney of the alternate acts of expansion and contraction of the chest is direetly increased. For example, the adult hemlthy average, being 1.1-18 per minute, would be inereased in walking rapidly to 25 , in rimuing to 36 , and in rowing at mang speed to over 40 respirations per minute. At the same time the amoint of carbonie acid eliminated is relatively lessened; thus, with twelve respirations per minnte it is 4.2 ; with twenty-four, 3.3 ; with forty-cight, 2.9,-the alsolute quantity, however, being increased.

To supply this inereased demand for oxygen, the speed with which the howed cireulates through the body must be aeeolemated. By a more rapid and torcible impulse of the heart, a larger quantity of blowl is sent through the longs and larger supplies of oxygen are taken in and carried to the ramions tissucs of the body. In other words, exercise mot only quickens the lreathing, but also increases the rapidity and foree of the heart's action. To make a similar comprason, Bryan Rohinson has shown that the pulse of a man in the recumbent position, being 64 to the minute, was increased to 78 during a slow walk, and still further inereased to 100 by walking a league aud a half in an hour, and rose as high as 140 to 150 after rmoning as rapilly as possible. It has also been shown by the experiments of (iny ${ }^{2}$ that the increase from 66 in a man lying down to 71 cm sitting up, and to 81 on standing, was entirel., dependent upon the quantity of muscular force put forth in maintaining the equilibrimm in cach of these pesitions. When men have gone through a groxl dieal of exertion and then are called upon to make a sudden effort, Park ${ }^{3}$ has known the pulse to become very small and yuick ($160-170$), but still retain its equability, and without any harm resulting. Something similar may he experienced, even by men in excellent condition, at the begiming of sudden or violent efferts, as in a foost- or boatrace, lout as soon as the reciprowal action between the heart and the lungs is reosestablished the individual is said to have aequired his "second wind," and may continue the effert to the point of great fatigne. As long as this reriprowal action between the heart and the langs is mantained, the interedange of oxyero and carbonic acid takes plave with suffieient rapidity ; but when this fails, the almerption of oxygen diminishes, carbonie acid areomulates in the blowel, proxlucing "breathlessness," or loss of wind," or, in other words, "blockage" hats oecorrect. This condition is produced by three agencies,iuterference with the passige of the blood throngh the langs, its acemmulation in the right anicle and ventriche, and the eirenlation of earbonic-acid-laden blond through the system. When exercise is regularly taken,

[^167]the arteries aceommolate themselves to the strong action of the heart, and a gradual improvement in the brathing-power oecons, with the establishment of the coneordant action between the haut and the blood-vesseds.

The phemomena of increased breathing-power and increased heartaction are not withont their beneficial influence mpon the other parts of the bonly, for exercise includes all the conditions requisite to increased bealith and strength. At the commenement of an exercise the contraction of tha voluntary muscles put into action compresses the blood-vessels and impels the venons blool actively towards the heart, which, thus stimulated, contracts vigoronsly and propels the blood in incrased quantity to the lings. Stimulated by the presence of a large amount of venous blood, the inspiantory muscles contract, and elevate the osseons structure of the chest, the diaphragm pushes down the abdominal contents, and air rushes in to fill the cavity thus produced and supply the oxygen demanded for the purification of the bloorl. Laden with this life-giving element, it is returned to the heart, to be distributed again throughout the system to restore the loss incurved throngh the original musentar movement. In this manner not only are the voluntary museles colargel and strengthened, but the involuntary muscles, particulaty the heart and diaphragm, improve in power and fimetion. The increased activity of the cirenation carries the blowa in inereased quantity and with greater rapidity not only to the muscles but also to all the other tissues and organs of the borly, stimulating them to increased activity. The skin beeomes ved from turgescence of the vessels, the ammont of perspiration is more than dombled, water, chloride of sodimm, and alkaline sudorates pass off in great abundance, and fatty acids, urea, and other salts in smaller quantities. The appetite is largely inereased, digestion is more perfert, absorption is more rapid, hepatie cireulation increases, the ablominal cirenlation is carried on more vigoronsly, and the feees arr lessened in amomen, probahly from the lessened passage of water into the intestines. Owing to the increased elimination of water and sodinm chloride by the perspiration, the amomut of these two clements in the urine often lessens; the uric acid, pigment, and free carbonic acid are inereasen; the sulphuric aed is moderately increased, and the urea and phosphoric acid are but little changed.

It has been supposed that puberty is delayed by physical exertion ; but, be this as it may, it is established that very strong exereise lessens sexual desire, possibly becanse nervous energy is turned in a special direction, but doubtess also throngh angmented moral power, the association betwem physical, intellectual, and moral strength being a natimal one, mohangeahle in its essential prineiples, though subjert to individual exception. The bencficial effect umon the nervons system is equally striking. It has been supposed that excessive exercise renders the intellect less active, owing to the greater expenditure of nervous force in that direction; but not only is great bodily exercise quite consistent with extreme mental activity, but, considering the principle inenleated in the oft-repeated line from Juvenal of
memes seanel for the (ompanati markay in berlily mo high juml in sceurints
so clos to disting! eurly chils is partient the title of of bain-g ment, that of the muintrarity o

The m later life a and the po. commandit tory allike ment. "S in Israel. of strength cursi, ellm stitution, s rontimal e simpuassed 1 life. Lyet made Iace mol) who Cieco is \mathbf{d} but as havi berome rol his enemie: himself to with an ext according cxereses, by of body,' a cudnance. ciscs; Sert boxly ;' Pel the Campu exervise to
mins sana in enrpore semo, we most infer that sufficient exereise is necessary for the perfeet performance of mental work. From the stand-point of a companative physiologist, Du Bois-Reymond demonstrated that the most maticel inthence of physical exercise is mpon the nerve-centres. In every bodily movement of a composite nature, ns fencing, swimming, sparing, or high jumping, the gray centres of the bain mud cord are at work equally in secoring the result, and are exeresed at the same time.

So closely are the mind and the body conrelated that it is hard ofttimes to distingnish what is due to the mind and what to the body. In very early childhood, with the dawn of mental and physioal development, this is partienlarly noticeahle, and Prof. Richards, of Yale University, moder the title of" Borly Brain Work," has deseriberl it as antedating the advent of bain-growth. Every time a dild con-mbinates a well-directed movement, that movement exercises and develops its brain, and the movement of the muscles is as neressingy to the mental development as the health and integrity of the brain are to the plysical development of its parts.

The museles and the brain are developed by reciprowal action, and in later life a direct relation is found to exist between great physieal strength aud the possession of those intellectual powers which naturally lead men to commanding positions of authority. Ancient, medieval, and modern history alike contain mmerons instanees to prove the acemracy of this statement. "Samson, thongh he seems to have lacked discretion, was a judge in Isract. Pomper was the equal of any soldier in his command in feats of strength. Sallust says of him, 'Cum alacribus saltu, cum velocibus emsn, com validis vecte certabat.' Cesar was naturally of a delicate constitution, suffering from severe headaches, and probably epileptic, but by rontimal exereise became an athlete, 'adminable in all manly sports,' and surpassed by none in conduring the fatignes and hardships of a military life. Lyeurgns not only laid down the laws which for five humdred years made Lacedrmon the chief city of Greece, but was able to ontrin all the mob who persecuted him and fored him to seek refige in a sanctuary. Cifero is deseribed by Plutareh as at one time thin, weak, and dyspeptic, lont as having been so strengthened by gymmastic exercises at Athens as to become robust and vigorous. Coriolanus's snecesses were attributed by lis enemies to his strength of booly, he having so exereised and inured himself to all sorts of activity that he 'combined the lightness of a a acer with an extraordinary weight in close seizures and wrestlings.' Alcibiades, aceording to Herodotns, became master of the Athenians, in spite of his exeresses, by reason of his 'foree of eloquence, grace of person, and strength of body, and from the same authority we learn that Alexander had immsual endurane. Themistoeles, Socrates, and l'hato excelled in gymuastic exercises; Sertorius swam the Rhone in fill armor ; Mareellus was ' of a strong boxly;' Pelopidas 'delighted in exereise;' Marius never missed a day on the Campus Martins ; Cato ' maintained his chanacter and persisted in his exereise to the very last;' and even the more mythological characters of

Thesens, Romulns, and Remus are aceredited with 'strengeth of hody and brasery "equal to the quickness and force of their mondersmonding.' "'

In the "University Oars" Dr. Morgan calls attention to the fact that of the one hundred and forty-seven Cambridge men who constituted the erews from 1829 to 1869, twenty-eight per cent. won homors in more innportant contests than those upon the river, securing in some instanes the very highest academical distinction, and proving that mind and muscle, julicionsly grided, are well nble to work together with reciprowal advantage.

Sargent has pointed out that college mon take ulowt the same grade in their gememal studies as in required athleties, ${ }^{2}$ and Dr. Morgan has shown that, while the gemeral average of class men at Oxford was about thirty per cent., among cricketers it rose to forty-two per cent. and among rowing men to forty-five per cent.

In a recent investigation by a prominent Americun physicime to show the comparative longevity of bain-workers as compared with musileworkers, the advantage was clearly shown to be in favor of the formere. This might have beon expected a priori in view of the classes from which these so-called " musele-workers" are naturally deriverl, who throngh poverty are fored all their lives to live under the most minaitary comditions, who neglect from ignorance and powerlessness the most obvions laws of health, and who in all resperts labor under a stupendons physieal disadvautage when bronght into comparison with the so-called " brain-workers." Their work is not exercise; it is fatiguing labor, performed ofttimes under the most depressing intellectual conditions.

On the contrary, it is not difficult to prove that a somed constitution nisually aceompanies a healthy brain, and that the eerebral and the musenlar forees are directly correlated. In this comection, Dr. Beard deedared that in all the animal realm there is a general, though not unvarying, relationship, existing between the bain and the body, and that no one who has ever walked observingly through an asylum for the insane or feeble-minded and behed the dwarfed, misshapen, immature, or stunted forms which surround him can dombt the force of the truth embodied in this statement. He points out the rapidity with which such poor ereatures grow physiologically old, the evidenees of senility noticeable in every organ and function,-in the gray hair and premature baldness, in the dimness of vision and dulness of hearing, in the wrimkled skin, the tottering step, the wasted limbs. Consersely, he maintains that one hundred great geniuses chosen by chance will be taller, broader, and weightier than a hondred dunces anywhere, and deelares that in all lands, savage, semi-civilized, and enlightened, the ruling orders, chiefs, sheiks, princes by might and mind, authors, scientists, orators, great

[^168]merchants, (mploy, ant times ont of that numeng distinguish stroide. (O) times amol times, with

In culd strength, n pusition. ship depen and 'Thema mallux exhit "bordily sti" and the era his follows.

The di lionght on determine average age ין "'Tho " trions men, many of th as well as to phesimal and increas guishod ms proxluced is

These, voluntary 1 encyl cireul mrued in t faculties co foree and a of the incli

White the fact m When una "blockage" these suppl taken witho for months suit, or a t violent for
merchants, weigh more on the average than the persons whom they rule or ruphoy, and that even among a band of workmen on a milway one can four times out of five seleet the " hooss" by his stature alone; mad Bates tells us that nomog the people of the 'Tupajos the forotmarks of the chief conkd be distinguished from the rest by their great size and by the leugth of the stride. On the same primeiple Herbert Spencer has shown how in early times among rude tribes politieal leadership was associated, as in the present times, with physimal strength.

In early Grece the veneration of age did not recompense for loss of strength, and an old chief, like Laertes or Pelens, had to relinguish his pusition. 'Thronghont medise al Enrope the mantenane of political londership depended largely on bodily vigor. Supremary among the Anstralians and Tasmanians depended upon physiral size und strength. The Espuimanx exhibit deference te "seniors and strong men;" mong the Bushmen "Ioxhly strength alone procures distinction ;" and " the fiererest, the strougest, and the eraftiest" among the Bedonins "obtains a complete mastery over his fellows."

The direst influence of exercise upon longevity has heen antionsly brought ont in a list prepared not to show the average longevity, but to determine the age when great mon have performed their best work: the averuge age at death was sixty-four. Likewise Madden, in his ochd book upon " The Infirmitics of Genius," in a list of two houdred and forty illustrions mon, found the average age at death to be sixty-six, proving that many of the great men of the past have been moted for physical strength as well as for intellectual greatness, and that the attention given by them to physicul development had been productive of both great mental ability and increased temure of life, Personal examples from among the distinguished mon of the present century, justifying this statement, might be preduced indefinitely.

These, then, are the physiologieal effects of exereise,-an increase of the voluntary muscles in volume and power, an enlarged respiration and quickencel cirvalation, through a strengthening of the involuntary museles conerreed in these proresses, and an improved action of all the fimetions and facolties coneerned in the growth and development of the whole borly, the force and artivity of the inchectual and mora! processes, and the longevity of the individual.

While the heneficial effects of exereise are so great and so important, the fact must not be overlooked that it is also eapable of great abuse. When unacenstomed exereise is engaged in after a long interval of rest, "blockage" oecens not only of the arteries going to the lings, but also of thase supplying the whole boly, partienlarly when violent exereise is madertaken without due preparation, as when a tired, delicate, or overworked man, for months engaged in a sedentary, literary, professional, or mercantile pursuit, or a tender mumaned student, suddenly indulges in some active or violent form of gymmasties, or engages in one of the recreative sports which
make the greatest demand neon the heart and lungs, as boating or rmming: instead of a benficial result averuing, serions and often permanent ingury fiequently follows. Such important involmatary organs as the heart mul longs camot instantly pass from the quiescent state of ordinary life move ments to great rapidity of netion withont strain being thrown nom them, and, insteal of the vital antion being quiekened and the processes of repair and removnl stimulaterl, the blood is bloeked in the arteries, the covities of the heart are oser-distended, and diatation or hypertrophy specdily results. 'To avoid this shonld be regarded as of vital importance in all forms of exercise, but espectally in training should it be borne in mind that the edhief object is "to establisha a reeiprocal action between the heart aud the lumgs, so that the inereased supply of hood sent to the lougs by the heart may pass through them freely, so that there may be mo blockage and consequently no strain."

It must also be recolleeted that the devdopment of the wohntary muscles gives no indication whatever of the condition of the involuntary muscles involved in mantaning the respiration and cirenlation, and that an enormons muscular development may be absolutely useless withont the cultivation of the heart and lungs, a ciremmstane pointed out by Maelaren to explain the ressilt of the celebrated Heenan-King prize-fight.

Exhanstion on museles from overwork is chicfly owing to the exhanstion of the supply of oxygen, and to the acemmalation in them of the products of their own metamorphosis, especially paralactic aed. This is the result of the cifect of general fatigue upon the nervons system, the heart, and the circulation of the bood. Hence rest is demanded in order to allow the removal of waste products from the tissues, to restore their alkalinity, and to acpuire a sulficient quantity of oxygen. Thus, in the heart the interval between the contractions (about two-thirds of the time) is sufficient to allow the musenlar structure perfeetly to rerover itself. Museles that have undergone exhanstion have mutrition serionsly impaired, as manifested by the socalled "acnte local fatigue," not simply in loss of power, but often in irregular, panful masenlar contractions, cramp, tremor, and pecenliar, distinguishable muscular pain.

To avoid the results of these spasmodie efforts, chitdren and youth shonli' allowed to undertake any form of exercise calling for sudden ${ }^{\prime \prime}$ aertion until a certain age is passed, and certainly not withont weln examined by the regular medical attendant before, or by the
al director upm, their entrance to the school or college gymmasium, to ascertain the condition of the heart and lungs, the general musenlar development, and the existence of any hereditary taint. This would not conflict with the physieal examination, to which full reference will be made under the subject of physieal education, but would be preliminary and supplemental to the more thorongh examination of this kind made to ascertain the development.

The evil effects resulting from the lack of perfect exereise are not so evideni in the period of life under consideration as in later life, when the
mote act the enerve
bixei an infint stron as it in movan every mul its litulos i lies, coil it month as mement w excreise, d 0ult. For weighted abont ane hined mos by altempt. mud emdeas developed this time ve and with th the child hat

These fi longed, lest and more i exhibit plai old a degre a hall, play mamer from rocking-hors perde or triey tuted, as the of the roeki (are should result. It is with the grea (mployed 1 In may spend : should not be later periodo of play and weather. Th chitis, and er wind, long wa hin-joint and
more active sports of youth are replaced by the sedentury pursuits and the enervating intinences of a busincss life.

Exbrome is Infascy and Combood, -The mathal movements of an infint are the appurently purposeless musenlar effort; which it makes as som ans it appecintes that it hats extremities. "A child in health delights in movemenis of all kinds," says Sir William Jemer. "It joys to exercise avery misele. Strip a child a few months old, and see how it throws ith linals in every direction; it will raise its head from the place on which it liw, coil iteslf romul, and grasping a foot with both hands thrust it into its month an fiar as possible, as thongh the great objeet of its existence at that monent was to turn itself' inside ont." These movements are its matural exercise, developing the muscles and brain correlatively, as already pointed out. For this reason its limbs should not be too much compressed or weighted down with heavy chothing, and it should be encouraged to roll ahout ane exereise itself as much as possible. Its first attempts at combincyl mo ments, to crawl on all-fours, quadruped-like, ate soon followed by attempts to assume the upright position by the supprort of some olject, and endenvor to balance the upper part of its bedy, which at this time is developed far beyond the lower extremities. Sunlight and fresh air are at this time very uceessuly to add firmuess and strength to the whole structure, and with the exereise of its limbs the upright position is soon acquired, and the child has groudually tought itself to walk.

These first effiots should be enconraged, but should not be too prolonged, lest injury result. As time advances, and the child becomes more and more indepondent of support, the constant activity and impatience exhibit plainly the intentions of mature, and after the child is three years old a degree of activity may be imparted by encomraging it to rim with a bill, play with a small dog, or, later, exereise with a hoop. In this mancer from a very carly age exereise may ! , 'regun and be enconaged, a rocking-horse may be added to the mursery, later the carefil use of a velociperle or trieycle may be employed in the open air, to be still further substituterd, as the child advanees, by the use of roller-skates and the exchange of the rocking-horse for the pony. In all these forms of exereise great (alre shonld be observed that the saddles be not too wide, lest deformity result. It is also to be distinctly muderstood that these are to be employed with the greatest cantion; and if the child have hernia they should not be employed under any eirenmstances. At the end of the fifth year children may spend an hour or two in the kindergarten, but regular schooling should not be commenced till the end of the seventh year, and during the later period of childhood suflicient time shonld always be allowed for plenty of play and exereise in the open air, regard being had to the state of the weather. Thus, many children have fallen victims to puemmonia, bronchitis, and eronp from having run or walked against a piercing easterly wind, long walks and violent play through overfatigue and cold have led to hin-joint and knee disease, and drinking cold water when overheated, or
sitting upon damp gromed or stones, has produced irretrievable injury in many others. The younger and more deliente the child, the more cure has to be exercised in regarl to the state of the weather. If borm in the latter part of autumn, infinis cannot with safety be taken out before the return of spring ; but if the apartments are large and airy, little evil will result from this prolonged confinement. With the return of mila, dry, and serene weather, they most be carried out into the open air, and, should the weather permit, this salutary practice must be daily repeated. In fine weather children and youth may spend the greater part of the dacy or ${ }^{\prime}$ t of doors, and as they grow in years they become gradually accustomed to the vicissitudes of a changeable climate. In large cities, large open spaces, parlis, ana gardens should be frequented, and in the summer months the overheated and overerewded eities should, if possible, le exchanged for the country and sea-coast.

Srom five to twelve, boys and girls alike may engage in any of the light aet. grames which do not throw weight or strain upon the growing joints, avoiding wrestling, foot-ball, and premature attempts at rowing.

In carly boyhood and youth nothing can replace the active sports so mach enjoyed at this period, and, while no needless restriction should $l_{k e}$ placed upon them, consideration shonld be paid to the amount and especially to the character of games pursued by delicate youth. For these it woudd be better to develop the weakened parts by means of systematic gymmastic exercises, by short excursions into the country, and by the lighter sports.

It should be borne in mind that in order to obtain the greatest adsantage from those exercises which are calculated to improve the physical and nervons st ${ }^{+}$mgth the child shonld be ;aterested and made to feel that these exercises are a play instead of a task.

Children who are tanght at an early age to be obedient seem to enjoy more thoroughly such exereises as combine discipline with rhythmic movements; and, consequently, the older the child the more important it is to adopt a system of calisthenies, or light drill, or games that combine gymmastic's with rhythmic sounds and periods of rest.

The more permanent benefits of play (games) are promptness, attention, fast and easy ruming, climbing, balancing, strength, endurance, marksmanship, elasticity, ete. These games may he elassified as follows:

1st. Exereises which in some respects stand in the line between free games and gymnastics, since they retain some school discipline and are playe!. systematically under the direction of the teacher. These are of varied character, some more suitable for older, others for younger children (raeing, "prisoner's base," ete.), the difference between these games and gymuastics being siten not easily distinguis!able. For yomug men the best of these is feneing.

2d. Exercises which also have some value in a gymanastic sense, but which are not to be played in classes or under the command of the teacher. These are called free gymnastie games, from the fact that the teacher can take part, if so disposed, but need not do so. To a great many free gances
belong certain words, declamations, or the singing of different melodies. If the instructor in gymasties for children take up daneing, the prineipal oljoed should be to give the children the greatest possible liberty, and not to attempt to oltain perfeet grace and form-beanty.

3d. The third and last dass of plays (games) inchudes games of no gymnastic value. To this class belong all sitting, forfeit games. These are as useless as the great number of meaningless movements which have been introduced into gymmasties, many of which are only methods without gemnastics, which is as incorreet as gymnastics without method.

The Df: mopment of Boys ${ }^{1}$ has attracted considerable attention of late years, hat the systematic records are as yet insufficient to admit of any dogmatic deduetions. For older children the records of college gymmasimms are available to show the rapid inerease which systematic exereise causes in the physical development. We have, however, the very valuahle papers of Mr. Street, F.R.C.S., Mr. Roberts, F.R.C.S., and Dr. Bowditch.

Mr. Street's olservations are based upon the examination of three thonsand six hundred and ninety-five boys, drawn chiefly from the artisan class, varying from thirteen to nineteen years, and are interesting as exhibiting the height, weight, ete., for the five years inclusive.

TABLE
Showing the Relation of Weight to Height of Boys between the Ages of Thirteen and Nincteen Years. ${ }^{2}$

$\underset{\text { IIEIGHT }}{\substack{\text { WTHOUT SHOES, } \\ \text { In }}}$in lincues.	Weight in Pounds, without Coat, Hat, and Shoes.							Ayerage Weigilit in Pounds.
	Age last Birthiday.							
	Thirteen.	Fourteen.	Fifteen.	Sixteen,	Seventeen.	Eigiteen.	Nineleen.	
71.	-		.		149	129	150	142.6
70.	.	-	136	144	147	151	137	148.0
$69 . . .$.	. .	129	142	132	138	144	140	139.4
(i8.	- .		131	126	181	142	144	184.8
67.	. .	123	120	125	132	129	138	128.0
66.	.	119	117	12.2	126	126	130	123.3
65.		107	117	115	120	127	121	118.0
6.1.	111	112	115	115	116	115	120	115.0
53.	i03	108	108	110	115	117	117	111.1
62.	96	101	104	106	109	111	113	105.7
61.	96	98	99	101	104	102	109	103.0
60.	90	93	92	96	101	109	. .	970
59.	87	89	91	98	93	91	-.	90.7
58.	86	86	87	88	94	- .	. .	82.2
57.	82	83	83	86	,	- . .	-.	83.5
56.	78	80	78	87	81		. .	80.8
5.7 .	75	76	77	76	. .	76	- .	76.0
54.	74	74	74	67	- .	. .	-.	72.2
53.	72	69	-.	70.5
52, . .	73	70		67			-.	70.0
51. . -	62				- .		-.	62.0

[^169]Starting with an average height of fifty-five inches at thirteen years, these figures show an increase of one inch during the first year, of three inches during the second year, of fon inches during the third year, and of one inch cach during the fourth and the fifth year, whilst from nineteen to twenty there is scarcely any increase in stature. From Mr. Roberts's table the increase for each year from thirteen to sixteen is over two inches, being greatest during the sixteenth year ; dhring the seventeenth year it is about one and onc-half inehes (1.53); from seventeen to eighteen it is about one and three-fourths inches, dropping during the next year to less than one inch (0.68), and during the year from nincteen to twenty to less than onehalf inch (0.43).

TABLE

Showing the Averate Proportion and Growth of the Humm Body from Birth to Maturity.'

Age Last BhitifDAY.	Average Proportions of the llody (Mates).			Annual. R.ate of Ghow'tif.			Ratio of inchease. IIEIGHT= CNITY.		
		Chest-			Chest-			Ches-	
Birth	19.34	13.25	7.55	-	-	- -	-	-	
1 year	28.50	. . .		9.16		- . .			
2 yeurs .	31.60	3.10		-			
$3{ }^{*}$	35.00	3.40	-.	-			
4 い	38.45	,	31.10	3.45			
\% 6	41.15	21.26	37.71	2.70					
6 6	4318	21.68	40.137	2.03	0.42	2.96	1	0.20	1.15)
7 6	45.15	22.25	44.00	1.97	0.57	3.33	1	0.28	1.70
8 "	46.92	22.6%	47.15	1.77	0.41	3.15	1	0.31	1.811
96	49.65	23.27	51.20	2.50	0.1 il	4.14	1	0.24	1.610
10 6	51.52	23.77	5\%.50	2.00	0.50	4.21	1	0.2.)	2.14
11 4	52.87	24.33	160.15	1.35	0.36	4.65	1	0.41	3.41
126	54.45	24.81	6.4.52	1.58	0.48	4.37	1	0.80	2.76
13 "	56.56	26.30	71.00	2.11	1.49	5.48	1	0.70	2 6\%
14 "	58.55	28.18	70.57	2.00	1.88	8.57	1	0.94	4.28
1616	60.77	29.70	91.43	2.21	152	11.86	1	0.68	5.36
163	63.42	31.19	107.86	2.65	1.49	16.43	1	0.50	0.20
17 "	64.95	32.80	118.08	1.53	1.71	10.2.3	1	1.10	6.67
$18 \quad 6$	6.5. 69	84.0:3	127.25	1.74	1.23	0.17	1	0.70	5.27
196	66.37	31.76	131.48	0.68	0.73	4.23	1	0.10	0.2.)
$20 \quad 4$	60.80	35.18	12.5.28	0.43	0.37	3.80	1	0.08	0.90
21 6 .	66.80	3.5 .42	135.0:?		0.29	- • -	-		

According to Dr. Bowditch's tables there is an increase in height from the thirteenth to the fourtenth year of arer two inches, fiom the fourteenth to the fifteenth of over two inches, from the ifteenth to the sixtenth of over two and a half inches, from the sixteenth to the sevententh of nearly one inch, and from the seventeenth to the eightenth of a little over one-half' inch, among the non-laboring classes, these figures being slightly less ar .g the laboring class.

Showing Av

Age Last

We have the Philadel

These me they should be course, the ort

TABLE

Showing Average Meights and Weights of Boston School-Boys, irrespective of Nationality. ${ }^{1}$

Age Last Birtiday,	Occupation of Parents.					
	Non-haboming.			Laboring.		
	No. of Observations.	Helght, Inches.	Weight, pounds.	No. of Observations.	Height, Inches.	Weight, l'ounds.
5 yentrs . .	135	41.64	41.21	694	41.67	41.00
6° B.	243	44.11	4.50	1007	43.74	45.06
7 " . .	294	46.23	49.77	1183	45.61	48.93
8 " . .	29%	48.08	54.64	1161	47.67	53.67
(1) ${ }^{\text {a }}$	272	50.03	$5!.89$	$10!7$	49.73	59.20
10 "	262	6212	66.31	1023	51.50	$64.8!$
11 "	284	53.84	71.81	956	53.17	69.67
12 "	$\because 77$	55.62	80.38	$8!9$	54.84	75.88
18 "	277	58.13	88.69	800	66.89	83.40
1.14	265	60.52	96.54	58.2	$6!.31$	93.67
15 "	231	62.68	108.81	365	61.90	104.88
$1 i 8$	169	65.23	129.48	$16:$	64.65	1114.03
17 "	97	66.17	128.23	77	65.75	125.28
18 " . .	46	66.69	132.00	28	66.35	131.60

We have had some interesting studies made by Dr. A. A. Eshner at the IPhiladelphia Iospital, which are shown in the following table:

These measurements represent but a small number of children, and they should be carried ont to a greater extent. The expansion noted is, of course, the ordinary expansion of breathing, and not forec-respiration.

From these tables it is evident that the preriod in a boy's life between the sixteenth and the sevententh year is one of great importance, during which no great strain should be thrown upon his developing constitution, and that feats of strength or physieal endurance should not be undertaken until this period is safely passed.

With his entrance to college the youth has an opportunity of laying the fomblation of his physical development in a use which will serve him, with proper care, throngh his future life. As a rule, this is what the average American student requires, for Prof. Elliott, of Harvard, said of the majority entering that institution that they had " modeveloped museles, a bad carriage, an impaired digestion, without skill in out-door games, and unable to ride, row, swim, or shoot;" and what is true of Harvard applies with greater foree to many other American colleges. With the present systems of physical culture in operation in all the important Eastern colleges, the freshman on entrance is examined as to his physical condition and advised what forms of exereise he requires, and is re-examined from time to time to ascertain his progress and advised as to his subsequent course.

The systems of physical elucation at present employed in Harvard, the University of Pennsylvania, and other American colleges, and copied after those long in use in Oxford, are approximately as follows. Each student upon his entrance to college is stripped, and measurements are taken of his height, weight, circmmference and diameter of chest, legs, thighs, arms, and forearms, which are recorded in some convenient form (eentimetres or inches). These together are taken approximately as an indication of his development: it shows the amount of working material, but not its actual working value. These are followed by a series of tests to ascertain the total available strength; ly means of the spirometer, the horizontal har, and the lifting machine, the strength and capacity of the lungs, and the relative strength of the arms and chest, back, legs, and thighs, ablominal muscles, and forcarms, are all estimated. These are recorded in the same form as the first, and, representing the development and available strength, readily admit of comparison. To these are finally added the personal and the family history of the individual.

The chart employed to record the measurements, ete., is as follows:
PERSONAL AND FAMLLY HISTORY.
Be sure to answer every question; say "yes," "no," or "I don't know," whenerer possible.

Name,

Chass and department, or occupation,
Ag', Birthphace,

> Nationality of-

Father,
Mother,
Patermal grandfather,
Patermal grandmother,
Maternal grandfather,
Matermis granduother,

Occupation If parents Which of Is there ou Is your gel
have you:
Have yon
Asthum
Shortne
Bronchi
Spitting
Pleurisy
Pneume
Palpitat
Bright's
Have you e
What have
How much
How much
How many
How much
To what ex
To what ex
Examivation
CLisss.
Diste
Age
Height
Weight .
Girth, Head*
" Neck.
Chest,
Belly ${ }^{*}$
R. Thi
L.
1 R. Kne
" L.
- R, Calf
" L .
" R. Arm
" L. "
R. For
. L.
Cap. Lungs .
Expirat. Stren
Strength R. GI
" L. "
" Back
" Thig!
Dip \dagger.
Chinst . . .

Oceupation of futher,
If parents are dead, of what did they die?
Which of your parents do you most resemble?
Is there any hereditary disease in your fanily?
Is youre general health good?
Have you always had goon health?
Have you ever had my of the following diseases?

Asthum,	Rheumatism,	Dyspepsia,
Shortness of Brath,	Neuralgia,	Habitual Cor dipation,
Bronchitis,	Sleplessuess,	Varicose Veins,
Spitting of Blood,	Mendaches,	Piles,
Plenrisy,	Paralysis,	Liver Complaint,
Pueumonia,	Dizziness,	Jaundice,
Palpitation of the Heart,	Fits,	Chronie Diarrhoea,
Bright's Disease,	Jupture,	Dysentery,

Wave you ever had any injury or undergone any surgical operation?
What have been your favorite exereises?
Jow much time have you devoted to them daily?
Huw much time do you spend in the open air daily?
Hlow many hours do you sleep daily?
Ilow much time do you spend in study outside of the college?
To what extent do you use tobnceo?
To what extent do you use alcoholic or malt beverages?
Examination of Mr.
Clesss.

a means nbove and b means below the nvernge ancording to age.	Condithen.	$\begin{aligned} & \text { Derelond- } \\ & \text { MENT. } \end{aligned}$	Sthengit.
Firat Examimation.			
A verate			
Second Examination.			
A verage.			
Thard Examination.			
A verage.			
Funth Exumination.			
Avemge.			
Improwement.			

Nots.-Development-The sum of the alne girths marked*. Strengill-The sum of the seven tests marked t.
Condition-The ditherence between development and strengh: if la favor of the former it is minns (-), and if lin lavor of the latter it is plus (+).

With such data lefore him, the medical examiner is in a position to advise the student upon several matters of the greatest importance. It can limit or altogether interdict exereise, he can preseribe paralles and upright hars for a rachitic chest, he can suggest the rowing-machine or exereise upon the river for the student with weak legs, he can advise the corpulent individual with flably museles to beeme more active, and he can diagrose and preseribe for inherited tendencies and latent diatheses with a scientific thoroughness based upon a carcful examination and an exact knowlelge of the individual which few practitioners enjoy. These phessical examinations are repeated once or twice during the year, and the results carefully noted and compared.

Dr. Sargent recently, in describing the system of plysical education in mse at the Hemenway Gymmasia at Harvard, said,'-
" Every student who enters the University is entitled to an examination, and eighty-seven per cent. of the whole nomber avail themselves of this privilege.
"As soon as the student presents himself at the director's offiee (which is done by applieation and appointment), be is given a history hank, which he fills ont, giving his birthplace, mativity of parents, oceupation of father, resemblance to parents, matural heritage, general state of health, and a list of the discases he has had, all of which information is absolutely necessury in order for the examiner to put a correct interpretation upon the ohservaltions to follow. The student is then askel to make certain tests of the musenalar strength of the different parts of his booly, and to try the caparity of his lungs.
"He then passes into the measuring-room, and has his weight, height,

[^170]chest-girth, ex:muined b, dition of t give.
" $A l l$ th thousand m standing of taken, also 1 need of der
"To con a genuine in is taken in t taken of hin
" From is made out apparatus he for most stur weights for i such suggest best meet the
"Now, I half the bat boy a gemuir training has his bodily co on the purity of his figure.
"Whethe rme, to row, phesimal comi
"The mu broty that are tion of the gymanasiment value. The performance himself-thar from month the apparatus chest or the 1 parts without
"In fact, to another, k slowly and st heart is weal

Vol. I?
chest-girth, and fifty other items taken. His heart and lungs are then examined before and after exercise, and a careful reeord made of the condition of the skin, muscles, spine, ete, which the tape-measure finils to give.
" All the items taken are then photed on a chart, made from several thonsumd measmements, and the examiner is thus able to know the relative standing of this ind: rinal as compared with others for every dimension taken, also his deviation firom symmetry, and the parts which are in special need of development.
"To confirm the plotting of the chart, and to awaken in the young man a gemuine interest in his physique, a photugraph of each student desiring it is taken in three prositions, and preserved for comparison with those to be taken of him later.
"From the data thus procured a special order of appropriate exereises is made ont for this student, with specifications as to the movements and apparatus he may best use. At the present time this spectal order consists for most students of an illustrated land-mook, in which the apparaths, the weights for it, and the times to use it are carefully preseribed, together with such sugrestions as to exercise, diet, slepp, bathing, clothing, ete., as will best meet the needs of the individual muder consideration.
"Now, I think it will be admitted by all thonghtfinl persons that onehalf the battle for mental education has been won when you aronse in a boy a genuine love for larming. So one-half the struggle for physical training has been won when he cun be induced to take a gemoine interest in his bolily condition,--to want to remedy his defects, and to pride himself on the purity of his skin, the firmoess of his museles, and the uprightness of his figure.
"Whether the young man chooses afterwards to use the gymuasium, to rum, to row, to play ball, or to saw wood, for the purpose of improving his physieal condition, matters little, provided he accomplishes that ohject.
"The modern grmnasium, however, offers facilities for building up the bond that are not excelled by any other system of exereise. The introduction of the new developing appliances has opened up the possibility of the gymuasiun to thousands to whom it was formerly an institution of doubtful valuc. The student is no longer compelled to compete with others in the performance of feats that are distastefin to him. He can now compete with himself-that is, with his own physical condition-from week to week, and from montli to month. If he is not strong enongh to lift his own weight, the apparatus can be adjusted to a weight he can lift. If he is weak in the chest or the baek, he can spend his time and energy in strengthening those parts without fear of strain or injury.
"In fact, he can work for an hour, going from one piece of apparatus to another, keeping always within the circuit of his capacity, and adding slowly and surely to his general strength and powers of endurance. If the heart is weal:, the lung-capacity small, the liver sluggish, the cireulation Vol. I $1 .-19$
feeble, or the nervons system impaired, cte., sperial forms of exereise can be preseribed to meet these conditions.
"(Gentle rmming is mathy advisel as a constitutional exercise for all those who cam take it. This is nsually severe comogh to stant the perspiration and make a bath of some kind desitable. A trpid sponge- on shower-hath is gencratly advised ; and, in my opiniom, the bath which regularly follows the exercise at the gymusimm, and the habit of bathing estahlished therehy, are almost as valuable as the exervise itself.
"After a periox of six monthis or more, the student returns again to the director's oftiee, and hats another examimation, in order to ascertain what improvenent he has made, and to reerive any new suggestions.
"This, in brief, is the edumamal part of the system of phasieal training carried on at the Itememay Gemmasimen."

From the acemmulated resilts thas ohtained a greater symmetrical dovelopment of all the parts is shown, and moler this system mot only are greater feats acemplishod, but they are performod with greater case and sutfety.

This is well exhibited in the tables' made out in Harvard and representing the increase in cight years. Whereas 675.2 was the highest mumber of points, aceording to the standard of the director of the Hememasy Gymmaimm, ganed by any man in college in 1879-80, and $6: 32.2$ was the average of the ten strongest men in the college in that year, in 1887 there were ont of 1075 students attending college, 824 of whom were examined, 94 men with a strength above $675.2,145$ with a strength above 632.2 , and the men with a strength above men (of 400 points) reached the high munber of 609 . In the same report there were on reword the "names of two humdred and forty-five students whose test of general strength (of arms, whest, back, legs, lungs, ete.) surpasses the test of the strongest mall in 1880."

TRAINING.

The general principles insolved in training are often poorly understoxnl, even by trainers themselves.

As Dr. Parkes has expressed it, "traning is simply another word for healthy and vigorons living," a condition which can be attaned ouly hy the strictest adherence to a system of diet, the employment of regular aud systematic exercise, and the most sernpulons attention to the minntie of general and personal hygiene. By attention to these the body is bronght into a perfect condition of health, with enharged and strengthened museubar action, improved circulation, and increased brathing-power.

The most important consideration is time. When we consider the increased fore of the heart, acting rapidly upon a large volume of hookl, the enlarged catibre of the vessels, the expansion of the ehest and of the lungs themselves, and the increased bulk and tone of the musenlar system, volun-
tary and i accomplish

It is ut the whole the particul it to say the should suec

In regal and rules h

From " formed by to disculss w

All form starches an (mmposition lowing tabl

ii. Fats.
iii. Starches, sugars.
iv. Itarganic constitue

Liebig's excellent: th fir, allhough minstion prod and curbo-hy

Of the n of the food, only in albon tissue which

[^171]tary and involuntary, it becomes obvions that a long time is drmanded to accomplish these results.

It is needless here to dwell nom the neeressity for general exereise of the whole bonly, of to puint out that the exerrises should mot be limited to the particular forms of musenlar movement to be finally performed : suffice it to say that the work shombld be ultermated, and that long intervals of rest shomid sucreerl periods of activity.

In regard to the diet to be employed in training, many of the old ideas aud rules have of late years been much mudified.

From what has been alrealy stated under calorifieation, the work performed by the boely demands a constant renewal of fued, and it remains to disenss what is best suited to supply the meste effective firce-value.

All foods may be convenicntly divided into fim chasses,-albumens, fats, starches and sugars, and inorganic eonstituents, - the type, forre-value, composition, and chief constituents of which are well exhibited in the fiollowing table, quoted from Ralfe:

Class.	Type.	Foncegalue of binteen Ghatis is Tit buy stati:	Comprition.	Chiff constitcents of Ahticles of dift.
i. Albumens.	White of egry.	13,8:1 fiootpounds.	$\mathrm{C}_{72} \mathrm{H}_{112} \mathrm{~N}_{18} \mathrm{O}_{23}{ }^{\text {a }}$	Flesh (myosin), lurad (ghten), cheese (cas(in).
ii. Fints.	Butter.	27,716 firstpounds.	$\mathrm{C}_{37} \mathrm{H}_{104} \mathrm{O}_{6}$.	Fat or meat, milk, butter.
iii. Sturches, sugars.	Starch, grupesugur.	11,720 footpounds.	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6}$.	Potatoes (sago), honey, cane-sugar, grupesugar in beer or wine.
iv. Imorganic constituents.	Witer.	Not known.	$\mathrm{H}_{2} \mathrm{O}$.	Common salt (chloride of sodium), bone-ruth (phosphate of lime) in milk, bread, mud meat, ulkaline sults in ment and vegetables.

Liebig's classification into tissnc-making and heat-prodncing foods is exedlent : there is, however, no distinct line of demareation between them, for, although some foods are especially heat-producers, all tissne in its combustion produees heat, and heat-making substanees, like inorganie substances aul carbo-lyydrates, make tissue as well as albmminous ones.

Of the most important chemical elements entering into the composition of ihe food, carbon and nitrogen, it is significant that nitrogen is contaned only in albminous foorls, and further, as this element is present in every tissue which exhibits energy, the food which contains it must be considered

[^172]as cssential. Taken exchsively, howevor, allmminons foods are highly mo economical. It is estimated that, in a state of health, one grain of nitrogen is excreted for every fiftern grains of carbon.
"If a man should confine himself to vegetable food,-say bread, for example,-for every grain of nitrogen that he ate he wonld take in not only fificen grains of cabon that are necessary, but fifteen grains too much; in eating meat alone, while he obtains the one grain of nitrogen, he gets only abont thee grains of carbon, -twelve grains too little. He must cat, therefore, mearly five times as much meat as is necessary, so far as the amonnt of nitrogen is concerned, in order to get the fifteen grains of earbon, and in so doing he loads his system with five times too mach nitrogen. In cating bread you get twiee as moch earbon as is needed, and in eating meat four times too little. In diminishing the amonnt of bread you get too little nitrogen, and in increasing the amonnt of meat too much. If, however, the bread and meat are taken together in proper proportions, we will get, aceorling to the above calculation, the satio of sixtem of earbon to one of nitrogen in the excretions, which difers but little from that actually foum, one to fifteen, and which ean be aceomed for by remembering that the food of man consists not only of bread and meat, but of other substances containing eabon and nitrogen." ' Or, as Prof. Huxley has aptly said," "a man confined to a purely albmminous diet must eat a prodigions quantity of it ; this not only involves a great amonnt of physiological labor in comminnting the food, and a great expenditure of power and time in dissolving and absorbing it, but throws a great quantity of wholly profitless labor on those organs which have to get rid of the nitrogenons matter, of which three-fonrths is superfloms."

Carbon is the essential element of force, and the fatty principles of foorl yield in their combnstion double the force-value of an crpal quantity of albumen or stareh, for the carbon is stored up in tat to the amount of eighty per eent., while in albmminons matter and stareh there are but fiftrthree per ecnt. and forty per cent. respeetively. The carbon thus stored up in the fat of the borly also possesses this advantage, that it is always ready for immediate use. On the one hand, man cannot live in good health without fat, and, on the other hand, he ean live but a short time upon fat alone. The physiological effect of a carbo-hydrate diet-converted stareh and sugar - does not differ cssentially from that of a fatty diet, except that the components of the former are more radily oxidized, seventeen parts of sugar being equivalent to ten parts of fat, and that in some oceult manner they play an important part in promoting nutrition.

The importance of the inorganic constitnents-water, sodinm chloride, phosphate of lime, and the alkaloid salts of sodium and potassium-is so well understood that it is only necessary here to refer to them.

[^173]Vam the alime moxlifier nivora) n that a mil

The from what that, aceon caten thirt rane, on t the Yaknt together " butter. it hardly the worth of rice bo pounds. just partal any signo

On the vears on o light wine allowance

These food requir

From quired duri excreise in
"That and rather time to tim variety and

From t rate dictaris food requir umncessary "in a nuts

[^174]Vamety and Quantity of Food.-The matomicel construction of the alimentary tract (especially the diminished posterion molars and the mondifel camal midway leetween that of the herbivorn and that of the curnivora) and the analysis of the excreta indicate, what expericnee proves, that a mixed diet best meets the requirements of man.

The quautity of fool that a man should eat to live is very different from what he con eat and live. In this comection it may be mentioned that, acrording to Sir Edward Parry, a young Esquiman is said to have caten thirty-five pounds of fool in twenty-four hours; and "Captain Cordrane, on the authority of the Russian admiral Sariteheff, tells how one of the Yakuts consumed the hind quarter of a large ox in twenty-four homs, together with twenty pounds of fat and a proportionate quantity of melted butter. As the man had already gorged himself in this disgnsting fashiom, it hardly seemed possible that he would be able to consume any more; but the worthy Russian admiral, to test him, gave the savage a thick porridge of rice louiled with three pounds of butter, weighing together twenty-eight pounds. The glatton sat down to this abundant hanguct, although he had just partaken of breakfast, and, withont stiming from the spot, or showing any sign of inconvenience, got throngh the whole."

On the other hand, Cornaro is reported to have lived for forty-eight years on only twelve ounces of vegetable matter and fourteen ounces of light wine daily; and Thomas Wood for eighteen years lived on a daily allowance of sixteen ounces of flow made into a podding with water.

These represent the extremes, and it remains to estimate the amome of food required by the average man in twenty-fone hours.

From the estimates of Prof. Daltom, "the entire quantity of food required during twenty-four hours by a man in full health and taking free exereise in the open air is as follows:

Meat	453 grammes (16 ounces)			
Bread	540	"	(19	*
Butter or fat		"	(3)	
Water		'	(5\%	

"That is to say, rather less than two and a half ponnds of solid food and rather more than three pints of liquid." So there must be added from time to time fresh vegetables, frout, milk, tea, coffee, and sugar, to contribute varicty and maintain health.

From the exact data furnished by modern physiological research elaborate dietaries have been constructed, exhibiting the amonnt and variety of food required for youths in training; but such tables for physical use are mumecessary, and Dr. J. William White has expressed the whole subject "in a nutshell" in his admirable article on "Exereise and Athletics."

[^175]"The diet," he says, "should be phan und sensible, and should not contain an excess of either amimal or vegetable forsl. An ordinary farm-homse tahle, with its mid-lay dinuer aud carly tea, will maely (with the exception of coflee, hot cakes, pastry, and fried meats) offer anything which shoukd be eadmed from rational taning diet as it is at present understood."

The amomet of fluid required in twenty-four honss in training is almont five pints in winter and six pints in summer, a considerable portion of which (about one and three-'.buths pints) will be contancel in the fund taken. Water slumld not be dromk shortly before taking exereise, or large quantities during or immediately after meals; nor should a dry, parchod condition of the month and throat be mistaken for genume thirst. This should be tirst relieved by rinsing the month and holding water in it firs a short time, and then the actual need for fluid in the system may be supplied by frequent small draughts at short intervals. During training, tohatero, and especially cigarettes, being a depressant upon the heart, should be positively forbiden.

Aleohol, if allowed at all, should be used in the greatest moderation, and be limited to light table ales, light beer, or red wine. The reaction from the great restrietions of the past has led to too great laxity in the use of alcoholie beverages during training.

As pointed out by Dr. Parkes, "a small quantity of alcohol does mot secm to produce much effect, but more than two fluidomaces manifestly lessens the power of sustained and strong mascolar work. In the case of a man on whom I experimentenl, fonr fluidomes of brandy ($=1.8$ fluidomeses of absolute alcohol) did not apparently affect labor, thongh I camot affirm it did not do so ; but four onnces more, given after four hours, when there must have been some climination, lessened musenlar fore ; and a third four omese, given fon hours afterwards, entirely destroyed the power of work. The reason was twofold. There was, in the first phace, nareosis, blunting of the nervous system,- the will did not properly send its commands to the muscles, or the muscles did not respond to the will ; and, seeondly, the action of the heart was too mueh inereased, and induced prappitation and breathlessness, which put a stop to labor. The inferences were that any cmount of alcohol, though it did not produce narcosis, would act ingurionsly by increasing unnecessarily the action of the heart, which labor alone had sufficiently angmented. I believe these experiments are in aceord with eommon experience, which shows that men engaged in any hard lator, ats iron-puddlers, glass-blowers, mavvies on piece-work, and prize-fighters during training, do their work more easily without alcohol."

Batming.-For its physiologically stimulating effect upon the nervons and eireulatory systems the cold bath is now so generally adopted that it requires simply to be mentioned in this comection. If it be employed immediately after the exereise of the day, it may be omitted on rising or be substituted with advantage by the sponge-bath. In either case it should be followed by vigorous friction with a coarse towel. Oceasionally in addition
the warm clouse th at night. entimely w The 1 noyamer, lavatives waters.
the warm lath with an abmulance of pure soap shomld be employed, to dennse the skin thoronghly, and this will best be taken before retiring at night. This will regulate the action of the skin, and diminish, if not cutirely remove, the neressity for sweating as formerly employed.

The bowels should be regulated, and comstipation. often a serions anmoyance, carefilly glarded against. For this purpose some of the milder bavatives and salines should be preseriberl, preferably the naturat mineral waters.

If during training nervonsness, slerplessiness, inattention, loss of appetite, diminution in weight, exhibit a tendency to "training off," a little extrat attention to the minntie of training will correct them; but, if the hemt beromes intermittent or irritahle, and beathlessucss ensue, a physician shomld at once be consulterl, to nseretain if any pathological canse exist.

The amome of work daily performed low a erew in training will aepend murh uron the ultamate exertion to be undertaken, for the erew that has but at half-mile or mile race will not need the severe training required for a there or fom-mile race. In the selection of the crew attention must be paid to the musenlar development and the breathing-power, partienlarly to the latter, since the severest strain at the most important perios of the contest will be thrown upon the heart ame lungs.

The periox of actual training includes from three to sox werks, and during this time the following sehedule may lie aken as an example of a single day's work.

Rising at six in summer and seven in winter, the eold bath is immediately taken. After dressing slowly, a brisk walk or rom is taken about the track, to develop the "wind." Breakfast is served at eight, and consists of an cogr, one or two chops or a piece of steak and greens, with bread and hutter aml a pint of milk. From breakfast till mom is ocenpied with the ustal college duties, an hour being taken, if possible, for some light gymnasium work, the exereises at this time leing particularly directed to those parts which are not employed in the more important exercise of the day, thus fulfilling the rute alrealy quoted of exercising all the maseles.

A light lunch of cold meat, bread and butter, with milk, water, or tea, is taken, and an hour and a half or two hours later the prineipal exereige of the tay begins. For the boat crew this will consist of from one and a half to two and a half hours at the machines or on the river, at onc-half, three-forrths, or full specel, or altermating, at the pleasme of the trainer.

On returning to the honse the men are immediately sponged down and rubberl down briskly, after whielh a short rest presedes the principal meal of the day. One cold bath a day is suffieient. This meal or dinner; as pointed out before, will excluele few articles found upon the ordinary farmhouse dinner-table (except hot cakes, coffee, fried meats, pastry, ete.), and should be hartily partaken of. At ten o'elock a light tea of erackers and milk or thin oatmeal gruel may be taken, and at eleven o'elock they retire for the night.

If the principal exercise of the day be taken in the morning，a mid－day dimer from twelve to half－past one should follow it，with the interval of rest between．

The results of systematic excreise engaged in for only a limited time are remarkable，as evidenced by the following table，showing the effect of four months and twelve days＇exercise，under Maelaren＇s system，on fituen youths anging from sixteen to nincteen years of age．

No．	：Age．	measurements，etc．						Increane，				
					$\begin{aligned} & \text { 葱 } \end{aligned}$		虹志			$\begin{aligned} & \text { تٌ } \\ & \text { تٌ } \end{aligned}$		気云安
1	18	Fl．In，	St．	Lb．	In，	In．	In．	In．	Lbs．	［1．	In．	In．
		$\left\{\begin{array}{ll}5 & 1\end{array}\right\}$	7		$29!$	$9!$	837					
		$\left\{\begin{array}{ll}0 & 2\end{array}\right\}$			30^{-1}	9.	92.3	1	－•	2	－	$\frac{1}{2}$
9	19	$\begin{cases}5 & 8 \frac{1}{3}\end{cases}$	9		28	11	$101\}$	1	5.	$3!$		11
		$\begin{cases}5 & 81\end{cases}$			$31 \frac{1}{2}$	11	11%	4	0_{2}	32	－．	18
3	17	$\left\{\begin{array}{ll}5 & 5\end{array}\right\}$	9	1	26.	103	81	3		3		11
		156	9		29.1	10	10	8	．－	3	－•	12
4	18	$\begin{cases}5 & 81\end{cases}$	10	0	33	10	$10^{\prime} \cdot$	＋	3	2		14
		（\％） 81	10	3	3.5	19 ！	112	4	3	2	－－	1
5	18	$\begin{cases}6 & 0 \\ \\ 13\end{cases}$	10	13	32	10.			3	2		
		（1）11	11		34	10.1	$10_{4}^{-\frac{1}{4}}$ \}	4	3	2		18
6	17	$\left\{\begin{array}{ll}5 & 3\end{array}\right\}$	8	1	31	10.	98	1	6	2		
		$\begin{cases}5 & 4\end{cases}$	8	7	33	10！	11 \}	1	6	2		18
7	18	$\left\{\begin{array}{ll}5 & 5 \\ 5 & 5\end{array}\right\}$	7	13	26	9\}			3	3	I	
		$\{5,5\}$	8		29	91	9813	2	3	3	1	18
8	16	$\left\{\begin{array}{lll}5 & 0\end{array}\right\}$	8	3	28.1	9	81.3	$\frac{1}{2}$	1	21	8	1
		$\begin{cases}5 & 7\end{cases}$	8	4	31	98	9.13	2	1	22	8	1
9	17	$\begin{cases}5 & 8 \\ 5\end{cases}$	11	3	31	11	$10\}$	3	1	6	$\frac{1}{8}$	7
		$\left\{\begin{array}{ll}5 & 9\end{array}\right\}$	11	3	33	11	111 $\}$	4	1	2	8	8
10	18	$\begin{cases}5 & 11\end{cases}$	11	8	30	10	10.2 ，		1	3		
		（5） 118	11	8	33	103	11 \}	1	1	3	$\frac{3}{3}$	）
11	19	$\begin{cases}5 & 7 \\ 5 & 8\end{cases}$	10	2	33	$10 \frac{1}{3}$	1013	$\frac{7}{8}$	1	11	$\frac{1}{3}$	5
		$\begin{cases}5 & 8\end{cases}$	10	9	341	$10 \frac{1}{2}$	10,3	${ }^{2}$	1	12	2	y
12	18	$\begin{cases}5 & 10 \\ 5 & 10\end{cases}$	10	11	82	103	10	18	1	11	$\frac{1}{2}$	1
		150118	10	11	33.2	10.	11	18	1	12	2	1
13	19	$\begin{cases}5 & 77 \\ 5 & \\ 0\end{cases}$	11	13	33	11%			1			
		$\left\{\begin{array}{ll}5 & 9\end{array}\right\}$	11	13	351	110	$123\}$	1	1	22	$\underline{2}$	，
14	17	¢ 50	${ }^{9}$	13	$\stackrel{29}{ }$	10^{5}	$811\}$	$\frac{7}{8}$	4	3	1	1］
		（E） 78	10	3	32	10%	9．13	8	4	3	2	1
15	19	$\begin{cases}5 & 10 \frac{1}{3} \\ 5 & 11 \frac{1}{2}\end{cases}$	10	1	271	10.5	10^{7} 1 ${ }^{2}$	$1 \frac{3}{8}$	8	51	d	11
		$(511 \%$		9	323	10^{3}	1073	18	8	${ }^{1}$	a	1

FXERCISE FOR GIRLS．

At the present time，when women are striving to engage in so many of man＇s burdens and responsibilities，and are even desirous of competing with him in the cares and duties of professional life，the subject of exexcise for girls assmmes a new and greater importance，and the physical training of girls，the co－education of the sexes，and employment for young women appeal to every one interested in ehildren and their development．

During early childhood boys and girls are very much the same．They walk，talk，romp and play，love and hate，witis an innocent abomelon ignorant
of sex. But to the observing the difference even here is apparent. The intant Ulysses breaks the diin disgnise of gown and sleeves, dropping the distaff to grasp the sword, while the baby Andromache, inspired with the divine instinet of motherhool, sarcely able to ereep, caresses the diminutive image of herself. With the advent of puberty the sexes diverge. The ummistakahle difference of fice and feature, form and limb, denotes a change of mind and matter, and reveals the demand for a speceial training. From the time of Hippererates woman has been destribed physiologienly as engoying a tripartite life, the divisions being marked by the advent and disappeatance of the catamenial fanction. The lines of separation, diverging as childhood recedes, again unite as old age appre thes; and shakespeare's description of senility,-
"Last scene of all,
That ends this atrange event" il history, Is seeond childishness and mere oblivion, Sans teeth, sums eyes, sums taste, sums everything,"-
applies al:ke to both sexes, and hmmanity as a sexless being passes the portal of deatll. With the first and a portion of the second tripartite state of womea we are concerned.

Until the age of nine or ten is reached, girls, as a rule, are allowed to exercise and mix on equal terms with their brothers, whom they often excel both in spirit and in skiil. From this time on, the deerees of fashion impose a bondage upon the movements of the female, and the decorous girl must abandon her romps and games amd be content to contine hersolf in stays aud tight boots and exereise the regulation walk. At this period systematic phersical development should be commenced. There should be in operation in every girls' school, academy, and college a system of physical elucation similar to that employed in men's colleges, which should first emadieate any speeial defeets and weaknesses, and then ereate, develop, and maintain the symmetry of parts, gradually inereasing the strength and bodily vigor up to maturity. In this comection, as an example of what may be done, a rapid sketch of an hour's exercise, as given by Miss Mary E. Allen, director of the Allen Gymmasium, Boston, may be citel:1 "Putting cach pupil into an absolutely unfettered costme, we begin the hour with a series of free movements, without apparatus, which excreises certain sets of muscles from head to foot in regular succession, the object being gently to accelerate the eireulation and to limber the joints. Following this will come, perhaps, an excreise on the breast-bars, upright bars about cighteen inches apart, which gives a little harder work, but which concerns only lowalized parts of the body. By this time the museles are sufficiently warmed to hear more strain, and a hard puli at the elirst-weights exereises from head to foot, though the tronk and arms get $i^{\text {' }}$ main share. Following this, ley-development is in order, and a jump over a light rod which is displaced if a trip ocenrs,

[^176]with a landing upon a very soft mat, fills the demand ; by this time the respiratory muscles are ready for enforeed work, and a set of deep breathingexereises, gently and gradually increased in foree, oxygenizes most fully the blood as it flows to the lungs, strengthens them, and furnishes strong action to various respiratory museles, as the diaphragm, intereostal, and abdominal museles, with stimulation to the orgaus situated in juxtaposition, as the stomach, liver, ete. These breathing-movements, of which I make large use, they being a prominent feature of our work, are taken by the class lying down, and thus relief is afforded to the spine and brain. In addition, varions other exereises are given in the recmbent position, to strengthen the baek and lateral muscles. Now a wooden-dumb-bell drill gives stronger all-over work than the free movements, and a run up the ladders and romad the romning track again carries the work into the leg museles, while the thorax reeeives its share of gain in inereased respiration. Indeed, some althors aseribe stronger development to the thorax by leg exereises than by those of the arms. A complete rest is :ow in order, and the whole chass, doming their wraps to prevent any liability to chill, stretel for a few minutes upon the mats. The attraction of the vaulting bar is next presentell, where the excreise gives connage, elasticity, and agility. Then, perhaps, an iron-dumb-bell drill, adding still stronger all-over training than the woodenbell drill, is succeeded by a brisk, lively, competitive game of bean-lags, which induces profuse perspiration, after which the class is drawn into marching order and instruction in carriage and gait is given by a series of marching, hopping, and skipping movements, and the class is dismissed, exhilarated, booyant, and hot, to its refreshing bath and fresh clothes.
"Thus you notice that no one set of movements is continued for longer than six or cight minutes. So the mind is kept healthily ocenpied by diversity of work, and a large number of museles are gently exerecsed, insuring symmetry of development, and much more exereise is accomplished than by the use of harder movements on a few machines. In elass work, every exercise possible is performed to the accompaniment of musie, in which I most heartily believe.
"As the years increase, the body demands harder work, and exereises above the floor on high parallel bars, where the weight is held by hands over the head; low parallels, where the weight is suspended or held ly the shoulders; travelling rings, where the weight is leld by one hand; climbing and shimning exercises,--are added, according to development."

In addition to this, ont-door ganes should be a regular part of the curriculum, and swimming should be regularly tanght, not alone for the protection it affords, but also for its exeellence as an exereise bringing into play all the muscles of the body. Another useful exereise is rowing, which should be engaged in whenever the opportnuity offers, strengthening and developing nearly all the muscles of the body. Equestrian exercise is also excellent if used in morleration, especially mutil the full growth is attained. The recognition of the importance of exereise for gitls has of
late years become so general that little need be addel. The great difficulty in providing suitable places for ladies to exercise is the expense; but this is being solved, in the larger cities at least, by the establishment of ladies' clubs, and the unions formed in connection with men's athletic associations.

TABLE
Showing Average Iteights and Weights of Boston School-Girls, irrespective of Nationality. ${ }^{1}$

Age.	Occepation of parents.					
	Non-Laboming.			Labobing.		
	No, of Observations.	lleight, Inches.	Weight, I'ounds.	No. Observations.	Iteight, lnches.	Weight, P'ounds.
5 yemrs . .	120	41.66	40.55	491	41.26	39.48
19, 6	172	44.12	44.14	809	43.24	43.13
7 "	247	45.71	48.02	(12) 1	4.5 .41	47.16
8 "	297	47.92	52.79	182	47.47	51.81
9 "	224	50.16	58.78	013	49.27	56.74
10 " . . .	232	51.66	63.76	854	51.25	61.98
11 "	210	53.66	70.49	719	58.41	68.01
12 "	237	5616	80.18	671	55.70	77.52
18 "	191	58.67	90158	543	58.01	87.88
14 6	226	60.28	99.40	419	59.84	97.92
15 "	168	61.19	107.70	258	61.00	105.11
16 "	147	61.46	111.22	169	61.56	112.59
17 "	98	6188	115.15	$8!$	61.92	115.72
18 "	77	62.26	115.83	46	61.70	112.94

Aceorling to the tables of Dr. Bowditch made from measmements of Boston school-girls from five to eighteen, irrespective of nationality, there is in children of the non-laboring class an inerease in height from five to thirteen years from 41.66 inches to 58.67 inches, while the weight is nearly donbled. From thirteen to fourteen the increase is 1.61 inches, from fourteen to fifteen it is less than one inch (.91), from fifteen to sixteen a little over one-fourth of an inch (. 87), from sixten to seventeen less than half an inch (.42), and from seventeen to eighteen less still (.38). These figures are for the most part greater than in the children of the laboring class, and both tables show a steadier and more regular inerease and one extending over a longer period than in boys of the same age. The importance of these deductions is twofold, -showing that girls require throughout a longer period the utmost eare that they are not overtased, and also that during the later part of this perion they should not be subjected to excessive study, but should be permitted to perfeet their development.

If we compare the average girl of to-day with the ideals beheld in the pietures and statues of the past,-the well-developed and shapely arm and shonlder, the high chest, the vigorous body, and the firm and ereet carriage of the Minervas and Niobes, Venuses and Junos, of mythology, the Helens,

[^177]the Madomas, and the medieval beanties,-there is at once a conseionsmess that something radically wrong exists. Instead of this galaxy of leautiful parts, a vision of pipe-stem arms, serawny neeks, angular shoulders, flat chests, narrow backs, stooping carriage, and weak walk, recalls us to the realities of the present. If we firther compare the brilliant eye, the damask cheek, and the luxuriant form of the robost English damsel, the sturdy German frimulein, or the hardy Provengeal maiden, with the vacant gaze, pallid features, and attemated figures of the fragile, casily-fatigued, languid girls, the products of modern Ameriem habits and enstoms, the contrast is curually striking, showing that there is a conservation of force on the part of the trams-itlantic femate, and a deterioration of foree on the part of her eis-Athantic eivilized sister.

As pointed out in the first seetion of this artiele, the statnes of the goddesses of the Greeks were taken from models who from attention to physical culture were ideals of health and symmetry ; and the m ral is evident that the errors which exist in our present system of female education are the lack of proper physienl exereise, and a disregard for the obligations which sex imposes upon the developing females.

But there is one fact that is constantly brought to the notice of the physician, and it is his duty to cantion against it, and that is that girls who become enthusiastic in any form of exereise are apt to disregard totally the catamenial function. Cases have been known where champion matches have taken place during the menstruation of one of the players. The strain and over-exertion ineident to the contest wonld certainly have a baneful influence on the sexual organs at this time. The same must be said of fatiguing horseback-rides, long drives with exposure, monntainclimbing, swimming, and the like. The injury done under such ciremmstances is illustrated in the note-books of gynecologists.

Remarkable degenerative changes have oceurred during the developmental period, the most important era in a woman's existence. There has been a disregard of the four conditions considered requisite by Clarke ${ }^{1}$ for the proper eclucation of the female: "first, a sufficient supply of appropriate mutriment ; sceondly, a normal management of the catamenial functions, inchuding the building of the reproductive apparatus; thirlly, mental and physical work so apportioned that repair shall exeeed waste, and a margin be left for general and sexual development; and, fourthly, sufficient sleep."

Then, again, dress has had a share in produeing these changes. The gifted authoress of "The Gates Ajar" and her followers, in their explanation and advocaey of a new elothes-philosophy, have done much to emancipate women from "corsets that embrace the waist with a tighter and steadier grip than any lover's arm, and skirts that weight the hips with heavier than matemal burdens."

[^178]
GYMNASTICS.

The traditional history of the Chinese, the superstitious religious practices of the ancient Indians, the carliest mythological fables of the Egyptians and Greeks, all contain references to the employment of exereises for the restoration and preservation of the health and the improvement of all the facultics.

Pliny tells us that Asclepiades, who lived in the second century b.c., cured all diseases by physieal exercises alone, aud justifice his declared willingness to forfeit all clams to the title of physician slould he ever fall ill exeept from accident or senility, by living for more than a century and dying eventually from the effect of an accident. The relation which was thas carly established, both in history and in tradition, between plysical exereise and health and longevity became later, as among the early Chinese, the vital principle of civilization of all the more powerfin mations of the world. In Greece, and espectally in Sparta, the idea of personal hygiene, or physical culture as we now call it, overtopped every other, and resulted in a type of physical perfection which has never since been equalled. The Romans, eminently a warlike people, appreciated the value of exercises only so far as they promoted the physical foree for military purposes.

With the inerease of losury and vice, the gymmasia declined in reputation and favor, and, when Grece and Rome began their uninterrupted desent in the seale of nations, gymastic and athletic proficieney likewise declined, to become in the Middle Ages almost the exclusive property of the nobility and professional soldiery. During all this period there existed but a vague and empirical estimate of the true value of movements, exereise, gymuastics, ete., and it was not until the beginning of the present century that gymmastics hecame systematized and popularized. In 1811 Jahn estallished iu Berlin his gymnasium or Turnplatz, introduced new apparatus, improved the defective system, published his celebrated essiy on the principles of gymasties, and established the Twmereine. The sucecss of these aud the energetic aids of Guts-Muths and Spiess led to the establishment of similar societies in Switzerland, Sweden, and France, and later in England and in our own conntry. It remained, however, for Peter Henry Ling, a native of Sweden, in 1816, with a remarkable intuitive grasp to collect and arrange the scattered fragments and shifting facts, to separate the real and rational from the superstitions and empirical, and to create with the aid of anatomy and physiology, upon a philosophical and scicutific basis, a system of movements and exereises for the development and perfection of the whole body. It is a little over fifty years since Ling departed, and still, as Dr. Richter, the great plysician of Hanover, said, "his priuciples are ineontestable." He had learned, in a life of vieissitudes and excitement as a fatherless boy, a theological student, a thtor, a naval volnuteer, and a fencing-master, the value of a sound body; and, as a leading French
authority has said, "if he was not the ereator of the modern, seientific gymmasium, he was its regenerator."

What is implied by exercise has already heen deseribed. Movements include more: they are motions of speefie kinds, having specifie effects, employed for specific purposes, and practised to seenre definite results.

As pointed ont by Taydor, "movements are meehanical agencies, directed either upon the whole system or a part of it, for the purpose of inducing determinate effects upon its vital actions, and generally having reference to its pathological state."

Movements.-Movements are conveniently divided, aceording to the source from which the moving power is derived, inta active and passive. They are also said to be single when but a single person is engured in their execution, and duplianted when more than one is engaged. All the movements to be deseribed in the first part of this section are single, but in the sceond part they are of the sceond varicty. These second or duplicated medical movements are also of two varieties, of each of which examples are given. In one the patient, quite passive, receives the motion of some particular variety given by the physician or operator; in the other the patient is required to bring into action some particular part, the quality, amont, and duration being entirely controlled by the plysician or gymmast.' The degrere and kind of resistance employed by the operator in his or her manipulations require a variety and nicety in the different stages simihar to the delimary of touch employed by musicians for giving expression and cffect in instrumental performances, constituting a tactus cruditus that camot he acepuired from books.

Movements are also deseribed as conentric when the musenlar contraction steadily increases, and eccentric when the muscle is streteled and its musenlar contraction steadily dereases. From the explanation already given of the physiologieal action of musenlar tissne, from the common experiences of every-day life, and from the fact that " fatigne is in proportion to the amome of mental and nervons rather than to the amonnt of muscular action employed," it is evident that all movements shonld be slowly performed, from a partienlar pesition or base, and the more prolonged the movement the greater the amome of monsenlar excreise in proportion to the time ocenpicd, especially in the respiratory exereises and the trink movements generally on accoment of the vital organs contained.

Swedisir Movbmexts. - Aerording to Prof. Ling, gymnastics are divided into four great classes:

1. Pedagogic or school gymuasties (subjective active), in which the person through his own strength exereises and develops the power to control his own berly ly his own will.

[^179]2. Military gymuasties (oljective active), in which one person exereises or contends with another outside will, and by his own muscular power or a weapon of some chameter masters another's will.
3. Medical gymastics (suljective passive), in whichaperson endearors, through certain positions or with the resistance of other persons, to cure or relieve discase proluced by a disturbance of the organism.
4. Wisthetie gymastics (oljective passive), in which the person lya motion or gesture endeavors to reflect his thonghts, emotions, feelings, ete.

The movements employed in the Swedinh system may be described muler the different regions included, as the bead and nerk, arms, tronk, ete, but are most conseniently classed mender the following divisions:

Betucational Gymnasties.-1. Fimelamental positions. 2. Areh flexions. 3. Heaving movements. 4. Balance movements. 5. Shoukler-hade movements. 6. Abdominal exercises. 7. Lateral tronk movements. 8. Slow leg movements. 9. Jumping and vaulting. 10. Respinatory exereises.

Medico-Gymncuste Exereises.-Respiratory exereises. Genctal health exercises. Exercises for lateral corvature.

The introductory exerrises are intended to secure gencmal attention and muscular control, and to correct the gencral equilibrium and base of support before the more diffiente exercises are madertaken. These include the formation of the lines, numbers, changing position, casy feet and leg movements, head movements, eertain arm and tronk movements, and marching, all of which reqpire abont five or ten minutes. 'The calisthenics which immediately follow should ocenpy only from twenty minutes to half an hour.

The arch flexions comprise carions forms of hackward flexions of the trunk, and are given for the pmopose of strengthening the dorsal spine, expanding the lower portion of the ehest, and stretehing the upper portion of the abdomen.

The heaving movements comprise forms of self-suspension by mems of the arms on a horizontal bar or other apparatus, and are given for the purpose of expanding the upper chest and strengthening the arms.

The balance movements are positions taken from a smaller area than that included within the feet in standing, the difficulty being inerensed by the altitude of the supporting surface and the diminution of the area of support. They are introducel to develop the equipoise of the body and to serme grace and beanty of action.

The shoulder-blade movements are varions forms of arm movements intended to correct the position of the shoulder-blades.

The alolominal exereises bring into play chicfly the muselos of the alxlomen, and are employed not alone to strengthen the ablominal walls, but ako secoudarily to affect the digestive organs.

The lateral trink movements include varions forms of sideways bending and twisting of the thorax, and are employed to strengthen the museles alont the waist, but also influence secondarily the organs in this region, especially the digestive.

The jumping and vanlting are employed to promote the genemal elasticity and grate of the benly.

The respinatory exerefses comentent the ill effect of the preeding exercises, nud are employed to diminish the frequency of the heart-bent and rember the breathing less labored.

The proper arrangement of the order of the movements is very impontant, to enable the pupil or patient to seeme miform and bencficial results. For this purpose Prof. Ling proposes the following order, suligeet to molifiration in particular cases:

1. A respiratory movement.
2. A morement of the lower extremities.
3. A movement of the upper extremities.
4. A movement of the alramen.
5. A movement of the trink.
6. A movement of the lower extremitics.
7. A respiratory movement.

Tho principal base positiom-standing-is as follows: IIeels together, feet at a right angle (ninety degrees) with cach other, knees extended, hips extended, rotated outward, and fixed, back museles extended, seapmhe fixed backwarl, fingers, forvarm, and arm extendel, hanging in a position betwern pronation and supination, neck extenderl, chin retracted, and the eyes fixed forward and upward.

This pasition is so partieular that its correctness would be destroyed hy the lowering of an eyelid.

The Swedish system has divided the principal hase positions into five, of which the one above described is the prinejpal one, to which are adderl

Fig. 7.
 the knce standing, lying, laulflying, and hanging. The conrect base position must always be atssumed before any other position is taken and before any movement may be undertaken from these secondary prositions.

Standing prosition.-Fig. 7. Foot grasp, wing forward, falling position.-In this position the left foot is fixed about one and one-lialf feet from the gromen, the left leg being extended. 'The left leg extended, the back extendel, and the head kepi forward and upwarl, the weight of the booly is thrown noon the right leg, the knee of which is bent at about a right angle. The person must alternately change the feet, so that the whole booly shall he exereised to the same extent.

Fig. diflicinlty the persor horizontal

Fig. 8. Wing balanee standing, knee bending and extending.-The difficulty in this movement is to maintain the balance of the trumk when the persion rests only upon one foot, while the opposite thigh remains horizontal and the legr is altermately extended and flexed.

Fia. 9.
Fig. 8.

Fig. 9. Balance walking on horizontal bar.-In balanee walking the eyes must be fixed forward and mpard, the shonhers fixed backward, the chest expanded, the ellows slightly bent. The foot is advancel by slightly flexing the supporting knee, the leg deseribes a half-circle, and the toes are first applied to the bar, followed by the side of the foot and heel. The balanee of the body is further assisted by the elevation and depression of the arms.

Fig. 10. Wing standing, legs lifting sideways.-In this position the weight of the body is thrown \quad pon the resting lower extremity and the same side of the body. The alternate lifting and sinking of the working lag is ancomplished by the concentric and eceentric ation of the adductors and abunctors. This movement may also be considered as a balanee movement. The lower extremities are alternately exereised.

Fig. 11. Stretel stride standing, trimk back ward bending with s!! ${ }^{-}$-port.-By having the arms in streteh position and the support in this movement, the bending backward can be so far performed as highly to Vol. IV.-20
influence the upper portion of the thorax, separate the lower rihs, and extend passively the ahdominal museles.

Fig. 12. Areh support standing, knee flexing and extending. -The hands are stretched and fixed to the bars, the body abont two feet distant from the wall, so that the trink and neek describe a curve in which the ehest is well expanded. After assuming this position the knees are altermately flexed and extended. This position, as well as all arch standing positions, makes especial pressure upon the circulation in the vessels supplying the spinal column.

Fig. 13. Hanging position. A.-The hands are parted about one and one-half feet and fixed upon the bar, the head upward and hackward, chest expanded, shoulder-hlades held backward, heels together, feet rotated at ninety degrees, the body hanging on the flexors of the arms, the principal trunk muscles, and the ligaments.

Fig. 14. Underhanging, double arm flexion. B.-In this position the hands are parted as in the preceding position, but are passed bencath the bar and grasp the upper side. Only by gradual exercise is the person able to elevate the entire body by the double arm flexion.

Fig. 15. Bent hanging, double knee extending.-Bent hanging desig-
mates a with botl?
ment refers
tion is. up movement i

Fig. 16. see Hig .15. either side hack ward I movement forward.

Fig. 17. one over th crosses the r the grip of acroses the ra ment combi

Fig. 18. stride standi
mates a position in which the body is hanging by the hands on the bar, with both knees flexed forward and upward at a right angle. The move-

Fia. 12.

ment refers to the extension of the legs. The principal effect of this position is upon the abdominal, psoas major, and iliacns muscles, but the movement itself exercises strongly the extensor quadriceps femoris.

Fig. 16. Bent underhanging, hand walking.-For bent underhanging see Fig. 15. The legs remain in the extended position. The hands are on either side of the bar; the body is slightly elevated and slowly moved backward by the alternate grasping and relaxation of the hauds. This movement would be rendered moch more difficult by moving the boly forward.

Fig. 17. Inelined rope climbing upward.-The hands grasp the rope, one over the other, the highest one being the opposite of the knee that crosses the rope. The walking upward is performed by alternately changing the grip of the hands and alternately swinging one leg and then the other across the rope, the hanging leg being always fully extended. This movement combines the lifting with the trunk change turning movements.

Fig. 18. Yard stride standing, tronk forward bending.-In the yard stride standing position the arms are extended and lifted horizontally side-
ways, the feet are apart. 'The motion is mude by the flexors of the trmuk forward. This movement by taking the yard standing position exercises

Fia. 13.

Fia. 1.

the shoulder and back museles (rhomboidei, trapezins, and latissimus dorsi), and it is therefore a valuable exereise in the treatment of lateral enrvature.

Fig. 19. Yard forward lying, arm bending and stretehing sideways.The heels are held down, and the hips only are supported across a bench, the upper part of the body and the neek being kept in an extendel position forward and upward. The movement consists in horizontally flexing and extending the arms while in this position, the aetion upon the muscles being limited to the shoulder, back, and arms.

Fig. 20. Stretch forward lying, arm bending and stretching upward.This position differs from the preceding only in the movement of the arms, which are alternately flexed and extended downward and upward, exercising principally the museles of the upper dorsal region.

Fig. 21. Stretch lying, legs elevating.-The trunk is resting on a low couch, the arms stretched upward parallel and lying free upon the

Fio. 15.

Fin. 16.

Fig. 17.

Fig. 18.

11028

Fig. 19.

conch. The legs are kept in a horizontal position without any support, and from this they are elevated to a vertical position, strongly exerecising the abdominal muscles.

Fig. 22. Stretch knee stride standing, tronk hackward bending.-1n the stretch knee stride standing position the heeds are together, the knees separated from fourteen to eighteen inches, the thighs extended, and the arms extended upward and parallel, the hands never being appoximated nearer than the distance between the shonder-joints. In the bending harkward the trmk is slowly flexed haekward, while the thighs still remain in the extended position, so that, although the musenlar action is greatest mpon the psoas, iliaens, and abdominal muscles, the flexion is confined entirely to the lumbar region.

Fig. 23. Fect fixed, wing sitting, tronk backward bending.-The feet are fixed moder the lowest bar, both entire lower extremities are extender and resting upon the floor. The arms are in the wing position, the batek extended, the seapule fixed backward, the neek extended, the chin retracted, and the eyes fixen forward and upward. The bondy is sonve and alternately bent harkward, aud again elevated to the horizontal. This position is one of the most important alulominal movements, exercising, ats it does, the ahnlominal muscles, and producing a retlex stimulating action umen the alyhminal viserea.

Fig. 24. Feet fixed, arms streteh sitting, trunk backward falling.The feet are fised under the third bar of the "ribled ellair," I heeds therether, the tors rotated outwarl, the lower extremities, trunk, and arms extended, and the arms and trunk maintainel in a horizontal position. The effect of this exercise is the same as that of the preeeding, except that it is more intense.

Fig. 25. Stoop falling position.-The body is supported by the hands and feet resting upon the floor. 'The whole body is hed rigid, the heeds together, and the hands separated the width of the shoulders and promnated and adducted. The booly is alternately depressed and devated by the flexion and extension of the arms. This movement expands and enlarges the thomax, develops the arm museles, contracts the almbuminal museles, and strengethens the extensors of the legs and fret. It is a comhined respiratory and abdominal exercise, and comectly taken it may he comsiderent one of the most stimulating and strengthening movements fir the develdment of the entire hody.

Fig. 26. Horizontal stoop falling position.-This is identimal with time preseciing, except that the feet are elevated and supported in a prosition horizontal to the booly.

Fig. 27. Reverse stoop falling position.-This is the same as the pre-

[^180]Fig. 22.

Fig. 23.

Fig. 24.

Fio. 2r

Fig. 2

arding
howey p
hal w: herels 1

Fis
lailf' at
extemel
fixed
Fi
In thit
the : an
exp:anel
minhter
a ylant
t1) exte
rejuater
Fing
pusition
tha flow
in exter
and tha
luyth sir
Fix.
there fo
the flow
of the
a horiza
dowly 1

111
ther $x^{2} \cdot 1$
of girs
l"ig.
duced 1
-herels
jIII!
in the
wwer es
twint kn
the arm:
count.
arding exeresise, but with the fere clevated alowe the lomizontal. The effect, lowever, is intensified, beanse almost the entire weight of the booly is supported upen the "pper extromities.

Fig. 28. Arms bent, support falling, leg elevating.-The body is supperted upon the flexeyl arms, the hands lecing fixerl against a herizontal har waist-high. The body is inclined downward and forward, with the herds resting upon the flowr. The legs are alternately elevated and depressed.

Fig. 29. Foot fixed, stretch balance standing, trmen sideways bend-ing.-The persom stamling umon one leg, the other finot is separated about half a yard and tixel at about twelve inches from the floor. The arms are extemed parallel, and the trme is flexed laterally to the side ofposite the fixed foon. These flexions are then alternated ly changing the feet.

Fig. :3t). Ams bent, trmk turn, stride standing, arm extomding.In this position the fiugers are dose tougether, the hands slightly flexed, the ams flexed, and the hands fixent to the tip of the shoulder, the chest expanded and the sapule retravterl, the fiee separated about fiometeen to rightern ind hes to fix the hips, while the piper part of the trmk is rotated a plarte: al a sirde first to me side and then to the other. The motion is (1) exteme the arms mpard white in this rotated position. It may be repated fome to eight tianes card side.

Fig. 31. Half stretch, half sulpurt, side falling, legs elevating.-This pmation is taken bey supnring the entire rigid bedy with one hand upon the flener, promaterl and adducted, and the side of one fone. The other arm is cextended upwad. The movement consists in devating the upper teg and then appoximating it to the other. This movement is performed from Inth sides, as it strongly exereises the lateral museles of the trumk.

Fige : :3. Sideways hanging pesition.-The hands are sparated about three feet and lixed npon the hars so that the lowest one is one yard from the flow. By mantaning this grasp, amb bexerting a strong contraction of the upper lateral tronk muselns, the lage are lifted sideways mpard to a lowizontal pasition. As som as the exact pusition is semered, the fere are Ahewly lowerel to the flow and the wement repeated nen the opposite side.

Ling desiguates this ats the most diflionlt--the fimal prasition-or his systom of sehoml eymuaties. It is generally umdertaken only by hoys, becanse the relatively hemvio lower extremities and weaker lateral trmk museles of givls render it muel more dithenle for the latter to perform.
 dued by hede rising and kuees bembling, in which we have four coments, -heels rise, 1! kine beme, 2! knee cxtend, 3! howls sink, 4! In the jumping we add one more comut, - i! ! in which the jumping is performed on the third mont log a sudden eflint of all the extensor musides of the lower extremities. The hody desembls unom the tipenes, herels tugether, and
 the arms may be lifted momentarily from the side and depressed in the third cuint.

Fig. 28.

Fig. 30.

ward,
$\underset{\mathrm{Fig},}{\mathrm{Fi}}$
bated by risinury, kı Kinee exte

These
steps, and the comutin

Fig. 34. Ruming jump.-The ruming is commencel by one step forward, 1 ! the other foot extended, and the jump accomplished and temi-

Fic. 31.

buited by bringing the feet together, 2! The body will descend in heels rising, knees bending position, in which the trunk will remain upright. Kiner extension, 3 ! lowering of the heels, 4 !

Fig. 32.

These movements mave be rendered more complicated by adding more steps, and either allowing the children to count for themselves or omitting the comiting altogether.

Fig. 35. High jumping.-The jump is preweded he a short rum, to give momentum, and if the har is high the chiddrem maly be altowed to have the
 "spring-hoard." In jumping over the har the eves mast be fixed upward, the newk extembed, the shonder-blades hack, the arme and trunk extembect, and the thights slightl! Hexerl; the knees most be very stromgly flexed, and the heels kept tagether. The shoek of the deseent is wo ceiverl umon the extrmed toese, devated heels, and flexed kneres. This pesition is maintancel for a moment, and the bodly is devated bey extending the knee, :3! and sinking the herels, 4 !

This cam be made more eomplicated not only by clevating the har, but also ly incrensing the lengetlo of the jump. Another modification of high jumping is turniug during the jump, so that the body potates a quatere of a circle or mome in its flight. If the high jump is made from a higher to a lower level, this also inereases the difficulty.

Fig. 36. Vanlting.-The har mest be fixed alont waist-high. The hamels are placed upw the mper surface of the hare, I! A short double spring is taken, and the bedy is clesated, and rested $\quad 1$ on the rigil arms and har, 2 ! The hameds are changed forvard under the har, 3 ! The vanting over the bar is performed ly dhanging the batane of the body by flexing the knees and bending the berdy formard, so that it is bromght to the other side of the har in the fall hanging pusition, followed bye elowating the berly to stretel ared standing presition, t ! This position is maised to stretch standing position, 5 : and wromed standing, arms down position, 6!

The exereise may be rendered more difficult by bowering the bar.
The following eight exeresees are selected from amman all those inchuded in the sestems of Ling, as being ideal positions exercising tugether all the muscons of the body. Each one taken to its fall extent stimulates "perially the cirenlation, respiration, and digestive organs, as well ans strengehems the nervons system both directly and reflexty. Taken tugether they may be considered a system in themselves, sine they include exeroses for erey misele in the brody.

Photo. VI. Neck rest standing, heels rising.-The wing standing, hecls rising pusition is assumed from the first base (standing) position, but the hands are fixed at the hipe, the thmme backward, and the fingers firmly flexed about the waist. The ellows are pointed ont sideways baekward In the beels rising prosition the heels are elevated as high as possibte, so that the person stands on the tips of the toes.

PIIOTO. VI.

Piotor VIII

 sif Pistions

PIIOTO, V'H.

 Postrton.

1'IOTO. IN.

 wi lowithes.

Ftg. 34.

Fig. 35.

IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences

Corporation

The mustles exereised are the following. Position: wing standian Museles: the deltoidens and supra-spinatus lift the arm (upper eart) hori-

Fig. 39.

zontally. Flexion of arm: biecps brachii ; brachialis anticus; spinatus longus; pronator radii ten es; flexor carpi radialis ; flexor ulnaris ; palmarilongus; flexor digitorm sublimis. Pronation of hand: pronator radii teres; pronator quadmatus; flexor carpi radialis; paluaris longus; flexur digitorum sublimis. Fixation of arms and hands to the hips: peeturalis major; latissimus dorsi ; teres major et minor ; substapmlaris. Heels raising, extension of feet : gastrocnemins; solens; plantaris ; flexor digitorm communis longus; flexor longus pollicis; tibialis postiens; peronens longus et brevis. Extension of lens : rectus femoris; vastus extermus et interme: crumalis. Extension and rotation outward of thigh.-Extensors : ghtens maximus, melius, et minimus (posterior part); olturator internus ; gemedli; quad:atus femoris; biecps femoris (the long head); semitendinosus; semimembranosus. Rotators outward: adductor longus, brevis, et magnus; glutens maximus et medins; psoas major ; iliacns; pectinens; prrifomis. obturator intermus et exterms; gemelli ; fuadratus femoris ; biceps.

By taking the wing standing position the upper 1 art of the thoras
is der the pres ducing wing st perform So to and pre secretio ment m

I Pr, necek re the were tenderd, are dive extender fixed, st In the ty yether
extarnins
alortomin
the side
inferior
the sam
externus
or less it
The
standing
The
affecting
passage
six to te
Phot
standing
tion, in
fingers :
sideways
is devated and fixed, the chest is expanded, the lungs are inflated, and the pressure on the heart and greater blood-vessels diminished, therely producug increased oxygenation and increased eirenation of the blood. The wing standing position also fixes the hips. The heels raising, alternately perfirmed, stimulates the circulation in these parts,-flushes the parts, so to speak,- (drawing the blood from the head, depleting the brain, and preventing "cold feet." This alternate movement also increases the secertion of the synovial fluid, preventing stiff ankle-joints. This movement may be repeated ten to twenty times.
llhoto. VII. Neck rest standing, trunk change tarning, - In the neck rest position the arms are lifted upward and the hands rest behind the oneck, with the tips of the fingers tonching. The wrist-joints are extendel, the elbow is flexe?, and the ams are abducted so that the elbows are directed outward. The scapule are drawn backward; the neck is extended and the chin retracted. In the trank change turning the hips are fiseli, so that the turning is confined to the upper part of the trunk only. In the lower extremities the knees are extended, and the heels are kept to vether, with the feet at a right angle.

Museles exereised: in the position neek rest standing the scapule are rotatel, the arms are lifted, the weight of the forearms bends them, and the hands are pronated and fixed to the head by the museles of the scapula. Musdes: levator scapule; rhomboidens; trapezius (upper and middle part). In turning the trimk the whole "muscle spirale" is in contraction. Muscles: the pectoralis major and intereostales internus on the right side are contracted in the same spiral line as the peetoralis minor, serratus anticus major, and intereostales externus on the left side; the obliquas abdominis extermens on the right side is contmeted in the same lime as the obliquus aldominis internus on the left. All these muscies work together or turn the side forward; on the back from the other shonlder. Museles: the inferior part of the traperins, latissimus dorsi, serratus posticus inferior in the same line as on the opposite side, multifidus spine and intereostales externus. The direct museles of the tronk and abdomen are also more or less in aetion, some concentrically and others eceentrically.

The position neek rest standing has the same influence as the streteh standing, except that it affects ail portions of the chest.

The tronk change turning execises the spiral muselcs of the tromk, affecting particularly the vena cava inferior, and thereby stimulating the passage of the venous blood to the lungs. This may be performed from six to ten times upon each side.

Photo. VIII. Stretch standing, trunk sideways bending.-The streteh standing, tronk sideways bending is taken from the streteh standing position, in which position the arms are extended parallel upward, with the fingers straightened. The head is extended and the chin retracted. The sideways bending is accomplished entirely by the lateral trunk museles, the head and arms remaining in the streteh standing position.

Vol. IV.-21

Muscles: extensors of hands and arms, rotators of scapula, eceentric action of the museles of the convex side of the bending body; the museles of the bent side remain nearly passive, as the bending is mostly produced ly the weight of the body after the first motions are started upon the same side. Extension of the fingers: the extensor digitormm communis, interossei interni, adductor pollicis, and adductors of the fingers. Extensors of the hand : extensor carpi wadialis longion et hevior ; extensor "arpi uharis; extensor longus pollicis; extensor digitormm communis; extensor indices proprins; extensor minimi digiti proprins. Extensors of the arms: trieeps ; anconens, also some of the extensor muscles of the ham ; extensur digitorm commmis. Rotation of the scapula: serraths anticns major and trapezins. Flexion of the tromk: multifidus spine and interspinates, Sideways bending: intertramsersarii ; transersus abdominis; quadrathes lumborime ; obliquus abdominis intermus et externus.

The intention in assuming the stretch standing position is not only th stimulate the upper part of the thorax, but also to inerease the effect of the trunk sideways bending, alternately performed, upon the liver, the purtal system, the spleen, and the ahdominal contents generally. This movenent may be repeated from three to six times on each side.

Photo. IX. Streteh stride standing, tronk forward bending.-In the trumk bend: ug forw ord the correct streteh stride standing position is first assumed. For the stretela stauding position see Photo. VIII. In the stride the feet are separated abont eighteen inches. In the bending forward the hands remain in a position parallel with the head. The bending is performed by the flexion of the entire spinal colnmm. The knees must be extended, and the balance be maintaned by a powerfal action of the calf museles. Beuding the body forward sufficiently to tonch the hands to the floor can be aceomplished only after long practice.

Museles exereised : in assiming the stride standing position the museles exercised are the adductors of the supporting thigh and the abductors of the limb that is moved sideways. The first motion, bending the tronk, is performed by the flexors of the abolomen. After the bending is started the weight of the body inereases the motion, and (the streteling muscles) the extensors for the batek as well as the ligaments keep the body from falling forward.

Flexors of the abdemen (or the tronk):

> Direct, $\left\{\begin{array}{l}\text { reetus abdominis; } \\ \text { obliquns abxlominis extermes et internus; } \\ \text { pooas majur et minor. }\end{array}\right.$ Indirect, $\left\{\begin{array}{l}\text { pectoratis major et minor; } \\ \text { sert ons antiens major; } \\ \text { transversalis abdominis. }\end{array}\right.$

Extensors of the trunk: trapezins; rhomboidens, latissimus donsi ; serratus posticus superior et inferior ; extensor dorsi communis; multifidus spinæ; quadratus lumborum ; levatores costarum.

Halfesthetch Walk, standing lowithon.

PHOTO. NII.

Yabld Walk, liah. Standing Posithon.

1HOTO. XI.

 T1ON.

PIIOTO. XIII.

Sthetch Standing, heme Rising, Kive mexdinti fontmon.

Liemments: fibroartilagines intervertehales; ligzmentum longiturlinale pusterius; ligmonta subflava; ligamenta interspinalia et ligamentmon methe; ligamentmu apiemm ; ligamenta trans erearia.

The stretch standing position has beon alroudy deseribed, hat having this presition in the tromk bemding forwand stretches the moseles and makes presenere uren the cirenlation of the bood-vessels of the spinat cord, and by. the wher alternate flexion and extemsion the blood is fereme into and mit of the vesels of the brain, therelyy removing the senons bow and replacing it with fresh arterial blood. This has a strengthening and stimulating flled nom the brain-substance and the spinal cord, as wet! as upen the mutire nervons system to its finest ramifications.

Photo. X. Half stretch wall, standing position.-In the half stretech walk, standing position, the left arm is extemed forwarl and supinated, and the right ame extemed and pronated downward and hackward. The left . Wee is flexed, and a great portion of the weight of the bouly is thrown mon it, low which action the extensors of the left heg are put intes very strong conentrice exercise. The :ight leg is extemed hackward and abducted, and is assisted in mantaining this pasition by the ileotfomoral ligument. This position may be retained from one to two minutes.

Muscles exercised : extonsors of back, logs, and arms. Right ampromated and moved hackwad by latissimes dows, rhomboidens, traperins (middle and inferior part).

By taking this position any undne strain non the aludominal organs is prevented. The intention of the exereise is to stimulate the batek mustles are well as the cirentation to the pimal cord.

Photo. XI. Stretch walk, standing, trumk turning pesition.-This position differs from the half'stretch walk (Photo. X.) in both arms being extended instead of one. The lower extremities are both in the same pesition as in . Yoto. A. In the turning the arms most remain parallel to carh other, and, as the weight is supported entirely uron the flexed knee, the turning is contined to the mper part of the trums.
 Phote. VII.

This position taken to its fullest extent has at the same time the strongest infunce upon the reppration, circulation, and digestion of any single exmerie in grymasties, and has a bencficial roation upon the entire meroms systum.

Photo. XII. Yard walk, fall standing position.-This position differs from the half streteh walk (Phow. X.) in the persition of the arms, which are extended horizontally loth in the same line.

Muscles excreised : the deltoidens and infraspinatus lift the arms horizontally; the seapula are fixed backward ly the rhomboidens and traperius (middle part). For muscles exereised in the walk forward, fall standing prosition (extensors of lack and legs), see Photos. X. and X I.

This extending and flexing the arms alternately in a horizontal plane
hats an expanding influence upon the chest, stimulates the respiration, and develops the arm museles.

Photo. XIII, Streteh standing, heels rising, knee bending.-The arms are stretehed up parallel, the finger's closed and extended, the shomlders back, tho neek and back extended, the knees bent sideways and out wandy rotated, and the lieels close and lifter. This exereise inflnences the extensop moseles of the body and expands the lungs, and is good for strengthening the spine and the nerve is system. For the museles exereisol, ree figures deseribing arm stretching and heels rising. Kinee bending, the flexom act in the bonding, then the extensons resisting are bronght into arti,n and are mainly exereised; these latter moseles are the ghatms maximns and the ghtens minimes (three glutei), proiformis internus, smimembranosns and semi-tendinosus, and abductor magnos.

Physicel Derelopment in the Trotment of Disease and Deformity.—Most of the affertions benefited by the movement cure are of the chronic typ, and recuire for the most part the second or duplicated varicty of exercises. In the majority of these diseases, too, what is required is to restore and develop the entire hoty: in other words, their enre involves the vital principle of plysienl culture, -the aepuirement and preservation of health, In addition to this, in others it will be necessary to perform certain sperefice exercises intended to stimulate ani restore directly the affected region on organ. 'Linese need not hore be deseribed in full, as they have already been given in more or less detail in other parts of this work.

In eonsidering the subject of movements in their partienlar application to childrep, the employment of such apparatus as dumb-bells, Indian elubs, ehest-weights, rowing-machines, ete., must mot be overlooked. The length of this article, however, will not permit of their deseription in a proper mamer, so that those interested are referred to the excellent writings of Maclaren, Sargent, Blakie, Ralfe, Ball, Dowd, Oswadd, Schaible, and others. Nor must the subject of passive and active movements by means of the beautifully-constructed appantus employed at Baden Baden and similar resorts be slighted. These systems possess a voluminous literature of their own, and are neither specially adapted for childhood and adolescence nor properly to be considered within the limits of this article.

In conelnsion, attention may again be directed to the tendeney to develop some parts at the expense of others, - the lower extremities of rumers, the back and forearms of rowing men, ete,,-and to the neeessity of insisting as far as possible upon the complete development of the body; in other words, emphasizing the statement of Dr. Parkes that, when a single musele or gromp of museles is exereised to too great an extent, these after growing to a great size begin to waste, which does not seem to be the case when all the museles of the body are exereised.
M.ss in its a the moverne are nised hrongh

Histo imbeed, al the Chine and that tions of 11 time the publientio correctines matstige a then estal regular a probably whtained t internal di: the brutal learned fre Midelle As meediano-tl Borelli call published a to have bee as the work followed in thes and the of musenla
work (1808

MASSAGE

By WILLIAM A. EDWARDS, M.D.

Massage, from the French word masser, literally means kneading, hut in its appliation of to-day it denotes the commmications of motion to the "sucs from an external somree, in contradistinction to the various movements, Swedish, localizel, and remedial gymmastics. The latter terms are used to designate motions of the entire limb or limbs or of the trunk through the joints.

Historical.-The application of massage to medieme is of ancient date ; indecd, as Weiss and Ritterfeld tell us, docmmentary evidence shows that the Chinese recognized ts importance three thonsand years before our time, aud that remarkable book of the Hindoos, the Susputa, contains deseriptions of mechano-therapy; the Brahmins contimue even mp to the present time the method that was in use thousands of years ago. The Chinese publications of centuries ago present illustrations which show elcarly the correctness of the ideas of the Chinese plysicians at that time concerning milsage and medical gymuastics. Duhalde informs us that the schools then established have been maintained, mutil now they form part of the regular curviculum of the educated Chinese physician, and that it was prolably from the Hindoos and Chinese that the Greeks and Romans oltained their information on masso-therapeuties. It was not until the internal disintegration of the Empire had commenced that Rome introduced the brutal exhibit of her circus sports in place of the more refined exereises karned from her Grecian neighbors; and finally the Christianity of the Middle Ages, in abolishing all Roman erstems, made no exception of mechano-therapy, which consequently fell into disuse until about 1680, when Porelli called attention to its peenliar virtues. In 1740, Fuller, in Enghand, publishecl a little work which attracted much attention, and which appears to have been the turning-point in a revival of the popularity of massage, as the works of Börnor and Gehricke (1748) appeared in rapid succession, followed in 1781 hy that of Clement Joseph Tissot, later by those of Barthe\% and the two Webers, and hy John Pugh's (1794) treatise on the science of museular action, which in turn was followed by Barelay's Edinburgh work (1808), "The Muscular Motion of the Human Body," which Schreiber
(1887) considers wortly of special commendation. Balfour added his testimony in 1819, and Iravaz in 1827 ; but the greatest advane was made hy Blache in 1855, and by Ling, whose work at the C'entral Institute of Gymmaties at Stockholm extemberl from 1806 until his douth in 18:39.

Shereiber tells us that the number of magazim artiches and pamplikets from all sompers to 187.4 rangel from one th four a year, incraning in 1879 to nindecen publications in varions languages: this incronse domonstrates the general interest in the sulbent that wam anakening in the entive mediand world. Most of the latger cities have erected institutes fing sanitary grymasties, and in he last few yours it has won for itself' a plate in all the standard works o.. cherapenties and general mediene.

Effects.-The effeets of massige or mechanical movements maty be properly considered under two suldivisions, ((1) priminy and (1) secondiary, Under the former we attempt the remsal of exudates, extravasitions, vegetations, and allhesions; muder the latter, stimulation of the musiular and nervons system ly incrasing the circulation and setting on foot endchanges and metamorphosis of tissue, and furthermore diredtly alfecting the process ef eqeneral mitrition. The effeet of centripetal stroking of the borly is to insease at once the rate of flow of the lymplatic and the wems direnlation in the part; this has been demonstrated beyond peraulsenture by Von Mosengeil's well-known experiments upon the effect of masagy in comsing alborption from: abont the joints. This observer injowterl finely-levigated black India-ink into the joints of rabbits, and those joints which were subjected to massage showed a progressive decrease in size, while the others remained large. After death the Iulia-ink was fomul, in those limbs which had been manipulated, seattered through the thigh and its numerons foed in the areolar tissue.

Classiffcation.-We adopt the chassificution of Meyger, which. is generally acepetel to-day,-viz: : 1, efflemage (stroking) ; : frictions (friction); ;, pétrissage (kneading) ; 4, tapotement (perension). The first manipulation consists in stroking with the paln of the ha dor its radial border, or with the tips of the fingers, or with the thumb alone, and the foree applied may be the gentlest possible or the heaviest pressure made by reinforeing the operating hand with the other laid on top of it. Where deepe effect is desired, as the removal of exudations in the tendons or the intermusenlar tissue, the thumb or several fingers are used, the tips being lied nearly perpendicular to the surface, and the degree of penetration is dependent "pon the amome of pressure expred. When working in bony regions, only mondcrate pressure must be used ; when concerned with large museular musese, the fleslyy cushions of the palm of the hand must be brought into reguisition, and the patient so placed that the massenr can be aided by the weight of the upper part of his trmen in giving foree to the stroke. As a rule, the strokes are to be made centripetally,-that is, towards the central organ of the circulation; in certain rare cases this rule may be distregarded, and the direction of the stroke may be centrift:gal.
strous, olyicet :्ञात小 ans patl amall 1 10 (1) ('intrifi

Friction consists in the nse of the thumbs on the tips of the fingers in stron, foreible circolar rabhings, followed le entripetal stroking. The wheret of these manipulations is to act upon deposits in diseltied parts in surh a manmer ats to distribute them among holthy tissules, and, inasmuch ats pathengieal depmits may exist in any tissine, we can formulate mo genmal mane for the direction whide the firictions maty take, but it should mather
 cemtrifugal if the healthy parts lie in that dienetion.
 with thr index finger and the thmol, and comsists in pioking ap a musele
 fiugeres on by the fingers and the dense tissine that may undenlic it.

Tanotement, or percussion, is usually divided into four sections: 1 st. Claphing with the palm of the hand or with an instroment capecially eomstructed for the purpose. 2al. Hacking, which is performed with the ulnar borter of the ham or with the extended tingers, deponding nown the impression desired to be areatel ; with the fingers the motion is made from the wrist-joint, with the edge of the hand it is cither from the elbow- on from the shombler-jont. Bal. P'metnation, which is performed with the tijn of the fingers, and is misually applied upon the head or unon the prascordia. Ath. Beating with the clinelhed hand; nsually applied ower the hidek musides of the thigh.

Local Massage.-Having considered the sperial forms of massage, it will be well to review its appliation to the varions parts of the body, which we will term loeal massage.

Massuge of the leg commences with stroking from the foot to the hip, and then frietion from the interosserns muscles wiward, followed by stroking, which in turn is followed by kneading, and the treatment of the limblis completed by hacking over the museular parts. The arm receives a similar treatment, which is best applied in the semi-flexel position.

The Chest.-Here again we commenee ly stroking with the hands on conh side of the sternm, manipulating uprard and outward with cirenlar mosements. The pracordia is to receive circular pmetnation : too much strengeth monst mot be nsed, and the treatment of this region may be terminated by harking and clapping. The back should receive much care, and is to be treated loy downard stroking from the base of the skill to the sacrum, taking care to awoid the spinoms prowesiss of the vertebre; this is to be followed by frietion with the tips of the fingers in the same general direction, making the movement more lateral, so as to include the posterolateral aspect of the tromk. Then spread the hamds over the back and knesd with the thmms between the vertelore, and administer hacking up and down the hack several times,-some anthorities say ten times, but this would ecrtainly be more than a child could stand. It is well to finish by stroking and clapping, particularly the latter, and especially on the right side.

The Abdomen.-The patient lying upon the back, with the legs flexeln the thighs and the thighs on the almbomen,-to seene perfeet relasution, which is essential,- the massenk commenees on the right side by sprenting the right hand over the nublomen and pressing with the heed of the hand and the fingers alternately ; this manipulation is to be carried ont in the difection of the transverse colon. Kunuliug is next applied by the tips of the fingers.

The hend is best treated bes stroking, friction, hareking, and shaking. The first is applied principall! to the fierehead: with "the thombs betwern whe eyebrows, the stroke is to be "arried firmly owe the temples to the cas, both thamhs working together." Frietion of the entire hemed with the palm of the haud, hadking with both hands, making cirches over the hoed in all directions, and gentle shaking log clasping the ferchead with both hand. ma I shaking the had carefully and deliberately, will, as a rule, be the best methend of proedure.

In masselge of the feef omly two motions are nsed, -stroking and friction. With the index finger in the manth, the thambs stroke the maserses of the cheok, and lyy the thomb and the index finger the museles are pieked up and suldgected to rotatory movements.

Nressentege of the Throat and Neck:-Von Gerst andvises that the pationt be "stripperd to the middle of the chast, and stam with hand thrown lame and shoulders relased ; decp, full, and regular brathing by the patient is essential, clse the return venoms circulation will be impeded. Each stroke consists of three parts. First, the open hands, with the palms upward, are phaced, with their uluar horders in the right and left cervical fissise, hetwern the head and the neck, so that the tip of the little finger and the last joint of the ring finger shall rest mun the mastoid process bechind the car, and the ball of the litale finger under the horizontal bunch of the lower jans. A centripetal moveraent i s now hergu with the mar borders of the patme thens phaced in the superior cervical region, and is performed as fomms. W'Inile the mbar border is moving towards the middle of the neek, looth hands perform a rotation on their long axes, so that the radial border turns upward and inward towards the head and fina!ly reaches the position limst ocelpied by the ulnar border, and thas the entire palm lais come in contact with the neek and is now employed in giving the str king." A slight degree of pressure is to be exerted by the balls of the thumb upon the jugular veins, and ly the palmar surface of the fingers upon the venons and lymphatic vessels along the lateral cervial regions. At the supraclavicular forsat the hand arain turns upon its long axis, and the radial border of the palno once more comes into use. The lateral coman of the hyord beme and the laryux are to be avoided; pressure on either produces pain and inclination to congh.

Movements.-The various Swedish movements are preuliarly applicalde to the growing child, and, when judicionsly used, will do moch to produce a symmetrical growth, preserve health, and correct vicious tendencies.

The Appication of Massage and Swedisi Movements in the Thbatment of Dispase.-We will first consider the conditions which dramen nek-masserge, as in this region, owing to the mumerons superficial wrint and the distribution of the carotid arteries, we can ane almost direetly mina looth circulations. Indeed, masage in this region hati heon compared the copinens bloodletting withont its disadvantares ; consergumbly it is most arlvantageons in congested conditions of the batin and its membaname Bomeg a mapid methed of deplation, it is efficacions in sumstroke, also in lualathe and hemicmana when these are of the congested type; but when the hater seenrs in weak, anemic, nervoms childrem, masatue of the merk is undens; onr efforts then would better loe dirceted to manipulation of the sealp, forelemen, mind temple, bearing in mind, however, that in these chitdren massuge in this region is apt to produce hypnotism. Vrethand believes that in many instances hemicrania is due to chronie mysuitis, in which "asis, of conre, the muscles must be carefilly manipulated to remove the indurations. Walter Johnson goes even finther, aud says that the nerks of marly all his pain ients who had suffered for any lengeth of time from havi-alfertions were swollen and induated, with, probably, enlarged and swillen glat: is in the neighborheod.

Massage is said to have benn nsed with the most gratifying results in the sul-willed wasting diseateses of children.

Ps 'Wherul neuralyitss which are mot dejendent upon sentral nervons disense or deep-seated pressure (thmors) are pernliant amenable to the effects of massage,-perenssion or kneading. Sciation is often speedily midevel, particularly if it 'e rhematio and come under treatment before alteration has taken place in the sheath or the nenvilemma.

The so-called sensitive points met with in different parts of the borly in merrons girls at or ahout adolesence are often entirely removed by massage. Theoe points when loeated over the spinons processes of the vertebre are often responsible fir hysterical outbursts.

Cremp, when perif heral and due to over-use, over-tension, or irvitation of the nerves, is to be treated by perenssion, kneading, and strong stroking of the muscle or group of museles affected.

Chorea.-If the child is violent, it should be leld supine mom a mattress for from ten to fifteen minutes, while the massenr applies gentle stroking with the palm of the hand over the entire body ; the time ocenpied in this application is to be rapidly increased to an hour and to be repeaterl every three or four days. In a short time regular passive movements are to be addel to the treatment, care being taken to overcome the tension of the antagonistic museles, so that within eight or ten days the child can take a few voluntary active museular movements. Within the next week gymnastic exereses are introduced, which must be of the simplest form, and are to be mombined with simple voluntary movements of the limbs and tronk. It is well to have the patient imitate the movements of the masseur, in order to exereise his will-power. Rhythmie
mosements timed hy music are of inestmable benefit for the exereise of the child's will and batio. The case is apt to improwe up to a certain peiut

 one whipseyd.

It is not our provines in this antide torefer to the la actits to be deminat

 wation. Von Mhengeit mentions a case in which at the expiation of four

 the improwement is due the retrongessive datamer of the disease.

Post-diphtheritie partlyes, as kellgron tells us, are oftern at onow and

 discharged comed and in whom no mapore exemped.

 the reliof was makith, the sewerty of the ataks being moth lesemed.
 ant unan the cirentation of the howe and lymphand stimulate the serge

 iutestinal catarrhs. despepsias, catdialgia, dilatation of the stomath, iuta-

 sigus of intlammation have subsidey. In hebbitued eonstipation, comblimed with pelvia symustites its effert is most happe: inderal, even when the anymulation is so exessive that chydusion is thanatemet, it is otem pasible

The liser and sphen are divetly anesesible to manipulation when they
 affered by masenge: hener it is indieated in hepatio comgestion, eulagrement, or janndice, and in splenic engorgement; gymastic exemises should be added to the treament.

In the amematheses as chlormis and enamien，gemeral maseige of the whole banl！，in mathation with the nisul phan of treatoment in sudh ensos，will

 its cheise en superticial edeme will likewise be most hapers，whether the

 hut abo ascists in restering the skin to fle nomal．

 ：Brescory vomens hemt．＂

 followings sentet fever the temperature showed the tollowing chates：

 has frepumtly sem the stmagely mod limhe of children suthering from iutatile paralys win trom 6° to $10^{\circ} \mathrm{F}$ ．dume an homes masenge

にEFERFR゙COK

 にs：。

 is．I2．｜1P．ir，lait．

Gerorge II．Taylor，The Mwemem Come， 1858.

PROPHYLAXIS OF DISEASE IN CHILDREN.

By J. WELLING'TON BYERS, M.D.

Propiflaxis may be desiguated as a series of methots or procedures whereby contagions discase is restricted and prevented by suppressing or removing its predisposing conditions and destroying or modifying its, -iting canses.

Viewing the subject in the light of this definition, it will be seen that preventive medicine is largely dependent upon a knowledge of the etiolugy of disemse, and that its sphere is premesory. In order, therefore, to olvain a satisfactory understanding of its primeiphes and methods, suel as may be peonliarly applicable to contagion among children, it will be mecessany to examine into those circumstances and to discuss those influenes whid are ordinarily presumed either to favor or to retard the origin, the development, and the distribution of disease.

Observation shows very generally that the conditions which usually constitute human enviromment, inchuding such factors as air, water, finul, clothing, habitation, climate, and tellurie influences, have a constant aud powerfinl effert in shaping the type and advent of morbid phemomena, and that they often furnish the means by which the immediate or exeiting canses of disease reach, invade, and are eliminated from the boxly. Hence the whole system of prophylaxis purposes to muderstand these conditions aud to take such advantage of them as will control or destroy their montific agences and influences. While it is true that insestigations with etiolugi(al data are highly cescontial and conducive to a philosophical or secientifie interpretation and practice of perentive metherls, still it minst not be conchuded that its progress in the past or its prospect for the future has been or is solely contingent uron the exact amonnt of information posisessed concorning the cansation of the disease, sinee there are mumerons and valuable facts associated with its history which are not depenelent upon these features for their utility. Indend, experience pretty elearly demomstrates that it is eminently possible to achieve a very eflicient system of preventing disease with little or no knowlelge of its exeiting canses. Many of the practices now in vogue were originated long before the era of the germ theory ; still they are now none the less reliable. A number of disorders corroborate this and illustrate the methods of prevention in a ligh
degree, though their canses are quite miknown. This is exemplified in ath the arwte exanthemata and in diphtheria, cach of which shows mmistakable avideres of amenability to isolation and disinfection, yet the personality of their specific agents is conjectural. Therefore it must never be conduded that for prophylaxis to be efficient the canses of disense must be known, sine experience temes the contrary.
iss set forth in the definition, there are two general methods employed in attempting to restrict and prevent the spread of contagions discasc. The first of these is prepratory and defensive, and treats of those conditions, exterually in the metia and internally in the lody, which invite or predispose to the oceurvence of morbidity or which foster and snstain its actual exciting canses. The second class in contradistinetion to this is aggressive and destructive, and purposes to seek ont, attack, and kill the speeifie germs of contagions discase or to render their surroundings so inimical that they will prerish. This latter method constitutes disinfiection. As preliminary to a consideration of these two divisions of the subjeet, it must he ohserved, howeser, that the disorders especially referred to here as preventable and avoidable have the common features that they are transmissible mediately or inmodiately from sick to seemingly well though susceptible persons, and that they are cach presumally due to or cansed by a specifie germ or contagion, which is, as a rule, a living micellular vegetable microorganism of the general class bacteria. Bauing this in mind will better enable us to perceive the seope and plan of prophylaxis. All zymotic diseases, while not originating in peculiar enviromment, so far as we are now aware, yet are its inevitable outcome. In other words, there must always be suseeptibility upon the part of the infected subject and pathogenicity upon the part of the germ , before disease can urise and manifest itself. If there should be anything in the external media or in the intermal conditions of the body calculated to hinder or frustrate the operations of the contagion, and it fails to germinate or reproduce, the individual escapes. Hence there must always be a certain amonut of co-operation among all the factors concerned in dis-easc-processes in order for the disease to exist. As has been stated, these ronditions relate to the exciting canse so as to foster and assist it, or to the bouly so as to debilitate it and render it vulnerable or susceptible to pathogenic agents. A satisfactory understanding of how these influences act to produce these results is obtainable by an investigntion of the relations of the two factors of predisposing conditions and exciting canses.

Before proceeding to a discenssion of these, however, I deem it necessary by way of parenthesis to mention the misconceptions which have arisen in regard to the use of the terms predisposing conditions and exciting enuses. It has been enstomary, under the older notions of disense-etiology, to employ the latter of these when describing circumstances antecedent and related to its occurrence. In the light of recent developments this is both wrong and illogical, and should be dispensed with, from the fact that we now know full weli that noue of the agencies or conditions usually
embraced by these phrases ate at all capable of generating or acting an a cause of smectic disease.

Everything that happens must either have an aden gate canse-that is, an agent-or he spontanems; still, there is a material and broad difference, when
 agents and agencies. The first are definite, an entity ; the latter, a state on relation. To illustrate practically, take the instance of erysipelas following
 of the erysipelatons virus possible, and wither which it could not miter

 absence of the specific poison. It is a contributory or prediopusiug comedoton, which assists the virus, and not a censer of the disease. This is a
 of' a clear idea of the causation of pathogenesis, sum as will he of services in antagonizing its advances and encroachments, its propriety amon bus gainside. In find, it is fumbanental to quite a member of the mothers pursued in prophylaxis, and they owe their practicability and efficiency to
 where. It is by studying and classifying these separate influence that we lemon to modify and remove them and establish a scientific e basis fer preventive medicine.

As has been remarked, predisposing conditions may be made to indulge all these external states which determine the mon of life, propagation, and distribution of disease-germis outside the bendy, a also these internal inthemes which alter or control the resistance of the beady to their invasion. With regard to the conditions which chicly influence the body so as to render it susceptible to discasc-igents, there are two kinds, the internal and the external, some of which are avoidable and others inevitable. It does not lie within the purpose of this article to enter into details ass to how and why these conditions probe their affects, or how and why the removal of them gives exemption and immunity. Wire mast adept them as facts fully corroborated by a long series of reliable experience. As to the rationale and mechanism of the physiohagieal processes that lead th protection from disease, there are many vastly interesting phenomena which recent advances in bacteriology and chemistry have brought forward. The germ theory of disease, together with the labors of Metchnikoff and his coadjutors in the pharowtie actions of cells, opens up a new and lumens: prospect for all medicine, and ere long we shall possibly be equipped with the facilities for knowing precisely and seeing actually the processes of immmity and protection going on. Undoubtedly these, in addition to the experiments now being conducted throughout the world be mems of attenuated viruses inoculated for the purpose of preventing and anticipating infectious disease, foreshadow great possibilities for all measures of proplyyaxis. Again, the introduction for similar purposes of ptomaines, leuco-
maines, and such other drugs and syntheticul chemicals as have analogons madeenl?:" composition or constitution to the specifie puisons of the pathogenie gemes, will eventally place preventive medicine in the foremost rank of buseriment science.
 aris finl air, damp soil, fildy habitations, poverty of food and dothing, defective sewemge, and the like. All of these, by lowering the vital foresis and depressing the systemie fimetions, induce a comblituon of sinserptibility to morlid agents. They prepare the soil fier stisense-germs and ereate prodivities favering their development. The ancients, while knowing mothing of the final vital readions of the tissines, or how they operated to protert the sustem, recegnized the great importane of hygiene and sanitation in finthering these evonts and controlling and warding off the apporaches of disense. Heme the (irecks and Romans never failed to incolente regnbations pertaining to hygione. Noses, the law-giver, laid down a andary coule, w...h severe pemalties attadned fin infringement, and gave divections for the disinfection of persons, phaces, and things, so theromgh and efferetive that exen this advaned age can find little row for improvement. Therefore there is nothing new in the statement that heald proteets itself and is the means of its own defence.
lievent developments in histology abd hateriology show that, while the edts of the body possess the ordinary fumdions of growth, reprodinction, and assimilation, they have in aldition aptitudes or inherent powers for diseriminating leetween matural and foreign substameses in the eromomy, and that they scize יpom, devomr, and cast off the latter in a mosi marvelloms and perfert mamer. In order to de this, however, and kepp the system protected fiom the invasion of noxions substances, the cells must be sustained at the normal standard of healthy action, their palmhem and stimuli the best, such as hagienie influenes are capable of finmishing, sine if they be depressed by the presene of predisposing emonditions they are unfit to cope with the conemy the micro-organism, and they perish. Therefore, since the vital organism is qualifed to proted itself, it shonld be asisistel by all the moans at ham, and everything removed that tends to hinder or cripple its eflorts. The experiments recently made ly Roger and Charrin confirm this in a romatkable degree: they find that, even when the sermm of the blood is imporerishend, it alone may ditermine susedetibility and render the entrane of the germ possible, lacteria being far less active and virulent in it the nearer it approaches the standard of hatithy boom. When we reeall the very genemal prevalence of germs, the wisdom and necessity of exemption and protection being dejendent upon something outside from ann superior to hman knowledge and precautions beeome obvious.

Among the internal states or conditions which create liability to diseaseagents may be mentioned age, sex, nation, race, certain diseases and drugs. As to the exact nature and conformations of the tissues which permit the
invasions of the morbific substances, we know these principally by the result,-sisecptibility, It is highty probahle, however, that this subjertive condition is largely influened by circmustanes redated to the motrition the hody as a whole and the finer eefls of the tissues in particonar, and it is only when they depart from this standarel that the influcure of wo pathogenie germ is capahle of dong harm. From the statements alrealy made in comenetion with the theory of the cellubar wartare which geres on lwetwern the disense-germ and the cells of the organism, we see that disemene is kept off or prevented by an active and diserimiatiang prowest of the henly, and that susceptibility is the absence of these resomeses or a failure to exert them. As yet, we are not in a position to specefy exactly what the germ most and must mot find in order suceessfully to invade, multiply in, and set up disense in the bexly. We know in a general way that there must lex a condition of suseeptibility, and that the germ must meet with at combination of circomstanees favorable to its growth and development, among which may be mentioned suitable pabahme and proper and agrecable temperature, and that it must nowhere eneometer any substances or conditions which either cheek or injure it. It is known that exeiting canses cou net only upon systems predisposed towards their reception, but whether this liability is chemienl, mechanical, or vital, in addition to what has been said, we are not as yet prepared to state. Susceptibility is primarily waknese, though there are donbtless other influenees which alter and lessen the system's natural protective powers, in kind as well as in degree.

Henee, when debility is present, howsover induced, whether by external conditions of enviromment or by renson of peculiar internal states, the system is lowered and rendered incapable of contending in a successfal and physiologieal manner with the pathogenie intruders, and the body suecumbs to disease. Therefore, if we wish suceessfully to assist and protect the system, we should remove in advance all those conditions and influences which have a tendeney either to favor the exciting canses or to depress the systemic functions of the body. Sanitation fortifies the normal actions and removes all depressing conditions, while disinfection modifies and destroys the exciting ealnses.

Thus having briefly outlined the necessities, reasons, and philosophy: of prophylaxis, we will now pass to an enumeration of the methorls and details by which these objeets may be accomplished.

Whenever there is reason to suppose that an onthreak of infections disease is imminent, there should be a thorough overhanling of everything calculated to facilitate its approach or protraet its stay. In all these undertakiugs there should be system and regularity, the prime objeet being always kept in view. The first case or cases of disease should be at once isolated, and all visitors and susecptible members of the family warned and excluded from the apartments or premises. All sources of decaying matter should be at once freely sprinkled with chloride of lime, or wet with a solution of the same, and removed. There should be free ventilation and alsolute
momliness as far as is powsilde. When the mase subsiden, all bublding, dothing, firniture, romes, and persons shenld be thoronghty sulmitted to sund prowesses of disinfection ats will hest cradiate arey westige of con-

 fin the de:truction of bateria he means of heat and damima sumatares, and thereby the doctrine of disintextion has !exen extablisherl and deroloperd. Sume diserases are far more contagions than others, memsens and whopping-

be a disinfertant is mant, in the languge of the definition given by
 the infertions ageney of infertions material." Most of anr kinwledge con-
 monn putrefying matter of organio origin, and it has herol fomm that what will arrest putrefaction will alsodestroy the germs of dismase, and rier rersut. Only a few dis:asts are mow considereal to be divertly concerned with fith. Clanliness of the sumpondings hats litthe on mothing to do with smatl-pwe,
 will inthenere them in the least. Such disemese, lowerer, as emsmption, diphtheria, the varions dysenteries and diarthoms, and dholera intantme, are directly concerned with filth in relation to water-suphly, chainage, and swertare. (Billings.)

With regard to the mode through whids disinfectimts exert their influene, several explatations have been offiered. Some are thought to act he axidization, others be their property of chaviating allomen, and still
 What is a disinfertant for one disconse of this chatarter, howevery, is a disinfertant fin all, and it will only be necossary to meview a few of the most relialke and impertant ones.
(ienceally, in the absene of spores (and no homan disense has any, so fir is we know), a heat of $250^{\circ} \mathrm{F}$., sulpher dioxide in fames, and solutions of the lichloride of mereny will destroy all pathogenie germs. A mumber of disumentants are known to evolve oxyen fresly, and are thonght to haten in this manner the disintegration of the moxions matters.

In euch partientar disense there is ahways some peculater or secial portion of the bond insolved which is orempied by and reprodnees the exciting culles of infection. It is to these parts that we must always lirst direct nur attention when begiming to disinfert for the disemse. Fortmately for prophyaxis, the exact location of the centres for breeding is known in quite a mumber of discaser, and we ean attack these seats directly. In all the exauthemata this is the ease, and in them it is the skin and the mucous menbrames which should receive the most attention ; while in tephoid fever and cholera it is the discharge from the bowels, and possibly from the kidneys also, which we must particularly attend to.

For personal disinfection, Labarraque's solution, diluted with twenty Vol. IV.-22
parts of water，is suitable for washing and bathing the body．A werk carlonte solution，or a one－per－ent，solution of dhbotide of lime，will also be fomb eflivicut for the same purposes．Oily disinfectant imunetions for the skin is one of the best methorls of preventing the detachment of epithelia and pus，and should low ned from the commencement of mendes， small－pox，scarlet fower，mud chicken－pox．It is fon＇better and more agreable when mixed with camphorated dive oil or with carbolie acid sund oliveoil．The throat and laneses in these disensess shonld also be wathed with Comdy＇s Iluid or a weak solntion of＇sulphurous apid．All discharges from the mose，eyes，and month should be reseived upo rags and imme－ diately burnet，or，if upon towels and handkerchiefs，these should be put in a solution of chloride of lime．The stools should be disinfected hea solution of bichloride of merenry，one－half ounce to the gallon of watter， and all clothing treated by placing it in boiling water to which have bern addeal two ounces of chloride of lime for cach gallon．With regard to the disinfection of the apartments，furniture，and hangings，an observance of the directions in the general remarks that are to follow will be amply sulficient for all purposes．

Heat．－Extremes of temperature have long been known to be displa－ trons to animal and vegetalle life，and are donbtless anoug the most eflicicent and satisfactory agencies that can be employed for disinfiection．Of conse it is not necessary to say that fire will destroy the principles of infertion， since it is complete combustion．Heat in particular has a powerful and constant effect nom all albmminoid substances，both in coragulating and in desiceating．It is undoubtedly the best means of disinfecting bulky mate－ rial，such as bedding，curtains，and clothing，and，if they be properly ex－ posed to its action，all the contanod life or contagion will certainly be destroved．Heat is employed as a disimfetant in several ways，among which may be mentioned dry，moist or boiling，and steam heat．Drs．l＇alv－ sons and Klein have made numerons and claborate experiments hoth on the degrees of heat and on the time necessary for disinfection．The results of their insestigation show that dry heat is best alapted to the nismal purpuses of disinfection．Ordinarily this kind of heat ean be supplied by a common lamedry dryiug－closet or a baker＇s oven，and will be sufficiently powerful to destroy all contagion maceompanied by spores．Dry heat has one primipal objection，however：it penetrates bulky and hadly－coulucting substances very slowly，and the time nsually allotted for the destruction of germs is far too short for it to be effective．Hence if the drying－eloset or oven be nsed the artieles should remain in it at least four hours，and the temperature should not be below 200° or $225^{\circ} \mathrm{F}$ ．，the latter being mueh better．With respect to the amount of heat that can be borne by ordinary fabries，scorth－ ing is said to oceur at different temperatures in different materials．White woollens are always soonest affected，and should be carefinly wathed．To avoid these bad effects in them，the temperature should never exceet 250° F．；and even this may in a majority of cases be too much for the finest wool－
lens． be buile of at a mos farilitat

Ins． scurlat 1 kept＂p ature of small－p＂ demonst

T＇yph
Aurli
I＇uru
T＇ule

K゙ッハ！
a temper anl hoirr
hons. Dry hent is genemolly applionhe to all han class of goods which can be loiled, and is said to be materially rided i penctration by the addition of 'a cortain amome of moistme, thomeg the moisture is of no assistance in facilitatimg the alestruction of the germs.

Dr. Hemry has been sucessfinl in destroving the infective prim 'ple of'
 kept up for thre looms. Most anthorities, however, recommem a tomper-
 small-pox, measles, chicken-pox, and the like. Sternberg's invostigations demmstrate that the varions germs prish at the following temperatures:

 Michoroctis Pastemii . . . $1.40^{\circ} \mathrm{F}$. simphylococens p. uneras . $180.4^{\circ} \mathrm{F}$.

Koch has fombl that hacteria in general, fire from spores, camot resist a temprature of $212^{\circ} \mathrm{F}^{\mathrm{F}}$. for many minntes, and that if it is continmed for an hom and a half they invariahly perish.

Is to the action and results of moist ineat or boiling as a disinfectant, expromers are not very satisfactory. Still, if the boiling be kept inp for seroral homs, and a little eamblic acid, or chloride of lime or of zine, he added to the water, the resnlts am be relied nom as effective. Shonld there be any doubt about the destruction of the germ when lodged in clothing or other articles of similar character, we shonld not hesitate to employ the highest dry heat compatible with the safety of the goorls. The finest fabries will withstand for a reasonable time an elevation of $2.25^{\circ} \mathrm{F}$., and linens, cottons, and woollens may be tousted to it withont the apprehension of any injury or danger. Two homs of dry heat such ae has been described will be amply sufficient, and no evil conserpence will follow cither to the safety of the groods or in the form of disense.

Stam is considered to be a rapid and powerful disinfectant, experience Ahowing pretty conchsively that at $212^{\circ} \mathrm{F}$. it will destroy all contagion, and the complete penetration by steam for five minutes is fomed apable of ${ }^{\circ}$ thoronghly disinfeeting. Koch, Parsons, Klein, and Loefler all are agreed upon this particular. Steam penetrates far more rapidly than dry heat, and is much more destructive, in the time ocempied, to all germs. A pressmre of twonty-five pomens is said to assist materially in its destructive action.

Chemigal Disinfectants.-These are employed in the form of gases, liquids, and solids.
(aaseons substances are employed primeipally for aerial fumigation, and are applicable for the disinfection of apartments, ete. I shall not modertake to enmmerate the varions artioles of this elass that have been used from time to time, but shall simply confine myself to a deseription of a few of the leading ones, such as experience demonstrates to be effective.

A nmmer of chemical substances are known to evolve oxygen very
fremy whon bronght in comtat with organie bases, mud in this mamer dis.

 to somederger by this mothod. With respert to the dhemsal mamins that make phate in the nse of the othere sulstane which will be mentional tiathere on, very little appents to be known.

 amd lomams were acpuanted with the preservative properties of this zas,

 phar mateh is ignitad, Guxton de Morvent, who linst stadied its antions, niss of the "pinion that it wonld compalotely disinfert miasmes. Its chminal andien is supposed to be dae to its promer to dowidiag, the resultant and coagnlating allmminoms matter. For the disinfection of reoms verenty

 phating over it two or thee omaces of aldeohol amblaplying a lighted matedi. The room during the entive perion of fimigation shomble be kept eomphely:
 tilation allowod. Badore using this anent, however, all capdes should be taken up, the wall-paper removed amb borned, the hamgings thoromghty
 where. That sumpher dioxide has a direet action upon the vitality of the germs of disease follows from the statement made by Sternberg, who sats, " In the proportion of" one to two thomsand, in an aneons solation, so $)_{2}$ kills mierocored in two homs." Koch asserts that anthrax-barilli are destroved in a one-per-cent. solution in thity minmes. The experiments of Baxter led him to the eomelnsion that "it is the most powerfal volatile disinfectant known." Sulphorons adid and smphur dioxide arelooth destroved by ehorine and permangante of potassimm, and shond never be nsed an conjunetion with either. 'The great soluhilite of sulphomes adid rembers it ome of the most valuable substances with which to disinfect liguids. Dr. Edson, of the New Vork Buard ol' Health, in a recent report, suss that sulphom dioxide is the most practicable amd reliable means that he hats ever seen employed for the disinfection of the exanthemata and diphtheria.

Chorine.-This is a pale yollowish-green gas at ordinary temperatures. abont two and a half times as heavy as ordinary air. It is a poworfind oxidizing agent, and extremely irritating to the air-pasages when inhald. It decomposes ammonia and sulphoretted hydrogen, and afferts all wompombls arising fiom the putrefaction of organie matter. It is commonly used for the same purpose as sulphor dioxide, and, like that agent, rembers the oceupation of the apartments temporarily impossible. It bleaches
arymion matters and destroys oders, cither by withdawing hadrogen on by dimed axidation. Chatorime is misuily genemated by moms of charide of
 are weveral pepmar disinliedtants which rontain this gate in sulficicent propurtime to low of service: among these may be montioned Platt's dilonides,
 without the addition of min mid, being seattered as a proveder in malls,
 rime, though they are mot so pererfinl in their action, and should mot be

 they have heroms sattered.

 iug, and washing. All the wowl-work-walls, flows, and firmiture-minst
 the gathon of water, or a solution of bidhoride of meremy, am mone to the gallon of water, ant the clothing and beolding baked, or washed in a solu-

 infertime, and all the work will have been in van.
(imbolic Acirl. - An important advanere was made in dismaterdants when the virtues of this substance were diseovered and hrought forward. The great adsamtage of it, as a liguid, is that it is slightly volatile, and therefore capablo of leing sprinkled in apatments and upen substanees where it will penetrate crery comer and revice and be of service. It rembires alwat twenty-fise parts of water fin thorongh solution, and in this propurtion is a pown fall disinfecting liguid against all contagion. It conghlattes allumen in the proportion given, and enters realily into maion with arganice substances wherever it meets them. Dr. Simsom has shown that a mixture of carloblio acid and glyeerin is a delicate and offertise appli(ation for disinfecting disease in the skin. Its chicf property and that of the compmome asongitect with it is the power of destroying verectable and animal organisms and preventing putrefaction and fermentation in them.
biationtide of mercury in solution is the most powertin and remarkathe disinfertant known to science. Investigation shows that it is a deadly poison to all the lesser forms of life, which it kills instantly when cimphoyed in proper quantities. It cammot he nsed in comenetion with lead, tin, or sopler, owing to its corroding gualities. Its power to destroy gems, exen in dilute solution, is mique. In the proportion of one to five hundred it destroys vitality in ten secomds, in one to two thousand in one and onethird minutes, and in one to twenty thousand in from fifteen to twenty minutes. Thus it will be seen that time is an element always to be considered when the solutions are used in ordinary proportions.

The fact that corrosive chloride combines with albumen leads to the
conclasion that it interferes somewhat with the provess of destmetion, and this is ulwast to he remenbered when using it as a disinfedant.

Dr. I'asons verommends the following sulution ass sutalde for chothinge,
 ombere amiline bloe, five gmins; water, five gallons. Mix. 'This is the
 tested thoromghly. It shomid he labelled "poisom."

 salts aro mot ippliable to sewors or drains, weine to the fact that they
 propertion of one to lity, is a very efleciont arvaler of deromposition in drains and respools, and is in every way profieable. Calvert's powder,

 lints.
 of irom, chloride of rime, amd mharide of lime, will be fomal to be efliciont
 elyoinad, however, that madre no ciremmstamers are the dejerta af yollow fever, cholera, and typhod ferer pationts to be emptiad into sewers or pury-

 in desets, sinks, and privies, it shombl be remembered, is the chicef somere
 be too dean nor avoiderl too widely. Let them he eleaned ont oftern, atien being disindeded ; and do not allow acemmatations to take plate mendor ang cibemantances, always remembering that bad oblors are the best, if mot a cortain, indiention that something is out of orver and that there is danger aheand.

Stermberg allokates at ate shloride-of-lime powaler eomposed of ane pound of chtoride of lime . ud nine pounds ort phaster of Paris. This is dean to hamdle, and (an be sprinkled over everything fearlessly.
l'ordiloride of iron is usefol for the disinfeetion of sewage, and when added to it throws down a precipitate of ferrie oxide, whiole is due to its action upon the sulphide of ammonium nearly always present in sewaye. It is conjectured that this reation leads to the liberation of sulphom, whid in turn acts as a disinfertant.

Permanganate of potassiom prevents putrefaction in sewnge for a short time, and also acts as a derdorant; but it is neeressary to use it in large and expensive quantities to get these results, and hence it is not practical.

SCHOOL-HYGIENE.

Br 1) Fi, INCOLN, M.!.

Thes sulgeet before us is rand ' ' dividel into the two bamelue of per-
 of growl or prow health in the : individual, his hathits mul urenpations as a stholar, and their indhemer upon his development. In doing this, the remores of medicine and educational sedene shomld be combined. The seenne part of the parne will indude such arditertural and enginering atails as serem nseful in establishing extermal comblitions favorable to health and a mermal development.

I. PERSONAL HYGIENE.

It is obvions that we mast here exdude from consideration a great mumber of matters which aply chailly to all children, whether immates of selueds or mot, aul that we must limit the disenssion to surd things an are sperially under the influme of the solloul and its work. Uumer this limitation we find that the sulgeet mavoilably presemes itself in the form of a list of complaints: it might with cunal propreroty tre termed a "Sichooll'atholorys."

The affections which originate in school-influenes may be ronghty divided into those in which overwork is, in a genemal way, the chief canse, and these which are not so callised. Overwork and depressod vitality are largely resumsible for the following eomplaints in sedowe-thildren: dyspepsia, hemdache, nervons dmangements, chorea, epilepsy, nemasthemia, backathe, menstrual disorders, and, in some cases, consumption. Suinal defomities, and discenses of the eyes, are conveniently treated apart from this list of atfections. The sulgeet of physital chneation, and a disenssion on sedoot-programme : ef daily work, condude this part of the sulyect.

Allaments from depressed vitality

Physical debility, in one form or another, is plainly a chief canse of the ailments emmerativl below, nlthough in some cases it is necessary to allow
largely for the presence of other causes, as in the ease of eye-diseases and spinal deformity.

The publie schools of this comtry have often been accused of oxerworking the pupils. In the disconssions of this snbject it has naturally happened that physicians have been prominent as acensers, while, just as naturally, many teachers have shown a tendeney to exense. Some of the most eminent ednational authorities, however, have been most severe in their comments on the existing conditions of selool-life.

It is to be feared that the schools of Boston set the example of "highpressure education" to the rest of the comutry. Such is the testimony of the late John D. Philbrick, so long superintemtent of the schools of that eity, who gives a striking picture of the way in which it was introlncell.

Aecording to Philbrick, the sehoels were in a lethargie state previons to :845, when the influence of Horace Man aronsed them. At that time the oldest elasses of the grammar-schools (abont the age of fifteen) were first subjected to competitive written excominations. This woke them up to :un intense activity; " the highest kind of high pressure was inangunted in a day." The competitive examination was discontinued after a few sears, but the fear of it survived, and efforts were constantly made to revive it.

Examinations at all stages, and very frequently repated, are a characteristic of reent plans of celucation. They are extremely usefin, in fact. But they are worse than futile when instituted merely to make a visille showing for work already well done, or when a child who has been faitliful for a year is kept in needless but anxions suspense abont his promotion. Examinations have also a habit of coming at the elose of the spring term, when everybody feels tired; some schools wisely suspend other work, to give as much case as possible, at that time. Much of the Euglish experrience with competitive examinations goes to show that they exert a most noxions influence upon the youth who are being bred up by the forcing process for the purpose of passing them, in hopes of getting appointments.

Measured by the standard of the German sehools, our children do met have much overwork to complain of. Ten hours a day, study and revitation, is a common requirement in gymuasia (classisal sehools) for boys of ten to fourteen years of age; with us the work done in "high schools" from the age of twelve to eighteen varies from six to abont seven and a half homrs for average prpils; in colleges it is about eight hours, and at West loint and Annapolis nive or ten at most. These requirements for Americ:in schools are not excessive. But it is beyoud a donbt that we compel younger children to attend too long. If a child enters a primary school at five, he is kept three hours in the morning and two in the afternoon,-or finlly two hours too long for his good. He is kept in, nominally at work, far beyoul the period for which he has the power to nse his mind at the work. The researches of Edwin Chadwick have furnished us with data governing this

[^181]-nt, which have never been set aside. He states that a child from five to seren years old is able to attend to one subject for abont fifteen minutes, which shonld be the length of a lesson; from seven to ten years, about twenty mimutes; from ten to twelve years, about twenty-five minutes ; from twere to sixteen or cighteen yars, about thirty minutes. The total power of attention for one day is somewhat in preportion to this. It is a disgrace to our commonities that they insist on having the littie ones sent, more to be taken cure of than tanght, for the same number of hemrs that make a bankers day. Every mimute in sehool, after their power of attention is exhausted, is given to forming the habit of inattention, which is clemr loss to crucation. That health must suffer, is certain.

The city of St. Lonis fixes the age for admission at seven ; but there are numerous kindergartens which take younger ehildren. The kindergarten is one of the best charities of modern times ; it teaches neglected childeren lathits of neathess, order, punetnality, civility; feeds, washes, and clothes them when necessary; keeps them half a day in an atmosphere of physionl purity and health, and most he classed as the best evidence of what selowhes may do for hygiene. On the other haud, the kindergartens for children of wealthe parents are not wholly free from the eharge of over-stimulating their pipils. There is a constant tendeney among the new teachers to mege and arouse children who are doing well enongh alrody : I quote the words of a very experienced senior teakher. Some chiddren, in fact, are too much aroused, and have to be removed; but the danger is inderstood; and, on the whole, these children also receive moral lessons that are of inestimabie valne.

The fanlt of the old-fashioned schowl was in ueglecting the prpil's moderstimding of the subject and his interest in it. These points have now been so thoronghly studied that it seems as if lessons had become far too isteresting for some children. A bright boy, making no progress in a common school, is transferred to a "Quiney" shool and heeomes devoted to study, but he has to be taken out every few montlis to rest his buain. The teacher onght of right to be taken out for the same purpose, but she holds sut-by the aid of coffee.

A very exaggerated notion is entertained by some parents regarding the value on primary work: as if ehildren at the age of five eonld be said to be stuldents in the proper sense of the word. Schoshing at that age means sumething radieally different from what comes later. In the worls of W. T. Ataris, "We do not look so much to the gain in intellectual possessions as to the training of the will into correet habits, during the years previous to the seventl." ${ }^{1}$ In protest against the pepular delusion about losing no time, there is an occasional expression of individual will, like this: "I kept my little girl ont of sehool till she was cight (or ten) years old, and now she is up with the rest." There is a certain mmber of bright exeitable ehildren who are benefited by this postponement of school-life.

[^182]A gencral view of the state of our schools has often been attempted ; the results arrived at have not been entirely concordant, but all reports show the nature, at least, of the evils complained of, however widely the estimate of their extent may differ.

As suggestive of the state of things at present, the writer gives the results of tro inguiries, one favorable, the ot the not.

The first case is that of the high school at Cleveland, Ohio, investigated by authorized medical authority in $1831 .{ }^{1}$ It is statec that nearly seventyfive per cent. of the girls had left school on accomat of ill health, or partly so, and that thirty-three per cent. of the boys were compelled to leave on aceomt of physic i troubles. Ill health inereased almost uniformly in proportion to the amount of outside study, and inversely to the amount of recreation indulged in. The following table divides the girls into fond classes, according to the number of hours of study.

Statistics reluting to the Health of the One Mundred and Eighty-Six Girls belonging to the Ctceeland IIigh Sehool.

State of he.lith.	Hocrs Studied out of School.			
	Under two.	From two to four.	From four to six.	Over six
Health poorer while at school . . . per cent.	29	70	93	100
Health very poor while at school . "	14	40	616	100
Appetite deranged while at school. "	7	44	47	69
Slup deranged while at school . "	7	18	37	69
Trombed with headache while at school	22	62	81	100
Troubled with hack- or side-ache while at school	14	34	57	45
Troubled with weak eyes while at schaol	29	39	36	42
Eve failed since entering school . "	14	13	18	17
Menstrual smithoms were known. number		40	31	,
Menstruation us ustal while at school i • . . . per cent.	80	50	19	67
Menstruation deminged whilo nt school	20	50	81	33
Menstruation freguent or profuse while at school	20	28	26	11
Menstrmation seanty, irregular, painful while at school "		35	71	33

"The parents of seventy-six of the one hundred and eighty-six girls attributed their tronble in part to the stair-climbing. The irregularity of meals necessitated by the one-session system, the worry about rank and examinations, were arraigned as canses by others."

The remark of Dr. William Goodell, of Philadelphia, has the same tendency : "So commonly do I find ill health assoeiated with brilliant seholarship, that one of the first questions I put to a young lady seeking my advice is, 'Did you stand high at sehool?'"

[^183]pted ; the orts show re estimate the results westigated y seventyor partly o leave on oly in promount of into four
onging to the

The case of the young lady who read one hundred and ten bound novels in six months while attending the Hartford high school shows that the blame is not all on one side.

The more favorable view is taken by I'resident William De Witt Hyde, of Bowdoin College, who has just collected statistics based on the answers of one hundred and fifty teachers and physicians. Of these one homdred and fifty, one humdred said there was no overwork in the schools of their eity; twenty replied, "Not generally, but in individual eases ;" ten replied, "Some nervous high-school girls;" fifteen did not answer directly; while only five (four physicians and one teacher) found overwork in school a prevalent evil. Nearly all attributed whatever evil there is, not to the amonnt of work required, but to the worry and anxiety occasioned by an iron-chad system of grading by too frequent and severe tests (i.e., examinations: compare Philbrick's statements).

It is likely that these respondents are correct in denying the frequency of overwork, if that be measured by the mumber of hours. But the effects of anxicty are worse than t of carrying heary loads.

It is a miversal compla.. mong teachers that minds ruin their hoalth by social dissipation. The complaint is justified by the facts, and it applies to almost all ages in school. The fanlt is in the age we live in, which exacts too much and too carly display, and expresses the height of its contempt by t.' word "slow."

The pratents of school-hoys and sehool-girls ought to consider that "soriety" has not yet begun for them,-that school is entitled to their entire strength; in return for which, the school ought to see that the children grow into the possession of firm health. Many boarding-sehools deserve parise for their success in this matter, and it often happens that children of rich and indulgent parents are never quite well except when at boardingschool, where regular hours are kept and sweetmeats are not allowed to be received from home. A return to old-fashioned, English notions about the valne of play seems to be making, also, in boys' schools. But it is the girls that give most anxiety, becanse of their readiness to mudertake double tasks.

The higher sehools of Copenhagen have been recently mate the object of research by Hertel, in an important contribution, since translated into English. The result in figures is as follows:

		healithy.	Sickly.	Imperfect Report.	Total.
Boys	1900	978	263	3141	
Girls	644	477	90	1211	

In girls the percentage of the sickly increases from the age of twelve, equals that of the well at fourteen, and execeds it ly ten per cont. at sixteen. The term " sickly" includes anmmia, scrofula, nervonsness, headache, nosebleed, curvature of spine, eye-disease ; also consmmption, organic weakness of the heart, ete.

The boys' work is six hours a day at seven years, rising to ten hours,
often more, at seventeen and eightern. The girls at deven years work cight hours; at from fimerem to sixtern, anot nine hours, or rather more that the beys.

The work of Hertel shows a state of things which is probably mot mulike what is found in at large part of Germang.

Drspersia.-'This is an established national trait of Americums, and a familiar sympom of overwork at selow. 'The first point to be motied
 tronble, to be cured by some doses of medicine, bat a symptom of genema want of foree in the system, to be cured by firsh air, exereise, fiwnt, slepp, and goorl regimen in general.

The school is responsible for despepsia, in some cases, by interfering with the pupils' opportumitise for regular meals. 'The old phan gave two hours of free time at noom, duting wheh children had a good dimer; the new plan, aiready introduced into high schools and beginning to creep into these of hower grade, keeps the chitd from mine to two o'doek, with me food exept the wretched "lunel" of" cake and sweets, dismissing him in an exhansted state from the day's work, to seek for more cake or pie in the emphard, of else to await the family supper or dimer with what patience he may command.
'The privilege of having a whole afternoon to one's self' is so highly estemod that we shall mot probably see a return to the old plan. 1 modification, however, by which an hour's recess is given midway in the session affords ample time for the eonsmption of a proper lunch, as is the enstom in one of the Chinago fitting-selools.

Children often lose appetite during the comrse of a school year, nor is this always evidene of overpressine, but sometimes of mere eonfinement to the honse and want of excreise. Some, particularly girls, have no appetite for breaktast : they must not be allowed to indulge this want of appetite. Very many think it worse to be tardy than to lose a breakfast : they perhaps are lazy at times in the morning, or have been up late at an entertainment; or they may live a great way from sehool, and may leave home before the family are quite ready for break fast. Many teachers notice children oceasionally roming to school in a famished state from such causes ; it is a duty to send them home at onee, with adviee.

Other children there are in whom this failure of appeite is a warning to investigate the day's doings. It is fully as bad when children aequire a habhit of depending on a cup of tea or coffee at breakfast.

Hembane.-The causes of headache are as varions as those of dy:pepsia.

If there is distinct excess of mental work, this will often produce increased irritability of the brain, und disturbances in the circulation of that organ. There is not a very great amount of this overwork in our nwn schools, perhaps. In Germany, and in the countries that have formed their educational systems upon her models, excessive study is the rule, and the
resslt is coming to light in some of the more recent statistical reports, as well as in a general popular protest against the crucl exactions that are mande.

Guillame mentions hatade by the name of " "éphatalgie seotaire." He finnd two hondred and ninety-six among the seven hondred and thirtyour papils of the College Mmicipal at Newhitel who suffered fierquently from headache. 'The girls suffered twiee ats often as the boys; the yomger children were also great sulferers. Becker fonnd anong there thonsamd five houdred and sixty-four pupils at Darmstadt twenty-seven per cent. suffing more or less from headache ; in the highest class of the gymatimu over eighty per cent. comphaned. With headache Guillaume montions the frepponey of moseblerd, -a complaint which may perhaps be disregarded alluong iss.
1). J. Crichton Browne has lately given statistics taken among the hallifed inmates of the London Board schools. He draws a strong picture of the mhappr, moder-vitalized existence of this class, but it remains open to sume doubt whether the blame shonld be laid so heavily upon the schoolwork as is done by him.

Prof. N. J. Bystroll', of St. Petershurg, has fomm headiche in five per cent. of the chaldren at the age of might, rising to from twenty-cight to forty per ent at from fonrteen to eighteen yaus. He examined seven thonsand four humbed and seventy-cight children of both sexes.

The houdaches suffered by hypermetropic children are cured at once by suithle (convex) glasses, and by no other treatment. The public ought to berome aware of this rather common class of cases. The patients are literally mable to acemmodate their eyes for reading without hurtful elliorts.

Neryous Derangement.-The term nervons derangement eovers a wide field. One of the common forms among school-children is sleeplessness, or restless slepp disturbed by dreams. Chorea is brought on in some predieposed children by school-work. Either of these conditions shonld give instint warning.

A fair statement of the general condition of eity publie-school children has been given by Dr. C. F. Folsom: "Pale faces, languid work, poor appertite, disturbed sleep, headache, and what is vaguely called nervousuess, are more common among them than they should be among chitdren of their ages. I doubt whether there is an exaggerated prevalence of manifest or well-marked diseases of the nervous system among them. If due to the school-drill, my impression is that they come for the most part later in life, after the children have left school, and becanse of constitutions weakened during the school-years, instead of strengthened, as they shonld be."

The impression which the appearance of eity school-children made on the writer, when a visitor, precisely corresponded with the above statement.

[^184]Some children are extremely sensitive to the influence of their comraldes, They are unfit to mingle in a crowd; they lose the power of expressing themselves in reciting; their manner betrays mental pain and constraint, The rigid air of discipline in large sehoels keeps many in an monatural state. Young girls a 'aring college sometimes suffer greatly from being obliged to live in the ficrowds, with so much less of personal freedem than young men enjos p like dirmmstances.

Chores (St. Vitus's damee) is mainly a discase of the time of berlity dexclopment: the greater part of the eases oreme from the sixth to the tifteenth year, which includes the second dentition and puberty. It belongs to the class of diseases which may spread by peychical contagion ammer children. Among the first symptoms is a change of temper from checerfinnoss to fretfulness or apathy, and along with this the powers of attention and memory fail in a way which the tatelaer may be the first to moties. A child sulfering from chorea, therefore, is mutted for associating with school-children or performing school-work; and the first step in the treatment mast be to remove it from school and stop all head-work at home. There is a certain mumber of children who possess a predieposition to complaints of this sort, and are not fit members of ordinary sehools, with the strain on the faenties which seems a meressary attendant upon our system of large classes and fixed tasks. Such children may develop well, if chlicatel quietly and with much open-air freedom.

Epherss.-Children liable to attaeks of epileptic fits are not proper immates of sehool-houses. They are often backward, or even feeble-minded. They are usually peenliar in temper,-casily excited and falling into mogovernable rages, given to lying, and licentions. It is impossible to manage them by the ordinary course of diseipline; they are not understond by the average teacher, and do not belong in the common school, but in those special establishments where their nature is understood. Besides the moral danger to which their presence exposes the seholars, the oeromence of an attack in the presence of young people is a thing to be greatly dreandex. Fright is a recognized canse of epilepsy in well persons; and a person in a fit is a spectacle quite ugly enough to frighten others into fits. Add to this the facts that childhood is eminently suseeptible to nervous impressions, whether of fright or otherwise, and that most cases of eprilepsy originate in childhood.

Of epilepsy as a possible consequence of overwork in school, little may be said. The conncetion "is not proved, but we cannot wholly reject the possibility of it." ${ }^{1}$

Neurasthenia, or Break-down.-A complete failure of strength, bodily and mental, is sometimes the reward of excessive zeal in study. A partial break-down, implying a year's semi-illness, with a recovery to onehalf the former working-powers, is rather common. High sehools, normal

[^185]seliools, and colleges furnish the rases. The following one' is peenliar, beranse it seems to point to defeetive mental training as a canse.

A young man of good anteredents and plysifue enteral an mormal school. llis memory was goonl, but he conld not grasp the principles of the instrintion, which was intended to develop judgment in teaching rather than to ram with information. He failed in his work beanase he conla not make memory take the place of judgment; spent protateted hours in listless andavor; berame dyspeptie, lost mascle, developed what semed to be hysterical symptoms, had headache and nemmigia (unknown bofore). In a few months he went home. Soveral yars of rest and light work on the film did not wholly restore him, and he still complained, "I am tired."

Break-down is notorionsly common in young women, and exeess of work or some other distinct canse is masally traceable. It may ocem slortly after the grabluation, rather mexperterlly.

Backache. - This is not the name of a disease, but is used here as desiguating a class of eases deseribed with admiahle vigror by Hawam, ${ }^{2}$ cases, not of spimal disease, nor of nterine disorder, but of over-fitione.
"It is very common," says Itawamd, "to see cases in which such symptoms (hackache and weakness of the spinal moseles) are the more obrions evidenes of over-fatigne, and in which a arrefal examination will reveal other signs of the same evil. This is esperially the case with yommg girls of fedble cirendation (evidenced by their cold hands and feet), whose enthasiasm for work is in exeess of their physical powers. They rise early, study before break fast, sit long hours before the piano or easel, or attent long and frequent religions services, retire to rest late, take insufficient or inmotritions food, and still further exhaust themselves by irregular and fatigning exercise modertaken with the idea of 'working off the effect of' over-study.' At last comes the break-town; the poor girl, who has been cramming into one day the work of six, and who has been held up by the fond and foolish mother as an example of industry, piety, and intellectual excellence, finds herself exhansted and ill. She cannot sit upright, her back aches terribly, her brain feels weak, and in her depression and anxiety she thinks she has some serious spinal disease."

Disordered Messes.-Painful or irregular menstruation is to be classed with neuralgia, anrmia, headache, and the like, as a symptom of over-pressure.

In 1873 a work was published which attracted universal attention in America, attacking, as it seemed to do, some cherished features in American education. The book, Dr. Clarke's "Sex in Education," was certainly written with the intention of stirring up disenssion ; and it suceceded. The author affirmed that he had seen vast numbers of women whose health had broken down, as he thought, owing to neglect of the menstrual function

[^186]at the formative perion, and especially owing to over-study, or, rather, innintermpted study, during this perion. The purpose was to show that girls neded special care while the menses were developing; that the hoalthy performance of the finction is so important that ao sacrifices are too great which finther its proper establishment ; that for many girls hard stuely was one of the worst things that conld be done during the monthly perionls; that a rest was imperatively callow for be nature, and most be granted "for a single day, for two or three days, or half-work for two or three days." The inference drawn from these important truisms wats that girls camot stand the strain of working side by side with boys in high schools and collenges, where it seems necesary to treat all alike on every day of the year. If Dr. Clarke had refiained from certain galling expressions, the tone of the regoinders would have been milder ; but his end was attainerl, and the public was the gainer firom the prominnence given to the question.

The replies made to Dr. Clarke showed that many women are, apparently, complete exceptions to his male in regrard to an absolute need of rest every month. One such exceptional lady, in her book, incidentally states that she has stool ten hours a day in a store for five years, without the least trouble; a remark which may be improved by us as the oecasion of pror posing a new rule for mixed high schools,-mamely, that in the upper elasess girls onght nerer to rise in recitation. Opinions may certainly differ on the point of rules for school-govermment, but at this day there are many masters who are accustomed to make allowance for girls, even to the extent of never giving pemalties for absence. If this does not meet the case, the remedy ought to work through the feminine tact of assistants. A little want of tact may spoil the arrangement ; a word of complaint about frequent albsences may appeal to the pride of the girls in such a way that they will aeept no more favors. It was Clarke's opinion that girls could get through as much work as boys, on the whole, "working in their own way."

The principal of the St. Lonis Normal School states ${ }^{1}$ that " exenses relieving the students tempora:ily from work are granted, whenever asked for on accomnt of sickness, without further explanation; and I may say that it is $m y$ belief that this privilege has been of great adsantage." The sehool in question is exelusively for young women.

Consumpron.-There is reason for believing that this disease is mather frequently caused by school-influences, though it would be hard to say how frequently. The story of the cases brings to mind those of "general break-down,"-the familiar "nervous prostration;" the general list of cause3 is the same,-had air, coutinued overwork without rest for repair of waste,and the difference in the effect is doubtless largely due to hereditary predisposition.

Bad air is notoriously influential in causing consumption. "The impure condition of the air of our houses, be they factories, public buildings,

[^187]rather, innv that girls he healthy re too gryent study was rioxls; that teel "fior a "ys.," The munt stand ru coilloges, year. If tone of the the pulbie cell of rest tally states it the leant on of proper claseses iffer on the uy masters ut of never he remely e want of xycent althey will et through :"
xcuses rever askel may suy re." The is rather say how al breakcanses is waste,y prectis-
‘The immildings,
or dwelling-honses, has muell to do with the great prevalenee of such dismases ats phthisis pulmonalis, bronchitis, and pmemmenia, which together make if nearly one-quurtor of the total mortality. . . . Unventilated and crowided workshops and schools are, moreover, the marseries of strmmons diseracs in general, which sap the strength of the commmity."'

The following olservations by Iarkes ${ }^{2}$ lear upon this point: "Usmally a person who is compelled to breathe such an atmosphere [vitiated berespiranion] is at the same time sedentary, and perhaps remains in a constrained position for several hours, or possibly is also moder-find or intemperate. But, altowing the fillest effect to all other agencies, there is no dombt that the brathing the vitiated atmosplere of respitation has a most injurions dffect on the health. Persons soon become paide, and partially lase their appetite, and after a time decline in museular stremgth and spirits. The airation and mutrition of the blowd seem to be interfered with, and the gencral tone of the system falls below par. Of special discoses it appears pretty clanly that pulmonary affections are more common. Such persoms do certainly appar to furnish a most mudne percontare of phthisieal cases; that is, of destructive lung-disease of some kimh."
(armichael (1810) and Neil A ruott (1832) deseribe cases where the diet of sthoois was exeellent, and the only canses for the excessive phathisis were the foml air and the want of exercise. In fact, medieal testimony lies all in the sume direetiez. The presence of dust in the air is a very fryuent cause of bromehitis, asthma, or pmemonia in varions trades, and onght to be mentioned here. Consumption has been a terrible seourge to the British and other forcign armies, ehiefly owing to the impure air of the barracks. The same is true of the navy ; of prisons in general ; of monkeys in menageries, and other unhappy confined creatures.

In America the experience of Prof. II. I. Bowditeh as a specialist has led im to utter repeated warnings to the misgnided parents who urge their weakly children beyond their powers. The following quotation ${ }^{3}$ outlines the history of this class of eases:
" I young person, male or female, walks into my study for the purpose of consultation in regard to health. I observe great paleness of fice, extreme emaciation, and trembling steps, eombined with a slight eongh, and evidently more or less diffieulty of breath. These, if combined with a certain intellectual expression of the face, almost immediately enable me to foreshadow a history somewhat as follows:
"Stimulated by ambition to be in the front rank of scholarship, and desiring, owing to poverty or the known wishes of parents, to obtain rapidly an elucation, the poor, scarcely developed child has been laboring for months, always overworking intellectually, and at times also physically.

[^188]Perhmes the vietim hats been carvied many miles daily to and from shath Stuly at sehool, in the cars, and after retum at night, sometimes twelw to fomesen hours, lans been the daily rule. [In me wase the girl went firty. miles diaily to and from selool, in all weather, winter and summer.]
"Ot conrse, neter prostration is the result. The appetite fails or has comes capricions moder severe fatigue and imegnataty of meals. (iradnally a congh is noticerl, and it is thonght 'a cold hus been taken.'
"The congh and the educational race continue on together. Finally a failure of' strength manifests itself, and then, fie the first time, the parems begin to look with ro ern at the appename of their child. But mether child now parent thinks of griving up sheol. Perheps it is towards the cond of the term. 'Only a few weeks more', and the coveted prize will be gainad, and then rest and cme comb be attempted. . . . At last the long-wished-for goal is reachoul. The first hotmers are gained, but they are now of little comfort, for all strongth, which hat been artificially kept up by the excitemont of the abee, suddonly leaves the patient, and the pupil does mothing afterward. . . . All idents of cure, or even of partial relief, lave disappared." . . .

It is important to note that the blame for sur abuse of life is plated upon the parents, rather than upon any stimulus supplied by the teachers.

If' a child hat hereditary tendencies to consumption, it is imperatively necessary to selere "a proper, reasonable, well-ventilated school (experiallis. one in which the fiequent opening of windows is avoided). No overwork of mind or herdy should be permitted. If the bealth fail at all, absohtute removal from scheol is required; travel or anthing else should be mulertaken that will interes and keep the pupil from books and ont of dooms, and let the education, so called, take care of itself:"

In another phace the same eminent authority remarks that "in at sonsumptive fimily the stoadfinst rule should loe, that the mind be wholly sulnser. rient to the borly's uclfure."

In a report on the causes or antecedents of consumption, ${ }^{2}$ the opinions of two honderland ten correspondents were smmed up as follows. The question having been put, "Is consmption ever caused by over-stuly at school or college?" the answer "ycs" was given by one hundred and fortysix ; "yes, indirectly," by seven ; "no," by twenty-one ; "doubtful," by ten; and twenty-six gave no inswer.

The ciremmstance that residence on a damp soil is one of the most powerful predisposing agents to consumption onght to have its influence when the site of school-honses is selected.

Here we may end the description of the ailments commonly gronpet together when the effeets of overwork are deseribed. Spinal deformity and near-sight are suseeptible of being elassified with these, for weakness is

[^189]all dement in beth. It is more suitalle, on the whole, to deservibe them seprateles, on aceount both of their special importmen and of their mechanical rulations to desk and somits.
spinal deformatim.
Guder this bending bedong two distinet affertions,- batemal emervature and romed shoulders. With the hatere is associated the "hollow hate" of cormsive curve at the loins. Lateral commare is the oljeget of our present study.

Latmat Cumatume, in the pophlar eye, is an indegme of peram, sammonable by the aid of the dress-maker. The physicime sees in it a consecyuenee and a cense of low vitality.
'The great majority of cases of this eurvature originate in children firom the age of five or six mpard, and in young persoms who have lately beren in school. This might be thought a mere coinedenere ; for the sedmod-previod is neressurily the perion of development, and the envature is a disemse of develoment. Bat there is evidene that shool work and customs are gronnine cansen, - mot low any mans the sole canew, but rather prominent ones.

The origin of betemal curvature depends chichly on two things,-wakness of the mascles whidh support the spine, and bad pusitions of the budy. Weakness, however, is not a neressary ciremstance, though an extremdy conmon and olten important one. A bad position comstantly mantaned will twist the most athletic frame. A very museular person may be fored to stand in a one-sided position by the circumstance of having ome leg shometer than the ofleer. Fig. 1 gives a rough but sufficiont iden of the way in which the hooly is supported on the legs. If the right log is shortened (Fig. 2), the pelvis or hip-hone will be tilted to the right, and the lower part of the spinal colomm, being firmly attached to the pelvis, will tilt with it. If the whole spine remained straight, the persm would be thrown off his halance; the
 fine must therefore enve to the left at a higher part; and furthermore, to make inf for the overweight thrown to the right below, there oecurs a "compensating" curve to the left at the height of the shoulders. In addition to this, the spine is in parts twisted, with a gimlet-motion ; but this is not represented here.

A similar thing happens when children stand on one leg,-a position which practically shortens the other leg. "A most pernicions habit, and one which is very often to be noticed in school-girls (I think I have ohserved it in girls more frequently than in boys), is that while we are talking to them, or during recitations, especially if they are much interested in what is going on, they are standing on one leg. This position is assumed invol-
unturily, and it is nlways, on almost ahwys, one and the same leg on which the weight is thrown. 'The effect of this is misily mulerstond : one side of the pelvis is lifted in, emrving the spine in the loins; the opposite leer is adsaneed in front of the other, twisting the pelvis and rotating the vertebree. Of comse the curve of comprensation takes place between the shoulders. Oue is depressed, the shombler-blade gradmally projecting, und with the change, and in finct assisting to pronlue it, ore⿻urs the spiral twist." "

Many envatures begrin in the region of the shomblders; of these, beyond donlt, the canse is largely to be fomed in false pasitions in writing of drawing. "I have visited roms in which drawing was tanght," writed Bronn, "where all, -male and frmak, - with semedy in exeption, were sittine in "position ont only to curve hat to twist or rotate the spine, and in most the position was such as to prollace a triple curve." The deformand attitudes (so to spakk) assumed in writing are powerfinly deserikel by Liebreid. Such ocerpations can hardly be condacted in entirely memal postures, but a great deal can be done to correct the grosedremets. One camse of the
 defect is the mising of the right shomblem ley a ligh desk or table, as is seen in the sketeh (Fig. :3) borrowed fiom Guillamme.

Another freynent cumse exists when the desk is tex firr from the seat, and the pmpil is forend to bend over his work in ann InIbalaned posture, which camont be maine tained; in a short time, if not at onee, he leans one side forward, puts chow on desk or kure, and head on hand, and gets his spine into the shape of a corkserew.

It is dewimble that every persom direnting or teaching a schond should have a notion of the propertions suitable for desks and seats. Farther on, this matter is illustrated with a few representative figures. But it is of the greatest consequence to remember that wo seats or desks call be devised which will remove the original workiness of musede, which ranks as one of the two chicf causes, and would ly many be named as the one important cause. Children camot be made strong by supports.

The part which weakness of musde phays in developing spinal curvature is planly shown be the elass of persons most affected, - mamely, girls and women. Adams (1805) gave one hombed and fifty-one rases among the female sex, and twenty-two among males; Knorr (1860) gave sixty among females, and twelve among males; Klopseh estimates that from eighty-four to eighty-nine per cent, are females. These are among actual patients. But the disease exists far more widely than any one is likely to know. Guillame (in i 864) fond in the public schools of Nenchatel,

[^190]on which ne side of site ley is the verticthe slome and with ist."
se, beynurl : or drawes Brown, sitting in 1 Incost the itt itulules Liellywich, tures, hut use of the :shomilder (en) in the nillamue. when the the purpil in ant tulbe mainthene, he w on desk 1 gets his W. in direntrave a mofor desks rentative (110) seats of muscle, lie named Hipports. al curvia tel!, girls cs annong ave sisty hat from ng actual is likely Fellulate,
 threw humdred and eighty-one girls, fioty-ome ber cent.

That mosembar weakness is a chied canse is further shown by the trentment which is sulecessfinl, consisting essentially of prolonged ind pertioct
 sed ative erertion of the museles bypropriate exoremes. Cases that aro
 some necel never be told that they hase "angthing the matter with the spine", providerl they ean le get to change their hathits of living.

These primeples aned to be applied to the prevention of spinal corvature in shambs. The preventive treatment shond comsist, when possible, of wery varich musenlar activity of an active sort, taken at proper times. The thest kinds are out-done games of' in athletie temdenes, - leaping, ruming, comsting, skating, climbing, and all sorts of "hard play. ' For bovs, wrestling, fon-loall, and boxing, and many more, may be added. No dombt, childron must be kept from exmesest, such as trying to make a high seore with the
 quet, deridedly; temois,-when phayed with one hand ; base-ball ; home-bank-riding on a ome-sided saddle. Ladies should use two saddes, one for mon side altomately. Sports likerally indulged in are, with this chass of (xeptions, the ninal amd natnal preventive of spinal anvature amoner boys; if girls played ont of don's as boys do, they would have little tronble of that sort.

The physimb indolence of girls, however we may deplore it, is not to he overoment onre. It arises in part from their unsillagness to assert themselves as boys do; their vealiness to submit to custom ; and their pewer of sarrificing comfort (i.e., health) fire the sake of propriety': 'The misernided semse of decorom, which prevents even walking in many cases, is the same ferling that, neglecting certain of the lower finctions of the bordy, leads to the prevalent habit of comstipation, and oceasionally to disense of the badder. Every argument, therefore, in favor of botily training, or of the teaching of gemmasties in selooks, should apply with donble foree to the fimale sex.

The programme of a girl's life consumes the greater part of the day in sedentary ocenpations. Sewing, piano-practice, drawing-lesoons, embroidery, are among the added burkens of the life of girls at home. If parents manot be indneed to take active steps for their children's physieal training (and I fear they camot), the sehool must modertake the task, on behalf, at least, of the girls.

The existence of $s_{1}:$ alal deformity has not yet received due attention from our public. It is hard to get at the facts. There are very few collected obscrvations of masses of chidren. Parents would dread the exposure of their children; but perhaps the popular mind wond not object to a lady surgeon for girls. No figures are procurable from female colleges, though the very great prevalence of emvature is admitted. The late Dr. J. C.

Warron in 1830 stated that of the well-edtuaterl temales within his sphere, about onc-half were athedeyl with some degree of distortion of the spine. It is not a wild guess fo suppose that this is nemby true at present.

Spinal curvature is not ouly a product of low vitality, but it dexes harm be permanembe tixiag vitality at a low stamdand. The spirometrie ohservations of schildand (Imsterdam, 1 site $)$ showert that the respiratory enpacity of this chass of chidren at the ages of from thirten to sevemesn was hessemed by one-third, and in some eases by one-halt,-a matter of the grasest impertanme in the maintenance of lite.

Brown ealls attemtion to the fiact that tox mueh mental stimulus has an momberd effect as one of the prodispesing canses of spinal curvature. Mental rest combiney with other appropriate comditions will sometimes whe the trouble in its incepient stiges,

The diseme may exist in a tully-derehopad form withont any apparme dhame in the direvion of the spine as seen from behind, even when the bendy is stripperl: this is inealnse the twisting may be combined to the benties of the vertebse, which are ont of sight. The tirst thing minally notiowd is that "the shonlder grows ont," or chac is highor than the other one. The ribs partake, and the chest is twistert ont of shape.
latients may sometimes be liepre in sohool who neerl sperial sats. This is a matter for the sumpern to devide.

The impresement whid has ineon bade in Amerian sehool desks and seats within halt a cembery is very great. Bew dity schools ame now unprovided with "modern" timenture, which in most eases is devidedly hetter tham the ohd. It is to lo hoped that the excellene already attained will not stand in the way of tinther progress. W"e hawe hern quite sumesatul in reaching our ideal of compont ; but we ought not to forget that the subinet has bern much studieq, from various other pmints of view, by German and other investigators, and with results which certainly dither from ours.

Bad desks are ehargeable with ading the tormation of two of the most important "shombetisenses,"-men-sight and spinal curvature. 'They cams the tirst by compedling pupils to hold the eyes too mear the whicet, ane lye favoring a stopping position at work. Spinal comsature is very muth assisterl by the twisterl pertures which chidren take, esperially in writurg.

Lee it be understone that it is mot our objent to make desks and seats which a schohar can orempe with comfort, asmming and maintaining und "nomal" position. for homs at a time; no, nor for one home. It is met possible to do this ; and, it' it were, it must merves in? be the child. 'The diseipline of a schose is a previons thing, but it shomh not intertere with the ehild's mext for chamge of attithate; nor must the teather fimey that in preseribing fixed attitndes he is following the dietates of " mevieal sumene." Attitudes assmued for a fow moments, for purposes of respert and attention, may properly be formal; attitudes in study shombe be devent, but may be
as varied as posible, subiert to correstion when they berwme ingurions. The temeher shombl be a jutge of the latter fact. Kipectally shombl literty
 the mobility of a kindergatern and the studions solf-phsiension of a highwhend hass at the age of sixtern ore cightern.

 If an momfertable perition is siven, let the whild not be kepe in it till mas itsitt is tatigue.

Is standing is mudesimble exereise, so is sitting in a chair withomt a back, It will mot malse the child's lade strong, but ouly comses fatigue,

 that it will be tempted to take the most comert position, as being the most. rontartable. It will not kopp this prasition long, however amontortable it. may ln_{n}, but it will retmen to it atter making its litele exomsions and
 withont molh be: ner said about the matter.

Little chidden mag property be tatughto sit still, fanding sumarely to the frome for tive minutes at a time, when dimmetames fawo it. Thery may lo: tanght, by degrese to sit ten mimutes, but mot throngh a sehool-session: wery rest must be made up be a correpondiug activity-a damge or a
 nay of resting: rest is a kind of work, to the tanght by degrees.

Is remards taulty positions, stooping combants the ehest and compresises the abdominal organs. The dhild, sittinge ereet, and wishing to how the head towark the book, may be shown that a very slight movement will aromplish that ohjert,-a hinge-mosement at the upper part of the mek, and now at the shombldes. The trunk dons not nees the suppert of the dhows (on the desk. One-sided positions easily bereme habitnal, and are then exowlingly objectionable: they are chictly emsed beymping the arm or Nlown om the desk.

A comentahle back for the chair is hest semomb, not begiving a
 hat begiving, first of all, an emphatio support to the lower part of the spine. 'The writer was rewenty shown a mother stitf-lonking seat, of which the dealer remarkent that all those who sat down in it at liset said "no," hut if he could induee them to remain sitting tiftern minutes he was sure 10 soll it. The seat in question has a dat bottom, shoping a little down and lack: the bark is tilterl, and is mompoed of two that surtiocts set together at at angle so small as luodly to be noticeable, - the projection lowing mespuater of an inch from a straight line. (Ste ligg. 4.) 'This chair, supporting the pehis solidly, gives great combert. I somewhat grater propertion of the lower middle part or the hack might be usetal.

This prineiple, which the writer is comvineed is of the greatest value,
may be carried out in other ways. The matter is not wholly settled, as may be seen by comparing Figs. 5, 6, 7, given by different anthorities. Liebreicli's

Fia. 4.

Fig. 5.

chair (Fig. 5) is intended to support the pelvis by following its outline by a eurve up into the small of the back: the projection of the eurve may be tor great. Fig. 6 (Varrentrapp's), and the unshaded spaces in Figs. 7 and 8, give the impression of stiffiness; they come to the height of the elbow, and give support solely by a horizontal cross-bar at the top, allowing a little open

Fig. 6.

Fig. 7.
 sehool-chair and desk (see Ftg. 9) for corresponding ages,
space below the bar. It is noticcable that many of the later German plans proposed by seientific men give support in this way. Their object is to cnable the ehild to sit erect while writing, with the aid of a partial support, not necessarily used at all moments: it is thought that such a support gives the habit of a correet attitude. Buehner was an inspeetor of schools: iebreich's
he sar's, "The ehildren very soon feel that the perpendicular picee supporting the small of the back corresponds with the structure of the borly much better than the slanting baek which supports the shoulders. I often used to ank the chillren whether they would not like to have a rest for the shoulders, as weli as for the hack, bot the girls always answered in the negative." Cohn and Fahner are also in favor of the low support. It is of wood, tw and a half to three inches broad, and long enough to be reached by theth clbows, shich may rest apon it when the child is not writing. It must not be placed too high, or it fails to give due support.

It may be doubted whether a low hack-rest of this kind, or a slightlyinclined rest for leaning back, supporting shoulders as well as pelvis, is, on the whole, the better. The present writer is not in a position to decide; yet a dhoice must be made, since ii seems impossible to seenre a resting-ehair which shall also give support in writing.

The popular American school-seat, with its hack curved like a long italic f, is not an ideal model. It is comfortable, -at least some are, for there are raricties. Some of them let the borly slide down so that upright sitting is imposisible; others are too low, which tends to incrase the constriction of the abromen; as a rule, they give the borly a romd-shouldered position, being essentially lomging-chairs with the head-rest cut off. Fig. 8 gives a growl pattern.

Our common wooden chair, with the back-sticks set in a curved line, quite fails to support the pelvis; in fact, its deficieney in this respeet is a positive amoyance. Fig. 7 shows a chair with this fault. It is built thus to give strength; this is better secured in an old pattern which prolongs the middle piece down to the pedestal, following the dotted line, and so is able to bring the side-pieces in line with the middle piece.
rig. 5 gives Liebreich's desk and seat, as desigued for the London School Board. The desk remains the same; the aceommodation for different ages is made by changing the chair and mor ing the foot-rest. The shape of the seat is slightly different for the two sexes. The lid is hinged so that it can be thrown into a convenient book-holder for reading. In writing, the chair is placed so near that the edge of the desk just tonches the body. The height of the seat is correct when the sloping line of the desk, prolonged, just tonches the elhows.

Fig. 6 gives the design for desk and seat published by the late Dr. Georg Varrentrapp, of Frankfort-on-the-Main, in the Vierteljahsschrijt fïr Gesumblheitspflege for 1869. It is the one from which the unshaded spaces in Fig. 7 are taken. The desk remains the same for different ages; the seats are of dilferent sizes, the dotted ontlines corresponding to larger pupils.

Fig. 7 gives a side-view, drawn to seale, of a highly-approved A merican school-seat, of a size intended for pupils from ten to twelve years old. The pusition of the lid of the desk is also given. The moshaded spaces show the position of corresponding parts of the model designed by Varrentrapp,
of dimensions suited for children of the average height of one hundred and forty-three centimetres, which for American children represents a little over twelve years. The lower edge of the desk, measured from the seat, is $4 \frac{1}{2}$ centimetres $=1.8$ inches higher in the Amcicican than in the German scat. The German back-rest is on a level with the desk, and the pupil while reading can easily prop his elbows upon it, maintaining an erect posture.

The dimensions, in centimetres, are as follows:

	$\underset{\text { Seat. }}{\text { Hegigr of }}$	$\underset{\substack{\text { DEIGK. } \\ \text { DESK }}}{\text { of }}$	$\begin{aligned} & \text { Differe } \\ & \text { MNEE IN } \\ & \text { HEIGTS, } \end{aligned}$	Hefint of Back-rest.		
American	36.9	64.8	27.9	(35)	30	5.2
Varrentrapp	40.2	63.6	23.4	23.4	26	2.6

Fig. 8 gives the side-elevation of two full-sized desk-seats, drawn to scale. The American desk is the largest size of one of the most popular

Fia. 8.

Ameriean eurved-back seat and desk (shaded), and Buehner's pattern, for eorresponding ages.
kinds. To correspond with this, Buelmer's tables were taken, and the dimensions calculated for a person five feet six inches in height ; the lines of desk and seat are given with shading for the latter case. The difference between the heights of the desks is nearly 4 centimetres $=1.6$ inches. This difference is increased, practically, by the downward and backward curve of the American seat.

The dimensions, in centimetres, are as follows :

	$\begin{aligned} & \text { HeIGint of } \\ & \text { SEAT. } \end{aligned}$	$\begin{gathered} \text { HeIGHT OF } \\ \text { DESK. } \end{gathered}$	Differfice in IIEIGITS	Height of BACK-REST.	DEsK to Back-rest.	$\begin{gathered} \text { Reat } \\ \text { PROIETS } \\ \text { NDRR } \\ \text { DESK. } \end{gathered}$
American	43	76	33	(44)		1 or 2
German	42.9	72.1	29.2	32.1	23.81	5.2

Fig. 9 is the American model from which the drawing Fig. 7 is taken. The fact that the desk-lid is considerably higher than the pupil's elbows is

Fita. 9.

correctly shown. The oecupant camnt be supported while sitting upright, and when sitting back his eyes will be too far from the book for ordinary work.

Fig. 10 shows the Belgian model in the Philadelphia Exhibition of 1876. It carries out very well the idea of supporting the sacrum ; there is a turn-

Fig. 10.

back lid, and the under side of the hinged part has a cushion at x for the use of the girls in sewing ; there is a peg for the hat at o. The seat, however, is much too far from the desk.

Stooping, cramped, awkward positions are not very likely to be assumed in a desk and scat well adapted to the ocenpant, except in the aets of writing, ciphering, and drawing. Bad postures in these ocenpations are far worse than in others, from the seeming naturalness with which they are assumed,
and the certainty with which they breome habitual. If a child cau be tanght from the begiming to write in a proper attitude, one of the commonest and worst of school-fanlts will be broken up. If there is to be a reform in this matter, let it begin at the begiming ; let the youngest clanees be the first to receive the ideal desk (whatever that be), and let the change go on, following their progress in the schools. Time ought to be devoted to aequiring the habit of sitting well, especially at the begimning of selnollife.

The eorrect pusture in writing is one which does not twist the booly or neek. The pupil faces the desk spuarely ; the shoulders are equally dintant from the lid of the desk; the trunk is ereet and nearly tonches the desk. The lid must be high enongh just to support the forearms, but not so high as to raise them; they rest lighty on the lid, but do not sustain the weight of the borly. This posture camot at first be maintained long. Perlaps five minutes at a time is all that we can expect of begimers; at all events, nothing is more certain than that children begin to lapse from this uprightness by that time. What can be done then? The effort to foree fifty children to keep in one position camot sneeed beyond a brief time, and the bad position must not be permitted: hence, as soon as fatigue begins, it is best to give a total rest by letting the ehildren sit back, stand, ete., and then resume writing.

The "systems" of penmanship in vogue do not satisfy the demand here made ; they do tend to twist the spine. In sume cases the pupil is directed to turn squarely to the left, letting the whole right forearm swing over the desk-lid, on the elbow as a pivot. This raises the right shoulder. In

Fig. 11.
 others the direction is to turn partly to the left, or partly to the right. The positions assumed in these cases are almost invariably fanlty: one or the other shonlder is raised; the head leans to the right or left, and sinks by degrees mutil the ear may eome in contact with the hand and the nose almost grazes the paper, the spine meantime assuming varions eurves.

Fig. 11 illustrates the position of the mannseript on the desk. It is eopied (with a little simplification) from an article by Staffed in the Centralblatt fur allyemeine Gesundhcilspflege, 1884, p. 45. If the pupil sits in the correct position, facing squarely to the alge of the desk $a b$, and looking in the direction $h g$, $d f$ represents the axis of the right arm, f being the point of the pen and e the place where the wrist touches the paper. The left hand steadies and adjnsts the paper, and must be near the right hand, so that the two forearms point inward and nemly meet at the hands. To eorrespond with this, the paper is tilted thirty
degres from the perpendienlar, towards the left, which enables the hand mure easily to follow the direction of the ruled lines on the paper. This tiltime of the paper is a natural device, -the reader has probably often pran'ised it withont special thonght ; it is, however, mechanically and phewiologicully the correct plan for easy writing.

The letters acquire a slant of thirty degrees when the paper is held in this prosition. This is owing to the fart that the most natural and easy way of making down-strokes is to make them parallel to the line $g h$,-or perpendicular, ats the puper is commonly held. Children and blind learners begin with these strokes.
some additional points require mention:

1. The chair is often too high for yomg scholars. The most convenient plan may be to provide footstools.
2. The seat, from back to front, ought to be long enough to support nearly the whole thigh. A more or less spoon-shaped hollow in the seat is commonly thought desirable. The curve of many settees is such as to produce pain at the point where the bones (tuberosities of the ischium) rest on the wood: the support is not wide enongh.
3. Seats must have baeks. The straight upright baek reaching to the shoulders is had; a straight back slightly tilted is not bad. American scats are commonly curved, with curved baeks, as in Figs. 8 and 9.
4. The edge of the desks should come np to, or overlap, the edge of the seat. The recoguition of this fact is a recent discovery : desks used formerly to be separated from seats by a spuce sufficient to emable the ocenpant to rise in his place, but since desks are now made separate or in pairs, it is only necessary to step into the aisle.
5. Most of our best desks are too high, relatively to the seat. The reason for making them high is, doubtless, to prevent the pupil from stooping. Something is certainly gained in reading, by this plan,-at least, in convenience of reading,-but it interferes with correet positions in writing. The ellows, hanging freely, should be only just below the level of the lid.

For near-sighted children, the higher desk may be a necessity in writing. If the desk is made as low as is here recommended, a portable arrangement resembling a writing-desk may be placed on the desk.

DISEASES OF THE EYES.

Near-Sightedness, with some other diffieulties, composes one of the most important divisions of our subject. To some extent the production of myopia is doubtless due to constitutional wakness or to depressing canses acting temporarily. Landolt considered hardships and poor fare the leading eanses, but his oplinion seems an exaggerated one. Loring has argued forcibly in favor of more aetive sport for growing youth, and has shown how confinement to the house, short hours of relaxation, and undesirable fare, mast be considered important causes of the excessive prevalence of near-sight on the European continent.

Other facts which may illustrate this point are the excess of near-sight in eities; the general prevalence of poor health among the same dasses of students that are subject to near-sight ; the readiness with which the ere may be injured by work performed before brenkfist, during fatigue, or after recovery from acute fevers. An associated fact is the low vitality prevalent among blind people,-which muy, however, be an effect rathor than a cause.

As regards map-drawing, the hest plan is to use large paper, make strong outlines, and insert few details, the objeet being by no means the production of handsome work, but the fixing of leading facts on the pupil's mind. In penmanship and sewing, and still more in embroidery, harm may easily be done.

Interesting remarks upon the most desirable form of type for elearness are made in Dr. Jeffries's article, Massachusetts Board of Health Report, 1882-83: they are from Javal. Many school-books are excellent in this, respect; many are still had.

The pmpils' most common neglect (says Soldan) is in regard to their eyesight. They injure the eye by reading by a lamp close to the head, withont a shade: the object of the latter is quite as much to keep off heat as light. They work in the evening instead of by day. They read nowels six hours and then study two. They defer the most taxing work (such at drawing) to the last minute.

Light.-Defective lighting is one of the chief faults of school-buildings. The difficulty of satisfying the requirements in eitics is stated under the head of "Site for Schools." For a northern climate, a very free exposure to sminght is desirable. Large trees often need removal. If possible, direct smulight should enter every room at some hour of the day.

A sufficient light implies light which easily reaches the back of the room. Lighting from one side, as practised by the Germans, is thought by most of our arehitects insufficient. In fact, a room with sixty scholars and an allowance of two hundred and fifty cubic feet of space per head will necessarily be too deep for good unilateral lighting. The simplest remedy is to make windows on one side and at the back. This principte, carried ont, gives us the square school-honse with four corner rooms on a floor, or, as in the Cleveland model, with six rooms on a floor. It has the advantage of natural dranghts. If the combined size of all the sashes equals one-fiftl or one-sixth the area of the floor, it is usually said that the supply of windows is sufficient. Small windows are not the fault of modern school-houses.

To get the best effect, windows must reach within a few inches of the eeiling. They ought to have square tops, not the Gothic shape adopted in the St. Lonis model ; they must have no heavy projecting outside ornaments to eut off light. Instead of Italian awnings for summer, they shonld be guarled with blinds on the inside. It is hard to find screens that will at once exelude the sun's rays and admit enough light and wind. Neither
near-sight me claseses ich the ere fatigue, of ow vitality flece rather aper, make means the the pupil's , harm may
or clearness lth Report, lent in this
ard to their head, withoff heit as read novels ork (such as

1-buildiugs. 1 mider the ce exposure sible, direct
back of the is thought rty scholars e per head he simplest is principle, rooms on a It has the the sashes y said that he fault of
ches of the adopted in ornaments should be hat will at

Neither
white nor yellow nor red screens are pleasant when the sum is on them: a neutral gray is best. A neutral light tint is suitahle for the walls.

Lighting from both sides is well enongh for small school-houses of one room. There is, however, a preference for light coming from the scholar's left hand, especially in writing. Rear windows may be added if thonght necessary ; they give a general increase of light: their worst point is that they try the eyes of teachers, but that can be relieved in two ways,- - cither by in rather dark shade rolling up from the bottom, or by placing the windows about six feet above the floor, so that the direct rays do not strike the teacher's eye when looking at the class. It is a cardinal rule that no one shall be forced to face the windows while rending or otherwise exercising his sight : therefore no windows must be in front of the scholars. Blackhoards are generally put wherever there is room; those between windows ought to be little used ; their surface must be a dead blaek, not glossy.

This, however, gives but one aspect of a wide question. Other important canses-perhaps much more important-are the following.

Excessive use, even under favorable conditions, wearies the eye. It seems well proved that, in general, students who spend longer hours over home lessons are affected by near-sight in larger proportion. The practice of working without rest for long periods is worse than working many honrs with pauses.

Poor light has always been considered one of the leading causes. It not only fatigues the eye, but also induces the pupil to bring the eye close to the book.

Constant attention to near objects donbtless has its effeet, even when they are "near" only in the sense of leeing bounded by the walls of strects. City children live in a narrow horizon. The youthful eye has a murvellous power of seefing things at the distance of two or three inches; and many things in school-life conspire to bring about habits based on this power of adapta-tion,-badly-proportioned desks, poor type and ink and paper, poor light, exeess of light. The eye that is laboring at too short a distance is enabled to do so by the action of the "muscle of accommodation" in the eveball, which arranges the focus by changing the shape of that organ. Such an eye is working in a state of tension, which tends, if long continued, to produce a permanent change in the form of the globe, making it longer from back to front, which constitutes the chief characteristic peculiarity of the near-sighted cyc. Very few, if any, childrea will obey physiological laws of distance without being compelled to do so. There are certain faults in school furniture that favor the bad habit: too great height of desk relatively to seat; separation of desk from seat by an interval, instead of laving the desk partly over the seat. These, and bad positions in writing, have been mentioned already.

Anything tending to cause congestion of the eye aids in forming nearsight. Among these canses are tight clothing (corsets, neckties, coilars, belts) ; indigestion, particularly constipation; overheated rooms, with bad
ventilation; overwork of the brain, especinlly if it canses hemdache. Fonness of the blood-vessels stretches the eyeball and assists the tendency tu a change of shape as above nuticed.

All these influences have their effeet chiefly during childhod: few persons become nemr-sighted atter they are grown up, thongh an increaso of near-sight is not mes. This ciremmstance is one of many which warn ns that balily development is liable to be impeded or distorted in every direction by false cducation. Every phan which aids in strengthening the constitntion of children may be considered as a contribution to the hemlth of their eyes. During childhood the tissues are less firm, more elastie, than luter in life; they are more quickly renewed, more ensily distorted. The gero metrical deformity of the eychall is produced by pressure at this tender age. The remaly sems to require not only that we lessen the daily amonnt of pressure, but also that we enconrage those active habits whidh will make the fibre stronger and more resisting.

Hereditary influence is modeniably powerful. What maty be the cflect of several genemations of acemmatated tendency in stadions fanilies annot be predieted: a learned friend of the writer's snggests that the result may not be blinduess, but a permanent type of myopism, in whieh children will be born short-sighted and will not need to become so. But in specenlating abont the finture it is necessary to take acconnt of other tendencies. Far-sight is quite common among children; and the action of inheritance seems not to be limited to the repetition of identical defeets, but to reprodnce both anomalies-the long eye and the short eye-with a certain degree of indifference. The existence of a tendency to the normal eye is probable, independently of the elimination of infit persons from the race.

Blinduess, or an approach to it, is the tendency of a certain number of cases of near-sight; the retina becomes gradually detached from the back of the eye, and becomes incapable of receiving exact impressions. On this account (as well as for reasons above given) the "nour-sighted eye is a diseased eye."

Test-types, or large cards on which lines of letters of graded sizes are distinctly printed, are a ready means of estimating the degree of near-sight in the hands of school-principals. To give such observations full value, atropine and the ophthalmoscope, in expert hands, are required. A muchused eye is apt to be in a state of tension which makes it temporarily more near-sighted than it really is; atropine relaxes the tension.

There exists a prejudice against the use of glasses, which is natural enough. But if near-sight is considerable, so that a child really camot work well in an crect position, it is necessary to allow a pair of very weak glasses. The matter cannot be determined by directions given in an article like the present: the decision and choice must be left to the physician. A limit or minimum distance at which the book may be held from the eye should be stated, and children advised and corrected of their bad practices. The least distance, recommended by the Comm:ssion d'Hygiène des Ecolcs
of lanis in 888．4，was twenty－five centimetres for children in the lowest
 and thirteon inches respertively．Fiftern inches is proper for those of langer stature，but would＇י口possible for litte childen．
 dren．Its effert，when it is of a high degree，is to make the act of remding
 Thoses subjeret to it read failly well for a time，but ather a while berome con－ serinstof efliont in the act of seemer．＇The eves feed stamed，and the letters berone somewhat harred．There is a deribe to rest the eyes，on to elose them firmly，or to compress them with the hand．A fresh start is made，and a seend rest has to bre taken after a shomter previon．Fometimes the habit of hokling the bowk close to the ere is arguired，which makes the cave seem to he premisely the opposite of tong－sight．The choice of ghasse（eomvex，or ohd－sighted）should be directed ley atompedent physician，for the peripose of（and ing such children to work withont suffering．One affere of the dismase is the procluction of internal spluint．

Astomatism is bather common，and gives as much amoyance as ment－ sight．It dejemes on an incorvert entature of the firont of the eychall （eroneat）．It is known loy producing a hlured look in linew that rim in one given diretion ：some people sed hori\％ontal lines hadly，some perpendienlar ones；in others there is an obligue axis of indistinctuess．If at all tronlalo－ some，this defect ought to be remolied ley glasses，－ats it can be perfectly． It is not a discase in the sense that near－sight is．

phesical thaning．

The comection between physiond twang and genemal colncation is （hwims．The principle leing granted，it remains fin as to consider how muld the school and the college of to－diay should be reguired to give of the ir energies to the furthering of this end．

A system of calisthenies is at present widely used in publice selleols， with distinet benefit．It is not probable that the system will ever be alban－ doned．Most rauders must have seen the pleasint sight of at romblul of flildren engaged in the simple hat vigorons movements of the arms which arve so well as vents for superduons chergy．These tained movements are an indispensable part of primary－school work，and are of great use in the intermediate grades，but are of subordinate value（as now pratised）for deler pupils，They are quite difficult enongh for lithle children，but above the are of twelve scholats begin to look down on them as childish，and with good reasem，for they lack one essentiad clement，－they do not call forth exertion to overeome resistance．For better work，scholars should have light dumb－hells and wands，and more sace to use them than can be found in an ocenpied room．

The immoliate benefit of exereise，however，does not depend on any large amomet of development that it imparts．Very simple exereises， V゚ロ．．IV．－－2． 4

 (1) cand。

 If sixty to memerse in.

 piame, mider a beader: stmblows atteme fom hays in the werk, hald an hour

 of almost all the stments. In fald, the exemens is a mion of rempation and : mumament with work.

 sime the oproning of the mymustim in 18.59.
'The dirention is in the hands of Prof. Bhand Witehomk, M.D. : the

 tamler:

The ohgeet ameal at of work, rather than of arility and strength. -

 queat as in the Freshman.

A system of this sort reaches al later number of yomergen who murh nexel it. Fow are so juthentos and perseroting as to lay down a phan of gymastics and adhere to it. Mueh of the apmatns in ordinary gymasimm is menticel for the beginner: its cfley is to exhanst and rack his freme and disonnage his afforts. The most complete outtit of appamens, and the best instruction, will not insure the attendane of the very elise of
five mimuts hur disuiplinn mind mal la al flu simin ulows slaml| loy assimuly
a bliml ustros ife limitarl to its ormatit to ugh for lifis
is finroislnd ed to altenill sembel ut Hac lat11 : $111 \operatorname{lom}_{101}$ Ils: there is He conilumily : 1111 : al' rasmention
"nthes u" In
 : all :110 hats ondilltert
(M.I. : the \because, :mil "lenu-
 -xensid wher diguilum by cmber w' dic
lı:and prower :unco of leats ainat, l'yof. culably from hain lialf 2
who much a plate of ary yrmonaid ramk his - apparatus, cer chas of

 wometer.

I Bew lomene of' Wr. Siargent's work comsisk in the taking of photor

 puldide siltorils.

 trmen, allowing the shmolders to lall forwatid and the nerk to stemp, maty to the tion step, and the sadelle-hack may be merely the eompernatory (InT:

 athetis mandog for men whose ehests ate small: they run the risk of ias-

 sumption. Our beys meed not be athletes,-it would he lutter for the

 sports dues not give to loxes a grood chest-devolopment.
'The late Amhibald Macharen, deseribinge the Vombish whoul-hey as rominem mor his observation, said, "I fimd that almost every yonth at the time of passing from the shools to the University has, as it were, a considamble amome of attaimable power and material capaity undeveloped; his buly, or rather a portion of it, is in arpeas in this respect, and as arvears, and as a recoverable doht, the youlh maty farly view it." During the yonlis first term of two months, with propery-alministered exereise, the chest will expand, in all ordinary ciremmstances, two inches, and in
peculiar ciremmstances he has known the increase to reach double that amount.

Most sports develop the legs satisfactorily,-walking, ruming, leaping, foot-ball, erieket, fencing, temis, racket, fives,-but some of these give in addition an excess of work to the right arm. The result of sports without gymastic training is a frequeney of pigeon-breast, hollow breast, drooping shonkders, and stooping. There is also an occasional excessive upward growth withont corresponding expansion of the chest. These are the resunt of abmudant phay in English schools for the better classes, where play is a regular part of the day's business; they represent the best that a boy's pay can do for his development.

Military drill was brought into favor by the war ; its supposed end is to furuish large mumbers of men ready trained to seavice in ease of emergeney. Some military men find t the real result is a conceit of knowledge and indisposition to enter the mulitia. Its best side is the moral side: it ruses self-respect, a. promotes obedience by showing the practical need of it, It is, further, as good exercise as many games are, and shares with sport the rlement of interest and pleasure. Schools known to the writer have given triu hours ont of the weekly programme to drill, and have found that the week's work as a total was not lessencel. The objections are that the exercise is taken in a crampel position, every movement being executed to pattern, ain.' that the mumber of movements is extremely few, so that the exercise is not at all a typial one for developing the body; also, that the musket is too heavy, and that it is carried chiefly in the rigit hand fur convenience. The so-callel sete ig-up, drill consists of light gymmastics, the oljgect of which is to give the soldier a good position at the outsect: this is not and eamot be properly carried out in schools unless time is taken,-and the time is already taken for musket drill.

The amoment of time taken by Maclaren to correct the shape and growth of boys in his own school was one hour of gymasties weekly,-this, in addition to aboundant play.

The children in the turner classes practise an hour twice a week, somewhat after the gencral plan of Amherst, aming to give the girls more of grate (e.g., by a variety of daneing movements) and the boys more of muscularity. Their work is well worth inspecting.

The British soldier, on entering the army, is put through daily gymmasties from one to one and a half hours daily fier three or six months. It is umecessary to deseribe the practice in other amies.

In our publie schools the frients of reform suor hat be satisfied with less than half an hour twiee a week, under trainerl teachers. An hour twice a week might afterwards be thought desimbie, -the method to be that of light gymustics, to some extent imitating that of Amherst. The teachers may be specialists at a moderate salary; or the work may be done by sueh of the regular teachers as have special gifts for it, as is the case in Germany. As regards the amome of work to be done, or the teaching foree,
louble that
ug, leaping, ese give in orts without it, drooping ive upward e the restulto e play is a a boy's play
eed end is to emergmej. wledge and le: it mises need of it. ; with sjort writer have fomend that we that the excented to so that the lso, that the it haund for gymuastics, the outsect: less time is
and growth y, -this, in
reek, someIs more of s more of
laily gymmonths. It
isfied with An hour to be that he teachers ae by such se in Gerling furce,
the city of Frankfort-on-the-Main is a rood illustration: there are twelve thonsund children in the public schools of that place, and the mumber of hours given to gymmastics is equivalent to the constant serviees of seventeen and a half teachers. The city has special halls with apparatus, of the length of from twenty to twenty-five metres, nine or ten metres wide, and from five to five and six-tenths metres high.

Tue Routine of a Schoot-Day.-It will not be without profit to study the arrangement of time and ocenpation made for cases where a young person's whole time is under control. In making the plan it is uecesary to have a clear idea of the amount of work that is desirable. Time must be assigned for play, and fer gymnastic lessons: either or both may be made compulsory (as foot-ball is in some of the great English schools).

The following is an ontline of a day's work in one of the best American boarding-schools for preparation for college :

Sthamer.	Winter.	
9,30		Rise.
7.	7.30	Breakfast.
7.4.5	8.15	Prayers.
8	8.30	Study and recitations four and three-fourths or four and one-lalf hours.
12.45	1	Intermission.
1	1.15	Dinner.
2	. . .	Study-session in summer one-half hour (none in winter), then playtime.
230	2.15	Play-time, summer three and one-half, winter two and three-fourths hours.
	5	Quiet in session, study optional.
6	6	Supper, one-half hour.
6.80	15.30	Intermission.
6.45	6.45	Pravers.
7	7	Study session in sehool-romm until bedtime.
8.30	8.80	Youngest boys (twelve and thirteen) go to bed.
9,15	9.15	Middle boys (fourteen and tifteea) go to bed.
10	10	Older boys go to bed.

The amonnt of sleep allowed for is from cight and a half to ten and a half hours, according to age and season. The boys all have the gift of sleep, and use all the time allowed. Study and recitations for the youngest boys, six and a half or six and three-fourths hours; for the oldest, about eight hours. Play, two and three-fourths or three and one-half hours, acfording to season, in a solid limap, besides some intermissions too short for serions play. There is a twenty-acre lot to play in; in winter they use the gymasimm at their option, under control of a tutor. Detention for pumishment is assigned to the afternoon play-hour: most hoys average one hour a week at most ; miselievons boys suffer longer detention, but in no case to their physical harm. Sweetmeats are not expected to he sent from home; if dis'overed, they are confiscated, or are served at the boys' table so that many share.

Compare with this the routine of a large boarding-school for girls, of very good standing, in the same part of the country :

```
6.30 Rise.
7.10 Breakfast.
    Recitution, lorty-flve minutes.
    Prayers.
    Reritutions mid study, fome lomes.
    Dinuer.
    Walk, in which all join.
    Ntuly und recitation, two and one-fourth hours.
    Recration,-free time.
    supper, followed by recreation.
    lmyers.
    Study, one and three-fourths homs.
    Bedtime.
    Lights nut.
```

Here are nine hous assighed for slecp, and cight and three-fourtho hours for stuly ; but three-fourths of an hour is taken ont every day for gymantic exereise in classes. ' All take a walk of three-fourths of an hour. There is apparently a comsiderable amount of time left free. The comtrast between girls and boys is seen in the compulsion exereised in regarel to all exereise, which is dombthess necessary. The reguired hours of work are iikely to be too long for some girls; and if musio and letterwriting and literary societies and prayer-meetings are added, girls are likely to be burdened. Visits to the pupils' homes in term-time are propert: forbidden.

Detention is an effective means of pmishment when not carried ton far; hut when at boy's Saturday forenoon, or even his whole day, is spent in silent confunement fer a series of small fanlts, the elfect is bad, morally and physically: Anocasional good whipping is far better.

The chicf whection to corporal pmishment is perhaps its effect on teaders. Withont exantly making them ernel, it presents a temptation to hasty and often excessive action, afterwards regretted. Girts should not he pmished in that way ; boys setdom, aud with conscientions reflection, withont anger.

The eity of Cleveland requires that every ease of eorporal pumishment shall be reported to the superintendent of schooks, in blanks containing the following leadings: date; offence; general chameter ; home influences; means employed for reform ; whether parents were previonsly notified of misconduct, and what answer was given ; whether ever previonsly referred to the prineipal of the sehool or the superintendent, and how often ; resialt of pmishment. ${ }^{1}$ 'This represents fully the present tendency to cantion.

[^191]
II. EXTERNAL HYGIENE.

SITE OF THE SCHOOL-HOUSE.

One of the first points to comsider in selecting a site is dreness of the soil and air. If possihle, we should choose a spot consideral)ly elevated above pomds or wet gromd, on soil which dries fuickly after min, and where evening mists do not hang. In damp, low-lying spots consmmption is apt to prevail; a tendence to rhematism, catarh, and neuralgia is common ; diphtheria often prefers low, damp regions, and so does intermittent fever.

A house may possers a damp atmosphere amid wholesome surromdinge, if the cellar is damp. Even high land is often full of water. In the comotry it is minally possible to choose a dry spot, but in cities many otherwise desirable lots contain matergromod iprings, or watereomses which have been dammed be the filling in of new streets, and it may be mecesary to drain or water-proof the cellar. I wet cellar is mever neecssary or allowable.

Next to the genemal health fuluess of a apot we may consider the question of light, one of the most pazaling and unsatisfictory of all the problems of shoot-seience in large cities. Wherever we lmith, we must experet that others will by and be ocenpy the adjoining land with homese of monown height. There ought to be an ofen space on all sides large enongh to secure a goxd light in any sudh contingency. How diffienlt it is to aceonplish this in cities may be seen in New York. In 1880 the Sanitery Einginece gave prizes for designs for selwol-honses to be phared on lots one humdred feet square (that being a misual size) not situated on strect-eorners. In making the award, the committee came to the inevitable conclusion that these conditions made it "impossible to secore sufficient light withont eifleer overerowding of class-rooms, or an matisfactory armangement of corvidors, stairs, ete." Not want of foresight, but the cost of land, prevents proper lighting in cases like that of New York; but there are many small yet growing eities which, with endpable want of foresight, are building schoolhonses within six feet of bommary-lines.

Noise and other misamees ought to be avoided. It is possible to foresce the growth of traffie on eertain lines, and avoid them: by doing this we are the more likely to retain comparatively good light. In some places the law properly forbids the maintename of lignow-shops near schools. The neighmorhood of police-stations, with the oceasional view of noisy prisoners haled before justice, is most objectionable. Enginc-houses are also bad neighnors. In short, all somrees of moise or excitement and the neighborhoud of erowds are to be avoided.

The porchase of land enongh to give a space sixty feet wide all aromed the building shond be a minimum requisition.

PROTECTION A(AANST FIRE.

Fires in sehool-honses can generally he traced to the heating-apparatus, Nothing special need be said ergarding the preeations needed in the cas of commom stoves; but, as open fireplaces are now placel in some schouls, it may be well to call attention to a possible danger from the conduction of heat throngh the hearth and back to wood-work in contact with them. . donble back of masomy, with air-space, is required,--the hearth supported by a brick areh. Some builders carelessly run beams into the brick-work of chimneys.

A tin ventilater ruming in a flew to a chamey has been known to camse a fire : a fumaty of light material was put into a grate in the story below, and the flame and hot air, reaching back from the ehimuey into the tin flue, heated it so that the planks canght fire.

Special eare ought to be taken to proted wood-work :against the heat of hot-water or steam pipes. Hot-water pipes may in some enses reth a temperature much above $212^{\circ} \mathrm{F}$. A properly-armaged boiler for stembheating, it is said, will not give superheated stem, and the heaters will wot scorch wood-work; but with wil boilers, if not kept properly suppliad with water, superheating might oremr. There is mueh evidence to show that fires do take place just in the neighborhood of pipes; and they should tre protecten most sernpulonsly loy the stem-fitter. Pipes may he susperded by iron staps in a groove lined with bright tin, allowing a space of one ind betwern jipes and tin.

It hats been proposed ' to provide lage valves, easily opened, at the roof, so as to draw ont great quantities of air or smoke at the begiming, than relieving the oerenants of the danger and alarm which smoke oreasions: also to provide extra thes in walls, commmicating with the floor-spatees or wainsent-spares where smoke is generated, to carry smoke oft.

Floors shonk be brought up to brick walls, so ats to ent off all upward emrents behind the finring. A method of doing this has been patented.

Stairs should be as strong and substantial as possible, and practionlly fireproot. "They shom be the last to burn or fill in the strmeture. In ordimary construction they are among the first places to catch fire and the mont eflicient mems che rapidly convering it from flow to flow. Stairs em tre built at a reasomble mothey that are convenient, casy of aceess, wedl lighterl, and absolutely fireprowf." (W. R. Briggs.) Iron fiames enclosed in a separate brick tower at curch end of the lmilding are the fullest realization of this idea. 'There ought to be two, on opposite sides, so that "me would be left firee in any case.

Five or six feet is a proper width for the stairs in large buidings; the hall into which they empty shonld be considerably wider, and the from door-way from six to ten feet, with dows set to opon outward. Sheme

[^192]known to the story iuto the the heale es read and or sterlillaters will silpplicyl a to show and they as mex

t the roof, ning, thus or"alsions: -speteces of 11 upwated atental. Macticolly fure In (c) and the Stairs c:m cess, will a combiserl st realizalthat wr
mildings: the frout Schowl(10n, 1886.
room doors should open outward. A panie mey arise at any place, with or withont good canse. Spiral staits or wedge--shaped stairs are to be forbidden. A landing half-way up, with some sare rom, is desimble. There must he plenty of light, and the imperssion of secertity must be imparted.

The balustmde is not altogether the best arrangement; a well, in fact, is not needed for reasous of construction, but is nsefinl tor discipline, mabliug the scholars to be seen casily. The loss of tiftere chidnem's lives in the breaking of the halusters during a panic, while the crowd was deseronding a stairway three fice wide, in the Notre Dame Aeademy of New lork, is an instane in point. There were nime humdeed diblden in that building. It is satid that they hatl been carrefully instructed in the "firedrill;" but the fire-drill does not med the case when the stairway is insulficiont. With good arraugements, eight humderd children ought to be got out of a school-honse in a minute and a quater ; they onght, for practice, to have to do it withent notice as often ats once a montla. It is eertain that there are a good many fire-traps just as had as the Notre Datme: the writer hats seen much worse.

VENTHATHON ANO ILEATLNG.

This sulpert is admittedly of the first importanes. The school is the place for work, and bad air at once impairs the working-power. More than this, the effert of bad air is todeteriorate the whole constitution : there is little exagearation in the statement that all diseases are either camsed or are made more severe by had air. Several motorions "sehooldisases" are
 debility, anamia, serofula, consmmption, varions affections of the eyer, the gracial discmssion of which is foum elsewhere.

The impurities of air maty be divided into three classes: 1 , dust, smoke, stenches, gases from heaters, and other defilements which are independent of the prosence of scholars, and should be entirely got rid of ; 2, carbonio aded from the lungs ; and, 3 , organie matter exhated from the lungs and skin. The last two are mavoidable, and must be allowed for in ventilating.

Carlonic acid gas, in the quantity fomed in ordinary hadly-ventilated rooms, is not probably of itself a scrions somure of ingury. Men who go facentionsly to the bottom of wells or vats sometimes berome unconserions, and perish umless resencl, owing to the presence of nearly pure carbonic acill; but in rooms the amome present seldom execeds five or six parts in me thonsud, whieh quantity camot be very atively injurious exeep in so far ats it slightly lessens the proportion of oxyen. 'The lethargy of a close leture-room sems to resemble the stupor of andyyiat, but in reality it is gemine sheep, cansed by heat, bodily fatigne, an easy seat, a monotomons voiece, whatuess from contimed passive listening, -all greatly argravaled hy the bad air, no doult. But carlomie acid by itself does not produce the vioknt sumptoms of poisoning which are familiar from the deseription of
the " Bhack Hole." Expired air freed of carbonic acid does produce such symptoms. The eminently moxiens agent, then, appars to be, not carbmic aded, but the animal exhalatioms which acompung it in the beath.

The process of amalyang air for the organic impurities is dillicolt and unertain. It is therefore necessary to depend nom the comparatively ensy and rertain test for carbenin acid, which comesponds quite nealy in proportion with the organic impurities and is atfoly taken as their index.
 bonic acid in ten thomsand. Recont analyses seem to indieate that there and a hadl parts is nearer the truth; but it varies somewhat, beding latryer in cities. Assming lour as the rule, the question arises, "Supposing the air of a room to be constantly polluted by heathing, at what stage whall we suy that it becomes manitable fir firther nse?" The equestion is answerel varionsly. l'ettenkofer proposed seven as a standard of maximma amome of' "urbonie acid ; Degen, six and six-tenths; whike larke, who may be remorded as the best amthority in our langmere, sets it at six. That is, the permissible added impurities correspend to the addition of thres, two and six-tenthe, or two parts of carlonic acid in ton thomand. lanke base his stamdard upon the persomal experience that air at six seems pure. so that a persom coming fom the onter air pereetses no tace of ondor, or difference betweon the onter air and the rom in peint of tresthess, while if the carbonie acid exerets six the air miatly begins to be pereppibly impure. When it rathes nine or ten the air is what is callet dowe amb finsty; above this it beromes disagrecable. Alter a persom hats berom a fens minntes in a room the oflor beromes impereptille, and loe no lomger en julge "by the nose."

It is abmond lan frowed that in our climate, and for lange bodies of persons, ordinary (so-called "matmal") means of ventilation by windows, fireplaces, and holes in walls are entirely inadequate, and must give place to the systematie nse of flues of sizes sulted to the supply repuived.

The allomence of fresh air per head is based on the datum just given for permissible degree of addal impmity. It is, mufortmately, the casc that the impurity camot be got rid of by itself; it mixes so rapidly with the air that it seems lesest, on the whole, to consider that the mixture taks place at once, and that our only remety is to rlilute the air bey letting out some that is foul and letting in some that is pure. We have, therefore, the problem in this form: How much fresh air is needed to dilute one persom's exhalations to a given point?

Adalt men exhale abome six-tentles of a mbie font of carbonic acid per hom white at rest (Pettenkoler, lanke). The equation beeomes, then, $2: 10,000:: 0.6: 3000$, showing that one man's exhalation, diluted with three thousand eubie feet of air, impregnates it in the proportion of two parts in ten thonsand. The homly suphly required is three thonsand cubic feet per man. The calculations of Roth and Lex give three thonsand five hundred.

This statement :pplies to moms comstantly oceupiad, aud to adults. When the room is to be orenpient bat three on fome homs at a time, and is thoronglily aired in the interval, the amonat may be redneed to two thon-
 Isuming that chidrem require menly as mach as adults, the shenelered
 the sperial committer on phans firs publie selhools, given in the sermitery biaginere for Mareh I, 1880 , mal repated in the report of a "ommission on the publice selools of the District of Colmmhat.' 'This is the minimum reguisition.

It may be ghestimed whether ehideren require the full sumply of air asigned to adnts. 'They are smaller; the work of trmsformaton of material, thongh active, is in some degre proportioned to their comsmortion of forel, which equals that of adults at fourtere, but is much below it at six and eight ; they are very antive, get dombtess do not perform as much aldontute musentir work as adults. Jigures quated in the Lamh I'rize
 much (arlmien acid as adults. ${ }^{2}$

The views of I © (hammont, as given in a report made to the latermational Congress of Education lowd at Bruseds in 1880, are presented by billings. ${ }^{3}$ Issming that adult men exhate two hambed and sixty-six enhic exntimetres of cartonic and per hom at rest for every kilogramme of their weight, he makes what seems sulficient allowance fine increase due to mosement, spaking, ete., and asimuse dure hundred and firty-six coblie centimetres per kilogramme fire children. 'Taking Quetelets tables of weights at different ages, he finds that the supply of frem air repuired in order to kecp up the standard of purity (six in ten thousamed) wonld be-

A iLS ,	Clibic Felet PER Ilowh.	Acas.	Cuble fazt REER HOHRS.	AGE,	(DBIC FeEBT prit llouk.
$+$	0111	10	- 1575		- 82320
1	. 108.5	12	- 1875	Adults	. 4130
8	- 1850	14.	-24\%1)		

To this Billings remarks, "The question of the amoment of carbonie accid exhaled has little or nothing to do with the matter, except in so far as it is an index of the amome of organic matter given olf; and it is probable mat the difference between the amome of organic matter excreted by a child of five and one of fifteen is ly mo means so great ats would be indicated by the monnic-acid tests. I shonld allow in a school-room or hospital very

${ }^{2}$ Adult man, 6 of a cubic liot (16.8 to 22.6 litres) ; girl of seven or cight, 29 of a mulie lowt ; girl of eight or nine, . 84 ; chill of ten, .28; boy of twelve or thirteen, . 37 ; young woman of seventeen, .37 ; boy of $\mathrm{if}^{\text {foen, }}$..
${ }^{3} O_{p}$, eit., p. 162,
nearly the same amont of air-supply per head for children of all ares over five years. . . . The standard which I would fix should be . . . firn each person in a class-room not less than thirty enbie feet of fresh air pre minute."

It is a fact that chideren do not stand had air as well as grown pacole. Not only da they require large supplies to eorrespond with a rap pid rate of growth, but they are more liable to lose health from any given callse; they are more delicate,-soxome alepressed, and quicker to recover.
"I think it best," said Simon, "that children and adnlts should be deemed to require equal allowances of air and ventilation."

Cubic Space bequmbi per Heab.-A common size for schoot-romens, where liberal idens prevail, is abont twenty-eight by thity-two and thintem and a half fect high, giving twelve thonsand and nincty-six cubie feet. Beyond these limits the size becomes inconvenient for the purpose of instruetion. Let us asime a class numbering forty; the cubie space jur head is there homired feet, a liberal allowance. But forty persoms reyuire forty times thirty-i.e, twelve humdred-cubie feet of fresh air per minute, and seventy-two thonsund per hour : so that in the room supposed the air must be wholly changed six times in an hour.

Take the minimm requisition for New York city sehools, seventy enbie feet of sate per hata ; if the scholars are to receive the same allowance of fresh air, the rom must be wholly re-charged with air twent-fise times an hour! It is absurd to suppose such a case as porsible: the chitdren would live in a whimwind. It is a good deal to speak of changing six times an hour; yet this can be done withont risking a dranght, whereas a more apid rate is considered likely to give amonance.

Tha se caleulations give the reasom for requiring liberal space, as usmally stated. There are other reasons, however. A large room has more windows, and in other ways favor's "uatural" ventilation. The airings at reerss give a larger store of fresh air to draw from. There is a tendeney for the state of the air to grow stadily worse from the begiming to the end of a session: this progression is fiur more rapid in crowded sednools. This is obvions enongh, and is common matter of experience. Liberal space is very desiable, even if there is no thorongh s.stem of ventilation.

On the other hand, it seems a pity to spoil a grond canse ly exerssive elaims; as when one thonsand enbic feet of space per head is maned as desimahe, in several places in the second report of the Ontario Provincial Board of Health.

The following list of requirements is reduced to feet from Billings:'
Belsium, law 157
Educational League, Belerium, proposes 386
Holland, average 129
Huarlem, eighty-nine schools 158

[^193]| Englinh Board sichools, abotit 12i-160 | |
| :---: | :---: |
| Bavaria, haw (at cight yems) | 13i) |
| " (at twolve yeurs) | 101 |
| Dresden . | 107 |
| Framkert, Medical Society recommends | 2:17-32 |
| Busle, law . | 213-23 |
| Sweden, primary | 187-21) |
| higher | |
| New York City (for various uges) | |

Merions of Vextiation.-The heated flue is at present the arrangement applicable to the greatest mmber of cates of school-homse ventilation. Its size mist le detemined in acoordance with the mmber of pmils in the room or homse. In most ases one general diselarge-flue is sulficient. It should be located centrally, so as to lose no heat to the outer air. It consists of a staight lorick shalt, rising from the cellar to the roof, aml (apped above the roof to protect it from downward grasts of wind. 'To incrase the current, the air is wamed by having the smoke-flue of the heater pans up throngh the middle. The velocity of the ase ending air depends on many eiremastances : if the weather ontside is cold, if the edimmey is high, if the heat is conemonterl, the romrent is swifter than under the "posite conditions. A simple formula for the theoretisal velocity is the following, from Billings:

$$
v=8 \sqrt{\frac{\left(t-t^{\prime}\right) \times h}{491}},
$$

In which $r=$ velocity,
$t=t$ mperature in the chimner
$t^{\prime}=$ temperature of the outer air,
$h=$ height of the chimney.
If the temperature ont of doons is 40°, that of the chimney 100°, and the chimney is so feet high, the result is

$$
v=8 \sqrt{\frac{60 \times 50}{491}}=8 V^{6.11}=20 .
$$

This velocity of twenty feet per second is arcally dimimished ly frietion and wher ciremmstances. The veloeity desired is five feet,' which will discharge five culbe feet of air per second for every square fine of the aross-section of the chimney. This, be it remembered, is only an average performance, currepending to a difference of 60° between the chimney and ont-doors.

If a pupil requires one-half of a cubic foot per second, every square frot in the section of the chimuey corresponds to ten pupils. A school of four hundred pupils requires a shaft eight by ten feet, inside measurement, mot allowing for the smoke-flue and for space taken up by entering pipes and gluirds.

[^194]Schemes of Vexthation my Protso-To pass the smoke-pipe up the ventilator-flue is an obvions thought. The dranght, without some sum arrangement, is seddom as strong as we require. One of the caty aphliations of the primephe is shown in Fig. 12, taken fiom Guillanme (185 f),
 where it is called "Mott's system," apparently a combination of the wen-tilatimg-stove and the chimner-wentilator. This represents a plan which (an be put in nise in ahmost ang comblo try shool,-the only dilticulty betur the inadequate size of the flue. Fin (example, in a ome-story building the dranght will be feeble, owing to the shorthess of the chimmer ; twenty-tive pupils would regnire muler those ciremomstances a flue two by two and a
 rain. 'The outhe shombld be narowed, to inerease the veloeity at that pant. The danger would be that wind would oxeasionally (or regulaty') blow denn one side of the llue white the hot air rose on the other. This danger would beeme a erertanty if the flue were mande two by a partition.

Shere iron or wrought irom :usts out rather soon ; for the pipe in the chimney cast irom is best.

Brand thes of moderate size leading from the rooms will have a show eurrent, hence must be langer in propertion ; a class of filty might rexuire two horizontal ducts, earh two feret square,--a requirement which woukd prove awkwad to the architert. In view of the great size and of the expersive complexity of these arrangements, it is best, when pussibhe, th have no flues or ducts lealing to the main flue, but to place each room in contact with the latter, so as todeliver its fonl air directly into the slaft.

In ilhustation of this method, Figs. 19-1.5 are given, representing the system as applied to an oldfashomed square building with fom nearly seftare rooms on cach thoor and a wide contry roming through the midtlle.

The plan, asexplaned by the en-
 gincer, is a copy, with certain modifications, of the plan adopted by Mr. Wr. R. Briggs for the Bridgeport IIigh School. Fig. 13 shows a section of the homse as seen by a person looking
:some :unch y uppli":ne (1891), y:t 1 m, ," the xall-ney-vintio latl which any coulluulty being fluc. F゙ぃ ithling the twenty-fise two : and a ard :yainet that paits. how down nger would pixe in the
ve a sloween ight rerrint
port IIigh on lowking
thermgh the entry: romes on the right and left ; the third stery orempied
 warmed by the smoke-flues af the two buikes. The theses are of when, humed with tim. Where the two mite, a briek floer is haid on an anch, to suppert an iron stame to be weyd when the builers are mot heater. 'This part of the shaft is andered be a dowr firom the hall.

Firg. 1.4 is a partial sertion in the direction from front to rald, showing the intake of air ly as sereen windew, and the way the air is arried np from the leateres to the tops of the ronns that are thes sinppitied.

The intake stands thare or finur fert above the gromul, as
 is mem, at the comere of a prejection in the poreh. A flap-walse is fastened with hinges like a common door, and swings hark and fonth, covering windows 1 and b alternately aneroting to the direetion of the wind ; this presents the air from bowing through both windows at once anm deranging the supply:

Fige for gives the collar-phan. The fiesh air in matering pasem through two bong chamels to the hated chambers, of whin there are fome, card

Fior. 16.
 supplying the two roms direetly over it. There are four coils nesed fin each rowm, making thirty-two in all ; the ? are disposed in two layers (rig. 1:3); (arth can be shat off separately, giviug aut cerommieal emotrol of the heat sent to cath room. The batl in the thirel story is hatent by upright coils at the sides of the hall, with air-supply taken thengh the side of the building. One of the shatts is shown in Fig. 14 , with its fome air-tulxes and one smoke-flue.

In introlueing the system it was fomed desirable to empley stem loat; an excavation had to be made to rereive the beilers. At the right and lelt of the boilers are seen the air-supply ducts in section, commmieating outwardly with the briek eoil-chambers, and upward with the small chamber where cold and hot air are mixed before entering the rooms. A valve is
placed sa that the cold on the hat air maty be entirely shat off, of diflement proportions may be used ; the valves are comedold from the sidenetroms to which they pertain. A slider of shert-iron regulates the admission of air to the haters nerording the weather.

The preereding is in instane of thoremgh work, 'The mext best thing, fir those of limital means, is to aroid bhoders and waste. The following prints ate oflered with this properes.

 in the expertation that they will he used fin tires in mild weather: bun
 Their ventilatiog power is small momateel with the demand, mat may he

Stoves arrauged like the "portable finmaces" that ate sed ap in mindas
 the stove, lowsing an interval of a fow ind hes for an air-space; a lowh in the flon', commaniating with a pipe lad out of doons, sulpplies al antrent of fresh air materneath the stove, which beromes warmed and rises into the room. Thar sereen comas down to the thom; a valve regulates the suply of cold air.

 ney, to get more heat from the pipe; the hatter wight to have a strip of
 bentilator cowels the room.

Ventiating-stoves of varions patterns are shal, based om the alwes priaciple. 'They camot supply a quantity of air commemsumate with the wants of a school, but there are good as far an they go, and doubtess s"onomize fined.

Fia. 16.

Fia. 17.

Figs. 16-18 show how the primeiple of sontilating rooms he heated thus mery be carriod soms. They are adlapterl from Mr, Jarokers's illustrations in the seronth Report, Michigan Board of Health.

Fig. If shows air entering by a pipe benath the flow to the eating arome the stove, which is four inches and six inches wide all aromed. Fonl air escopes be the heated chimney. The upper outlet requires a valse.

Fig. 17 shows the suction of the chamey applied at the level of the floor by carrying a pipe down. durission of
: host thing, he following
rey are nuw in, allid :almin Nenther ; lyor ruge jamitur. and may x_{1} coing. Is: of the hewt. un in in cillats iron: armul re : aloule in is a cherent ul rises intu regrulates ithe
le to the "ation m the chimwe a strip of The upper
(1) the alouse ate with the "II dombtess

8 show how f ventilating (t) Ilues may

They are Ir. Jacokess the semouth an Board on

Fig. 18 combines two stories. An opening in the enlarged part of the pentilator in the "pper story may be utilizal fing that rom.

Dhe-simpors-The advire has been given to make the wemtilation of a house depend on a single shaft. By doing so we avoid the possibility ou" having two shatis "drawing aganst earl wher." Two or more shatis, howewer, af ("plal beight and equally heated, need but interfiome with aach other, provided sald has a fill silply of nir. 'This puint may l_{s} ower lowisul, with bad results, as it often is in the dimmers of dwellimghomees.

In the illustrations (Figs. 1.1, 15) a full smply of air is indicated as entering by two large comduits, lined with masonry, roming
 aeroses the theme of the cellar and opening at ean end at a point four feet above the gromed. The comblats are large (mongh fin a man to walk homerk them with remsiderable stopping. The iulets are so arramped with a datp-value as for cated the wind ; there are also reventator-valves at a point below the inlets and again at the entramees to the radator chambers. 'The heat of the air entering selhest-romes varied from sit ${ }^{\circ}$ to $10 \bar{z}^{\circ} \mathrm{F}$; on leaving the romems it below $70^{\circ} \mathrm{F}$, : the outhets must, therefore, be larger than the inlets, -a good deal harger, practically, i! order to tavor exalipe at a bow velonity.

One cannot help, secing how intinntely the problems of heating and of veutilation are comerted. It is the part of eronomy to make the details
 to heat ventiator-shatts; ame the latter must he provided with a dae supply of waste air. 'The immense guantities of air that are diselharged most be replacent ; and it seems evident that the mphacement shonlal be made by ail that is alroady warmed to some extent, if not filly. There are very few buildings where this can be done at present : hence advice about opening windows is of miversal appliation.

As sehool-honses now are, windows must be opened. In comentry districts, epperially, both sashes ought to move easily up and down. In expmed places donble windows are applealde; they must not be fistened, lout must be freely movable. A donble pair of sashes with the lower onter meraised and the niper inner one lowered gives a tolerably sate armagement. Window-boards are often phaced under the lower sash, filling the spare entirely, the air in this case entering by the catek between the two sthes. Or the board may be set at the distance of an inch from the lower sash, in such a way that when the sash is raised two inches the air is deflected upward. All such contrivances need to be watched closely, or they will oceasionally give rise to dangerons dranghts.

It is a grood plan to make the curtains roll at the bottom, so that the Yol. 1 N , -
tops of windows can be opened freely in summer withont injuring the curtains.

Piered window-panes, gate shields to be placed before cracks in windows, Earela ventilators (little slanting apertures in onter walls), and a varioty of other contrivanes, have more or less value, but do not meet the wants of sehool-rooms: if they let in a good supply it canses an memdurable daught. No window-supply can be sulficient in cold weather : a crack opened in every window and well watched is a proper measure; as a supplementary armagement it shonld be an inflexible rale to devote five mimutes at the close of each lown to some drill like light gymmasties, the windows being opened instantly at the begiming of the exereise and chosed after it. At recesses the same shonld be done, and seholars shombld be made to leave the room.

The writer has seen a great many sohool-homses in which tin ventilatingtulnes have been phared long alter theirerection. The result may be stated as forlows. There is gemerally a distinct dranght in the pipes, and the air in the rooms invariably remains poor. It is said that there is "marked improvement," and this is probably tme. The ventilation secmed by these pipes may amome to one-fifth of what is needed, more or less. They are not sperially heated, and their dimonsions are inadequate. Snch a system may work admizahly when applied to a series of rooms containing one of two persons (rooms for partising musie, private study-roomsi). The nsual plam, in the absence of an adequate shatt, is to build a iarge wooden box in the attic under the caves and phace in it, aromed the sides, a series of stameoils. Tre box opens upward by lonvers, and receives at the sides and bottom the tin tubse leading from the rooms. A dranght is celainly obtained in this way, but it is an expensive way. The power of a chimmer depemis on its length,-i.e., on the leagth of its warmed part ; and in this (ase we have the equivalent of a dhimney only abont twelve feet high, placel just below the root. In instane may be given. The S-_ somed, a large, spacions building with sixtem romes and probably eight honderal pupils, was the subpert of serious complants on accont of bad ventilation. A syitem of large tim floes, opening in the attie to a mumber of sumb boxes as are desmibed, was introlued about five years ago. The principal of the school considers that a very beneficial change las ocenred, a result parly due to the improvement made in the sewerage-arangements. The eronsumption of eoal previons to the change was me humdred and fifty tons jer year; the arerage of three years sime the change is one humbed and sevonty, It is proballe that the added consmution is chiefly dae to the radiators in the ":tie, which ronghly correspond in surface with the inerease.

The size of these flues is eighten inches for sehool-rooms (two to med room). This is evidently not a suffecient ventilation.

Ventilation by flues must be phaned to give spacions passages, with air at a low velocity. Horizontal thes, sharp angles, ronghness of the imer surface, retard the emrent; so do narrow llues : the smallest dameter shomb is), and a meet the :all buentcather: a Hote; an a evote five asties, the nd (hrised l he made mtilatinghe stated nd the air " markiend I by these They are a system ng one or The ustual len bos in of stromsides and tainly obchimury nol in this feet high, - sech(wal), hundres vutilation. nell thexes pal of the ilt partly The .e.on-- toms per 1 severty. diators in
of to mach
, with air the inuer er should
not be less than five inches. Round tin pipes are unoljeetionable, but must be boxed in where they are expered to cool cmrents. The diseliange shonld not be broken at top without grood reason. A patent cap may be usefinl to prevent down-draughts, but camont be relied on ats a some of dranght. A alaft may pern into a lomered eupola with exposime to all sitles, in which vase the shaters shombl be movable and be kept desed on the windward side. 'The top of the shatt should tee closed when school is not in session, to prevent cold air from desconding.

Cost of Vtaxthathon.-In the first place, the motive power need not rost anthing: the heated shatt, if properly built, requires nothing but the heat of the smoke-flue. A ton of "eal may be used in spring and fatl for the stove in the shaft. The box in the attic costs in proportion to the henerth of pipe placed in it.

In the serond place, an immense amomen of heat is thrown away in the foul air which is expelled. There is mo alternative: it must be wasted. but there is reason to think that less is wasted than might be feaned. The waste goes on for only a quarter of the twentr-four hours, at any rate, while hating must go on all the time, holidays indoded. 'Thinty hours a werk is only eighteen per cent, of the time ; thongh, on the other hand, the temperature mantainet is comsiderably higher than is required after sessions. The heat expended is divisible into two pats, -one used to keep up the temperatme, as against the cooling effert of the onter air ; the other used to watu (fiom 20° to $70^{\circ} \mathrm{F}$., we will suppose) the air which is thrown away by the ventilaters. Certain estimates by "Thermus" in the semitery limgineer assign an expenditure of eighty-six and a half pmonds of coal per hour for the former objeet, in a building containing two hundred and fifty thonsumd cubie feet. For warming the supply of fresh air for fow humdred pmpils in such a buidding, at cighteen lumded cubie feet per head and hene, the expense womld be seventy-four pounds of coal per hour. It is highly prohable that we are obliged to expend morethise of the latter amment already, even with the poor results we have. Our people will wot curdure dosed wis lows, as the Germans do; the reesses are frequent ; there is a complete airing-ont twiee a day at lenst,-all of which must be comsidred as athal ventilation, and be subtrated from the expense of seventyfinm, taving, saly, twenty-fine actually spent and fifty more desired to be spent per hour. The summing up is as follows:

Daily Eremenditures.

Nepessary hmat, 6 homis, nt 86.5 peminds	519
Necessary hent, 18 homrs, ut 43 pounds	724
	1,2:13
Heated air now thrown nway (by open wimdows, ate. is hours, it e4 pmonds	144
	1,137
Hentel air proposed to bexpended, in addition, 6 hours, int 60 pounds	:3\%
Total per diem on school-days	1,73,7

One Wrikis Brepentitures.

$$
\begin{aligned}
& \text { Necessary expenditure, } 5 \text { days, } 11487 \text { pommis 7, } 18 \text { in }
\end{aligned}
$$

> I'ropused ventilation, io dayse it 300 pounds 1,5un)
> 11,27i

Tho chief reason whe wentilation is not more widely introduced is the expenss; and this maty fimish the exemse for dwelling so long on the ques. tion of expense, and may mitigate criticism of the acemalay of tigures for which the writer has had to degend on himself. The totals semem rather large. It is perfectly phan, however, that to make ventiation there times ats eflective as it is at present will not rephire the expenditure of twies the amome of enal : the extemate requires only one-serenth more. It is extain, also, that we now pay, of necessity, a comsiderable sum for a wrothed, hallway result, with colds, cataris, wematisms, earahes, ete, thrown in. We are foreed to keep windows epen : the ideal system does anay with that neerssity. Air discharged throngh windows might as well he sent through shafte, ats fir as cemomy is conemend: open wintows cost heat, surely.

As regade athal cost, the Briderport High schood building requires from one humdred and tifty to one homered and sixty toms of coal ammally, of whid ten shonk be deducted as due to the use of rooms for eveming schanls.

It contains fourtem das-romens, cach twentr-nime be thirty-eight fent and thitern feet high; bibury, office, hall fifty be one homderd ferd and twenty-two feet ceiling, water-dosets, hall-ways averging sistecon fery wide, and ehok-roms, all rentilated. 'The momber of pupils is abont seren homedred.

The school-honse represented in Figs. 18-15 has comsumed an aremer of sisty-five tons per suar for eight chas-rooms, ead containing abont finty pupis, beside hall-wase, and a hall orerpying the entire third story. There was abmulant heat.
 power is that the misult is independent of weather or temperature. 'The heated flue is recommended for buiddings of moderate size, at all expats For lage buildings, in citios where compertent men can be had at low wages to man engines, it is probable that the expense will mot prove a sermens whertion. Arangements may perhaps be mate by which one onginere
 nishes power enough to ventiate a homse for eight homdeed dideren. I large fan in the attic, in a receiver to which the varions flums are lew, and another in the basement to ventilate the chosets, would be a good artange ment. The plan is on trial in Buston, but results in figures are not given,

The heated the will neecesarily act with greatly lessened foree in warm weather.

If stemon conld be supplied from a constant soure ontside a buideling, or if a shaft rum be untside power eonld be userl, the puestion of reonomy might be made casicer.

 the orifie. Suel dellectors are not applieahle to ordinary, mall, mwamed Inces.

If indined to a eonsomative viow, we mave diped that inlets for hot aid
 "Bridgeport" plan has the novely of pareing them near the ceiling. By expriments published in the semitary limpinere, it las been shown that the

 pmints live and ome-balf' feet above it. This mpalitity is sadid to be due to the way in which the air cirenlates. Entering quite hat at the side remote from windows, it speads out in a later under the coiling and works its way
 the surtare of the elass ; thence it geos back to the point of exit muler the
 expriments shoulal be mate to determine the rivendation in othw haldings, and the amalysis of the air made.
'The place for exits for fonl air is mear the eriling for summer ventilation on in the exaning when hamps or gas are burning and there is leat to longot rid of. In the winter it is at the flen-lered: a higher puint lets teo much heat escape, and a ceiling registere might disedarge the contre supply of fresh wam air before it had time to mingle with the aif of the rown.
'The Rattan system of heating emplose a heated shalt of heirk, to Which the fonl air is bronght bẹ flues of any reyuired longth. 'The aib laves the rooms be perforations along the side watl wear the forer, ame is (arvied first through chambels under tho floor, alud imparts some watmoth to the latter. The writer ammot give details as to results.

The (fomge vemtator is a tube of metal, which ean be inserted in old buiklings, amd seems to have worked well. It nses a gata-flame on a lamp
 duce : movement of the whole collom of air.
"Dirert" stemm heat does mot permit of enorel ventilation. If a pewerfinl exbanst-dranght were to be applied to a room thas heated, the groestion would arise, "Where does the supply come from?" If winduws ure chacel, the shlply eomes from entries, and indireetive from cellats to a large extent, which "an hadey fail to be mowhelesome.

Radiators set against the wall of a room, with an opening lehind them leading to the open air, may be supposed to finmish some fresh warm air to the room. They will not rentilute it. The amome of fresh air contering by one such opening depends on the size, and on many other points, hat, as a rule, they are calculated to effect very little execpt heating.

Much hats ber, made of the need for moisture in the air. In our climate moisture is so seldom aboudant during the school-year that a dry in-door air is not noticed as a contrast. It is probable that good ventila-
m, with lowering of the prevalent excossive temperature, is what we newl th ielieve the contined, dull, oppresied feelings that are refered to "hurning of the air by furmers," At the same time there is some gromul for complaint if furmaces are heated exeessively or lak gas. The gras which eserpes is deleterions, for it centains not only the sulphorous acid which gives it the pungent oxlor, but also some carbonie oxide, which is apt to cause headache. The weight of testimony at present goes to show that the latter gats is not likely to "pass throngh the pores of cast-iron furnaces," either black or red-hot.

Furnaess of ample size and grod make are not oljectionahle. Ther onght to be larger than can ever possibly be wanted. The chief trouble is well known: they will not send a colnm of air many feet horizontally, but should be plared direetly under the rooms to be heated. In ease of exposine to the weather, they can be set on a windward side.

Stem-heating requires the attendance of an intelligent man. In fact, the whole business of a janitor is capable of being "pushed" or negglectend, -like other kinds of business. But for managing a boiler the man should have given proof of spectal competeney.

The temperature of a schood-room is commonly required to be about $68^{\circ} \mathrm{F}$. in our climate; in Europe, abont 60°, though there is a difference between places. Judged from the latter stamdard, it is curions to find a regulation in Springfield, Massachusetts, that if the temperature dows not execed $60^{\circ} \mathrm{F}$, hatf an hom after the opening of sehool, the class shall be dismissed. In summer there ought to be a regulation for dismissing when the thermometer reaches 82° or $85^{\circ} \mathrm{F}$., or some point indicating that study is no longer profitable.

A warmer for the fect should be plated in the entry-way. The writer hats seen one large enough for twenty to stand on at once, composed of a nlate of iron with steam coils undernenth.

Analysis of Amb. - 1 convenient method of testing air for carbonic acid, simple enongh to be used by persons who are not practical chemists, and yet acemate enomgh for practionl muposes, is a great desideratum, several such methods have been proposea:

1. Lange's methed, described in Buek's "Hygiene and Publie IIealth," vol. i. p. 624. Six bottles, of known eapacity, forming at qualded serics of different sizes, are made perfectly dry and clan; they are the filled with the air to be tested, and closely corked. The smallest one is then chargel
elhind them warm air to iir entering ints, but, as
ir. In r that a dry ord ventilitihat we newd Ito "burngromul for : gits which acid whish h is apt to ow that the furnaces,"

He. There f troulle is orizontally, In clasis of
II. In fast, r neylecterl, man should
o be alkunt a differeme s to tixul re doce mot iss straill be ssing when that stuly

The writer prosed of a
ir carthonic chemists, sideratum.

U I cullth," 1 serics of filled with in charyed
with a dose of fifteen enbic centimetres of lime-water, clear and fresh, is raverked, and well shaken. The presence of a certain amome of carbonie arill is reyuisite in order to produce " distinct turbidity" of the lime-water, by the formation of carbonate of lime. If turbidity appears in the first boutlo used, we infer the presence of that required amount of carbonic acid in the quantity of air that the loottle contains; and the proportion is estimated by making the latter amonnt a denominator with the amome of earbenic acid as mumerator. In short, if the reaction sneceeds in the smallest hotle, it shows a high proportion of carbonic acid in the air ; if it does not sumered mutil we have tested all the botles and reached the largest, the propertion is small. The first oljeection to this method is its clumsiness, with the weight of the apparatus ; another ohjection, and a nearly fatal one, is the meertainty of the word "turbidity." To aid the eve, a piece of paper with a mark is grmmorl to one side of each bottle as a test of the turbinlity.
2. The method given in the Lomb Prize Essays, 1886, p. 80, depends on the same principle. The six bottles are, however, first filled with water, and the air is introduced by suddenly emptying them. They are all then (harged with lime-water colored pink by phenol-phthalein; the dose, half an omme to each. All are shaken at onee, in a frame. A given amome of marnhie arid will nentralize the given quantity of bime-water ; complete nentalization is indieated ly disapparance of the pink tint. The size of the bottles being known, the proportion of carbonic acid is calculated as abowe. The results were compared with simultaneons analyses made by the late Prof. Nichols, of the Massachusetts lustitute of Tochology, and an monnging deyre of acentacy was ohtained. The operation, however, is described as long and fatigung ; the appatms is lomley and heary.
3. Lange's seromb mothod requires the mse of one bottle of morlerate size (fifty enbie centimetres). The shape of the bottle onght to be stated, but is not. The charge is seven centimetres of baryta-water. The cork fits tightly, and is pierond by two glass tules, one of which dijes into the thind. By means of a rubber tule and ball-syringe of known size (giving twinty-thre cubie centimetres of air when pressed), sncessive doses of air arre pomped in, or, rather, are sucked in, through the long glass tube. After card introduction of air, the bottle is shaken well, and the ohserver notices whother "turbidity" oecers. The objections to this apparatus are, the ambiguity of the term "turnidity ;" the tendeney of baryta-water to muldro change in eontact with air, vitiating the aceuracy of the experiment whon made; the fouling of the tubes in shaking; the uncertainty that the oprator feels how long he ought to shake the bottle; and the fact that baryta-water is a prison.

It may le well to remark here that the hottles sold by deaders in chemical grats-ware do not correspond acenrately with any standard measure-

[^195]ment, but must be tested beforehand, and the tahle for pantical nse mante out by the observer for his own hotles. The mbler bulb-symuge, alsu, is not fixed in its capacity : a selectionappoaching the standarl mast be made by the experimenter.
f. Owen's process, given in Billings's " Ventilation and Heating," I.
 of ghass bulls hown in a tube, chargen with the pink solution of limewater and phemol-phthatein. A loss of color is signifiemot of sathation with antmonic adid. The writer was inlormal bey the late Prof. Nidals that this appatas geme results widely varying from the truth, in his own experiemere. 'The reaton for this would seren to be the ineompletemses of the repation, dar to the companatively short time the aspired aid was in contan with the il . The same inemplete raction may dombtless be ehangel an lange's seroud methoul.
 as a practioal one. As doseribed by the anther,' the apmatos is as follons:
"A exlindrial glass vessen, twolve erentimetres homg and twa
116. 19.
 millimetres wide [shaped like a test-tuber], is marked on the side with a line comeremonding to the surface of its proper chatrge of there cubic wentimetres of lime-water. On the buttom [outside]
 water being poured in to the level of the line, a glass tube attandind to a rubler bull-syringe is passed to the bottom of the erlinder, and air is repatedly promed in through the fluid until the matio 1882 (:ma mo lenger be seen distinctly. The bulth, presseral at its back with the thamb, yidds alone twenty-eight eubie centimeders of air each time. [There is no valve; the tube is remosent alter earh discharge.] 'The apparatus is mot shaken, exepept at the very hast, when we wish to be sume of the exact degree of turbidity. If the renetion is sufticient, the mark 1882 , barely visible throngh the lime-watere, beromes invisible altore a moments shaking."
'The table of values is comstractel upen the basis of one disecharge of the bull, tilled with air comtaning two handed parts of carbonic aded in ten thonsand. This air predues the reminsite opatity with one dischange. It is inferved that if tro discharges are repuired, the amount of earbonic acid present is only onc-half as great, or one humdreal parts in ten thansand; or, in general terms, the momber 200 , divided hy the mumber of times the bulb is emption, gives the number of parts of "arbomice acel per ten thomsand.

It is not sate to spack of the exactness of this as compareal with labot matory processes, but, as far ats tried in practical use, it gives encouraging results. It is very simple and portahbe, and is casily cleaned with a little vinegar. A little more or lese of lime-nater makes no difference in the wsult, provided the dimensions of the glass are acemate. As far as can be

[^196]juldyal, the results me the same with very mpial dischangere of the bull ats with quite slow dise harges.
 timed, but comsidemable adetier memary may be hoped fors. It is to be wishel that its adion may be tested by simulamems exat analysis of air in the same rome, or, still letter, by the use of kuewn mixtures of air and carlmie acid in proper rexivers. A valseatangement might be thomght desimble, in orter to asoid the tromble of removing the ball and thbe exery time; but a value world introdnee a fresh element of menertainty.

The anthon's talle is given locre.
Tuble for Whomert's Air-Tester.

1	200	$11 ;$	12.0	81	6.4	$41 ;$	1.8
9	J(0)	17	12	(3)	13.3	47	1.2
3	137	18	11	83	(i. 1	IN	4.1
1	\%0)	$1!1$	10.6)	31	6.9)	44	4.1
5	411	211	11)	83	6.7	50	4.1
i	83:3	21	(1.5)	83	6.6	[1]	3.6
7	2!	22	[1. 1	87	6.1	52\%	8.9
8	25	$2: 3$	8.7	38	6.3	fi3	3.8
!)	22	$\because 1$	8.8	3:	6. 1	5.4	3.7
10	211	2.)	8.11	40	6.0	(2.)	3.7
11	18	$24 ;$	77	41	4.9	546	3.15
12	16	27	7.1	42	4.8	57	3.5
$1: 3$	15	28	7.1	43	4.6	58	3.5
1.1	14	23	(i.)	4.	4.6	531	3.4
15)	$1: 3$	30	6,6)	15	4.1	60	8.3

6. Lange's seromd methed has then ardantaremsly monlified by Dr. Alfired L. Carroll as follows. Half' an omere of lime-water is placed in the test-tube, instead of haryta-water. Instend of the inexact rublher-hall aquation, he provides a water-jar grabluated at the side, with toles artanged in the ordinary woll-known way for producing aspiration of air harough the test-tule. Clomdiness prodneed by aspiration of cight colbie indus indinates the presence of cighteen parts of carbonie aced in ten
 inchus, of six parts.

The practice of testing the air of sehool-rooms is strongly recommended tuall temelners, copeceially principals. In defant of more exact apparatus, led a tei-mume lottle be filled with the air of the rom by a syringe or belhows; let an ounce of lime-water be added and wedl shaken: if there is lithle or mo thridity, the air is fairly good. Air previonsly contaned in the bellows or syringe must be evacuated before using.

DRAINA(iE AND SEWERAGE.

Effects of Air- And Water-Pohsoning.-The dranage of a building should be strictly serntinized when there is a suspicion that the origin of a "filth-discase" can be traced to the premises. This applies especially ${ }^{\text {t }}$ ontbreaks of diphtheria or other sore throat, pmemonial, drse entery or diarrhea, typhoid fever, scarlet fever, or measles.

Foul smells may eanse frequent amovance, or even headache and sirkness, for years before an outbreak of positive discose eomes. The temenery of polluted air is to lower the general vitality. Lir from sewers is "sowergas," and contains a variety of more or less injurions gaseous substances. The term" mephitie poisoning" may be nsed to denote their bad effects.

In an extreme degree the eflluvia of drains and privies are rapidly fatal. In a school at Clapham, England, "the dearing out of a privy prodned in twenty-three children violent vomiting and purging, headache and great prostration, and convolsive twitehings of the museles. Two died in twentyfour hours."
"When the air of sewers penetrates into honses, and especially into the bedrooms, it certainly canses a greatly-impaired state of houlth, especially: in children. They lose appetite, beoome pale and hanguid, and suffer from diarhoas; older persons suffer from headaches, malaise, and feverishues; there is often some degree of anmonia, and it is elear that the process of aëration of the blood is not perfectly carried on. In some cases I have known decided febrile attacks lasting three or four days, and attended with great headache and anorexia."
"The air of sewers passing into houses aggravates most deeidedly the severity of all the exanthemata, erysipelas, hospital gangrene, and puerperal fever; and it has probably an ingurious effect on all discoses." (Parkes.)

It seems probable that the origin of typhoid fever generally depends on the drinking of water contaminated by drainage; yet there is reason to believe that drain-eflluvia may cause the disemse. "In a case mentionelt to me by a friend, an outbreak of enterie fever in a training-school was localizeyl in certain parts of the school (whereas the drinking-water was common to all), and was trated to imperfection of traps in those parts of the honse which were affected. In this case the drains led down to a large tauk at some distance and at a much lower level, and the smell of the effluyia was so slight that at first it was not believed that the drains could be out of order." (Parkes.)
"A marked illustration of disense due to polluted air, when the drink-ing-water was pure, oceurred in the school in this State, in 186t, where fifty-one out of seventy-seven young ladies in the institution were attacked with typhoid fever, of whom thirteen died; three servants also died of the

[^197]fever. The vaults of the privies were shallow, filled to overflowing, and emitted a very offensive ofor, which at times pervaded the whole building. The kitchen-drain discharged its contents on the surface of the gromad, and a few rods from the school there was a foul barn-yard." The scheol refercel to was the Mapleworl lustitute at l'ittsfichl. The statement is quoted from a circular of the Massachusetts State Board of Health for 1879.

The way in which typhoid fever may be cansed hy polluted drinkingwater is well seen in the following case, given by Dr. John L. Leconte :'

The water-supply of a large and prominent boarding-school for girls was obtained fiom a river, and stored in two cistems muder-gromed. The risterns were built of heavy woolen embs, with a timber floor, in which it beame nevessary tempratily to make holes, afterwards phagged up. The cisterns had briek emented bottoms and linings, but the phas projected inwadly throngh this masomy. The phags were removed a year later, withont the knowledge of the anthorities, so that the gromed-water had free aeress to the interior. Eighteen months later, this mistake (which by itself might have cansed no harm) wats suplemented by placing privy valts outside of the building, one of which was placed cight or twelve feet from the disterns. The vanlts were of the supposed "tight" kind, with nine-inch brick walls and bottom, heavily and carefinlly cemented, and arehed over.

In three yaus from this, typhoid fever broke out. Under medical direction, water taken directly from the river was substituted for the cisternwater, and the last case of the disease ocenred ten days after this premantion was adopted. As an evidence that the use of the cistem-water was the sold cumse, it is statel that, although numerons cases oceurred among the chilitren and several among the teachers, not one oceurred among the sersauts. The latter drank only tea and coflee, and very rarely used water, while the children (as usmal) drank it freely at all times. Among seven absolute water-drinkers six were attacked by typhoid.

Dysentery and Diarrhoca.-There is sometimes diffentty in strictly sparating these complaints; they have, moreover, in some degree a common origin, and are spread by the feeces of patients infecting the air. More directly to the point is the case mentioned by Clouston, where it seemel to be proved that dysentery was produced in an (insane) asylum by the exhalations from sewage which was spread over the ground (a stiff brick (hay subsoil) about three hundred yards from the asylum. "The case seems a very eonvincing one, as the possibility of the ation of other cames (impure water, bad food, ete.) was excludel." (larkes.)

Diphtheritu-At Groveton, New Hampshire, an epidemic of diphtheria orenred in which the centre of infection was the school-honse. Twentytwo eases broke out among the scholars in thirty-six hours, appearing at once in widely-separated places; one humdred and fouricen eases in all, with fourteen deaths. There were several circumstances which combined to make

[^198]the school-honse dangerons to health. A brook had been dammed lye the boers so that in raing weather it ran under the school-honse, leaving at other times a stagnant pool. There was a bogrgy mendow mar by, pollated by privies which had not been danad for two yens. The refuse of a sinlmill and tamery was thrown into 14 mill-pond twenty rods distant ; the water was drawn down to repair the dam, cansing an intolerable stemold; the ontbreak of diphtheria followed, sueceded by typhoid fever; when the pond was kept fill, the dismase distippented.'

Plan of Dranage and Sewbrage.- Before plaming the armgement of phambing-fixtures in the house, we mast settle two points,- the dranage mod other monsmes neressary for kerping the cellan dry, and the place and manner of diseharging the waste- and soil-water of the house.

The lot shomld be graded so as, to carry rain-water away from the homse and to some point of disclarge.

As a genemal mule, it is well to suround the fommations with a tremeh extending below the fomdations and filled for a foot or two with lonse stone, in which a line of drain-tile is laid, which is led to a proper plater for discharging the water. If nemsary, drain-tile is also laid in the erellar floor ; the joints are not sealed, but are wrapesel with tarred paper or cotton cloth, and the trenches are then filled with sand or hroken stone. The tiles discharge the cellar-water into a depp masomry trap filled with coarse sand or gravel; thence, in a city, the water will pass to a sewer, but requires a maning-tap to keep sewer-air from entering the cellar ; a vent is placed on the inside of the latter trap, leading above-gromed.

To keep ont dampness, there may be a dry area ontside the cellar wall, or the wall may be double, or be provided with a damp-proof course of ariphalt or slate just above the gromed-line.

The cellar floor may consist of a quarter-inch layer of asphalt or cour erete, with a finishing layer of the best Portland cement. Six inchess of wellrammed clay (Waring) may serve to reuder the floor damp-prof.

The disposal of waste- and soil-water presents a serions difficulty when there is no sewer. 'This is not meommon in prosperons villages whid have agneducts but are not closely enough built to make sewers serm a neressity. The danger is that the soil will then become water-soaked with the discharges from water-closets and sinks; and the cmptying of the combined discharge from a large school must be regarded with suspicion. A tight vault or cesspool would soon fill : hence the practice of building vaults with loose-jointed walls, or carthen floors, expressly to let the floids laak out. There is a common notion that such fluids are rendered hambess by the soil. It is impossible to say how far they may convey a moxions influence, or whether, "as a rule," fifty, or one humdred, or two humdrel feet is a safe distance from wells. We ought to see that the vault is at least one hundred feet from the nearest building.

[^199]There is an abmulance of a deposit of groved and sand spead over large parts of the Northem States, which is a good soil for mutural dramuge. bat in the ease of a rocky ridge covered thinls with this soil, or of a hill which is rock at its north cond and gravel at its sonth, there is a risk of sewage flowing into semms of the rerk ane finding its way muder buildings. A recent eppemie of diphtheria in a lage sehool at Lansinghorgh, New Sork, seems to have originaterl in that way from privies placed on each side of the honse, some twenty fere distant. A foul smell had long heen complained of in the romis over the cellan:

In intereepting lasin of tight masony is sometimes interposed to catch the solids and let thuids pass on to a cesspool. In one schood where this is done, the lifuids are disidhared by a flush-tank through a system of draintiles mudermeath the front yard,-a grassy phat of five thonsand feet,-with not only no offence, but with great improsement of the appearance of the lawn. There is no fre .ing in winter, thongh some of the tiles are within four inches of the surface.

Inother plan is to discharge into a large body of dry carth in a covered tank, the fluids soaking throngh and passing to a moadow. The earth is freplontly turned over with forks.

The following is a list of repuivements for the drain-age-pijes of a house (compare Fig. 20).

1. Ontside drain of vitrifiel pipe; cement joints with gakket of vakum or puidled way: When there is liabiluy to settle, or when trees or wells are near, iron pipes with tight joints. Irou pije where it passes through the honse wall and for five or ten fiet beyomel. Not to rum muder any collar.

2. Soil-pipe, or foul-pipe

 within the honse, always of east iron (some use wrought iron), four inches in diameter, carried by preference along the cellar wall, in sight ; the perpendicolar part rises without changing divection or size to a point two feet abowe the roof (not near a chimney or a window), where it may be left open, or (apped so as to give least interference with dranght. It should be extra heaw if the body of water is large. The inside is conted with coal-tar or enamdled. (The Bower-Barff process may be recommended.) The joints of lead.3. The prolongation above the roof is for the purpose of securing a
contimums upward pussuge of fresh air, which disinferts the interior. 'The air enters bey a went just inside of the main trap, outside of the cellat.
4. Tiapus.-One betwem the homses-system mal the sewer, outside of all; and one at cach water-chosed, latrine, urimul, or hasin. Nome between thane points. The outcer tap, is a simple U-shaped beat (moming trap). It un be placed at the botem of a man-hole fore eemvenient aresess ; the min-water may discharge into it, and the vent is close to it. Traps moder fixtmes ans the "ventilated" to prevent siphoning, but the expernse and comphiention attembing this kind of work are so great that it is beat to nse a trap whide resists siphoming.

Back-pressure of gas from sewers is obviated-1, by the onter trap; 2, ly free esalpe up the vent and at the root-ond of the soil-pipne.
5. Wraste-lipre.-This is mu upright pipe in all resperts like the suidpipe, but reecives only water fom hasins; it is carried throngh the ronef. (Not given in phan.)

No wastewater from latha, basins, ete., should cmpty into a watercloset trap. Each hasin or group of basins shond have its own dirent discharge into soil- or waste-pipe.
(6. Leaders (or rain-water pipes) may discharge into the main trap or otherwise. If they discharge beyond the trap into the dain, they neel a trap. No lewler should be used as a soil-pipe, and mo soil-pipe should be used as a loader.
7. Cistern-overflows must not communimate with the drainage-system, nor with any place where the air is foml.
8. The entire system of disicharge-pipe should be tested before comareting it with the fixtures, by plugging the lower cond and filling the pipes.

All bends to have large curves; joints at acute angles.
No work to be covered in mutil approved by the inspector. It must be exposed to view as far as possible, fire ready repair. If covered, the cover is of wood, casily removed.

Fixtmes.-Every school ought to have the moans for washing face and hames: at least one stand on earh floor or one for every two rooms. Plain porcelain-lined iron, marble-topped hasins, ete. ; they shonld mot be boxed in.

Comentry schools should provide clean pails with eovers. (Spectial cleansing is approprate for drinking-vessels if any child has inad diphtheria.)

If there is a water-supply, the choice lies between water-elosets, latrines, and flush-tanks. Each has its merits. Neither will run by itself; each will become offensive in proportion as it is neglected or is kept unsentilaterd.

One remark applice to all: they must be constructed with the greatest simplicity, and expressly arranged for ease of cleaning. Wooden boxing abont eloset-seats is wholly needless, and the enelosed space is sure to be foul. The needful wooden scats, ete., should be fixed so that they can be
maily removed with a serew-driver. Wooden floors should be well haid and thoronghly oiled ; asphalt is better; partitions shombd be varuished or paintenl, sats the same if thought fit.

Wiater-closets are monle in so many form., that it is uselcss to cmmerate aen the chicf' sorts. 'The worst form is the pmerloset, though often prefiryed on aceome of chapmess ; it is compliated, easily put out of order, mud aceromulates intermally a find of menerent filth. Another bad kind is a huprer whid dribhles and never arries its load throngh the trap.

There are many exedlent but expensive closets with valses and phangers, made of carthenware, and suited to private houses. The best for sehools is a shor hopper closet, which contains no parts to get ont of order (an oval banim with romeded rim, with water discharging moder the rim downard all aromad). The only objestion is that it sometimes repuices a trifle of washing. Any closet chosen most lave a sudden and eopions flushof of water, The supply should come from a tank, not direetly from waterpiper Noiseless action is desimble in certain situations.

I "latrine" is a long cast-iron trongh, lined with enamel or mot, and mate depp enongh to hold a few inches of water. A wooten seat is fitted to it. Some patterus are abolutely phinn; others are a sort of compomed of water-doset and latrine, as in Fig. 21 . This class of apparatus is cmptied reve rapidly by lifting a plug at one cond, made hullow to let off:superfluons water.

Closets should be placed on every flow for teachers, or for larger girls.
"Fhehtanks" are latrines of cemented masou-work made with a

Fig. 21.
 rombed hottom and a grade down to the pharend. If well made and kept dean, they seve a good pmope. They onght to be discharged once or twice a day, and then swabled or bromed and hosed out. The inside may be coated with eoal-tar. These are abont the cheapest arragement that can be recommended. They ean he placed in the yard; they do not freeze in the short period of a sedoolsession. If it is very cold, the water must be shut off in the cellar and the supply-pipe emptied white the tank is not in nse.

Urinals are the most tromblesome things about the honse, but they ean be so kept, even in the basement, as to give no offence. It is not necessary to play a hose over everything six times a day. Let the whole construction lo cery simple; a baek and a foot-piece of slate, with or without a trough, are the essentials. The slate must be oiled before it is set up. The trongh may he simply a hollow in the stone floor at the junction with the back. The apparatus for making a sheet of water flow over it is haid to keep in order; the more important thing is the daily service of the janitor, who washes it with a cloth, applying soap and hot water every few days as
needed (afterwards going over it with a rag damped with kerosene, at I have seen done).

The floor of urinals shonld be of impervious material,-asphalt or slate, never brick or cement,-mand shonld slope towards the outlet, so $t^{l n}$, a drench with the hose can be given daily with little tronble. The mised $p^{\text {patform often interferes with this work. }}$

Wooden urinals may be kept in tolerable order for out-doors bey fire fuent painting of every part, hat wood ought not to be used if slate coln be affurded. Cast-iron mrimals rust, and throw off the enamel, and the surface is not capable of being cleanct. Zine and galvanized iron perish readily.

A foul urimal is intolerable. It is best to place these conveniences and water-edosets outside in a protected shed with sheltered access, warmed hy hot pipes if' uecessary. 'There is generally some slight fimult to find if they are in the basement.

Good lighting is desirable, and ventilation by a heated flue is neressary if the basement is the place used. If there is a fail in the gromul, the basement may stand free in the car and enjoy the advantage of fullsizel windows, which is much to be desired.

Supervision by the master is necessary, for the sake of good order and to keep the janitor to his work. Teachers and monitors should be deses at hand ia reess-times.

Automatic arrancements are common for giving a flush whenever a person sits down ; or they may be arranged wo discharge all at oned, at desire' intervals, be comection with an sutomatie flush-tank.

The comntry privy hardly neds deseription. If the friends of youth have any faith in precaution,-if they think that any measures are neded, or are likely to avail, in checking youthful immorality,-here is a grood place for them to begin work.

Gf all departments of sehool-lygiene this one most needs the persomal control of a persevering man, either the teather or some active neighbor. The authorities must first put things to rights, and then establish some understanding about inspection; for if a lady teacher deelines to consider this a part of her duty, it can hardly be required of her.

Without revolutienizing matters, we should insist on good repair ; goond light; separate houses for the two sexes, with a high fence separating the paths (if there is one honse in two compartments, separate recesses may be given) ; a solid path that can be shovelled clear ois sow ; the distance of suly fifty feet from the bouse; a sold pawa surface over which earth is spread, with subsequent freguen sprinkling of try earth, and frequent (weekly or monthly) removal.

Finely-powdered dry carth s one of the best agents known for deotorizing refise. The matters oniy require to be kept covered ; earth has the power of absorbing and holding the foul gases. It should ine used dry, and the bin or bareel for storing it should be sheitere'. Ashes, or the scrapings
sene, as I

It or slate, so tlolt The raisced
ms be frea slate cun 1, and the ron perish,
dieness and warmed by ind if they
e is neresshe gromil, tge of full1 order and be close at
whenever a at onler, at

Is of youth are nerderl, is a moul
he peremal e neighlimer: (b)lish sume to consider
pair ; goonl arating the ses may be distance of ch carth is (d) freyunent for deulorthe has the d dry, and e scrapings
of eomntry roads, are gool. A layer of from two to four inches is laid on the floor of the pit; the amome required afterwards is a pint for every time it is used.

The system is readily applied to the use of buekets or pails, as shown in Figs. 22, 23, from Massachusetts Board of Health Reports, 1876, 1883.

Fig. 29.

Fig. 23.

Fig. 24 shows a temporary arrangement, which might become permanent, described by E. S. Philbriek. The treneh under the seats is about three or four feet wide, and six inehes deep, with sloping sides. It is laid with emal-tar or asphalt and gravel well rolled, r with hydraulie cement and gravel smoothly trowelled with strong cement-mortar atter hardening. The margin is higher in front. There is a flap-door behind. If carefully attended and eleansed weekly, it is a very satisfantors arrangrmeni for using the earth system, "lnat otherwise it soon becomes a tervible misanee."

A movable trough (Fig. 25) may be made of stont plank with calked seams, coated inside and out witb coal-tar. It is on rumers, and has a hook V'ul. IV.-- 26
or cing to drag it with. It is two feet wide, and long conough to fill the spaee. It is treated with earth as hefore deseribed, and removed from time to time, and the contents spaded into the gromed or otherwise disposed of.

F!a. 24

Fia. 25.

A brick vanlt with romuded bottona, conted with coal-tar inside and beer all expoied surfares, is a suitable arrangement for the earth system. The bottom is berdeal in cement and coateal with the same, and is henilt comvenemtly for renowing the carth with a hoe into buekets; that is, it is left "pen at ane end.

It is desinable that the closet for girls should be comeeted with the house. 'The dread of exposure to the weather often prevents deliante persons from going out when nature demands it : there is no dombt at all that this ciremmstane gives rise to much ill halth fiom constipation and retention of mine. The plan just deseribed has the advantage of relieving this difficulty. The shed in question may be placed within for feet of the house, and the space between may consist of an enclosed anterom, with a small window at each side, constantly pren to give ventilation, and sereened with biliuds.
to fill the from time [mised ofl. tom. The huilt ronis, it is left
d with the licato perat all that and retenleving this feet of the m, with a ad surverned

CONTAGIOUS DASEASES IN SCIHOOLS.

 meressary to legrishate are (in this combtry) ehiefly small-pex, diphtherin, sumble fever, mandes.
 ally weglented in these preantions. Kkin-disenses, as itch, ringwom, and vemin, are of some emsefuence, and yet, as involving no risk to life, they may be passed were by the begistator athed left to the care of eharity. 'Flo same has to be sad of the fat more important disease, contagions ophthalmiat.
'There is abmedat evidence of the fareility with which these disomders are spend by mems of sohools. This bering pepmlanly kown, the first

 are also pryils, the fimetion of the shool as a ro-worker with sanitary anthority begins.
 power to make regnlations to provent the spered of entatrions disease by preventing persons from attending selnool, also to shemend the nse of the buidinge and rooms when jordged to le dangerons to the phllice health.

It may somethmes be desimble to waive this right in fivor of lonards of shool Control, but the superior right shond belong to the Board of Inalth. Commes shomld not inierfere with independent action in emergemoses. A sehont, fion example, might le elosed by the heath anthorities hedoe the selood anthomities conld have time to ad.
 They might sedtle for pratiand emds the mooted questions of the time of saffo retiolt, the way of disinferting, ete.
 Tations Dispases is Soloenas-1. Persoms alfocted with diphtheria,

 randmission.
 also exdended until similar permission is given.
3. This permission is not to be given motil sulficient time has chapsed

1. If a child suffering from one of the above diseases attends schoot, the promises of the sehoot mast be disinfected moder the direetion of the board of Il aital before they are used again.
2. lhysicians, : hers, sehool-offiers, and shool-chihben, knowine of sucin ("nses of disease, shonld at once report them to the Boand of II walth.
PERIOD WHEN RETURN TO SCHOOL IS NAFE．

Whooping-CoLgh.				$\stackrel{\text { 年 }}{\underline{E}}$			
			Short interval．	\#\#		花	
$\begin{gathered} \frac{4}{4} \\ \frac{3}{3} \\ \frac{3}{4} \end{gathered}$				范 登 き			Eighteen duys.
			May be six weeks.	$\stackrel{H}{s}$ Sutuu！ay			
				$\stackrel{3}{3}$ E 3			
$\begin{aligned} & \text { B } \\ & \text { B } \\ & \text { E } \\ & \text { In } \end{aligned}$				坒			
	J. Lewis Smith		$$ $\dot{3}$	若 ais	Anua Lubens	荘	

6. The Board should also notify the shool-authorities of surll eases.
7. Notice must be sent to the family by the sehool-anthorities, acting congintly with the Board of Health.

It is hard to say with certanty how soon a patient may safely return to scluol. The variation in opinion among masters in melicine is shown ly the table on the opposite page, taken from answers returned in correspondcues with the New Yook State Board of Health.

The Merlieal Offecers of Schools Association of Engkand, in a cote alopted Jamary, 1885, name the following periods after which pupils who have had diseases may safely return to school.

Surlet ferer, not less than six weeks from date of rash, if desquamation have completely consed and there be no apparance of sore thenat.

Ncasles, not less than three weeks, if all desquamation and congh have ceased.
(icman measles (rötheln, or epidemie roseola), in two or three weeks, the exact time depending on the nature of the attack.
small-pox and chicken-pox, when every seab has fallen off.
Mumps, four weeks from commencement, if all swelling have sulsided.
Whooping-cough, after six weeks from commenement of whooping, provided the chanacteristic spasmorlice eongh and the whoping have ceased, or collier if all cough have completely passed away.

Diphtheria, not less than three weeks, when convaleseence is eompleted, -there being no longer any form of sore throat, nor any kind of discharge from the throat, nose, eyes, cars, ete., and no albmmimmia.

Ophthalmia, until there has been a complete alsence of discharge for at leat one month, or until the imer surfiaces of the eyelids are found on inspection to be quite free from gramulations.

Smalk-Pox.-In the Seventh Report of the Illinois State Buard of Health there is an illustration of the way in which pulbie schools may le made a velicle for sanitation nom a large seale. In November, 1881, the board ordered the vaceination of all publie-school chitdren. When the orler went into effect (Jammary 1, 1882), nearly sixty-nine per eent., or over four hundrel and ninety thonsand, of the enrolled scholars in Illinois were either unsareinated or were saseeptible to contagion throngh neglect to revalemate at the proper time. By Mareh 1, 1882, there was less than six per cent. of unprotected and susecptible remaining among those in attendance ; the frequeney of small-pox and varioloid was lessened more than onethind among school-children, and the mortality was rednced from sixtern aud onc-fifth to three and one-third per cent. During the four years 188083 the deaths among nuvaceinated school-children were forty-eight per cent, while among the vaceinated they were nine-tenths of one per cent.

Under the statutes of Illinois it is the right and the duty of the State loand to make all mules and regulations whiel they deer. neeecsary to preserve the public health. "Such rules and regulations when promulgated have she foree and authority of law, and are to be enforecel, if necessary,
by the entire power, including sehool-officers, ete., of the State." This quotation is taken from an opinion of the Attomey-General of the State.

The school-directors are the immediate sonce of anthority for the ation of the temehers, mader this law. Temeders shonld have been revarinated within four years in any calse.

The law of Massachusetts mpresents a different tepe of practiece, providing that parents and ghardians shall cause their children to be vare nated under the age of two yans, and revaematerl when the selectmen on mayor and adelemen require it (not less than five yeas having elapsend sine previons vatanation) : it leases the enforement of the law in the hands of these officials. In individual towns and eities the matter is left (as regards scholars) in the hands of the school-anthorities, and with sery varying results ats regards enforement, though in some cases strict aceront is taken.

Regulations for 'Jucination.-1. Every child entering the public sedends must show a certificate from some reputable physician, giving mame, alye, residenece, approximate date of vaceination, date of examination, result of examination ; the last two to be of the physician's own knowledge
2. The fate of vaceination must be entered on the sehool-record, and on lists fir promotion or transer.
3. The sechool-anthorities shall ammally report the number of those not protected to the State Superintendent of Ehacation.
4. School-authorities may order the exchasion of non-protected persons, at sulficient motice, where they think the measure required for the pulblie health.
5. Revaccination at the age of fifteen may be required under similar riremmatimes.
6. Those mable to pay should be furnished with free vaceination by the school-authorities.
T. A physician's certificate of protection by a previons attack of smallpos is equivalent to a certificate of vacination.

Scandey Fever.-This disease is one of the most destruetive. It caused, hy the United States censuses of 1850, 1860, and 1870, the proportions of one-thirty-fourth, one-fifteenth, and one-twenty-fourth of all the deaths. In England and Wales it canses, on an average, one-twentyfifth of all deaths. It is very contagions. It often leaves behind it very seriou: injuries, even after apparent recovery. To keep children from having it is a parent's duty, if possible. An instance of what the government may do in the way of checking it is probably furnished by the fotlowing aceomet.

The Boston Board of Health in 1877 established at requlation requiring ehildren from infected houses to be kept out of publie schools, and remuiring physicians to report their cases of searlet fever. Since that time the number of deaths from sembana has varied from year to year in the most irregula: way. Bn, taking years by gronps, it appeans that
the relative number of deaths has much diminished, as is shown by the following table:

Dirntherid.-Chidren at school may take diphtheria from one another in a variety of ways,- by using the same cup to drink from, by the prawlice of putting pencils and marbles to their months regardless of whose monthis they may have visited previonsly, by turning pages of looks with wet fingers.'
"Diphtheria may be diffuserl by the exhalations of the sick, by the air survomeling them, or divectly by the exudation, commmiated in the net of kising, coughing, spitting, surering, on by the infertel anticles used, as tovels, mapkins, handkerchiefs, ete. The poison clings with great tomateity to certan places, romes, and honses, where it may octasion cases after the laplis of months." ${ }^{2}$

These copinions are quoted to illustrate the variety of the dangers that attend shool-intercourse with an infeeted person. They are also pertinent in view of the doubt entertained by some as to the contagionsmess of the disense,-a doubt honestly held.

In epidemies of diphtheria all cases of sore throat must le lowked on with suspicion, more particularly if the children are feverish and depressed. Teumers should take mote of this.

Coxpagiots Ophthalma is of frequent ocemrence in children's asylums, and occasionally in primary schools. It frequently causes blimdness or great injury to sight. Its existence among the immates of an institution ats an epidemic is due to carelessness about admissions, to overerowding, poor foold, and other canses of enfeehled health. One of the chicf ways in which it spreads is by the children's washing together in the same water aul using the same towel.

Fuxbrats are a fruitful source of contagion. It may not be amiss to suy that funcrals must not be held in the school-house, as seems to be a custom in some places.
(hildren who have been exposed to any contagion may be ordered to remain out of schonl for a limited time, in the judgment oi the Board.
(losing school is a measure that sems needless in a place where rules alont exclusion are well enfored. It seems to have a beneficial effect sometimes, as the prohibition of public meetings does.

It is doultful if contagions fever is often carried by library-books ; or, rather, the known cases must be very rare.

[^200]In boarding-schools there ought to be a sick-room in the upper part of the house or in an isolated place. A pupil attacked with contagions disease should be at onee isolated and all his effeets disinfected. Commmication of all sorts is to be eut off between pupil and comrades, and great care taken about food, clothes, and all things that come from the elamber. The parents are to be notified. If a considerable number of cases owellr, or the disease is malignant, the parents of all pupils should be notifiel, that they may remove their children if they choose.

The school should have its owu medical attendant, who is to take all steps necessary in epidemies.

It may be well to subjeet pupils to a delay, if when sehool opens it is found that they have been exposed to some contagious disease. This may prevent an outbreak in the school. The period required may be as follows, dating from the day of exposure :

Diphtheria,	12	days.	Chicken-pox,	18 days.	
Searlatima,	14	$"$	Small-pox,	18	$"$
Mensles,	16	$"$	Mumps,	24	$"$
Germam mensles,	6	$"$		Whooping-cough,	21

Boarding-schools ought to have stated reports made upon their sanitary condition: local or State Boards of Health might properly undertake the work. It is a matter which will repay investigation.
ser part of ous disentse munication great care clamber. ases wewr, e notifinul, to take all opens it is This may as follows,
cir sanitary dertake the

CONS'TRUCTION OF CHILLDREN'S HOSPITALS, ETIC.

By Lindtey Joirnson.

The study of the diseases of ehildren has oecupied so conspicuons a phere within the past few years that the advantages of special institutions for their treatment are conceded by all.

Without disenssing the history of hospital construction, I shall bricfly consider a few points comected with the general design which should be the features recommending all plans where excellence in construction and utility are songht for. From these points the plan should develop (1) a well-selected site ; (2) properly proportioned and isolated wards ; (3) central alministrative department ; (4) detached kitchen and water-closet buildings, muless the kitehen be on the top floor ; (5) earefnl study of heating and rentilation combined ; (6) sanitary properties, including water-supply and dispesal of all waste or soil ; (7) fire-proof' or slow-burning construction, exeept in cottare work.

I shall refer more particularly to the plamning and construction of hospitals, as oflering a better subjeet for the treatment of these more impartant features ; these remarks, with the modifications suiting the requirements, may be equally applied to the construction of asylums, murseries, ete.

SITE.

The lucation of a hospital, whether city or suburban, should be determinut upon ouly after a most exhanstive examination of the immediate site, its surroundings and its climate.

City.-One would likely imagine that a hospital would be best situated in the centre of the most densely populated districts; yet on sanitary grounds this is not to be recommended.

It should be loeated far from the influence of neighboring muisunes. It must be easy of access. It is best situated upon high ground, to facilitate surfice-drainage. It should be surrounded by an open eloar space, to sedine a permanent and free flow of pure air and smulight, with an exposure towards the sonth. The grounds about the loailding should be tastefully laid ont by a landscape gardener, for the donble purpese of puri-
fying the air and affiowling a cheerful outlook for the patients. A corner lot naturally offers the greatest chance for air and light.

The nature of the subsoil should be carefully determined, as the footings of the walls should bear upon a good bed of gravel, sand, or rock; clay is bad ats a bottom, mud may canse damp walls athove, resulting oftern in serions tronble. Where the masomry of onter walls is laid in ordinary lime mortar in place of ement, the evils of a clay soil camot be overrated, I have examined walls laid moder such conditions, and have seen a combplete disintegration of the mortar to a considerable distance above the firstfloor joists. The interstices owasioned by the loosening of the mortar afford a convenient retreat for insects of all kinds, and admit dampness mid wet from without.

In making a selection of a site for a large city or in a manufacturing town, I would give preference to a site in the sonth or west end, where the summer breezes are less likely to be contaminated by the foul air of neglestel roofs and imperfect sewers.

Countrix.-If' a site be seleted in the comentry, it should have ample free space on all sides. There should be no marshy grounds within a reasonable distance. An abundance of absolutely pure water must he oue condition governing the choice of a site, and it will often prove a scrious question. If the supply be drawn from wells, there are two points of importance to be determined : first, that the water be of the proper quality and not contaminated by any surface drains or wastes; secondly, that the supply be sufficient to meet the demands made upon it in the autumn following a dry season; a practical test ly the application of a steam-pump is the surest means of ascertaining the latter point. Where ruming water can be utilized as a motive power, I would recommend the use of a wheel or ram for furcing the water to the tanks. This will give a steady flow, clanging the water in the tanks contimunsly, therely relucing the temperature and increasing the chanees of a pure supply; besides which it affords an exerllent opportunity to construct a cold vault for the keeping of milk, butter, ete., of great value to most country hospitals.

The location should be elevated, but casy of aceess by means of carriage. A site to the sonth or west of a large eity is preferable to one to the north or cast. The local climate should be healthy, the soil dry and porous.

The Chirurgieal Society of Paris, after an exhanstive study of the subject, determined "that only small hospitals for urgent cases and those required for clinical instruction should exist within the eity limits, aud that not only would the sahubrity of the larger hospitals be improved by their extra-urban position, but also their construction would be rendered nore economieal, by means of the reduced cost of land."

PLAN.

In both this conntry and in Europe the "pavilion style" of hospital, whether applied to large or small buildings, has been generally recognized

A corner the fiontor rowk; ing often orlinary overrated. 11 a c"uluthe firsthe mortin puess nud
ufacturing where the f neglected
rave ample ; within a ust be one a a seriens points of per quality y, that the utumu foll $m-p$-pup is r water culu heel or ram ; chaugiug rature and s an exelilk, butter,
of carriage. o the merth orous.
Idy of the and those s, and that ed by their dered more
as the one embracing the greatest alvantares. By "pavilion style" are mant detaehed wurds. The pavilions may be constructed several storics in locight and of varions dimensions, but mader every condition the ward nust be taken as the unit of construction. The heating and ventilation, the culbe contents, and the gencral dimensions throughout, to be satisfactory,

Fin. 1.

Boston Free Hospital (Massachusetts).

Fig. 4.

Bradford Hospltal (England).

Fig. ε^{2}.

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photog aphic Sciences
of so perfect a circulation of air and light rith the same isolation from the administrative block, lessening thereby the danger of hospital diseases.

Ward.-Whether the pavilion, cor:idor, or block sistem be adduted, the ward should be studied as an independent featuce. The rectangular warl has most to recommend it as regards shape.

The area minst be in proportion to the floor-space alloted to cach patient, varying, of course, with the climate rond the ohject of the hospital. Among the hest-known hospitals the allowance per bed of flow-wate varies from about seventy to one hundred aud thirty-eight square feet, The new Hôtel-Dien allows about one hundred and seren square feet, and the results lave been very satisfactory. In fever hospitals, or in wark for bad surgical cases, a floor-spare of two hundred square feet per bed may bee required. The propertion of floor-space and enbie contents will be regnlated with reference to the shape of the ward, the system of heating and ventilation, and the condition of the patients.

The length of a ward, to obtain the greatest ceonomy in service and convenienee, must not exceed four times its width. The width must not exceed thirty feet,-from twenty-five to twenty-eight feet is preferable, suiting the conditions. The height of wards must be determined bey the required cubic contents, the system of heating and ventilation, and the climate. Uuder ordinary conditions in this climate fifteen or sixteren feet is proper.

There must be windows opposite one another in the two long walls, allowing of one bed between every two windows. The end away from the administrative quarters most have windows opening onto a veranda or clear, and comer doors opening into passiges, with cross-ventilation, conneeting at one corner with water-eloset-urinals, and slop-hopper, and at the other corner with bath, sink, and basins. The doors leading into the ward are best double, that one-half may be bolted for ordinary use. A trausom above is desirable. The windows should run up close to the ceiling and extend down within three and a half feet of the floor. They shoukd be lifting-sash, with hinged transom above, and the frames constructed to admit of double sash in winter.

The warls are generally thought best situated with the longitndinal axe running north and south; but there are those who take exeeption to this, and argue that experience has proved that with the longitudinal axe muning eest and west the summer temperature is reduced materially, whilst the good results obtained by exposure to the winter sun are not lessemed. Naturally, these conditions will be goveried more or less by the latitule in which we build. Care slould be taken in locating the work to rin the warls so that the two longer walls shall have a daily exposure to the sun. This should be particularly observed in hospitals for women or children. The wards should be parallel, or nearly so, and the distance apart should not be less than twiee the height of the pavilion.

Large wards are generally more healthy and comparatively less expen-
sive than the smaller ones. About thirty beds is considered the most satisfactory momber in every respect for general howpitals. Each pavilion should eonsist of two stories, with a basement oclow. There is often necessity for the construction of pavilions of greater height than two stories, more paticulaly in large eities, where the ground camot always be secomed for extending horizontally, and there may be eonomy in building to a height of four or five stories. In the country or at the seatshore, where small cottage hospitals are desired, it will be found often best and cheapest to construct them of but one story.

Abmanistration Depaitment.-The central block should contain all the requirements of the administration department, such as murses' quarters, committee-room, operating-room, single wards where it is not possible to is late then, an easy stairease to upper floors, kitchen and scullery, ete., -which are best detached, or located in the top floor,-a good lift service for food ind linen, a dispensary, water-closet and baths for the murses, patient's room, consulting-room, ete. The engine-room, lamulry, and dead-house are best detached and distant. The siek-wards must be areesible, yet well separated. The main entrance, hall, stairway, and cross-corridor: must be well lighted.

This block may be three or four

Fra. 6.
 storiu's in height ; and I would strongly recommend putting the kitchen department on the top floor, frecing the lower floors from any possibility oi amoyance therefrom.

Fig. 7.

The loation and isolation of the ward (Figs. 6, 7, and 8), water-closet, and laths are sufficiently explained in the cuts of ward ends. Their construction and details will be explained under the heading of plumbing, ete.

Heating and Ventilation.-The heating and ventilation of a general hospital offer the most diffienlt prollem to be solved,-a point, too, of equal importance with the plumbing and drainage. They are inseparable from a
satisfactory result. Whether we introduce a system of hot air, hot water, or steam, it must form a part of and assist in the ventilation.

The more emmon forms of heating are ly (1) open fireplaces and theres, (2) poredain stoves (much used in the morth of Europe), (3) the catorifere in use in France and Southern Europe, (4) the hot-air finmaed, (5) hotwater circulation, direct and indireet, (6) steam heating, direct and indirect.

For small cottage hospitals, etc., it is doubtful whether other than open fires, stoves, or possibly a siugle portable heater, conld be used, on aceount of the experise of both the origimal enst and the maintenance. When they are used, however, every care shonld be taken to introduce an ample supply of fresh air, that it may come in contact with the radiating surfaces locfine it enters the ward, and be extracted as soon as it has performed its duty. There are sarious forms of stoves maminetured to meet this new, the principle of which is of run the smoke in a pipe inside of another flue extended vertically to the top of the lmilding, and comected horizontally with ducts lal to registers at or near the floor, from which the foul air is withrawn. With an open ceiling, ceiling-ventilation may also be introdueed, and for warm weather it will be most desirable.

For general hopital heating we must, however, enlarge our plant, and either stemu or hot water seems to meet with the greatest favor. The two systems are similar, and both have much to reeommend them.

The first cost of a hot-water phant is somewhat greater than that of steam. The consumption of eoal is less. The great advautage in hot water ower. steam is that a moderate fire will produce a circulation and a moderate heat, and the heat is retained longer after the fire is drawn.

The advantage in stean is that the temperature is more quickly rained, and where diect-indirect madiation is neessary the result is better, I beliese. There is also with stem a power that may be used for other purposes: it, howerer, requires more eareful supervision than other forms of heating. A combination of direct and indirect heating is more desirable in any event, the direct radiators being located in exposed positions and the indireet hat introdneed into the wards, ete.

After determining upon a system of heating, we have to consider its introduction, cireulation, and exit.

The fresh-air-supply must be taken from above, condueted in a cond itue of ample size, and rim in a duct to the heater. From the leater it is run in terra-cotta pipes or a galvamized iron box horizontally from the builer to each end of the basement, giving off bramehes which are run to the base of all hot-air flues, where a bunch of radiators are loeated, enclosed within a galvanized irou box. This wam air rises in the flue provided for it to the rot-air register, where it finds its way into the ward above the line of the head in the outer walls. These flues and registers must be large enongh to nllow of a ready flow of warmed ai.: withont the ineonvenience of a rush. Upon the north and west walls larger heat-flues may be introduced to nolvantage. The problem of heating and ventilation to secure satisfactory
results is such a complex one, involving such a thorough familiarity with the lans of mechanies, that the responsibility of its proper solution shonlal be phaced upon an expert, and the phans modified to meet his requirements. It is of equal importanee with the question of phmbing and drainage, and bikely to prove more difficult of solution.

The outlets for foul air should be just off the floor, and of earefullystudied dimensions. They are rum in flues to the basement floor, connected with a horizontal duet amd led to a large vertical heated flue, by means of which the fonl air finds its escape above the building. Where the enginehomes is located outside, the foml air is best ron to it and the smoke-flne utilized. A fan may be required for the extraction of the fonl air. Exhanst registers shonld be provided also near the eciling, for summer ventilation. Where direct radiation is nsed, the ratiators may generally be placel against the outer walls, immediately below the windows.

Plumbing, Dranage, etc:-The ward water-elosets, urinals, sink, slop-hopper, tul, and hasins shonld be collected in extensions at the extreme outer corner of the wards and separated from the wards by a narrow passage having a eross-draught. This should under no cireumstances be omittel. These annexes shonld have windows in three walls at least. The floor should be tiled and all the fixtures exposed.

Sanitary appliances and plumbers' supplies are being so constantly improved that what one may recommend to-day is likely to be discarded tomorrow. The entire question of plumbing and dranage, more particularly the disposal of sewage, is unsolved and musatisfactory, and 1 believe a few years will introdnce radical changes which must prove beneficial. No one with the proper sense of smell or taste will hesitate to doubt the benefit of having a lot of soil-wells abont the property, trusting to water-seals to exelude from his house the deadly gases generated, which often have no means of escape except throagh these very traps. Then the question of watersupply must be considered in connection with the soil. It may be taken from a well three homdred feet deep and at the same distance from the nearest soil-well, and yet it may drain the soil-well of every drop of liquid soil. Where we are enabled to enjoy the privileges of a city sewer, we often congratulate ourselves, but without reason. It needs but the simplest examination of on surroundings to ralize what farful disadvantage we live under when we make that fatal sewer connection and inemr the responsibilities that must follow. We have, in addition to the danger incurred by ruming our soil-pipes and trusting to traps, one wastes from all sinks, ete., which most find the same ontlet and inerease thereby the number of possible escape-passages for sewer gas, from either a defective trap, exaporated seal, or siphonage.

But a far greater and more general evil in connection with the sewer is the contamination of the fresh-air supply. When in-doors we practically live upon the air drawn from either the front or rear pavement, possibly within eight feet of a sewer inlet that may be rank with poison : there are certanly
within a stone's throw half' a dozen such inlets, which ary bomed buder certain conditions to rol) ne of anything like pure air. But, not content with this form of impurity, we run this air diree to our hateres, devernep all the impurities it contans, and then distribute it lavishly thronghom mur honses, imagining we have done our duty. With our present system of city sewage it should be made a criminul offence to take the fresh-ailsupply exept from the top of the building, whenee an extra brick flate shombld carry it to the heater.

The water-chosets should be siphon closets, with seat-vent and flumbingtanks. The tub may he iron enamelled, the slop-hopper of poredain. Tho soil-pipe monst be exta heavy iron, with the joints calked and leadel, ant extended full size above the roof. It should rim down and beextembed through the basement wall ters feet in the direction of the well, where it mat connet with a heavy glazed and vitrified tera-cotta piper run to the well. This pipe shonld have ar ruming trap close to the well, wi ha frest-ail inlet out the honse side of the trap. All waste from simks, tuh), etc., shombld rum into a grease-tap built of brick and cement, and the werflow run intu at separate well. Anti-siphon pipes shonld be provided for all fixtures. The seat-vent from the water-closet shonld ran into a warm flue. la city work we naturally comect with the sewer, and have to trust to a system of traps too apt to be defective from one canse or another.

Coserncorion.-The usual form of construction not only in hospitalk, ete., but in nearly every class of building, is so radianlly defective that 1 wish to call particular attention to it. I refer particularly to the construction of the floors.

I will take for example the floors in a pavilion, say thisty fert by one hundred and twenty feet, of two storics in height above a basement. Where a fire-proof construction is not nsed, the joists are likely there by twelve inches, spared abont twelve inches apart, sealed below with thand plaster, and covered above with one or two thicknesses of floor-mourds. Here we have in the three floors a scaled space of over nine thomsand culbie feet, to collect all manner of impurities. If well constructed, it is practically air-tight, cansing dry-rot in the timbers.

The construction of the roof offers generally the same objection. This is not an imaginary danger, as the statistics will show where the crigin of fires has been investigated ; and this canse can doubtless be extendei to such fires as have left too little to iavestigate.

Why not employ mill construction? The cost is greater, but by no means proportionately to the additional safety secured, partienlarly in those buildings where children or the sick are sheltered. By referring to the aceompanying sketches of the two floors (Fig. 9), the ordinary and the mill construction, a fair comparison may be made of their relative advantages.

The spraing of the girders cin be reduced or inereased, suiting the floor-weight allowed for. The entire building so constructed would not offer a space of six cubic inches not open to the air and an examination,
nulder witent evethe It In of |1-ailirk the

MinyThe rd, inn tunlex it may Ic wril. "sll-air shumbld un inte ixtures. In city dt'm of ppitals, that I instrinc-
feet ly sement. Hece by tha and boards. d cubic practi-

This gin of to such
by no n those
to the
he mill
fages.
ug the ld not nation,
reducing therely the danger of disase, vermin, and fire. Whare mill eonstruetion is nserl, the word shonld mot be fillal, nited, or varnished motil all moisture has cuaporated.

The onter walls should be constructed of stone or brick: the latter is preforable. Hollow walls I should recommend as a preeantion against dampness, and to dispense with furring strijs, though I should also advise aphalting the floor of the bascment and ruming a liyer of asphalt up and throngh the basement-wall. The trenches shonld be filled in with a gravel (1) samdy soil that will not retain moisture. (Fig. 10.)

The inner partitions are best built of hollow bricks: they are light, firp-prof, strong, and require no lath for plastering.

The main stairs should be constructed of stone and iron and made firepronl. In the ward thoors I shond advise namow white-oak boards, beeswaxed and polished.

The treatment of walls and eeilings has ever been a source of trouble Vine. IV.-27

and dispute. I believe a soapstone finish the best, rendering the wall hard and practically impervious to the germs of disease. This I think preferable to the construction in use in many German hospitals, where the

Fig. 10.

inner linings of walls are torn out about once a year and renewed, neensitating the disuse of the ward, -a good feature in itself, but a great inconvenience and expense,-and creating the cirenlation of a great amomnt of dirt and impurities.

asylume, special hospitals, etc.

Country sites for asylums are always preferable to eity sites, since they afford an opportunity for surrounding the buildings with grounds where the immates may find work.

The main features wholh I have alluded to in comection with the emo struction of comutry hospitals may be equally applied in the construction of asylums.

There is not the same necessity, however, for the isolation of warls or ward-amexes that exists in the former. Separate and single warls are, nevertheless, indispensable for violent cases, and the walls in such cases must be padded. All ward windows must be seenrely guarded with iron sathes or bars. The ward gardian should have a day-room commanding the ward over which he has supervision.

Convalescent Hospitals.-There is a general want of hospitals or homes where patients may be renoved from a general hospital before being in condition to return home, where often the poorer elasses are subject to the drawhacks of defective sanitary construction, poor food, and insufficicut heating.

This should differ chiefly from the general hospital in its increased facilities for the recreation of the patients. Enclosed promenades, larger day-rooms, ete., should be provided, and for the - neral interior arraugemeats a more home-like effeet should be studied than is common to the

genemal lospital. The building represented in the acompanying sketeh (llme I., Fig. 11) is suited to the necommokation of ahome twenty lexds, muless the upper flow be recuired for additional small or single wards. A common day-room is sufficient, and it must have at cherfinl outlook. A amall dispensary should be comected with the buiding, particularly if in the comentry. There is no ohjection th the construction of tero-story pavilions if additional beds be required.

I'robably the best buildings of the chass are those abomt Paris, notably at Vinemmes.

Bowfatsanct.-A most momiable type of buiding for charitable purposes is the Etablissement de Bienfaisumer, inaugurated in Prance by 1)r. (fibert, and very ably illustraterl and described in a publication of 1)r, A. Foville, published in Paris, 1888, "Les Nomvelles Iastitutions de Bionfaisance." These iustitutions were first inaugurated in 1875, since when others have bexen fomaded, extemding thene charity to a wider fiedd. They now afford free tratment and free remedies for ath chitdren who are in condition to go to and from the institution. They firmish to those food, medicines, baths of every deseription, massage treatment, gymatastio exerrisece, and in fact all that is likely to assist in the development of erippled bxuly, -physical or mental ; and they have done an incalenable amonnt of goul to the children of the poor, who would te denied in their homes the meersany fonel and modicines and who cond not atford to give up their time cutirely to hospital treatment, -just that class who are ill, yet aroont, and too poor to seek advice. In some of these institutions the treatment auld medicines are firmished free, while in others a nominal charge is made. Ghe medicines atre generally supplied the superintendent at a reduced rate, and medieal ansistance is often voluntered.

Compage Hosidrads.-Cotage hositals, whether for the shore or the momatans, offer the arhitect somewhat more latitude for the development of individual taste withont in any way sacrificing the featurns to be bost comsidered. (Fig. 12.)

They are often built of frame or half' timber with shingled roof's, where a groxl combination of colors and materials will lend to the structure a picturesque eflect. (Plate II., Fig. 13.) Porches or balemies must be provided, and projecting hays and gables can be introdnced, helping the devation with bold shadows and grood sky-lines.
beng constructed often without edlas, open fireplaces are indispensable, (mabling a feature to be mate of the chimneys. Mill constraction is mot likely to be considered in their design, owing to the additional cost and the light walls, which wouke scarcely justify such concentrated weights. The phans should contain single and double wards, and wards whene eight or ten could be treated. They may be heated by stoves, in which case an abourant flow of fresh air must be introdnced around the raliating surfaces. The smoke should be curried of in an iron pipe enclosed in a large brick fine, into which the foul-air-duct must empty.

At the sea-shore the drainage and the water-supply are likely to offer many drawhateks. Where no scwemge system is in nse, we must rewort either to a well-discharge, taking care to locate it as distant as possible

from all supply-wells, or we must rom it off to sea in iron pipes beyond low tide. In this event I should recommend seeking the advice of a lowal engineer.

For the sea-shore a sea-exposure is so desirable that there seems to be but one practical general arrungement of the different cottages,- - that is, that they shomld all have the same exposure, with the administratinn cottage in the centre. (Plate III., Fig. 14.) The most serious drawback I see to this is the difficulty of securing an ceonomical and effective system of ventilation of elosets. We must depend chicfly upon a natural rentilation, unless we go to the expense of comecting all the cottages with an underground duct led to a flue where artificial vent is prodneed.

Each set of fixtures may be vemilated by the introduction of a gas-jet at the hase of a flue, but it is an imperfect form of ventilation.

When the cottages are loeated aromed a common centre (Plate IV., Fig. 15), the closcts may conveniently occupy the centre space, where a flue may be rum up, currying both the foul air and the smoke from boiler or kitchen building, which would occupy one axe. Either plan, however, will admit of a picturesque combination.
to offer rosert ossible
d
beyond fa loxal cems to s, -hat istration rawbuk system ventilawith an

Mrs-jet
N., Fig. lue may kitchen
l admit

shoulie amelos
'T' kept ventil:
plaster
dather
thers
TI
ble to

Where it is istended to provide separately for the tratment of different disenses, such ats meask Diphtheriat, seariet fever, ette. (Mate V', Fig. 16), the construction of cottas as aroud a rommon centre has much to recommond it. It insures a better separation, with an eronomy of service. In
 ends of each cottage, and the plat of gromm lying between the cottages shomld be erossed with comecting, covered passage-ways that may be ruclosed in winter.

The first floor of such cottages built withont a eellar below must be kept ip three feet above the gromad, and extra preantions are required to ventilate this space and seeme a dry floor. The walls slould be backplatered. The exterion iare of walls may be boarded, shingled, or pebbledathed, with cross-timbers showing.

The roofs are best covered with shingles, A cedar shingle exposed to the salt air will soon obtain a silvery effect which is very good.

The whole effect may be treated ceonomically, and the result be creditable to the designer and an attraction to the neighborhood.

JUVENILE CRIME, AND PUBLLC METHODS OF PREVENTION AND RECLAMATION.

By J. PERCy KEATING, Esq.

Tur cupacity to commit erime presupposes the conscionsness of momal obligation. This sense, which we call conseience, is a primitive conecption and prion to all reasoming and experience. The oxeasion of its exervisu or application is man's ronduct; and by conduct is monut not the hind obedienee to organic propensity, but a course of atetion viewed through the power of abstraction as a means to an end. 'The capability of sued application forms the measire of responsibility, and to such responsibility therefore are requisite first the concept itself, then the intelleethal caparity which brings the particular act to the test of conscienee, and bastly the perfeet equipoise of the volitional facolty which permits of entire freedom of choice.

Now, the intellectual faculty, or power of forming abstract idens, is of gradual development, dependent now the organism and in particular its highest development the nervons system, which, possessing in the beginui a certain latent capacity, gradually develops in conformity with such capaciety, assisten and directen by habitual exereise oecasioned by the expericnee derived from the senses. It beeomes, therefore, a ciestion of impertimes in the domain of eriminal jurioprudence to aseertain at what time of life the development has reached such a stage as :o raise the presumption of criminal capacity.

The Romans, acting upon the ancient ledief of philosophers that the human arganism undergoes a complete change every seven yeurs, marked the completion of the first of such periods as the age of diseretion. Justimian fixed the age of puberty at fourteen years in males and twelve yous in females; and in the matter of responsibility those who were nearer infamey than pulerty, or below ten and a half in males and nine and a half in females, were deemed inerpable of committing crime. With those who were nearer puberty than infimey there was a prestomption of incopacity, subject to be rebutted by contrary proof, according to the maxim mulitia supplet atatem; and even where the presimption was overeome, a lighter penishment was inflicted than upon adults. The Saxons estahlished twelve 42?
yans as the age of prssible discretion, mind from this to fourtem responsihility depended upon natural eapacity. By the common law of Germany finuteen is the age of diseretion. By the Anstrian conle responsibility berins at ten, nud an offene committerl by one under fourteren is pmished like an infraction of a police regulation. 'The age of responsibility hegins in spain at nine, hut pmishment is mitigated below the age of eighteen.'
'The common law of England, as administered there and in the United Soutes (exept in such states as have altered the pule by statute), following the efvil or Roman law, regards seven years as the age of diseretion, below whinh the diald is legally inguable of committing arime. Between seven and fonteen the mesmmption is in faror of imnorence, which may be overcome by proof of capacity to maderstand the nathere of the act. This calracity, as Blackstone says, "is mot so muel mowisured by years as by the strength of the dedinguent's moderstanding, and is to bedetermined by the jury monder the evidence in view of all the cirmmstamess;" and it has been held in Massachasetts and Sonth Carolina that if the eapaeity be shown by, or even inferred from, the ciremmstances, it is not necessary to show acthal knowledge by the child of the manffulness of the act, ontside the fiats of the offence itself; for in such case it may he presumed. The exat eriterion of legal empeity, however, bas been of late years questioneal by text-writers, ${ }^{2}$ with the resillt, as it would seem, of affecting the gencral trend of modern decisions in favor of the child. For, while the courclusion to be dedued from the carlier casere establishes an we test the mere capability, as Lord Hale puts it, of discerning between good and evil, the later temdeney would sem to be to repuire a knowledge or enpacity to understand the aet as a thing forbidden by the law muder a penalty, and the ability of the ehild to regulate his conduct aceordingly. As indieative of such a change it may be notel that the law of Texas, as interpreted loy the courts of that State, reyuires proof of knowledge ly the child of his legal resumsibility, and the same is the rule in Kentueky and Alabama independent of statute; though, imberd, it has been hodd in Texas that the disrerment required by the statute may be gathered from the ciremmetanes of cluation, habits of life, gencrat chamacter, and oftentimes the circumstancers comeeted with the offence charged.

The nature of the evidence neessary to overeme the presimption of imnocener is likewise the subjeet of criticism. Thus, to the cases cital by Blackstome of eonvictions of children of ten, nine, and even eight years of age, for murder, the objection has been raised that the processes of the infint mind were judged by sulsequent acts indiating a realization of the eriminal nature of the aet after the consequencts were pereeived, though such acts afford no logieal iaference that the child understood the nature of the erime at the moment of committing it. Despite these considerations,

[^201]however, there is no reasm why , over at this day, where the common law

 the rigor of' a law that has outlived the age aidh gave it birtlo. It is believerl that the goungest persom ever exeented for crime was a buy mand Dem, between cight and nine years of age, who in the? was fismel guilty of burning 'wo barrsat Wiadsor.'

Where the common law has heom alteren by statute in the different States of the Unim, the age of diseretion varies. Thes, Iltimois it is ten yens: in New Yourk, moder the Pemal Conde of 188t, it is twelw; in 'iexas it is mine, and the premmption expires at thiteren.

With respect to the prow neressary to avereme the presmumpion of imocence, it is an old axim that it varies in intensity with the tombernes of years; but this bust be taken with the qualifieation that, as fle lowser oflemees which nsualty come within the elanse of make prohibite do mut su violently shoek the momal sense and are not therefore so readily reogegizend as a violation of daty as are the higher offenees, the proot' of guily knowledge should te well supported.

The presmmption of innorence at common law between \{adages of sem and fonteen was originally adopted in farorm vite in case of capital erimus only, but gradually becume applieable to all felonies and misdemenoms fir which an infant was punishol. But it mav be here noted that, white the presumption might be overome, it did not ahwas follow that the same punishment applied to infants as to addults; and herein the wisdom of unr day is appurent in the distimetion between the treatment of children ame that of adults for crimes to which we shall presently have oecasion to reffer. If infuney is set up ats a defenee, it must be proved by competent evidenee. Ordinarily the experience of medieal experts is admissible to prove age, hut it must be acempanied by facts on which the opinion is based, and it may be generally inferred from the ciremmstances.

As to a child's comfession of his own guilt, while the utmost cantion and circomspection are imposed in admitting it, it has none the less bren hedd that he maty le convicted on it. "The capacity to commit crime," si learned English julge, "necessarily supposes the capacity to confins it." Therefore, in New Jersey in 1828 a boy of twelve years was convieted of murder on his own confession and was executed. It has been held, however, in the same State, that the mere maked confession unsulpprorted by other evidence is not sutnicient. Confessions, of course, may be excluded on the gromed of improper inducement, such as threats, cte.; hut an idmonition or a warning need not be so construed. The command of a parent will not justify the criminad act of a child done in pursuance of it, unless diseretion is wanting, or the child acteel under restrant.

[^202]

 in＂arly times，ats it is mow in many of our states，pminhatble with death．
 will exists，it is hedd that if there be prowf of puberty the ofiomer maty be comvider of an assanlt with intont to commit rape，on the gromel that the prestuption shonld not he applied to an inlerion athere the punishment of which anot death．Bat fationg pront of puberty in sum case，the offemere （ann＇wioted only of assant and hattery．

In some of the United States，such ats Ohio and New York，the rule of＇ the common law that the presmption of impotene ramot be rehatted muder timesen has been repudiated，for the reason that the gemeal em－ ditions 1 poon which it is based do not exist in this combtry，owing to the diflerent diremmstanes of climate，mixture of races，and habits of life．And in Nomb Carolina it hats bern hedd that even though the common－lan mo whans，and the oflemder camot therefore be punished eapitally，neverthe－ less where the intent is manifest lee is subject to indietment mad should be made an example of by the utmost pmishment which the latw permits．

As the law establishes the age below which the male is presmmed to be imepable of mate，so it fixes the perioul bedow which the female is presumed to be imapable of comsent．At common haw the age of eonsent is twolve years．In lingland it is forther provided by statnte that betwern twolve and thiresen the consent of the female only redues the man＇s ame from fedmy to mishlemeanor．In our states the age varies．Thas，in Pennsyl－ vana it is sixtece，but if the jury find the gind moder that are consented， and is not atoman of good repute，the nffence is formication only，and the aremed is accuitted of folonions rape．
lant while the fact of the female being under the established age of eon－ sont tixes the erime in the adnlt，it does mot，of comse，overcome the pre－ sumption of impotence or want of discretion，as the case may be，if the wfender be muder the age of fontern ；and，therefore，in an English case Where agind of nine innocently consented to commeree with some boys，the const rethed to sustan a eonviction for assanlt，the presumption mot being overome．It is also held that the patient may be convicted of an mmat－ wal crime thongh the agent be moder fourteen．

An infant may appear in a criminal prosecution and defend himself in person or by attomey，and it is eror to assign him a guardian as is done in civil eases．If an infant under seven is given in enstorly on charge of felony，an action for filso imprisomment will lie ；and where a minor is im－ prisomed moder an illegal sentence the proper remedy is by habeas eopus．

PUBLIC METHODS OF PREVENTION AND BECLAAR ION.
The treatment of the delinquent and dependent elaseses in general, with a view to the prevention of erime according to seientific principles, involves the question how far altered cireumstances and conditions may influenee character and conduct. This question, carried to its ultimate issue, involves the old controversy between determinism and free will ; and, while such consideration is beyoud the seope of our present inguiry, a brief referene to the attitudo of secentific thonght on the subject may not be out of phaye. Let it be moderstood, however, that, in discossing theories, any apparent inconsisteacy with revealed religion can only argue a defect in the theory, for it is the writer's humble belief that seience is but the handmaid of religion, and that its final and culminating conclusions will be the vindiention of revelation by the processes of homan thonght, so far, indeed, as the finite mind is permitted to contemplate eterual truth.

Natural seience, having no means of ascertaning or explaining the essemers of things, deats with phenomena alone. Within such limits mind is viewed as a fore or principle of activity liberated in the exercise of the functions of the organism, and, as such, conditioned upon the proper aljustment of sud organism. Now, this organism in its origin and development is sulbject to the universal physical laws of canse and effect, and herein the speculations of the evolutionist have tracel, within a comparatively reeent periood, the general outlines of a most wondrous design. This theory no longer regards the hman organism and its function, chanacter, as the chance offipung ois imsediate ciremmstaness, but as the product of an evolution controlled by a long line of eireumstances extending from the present moment back through aseending gencrations to the very origin of the race, effeeting molifications all along the line, which, hecoming organic by the mysteriois principle of differentation and integration, are transmitted by descent. In other words, the law of evolution or wepreduction, while preserving the type, is dependent on the enviromment for elliecting, and on the heredity for tramsmitting, the modifications by which the species are distingnished.

Carrich to its extreme, this theory segarls every ate, whether of the physieal, the mental, or the moral order, as the inevitable consequence of sud factors. Morality in its ordinary aceeptance is a myth, erime being cither the product of disease or the result of lack of development of the particular nerve-centre, sine, as Mandsley says, man camnot evade the tyramy of his organization. Under such a view, will is but the aggregate of feelings and ideas at the time existing and prodetermined by experiences, and the moral sense is comperted into the altruistic tendeney, a necessary outcone of the social state and condition of man's existence, in the absence of which the race would perish.

In the light of the more recent scientific theories, however, sum conclusions wonld seem to be not altogether satisfinctory. Bencath the physimal organism and the forees which are liberated in the exercise of its functims, les, involven ay iutlucure sue, involves , while such ief referemere out of plawe. wy appry"ut in the theory, luandmaid of a the vinulineinteced, as the

ut the essumper

 wind is viewel e functions of thene of such It is suluject to e speculations ent perivel, the longer regarls ance offispring tion contronliel moment lack effiecting inclthe mysterinisis y descent. In preserving the lie herellity for muished.rhecther of the Thuence of such ae being vither f the partienlar tyramy of lis ate of feclius iencere, and the cessary outtemic ssenee of which
ver, such cull th the pliysialal f its fiunctions,
the distribution of which is from moment to moment caused ly such predetermined organism and environing conditions, certain philosophers reoognize as manifest an independent germ of personality or proper spontaneity which transcends the power of natural science to exphain. ${ }^{1}$ The Duke on Argyll, in his "Reign of Law," while claming that man's will is sulgect to law in the sense that it must aet only on motives, admits that among the motives presenter he has a selecting power. "He can, as it were, stand ont from among them, - look down from above them,-compare them among each other and bring them to the test of conscience" (p, 306). This freedom from compuision it is, perhaps, which leads Prof. Fiske to assert ${ }^{2}$ that the present scientitic state of knowlerge warrants a return to the theory of Plato, whith views the soul as a spiritual substance incarnated in perishable forms of matter. Herbert Spencer, while adopting the deterministie view, recognizes, nevertheless, an unexplainable inderendent entity, when he says, "The aggregate of feelings and idens constituting the mental 1, have not in themselves the principle of cohesion holding them together as a whole, but the I which contimonsly survives as the subjeet of these changing states is that portion of the minnowable power which is statically conditioned in sperial nervous structures pervaded by a dymanically conlitioned portion of the maknowable power called energy." ${ }^{3}$ And Prof. Stokes, of the Royal Society, if we are to acept the current report of a leeture rerently delivered by him, regards the process of thonght and of life generally as the result of interaction between an individualized fundamental energy and the organism. This view would seem to acoord with that of Mr. Speneer, though, of course, onee such fundamental energy is admitted, there is no knowing how far it controls the development of the organization in its every aspeet.

For the purposes of our inquivy, however, every shool of thought would seem to oceupy a common ground in admitting in the normal individual, first, the primitive conception we call conscience, however derived, and the presence of which is the basis of responsibility ; and, second, the neessity of a striat regulation of comdnct in obochience to its proper dictates atsaffecting either the individual himsolf or the society of which he forms part. But this conserience so recognized is reducible to one or two truths of a most genema chamacter, and, while these truths lie at the very root of all action and conduct, they form indeed but a small part of our moral states. Grafted upon them, as the result of experience and the means to the end which they point out, is the variable element into which enter all our idens, judgments, habits, recollections, passions, sentiments, and prejudiese; and, as this is the result of enviromment, so it may be controlled and direved. Herein, then, lies the value of edueation, that it offess an environment which will assist the healthy development of every order of man's

[^203]nature,-the physical, for the purpose of establishing that equilibrium of physical foree, centring in the nervoms system, which promotes not only correct processes of thought, but also the fullest exereise of the iuhibitury faculties commonly called strength of will; and the mental and moral, with a view to the free use and development of the power of right reasm properly directed, especially in its application to conduct.

These ecesiderations as . plied to the treatment of erime have contritho uted in revolutionizing the methods in vogne only a century sinee. For, while formerly the sole mode of repressing crime was by pmishing the offender, our present system goes to the root of the evil by anticipating and preventing it. As applied to the young, such system lays claim to pernliar consideration, not only because the child is helpless and in no wise aerountable (monder any view) for the conditions and ciremstances surrombling him, but becanse, mot having attained the full growth to which his organism is snsecptible, his development is the more subject to environing influemes. As a necessary eorollary to such conclusions, the State, in whom as, ainstodian of pullie order the power to repress crime is lodged, has acquirel a clearer knowledge of its own obligations in this respect, as extending even to the endowment of all its members with such qualifications as are commensurate with their civil duties, especially where those upon whom the same obligation primarily rests, through force of ciremmstanees or negleet, fail to discharge it ; and this, too, without in any mamer treaning on the duties of the individual or the spirit of private benevolenee upon which all work springing from the social relation must nceessarily depend.

The sulbeet, therefore, camot be conchuded even upon this eursory view without a passing reference to the reformatory and preventive measures of the period, though, amid the inmmerable featares which characterize pablic interest in the subject, we can do no more than glance at such as apply to the public institutions, considered apart from the legislation touching the conoition and treatment of minors in private life.

Aud first in the order of importance we may note the separation of delinquent and dependent children from adult criminals by emoving them from the contaminating influence of prisons and poor-houses, a change which at this day seems so obvionsly neeessary that one cannot but wonder that it should have heen of such reent origin. This step was followed ly the separation of delinquent from dependent children, for the sake not only of preventing the moral contamination of the innocent by personal contact with the erimimal, hut also of preserving that self-respect which is apt to be obscured by the absence of any distinction between misfortune and erime. Reformatory work is likewise oceasionally accompanied or preceded by certain correctional features intended to impress upon the child the serionsuess of his offence. Hence the origin of State industrial schools, as distinguished from reformatories. But it must be here observed that below a certain age the offence partakes so little of the nature of crime, by reason of the immaturity of years, that no snch distinction is applicable, and the
ibrimen of not only inhibitory ad moral, ght reasm ve contrilsinee. For, aishing the ipating and to peculiar ise accomntsurrommling is organi-m g inthemes. OI ass (2llstr); acepuired a ending even as are comII whom the s wr neglert, ning on the upon which pend. entsory view measures of cterize public as apply to touching the
eparation of moving tlem es, a change t but wonder followed by Fake not only somal contact ha is apt to be e and crime. ceded by certe serionsuess ls, as distinthat below a he, by rasom able, and the
industrial sehool is therefore a proper place for the culprit ; while, on the other hand, vicions and incorrigible chiddren, though moonvicted of any particular offence, may with better results be classed among subjects of reformatory work. And, inasmath as the commission of the overt aet is ordinarily only the natural result of evil conses, the true eriterion to be fullowed in making the separation would seem to be not so mond the offence as the chanacter of the individual.

The adoption of the indeterminate sentenee, too, wats a foregone eonclnsion when the real object of the treatment of juveniles came to be fairly understood. That a child shonld have the advantage of superion surroundings and opportmities for self-improvement only for such term as might be deemed commensmate with the serionsmess of his offenee is irmational. Hence in such States as have inangurated a thorough system the term of control by the State anthorities is generally extended to such period as ofice's some guarantee of finture good conduct. In the matter of mere prevortive work this period may extend from the ealliest age after weming
the attamment of capacity to cam a living, - msually abont sixteen, n. ..gh it may last till t, anty-one. With respect to reformatory or correctional work, if any hard-and-fast line is at all practicable, the age of twedve is perhaps as low as ean be fixed upon, having regard to the distinction. On the other hand, the age of sixteen has been thought to be the limit beyond which the influences of reformatory work so greatly decrease, and the liability of the enfprit to exert a banefnl inflnence on the yonger inmates so increases, that in certain commmities-Fangland, for example-no youth is admitted to a reformatory above that age, thongh, of course, such limit of admission does not affect the period of his stay if admitted prior to that age. It has been suggested in this comtry that there is great need for a reformatory for juvenile offenders between sixteen and twentrone, where a severer diseipline would seve to deter and punish repeated offences; and the suggestion is certainly important when we consider the chances of reform even at such age which might be thrown away by contact with hardened eriminals. The Reformatory at Huntingelon, Pemsylyania, supported hy the State, is intended to supply this want. The cortrol by the State, however, which attaches to minors under such conditions is not confinel to institution life,-a point to whieh we shall presentiy advert.

The enstody of the child by the State involves, of course, the forfeiture of the parent's right to the same. This point has been fully tested in the courts of this comntry, wherein the objection was formerly raised that to confine aldikd wianont trial and convietion is opposed to the Declaration of Rights. It was adjudged, however, that such right undoubtedly exists, on the ground chat the period of infancy is a perion of enstody, and, where the parent fails in his custody to sedure the welfare of the child, the State is in duty bound, in the same interest as well as for the protection of society, to substitnte it.

But, while such right of the parent is forfeitent, his obligations should not be thereby discharged, lest, indeed, he should profit by the State's assistance in ridding himself of the care of his offispring, and lose sight of his due share of responsilility for his offispring's misfortune or evil-doing. This prineiple is of the utmost importance, and inded its strict enforement may be regarded as one of the essential features of work of this charater. The suljece, it must be confessed, hats not as yet reeeived its due share of attention. In the Uniterl States it is for the most part orerlooked. In England the parent is obliged moder penalties to contribute to the support of the child while in the institution, or to madergo a certain amonnt of work or even pmishment if the ciremmstanes demand. The preseriber amome is five per cent, of the burden; but the returns show so small an average of contribution as to wamat the complaint that the law has not served the pmone in view, or that the parent's responsibility has not ben sufficiently brought home to him.

Another great step which characterizes the methots of our day is the recognition of the value of private zeal as an ad and stimulns to the ellicetive aceomplishment of publie work of this chanater, substituting as it does a pure motive and unflagging interest for the rontine superintendence of paid offieials. And this fact maturally leads to the question whether the State camot do its part better, so fir as institutions are concerned, by assisting institutions of private origin, than by estal)ishing institutions of its own. It camot, indeed, be denied that the batter, being necessarily of a non-sectarian character, must give less prominence than its importance demands to the religions feature of such work, which is so essential to its sucesss. The objection has been advanced against such private institutions in this combtry that where paid per copita they are tempterl, for the sake of the State contribution, to retain the child within the institution for a longer period than his interest and that of the slate will warrant; and the sectarian institutions of New York are instanced, where the number of inmates has increased to an enormons extent. But, if the increase may be attributed to such canses, the defect would serm to lie in the alsence of such State supervision as would secure the discharge or placing out of the child at as early a day as possible. The system works well in England, where the industrial and reformatory schools are fees the most part of voluntary origin, and in many cases moder sectarian rulc, but where the most rigid system of State supervision and control acts as a sateguard against any such eontingencies. The Royal Commission appointed in 1882 to examine into and report upon the system there in vogue stromgly depreates any effort to prevent religions sisterhoods and brotherhoods from carrying on such schools on an equality as regards government aid with the mathinery of a voluntary committee and paid superintendener; and Mr. Tallack, in his excellent work "Penologieal and Preventive Principles" (London, 1889), remarks that "it may justly be deemed matter for grave reflection and surprise that eomparatively so little prominenee has been
ons should the State's se sight of evil-doing. ict entoresork of this received its t part owercontribute to go a certain mankl. The eturns shew ant that the esponsibility ar day is the s to the elliectituting as it perintendenee stion whether we consernet, shing institur, being news. nence than its which is so against suluh rite they are child within t of the state are instancent, extent. But, would serem to the discharge system works ols are foe the arian rule, but acts as al salfeSion appointed vogne strongly herhoods from ment aid with tendence ; and ve Principles" ther for grave ence has been
given to such systems of popular chlucation as involve the training of children, both to self-supporting industry and amid those harmonions influenes of piety which are fostered mainly by denominational sehools, where the pupils are surromed by arrangements and persons adapted simultaneonsly to guard their liberty of consciene and to prevent their faith being merdessly assailed by jarring eriticisms or by infidelity or immoral contamination."

Whatever differences of opinion exist, however, as to demominational agences, it camot be denied that the management of public establishments of the kind by mere ele etiee bodies is the last efficient, mot only leatuse of their usial lack of the proper spirit mimating such work, but also because of the possible interference of political ronsiderations in their selection, therely involving constant change of persons and of poliey.

In England after eighteron months' residence the child may, with his consent, be placed out on license with trustworthy persons, surd herense to be revorable by the managers in their diseretion; and this leads to the consideration of one of the most important fatures of prevailing methorls. The family gronp, is the basis and the mainspring of man's affections and cmotions. Hene the artificial enviromont whereby it is hoped to form charater should imitate or provide the family life as far as praticable. Such condusion hats led to the adoption of what is known as the "cottage systen" in institutional life, wherely the inmates are broken up into groups resembling ats narly as possible the family, and, what is even more important, to the "placing-out system," so called, whereby institution life is sut)stituted as soon as may be by actual fimily life, accompanied, of eourse, by such contiming supervision as is made nerossary in the allsence of those parental ties which stranger's can seldom supply.

It wonid ocenpy more than the alloted space to dwell on the special characteristics of carh system. Suflice it to saty that the "cottage system," as compared with the congregate systems in institutions, tends better to preserve the individuality of the child and permit of persomal supervision over eath one. Its possibilities may be illustrated in the words of Dugdale ("The Jnkes") when he says, "It enables the managers, by carefin selection of temperaments and dispositions which shall healthfilly react on cach other, to segregate those who sutfer from the same deficiencies, so that the defects of one shall not beeome a demoralizing example to the rest, and to group such matures as present well-organized habits so as to become exemplars to those who lack those special hatbits, thens to conscionsly organize by artificial means an enviromenent in which the subjects themselves will become instruments for each other's regeneration."

With regard to the "placing-ont system," it must be observed that it does not wholly do away with institution life, the latter still holding its plaee in serving as a temporary shelter until homes can be provided, and also as a place of preparatory training under such discipline as may pave the way for the reception of the child in the well-ordered family to which
he may be introhuced. There are cases also where, by reason of mosually vicions temperament, the neressity for pmishment presents itself in order to reduce the endprit to a sense of his erime, and where, therefore, it would be masate and ingodicions to introduce him to the freedom of fanily life. But with these exceptions institution life is to be deprecated, in that it affords a false enviroment and fosters dependenerg, which is the reverse of what is intended in surch work. $A=$ to the "phacing-ont system," the best method is that which provides for no compensation on either side, or, in other words, a system of adoption, as calling into play the affections upon which so much depemds. Apprenticeship has been ohjected to, in that the children are not so prepared hy previons diseipline and ednation ats to insure their contentment, and that the money-getting spirit may indure tho persons to whom they are apprentiond to neglect their religions and serelab alucation and even their comfort.

We have said, however, that State supervision is neessiary to the sumeses of such system, and in this respect the method in vogue in some of omr States, motably Michigan, Massachasetts, and Rhode Island, is especially to be commended in many particulans as thorongh and effective. Whitediffering in detail, the gencral plan adopted in these States is much the same, and as an example we may cite the general points of the Michigan system, They inchude a State Board appointed by the Execotive of the State, anting withont compensation, having its proportionate representation of women, with a view to the interests of the female wards of the State. They visit the institutions and report to the Executive. There is besides a Buard of Control of the public institutions, and also a State Agent in each county, whose province it is to seek suitable persons willing to adopt, and to kep acpuainted with the condition and history of every child that has eyer hern taken under public charge. Where the child is aceused of an offence, the Connty Agent (in Massachnsetts, the State Visiting Ageney) investigates the circmmstaness and advises the court, who therenpon either discharyes the delinquent, or binds him out, or commits him to the cure of a person desiring to adopt him, or commits him to the reformatory, as his diseretion points ont In Massachusetts the child may still continne at home, hut moder the oversight of the State Agent, who undertakes, however, to bring him up again when needfinl, meanwhile to watch over him. This is what is known as the sentence of probation. The Agent periodically visits the child where bound out or adopted, and reports to the Board. The officers of the institution may also bind out or place a child for adoption, after first notifying the A gent, who files his report as to its advisability. In the case of dependent children between the ages of two and twelve years, they are placed in the State Publie School, upon the order of the judge of prokate, aecompanied by a medical certificate as to health. The school is conducted on the family plan, with abont thirty children in each cottage and a lady superintendent. Thence, after a few months' preparatory training, they are placed out in homes or on written contracts approved by the County Agent;
and, in addition to the inspection of the Comnty Agent, the special travelling Agent of the sehool supervises their tratment. The contract provides for their treatment as members of the family and their eduention in the public schools, and for the payment of a specific sum for the child's benefit at manority. Several other States have adopted systems more or less similar to that above described.

A few words remain to be said on the system of edneation pursued in institutions of a reformatory and preventive character. This may be divided into ihe religions, the secular, and the mechanical.

The great importance of the first few will deng. De Torqueville, the colahnere of De Metz in the establishment of the great Reformatory of Mettray in France, says no human power is comparable to religion in reforming eriminals. We have already adverted to the question whether it cammo be leetter attendel to in denominational institutions of private origin thatn by the State itself.

Nor will it be denion that the second is likewise essential to the formation of the intelligent eitizen. I therefore, even where the traning is in the line of agriculture, which, by reason of its being the calling of the vast majority, maturally ocoupies a large share of the education in all sechools of this character, a certain time shonld he devoted to the elementary bunches of an academic course.

With regard to the teathing of trades, some have questioned whether it be the duty of the State so to provide; but the day wherein such objections: could prevail may be said to have passed away. As an educator, manal training, emborlying the teaching of trades and technologieal and industrial insiuction, is invahable. "Physiologists," says Commissioner Dawsom, in the general Report of the United States Burean of Education of 1887, "have long heen telling us that muscnar exereise invigorates the brain; in addition to this important result which the exererise of the hand shares with all other bodily exereise, the advocates of manal training have urged its elfect in quickening observation, in inereasing the range and acnteness of the pereeptive farmlties, and in establishing an intimate familiarity between the mind and things." And it may be added that it promotes the babit of steady attention upon certain fixed lines of work, whin, while exciting the eliikd's interest, serves as a guad and restraint upon his conduct ; and, not the least result, it affords "n opening for a suceessful carecr, which is a great stimulus to good conduct. In this country, with the exeeption of Massaclmsetts, there are no laws requiring industrial and technieal training, though in the majority of reformatory and preventive institutions trades are tanght. A difficulty has been encomntered in the opposition of tradesunions to the sale of articles mannfaetured in such institutions, which in some States has culminated in laws either prohibiting sueh sale, or cheeking it by eompelling the branding of the articles so manufactured. To this extent the sulbeet has assumed an ceonomic aspect which must be determined in the end, like all class legislation, by the power, importance, and Vol. IV.--28
daim to consideration of the class songlt to be benefited as compared with the rest of the commmity.

As to the chameter of the paticular handieraft, a selection shombl be made of such as afford employment for large numbers in which there is a great and constant demand for skilled workmen, and in the selection of these the natmal hent of the individual should be followed, as fir ats pasible, while the sole object shomid, of comse, be the benefit of the individual, to the exclusion of any consideration of profit to the institution itedf? Hand-lahor, too, is greatly prefervel to matchine-work. The entract system of labor in reformatories is almost miversally condemeed, buth here and abroad. Girls should be tanght the domestic arts, sumb as sewing, cooking, and the like, thongh with the gradnal enlargement of woman's sphere of useffulness in business circles the range of aecupations will naturally be extended from time to time.

In the matter of discipline, the infliction of corporal pmishment in extreme cases is still permissible, but muler such safegnards as render its abnse improbable, if not impossible. In the case of delinguents, a short term of solitary confinement has been foom bencticial for the purpere of bringing them to a proper sense of remorse, and is in vogue in Eugland, The enlprit there may even be whipeal, as an alternative, but not by a subordinate oflicer, and, as a safegmard against muduc haste, passion, or mistake, a night mist intervene between the offene and the pminishonin. The monle of emulation aldopted in this comntry by the system of maks and erelits for conduct, studies, and industry, as well as the system of shortening the term of detention by reason of good conduct, happily dispenses with corporal punishment to a large extent. In France the offemder before being releasel is informed of the panishment which will be intlicted in case of a relapse.

In close comnection with the question of discipline the . troduction of female influence has been of great avail. The gentle ways of a woman often have more weight than the cold connsels of a man, and are cepecially beneficial in extending sympathy to the girls, aromsing the sense of homer in the boys, and gencrally in creating and encomraging those finer instincts which contribnte to elevate man's nature.

As the plysical organization: is so important a factor in all work of the kind, its development clams a large share of attention ; therfore a due propertion of ont-door exereise, proper distribution of hours of work aud play, healthy diversions for the purpose af enltivating and encomagiug, the animal spirits, a carefinl supervision of the slepping- and living-apartments with a view to proper drainage and ventilation, and the prevention of disease and the promotion of general health, all contribute to the sureess of institutions of this chanacter, and likewise enter into the selection of proper homes for such as are recommitted to the influence of family life. emued, luth urts, such as argement of focellyations
unishment in as remder its aents, a sluwt he prin pose of e in Bingland. but not bya ce, passion, or e punishment. stem of maks the system of it, happily disce the offinder fill be iutlicted
troduction of s of a woman I are espectall! sense of homer finer instincts
in all work of thereflore a due s of work and ncoumuing the ing-apartucnts vention of disthe sureress of tion of proper life.

MEDICO-LEGAL TESTIIONY.

by Jerome walker, M.d.

Probably no elass of medico-legal cases is of deeper concern to the physicitu, be he expert or general practitioner, than that in which the plaintiffs are children, and the complaints those of physical ingury, mape or attempt at rape. Such cases at times are of extreme importance, beranse of the severe penalties that can be and often are inflicted on the smpposed gruilty ones, and because of the weight that is fremuently attacherd to the physician's testimony and the consequent responsibility that rests upon him. To be largely instrmental in sending a loman lecing to prison for ten, fifteen, or twenty years is a grave responsibility, and the more so when perlapis the result is due to a careless but confident physical examination, a misisuterpretation of signs and symptoms, and an inexperience in the study of homan nature. In addition, the physician deals with ehildren who may not have clear ideas ats to the difference between right and wrong, are keenly alive to real and fancied injurios, and are readily influenced by those of stronger mind, or for whom they have an attachment, to testify even against frionds and kindred.

There are also those feelings of sympathy and pity for children which are inherent in most of us, and which will tem, unless we are very careful, to dowd our judgment. And this danger is imminent whether the children are plaintills or clefementants.

To assist physicians who have had little or no experience in medicolegal cases such as have been referred to, is the objert of this article.

Naturally, the sulject of how to deal with children in such cases, and how to testify so that we can as physicians tell " the truth, the whole trath, aud mothing but the truth," is to be considered under three loadings: 1st. How to examine children orally. 2d. How to examine children physically. 3l. Medical testimony.

how to examine chlldren orally.

Mr. Wilkins, superintendent of the Brooklyn Society for the Prevention of Cruelty to Children, who has lad a large experience in his line of work, states that "young children of four, five, or six years of age, or thereabouts, do not, as a rule, seem to have clear ideas as to right and
wrong, and, if any one gains their confidence, such person can do almost anything with them." Older children, esperially girls from twolve to fifteen of sixteen yeurs of age, are more suspicions. They da not ratily impart information or answer grestions if they think that hy so doing they aminate themselves or delay the cexention of cherisherl phans.
'To gain the eondidene of all the children we deal with is of prime inn portance. Bat this confidene is to be reeceived cautionsly, for, cager to do what they can for us, they may tow madily agree or disagree with line of inguiry an their immoses tell them they can best plase us. Untess we aro carcful, they will lend us antray : we arrive at conelosions which will not bear cross-examination, in court, by the opposite side, and the children imperceptibly drift into erroneons statements. To gain the confidene of a child, be first the child's friemd, then yon can asmme the position of ${ }^{\prime}$ doctor and examiner. Among the lower classes theats and corporal purbishments are common, and little children are often threatemed with the visits of the doctor as a logaboo. 'To appar to suld children in the role of a doctor is therefore to inspire fear ; and yot you monst win their eontidence. To obtain it, it may be neessary to see them on sereral different oreasions, And thongh a stick of 'andy or something to cat may suggest itself' to you to open the way, for a number of rasons, interesting the child in a doll, in a pieture-book, or in its reeital of events or description of things dear to its heart, will prove a better way. Some physicians, I am sure, never obtain a reliable history of a ease from a child, beamse they are too dignified or in too great a lumry, or attach too little importance to becoming the cinild's friend.

To rely entirely or for the most part upon the testimony of deeplyinterested, prejudicen, or angry friends of the ehild is certainly mumise. In fact, it is best to question the ehild and its friends aprort from cach other, as is done in the graud-jury room. The mere presence of a guardian will sometimes canse a young child moittingly to prevaricate. A frown, a nol, a shake of the head or a finger, from such a sourer, will have much weight in fashioning the child's testimony. The statements of parrents, especially, in regaril to their children are to be cautionsly receivel. As has been said, "parents ean seldom be brought to see the corrupt morals of their own ehildren; therefore fees corrupt children are cither admonished or penishod by parents."

As chiddren approach the period of puberty, boys frefuently resort to pratices which they consider manly or necessary, sueh as smoking, selfabuse, liquor-drinkiug, keeping late hours, wereating at restanauts, ete. Girls frequently become romancers, are carried away by a manly form, a pleasing face, and plasant manners, and so are readily influenced ly flattery and attentions. They are easily offended, imagine that they are slighted or abused, and are led into making insinuations or acensations for the sake of notoriety or to "get even" with some one. They aequire a knowledge, or rather an idea, of what intercourse, conception, and child-bearing are, and

11 do almosst mi twrlere to lo not readily so doing they of prisuc im1 , cagere to do with linss of Unless wo aro rhicls will mat I the rhildren confictencer of he position of (rorporal punwith the visits n the rold of a beir eonfideme. cent orcasions. st, itsolf to you hild in a doll, of things dear alus shre, never y are too dignito beroming the
nony of deeply--rtainly muwise. from each other, a guarlian will c. A frown, a will have much buts of parents, recived. As has rupt muinals of her arlmomished
uently resort to smoking, selfrestamrants, ete. manly form, a suced by flattery are slighted or for the sake of knowledge, or pearing are, and
may, as lxys do, mequire immoral habits. From talks with erlucators in pulilie and private sehools, with physicians and offeres of soricties having the "abe of dhidren, and from my own exprovence in sehools and chatitable institutions, I mast comelnde that some childrem, carefilly wateled over in publice and private sehools or in fanilies, may and do grow up difterently fiom the lows and ginls just mentionerl. But the fact remans that there is an astonishingly large mumber of children, espereally in our cities, who know or sumise more abont sexnal relations than people at large suppose possible. The examining phesician must take all t'ase facte into aceomet, as he tries to umaned the tangled history of a case and to aseotain the motives for metain statements, -blackmailing solumes or injurios. Whate it is true that in court the phesievan testifies in the man to what he has sern, his ppinions are mod sooght after, and he can give a roliable opinion only after a carefoll oral as well as physical ex mination.

In questioning children mueh tace is neres. ory. Pointed questions with many chidheon frequently prodnce answers not at all appopriate or desibed. If, for example, it is asked, "Did so and so lmrt you". did he throw you down? did héall von such or such a mame"" the chini may answer" 'es" of "No" when the opposite would be the truthtin answer. Op if the child is askel, "Do yon have pain hore ?" tombing some particular part of the body, the answer may be "Yes" when the pain, if any, is chsewhere.

In our experience, it is best to let the child give its own story in detail, if indinod to be communicative, and even to follow up side issmes tonelied mpon. If not so inclined, the chila may be eneonraged to tell its story in itsown way. Such a story, so toll, is eflective with a jury. Coaching a chid so as to have it tell a straght story upon the witness-stand is a risky proweding. The very simplieity and sometimes incongruity fexpression in a yomg child's langage serve to stamp it as original, and have more than once tended to clear up the meertain and disputed testimony of chers. The dhild telling its own story will be fomd to be very positive on a few points, such ats the pain camsed, the amonnt of hood shed, the size of a brused spot. Some of the points the examiner can ascertain for himself.

Mach value, of conrse, is attached to the child's deseription of sensations experienced. Unless the child has been really injured or has suthered pain, it is likely to use the common remark, " it hurt." But this is not a sutirently comprehensive answer for a medical examiner, and, if persisted in , is of itself suspicions. A giri of thirteen years acoused her father of incest, and repeatedly said that "it hurt her when he did it." On close questioning, she could not say whether he had really tomehed her or not. In answer to the question, "Did he move his body up and down ?" she said, "No, not at all." The physical examination made soon after by a physician detected no abrasion nor any evidence of rape. In fact, there was so much sensitiveness of the parts that a gentle tomeh of the fingers cansed much diseomfort. The father was exonerated. If he had really attempted intereourse, the girl wonld probably have described more graphically the
sensation or the pain than by the words "it hurt." At least, this is generally the ense. 'The exeeptions are when the children are imbeciles or idints, or lave been drugged, or have havdened the skin and mucoms membrane of their privates by self-abuse, or have been acenstomed to be used by others for varions immoral purposes. On the other hand, sexinal interesmes an the handling of the privates, when normally sensitive, may increase the irritability of the parts very rapilly, so that when the physician makes a physical examination they may be fombl very red and sensitive. Yet the statement holds true in regard to the repeater use of such a genoral expres. sion as "it lhurt me."

Suggestive questions, such as, "Are you not sure that all that you have told happened on Monday instead of 'lucsilay?" "Didl he not reilly say such and such things ?" are questions that, if asked at all, slould be left till after the child has told its own story in its own way. This form of questioning, the lawyers on the opposite side, in a bland and insinuating way, are apt to use with chidren to break down their testimony. The medical examiner may, in like manner, do the same. As the child tells its story, note discrepancies and the positive statements, and, generally after the story is told, cantionsly ask your pointed and suggestive questions. Make a written memorandum of the salient points of the oral examination and the time at which it was had, for memory is liable to fail and impurtant points to be forgotten. Sometimes such a memorandum is usefinl to lave on the witness-stand. Compare the resnlts of the oral examination with those of the physinal one, and upon the conclusions base the testimony.

HOW TO EXAMINE CHHLDREN PHYSICALLY.

Probably most children dread a physical examination, in part bexanse of an imate molesty and partly for fear of being hurt ; yet some do not seem to mind it, and others appear to desire it. The medical examiner is maturally influenced, in his views as to the tendencies of the child, bey the way in which it acts as he proceeds with his examination. But physianus who have examined a momber of prostitutes have learned that a rertain proportion, on accomt of an inherent modesty, dread physical examinations, So it is with some children who are conversant with and participants in inmoral acts. The modest bearing is therefore not always an indication of good morals. On the other hand, neither is willingness on the part of a dhild to submit to a physical examination a proof of immodesty on inmorality, for there are chidren who freely talk of their aiments, real or fancied, and who believe that a physician has the right to examine them if he or the parents think such an examination necessary. Such children are precocions, mature early, and have lived the most of their lives among adults who themselves are outspoken even upon private matters.

A physical examination of shrinking, nervons, irritable children is msatisfactory unless preceded by a careful oral examination. Before examination of the genitals with the fingers, speculum, or other instrument, an
is is generss or inliots, -mbratue of 1 by others creourse in wrase the "11 makises a Yid the cal expred
it you have t veally suy mild he left his firm of insinuating mony. Tha hild tells its ereally after e guestions. examination id impertant seful to have ination with stimony.
part lomanse some do not examine is child, ly the nt physiculus bat at certailu xaminations, prants in imandication of he part of a lesty or iunents, real or Samine them neh children lives among
ildren is unefore examistrument, au
inspection should be made of the cintire baty or of parts of the bendy, as the eqse warrunts, moting acemmulations of dirt, bhonl, cte., bruisenl spots, their size, lamation, whether reesent or mot, whether associated with the imprint of fingers, a ched, or mug other fornign lonly. Stains upon the skin if (lothing, also swillings, congestexl spots, and abmsions of the skin or masens membrane, shombld be exmined by the eye and mangifying ghaso Stains shomblalso be looked at with the microseope. In the inspection of the genitals the questions arise, are the parts intart" are they in their proper relation to one another? do they "ppear as if tamperey with by dhrad- or pin-worms, by hands or other instrmenes? and what are the quantity and gencral appearane of discharges, if any be present?

An open comdition of the vulva, bit "sperinally of the vagina, generally indiates repented handlisg of the parts, by the child or another, or the introulution of some forergn body. In our experience, in a gint who has not been tamperel with, the two sides of the valva are very marly appoximated even when the legs are separated. An opern condition associated with redness, uhbmion, and a dischange is very suggestive of mpe on an attempt at rape. Yet this comdition is sometmes fomad in "ases of severe leneorrhea or with a gonorthea not obtainel by sexmal intereourse. There is a popular opinion that examiners fiud upon yonng children eriminally ass sumbed evidences of sovere lacoration. Such laceration is the exepption. Men genematy criminally assault diblren, I believe, for selfabmese, and so, phacing the penis betwern their lags on the cheoks of the mates, may leave no trace behind but aboomal redness and some excorintion. Fontumately, in some Staters of the Union an entrance into the genitals, however slight, constitutes rape. For this reason, also, a grave responsibility rests upon the medical examiner as an interpreter oi' signs and symptoms.

As to the tocal appearances in cases of suspecten rape, Voged truthfinlly sars, "The fumel-shaped combition and marked tmmidity of the external genitals, so urgently insisted upon in works on medical jurisprudence as symptoms of rape having been committed, can only be of value after frequent repetitions of the act, which make the condition well marked. No permanent alteration of form, not even any deeded contnsion or thmeftaction, "an ever originate from the simple contact of the glans penis with the hy hen."

A physical erramination should be made as soon as possible after the supposed injury is inflicted, for the recuperative power of children is generally so rapid that proofs of local injury may disappar even within twenty-four or forty-cight hours after its oceurence. One physician, therefore, examining a child soon after it is injured, may find what another examiner, later on, dues not find.

No one adverse physical condition, if found, is sufficient to form a judgment upon.-Spermatazoa upon the genitals of a girl do not of themselves positively prove to an expert medical examiner that rape has been attempted or committed, for his knowledge of depraved homan nature is such that he
knows that some fiend, man or woman, may have placed semen there to cast suspicion on some particular person. Works on medical jurisprubace relate aets which are equally bat. Not only must the examiner compare the results of his oral examination with those of his physical one, but be must ever bear in mind the injuries that children may do to themselses either for their own gratifieation or to cast reproach upon others. 'fhe records of societies for the prevention of cruelty to children present numbers of such cases.

After the examiner has inspected the parts said to be injured, he should make a careful manual exmmination, and use with caution a speculum or steh other instrument as may be deemed necessary, and at times the microscope for the detection of epermatozoa, ete. If he is not cantions, he may readily produce congestions, if not abmsions. If he cannot show in court that he was cantions, any evidence of injury found by an examiner on the opposite side of the case may be aseribed to the first examiner's rough handling. It is important to note whether the sensitiveness of a par tonched is really as great as the child says it is or believes it is. One mast discoint moch of the extravagant language used by many children, as, fin example, "It hurts awful," "Oh, it's dreadful !" "Why, it's terrible !" etce, when the truth is that the pain or sensitiveness is slight, and would not be noticed by some children. Calling off the attention of the child to some article in the room, or interesting it in conversation, the physician may memome touch a supposed sensitive spot and find its real condition. Cocitine in metimes of great assistance in manual or instrumental examination.

Condition of the Genitals in Girls.-Five .rns of virginity are ordinarily given by authorities,--viz. : 1. An intact hymen, crescentic, circular, or verical in shape. 2. Ais absence of the carunculae myrtiformes, the remains of a broken hymen. Not infrequently warts and vegetations are mistaken for them. ©. Entire fourchette, fossa mavicularis, and posterior commissure. 4. A narrow and somewhat rugose vagina. 5. Integrity of the perinemm. In times past, the greatest value has been atached to the absence, presence, or general condition of the hymen and caruncula, But it is well known in these days that the presence of a hymen is not proof of virginity, nor its absence a proof that th. we has been sexmal intercourse ; for the hymen may be congenitally absent, or have been ruptured by hamding, by elots of blood at menstrual epochs, or by the forced introduction of :ay one of various foreign bodies, or it may be so flexible and tough that intercourse can be effected without rupturing it. Laceration of the nymphe, fourchette, or perineum can in general be effected only by violent contart. The hymen as an element in diagnosis has been overrated, because it has been supposed that it was fragile and wonld casily tear when conncetion was attempted. But the hymen differs in different individuals as to its strength and location. In very young children it is frequently musenlomembranons and depressed into the lumen of the vagina. As the child
on there to risprudence er compare one, but he themsedres thers. 'flue escell numb-

1, he should peculum or 8 the mieromss, he may wow in court iner out the ner's vough ss of a part
One must dren, as, fint rrible !" cte, wh would not hild to some ussician may al condition. nutal ex:minintie, circular, (tiformes, the retations are nd posteriur Integrity of acthen to the ncula. But not proof of reourse ; for oy haudling, ction of iny h that interhe nymphe, lent contact. reause it has comectiou fls as to its ly musculnAs the child
grows older it is, as a rule, more nearly on a level with the opening of the vagina and is thimer and more strietly membranons. In a record by the writer ${ }^{1}$ of twenty-one cases of assault and rupe the lymen was plainly perceptible in eleven children. In three instances it was very pliabe, in one its free borler was thick, and in all the septum was strong. In six cases it was hard to decide whether there was a hymen. In four catses it was absent. Some writers contend that it is never absent,--that it is merely not seen. In this comnection the following letter from Dr. A. Jacolji is of value:
"There are grool anthors who hoold that the absence of the hymen is nut proven, but I lave met with such absence, and agree perfectly with Prof. Hennig, who makes the statement that it oecurs.
"But you know that sometimes, indeed often, its slape is by no means the funcel- or ieat-like formation usually fomed in infants. Its development may be quite irregular, and sometimes in cases of vaginal catarth, which is so very frequent in infants and children from a large number of calles, the hymenappears to exist only as a few prominences, which resemble granulations more than a normal organ. Rape may have been committed against an infant though the hymen be intact. At that carly age the hymen is involved more interiorly than at an advanced age. But rape which sulficel to rupture the hymen in an infaut must have been committed with so mucl violence as to result in very serions lacerations of perinemm and vagina. (But laceration of hymen and absence of hymen are two different things altagether.) An absence of hymen, one day after the alleged outruge, with a slight swelling and vaginal catarrl and tumefietion of the labia, does not prove violence at all. It simply proves vaginal catarth and consecutive swelling. The cases of that kind (that is, withont alsence of hymen) I have seen by the hundred, and you reeall a great many yourself:"

As has been already remarkel, severe lacerations of the genitals are infrequently seen. Abrasions, congestions, sweling, and discharges are what may in the majority of cases be expected. If an abrasion be present, its loention as to the melian line of the lody will give an iden of what position the assuulter was in when the autempt at connection was made. It is sonnctimes maintained that a man conld not commit rape upou a child ; but the fiect is that the size of a man does not necessarily determine the size of his instrument, and we not infrequently meet with men of good size who possess suall iustruments, hardly above the average of those of goox-sized boys. "In a medico-legal point of view," says' Woodman and Tidy's "Forensic Meliene and Toxicology," "such a defence as the size of the penis is worthless, bectunse, althongh the disproportion may prevent complete or perfect iutereonse, it does not prevent the attempt, which is now justly held to be the essence of crime." According to Wharton and Stille's "Medical Juris-

[^204]prudence", while "a finll mul complete comnertion of an malnt male with a child of twelve yous is manifestly impossible, meputed effiots will prowne sumb a dilatation of the parts as to mender it timally paretionble."
 in most enses of rape "pon children semen is either mot rmitted, ore, it it is, it is theown "pon the thighs and ontside of the sulva, mul has been wotimarily washed away befere the examination. In the fwo or three stances

 from pupe by br. Ir. M. Hamlin, of Amburn, New Sork, mal before the Ameriem Aocicty of Micromeppiste, at Chimger, in 1883:
"Having oreasion, last danaly, to examine some semimul sains ou Soth, I somght to avail meself of the expericues of others. I timod that all writess on medial jurisprodene and mieroseoper, indoding such manes as those of Thelor, Beek, Beale, and Frey, to whom I had ready areeses, ather

"It is. Iwielly, as follows. Cut ont the pertion of choth sumperted. Place it in a wath-ghlass with a few drops of distilled water, let it som for a few mimates (ravionsly stated from two to ten), stir it alome with a ghase roxd, and then squecrae out the water with the fingers. This squereing may be done divetly \quad peon the slide or into the watch-glass, whenee a portion may be taken up a perpette ame transferred to a slide.
"Following this phan with a piece of choth known to be staine wilh semen, I oltained such poor results that 1 resolved to try some other mothon. Remembering how tamparent a line linen tabrice apowed on a wertan beasion when I was sturlying its fibre, I resolver to subjeet a portion of her choth itself at one to the mieroseope. 'Taking a smatl piee of the limen and placing it upon a drop of water on a slide, I let it soak for a while, then put on a cover-glass and proceded to examine it. Almost immediately 1 diseovered a mmber of spematoza dinginge to the fiberes of the linen or lying in mases in the meshes. Enconaged by this suceses, I experimented with fabries other than linen. In lighteolored silk the spermatozata were detected quite as easily as in linon. A firm piece of cotton sheeting proved refinetory till I thonght to mamed or fialy ont the conds, when 1 readily found the zoissperms admerent to the detacherd fibres.
" Having experimented with the fabrics commomly used for mudergarments, I turned my attention to colored woollen grords. These were not, of course, sutficiently tramparent to render the above plan practieable: so with a keen scalpel I shaved off a portion of the stained surfaee, which fell in a fine dust upon the slide. This was moistened, and, after soaking awhile, was examinel. The spermatozoa were found even more readily than in the other experiments. . . .
aklo with a ill prowluer answitain, or, if it is, berom ardive st:11.cys ninatiom o: ic mement. ill least cxpert ahls, 1 yrute read befinere
a stains on formend hat such и! me" arrose, alopt hod in $1 \times \mathrm{sin}$. h :all:pereted. ; let it malk about with: is styluremge St, wheme: a
staincel with ther methent. on : a celtain writion of the of the linen a whike, then numbliatdy 1 the linen or experimentitel analuzon were yeting proved nen I readily
(or mandergarWere mol, of able: : so with which lell in aking awhile, adily than in
"I therefire recommend the following procelaren:
"1. If the stuin to be exmmined is "pon any thin cottom, linen, silk, or woollow labric, cut out a piece about one-ceghth ind spuate, la, it upon a slind previonsly moistemed with a drop of water, and let it sonk lor half an bour or so, remewing the water firm time to the as it examonates. Then with a pair of aredles mamed or fiay ont the threals at the corners, f.it on the ghas cover, press it down lirmly, and submit to the mieroseope.
"2. If the labric: is of surd at thickuess or mathe that it camot be examinal as above, fold it thomgh the erntre of the stain, tud with a

 -sily live to tem, - the powdery mass will simk down through the water ami: rest um, the slide. 'Tlo cover-ghliss may mow be pat on, and the preparation examised.
"'The hatter phan serves as well for hairs, bat great cantion mast be aberever in antting them, lest the portions bearing the mapeeted deponit ly away and are lost.
"Whinhever plam be appropriate, it is lest lirst to muisten the slide with a drop of water. In the former case, by laying the choth men the water we get rid most eatily of the air-loublas, and in the latter the water premers the powdery portions citt off from being last, and they are mot rolled to mes side, as when the drop of water is subsempenty appliad.
"Should it be desired to proserve any of these prepanations for prodnetion and examination in comrt, I have fomen that to hold down the coverghas with a spoing-rip, and rom aromed it a cirede of lifuid marine ghe, serves at least a tomporary purpose.
"I pieee of stained maslin lay nearly two months without protection mpon my working-table. I then momed a portion of it in water, as alowe desceibed. It mow, at the and of five monthes, shows the spermatomas as well as ever. For promanent momting I shond sippose the addition of cartulie acicl, chlora I hydrate, or some such preservative would be of serviee. I have not fomb it neessary to nse any dye or any solvent except water. A power of thre 'mmodred diameters is amply sufficient fer these examimations.
"Coneerning the dmability of spermatozna, Ritter asserts that he has discoveren them after a period of fome years. To show bow, when dried, they will bear rough hamdling, I may add that I rolled and twisted between my fingers a staned piece of muslin till it was in the form of a string, monllad and twisted it over again two or three times, using much force, and wats yet able by my method to diseover spermatozoa withont much diflientey.
"I cham for my plan extreme simplicity, ease s, execution, and the greatest degree oi certainty, for piere after piece of the stainel fabric can be put to the test, with the assurance that mothing in the process destroys the spermatozon, and that they may be fome if present."
 is so common, as the resint cither of a serofintoms diathesis, of the irvitittion of worms, or of the presenee of dirt and tith, esperially mone k the very poor, that we can saffly assmme that most eases of ruming at the privates that present themselves to iss are cases of lemeorrhera, miless wo find that the alloged assailant has or has had gomorthan, and that the disedmerge dows not readily succomb to treatment, hat grows more profises, or at leas that the inflammation assuctated with it shows a tomdency to extemb inward. I du not know that there is any evidener of' a diagmostic dillipcome in the dhameter of the disedharge, either as seen be the massisted eye or as viewed through a mieroserope. A severe lenign indammation, ceperially if the pats are mot kept clem, may canse nle mation, mud hood will mingle with the muens and pus, as it sometimes hoes in gomortherat

Siges Dr. Aleximder Rnssell Simpsom, in (2nam's" Dietionary of Modicine," "Inless a dear history of infertion ann be obtained, it is almust impossible to estathish a distinetion betweren a gomortheal discasis amb the simpler catarthal leworrhas. In the firmer there is a motable tomberey to spread to contignous surfaces. In children suffering from the infertimes discharge, buces of the inguries that are usually inflieted at the periond of infection shombl be songht fore."

Berkeley Hill writes, "The distinction between vaginitis firom 'ontagion and vaginitis from nom-sperifie irritation is always diffientr, and sometimes impossible, being mainly determined beollateral evidence. It genemally hats a contagions origin if there is pus in the urethas."

MEDICAL TLSTIMONY.

The medioal witness is ordinarily called upon to testify before a gramd jury, in a police court, where there is sometimes a jury and sometimes mot, or in one of the higher courts, where there is always a jury. In some cates he may have to testily in all three of the phaces. And in these days, whon "intervicwing" is a salient feature in the manarement of many newspapers, he may be called upon to give his opinions to the press. If after aurefind consideration be believes that it is wise so to do, he should write ont what he has to say, or see that the interviewer writes exactly what he wats sad. It is sometimes best to kepp a copy of testimony so given. Otherwise the editor entting down or rearanging "copy" handed in, or the reporter writing alone from memory, may change the drift of an interview.

In the grand-jny room the witness has but to tell what he knows, what he has found, and to answer such questions as may be put to him by the prosecuting or district attorney and any juryman, in as simple, plein, untechical lenguage as he can command. There is no necessity for his being distubed in mind, as he will not be contradicted, and there is no opposing lawyer to attempt to muddle him with hypothetical and intricate questions. But it is necessary that he should have clearly in his mind dates of examination, exactly what he found, and how he arrived at his

> 11 some carses days, whon new: piplers, alter carrotial -ite out what c wamts said. therwise the
the reperter iew.
t he knows, net to him simple, plein, ssity for his there is no and intricate in his mind rived at his
rondusions. His note-hook shond be in his poeken, that it may be produed in cuse an entry is callod for. Plain, mutechnial langrage is mecessury, as the averuge gromb jury is composed largely of phatin men, with only a hair knowlodge of seience and rhetoric. Dessides, there is no time fier thetorical or sesientitie dixplay.

In the conits the withess mast remernber what be testified to Inefare the grand jury. Diserepancies in statements are injurions alike to the repmat time of the withess and to the canse of justies. In both the polier and the higher compts the wimess mast expect ocansionally to hatve to contem with
 their way ilear, by sureasm, bedithement, phasible but sperious guestions, ate., to gain their cond,--the suress of their side. For this masmanomg whers, and bremse an astute bavyer will-line the time being, at lenst-
 have his testiming well digested and be prepared to present it calmly,
 before an intelligent jury, a momber of lawyest, some of them lanmed, and
 Premie stmable amb make such involved statements, so fitl of terhaical
 are surb sights witnessed. A tricky, mgentlemanly lawyer, seremg his "pherthity, harasses the physician with long hypothetional ghestions, which be does not realily grasp, and which he answers almost at hap-hatzard, bemase he is disgnsted on is anxions to get throngh; or questions are put fol him in such a way that if he answers them he is ohliged simply to say "Yes" on "No," white ly sor answering he feeds that he is mot doing as his comsacionee tells him he should, but only as he thinks the law compers him to. 'The rights of the witusss shouhd bre, and generally are, protertes be the presiding judge; hat witursses seldom know that they have the right to appeal to the julge as to whether they shall answer surb and surh questions in the way in which some lawyers insist they shall be answered. In many conrts much latitude is allowed ats to the forms of questions, and some lavyers have come therefore to bolieve that a witmess must always answer as the hanyer intemds that he shall. The trmb is that, if a question camot be truthfully answered "Yes" or "No," it need not be answered, thongh the lawyer insists that it shall bee But it shombly be so answered if it em be done truthfilly.

Agath, the witness mist remember that there is generally ample time for calm, ildiberate answers, and that he has the right to insist that questions shall be repeated or put in such form that he can morlerstand them. Staight forward, honest, well-digested testimony with mo attempt at display has the most weight. Woe to the man who attempts a line of testimony for display or mere notoristy! Expert testimony shonld be given only hy experts,-i.e., persons who have qualified themselves by special study and long expericure in specified departments of medical knowledge and work.

Special stady does not make a specialist of an expert. An honest, wedlgromded opinion from a general practitioner is sometimes of more anal than the opinion of some would-be experts. Declaring one's self' an expert brings with the deelanation an inereased responsibility, an inereased suserptibility to consure, contradiction, and entanglements in lawsuits.

With questions of law-legal name of erime, pmoishment, etco-the medical wituess has nothing to do. It is for him only to tell the trubl about the case as he maderstands it from a medical stand-point, to lave carefinly studied his case, to have made his motes and brought them to court, to testify mostentationsly and quictly, to give mere opinions guarderlly, and to remember his rights ats a witness and his responsibility as a member of an honorable profession. it, to have m to contit,

GRNERAL INTRODUC'TION 'TO THE DIAGNOSIS OR DISEASES OF THE NERVOUS SYS'TEMI.

By MbLaN Mchane hamidTon, M.D.

Is our examination of children we are beset with certain diffienties which make the matter a much more diffienti one than in the adnlt patient, for, with the very yomug especially, we are obliged to rely mainly upon objective symptoms, and are placed in the position, to some extent, of the veterinarian, who is foreed to depend dhefly non his own powers of observation.

In the undeveloped haman being it is of alsolute importance to take into areonut the value of expression, and realize just how much weight to attach to the child's powers of pereeption, comparison, and jurdement, to its caparity for deseription, and to the state of its cmotions and their connection with disturbed sensilility. Young children, like all other young animals, are largely emotional. In the estimation of sensory disturbances, particulaty those of a hyperasthetio natme, there is always great danger of exaggeration upon the part of the patient, and our efforts must be in the direction of lowalization and consistener of manifestation, rather than of degree; and for the appreciation of the latter we are to regard their general effect, and bring to our aid the average of previons experiences.

The diseases with dominant expression are, of course, oljeetive, and are nsually conspienons enongh whether the symptoms be convolsions or lesser hyprekineses, or paralyses with or withont contractures. During very carly life it is often diffecult to make any diagusis whatever of conditions which are to become chronic and comspicuons at a later perioxl, and it is a fact with which we are impressed every day, that an intelligent history of the devel-
"pment of many nevoms disasase of childern is mot to be dhatend from
 trophie paralysis or infantik paralysis ofter camot be detemineal aremathe, if' at all. 'The exluation of parents in regared to the development of their progeng is lamenathe deficient, and they take liftle pains to gauge or come pare the develomment of tamentes in their own habies with those of other chideren, a certain kind of cleverness or apteness dwarting all clse.

Where objeetive appeazanes are those which alone guide the meliseal
 tion of the patient, be its movements, and hy the involmentry expressinns
 I mase spak of the perentiar retraction of the hend which is so dhatedere istic of cerebro-spinal meningitis, or the fixation of the lendy which is an almost constant arempmiment of disease of the spinal envelopes or hat vertehae themselves. Who is mot familiar with the lateral rolling of the

 ease the mature of which camot be casily asertaimed throngh any subigetive (complaints.
'The hereditary mature of eertain disturbanes has rome to twe wedt
 and in diagnesis the vahe of such an origin will be apparent. 'There alde there forms of disease which are comspienons in this comection. Ond af them is premde-hepertrophie paralysis, and in many instanes there are at least two it mot more eases in the same tamily, the female side being that on whid the disease hats been tramsitted. This is Bramwell's experienes, and that, I think, of other writers. In hereditary locomotor ataxia this influener, thongh more, is devidedly more conspichons. Care mports in owe fimily that there were eighteen cesses of the disemse in there gempattions. In this commetion we should never lose sight of the existeme of sephilis, tuberenlosis, and cencer in the family history, and their haming upon diagnosis.

ORANIAL PECVLIAEITIES,

There are many peonliarities in the appanance of the head presented hy yomge children who may later develop evidenees of cerebral disemse; and at a subsequent periend, when they are expected to perform certain ordiary ations common to children in genemal, there will be found a loss of finution, or, move exactly speaking, a mon-development of finction, whid suggests some corresponding almormality in the fomation or growth of the bain. The extermal emanal eonformation of such ehikeren is gentally striking: there is a deeided dispropertion between the size of the head and that of the bocly. Sometimes, as the result of ventricular effinsion, or an exossive prov-enephalie collection of flum, we find a hydrocephalic anlargement, with pulsating or depressed fontamels; or, as an indiention of various cerebal structual defects or deposits, there may result asymmet-
aineld firun Indo-ly ! nerawnumely, ent of their nge or "wnuase of "thluer ly the primexprowims As examples. (i) chamasterwhich is: Topes or ine olling of the tions of if :urly olvature dis. ny sulty.wive

- to l_{10} well whe whervils,

Thluet all" ion. (One off Hewe itre it being that on Q: ©xpriculue, in :tiaxi:a lhis ré repurts in three genery(xistence of their husuring
presentel ing discasce ; muld tain orliunty loss of fitur1, which suryrowth of the is gennerally the heand aul hinsion, or an oecphailic cnindication of ilt asymunct
rimal definmities. These latter, however, as a rulde, are indieative of some
 the lesenu in cuses of hemiplegia spastiens intiantilis.

Certain yomug children, whose ouly defeet seems to be a pagechical one,

 natial development of teeth. These subjeets are often marasmic, weak, or ravititic and ordimarily tie with limhs flexed, developing an amome of intolligence which is shown only in the simplest acts which coneren their appritios. "They look listlessly cut mpon a blank world" (Down). In these it is not musual to find some assoneiated congenital deffiets, such as sulphementary toces or fingers, wehbing, or mavi. Sind didhen are irritable, or else abmormally gowd-matured, slopping most of the time, or at times they perfirm antomatie movements of a rhythmicel variety. It is advisable to take very aecmate measurements, with lead wire, of the formation of the head and the size of the houly.

SENSOEY DISTITRBANCES.

Points of Determination.-'Pactile, analgesic, anasthetie, heperasthetie, parasthetic, disombery, or subjective delayed pereeptions; sensibility to heot and cold (determinerl by test-tubes fillerl with water at diflerent tempatareses). Loeation; in departures from nomal intervity; appreciation of exerted power and its aljustment (musenlar sensibility) ; appreciation of weights le means of the barasthesiometer, the notehed whed, paper and metallie halls, ete. 'The posture of limbs, as in tabes; inharmonions relation between vismal impressions and certan masendar actions; Duchemess test, excossive imervation and over-supply of fore for acomplishment of required act. Existence of delasions or hallucinations; moral changes; videner ; destructive tendencies ; perioklicity ; depression ; exaltation ; onesided peculiarities; cestasy; stupor; apatly ; sexual perversion; morbid appetite. Ophthalmoscopic examination ; light tests ; tuning-fork and wateh tests ; tests fir anosmia.
l'an.--'The greatest diffienlty that we have to encomerer in children is the cstimatiom of pain, for not only are they apt to exaggerate, but they are mable to loeate or deseribe their discomfort in a way that is at all satistactory or convineing. West and other writers have expressed themselves very foreibly with regarl to the significance of pain in the very young.
" In grown persons," says West, " there is a large class of ailments which consist of simple pain; they eall the disorder nemalyia,-nerve-pain,-and mean thereby that such pain is independent of loeal disense: it is probneed by the influence of malaria, it follows on loss of blood, or is associated with varions altered states of the circulating fluid, or in other eases it is impossible to determine the exact canse to which it is due. Diffienties of its enre render it one of the opprobria of medicine, but it does not tend in any way to shorten life, and our patients at last find a sort of dreary satisVol. 1 V .-29
faction in the knowladge that the malady which renders existence so hitter is yet ont! nemralgin. In intancy und childhoon, however, pain refiered to my part significs, ulmost without exception, that disense of some sont ar other is going on there or near at hand. The tears so profinely sheot do not prove that pain is the lot of the infant more than the grown persinn; but at one time enies are the onle, as they long continne the most express.
langriage. Honger, slerplessumss, fitigue, discomfort of any sort, is con pressed hy cries; while the character of the ary goes far towards helping us to determine the nature of the suffering. But I have never in infand known any instances of pain-sesere, obstinate, recomrent-for which, sooner or later, a distinet lowal couse was not fomd ; and even in later childhood the rarity of real nomadria is extreme." The cry of the child who suffers firom pain due to organic cerebmi disense is short and pioming.

In the determination of sensory disturbanes much care must be shown in the exhibition of tests, for it is impossible to gain from most chihdren anything more than a guess when the asthesiometer is applied in the manmer directed by text-hooks generally. It is mush better to cmploy what I may call the direction test, which implies the existenee not only of tactile sensibility, but also of a more complex cerebial appreciation of direction and distance. Atter the patient's cyes are blindfolded and his fears are quieted, the finger of the observer may be passed upwayd or downamd or transversely in different situations, the patient being reguired to deseribe the direction of the passage of the finger and the side of the boty upou which contact has heen made. It should be determined first whether capacity exists for pereeiving impressions at all, the lowation, the sensibility to temperature, or to painfill irritation, or to weight.

Pain referred to the heod, and lasting any time, may be looked nown as a serious indication of organie disease of the brain, and Marshall Hall and many of the carefin writers of the early part of this century have shown how important it is to recognize the existence of such pain, acompanied by frequent and cunseless vomiting, as a pathognomonic symptom of tulercular meningitis. But, in fact, this symptom connected with delirinm and coma is an indication of many of the coarse cerebral discases of infimey.

Neumbie pain is rare in infancy, or at lenst montil after the sixth year, when headaches of a migrainons type are found commonly among overworked sehool-children, or as a sequel to some nalarial or typhoidal fever, Trigeminal nemalgia is more common in girls, and is often associated with eczema. It is saffe to assmme, however, that severe head-pain in young children is an alarming symptom, especially if the pulse is irregnlar and fechle. The headache is usually general, or it may be confined to the frontal region. Intense headache, with associated photophohia, sensory hyperesthesia, and constipation, is, as a rule, highly characteristic of meningitis.

The variety of headache of a lighter grade which appears in children after the third or fourth year is, to all intents and purposes, a hemicrania.
cure so hitter in relerered to some: sort or asely shel dos rown persin; st exprowis. ; wort, is riso vards helping cer in inlaney t-for which, even in hater ; of the child and piercing. anst be shown most dhildren al in the manmpley what I only of tartile an of dierection 1 his lears are or downward ired to deseribe the booly upon first whether the semsibility
looked shall Hall aud ry have shown n, accompanial ptom of tulerin delirium and of intimer. the sixth year, - among overyphoidal fever. ussociated with main in young irregnlar aud onfined to the holvia, sensory aracteristic of
rs in children a hemicrania.

It is developerd by fitigue or madne struia at a time when the brain is attaining its marly development, and is aggravated by errors in dist and mangement. It is associatel with gostric irritation, namsen, and loss of appetite, and usmally begins in the morning. In many resperes it resembles the ordinary sick-hemache of the adult.

There are other forms of charateristio pain which rapine motice: the most important of these is that referred hy the child to the knee, and which most often indientes some affection of the hip-joint whiel hater develops itself. 'This !encerpain is sometimes very severe and intermittent, and the real disense is apt to be masked for a coasidemate time.

Coertain pains of a lesser grade orvasionally attract our attention, and anomg these I may mention the temderness at the ellow mod wrist-joint in rertain cases of chorea which are not rhemmatic and seem to bear no dose connection with the movements. Neuritis, which is so common in the adult, is a rare disense in moly life, although within the last year I have had two cace in young children where the pain was acerately logalized, and in one, of idiopathie nature, there was double extensor paralysis of the forcarms as a result. It is rare to find my of the ordimery forms of nemalgie pain of the trmek or extremities, though the rontributors to Gerlarelt mention a varicty of cases, and prabllels are fombl for almost every kind met with in adult life. Bouchat reports a case of cervico-brachial nomalyia in a girl of one year. Intercostal nemalgia, especially of the twelfth dorsal nerve, is orcasionally encomenterd, and heed shonld be paid to the confinsion of this nemrosis with actual pulmonary or spinal disease, Eulenlmorg reporting no fewer than twenty-nine cases in children. Boln reports a case of humboanral nemalgia with zoster. The nemralgias of the lower extremities are most ohscure, and, as as rule, are symptomatic ol morbus coxarius or nemomimesis.

Disturbanems of Heaming, exept in their association, are not worthy of extended comment. Where a collection of acente cerebral symptoms depends upon aural disease, of conse the necessity for making complete tests of the condition of the anditory apparatus will he seen at once.

There is a form of epilepsy which originates in otitis, and in which the attacks are always excited by irritation of the meatus or deeper parts. In such cases, not only should the aural disorder be investigated, but it is well to determine the degree of pisychical disturbance which is commonly a feature of the condition. The acuteness of hearing shonld be estimated. In meningitis it is very decided, and is associated with various hyperresthesia. In certain conditions of feeble-mindedness it is dull, or there may be absolute deafness. In the latter case there is often diminished sense of taste aud smell.

Disturbances of Vision are rarely fully recognized until the child attains an age when it can communicate its loss. Certain idiots are blind from birth, and thoir eyes do not follow bright objeets moved before them, or there is no disconfort produced by bright lights suddenly brought in
fromt of the pyes. In such gases there will be inactivity of the pupils. In other cases the blinducss may be simply paychicnl. The developmont of tubereulons or other bran thoors is very frefuently symptomatizal by blinduess, and ophthahoscopic exanimation reveals optic-nerve degrenemtion.

THE DSYCHOSES.

Almost all the mental disenses of molut life may le dophliented in childhood. In making this assertion we of rouse exclude the dogememative atthetions atcompanied by coarse destruction. Eimminghans, in his sumio rable volume, deseribes the varions forms of melancholia, mania, paramia, acote demedia, trasitory, perionlical, and cimolar, as well as moral insanities, while no fewer than cleven pares are devoted to the hystrimal disorders of childhood. Forblemindedness as the result of inloey and imberity is quite fimiliar, and is perhaps the most common form of infimtile intellectual disturbance.
'The diagnosis ot insanity is hai hess casy in childhomed than in adult life, and the olserver is verypt to confise the normal motional and moral disturbuner, which is simply considered as vicionsness, with something murh more grave. Among very young childeren it is a matter of considerable diflieulty to diseover the existence of delasions or hallucimations; in fact, hallucinations are far less common during the earlier yeme of life than at a sulnequent period. 'The mania of childhood is ravely contimoms, but during its existence is symptomatized by great violence, by destructive tendencins, and oceasionatly ty attempts at suicide, although the latter are more chanacteristic of molancindia. It is well to estimate properly the chamacter of eretain acts of purposeless cruelty which often symptomatize the moral perversion which is comencetel with the varions grades of mental disturbance. Some insme children, even thongh their surromdings be of the best kind, are very apt to intlict meedless pain upon thase about them, to torture amimals, afterwards manifesting no remorse. Or oxcasionally amoner epileptics wr find what may be regarded as a promania, though a pure spirit of mischiof is the manal explamation. It is well to question these suljects dosely, for it will often be fomm that they possess a fair amome of intel.
' viger, and that they are quite at a loss to explain their impulses or
d tendencies. Instances of introspective insanity, especiadly at the se of puberty, are ly no means uncommon, and occasionally forms of folie du doute are reported. Langlon Down speaks of a child whose mental peenliarity consisted in the fact that as he passed a dirty leggarman in the street he was afterwards afraid to go near his mother for fear of contaminating her, and he could not be persuaded to touch her at all. The melancholia of childhood is very apt to be symptomatized by religions delusions, and rarely by delusions of persecution and conspiracy ; and this is notably true at puberty.

In our examination of patients with pubescent insanity, we are to observe the existence of a possible morbid vanity and boastfulness, perhaps
the pupils. evelopment matizal hy gencration.
ed in childlogenerative It his admiia, parmииа, s moral int e liysteriand - idlocy and form of in-
in adult life, d moral discthing mash derahle dillifact, hallucion at a sulnenut during its molencies, and re chanamerter of wertnin al perversion ance. Sume est kind, are ture animals, epileptics we -pirit of mislese subjects nunt of intelimpulses or cially at the lly forms of child whose !irty hergarer for far of at all. The by religions cy ; and this
, we are to ness, perhaps
momected with a certnin hypochombrinsis and state of self-acensation. We are to distinguish insanity from hysterin, which latter differs but little from that of adult life, though the convolsive variety is rare. We are to determine the existence of the latter by the exhibition of certain tests, such as the sugrestion of punishment, or an mpeal to the appetite of the sub)jeet; mat in this comertion I may speak of an instame of hysterical dysphagia which had lasted for several months and which was readily cured by the ofler of' a piece of plum-make. 'The exhibition of :he cantery or some surh revilsive will often make the diagnosis perfectly eleme. In these eases we minst detert, if possible, the existence of hyprevesthesia or of nervons nuorexia, and analye the nervons derangements © respiration which may he present. Sometimes there is a motive for deception; and this should be detented if possible.

The intellectual comblition of feeble-minderl children is one of great inte st. It is very often irregrolar and ome-sided, there being perhaps a sity ions brighthess and extreme development of some faentios, while others are correspomblingly dull. Certain feeble-minded children have the power of improvisation, are fond of music, and show mare llons proficiency in aridmetic; intricate calenlations are prefomed in an incerelibly short spare of time, and some subjects o." this kind can maltiply three fignes by three ligures as soon as written uron paper. In other ways they possess little judgment, are often regardless of the loss of friends, though ordinarily affertionate, are sly and very mischievous, and possess deficient morals. Some of them make little musenar exertion, and even when the time comes for them to walk they do not do so. There is usmally a hypersecretion of saliva, so that they drool at the month. They examine objects presented to them in a pecenlar way, reminding one of monkeye, and it is a common trick for them to feed the shape and mature of oljects by the ronerne (Down).

There is a rare form of infantile dementia of an acinte chatacter which should not be comfused with congenitan conditions of feeble-mindedness. The child, usually a femate, is overtaxed during development, and prosents a train of symptoms begiming in the debility which follows comvalescence from acnte disease, of on typhoid or satulatima, and ending in amentia. There are outbursts of fury, mental confusion, loss of memory and comprohension, and sthpid silence. Cataleptic rigidity, anomalies of cirentation, lowered temperature, salivation, and vacancy of expression oceur at some time or other.

MOTOR DISTURBANCES.

Points of Determination.-The estimation of the degree of loss of power, -whether paresis or complete paralysis, whether the paralysis is idio-muscular or of central origin (to be determined ly electricity) ; the association of atrophy with parnlysis; the loss of special muscular function, or associated losses; the course of a progressive paralysis; the determination of retrogression ; the mensuraizn of lost power (by means of the dyamometer, which is unreliable, and of value only in comparison); the appreciation
of the course of spasm, whether local or general ; fibrillary (idio-muscular can be evoked by slapping muscles), systematie spasm ; the determination of incourdination, as seen in the gait or in the movements of the upper cxtremities (can be tested by making the patient perform acts of precision, or those requiring neat localization). Paradoxiend movements ; chin, wrist, abdominal, cremasterie (in boys after puberty) reflexes, knee-jerk, ankleclomis; whether reflexes are inereased, absent, or transferred.

The methots for aseertaining the conaisin $r f$ the reflexes differ in mo way from those employed in adult life. It is always best to suspend the legs over the edge of a table or chair when the knee-ierk is to be proluced, and in this position we may also determine the condition of the reflex in the tendo Achillis. (Fig. 1.) The child should be placed well on the table,

Fia. 1.

so that there may be no general shock given to the thigh. The ankle-clonas may be evoked in the mamer depieted in the eut. Sudden and foreible pressure should he made. Sometimes when the foot is first extended the subsequent flexion will give rise to the elonie spasms mueh more quickly.

ELECTRICAL DIAGNOSIS.

For diagnostic purposes the inedical man shonld be provided with a galvanic battery of at lea it thirty cells, and an induction apparatus. Pole-cords for either, composed of fine copper wire, are to be selected, in preference to the ordinary woven tinsel conductors usually supplied with the chaper instruments. In addition to these, suitable electrodes (Fig. 2), one of which at least is to be provided with a key for opening and closing the current, will meet every need. It has been my custom for several years to use as simple an apparatus as possible, and I have therefore disearded the
lio-muscular etermination he upper exof precision, ; chin, wrist, -jerk, ankle-
s differ in no , suspend the be produced, the reflex in on the table,
ankle-clonus and forcible extended the pre quickly.
ed with a gall-Pole-corls preference to the cheaper f. 2), one of 1 closing the veral years to discarcled the
claborate "table-hoards" supplied with useless switehes and interrupting aparains, and I now employ for diagnostic purposes the galvanic battery and water theostat and a galvanometer (that of Gaiffe being
pertaps the best), while the simple milliamperemeter of Barrett of New York ments every indication, thongh the figures are somewhat diffienlt to read. The milliampèremoter is placel within the cirenit, and we are cnabled to real exactly the amome of resistance,-a much rore exact methor than the old one of calculation, in which the numher of reells used was taken into consideration. The uncertainty of the old way can be readily imagined when we appreciate the fact that the electro-motive forces of no two cells or kiuds of cell in use are exactly the same. The absolute measurement by the milliamperemeter is always fixed, no matter what the soure of power may be.

In electrical diagnosis we are to estimate the quantitative reactions as well as the qualitative; and I refer my readers to any of the modern treatises upon electro-therapentics for more extendel information. ${ }^{1}$ We are to find the condition of sensibility to both galvanic and indnced carrents, and to detect hyperesthesia or anesthesia; but the dhief value of this agent in diagnosis is in the detection of impared tone of nerves or the existence of muscular degencration, to fix the degree of such changes and to trace their origin, and to detect the first indiation of a return to the nomal state. Then, too, the important question is determined whether a degenerative condition be a periphemal or an idio-muscular one, or whether it is due to a suspension or abolition of nerve-supply, or whether the distal muscular disorder is dependent upon some cerebral or spinal disease. These matters in special articles will be minutely gone into, and I may preface their disenssion by a brief reference to the behavior of museles when subjected to galvanic stimulatim, at the risk of reiterating doetrines which may be considerel trite.

In testing the integrity of a musele, we are to olserve the character and kind of contraction which follows the oprening or closure of the current, which places it in the condition of "catelectrotonos" or "anelectrotonos," the terms referring to the state of contraction while influenced by the cathole or anode. A variety of abbreviations have come

Fig. 2.
 into use for the purpose of working out formule of muscular contraction, which are as follows: $\mathrm{Ka}=$ eathode, $\mathrm{An}=$ anode, S

[^205](or Cl) $=$ " closing," $\mathrm{O}=$ " opening," $\mathrm{Te}=$ tetanic contraction, $Z=$ con. traction, $Z^{\prime \prime}=\mathbf{a}$ stronger contraction, $\mathrm{z}=\mathrm{a}$ weak contraction. The catho. dal pole prodners in the normal state the most vigorous contraction in closure of the cirenit, whilst the reverse is true of the anode. Most authors name three grades of excitability which is the result of a stimulation of motor nerves.
"In the first grade the weakest enrrent which will cause a contration is a cathodal closing contraction, KaSZ (Kil, cathode; S, Schliessung, closure; Z, Zucking, contraction), and no contraction can be effected by the anode. In the intermatiate grede the eurrent is one in which the cathode causes stronger contraction on closure, but no contraction on opening, KaSZ', whilst the anode causes slight contractions both on opening and closing, $A n S z$ and $\mathrm{AnOz}_{\mathrm{z}}$. In the highest grade the comrent is one that canses a tetanic contraction on cathodal closing, and a feeble cathoral opening contraction, KaSTe, KaO\%, whilst on amodal opening and closing decided contractions oecur, $\mathrm{AnO}_{\mathrm{n}} \mathrm{O}, \mathrm{AnS}_{2}$.
"Such are the normal formula to be obtained from nerves aceessible for galvanie excitation. The same are troe of the muscle, for, as has ahready been stated, the museular contraction is the same whether the stimulation be direet or indirect. It is evident that the reactions to galvanie stimulation are largely affected by the current strength, and, as the formulie are constant for the different degrees of excitation, we are provided with an exact methol." ${ }^{1}$

No such rules govern us in regard to the exeitability of the muscle to faradie stimulation. Its importance consists only in its presence or ahsenee and in its relation to the state of galvanic excitability, and this may be studied to advantage in those interesting conditions in which the "reaction of degeneration" is found. It is well to keep acemate notes, and perhaps charts which indicate the condition of the muscles at various times.

Many of the paralyses of adult life oceur in the child, althongh the pathological cansation is, of comrse, different. Infintile hemiplegia, which is often due to mechanical pressure and generally to rupture of one of the meningeal arteries, is less rave than that prodnced by a lesion of the deper cerebral substance, which is ustally of slow appearance and dependent apen tumor. Such paralyses oceur before birth, or even afterwards, and are those which result in generai asymmetry, even thongh the muscular power be restored to a great extent in adult life. The hemiplegias are nemrly ahwas comected with rigidity and increased irritability of the reflexes,-in other words, they are spastie,-and if they be of very carly origin there is almost sure to be some deformity. Of Gowers's eighty cases it was more common in girls, and in three-fifths of all the cases the onset was during the first

[^206]$\mathrm{n}, \mathrm{Z}=\mathrm{con}$ The catho. ntraction in Iust authors mulation of contraltion Schliessumg, effected by n which the ion on uplenon opcuing urrent is one chle cathotal ; and closing
aceessible for is has alrealy re stimulation :anie stimulaformulie are ided with an
the musicle to hee or ahsenve this may be the "reartion , and perhaps times.
although the iplegi:1, which of one of the of the deeper pendent ipon and are those lar power be nearly ahways ves,-in other here is almost more common ring the first
in Bartholow's
two years of life. There is another form of hemiplegia which is quite apt to be associated with ehorea and which may be of embolic origin. This is rarely seen before the seventh year, and is by no means always a serions or long-lived affair, especially if there be no large central lesion.

In very young children paraphergia is something uncommon, if we exeept the variety deseribed by Erband known as spastic spinal paralysis, in which, added to the loss of power, there are adduction of the lower extremities, and more or less genemal spasm and voluntary movements. In such cases the reflexes are exaggenated, the sensibility is normal, and the child has ordimary control over his bowels and badder.

Such a thing as ordinary transverse myelitis, exerpt from injury or the compression resulting from Pott's disease, is comparatively rare, althotigh
sometimes meet with it as a sequel of some of the fevers; it hardly eser orems as an idiopathic condition.

Undonbtedly the greatest mumber of infantile affertions of an akinetie nature are those of polio-myelitis acuta, and we find this clearly shown ly the books of public institutions and dispensaries. Such patients may present evidenees of paresis and atrophy, the retrogressive history of the former being aseertainable from the parents. The atrophy is often extreme, and, if the cass be at all confirmed, there will be an entire absence of electrical reactions. In these the knee-jerk is, as a rule, absent, and in this respeet the diagnosis may be made from certain monoplegrias or limited pareses of cerebral origin.

The diagnosis of wasting diseases from true infantile paralysis should not be diffienlt, because of the absence of paralysis, the suseeptibility to dectrical stimulation, and the general character of the atrophy, in the former.

Psendo-hypertrophic paralysis of course presents the deformity so well known, in association with atrophy of parts once invaded, and by absence of the reflexes, while sensation is conserved. Here the ehief paresis is seen in the quadriceps and the muscles of the back. Progressive musenlar atrophy, so far as I know, is a disease monnown in childhood (except certain rare hereditary forms), and we may exclude this from consideration. The peripheral paralyses of childhood, thongh common, are ordinarily of different cansation from those of adult life. They are usually the result of presure, cither from violence exhibited during delivery, or from injuries. Among these may be mentioned paralysis of the deltoid, or of the museles of the upper extremity supplied especially by the musculo-spiral nerve. There are cases in which the dislocation of the humerus as a result of violence during delivery may give rise to nerve-pressure and a resulting loss of power which is often very intractable. Paralysis of the lower extremity from corresponding causes is quite rare.

For the diagnosis of infantile paralyses of all kinds, we may avail ourselves of the same valuable agent that is of so much use in disorders of motility in the adult,-uamely, electricity ; but its employment is a much
more difficult matter, especially in very young children, whose struggles and crics seriously interfere with any careful observations. It is well to have all preparations made before the apparatus is shown, and to be cu the alert to watch the primary effect of electrical stimulation before the sulject has actually experienced the pain of an application, and it is much better for some assistant to hold the child than for the mother or the friends to do so. The museles should always be loculized if possible, and one of the

Fia. 3.

electrodes should have a small end, so that the enrrent may be coneentrated as muel as possible. (Fig. 3.) With older children the examination is a matter of less difficulty.

Too much importance cannot be attached to a carefnl consideration of a!! the slight actions of the child, and sometimes it manifests its weakness unconscionsly. It is well to take monlds of musenlar contour, not only for the purpose of diagnosis, but also to record the possible improvement that may follow treatment; fine lead wires may be applied to both sides and adjusted, and on their removal traces may be taken, which should be preserved for future reference. By this means museular flatuess and wasting are shown very beautifully. The length and amount of contracture of the extremities should be determined by accurate mensuration ; the existence of atrophy and fibrillary contractions should be carefully noted, and in estimating the cause of contractures and joint-enlargements the possibility of their being hysterical should be taken into consideration,-for I am con-
se struggles t is well to to be cal the e the subject much better fiends to do one of the

- concentratel mination is a
asideration of its weakness , not only for ovement that ,th sides aund tould be preand wasting acture of the existence of and in estipossihility of for I am conl-
vincel that hysteria is much more common in children than is generally supposed.

In connection with akinesis it is always important to examine the reflexes, and it may be said that these are generally more active in children than in adults: to elicit proper responses we must provide ourselves with instruments of greater delicacy than those used for older persons. A small heavily-weighted percussion-hammer is to be preferred to one that is likely to jar the entire limb. (Fig. 4.) Ankle-clonus in children is perlaps of more importance than the increased kneejerk. In acute polio-myelitis and pseudo-hypertrophic paralysis the reflexes are ordinarily lost, while in most of the other pareses they are increased. This is notably so in spastic spinal paralysis and the unsystematized forms, as well as lysteria. In connection with the akineses of the deuteropathic kind we usually observe very conspicuous eireulatory dis-

Fig. 5.

Brissaud's Apparatus for Registering the KNeb-JERK.-A, fan-shaped board; B, ratchet-cateh holding arm; C, percussion-hammer; D, electrical communication with myographium; E, trigger. orders manifested in lowering of surface temperature and mottling which is increased by exposure to the air.

The instrument of Brissaud (Fig. 5) enables the observer to measure aceurately the foree and the time of the knec-jerk, and the rate of transmission of the motor impulse. It consists of a fan-shaped board having at its inverted apex a spring with electrical communication with an electrical stylus and myographinm. The spring superiorly terminates in a rod capped by a hammer. This rod can be detained at different points of a quadrant with ratchet notches, and may be released at the will of the operator by pressure upon a trigger. The force of the blow is indicated in pounds, and depends upon the tension of the spring. At the precise moment at which the blow is struck upon the patellar tendon the electric ellrent is closed.

Disturbances of co-ordination are rare in children's diseases, exeppt where they exist as a symptom of hereditary ataxia, or with cerelallar disease. The same rules that apply to the examination of adults may be followed here, for such tests rarely apply to subjectivity. Great aure should be taken in distinguishing certain bad hahits of movement from the actual loss of muscular sense or of co-ordination proper. The deffetive co-ordination in children of feeble mind is not, as a rule, due to any other defeet thar "lat of a purely mental mature. 'There are cases, however, of' disseminater selerosis in which in addition to the motor disturbances there is scaming speech.

Conditions of exalted motility, such as spasm and comvolsions, are ruther diflienlt of diagnosis, and especially the latter. The excitability of the young child, and its impressionability to all forms of peripheral excitement, make it liable during the carly years of its life to convolsive and spasmodie seizures, which may le temporary, or may continue for some time, finally becoming epileptic. The duration of the tomic stage of infautile convulsions is a strong chameteristic, and there is, as a role, very little opportmity to lowalize in very early life the situation of the cerebral lesion. In those cases where the irritation of dentition or gastric disorder is the exciting canse, we find that the convolsions are repated, and bear a eretain relationship) to the intensity and duration of the peripheral disorder, hut dinically there is very little that is distinctive. The surface is usinally pale, the prpils are dilated, and the musenlar convulsions mather marked. It is important to distinguish the convulsions which are ordinarily desig. mated as eclamptic from those which are symptomatic of true organic disease of the brain. The former are often easily explaned by the cessation of the morbid condition after the removal of the canse. The profond disorders of carly ehikhoorl, when such great demands are made, implics an unstable condition of the gray matter, with discharges upon the slightest provocation, and when the general constitutional condition is lowered in any way, or there is an unnsual tax upon innervation, we find that a common expression of such demand is an epileptic paroxysm.

It is well to determine the connection of riekets, that familiar condition manifested by imperfect bony development. Gowers, in speaking of the connection of rickets with convulsions in children, says, "The essential element in riekets is defective development ; the perversion of development that oceurs (e.g., in the bones) is secondary to, and consequent on, its defect. At the time at which this constitutional state chicfly oecurs, structural development of the nervous system is complete. But it is probable that functional capacity is only fully developed after structural perfection, and the parts last developed may suffer from the general delay in development more than those parts that have been longer perfect aud longer in full use. . . . It is certain that in rickets there is excessive activity of the centres of the brain and cord on which reflex spasm and convulsion depend. It is probable that the morbid tendeney is exalted by eerelcillar dults may Great cilre at from the e defertive bay other owever, of ances there
ilsioms, are dtability of cral excite--ulsive and r some time, of infantile , very little elmal lesion. order is the car a certain lisorder, hut e is usinally her markicul. narily desig. organic dishe cessation he profound ade, implies the slightest ; lowered in find that a
ar ecomlition lking of the the essential of developisequent on, iefly oecints, t it is probuctural permeral delay perfect aud is excessive spasm and s exalted by
an inherited neurotic disposition. We must exeept those forms of exlampsia that oceur between the sixth and eighteenth months of life."
(iowers nud others do mot attuch as mach importance to irritation of the first dentition per ae ats to the rachitice state itself. It is modombedly true that in a debilitated child any peripheral irritation, such ats that produred by the presence of intestinal worms or of indigestible ford, may be alowe sulficieי to give rise to a temporary form of echampia.

We find that in children, especially those in the matrasmie state, where there is excessive cerebral maemia, convolsions may he prohlued.

It is important, as I have said, to make the distinction between these lighter grades of tronble and the cpileptoid state when it owre its cunsation to some organie disease of the buin. In the latter instance the diagnosis may be positively made when the convolsions are milateral, or when they are connected with other evidences of destruction of the nervons tissue, such at patysis or paschima derangement. There are, lowever, a large mumber of cases of extensive brain-disease in which there is no evidence of me-sideal seizure. There is, at first, more or less regularity in the oceurrence of the fits, and after a time they arquire the periorlical chanacter of gremine epilepsy. In such cases it is well to make an ophthalmoseopic examination for the purpose of determining the possible existence of fundal lesions, and we should never neglect to ascertain, if possible, the existence of stars or other evidences of head-injury and the family history of predisposing conditions. Sometimes traces of congenital syphilis may be found which will make the accuracy of the diagnosis almost a certainty.

While tremor is almost monnown in early life, we find certain irregular jactatory movements which symptomatize the discase known as chorea, which is correspondingly rare in adult life. It is unnecessary to refer in detail to the diagnostic points of this most common of diseases. It behowses us to study the association of such movements with rhemmatism aul curdiae disturbances, the possible existence of overwork and malnutrition, and the climatic influences, bearing in mind that the disease makes its appearance in the spring, as a rule, and that it is not unusual for several relapses to occur. We must take into account the possible existenee of an associated weakness of the right half of the body, which, however, must not be confomed with a genuine hemiplegia of cerebral origin.

For the estimation of tremor and its graphie registration I have devised an instrument which is useful as a clinical myographium. (Fig. 6.) The india-rubber bulb is held in the hand, or a corresponding elastic apparatus is applied to other parts. By compression of the air in a Marey tambour, even the most delieate movements are registered on a piece of paper which passes before a stylus.

The condition known as post-hemiplegic chorea is rather a disease of adult life, and the movements are finer, and in their clinical character more approach tremor than choren proper.

Infiutile tetanns, or tetanus neonatorum, must he differentiated from eclamptic conditions, which it resembles, though conscionsness is preserved.

The Author's Dinamoghapit, $-A$, rubber ball; B, tube connecting with tambour; C, tambour; D, regtstering siylus; E, barrels carrying paper; F, box containlig clock-work; G, paper with second. marklugs.

We must also recognize the climatic influences, and bear in mind that it is essentially a disease of very carly life.

SPEECII-DISTURBANCES.

The speech-disturhances of childhood are of three kinds,-the clutie, which comprises the purely psychic disorders ; the paralytic or ataxic, which originates in the disorder of the motor centres or co-ordinating apparatus; and the dyslalic (stuttering).

Aphasia in yomg children is a rare affection, and of course little or no suceess will follow our attempts to diagnose such conditions as alexia, for instance, unless the child be well on in years. The psychical difficulties are much more likely to be those dependent upon some mental deficieney, and are expressed in paraphrasia and echolalia, or a tardiness in interpreting symbols and applying them. We must bear in mind, in examination of these cases, that, unlike the adult aphasias, they occur with imperfect or limited development of faculty, and it is therefore impossible to apply the same diagnostic rules that we use in cases of adult speech-disturbance of cortical origin. is preserved.

bour; C, tambour; paper wilh second-
mind that it is
s,-the alulie, - ataxic, which og apparatus;
se little or no as alcxia, for cal difficutties tal deficiency, in interpreting xamination of imperfect or e to apply the listurbance of

We should be careful to distinguish true cerebral defects from those which are the result of vicions truining, where foolish mothers encourage their young children in the use of baby synonymes,-a habit which is sonetimes kept up for several years. I have seen a child who was paraded before prophe and made to go through its performane of talking in a " language" it had formed, which was to all intents and purposes a genuine paraphrasia. This child had bees encouraged to formulate a hybrid means of commoniention with another of the same fimily, and the new tongue was used for their little confidenors, and in fact so constantly that it was several years before the child cond learn to speak grammatical English. A remarkable case of this kind was reported some yeurs ago by the late Dr. Edward Ilum, of Alhany.

In cases of troe cerebral speceh-defiet we may sometimes find an associated peenliarity in handwriting, which was first pointed out by Ireland and others, and which has been deseribed by the German writers under the mame of spiegelschrift, or mirror-writing. I have met with two or three examples of this, in which the child not only invariably wrote backward, but made drawings reversing the relations of objects.

The ataxie disturbanees of speech may be found as a result of selerosis which sometimes follows scarlet fever, or in comection with aggravated chorea. In the latter ease it is not imeommon to detect some explosive articulation, and possibly the disturbance of phonation which has been accomed for by laryngeal chorea.

A variety of specel-embarrassments which come under the head of paralalia (stammering) or dyslatia (stuttering) depend not only upon mechanical but often also upon mental defects. It is well to determine whether there be eleft palate, pharyngeal or nasal disease, enlargement of the tonsils, or an abbreviated firenum which gives rise to tongue-tie. The common forms are the following: lalling, where r is substituted for the consonant sounds ; lambdacismus, where there is an inability to pronounce l; rhinismus, which gives rise to nasal intonation and is dependent upon some obstruction ; rhotacismus, where the letter r is imperfectly pronouneed, and, as Potter has pointed out, the use of the guttural r,-the former being produced by the vibration of the uvula, the passage being obstructed by the approximation of the back of the tongue to the soft palate, the latter by the vibration of the tip of the tongue against the hard palate; stigmatismus (lisping); gammacismus, where t and d are used instead of k and g, etc.

The importance of recognizing the condition of the organs in these familiar defects of speech cannot be over-estimated. Sometimes the tongue is hypertrophied in connection with other appearances suggestive of idiocy or cretinism. Again, we shall find paralysis of this member attended by difficulty of protrusion, or there may be some irregular or imperfect muscular contraction interfering with phonation which is the result of diphtheritic paralysis or some more obseure disorder.

The existence of motism may depend "pon absolate deafiness, "pon
 upon montal deffertes. Acrording th Downs, thirty-six per cent, of fedhe minded children are dumb, thisty per weme apeak indistinetly, and mot more than twonty-eright per cent. aponk thenty.

Visuat and audtroby depeets.

'The same dinguostie moles which gevern us in mblalt dases hohd pound with those muder comsiderntion. Wor are to remember, hewerer, that in
 of the cyedall, whidh has mo romedion with eentrol disernse, and it is always thest to wait in a case of longre chronicity motil the child ntaine mu nge when
 sible, the particular symptom before we can atted my importunce to its presence or assariation. A recent ase which fill muder my observation is an illustrution of this. A child of two years presented a paralysis of the "pper extremity which had been pronemened by one plysicimen to be of ewntral origin. After two rarefal examimations I ame to the conclasion lhat it was a gemine peripheral paralysis due to pressure and inginy remivel at its birth. Six monthes atter this diagosis the child presented an internal strabismos of the right eye, which somewhot staggered my boliof, and I promptly sent it to an oenlist, who considered it to be an extmererthal defect, but combedled the use of ghasses at a subserpuent periox. 'The paralssis of the doltoid and upprearm moseles disappeared in time, and the syuint was emed be property-applied prisms.

The existence of hypermetropin is so common in curly life, and son ofon assigney as a cause of nervous disense of various kinds, hant we must always make allowame for its presence. 'The pupils of chideren, so far as my exporience goes, are perhaps much more ative than those of the adult, and eme ditions which give rise to irritation of the sympathetie fibres with conserpuent dilatation are mond more common than the reverse. In hydrocephalas, as a rule, we find at first pmpillary dihatation, and alterwards contraction; and in the hydrocephatoid disense, and, in fact, in all other diseases of an anamic mature, there is dilatation and very sluggish respouse.

In certain spimel diseases of children, among which is the mate ane hereditary ataxia, there is a loss of the pupillary reflex to light. Disturt)ances at the fimdus are, as a rule, very pronounced and easily distinguished.

The carefil diagnostician can hardly overlook the condition of the pelvic organs. The incontinence of mine occurring in convulsive disemses, as well as in the psychical disorder known as "night-terrors," and the actual mechanical and local interfereuce with fuuction in spinal disease, are equally worthy of recognition.
(finess, пи" encribual, or t. of firwho ad bot mare

* holid thoul cere, Hant in wome masider lit is nhways tuI nge when aling, if miso atume tw its loservation is mlysis oll the to loe of and melusion that ry reciowl at al an internal beliel', mul I cextra-cerdmal prival. The in time, and
, and so oflen a must always Ir as my (xpros dult, and (molsthe comserquent rocephinhas, as traction; nud of an :niemic
the rare one ht. Disturbdistinguished.
dition of the lsive dismuses, rrs," and the al disense, are

 must la cardilly determinal. Thermal changes in ertain chemie ppimal
 must ant be distregurded. We may natil onvelvers of the sperial thermom-

FIm. 7.

Siguln's thernmmeter.

Fil. H .

Steward's surface thermonacter.
heing in casily-adjusted and thoromghy satisfactory instrmment. It is neressary to make frepurnt examinations in a place free from dranghts, nud to leave the themmeter in rontact with the surface at least fiftern minutes.

Trophie disturlances of the skim, bulle, bed-sores, glossy skin, pigmentary depusits, ce\%ma, pmpma, homes, acme, changes in the mails and hair, dhyoudal (onlargements or atrophy, mucin deposits, true musenlar atrophy, cornal changes or weeration, must all be looked for in certain cases, and are olten as important as more dominant conditions.

[^207]
HYDR0CEPHALUS:

DROPSY OF THE BRAIN, WATER ON THE BRAIN.

By Francis 'T. Miles, M.d.

The essential feature of hydrocephalus is an abnormal aeemmatation of serous thuid within the cranial cavity. The location of the flnid may varr, It may ocen between the dura mater and the arachoid, the so-ealled aradnoid space, or fill the meshes of the pia mater extermal to the brain (external hydrocephalns), or oecupy the ventricular cavity, or be found in beth these latter localities at the same time. The effision may result from varions canses. It may accompany eoarse disease of the bain (tumons, ete.), In atrophy of the brain it fills the space left vacant by the diminished volume of that organ, constituting the hydrocephalus ex vacuo. It wewrs in enfeebled conditions of the system where there is arterial anomia of the brain with venous congestion (the hydrocephaloids of Marshall Hall), and inded wherever there is venons congestion of the brain from some impediment to the return of the blood, as in meehanical obstruction.

Again, intracranial effision is found in conditions of the system which favor dropsical acemmutions in other parts of the body, as after semulet fever. Aud lastly, and most frequently (and these are the cases that most coneern us at present), it is the result of inflammation of the pia mater and of the choroid plexis. In fact, whatever brings about intravascular pressure for a certain time may canse an intracranial effusion of serons fluid, although it seems necessary to assume in addition to such pressure some change in structure in the walls of the blool-vessels, since, from the numerons cases of cerebral hyperemia that ocenr withont effusion, we camot look upon that factor as alone capable of producing it. As to how much a erippling of the normal power of absorption may conduce to the accumulation of the effused fluid, we know little or nothing.

It will be well for us now to consider what are the conditions in childhood which allow effusion from the intracranial ressels to take place so much more readily than in adult life. In the first place, we see that the cerchral eireulation in young children takes place under cireumstances favorable to the distention of the vessels muder increased blood-pressure. Before the 466
fintunels are closed it is obvions that they, by yideling mbler pressure, furnish a ready moms for the increase of the intracranal space, and thos there is failure of comuter-pressure and suppe t to the distemed vessels, ullowing afirther stretching of their walls. And even atter the chosure of the fontancls, the cranial bones of children, with their atetive motritive changes eonsepurnt upon rapid growth, yich readily to pressure from within, so that they with comparative mpidity adapt themselves, ly inereased superficial extent, to the demand of the cramial contents for greater space. We may suppose also that the more sucenlent bain-substance of children allows of a realy alsorption of its fluids before the advancing pressure of the distending blowd-vessels, thus yielding them less support than in the adult briun. But probahly the most potent factors in protucing effinsion within the cranial cavity of the child are the giant thimess and disiensibitity of the vessels of the brain, and the readiness with which their structure becomes altered under abormal bood-pressure. Moreover, when we consider the rapid development of the infant brain, we must suppose that there is a normal condition of the walls of its vessels permitting a correspondingly abundant transulation of the fluid parts of the blood. The fact, however, remains that effusion in abmormal amomat takes place with great readiness from the vessels of the child's bain. It ocems probably more frequently than is generally supposed, but the more active alsorption that goes on at that period of life restores the equilibrium before it is fully recognized.

It is nesal to distinguish two forms of hydrocephalus, -acute and chronic.

ACUTE HYDROCEPHALUS: LEPTO-MENINGITIS INFANTUM.

Aente non-tuberenlar hydrocephalus is the result of an inflammatory condition of the pia mater ruming a more or less acute course, and terminating in effinsion into the ventricles. We do not here, as in tubercular meningitis, have a specifie exciting cause of the inflammation.

Meningitis, or, indecd, arterial hyperemia however cansed, if it contime a sufficient time, may terminate in such ventricular effusion, although it may le impossible to distinguish the moment when simple over-distention of the ressels assumes the conditions of an inllammation with abnormal effinsion. As has been ahrealy said, we camot suppose that simple active hyperemia, the rapid passage of healthy bood through heathy vessels, even under high pressure, can cause an effusion which distends the ventrides, nor can it account for the failure of absorption which allows the fluid to remain there. We must assume some strnctural alteration in the vascular walls produced by an inflammatory process, whieh allows the fluid part of the blood to pass throngh them with abnermal facility while at the same time the process of absorption is erippled. The stoppage of the com-
munications between the fourth ventricle and the subarachoid space by lymph may assist in preventing the escape of fluid from the ventriches.

Lepto-meningitis giving rise to ventricular effusion ocemrs most frequently in children between the ages of one and five years. It is frequently seen in connection with febrile states (eruptive fevers, puemmenia, bronchitis) or with depressed conditions of the system, as alter exhansting diarrhoak or whoping-cough, or when the system is reduced by defective mutrition, as in teething. In fact, any depression of the general health and strength conduces to it. Thus it is more common among the ill-couditionel and imperfectly-nomished children of the poor. It is obvious, moreover, that a lepto-meningitis may be the result of the extension of a neighturing inflammation, as is so often seen in meningitis following otitis interna.

The invasion of lepto-meningitis is generally abrout. If the child is not suffering from sone general disease, there may be only feverishness and a general disturhance of the health. On the other hand, there may loe restlessness, symptoms of pain in the load, vomiting, wakefuluess, or, again, slugg:shness,-in fact, the symptoms generally attributed to cerrbral hyperamia. These brain-symptoms may disappar after a short time, and after an interval again return, to recede again, or finally to merge into the condition of pronomed lepto-meningitis; or a sudden convulsion me. usher in an attack of the disease.

The symptoms of lepto-meningitis are those of acute cerebral hyperiemia, -restlessucs, especially showing itself in measy movements of the haul, which is rolled from side to side, slepplessness, irritability, fretting, which shows itself in facial expression, heababe, comphaned of in older children, corrugated brows, avoidance of bright light with a grimace. A flush confined to one cheek is often seen. Vomiting is a frequent symptom, and it is sometimes very persistent. The bowels, as a rule, are constipated. The pupils are genemuly contracted, and there may be oceasional strabismus, which must not be confonnded with the occasional crossing of the eyes seen in very young infants. The pulse, in my experience, is, as a rule, stower than natumb, though this may alternate with a pulse of great mapitity. The Cheyne-Stokes respiration is very frequently seon, and, when marked, is a very significunt symptom that the brain is implicated. At first the foatand may be felt to pulsate strongly ; at a later stage it is protuberant, and myieding to pressure to a marked degree, but the pulsation has disappeared. l'ressure upon it now causes maney movements in the little patient, thongh lying in a state of coma. A stiflines and tremor of one on more of the limbs is often marked, and is an important symptom, ats indicating intracranial pressme. This stiffoess may implicate the musedes of the spine and neck. As the vontricular effision inereases and more preswmre is made upon the hemispheres, we may have edametie conva'sions supervening. In one of these the child may die. In the advancenl stage of the disease we may bring out the tache meningitique, which is done by drawing the finger-mail, the point of a pencil, or other blunt instrument, tricles. most frefrequently mia, bromsting diarctive nutrihealth and conditioned , moreover, acichboring Iterna. he rhild is -ishuness and re may be fuluciss, or, ted to coreshort time, merge into vulsion ma-*
hyperemia, of the head, tting, which ler children, A flush conptom, and it pated. The strabismus, he ayes seen rule, slower at rapidity. ren marked, At first the jrotubemat, on has disin the little or of one or ptom, ats in-- muschers of more !usecouva'sions cimerd stage is done by instrument,
over the surface of the skin, the track of the instrument being immeliately mankel by a ral line, resulting from the altered activity of the vaso-motor centres permitting an abommal dilatation of the minate arteries. A state of comat and insemsibility gradually eomes on, and the child lies quiet, with only onasional movenents of the face or limbs, wheh seem indications of pain, but are most probably merely retlex actions. This condition may contine for a long time, and there is often an appeatuee of improvement, wind is very deceptive. This mitigation of symptoms probably results from the absorption of the interstitial thad of the cerebral substance, thas temporarily relieving the ravens elements from pressure, \quad, in commonlyusat terms, the brain acommolates itsolf to the pressure. And it may be that when the general intmematal pressure attains a certain degrer the dfinsion into the ventricles is for a time restraned. Tha efrision into the ventrides, however, continnes, and the final picture is that of profond insensibility, with a more antomatio continnance of the movements of respiation and the heart-beat. The face is placid and devoid of expression; the limbs are genemally flaceid, though sometimes rigid or contrated, often exhibiting great emaciation. 'The temperatore of the surface and of the extremities keeps up until near the end, as does the strength of the pulse. At the last the leart begins to fail, and gradnally ceases to beat. Ater the disease is established, and even after effusion into the ventricles has taken place, there may be an arest of its progress towards a fatal termination, and recovery or chonie hydrocephalas may result. In many (ases of reeovery it wonld seem that the fluid in the vontricles is never wholly absorbed, giving an matmal entargement to the cranium in alterlife.

The disease is very variahle in dnmation, sometimes ending in a few days, and sometimes lasting for wecks, thas approaching the ehronic condition. It is very important that the diagosis he mate between simple lepto-meningitis and tuberenlar meningitis, in view of the more fivomble prognsis in the former disease. It is, however, diffent, and often is imposible. A earefal investigation into the family history must be instituted, and a close examination of the patient, with the view of asertaining if tubnerulons deposits exist in any organ of the body. The more or less prolonged prodromal symptoms often seen in tuberenlar meningitis will give us an important elne to that disease, when they exist.

Pathological Anatomy.-The post-mortem ippearanes found in lepte-meningitis are, with the exeeption of the execes of flaid in the ventricles, somewhat negative. Evidence of the high degree of arterial hyperdemia which exists during life we do not fiod. This randts partly from the rompresion of the $\mathrm{n}^{*:}$ and its membranes against the eramial walls, cansea. by the tension of the finid in the ventrieles, which obstructs the entrance of the blom into the minnte vessels during the last moments of life, when the failing heart ean no longer impel it with foree, and partly beanse this tension exists after death (as is shown by the foree with which the fluid spirts
out of an opening made into the ventricles) and presses the blood ont of the small vessels, leaving the bom blanched and apparently bloodless.

It is maintained by some that the post-mortem elastic pressure exerted upon the blood-vessels is contributed to by the absorption into the brain-substance after death of the fluid which, according to Hitzig, exists during life between the dura mater and pia mater, and thas the post-mortem volme of the brain is inereased. While the vessels of the pia mater of the convexity of the brain present little or no indication of previous hyperemia, those of the choroid plexus in the lateral ventricles are engorged, and sometimes present punctiform hemorrhages, evidences of their great distention during life, and of the prominent part they take in the production of the eflusim. As a rule, neither upon the surface of the hemispheres nor on the piat of the base is there any evidence to the maked eye of pus, only the microserpe shows that along the course of the vessels upon their borders in the perivasentar space there is an acemmation of lencocytes that have made their way through the vascular walls. Sometimes the appearances are more indicative of the formation of pus. The fluid in the ventricles is alhminoms, and rendered turbid to a greater or less degree by the lencoevtes and puscorpuseles it contains. The convolutions on the convexity of the hemispheres are flattened by the pressure from within, the sulei are narrowed and linear. The brain-substance is pale, and less succulent than normal. The rest of the body presents nothing noteworthy except the emaciation, whidh, if the disease has been long continned, may be very great, and is, in fict, somewhat characteristic of this affection.

Treatment.-In lepto-meningitis it is donbtful how far any treatment can be considered purative, but, inasimel as a certain number of (elses recover partially or completely, we should do all in our power to alleviate symptoms and place the patient in the best attitude, so to speak, to sustan the assaults of the discase. The great and well-known sympathy hetween the gastro-intestimal and the cerebral circulation inelines us to expeet some resnlt from acting on the former, and, in fact, benefit does seen to be derived from pretty freely opening the bowels in the early stage of the discase, and from relieving the obstinate constipation during its prouress. For this purpose calomel appears to be one of the best drugs; but its continnance "in broken doses," with the view of obtaining its constitutional effects, I must deprecate ats useless and tending to depress and weaken the patient. Iodide of potassium and iodide of sodium are remedies in constant use, and much relied on by some. To obtain any good effects from the iodides, they must be given in large and increasing doses, the amonnt to be limited only when they canse some disturbance of the stomach or of the system gemerally.

Local bloodletting, as by lecehes to the mastoid pronesses or wet eups to the back of the neek, if resorted to in the onset of the disease atfords relief to the symptoms of hyperemia, although it is diffieult to explain its attion, which is probably throngh the vaso-motor nerves. Cold applied
lood out of rodless.
;ure exerted a brain-sulba during life 11 volume of e convexity ia, those of 1 somutimes ation during the effision. the $p^{\text {pia }}$ of microserope in the perimade their we more inalbuminoıs, es and pussf the lemiarrowed and minal. The tion, which, 1 is, in fict,
iv treatment ber of culses to alleviate k, to sustain thy between expect some seem to be stage of the its prougress. lont its conmstitutional woak in the in constant ts from the moment to be har of the
or wet eups case affords explain its old applied
continnonsly to the head by means of the ice-lag has long received the sanction of most practitioners, and is always demanded by the laity. In many cuses it is demanded of us to do something to calm the restlessness of the little patient, to ward off convulsions, or to mitigate their severity. Here I believe we have the most potent agents in the bromides and in hydrate of chloral. The bromides, moreover, probably tend to modify favorably the intracranial hyperemia. They may be freely exhibited, eare being taken to watch for the condition of bromism, which, if it is indneed by the drug, may be confounded with the eerebral symptoms cansed by the disease. Chlonal used as a rectal injection is an excellent means for restraining convulsive attacks. In spite of the prejudice ainst the use of opiates in supposed congestion of the brain, there is no doubt of the advantage to be derived from them as a means of quieting great restlessness. A very importaut remedy is the warm bath fiequently repeated while cold is applied to the head.

From derivatives, as blisters behind the cars, crotom oil, ete., I have ohserved little or no advantage, while they almost eertainly amoy and irritate the patient. Shaving the head and painting it with tincture of iodine, as is sometimes done, is as worthless as it is revoltingly disfiguring.

CHRONIC HYDROCEPHALUS.

Chronic hydrocephalus is the gradual acemmation of scrous fluid within the craninm, sometimes ocenpying the space between the dura mater and pia mater (the so-ealled arachnoid (avity), sometimes the meshes of the pia mater (the so-called arachnoid space), but most frequently the cavities of the latenal ventricles, in which latter case it produces the most eharacteristic symptoms,-viz., enlargement of the heal, alteration of the visage, ete. When the effused fluid is in the space between the dura mater and pia mater, or in the meshes of the pia mater, it is designated external hydrocephalus; when it is in the ventricles, it is called internal hydroecphatus. These forms may be combined, and the fluid be present between the dura mater and brain and also in the ventricles.

In the great majority of cases of chronic hydrocephalns, especially those resulting from ventricular effusion, the head is greatly increased in size, and shows abnormal conditions of the eramial bones and of the sutures. The hydrocephatis: fluid may be identical with the cerebro-spinal fluid, or it may be turbid and contain allmmen, sometimes to a high percentage. The presence of albumen beyond a very small amome farmishes the presumption that the effusion is the result of or accompanied with inflammatory artion.

Fixternal Hydrocephalus may exist before birth (eongenital), and, by inerasing the size of the head, sometimes interferes with the delivery
of the child. The enlargement of the head may go on after birth, but only exceptionally does it attain the dimensions commonly seen in internal hydrocephalns. In a few cases the effusion after reaching a certain amomen has remained stationary, and the individual has lived to adult arge.

It is difficult to reach a conclusion as to the causes of congenital external hydrocephatus in all cases. Sometimes it appears to be the sequel of an internal hydrocephalus, the fluid of which has broken through the walls of the distended ventricles into the subdural space. In such cases the bain, as would lee expected, is fombl compressed and atrophied at the base of the cranium. Sometmes there is defective development of the brain, and fluid is foumb both within the ventricles and in the subdural space. Again, uases are recorded of a simple effinsion in the subdural space, in which the brain was but moderately atrophied. It camot be decided at present whether such cases are the result or not of an inflammation. External hydrocephalns ocenrs in dhildren sometimes as the resint of enfeebling diseases, as diarrhear, rickets, congenital syphilis (:?), ete. The amoment of fluid in these cases is small, and its oceurrence may be looked upon rather as a symptom of the general discase.

Another form of external hydrocephalus is much more frequent and its etiology better understood. It is the result of an inflammation of the dura mater, a pachymeningitis. As a result of the pachymeningitis, there is formed a sac of false membrane which is filled with fluid, sometimes serons, sometimes showing evidence of the inflammation which hats areonpanied its formation. In these cases, although the heal does not attain the size usial in internal hydrocephalns, it presents the same general conditions. The sutures are widened, there is transpareney of the eranial walls and fluetuation, and it is diflicult, if not impossible, in some cases to make the diagnosis between it and internal hydrocephalus.

The form of external hydrocephalus which consists in the accumulation of fluid in the meshes of the pia mater demands but passing mention here. It is almost always a passive effusion filling up the space left by the shronken brain,-a hydrocephalus ex vacuo. There is no sufficient evidence that an acemmulation of serons fluid in the meshes of the pia mater ever causes injurions compression of the brain-substance.

Cimonic Interval Iydrocephalus.-Aecmmation of serons fluid in the ventricles is the form of hydrocephalus most commonly recognized. It may be congenital or aequired, the congenital form embracing the langer number of cases of hydrocephalus. The effusion may have advanced so far at the time of birth as to impede delivery and necessitate its cvacnation, or, although a certain amonnt of thuid is present, the heal may be of uormal dimensions After birth the accemmataion goes on with varying degrees of rapidity in the first weeks or months of the child's life, and it may be so gradual as to render it impossible to say of a particulur case whether the hydrocephalus is congenital or acquired.

Cases of internal hydrocephaus may be divided, according to their causa-
,irth, but in intera certain dult age cuital exsequed of the walls the brain, ase of the and lluid sian, crases the hasin it whe ther ydroecthiscasss, as id in these symptom
cut and its If the dura s, there is sometines mas aremomattain the conditions, s and fluemake the
munulation ntion here. fit loy the It evidunce mater ever
crous fluid ccegnized. the harger vanced so vacnation, of normal yg degrees may be so hectlier the
heir causs-
tion, iuto those in which there is simple acemmulation of the cerebro-spinal fluid in the ventricles withont inflammatory action, and those in which the eflision is the result of an inflammation of the equadyma of the ventricles and of the choroid plexuses. In these latter cases the acenmulated flomid may iudiate the inflammatory proeess to which it owes its origin, by a turbidity caused by the admixture of pus or blood, or, although the fluid is clear, by the inervesised amonat of albmmen it contains.

It is often impossible during the life of the patient to deride in which caturgy the case must be placed, and even a post-mortem may not enable us to decile, since the disease may have a non-inflammatory begiming, but an inflamation may supervene which leaves more or less obvions traces. In cases of the first category (nom-inflammatory) the canse of the accommation is fimmed most frequently in an abormally diminished resistance of the cramal walls caused by malnutrition and imperfect development of the bones of the craninm. Under these conditions the blood-pressure within the ressels, not being sufficiently counteracted by comuter-pressure from contignons parts, we may conceive, canses an abnormal diffinsion or filtration of the fluid part of the blood through the vaseular walls. This will take phace most realily at the choroid plexases of the lateral ventricles, where it is supposed the blook-pressure can act to most alvantage in the numerons convoluted vessels of those borlies. A fter the effinsion has begnn, esery additional extension of the cranial walls serves to thin and weaken them and renter them less able to resist the inereasing acemmulation of the duid within; in other words, the cranial walls, from an aboormal comdition, yick before the pressure whieh normally they are capable of sustaining. Uuder these conditions, if an additional intravasenlar strain is bronght to bear upon the vessels, it is casy to see that effasion throngh their walls is readily and largely increased. Thus, in cases where the eranal bones present this aboormal condition of their untrition, the comvolsive expiratory dflorts of whoping-cough, chronic brouchitis, or. other lung-affections, whith hionder the free retum of bloos from the brain, exercise a marked effert in increasing the hedrocephatie effusion. Here, as in aente hydrocephalus, the part that may be played by eriphled and imperfeet absorption camot but suggest itself.

The disense which most frequently gives rise to what we may call the hydrocephalie conditions, which in fact may be considered the cause of hydrocephalus in many cases, is rachitis. We see in the head of the rachitie infant, with its prominent froutal and parietal protuberances and memre visage, a strong resemblance to the hydrocephatic head, and it would sem that there may be sometimes a gradual merging, as it were, of the rachitic head into the hydrocephalic, without a shap line of demareation, the result of a gradual non-inflammatory acemmuation of fluid in the ventricles. It is thought probable by some authors that the syphilitie taint may be the canse of nom-inflammatory hydrocephalus, by injuriously affecting the osseous development and mutrition.

The second category-viz., dhomie intermal hydrocephalus of intlanmatory origin-inchudes cases both cougenital and acquired. As hats bexu alrealy said, it is extremely diflicult to distinguish cases of chronic hadion cephalus which have an intlammatory origin from those which have mot, and practically it is of little importance to do sor. In congenital cases whin are the resollt of inflammatory action it is met easy to give an adoplute exciting canse for the inflammation. Some of the acyuirey cases, howeres, may be plamly traced to an acnte lepto-meningitis which subsided leaving alterations which result in chronie internal hadrocephaltes. Again, we see eases where the inflammation takes the daronie form from the beghang.

Pathological Anatomy.- The most obvious peint in the pathelngical matony of hydrocephalas is the alomemal enlargement of the hand, which is the consergenee of the acemmation of thad in the lateral ventrides, Only very exceptionally are hydrocephalie beads fomm smatler than momal, The size may reach emormons dimensions: cases in which the ciremuferene reacherl fifty-two inches, and more, have been reverded. While the bunces at the base of the cmanm are gencrally less developed than nomal, thase constituting its vant and sides are greatly inereased in suporictial cestent, and thimed, as it were stretched, to the extent of becoming diaphanoms, yidding like parchment to pressure of the tanger, or presenting mosififed spaces within their ciremaference. Sometimes the flat bones of the eranimen are mate up of osseons islets comected together by mombrane. Oisi triguetra are often developed. As a rave oremrenes, bowever, the bows of the enkarged hydroephatie head are greatly thiekened. The fintands and sutures are widely opened, cansing the bones of the eramial vanle to spreal ont firom the base,-as Tronssem has expressed it, like the leaves of a flower. In cases of chromie hydrocephathe of inflammatory origin the pia mater at the base of the bain is often thickened and oparghe, and the chomod plexnses show changes indientive of inflammatory action. The ependyma of the lateral ventricles, which in cases of hydrocephalus from defective resistance of the eramial walls is momal and transprent, in these inflammatory eases is thickened and gramular, and may somotimes be stripped ofl in shreds. The hemispheres exhibit great alterations, while the cerchellom, pons, and medulla oblomgata are very randy affected, and are protected by the tentorimm eerebelli from compression by the distended hemispheres. The lateral ventriches may be disturbed to a prodigious degree, their walls being thimed in proportion, so that we have the substanere of the hemispheres represented only he a thin layer of mervols matter prossed against the vanlt and sides of the emanim, white the hasal ganglia and perluncles are flattenal out by the compression. The walls of the ventrieles may be redneed to one-twelth or one-twenty-fifth of an indl, or "no thicker than paper" (Dickinson), the convolutions and sulci being almost or quite obliterated, and sometimes it is impossible to distinguish the gray from the white matter. Such conditions must obvionsly protuce strnctural changes in the nerve-substance, but of these we know little. The
is of inillalluAs là havel| onic hydroIh have but, (atises which :an : inleyputate (N, lownery, ides laving gaill, wise "gimuing. pathow, giaisl howl, which 1 ventrictes. (hailu nurymal. ircimemerne ile the luates cormal, thase ficiall extent, diaplamms, ug monsifired the eraniuln manc. Osa re, the howns Cor fontands aial vault to ke the leaves atory origin "рияин", anl netion. The phalus: from rent, in these metimes be tions, while atfected, and he distemdel proxligions we the sillof nerverns iile the hasal The walls of? of an inch, sulci being , distinguish asly produce little. The

Sybian aquedurt may be widened and the hydrocephatic thind fomed also in the distended forth ventricle. The blindmess so often sem is the effect of pressime upon the optic tracts, ansing destructive danges in them, and white
 development of the bain, as absence of the fimix mod compos callosmm.
lantial hydrocephalus-viz., when the exeress of fluid is comtined to one hateral ventricle, or even to one horn of the ventriche-is the resalt of lamal inflammatory action, and need not be considered howe.

The hydrocephalie fluid varies, of course, with the size of the heal, but also in proportion to the amome of compression and rethetion in volume the bain hats mulergome. It may anome to many pints. It is sometimes dear :and limpid, sometimes furbid, und sometimes it may be seen obvionsly tw contain pas or to be timged by extravasated blowl. In the clear fluid of hedrowphalus from deficient resistance of the eamial walls (nom-inllammatory hydroephalas) there is finmed mo more albumen than in the cerelarospinal innid, which, in fact, it exautly resombles, but in those cases where intlammation has cansed the cfinsion, or where an inflammation has supervered upon an miginally nom-inflammatory asse, the sperific gravity of the fluid is increaseal, and albumen is present in greater or less quantity. Hugumin says that if it is present in a greater proportion than two and a half per cent, it indieates an inflammatory action.

Symptoms.-The symptoms of ordinary chronic hydroephalas stand in immediate and obvions relation to its pathological anatomy, ass the conlarger hand, the shrunken fiace, the staring eves, the ceremal oppression and incompentere, and the nervons disorlers. The heal may rath such dimensions that it can no longer be sinjourted by the museles of the noek, and, as has been said, the body appears but an appendage to it. The distended fintands and sutures together form an onen membranons space between the cramial bones, that may reads between the separated hatves of the fromal bones to the root of the nose. Perenssion of the head clicits the sensation of fluctution, and the thimed emmial walls and brain may allow a certain degree of transhuence, as in hydrowle. The huge almost hairless had, marked with distended blue veins, eontrasted with the small withered face, presents a striking and chameteristic pioture. The head is often covered with a profise swat. The orbital plates, depressed ly the effision downwarl to an obtuse angle with the borly of the frontal bone, so alter the pmition of the eyes that the selerotic is uncovered above, while the iris and pupil are half hidden by the lower lid, giving a ghastly stare from muder the high arehed eyebrows.

This pasition of the eyes is considered by some as pathognomonic of ventrivalar elfusion in contradistinction to external hydrocephalns or cerebral hepertrophy, these latter conditions, it is believed, not cansing the abmormal position of the orbital plates upor which the oenlar phenomena depend. In some cases there is strabismus or nystagmus. Alterations in the fundus oculi have often been observed, and blinduess or impairment of vision is
common. It is obvious from the pathologieal matomy of the discase that vision may be impared in two ways, either by dired pressure on the cutic tracts, or by the distention which the cortex mudergoes impairing the finntional activity of the visual centres. 'This will aceomet for the fact that the altemations of the fundus are not always sufficient to accoment fin the impairment of vision existing.

That the other special senses should be interfered with is most natural to suppose, and has been observed, but such investigations are exeredingy difficult in children. Hydrocephalie children are, with few exceptions, feeble-minded in varions degrees, even to complete idioes: This we would matmally expect from the stress of the disease being upon the hrain, and it is, of comse, in proportion to the damage the hemispheres have sumanod that the intelleet suffers. It is at the same time remarkable how tolerant the gray matter is of the distention and displacement, and how it contumes to fimetion even imperfectly under such altered conditions and impaired mutrition. In exeppional cases, where there las been an arrest of the disease, or where it has progressed very slonty, the brain may continue to develop, and the intellert, keeping pace, attain the avemge capacity. Cases have been recorded of even exceptional hrightuess.

The development of the borly is retarded and imperfect ; the limbs are small, wanting the flmmpiess and clastic tension of infancy, sometimes deformed. Not unfrequently there is tremor, with stiffuess, or contraction, of one or more of the limbs, or rigidity of the neck and spine. I'amalysis more or less extensive, monoplegia, hemiphegia, or paraplegia are not mor commonly anong the symptoms. Cousilsions, sometimes partial, sometimes general, frequently orens. The little patients often cat voracionsly, althongh the digestion may be weak and voniting frequent. In many cases of ehronic hydrocephalns, when the observer's car is applied to the head of the patient a somen or mumme synchronons with the ventricular systole, and of a blowing, cooing chavacter, may be hoard. Several explanations of it, none completely satisfactory, have been given. It would appear to be distinctive of chronic hydrocephalns, ats opposed to colses of acute hydrocephalus with rapide effision, and tension in the ventricles.

Prognosis.-The prognosis in chronic hydrocephalus is most untavorable, especially when it is congenital, the chidi in such cases genemally dying within the first few weeks after birth. Life may be prolongel, however, for months or cears, while the disease gradually progresses, the hend inereasing in size, the senses beoming more and more impaired, the incourdimation of movement and paralysis more marked, the convolsions more frequent, until death, somotimes suddenly oceuring from an acute exacerhation of the disease, closes the seene. Cases, however, oceur in which the effusion of fluid is arrested (by some process which we do not understand) suddenly or gradually, and the patient may attain adult age or even, as has been recorderl, old age. In some of these cases of arrest of the diseatse the thinning of the cranial bones gives place to great thickening from an ab-
lisease that a the intic ; the fimee fiact that unt for the
most mathral excerdingly exerptions, s we would miin, and it e surtained ow tolleant it contimues d impaired rest of the continus to sity. Cas's
re limbs are , sometimes contraction,

Pamalysis are not muatial, some voraciomsly,

In many plied to the ventricolar real (xplat

It would to casces of tricles.
bst unfavorerally dying r, howeser, he lual inhe incoürdilsions more cute exarern which the understand) even, as has distase the from :an ab-
normal osseous deposit. (ases have been recorderl in which after closure of the sutures and fontancls a remewed development of the disense, probably of an inflammatory nature, has cunsed them to open again. Sometimes natare serms to make a conservative effort, as it were, and the fluid brenks its way externally throngh the orbit, the ear, or in most anses the nose. Some of these evacuations of the fluid have resulted in a rure. With the arrest of the effinsion, however, we must not expect neerssarily a fiurther development of the brain, which may be more or less permanently damaged by the preending condition. The lange majority of hydrocephalies are idiotic, or exhint hut a childish intelligence, the few exceptions being those who rean an average mental rapacity.

Diagnosis.-The firm and size of the head of rachitic children at birth sometimes bear such a resemblane io the hydroceplatic hend as to make a mistake in diagnosis possible. In those cases of hydroepplatus where the hand is nomal in size, the effised fluid having made place for itself at the exprose of the brain, we have nothing but the symptoms on the part of the mervons system to guide us, and the diagnosis will be more or less diflicult. Where there is markel onlargement of the head, the omly affection with which hydrocephalus can be confounded is diflise hypertrophy of the hain,-a very rave condition. Here, if the fontanels are open, fluctuation and a certain mobility of the cranial hones, or, with more certanty, cramial transhecener, will be the distinguishing symptoms of hydrocephalus.

Treatment. - Wre cannot fed hopefinl of the result of treatment in hadrocephalus. Intermal remedies have been tried, with the view of promuting the absonption of the fluid, or of evacuating it by the emmetories of the bolly. Purgatives and diuretios of varions kinds have been tried in vain, and ionline, iodide of potassium, and the merentials, all have failed to restore the disturbed balance betwen eflision and absorption, or to influence favomble the diseased combition of the ventricular ependyma and choroid plesuses, on which the disease depends. Surgical aid has been called in with somewhat better sucees. It has been attempted to resist by mechanical compression the enlargemont of the cranimm, and so repress the effusiom and promote absoption. The menns employed is the carefal and mothodi(al appliation of strips of adhesive phaster over the eutire eranimm, cantion being exercised lest the skin become excoriatel, on, as has sometimes happened, gangrenons. It must be remembered that this treatment increases, at least at first, that compression of the brain which causes some of the worst symptoms of the disease, and again that there is a difference in tolerating it on the part of different patients. Althongh there has been great difference of 'ppinion in estimating the result of this treatment, it must be admitted that many eases of improvement and some of eure have been recorded.

Evacnation of the fluid by means of puncture with the trocar or with the aspirator throngh the fontanel has been resorted to, but the fluid rapidly reacenmulates, even though external compression has been applied after the operation to the collapsed cranium. The more feasible plan seems to
be to evacuate by repeated punctures small quantities of the fluid at a time, compression being carcfinly and comtinomsly applied to the head. In some cases tincture of iodine has been ingeeted into the distended ventringhar cavities; but the results do not amomage ns to repeat the prowhlure. The remarkable toldane by the bain of such treatment is probathy due to the thickened and altered condition of the ventricular ependyma, and its shuggish absorption. If cases of external hydrocephalus man be distinguished, they will from their nature present the most favorable opportunities for such injections.

Upon the whole, in the great majority of 'ases of chronic hydroceplablas, strict attention to the rules of health and diet, with the administration of cod-liver oil, and tonies when they are indiated, exhansts omr resorres, and sometimes these mons effect much more than might have been a priont expretere.

1 ut :l time, hoad. In d ventriniprocesture. obably due ma, and its Ine distinle ofprotu-

Irocephalus, istration of 1rescoures, cen " prioni

CERREBRAL Palsiles and suppurative MENINGITIS.

By Landon Carter gray, M.D.

CEREBRAL PALSIES OF CHILDHOOD.

Definition.-These palsies are of the nathre of hemiplegia, domble hemiplagia (or diplegia), or paraplegria, with spastic symptoms and cervoma defect, the atrophy of the pamaryed parts varying in degree, although nsually slight, and not attended ly any marked altemations in electrical reation.

History.-Alohogh Reil as lan back as 1812, Cazavidh in 1827, and billard in 182 s had mate some mention of the alterations in the intantile bain, it may be said that the first authors to deseribe porencephatie losses of' cermbal smbstance were Breschot in 18:31, Lallemand in 18:34, Rokitanky in 18:35, and Croweilhier in 1849. But the first ademate deseription of cerchad palsies in chadren was given ly Hemod in 1842, and this was followed by the exerellent deseription of Little in 1853, ly that of 'Turner in 1850, and by that of Von Heine in 1860. Heseht fommater the terin "poremecphaly" in 1859 to desigmate losses of revelnal substance. From that time to the present day the literature of the suljow has been very almantant Among the most motable of the earlier works is that of Ledesednf and Stricker in 186:5, narrating their experiments in the produation of' mopphatitis in chickens, 'Tigges's on the production of' encephalitis in rabhits, Virchow's in 1866^{3} on congenital curephatitis of a peenliar nature, (otard's these de Paris in 1868, Kumbat's great book in porenmphally in 1882, and Parrots article in 1883 on steatosis. There is no doubt that Strïmpell's article in 188.1, describing his su-e allerl polioenceplatitis, reawakened interest in this subjeet and cansed comsidmable addition to our knowledge of it. Among the later contributions the most valuable are those of Gamdard, Jendrassik and Maric, MeNutt, Wallenlerg, Kapp, Audry, Gibmer, and Gowers, whilst in the last two yams Osler, of Baltimore, and Sachs and Peterson, of New York, have made valuable additions to onr clinical knowlerge of the subjeet. For other authors reference must be made to the appended bibliography:

Etiology.-The etiology is very obscure, although it is the ristum to momk mong the cmases many attendint or preceding disenses, many circomstanees of inmerliate cuviroment, and many hereditary prenliaritios. That these may all have some determining weight camot, of couse, $l_{\text {w }}$ denied, hat that they are the real causes of the disense cannot be aflimemb, since they bene pretty much the same relationship, to so many other discuses, Among such etiologieal factors have been mentioned mariages of masumguinity ; syphilis and intemperanee in the parents; difficult delivery ; asplyxia of the new-born; cerebral tramata; infections diseases, suchas scarlet fever, diphtheria, pertussis, typhes, and variola; abmormal conditions of the mother during pregnancy; violent vomiting; defertive mutrition.

A!fes.-Of the one hundred and forty cases collerted by Saches and Peterson, one limbled and sixtem had their onset in the first there semes of life, forty-nine being congenital. In one hundred and twenty casis of Osler's, one hundred and six begran in the first three years of life, fiftern being comgenital. The paraplegia are generally congenital, whilst the double hemiplegiae (diplegire) usually commence as do the singlo hemiplegrie.

Pathology and Pathological Anatomy.-Of the mumerons disemes of the infantile bran those are well known that are due to a suppurative meningitis ocenring from a distinct canse, cerebro-spinal meningitis of the sporadie or epidemie type, and corebral meningitis of tramatice origin. Outside of these, however, the many pathologieal conditions affecting the feetal and the infantile brain are involved in great obsemity. It is not strange that this should be so. Almost all these lesions are chronic, and antopsies are not had until a considerable time after the onset, so that the terminal conditions-the post-fimereal ones, so to speak-are the only ones that can be studied, and a bewildering diversity of opinion necrsarily obtains as to the exact nature and origin of the cansative processes. Sor has the dimieal expression of these intracmanal processes thrown much light upon the subject. It must be remembered that the brain is a highly complex structure. In the child only gross impaiment of motion, sight, and heuring can be observed, and even these only after a certain age. The ordinary forms of sensation, the group of symptoms ineluded muder the common name of aphasia, the so-called word-deafness, the fine musenlar movements, the more delicate imparments of sight, such as hemimopsia, cte, the suljective sensations of vertigo, and the pecolian noises that are often of so much diagnostic importance in certain impairments of heariug, -all these are finer functions that camot be tested in the child until it has attained nearly the intelligence of yonth, and they are entirely beyond our recognition in the infint. Moreover, these old lesions that have lxegm in infaney or foetal life do not canse the same localized impairment of function that they do in the adult brain. Hydrocephalus, hemorrhage, embolism, and thrombosis are deseribed in this Cyclopredia by other anthors. Aside
the cillstom 4, many cirreculiaritios. f'course, ln le affirmand, her disemens,
 It delisery; ises, surd ans tormal ("M1. ; defiective

Suldis allud there vears nty cas's of if life, lifteen whilst the ingle hemi-
onts disemses suppurative ngitis of the natic origin. afferting the $\therefore \quad$ It is not chronic, and . so that the he only vilus 1 neexsarily cesses. Nor 1rown mach n is a highly rotion, sight, 11 age. Thu d under the ne muscular 1cmianopria, ises that are of hearius, mutil it hats beyond our we brgin in t of function c, embolism, rors. Aside
from these, the following lesions have been observed in the bruins of fiotnses and infants who had presented during life the clinieal symptoms of the cercharal paisies:
buncplatitis and meningo-encephalitis;
Tha so-celled prolio-rineephalitis;
The congenital encephalitis of Virchow;
Porencephaly;
Apoplexy of the new-born;
Thrombensis of the cerebral veins;
Atroply and sclerosis.
Eurephalitis and meningo-encephalitis generally begin in the pian and cortex, and proeed with celluhar infiltation and selerosis, minnte henororlayes, und eventually atrophy or, more muly, liypertrophy of the afferted convolntions. The large basal ganglia and even the spinal cord may be implianterl simultamemaly in this proeress, but this is to tre distingnished from the secourary dessending degeneration which may result from a lesion in the cortex. The onset of these processes has mot been stodied mieroseopinally. The thick comentive-tissue masses may vary in size from that of the corticul surfare of the whole hemisphere to a mere ciontricial streak. In these selerotic masses seanty remains of' nerve-dements are fomul. 'The connective tissme may consist of a net-work, in the meshes of whids are seen seanty openings for the vessels and gramblated cells and meleoli, of it may be very dense and the openings for the book-vessels large and mumerns. Becanse of a seming relationship between the density of the connetive tissue and the size of the vascular openings, as well as beense Hayem has fomul the walls of the boot-vessels thickemed, expecially the adventitia, and beramse Marie has fomb these vasentar walls in a combition of intammatory infiltation with embryonie muchei, it has been suggested that the vasenlar lesions were the initiative process; but there is nothing to show whether or not they are cause, effect, or part of a gememal maderlying condition. In the hypertrophie form of selfersis the cerehal substanee is not infreguently dotted with ten or twelve masses varying in size from that of a bean to that of a ten-ent piece, romed or streak-like, or of the comsistence of india-rubber, principally in the cortex or in the centmal ganglia. From theae masses the pia teans masty, hat is adherent to the surronnding tissues, which are of a reddish color from a markedly vasentar injection. These masses consist of thick comuctive tissue with spindlecells, and pass into the momal tissue withont shapp demaration. A few atrophied ganglion-edls are fomm filled with pigne nt and grames.

In 4884 , Strimpell advaned the theory that there was in children an acute infections encephalitis of the motor convolutions, amalogous to the arnte myelitis of the anterior comma of the spinal cord. This seems to me to have heen one of the most flippant pathologieal suggestions ever made in meliente, advanced without the slightest proof on the part of its anthor; and ats yet only one writer, Ranke, has adopited this view, and only one Yol. IV.-31
 antopse, has been cited in support of it. 'The avidity with which the surgestion has been seized for disemssion and ohservation and the large litemture which hat grown up in refutation of it are pitiable illustrations of the pancity of om exad knowledge of the pathologer of the fortal and the infintile bain. Cotard and Gamdard eite seven cases with the symptonas of Strimperll's so-called prelio-encephatitis, in which the cortex was fonnd to lex normal, and in which the lesions were as follows: eyst in the corpmestriathm, arst in the fromtal lohe bencath the cortex, seldrosis bemath me lateral ventricle, chot in the intemal capsule, embolie softening of the intermal eapsule, embolie softening of the corpus striathm and smromming tisene, hemorrhage into the thalams optiens and corpms striatum. Residen this, Howen records a eyst of the internal capmend and in this rate an copecially carreful examination was made of the cortex, which was formen 10 be perfectly nomal. Wallenberg also reports a exst beneath the aumerin corpona quadrigemina, implicating the crus cerebri and the lemusions, and destrexing rompletely one red melons. The tithe polio-enerphatitis is the more unfortunate, as the same name has been very properly given hy Wernicke to a thomoghly anthenticaterl disease of the moter musde of the mednlla ohlongata, which are the tree medallary analogenes of the anterin emma of the spimal cord.

In 186.5, Virchew dererithed what he termed eongenital emerphalitio, romsisting of little yollowish mases in the white revelomal substane, alab referable, he thought, to interstitial intlammation of the cerebral substame, the color coming from fitty gratales. Although it has been mantained by Jatrowit\% that fatty gramules are phesiohogieal in fetal batins, there yet semes reasen to believe that Virdhow's deseription applies to metain infropurnt casis.

Itechl, in 1859, wave the mane of perenephaty (napme, "a hade", and
 stamer in fietal and infantile hains, varying in size from small cavities to an entive ahsence of both hemispheres. The an cavitios are gencually fath of liguid, and are traversed be filaments forming light and incomplete partitinns. Subatances resembling adipherere are sometimes fonmd thating in them, or other substances of tramsparent, citrom, yellowish, of hrown color. 'These eavities may open into the armehoid cavity, althongh they gempally have a vasoular membamons cover, the external tace of whidn
 Funciat arit tains that the comvolutions bordering mon thesis cavitios hase a radating form in the cases of promatal origin. The anjarent comvolutions may: be cappeted by a fine ecrebral debris, or may muderga a gelations transformetion. Shlerosis of the tissues bordering the cavity is very frequen, and these walls often have a rasty color, prohably from hemorrake. San the lesion diminution or obstruction of an artery may be fomm. Instem of the cavities, however, there may be ahsolute lows of
one hemisphere or both. The bones may le thimed or thickened, the skull may he hedrocephatie or mierocephatie in shape, oceasionally the front is very mudi flattened and slopes barkward. Porencephaly is gencrally of fotal origin, after this being most frequent in first infancy, oseurring execptionally alterwards. In fifty-seven cases analyod by Andry, thirty-fome were probathly of fextal origin, thirteen in the first two years of life, nine in the seend infancy,-vi\%, three in the third year, one at three and onethird yars, one at seven, one at nime and a half, one at ten, one at deven, one at fourten ; one case oremered in an adult. These singular losese of cerebral substance have bern attributed to ath arrest of development, extrene hydrocephalus, cmbolism or hemorrhage, encephatitis, and a profomed cereboral anmmia. Kundrat codeavored to trace a constant relationship beween vasenlar lesions and the porencephatie areas, but indubitable cases have lare reported demonstrating that this view is mot tenable. A peculiar pelatinous and cellular intiltration seems, in certain cases, to be one of the carly stages of the process. 'The predisposing and exciting causes of the aflection are but little known, although tramatism would seem to have inen a distinct etiological finctor in several instances.

The apoplexy of the mew-bom is regarded by Oser as one of the fhief canses of the bilateral hemiplegia or paraplegia oecomering at birth, and there can be no doult that it is a very frequent condition in mew-born children, esperially, as Surah J. MeNutt has shown, in conjunction with abnomal labor, asphexia, and convulsions.

Thrombosis of the cerebme veins is regarded as a fompent factor by (iowers.

It will thes be seen that the fretal and the infantile bain lehave in a different pathological manner from the adnlt bain. In the former we eneounter mud more frequently meningeal hemorhages and arnte forms
 sulatane of porenephaly are practically moknown at later perionds of life. Sor shonld we find it smprising that there is such easily effected retrogressive motamondosis of the cereloal substance in the intant when we consider that the intacranial eontents are the last pertions of the nervons sulbitane to develop and are very imperfeetly devednged during ewtal and infartik life, and that their great relative bulk, hally proteretel bey the im-prifectly-ossilied amam, renders them extremely liable to injury from withone in the helples; fietns and in the almost erpually helpless infant. It is a singular fact, however, that most of the lesions are in the motor trat that extends from the motor convolutions to the muscles. The comese uf this motor tran is through the coroma madiata to the intermal capsule, thence throngh the pons to the reagion of the dernssation, where it divides into two columes the one going down upon the same side into the anterior pyramida. . olmmen (ecomus of Tïrek), the other erozing to the opposite side to pass down through the lateral pyramidal colnmm, thenee into the anterior coma, making direet comnection with the great ganglion-rells
from which arise the motor nerves that emerge along the anterior mots to termimate in the motor end-plates of the muscle. Although different sunvolutions are not infrequently the site of lesion, even as far batek the the oceipital lobe, the motor convolations are pre-eminently afferted. liat lesions have alse been fomd in the intracramial portion of this motne trat without alfertion of the convolutions: thens, as has abrody been statem, one of Gamlard's case's haul a elot in the internal eapsule, with softeming and ecchymosis of the Sylvian fossa, another had a fients of softening in the region of the internal capsule, and another a softening of the corpms striatum and the surrombling region; one of Wallenberg's cases had a hemesrhage in the right optie thalames and corpus striatum, and another in est benath the anterior corpora quadrigemina, implieating the pes and leme nisens and destroying fibres from the third pair and red mullens; whilet Hóven's case hat a cest in the melens caulatus. These lesions and moper disastronsly now the foxal and the infantile brain tham upon that of the adult, for the evolution of the former is serionsly hampered. The condition of the spinal and peripheral portions of the motor tract has yet to be studiend thoronghly, althongh in some cases of spastio paraplegia there is reason to helieve that there is either a desemding degeneration, or a lack of development of the intratspinal motor strands. There can be no question that the
 palsies are the carliest in point of time of the great series of kexims to which it is lable at this period of life. Disiding the motor tract into three portions, the intracranial, the spimal, and the periphemal, we may rlassify its lesions in this maner: cerebal, the emernal palsies; pinal. myelitis of the anterior corma (poliomyelitis anterior) ; periphemal, paember hepertrophie patalysis; whist progressive momemar atrophy is sometime of spinal and sometimes of peripheral origin. .The spinal and peripheral pertions of the motor tract, however, are mush more prome to chronis disease in children, alment the only exerption being the acme onset of mont
 trat is sery liable to achte disease, the chronie lesions being ratre. The collular prowesses of the spinal lasions have bum admimbly stmbicel, su that one of the most certain facts in pathology to-thy is the disappearl ame or ingury of the ganglion-edls of the anterior horn in potionselitis and in the spinal forms of progressive masentar atrophy. It is not as yet quite certain whether the muscular wasting of the peripheral forms of progressive mosenlar atrophy and the commingled wasting and hypertrophy of the peembehypertrophice are due primarily to the atheetion of the mustlecells, or are scemblary to ehanges in the anterion comba that have mot thes far beed detered be the means of mieroseopical preparation at present in nse, althongh the evidence is as yot entirely in fivor of the former virw. But we are sadly in lack of knowledge as to the cxact pathological nature of the lesions in the intracranal portion of the motor tract. Porementhals, as we have seen, wonk sem to be a collular process independent of pre- lifferent winback as the rected. Bint - motory trawt in statell, wie witening and eniug in the corpus strihad al hermungmother a a y yst pes and lime whens: whilst tons :att mure on that of the The comulition to he stullicul re is reation to k of develop(stion that the it the cerveryazal of lacions to otor trawt intan neval, we may valsices ; spinial, heral, pwenluey is sunctimes ind preiphlural nie to drumin Onsict of munes a iff the mintor ne rave. Tluc ly sturdiell, sn the distuppearpolionyyditis It is mot tas yet neral firms of (1) leypertrophy of the musclehave mot then(14 at present in e firmer viws. Ological natur Porenlumblals, rendent of pre-
exdiug arterial impairment, inasmuch as Kundrat's opinion has been disproved that the porcmeephatic loss of sulbstance is always in an arterial range. The fetal and the infantile brain must be suljeme, therefinere to sulden enllular disintegrations, sued as we see in the anterior lown of the spinal cord in poliomyelitis anterior, although on a mueh harger seale, and surh atis is mot seen in the adult brain except in the rave cases of idiopathie sulturing that have been described lyy Wernicke. Arterial and capillary hemorrikuge and arterial and venoms thrombusis are also impertant factors, as we hatw seen, but we do not know what relationship they hear to the atrophios, the siterosis, the perencephaly, or the cerempal porsisty of Golgi.

Symptomatology -In all exerchal diseates a sharp divisiom must be malle of the symptoms into those that are reflex and thuse that are direne on loadizing. For instance, a hemorrhage may take phace into the arm-
 heatastere, ete, and, when these have passed offt, the paralysis, of the arm nay heveme apparent. The tirst chats of symptems are those which are
 change, whilst the latter are those which are due to atual destruction of a aretaina area of the brain-tissue. These comsiderations apply esperially to the eyelnala alfections of children, who are more liable to reflex disturtsince than andults.

The rellex symptoms: then, are convilsions, fever, delirimm, heletude on Mrala, ani cmesis.

The convulsions have mothing pathognomonic alowt them. They may he grunvalizend, or they nay implicate one member, the limbs on one side, or everan musides alone. They may te tomie or clonie in character. It las luyen stated by a recent writer that lass of conscionsiness in a convulsion denotus a cortical hesion, whilst convulsion without lass of conseionsnens indimates a sullowtical hesum. This rule may hold, to a certain extent, in alluts, but mot in children, who are not inifirequently rendered numonscions lya a poliomyelitio onsit, or even by reflex cansers.

The felrile movement is generally of a low type, arerly pasing abone 101° or $102^{\circ} \mathrm{F}$. Not infrequently there is no history of fever whatsonver, so far as the statements of parents or relatives can bre relied on.

Belirium, when present, is gencrally of a mild charatere, and of tembpmaray duration, but it is often larking.

Hetwetule is generally present, and coma is sumetimes olserved, although both of these comditions, like feree, may be cutirely alsent.

Emusis is an infrequent symptom. There is generally an inability to take murd formel, but this is more the result of the hebetude or comat or the general malaise than of ayy nauscer.

The lowalizing symptoms vary aceording to the protion of the brair dhat is :fllectel. As yet, as has been stated, most of the cases have seen 1 to have a preponderante of motor symptoms, pointing to a lesion of the motor tract, but this seming prepondemance may be due to the considerations that

 mental impaimuent, musenlar wasting, mutism, spereh-deferets.

Classifying the rases ley the motor sympome, the patalyses may her arranged into the there following gromps:

1. Hemiphegra;
\therefore Bilateral homiphagia or diplegia ;
B. latraplegia.

In the hemiplagie cases the fare is not always involved, and, when it is, the upper part of it is not atteeted. 'This form ustally orems in the fird there yaters of life.

 the rrme of birth-putheis.
l'arabigia is matally compenitad or hegins in carly intante life.
In all these there forms contracture of the paralyged museles is matally
 oppose a soft wax-like resistance to movements impressed 1 pom the litub, yidding showly, and grablually metmening to their astal comblition when the
 than the extensor. Sut infrequently the small joints have at bemarkable plability, so that movements in any direverion (an he impressed mun the fingers, and they ean he flexed, extemded, abdueted, and adduend with remarkable farility. If a limb is guick!y and suldenly flexed, a lowk-like movement will be fell in opposition momentarily he the hand of the peran

The tomdon reflexes are genematly exaggerated in the affered limbs, althongh only to a limiteri extent.

The mental imparment may vary greatly, from slight impuiturent to the mest pronemeded idioery.
'The masenlar wasting is memally not artive, as in poliomyelitis anterin, but would seem to be more from lack of developmont of the limb. 'Thes, in one litte patient of mine the affented am grows every year sumber relatively to its matiented fellow, bexamse the batter develoges and the former does not.

Mutism and spereh-deferts are very common.
Somsation does mot serm manally to be distmond at lemst in any marked degree; lout of comse it must be muderstond that it is simply inumasible to test the sensations in infimts and yomng children except in a wery grows manner.

Vaso-motor disturbanes are nsual, such as bower tompremture of the afleced limb and defective vaso-motor cirendation.

The ciontrical reactions are nomal, exeept for some slight gnantiative increase to faradism and wemsionally to galuanism.

In the hemiphegie form Weir Mitchell has deseriberl, areorling to
ere, the hualldow intlexere,
\therefore may lar ar-
n, whon it is, is in the firs:

I, from fintal

li lifi.
Mosis is usully co cont mactures pon the limil, tion when the - mome alte etcen a momark:ald ssend unn the adducted will col, a lom-like of the person or delimuities, Hiliector limbs,
imburirment to
relitis auteriur,

- limul. Thus, \because yeur smallor and the liomer
in :my markel iin a very gros
xrature of the
ht guantitative
arcorlinge to

Oilor, post-hemipherge fromor in one ase affeding the cotire arm, post-

 and dualde athetosis have boen daseriberl.

In many of these mindmate rases epilepsy orems, there being sixty-
 and theretenthe per wom. of all casses. Among the hemiplegias there wer forty-me "ases of gemmal "pilepsy, 一mine of the Jacksomian type, and onn
 gia serom had genemal pilepsy (twenty-nine per remt.), me had datksmian

 that givem by (hamberd, Wallouburg, and Oster.

Diagnosis. - The difleremtial diagnosis is to lxe mado from the following

 tumens: reflex helotude, comal, or dedirimu.
 ligen persion whe has berom with the child at the onsed of the disense, and the mother is almost invarially the best one for this purpose, maless some intelligent plasician has revergized the disetase maly in its course. It is the lack ol this previse history that makes the dagnosis of thase cases so dillicult.

Cereborespinal moningitis of midemic or spmadie orgin is chatacterized be retaction of the heal, by the spmadie or epdemie prealdene of the dis(mase, ly its greater frequeney in the gans from one to fiftem, by a greater tewdere to lodedule and coma, by a greater immmity from permanent mental imparment, and hey the fat that the paralysis nstally consists of on-sided and rardy of danble hemiplegia or paraplegria.

Thamatie meningitis can only be diagnomed when the famma has ben known.

 Morever, there is apt to le a perenbian remission in tha symptoms, with fluctuating temperature, and chills or rigons.

Myytitis of the anterion hones is, ats the mame indieates, a suddem lose of the ganglion-ends in the anterior corman of the spinal cord, and is chatacturizel by a llaved paralysis, with loss of temdon reflex, altered elentrical reactions, and atrophy of 'ertain musoular groups, nsuaty in one limb, It is therefore monoplegie in its distribution, very seldom hemiplegric, and nerer dombly hemiplegie in the chidd. Cases that are characterizel at the outsel by romvolsions, helothde, coma, and fever, may cause some doubt alment the wiagosis for three or fon days or even for a week, but the distribution of the paral!sis will sette the gheetion.

Transverse myelitis is a rare affection in the child, but when it neenrs it canses paraplegia, with vesieal and rectal paralysis, perhaps bed-sore, whilst the upper extremities are usually maflected, and there is no memal defect whatever.

Tuberenlar meningitis will be recognized by the chronicity of the expe bral symptoms, an aente onset being rare, and by the history of tuherendenis in other organs of the patient or in the family.

Hydrocephans is so often associated with tuberoular meningitis that the remarks just made will apply, except that the peenliar-shaped heal is of itself' almost diagnostic.

The differential diagoosis from intracranial tumor is often extremely diffeult to make. In the latter, however, the tendeney is to chmindty, to a greater localization of the symptoms, and to a greater frequency of nemro-retinitis and purposeless reflex so-called eerebal romiting.

Hebetude or coma will not infrequently oeemr in chidren, semingly of the most alaming nature, but yet will disappear in a day or two, hemy apparently a reflex of some indigestion or vaso-motor combition. Then, again, the acute febrile afliections of children, such as the pulmonary, enteric, and miasmatie diseases and the exanthemata, will produce grave comditions of hebetude, coma, or delirimm, and it will often be a matter of great niecty to determine how mueh is reflex from the primary disense, and how muri may be due to an additional implication of the cerebrum or its membranes.

Prognosis.-The prognosis of these affections will depend, of "onuse, upon the extent of the cerebral lesion, and the extent of the cerebral lesinn will manifest itself in the paralysis of motion, in the eontractures, in the exaggerated tendon reflexes, and in the intellectual changes. Every child, therefore, should be carefully examined, to asectain the amount of dallage done, as evidenced by these different symptoms. The paralyzed limhs shombl be tested in regard to their motion and sensation. The eye and the ear should be examined. The anomet of contracture should be aseertainel, and the tendon reflexes should be interrogated. The intelligenee of the child should also be tested, and the seeming stupidity resulting from lack of mental training and from the isolated life of a paralytic, who has perlapls been petted and spoiled, shonld mot be mistuken for the mental dulness cansed by impairment or destruction of cerebral substance.

Treatment.--There is usmally but little to be done in the treatment of these cases. In the cases of hemiplegia, experially those that come mulder treatment soon after onset, the faradie conrent is madombedly the mont effiencions agent, and in several instanes I have som its use canse almost iurevelible improvement. In bilateral hemiplegia I have not seen anything like as grood results, and in paraplegia it has been perfectly useless in my hands. Except in the aforesaid cases of hemplegia of recent origin, 1 have not seen that massage is of any special nse; but Oster speaks of persistent massage, with strong flexion and extension of the limbs, according to the reeommendation of Weir Mitehell, as having been of great service. The
hen it "ecture pis becl-wire, is no montal - of the entef^{\prime} tuberembuis
ugitis that the d head is of
cin extremedy to chromicily, fiequeney of ng.
sermingly of or two, being lition. Then, malry, enteric, we comditions of grout niecty and how munt ts membrance. cul, of course, cerelnal hexion actures, in the
Every child, ment of dimalue ralyzed limbs be eye and the be asceetained, ligence of the ting from lack no has pertups nental duluess
e treatment of It crunc muler the most clliculhlmost incereliaything like as - in my lands. (1), I have not persistent malisording to the service. The
spatic defects are matly beyond relicfe except by the apmaths am knife of the orthopedie surgem. The mental defects, in proper cases, may be greatly herped by carefint and systematio coluatime. Operative interference with the bain in these cases is absurd, not only berame of the impussibitity in many instancers of locelizing the lesiom, but also beanse in the vast majority of cases the lesion cannot he emred or aded in any way hy surgical meddling.

BHBLIOGRIIPIIV.

[^208]
cerebral mentngitis and suppurative MENINGITIS.

Difterent forms of esebral meningitis have been considered in comection with hedrocephalna, tubercular meningitis, pachymeningitis, and the cansative lesions of the eerebtal palsies. Besides these the only meningitis of whid we have any practical knowledge in chidren is suppuative moningitis.

Etiology.-Insolation, exposure to cold, infertion, car-discuse, cerebral tramata, masal diserse, carbuncle, erysipelas, extension from other visecra, and purulent plenisy are the best-known canses.

Inselation and exposine to eohd have lexen known in some rate ease to set ip purnkent meningitis.

It is lodieved by some of the German anthors that these cases may be infections; but the proof is not very condelusive.

Of all the canses of suppurative meningitis, carediscase is prohably the most frenuent. There are many interemmanications. between the car and the petrons portion of the temporal bone, by mems of arteries, veins, and
 comective tissue passing from the dara throghthe petrosighamoms fisumb to the moneons membane of the tympanme and the mastoid cells and womtaining lange bandzes of the middle meningeal vein and artery. Then
 the car and the base of the cerelnm, as it is only separated by a very than lamina of bence from the tympanic cavity, so that suppuative diseate in the latter maty atfect the neree in both its periphoman and its central tract.

Corebral tammata may set up supprative meningitis, and I am inedined to believe that this is a more frequent canse than is genemally suppesed. I have in many instances elicited a history of cereboal tramata that hats heen entirely overlowkel by the family.

Any alteration in the masal bones may extend to the brain throngh the aribriform plate of the ethmoid, and it is posisilly in this way that the "ases of meningitis arise that follow pertussis.

Suppurative meningitis has ben known to follow erysipelas and anbuncle.

By extension from other visecra or passage of the infection through the lymphaties or blood-vessels are to be exphaned the cases of suppurative meningitis following eroupous pummonia, suppuative pleurisy, ulatertive endocarlitis, promia, septicemia, arnte articular rhematism, small-pos, scarlatina, dysentery, and typhus.

Pathological Anatomy.-In the infections cases meningitis is mure of the vertex, whilst in those from anmal and masal disease it is mainly along the base and lateral aspects of the bain. In the slighter degrees the pian may be found to be congested, with slight streaks of purulent matter dotting it, but in a more marked dengee there is a thorongh infiltation of greater or less extent matting down the pia to the cortex, and varying in color from a dondy yellow to a greenish yellow. Bonath these phaces of infiltation the comvolutions will be fomen repressed, alatened, and ischamic. The streaks of infiltration are greatest along the course of the blood-veseds, The infiltration generally passes along the ehoroid plexns inte the ventrides, in which the amount of eerebro-spinal fluid is usinally inereased. In the chronic cases the membranes are tough, thick, adherent to one another and to the cortex, generally leading to atrophy of the latter. By microserpical examination varions miero-organisms can be fonmel in these cases, and these can be firthermore examined by cultures and inoculations, and by inoenlations without enlture. Netter has reeently collected twenty-five cases of an the call alle ics, vans, and theatis of the Hanmons. tis.anmo colls: and conartery' 'Tlsa ctions betwed by a very thin tive discore int "hitral trikt. I atn inclinal : supposicul. 1 ithat hats locen
in through the ; thatt tha (aisers
ipelats and (anls-
ection throngh of supprative misy, ulderative sm, small-pox,
ingitis is more is matinly aloug legrees the pia ent matter dotinfiltration of and varying in these platers of l, and isclamaic. e blood-vesisels. o the ventricles, reased. In the one another and Py microseopical cases, and these , and by inocu-ty-five cases of
his own and fontr-five ohservations of other muthors. In his own cases six preces of micro-organisms were fonm, -in rightern pmemonoreci, in foll a st repococens progenes, in two a micoobe resembling the intracellafan diphocomens of Weichasolbam, in one a short hacilhas of great mobility prearinter most of the chatrateristies of the typhoid hacillas, in one a microbe very muditike the pmemo-bacillas of Friedlander, and in one metain mbnown bacilli that were very deliate and flexible. The obsceratims in forty-fise eases collered by Noter of other observers tallied in the matn with his own. Netter is also incened to beliese that there is a differfore in the exndation according to the micrororganism eansing it. He thates that the exndation in which the phenmoeroci are found is ahmost alwas very visons and erreonish, and that the meningitis ferguently coinrides with ulomative endomaditis, althongh it wonld seem that the affection is relatively a benign one. In the ebses in which the streptococens was fomel the exudation was less alluerent and wats of a sero-purulent mature, While in the eases containing the hacillas of Friedlatuder the exndation was remalkably viscons and thick.

Symptomatology.-The symptoms of suppuative meningitis are delirimm, hebetude or coma, fever, convolsions, musenlar twitchings, healader, paralysis, and optio nemitis.

Delirinm, hobetude or coma, mnsenlar twitchings, and convolsions are gencral symptoms which are fonme in many eerebal affections, and have nothing pallognomonie ahont them in this sereial form of meningitis.

The fever gronerally ramges between 39.5° and $40^{\circ} \mathrm{C}$.
Hendache is usmally a constant simpom, generally intermitting to some extent.

Pamblys is, ats a rule, in the form of hemiplegria, althongh, of conse, this mily villy.

Optic nembitis is a symptom of considerable valne when it is present, but it is not generally olserved motil the case has lasted for some time, and it is often absent. It indicates, however, simply an intracmaial fesion, and tells mothing of the character of the lesion.

Retraction of the lacad is genemally observed, and there may even be upisthotonus.

Lesser degrees of suppurative meningitis, especially in cases of eartrouble, may commence insidionsly with slight headache, sleeplexsness, and hoaviness, and pass gradually into the more pronomoced symporms of the dispase. In other cases headache, some mental confasion, fand dizainess may oceur in children with suppurave eartrouble, last for several days, and be entirely relieved by the discharge externally of pas from the diseased car.

Diagnosis.-The diagnosis of a suppurative meningitis canoot be made by the cerchral symptoms alone, but must always depend upor the cerebral smptoms and the presence of those canses whirla are most likely to give rise to this varicty of meningitis. When symptoms of meningitis follow trama
or insohation in a chila, it is prohadbe that the menngitis is of' a suppura-

 also be made as to whether the child has laud a revent perthesis, crompuns pmemonia, purnlent pleurisy, merative endomaditis, premia, ante articn-
 contial diagmsis is to be made firm cerchoo-spinal meningitis, typhoid ferer, and tuberentar meningitis.

From cerebro-spinal meningitis the diffirentiation is manally mathe ly the knewn ppidemic or sporadie spreal of the hater disense.

From tuberenlar meningitis the diffrentiation am ber made ley the ahsenee of a tuberentens history in the child or in the family.

From typhoid fever the diagnosis may be sometimes extemely diffientr, muless the cutaneons or enterice symptons are present, or until sullident time has elapsed to ohserve the range of tomperatire

Prognosis. - The prognosis of the manomplienterl amses of suppurative meningitis is nsually fair, hut it is extremely uneretain in those cases which follow middle-cir or aesal disease, or when it comes by metastasis from other visereas. In suld cases not only is the danger to life great, but there is also a still grater danger of some ererboal or motor defeet being luft behind.

Treatment.-The treatment of suppuratise meningitis will vary greaty,
 : my pent-up pus should be promptly removed by operative procedere. If there be caries of the masal bones that can be removed, this removal should bedone promptly; but even then the treatment of the meningitis itedf is a matter of great importance.

The fluid extract of ergot is an invaluable remedy, and should be given in doses of from five minims to a darehn every thice or four hours.

If the meningitis is bronght moler treatment at an canly periond, a few latge doses of quinine will ofien prowe of servies, -from two to ten graine, aroorling to the age of the didd. Bat I have never been able to satisfy myself that quinine was of any service after the early stages, exerpt ats a tonic.

The sulphide of calcium has sometimes seemed to me to be of use, in dases of from one-twenticth to one-tenth of a grain every hour for a day or two.

Cold applications to the head will give velief to the child and caim the restlossmes, which latter may also be relieved, if neressary, by orensional doses of the bromides. Inunctions of merener, nasally of the muguenm hydrargyri, are time-honored, although I have never satisfied myself that they were of any espereal use.
 reoulutiol E slomile
 Ite: articulhe dilfiroaid liver, maine by \therefore lillicult, sullisicut

19!u"ative ses whid Iasis from hint therte bering lolt

Y! granty, proudinge, dure. 11 val shomble is its.rll is
l 1 x yivers I's.
ionl, a fay (ent grillus, to satisly reple it a
ol Hsic, in for a day
l cains the orexasional ngucntum ysell' that

OEREBRAL ABSOESS.

Definition. ('arebme ubsess is the result of' suppurative emephalitis.
Etiology.- 'The cansers of ulasersses are tmomata, varies of the cimial
 or"ans ; and they may orone withont known (allese
'Trammata are insidions emases of ererdbal abseres, beranse the ahamess not inferepontly follows the tranmat aliop some lebuth of time, and withont the intorvention of matked symptoms.

 *ur-slisentse.

 immeriate meighlanhoul.
 of other orgats, sum ats homehtis, pulmonary gamgrone, cmperna, necer-

 Thes vague symptoms usably give plane to delirimo, which is slight and intemattent, or they may be sucereded by leobeturle and roma. The tem-
 soldon ahove this; but in many ases there is no vise of temperature att all. (bomvalsions gemmally oreme. Headache is almost imsariable, with vertige,
 are surla as to indieate the presemere of some slowly lat steadily prosersive rephat lesion, and the individual sympoms will vary areoring to the portion of the int latematial orgata affereted.
 tending to the fommation of pros. It may he with or withont a limiting
 remal tissme. It is erencally simple, exerpt in the premir abses.
 omset of the symptoms, the variability of them, the presence of andal or ansal disease, or the history of some one of the suppuative on infections
 fivential diagnosis will be from meningitis or erebral thmor.

Thberoblar meningitis is a ehronic affection oreurving in a rhild either personal? aflicterl with tuberenlosis or hereditarily predicposed to it. Cer-(bro-epinal meningitis lass wot the insidions and gradnal onset of a cerebral alscess, and in it the retraction of the head, the retracted ablomen, the

tache cerefbrete, and the known prevalence of the discase are factors, that are absent in cerebral alscess. The diagnesis letween cerebral abseem: anl suppurative meningitis is not always possible, as they ar, ofteri present together and proceed from the same canses.

Cerelnal thmors in the child are nsually chronic, and in them there is often an optic nemritis, which is absent in the case of abseess.

In many instanees it will be possible to make nise of the cereharl thenmometers to the use of which I callelattention some twelve vap, ago. lint it minst be remembered that changes of from three to five degrees are neymor sary to indieate anything almormal, and that the slight changes of axillars and rectal thermonetry are uscless.

Prognosis.-The prognosis of cerebal alsceas is very grave. 'îho tendeney to recosery idiopathically is slight, and this should never be redied uron to the exclusion of an operation.

Treatment.-The treatment of a eereloral alscess should be ley mean: of an operation as som as the diagnosis is made. The localization of it is to be ly anatomical data that are referred to elsewhere in this Cydopeedia. Although doubt bas been expressed as to whether an abserss can be localizal by localizing semptoms alone, I have made two suresesful diagnoses of abscess of the centrum ovale, and Von Bergmam has bevn still more forturate in locating an ahseess in the temporal loles. Pain is seldom of luealizing value, although in some instances, where the constithlyness of the child is sufficiently retained, it may he fomd that perensemin upon the skull will indiane the location be the pain that it gives; but I must confess that I shonld hesitate to follow this indiention muless it coincided with other symptoms of loealizing value. I have, however, known of this latter conjunction in several instances. Moneover, my dimital thermometers will oftea be fomed of great value in the locealizing process. Opreations have been done with great sureess for the relief of abseens, and every case should be ofperated upon. Von Bergmann's case of nered) wal abscess was rured by an operation, although the patient had suffered for fifteen years from a puralent discharge from the right car.

BIBLIOGRAPHY.

Biormer, Virchow's Arehiv, 1860, xix.
Gray, Joumal of Nopronte und Mental Diseases, $18: 8$.
Leloert, Virehow's Irchiv, 18.56, Bd. x,
Liebermeistur, Vorlesmigen uber die Krmbheiten des Nervensytems, 1880 . Ross, Disemes of thr Narvous Sy:tem, 1882.
Serligumbller, Lebtheh dor Krankheiten des Rockmarke und (ichima, 1887. Toynbere, Disenses of the Enir, 1868.
Von Berghunn, Deut-che Med. Wochensehr., Dec. 13, 1888.
is that cos, and precent hure is at therIIL LTIIPLE CEREBRO-SPINAL SCLEROSTIS.

By WILLAAM BROADDUS PRITCHARD, M. D.

Synonymes.—Disseminated sclerosis, Insular selerosis, Fueal selerosis, Charot's disease; Geman, Ierd-Sklerose; French, Sclérose en platpes disscóminécs-quénéralisées.

The selerotic patches may be in the brain or in the eord or (as is manal) in both, giving origin to the monecessary and emmbersome distinction of a cereloal, a spinal, and a cerebro-spinal type.

History.-To Cruveilhier belongs the aredit of having first called attintion to the presence of pathological patehes of selerowed tissue dissemimated here and there throngh the brain and minal cord, thongh he does not appear to have regarded them as being diagnostic of any special smpam-gronp observed during life. Subsequently matry ficts of greater or less importane were added to one knowledge of the significane of these selerotie patches or plannes by observers in both the French and the German shool. ${ }^{2}$ The discase, however, with which there were finally fomed to be csontially related ats an integral part is pecolibrly associated with the mame of Chareot. It is to his genins that wo swe the establishment of a symptom-gronp diagnostic of the affection. The fact that orratic or atypual eases have been observed is which some of the sumptoms designated ly Chureot as pathogomonie have been noted as absent, does not lessen in any apmeriable degree the credit which must be conceded to him of having been the first ($18(64$) to map ont with any distinctness the clinical signs by which eonld be determined the presence of multiple selerosis. Chareot, however, did not himself at first recognize the discatse as existing before adult life, althongh in a later edition of his "Lessons" he calls attention to the fart, abready noted by several ohservers, that the disease might oceme in childhomel or even in infancy. He quotes two examples of his own, as will as the now somewhat famons cas of Horlemaker observer at Erh's dinie.3 This ease, that of a boy who devemped the disease at seven years of age, lying at fourten, is one of the arliest-recorded examples of the affection ocemring in childhood.

[^209]luchoding the paper of Hoklemaker, there have appeared 'ip to the present time, so far as I have been able to determine from an extemded though by no means exhanstive seave through the literature of the subjem, rejorts of more than fifty cases, ranging in age from fomrteen monthis to fourteen and a half years, ${ }^{1}$ published in the jomrals of Framed, (ivent Britain, and Germany. It is upon a résemé of the facts noted in this mories of :anthentic cases that I shall hase the following deseription of the disemse as it oceurs in childhood. ${ }^{2}$

Clinical History.-The disease may begin with symptems strictly cerebal in origin, or they may be referable to the spinal cond only. Somen or later, however, it beeomes evident that the morbid prowess is mot limited to either system, and, as a conscquener, it is no longer considered mither neeessary or advisalble to distinguish the two types. 'This is true of the disense as it oevors in adnlts, and the fact is still more conspicuons in children. The arratie temdeney to select foci of degencration here and there, at any part of the newrons axis, gives rise necessarily, and as might be cxpectect, to much that is confusing in the symptomatology, and it may be safely stated that no single symptom has yet been observed which is pathugnomonic. As deseribed by Chareot, there are two motes of onset, -mine slow and insidions, vertigo, headache, vague museular weakness, with incourdination and tremor, being the symptoms first observed; in the other form, sudden in onset, the tremor, weakness, and ataxia date from a convulsion or apoplectiform scizure: subsequently, in both instances, oxular symptons, such as third-and sixth-nerve paresis, optic-nerve atrophy, and nystagmus, defects of articndatn apeech, mental weakness, sensory disturl)ances, and contractures, oernr, and the thanosis is complete.

By far the most common morle of onset in children is the sudden on rapial form. ${ }^{3}$ The child is motiend after a fall, a blow on the hem, on shock from sudden fright, or perhaps without any apparent canse, to tremble. The tremor may suceced a comvolsion, quite a eommom initial symptom of the disense in childhood. The grait is nasually affected carly al-o, the patient, if he has learned to walk, moving more dumsily or stigevering. There may be conedently a strabismus, or, if the child is odd enough to
${ }^{1}$ Pollok has publiwhed the rosults of an antopy showing typical lesions whind wow congenital, Arehiv tür Poyehatrie und Nervenkrankieien, Bd. xii. s. 157.
 anselformige Niklorese in Kind," 1887) ; Lembe (one cose), Deutsches Arehiv für Klin. Ded., 1870; Charoot (two cases), "Legous mur las Mahdies du Systeme Nerveux" (last elition); Stohro, Vian Camp, and liblliet and Buthe\% (one cave ench), inchuded in Jacooud's lable:
 Psyehiat. H. Xervenk., Bal. xvi. S. G98; Drummond (one case), Lendon Lancet, 1887 ; Wratphal (two enses), (' mits Anmalen, Bd. cxiii. S. 459, 1887; and twonty-ome rases tabuleted by Moneorvo, includiner four of his awn, Jahrbueh f. Kiuderheilk. n. Psychat. Bd. xxviii. 11. 2, 1388.
${ }^{3}$ The sudden onset may be reluively much less mare in the aduif if, in Oppenheim las suggested, a large proportion of the adult enes date from ehildhood. $\therefore \mathrm{Ct},-\mathrm{m}$ with inthe other mill at anes, cululu mher, - disturth
rudlem in head, on , to tremil [al ym (m)arly alon, argering Honght to
which werw
her Multip. Kith. Mel., te clition): Mud's talle: Archir if nect, 1887; y -(ther culses l'sychista.
notiee it, a diplopiat may be mentienerl. Healarhe and vertiginons semsafinns are noi infergent, ad would perhaps figure more prominenty amomg the initial symptoms if the powers of observation and expression were less limited in arrly life. Nystagmos may be associated with tremor of the extromitics as an early sympom, thongh, as a rule, it develops later in the disense. The same is true of speech-deferts, muless there shonld be a primary fooms of disense in the medulla. Mental weakness, contractures, musembar wasting, and actual pardysis of the extremitics are late symptoms. Optic atrophy, not very frequently observed, may appar at any periok, homgh usually at and anmed stage of the alferetion. The exaggenation of the reflexes, which deponds upon the loxation of the lesion, is an "arly stmptom in some cases, and may be associated with an ankle-clomms. The following cases are cited as typieal in several respects of the disease ats it affects children :
(Guse I.--(Reported by Wilson.) Ammie S. Parents healthy. Child born at full term; matual labor. Healdy until four month obll, when it developed pertusiz, lating seven months. During pertussis the child had an allack of convalions, followed ly internul trabismus atfecting the left eye, which remamed three montlis. There was no return of comvensions, und the child mate a complate re overy and remained well umil ons year ollt. It that time she was badty frightened by a dead gowe thrown at her. The fright was forlowiol bex a convolsion, which left her quite feeble fin some time. At the nge of tive years she was considered well mod healthy. She attended school and learned radily, anthering from mo ilhows until her seventl? year, when she began to comphain of dizayy athats and diplopiat. At this time the intermal strabismus of the left eye was again noticed, though in six werks, during which the child was under dispor-ary treatment, the stabismas disappeared and the general condition impored. Improvement continued ahout one month, when she developed a tremor of the lower limbe and began to lose conprow over them. Walking became more and more difticult, laer legs giving way under ber, the gat stargering like that of one intoxicated, matil she finally low all control ower her lower limhs, becoming uable to walk at all in abont twelve monthe. During this period she gradunly lost flewh, and the tremors increased.

Hep condition on examination at this time-deciden symptoms of the disease having been present about one yeur mad a half-was at follows: blank expresion; donble internal strabismus, diplopia, slight dilatation of puphls; extrene emaciation. Sensibility intact, hut almost comphete loss of pawer in lower limbs, left more so than right. Can move thes and ankle freely, lut camot flex or extend the limb, nor can sbe raise it. Attempts to move the limb bring on rhythmical shaking. Hand-grasp good and equal. Tongue affectel with mudulatory tremor. On assuming a sitting posture in bed the body is violently jerked from side to side, and patient mot be lad down at once. Horizontal nystagmus is preent. Voice elear and disinct nsually; at times specela slarred. Syllahles are enunciated shwly, Replies intelligently to questions, and displays no anormal emotional tomencies. Tremor of hands; steadios one hand with the other in enting or writing; handwriting chumateristic. Temperature frequently stimormal.
('ase II.-Thomas F., aged dight yenrs and nine months (one of two bothers affected with the same disease, reported by Dreselafeld). ${ }^{2}$ Father and mother healthy ; two other chilldren, aged two and four and a half years, healtley. Patient well until fourteen monthas old, when he had two convulsions, followed ly trembing of the evehulls and limbs and general weakness. After this sudden onset the case progressed steadily and without any
remissions of noticeable duration up to the time of his examimaion at the age of eftht yours.
 well nourinhed and limbs wall developeld, but cannot walk or stand. Attempts to meve
 grod, fandu* normal, nysturmas constant, pupik normal. Intelligence markedty impaired,
 paralysis quite marked. Mohitity of tongue much impired, thongh not ntrophicul. Nativa
 head slakes violemty. There is no tremor of the head when at rest, thongh ny-tagmen is constant. Upper extremities parretie, and movements are neompunied with tranor. There is no atrophy, but the arms feed thably. Thare ase no contractures of the "fore extremities, mid there is no wristeclonds. The lower extremities are much more partic, the patient being anable to stand or walk. The feet are extended and bewin to , han
 the budder and retum are normal. Sensibility is intact, and the clectric renctions are mimp:urcd.

Canse III.—Mrs, M., aged twenty-six. ${ }^{1}$ Her grundfather died quite suldenly in bud. Father died in a fit, thirteon years age, aged thirty-cight. Ite had fits (epileptic) fire the years previods to death, and was paralyed during hat tive yeurs of life, l'aralysis one curred suddenly while putient was in bed, and was diplegie in distribution, involviug buth upper and both lower extromities. Muscles of tace not attiected, and speech manal. Does not remember as to presence or absence of rectul or vexical symptoms. Tha pationt, mother died of Bright's disemse. Bolh parents drank heavily. The patient is the ohlest of eight ehidtren, five of whom are living. One diald died in convolsions, aged two dies, an ther from convulsims at the age of two monthe, and a third from spinul meningitis at the age of eight yeurs. The other living ehildren are free from nervous trouble. The patient had meables, searlet fever, and phemonin in carly childhoned, but was tre fion nervous trouble until eight years old. At that age she was kicked on the back of the head by a hurse, being knoeked down and rendered temporaty senseless. She does mot ronemo ber her sulse fuent condition distinctly, but has been told that for some time atter the injury she was unalle to walk, and ever since the aecident she has suthred from constant hanache, dizziness, and trembling, and lately with weakness in walking. She never had: convulsion.

Condition on examination.-The woman is fuirly well developed, and masele well nouribhed and without wasting. There is no facial or cramiad asymuntry, and no evidence of fracture, depressed or otherwise. Cieatriecs of old suppurating glands of neak, and a
 found and the patient donies personat intection. She has been married four gears, hat has no children. The expression is heavy and stupid, and patient represents a bew type of intelligence, though she can read and write and is faimly intelligent in her replies to questions. Both pupils are dilated, responding very sluggishly to light, scareely at all in uecommedit tion to distance. There is no phosis or strubismus, and nystagmus is absent, though the patient states that at times, ander exeitement, ier eyeballs have heen noticed to trenthes Vision is ordinarily gool, though she is frequently amoyed by a bluring, anomuting at times to a complete obliteration of a part of the fich of vision. There is no homiampin, and ophthalmoscopie examimation fails to show any atrophy or neuritis. There is preent a coase general tremor atfecting all the extremities, the head, und the boxly. The tromar is somewhat more intense upon the right side. When the pationt lies down the tromer disuppears, but upon assuming the erect or sitting posture it begins at once, starting with hateral motions of the head and atfecting the entire upper half of the body. Thwe is no tremor of the legs except on extension, athough in the hands and arms it is constattly present unless the arms are held by another. The tremor is greatly intensilled by whutary
${ }^{1}$ Clinic for Mental and Nervous Diseases of Prof. L. C. Gray, Polyclinic, New York City, 1889.

- Phady (1) иик Yi-ion Inpmired, Bullyar 1. Silliva rinkia, then y-turgun h tremer.
 T partic, 1 to how netionk of utions are
ils ins bed. (iir) fin ton urulysis onAving buth ch murnal. ho paticuts sthe ohlest al two dis?, resingitis at ouble. The as trive from wit the hend
 Whar injuy not:ant handnever hat a
minele well nu, evidnace nerk, and : Hes atw tu ho (aurs, lut has : type of in in to yprations. wecommendi, thoush the 1tur tremilde. forouting is Hemisurypia, cre in preent The tremor If hen trenur tartinu with There is no ormstuutls by colluntary
eflemte, stol as drinking water er cating, the torth chatering at times agninst the ghas or fork like castancts. she holds one ham with the other at times in perturmine liner coorlimate movements, on atecomt of the ataxie tremor which is proent. The handwriting is chatareristic. There we moblhur symptoms, und speech is only slightly attecter, the conmemion being slower than normal, but neither syllabie bor scoming. The mast noticeable mental defert is of an amosic chanacter, the memery being decidedly poor and the attention concentrated with dilliculty. In the lower extremities there is weaknem, coperially in the right ber, aceroling to the patient's statement, and the right-hand grasp is pereeptibly weaker than the left. There is mo dras, mon is there any peouliaty in gat exeept a slight stagering or swayis. No Romberg. Buth kne-jerks me markedly exaggerated, mad
 masenlar, and painsense are intact. Temperature sense not tested. Bladder and rentum nurnatal.

The above historics have been selected from a large mumber as presenting symptom-gromps typieal of the disease to the degree of almost classieal perfection, espectally in Cases I. and II. The propertion, however, in which such a gromp of symptoms will be olserved is relatively a small one: a mulh larger number will be enemontered in which the diagnostic data are far less decisive. Many of the most striking symptoms will necasionally be alment, and it is necessary to note their relative constancy and importance. I shall, therefire, consider briefly earh symptom in detail.

Tremor:-I am mot able to recall an example of the disease in a child in which this symptom was noted as absent. Cases have been olserved in man in which the sclerotic patches were dorsad of the pons, in which tremor did not ocemr, and Hammond 'and others lay special stress npon this fact in contending for "a recognition of a distinct spinal type. The tremor of diseminated selerosis is peeuliar, of follows: it is coarse in character, affecting one extremity, or, it may be, the entire body; it is intensified ly voluntary muscular exertions; it ceases when the body or limb is at rest. The tremor may be unilateral," bilateral, or general, the latter being the type in advanced eases, the tongue, head, and neek even being involved at times.

Atruriu.-This symptom is quite constant at all ages in certain forms. Station ataxia or Romberg's symptom is not common, but there is more or less marked incoürlination in the movements of both upper and lower extremities. In the patient's gait it is at times almost identical with the ataxia of tabes dorsalis. In other eases the gait is simply staggering, like that of a man muler the influence of alcohol, and in still a third form the matient walks with a mixture of ataxia and spastic rigidity. In the upper extremity the ataxia is first moted perhaps in a loss of fine movements; sulsequently, an imability to carry food to the month (not due to actual paralysis or to tremor alone), or to control the hand in writing, may develop.

Sye-Symptoms.-Strabishous is frequently an carly symptor. It may be only temporarily present, it may be present alone, or there may exist coincident ptosis, diplepia, or paretic dilatation of the pupils. Strabismus is the most constantly observed of all the symptoms referable to the organs

[^210]of vision in multiple wherosis ass seen in children. Ptosis ${ }^{1}$ is mudn lass
 onserwed. Diphopia ments probably more ferenutly than is suppusend, hut because of its tramsient chatarter and the carly age of the pationt it is more raredy mentioned. Optice atrophy was moted in less han tem geve rend. of the cases tabmated by the writer. It is mot stated to have herom of the partial tepe referred to by Guanck exept in ome or two instanes, Nystagmas, which (Chareot has ohserved in filty per cent, of his cates if multiple selerosis, is also quite common in children, the pereentage being alout the same. It is sometimes ronstant, in ofluer instances it is only owasionally manifested moder axeitement, and in still others it is demenstrable only upon lateral or horizontal movements of the execolalts.

Speech-Defects.-Some abmornality of speed is present in a very latree propertion of eatses (ninety per eent.). The defied may be the to iremor of the tongue, it may result from actual paralysis of the tongue on liph (bullar origin), or it may be ammesie in chanater. As regards the form of the defent, it may consist in a simple indistinctuess-a thickness of shuring-which is in contrast with previons hacaltly spech; there may bo a diffienlyy in cmuciation, the syllables of words being widely sipgrated
 tion of sentemes, constituting the typical samming speced. It shomble the rememberel, howeser, in weighing the diagnostic value of this symptom in early life, that the speed of childhood is often peenliar without being of pathological significance. It has no clinical importane alone, and mukes it be typually staming, or in mapked contrast with previons relative perfiytion, it is of little value in carly childhomed. ${ }^{2}$

Soutal Inpairment.-A low standard of intelligence is the rule in disseminated selerosis oremring in children. In some cases this in quite markel, amometing to absolute dementia; ; ${ }^{\circ}$ others it is a simple silliness or an moluly emotional state. In a small propertion of cases the intellect remains unimpared for many montlis or years, althongh very apt to le involved as the disease alvanes.

Hecudeche: Vertigo.-Both of these conditions are comparatively infrequent, so far as can be determined by the records, thongh it is not improl)able that they have been often overlooked. Vertigo wats noted by Clarteot in three-fourths of the cases ohserved hy him. There is nothing characteristie of the headaches of multiple selerosis ats regards the locality or the intensity of the pain. Its most renarkable feature is the persistence with which it sometimes remains for years. ${ }^{3}$

[^211] al intlecehould the ptom in being of bulcos in re perfict-
rule in s is quite c sillimess - intrlleyt to be in-
cly infre(improb-- Chareot chamader-

Comentsions. - The frequency with which convolsive seizames inaturate the disease in caty life is rather mankahbe. They were wherved in more dhan half the (ases rerobderl. In some instames the relationship (eatisal) of the romvalsion is mot ats chen as comb? Ine desimed, hat in many casts aher trpiad symptoms supervened immediately, baving no rom lin donht as 10 the intimate comnertion betwern the two events. The well-known sumeptibility to colampsia in infany and chibdeomed atfords a partal gromwal explamation of their presence in this discase, bun the relationship is

 form is the most common. The convolsions may be followed ly paras,
 amo, in others remaning for some time. The residual paralysis is more frequently permanent in childhood than in adult life.

Prorolysin--This is most frequently of some ramial newer, affecting offemest the third, or motor oonli, in the early stages. Panalysis of the extremities is common in the adsanced disease, though there is fieguently a weaknes which appars carly, not gemindy paralytic. This may remain as the only form of motor weakness in a smatl momber of cases. l'acial paralysis wats observed in Schaile's ease and others, and well-marked sumptoms of bubbar paralysis involving the tongur, lips, and pharyx have
 Fare, thongll it was present in one of Dickinson's cases and in Westphal's. ${ }^{3}$
(butrectures.-These oecom late, if at all, and are of no special diagmostic importance. The litemature of the sulyect shows comparatively few ates of multiple selerosis in dibltren in which contactures were observed, but it is to be remembered that most of these histories are incomplete, the late stage of the disease exaping observation. 'The comparative fiequeney with which they develop in adolt cases argnes a similar condition in the same disease in carly life. Both Chareot and Oppenhem eall attention to the fact that spastic paralysis shonld always excite a suspicion of multiple saterosis.

Sensory Disturbences.-The pareesthesia of older eases is rarely observed. It is diffienlt to test the musenlar sense in a child, and few obserrations are noted as regards its imparment. The most common disturbance of sensibility noted is a diminution of taetile perception. Sonsation as a mene, is not appreciably atfected in children suffering from this disease,

[^212] deded are sumb as to make it at little value.

 mine the comblition wh the redlexs in very yommernitren.

 ple selomsis. Pelizams abserved the trasmission of the disase dimety

 it stames have beon reeorded of brothers amed sisters who manifised mo-
 phblishal the histories of two brothers, in one at whom the initial symper toms developed at the age af fompern monthe, in the othere at fome veas; and both berb and limeides have observed the presene of the disense in seroal mombers (bothers and sisters) of the same fomily, devoloping,

 parme is to be comsidereal as rembring the oflisuring liable to the inheritame of at mevoms stitem lase resistant for disense than momally, and in this sense any monropathy in the parent may be considered a prodisposing amse of dissominated selemsis. This statement is egmally applieable to very many other allerdions of the nevous system, and whe the amest tal taint shomld manfest itself in any partionlan ease, in the development of multiple selerosis, tepends pessibly upon some permbiaties of either vasubla supply or anatomiat ronfomation of the nervons axis. Amomer the mat striking examples of combitions noted as predisposing thromgh hovedity th the disase are aleoholism in the fothere and sphilis in the mother, in the ease of Diekinsom; the fatheres death in at (whores in a hother), in Choudle's case ; and epilepsy in an mole (and a brother), aleoholism in the

[^213] mil iln " whter-
ich wals - disums:
 an'i: hats alis foni。 di:11manion In ? wimer wris."." al' multic divenly sidues in simaly insend IIIMrumbled iall :ymp inll vers: divenase in (veropinge Ihlor thails nis. in the uhcrutame (II) in this sing cille 10 10 sery stral hailul at of mul1. "ationlar : 1ho must arolity to fore, in the rothert, in is.m in the nind Nierver.

 munt bo sthpromderl.

 umtil a lew yeats latere.

Thamatio: ingury or show is a most important expithag raths at the

The development of multiple on diss minated seleonsis as a seppelt to

 diphomia, and probably small-pos, typhoid and other levers, sand in a
 serms highly probahbe, loweror, that the mationship is at most omly an indired one, since in those cases in which sum diseases have bern mentioned as present other fartors existed which were modonbtedly of lan
 of Willie R., for example, reported by l'olfard, in whim typinal tremors
 probahly due to damare set up hy repated emontsions which ocemmed dmbing the attack oi fever. The ocenreme of other nervons diseases, however, chatuterizel by dagenemive changes during on immerlately afier the abute infections fevers (poliomyditis) gives credence to the idea that it is a possibility in moltiple selerosis, and eases have leen cited in which no other "anse contd be assigned. As a mingue example of the relationship of other disenses to the one in 'phestion may be cited the case of Sparess, in

[^214]which tremons and weaknes in walking, the first symptoms moted, inem-
 humd.

 must he rememberest, in comsidering the value of' 'harents statememt, that

 the similarity is still more marked in gememp paralysis, the two disemes oftom boing indistinguishatho daring life, antopsies shawing patchne of wive rowis diserminated here and there thromgh the nerome tissumes, besides other and musc chatrateristic lesions of genemal paralysis, wifhome which a diatmosis of the batter atiandion mould not hase beem astablished. ${ }^{2}$
 combition in multiphe selerosis, is mot a peembiar or distinctive lesion as regard: the promess itself. It is only in the cratie: and maltiple distrilus.

 trunks of merves have been fiomd alfeded." sometimes the patches of plagnes are so momeroms as to kave sementy a single region minvelved. Hirsch, for example, reported an antopse in which "there were twenty "pots on the left side, forty on the right, in the modnllary sulstance of the hemispheres, with the pons, mednlla oblongata, optie thalami, and muen of the gray matter of the cord similanly affected; whilst in a case mentioned by Liouville both substames of the hemispheres, the eorporat stiata

[^215]

 : mernsis."'

 alleeted mily in the terminal stanes, if'at all. 'This, will the liad, moted by

 tively exempt, is the omly midence of athe sedertive alfinity on the part

As remation the primary step in the formation of these patehos of seatforel siderosis, there exista much differemer of opinion anmong patholagists. 'The proms is interstitial in origin aterorling to the viows of one school, by
 as a simplo moritional chatuge, while others assert that the bitial pormess is resemtally indanmatory and attemded with increased vasentarity, the vasels berming turgid and other evileness of inlammation being prewt. Tho
 mot alwors, involver, the "ardsentitial sheath being thickemed, the modei increased, amb an athal selerosis being often motied." We have the aththerity of Rinelleisel for the statement that examination of the gray pinhead loxi from which selorosis starts will reveal the fuet that the erentre is

[^216]always a red spot or line (according to the section), said spot or line being a distended blood-vessel ; and that these vessels are in a state, muder microscopical examination, whieh we should not hesitate to deseribe as that of chromie inflammation.' This is true also of the peri-vascular lymplopaces, and it is here, probalhy, that the initial step in the development of the disscase will be found in many eases. There are several factors whicla are responsible for the confasion and divergence of opinion existing annong pathologists as regards this phase of the subject. The difference of "pinion, dating from the centroversy of Cohnhem and Virchow, as to the histological character of the nemoglia, and as to the possibility of the develop. ment of connective-tissue new-growth or hyperphasia in the nervons system except as a result of preeciing inflammation, is still a factor in the disputend patholegy of selerosis. ${ }^{2}$ It seems to be the opinion of the majority to-daly that the nemoglia is truly a normal connective tissue ; consequently we maly say that selerosis consists of neuroglia hyperplasia.

With reference to the primary canse of this comective-tissue overgrowth, much of the difference in teaching is due, I believe, to a variance in the interpretation of the term inflammation. The traditional idea that inflammation neecsarily requires a preceding injury, or direct and more or less viokent exciting canse, is the Gibraltar preventing the aceptance of an inflammatory origin of the disease, with many observers. With such the process is said to start in a fmetional disturbance of mutrition, Vaa der nolk teaching that solerosis was the result of repeated congestions with excessive exosmosis throngh the ressel-walls. Bevan Lewis, whose excerdingly scientific and acemate researches into the microseopieal amatomy of nervols disenses have done much to lift the veil of obsenty enveloping the subjeet, finds, in investigating the pathology of the varions insanities in which sclerosis ocens, many facts which apparently contirm the theory of an inflammatory origin. In disconsing the sulject of miliary sclerosis in connection with the presence of that lesion in insanity, he states that int intmediate proximity to these patches of miliary selerosis the tissines are fomed to be in a state of parenchymatons degeneration, which results in the destruction of the cessontial elements, becoming a gemuine selerosis. He finther suggests that the miliary degencration is directly due to changes in the boocl-veseds of a subacute inflammatory character, "ihe exudation from the vessels inducing such swelling of the myelin as to rupture the delicate investing albuminous sheath, or possibly acting directly upon the latter" (hy presinte ?). ${ }^{3}$

To sum up the sulbect, the evidence seems deeidedly in favor of an essentially inflammatory (subneute?) origin for the selerosis, with precelibig or coexisting alterations of mutrition, dependent upon functional (vaso-

[^217]motor) disturbanees in the loeal vascalar supply, such disturbances oreurring as passive or active congestions, oft repeated. The selerosis seems to be parenchymatons in some cases, interstitial in others. ${ }^{1}$ The syphilitic eases develop primarily throngh the lymph-ducts, and are danaeteristically interstatial, :ad this form is considered ly Moncorvo and others, among them Marie and Jemmasik, to be quite frequent. Syphilis itself, however, or the transmitted cachexia, is not a very common etiologicall factor in disseminated sederosis, exept in the experience of Moneorro, Marie, and perhaps a few others, and it should not be acepted as a basis for pathological duluctions muless allisolutely demonstrated.

Reenring to the sulyeet of the loeality atfeeted in the disense, many facts have been observed which are of great interest and importance from a clinico-pathologinal stand-point. The symptoms manifested during life will often point with remarkable consisteney to the exact or approximate louation of the sclerotic patches. Thas, in Drummond's case the prosence of persistent glyeosuria with polyuria suggested the wery probable involvement of the medulla, an hypothesis filly confirmed by the finding of a well-defined patech of selerosis in the floor of the fourth ventricle. The muelci of origin, or the root fascienli, of the hypoglossal, the facial, and other nerves, have been invariably found to be fowi of disease in censes in which paralysis of the parts supplied by such nerves had been observed. In the cord a spastie or pendo-spastie gatit indieates a fooms of disense, msully in the tateral columns, which seem, by the way, peenliarly liable to invasion in multiple selerosis. Decided trophie changes, such its wasting or atrophy (comparatively rave), point to an involvencut of the anterior horns, while marked ataxia with parasthesia or other disturbances of sensation suggests very emphatioally an involvement of the postero-lateral columns. The deep reflexes are of value here, in that an exaggerated pateliar tendon reflex is almost conclusive evidence of disatase in the hateral or pramidal tracts, an aholished reflex pointing with equal certainty to a predominating selerosis in the posterior colmmes and root zences. The location of the diseased pateh or patehes in the eerebrom may be almost as readily determined, the symptoms being more or less distinctly diagnostic aceording to the region involved.

Differential Diagnosis.-The question of a differential diagnosis in multiple selerosis as seen in patients of mature years is often one of extreme diffiente: The very insidions development, extending over years perhaps, and the shinence in many instances of sumptoms at one time considered essential, with the presence of others of an anomalons character, ane factors adding much that is confusing. Tremor, for instance, the absence of which a few years ago was considered sufficient to refute a diagnosis of multiple selerosis, has been demonstrated as wanting in several eases among adults in which typical post-mortem lesions were found. Nystagmus is

[^218]by mo means invariably fomd in the adult cases, and the same is trin of eiamateristic specell-defects.

In children the symptom-gronp typical of the disease, ats described clinically by Clareot, is present with apparently moch greater unitermity, and, with the one exeeption of hereditary talkes, or Friedreich's ataxia, there is no definite affection of the nervons system in childhood which shumbld present any diffenlties in diagnosis. These two discases are, however, in many respects remarkahly simitar symptomatically. In both there is ataxia, in both nystagmus, and in both speedh-defects ocem. It wonld be diflicult to establish a diagnosis of either without the presenee of one at least of these three symptons. Tremor is also a common symptom, though diffiring in quality and degree, and paralytic affections of the eye-museles, with optic-nerve atrophy, have been not infrequently observed in both. Amomy other symptoms mentioned as oeeurring in the two diseases, though with less frequeney, are contractures and sensory disturbances.

So remarkable an identity in symptomatology argues an identioal pathology, and the relationship is mondonbtedly a close one in this resperet. There are, however, certain well-defined clinieal landmarks which elmenty distinguish the one from the other. The tremor, for instance, is a constant symptom in multiple sclerosis in children, having been present without exeeption in every case reported. It is peculiar in type also, as I have exphancel in a preceding paragraph. In Friedrech's ataxia the tremor, which is present in only a small proportion of eases, is usually of the chorefifern varisty, and is never of the voluntary or intention trpe. Nystagmus in hereditary tabes is almost invariably ataxie, manifesting itself only when the eves are steadily directed towards an object. In disseminated selernsis the nystagmus is of the ordinary or static form, sometimes demonstrable, however, only by movements of the eyes in certain directions, as up in down (horizontal), ${ }^{4}$ or laterally. Difficulties in articulate specel may he exactly similar in both diseases, -halting, with separation of syllables, simply indistinet, or typically scamires. In Friedreich's disease it is more apt to be ataxic, and oceurs later, as a rule, than in multiple selerosis, Ataxia of the extremities is decidedly less constant in the disease which forms the sulyect of this article, occurring in about sixty per cent. of the reported cases, while aceording to the statisties of Griffith it was present in either one form or another in nearly all of the one hundred and fortythree cases of Friedreich's disease which form the hasis (.. his paper. ${ }^{2}$ That form of ataxia which is manifested in an inability to stand stadily with the feet approximated and the eyes closed, and which is known as Rombery's symptom, is rarely observed in multiple selerosis in dihldren except when dependent upon actual or absolute loss of power in the lower extremities.

[^219]It is said to have been present in more than fifty per eent. of the cases tabulated by Griffith. Fimally, in multiple selerosis the ataxia is a true incoordination, while the titubating or staggering gait is said to be the most chanateristic form in the other affection.

Aburmal sensations, or paresthesie, not infrequently oceur in iecreditary tabes, especially the girdle or belt sensation. They have not been observed in children affected with multiple selerosis, though in older patients this symptom is not uncommon. Sensory impairment is likewise rave, while a diminntion of either tactile or muscular sense has been repeatedly noted in children the subjects of Friedreich's ataxia. Pamalytie affections of the eye-museles are infrequent in the latter disense, while either a strabisnas, a ptosis, or a diplopia is quite common in disseminated selerosis. On the other hand, ophthahoseopie examinations of the fimdus show an optic nemitis or atrophy in probably an equal pereentage of eases in both affections. Contractures are not common in either disease, thongh rather more frequent, perhaps, in hereditary ataxia.

In addition to the clinical distinctions already ennmerated, there are at least three symptoms which afford a markel eontrast in the two diseases, and these are the condition of the reflexes,- especially the patellar tendon,the mental state, and the tendeney to convolsive seizures respectively. As regards the first, in Friodreieh's ataxia the knee-jerk is almost invariably abolished, though in rare instances (two per eent.) it may be nomal or even exagrerated. In disseminated selerosis the opposite is true, the knec-reflex being much more commonly exaggerated, rarely abolished. The mental faculties are, almost without exepption, ohtunded in varions degrees at some stave of the disease in multiple selerosis, msually in the form of a smple dementia. In Friedreiel's ataxia the intellect is unimpaired, exceptional cascs manifesting a slight mental weakness at most. Convulsions were noted in more than fifty per cent. of the cases of disseminated sclerosis in childhood in the literature of the subject to which I have had access. Though oecasionally observed in hereditary tabes, the convulsions were very probably an aceidental coincidence, and not essentially related to the morbid proces.

Chorea may be readily eliminated in a diagnosis by the difference in the character of the tremor, and by the absence of nystagmos, of scanming spech, of ocular paralysis, and of true ataxia. In the so-called post-hemiplegie variety of chorea the symptoms may closely simulate those of multiple sclerosis, and a diagnosis then becomes a matter of more difficulty. ${ }^{1}$ The history will aid, however, in determining the identity of the affection, and it is only rarely that such cases give rise to any confusion.

Paralysis agitans need only be referred to ineidentally, since it is exceedingly rare to meet with it early in life, although Chareot has seen two

[^220]cases aged respectively twelve and sixteen years. ${ }^{1}$ The type and location of the tremor, the peculiar "bread-erumb" rolling position of the thmonh and finger, the rhemmatoid pains, the gait,-" propulsive and retrogressive" in charaeter,--together with the absence of nystagmus, of ocular paralysis, und of ataxia, will readily decide the case to be one of paralysis agitans, and there should be little trouble in distinguishing them.

Brain-tumors or neoplastic growths anywhere in the nervons centres, especially if multiple, may give rise to symptoms alsolutely identical with those of multiple selerosis, and often in such cases a diagnosis will berome impossible. Within the past few years Prof. L. C. Gray has observed the symptons of a multiple sclerosis during life in eases which showed simply a lepto-meningitis at the antopsy. ${ }^{2}$

Prognosis.-It is an aecepted fact that, spimal or cerebral nervons tissue having been destroyed by disease, it is not regenerated. It follows ats corollary to this staten.ent that a permanent recovery in a well-established case of disseminated sclerosis is not to be expectel with our present means of combating the morbid process. In this respeet the affection is the same at any are. The process of degeneration may, however, mider favomble influences and treatment, occasionally be arrested, at least temporarily. This oceurs at times spontaneously. Such arrests constitute the well-kuwn periods of remission, periods in which the symptoms may remain quiescent for many months and even for years, though such remissions are not so apt to oceur in cases developing in children, nor are they so complete or long in duration. An explanation of this statement is to be found in the fact that nervous structures in the child are peculiarly volnerable becanse of their unstable and highly-vascular condition of development and growth, and the damage consequent upon a lesion, nuch more wide-spread beranse of the subsequent interference with development. Affections of the central nervous system in children therefore offer, broadly speaking, a less favorable prognosis than in the adult. Multiple selerosis seems to he no exception to the rule, and it is in accordance with this view that we find the discase less amenable to treatment, both as regards the prolongation of life and the amelioration or arrest of the symptoms, even temporarily.

The disease provokes a condition of physieal helplessness much more rapidly in children, and there is a consequent inerease in the liability to complications, mechanieal and trophic in origin, which characterize the $\mathrm{l}_{\text {kell }}$. ridden stage of many nervous diseases. Statisties as to the duration of life after the discase has been recognized are not sufficiently numerous or reliable to allow of any positive deductions in this particular, but it is proballe that the duration is much shorter. Death from disseminated selerosis per se is not common at any age, but the general impairment of nutrition associated with or resulting from the bedridden state, or the supervention of bladder-

[^221]troubles, or of bulbar paralysis, with consequent inability to take food, or of pulmonary congestions, may in any case give rise to a fatal termination. Convulsions are an added factor in the disease of the gravest import in prognosis, since a seizure may abruptly precipitate a fatal result.

The intelligence is almost invariably defeetive sooner or later in this diselse at all ages, though with this differenee, that the defeet is in children more in the sphere of receptivity, and in adults of an amnesic character. The child's psychical centres never having been stored with impressions, or only partially so, his vanity and denentia are more obtrusive ; and this is true in degree the earlier the child is affeeted.

Treatment.-There is no known drug or combination of drugs whie.t ean be demonstrated as possessing a specifie property in arresting the morbil process in multiple sclerosis. It may be still more positively stated that we are utterly powerless to restore the damage which has been done to the nervons axis or any portion of it with any therapentic agent. In view of these facts, the treatment to be observed in any cese of disseminated selerosis must be largely experimental and symptomatic. I do not mean that it should be inferred that we are withont any known resonrees which are of value in this affection. On the contrary, there are several drugs, besides other measures, which have in repeated instances produced an amelioration of the symptoms. Iron, ergot, potassiom iodide, nitrate of silver, turpentine, arsenic, and mercury have all been persistently administered ly many observers, and with appareut benefit in the case of some of the number.

Of these, iron seems to be of use solely in comnteracting, by its tonic properties, the debility which oceasionally is an accompaniment of the discase. Ergot, though widely used, I have never seen followed by evidences of improvement in adult cases. It seems to have crept into the therapentics of multiple selerosis through the clams of Brown-Séquard and other advocaten that its use was followed by benefit in that kindred disease tabes dorsalis. It has become the fashion to suggest potassium iodide in any and all chronie affections of the nervous centres; nor is this suggestion in the line of empirieism, thongh it would be of undoubted advantage to ontline more clearly its indications. In multiple selerosis in children there are few data to show that its use has ever been followed by benefit which could be directly attributed to the drug. I do not care to assume the extreme position of condemning its use entirely, but it seems to me that only in those cases which afforl some special indication in a syphilitic inheritance (a small pereentage) should the drug be relied upon to the exclusion of other and more useful remedies. In such cases it is probable that the conjoint administration of the iodide with mercury, or the two alternately, would give better results than either alone. Nitrate of silver has long been in use, and at one tirre was held in high favor, in all forms of chronic degenerative or seleiotic disease of the spinal cord and brain. A cousensus of opinion tends more and nore to the belief, in the light of careful and scientific observation, that the
beneficial effect following the use of silver in this disease was post and not propter hoc. The same may he said, in passing, of gold and barimu chlorides, although meither of these drugs has had my extensive trial in the cases of multiple selerosis which have oreurred during childhoorl. Arsenic, from its almost specific action in chorea, a disease which in son important respects is known to resemble multiple selerosis, and which it is cot innprobable will be fornd to he still more closely related to it, should, I believe, be triad faithfinly in every case. The liquor potassii arsenitis (Fonler's solution) is the form most effectively administered.

Among the many other drugs which may be mentioned as having been tried, phosphorns, on physiological gromeds, at one time held a position of some prominence. Its nse has, however, been attended either by results, negative in chanacter, or, as in the cases of Bristowe, by an aggravation of the symptoms. ${ }^{1}$ Cod-liver oil in the debility or emaciation sometimes present is indicated, and its use in conjuntion with phosphate of iron wats followed in one case (Wilson's) by deeided venefit and a marked remissimn of symptom:

With the German sehool of nemologists electricity in the form of galvanism is a routine measure of treatment. Following the teachings of Erb, small doses and short and infrequent applications are recommended. From three to five milliamperes administered through harge sponge electrodes, the negative over the cervical sympathetic ganglia, the positive passed shanly down the opposite side of the spine, on alternate days, is the method in nse in Erb's clinic. The séances are of three minutes' Juration. In the English elinics and in this country much stronger eurrents are used and the duration of the seance is longer. In the early stages of the disease the German method is advisable, except that the applications should be made daily or twice a day ; but in cases which have passed through the initial stage, aud in which the disease is established as a chronic organie affection, stronger currents (from five to ten or twelve milliampères) should be used and the séances should be longer. Very decided improvement follows in some cases. Humphrey's patient (Amnie J. S.) was relieved of tremor for one month following the use of galvanism, though the symptoms all returned afterwards and remained unintluenced by any treatment. The faradic enrrent is serviceable in arresting the wasting of museles which sometimes, though not often, occurs. In such cases mild currents from the secondary coil should be passed through the affected muscles daily.

Recognizing the absence of any knowledge of a specific for the disease, the treatment in many cases has been purely symptomatic, and even here the results have not been very encouraging.

For the relief of tremor, the symptom whieh is most annoying and harassing to the patient, reudering him helpless and dependent at times,

[^222]many remodies have been suggested. A partial list inclodes conimm, atropine, hyoscyamus (Charcot, Scgnin) and its alkaloid, the bromides, arsenic, cimicifuga, strychuine (Hammond, Troussean), zinc sulphate, physostigma, cumre (Erlemmeyer), veratrum (Feris, Spitzka), and electricity.

Of these the most reliable is hyoseyamue, given in duses of from one two-hondredih to one one-hundredth of a grain twice or three times daily, the tremor disappearing within a few hours after its administration, and rmaining absent for several days during the continuance of the drug. Conimm seems objectionable, because of the depressing effect which follows its use, as well as from the foct that it only exceptionally molifies or controls the shaking. Atropine aets very similarly to its ally hyoseyamine, though the dryness of the mouth and the vertigo which result from its use are strong objections. Besides, it is not nearly so effective as hyoscyamine. Stryelnine has been recommended by Tronsscan, Hammond, and others; but Clareot states that it aggravates the tremors. No instance is recorded in which its use was followed by any benefit in the discase atsobserved in childhood. Physostigna, sulphate of zine, and cimicifiga are all oljectionable sither negatively or positively, and are probably only worthy of consideration after all others have been tried ineffeetually. The bromides will undoubtedly to a partial extent control the tremors of disseminated sclerosis in mam, though it is neressary to push the drug to its full physiological effeet, and the attendant depression and disturbance of digestive function make the slight relief' an expensive one. In a patient of Erlenmeyer's the tremor disappeared for two days under curare. Spitzka, following the suggestion of Feris, foumd veratrum in small doses repeated every few hours quite effective, but considered it objectionable because of the necessity of inereasing the dose to almost toxic quantities. Arsenie has been tried repeatelly, and next to hyoscyamine seems most reliable. It has been used ly Eulenberg hypordermically for the relief of tremors met with in cases other than multiple selerosis, and with success. Reasoning by analogy, it might seem justifiable to resort to the same measure in these cases, but it appears probable that the unstable temperament of a child would render hypodermic medication a questionable procedure in this discase. Galvanism applied as in the method described for general treatment is sometimes palliative as regarels the tremor.

There are few other symptoms which require special attention or treatment. The headache nsually observed only during the carlier period may persist and prove tronblesome, as in Unger's case, in which it remained for three years obstinately. Galvamism applied to the brain, one electrode to the oceiput and the other over the frontal bone, has been suggested for the relief of headache when present. The enrrent in such cases should be applied very gradually, through a rheostat or the physieian's hand, beginning at zero and increasing to two or at most three milliamperes. The pains in the extremities which are not uncommon in adult patients affected with multiple selerosis seldom oecur in ehildhood.

VoL. IV.-33

TUBERCULAR MENINGITIS.

By A. JACOBI, M.1.

The first accurate description of tubercular meningitis was given by Rolert Whytt (1768), under the name of hydrops of the cerebral ventrinthe, Capuron and Chauvel employed the term brain fever (fierere cerebrele). Fabse nt Constant introduced the term "tubercular meningitis" into on present nomenclature in 1835. Since that time the literature of the suljeet has been so immense that, as this work is designed to supply the elinical wants of the practitioner, I prefer to abstain from extensive refereners and limit my remarks to as comprehensive a review of the subject as com be accomplished within the briefest possible space.

A large pereentage of the cases of tuberentar meningitis admits of a subdivision of the symptoms into three parts, or stages, which correspond more or less distinetly with the development of anatomical changes. The first is that of hyperemia of the pia mater and irritation, the second exhibits the symptoms of exudation, pressure, and consecutive anamia, and the thirl those of the extinction of the functions of the centres. Still, it is impossible fully to discriminate the boundary-lines between them in every case.

The first signs of a discased condition are of a very i . definite nature. Many of the children have a previons history of pallor and debility, diarrhoa and vomiting, "colds," bronchitis, conjunctivitis, eczema, and lymph-adenitis,-"scrofula." They emaciate, are pale, lose their appetite, become quiet, unwilling to play, peevish, ery a good deal, or appear perfectly listles.

The physical, intellectual, and moral changes are well remembered by the attendants when the further development of the case suggests inquiry into the previous history. The moroseness, peevislmess, and depression are often relieved by sleep, which, however, is frequently interruptel. Many, indeed, sleep badly, complain of headache, avoid the light, and hold their head in their hands. Often it is one and the same spot that is constantly supported or pressed. There is, as a rule, no elevation of temperature at this time, and rarely is there an increase in the frequener of the pulse ; on the contrary, it begins rather early to be retarded and slightly irregular. The tongue is furred, an occasional brief vomiting-spell oceurs, and the "gastrie" symptoms are treated unsuccessfully. The vomiting is not preceded by nausea, is quick and propulsive, and mostly takes
plate while the child is being moved on the bad or raised from the pillow the same as in pregnancy or sea-sickness. There is constipation, with much headache, and the quantit, of urine diminishes. Some hyperasthesia of the aldomen, remindi f of peritonitis, is liable to mislead the diagnosis. Gralually there is more somnolence, more photophohia, and now and then some increase on tnmperture, which nsially, however, dues not exceed 1001_{2}° or $101^{\circ} \mathrm{F}$. In this way, in aldition to a few weoks filled with the premonitory symptoms detailed above, a week or more may pass.

The pulse becomes more slow and irregular, even intermittent, the headache more severe ; there is a constant frown. Though the patients do not complain, they are evidently suffering much. They grind their teeth, cer in their sommolence suddenly, imexpectedly, at longer or shorter intervals, are delirious or dull and apathetic. From their apathy they are easily ronsed, however, look surprised, give a brief answer, and drop again into their drowsiness. They yawn often ; respiration is interrupted, and restored by deep and long sighs; the abdomen is retracted. The pulse is still more etarded, 60 or lesz, more irregular, for many days in suceesssion. The seceretion of urine becomes more seanty, the constipation more obstinate; the eyes are but half closed, under the falling eyelid the balls are seen to move slowly about from side to side, and with a peculiar expression of ntter fatigue and forlorn absent-mindedness the mper eyelid is gently raised, reveals the blank sonlless ball, and gently falls again. Now and then one of the eyelids is more drawn than the other, one eye more pereeptible than its mate. The pupils begin to dilate, sometimes both, sometimes one more than the other, and the staring expressiou becomes more intense. The face is apt to flush suddenly, mostly in ciremmseribed spots; the skin in contact with the pillow is congested, and the mark of the tonehing finger is easily seen for some time. A gentle friction results in the apparance of a well-ciremmseribed blush corresponding with the size of the friction (Troussean's "mark"): it appars slowly, after a few scconds or a minute, stands out in distinct relief a few minutes or more, and disappears ats slon! y . Conscionsmess is gradually waning more completely, a slight twitching is seen romd the month or eyelids, or suddenly a general convulsion may set in, followed by ptosis, facial paralysis, strabismus, or paralysis of the extremities. This paralysis is more apt to be unilateral, however, than gencral. The convulsions may reappear, may be general or partial, and are accompanied with more dilatation of the pupils, and more loss of conscionsness, which rarely returns for a few moments. Indeed, all the cerebral symptoms may exlibit peculiar alterations: sometimes quite unexpectedly the paralysis may pass by, or become more local; sometimes there is an arm paralyzed without the leg or the face participating,--never, however, a lower extremity without the upper. Even ptosis may disappear temporerily.

The convulsions are not always clonie,-sometimes there are tonic con-
tractions; the rigidity of the neck beromes more intense, the fine mone flushed, perspiration sets in, the pulse incremses in frepuency, the fompernture begins to rise to 102° or more. 'This is the begiming of the rme, whieh generally arrives in abont three days. More convalsions, derper emata, mpid pulse, from 150 to 240 , higher temperature, fiom 103° or 101° to 107°, injeeted and purnlent conjunctive, and Cheyne-Stokes ropimaim, prealict and usher in the final dissohtion, after an observation of generally three or fomr weas, and a duration of all the sympoms, the premonitory inciuded, of from five to six weeks.

A hatent form of the discase is oxasionally met with in children who have been phthisical for some time. In them the cerebal symptoms do not become perceptible mint two or three days before death. The sojor, "wen at this late stage, is mild, and the convolsions are not violent. In other cases manked with previous gromeral tuberentosis the symptoms are more serere. Vomiting and headaches are very marked, delirinm and eonvulsions very pronomed, the pupillary symptoms often milatemal. In many there is diamthor in place of constipation, and a tumid ablomen instand wh the retraction. In the infant the fontanel may be fonnd rased and pulsating matil near the emb. It is at that early age that the premonitory symptoms and the initiatory stage deweribed above are oftern absent. The attork is very sudden; temperature is high in the beginning ; strabismns, trismas, opisthotomis, or generat convolsions set in at a very carly period, and death oecurs in a few days. Thus it is that the diagnosis is often diflimult. There are quite a momber of cases, particularly in older children and in adults, in which firom the begimning a peenliar typhoid condition oheseres the recognition of the exact condition of things. In these, sommoknee, headades, delirimm, and convolsions appear anly, and atternate with me another ; the ablomen is not rotracted, the fever is very high firon the begiming, the thoracic symptoms predominate, and the pationts die soon with the symptoms of both emobral and genemal acote miliary tuberenlonis.

Ophthalmoscopie examination reveals hyperemia of the retina. Sometimes tubereles are disoovered in the choroid, in the shape of spherigal white spots near the optic papilla. But they are far from beine of ronstant oceurrence.

Pathongideal, Anatomy.-The morbid chages are manly fomblin the pia, on the surface of the brain, in the ventricles, and prineipally all wer the base. The fossa Sylvii, pedumenli, chiasma, cerebellum, and jons are the main seats of exulation. The pia is less tramsurent than nomally, thickened and suceulent, and can easily be detached. Exudation is somptimes copions, either serons, or purnlent, or gelatinons, sometimes quite consistent; the eavities are dilated with either a clear or a turbid fluid. In the exudation are found a number of small tubereles, yellow when older, semi-transparent when recent. They are mostly found in the walls of small blood-vessels, the lumen of which is often contracted by their presence and by the accompanying proliferation, particularly of the adventitions
membrane (Cormil), and of the mule of the nemoglin mad the variese of the capillaries (Hayem). 'The mechanigal ohstrnction of cirenhation deperseling thereon, and the supervouing arteritis, together with the pressure of the sulid exudation on the blowh-vessels, ofton give rise to softening of the
 stane there are other changes depending on the presence and amont of the exulation. The ventriches are dilated, their walls sometimes hardened by the pressine, hat more often softenerl; the convolutions are flattened, the substance is corlemators, and capillary apoplexies resulting form the changes described as baving ocenred in the bhomberssels are firepuent. Such eapillary homorbaures are particularty eommon in the doroid phexns.

The tuberonlar eonglomerates are sometimes fonnd to be quite momerons, and still there is little or mo meningitis. In others there is cither a hydrocephalio effinsion, or a jelly-like or sold exudation withont a local tuberalosis, while in all of them the number of tubereles in the other organs is very large, thas rendering the natnere of the intrmeranial affection artain. Inderd, there are but few mases in all the forms of tubereabar meningitis in which the bacillus has not been fomme.

The other organs show tulkerentar degencration. In most eases the Whole course of the disanse, and the results of the antopsies, are those of miliary grneml tuberoulosis. In adolesents the lang-symptoms are the most pradominant, in the child (besides the bain) the proitonem and the bronchial glamels are thoroughly affecterl. The liver, the spleen, the kidney, and partienlarly the ploma, exhibit tubereles in all their stages, mostly reent ; the bromelial and morliastinal glands, not marely those of the neck also, are caseons or suppurating in their centres, and the lungs are seldom intart. Bones are often carions, parts of the surface are rovered with eq\%omi, and now and then we find an arthritis ("tumor alhus"), or lopms. Ohd tuberendar infiltrations in the lungs and ghands are very eommonly fomn. .a the antopsies of smeh cases ; ocensionally also in the kidneys, ipleen, and liver. In some of these anses the rerebral changes are but trifling.

Etiology,-Tuberenlar meningitis is not frequent in the first months of life, hat is more so than is supposed by many. Indeed, as the symptoms difler from those exhibited in later years, mistakes in diagnosis arg casily male. Aiter the seventh year its prevalence is mot great. The large majority of eases, therefore, are observed between the end of the second and the seventh year. Dentition, worms, frights, falls, blows, have troubled more serionsly the brains of writers than of children dying with tubercular meningitis. This and meningeal tuberenlosis generally are infections disemses, or rather parts of a general tuberenar infertion. Thus the main canse is in a specifie invasion, which, with our present knowledge, means the importation of the tuberele-bacillus. It spreads atong the lympli-ducts and hood-vessels and thas excites inflammation. It is true, however, that the amome of inflammation and the number of eruptions need not be parallel to each other: sometimes there may be even meningitis without a
localized tuberete, white there is a generat tuberentar infection of the whole lenty. Children of phthisical parents are more linthe to be affected, anmur them boys more than girts. But, aerording to our present knowledgen of the rare ocenrrence of direet heeditary tmasmissim, it is certain that the principal danger iies in the romgenital insutlicieney of the tissues, and, more positively, in the many opportunities for contagion by ! (breatit milk nud cow's milk) and inhalation.

I knew a family in indigent ciremmstances and with limited dwelling. space, in which ton childrem died of tuberenhosis, many of them of minerenlar meningitis. But one of the eleven survived,-now a man of aser thirty, with a marrow chest, hut in fair health. A momber of 'tases in the satue family are observed frequently. The children are often ddisute, of less tham momal weight, lively, intellectual, prematurely overburdened with mental work, impressionable: some I have known to be active maturhators. - But there are those who are fat, rotund, of apparently vigoroms health, but with long, thin eyelnshes and necasional catarth of the eonjunctive or the nose; again, those who have always been believed to be in health, in whom nothing but an aceidental exposine to the virus, ofturn not traced, can be aceased of being the cause of the mischief. But the history of every patient must be thoronghly studied. In many cusen the origin of tuberenhar meningitis can be trateed to the bronchiat glames, in which tubereular degeneration may remain dormant for years. Through them, whon;ing-cough and mensles may give rise to a general tuborenlar ilisasion after yeurs have ehapsed; another proof of the gerversity of the "expectant" treatment in "self-limited" diseases, and of the fatet that therinpeutic nihilism is as daugeroms as over-medication.

Uffelmam, Ochme, and Bacumber report cases of tubercular meningitis connected with (or depending on) erythema noxlosmm, which is itself hoth the canse and the result of embolic proeesses not only on the extensor siles of the extremities and the tendons, but also in other regions of the body (mouth, throat, conjunctiva, endocardium, pleura, kidneys). Oelme's case died of tuberenar meningitis a few weeks after the termination of a felmite erythema notosum. Baemmer saw three cases of the same affection complicated with vesicular cruptions on the conjunctives. Two of them hat a protracted high fere, one multiple lymphomata and tumefaction of the spleen, one bilat a plenrisy and nenralgias on arms, legs, and heod, and one was suddenly taken with the symptoms of aente hydrocephadus. At the autopsy he found miliary tuberculosis of the bronchial glands, the piat plen:a, liver, spleen, and kidneys, and central softening in a gland adjoining the tracheal bifuration.

Diagnosis.-The diagnosis of tuberenlar meningitis, in the majority of cases ocellring 'setween the second and the seventh year, is not very diffieult. After the premonitory stage of irascibility, peevishmess, or depression, the temperature being normal or nearly so, the respiration beeromes irregular, the pulse retarded and irregular, vomiting and constipation set in,
the mine is diminished in qumetity, the ablomen is retmeterl, and the intrmse hadache changes gradmally into, or ultemates with, stupor increasing intu) comat.

Sighing is notiend at "tory emrly periond. Cheyne-Stokes respination is asomptom of parulysis and mu ominons sicto.

The pulse may be rapid at first, purticularly in infants, hut is mostly shaw while being irmegnlar, from sixty to eighty beats, of less, in a minnte, of changeable quality, now and then almost impereptible, towards the and (dhe last three days) very rapid and then more regular. It must be remembered, however, that the pulse maty also be both gnite slow and invernlar in gatrice disombers and in chonie mmemia. I have ohserved this palse in manime chidren throngh yours, and have often beon in anxions smspense nhout its significance.

Vomiting sets in \& Idenly, without preceding mansen, usmally while the had is raised, bus alse a tile on the pillow, and is propulsive and quick. It is mostly a sympton of irritation of the phemmogastrie nerve, and is there lore chanacteristie of meningitis at the base. In meningitis of the convexity there is little or no vomiting, and the pupils remain eapal, but there is posis ; there is more monseonsmess, sopor and comat, and the disease is of shorter duration.

Headache acompanies the whole connse of the disconse. At lirst it is continnons and miform ; the patient fiowns constantly, and is apt to carry the hand up to the head. A flemands there are occatsional abropt shrieking yells, which are apt to persist mutil complete stupor sets in.

Constipation is quite obstimate, but there is diarrhea sometimes in very young infants. As in them the retaction of the ablomen may be absent, the diferential diagnosis between tuberenlar meningitis and typhoid fryer may become diffieult.

The temperature of the bory (rectum) is not chatacteristic ; it is not typial, and has no regnlar eurves. It is at first usually nearly nomal, somotimes submormal; only in the very young it is high, beense in them tuberenlosis is apt to be miversal. When in children of four or five years the temperature is high and less intermittent at an carly period, the ease is probahly one of purulent meningitis. There is no regular proportion betwen pulse and temperature. Towards the end it becomes very high, in proportion to the inceasing paralysis. The latter may result either from pressure brought abont by the presence of the exulation, or from antemia. In this case the paralysis may be but temporary.

Convulsions may set in at almost any time. They may be localized or gencral, mild or severe, clonic or tonic. Death is racely the immediate result of an attack of convulsions, but a local paralysis (motor oculi, facial, an upper extremity, or total hemiplegia) may set in immediately after such an attack. This symptom is pathognomonic for the diagnosis from uremia, in wheh a loal affection is extremely rare.

D'Espine and Pieot describe a symptom which they eall static ataxia.

It appears at a pretty early period. When the child is placed on his feet, he totters, his walk is undulating, his features exhibit fear and anxiety.

Retraction of the head and stiffuess of the museles of the neek constitute a frequent symptom of tubercular meningitis. But the same symptom is met with in other cerebral and spinal disenses, as in cerebro-spinal and spinal meningitis, and in either idiopathic or secondary musenlar affections. Torticollis is observed as both an aente and a chronic affection, as the result of rhematism, trama, angina, articnar inflammation, and adenitis, the possible existence of one of which most he taken into aceonnt in every casis of retraction. In most of those cases it begins quite suddenly, and with some fever and moist surface; passive or active motion is exceedingly painful, but both the rigidity and the pain are mostly confined to one side only. There is no lack of conscionsness, as in meningitis, and there are no convulsions. The course of the ante symptoms is short, though convalesene be ever so protracted and relapses frequent. Still, A. Legroux' reports a case the symptoms of which were so doubtful as to render the diffrer ential diagnosis from tubereular meningitis quite difficult. It lasted der in days. Among the symptoms of these ande retractions Legroux comsts fever, perspiration, lassitude, pain, rigidity, vomiting, and constipation. . very close local examination is required to diagnosticate in such cases between meningitis, pharyngitis, otitis, and bronchitis. The author relies on the localization of musenlar hardness as one of his best differential signs, and states that ia his eases the abdomen was not retracted as in tubereular meningitis, and the vomiting lasted but a short time.

The differential diagrosis of tuberenlar meningitis from simple, and syphilitic, and cerebro-spinal meningitis is by no moms easy in every case. Meningitic symptoms occurring in a syphilitic ehild will find their explanation in a conseientions consideration of the history and of the general signs of syphilis; they are mostly not acompanied by high fever. This form is liable to recover after a protracted auti-syphilitic treatment. Cerebrospinal meningitis is frequently seen as an epidemic, but the nmmber of (ases vecmring in a commmity is apt to be so small that the practitioner who is called upon to decide in an individual case will find his task quite difficult. It is not preceded by a long term of prodromi, as tuberenlar meningitis mostly is, aud begins with a higher temperature than the latter. In a short time the chatacteristic ermption makes its apparance in cerebor-spinal fever, but it may be absent. After a while hemorrlages will appear in the latter; conscionsuess is preserved more intact than in the tuberenlar form ; the dilattation of the pripils, or one of them, is pereeptible at a very early periond, it being the result of irritation of the sympathetic, whila in tubereular memingitis it results from oculo-motor paralysis. The vaso-motor distminmees ('Tronsseau's "marks") are observed at the very hegiming of a cerobrospinal meningitis, while they do not appear nutil late in the tubereular cerpe-

[^223]his fert, iety. onstitute nptom is ad apinall

Turtiresult of the prosy casis of rith some " mintul, ide only. - 1 noc collvalcsomere x^{-1} reports he ditter. ted eler n ux counts ration. 1 cases ber relies on itial signs, tubereular
imple, and cuery cise. rexplatal neral signs This form Cerebroer of casch ner who is e diflicult. meningitis In an showt inal fever, the latter; ; the dilisly perioul, lar menin. sturlanees a cerelorocular cere-
bral form. In simple meningitis, the "acute hydrocephalus" proper, there are hardly ever any prodromi. Its onset is more sudden, the symptoms more marked, its temperature higher, and its course more rapid. Recovcries are possible, as they are also in rhemmatic meningitis, which oecms more frequently than some authors (D'Espine and Pieot) appear to believe. They quote but filteen cases. Still, this kind of meniugitis will be more fieruently diagnosticated when observers beeome aware of the fact that arute rhemmatism in infancy and childhood is asily overlooked, for the reason that its articular symptoms are liable to be but trifling, the local pain and swelling not being necessarily in proportion to the dangeronsuess of the affeetion. In rhemmatie meningitis the onset is sudden, and the fever high from the very beginning. The suddemess of the attack makes it resemble the eerebral symptoms produced by the influence of an acute cruptive fever, such as scarlatina, which is apt to prove fatal within a day, with high temperature, unconseionsness, convolsions, and carly heart-failure, without the charateristic ernption making its appearance.

I have seen cases in which the diagnosis between tubereular meningitis, typhoid feve", and acute yellow atrophy of the liver was very diffient ; in a few it became impossible. The latter, rare though it be, will exhibit, besides the high temperature and the grave brain symptoms, a large amount of athmin in the urine, and jaundice. Typhoid fever, when roming its typical course, may exhibit its peenliar temperature-curve, which, however, is absent in in ost cases. Ehrlich's test is not always conclusive. Abnormal castes of typhoid fever, moreover, will commence with a high temperature, and cun easily be mistaken for the aboormal cases of thbereular meningitis, which may also begin, partionlarly in the very young, with elevation of temperature. Besides, typhoid fever, while influencing the cerebral functions either directly or through participation of the kidneys in the morbid process, is liable to be actually complicated with meningitis to such an extent that the diagnosis may beeome very diffieult indeed.

Acute nephritis, or the uremia of chronic nephritis, may often be mistaken for tubereular meningitis. The examination of the urine ought never to be omitted, even in cases which do not appear donbtful. Inequaiity of the pupils speaks more for the presence of some form of meningitis, but there are cases of uremia, oceasionally, though mely, in which the dilatation of the pupils is not equal. This dilatation, when produced by direet cerebral paralysis, is more stationary and less easily influenced by light, while very often the pupils of uremia, when dilated, will contract somewhat nuder the influence of light, dilate again, and appear to float gently between its two extremes.

The cerebral symptoms whieh aceompany inflammatory diseases of the lungs are frequently mistaken for genuine simple or tuberenlar meningitis. The brain suffers in preumonia mainly when this occurs in the upper lobes, but there are execptions to this rule. In a momber of cases 1 made the diagnosis from the alisence both of prodromal symptoms and of slowness and irregularity of respiration. The latter is apt to be acelerated in pnen-
monia, even under the influence of a secondny meningeal congestion or exulation. On examination, the physical symptoms of puemmonia were then easily detected.

The ophthalmoseopic examination may he very useful in doubtful cases, bat is so actually but seldom; for there are proportionately bont few cases of tuberenlar meningitis in which it is not negative.

In Marshall Hall's "hydrocephaloid" condition there are a number of symptoms which also oceur in tuberenlar meningitis, such as a mondrate amomet of fever, gritting the tecth, and sighing, also pallor and collipse, half-closed eyes, injected ce junctiva, come, and convolsions. But there is also the history of an acute discase (gastro-enteritis) preceding the cerel)ral symptoms, which facilitates the diagnosis.

Prognosis.-The prognosis of tulerenlar meningitis is a very hat one. It is true that reeoveries have been reported. Rilliet has seen some crisen getting well : one of them had a relapse, and the post-mortem examination showed the correctness of the diagnosis. Lebert also proved by an antups. that one of his cases had terminated favorably, previonsly. A few surch cases are reported in L'Union Médicale, April 12, 1881. Many recoveries are elaimed by those authors who recommend speeific treatment, as, for instamee, Hahn, whose treatment consisted in the application of tartar emetie ointments. A famous New York teacher and consultant claimed six recoreries ont of a houdred cases, but admitted that he saw cach of the cases, but once, that he had to rely on the reports of the attendants casually given, and that mistakes in diagnosis were possible.

I have seen what I thonght to be a reeovery; it was followed by death from neerosis of the cramial bones and secondary meningitis superimbed by the tartar emetic torture. Another case of mine was that of a boy of two ycars, who "recovered." When growing up he was stupid, eccentric, wilfol, lazy. He is now nearly thirty years old, and lives in an insane asylum. A third ease, in which the diagnosis of tuberenar meningitis was possibly correct, terminated in inemable blimeness. These are the best results I can boast of.

D'Espine and Picot and Baginsky never saw a case getting well. Cadet de Gassicourt claims that his recoveries were those of meningitis oceurring around tumors, syphilitie gummata, and cerebral selerosis.

Thus, when the diagnosis is beyond donbt, the prognosis may be considered absolutely bad. Donbt, however, is jnstified in a number of cases of acute simple meningitis of the base and ventrieles.

Treatment.-Every baby in a tubereular family or surroundings is liable to be infected with meningeal tuberenlosis. Therefore whatever preventive treatment of serofinla and tuberenlosis has been detailed in the second vodume of this work and fomm available in practice onght to be utilized. Besides, the hair ought to be worn short, the head kept eool, no feather pillows used, the skin aeenstomed to cold water. Eezema must be cured, the bowels must be kept regular. Though it be true that tuberenlar men-
ingitis is an infectious dismase, it is still a meningitis, and irritation and hyperemia of the brain are predisposing canses. Therefore before the eighth year there ought to be for a prexlisposed child no schooling, and atter that time no overwork must be permitted. Cuch-liver oil and arsenic may be administered for months and years in suceession, the latter with occasional interruptions. Iron is to be given in digestible and small doses, ats long as there is no vascular exeitement.

When tuberenlar meningitis is diagnosticated during the prodromal stagr,-a rare oceurrence,-moise and light must be exeluded, and ahsolute rest cuforced. Even at this early period the prognosis is bad. Altogether, no treatment can be entered uron with any degree of probability of saving the patient. There are indications for treatment, and in the present condition of therapentics we can do no better than to fulfil them, with conseientionsness and-hopelessness. Leeches and vesiatories I have seen to do no good. The latter irritate and bother. Other external measures have been the use of blue ointment, ofeate of merenry, croton oil, ointments containing tartar emetic (1 to 8-12), and lately ioloform. Forty years ago it was the former that "saved" the patient; four years ago' it was the latter. A dose of calomel may l ren to relieve constipation, and repeated from time to time ; or some r convenient purgatia "and enemata. On the supposition that the inflammatory element was predominant, mercurials have beel administered persistently.

Iodide of potassium appears indicated partly as an absorbent and partly for its effect on the circulation. I know that in some cases that took large doses for weeks, though there were hundreds of tubereles, but little effinsion was found in the post-mortem examination. Large doses appear to be required for that end ; they are casily tolerated, a child of two yoars readily taking, and retaining, from one to two or three drachms daily.

Persistent vomiting requires pills of ice and opiates; if the stomach be intolcrant, the remedy may be introluced into the rectum, or Magendic's solution into the month, on the tongue, where it is readily absorbed. So long as the intolerance of the stomaeh continnes, rectal alimentation must be resorted to. During all this time, the heart being weak, cardiae stimulants may be given,-digitalis, strophanthus, spartein, camphor ; but no caffein, and no aleohol.

Convulsions indicate the inhalation of chloroform, the use of chloral (oceasionally morphine) by mouth or rectum or subcutancously, and the bromides. A warm bath may be given, but care most be taken that there is no undue tossing about. Cold to the head ought not to be thought of except when the fontanels are raised and the head hot and the temperature devated,-hence mainly towarls the end of the disease. Infants do not stand iee to the head for any length of time; unless watched, it produces collapse and heart-failure. As the bacillus proliferates fast in ligh tem-

[^224]peratures, antipyrin or phenacetin will act agreably, provided they $I_{\text {w }}$ not given withont one of "te permissible cardiac stimulants.
 laparotomy. Will tuberoilar meningitis ever be improved by similar interferences. It is not probabs. For no operation of any kind could be made, without the danger of shock, on the sknll of a child aflieted with tuberenlar meningitis, exept where fontanels and sutures were still open; and the intracranial space, though opened, is not a cavity aceessible to air and capable of being emptied, in the sense of the abdominal cavity. 'Thus, if there be any cases of spontaneons recovery in tuberenlar meningitis, it does not appear that our direct therapenties in that malady are other thatu hopeless.

CEREBRAL HEMORRHAGE, THROMBOSIS, AND EMBOLISII.

By B. sACHS, M.D.

The brain of the child, as of the adult, is subjeet to marked disturbaneses of its bood-supply. We may have a large effnsion of blood from rupture of one or more blood-vessels (hemorrhage) ; or an (wehusion of one or more blood-vessels due to coagulation of blood in situ (thrombosis) ; or the occlusion of a blood-vessel by a pling whirled inte it from some distant part of the cirenhatory aparatus (embolism). Nuch as these pathological proesesses differ from one another, the clinical symptoms resulting therefrom have many points in common, so that we are jnetified in comsidering cerebral hemorthage, thrombosis, and embolism under one head. W'e shall be compelled, however, to note carefully certain important distinctions, not ouly as regards the etiology and morbid anatomy of each process, but also with reference to the variations in the mode of onset and in the development of other symptoms due to these several lesions.

Hemorthage, embolism, and thrombosis have long sinse neen reognized as the most frequent causes of adult apoplexy; not so with regard to the cerebral apoplexies of early life. There was supposed to be a manked distinction between the ehide and the aduld individat in this respect. Only a few sears ago Bemhardt considered cercbral hemorrhage a rather rare oevorrence in the child, and referred to an exeeptional case of Bastian. ${ }^{1}$ Henoch, Rilliet and Barthez, and other authors were of the same opinion. Certain it is that these vascular disturbances are very much raver in childhood than in later years; but in a recent study of cerebral palsies of carly life t,y the author and Dr. F. Peterson ${ }^{2}$ it was clearly shown that in one hundred and five mases of cerelnal infintile palsies thirty-five cases were due either to hemorthage, thrombosis, or embolism, and that this percentage would have been materially increased if the reported cases of atrophy, selerosis, and eysts, forty out of one hundred and five, most of which were originally due to hemorthage, had been added to the list. Osler, ${ }^{3}$ in sixteen cases out of

[^225]ninety autopsies of hemiplegia, found embolism seven times and hemorthage nine times.

The scarcity of early antopsies accounts. for the prevailing, but mistaken, views on this subject. For detailed proofs of the writer's viows the reader is referred to the paper mentioned above, which will be queted again and again in the course of this article. The entire subject-matter was gone over so thoroughly in that paper that reference to it will avoid freguent repetition:

ETIOLOGY AND PATHOLOGY.

Under thas heading it will be neeessary to consider each process separately.

Hemorrinage.-Rupture of a blood-vessel in the brain of a child may be bronght about by a variety of canses,-either by a diseased condition of the blood-vessel itself, or by the application of some extraneons forece. Taking the latter cases first, we have to include among them those in which the diffienlties of labor (contracted pelvis, protracted labor, instrumental delivery) are equivalent to a tramatic injury to the skull and brain. Dr. Sarah MeNutt ${ }^{1}$ has shown that the extravasation of blood (chiefly menin-

Fig. 1.

Meningeal bemorthage in a new-horn chlld: death on twenty-secoud day. (After Dr, Surah Mc Nutt.)
geal) is more apt to be at the base in cases of head-presentation, and oyer the convexity in cases of foot-presentation. The application of the forceps was formerly supposed to be the element of greatest danger, but by a counparison of statisties it was shown by us (S. \& P.) that protracted labor was

[^226]a more potent cause of harm to the child's brain than the application of the forceps. ${ }^{1}$

First-lom children are most apt to suffer in this way. Gowers ${ }^{2}$ fomd in twenty-four cases of meningeal hemorthage that seventen were first-born. The intense venons congestion which accompanies prolonged compression of the bain is made worse by the asphyxia at birth. It is directly responsible for the hemorrhage, which issnes in all probability from the smaller vessels of the pia and not from any large artery.

Apart from these congenital cases, tranmatism is a factor of some, though not of great, importance in the cansation of hemorrhage. In ninety-one cases of acnte cercbral palsies six only were due to trammatism, and these six were no doubt cases of hemorrhage. The following case, with autopsy by. Dr. Peterson, is to the point :

Case I.--A. W., mule, aged fifteen, bright at school, expurt swimmer, at the age of eight or nine years was in the habit of diving a distance of twenty to thirty fect from a malroad bridge. Ite soon began to have intense headaches, growing worse until the age of ' welve yars, when mental changes began to be apparent. Admitted to Poughkeepsie

Fig. 2.

Showing extent of pachymeningitis haemorrhaglea over superior surfaces of hemispheres. (Sachs and Peterson.)

Asylum. One month later, severe epileptie fit. Two days thereafter, right hemiplegia, with constant right-sided hemi-epilepy ; eoma; four days later, death. The wide-spread pachymeningitis hemorrhagiea interna will be seen on the neompanying tigures (2 and 3).

[^227]Over tho convexity of the left hemisphere the hematomu was very thick, consisting of strata of various uges, some of them underbbedy dating from the beginning of the symp toms. The brain weighel thirty-flve und one-fourth ounces. No other lesion in miy purt of the bruin.

Fiw, 8.

Showing extent of process on inferfor surfuees of the left hemisphere. (Saehs und Peterson.)

However severe the tramatic injury may be, a subdural or subanachnoidal hemorrhage is much more likely than an intracerebral elot ; but suds intracerebral hemorrhages do ocenr, and in these cases the symptoms very much resemble those of adult apoplexy.

We now pass to a consideration of the diseased condition of the bloolvessels which renders them liable to rupture and hemorrhage. That a normal blood-vessel (artery or vein) will resist any sudden increased pressime, and that if diseased it will probably give way under normal and surely under increased pressure, are facts so well known that we need not do more than merely mention them. In the adult we have aceepted it as a fact that the bursting of a miliary ancurism is the direct cause of an effisiom of blood; the researehes of Virchow, of Kölliker, of Meynert, and, above all, of Charcot and Bouchard, have settled this beyond dispite. The miliary ancurism, more apt to oeror in the smaller intracerebral vessels, is firmal by a proliferation of the cell-nuclei in the adventitia or outer coat,--periarteritis. Eichler and Zenker, however, maintain that the process begins in the inner coat,-an endarteritis. Whatever the true condition may le, the pressure of the blood against the discased wall causes a bulging which gradually forms into a small anemismal sac. In the adult these changes in
the smaller blood-vessels oceur in conjunction with atheromatous chauges in the larger hoord-vessels, yet they do not hold any direct callusal relation to me another. L masmuch as there are no atheromatons changes in the block-vessels of the young, the existence of ancurisms in arly life was formedy serionsly questioned; but they have been fomed in a youth of twonty (Gowers), in a boy of fifteen (Baker),' and Prof. Osler has fomm a large ancurism of the anterior cerebral artery ${ }^{2}$ in a hoy six years of age. With further inquiry on this point there can be no doubt that miliary nucurisms will be often foumd. ${ }^{3}$

As a rule, the autopsies have been made years after the onset of the trouble. It is often ditheult to find the initial lesion. For this reason it hats mot been possible to formulate for children such a table as DuandFardel gave for adult apoplexies. According to this table, miliary aucurisins oremred most frequently in the hlood-vessels of the optie thalamus and corpus striatum; then followed in regular order the blond-vessels of the eerebral convolutions, of the pons, of the eentrum semi-ovale, of the ceredellar peduncles, of the crura cerebri, and of the medulla. A simdy of a large number of cases of cerelual hemorrlage in the adult proves that the order mamed above will also stand for the relative frequeney of lesions in the different parts of the brain.

On several oceasions ${ }^{4}$ I have called dttention to a peenliar degeneration of the walls of the cerebral blood-vessels of the young. Von Reeklinghansen ${ }^{3}$ lays some stress upon the fatty degencration oceluring in the bloodressels of children, but, as far as I can see, this condition has nerer been consilered in comection with this subject. In view of these facts, it is surprising that hemorrhage is not more freguent. The following interesting talle, taken from Gowers's work, ${ }^{6}$ shows a steady inerease in the liability to hemorthage from the first year of life up to the age of eighty.

Direct Causes.-All conditions which bring about increased bloodpressure are apt to canse hemorthage. Thas, we have hemorrhage in renal disease, with hypertrophy of left ventricle and increased blood-pressure.

[^228]Trambe has shown that in the compensatory hypertrophe of valsular disease of the heart the blood-pressure is not increased, and these conditions are not so apt, either, to produce hemorrhage. It will be well to keep these facts in mind, thongh I camot recall the record of a single case of carls cerehral hemorthage in which renal disease played an important part. 'Ther sudden increase of pressure in the cerebal vassels while lifting havy weights, while violently throwing the head backwarl, while straining at stool, and during the paroxysms of whooping-cough, fivers the ocelurrene of hemorrhage; but there are other and still more potent canses, and here we monst n ition first and foremost the aente infections diseases,-menses, searlet fever, pmemmonia, typhoid, small-pox, diphtheria, and cholera. In one case which I reported some yoars ago, the hemiplegia, which was in all probability due to an intracerebral clot, came on after an ordinary nor:diphtheritic tonsillitis. ${ }^{\text {. }}$

In some instances the apoplexy follows immediately upon the initial convolsions; in other cases it develops in the later comse of the disease. If the palsy follow immediately upon the convulsions, the mechanical congestion during the convulsions may be chiefly to blame. Then, agaiu, we (S. d P.) have shown that the cerebral palsies of early life, of which a large percentage is due to hemorrhage, oceur after ordinary convulsions, and sometimes after a single convulsive seizure. I append a table showing the canses in eighty-three cases of hemiplegia. It should be remembered, however, that not all of these cases were due to hemorrhage, thrombosis, or embolism.

HEMIPLEGIA.
Calses Given. No. of Cases.
Convulsions 20
Pueuinonia 6
Tramma to head 6
Pertussis 4
Measles 2
Senlatina 3
Onset with fever 2
Hereditary syphilis 2
Cerebro-spinal meningitis 2
Onset with fever and convulsions only 2
Fright 2
Hydrocephnlus
Vnecinin 1
Typho-malarinl fever 1
Small-pox 1
Tonsillitis 1
Epileptic seizure 1
Gastro-enteritis 1
Unascertained 26
Total 83

[^229]alvular ulitions: ep these of carly t. Thue 9 lumy iniug at currenre and here -mmales, crial. In h was in ary nos:he initial discas. nical conagain, we which a avulsions, e showing nembered, mbosis, or

As a matter of fact, Eichler ${ }^{1}$ and Rilliet and Barthez ${ }^{2}$ have found that changes in blood-vessels are most apt to oceur after typhoid, rhemmatism, scallatim, cholera, icterms, acute miliary tuberenlosis, and serofila. Most of these disemses figure in our clinical statisties (sce table), and there would be considerablde justice in regarding this as evidence that many of these enry cereboul palsies are due to vascular troubles.

Wereditary syphilis is a factor not to be overlooked. No dombt thromtusis is the more common sequel of syphilis. But since Lacher ${ }^{3}$ has shown that twenty-three per cent, of three hundred cases of syphilis in the adult exhihited some form of cerebal hemorrhage, there is every rason to fear that congenital syphilis is apt to do the same for the brain of the child. ${ }^{4}$
O. Henbmer ${ }^{5}$ refers to parhymeningitis hromorlagica in a syphilitic infint moler one yoar of age, and Hans Chiarib ${ }^{6}$ deseribes the syphilitic degeneration of the cerebral blool-vessels in a child fourteen months old.

Hemorrhage may oceur in the course of a general tuberenlosis, and also during the growth of a cerebral tumor.

If an effusion of blood has oreured into the sulnstance of the bain, the blood rapidly coagulates and forms a dark-red clot; bey degrees this dot turns a lighter color,-brown or yollowish brown. The red bloodcorpuseles become disintegrated, the coloring-matter of the blood is changed into a large number of hematoidin erystals, the white blood-corpuseles assimilate fat, and, as granular corpuseles, abound in the elot. By degrees the dot grows smaller, its surface is well worn off, and in comrse of time a so-ralled apoplectic eyst marks its former seat. In the course of years esen this eyst may disappear, and nothing but a scar then remains. In many of the cases which have been examined post mortem no trace of a hemorthage conld be discovered, while the secondary conditions, such as atrophy, selerosis, and eystic formations, were very prominent. ${ }^{7}$

Thrombosis.-In the adnlt, thrombosis oceurs with well-marked atheromatons degeneration of the arteries. The next most frequent cause is syphilitic endarteritis; and, lastly, thrombosis is the result of disordered states of the blood. In the child the two latter are the more important factors. Our table shows that thrombosis was present in five out of seventy-nine cases of hemiplegia. It would, therefore, appear to be less frequent than either hemorrhage or embolism. This fact should be borne in mind, though on the post-mortem table it is at times impossible to say

[^230]whether the phagring of an artery is due to embulism be to thrombusis. Abererombie relates two chises which are very moll to the point: '

 diseme; ; wo somere of embolism.

 dischsed.

This last case of Abererombin and the dinical history of an intervetiner case by Seibert ${ }^{2}$ puint to thrombosis as the divect canse of hemphargia, pmssibly of other forms of cerebral palsies in dhildren with hemplitary syphilis. 'Thombosis in the comse of a tuberohar meningitis domprss motice, thongh little attention is, as a rule, paid to the resulting hemiphergia, which often wemes only a feew days before death.

Thrombesis in comsergeme of altered states of the blowel is comerivable and probable. This may acoment for the cerebal paralyses of exhamsting
 than and chronic gastro-intestimal catarin. And, lastly, we have to romsider a theory of Gowers, who insists that a thombesis of sumpricial cerpo bral veins and sims-thrombsis constitute a fiectuent canse of hemiphag in children. Hemorthage may lo associated with such thombosis. This morhid condiaion is a well-known one, withont, however, being neessarily associated with hemiplengia. ${ }^{3}$ Attractive as this theory of Gowers is, the prond is still lacking. I repart what was said in the anticle on cercollalal palsies: "The antopsies analyon give meverdene whatever of this condition." "

Emborm.-It camon be smprising to find that paralysis from eme boblism of a cerebral artery is a mot mommon ocempronce in children, for the conditions favoring embolism are often present. Wherever there is a diseased valve with vegetations of thembosis of the pmimonary veris, ats in a case reported by Henobl, ${ }^{5}$ there is liability to cmbolism. Whene it follows that the aente infections diseases, particularly seambana, diphtherin, mensles, small-pox, ante and chronic bronchitis, and pmemonia, are the diseases most frequently complicated with eerehal paralysis (gemerally hemiplegia) due to embolism. ${ }^{6}$ I must vemind the reader, however, that in all these diseases cerelnal hemorrage is possible.

The reported cases of cerebal cmbolism in children are too few in

[^231]mumber to yied any proof as th the gerenter liability of the phige renching
 the ablult, the order of preference is prohally the sames. In the mbilt the
 Thuse of the heft sule are more often afferent than thase of the right. Next
 of the anterion, the cerchellar, and the basihar ateries is extemely mose

Of the large mumber of enses of nemteremberal palsies which the present
 wher part of the bain exeept the contex on the vieninty of the intermal calpulle. The large majority of these were exidently due to lesions within the dixtribation of the midelle cerehal artery,-monther proof of the fact that the same laws obtain here as in the exwhat lesions of alalt lifes A fow cases in which embolism or the sonomlany dfeets of embolism were fonme prest mortem will be of interest in this comarytion:

Fin, 4.

Cyst formed liy suftendig of braln-substance secondary to obstraction of mathe cerebral artery begond the limt branch. (:hitd, hateten monthe old. Denth seven months nfter onset of parabyis. (After Asliby and Wright.)

Cuse 170^{2} - boy, one year old ; marked cyanosis, due to ohstructive pulmomary disease and constant dyspepin; whs seized with vomiting and convulsions, followed by paralysis of beft arm mad leg. Child apparently quite blind ; no retinal homorrhages; optic disks normal. Fince drawn to right side; upparent loss of sensation in arm and lerg (ehild was sumi-comatose.-s.). Rapid recovery from most of the symptoms, but rigidities in arm and leq. Seven monlla after suizure, death from bronchitis. Autopsy showed a large eyst occupying the central purt of the convexity of the right hemisphere (Fig. 4), within the distribution of the right middle cerebral utere, excepting the branch to the inferior frontal convola 'on. Thrombosis or embolism of midde cerebral artery.

Cuse V :-Buy, uged two and a half yeurs, suffering from chronic pneumonia and caseons degenerat in of bronchial glands. Sudden development of right hemiplegin, with contrature. Post-mortem examimation revealed embolism of left arteria Sylvii. The heart was normal, hut the embolus had evidently come from a thrombus in a large branch of the right pulmonary vein (a similar occurrence in the case of Henoch referred to above).

[^232]Casa VI.1-A hoy, seven yenrs of age, sudenly manifested right hemiplegia with aphusia. Autopsy showed plagging of the left anterior nud middle cerebral atteries. The purticles of flbrin composing the plug were evidently derived from a coagrohm nteded to the margin of the mitrul oriflec.

Thrombosis and embolism may give rise to the ocelusion of 'erelbal arteries. In the former ense it is brought abont gradnally; in the latter, suddenly. The post-mortem apparances are often very similar, aul in many instances it is not possible to state whether the clot has been formed in situ or whether it has cone from a distance. In cases of thrombusis, if the clot is not too old, the successive layers of deposit can be recognizal by a difference in color ; if old, it is very firmly attached to the artery-wall, while on the side away from the heart there is apt to be the more reyent and darker deposit. A thrombs may take up any part or the whole of a cerebral atery, while an embolus is commonly lodged at a point between two arteries, or at least at a point where the lumen of the artery beromes suddenly narower. If the embohs is of old standing, it has gathered so much additional bood ahont it that it cannot be distinguished from a thrombus.

The immediate effect of oedusion of an artery is to cut off the blowlsupply of a definite region. This is a permanent effect, except in those rare cases in which an embolus is broken up and the smaller particles are carried away by the biood-enrrent. In so-called terminal arteries sueln a procedure is impossible. Heubner ${ }^{2}$ has reported a very umusual case in which two clots, one in each middle cerebral artery, were fomed. Each chot was perforated and perme ' 'e. But such perforation does not take phate carly enongh to be of any service to the diseased territory.

The area supplied by an occluded artery soon modergoes marked changes. At first the tissue grows paler, the nerve-elements disintegran., and the whole area becomes softer (anemic necrosis). A little hemorrhage often takes place, in consequence of the rupture of the capillary vessels, and the area of suftening assumes a reddish appearance. By degrees this red softoning is changed into yellow softening. White softening is found in very late stages of red and yellow softening, and more particularly in those areas of the brain which have a very limited blood-supply.

If the person survive for a long time, the area of softening will have undergone still further changes. There is a distinct line or arra of demarcation between the diseased area and the surromendine healthy parts. It this bomdary slight hemorthages are very apt to oceur ; the softenel area sinks in, there is an accumulation of fluid over it, and in the conse of time a distinct eyst is developed. Such embolie cysts camnot be distinguished in every instance from eysts une to hemorrhage, except that in the latter, if the lesion be not of too old a date, we ue net to find an abmentare of

[^233]hæmatoidin erystals. In other cases comective tissue forms in the softened area; the nerve-elements disappear, and the flud is absorbed. Finally a cinatrix with considerable atrophy marks the former area of softening. So doubt some of the casc's of infantile rerehral palsies associated with atrophy, selerosis, aud eysts were originally of embolic origin.

Softening may ocent in any part of the bain, bat the cortex, corpus striatum, and optic thalamms are the areas most frepuently affected. The corpus striatum and optic thatamus are supplied by terminal arteries. Collateral bood-supply is impossible unless there be an anomalons distribution of bhood-vessels. The cortex, on the other hamd, has a capillary net over the larger part of its surface, which may permit the restoration of circulation to a very limited extent; but the frequent ocenrrence of cortical softening proves that this eapillary net-work camot be depended upon. The area about the fissure of Sylvins suffers most from ohstruction of the middle cerebral artery, while the regions higher up often escape.

SYMPTOMATOLOGY.

Excepting perhaps the mode of onset, cases of cerebmal hemorrhage, thrombosis, and embolism may present the self-smme symptoms. This part of the subject has been grone over so minutely in the paper published together with Dr. Peterson that the statements here made are based upon the deductions contained in that paper. The study of the symptoms of onset will be casier for us if we divide the cerebral spastie palsies into those which come on at lirth (birth-palsies), or are congenital, and those which come on in an acute fashion in the carlier years of life.

The truly eongenital cases-i.e., those not due to tramatism at birthare in all probability not cases of embolism, thrombosis, or lemorrhage, and do not, therefore, concern us here. Among these are undoubtedly to be chassed many aases of porencephahs, defective development, and cases or cortical agenesis, such as have been described by Kast ${ }^{1}$ and the writer. ${ }^{2}$

The birth-palsies and some of the truly eongenital cases are, as a rule, cases of difficult labor,-eidher merely protracted labor with head-presentation, or cases of foot- or breed-presentation in which the head has been compressel tightly in the pelvic canal and instrmmental delivery was necessary. At birth the child is asphyxiated ("hhe child"), the fimis may or may not be wound about the neek, and eonsiderable effior is neressary to resiscitate the dild. When ence regular respiration is established, no further symptoms may be noted for days, weeks, or months ; in other eases, a closer examination reveals paralysis of one or more members of the body, and the paralysis may take the form of a hemiplegia, a diplegria (both arms and both legs), or a paraplegia (both legs). Monoplegias ocenr, but are rase, while the simultareons involvement of both sides of the face and

[^234]of both arms and legs has, so far as I ean see, never been noted. In all such cases rigidity of an arm or of a leg is soon established, and convulsive seizures of the parts paralyzed are apt to ocent. These comsulsive mosements very often do not appear until weeks or months have elapsed, even

Fig. 5.

Figs. 5, 6, and 7 are intendel to show deformities in enses of infantile cerebral palsy.
in cases in which the paralysis dates from birth. This is to be accounted for by the well-known fact that the convulsive movements are due to irritation of the cortical motor areas, and that these areas do not become "irrita-ble"-i.e., are not sufficiently developed-mintil some time after birth.'

In a few eases both the paralysis and the convulsions do not appear mutil so ace weeks after birth, although everything may point to the birth act as the canse of the injury sustained by the brain. From now on, such case as we have described behave exactly like those with aente onset. ${ }^{2}$

In :ases in which there is an aente onset of the paralysis, the latter may appear in the midst of perfect health, or, as is more often the "wse, during or after an acute infections disease. The onset is markel in the majority of cases by loss of conscionsness, more or less prolonged coma, and convulsions. Exeeptions to this rule will be given later on. I rise

[^235][1) all mvulsive re mosesed, even irth.'
pear mutil rth act as Hech cases
he latter the case, Ml in the ced coma, A rise
166) are to
: a mistake nd to suphemiplegia
of temperature generally acompanies the onset of these acnte cerebral spastic palsies, varying from 101° to 104° and in some cases to $107^{\circ} \mathrm{F}$. Unusially high temperatures appear as a foreboding of a fatal termination. Bomrneville insists that there is subnormal temperature at the very begimning of an attack, but I have never been able to convince myself' of the truth of this in children. Perhaps the eases are not seen carly enongh. During the 'rondit:on of coma one side of the body may already give evidence of paralysis, or the fact that convulsive seizures begin in or are limited to definite parts of the booly points to a probable paralysis or paresis of such parts. The eyes may look to the side of the lesion. The distribution of the paralysis may result in a hemiplegia (the most frequent form), or in a diplegria or a paraplegia. Aphasia is often present. A spastic rigidity or slight contracture may be added to the paralysis. The tendon reflexes in the paralyed members are exaggerated ; this is particularly true of the wrist, biceps, and trie ps reflexes, and of the knee-jerks. Ankle-elomas is not so frequemly elieited, becanse the opposing contracture forbids the free exerrion of the foot. In all these cases peenliar disturhances of motion are developerl, resulting in choreiform, athetoid, or associated movements. In addition we find a retardation of growth of the part or parts paralyzed, and in many cases considerable mental impairment. So marked changes in sensibility (tactile or otherwise) were observed in the many casea the writer has seen, nor has he been able in any case to discover hemianopsia, althongh Freud' of Vienna has deseribed two modonted instances of this in very young children. The electrical reactions are not serionsly altered; there is at least in so single instance an appoach to a reaction of degeneration. In consequence of the wasting of some muscles and the contracture of opposing muscles, the faradie and gahamic responses may be considerably diminished.

Several of the symptoms referred to above deserve further consideration. ${ }^{2}$

The Fonm of Pabalisis.-Hemiplegia is so fiequent a form of paralysis that many authors have mide the "acnte cerehra [spastic] palsy of children" and "intantile hemiplegia" synonymous terms. We need not insist again upon the injustice of this procedure. Remembering that meningeal or cortital hemorhages are so much more frequent in children than in alults, and that this hemorrhage may be, and often is, bilateral, we have at least one reason why diplegias or paraplegias, and not simple hemiplegias, are developed. The face is at times involved, but not so frequently as in adult apoplexy; this also is accomed for by the position of the face-centre in the cortex, which is not so frequently eovered by clots as are the armand leg-entres. If recovery sets in, the paralysis diminishes very much, after the fashion of adult apoplexy, -the leg first and most, the arm last

[^236]and least; the face recovers more rapidly than in adults; a case now under my observation at the Montefiore Home, of a boy six years of age, with left hemiplegia, is one of the few in which there is permanne paralysis of one-half' of the face. Strabismus I have observed in one calse of right hemiplegia, in four cases of left hemiplegia, and in three cases of diphegia.

As for aphasia, my own studies have led me to believe that the same laws ohtain as in the cases of adnlt apoplexy. I have recorded seventeen cases of hemiplegia with aphasia. Ten were cases of right hemiplegia and seven were cases of left hemiplegia. Eight of these seventeen cases were onserved in private practice, abont which the information was thoroughly reliable.

Of these eight, five had been distinctly aphasic, and three of the five were cases of left hemiplegia. This relatively large proportion of aphasia in cases of left hemiplegia is in striking contrast to the conditions in the adult. My own experience is in aceord with that of Bernhardt,' who find, that aphasia in children accompanies left as well as right hemiplegia. Prof. Osler, on the other hand, in thirteen cases of aphasia finds but one case with left hemiplegia. By way of parenthesis, I add that defective speech is present in many cases, and is to be regarded as one of the symptoms of mental impairment.

The reftexes are exaggerated, but in eight cases of hemiplegia we foumd them normal in four, diminished in one, and absent in three cases. These exceptional cases, and also those in which the element of spasticity is entirely wanting, must be accounted for on the supposition that the initial lesion was slight, or that, for some other reason, secondary changes did not ensne.

The majority of cases of peculiar disturbances of motion ${ }^{2}$ are cases of early cerebral palsies. We distinguish chorciform, athetoid, associated, rhythmical, and ataxic movements. Thus, in one humdred and five cerses of hemiplegia choreiform movements ocenred in six, athetoid movements in twenty-one, associated movements in fifteen, rhythmical movements in one, ataxia in one, and tetanoid contractions in one; and in twenty-four cases of diplegia choreiform movements oecurred in one, ataxia in one, athetoid movements in one, and uystagmus in two.

A word about associated movements. In some cases of infantile hemiplegia the movements of the sonnd side, partiendarly of the sond arm and hand, bring abont movements in the corresponding parts of the paralyzet side, and vice verse. Thus, if a patient attempt to squeeze the hand of the physician with his somd hand, the paretic hand also closes, or at least imitates the movement. We succeeded in obtaining tracings of such associated

[^237]movements in the case of a patient in whom this symptom was so well developed that in buttoning or umbuttoning his clothes the paretic hand would repeat every movement. ${ }^{1}$

Fig. 8.

A and B, movements of the normal hand; a and b, movements of the paretle hand. The patient was asked to draw a zigzag line on a blackboard, using his sonnd hand.

Contractures are very apt to be developed carly and permanently. In some cases the contracture is so extreme as to make a leg or an arm entirely useless. The common forms of contracture are given in the following table:

[^238]Fohm of Conthacture. itemiplegia.
Flexors of elbow 29
Flexors of earpus and fingers 23
Flexors of knee 5
Extensors of knee 1
'Tulipes equino-varus 17
Talipes equino-valgus 3
Tulipes equinus 2

Flexors are more apt to be involved than extensor muscles; adductors more than alductors. In this the construction of joints may eome intu phay. Wernicko ${ }^{1}$ has recently shown that these gromps showed the same difference as regards the development of paralysis in adult hemiplegia. This fact was well known to me, and has been regularly demonstrated to my classes of students at the New York Polyclinie. But this is not peemliar to hemiplegia: I have found it to be true, also, of paralyses due to spinalcord lesimens.

Sinee epilepsy is not only a degenerative neurosis, but also a symptom of cortical disease, it need not le surprising that it is so frequent an aceompauiment of infantile cerelral palsies. And sueh patients may suffer cither from general epilepsy or from the Jacksonian form. Among one hundred

Fia. 9.

Case of paraplegia. Photographed during an epileptic selzure.
and five cases of infantile hemiplegia there were forty-one cases of general epilepsy, nine of the Jacksonian type, and one case of petit mal. Abont fifty per cent. of all hemiplegries were epileptics. This percentage tallies farly well " ith the statisties given by Gandard, Wallenberg, and Osler. In at least one case which I have seen, of a girl aged seventeen years, the epilessy was the only active symptom of a lesion which had caused left hemiplegia four years previonsly.

The following tables are given for brevity's sake, and will impart all needed information with regard to mental defects and cranial deformities: ${ }^{2}$

[^239]dductors ome intu the same miplewia. trated to peculian 0 spinal-
?mptom 11 acemmfer cither hundreel I

- general wint fifty cs fairly

In at

TABLE—Showing the Relation of Mental Defect to the Age of Onset of Palsy.

Age of Onset of Paralysis.	Feeble. Mindedness.	imbecility.	Idiocy.	Total.
Congenital	6	15	14	35
Under three years	10	18	6	34
From three to five years	2	3		5
From five to ten years	2	8	.	\%
Over ten years.	. . 1			1
Total .	21	39	20	80

TABLE-Showing the Relation of Mental Defect to the Form of Palsy.

Form of Mental defect.	Hemiplegia.	diplegia.	Paraplegia.	Total.
Feeble-mindedness	16	2	3	21
Imbecility	. 31	7	1	89
Idioey	7	8	5	20
lusunity (epileptic)	1	. .		1
Total	. . $\overline{55}$	17	9	$\varepsilon 1$

TABLE-Aualysis of Stigmata Degenerationis (exclusive of Contractures) present in Fifty-Seren Cases of Cerebral Palsy in Children.

	hemiplegia.	diplegia.	pamaplegia.	Total.
Mierocephalus	21	5	2	28
Lepiocephalus	- 19	1	-	20
Macrocephalus	4	.	1	5
Marked cranial asymmetry	. 25	-•	2	27
Murked facial asymmetry	- 19	-	.	19
Cranium proganeum	5	2	-	7
"Gothic" palate	9	1	-	10
I mperfeetly-developed teeth	. 10	1	1	12
Supernumerary teeth	. . .	1	- .	1
LIirsuteness	1	. .	1
Neuropathie ear	1	1	.	2
Strabismus 5	3		8

In the above the writer has assumed that, if paralysis follow upon cerebral hemorrhage, thrombosis, and embolism, it will take the form of hemiplegia, diplegia, or paraplegia. That this is practically so, may be inferred from the fact that in over one hundred and sisty cases of infintile cerebral palsies I have not seen a single case which would not come under one of these clinical subdivisions. But hemorrhage, thrombosis, and embolism may occur in other parts of the brain as well as in the cortex and in the vicinity of the subcortical ganglia ; and, if so, other symptoms will arisc. Such cases have been reported.

Lannelongue ${ }^{1}$ refers to a boy eight years of age who had left hemiplegia with aphasia, followed by convulsions, coma, and death. Autopsy revealed a clot in the right erns cerebri, also red softening along the left fossa Sylvii, and thrombosis of the longitudinal sinus and of the veins of the pons. This was a complicated case, and of the one important symptom of crus
${ }^{1}$ Cited by Steffen, Gerhurdt's Hundbueh, vol. v. p. 339.
lesions, paralysis of the oenlo-motor nerve of the side of the lesion (opposite to the paralyzed side), nothing is said. Hoven ${ }^{2}$ and Wallenbery ${ }^{2}$ have reported eysts in this same region. Lesions in the pons would be chataceterized by paralysis of the fifth, sixth, or sevemh nerve, with hemiplegia of the opposite side ; if the lesion be high up in the pons, it will be difficult to distinguish such a case from ordinary hemiplegia. In addition we may expect matked sensory disturbance, loss of the conjugate movements of both eyes towards the side of the lesion. According to the position of the lesion, we may also have paresis of both lower and both upper extremities, as I have seen in one adult case. There is no case that shonld be more earefully examined than one of suspeeted pons lesion; but, inasmuch as I have not found a single well-anthenticated case of this kind in a child, I have not the right to enter at length upon the symptoms due to disease of the pons. Lesions of the medulla, which are particularly prone to prove fatal, have little practical interest ; cases of syphilitic disease of the basilar arteries, with thrombosis and softening, are the only ones which might call for a differential diagnosis. The well-known bulbar symptoms, diffienlties of speech and of deglutition, irregular respiration, hemiatrophy of the tongne, associated with unilateral or bilateral paralyses, would suggest a lesion in the medulla oblongata. As a review of the more important symptoms of cases of possible thrombosis, hemorrhage, and embolism in children, I give the condensed histories of a few cases of cerebral spastic palsies:

Case I'II.-A. F., aged four nad a half years, male, first child, diffenlt labor and instrumental delivery. From very first day, right hemiplegia. Slight athetosis und ussociated movements. Contracture at elbow, formerly pes equino-varus, improved by operation. All reflexes of right side lively. Mental condition fair.

Case I'III.-J. K., ${ }^{3}$ male, uged seventeen years. Right hemiplegia at eight years of age following typho-malarial fever; was delirious and unconseious during nineteen days; no convulsions. After recovering from coma, right arm, face, and leg were found paralyzed. Complete aphasia and entire loss of memory of everything oceurring before typhoid. Had to be re-educated. Athetoid and ussociated movements. Reflexes exaggerated on right side. Enormous contracture of flexors of right hand and fingers, and great retardation of growth of right upper extremity. Right leg somewhat smaller than left; right falipes valgus; asymmetry of face. Electrical reactions and sensation entirely normal. llas recovered speech fully, and is bright, but several years behind others in education.

Case IX.-J. O., female, aged sixteen. Congenital diplegia; mother kicked in aldne men by horse two months before birth of child and made unconscious thereby. Thrce other children, all healthy. Tedious lnbor; no instruments used; no fits or convulsions. Did not attempt to ereep or walk; teeth at usual age. Patient has menstruated since tenth year, and was weak in back, arms, and leg from earliest childhood. Extreme spastic contracture of adductors and flexors of thighs; double talipes varus, equinus on right side. Left arm worse than right. Athetoid movements of left hand. Has frog walk. Intelligence good.

Case X.-M. L., male, aged three years. Congenital diplegia. Asphyxiated during labor. Mother had pneumonia, and died five days post partum. Rigidity of arms, legs, and back. Hands did not unelinch for two years. Frequent convulsive seizures alter-

[^240]nutely of right and left side, including fuce. Camot talk, walk, or atand. Foeble-minded; erviss-legged position and all reflexes exaggerated.

Case XI.-M. M., hoy, two and one-lalf yours old; one and one-half yars previonsly had preumoniand tonsillitis, with fever up to $102^{\circ} \mathrm{F}$. Four days after this, typical right hemiplegin and aphasia, positively withont coma or convulsions. The onset was as typical as in the ordinary mild hemorrbage into the intermal eapsule in the adalt, and the progress of the disease and the asode of recovery (which became complete) were quite like what we see in adult cases.

DIAGNOSIS.

The general diagnosis of infantile cerebral palsy, or spastic cerebral patalysis, of infatile cereboal hemiplegia, diplegia, or paraplegia, is casy to make. But how can we distinguish between meningeal and intracerebral lesiuns, and between thrombosis, hemorrhage, and embolism?

In ehildren the presumption is in favor of cortical or meningeal lesions. We must bear in mind the unusual delicaey of the blood-vessels of these parts. It is only or chiefly in those cases which resemble adult apoplexy (clinically) that we need be suspicions of intracerebral (capsular) lesions. Other things lxeing equal, prolonged coma and repeated convulsions are in favor of meningeal lesions; coma of short duration or entire absence of coma and convulsions is indicative either of intracerebral lesion or of very slight surface lesions. The rapid cevelopment of idiocy and epilepsy is also more apt to follow meningeal (cortical) lesions. Paralysis of arm and leg without involvement of faec, and monoplegia, point to the cortex. Convulsive movements of paralyzed parts are generally dute to cortical irritation.

Birth-palsies are apt to be due to meningeal hemorrhage; palsies developing during acute infectious diseases are often of intracerebral origin.

Cranial deformities are more apt to aceompany surface lesions.
The points of differential diagnosis between hemorrhage, thrombosis, and embolism are difficult to give. Almost every author has endeavored to formulate the differential points, but one of the latest, and a very able author, ${ }^{1}$ realizes that the task is as difficult as it ever was. In many cases it is well-nigh impossible to come to any definite conclusion on this point, and the scarcity of autopsies on children makes it impossible properly to test our theories. The symptoms will vary not only according to the nature of the morbid process, but also according to the location and size of the area affected. The symptoms of the onset are of the greatest imjortance, for they are the symptoms which indicate the general effect ulon the brain as a whole, and not the local effect of the lesion itself'.

What can we infer from the occurrence of coma and convulsious? The most diverse views have been held with regard to these symptoms, as any one can discover who will read Dr. Browning's paper on the occurrence of coma in sudden spontancotus brain lesions. ${ }^{2}$

I submit the following points, not that I think them absolutely correct,

[^241]but berause they are the result of much reflection on the subject and have bern dentuced from an unusually lange clinical experienee. This has especial reference to children.

Meningeal Casbis.-Hemorhuge-Birth case; coma; convulsions; paralysis present at birth or developed sery soon thereafier ; convolsions often repeaterl ; cranial asymmetrias.

Thrombosis.-Acquired ; syphilis or marasmus; gradual onset ; mo loss of considionsuess; convolsive twitchings precede paralysis.

Embolism.-Very sudden development of paralytie symptoms; heartdisease; inereasing paralysis; monoplegias. Coma and convolsions may or may not be present.

Intracerbmbal Lasions (less fiequent in children).-HemorhequAcpuireal case ; if' slight, little or no coma ; mo convolsions; patalysis involving face, arm, and leg of one side; rapid improvement; very little, if any, mental change ; possible complete recovery. If hemorthage is large, prolonged coma, initial convolsions, but convolsions are not apt to be repeated; sudden complete hemiplegia; little mental change, but contractures may remain; onset during acoute infections disease.

Thrombosis.-Specific or serofulons history; gradual ouset, with prodromata, such as headache, dizziness, weakness, ete.; no eoma, or paresis leads up to coma ; no convulsions unless ganglionic masses are involved; paralysis develops gradually, but remains as it is for a long time.

Limbolism.-Sudden onset of motor symptoms; coma possible, but, as a rule, rapid recovery therefrom; cardiac disease; initial convulsions, not apt to be repeated.

Previous to the publication of Strimpell's ${ }^{1}$ lecture in 1884 on publioencephalitis acuta, it wonld not have been necessary to question the occurrence of hemorrhage, thrombosis, and embolism in many eases which are now supposed (hy many) to be due to polioencephalitis. Strümpell's views-that infantile cerebal palsy is the analogue of infantile spimal palsy, and that the former is clue to a poliocncephalitis, as the latter is due to a polionyelitis-have taken such a hold upon the medical public that this condition is often diagnosticated withont good canse. I cannot do better than to reproduce here what was said in the article written a few months ago, and those who have thought that polioencephalitis helped us out of the difficulty will be surprised to find what little evidence there is of such a morbid process:
"First of all, in order to distinguish this from two other lesions which have been termed polioencephalitis inferior (progressive bulbar paralysis) and polioenecphalitis superior (nuelear ophthalmoplegia), let us speak of this as polioencephalitis corticalis. What proof have we that there is such a condition? Anatomical proof, none: we are willing to concede, however, that some of the many cases of atrophy and selerosis may have been due to

[^242]this pulicencephalitis, lont it is mertmate for Strimpell's theory that all of the mutopsies made soom after the onsed of the disense have shown other monlitions, and not a polioemepphalitis. But let us be charitahle or just, and say that even thase antopies were not made in cases sufficiently rerent. Wie minst add, hawerer, that cases which comrejomb rery closely to the wases "'ah Strümpell comsidered typical of polioencephatitis cortialis showed hel onage, embolism, ette, of recent origin. Stribupell says, howerer, that mot all cases of infantile hemiphegia need be due to this censere, and that many authors have misinterpeted his views. Is there no probahility, then, that af few or any of the cases of infantile hemiplegria are cases of polioen"phatitis corticalis? There is some circomstantial evidence showing that there is a ham-lesion which would seem to be malagens to spimal palsy of rhilden (poliompelitis anterior). Mähins gives the history of two chiddron of one family, agred one and mo-half and three yeas reywetively, who were stricken down with fever, loss of appetite, and sommolence. One de-
 hemiplegia withont aphasia. This is striking clinical evidence, though some might cham it to have heon merely a coineidence. Another proot: Strimped has but very recontly reported two casces of adult apoplexy in which every one wombl have made the diagosis-and inded he made it of embolic softening, but the post-mortem examination revealed a condition of emphalitis hemornagiea of the gray as well ats of the white matter. Marie, who is inclincel to support Strimpell, expresed the opinion in 18s5 that the encephatitis would attack the white as well as the gray matter, and thinks that this womld not destroy the analogy with poliomyelitis, for in that condition the white fibres are sometimes involverl. Jemdrassik and Marie favor the perivascular (inflammatory) origin of the condition of lodar sclerosis, which they have arefully deseribed. In view of all this, we venture the opinion that polionencphalitis corticalis may be the canse of some of the "ases of infantile pallias; but, we add, not of the hemiplogia atone, for we have seen several cases, including one seen by the (ourtery of Dr. Holt, in which all the symptoms were those of Strimpell's discase, but there was a diplegic and not a hemiplegie form of palsy. In these cases the cerebral chatacter of the symptoms was so distinct that a confision with poliomyelitis was ont of the question.
"We insist that, until further patholonical proof shall be fortheoming, polioenerphalitis corticalis shall the diagnosticated last, not first."

All that we can safely say is that some of the cases of aente cerebral palsy in children coming on during aente infections diseases, ow withont any known cause, with high fever, coma, and convulsions, may be due to a polinencephaliis.

I am inclined to suspect this condition in those cerebral cases in which the inrasion symptoms are very maked and entirely out of keeping with the lasting paralyses.

It is known that hemorrhages and other vasenlar troubles are apt to Yol. IV.-35
come on in the conse of general tuberenlosis, hemorhages also oryur in the ease of thmors of the brain; moreover, thmors sometimes callst the sudden development of cerebral palsy. This fact slonld be lxorne in mind; but the general symptoms of intracranial tumor, headaches, dizainess, optic neuritis, will firroish the points of differentiad clagnosis.

Lastly, in the case of congenital hemiplegias, diplegias, or paraplenias, it will be necessary to differentiate between those cases due to hemorrhagre of early softening, and those due to other processes, to an early encephalitis, or to a condition of cortical arenesis, to a defective development (porme eqphalus), and so on. It is uo easy task to give such points, and ouly a few can be given.

Birth palsies are generally due to meningeal or cortical hemorthage; the child is bhe. In the truly congenital cases of early encephalitis or porencephalus we generally get a history of tramatism to the mother, while the child is apparently healthy at birth, thongh often prematures born. Defective montality and paralysis appear soon after birth.

Where there is a very high degree of idiocy without convulsions, hut with wide-spread paralysis, the condition of cortical agenesis, a simple arrest of development, as deseribed in eases by Kast and myself, may be present. Any active inflammatory condition of the cortex which sets in during the intra- or extra-uterine periox is apt to canse monvulsions in arly life.

Between the eroditions of cortical agenesis and idiopathie poreneephalns I can see no points of distinction other than these. The cortical agenesis is apt to be a diffise condition; hence idiocy and wide-spread paralyss.

Porencephalns may be limited to a definte area; and we may have extreme paralytic symptoms withont any mental defeet. But all these puints have a tentative value only. It remains to be seen how far further autopsies will hear ont the writer's reflections.

prognosis.

Under this hoading it will be wiser to make a distinetion betweell the congenital eases (ineluding birth palsies) and the acute cerebral paralyses of children. Ir • ing the prognosis of congenital affections, little cun be satid mutil the months have elapsed, except in instances in which the child ; ply asphexiated, has repeated convulsions, and breathes stertoron under such ciremmstances the gravest prognosis must he given, as co...h umally results within a few homs or at the utmost within a few days. As soon as regular respiration has been maintanem for dass, the prognosis quord ritam is not bad. If there are no convulsions, there is good reason to think that the hemorthage (for these are generally cences of hemorthage) is not of unnsual extent, and the possibility of the child's gainjug fair use of its limbs is to be borne in mind. As regards the finture development of the child's mind, absolutely nothing can be said within the first few months. If at the age of four or five months, or even up to the

PHOTO. 11.

age of nine months, the child begins to notice its surroundings, to play with things that are given it, complete idiocy will probably not ensuc. In every case let the physician be extremely cantious in expressing his opinions, for he is apt to be surprised by unlooked-for changes in the child's progress. Anxious parents should be told that the brain will have the most favomble conditions for development if the child is carefully nourished, if the hygionic conditions are properly regulated, and if the parents themselves will refrain from putting such a brain to constant but useless tests. No amount of medication and no training in the earlier years will avail much in developing a defective or injured brain. The development of idioey is the feature most to be feared. The fewer the convulsions, the curlier some ontward signs of mental activity appear, the better the outlook in this respect.

In a large majovic. ${ }^{2}$ of cases, idiocy is developed in those eases in which paralysis is most extreme and convulsions most frequent. In some cases, however, of which I have seen some striking examples, marked paralytie tronbles are associated with a normal development of mind. The case of J. O., and that of another little girl aged six years, whose photograph is reproduced in this article (Photos. I. and II.), are very much to the point. But of course I cannot speak with any certainty as to the exact morbid proenss in these two cases. From the table on p. 541 we may infer that, on the whole, the prospects of a normal development of mind are better in cases of hemiplegia than in eases of either diplegia or paraplegia. Striking exceptions to this vule are often found.

The prognosis of acute cerebral palsies must be given on entirely different lines. Prolongel coma, severe and oft-repeated convulsions, stertorous hrathing, constitute the serions features of a given case, and death is apt to supervene unless a decided improvement in one or all of these symptoms takes place within a few days. As long as the child is in deep coma, it is safer to make the prognosis unusually grave. As soon as the coma diminishes, the danger of death is very much less, but the possibility of the child roming out of the comatose condition and relapsing into the same condition again should be borne in mind. In the initial stages of coma an inference as to the amount of paralysis or as to the side paralyzed can sometimes be made by examination of the extremities. In some instances, however, there may be little paralysis and yet the lesion may be a serions one, for it shomld be remembered that very large portions of the brail, particularly the frontal and oceipital regions, may be involved without any resulting paralysis. The motor areas may have eseaporl, but if the general cerebral symptons point to a severe lesion, there is all the more reason to fear that the mind will be impaired.

As soon as the child comes out of the comatose condition the prognosis as regards the amount of paralysis will be demanded of the physician. Here, again, it is well to be on one's guard, and to say that the sooner the movements returu in any part oi the body the greater the likelihood that
the child will reover partial use of that part. As regards the future course of the discase, the physicitu must not be misled hy his experienee with eases of : apoplexy in the adnatt, for the younger the child the more serions the results of an apopletie stroke are apt to be. In my large experience I have seen very few cases in which permanent rigidities and contractures have not set in. I have given elsewhere the histories of one or two exceptional cases. The rigidities of the upper extremities are most firefuent, and yet it is to be considered a very fortumate circumstance if a child that hats had an apoplectie stroke ever regains an entirely normal walk. A very large percentage of the worst cases seen in orthopredic dispensaries and hospitals, are due to carly cerebral disease.

TREATMENT.

In the birth and truly congenital eases, treatment should be directed entirely: to the general condition of the child. Constitutional defects shombld be remedied, and the ancestral history of the child earefully considered. Wherever there is the least suspicion of hereditary syphilis, antisyphilitic treatment should be instituted at as early a day as possible. Even in delicate children such treatment, by inunctions either of the gray ointment or of the oleate of merenry, drop by drop, is in order. In cases of premature hirth, the well-known general rule of kecping the child wrapped ip in cotton, or even in an incubator, should be applied. If the child is sufficiently developed to murse at the breast, a grow wet-murse is superior to any form of modication. Cod-liver oil haths and small doses of the oil of phosphorns (a few drops daily) may be given, if parents demand that "something be done for the child." I have little laith, however, in the "flicacy of cither of these remedies, exeept possibly in those cases in which hydroecphalus and other symptoms of rickets are present.

Before leaving this subject, I repeat the cantion given in a previous article, that the obstetrician do all in his power to prevent injury to the child's hain. Protmeted labor being the greatest danger, a physician who is skilful in the use of the foreeps should lowe no time in applying them. A little hemorthage from the temporary compression by the foreds is less dangerous than the venous congestion and extensive hemorrhage which are apt to ocem if the child's brain has heen compressed for honrs within the narrow limits of a pelvie canal. As the child grows older, the treatment of secoadary chatges shonh be the same as in the acute eases, whith we shatl tow consider.

In these aente cases the initial coma and convolsions call for immediate treatment. While it is not neeessary nor desirable to arouse a comatose or semi-comatose child by the use of comnter-iryitants, vinegar injections into the rectum, and the like, it is absolutely imperative upon the physician to check convolsions, for the convulsions themselves are a source of great danger. The congestion during convolsions, the stertorons brathing, are the most favoralle conditions for further and incalenlable harm to the bain.

Much time is generally wasted through the old-fashioned mostard bath, blistering, and the like. It is far better, in ease the phrsiesan reaches the child in time, to cheek the convolsions by the prompt use of iuhatations of chloroform. A very few drops poured upon a bandkerchief and plared at the child's nostrils are often sutficient. In every such case the phesician should not leave the bedside until several hours after the initial comonlsion, in orker to use prompt measines as soon ats the child shows the slightest twitchings in any part of the body. I have had an opportmity of testing this method in a momber of cases, and have no reason to regret having usel it.

As som as the danger of comvolsions is past, everything shond be done to prevent a reenrence. I beli ve in the appliation of cold to the head, and in kepping the room in which the child lies absolntely dark and guict. The child is not to be lifted from the bed or from the lap upon which it is lying, lest the mere change of position give rise to finther tronble. These are the conditions muder which bromides, which are generally so mueh abmed, shombld be given. Aecording to the age of the child, from five to ten grains of the bromide of sodium shonld be given in milk, or, if the child do not swallow, from five to ten or possibly more grains of the hydrate of chloral shonld be administered per rectum. Whatever one's practice may be with regard to adult cases, I emsider the administration of ergot, and partienlarly of nitrite of amyl, very objectionable. If the pulse is extremely weak, the use of a drop of the fluid extract of digitalis or of a goos infusion of digitalis or a drop or two of the tincture of strophanthas is reve much to be prefered. There is no rason to depart from this medication for several weeks.

As soon as the ante symptoms have passed, and the paralysis has beome established, the relief of this condition will come mp for consideration. I have been in the hahit of continuing the bromides, and with them the ioxlides, in small doses for the first weeks or months after an attack. Tloe exact amomet to be administerel will depend npon the age and condition of the child. We must be guided by the effect of the bromides, and must use our judgment as to the amome of stupor that we are willing to develop in any given ease. It is grood practice, after the chik has had bromides for some time, to lessen the amomut gradually, and to diminish still further if there are no active symptoms ; but I prefer to deepen or matatain a rondition of semi-stupor in case the slightest twitehing appears when the druer is reduced. The iodide is added as a sorbefacient ; but both bromides and ioddes shonld be diseontinned as soon as the stomach becomes intolerant of them.

It is an important duty that devolves upon the plysician to comnteract the development of contractures, inasmuch as these depend upon the existence of secondary degenerations. It is donbtful whether anything is to be gained by active treatment. On the hasis of practical experience, however, I favor the use of massige and faradie electricity. In this way the
tendency to contractures may be partially overcome, and I lave known wh contractures to rehax a little under the application of just these mans. Certain it is that the condition of numerous muscles is very much improsed by stimulating them into activity with the nse of the electrical current. If the contractures do not yield to such treatment, the services of the orthoparalie surgeon will be required. A number of cases with contractured arms and with various degrees of talipes equinus and equino-varus have done well moder Dr. Gibney's hands, to whom I am indebted for a very large anount of my dinical material. I rarnestly protest, however, against the applieation of any electrical currest to the head for the purpose of diminishing the size of a elot or of improving cerebral circulation. Until we have more positive knowledge as regarls the effect of a galvanic enrrent upon the blood-vessels of the brain, it will be better not to experiment uron this delieate and disensed structure.
'The treatment of the defective mind of a child is the most puzaling problem of all. As in the case of $\mathbf{J} . \mathrm{K}$., referred to on p. 542, a dhild that has had a normal mind preeeding the attack may have to be re-rulucated, and often with good results. If there be idiocy or imbecility, carefinl training by a competent teacher, or placing the child in a fit school for feeble-minded children, will do some good, and, if the brain is doomed to remain below par, the youth may still be able to learn some trade and thus gain the means of subsistence. But, in spite of all that we may try, many of these patients will necessarily become the inmates of public institutions. In case the idiocy is associated with epilepsy, the treatment must be directed to the latter, and for this the reader is referred to the article on Epilensy.

INTRACRANIAL TUMORS．

By M．\therefore LLAEN STARR，M．D．

In this article tumors of the brain，tumors of the meninges，and intra． eranial anenrisms are includerl．

Thmors of the bain and its coverings are not infrequent in childhood and youth，individuals below the age of nineteen being alont as liable as these alove that age．＇The following table shows the varicties of tumor fonnd within the cranimm，the relative frequency of cach variety in persons under nincteen，and the relative frequency of tumors in various parts of the bain．The collection of cases was made from the collections of Bernhardt ${ }^{2}$ and Steffan，${ }^{3}$ duplicates being exeloderl，and from the journals，German， French，English，and American，of the past ten years．

TABLE 1．－BRAIN－TUMORS．

Situation．		莬	䜨	㐍	怱		充	$\begin{aligned} & \text { A } \\ & \text { 菏 } \\ & \text { B } \\ & .5 \end{aligned}$	荌
1．Cortex cerehri．	13	6	1	，		1			21
11．Contmon ovale	6	1	5	1	15	1	1	5	35
111．Cemehnal nxis： 1．Basnl gnaglia and lateral vintricle．	14	3	5	．	1	1		3	27
2．Corpora quadrigemina mad erura cerebi	16	1	3	．		．．		1	21
3．Poms Varolii ．．．．．	19	10	5	2	1	\ldots	\ldots	1	38
4．Medulla ohlongata－	$\stackrel{2}{2}$	\cdots	\cdots	．	1	2		1	6
5．Fourth ventricle ．．	，	1	1			1		1	5
6．Base of brain ．			1	1	1	1		4	8
IV．Cerehellum ．．．．	47	15	10	1	9	3	\ldots	11	96
V．Multiple tumors．．．．．．	34	．．	3	．	2	．	．	3	42
Total	152	37	34	5	30	10	1	30	299

The table shows that tubercular tumors are the kind most frequently fond in young persons，that these are often multiple and affeet all $p^{\text {rarts of }}$ the brain，but are most frequently located in the cerebellum and upon the base．They ocenpy the place in children held by gummata in adults．The next tumor in frequency is glioma，which is closely followed by sarcoma
and by glio-sarcoma. Carcinoma, lipoma, myxoma, psammoma, and gumua are very rare in yonth, and parasitic cysts, which appar to be frepuenty fomad in Germany, are quite exeptionally met with in this comutry. Since the diagnosis of the variety of tumor present in any case is a matter of inference and probability, such statistics have a certain diagnostic value.

PATHOLOGY.

I. Tubereular thmors, thongh oceasionally appeating in the brain on meninges ats the first evidence of tuberolar disease, are commonly serondary to tuberonlar affection of the bronchial ghands, lungs, mesenteric glands, and other organs; or to tubercular disense of the orbit, car, or cranial hones. In ower one-fifth of all cases tubereular tumors in the brain are multiple. Such tumors vary in size from a small collection of miliary tuberdes to a large mass with hard cheesy centre and suromnding mones of tuberenlar infiltration and of congestion. They also vary in shape from a single round encapsulated noplasm to a diffuse layer of tubereular deposit covering an extensive area of the surface. Very commonly several irregularly-shapeal masses of tubercle lie on the hase of the bain in the meshes of the piat mater, compressing the aljacent tissne and involving the eranial nerves. The infrequence with which tuberenalar tumors are fomed within the serebral or cerebellar hemispheres indicates that it is especially upon the membuanes of the brain that these tumors originate. ${ }^{4}$ Starting from the vessels and lymphatics of the pia mater and invading the brain along the perivascular spaces, the tuhercular cells and stroma so infiltrate both gray and white nervous tissne that their structure is altered and their function impaired. Finally there is formed a mass of tubereular tissue in which a fow nerve colls and fibres are scattered. In other cases a distinct limiting layer surrounds the tubercular mass which is undergoing cheesy degencration at its centre and is growing by aceretion at its periphery, the brain beding compressed and thus destroved withont leing infiltrated with tuberele eells.

If the tumor is on the surface, the pia mater is thickened by a tuberenlar deposit and is adherent to the tumor ; the dura mater may also be atherent ; and in a few eases the cranial bones have been erodel. It must mot be forgotten that a tubercular meningitis may develop secondarily to a tuberenlar tumor of the brain. The histological character of these varions forms of tubercular tumor is to be found in text-books on pathology. 5, 6,7

The existence in the patient of hereditary tendency to tulerealosis, the history of symptoms pointing to tuberenlar discase, glandular, bronchial, or visceral, and the presence of local signs or general evidences of tuberenlosis, should always be looked for in a child presenting any symptoms of brain-tumor; and in children who are tubercular the possible development of brain-tumor should be kept in mind.
II. Glioma is not uncommon in childhood. This tumor is a product of the neuroglia, and presents the appearance of a comnective-tissue fibrillary net-work containing a greater or less number of small embryonal and
of large branching cells, the latter being so-called spider-cells. ${ }^{8}$ Gliomata vary in density, some being hard and separable from the bain-tissone like surcomata, others leing solter, of the consistence of the bain, and withont definite limit, the tissue of the tumor shading off into the menroglia of the bain. The greater the mumber of embryonal cells the softer the tumor. ${ }^{9}$ They grow most freguently in the white sulstance of the boain, but sometimes develop in the gray matter, in almost any region ; and as they inarme in size they destroy the ban-tissue bey extending aromed and between the nerve-ells and fibes. They grow less rapidly than saremata, and never involve the membranes. If a glioma is well defined it may undergo fatty degeneration and break down. In any case the vasentar supply of a glioma is mansually rich, and hence symptoms referable to changes of cirentation in the tumor, and hemorrhages within the tumor or in the aljacent brain-substance, are frepuently observed. Glioma of the brain may develop secondarily to glioma of the retiua, but is nsually primary.

1II. Surcoma is next in frequeney to glioma. Romod-cell and spiudleeell sarcomata are met with more frequently than glio-surcomata or mysosaremata, and these forms are single. Multiple melano-sarcomata may orener in youth, but are very rare. ${ }^{10}$ This form of tumor is well defined and casily sepabable from the brain-tissue, which is destroved usually by compresion, and sometimes also by an infiltration with sarcomatous cells. When a sarcoma infiltrates the brain, glicmatons cells are frequently found as well as sareomatous cells, and then the condition is one of glio-sarcoma. Sareomata of all sizes are found, lout in shape they are usually romb and molular. They develop within the nervous tissue as well as in comection with the membranes, and are fomed as frequently in the white matter of the cerebnal and cerebellar hemispheres, and in the gray matter of the basal ganglia, as on the surface of the brain. They grow rapidy, and therefore prodnce more marked symptoms than slowly-growing tmmors.
IV. Cystie tumors of the buin, usually the parasitie eysts of eehinococens or eysticerens cellulose, are not infrequently foum in children, but appear to be moch more rarely met with in this country than on the contineut of Europe." Such eysts are found in all parts of the brain. They grow slowly, are usually latent, but occasionally produce symptoms by pressure. They never involve the brain-tissue direetly. They are sometimes surrounded by a zone of softened or selerotic brain-tissue. They rarely rupture. Kücheumeister ${ }^{12}$ has collected eighty-cight cases of eysticercus, in all but thirtcen of which multiple cysts were fonnd. Of these, forty-nine were in the membranes, forty-one in the cortex, nincteen in the white substance, eighteen in the cerebellum, eighteen in the ventrieles, seventeen in the basal ganglia, and a few in the corpora quadrigemina, pons, and medulla. These are not included in the table.
V. Carcinoma is very rarely found in persons under fifty years, is usually secondary to cancer elsewhere, and, heing a tumor of extraordinary rality in children, requires mention only. In about one-half of the
cases on reord below the age of twenty it was cat to direct extension of the growth from the orbit.

V I. Gummata of the bain are so rare in chitdhoorl that Rumpf in his exhanstive work upon Syphilis of the Nervous System cites but two casces. ${ }^{3}$ It is tome that all firms of syphilitio disease have bern ohserved in child ben as the result of inheritance or of syphilis mepured andidentally; and in any cree of bain-tumor in which evidences of such disease are present the possilility of gimma must be considered. Bat the fiet that in all literature gumma below the age of twelve and following inherited syphilis is almost moknown slomhd lead to cantion in making such a diagnosis. Comphal syphilis in children has as its usinal basis an emburteritis with thrombesis. Gumma as an evidence of tertiary syphilis is hardly to be experterl in gouth betwen the ages of twelve and eightern, even thongh the individual may have acquired syphilis; and in fact the only case recorded in the table was in a yomg man aged eightern. Gomma, therefore, minat be considered as bate at carcinoma among chidren, -a fat of importance in view of its frequeney in adults, and in view of the tendency to submit all cases of brain-tmone to specific trentment.
VII. The other varicties of brain-tmon-lipoma, papilloma, my xoma, pammoma, osteoma, cholestatonat, and teratoma-are known to oeciur in children ats well ats in adults. They are, however, like thmors of the pituitary borly and pincal gland, to be regarded as pathologinal cmriositios, and their diagoosis from other forms of tmon camot be made during life. For their pathological characteristies the reader is refered to text-books on patholory.

V III. Intractanial aneurisms are tare in childhond, and are never very large. 'They appar upon the larger anteries of the base of the bain and on the Sylvian arteries. They are usually fusiform, oreasionally romul. They incrase in size rather more rapully than anemisms olsewhere, and show a greater temaney to rupture. They produce symptoms by their pressme, and are occasionally to be diagnosticated by the pulsating haulaehe or sensation acompanying them. Hemorthages and thrombosis or embolism of smaller arteries are frequent complications of intrateraial aneurisms.

The collateral effect of the presence of a tumor of any kind repuires consideration. The pressure exerted by a new growth impairs the cireulation in the surronnding brain-tissue, either directly by impeling the flow in the small vessels, or indirectly by compressing a large arterial trunk and thus cansing wide-spread anemia in its area of distribution. The resultant anemia may be sulficient to impair the nutrition of the tissue and thus to prodnce suspension of its function. Pressure may after a time canse lealized atrophy of the brain, in numerons cases the flattened and shronken convolutions or the compressed white substance near the tumor having been found much'smaller than the corresponding healthy parts on the oppusite side. It may also result in white or yellow softening, a parenclymatous
derencration of the brain abont the tumor. In some cases the tumor is survonded by a zone of congested tisson, the tumor itself being vasenlar ; and in some cases suhachte encephalitis, with small or lage hemorthages, the su-callet red softening, is finud. This latter condition is especiatly freplont in the vicinity of glomath and carcimomata. The pressure of a thmor may be exerted upon the veins and sinuses ns well as upon the arterins, mad this is indeal the more firenent condition. As a result, passive prons congestion and adema of the hoin are pronduced. 'This almost always ocenrs in tumors sitnated on the hase of the brain and in the posterion' eramial fossa. 'Tumors of the middle lobe of the cerebellom, of the forporat guadrigemina, and of the pons usually compress the veme Galeni. The result is a serons effision into the lateral ventricles of greater or less extent, causing their distention and consequent displacement outward of their walls and pressure upon the basal ganglia and adjaeent parts. Hydroepphaths is a very frequent complication of batin-tumors in chidhome, and is more casily detected in children below the age of six than in young persoms or adults. When the cranial bones have not linlly mited, distention of the ventricles may canse a bulging at the fontamels and an conargement of the head, and in infints this symptom is usually present with a buntumor. In any case of hydrocephalus the possibility of an intracanial thumer as a canse should be considered.

The collateral effects of tumors are not wholly dependent upon pressure. As already mentionsl, an implication of the meninges in the growth, with the formation of athesions, is frequent in tubereular and sareomatons tunows; and such thickening of the membranes, if it occur on the convexity, may produce tenderness and localized pain in the skull; or, if ${ }^{\circ}$ ocen on the base, may result in compression of the eranial nerves.

Displacement of the brain-axis by a tumor anywhere often produces a stretching of intra-cerebral tracts or of cranial nerves, with corresponding impairment of their fanctions. Extension of a bain-tumor into the orbit, with displacement of the cyeball, has been recorded occasionally. And, lastly, brain-tumors have been known to crode the cramial bones and appear upon the surface.

Not infrequently in brain-tumor the immediate canse of death is hemorrhage from a diseased vessel in or near the tumor ; and the possibility of such sudden apoplectie termination of the case must not be forgotten in giving a prognosis.

ETIOLOGY.

Few sulyjects are more obsenre than the etiology of brain-tumors. As regards children, it is remarkable with what frequency a fall or a blow on the head is considered the canse by the friends. In not a small number the situation of the injury and that of the tumor coincide, a fact which seems to establish a causal relation. And yet the fact that few if any children escape such aceidents, while the supposed effect is quite rare, throws doubt
"pon this relation. I cmasal mhtion is ta la momitterl as probable maty when the how or fill was severe, and its severity will be more rermun

 just opposite to it on the other side, in which eqse it has beot aseriluyl to contreverp; and sewere falls on the hack of the head are mentioned in

 bond may canse jutmembial tumors.

 Primary tuberde of the batin is very more ; some anthoss, inderal, deny its

 infinderl fiomel.

Extension of thmers of the sealp, orlit, car, moses, and phareves to the Inain has been ohserver, but hardly sepuives disenssion. Whether mental
 to tumers is merertain.

Buys are frier as liable as quits to hain-tumor. No age is exempta bain-tamer laving been fomed in an intant fome wedes ohd.

TABLE $11-$ -

As the table here given shows, children below the age of eight are somewhat more liable than those abore that age.

NY:MDOMN.

 pronlucing cerchat amemia. 'This is to be wemembered in regulating thes

 armating germal comvolsions.

 of wifh defieds of vision, vomiting and vertiger, and insommial.
 It varines in severity, but is in all rases at times very sereser. It may las

(1) the mental rolalioun
 his aquy. It varies in its lowation, is nasally firmal on orepital, and only
 cranial presisme and the comserpuent strething of the membanes, the varia-
 the elivect involsement of the semsitive dara mater and hameloes of the fifth
 ruce of a thomer are more likely to follow when the new growth is in the
 hemedre is most ronstant and most severe. But even in these cases it is
 of the hade : thens, in a patient of' 'Taylor's, a hoe of nine, the pain was refieped to the fromal region and vertex, while the tumer, a gliomat, was, fomat in the pons and cerebellom. If, howewer, the pain is emstantly

The pain is often asseceiated with indelinite cerebal sensations, deseribed as filucss, pressure, confinsion, tightuess, as if a band were drawn adoont the firehoad ; and these give great distress and often interfere with sleep. In infants the existence of headache may be inferred from constant motion of
the head, from movements of the hands grasping the had or fulling the hair, and fiom swden outhorsts of scremming withont other aseertanable canse. Headache is peobally less severely fill in cases of thmor in intims, ns the expmaion of the skill mat the opening of the sumes prevent the extreme dergere of intramaisl pressure to which severe headache is chidy. aseribed.
'Trulerness of the sealp and head is sometimes fomm, and if this is limited mifomly to one aren, is always clicited ley peremsion, and is mon ho to sensitivences of a single merve-tronk, it is a more valuable sigu of the
 picion that the thmor lies just bemeath the hone, upon the sumfine of the bain, fin it is more commonly fomm in cortical than in sulveortical tumms. And moder these ciremonstanem it is usually associated with hembache lowalizal in the same: area.
diencol comrnsioms are the mext most frepuent symptom of hain-tums. 'The mevoms instahility of ehildhom, the latek of inhibition, and undur semsitionoms to pripheral irritation of any sort, predispose children to the
 sions. They begin anty in the history of the int andanial growth, sedrring at long intervals, then arome more firguent, ats mane as twenter or thirty ocroming in a day, and they may persist at short intervals thomgh several days. 'They may be shight in dergere, a littie twitching of the fane aml cere, with stifieming of the lack and extremities, and with loss of romsedonsmes lasting omly a tew seromde, constituting the atack; or they mave
 times a perentiar gencral tremor follows the ataek and lasts an low on more. Comonsions are asmally indiative of mpial progress in the nus growth, of effision into the ventrieles, or of at seromdary affection of the meninges. They may ocelur from tmon sitnated anywhere, and do not print to a apocial seat of the disomes. They may follow a lewal yatm which has prodnally extemerl fiom a single limb to other parts. Thaip
 toms. Dath mot infergumely orems in convolsions, lut this is mure

 children. ${ }^{18,19}$ 'The child leromess mansually fretfal and irritable, refinses to motiere its toys or to play, or, if it doses so, soon beromes wemided, and requives comstant attention. It may berome indifferent to things in whidh it Wals formerly interesterl, may profer to hic down and to kep quict, in a mamer monaturd to a hoalthy dild, and may even become sommont and lathargie, or it may from time to time be very irvitable, may cry and servm withont apparent canse, and net as if much alarmed, refusing to be guisted by ordinary moms, and hence be subjected to modeserved punishanem.
ar the inathe limis, it the chiclly

These changes in dispmsition should be comsidered as symptoms of mental distress, ama, taken io commetion with hadache and comvolsions, shombld exite conem mather that reprowt. In an extreme degree these symptoms may apeor as imberility or as manam excitement, but this is wery rave.

In ohder chiddren a decided dange in mental atetivity is notied, as well at change of disposition. Fongetfuluses, duluese, lack of interest, stuppidity, are motiend, and the chikd no longer kerps up in sehool with its fellows or notions what is going on about it at home. This condition may develop into melandolia with or without hallueinations, or it may sudenty change into manian with periods of excetement, thengh these manifestations are rare. More fimpurntly a state of apathy emsum, which is like a dementia, in wh the child distrgates the womts of mature mod is so indiflerent as to forget the restraints of derency.
bouble optic newritis and optie norer-abrophy are very important diagmatio symptoms of intramial tumor. Nemritis is nimally assoriated with

 lowkent for in exery ease which presents cerehal symptems. A marked degree of optie temitis may exist without any imparment of vision: hence the ophthahmesepe shash be nsed whether the defect of sight is present or mot. But when the pationt shows impaiment of visual power, or himitati in of the visual fied for colors or for light, or is beroming blime it will be fomm that optie nembitis or optie atrophy is filly doveloped. Sudten toss of vision appents to be mome commonly noted in histories of chitdren's
 It is true that hydrocephalus may eanse choksel diske, and hemee from this simptom aleme a thmor camber be diaguostiated. But in cases where the diagmais is diflientt no more important objedive evideme of bain-tumor can loe fomul.
'Thmoss of the cerebellam and corpora quadrigemina and tumers "pon the base of the batin and in the basal ganglia produe optie nemitis more constantly and carbiar in their comse than thmors sithated in the cortes or mentrom ovale. Optic nemitis is minally domble, thongh it always appens first in one ere and is ravely equally intonse in both eres ; but in a few rases it has been lomed in one ever only, and then is thought to indicate disentan of the nerve in the orbit or in front of the optie chasism rather than a distant tumor. For the exact changes in the retina and for the patholugiall canses of optie menritis the reader is referred to special text-books. ${ }^{\text {o }}$
lomatiag is a sympom of bain-tumor more frequently observel in dhildren than in adnlts. It may or may not be necompanied by mansa, It mas werm unexpertedly, withont sperial rehation to the time of meals, on it may be so continums as to thraten inamition. It oerms not infirequently on any movement of the hemd .. .ar the patient has been confined to lare! for some time, and then it is manaly associated with vertigo. It also frequmbly arompanies severe hadache.

Vertigo is sometimes a coinedent sympom, but a ally orems independently of vomiting. The patient feels dizạ゚, feeds himself turning on falling, and things abont him appear to be in motion. He graspo at man obpects for support, covers his eyes with his hamds, or lies down om the fhen and eries ont with bewiderment and distress. Like vomiting, vertign may be cexital ly changes of position. It exoms at intervals, in attacks of short on !ong duration. It acous more frepuently with tumors in the proterion fissa, in the cerdedlam, or on the base involving the anditory Herve, than with tmors elsewhere Sinds attacks of vertigo are bet bo be cemfomberl with the slight constant vertigo date to domble vision and secomblary to parsis of the thiral and sixth merves.

 planed of in canse of amor in children and youth than in adnlts sullining from sphilitie tumors.

Fever and chames in the mpidity and rhython of the prolse hase bexn obsered in the comse of bain-tumers. The formare is aseribed to inllammatory changes in the hatin or meninges as a comphation. The latter is
 la: pulse is the form usially moted, hot towards the elose of life very rapid puise has been ohserved. Irweghar or Cheyne-Stokes respitation has atwo Ween moticest as a terminal symptom.

Oceasionally attacks of syncope oceme in patients with timmer an the posterior fossa, and a general feeling of weakness is not inforeformety complainer ol.

The combination of several of these gemeral symptoms in any vase should lead to a strong suspicion of int aceanial tumor. When, in addition, lemal symptoms are added, the diagnosis should not bee difficolt, dall rases the omset of the gemeral symptoms is gradual, their intensity inerasing at time gees on ; and a carefine statly of their monde of development and progress is a great ad in the diagnosis of the kind of tmmor prosent, of its size, and of the rapielity of its growth.

The distrese problucal by the genema sumpoms is usially much grater than that cansed by the local symptoms, and comserfently treatment is when reguirat for their alleviation.
II. Local, Simproas depend mon the sitation of the intractanal growth, irrespetive of its chameter, and differ from one another in different (anes, but are ahwas the same when the fumor is in one place. They may be entirely wanting, and, as a rule, but a fow coen in any owe case. They nstally commence gradually, and are limited, bot increase in extent ats the tumor grows. If they begin suddenly, they indicate the ocenreme of hemorrhage in the tumor. If the fumor afferts one hemisphere of the crebrom or cerelellion maly, the loal symptoms are unilateral. If it lies "pon the hase and invades the cerehal axis, through which the trade between the brain mad the booly pass, the local symptoms may be bilateral
or irregular in their distril.ution. The signifiemene of a toeal symptem as indientive of the seat of discase is the sume whatever the firm of lesion, Whether tumor, absecess, hemorthage, or local softening from cmbolism or thembesis. The reader is therefore refermel to the articles upon the lowatiaation of bain-lesions for their finll consideration. They will be stadied bere in connetion with tumors alferting varions regions of the bain.

The lexal symptoms are spasm, tremor, and paralysis; alteration in reflex action; werinass, tingling, mumoss, formication, feelings of heat amb cold; pain; impairment of tond, temperature, pain, and musenlat senses ; ataxia ; distmbames of the semses, either in the form of hallucinations in defertive pereption, which in the case of sight is in the ferm of hemianopsiat disturbane in the movements of the eves and the preservation of equilibrimm; imprefert gait; interference with the ats of swatlowing, respiation, and artionlation; vaso-motor disturbanes, polyuria, and glyeosmiat distmbane in the mental ation and in the memory and nse of language ; and symptoms reforable to one or more of the ermial nevers.

I distinction is made between divect and indivet loxal symptoms, the first being due to irritation or destruction of a limited area liy the tumer, the serom lowing doe to interferene with the function of an area by disease at a distane from it whid imparis its eirentation or enases pressure unon it. 'Thns, a tumer of the cerebellum may (anse ineoriodination and vertigo as direet symptoms, and also canse paralysis of the sixth and seventh eranial nerves as an indinet symptom of displacement of the pons Varolii to one side, which stretches these nerves moduly. 'Tomors usially canse hoth forms of load symptom, and therefine much are must be given to the gnestion of their signifianame in any case.

1. Tumors involving the Cortex of the Cerebral Hemispheres.These tumons are quite common, ats is shown in Table I. They may le of any varicty, but tuberele, sareoma, and glioma are the more frequent. The two fermer usually involve the mombranes as well as the cortex. They arre more freapently traceable to blows and falls than thmors in other regions. 'Tumors of the cortex asmally involve the white matter beneath the cartex in the centrom semiovale, throngh which pass the tracts connerting the cortex with the varions organs of the borly and the tracts betwem various cortical areas. Tumors may begin in this white matter and involve the cortex secondarily. It is at present impossille to diagnostimate a cortical from a subeortical thmor with certainty. Therefore in this section no distination between them is attempted.
'Timors of the cortex produce hoadache, tenderness of the skull, genemal convulsions, and mental symptoms quite miformly. Optic nemritis, vomiting, and vertigo are less frequently observed than with thmors of other regions. It is the function of the cerehral cortex to receive impressions coming in from the varions organs and surfaces of the body as conseions perceptions, to preserve thom so that they can be revived in memory or

Yol. IV.- 86
recognized upon their reenrence, to associate the pereeptions and memorics in groups which thus form the coneept, and by a combination of conerphs to build up ideas and carry on thought. It is also its function to initiate. the voluntary impulses to which the thonght leads, to co-ordinate them into orderly sucessive movements of definite intensity, and to give ntterance to the thought in speech or writing. lts highest finction is to exerrise a comtrol over the instinctive or impulsive tendencies to action, and to regralate conduct in view of remembered ideas rather than in response to present impressions. There is every reason to believe that the highest mental processes-judgment, reason, and the understanding of ethical and philosophicul truth-are dependent upon the integrity of the cerebulat cortex, since deficiener in its development impairs these mental powers; hut ans physical explanation of these peychical processes is as yet impossible.

The local symptoms of cortical thmors vary greatly, aceording to the area which is involved.

1. Tumons of the frontal lobes present few characteristic symptoms, and may be latent. If the tumor is situated near the orbital convolutions, it may destroy the olfactory tract and then canse loss of smell on the side affected. Lesions elsewhere in the fromtal convolutions often produce a disturbance of mental action, shown by inability to comeentrate the attention, to think comertedly, to learn easily, and to exereise selfeontrol This may go on to a state of imbecility, in which the patient may herome dirty and disregatd all restraints of deceney. Integrity of the fromtal lobes is necessary to complete mental action, yet no special loss of mental faculty can be said to result from their destruction. ${ }^{2}$ Nor is there aus apparent way to detect from the mental symptoms in which hemisphere the thmor lies. The diagnosis of tumor of the frontal lobes is therefore rarely made from a study of direct local symptoms. It is to be remembered, however, that a tumor when situated in other regions, cxeepting only the temporo-sphenoidal lobe, produces direct loeal symptoms, the alsener of which may lead to the suspicion that the tmon is situated in the fromtal or temporo-sphencidal lobe.

Indirect local symptoms of irritation of the cortex often ocem in tumers of the frontal convolutions. ${ }^{22}$ Such irritation beginning in the frontal (minvolutions extends backward, and when it reaches the anterior central comvolution (ascending frontal or pre-Rolandie convolution, Fig. 1, 1), in which lie the motor centres, it may canse spasms or convolsions. Such spasm will begin in the eves or face, in the arm, or in the legr of the side of the body opposite to the site of irvitation, and is never followed ly permament paralysis. It may even go on to a general convulsion, extending from part to part and limb to limb till the entire body is involved. The oceurrence of such spasms, "ot followed by permanent paralysis, is an indirect lowal symptom of froital tumor. Should the tumor in its growth extend to the anterior central convolution, direct symptoms of its lesion will appear.

Tumors situated in the thivd frontal convolution of the left hemisphere in right-handed persous and of the right hemisphere in left-handed persons prowluce motor aphasia with, or possibly without, agraphia,--that is, a comdition of inability to nse langnage, to speak and to write, while the comprehension of language is maffected. (See Fig. 2.) This aphasia is usmally incomplete in cases of tumor, and is of slow onset, thus contrasting with the same symptom when due to cmbolism or hemorvage. In children speed aut writing are usually lost together, although these proceseses are doubtless distinct and become more independent ans age advances.

The following cases are cited as examples:
Cher 1. (O. K. Mills: Jourmal of Mental und Nervous Disenses, December, 1887, xiv. 707.)-Atter a blow on the head, the boy, aged sixteen, had bectsiomal convalsions for a gear. He then began to sulfer from headache, noises in his hemd, vomiting, and obstimate constipution, and his pulse was found to be slow. Then, quite suddenly, staggering guit, vertigo, diplopin, and severe pain in the bem, with vomiting, devoloped. During the following week parasthesibe of the limbs, with stiflurss, began, and ho lost jower to some extent in the laft arm. His convolsions heame more frepurnt, and daring his tits he was drawn to the left side. He was ravenomly hangry. Before his death, which oceurred from exhaustion about one your ufter the onset of the consulsions, ptosis of the right eye and partial facial paralysis of the left side were present. Antopsy showed the prosence of a reddish-gray tumor confined th the posterior portion of the right second frontal convolution, mensuriug about two and a half inehes in all directions, involving the cortex and suljueent white matter.

In such a case the general symptoms elearly indicated a cerebal tumor, but no diagnosis of its luation could have been made with certainty. The symptoms of paralysis in the left arm, coming on late, indicated a secondary involvement of the motor area. The symptoms of cramial nervedisturbance showed a displacement of the entire batin-axis.

Citse 1I. (Areher: Dublin Medienl Journal, 1878, ii.) - A femate, cleven years old, who had chronic hip-joint-disease, suflered for some months before hor death from healache and general epileptie convalsions without local spmsms or paralysis. She gradually beenme more and more stupid, and fimally died of exhastion. At the autopsy a tubercular tumor was found in the first and seemd frontal convolutions on the left side.

Occasiomally all symptoms of brain-tumor are absent mutil a few hours before death, as in cases of Schweinitz* and of Janeway, \dagger and in some patients the diseovery of a tumor at the autopsy is a surprise, as in a case of Steiner. \ddagger
2. Thmors involving the antrrior and posterior central conrolutions or the paracential lobule, which border the fissure of Rotando, produce, as direct lowal symptoms, spasm and paralysis in the limbs of the opposite side. ${ }^{23,24}$ The location of these motor symptoms varies with the site of the tumor in the motor area. ${ }^{25,}{ }^{26}$ Tumors insually produce irritation of the cortex before

[^243]they cause its destruction : hence a patient may have attacks of local spasms (Jacksonian epilepsy) for some time hefore permanent paralysis develops. ${ }^{\text {ET }}$ If the paralysis develops first, it is probable that the tumor lies in the centrum semiovale muder the motor area and has affected the motor tract, and has invaded the cortex subsequently, such invasion being indicated by the onset of the convulsions. ${ }^{23}$ Local spasms are usually preceded or accompanied by numbness or slight anesthesia of the part affeeted, ${ }^{28}$, 29 and are followed by a condition of weakness. If this weakness is only temproary, the cortical motor area is not destroyed; but if it is permanent, it is an important indication that a serious lesion as well as a somere of irritation is present. Slight anresthesia and ataxia may accompany permanent paresis, from cortical disease, but are not invariably found. They are much more common with tumors of the posterior central convolution which invade the
setal convolutions than with tumors affecting the anterior central convoation alone, ${ }^{28,29}$ yet the motor areat and the sensory area for tactile sense probably coincide. Since local spasms and local paralysis are important indications of the exact situation of a tumor and may be used as guides to an operation for its removal, a careful consideration of their distribution and manner of extension is warranted.

The motor area of the brain is indicated by the shading in the diagram on the opposite page, and may be roughly divided into thirds as thewe shown. The lower third contains the centres which control the face; the middle third contains the centres which control the arm ; the upper third contains the centres which control the leg. Horsley and Schacfer have located ecrtain special movements in varions sections of each area. ${ }^{30}$ In the face area, irritation of the anterior third cunses movements in the vocal cord, together with associated movements of other parts of the throat; irritation in the middle third produces movements of the upper part of the face and angle of the mouth; irritation of the lower and posterior third canses movements of the lower jaw and lip and of the tongue. Each of these areas blends with the others, there being no sharp line of demarcation between them. A very slight irritation in one area canses a spasm limited to the movements which it controls; a stronger irritation will canse movements in the museles controlled by the other adjacent areas, due possibly to extension of the irritation to them, and possibly to a simultaneous representation of all the movements in less degree in one area. Similar distinctions in the effect of irritation are observed in the middle third of the motor area, different sections of this area governing different segments of the upper extremity. The shoulder is controlled in the upper and anterior part of this area, the elbow next behind and below, the wrist next below and posteriorly, the fingers next below and posteriorly, the thumb lowest and farthest back. The representation for the fingers and thumb is wider than that for the elbow and wrist, as the latter are rarely moved alone.

The upper third of the central area, including not only the paracentral lobule with its cortical portion on the median surface of the brain, but also
parts of the cortex in front and bohind it (as indicated in the diagram), governs the movements of the leg. The anterior division of this area, in-

Fia. 1.

Cortical Sensory-Motor Areas and Visual Arfas. A, convex surface of left hemlsphere of the brain: B, median surface of right hemlsphere of the brain. (Eeker.) F_{1}, F_{2}, F_{3}, frontal convolutions; A, B_{1} anterlor and posterlor central convolutions; P_{1}, P_{2}, superior and inferior parietal lobules; P_{2}^{\prime}, angular gyrus; O_{1}, O_{2}, O_{3}, oeeipital eonvolutions; O_{4}, cuneus; $7_{1}, T_{2}, T_{3}, T_{4}$, temporal eonvolations; (if, gyrus fornleatus; U, uneinute gyrus; $C C$, corpus eallosum ; S, lissure of sylvius; c, flssure of Rolaudo: cm, calloso-marginal fissure: po, parieto-oceipital sulcus. Lines drawn paraliel to I Indicate the motor area of the brain, and the difference la shading shows the division of this area into lower, midde, and upper thirds on the conrexity. ated the extent of motor area on the median surface. Llnes drawn parallel to $I I$ indleate the visual area of the brain on the convexity and median surface.
cluding the posterior part of the superior frontal convolution, presides over combined movements of the arm and leg, such as are made in climbing or
swimming. The posteror part governs movements of the toes, and between these extremes the centres for the hip-, knee-, and ankle-movements are arranged, in the order named, from before backward. On the median surfaee of the hemisphere in the paracentral lobule and adjacent parts the muscles of the trunk are represented.

The motor centres for the motion of the head and eyes are placed by English physiologists ${ }^{31}$ and by Mnnk ${ }^{32}$ in the two uper frontal convolintions, just at their junction with the motor area, and by Landonzy and Wernicke ${ }^{33}$ in the inferior parietal lobule, just at its juncture with the motor area. Pathologieal cases in man support the latter position more fully than the former.

When any irritation is sufficient to radiate from one area to another, it involves the areas in the order in which they lie. This is readily muderstood if we consider an irritation of the cortex as a nervons discharge which spreads, like the ripple on a pool, from the point disturbed outward in widening circles. If the point of irritation is in the lower third of the motor area, cansing facial spasm, it will extend to the middle area, cansing spasm of the arm, before it reaches the upper third and produces spasm of the leg. Spasms of the leg radiate to the tronk and arm before reaching the face. Spasm of the arm extends to the face and leg together. The same is true of the extension of paralysis from cortical destruction. And the order of extension of the paralysis is of especial importance as indicating the direction of growth of a tumor.

Irritation of the cortex by tumors is quite comparable in its effect with irritation produced by electricity in physiological experiments. In both, the manner of extension of the irritation from a certain area to other areas is the same. ${ }^{21}$ It is therefore of very great importance to determine in a case of local spasm or paralysis the manner of onset and the order of extension of the symptoms. From these facts the exact point of irritation of the cortex can be deduced, and that point may then be taken as a guide to operation. Thus, for example, a spasm beginning in the thumb, extending to the fingers, wrist, ellow, and shonlder, and possibly to the face or to the leg, indicates an irritation whose point of origin was in the posterior part of the middle third of the motor area, in the posterior central convolution. ${ }^{24}$ From this point of origin the irritation may be thought to have spreald, thes invading the adjacent areas in a definite order, which order is indicated by the suceessive implication of varions sets of muscles in the spasm.

The suljective sensations of the patient are also of value in determinumg the point of origin of the spasm, as tingling and mumbness are felt first in the part in which the spasm begins,-i.e., in the case supposed, in the thumb and fingers. This sensation has been termed by Seguin the " signal symptom" of a Jacksonian spasm. And subsequently to such a spasm anæsthesia and weakness will remain in the thumb and fingers longer than in the rest of the arm. In such a case an operation would be directed to the removal of a tumor from the middle third of the posterior central convolution, and
that point would he made the centre of the trephined opening of the skull, ats in a case snceessfinlly operated upon by Kem. ${ }^{21}$ Hence in determining the location of a tumor in the motor area three things are to be observed: first, the starting-point of the sensory and motor symptoms in case of epasm or paralysis ; secondly, the order of extension of the spasm or paralysis from the starting-point to other parts; thirdly, the point of greatest intensity of the post-spasmodic paresis and amesthesia. 'These three sets of symptoms together will indicate the part of the motor area primarily affected, and the tumor will be fomd there.

Since the motor areas of the different limbs are separated from one another, it is not surprising that it is the rule to tind in cases of tumor that paralysis is for a time at the outset limited to one limb. Monoplegia therefore, rather than hemiplegia, is to be expected in tumors of the cortex. When, however, the tumor begins deep in the centrim ovale, or lies in the basal ganglia or erus or pons or medulla, through all of which parts the motor tract containing fibres from the separate motor areas passes, it will involve this tract, and thas eanse hemiplegia instad of monoplegia.

Whatever the form of the paralysis at the outset, the gradual extension of the tumor in the motor area results finally in hemplegia; for in its lateral growth it either invades all the motor areas of the cortex, or in its downard growth it eventually involves the motor tract within the centrum ovale or in the intermal capsule.

In all cases of cerehal paralysis there is an increase of the deep reflexes in the paralyzed part ; there is no atrophy, or only slight atrophy from disuse, which is uniform in all the museles of the limb; and there is no change in the eleetrie reactions. There shond therefore be no diffenty in differentiating a cerebral paralysis, even of the monoplegic type, from a spinal or nerve-trunk paralysis, even in infuney. Nor can the slight ataxia and impaired tactile sense which may aceompany cortieal paralysis mislead; for the anesthesia is never limited in its distribution to the area of skin supplied by a single nerve or by a single spinal segment, but is usually uniform over the entire limb, or else segmental,-i.e., it involves the digits, or the entire hand, or the entire forearm and hand, or the entive arm, forcarm, and hamd, and has not the distribution charateristie of spinal lesion. ${ }^{34}$ Horsley hats suggrested that tactile sense, musenlar sense, and motion must necessarily be represented together in the same cortical area, since all fine movements depend for their proper adaptation and co-ordination on these sensations: and he holds that the varions layers of cells found in the cortex subserve various functions. ${ }^{35}$ Recent pathological evidence lends much support to this view. Hence ataxia and anesthesia should be looked for in cases of cortical paralysis.

The following cases are cited in illustration of tumors of the central area:
Case 1II. (Janeway ; Transactions of the New York Aeademy of Medieine, iii, 184.) -Male, aged thitteen, began to suffer, two weeks after a fall, from headuche, weakness in the left arm and leg, and intermal strabismus of the left eye. Soon after vomiting
 ness of vision, due to optio nourtits, developed in the fourth month, and six weeks hater lus was totally blind. Being examined at that time by Dr. Janeway, it was found that rumb was impared in the right nostril, hearing redneed one-half in the left tar, motions of 'he
 from pain in the Joft lag; the bace was not atbeted. Daring the next elght montis ali these symptoms incrensed in severity, but no new ones were alded. He then died.

 midde balf of the convolution was eyst-like from softening. On section, the tumor wa foud to afteet the anterion and posterior central convolations in their upper two-thirds, and to comprise mad partly destroy the flast frontal convolation, parmeentral hoble, gyrus fimbe catas, and superior parictal lobule. It was a flon gray tamor, lobular, of the size of an orange. It was a glimma.

Cone IV. (Osher: Ameriean Jommal of the Medienl sciences, 1885, i. 31.)-A fomula, aged fifteen, had an injury to the hend when an infint, and seemed to sutfer moch alter it for some woeks. Five months hater spasms of a tonic character began in the lefthand, and in the eourse of thees months lad extemded to the legr, and then beeme milatemand finally general, the mouth being gemerally fixed open during the epasms, whichoreored as ofton as right or ten in an hour. There was never loss of eonseinusness. These lasted two months, nud then all symptoms ceased for a year, during which she was well. The spusms reverved one yeur hater, lasted seven months, and again disappenred. Six years after this a grabuallyincreasing weakness of the left beg, with furning inward of the foot, developed, and the spasime began again, each spasm lasting half a minute or a minute, during wheh she would laugh and talk. They varied in frequency from that time until her teath. She wam a well-nourished, intelligent child. The only promanat sympoms were a slight wasting of the limbe of the laft side and athrniag of the left foot inward at n right angle to the lene. The left arm, though fechle, was mot still and useless, as was the leg. Autopsy showin gliona in the upper third of the anterioe centmbervolution on the right side, in the white matter just under the cortex, measuring about ome-half inch in all directions.
('ase IV. (Saundly: Trasactions of the London Pathologrieal Socioty, 1886, p. 39).A boy, six years ohd, sutfered for some weeks from general convolsions, wentul duhns, and symptoms of nephritis. Then spasms of the right side without loss of conselousness begum, and continard at intervals fir tive days, and were followed by purtial paralysis of the righa nrm, with some jerky mavements. The paralysis incrased and extendel to the right fine and to the right leg. The boy died four weeks later. The antopsy showed a tubureular tumor on the surface of the left eerebral hemisphere in the motor area at the juncture of the midtle and upler thirds.

Remarki.- In all of these enses the diagnosis of the existence of a than was possible, and also a diagnosis of its location in the moter area. With our present knowledge of the possibility of extirpating such tumors, an operation in a similar case would be indicated.

Cases of a similar character have been reported beeligmüller,* Sodermark, \dagger Gliky, \ddagger Duchek, \S and Comer. $\|$
3. Tumors in the parietal lobe of the brain may proluce no local symptoms, but usually canse disturbunces of musenlar sense, of tactile sense, and of the senses of temperatme and pain. ${ }^{23}$ The localization of these sensations

[^244]in the eortex is still maler dispute, but rexent observations ${ }^{29}$ semm to show that they are pereeived in the central convolntions anm parietnl lobe, since injury there canses parmesthesia and partial mosthesia in the limbs mod face of the opposite side. 'This is not invariable, however, and a momber of eases of lesion of this area lave not been diagnosticated. 'The indirect lowal symptoms of irritation matiang to the central area and proflocing spasins, or of destruction invading the enonal aroa and eansing paralysis, Ho all the more important. Destruetion of the white tanets in the centrm somiovale moder the parictal cortex may produce hemianopsia by invaling the visual thact, and hence this ton is an important indirert lown symptom of thmor, especially if it is of slow onset. When a tumor exists in the inferior parietal lobmle of the left hemisphere, it gives rise to distmbaness of spered of a perenliar kind, called word-hlindness. 'This is ceperially fomed in lesions of the angular gyvus and supm-marginal convolution and of the rontex botween them. It eonsists in an inability to reconnize written and printed words formerly understood. The patient thas loses his power to read and to write spontaneonsly, thongh he may be able to write at dietation on' to copy. 'This symptom is often associated with wordedeafness, Ime only when the first temporal convolntion is invaled by disease. It is as yet impussible to saly whether word-blindness is due to the destruction of the parietal cortex, or of association trats between the oxipital and temporal cortex whieh pass throngh the inferior parictal lobule. Word-blindusis, howrere, mast be considered a valable sign of tumor or other lesion in this area. Like motor aphasia, it will be of gradnal onset and ineomplete in cases of tumor. Motor or ataxie aphasia, in which the pationt, thongh able to muderstand what is said and to raad what is seen, is mable to talk or to write, is due to a lesion in the posterior part of the third frontal convolation,-i.e., in Broxa's eentre.

The fignre on the following page shows the areas of the eortex concerned in the nse of language.

The conjugate volnutary motions of the eyes are thought by Wernicke ${ }^{33}$ to be controlled by centres in the inferior parictal lobule, and hence, should they be found to be impaired, a suspicion of disease in this region might be aronsed. The impulses from the right inferior parietal lobne turn the eves to the left. Thomson has reported ${ }^{36}$ a ease of depressed fracture of the left parictal bone just beneath the boss in a boy of fourtecn, in which the only local symptom was conjugate deviation of the cyes to the right, which was entimety relieved by elevation of the bone by trephining.
4. Tumors of the oceipital lobe, inchading the convolntions of the eonvexity and the cortex of the ennens, prodnce bilateral homonymons hemianopsia on the side opposite the lesion ; that is, a lesion in the right oceipital lohe prodnces blindness in the left half of both eves, the patient sceing nothing which lies to the left of a vertieal line directly in front of him. ${ }^{37,38}$ Central vision is usually preserved. If the tumor lies in the left hemisphere, there may develop, in addition to the hemianopsia, a condition known as
psyehical blindness, in which a patient no longer recognizes faces or objects formerly familiur to him, and this is usually associated with word-hlind. ness. In left-landed persons this may result from lesions in the right hemi-

Fig. 2.

Cortical Speech Areas. The eonvex surface of the left hemisphere. (Ecker.)-The speech areas of the brain. Lines parallel to I show the motor area of articulate language, lesion of which produces motor (ataxic) aphasia. Lines parallel to $I I$ show the sensory urea of artientate languge, lesion of which produces sensory aphasia (word-deafness). Lines parallel to $I I I$ show the sensory area of writ. ten langtange, lesion of whlel produces word-blindness (alexia). The last two areas overiap: conse quently word-denfuess and word-bllidhess often occur together.
sphere. While destruction of one oceipital lobe always causes hemianopsia, its irritation is only oecasionally followed by hallucinations of light or of sight. If these are frequent and are the invariable preeursors of unilateral spasms or of general eomvulsions and are followed by temporary blindness, there is suffieient evidence of irritation of the oceipital cortex, with nervons "discharges" from it similar in kind to those occurring in the motor area. Hemianopsia coming on gradually; after sueh attacks have ocenered at intervals, and asseciated with general symptoms of cerebral tumor, would warrant a diagnosis of tumor of the oceipital lobe, as in a case of Seguin. ${ }^{38}$ A large tumor of the oceipital lobe may produce pressure upon the tracts from the parietal and central areas to the internal capsule, and thas cause indireetly hemianesthesia and hemiplegia. These would, however, be slight in degree, and appear late in the course of the disease. Such a large tumor may also depress the tentorium cerebelli, and give rise in an indireet mancer to hydrocephalas and to cerebellar ataxia with vertigo.

The following case illustrates this condition :

Chse 1\%\%. (Huguenin, eited by Siguin: Jourmul of Mentul nnd Nervous Diseases, 18sib,

 opthe neuritis und heft homonymots hemianopmia. She went into in state of dementia and died.
 lobe
5. Tumors in the temporo-spheneidal lobe muy be latent. Although physiologists assign the sense of hemring to the first and second temporal convolutions, and the sense of smell and taste to the uncinate convolution and hippocampus, ${ }^{31}$ there are on record but few cases of thmor of these parts in man which confirm these localizations of function. 'Tumors of the left first and second temporal convolutions in right-handed persons canse the form of sensory aphasia known as word-deafiness. ${ }^{25}$ 'The patient is unable to rexall the names of objects or persons, and cmmot understand what is sail to him, though his power of spech may be mimpaired. Such patients nsaally talk jargon or misplace words, and frequently are mable to real. The sitnation of the lesion is indicated in Fig, 2 by the lines parallel to $I I$. Whether irritation of this lobe may proluce sensory hallucinations in the eourse of tumors remains to he diseovered, though in two cases at thmor at the apex of the temporal lobe has produced epileptic seizures preceded by nut anra of smell. ${ }^{39,}$ to

The following case illustrates the difficulties of diagnosis of thmors in this arme:

Chse VII. (Mills: Jourmal of Neprous and Mentul Disenses, 1887, p. 716.)-A girl, twelve years old, had a fall in September, 1880, after which she sulfered contimonsly from heudache, which became very intense in the course of six months. In April, 1887, she had tenderness over the right temporo-frontal region and loonted her headache there. She was found to have choked disks, dilated pupils, the right being larger than the left, and it was difticult to tix her attention. At this time she was suddenly seized with paralysis of the lett arm and paresis of the left leg; her speech became indistinet, articulation being imperfeet; and there was also slight paresis of the right side of the face. There was no spusin or anasthesia. The question of operation was consilered, but the foen symptoms were not such as to poine to the loeation of the disense. The putient died in May.

Antopsy showed a gliom of the right temporal lobe, three inches antero-posteriorly and an inch and u half in other directions, within which a hemorrhage had occurred.
(6. Tumors lying within the Sylvim fissure and affecting the island of Reil proluce muncrons indirect loal sympoms,-first, by afleeting the circulation of the central area throngh pressure on the vesseds which pass over the island, and, secondly, by pressure upon the trats which pass beneath the island. Extensive paralysis may be due to the first, and paraphasia to the second. Pamphasia consists of imability to use languge properly owing to a misplacement of words, and results in the patient's talking jargon. More extensive pressure upon the island of Reil may canse hemiplegia, by being transmitted to the lenticular nuclens and internal (alpsule. ${ }^{21}$

It is evident that tumors of the cortex produre a large number of lowal .smptoms, and that these symptoms vary very much, in aceordance with the area in whieh the thmor lies. It is quite easy to locate thamens in the central area and oceipital lobe. It is very diffienlt to locate them elsewhere, muless they lie in the left hemisphere, when the form aphasia present may determine the site of the new growth. Careful examination must be made in any case as to the condition of all the functions of the varinns areas, and too great caution cannor ine exerted in determining the sitnation of the tumor or in recommending operative interference. And it must not be forgoten that tumors of the cortex are not yet to be differentiated with certanty from tumers of the white matter iust bencath the cortex.

ADDITIONAL CASES OF CORTICAL AND SUBCORTICAL TUMOR.

Reporter.	Wheme Reported.	SEx.	Ace.	Location.	темов.
Schweinitz	Medical News, li. 233.	M.	8	Fromat.	Tubercle.
Birdsall . .		M.	42	Oecejpilal.	Sarema,
Soltmamn	duhth, f. Kinderth, sx. 141	F.	11^{2}	Oceipilal.	Crsticereus.
II. Schmidt	Juher f. Kinderh., xxii, 35\%,	F .	14	Parictal.	Angin-sircoma.
Charon	Jour de Méć. de Brix., Jantiary, 1886.	F .	7	Frontal.	Sarcona.
Quincke	Dent. Areh. f. Kilin. Mel., xlii., No. 5.	M.	14	Central.	Glioma.

II. Tumors of the basal ganglia are not infrequent, and may be of any varinty or size. They usually cause very marked symptoms, which are never direct local symptoms, since little is known of the function of the basal ganglia, but are indireet symptoms due to in asion of the internal capsuic. It will be remembered that many of the fibres of the corom radiata from the eotex pass out of the base of the brain in the erns cerebri, which they reach hy traversing the interma! capsule. This capsule contains all the important traets comeeting the cortex with the body, and these tracts lie in $t^{\text {b }}$ a following order from before backward.
(1) A tract from the frontal lobe to the imer third of the crus cerempi, thence to the hasal gray matter of the pons, thence to the cerebellum ly way of its middle perdunde.
(2) The specech tract, from the third frontal convolution to the medullin.
(3) The motor tract, from the eentral convolutions to the middle third of the crus, thence to the pons (fiecial-nerve nuelens) and to the epiual cord (lateral columms) by way of the anterior pramid and lower decusation of the medulla.
(4) The musenlar-selice track, from the parietal convolutions to the lemnisens in the tegmentom of the crus, thenee to the spinal cord (posterior columus) by way of the npper deerssation of the medullat.
(5) The tactile sense tract, from the parietal (:) lole to the formatio reticularis of the tegmentum, thence to the apinal cord (posterior columis).
(6) The visual tract, from the occipital lube to the pulvinar or posterior

Lateral View of the Raan (dlagrammatic), to show the tracts passing from the eortex through the internal eapsule into the crus and pons Varolli. The numbers eorrespond to the tracts as numbered in the text. These tracts pass through the basal ganglia, and lssue from the internal capsule beneath the optle (ract upon the base of the braln, some entering the erns, others the tegmentum (T). Cs, corpus strhtum; OT, optle thalamus; CQ.I and CQP, eorpus quadrlyeminum anterior and posterior ; CGE and CGI, corpus genleulatum exteranm and haternmm; L, lateral lemnisens; $H I T$ to $N I I$, cranlal nerves; CM corpus mammillare ; MO, mednla oblongata; Py, pyramblal tract. Doited lines In T (tegmentum) Indicate positlon of sensory truct. The motor tract, after oeenpying the middle third of the erus, issues from the pons in the pyrambld of the medulle.
(8) The fibres comecting the varions arcas of the cortex with the optie thalamins, which are interspersed among these tracts.
(9) A tract from the oceipital and temporal lobes to the outer thind of the crus cerebri, thence to the bas I gray matter of the pons, thence to the cerebelium.

These tracts in their passage through the internal capsule are very hable to be compressed by tumors of the lesal gatr hat, and their function is theu impaired. If the tumor involves he auterior part of the capsule only, no veognizable symptoms are proluced. If it invades the middle portion,
defective artieulation, hemiplegia, or hemiataxia may be produced. If it involves the posterior portion of the capsule, hemianesthesia, hemianopsia, and possibly slight deafiness are caused."

The order in which these symptoms appear will often give a dlue to the direction in which the tumor is growing, whether from before backward or viee versa. From the symptoms it is impossible to determine whether the tmmor presses upon the inner or the outer side of the capsule. But, als a matter of fact, tumors of the optie thalami and tumors growing in the lateral ventricle are much more frequently found than tumors of the lentienlar mucleus. The distention of the lateral ventrieles by fluid mav produce outward pressure sufficient to impair the function of both internal capsules, giving rise to slight spastic paraplegia ; but this is rare, as great distention may ocenr without such symptoms.

Tumors of the basal ganglia usually distort the brain and diaplace the crus and pons, stretehing or compressing the cranial nerves, which then suffer in their function. Such tmmors cause optic neuritis quite carly in their course, and not iufrequently vomiting and vertigo are more prominent symptoms than headache. Localized spasms do not oceur with such tumors, but a peeuliar athetoid movement of the opposite hand, somewinat choreie in character, has been noticed with tumors of the optic thalamus; and this may be accompanied by the maintenance of peculiar forced positions in the limhs of the opposite side. General convulsions are rare with tumors of the lasal ganglia.
'The diagnosis of tumors of the basal ganglia is more diffienlt than that of tumors in other regions, for the symptoms are complex, may be irregular, or may even be wanting, as has been the case in several instances.

CASES OF TUMOR OF TILE BASAL GANGLIA.

Repohter.	Where reported.	Sex.	Age.	Tison.
Pre-Smith	Neurol. Centralh, . 1884, p. 213.	M.	12	Tuberele.
Ashly	Mi dical Tumes, 1884, Nu. 1.99.	M.	3	Carcinoma.
C. Turner	̇ancer, 1885, j. 844.	F .	15	Suremba.
Boncliat.	Juhrh, f. Kinderh., xv. 210.	M.	$3 \frac{1}{2}$	Tunerele.
Ferricr .	Mills, Peplper's System, Case 62.	M.	14^{2}	Glioma.
Senator.	Charité Amalen, xiii. 823.	M.	-	Tuberels.

III. Tumors of the corpora quadrigemina and tegmentum of the crura cerebri are rare. Loss of pupillary reflexes, nystagums, strabisimus, vertige, and disturbance of co-ordination with staggering gait such as oreurs in cerebellar discase, are the local symptoms which have been olsenved. Irregular disturbances of sensation in the face and body may be produced, and also deafness, as the sensory tracts pass throngh the tegmentum. If a tumor is so large as to produce pressure downward upon the ernara, it will give rise to third-nerve paralysis upon the side pressed upon and hemiplegia
on the opposite side. This combination of symptoms is characteristic of discase of one crus cerebri, and may be produced by tumors on the hase as well as by tumors in the tegmentum. Hydrocephalus is a frequent complication. Optic nemitis with blindness nsually develops carly in these cases. Tumors of the pincal gland produce symptoms similar to those just enmmerated. These tumors by compressing the erura cerebri may callse paralysis of great extent.

The following case is cited in illustration :

Case VIII. (Sharkey: Spasm in Chronic Nerve-Disease, London, 1886, p. 26.)-A boy, aged seven years, reeeved a blow on the head in 1879. 1n May, 1882, having gone to bed woll, he awoke throwing himself ahout, and fomod himself partly paralyzed in all his limbs, especially in right arm and leg, and umable to walk properly. His specel was affeeted from the beginuing, and his eyes nowt one week after the commencement of his ilhess. Tremors in the limbs were notied from the first, and he had lost control over his bladder. He was very drowsy, but his memory was good. On admission in August to the hospital he was apathetie, but coukl be aroused. He had wenkness in the arms and legs, and when ne walkel his legs seemed to drag. The most striking peenliarity of his condition was the tremor with which all his movements were aceompanied. The head, neek, juws, trunk, arus, and legs were all similarly affected. The tongue was protruded braight, and when he smiled the month was drawn to the right. Ilearing was nomal. All the maseles of the eyehntls were more or less weakened. There was ptosis on both sides, and the interma rectus of the right eye whs markedly affected, as were also the superior und inferior recti. Boh pupils acted normally; the right was larger than the left. No anesthesia was present. The reflexes were normal. During the rest of his tife the tremors incrensed, the paralysis lucame more marked, and nttacks of spasmodic contraction of the museles of the limbs mud trunk necurred from time to time. The reflexes became exaggerated. He grew drowsy, and passed evaenations in bed. Towards the close of hife optie neuritis developed. Ife died November 30, 1882.

Autonsy showed a harge caseons mass in the region of the corpora quadrigemina, as if wedgeel into the aqueduct of Sylvius, which was much distended.

Case IN. (IToppe: Neurol. Centrathl., 1888, p. 628.)-A male, aged eighteen years, hat sulfered ns a child from cerebral symptoms, and four months before his death began to complain of oceipital pain and ocensionul tremor-like shaking of his entire body. Examination showed donble vision and loss of power of emjugate motion of the eyes upward. Pupils unequal and failed to react to light. Optic neuritis on both sides. Right ear deaf. lie suffered oeensionally from vomiting with the headache. All the symptoms inereased in intensity gradually, and he became somolent, lost control of his sphineters, and had diffieulty in swallowing. He developed bed-sores and died.

Autopsy showed a sareoma of the size of a pigeon's egg in the situation of the anterior corpora quadrigemim. The ventricles were greaty distended.

CASES OF TUMORS OF THE CRURA CEREBRI AND CORPORA QUADRIGEMINA.

I V. Tumors of the pons and medulla, and tumors nom the hase of the hain invaling these parts, are quite common, and profnce numeroms and wide-spread symptoms. Even thongh the tumor be milateral, the symptoms may be bilateral, the cramal nerves being implicated upon the sidn of the tumor, and the motor and sensory tracts to the opposite side of the boxly being at the same time invaded before they have erossed over. Such a condition is known as alternating hemiplegia or hemianesthesia, and is dhanacteristic of tumors in this region.

The symptoms referable to the lesion of the cramial nerves are the mont important for diagnosis. A tumor in or upon the upper half of the puns and involving the crus ecrebri usually alleets the third and fifth nerres, producing external strahismos with dilatation of the pupil and ptosis, and also tingling, pain, and anesthesia of the tace, with nemation of the eomea, and possihly grating of the teeth during sleep. A tumor in or near the fowe half of the pons involves the sixth, seventh, and eighth nerves, caming internal strabismus with contracted pupil, paralysis of the face, including imability to close the eye, and deafiess with vertigo. When the tman ling within the pons and destreys the muclens of the sixth nerve, there is inability to turn both eyes towards the side of the lesion, this undens presiding over the act of conjugate movement of the eyes to its own side, and bring in functional connection with that nucleus of the opposite third nerve which governs the internal rectus misele. Loss of power of conjugate motion to one side may indicate, therefore, a tmonor within the pons affecting the sixthnerve muchens. In such a cate, however, the power of comvergence of buth eves is preserved. When the tmmor lies in the pens or on its surfare, and affects the root or the trmak of the sixth nerve, but not its nuclens, the conjugate movement of the opposite eye is not affected, and when the patient attempts to look towarls the side of the lesion the opposite ere turns promptly, while the other remains fixed. This is the most valuable sign in differentiating a basal tumm from one within the pons.

A tumor inveding the modulla ohbongata may irritate or affect the glosso-pharyogen, phemograstric, spinal accessory, and hypughssal nerves, prolucing difficulty in deglatition, irregniar respiration, irregular or intermittent pulse, flushing of the skin, with profuse sweating, projertile vomithag, polyuria or glymaria, retraction of the head or rolling of the heat upon the pillow, and, lastly, inability to articulate distinetly or to protrude the tomgue or to suck.

It is rarely that all of these symptoms appear in a single case, hut when they do the probability is in favor of a tumor on the base, lying upon the side of the pons and medulla and compressing the cramial nerves after their exit. Tumors within the pons and medulla often canse remarkable combinations of some of these symptoms, but space is too limitell to discuss such combinations here. ${ }^{28}$ It is evident, however, that a tumor after affecting the nerves of one side may extend to the other side, and thas prolnee in the end bilateral instead of milateral symptoms.

The invasion of the tracts passing throngh the pons and mednlat is likely to produce paralysis and amasthesian of the limbs. Usmally the temben reflexes are exaggerated in the paralyered limbs, hat oreasiomally they are lost when the tumor affects the pons. The paralysio is not usually total, but the museles may berome rigid ; it is not aceompanied by atrophy, and the electrie peactions remain normal. 'The ansesthesia is not complete, as a ruld. The control over the bladder and reetum is fremently impared, the patisut being mable to minate volmarily or to restrain the sudden emptying of the bladder when it is full.
'Tumors of the pons mot infiequenty invade the middle perlaneles of the erebellam, which contain the tracts from the basal gray matter of the pons to the cerebellar hemispheres. In this mase vertigo, with a special temener to fall or to turn to one side, towards the side of the thmor, is observed. This tendeney to fall is supposed to be an offort of the patient to save himself, the subjective vertigo landing him to think that he is falling towards the other side.

Thmors of the pons may prothee such pressure on the cerebellum as to canse eerelellar ataxia, but this is very more.

In tumors of the pons and medulla, headache, vertigo, and vomiting are the general symptoms most commonly observed ; optic neuritis and psychical changes are olten found, but general convulsions marely ocens.

The following cases are cited as illustrative of tumors of the pons:

Case X. (G. Middleton: Glasmow Medieal Journal, April, 1889.)-A funt-yearonld bey had a fall, hitting his forelacad and also the back of his head. Whom he giot ap he stagered, and the following night and for several days romited frequently. On the twellith day his right cye turned in, and he became dizas, and offem fell in walking, filling most frepurnly to the left side. In speaking his tongue seemed thick, and he could not put it out. It was then moticed that his face had little exprosion, that the salivan man from his month, that he had internal strabismus of the right eye, and that he shagered in walking. Kuecojerks were inerensed on both sides. Pulse 100 ; temperature normal. A gruduallyincreasing weakness of both arms and both legs developed, and he diod sudidenly thre montho after the fall.

The autopsy showed a glio-sareoma infiltrating the pons and medula, more extonsive on the right side, with dilatation of the ventricles wibl thid.

Cuse XI. (Gibney: Americm Jourmal of the Medical Sciences, July, 1875.)-(Glioma of the pens.

Male, aged six and a half, in Novenber, 1873, fell on the banek of his head. Two days after this he had a headache, and two weeks later his gait hecame irregular and ataxie, so that he reeled in walking. IIe was restless at night, and had headaele frequently, but no yomiting or constipation. In January, 1874, his speech became indistinct and jerky, and his memory began to fail. In April he had become very stapid, and his spereh was slow and unimelligible, thongh he tried to balk. There was marked ataxia of the head and all the limbs, but no paralysis or anresthesin. There was exophthalnus, und nll the motions of the eyes were performed slowly, but there was no disturhance of vision. Hearing was good. Later in the month he had involuntary evacuations of urine, and the left pupit was dilated. In May, vomiting, intermittent pulse, dimness of vision, and paresis of the fucial museles began, und an ophth ulnoseopic examination showed utrophy of the left disk, and congestion of the right disk. On the 8 th he became comatose, and on the 9 th he died of "pnou.

Vol. IV,-37

Autopsy. -The pons was found to be enlarged in all directions, measuring two itrehes long, two and a half inches wide, and one and a hulf inehes thick. In a depression along its centre ran the basiar artery, which was much stretehed. The tubereula quadrigemina were pushed up and flattened ; the unterior portion of the fourth ventricle was oceupind by a rounded swelling, which was firm on the left side und chastic on the right side. Tla anterior pyramids at their entrance into the pons were elevated, but their point of entrance was deep and normal. Microscopic examination showed the existence of small round and polygonal cells, with gramuar matter in a stroma of thickened neuroglia, throughout the pons. (Glioma.) There was an atrophy of the optic nerves. Lateral ventricles were dis. tended by serum.

Case XII. (F. A. Miles: Arehives of Medicine, October, 1881.)-Tumor of one half of pons.

Female, aged seventeen; when admitted to the hospital was so stupid that no history could be obtained. On admission the following symptoms were found: complete paralysis and anesthesia of the left half of the face; complete parnlysis and partial anesthecia of the right urm; paresis and impuirment of sensation in the right leg, though she could walk; loss of smell in, lit nostril (tested by ammonia, which indientes untesthesia); no puralysis of the tongue; loss of heming in the left car; total puralysis of the left eyeball, withont strabismus, conjunctiva and cornea acutely inflamed; deglutition difficult, but appetite gool ; no vomitiag ; pulse rapid and weak; temperature varied slightly from nomal; involuntary evacuations. Her mental faculties were so blunted that it was impossible to obtain reliable replies. She went into a condition of coma and died. (Duration not stated.)

Autopsy. -The pons was greatly distorted, and enlarged on the left side. Its surface was noduhar, and its margins overlapped the medulla and crus. The left crus ecrebri was also enlarged, and nodular. The lelt' pyramid was compressed and indented, and the right prramid pushed aside. The floor of the fourth ventricle was widened und bulged upward on the left side. The tumor was spherical in shape, oceupied the left half of the pons, and had pushed the raphé to the right. No microscopic examination. No deseription of sections.

Case X'III. (J. C. Mackenzie: Cincinnati Lancet and Clinic, iv. 150.) -Tumor of one half of the pons.

Male, aged eight. November 1, 1877, he suddenly fell down, and on being helped up could not stand, and trembled greatly. Three days subsequently he had a similar attack, but this did not interfere with his going to school all the month. His teacher noticed that he was very clunsy, but did not think him stupid. For three weeks prior to December 12 he suffered from darting pains through his head, oceasional vomiting, and weakness in his left haud. When exmmined December 12 there were found occipital headache, right ficial paresis, head inelined to the left, ptosis of left eyelid, paresis of left hand, and an unsteady gait. In a week the symptoms had inereased in degree; the left pupil was dilated, hut the ptosis had disappeared in the left, and appeared in the right eyelid. Ilis akin was cool; pulse 80, regular ; appetite good. There was no intellectual disturbance. On December 29 romiting was associated with the paroxymal headache, and at the same time his howels mowed. His speed was indistinet, and he was very garrulous, talking eonstantly. burimg January his mind became much weakened; his special senses were not imparred; strabimus of the right eye appeared, the ptosis remaining; right half of face became ana-thetic; he could no longer stand or walk, and his head seemed too heavy for the muscles which supported it. The optie disks were nomal. The left hemiplegia became eomplete, and his right foot was kept in motion constantly; the pulse became irregular and rapid, and on February 10 he died of paralysis of the pneumognstrie nerves.

Autopsy. - The right side of the pons was much larger than the left; soft and white in its entire extent. The change extended along the middle cerebellar peduncle into the right hemisphere of the cerebellum. The fifth nerve could not be traced through the mas. This portion of the pons consisted of round and oval cells with few muclei, in a granular stroma, with many vessels. The tumor whs a soft glioma. No sections, and no aceurate localization.

CASES OF PONS TUMOR.

Reporter.	Where Reported.	Sex.	Age.	Tumor.
11. IH11. .	Medical News, $188{ }^{*}$, li. 681 ;	F.	6	Glioma.
Sokoloff.	Went. Areh, Klin. Med., xli, 443.	M.	5	Gliomm.
Bummeville	l'rogrès Mélienl, 1887, No. 33.	M.	5	Tuberele.
$110 m e n$	Neumh. Centrulbl., 1885, p. 418.	F.	10	Endothelioma.
II. Smith . .	Neurol. Centralh., 1884, p. 210.	M.	3	Tuberele.
Crohn	Neurol. Centrull)., 1883, p. 471.	M.	5 mo .	Tubercle.
d. L. Smith . .	Archives of Pedintries, 1888, 1, 271.	M.	5	Tubercle.
Putison . . .	Juhrlueh f. Kinderb., xix. 249.	M.	9	Glioma.
Bambam. . .	Lancet, 1884, ii. No. 14.	M.	12	Glionnt.
Scedirmiller.	Jahrb. f. Kinderh., xvi. 343.	M.	$\stackrel{3}{2}$	Tubercle.
Sharkey .	Spasm in Nervous lisease, p. 24.	M.	2	Tubercle.
Brown	Neurol. Centrulbl., 1886, p. 551.	M .	$2 \underline{1}$	Tubercle.
Mills . . .	Pepper's System, Cuse 88.	\cdots	8	Cyst.
Prpper • . .	Mills, Pepper's System, Case 86.	3 M .	5	Gilioma.
Ilohson . . .	Mills, Pepper's System, Case 87.	M.	$\stackrel{2}{10}$	
II. Jackson . .	Mills, Pepper's System, Case 88.	M.	13	Glioma.
Ross	ISrit. Med. Jonr, May 10, 1884.	M.	11	Gliomat.
Whiteomb	Archives of Pedintrics, 1884, p. 205.	M.	8	Glioma.
Middleton . .	Glasgow Med. Jour., 1888, 1. 34*.	M.	4	Glio-sarcoma.
Segnin . .	Jour. Ment. und Nerv. Dis., 1882.	M.	9	Sareomm.

CASES OF TUMORS OF MEDULLA.

Reportir.	Where Repohted.	Sex.	Age.	Tunor.	Location.
Itabner .	Arehiv f. Psich, xix.	M.	17	Tubercle.	
Bouty .	Brain, 1885, 409.	M.	17	Villous.	Fourth ventricle.
Giluney	Mills, Pepper's System, Case 78.	M.	$6 \frac{1}{2}$	Glioma.	"
Lewis . .	Mills, Pepper's S'stem, C'nse 82.	\cdots	$6 \frac{1}{2}$	Tuberele.	16
Finluyson.	Glasgow Med. Jour., 1888, p. 338.	F .	$7 \frac{1}{2}$	Tuberele.	16

V. Tumors of the cerebellum are of very great importance, as they are frequently met with in children and youth. In falls the baek of the head is often injured, which may account for the greater frequency of tumors in the posterior cranial fossa. In many cases, when the tumor lies wholly within the cerebellar hemispheres and does not encroach upon the middle or vermiform lobe, there are no local symptoms of cerebellar disease, and no diaynosis of the situation of the intracmanial growth can be made. Small tumors are occasionally found in this region unexpectedly at antopsies, but, as a rule, such tumors give rise to general symptoms. But when the tumor originates in the middle lobe of the cerebellum, or in its growth invades the middle lobe directly, or by pressure from a distance interferes with the cirenlation and function of the middle lobe, characteristic local symptoms appear. The time of the appearance of these local symptoms in relation to that of the general symptoms should be noticed; for if they appear very early the tumor is undoubtedly in the middle lobe, while if they appear late the tumor has invaded the middle lobe after growing for some time in the hemispheres.

The characteristic local symptoms of cerebellar tumor are vertigo and
ceretellar ataxia. ${ }^{42}$ The vertige is more constmut than in tumors elsewhere, is more severe, and is usually always in the same direction. The pationt has in sulyective sense of falling or turning about, and grasps for sthpurt, or sinks into a chair or to the floor. The sensation is so distressing that the eyes are closed, the patient is too bewildered to talk, and may be made faint and nanseaterl by the giddiness. The vertigo oecurs in attacks with severe headache, bot sometimes persists between the attacks in a lighter degree. It is not to be ascribed to disturbance in the movements of the eves, though this symptom may be present, but is a direct symptom of :ome deraugement in the meehanism of equilibrinm. It is known that the central nerrons connections of the semilumar canals of the ear, which give us the impressions of position in space, are in the cerebellum, to which they pass through the anditory nerve, and the vertigo is ascribed to the disturbance of this mechanism.

The second characteristic symptom of cerebellar discase is ceremplar ataxia. This consists of a staggering gait, which reminds one of the gait of an intesicated person, the steps locing irregnlar in lengeth and prosition and the bonly swaying from side to side. It camon be mistaken for the gait of locomotor ataxia, as in that the steps are of equal length, the fret are mised high and stamped down, and the patient watehes his feet farefully in walking. Should any doubt arise, however, it can be resolved he testing the knee-jerks, which are lost in locomotor ataxia and prese ved or exaggerated in cerebellar thmors; and also by testing the ataxia of the fert with the patient in a recmment posture, for in locomotor ataxia the iucoorrlination persists in any position, while in cerehellar ataxia the co-ordimation is perfect execpt when the patient stands withont support to the Lack. The patients frequently ascribe the irregular gait to the vertign, but, as each of these symptoms may be present withont the other, they must be considered as independent. The cerebellar ataxia is due to a disturbmene in the mechanism of equilibrimm in so far as it depends upon impressions coming to the brain from the muscles of the back and tromk and legs, all of which are received in the ecrebellum. It may be so severe that the patient cannot stand alone or even sit up in bed. If the tumor invaldes cither middle peduncle of the cerclocllum, the tendency to fall to one side is sery marked, thongh it is not yet certain whether the patient fills to or from the side of the tumor. In the large majority of eases recorded the temdency has heen to fall towards the side of the tumor.

The cereleellar ataxia is not necessarily accompanied by paralysia or by loss of museular sense in the extremities, but these symptoms are not infrequently developed when the tumor exerts pressure downward npon the pous and mednlla. They appear in the limbs opposite to the side on which pressure is made. Such pressure may also cause vomiting and nestagmus and strabismus, all of which are common symptoms in cerebellar disense. Oceipital headache, mental disturbances, and optic neuritis are general symptoms of cerebellar tumors, which appear carly in the course of the
case. Tumors in the cerebellum usually produce symptoms of disturbance if function in the eramial nerves, because in their growth they invade the base of the brain or displace the pons and medulla to one side.

The least freguent symptoms of cerebellar tumor are spasm and general convulsions, though oecasionally retraction of the head and rolling movements of the heal upon the pillow have heen observed. They are probably indirect symptoms of affeetion of the medulla.

A very frequent complication of cerebellar tumor is hydrocephalus. This is explained by the pressure of the tumor directly . $\mathrm{p}^{\text {on }}$ the voins of Galen or on the fourth ventricle, the former producing venons congestion, aul the latter preventing the free movement of fluid between the ventrieles which seems to be necessary. Distention of the lateral ventricles may canse in infants great enlargement of the head, and even as late as the thirteenth your the cramial sutures have been separated by such intracranial pressure (Steflim). Such distention gives rise to headache, optic nenritis, and mental inpairment: henee the fregueney of these symptoms and their carly appearance in cerebellar tumors.

The following cases illustrate the symptoms of cerebellar discase, and are of additional interest as they are the only cases on record at present in whinh an attempt at the removal of cerebellar tumors in children has been matle.

Cuse XIV. (Bennett May: Lancet, $\Lambda_{\text {pril }}$ 16, 1887, i. 768.)-Male, aged seven, suffered in April, 1886 , from headache, cliefly froutal, and vomiting; then gradual fuilure of sight developed, and in July he was nearly blind. In July paralysis of the right sixth nervo was notieed, and the eyes were turned to the lefl. Optic necuritis was then found in both eyes. At this time the gait becane affected $:$ he staggered, und tended to fall hack ward and to the left. His mind was elear. In August the headache and vomiting becmue severe, he could not stand, and the head was retracted. In Oetober he had become totally blind, and nystagmus had appeared. There was loss of knee-jerk on the right side, and general weakness, with great emaciation.

He was then operated upon by Mr. May. The cerebellum was exposed on the right side of the median line, and appeared to be healthy, but bolged, and was felt to be hard at one spot. After ineision at this spot, a tumor was felt one inch lefow the surfice. This was dug out with the handle of a spoen. It was larger than a pigeon's egg, hard on the surfuce, caseating at its centre. Hemorrhage was slight, but the child died of shock a few hours afterwards.

Case XV. (Horsley: British Medical Journal, 1887, i. 865.)-Male, aged eighteen, had suffered from headache, vomiting, optic neuritis, iner asing weakness of all lis limbs, espeeially of the left arm and leg, vertigo, and typical staggering gait of cerebellar disease. He also had epileptoid attack3, with turning of the head und eyes to the right. His mental state was good, but he was mucb emaeiated and had been in led a year. Dr. Bastian made the diagnosis of a tumor involving the right lobe of the cerebellum, and, as a last resort, Mr. Horsley attempted its removal. After trephining, n tuberenlar tumor was found in the right lobe of the cerebellum and removed. - It weighed seven drachms. The patient sank gradually, and died nincteen bours after the operation.

Cuse XVI. (Suckling: Lanert, 1887, ii. ©弓ّ5.)-Female, aged twelve. complained of headache and vomiting for eighteen months, and then for nine months of increasing weakness of the right arm and leg, and then for three months of severe frontal pain over tha right eye. During the last month she had moticed an inability to turn the eyes to either side, and both double und dim vision. On ndmission to the hospital the left pupil was found to
be larger than the right ；there was nystugma on any attempt at movement of the＂yes； there was loss of conjugate motion of oyes to the right，and impurment of motion to the left ；there was great impariment of vision，with double uptie neuritis．Wenkness of the right extremities with diminution of kneejork，stuggering gait with tendency to stugber to the right and to fall forwari，and marked trenor of the right arm on any motion，wero found．There was aslight paralysis of the beft side of the fince，but the tongne deviatel tu the right．Headache，vertigo，and vomiting were very severe and constant．The diagramis of cerebellar tumor was made，and an operation was considered advisable．

The oceipital bone was trephined over the left side，and the revebellum expused．It bulged out of the wound，and its tissue appeared darker and softer than mormal．A purt of the cerebellar substance was cat away，and the wound was dressed．The patient wont into astate of collapse，and diod of exhanstion in forty－eight hours．The autonsy showed that the gliom had oceupied the entire left lobe of the cerebellum and had invaded the midlle lobe also．

CASES OF CEREBELLAR TUMOR．

，Meporter．	Wheine Repohted．	SEX．	Age．	T1ヶッи．
Peubody	Medical Record，xxix． 727.	M．	14	Sureoma．
Kinuichtt ．．．．	＂＂ 6 xxix．642．	M．	12	Sarcomat．
Holt	＂＂xxvii．3！2．	F 。	10	（ilio－suro\％ии，
Lowenteld ．．．．．	Neurol．Centrulbl．，1885，p． 10.	F ．	9	Tuherele．
Stmban	＂ 6 188\％，j． 11.	M．	12	Tımur．
Oliver．．．．．．	＂＂6 188．${ }^{\text {a }}$ ． 58.	M．	4	Glioma．
Searpii ．．．．．．	＂＂1884，1． 69.	M．	14	Cysts．
Laschkewitsch ．．．		II．	14	（iliomar．
Lemeke ．．．．．	Juhrb．f．Kinderlı，xviii． 307.	M．	7	Glioma．
E．Bull ．．．．．	＂${ }^{\text {a }}$（ xxv， $14!$ ．	M．	11	Tuberele．
W．Vost ．．．	Glasgow Med．Jour．，July， 1884.	M．	12	Tubercte．
Ifinmmond	Lancet，January 1， 1887.	M．	7	Tuberele．
Mackenzie ．．．	＂1880，i． 14.	F ．	9_{12}^{88}	Gliomat
Mackenzio ．．．．	＂ 1880, i． 1 ．	M．	$31^{3}{ }^{2}$	Tubercle．
Bastian ．	＂1880，i． 2.	F ．	5	Glioma．
Wilks．．	Discases of Nervous System，p． 190.	M．	5	Glioma．
Wilks．．．．．	＂＂＂p． 192.	11.	4	Tubrrele．
Sharkey ．．．．．	Spasm in Nervous Diseases，p． 29.	M．	4	Tuberele
Sharkey ．．．．	$\text { " } 4 \quad \text { " p. } 33 .$	M．	10	Tubereles．
Ienbner．．．．	Areh．f．Psych．，xix．	15.	9	Tuborele．
Mills ．	Pepper＇s System，Case 71.	F。	13	Tuberele
Geodhart	London l＇ath．Soe．Truns．， 1886.	M．	9	Gliomm．
Taylor		M．	9	Glioma．
Butlin．	$\text { " } 4 \text { " } 4$	1.	8	Gliomat．
Finlayson ．	Glusgow Med．Jour．，March， 1885.	F．	10	Tuberele．
Zenner	Cincin．Lancet，xxi． 61.	F ．	16	Sarcoma．

Tumors upon the base of the brain，including aneurisms，produce local symptems referable to disturbance of function in one or more of the eramal nerves，and to pressure upon the erma cerebri，pons，and mechullis．The symptoms of tumor in the anterior fissa will，therefore，be those of tumor in the frontal lobe ；in the middle fossa，of tumor of the basal ganglia and crura cerebri ；in the posterior fossa，of tumor of the pons and medulla． It is often impossible to differentiate a tumor pressing upon these parts of the brain from a tumor within these parts ；and for such finer distinctions of leealization，which are，after all，of no practical importance，the reader is referred to special works on neurology．

DIFFERENTIAL DIAGNOSIS.

The dingnosis of the existence of a bain-tumor is to be made from the presence of the general somptoms, taken in connection with any local symptoms present, and studied carefilly as to their mode of development aud progress. The dingnosis of the siluation of the tumor may often be mate firm a consideration of the local symptoms,-their order of appearane and method of extension, and their combination, being sometimes sufficiont to make this diagnosis certain. It is to le remembered, however, that tumons in certain locations may not give rise to recognized disturbanes of any cerebral function, and hence that local symptoms may be absent. It is also to be remenbered that some local symptoms may be prodnced indirectly, by pressure or disturbance of circulation by a tumor at a distance from the area affeeted, and hence cantion is to be exercised in stulying the local symptoms. 'The diagnosis of the rariety of' tumor present may be arrived at by a consideration of the facts mentioned in the section on patholog.'. 'The diagnosis of a brain-thmor should not be made withont considering the possibility of the presence of brain-alscess, of tuberentar meningitis, of chronic hydrocephalus with atrophy of the brain, and of cerelnal hemorrhage. ${ }^{7}$

The symptoms of brain-abseess may be the same in kind as those of brain-tumor, since both produce an increase of intracranial pressure and a progressive destruction of brain-tissue. In their origin, mode of development, progress, and termination, however, there are not infrequently marked differences. Brain-absecss develops very fivequently in conjonction with suppurative affections of the imer car and of the nasal and orbital cavities, and with caries of any of the cranial bones which lie in contact with the membranes. These rarely oeenr prior to the development of bain-timor. The symptoms common to tumor and abscess may develop after a blow on the head, but when the condition is one of abseess the symptoms appar in more mpid succession, with greater severity, and more frequently with fever than when the condition is that of tumor. Furthermore, the symptoms of abseess after appearing suddenly often subside, the abseess hecoming latent and all symptoms disapparing for months or years, and then break out again with suddenly fatal termination. This course contrasts markedly with that in a case of tumor, where a grodual progress with slowly-inereasing intensity of all the symptoms is found. The constant addition of new symptoms is ustal in tumors, and a temporary remission rather than intermission of the symptoms is the rule when the progress is not contimuous. There may also be some points of distinction found in the individual symptoms. Thus, headache is more severe and paroxysmal with thmor ; optie neuritis is much more commonly found with tumor ; mental changes are more gradual and constant with tumor ; and local symptoms are slower in onset and more apt to develop with tumor. A complication of tumor, not infrequent, is cerebral hemorrhage. Meningitis is the usual eomplication

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporation
of aldsecss. Lastly, a duration of firm one to two years with symptoms constantly present points directly to thamor

Tubrereler menimyilis is under certain cireumstanes easily mistaken fin
 ingitis with arote hydrocephalus, which develop maked symptoms buphly amb terminate fatally within fome or six werk:. But there are a mumbre if
 progross, and in which the diagnosis from tuberoular tumor is ahmed imposible. It is true that the symptoms olte: develop rapidly in these eases, and yet this is sometimes apparently the catse in tamor ; for, unless a pationt is carefally watched, the cally symptoms of tumor may escape notiee for some time. 'The symptoms of ehrouic tuberenhar meningitis may be the
 ache is less severe in moningitis, and more continnons; there is more likely to be hypersensitiveness to light, somm, or tomeh in meningitis; and optic: neuritis devolnps less ferpuently, less rapidly, and with less intensity than in tumor. 'Tuboreles upon the choroid are found more fiergently in meningitis than in tuberenar tumor. It is, of conser, muderstood that a loualized meningitis may give rise to the same symptome ats a small to: mor, and then the differentiation is impossible. This is more common abont the hase of the brain, in the region of the emaial merves, than elsewhere. It is abou to be remembered that a chronic progressing meningitis may develop in the vicinty of a tmores ${ }^{\text {: }}$ Were, again, the diagnosis will be impossible. I gradmal subsidence of the symptoms, with recovery, will point to meningitis rather than to tumor.

Chronic hydrocpphahs, while not infrequently the result of tumor or meningitis, may be clue to a chronie inflammation of the ependyma of the ventricles. It then advances, and the fluid within the ventricles, producing pressure "pon the bran, canses atroply. The course is chronic, and the genemil symptoms athose of cerebral tumor. The local symptoms, however, differ in some resects from those of tumor. Spatic paralysis develeps with chronic hydrocephalus withont localized spasms, and is always bilateral; the lower limbs are affected more intensely than the upers. 'The child presents the extended, adducted, stiff legs, with overlapping kners, rigid museles, inereased tendon reflexes, and the spastic gat, so faniliar as a sequel of Pott's disease ; and, in addition, the hamds move withont proper co-ordination. As the disease progresses, the crua corebri and pons may be displaced by the pressure of the fluid, and irregular symptoms due to stretching of the cramial nerves may appens. These, with the paraphegia, may leal to a suspicion of a tmmer of the pons or hase of the brant, and only by the order of development of the symptoms ean the differentiation be made.

The diagnosis between cerebral tumor and cerebral hemorrhage will be necessary only in a few eases in which the onset of the symptoms has been very sudden. There are a few cases of tumor, chiefly glioma, in which the
growth has been latent for some time, and has then given rise suldenly, after a blow on the haud, ore exposime to the sim, on some other aceidental iuflumee, to well-marked symptoms. These are mathaty both gemeal and lowal, more motierably the latter. The suspicion of a tumow will he atonsed if atier surch an apopectie stroke the symptoms persist and inerease instead of' subsiding, and if headache, comvonsions, and optie nemitis appear. Hemorrhag alone never gives rise to the last-named symptom.

The diagnosis between cerdmal tmor and eerebral syphilis needs little attention in patients below the age of fiftern, ats we have seen that cerebral syphilis is rarely fomed in youth. The histery of the case, the neremmal pain, and the signs of syphilis will in any case aid in the differentation.

It is neeres ary to mention that chronic Bright's discase, chronic kendprisoning, and amamia with hypermetropia have been mistaken for baintumor ; but a knowlelge of this fact is sulficient to watrant such approperaie inventigations as will cmable any carefin physician to avoid similer mistakes.

PROGNOSH.

It is necessary in all cases of brain-tumor to give an absolutely mifavomble prognosis. Spontancons recovery does not ocenr. The case groes on with greater or less rapidity to a fatal terminat:on. The average duratim is two years from the onset of the general symptoms. The only prospect of reovery lies in the possibility of the removal of the thmor by surgical interference. The only exception to this rule is in the case of syphilitic growths, which are, however, rare in childhood.

The manner of dath is usually as follows. The orwaral sympoms inerease in intensity and wear ont the strength of the patient, who gradnally becomes emariated and sinks inte a state of stupor or coma, in which a series of comvulsions oecour and terminate fatally, or in which there oceurs a paralysis of the respiatory mechanism, the heart contiming to beat for ten or even thirty minntes after breathing has reased. Oceasionally death oreurs suddenly from eerebal hemorthage, and rarely sudden death without known canse has been known to ocem. The danger of sulden death in these cases should ahways be revealed to some member of the family of the patient, lest its ocenrrence after the adoption of some harmless thempentic procedure should lead to mistaken acensations regarding the effeet of remedics.

TREATMENT.

In syphilitic tumors or in eases where syphilis is a possibility, an active centse of meremrial inmation with gray ointment, followed by the eontinued we of large doses of iorlide of potassimm, beginning with ten grains three times daily, and inereasing ar grain a day matil sixty or eighty grains three times a day are being taken, is indicated.

In tuherenlar tumors the prompt employment of foreed fatty diet, with cream, or coxl-liver oil; conntry air and life out of doors in a proper climate; and the contimued use of iorlide of potassimm in ten-grain to
twenty-grain doses three times daily, together with tonies of all kinds, may be triet.

In all other forms of tumor it is customary in this country to administer iodide of poitssinm in large doses, and in the experience of Seguin and others favomble resilts have occasionally oceured. It affords the oaly means of loope in those tumors whieh are inatecessible to surgical interference.

The surgieal treatment of tumors of the brain is a subject too large for extended disconsion here, and is also a subject upon which facts are so constantly and rapidly accumulating that statements made now are likely to ned revision in a very short time. ${ }^{26}$ At the present time it seems prosible to remove tumors from any part of the cerebral convexity or any part of the great longitudinal fissure. This inclutes tumors of the cortex and tumors of the centrum semiovale which lie just beneath the cortex and do not invale the basal ganglia. When the diagnosis of a tumor in these regions is arrived at with any degree of certainty, an attempt at removal is indicated. In many cases of tumor in the central and oecipital segions an canly diagnosis in possible; and in such cases the operation should be done as soon as the diagnosis is reached, provided the ease is one considered suitable for operation. The question of removing tubereular tumors is an open one, German authorities disapproving ${ }^{4}$ and English authorities urging the procedure ${ }^{45}$ The diffienty of removing all parts of a tuberculan growth, and the liabiiity of reemrence, as well as the unfavorable condition existing in a tubereular patient for any operation, must be almitted; yet successful operations are on record.

A mone important question to be decided is in regard to the existene of a tumor so cleariy defined from the brain-tissue as to allow of removal. An infiltrated sarcoma or glioma might be reached by the surgeon which could not be cut out without great destruction of brain-tissue, and whise limits could not be determined. As a matter of fact, such infiltrating tumora are usually quite vascular,-at any rate, much more vaseular than thi lard, encapsulatel sarcoma or glio-sarcoma or cerebral eyst. The aidence of vascularity in a tumor is marked variability of cerebral symptoms, dependent on or in evident connection with those canses which alter the blool-supply of the brain or the general vascular tone. For example, if hot baths, warm or eold douches to the spine, stimulants, the changes of weather, such drugs as produce marked changes in arterial tone, have very marked effect upon the symptoms, either in decreasing headache, cerebnal sensations, vertigo, vomiting, or spasms, or in increasing them, it is evident that the symptoms vary with the state of the bood-supply. It may then be concluded that the new growth is vascular, and such a vascular tumor is more likely to be an infiltrated tumor diffienlt of removal. All tumors, it is true, produre inerease of intracranial pressure and variations in the cerebral circulation, hut in hard encapsulated tumors the symptoms are much more constant and less liable to variations of the chanacter described, Such tumors may be removed easily and safely when accessible. ${ }^{46}$, 77

When the table on page 551 is studied, it appears that fifty-six of the tumos tabulated were situated in the cortex and centrum semiovale of the eerebral hemispheres.

Since tumors in these parts are the only tumors which can be reached by the surgeon, it beeomes a matter of interest to analy\%e these fifty-six tumors, with a view to ascertain how many of them conld have been removed. A carcefil study of the histories of these cases 26 showed that in sixteen of taem the thmor cond not have been diagnostieated during life, or have been reached by a surgeon. Of the remaining forty catses, nineten conld have been successfully diagaosticated and removed. The remaiuing twenty-one conld not have been atenately located, from the symptoms present, and hence in these the necessary indications for an operation were wanting. It is therefore evident that of the two humdred and ninety-nine ("lses eighteen per cent. were in a part of the brain open to surgical interference, and only six per cent. could have been sucessffully removed.

The question arises whether tumors in other locations, constituting the remaining eighty-two per cent, are inaccessible to the surgeon. It must he confersed that it seems impossible at present to remove tumors of the eerebual axis (thirty-four per cent. of the cases). These tumors lie too deep to be rached by the surgeon, or they lie in and about important cerebala trarts whose division during their removal would be absolutely contra-indicated, as dangerous to life, or as entailing permanent disability or paralysis. The most sanguine of surgeons might well refuse to interfere in such cases.

In regard to tumors of the cerebellum it is as yet too soon to make any alsolute statements. It has been shown that, while the diagnosis of a tumor in the cerebellom is comparatively easy, it is very difficult to determine in which hemisphere of the cerebellum the tumor lies. This must be settled, if at all, through a study of indirect local symptoms, sneh as those of distant pressire on the pons and cranial nerves, which often mislead. Again, the cerebellum presents but one of its three surfaces to the cramial bones, aub lies in such a small space under the tentorium that any displacement for exploration is impossible. If an operation for cerebellar tumor is mudertaken and ne tumor appears, the tumor may be searched for by incision of the hemispheres, which was done suncessfully in one of the cases alrendy cited. How far such ineisions are sate is as yet mocertain. It is probable that tumors of the middle lobe of the cerebrllam can be veached, and can be safely removed if the middle lobe be not injured in the process. Its ingury is always followed by permanent cerebellar ataxia in animals, and there is no reason why the same should not be true of man. And, finally, it must be noted that up to the present time operations for removal of cerebellar tumors have been uniformly followed by a fatal termination, the patients failing to rally, and dying of shoek or of exhanstion with respiratory failure. With our present imperfeet knowledge of the functions of the cerebellum, it is impossible to assign any reason for the fact that operations upon it are more dangerous than those upou the cerebrum. It must remain,
therefore, mudetermined whether or mot it is justifiablo to attack tumors of the cerehellom surginally. Yat this ghestion is of great importane in sams of thmers in childem, whech, ne the tahbe shows, are fiemed in this heathen

 all opration inalvisathe.

The masilt of this review shows that hut an small pererentage of thmens

For a discussion of the medhentat anderial prowedure in the remmal
 singery.

Sine the remasal of the thmo is impossible in a large propurtion of

 aredistressing, with prosper of reliof. When the headande is severe, antiprin in fiftern-grain doses, or phenacetine in fifteren-grain doses, mpented in one hour (omere), antifiblu thre grains and morphine one-sixth of a grain, are the best remerlies, the donses to tre redued aceroding to age, thome menturnd leoing for alults. The sume remedites sometimes ghiet vertive Insmmia may be treated by homides, paraddelyde, or sulphomal. "erehal vomiting is best arrested by bomides or by hepordermie ingee tions of murphine. If general comvalsions oever tregnently, bromide and dhamal will have to be given, ats in a case of epilepse. In any case sum measimes arye merely palliative, and, when there is doubt regarding the diagnosis of the tumor, and it is known to be inacessible to the surgeon, it is justifialle to give the patient all the eomfort possible by establishing an opium-'ahint.

BIBLIOGRAPHY.

(exchestive of spectal casfa which abe cited in time mection on magonis.)

1. Obernier, Ziemssen's Cyelopmadia, wol. xii., Amer. edit., 1877.
2. Bernhanł, Beitrage zur Symptomatologie der llimgesehwälste, Berlin, 1881.
3. Stelfan, Gerhardt's Inadhueh der Kinderkmakheiten, Bd. v., 1881.
4. Weruicke, Lehrbuch d. Gehirukrukheiten, Bd, iii., 1884.

Illlors al
 ; lesation filior linl to oproxihe minhlit lw a likily lo
 mlal tmak af 11111415 " Promosill
 purtion of laial stin! arolgestion.
 rolineve lla ly mastand 11 ther cats, syluptoms
 \therefore repcalmel sixily ul : , "ger, lhose ied vilingo
"incoral 11 s al 111010 hloral will distres are osis af lho stilialble lo --tabbit.

13. Barch-Hirechlidh, I'ultulengische Amatomio, 1886,
\%. Hramwell, Intrmermial 'Timmos, 1888.

 April unel duls, I8KI.
 1841. 1887.

 lis. 2%.

24. Start, Jommal of Norvom and Mrntal Disenses, 188.1.
24. Dhan, Jommal ol Nervons and Dxntal Disenses, 1888 ,
80. Ilopshy, Amwrima Iommal of the Medient Seicnces, 1887.
31. Forrier, Functions ol the: Brais, Landon, 1889.
32. Munk, Verrichtungen des Gehirns, Berlin, 188 I .
33. Wemicke, Arohiv f. Dsyeh., 1888, xx. 213.
3. Ross, Brini, April, 1888.
8.). Horsles, Procedings of the Comgross of American lhysicims and Surgenes, 1888.
36. Brnin, 188:3, p. 99.
37. Starr, Ameriean Joumbl of the Medical Seionces, Junury, 1881.
38. Segnin, Jourmul of Nervous and Mentul Disenses, $188 \mathrm{~F}_{\mathrm{j}}$.
(a). Asderson, Brain, 1881, 1). 88 万.
10. 11. Anekson, Brain, Juiy, 1889.
11. Same, Intracorebal Truets, Medical Record, Febntary, 1880,
42. Segun, Cerobellar Tumors, Joumal of Nervous and Mental Disensus, 1887, p. 217.
43. Smith, Arehives of Pedintries, February, 1888.
11. Von Bergmann, Chirurg, Mehundl. d. Mirnkrankheiten, Berlin, 1889.
45. Macewen, British Medical Joumal, August 11, 1888.
113. Kenn, lieference Mand-Book of the Medienl Sciences, viii., "Cerebral Surgery."
17. Putk, New York Medical Jourmal, November, 1889.

AFFECTIONS OF THE NERVOUS SYSTEM IN HEREDITARY SYPHILIS.

By ABNER POST, M.D.

Our knowledge of the manifestations of syphilis in the nervons sustem is far firm complete ; in the congenital forms it is eveu less complete than in the aequired. This artiele is not intended to be in any sense a complete aceome of nervons syphilis in the ehild, but rather to record so mueh of our present knowledge-chicfly from the clinieal stand-point-as will be of practical use in the deteetion of other cases.

There have been recorded a comparatively large number of cases of congenital syphilis that have shown nervous symptoms of varions sorts. In faet, so varions have been the manifestations that it is probable that every form of nervons syphilis known in the adnlt may appear in the heredito-syphilitic child, and these varions manifestations may take place in the youngest infant or among those late symptoms which oeeur in childhood or even in adult life, and which constitute syphilis hæreditaria tarda, so called.

Although many cases ' ave been reported, they are as yet comparatively infrequent as regards the total number of syphilitic children.

As to the relative frequency of nervons symptoms among syphilitic elaidren, Rumpf ${ }^{1}$ has some interesting figures.

Of his patients with nervons diseases of a syphilitie origin there are forty-two married, of whom he has exaet knowledge. Of these forty-two marriages fourteen are without children, and there was apparently no suspicion of pregnancy even. Of the remaining tweuty-eight marriages all have children. In thirteen cases out of these twenty-eight, syphilis was not recognizable in the children. In fifteen families hereditary syphilis showed itself in the most varions forms. In these fifteen families there oceurred seventy pregnancies, and of the children thirty-two were born dead before term. Of the remaining thirty-cight children, seventeen died in the first month, in part of convulsions, one died at the age of three years, of inflan-

[^245]mation of the brain, and the remaining twenty are still alive. Of these twenty still living, perhaps three may be regarded as healthy. (They all bedong to one family, in which nine miscarriages were followed by eight children who are still alive,-five more or less herelito-syphilitic, the yomgest becing less diseased than the eldest, while the three last born present no certain sign of syphilis.) In fom the syphilitie manifestations are donbthin, and in thirten they are evident, more partieularly in diseases of the bomy sustem. In two cases there is disease of the nervous system. Seven cases having already died of diseases of the nervons system, the proportion of nervons affections in the total of seventy syphilitic births stands at about thirteen per cent.' That is to say, the early forms of nervons syphilis amomeded to thirteen per cent. The possibility that the apparently healthy may have later forms camot be shut out. Whether the nervons system was affected in some of the still-births camot be determined.

Whether there was a special tendency in the disease to attack the nerwous system because of a nervous heredity cannot, of course, be determined; but thirteen per cent. must either be an mmsnally large proportion or the syphilitic origin of nervous disease in children must be often overlooked.

There is the same history of prodromic symptoms and gradual progress fowards the most serious forms of discase to be found in many of the cases of hereditary nervons syphilis as in the acquired. Headache, persistent or intermittent, and often aceompanied with dizziness, oceurs in elder children, while in infints wakefilness and convulsions oceur with frequency.

Clinically there are a number of cases in which death takes place with the appearance of severe brain-disease. Usually eonvulsions set in, oceasionally attended by paralysis, enlargement of the head, or abnormally small head. Of Rumpf's seventy-two cases ten died in this manner. These cases went on rapidly to death, and the most different siphilitic ehanges were found.

It is probable that in most of the alleged reeoveries from tubercular meningitis the discase has been syphilitic. The more favorable opportunity for treatment effered by a syphilitic origin makes it exceedingly important to recognize heredito-syphilis in such cases. "A general indefiniteness of symptoms and slowness of progression should arouse suspieion, especially if the absence of pulse-retardation or the presence of any characteristic srmptoms indicate that the vault rather than the base of the eraninm is involved," is the caution given by Dr. H. C. Wood. ${ }^{2}$

Fournier thirks the diagnosis between tubercular meningitis and syph:'is may usually be made, and that it rests upon the following points. In cerebral syphilis there is, save in very exceptional cases, a constant absence of

[^246]

 diminishowl mpidity.
 bigum.
 Kither, M. I., in Brain, part ii., 1890, the amthere states that he has fomblat hareditary sphilis mentiond in twenty per ent. at the cases examined hy
 than is given lye other witers. Wasse reports the mase of a woman whon hat an chanere, the hashand heing evidenty syphitite. She hat there stillbone dhidere, but the femeth was hydroephalie, immiplegie, with puphe spote on tha akin, and died when six montes ok:. The other ehildren, lam in later veas, wer evidenty syphitie.

Sumdor believes in the existemee of a syphitite hydroephaths whed may be comental or may develop in the first few monthe of extrontome life. Aecording to this anthor, it is most probab? cemsed by inflammation of the ventriculan ependymand phexuses.

In speaking of hydrocphalns, Fombier says, "I have too often met hedroerphalas in comnection with hereditary syphilis not to reoogniza a commetion entirely diflerent from simple chance. On the other hame for the sake of controlling my own ohservation by the experience of others, I have scambied the amals of science, mod I have fonnd such a mondre of ases illentical with me own that it is truly impossible not to conside sphilitic heredity as one of the better-proven canses of hedrocephalus." But he distinetly states that it is but one of several canses that give rise to hydrocephalus.

The canse of an ex largement of the head that passed for a heydrocephalus was fonnd by It Inbuer (in a child of manly five months) not in an extmordinary enlargement of the ventride, which was lout slightly enlarged, but in a pachemeningitis hemordmegia. Waldeyer and Köbner found a similar ease." They fomd donblesided periostitis with canges similar to those in pachemeningitis hemorrhagica interna. Henbner considers the enlarpement of the ventricle secondary to the disease of the sknll, and believes that in this way a confomding with hydrocephalus takes phace.

Epileptic convalsions in varions forms have long been recognized as oceasionally the result of inherited syphilis. 'They constitute one of its most frequent manifestations, it may be as the only manifestation or asso-
（＇III） id 115 Instuntly syblilis， fin＇r， 1 h！ ：and the ガma！ハ1 Eylilitic Amanul ats fillull minull ly arcentlay Intal whow urve still－ h purplo ren，luwn

IIs whinh ＂a－11，＂rius ：unnation
oftern mut cogniza： haund，fine others， nubler of rumsiles ＂uliailus：＂ we rise to
ocephatus extrium－ cel，but in a similily －those in enlarge－ ieves that

gnizald at

 ne of itsor atsso－

 sulden anel passing whemations of vision，dizainess，and modifientions in

 hrirl：

 athe attanks sureceded in the same work．At this time formonion saw the cate．＇The paronts despribel minntely the comvolsions，but mo mention wats

 B．The ehald＇s gevamess gate impertant inlomation in regand to his inted－

 exdmed the hyputhesis al simple epilepsy，athd showed the comvolsions to
 naturally spphilitic from the antererent history．
（Gowers＇hats seron aght ases in whid pationts with epilepsy were the sulperds of well－mankerl inherited syphilis．In all these cases the attateks hai the aspert of idiopathe opilopsey eases in which there were symptoms

 towateds the and of or atter dhildhome．
 this mase the syphilis is mudomberl，hat the heredity camot lx fisly estab－
 whe is seldom fiere for any length of time liom some manifestation of spphilis，which yiehs to appropriate treatment．When twelve years ohd， she had a series of＂nervons spells．＂In these attacks，which always oe－ forved at night，everything seemed to be thening rombl，and at the same

[^247]time the child felt as if whe were in a beat wheh was roeking viokntls
 followed beg masea and vomiting. 'There was mo hass of comserimesmes.
 the nise of indide of putassinm.

Hemiplegia, more of las complete, is an meational manifistation of
 diseate within the cranimm, hat is sometimes the first sign of nervons trouble to attrate attention.
 assistamt phesician to the (ireat Ormond Street Hopital, spenks of whu fifty eases of which he haw moters. 'There was evidence of emonemital syphitis in fome of these "ases, and there was growl reasom to attribute the paralysis to this canse. Sephitis may have had a share in some of the

 af the ceremal bessels, white it was also a pmesibla faedor in cther "asese.'

Dr. A. B. Martin gives, in the Ammeles de Dermetologie at de Silyshiligraphia of september 25, ! 887 , the finlowing history :

The father had chance with secondary lewions six months befone natiriage. Being without symptoms, he believed he was wetl. Three or finur months after mariage the wife had a some, evidently a chanere, on the lower lip, being at that time alrealy pregnant: she tow iondite of phatssimm, and her haby was born apparently hoalthy, hout at the bo bif one month had at sypuilitic ermption.

The secome child, a daughter, the subjeet of this sketh, was born in Jamary, 1887. On the 1st of May the lidte one, up to that time healther, fedl firm a height of fifty eentmetres, and on examination after the fall moved all her limis spontanemsly. The sid of May the mother fomme she did mot move the left leg. The following day the left arm was ahmet without movement, and the month was keformed when she eried; the child did mot appar to suffer, and numed well. Examined on the sth of May, it was pressilh to recognize the following comdition. The th if lower limb was nearly inert. 'There wat not emplete abolition of motion; it wombld be more proper to call it parsis than paralysis, since the himb maintand itsalf in the prosition that was given it, hat had no temdeney th return to the original position. When the child was held up by the fingers in the axillae, the right log was amimated by very active movements, while the left leg remained motionless. The left arm was motionless, thongh the right was very active. When reying, there was marked deviation towarts the right. The ortiendaris was intact, and the pupils showed no inequality. No contractures in the pamlyzed limbs. Sensibility intact.
${ }^{1}$ British Medical Journal, June 18, 1887, p. 1326 ; Braithwaitc's Retrospect, January, 1888, p. 37.
iolnuts. nd wrom iolsucゃred :1timer ation of Atome $10{ }^{\circ}$ \because troulb з 11^{\prime} мөा日 ongenital ribute the ne of the fillowsal
 (asocs. e simphili-
efonc maller or fourn rer, on the e of potanof 10 w 10 homether, or the litll fommel she vas almost aried; the oll the xill The leth f' motion: the limh andomer to the fingers ents, whiln though the in towards inequalit!.

[^248] mother two grammen of ionlide of potassinm were given daily. At the and
 fititen days aftery, it was impossible to toll any differeme betwen the two sidus.

Any possible doult an to the herenditary syphidis was removed a month latere On dume e'e the child showed moist pmpenes.
 thas the hemplegia was due to syphilis. 'The momenthe syphilis of' fathere fund mother and the reptain hereditury infertion of the edder brother spoke for it; hat the abseme of all tegmmentary lesions and of all other index of hereolitary sybulis, the preffer bealth of the child, and the rarity of sperifie hemiplayia in the mew-lume, left ns in donlat. Hesitation diselpparad in part with the aflect of treatment, and totally whin mondenial) sphailime entamenos lesioms."

Dr. Marfan spalis of an aterial lesion, a pertiol obliteratiom, as the only (xplanation of the symptoms.

Dr. I. Hhghlings Jadison, in his pemphlet on "Nervons Diseases in Inherital siphilis," gives a cance of at gid of ten years umber his care with hemiplegia of the lert side. The pualysis of the arm was complete, the
 and the face deviated to the right. The signs of congenital subtilis were satisfactory. Two yours lofore, she was said to have had Nt. Vitus's dance. The mother was quite positive that the movements alfereded only the left, the
 two geas hater, she fell, and could mot stand when mised, She was pht to
 fomed at the month and her montio was hoody, and the fit was followed ber the hemiplegia already daseribed.

This case is partionarly interesting beanse of the preeding choreas A fow other cases have been reported in whidh whom has owement in splilitice diddren, but the relationship of canse and effect camnot be considered established.

Paraolegria depending mon inherited syphilis is rare, but differs in no essential partionlar from the paraplegia attending acpuired sphilis.

The paralysis may be the result of spimal lesions that manfost themsedres extermally and that affeet the cord only sommdarily, of of lesions that attack the cord or its envelopes direety. Fommier relates a mase of the first dass in a boy of seven years, who was atacked with a gradually inreasing paresis of the logs. Fommier found the reason for that symptom in a massive swelling of several dorsal vertehre which ennstitated a sort of giblrosity. The specifie nature of that bony lesion was inferred from the family and personal antecedents of the child, and from the coexistence of other manifestations undonbted!y sybhilitie, and notably thbial previostitis. Tre ment by iodine prodnced a notable diminution in the size of the prinal
tumor and coincidently in the paralysis, bit the chide was obliged to leave Paris prematurely, and its subsequent history is muknown.

Laschkewita relates a similan case ocenring in an heredito-syphiliti girl of thirteen years, it which a heperostosis of the second eorvical vertelna gave rise to paralysis of all four limbs. Recosery took place in two months under autisyphilitie medication.

Of the second dass, Keyes gives a cease of a loy of form or five years, who was affeeted with complete paraplegia on two separate oceasions, the attack lasting omly one day ach time, and who habithally suffered from too frequent desire to mitate, expecially at night. He had headache, and was irritable, pallid, run down, dejected, and miserable. At eight years of age he had had une return of his nervons stmptoms.

The relationship between spphilis and disease of the cord is still at stibjeet of grave disernsion, and but few attempts have been made to establish a comection between disense of the cord and hereditary syphilis. Remak drew attention in 188.5 to a possible conneetion between tabes in children and syphilitie heredity.' His first case was that of a tweler year-ohd yirl whose symptoms consisted in a girdle-like constrietion, lancinating painparaesthesia with a reduction of the sensation of taste, alsence of the reflexts, ataxia and gastric erises, one-sided ptosis and donble vision, and, later, atrophy of the optic nerve.

Affections of the peripheral nerves in consequence of hereditary syphilis are frepuent, and have been particularly noticed in the cerebral nerves, hat ninally in conjunction with other syuptems. Atrophy of the optic and auditory nerves is prohably not unsually to be referred to this canse.

Dr. Hughlings Jackson, in his pamphlet on "Nervons Disemsts in Inherited Syphilis," published in 1868, said that he had seen but oue casp of marked nervons symptoms (exeept convolsions) in an infant who at the same time showed signs of syphilis. In this case, seen in Mr. Hutchinsmis practice, there was spasm of the museles supplieal by the portio dura, and paraplegia.

A peculiar form of paralysis has been oceasionally met with, afferting the anterion banches of the brachial plexns and cansing more or tese complete motor paralysis of the upper extremities, the sensibility and trmperature remaining normal. In two eases of this affection noted by Hemed the upher extremities were almost completely paralyzel, the flexor museles of the fingers alone retaining a slight trace of contractility. Sigus of syphilis were present, and the paralysis soon disappeared under the inthenee of speceife treatment. In comnection with some of these cases a pecenliar twisting of the head backward has been mentioned.

Paralysis of the ocular museles is very common among nervous manifestations of acquired syphilis. In congenital syphilis it has been reported but rarely.

[^249]There is a report of a ease by Mr. Nettleship, ${ }^{\text {b }}$ in which the patient, a girl of fourteen, had partial mombness of the right forehead, cheek, and side of the nose, and of the eydid, conjmetiva, and cornen. She conld feed, but loss distinctly than on the other side. The mumbess appeared greatemt on the evelatl itself. There was complete paralysis of the external and superior recti, and paresis of the inferior and internal recti and levator palpebre: the superior oblique was probably paralyzed. In this patient the tather was known to have had syphilis before the child's birth, and the evidence of syphilis in the child herself was satisfactory.

Mr. J. B. Lawfiod reports two cases of paralysis of the oenlar museles in congenital syphilis in the Lomdon Ophthulmic Revice for 1890, page 95. These cases hat both reached adult life. In one case, at least, the paralysis was probably due to peripheral nervedisease. In looking for reowded eases throngh a large amome of literature Mr. Lawford has fomed miny there cases. The first is one reooded by Von Giacfe: a child aged two years had paralysis of all the branches of the left third mere; the right eye hadd also heen lost from syphilitie iritis. At the post-mortem examination there were fomd gross changes in the intractanial portion of the thind nerve, deseribed as a gummatons interstitial uenritis and perinenritis. The second ease was that of Mr. Nettleship, already mentioned ; and the third is contaned in Intchinson's book on syphilis, and is that of a boy aged sixteen, who had partial bilateral ophthamoplegia externa, and, in aldition, complete atrophy of the optie nerves.

P'tosis and double vision were smaptoms in the ease of Remak just mentioned.
ldiocy does not seem to be a frequent result of syphilis, aceording to Ireland, in his "Idiocy and Imbecility"" though he has met with a few apparent instances of the kind. ${ }^{2}$ Such eases are rare, aceording to Fournier, becanse the cerebral lesions which result in such a losis of intellect are usully fatal; but, though rare, they are nevertheless well authenticated. Fournier has himself met with five chese

Syphilis leads more often to juvenile dementia after infaney than to congenital cerebral deficieney. In an extremely valuable article on this subject in Brain for t883, Dr. Judson S. Bury conchudes that hereditary syphilis is a more frequent factor in the production of mental distmrbance than has hitherto been recognized, and that eongenital deficieney of mind from inherited syphilis is probably rarer than mental fathere coming on in childhood. He thinks it is questionable whether jurenile dementia and insaity have been properly separated by writers on insanity.

In the mater of diagnesis, it must be remembered that there are no symptoms pathogr omonic of syphilis of the nevons system. The same

[^250]general prineiples hold good in nervous symptoms in heveditary syphilis as in acquired. Disorderly grouping of symptoms and the coexistence of several foci of disease-that is, the simmlaneons affection of several points of the nervons system at the same time-are ciremmstances that shonld awaken suspicion. It is the antecelent history of the patient and of the fimily that shonld then be considered. If there is a reasonable suspicion of the disease, the child shonld be given the benefit of the donbt and be put upon specifie treatment. The iodide of potassimm may be given i?. relatively large doses to quite young children without harm. It is particularly indicated in nervons syphilis, where it shows its greatest influence. It shonle be used first and freely. Mereury may well be added; but the relative value of these two drugs is, in nervons disease, the reverse of that in other and more common forms of congenital syphilis.

'TOXIC AFFECTIONS FROM ARSENEO AND LEAD.

By J. J. PUTNAM, M.D.

ARSENICAL POISONING.

DEFINITION.

It is the intention of this paper to deal mainly with cluonic arsenieal poisoning, especially as arising from those clithen are liable to be exposed, such as the use of arseni and for the purpose of coloring papers and fabrics. Acute frise ing will be deseribed only so far ats it is necessary to give the genemal clinieal picture, and for the sake of calling atfentions matters of pathological interest.

ETIOLOGY.

Sources of Poisoning, and Relative Porsonousness of the Different Arsenical Preparations.-The somees of poisoning to which children are mainly exposed-not to speak of intentional poisoning -are, for the acute forms, the mixtures used to destroy vermin (such as "Rough on Rats," "Paris Green," "German Fly-Paper," and "Buffalo (arpect-Moth Amihilator"), against the manufacture and sale of which our laws afford us inadeqnate protection; for the more chronie forms, the inemutions use of arsenic as a medicine, and, above all, many of the pigments employed in coloring articles of domestie use, and certain glazes. Of some of these pigments arsenic is a fixed component ; while it is used in the manwhacture only of others, and can be removed from them ly a proper purification, which, of course, somewhat increases the cost ${ }^{1}$ of the product. Of the latter class are many of the aniline dyes; and this may suffice to call to mind the general fare that numerous colors hesides green are to be suspected.

The following list, condensed from those given in the papers of Dr. Jabez Hogg, ${ }^{2}$ and the reports by the Committee of the Euglish National Health Society, ${ }^{3}$ and by Draper ${ }^{4}$ and Wood, will indicate the range of materials containing arsenie whiel might be sources of danger to chidren: fancy colored papers, both in shoets and as used for covering or making lowes, toys, and confectionery, lamp-siades, labels, books; artificial flowers and leaves; wax ornaments ; tlothing, and entains printed or woven; fur-

(iveron balatan contans commons phantilies of arsenic, applied so

A meont investigation in limgland, by A. W. Stokes,'s shows that the

 or conl latal prisoning, and such results have followed the sucking of wall-

With regard to the vexal subject of wall-paper and eapret prisoninge, howerer much overitad the danger from these sommers may be thonght
 heroming eomsinerel that the dangere exists. The asemice acrins mot ming in the pigment of the paper, hut sumetimes also in the paste or sizing will which the pigment or the paper is attached.* In some "ases, mperially with papers af an wher date, hat still langely on onm walls, as murh ats fory

 most contain before it is $1{ }^{1}$ pronomoed dangeroms. 'This question ann
 tain that varions eomblitions mot fally understood may make a papre dangroms which womld have been thonght hambers.
'The greatest damger of prosoming firom this callse is doubless firom then dast hown of by ciments of air, we deteled hy the bush or choth, which settles on the floor, of on books and firmitme, thence to be watied off again in small or lange quantities. Besides this somper, howerer, the fateds that prisoming secms to orello sometimes from an ansenical paper over which ant other, free fom ansenic, has been lade, and that heat and monsture favor its

Toxic Dose.-The maximal therapentie dose of arsemions acid fin adults is msmally placed at from five to eight milligrammes (foom unttwelfh to one-righth of a grain, equivalent to from ten to filteen minnus:

[^251] grouthal habituation, and dis arsenic-raters of styria, it is said, beesme

Doses of six centigrammes (own qrain) are liable to callose alarming symptoms, and from twelse to eighteren centigrammes (from two to three

 of 'the solutiones of' its salts.
 that to many other prisums.

 mowd dose watching while taking them. 'Taylore merits a case where at chith of sixteen monthe was gisen alome ombethial of a grain of arsmions acid 'in shlution, and recovered atien prolongerl vomiting. The same writer ${ }^{7}$ wais promally comsulted with regard in there humberd and forty ehibleren in an industrial selual when were areidentally poisomed in conserpureme of the dilution of milk with water from a boiker contanning a quantity of arsmical demsing fluid. bach dild was believerl to have taken the mpinv-
 two werks. In cases of wall- paiser peisoming, moweover, alferting a whole
 diffre greatly, however, as rearats their susceptihility, and oecasiomally show dight sympoms of porisoning from a dase as small as two minims, perhapse cen less. I have dited in another phace a momber of instances to show that asen small dowes are mot withont danger, and that apparent halvituation is mat a perfect saffegmarel.*

PATHOLOMY.

Arsmie is a poison to all forms of :mimal life, with the unexplaned exreption of certain hacteria and low fungous growths. The elanges which it sets in in the hman louly are partly due to its local action, partly secondary to alterations in the hood and nervous system and other organs.

Athough mot regarderl as a corrosive agent, it is a powerful lowal irritant, and may eventually couse the destruction of the mucons membans, and, less rapidly, of the skin, when applied in solution or even in sulbstalure.

It is important to note that many, thongh not all, of its local effects dusly resemble those whid it exeites in the same parts after absorptio 1 . It will therefore be profitable to consider in amjunetion these tevo morles of antion, moting the differeness between them when neenssary.

The direct action of arsenic on the skin varies greatiy, according to the

[^252]preparation, its comeentration, and the length of exposure, as well as to the suserptibility of the pationt and the perentiarities of his reaction, the batter lime tors leing dependent in part upon age mad constitution. In gencrab, it may be said that the amsenimal ernptions cover a harge range nf indlamatory ram-
 Thons, Dr. I. C. White ${ }^{9}$ repurts the case of' ann infant with extensive anm

A cutaneoss affertion which osemsomally meselts from arsenio when given

 the arsalie acts hy comsing localized memitis, as it is kown sometimesto do, and that the herpes is a secomdary result.

Amother interesting rffict is a gemeral homzing of the skin, simulating the apparance seen in Addison's disease, and lasting for a momber of werks after the crssation of treatment."

An impertant serice of cases illustrating the heval and gemeral nflede of arsanic applial in sulnstanee to the skin of yomge infants are the "vinde-
 ohserved the pationts. ${ }^{12}$ Of the twenty-nine cases reported, thirtern were fatal. The powder rombined about thirty-eqght per cent of atsentie, and
 congested, and in sume instanes dark-rolored and hawng. Acme inlannmatory reation and shonghing som set in in some of the cases.

Asenic is hable to he absurbed thengh the skin, opecially from admad surfares : and severe general symptoms and even death have resulted, in the case of childrem, fom ointments and waskes, and exen from elothing, surt as storkings, colored with arsenieal pigments. ${ }^{\text {b }}$

It is still more troe of the changes set up bersmic in the muroms memlmans, than of those excited in the skin, that they may oedor indepentmenty of the lesal action of the moison.

These changes in the stomad and intestines have been the sulyent of
 where arsenie has been swalleved. When present, they comsist essentially,
 rhages, and nlemations. Althongh this is often given the name of hemenrhagie gastritis, the signs of the acute inflammation are nsually wanting. Under the microsenpe, latty degeneration of the gland-edls is fomme, and this sometimes ocenrs with great mpidity, as in a ase deseribed by Virchow, ${ }^{4}$ where the patient died within a few homs alter swallowing a large

[^253]dise with saicidal intent．Amakrons changes reeme in the compunctivn， month，pharyinx，mind gumes．

 1）：anrore of Bustom．

 in the kidners，liver，heart mu！mher masides in varions other organe，in the

 These rhamges，thegether with these indured by phesporins，the ation of which is similar to that of arsenie in this as in spereal other respects，have

 artion of arsemie and then of phosporves were fomed to lo similar，bat that ＂1）amsenie was the less intense．

 mernsis，formation of vamoles，neronsis，and destrution．Next the epithe－
 lariss，and finally the commetion－tissme mells，beome involval．The melei of the liver－erells divide and miltiply，and even at slight digree of fatty de－
 mation seems to be due to the direet action of the arsenie after prodrating the wills．＇The changer，both in these argans and in the minseles，onemr in lixci．

It is impertant to note that the term＂degeneration＂denes not strictly aply to the whole of the process onserved in these experiments，but that an ative cell－division gres om，within the paremehym of the organs as wedl as in the comertive tissine．It may be that the influence whind leads to this change is in some way related to the therapentie action of arsenie and phospharos．

The carcful experiments of Vrijens ${ }^{17}$（Amsterdam）in 1881 make it prol）－ able that no department of the nervons system is exemp from the influence of the prison，though not all are equally involved．The hemorthages so widely fimm are thomght to resnlt in part from paralysis of the vasto－ moter nerves，in part from the changes in the constitution of the blook and vessels．

The prohability is that the paralytio and sensory disorders of the limbs are due to multiple nemitis．＇This view was first suggested by Jaeschka in $1882,{ }^{18}$ and has since then been conlimed ${ }^{19}$ by anatomical as well as clinieal avidence．

To what extent the central nervons system is responsible for the paral－ yses is still uncertain．Changes in the spinal cord，perhaps even tiologi－ cally antecedent to the neuritis，might be anticipated in the case both of
lead and of arsenic, and in fact I'onow ${ }^{20}$ in 1882 described such changes. Donlet wan alterwards expressed ats to the validity of his ohservations, but their anthor has recently ${ }^{21}$ malfirmed his opinion, supporting it by an acomot of the examination of the spinal cord from 'n case of amote umenical peisening. The matter cemmot as yet be regarded ats dedinitelys setted, but it has
 ing the adjacent nerves, indeperdently of any change in the nerverentrex. Inasmuch, hosever, as some of te ceses of musentar atrophy of arsenicul as well as of satumine origin are promenthe incmalle, it is highly peobable, judging from what we know or the wavative power of the peripheral nerves, that the exintral mervons system is sometimes serionsly affered.
 that the damage is sometimes done to the blook-making ergans. Arenic is sometimes fomed in the bones, and in one case, reported bader Elimination. traces were fomed in the bones many months after cessation of the experinese. In this case the asemie had been nsed as a medicine for a lon time and in small doses.

Aceorling to Fildue, ${ }^{22}$ the crosioms seen in the stomath are probably not due to the direct action of the atsenie, maless where it is present in sull)stamere, but to the peptonic digestion for which the degenerative changes in the gastric glands prepare the way. He fombl that if the stomach was kept stealily alkaline ly magnesia, or carefinlly freed from acid by frequent washing, these changes did not ocellr.

Dogiel ${ }^{23}$ has recently shown the important fact that arsenic and its salts, form chemical componnds with the alhmminoid tissues (gelatinous sulstane when heated with ergy albmenn), although this is contrary to what has berem misersally believed.

The anatomical changes ohserved in the case of children are, for the most part, the same as those seen in alults. Colm has, however, fomed codema of the batin in a child of five sars who died from aente poisoning, and suspected the same condition in the case of amother patient whose symptoms were of similar character, but who crentually recovered.

ELIMINATION.

Arsenic is found in all, or almost all, the secretions and exeretions of the body, cepecially the bile, the feeces, and the mrine.

The secretion most important for present consideration is the milk. Bronardel and Ponchet ${ }^{24}$ gave Fowler's solution, in the dose of from two to twelve drops, to mursing mothers, without mopleasant results, hat fumbl in the ease of one woman, who took the maximal dose daily for six days, one milligramme of arsenie in cach one hundred grammes of milk. Experiments with amimals gave similar results. The young in many cass: died, and arsenie was foond in their tissnes. The same writers cite the following case. A man was acensed of an attempt to poison his wife with arsenions aeid. The woman lived, but her nursing child of two months
died after forty-emghthons: Thar whole benly, weighing two kilogrammes, was analyad for arsenie, and fise milligrammes were fomme.

 dialy for form days.

The time nsma!! yon-iderel sufiement fir the eomplete climimation of amonice is foom twolve to twonty dows hat exerptionally it is foumd in the mine after five or six werks. (iibs" reperts a ase, howner, where thates
 satton of a long comser of modicinal treatmant whid had led to her death. In some of the wall-paper "ases it has lemen fomblat late as seyen or nine months after the apparent removal of the somere of poisoning. ${ }^{27}$ 'This class "f "ases is ohvionsly not well suited for determining the point, but the fiects are stater here on aceomet of their rlinical value.

It is not yet known whother almination grees on more mapidly with
 bex a lacalthy condition of the kidness and other organs, and it is possible, thongh not probahle, that the rarity (sere below) of ansenical pamasis in chideren is due to their diminating the poison before this symptom, Which is usmally a relatively late eno, has time to make its appearaner.

Frequency with which Arsenic is found in the Urine.-l) I: C. P. W^{*} orester has examined, at my request, more than fifty sperimens of wine for arsenic. The persons from whom the speemens were manly taken were patients prosenting themselves at the ont-patient department of the Massachuzetts Gememal Mospital, those cases beiner selected, ate a rule, which did not present any symptoms that semed reforable to arsenieal poisoning. The specimens showerl taces of arsenio in fortr-three and a half per cent. of the whole number taken. 'This result seems to me one of deeided interest, apart from its clinical importance.

The fact to which I have repeatedly called attention, that lead is to be fomed with great frequener in the tissues of healthy persoms, is, for two reasons, less surprising than that the same shonld !o true of arsenie: first, becanse lead is less easily eliminated than arsenice, so that it may arombate little by little; second, beanse the sourees of possible lead contamination we extremely unmerous.

The sources of arsenical contamination, on the other hamd, are companatively few. The coloring-matter of wall-papers, and of cotton and woollen stufts, constitutes by far the most important of them ; and even if, in estimating the significance of the figures I have given, we make large allowaures for coincidence and for exceptional causes, it is impossible to avoid the conelusion that from these materials arsenical compounds are frequently given off, under conditions whicl: render them liable to be absorbed, and of such a kind that they occasionally cause more or less severe symptoms of poisoning.

On the other hand, the elinical inferences which the figures primarily
suggest is, that while these coloning-mutters are evidently a somree of froquent contanimation of the tisenses, they are not a frepuent canse of puisoning, and that the discovery of assenie in the urine emmot be taken as: as conlusive proof, or exen as wery strong evidence, taken by itedf, as to the origin of dombthinl symptoms.

Nevertheless, if the resultes of these analyses are mything like typion of those which would be obtanend from it larger mumber, it is evitem that the thanger, suth as it is, is a widr-spread one, and that even if only is very small propertion of the persoms in whose urine assenie could l_{x} fimme should be iujuriously affected, the absolute nomber might be quite harge.

SYMPTOMATOLOGY.

The symptoms of asenical poisoning vary acoorling ats the patient has been exposent to (1) lange toxic doses; (2) medimu doses inereased gradually. to beymad the limit of toletance ; (:3) minuta doses comtinued for a loug time; and acemeling to the nature of the preparation.

Very large doses may be mpidly fatal in the course of a few homes ond
 of serions involvement of the nervons spastem in all its parts, and some times withont cansing any other symptom than erdlapse. Vomiting ann diarrhoa may be entively wanting or present in only monderate degree, amb this esperially in the cases of aute collapse.
 six cears ohd respedively, in order to show that severe ceremal symptomsloss of eonseionsuess and delitimm, apporently due to hyperemia and cedenta of the bain-may orem not only in (ases of matid collapse, where gastrointestinal signs are wanting, but also when they are present. In the "videtpowder" cases ahove referrel to, some of the infants died with eymptems of general prostratiom. Abdominal signs oceurred, but were not, as a ruke, prominent.

When the prostration of the nervons fimetions has not been so grate as here indiented, vomiting and porging geneally make their appearanee, and, from thair violence as well as from the charater of the discharges, smmetimes suggest true cholem. These symptons are nsually associated with excessive thinst, burning sensations along the cesophagens and in the thron, intense pain in the ablomen, with tympanites, cramps in the extremities, and retention of urime. The latter seerection, as well as the alvine discharges, may be boody. The action of the heart and the respiration are profimudly affected. Conseionsuess is usmally preservel, but attarks of syncope and convolsions sometimes oceur, especially with young children.

In the following interesting ease of poisoning in a young boy, reported by Silliman, ${ }^{30}$ the symptoms for a time suggested belladonna poisoning. The first symptoms were thirst, nausea, and retehing, but there was no vomiting; these were the only gastrie symptoms, and they rapiily subsided. In from one-half to three-fourths of an hour there was profound stupor, with exces-
sive dilatation of the pupils, the pulse was rapid (1:3) and shall, respiration from 50 to (it) per minate and shallow, mud there was great muscular dnditys. Ematies were given, mad the vomitus contained mo bhokl mon murns. The patient was revived ly stmulants. Two mal a hald hours atere the first symptoms the pupils had leverme normal, mud the pulse and respiration had imposed. Five hours later there was a relapse, ending in mollapse, chma, and death cight hours and threwtuarters firom the time of onsed. During the whole course there was no complaint of pain and mo diesturbace of the bowels.

It is noteworthy that there are sometimes temporary halls, even of sev-
 frowerer, oeear in a case that has long seemed hopeleses, mul this is as true of' children ats of' adults. 'Thas, in one of' the instaneses ahove ented (rorpurted by Colun), of a child six years old, in spite of the fact that deliriun and loss of conscionsiness were present, and inereased ip to the tenth day, the patient evendally recosered, and at the end of fone werks was nealy restored, thongh somewhat emariated. Likewise, in the interesting case of a girl deven yous ohl, reported bỵ Dondly, ${ }^{31}$ in spite of severe symptoms of aute poisoning, and although as late as the fourth day the borly was grently swelled, the broasts havd and painful, and the secretion of urine almost suppressed, there was eventual recosery.

Eren alter the acute symptons of the carly stages of poisming have priselal away, the patient has still much to fear fiom the subsempo it outberak of paralytic symptoms, supposed to be dae to genematiacl nemritis. These may follow even a single dose, and may ocenr atter an interval of diys, weeks, or even months.

These paralytie symptoms consist in greater or less loss of power over the extremitios, nsually associated with severe rhematoid pains, temderness, and a yariabic amome of entaneons and musenlar sensory impairment, esprecially of the hamband fect. The lower extremities are commonly alfected more than the "pper, the distal more than the proximal gromps of muscles, and the extensors rather more than the flexors; but exceptions to all these rules oceur. ${ }^{32}$ The deetrical irritability is nasully diminished to both currents, but may he momal or even exapgenaterd. Atrophy of varying degree genembly ocenrs, and in adults is oceasionally incurable. Ataxia, alson, probally of nemritic origin, is occasionally seen. ${ }^{33}$

These paralytic symptoms are of infrequent ocenrence, relatively to the other somptons, even with adults, and apparently still more rare in the celse of dhildren, although a number of instances have been reportel in which there were cramps, pin, and tingling in the extremities. An interesting case is reported by McCready where paralysis of the lecss, followed by death, oceurred in a young child in consequence of rubbing arsenic mixed with gin on the head to cure an attack of favus. The death, however, occurred so soon after the exposure (less than forty-eight hours) that it may be questioned whether the paralysis was really of neuritic origin, though

lixem in the lirst stages af puisoning, matime migns af irpitation of the

 in dildren.

The Effects of Moderato Doses of Arsenio gradually inerensed to the limit of tolerance, as when it is employod as a medicine with tho object of obtaining its full physiological action, fud

 madigested foral. The mrine is liable to be diminished in gunatity, and in

 yellowish in coler, tha lids swelled and painful, the comjuntivat romgeded, and the entameons ghats of the lids intamed. The metabolie dangos (areat, etr.) inerease and then diminish, or aseillate. The nervons finetions are all liable to be deranged. Among the more prominent symptons of this chass are signs of cerebal irvitation, and prostratiom, and the solmory and motor disomders of the extremities wheh later deepen into the paralyses 'hameteristie of amenieal nemitis. (This is, assentially, a digest of the experiments of Vandrey upon himself and others.)

Poisoning from the too long continued Use of Arsenic in Small oses.-The eases falling moder this head have been abrendy disenswed meler Dose. It only remains to be said that the symptoms usially maki their appearane in the order and manner deseribed in he last seetion, han that almost my one of the symptoms may be musually prominent of mer be wanting.

Oecasionally, thongh very rarely, as has already heen mertioned, ${ }^{34}$ after long use of arsenic and apparent habituation, a violent, almost acute attack may oceur.

It is especially noteworthy that the first symptoms of any promisene may be signs of localized nervons invitation in the extremities or abomen, such as numbness and prickling, or eramp-like pains, usually associated
with mure or lams gememal indippasition. One digestive sign often refiereed (1) as onemring carly is a silvery-whitish coating on the tomgere. The owat simul wernerence of herpes goster und of bremaing of the skin is spoken of in in ention part of this paper.

Poisoning from Arbrnical Wall-Papers, Paint, and Fabrice.-Fornumately, the time has almost gome by when the idean of danger firom these sumeres of prisoning can masulably le seonted, and it is now only through
 of hiilure of heath, even without speceitice sympoms.

Tho following remarks are based, so fir as possible, on observations ${ }^{38}$ in which armenie was achally fomed in the urine. The illustations will be drawn latyely firm the eases of dhideren, but such other fines will be added as may thow light upon this obsenve subjerat.

1 is mot cumally trie fire chronie as for ante poisening that the symp-
 pratin is, in part, to call ont latent tendencies to disense, and in determining thes age is protably an important factor.

The lowat and spacial symptums do not differ from those seen in poisoning tron larger dosen, exerpt in the faet that they are only in faint traces, which have to be carefillly somght fise.

The enses may nsually be dassed, mepectively, in one of five gromps: 1. Those in which the symptoms mainly comern the genemal mentrition and health, withont signs of lowal irritation. 2. Those in which the symptoms are mainly due to irvitation of the conjunctiva, month, or pharynx. B. Those in whid the symptoms mainly concern the digestive tract. 4. Those in which the symptoms manly concern special departments of the nervons system. D. Those in which the symptoms matinly affect the mutrition of some special part of the bavly other than those mentioned. To these there might fairly se oddert a sixth clats, comtaning cases in which latent tendenries to nervons affertions of varioms sorts are bronght ont by the debilitating inthence of chronic arsenical poisoning, just as lead poisoming canses hyst eria.

Most catses present several of these sets of symptoms.
'The cuses of' the first chass are probably less common than those of the serond and the third, since signs of loxal irvitation are nsnally present in some degree. It is, however, to be remembered that it is just in regard to mases of this gromp that more accumate mems of diagnosis are meded, and perlaps we think them rare only becanse they are overlooked. Two or three cases are known to the writer where arsenie, apparently of wall-paper origin, was found in the urine, and where few or no symptoms were observed Ixsides amemia, debility, and perhaps (especially frequent in the case of children) irritability and restlessness. One of the twenty-five cases referred 10 in the note ${ }^{38}$ is that of an infant, reported ly Dr. Francis, of Brookline, who, though previonsly healthy, beeame languid and refised food, but recovered promptly after removal from exposure. Arsenic was found in the urine.

Vol. IV.-39

If suspicions are aronsed, they may properly be strengthened by even slight aigns of local irritation either of the motous men ${ }^{-\cdots+3}$ nes or of the peripheral nerves. If slight priekling or numbness of the in,...ls and feect is complained of, carefnl examination for diminished electrical irritability of suspected museles should le made. If these signs are absent, the diagnosis can often be only guessed att ; but the probability of arsenimal poisoning is increased, thongh not converted to a certanty, if arsenic is fomm in the urine on analysis by a skilled chemist.

Anemia and general impared health are constantly met with in remnection with other symptoms, such ats disorders of digestion, ete., widhnot being wholly secondary to them.

Cases under Class 2 are very common. The congunctivitis is frepuently: purnlent and associated with inflammation of the Meilomian glands, and even with nelmla and ulecration of the cornea.

The changes in the pharyon may assme a diphtheritie appeameer, and Osborne Reynotds reports the ease of four children, where the diagnomis of diphtheria was made, who eventually died. The fiather and mother also showed signs of arsenical poisoning, and the sickness of the children was traced, with great probability, to the same sorree. Kirehgasser, also, speals of diphtheritic changes in the pharyux. The pharyngitis is apt to be assuciated with bronchitis and congh; these symptoms are worse in the morning, when the arsenical paper is on the patient's bedroom, and, like other symptoms of poisoning, both lowal and general, are worse when the windows of the rooms are closed and when the furnace is lighted. The heat of a lamp or gas flame, acting upon an arsenical shade, is liable to produce similar results.

The digestive disturbances (Class 3) may oceur either alone or combined with the other symptoms, and may affect either the stomach or the bowels most severely. Morris reported the cases of two children of an English surgeon, who died with symptoms of enteritis. Oceasionally, thongh rardly, constipation oceurs instead of diarhoen.

Ieterns may oceur, and tuke-custs with small quantities of hoond are occasionally fonnd in the wine, together with albumen.

I have seen no statement that easts and blood have been found in the urine in children, but albuminuria is not very uncommon with them where arsenic is given as medicine, as in chorea.

Class 4.-The nervons disorders most frequent in children are ${ }^{1}$ lealdache, insommia, restlessuess and nervons irritability, neuralgic pains, and, rardy, signs of the slighter degrees of neuritis.

Kirehgasser reports the case of a boy, three and a half years old, who suffered from convulsions, followed by paralysis of the legs, possibly traceable to arsenical paper, and passing away after removnl from exposime. The convolsions showed a tendency to daily periodical recurrence and were followed by feverishness.

The sime writer has observed that other nervous symptoms may show
d by even or of the Is and fent irritalability t, the diay(all prisulnis foumerl in
ith in "onlte., withwnt sfrequently: glaunls, anid
carance, and he diagnowis mother ilkion children was ; also, spenalis ot to be alasistin the movindi, like other the windows The heat of a ce to procluce
or combinel or the bonvels f an English hough rarely,
of bloond are
foumed in the , them where
are 1culutiche, ; and, rarel!,

If years old, legs, persibly om expoille: nee and were ms may show
this same tendency to periodienl recurrence, simulating malarial affections; and something of the same sort was reported by Dr. Nichols, of Cambridge. ${ }^{37}$ Here the diagnosis was strengthened by the discovery of arsenie in the urine. Other instanees of convulsions in young children have been noterl in cases of this class.

Class $5 .-A f f e c t i o n s$ of the skin due to poisoning from arsenical wallpaper are noted, althongh but rarely. There is some reason to think that mintammation of the external and middle ear may be due to the same cause.

The nemralgia is sometimes so sharply localized as to suggest nemitis of a single nerve, and two or three cases have been reported where the mutrition of one limb has been serionsly impaired.

The symptoms are sometimes much worse in the morning, the patient often waking with a severe frontal headache, bad taste, and irritation of the eyes and the digestive tract.

The apparent immunity enjoyed by a certain proportion of the persons under the same exposure is often commented on as throwing donbt on the cellse of the symptoms in the rest. But, while this doubt is entirely justifiable in a given case, the genemal fact that there is great difference in the susceptibility of different persons towarls many other poisons besides arsenie is too well known to need comment.

The symptoms of the second elass may ine mainly looked for where the arsenie is present in the form of dust, but this cannot be stated as a miversal rule.

Arsenical paint, though less injurious than many papers, is, nevertheless, capable of mischief; and the same may be said of papers containing arsenic, over which other papers, free fiom arsenic, have been pasted, or which have been coated with varnish.

It is worthy of notice that what might be called a therapeutic action of arsenic-mamely, an increase in weight and fat during exposure-is seen in cases of exposure to arsenical wall-paper.

Kirehgasser has spoken of the same effect in relation to one or two cases of ehildren where other members of the family had shown sigus of poisoung.

I have not met with any accomt of salivation in children, though in the ease of adults it is somewhat eharacteristic.

DIAGNOSIS.

Aente arsenical poisoning presents itself mader two general types, both of which, however, are subjeet to many variations. The first is that of rapid eollapse, whieh follows the ingestion of large quantities of the poison, and may be unattended by any symptoms of local irritation. The second is the gastro-intestinal type, characterized by intense burning at the epigastrim, along the cosophagus, in the fanees, etc., and by the cholera-like vomiting and purging.

Both theve forms might possibly be mistaken for poisoning by phos-
phorus or other irritant poison, or even for cholera, under certain ciremnstances. In case of donbt, the stomach may he washed out, and examined for the chamateristic odor of phosphorns, and the attempt made to devedop the garlie smell of arsenie loy heating.

It shonld be remembered that, even in cases of subacute poisoning, where death is delayed for some days, gastro-intestinal signs may be ineonspienons. In the special case of children, the possibility of the association of acute cerebral symptoms, due to adema of the brain, with the gastion intestinal gas, ats in the . se deseribed by Cohn, will be borne in mind.

With regard to subacite and chronic arsenieal poisoning, there are certain signs which, when present, are ehamateristic ; but the diagnosis is froquently very obsenre, and in the absence of an evident anse camot alwass be made out with certainty.

The most chamacteristic symptoms are the redema of the eyelids, and ulearation of the gums and in the faness ; the oecurrence of contimons or intermittent, and apparently causeless, attacks of acoute indigestion, with nausea, and with epigastric pains, or with salivation; and, finally, the paralyses; but as yet only a few cases of paralysis, and these not in a fullydeveloped form, have been reported as ocemring in children. For the sake of completeness, we give the most important features of this symptom as met with in adults. The ansenical paralyses are not to le absolutely distinguished from those due to neuritis from other causes, but it is relatively characteristic of them, as compared with those due to lead, that the lower extremities are affected more than the upper, and the extensors more than the flexors, while at the same time both flexors and extensors are involved.

In the majority of cases the paralysis is associated with sigus of markend debility and restlessuess.

A taxia has been observed in neuritis of various origins, but more often in arsenical than in lead nemritis. Furthermore, an aente onset is very much more common in arsenteal than in lead paralysis.

Although it is more true of paralyses from arsenical nenritis, to a certain extent, than of those from lead neuritis, that the distal museular gronps of the limbs sutfer more than the proximal, still a distribution varying from this is sometimes met with. ${ }^{38}$

With regard to the extremely chronic forms of arsenical paralyses, those resulting from arsenical wall-papers and the like, it is only, in many cases, by weighing the evidence of every sort that a conclusion can be reached. Characteristic symptoms are sometimes absent, or represented only by tracers, and an almost infinite variety in grouping may be expeeted. Under Symptomatology the diagnostie points have been given which will te foumd especially useful.

When neuritis is present, the electrical reactions are usually diminished to both currents. They may, however, be nearly normal, and may even be incroased. ${ }^{39}$ Sometimes the electrical reactions suffer before any loss of voluntary power occurs. This is a point of great practical importans,

1 circumexamilad oderclop roisoning, be inconssociation se gastromind.
care cirpsis is firnot always
clids, :and tinuous in tiom, with matly, the in a fully-
For the ; symptuln dutely dis; relatively the lower more than involval. of markied more often jet is very
o a certain groups of ying fiom
yses, those lany colsen, e reathen. by traces, der Symp-
be foum
liminished may cren \%) any loss mportane,
beatuse a cureful examination will ocousiomally enable us to make a diagnosis in a case otherwise very obsenre.

An excellent test for slight weakness of the extensor muscless of the hamd consists in letting the patient try to maintain the carpus fully extended and to spread the fingers.

In doubtinl cases the urine shonld be analyzed ly a professional chemist.
It is not, of comse, to be eonchuded from the finding of small quantities of' arscuie in the urine, that the symptoms from which the patient is suffering are due to that cause; but the weight of other evidene is obviously swengthened thereby.

With regard to the significunce of other minary signs, the presence of indications of remal irvitation is suggestive, but not pathegromonic.

A few cases are on record which would suggest that acute and chrone nophritis may be due to this canse. One of these, reported by Dr. Tr. M. Routeh, is cited in the paper alrady relerred to "10 (Case 19). This patient was a child's murse, forty years of age, and it is interesting to mote, as illustrative of the different kinds of personal suseeptibility, that, while the "sulfered from: subacute nephritis, the child himself showed the genand the mucons-monbrane symptoms of arsenical poisoning, but no mephritis, in spie of the tact that he wass attarked with searlet fever at the time of exposire, and that, too, while the urine still contaned arsenic. The fover ram its usual course. Both patients reeovered promptly on removal from exposure.

PROGNOSIS.

The prognosis of acute arsenical poisoning is always grave, but even the most unpromising cases sometines recover. A favorable issue is not neersamily to be expeeted on aceomint of a lull in the symptoms, even thongh this may last several days.

With regard to the chronie forms, the prognosis varies with the duration and severity of the symptoms. In the light cases, and in most of the mouldrately severe ones, complete recovery may be expected under favorable conditions.

In peripheral nemritis the heart's action is liable to be atfected, and dealh oreasionally results from this cause.

TREATMENT.

The treatment of acute poisoning consists in removing the poison from the stomath and bowels by washing and active catharties, and in giving, even previonsly to this measure, large quantities of freshly-precepitated sempuioxide of iron. This is most conveniently prepared by neutralizing the tineture, or ather solution, of ehloride of iron with carbonate of sodime or magnesia. The quantity given should be large and the doses frefuent.

[^254]For further details the reader is referred to works on toxicology and to Wood's "Therapeutics."

For a case of chronic poisoning there is no specific remely, other than removis, the cause. Where this is arsenic nsed for therapeutic purposes, it is not always enongh to withdraw the medicine when the first symptoms of poisoning show themselves, partly becuuse several weeks must clapse before the whole of the arsenic can be eliminated, and partly becouse the symptoms occasionally go on increasing in severity without eontinued ingestion. It is, therefore, safer to anticipate trouble by discontinoing the treatment for a time every few weeks, especially if the doses are large.

Iodide of potassium is usually given, under the belief that it increases the rapidity of the elimination of arsenie. It is quite possible that this effect is produced, but there is not the same reason to expeet benefit from this remedy as in the case of lead poisoning. There is, however, good reason to believe that saline diuretics in general increase the rapidity of the elimination of arsenic, as of poisons in general.

The arsenical paralyses are to be treated on the same principle as those of other origin-namely, by rest, sustaining regimen, and anodynesthrough the acute period; later, by massage, carefully-measured exereises, and electricity. By a seeming paradox, arsenic in proper doses is one of the remedies recommended in the treatment of chronic neuritis, and one may readily conceive that it might be useful, in late stages, even where the neuritis was of arsenical origin. On account of the heightened susceptibility to arsenie, however, which is oceasionally developed, it would undoubtelly be safer to avoid this remedy and trust to other alteratives, such as iodide of potassium, cod-liver oil, and iron.

Where the poisoning comes from arsenical wall-papers, these should be wholly removed, and not merely covered in by varnish or another paper.

REFERENCES.

1. E. S. Wood, Massachusetts State Bourd of Health Reports, 1885.
2. Papers in Sanitary Record, London, 1879; British Medical Journal, 1879, vol. ii.
3. British Medical Journal, 1883, vol. i. p. 1218.
4. Massachusetts State Board of Health Reports, 1872.
5. London Medieal News, 1889, cited in Therapeutic Gazette, January, 1889.
6. On Poisons, 3d ed., London, p. 307.
7. Ibid., p. 295.
8. Boston Medieal and Surgieal Journal, 1888, vol. ii. p. 1.
9. Boston Medical and Surgical Journal, 1884, vol. ii. p. 433; see also IIistoire des Eruptions arsénicales, by limbert-Gourbeyre, Moniteur des Lôpitnux, 1857.
10. J. Iutehinson, Med. Joar. and Gaz., London, 1868, vol. i. p. 315 ; Finlayson, Practitioner, 1878, p. 213.
11. Hunt on the Skin, 1865 ; Guaita, Arell. di Patol. infant., eited with other cases in Jalırb. f. Kinderheilkunde, 1884, p. 133, und 1885, pp. 22, 216; Handford, British Medical Journal, 1887, and varions other writers.
12. Reports of Loeal Government Board, vol. viii., and Lancet, 1878.
13. See, in illnstration, McCrendy, Americun Jourmal of the Medical Sciences, July, 1885, p. 259; Seguin, New York Jourmal of Nervous and Mental Diseases, 1882, p. 665 ; Seifert, Wiener Med. Wochenschr., 1880, p. 1125. ming the urge. increases that this nefit from ver, good ity of the
e as those rodynesexercises, one of the one mily e the nenweptihility dombtally 1 as iolide should be - paper.

879, vol. ii.
1889.

Histoire des
Finlayson,
her cases in ish Medical
14. Arehiv für Patholog. Amat., 1869, vol. iii.
15. Buston Medical and Sugienl Jommul, Augnst 8, 1889, p. 125.
16. Buitr. f. Path. Amat. u. Phys., 1888, vol. ii. p. 293. Further researches in the same line, and with simihur results, hatve been made by Podvesotzky. See m ubstruct in Amual of the Medical Seiences, 1880 , vol. v. C, 3.
17. Arch. de Physiol. Norm. et lath., 1881, p. 780. Compare somewhat contlicting expriments by Unterberger, cited, with other observations, by II. C. Wood, Therapeuties, ith ed., pr. 501.
18. Inaug. Diss., Breshm, 1882.
19. Cuse, with autopsy, in Canada Medieal and Surgical Joumal, 1886, vol. xv. p. 716.
20. St. Petemb. Med. Wochensehr., 1881.
21. Virehow's Archiv, 1888, vol. exiii. $\mathbf{p}^{.} 385$.
22. Arch. f. Path. Amat. II. Phys., vol. Ixxxviii. p. 1.
23. Areh. f. die Ges. Ploys., vol. xxiv. p. 328, and Congres Intermat., Copenhugen, 1884, Sect. de Physiol.
24. Anmes d'Hygiche, 1885, p. 78.
25. Bertin. Kiln. Wochensehr., 1882, p. 544.
26. Pathological Transuctions, London, vol. ix.
27. Boaton Medical and Surgical Journal, March 7 and 14, 1889.
28. Finharson; atso Virchow, Arelı. f. Path. Anat. n. Plyss., 1869, Bd. iii., who reports a case which emded fatally in two hours, and where the pathologienl apparances were like hose in cholema. In spite of the short daration of the cuse, the glands of the stomach were alroudy markedly degenerated.
29. Areh. f. Kinderheilkunde, 1886, Bd. viii. p. 417.
30. Medico-Legral Jourmal, vol. ii. p. 473.
31. Pacific Madien und Surgical Joumal, 1880, p. 20.
32. Bostom Medical and Surgiond Jomat, June and July, 1888.
83. Jama, Brain, January, 1887; F. Petersen, New York Med. Reconl, 1888, vol. viii.
34. Boston Medien and Surgical Journal, June, July, 1888, on Paralysis, ete, from Melicinal boses of Arsenic.
35. Kirchgasser, Vierteljahressehrift für gerichtliche Medicin, 18e8, vol. ix. p. 96 ; also Boston Medical and Surgieal Journal, Murch 7 and 14, 1889 ; ndso E. S. Wood, Massuchmetts State Bonrd of Health Reports, 1885.
36. Boston Medical and surgical Jourmul, March 7 and 14, 1889.
37. Ibid., Case XX.
38. Thicl., 1888 , p. 646 .
39. Seeligmuller, Deutsch. Med. Woehensehr., 1881, p. 188.
40. Boston Medical and Surgical Iournal, Mureh 7, 1889.

LEAD POISONING.

INTRODUCTION.

The history of lead poisoning is now in an important phase. Many of the masterly deseriptions written in 1837 by Tanquerel des Plauches sound, as far as they go, as fresh and adequate as ever. But sinee that remarkable treatise was written, on which later deseriptions have so strongly leaned, facts have gradually been acenmulating which indicate that the subject is a far wider one than then appeared, and especially that longcontinued exposure to minute quantities of lead canses symptoms which are
in some respects quite different from those observed among the workmen at Cliclyy, and in the Paris hospitals.

Lad poisoning now ramks as one of the causes of chronic nephritis, and recently a few cases of endecarditis have apparently been traced to this origin. Tissue-changes have heen discovered in the brain, and many chronie derangements of the nervous system, grouped moder hysteria, nemrasthenia, and the psychoses, find in lead poisoning one of their many soures of origin.

The important advances in othe departments of pathology, and especially in the study of other poisons, both mineral and ymotic, have thrown new light upon the action of lead. Thens, through the important discovery of toxie multiple nemritis, and its relation to discenses of the spinal cord on the one hand and to the primary myopathies on the other, our insight into the nature of lead poisoning has had its share of gain. Still more impertant is our better recognition of the part played by poisons in gencral in the production of structural disease. 'To speak only of the spinal eord, we now know that locomotor ataxia and other of the spinal scleroses are due in a large proportion of cases to syphilis, while chronie ergot and lathyrus poisoning lead to analogons forms. No one can to-day doubt that if the tissucs and organs of excretion conld be kept free from inorganic, organic, and aymotic poisons a long step would be taken towards insuring their health.

Furthermore, it has for some time heen known that alcohol inereases the toxic action of lead, and it is wortly of inquiry whether the same may not be true of other genemal tissue-poisons, such as arsenic.

Under these eiremmstances, and in view of the fact, which will be dwolt mon later, that both lead and arsenic can frequently be found in the excrotions of persons not exposed to them by their ocenpations, the study of these poisons, ats acting alone or conjointly, should be approached in a spirit at onee expectant and critical. It may be that hathituation removes most of the danger, but our rules for determining whether the stfety-line is being overstepped need constant revision.

The justification for the present article is fomen not in the abundance but in the meagreness of the present acemmulation of facts relating to children, and the importance of taking steps towards inereasing it. The table at the end gives most of the cases which the writer conld find in the literature at his command that were ecported in sufficient detail to be of value. Additional cases are referred to in the conrse of the article.

ETIOLOGY.

The most important of the sourees of poisoniag to which children are exposed are contaminated drinking-water, and coloring-matters. These will be studied more at length farther on. Less frequent but still important sources are glazed cards, acid fruits and vegetables put up in soldered tins, chocolate and other articles wrapped in spurions tin-foil, ${ }^{1}$ articles cooked in
vessels with lead glaze, contaminated cider, the vapor of freshly-painted rowns (see Table, Cases 15, 16, 18), and, in the case of infants, the milk of murses poisomerl with lead from the use of cosmetios, ete. The prolonger use of lead washes and ointments on excoriated surfinees has repeatently given rise to poisoming, and the medicinal employment of lead compomeds hats , reasionally had the sane effect. A case is quoted by Taytor from Dr. Lethely, ${ }^{2}$ of a child who died from taking for nitue weeks one-fifteenth of a grain of lead acetate two or three times daily. The first symptoms were colic, constipation, and fetid breath. The child then lost flesh and the limbs became paralyged. Death oevarred two dave after the wine weeks, in convolsions and coma. Another case showing great susceptibility to ateate of lead in medicinal dose is reported by Pick. Taylor ${ }^{3}$ eites the case of an infant, previously lealthy, who was bathed daily for a long period in the distilled water obtaned from a leaden pipe comected with a stem-hoiler. The child grew weak and "almost paralytic." Neither final result nor reference is given.

Red lead enters largely into the mamufactare of articles of rabher, especially of the heavier sorts, and hats oreasiomally been found in the rubber nipples of musing-bottles. The stoppers of musing-hottles are also oceasionally made in part of lead, and this is said to have given rise to contamination of the milk.

The children of lead-workers often inherit serionsly degenerated nervons systems, and it is probable that a careful seareh would diseover amalogons eases antong the children of artisans, suld ats painters, whose trades furmish cases of serions poisoning, and even among those of persons poisoned with drimking-water and the like.

Constantin Panl ${ }^{4}$ reported in 1850 a careful analysis of one hundred and twenty-three cases of pregnaney among female lad-workers, showing the extreme frefueney of misearriages, premature births, and still-birtlis, and the great mortality among the living children in the first few years. Sometimes the mother, and sometimes the father, of these children was at lead-worker, but the influcnce of the mother was much the greater of the two.

The interesting report by D. D. Stewart, ${ }^{5}$ of Philadelphia, on the eases of poisoning by lead chromate used to color cake and buns, contains the following statement: "All of the five infancs born of mothers exhibiting symptoms of lead poisoning during gestation had convulsions,-four, within two months after birth. Three of the five died in them. Another infant, born in July, 1888, of a mother who had pronounced lead poisoning during the carly months of preguaney, died in the fourth month in convulsions." The researehes of Roque ${ }^{6}$ and Berger ${ }^{7}$ give further evidence that children of keal-workers who survive the carly months are apt to be idictic or epileptie.

It has not been positively shown, so far as I am aware, that life-long epilepsy of the ordinary type originates in this way, or through aequired lead poisoning; but there is reason to think that it might do so, if the opinion which has been expressed by Gowers and other writers is correct,
that eprilepsy induced by lead poisoning is liable to last for a long time attor the removal of the canse. Further evidence on this point will be given muder Symptomatologr.

Of grat pratical interest, as fimmishing a suggestion for future ohsorvations, are three cases reported by Swam, where sterility mal abortion were thought to be due to lead poisoning from drinking-water. 'There were scarcely any other signs of poisoning, but lead was apparently present in the tissues, and the patients bore healthy children after removal from exposite.

By far the most important of all the sources of domestic poisoning is drinking-water, the danger being groatest in combtry places where formo pmons with lead pipe are nsed, the end of the pipe resting in the well, and where, as is still often the case, the water is convered in lead pipes fiom wells or springs thirty, forty, or fifty fect distant from the homse.

Even in ond lage cities it is possible to find traces of lead at any time in water that has stood for some homs in the lead pipes of private honses, the coating of insoluble salts forming but a patial protection. The danger is increased if the pipes siphon each other and suck air, as is almost ahwers the ease to some extent ; or if a softer water is introlued ; or if the supply runs throngh bogs or manshes yelding vegetable acids or other organic compounds, a comblition which a riany season somotimes temporarily prodnees.

Several English towns have been visited by sudden and severe epidenies of lead poisoning in this way. In tracing ont the canse of a recent 'piodemic at Baemp, Dr. John Brown ${ }^{20}$ found reason to believe that fiee sulphurie acid was the dangerons ingredient of the water, and suggests the manner in which it is formed.

It is true that the danger attending the nse of lead pipes is largely removed if the contaminated water is entirely run off, but it is not commonly realized how long a time is required for this (probably not less than fitteen minntes for a pipe fifty feet longr), nor how soon traces of lead may again be found. It is highly probable that it is from this . ource that the greater part of the lead comes which, as will be shown later, is to be fommd in traces in the tissues of a considerable proportion of the commmity.

The next soure of domestic poison of greatest importance is from the chromate of lead used in coloring-matters. This substance has long heen used to color cloths and papers, toys, sweetmeats, butter, and many other substances, but cases of poisoning from it have been considered rare, the greater umber affecting weavers working with yellow cloth or varn. In eases of acute poisoning the symptoms seem mainly due to the action of the chrominm element ; in the chronic eases, to the action of the lead.* Several cases of the former kind, ocurring in elildren, are on record in the older literature (see below, and in the Table).

* See W. B. Hills, Wood's Hand-Book of the Medical Sciences, article "Chromate of Lend."

A notable impulse has been given to the sulyeret within the past few yents by several important investigations and reports from Philadelphia, ly (1)r. I). D. Stewart und others. Seventy-nine cases of poisoning were traced to lead chromate nsad ly a momber of bakers to eolor anke and to give a glaze to buns. These cases will be studied muler Symptomatolngy.

PATHOLOMY.

'The Frbquency witif when Lead is Found in the Tissues.Some of the carline chemists of this centary (Devergie and others) believal that lead was a regular ingredient of the tissues of mon and animals. 'This is not the mase, but, as has been pointed ont remotly by Gatiem, ${ }^{9}$ who gives a formidable list of the domestic somes of poisoning, there are so many was by which small quantities of land bay find entane into the borly that it is almost impossible to keep wholly clear of it, thongh, as a rule, no more is aborbed than is eliminaterl.

In the course of the past few yours, Dr. A. M. Comey and Dr. C. P. Worester, ${ }^{10}$ both of Harvard University, have amalyed, at my request, the urine of more than one hundred and fifty persons not presenting symptoms of lad poisoning, and living manly in the ucighborhood of Bostom, and have foned traces of load in about twenty-five per cent. of them. It is not, of course, asserted that these figures would apply to the communty as a whole, but any one attempting to control them should use a process as delicate as that followed in these esearches. In an appemdix to this article there will be found a deseription of the method of analysis formerly used, and also a paper by Dr. Worrester, pointing out crotain chances of erorr, and the means adopted by him, after long and careful study, to obviate them. The number of children represented in these analyses is as yet small, but it will hes increasel in further investigations.

One group of eases, the patients being a father, a mother, and three children, who were under the care of a colleagne of the writer, is especially interesting in this connection, as showing the importance of taking leard prisoning into consideration in ohscume cases, and as indicating the difference in susceptibility between different members of the same family. The water used by this family at their country honse, where they spent a considerable part of the year, ran for some distance through lead pipes, and was fonnd to contain a large quantity of lead. Repeated analyses showed that lead was present in considerable quantities in the wrine of two of the children, the father, and the mother, though, for some reason not easily to be explained, not in that of the third child. All these children were in fair health. One of them, however, had been very subject to sharp attacks of gastric indigestion, pain in the left side, and vomiting, preceded by sore throat, and also to constipation, which was worse during the attacks of indigestion. When the lead was found, smala doses of jodide of potassimm were given, but, as they seemed to precipitate the attacks above mentioned, they were, after a number of trials, discontinned by advice of her
physician, who believed her attacks to be due to imperfect power of digestion. A possible camse for this imperfect digestion was, obvionsly, the learl. The water was abandoned, and she beame, finally, perfeetly well, but she still has to be aurefint with her fiowl. Amother child, a sister, in whose urine, also, lend was fomend, is said to have had a few ntacks of indigestion and ocensional clay-rolored stools. A third child, a boy, who was thought to have dromk even mere of the water than his sisters, had no lead in his urine, according to two analyses, and presented no semptoms. The father and mother were preffectly well, though their urine contained a considerabluc amonnt of lead.

The above statisties, taken as a whole, would seem to indiate mot omly that lead is often fomd in small quautities, but also that it is usually harmless. When, however, it is remembered that out of a whole family exprosed to the same sonree of poisoning-drinking-water, for cxampleone may be severely poisoned and the rest not at all, that we are wholly withont knowledge of the gromuds for this great difference in susceptibility, and only imperfectly acquainted with the mamer in which lead acts, and that symptoms, or groups of symptoms, are oecasionally met with for whidh lead poisoning seems to be responsible, yet which difler widely from the classical types, it is fair to conclude that the wide-spread presence of this subtle proison is a real danger to the community and one calling for further investigation.

It is known that an outbrak of aente symptoms sometimes oceurs atter long exposure to minute doses, and without apparent cause. This is sometimes attributed to the fact that the organs which climinate the poison fail in their efficiency ; but another cause, met with among adults, is a coneurrent poisoning with aleohol, and perhaps other poisoms.

Absorption, Elimination, and Action on the Tissules.-Lead, whether in a metallie state or as a salt, may be rendered soluble and ahbsorbed by the fluids of the digestive and respiratory tracts. It may also penetrate the skin, when rubbed on in the form of ointment, as for cosmetie purposes, or applied in solution to abraded surfaces; and there is a tair amome of evtence to show that even when handed for long periods in metallic form it makes its way through the epidermis, perhaps after deromposition by the sweat, sufficiently to exert local action on the skin and its nerves. It remains stored up in the boly, mainly in the liver, but in the central nervons system and a large number of other organs as, well, sometimes more in one, sometimes more in another, this being probably in part dependent upon the period at which the examination is made and the charater of the exposure.

It readily combines with alhmminoid substances to form an albominate, but Marshall ${ }^{11}$ thinks it must le stored up in the tissues in some less soluble form than this, or it wouk be more rapidly climinated. Whether it is entively inert, except when eirculating with the blood or when in proeess of elimination, is a point which is in need of further study.

It is climinated mainly with the urine and the bile, but to some extent with other secretions and exeretions, including the milk, which may contain cmongh to be a sonme of danger to intants at the bremst.

The anatomical chr nges due to loul have as yet beolu stulied manty in cases of severe poisoming. It is not yet known whether they oxemr from prolonged ingestion of quantities too small to give rise to symptoms of pecomizable chatacter. There is, however, a fair amont of evidence that important serios of changes in one organ, as the kidney, may be set up and progress without corresponding lesions in other organs.

The general daracter of the danges which it produees in the body is well indicuted by the reent investigations of Cöens and D'Ajntolo. ${ }^{i 2}$ These experihenters find that there is sumedy morgan or a tissine that remains maflected. The motion of the had is first on the paremdeym of the organs involved, then on the blool-vessels; and it eventually lemels to new formation of comnetive tissme. Its action is very sowly progressive, and attacks the different structures in foci.

The changes in the liver-cells, and in the glands of the digestive tract, are describer as a grambar degencmation of the pootophasm. The nudei undergo a vesicular degeneration. The apparent atrophy of the liver-cells which had been described by Friedliander and others was not olserved. The changes in the kidney were, first, parenchymatoms degeneration, with glomerulitis and hyaline degencration of the vessels; finally, interstitial mephitis. The changes in the muscles were analogons to those describerl for the liver and kidney.

The able researches of Maier ${ }^{13}$ indicate that, besides many other organs, the eortex of the brain is liable to suffer from this process of selerotic degeneration.

Lead has been found by Ramondi" in the marrow of the long bones; and this is of special importance in view of the fact that lead poisoning gives rise to changes in the blood very similar to those met with in pernicons amemia. (Malasser, Gowers.) This anemia seems to moderlir the complex state known as cachexia, which forms one of the prominent symp-tom-groups of lead poisoning. Another canse of this state is impared digestion, the anatomical basis of which has been fruitfully studied, espe(ially by Maier (loc. cit.), who found parenchymatons changes in the mucous and submucons coats of the stomach and intestines, and selerotic degeneration of the submeneous and mesenteric ganglia.

Another impostant series of changes are those affecting the peripheral nerves. These are sometimes undistinguishable, exeept by their distribu-tion,-and not always in this way,-from the ordinary so-called "multiple neuritis," such as is due to alcohol, arsenic, and anemia, and many other causes, as well as to lead. It has been suggested that these ehanges may be secondary to an impairment of the trophic fumetions of the spinal cord. This is, however, as yet wholly unproved.

The experiments of Gombanlt ujon grimea-pigs point to the occurrence
of changes characteristic of lend, and firming what has heen called a "periaxillary nemitis," in which the medullary shath is ndfeeted more than tho axisedylinder, nud that, too, in a segmental mamer, relatively healtly priptions of norve intervening betweon the disensed partions. It is a signifionnt fact, thongh sue mut to be ntilized withont cartion, that the gninem-piges which showed this form of nemritis induead by chronie lead poisoning ware not paralyed. It is worthy of inguiry whether these changes in the myso line, if they neene in man nlso in anticipution of actaal paralysis, may not newont fion the fare that the electrical remetions of the meres of premons perisoned with head often suffer before any sigu of paralysis has made its appeamere. Amother explanation that suggests itself, however, fin this fant is that in such cases omly a portion of the fibres going to a certain musedr. may be destroyed; and this is more in hamony with the observation of Erl), contimed by Gowers, ${ }^{15}$ that proparalytie changes in the musiloractions (partial darencmation-renction) are sometimes met with. It is to tre remembered alser that, acerorling to Harmack's ${ }^{16}$ resemreles, the typical paralyses of lead are msually and primarily due to the direct action of the laad upon the museles.

Besides these newritie changes, there is rasen to believe that sulame processes oceasionally oecm in the spinal cord ; but it is probable that these are not the canse of the typical "extensor-paralysis," Int represent one of the later manifestations of serions poisoning (Schaltze).

A momber of eases have come to my knowledge pointing to the possibility that chronic lead poisoning may give rise to typical system selernom of the spinal cord. But many additional observations are needed befire this can be considered as certain.

Lead also alfects the untrition of the brain, both direetly, and indirectly through the bored and the borol-vessels. ${ }^{22}$

Another highly important series of changes are those which affect the kidney, the chameter of which has already been indicated.

Lead poisoning is held by most writers of the present day to be a cause of chronic nephritis (see above), and it is not impossible, considering the great frequency of this disense and the diffienlty of traeing it to any other origin, that long-continued exposure even to minute quantitics of lead may sometimes account for it. The anter forms of renal degeneration noted occasionally in experiments on animals (Ollivier and others) have not been much observed clinically, except that albuminuria is known to oceur as a temporary symptom.

Chronie interstitial nephritis is seareely met with in children, and we do not as yet positively know anything about the action of lead upon the:kiducys.

Among the most important of the olservations of the last few yeurs are those pointing to valvular diseases of the heart as sometimes directly traceable to lead. Duroziezs ${ }^{17}$ pointed out, in 1885, the frequeney of mitral disease among painters and other persons employed in lead, and

Stewart (hore cil.) devotes, some space to its disenssion, and reports two Clthers.

It is a remarkable fact that, it spite of the aemmulation of head in the liver, and the degreneration of the tiver-cells and inerense in the somertive tissure, chanise eirrhosis has not been tracel to this somree, in spite of the fiet that varioms other paisons (mularia, atcohol, phosphoms) are latieved (1) cause it. It should be said, however, that the etiology of hepatice cirrhosis is by no mems casy to make ont in every case.

In the firmgoing descriptions lad has bere spoken of as cansing more of less permment changes in the mutrition of the different tissmes and argans, but it should not be forgoten that it acts also, in all probubility, as a tomporary poison, without necessarily giving rise to gross tissme-change (Itarnakk), and it is perhaps in this way that the orcasiomal raporl onset and the almost equally rapid disappenmace of paralysis and other symptoms are to be explained.

SY゙MPTOMATOLOGY゙.

 have su often been serionsly poismed by exposme to small quantities of lad that their sonsitiveness to single doses of moderate size may be considered as greater than that of adults. On the other hand, it is noteworthy that the reports of certain of the epidemics, as they may be called, of drinking-water prisoning which have oceurred in England and elsewhere state that the proportion of chidren affected severely enongh to require medical 'ure was very small.

Thus, Dr. Brown, ${ }^{19}$ in reporting on the epidemic at Tredegar, expressly says that he saw no serions symptoms in any person under eighteen years of age, although he olserved fifty-two cases of well-marked poisoning, and two humbed cases with lead-line on the groms, in persons older than this. Ite does not say whether any children were seen with the lead-line. This seems in genemal to be rare, owing, no doubt, to the fact that the teeth of young chitdren marely collect tartar; but forty-two cases where this line was seen in children muler fifteen years of age are reported by Dr. Johm Brown ${ }^{20}$ ont of three homdred and three cases collected during the past year in an epilemie at Bacup. Five of these children were under five years of age; eighteen were between five and ten. The remaining cases are tabulated as follows, as regards the frequency of the lead-line:

$$
\begin{aligned}
& 10 \text { and onder } 15 \text { years of age . . . } 20 \mid 25 \text { and under } 50 \text { years of age . . } 144 \\
& 15 \text { " " 25 " " " . . . } 68 \mid 50 \text { yeurs and upward } 48
\end{aligned}
$$

Of thirty-eight persons belonging to the household of the royal family at Claremont, of whom thirteen were severely poisoned through the drink-ing-water, no children were attacked, though they were present to the number of eight.

If these facts really indicate a relatively slight liability on the part of
children to poisoning from mimte doses often repeaterd, it is a matter of great interest, possibly indieating a more active power of elimination on their part. Several eases of drinking-water poisoning in children are, howere, upon record, and the subjeet must be eensidered as reyuiring further sturle.

The Iameet for January, 1889, contains the report of a cise of patalysis of all fonr extremities from the froitfil some of the Sheffed drinkingwater in a girl of eight, and a similar case has heen reported by Seeligmuller.
'The history of the gromp of three ehildren eited under Pathology is interesting in this comertion. It will be noterl that in the wrine of two of the chidren lead was fomm in large quantities, while in that of the thind it was absent. Possibly this was due to the fact that this patient, being a boev, lised a more active life than the others, who were girls, and that the perspiation helperl to climinate the lead.
'There is a certain amome of evidence indieating that with children, ats well as with adults, previons exposure to poisoning ly lead in minute doses, ibsuflicient to canse definite symptoms, acts as a contributive ceunse for an outbreak of acote symptoms on firther expesime. The cases moported by Chapin (soe Table) were perhaps an instance of this. 'The final exposmer, leading to prolonged and serions sickness, consisted only in a few darse stay in a freshly-painted room; but this had been proceded by an exposime of two years to the small amomet of emanations arising from a pot of fres paint which was kept in a rown adjoining that in which the children mainly lived. It has fiequently heen motieed with regard to workers in lead that "w berome more susepptible atter one attack of prisoning.

Actra and Cheone Poboning. -There is momaterial differene in daracter between the symptoms of adote and those of chronie poisoning, exept for the fant that in the former ase ti lowal irritation of the fead compomads on the gastro-intestinal tract mas canse an important sericts of direet and indirect symptoms.

Socligmailler, in drawing up, the diflerential diagnosis between lead poisoning and arsenieal poisoning, suys that paral esis does not oerou from ante lead poisoning. This is certainly incorrect exoppt as a matter of degree, as several cases cited by Taylor, and the physiologieal experiments of Harmake, sufticionly indicate.

In the following description of symptens special aeference is had to mases of ehronie poisoning ; and thoos symptems are chiefly considered which are apt to ceror in children.

Gexmbal، Cachexta, with eathen he of the skin, icteroid diseoloration of the coujunctiva, loss of flesh and of appetite, ete., is, in a large proportion of the ceses of chronie poisoning of both adults and children, the first sign of lead pois nieg, and, combined with a variety of obsenve nervons symptoms and a moderate amonnt of indigestion, such as might easily be overlonked, may remain for a long period, or exen permanently, as its sole manifestation. An interesting gromp of enses of this sort has bern reported by Dr. Robertson. ${ }^{13}$ Twenty young girls, in in institution which
had borne the highest repatation for the eare and growd health of its inmates, beeme, one atter amother, languid, pale, and sidk in varions ways, and did not recoser until-atter one or two had been attacked with sereme molie and constipation-it was diseovered that they were in the hathit, white at play, of drinking the water fom at lead-lined eistern, ordinatily user for washing. Absolute prouf that these cases were due to leal pmisoning is mot furmishal, but the water comtaneal a lave amome of lead, and after momal from this exposire the patients reowered and mo new sases of illnesis oermred.

Ocensionally the emaciation and genemal failure of mutrition are of am extreme degree, get either without other signs of poisoning or ont of proprotion to them.

It is impossible to defme with acemaen the elimeed symptoms of lead carhexia in the very chonie cases which maveron from expreme to lead in miment doses. It has its somre in a varicte of disordered fimetions.
 is wolic. In spite of the oprian expressed hy Soltmam, that lead colic is rane in children, I find it frequently noted, and see no reasm to think that its ahsence is chamereristic. It was, however, absent in mosi of stewart's leaterehromate cases. It is also important to note that it most in many fasts be difthentt to distinguish lead colie from the intestinal colie to which children are so largely subiget. The colie in alults is nsmally most severe ahom the moblitiens, but oftom spreads over the whole abdomen. Comstipation, for whish diarthea is measionally substituter, is an impertant confirmatory semptom. The alxhemen is often retracted, hat this now not be the ease Vomiting frequentle orems, and the vomitns may le gellowish in eobor even when other salts of leal than the ehmomate are the eanse of the poisoning, thomgh oftener in the latter case. In remgel to the less detinite kimes of indigestion we have, as yot, no satistactory means of making the dhagnosis, hout it no other canse is discoverable, and if lead is fomed in the exeretions, it will be worth eonsideration whether it may not he aeting ats at least a contributive camse.

Numerons eases might be cited from among adults fo show the great bariety of symptoms of indigrestion for which lead is at heas partially
 ceally at night, was for some time the only sympom. Typhei sympoms finally appated, and mentally another pationt in the same homse likewian came down with paralysis. Blase line was present in both eases. In the Lanere for 1884, several eases are noted where the signs were thonght to print to eaneer of the stomath, and another where a distressing indigestion of years' duration, apparently due to leal, was the only semptom. Where the prisoming is due to chromate of lead and is aconte, the dejoetions and vomitns are esperially likely to be yellowish in color. Ledlowish vomitns is, however, common in poisoming from other salts of lead hesides the chromate, as 1)s. Stewart points out in connection with his cases. The chameter Vol. IV.-40
of the indigestion in a gromp of chiblen possilly prisoned by drinkiugwater, and in whose mine lead was fomad, is deseribed muder Patholagy:

It is canosely to be hoped that the chatatere of the indigestion in casts of chronie puisoning in chibhen will be carefilly stadied in the fiture. In the important gromp of lead-chromate cases reported by Stewart, annrexia, namsen, and vomiting were prominent, but the constitutional afliots of the lead may have heen complieated by the howal action of the chomitam, thongh in most of the eases the exposime had treen going on for some "ime. Of the seven eases dempibed, comstipation, met of a high deegree, at ment

Symogs Afremint the Nemods Sistem. Motor Symptoms, -The motor paralytic simpoms due to lead poisoning are, so far as we know, ahost wholly of peripheral origin. It is pessible that spinal diseme sometimes phays a part in their prokuction, as will lx. shown hater; and ocasomally, in the case of adalts, cerehal hemorthage and adema, on cerebal degenemation due diverty to kead, canse paralytie sympoms.

The prepheral paralyses may be divided, bondly, into (1) those where the loss of prower is a dired eonsequence of discase of the nerves comper sponding to the afferterl museles: (2) those where the loss of powore is the result of disease of the museles themselves (Gowers's "primary atrophy:" compare l'athology).

The finst of these gromps may again be divided into those where the distribution of the paralysis is of the usual type, -that is to say, where the extensors of the fingers and hands are the parts mainly affected, the supinator longns and the extemon assis metacarpi pollicis nsually eseaping, -and those where the symptoms suggest forms of genemazed nemitis sudn as are due to alcohol, arsenic, and many other poisons.

The "primary atrophy" (hitherto stadied only in adults) affects preeminently the small museles of the hamds, but often other groups as wedl. Its couse is chronie, and the prognosis less tivomble than in the nemritie or "degencrative" form.

The dineal analysis of these dillerent forms of poisoning might be carried much farther if space permitted. For an excellent acoment of them the roader is referred to Gowers's "Mamal of Discases of the Nerroms System." It is now generally recognized that the selective preference of lead for certain special nervo-musenlar groups is relative only, many newes and museles apparently unallected being really diseased ; and a mistake in diagoosis might easily be made by attaching too much importance to the presence or absence of extensor paralysis. Sometimes the shoulder-muscles are first or mainly affected.

It is a striking fict that whereas in adults the paralysis in the vast majority of eases affects the upper extremity, and especially the extensors of the hand, either alone, or far more than those of the foot, this appears not to be the ease with children. In every instance that the writer has found deseribed or has seen, the legs have been affeeted as mueh as the arms,
rinkingoluy. in calse e finture. art, :llue al diferts וromi:: me 'ine. . wl
mptoms. live at wi tal distacke later ; and undemin, in mis. hose whure ress compe ower is the atroply :"
: where the say, where alfeeted, the ly esemping, reuritis such
affects preMips as well. the neuritie gy might be bunt of them he Nervons referente of namy newes a mistake in tance to the Ider-munsides
in the vast he extensiors this appears - writer has as the arns,
or more, as in paralysis from aleohol and arsenic, the symptoms generally appuring first in them. The type of the pramasis. serems in other respects to be the same an in alults; that is to saly, the extensors ane affected more Han the flexors, as nexims in multiple nemitis of every origir except somptimes: in cases of arsemian poisoming, where the flexors may be aflected marly or quite as-much as the extensoms.

The details of the physical examination in the reported childron's casess are not sulliciently exat to colable nis to say whe the the partienk maseles which nsually escape in adnlts are matienterl in them or mot.

It would be premature to offer an explanation of this redatively greater tendener of land poisoning in children to affect the lower extremities, since the cases on which the ohservation is hased are still few in momber. It will, however, be an interesting matter for fiuther inguiry, and, if the whereation is confirmed, it may lead to comblasions of gemeral interest.

Ataxia of the extremities, which has been moted a lew times in adults, has not as yet hoem met with, to my knowleflge, in yomg children, exept in the form of chorea.

In adnlts, and also in certain amimals, paralysis of the larynx is oceasionally met with (Seifent and others), and this may oecme withont other symptoms of note. 1 am not awave that this symptom has been seen in childhood.

Sensory symptoms are met with, both of the type of those due to weritis and of the ereberal tepe (esperially hemamesthesia), and, furthermore, leneal anesthesia is occasionally doe to the direct action of lead upon the skin. No eases of either of these sorts have as yet been deseribed as oremring among childrem.

Symptoms affecting tho Visual Apparatus.- A number of cases in alults are on revorl where nemitis or atroply of the opte neme was ohserved, aud where the motion of the eyes was affected. I am not aware that any case of nouritis or atrophy has been reported as afferting a young child, althongh mexplained cases of nemitis are now and then met with which might i wasilly be of this origin. Dr. Miller, of New Orleans, has reported a very interesting case, of drinking-water origin, where double vision and amamosis, associated with serions and probonged paralysis, wenred in a "young lady," whose age is not given. I have myself seen and reported a case of partial paralysis of the ocolar museles of the same origin, associated with dizainess and ataxie symptoms involving the extremities, in a girl of fiftern. It is probable that this, like the corresponding cases of arsenical origin, is one of those instances where lead acts as a canse of generalized nemritis.

Encephalopathic Affections.-The four forms of cerebral symptomcomplex adopted by 'Tanquerel-the delirions, convulsive, eomatose, and mixed forms-have been essentially accepted by all later writers. The whole subject has recently been reviewed by Dr. A. Westphal, ${ }^{22}$ of Berlin, and a pathologi al classification offered, showing the various ways in which the brain may suffer injury. So fir as children are concerned, we have to
deal mainly widh the dimet toxie antion of the poisom, and with the ofliots of impaired mutrition. Among infants mud very romeng childsen the two deney to comsuisions as a result of acme lemp poisoning is, as might l_{c} expedert, greater than with adults. I find also a remord of two caste of

 symptoms. (Sowe Case 28 of 'Table.)
 two years from cating food served in a dish mande of an alloy combaning fifteen per cent. of leak. A large mmber of the chidrem in Dr. Stewart's series of had-chromate censes diad in comvolsions, and one of them has mild delirime.

One of the most partieal and importint questions comereted with this gromp of symptoms seems to be whether true "pilepsy of the nishal typu may originate in lead poisoming, meomened with ather symptoms sulficiontly maked to indicate the presence of the poison. (inwers gives the
 attacks originating in lead perisoming may comtinue for a long time atter the
 in this mamer may herome hahitnal.

I hase myself sern and reported a case which is were important in this momertion. It is that of a yomg woman of twentresesen, poismond hy drinking-water dawn thomgh twenty fere of leme pipe from a somk werl, the end of the pipe resting in the well. Here first symptoms comsisted in tailing health and serere pains in varions parts of the bondy, expereally the abdomen, the samse of which was not recognized. After a time she begran to have "fanting-spells," chanacterized by loss of consecionsuss of two or three minutes' duration, and preereded by slight dizainess. She suffievel also from diflise headaches am! from dizziness. After these sympons hand bere present for two sears or more, she had a violent cerchat attark, with prolonged loss of conseionsmess, comvolsioms, and amanrosis. 'This was followed by another attack, atter which came chanateristie lead palsy of the arms, and finally localizal atroghy, from whid she never entively recosered. The epileptie attarks did not, however, reome, so far as I know, ather the canse was removed and treatment instituted ; and this is certainly the usual experiener.
'The question arises whether, in such a case as this, if the chamacter of' the exposime had heon less severe, or if the patient had adedentady lerent removed trom exposure before the final witherak oecoured, the case might have progresem, by vithe of habituation, like one of ordinary mileply, and the real canse passed unsmepered.

In the epidemie at Tredegar, alrady eited, one case of temponary epilepsy associated with other signs of poisoning wats met with out of liftytwo cases of serious poisoning. Similar cases are reported by dedederf" and by Imman. ${ }^{23}$ Kronigg ${ }^{27}$ gives an analogons case, and a few others are on
the eflients "the tentmight twe a catses of 1, prewerclud aremeral II child of comaininuy r. Sterwart's ' them haill
al with this nsual type tomis sillitiis gives the lat cpile men atter the whestarting
rt:ant in this puisoned by : sman will, comsisted in Hecially the the slue began as of two or She sulliveryd mptome: haid : ttack, with This wats all palay of entively re:as I kinw, - is certainly
character of cuntally lyewn e case minght
ry cpilepsis,
temporay out of fiftyTedidesiderf ${ }^{\text {TS }}$ others are on
record. ${ }^{31}$ It has lwen stated that in the epileptie atancks dae to lead the loss
 frue, is not pathoramonic.

1 have seed there castes of chronie epilepsy where lead was found in the urime, hat, for the rasms stated under the head of Diagoosis, I do nut ronsider this at sulficiont indication of the in orgin.

I slanll mow mote, withont dwelling on them at length, a momber of symptoms of baver acemeroce which have tren mainly observed among adults, hat which might realily osear anomg children.

Hysterin.-A mmber of the Prembloters, following Chareot, brlieve that lead perisoning most combat at heast an exciting catuse of hysteria, haring the same rehation to it, for example, as tramatism, paychical inthroves, and the like; and that the hemianasilosia and some of the paralyses, apparently of erehat origin, which have lxeen deserihed in cases of lead prosoming, are indued in this way.

Insomnie has heren moted frequently in lead prisoming of adults, and sometimes forms an obstinate symptom and one diffient to trace to its origio, espreially as it is mot meressarily asseriated with marked signs of poisoning.

Neuralgic Pains.-It is well known that pain in varions parts of the lowly besides the alolomen is a common symptom in the early stages of lead poisoning. 'This pain is, in the great majority of casses, dall in chanater and prohahly monitic in origin. Now and then, however, cases are met with where the pain, insteal of being of this dall sort, is frankly nemalgie in charater and follows the distribution of the peripheral merves. This is important, as its origin might not be suspeeted.

Tremor is an important symptom, and one which sometimes ocenrs alone. It is esperially moticeable in the hands, and is, with adnlts at least, either fine or coarse in chatacter.

Chorea has oretsiomally been reported in cases of lead poisming both of adults and of childern. It is probable that its refation to lead is an indirect one, thongh Harmaek ohserved movements whinh he comsidered to be choreifarm in amimals poisoned experimentally with load.

Cumaneos Ampertoxs, -The skin of patients with chronic: lead poisoning is matly dry and harsh. Cases have beon moted, however, where distinet inflammatory alfertions of eqematoms chanater were present.

Febmar Conmmons.-Gowers motes the fiet that a fehrite state is oreasionally seen in had poisoming, esperially with the onset of acute nervons symptoms, and that this is esperially true of children. In Case 4 of the Table the temperature ram inf to $100^{\circ} \mathrm{F}$. at the paralysis of the extensors came on.

Rexal. Apfretons.-In the chronic poisoning of adnlts, remal changes phay, as is well known, an important part. Published records with regard to this proint in the ease of ehildren do not exist, and ohservations bearing on the subject are greatly meded. The renal changes hitherto considered charateristic as regards adnlts are those deseribed under Pathology as
leading to ceromice interstitial mphritis. 'This is a mere form of disemse in childron, althongh the first whages leading to this comdition might perhaps oseme in childluond.

Some of the emephaloputhise symptoms ohserver in nelults have here considered as indireedy doe to the renad and associated arierial changen.
 symptoms arre of' this origio. 'The same cemot be said, however, of the" greater momber of eorebal semptoms due to leal, mul this view is berme out he the fied that similar symptoms are observed in children and yomeg prevons. It shomid be said, to be simere, that the theory has beron advanered
 remal arteries withont gross strmetmal change; lme proof of this is wating.

Laso-laxe.-This is probably obsered less often in children than in adults. Newertheless forty-t wo such cases, where it was ohserverl daring ath cpidemice in Barep, ${ }^{20}$ are on reword. Here it was asseriated with a peral lian form of amise of the teeth. 'Two of the chithen were mader five yons of age. Separation of the gim from the tooth be tatar is less common in children than in adnlts, "eron where the mutrition of the terth is had, and it is probably to this fact that the usalal absence in them of the bue line is due.

DIMENOMA.

For the details of the diagnosis of aente lead poisoning the reader is refered to special works on toxicologer. In genemal, it may be said that the pathological conditions do not differ mudh from those of chronie poisening, exerpt that the resilts of irvitation of the digestive thact are offon superaded, aud that, partly as a consergenee of this irritation, and partly from the toxie action of the lead, the cerebral symptoms and general prostration are liable to be prominent and serions. It sometimes happens that aente cerchal symptoms eome on suddenle in the eomre of chronic poisoning.

The possibility that epileptiform attacks due to lead may precole by a long time other well-marked signs of poisoning should be borne in mind.

The commonest sequence of symptoms in cases of chronic leed poisoung is, first, a gencoal langoor, with a certain degree of amemia and debility; then, constipation (or diarrhea) and eolie, and the dull musenar "arthaigie" pains ; later, the typieal wrist-drop or other form of paralysis.

The encephatopathie symptoms, the primary myopathies, and the signs of subarote myditis commonly belong to a velatively late period and imply advancel degrees of satmation. In bad cases, like those of the two children deseribed by Chapin (Table, Nos. 15 and 16), uleeration of the gums and caries or loosening of the teeth may make their apparance after a time. Last of all, the chronie selerotic affections, of which interstitial nephritis, arteritis, and valvolitis are the best known to us, appar, and may progress entirely independently of the continuance or non-continuance of the exposure. It is possible that some of the nemroses also-the pserchoses, hysteria, nemasthenia, epilejsy, ete.-to which the prisoning occision- changres. 1 urnmix re of ther is lowne il young advanewd III of the wamting. al hau in al during ha five sems commen h is liaul, ft the blue
reader is said Hat vie poisimare oficu mad partly Heral prome peens that poisoniug. mexde ly a itis minul.
pmisoning
delvility;
"arthral-
is.
the signs
and imply two chilthe gunts ce after a interstitial , and may mance of e paschlo-oceasion-
 bremse of the establishment of' a monhid habit, of throngh the persistence of chronie changes of the nervons centres, or gememb ingairment of the motrition. 'The "bhe lime" may tre present thronghont, but is not meesessarily accompanied by motiecable symptoms of poisoning.
'The "typical" serperece! is sulyeet to striking and manifold variations. Almost any one of the symptoms may appar out of place, or may domimate the secone for a lomger or shorter time; and this is trme of childrem as well ats of adnlts.

A greater or loss degree of cmolexia is almost invariably present, but mamy adnlt geses are on reoord where this sign was mot present in my matiked degree, the wrist-drop, the cerednal symptoms, or some other of the bater signs apparing almast withont warning, Λ momber of the childrom with lead-chromate poisoming reported upon hy Dr. Stewart showed comvolsions and delirimm * very sum after the first symptome of interication.

Digestive Disenders.-Typial constipation and colie: may be highly Chameristice (see Sympomatology), and il obstimate and protraded shombl ahays exeite suspieion. It is dombent whether any deserpiption of the obseurer forms of indigestion can at present be given that wonk not tem as murde to mislead as to aid the physivian, and often the only safe comerse is to sumbly for ofher signs. It is certain that the onthreaks of indigestion may
 instend of constipation.

If lacel is fomm in the urine by a comperent chemist, it is a comfirmatory sign of great value; but it should be remombered that, with adntes at least, the presene of traces of lead in the tissues is not inempatible with health. 'The" "blue line" is oftener absent with children than with adults.

Paralytic Affections.—Wrist-drop, so far as our present evidence goes, is not to le expected in chidren so often as in adults as an isolated symptom; and, comversely, paralysis of the extensors of the fee appars to be relatively more common in them. In this respect the cases of leat-paralysis in children simulate those of multiple neuritis, as from arsenie and other causes, and the diagnosis would have to depend on other sigus and on the clinical history.

Cases of lead proisoning with wide-spread mosenlar atrophy have been mistaken for acute polionyelitis, and for progressive muscular atrophy, and rice ecrsa. The former doubt is the only one of importance as regards children, and it would ravely, if ever, happen that a carefinl investigation

[^255] the mentrition, the goms, and the distribution of the paralysis, would bial to reveal the trme sata of the case. In asse of dombe, the mine shombla amalyoct.
prominosin.
'The prognosis in a ase of lend poisoming is nsumbly faity gomel, pro-

 botion which have a tombency to spontancons progression. 'I'hese provisos are, howerer, of much importance. A guaded prognosis should be given at the outsed of all attack of adote sympoms, whether these have onemper in the comse of chronic perisoming of as the result of a single severe expmate. Pablysis of the memitie type is nsually weovered from, bat the "primary musembia atrophe" is more often permanem, and it is mot alwass casy to suly, at first, with which comdition we have to deal.

When the genemal mutrition has suffered derply, absohnte revovery (amment be combent on, thongh the pationt is likely to improve sery murh. 'The prognosis is probally much better for children than tim adults, but in Cas 18 of the 'Table the stremgth of the limber was not perfeet at the emel of two vens. 'The prognosis of the comonlsive attacks is eomsidered under Sympor tomatology.

THEATMENTV.
The tratment of an attak of acnte poisoning is govemed by the masal toxicologisad rules conecruing the remosal of the puison and the protedion of the muens membane from intative action. There is monerial antidote. For finther details the reater is refered to toxiodogical works.

In the treatment of ar chonic case the most important indication is the removal of the peison from the tissues. The most eflicient clmanating organ is the kidney, amb, sine it is known that the tissues gradnally, thongh bereshery, free themselves, as a role, from the peisom, and that its presene may firpuently bemonstrated in the mine, exen when no sureal moms haw beon taken to promote its elimination, it is remsomble to heliexe that this, like all other poisons given off in the same maner, is diminated more mpidly if means atre ned which promote dimesis.

The iodides and bromides appear to increase the dimination of lead esen more than ean be acomoted for by their dimetie propertics. This is so mankedly the case that it is aften neressary to be eantions in giving iondide of potasinm, lest the lead shond be hrown into the cirenation in latge amomens and thes exhibit its poisonoms antion with increased violcomes. The action of iodide of potassim in promoting the climination of head is not, however, a miforms one. Experiments of Ponchet ${ }^{28}$ and of Swete ${ }^{20}$ have shown that a very mpid elimination takes phace shortly after the drug is first administered, lat that the amoment steadily falls, to increase again if the remedy is smspended for a time and then renewed.
 as the paralyse are comerned. In the treament of paralysis the ase of strydmine in increasing dosess, carvind, if mexessary, to the limit of tolerallies, is thenght to he of grat value.

Wee hawe also at our command, in the differnt forms of dedricity, massang, loeal exercises, and hedropathie mpheations, means for materially inproving the mutritive canditions in the maseles and prophoral merves.
 devisay to raise the gememb tone of the motrition, but it is not nexessary to sperify these methends in detail.
'The use of' sulphor hathe as a memes af elimination has been partically abmumed. Whare the skin contains lewd, a sulphide will somethmes be finmed on the surfare, mul the applimations have, therefore, a diagomstic value; hat the ammat ol lead got ride of in this way is mitupertant.

REFERENOES

2. Ibid., p. Alat.
4. Ibid., p. 415.

 de Biol., laris, 187: vel. iv. p. 213.

8. Swam, British Malienl Ionrul, 188:, val. i. p. 358.
!. Guntier, "itud in Lamet, 1881, vol. ii. p. 88.I. "
10. I. I. Putman, Hustun Madion mut Suggical Jommal, July 28 mad Angust 4, 1887, Octolur 1,1888 and November 28, $188: 1$.
11. Mashall, Thermputic Gartte, I88k, vol, ii.

13. R. Maier, Virchow's Amhis, vol. xe. p. 155.

15. Gowers, Wisuses of tho Nervorias System, p. 1261 .

17. Durozi"\%, L'Union Midienh, Hecember 15, 1885; see also NeCrondy, Now York Medial (inzott1, 1870, 1. 185.
15. Rohertson, Lancet, 1851, wol i. p. 202.

1: Brown, Practitioner, 1884, vol. xxxiii. p. 390.
20. Brown, Santary Record, vol. xs.
21. Tun\%elman, Landon Medient 'Times and Gazatte, 1873, vol. ii. p. 352.
22. A. Westphat, Archiv fir Pxyhiatri", "te, 18i4, vol, xix. p. 776.
23. Kerseh, Mrmorabilien, 1872, vol. i. p. 818.
21. (Bailhurd, houm. do Mid., 1877, val. S1viii. p. 250.
25. Leidesdor", Alkg. Wirn. Med. Zeitung, 187:, p. 591.
24. Imman, Liverpool Medico-Chirurgical Jourmal, 1857, vol. i. p. 29.
27. Ǩronig, Charití Annalen, 1884.
24. Porehnet, Arehives de Physiologie Norm, et Path., 1880, p. 74.

2:. Swete, British Medienl Joumal, 1882,]. 1034.
30. Handhueh fïr Kinderkrankheiten, vol, i. p. 313.
31. Lancet, 1868 , vol. ii. 1. 216 .
APPENDIX A.
Chromate of lead cases.

Reference.	Stex, Age.	Expostre.	Symproms.	Resclit.	Remaris
1. Leopold, Vierteljahresschrift für gerichtliche Medicin und öffentliche Sanitátswesen, Band xvi. S. 29.	9 weeks.	Dust from eloth colored with chrome yellow, the parents being weavers and working in the room where the child lived.	After three weeks' exposure the following signs appeared: fever, restlessness, several yellow fluid stools daily, redness of skin over chest und abdomen, parched lips, and, just before death, short respiration.	Death six or eight days after first symptoms.	Autopey revealed marked signs of corrusive action in the stumach; 3.6 min. of lead chromate were found in the lungs, none elsewhere symptoms probally were largely retlex.
2 and 3. Van Linstow, ihid., Band xxi. 60 .	$\begin{gathered} \text { Male, } 1_{4}^{3} \\ \text { years } \\ \text { and } 3! \\ \text { years. } \end{gathered}$	Both children ate several small oljects made of gum tragacanth colored with lead clıromate.	Vomiting, thins, prostration, fever, congestion of skin of aldomen and breast ; collapse; no diarrhea or pain: in the cave of the younger child diarrheat and convulsions.	Death of the younger child in fortyeight hours; of the older in five days.	Marked signs of local irritation of gastro-intestinal tract ; congestion of various organs; beginning fatty degeneration of liver. Symptoms probably mainly reflex, or due to decompreition of the lead chromate within the body. (W. B. Hills.) (Lac. cit.)
4. D. D. Stewart, Phila. Medical News, June 18, 1887.	$\begin{gathered} \text { Girl, } \quad 5 \frac{1}{4} \\ \text { years. } \end{gathered}$	Had eaten regularly and largely of buns the glazing on cach of which eontained about seven grains of chromate of lead.	Anorexia, nausea, and vomiting. After three days, violent general convulsions, followed in the conrse of eight hours by thirty-four more.	Death.	

This and the following
four casts were in the
same family.

Vomiting of greenish-y cllow fluid, biliary in character; convulsions, which ocecurred at intervals for twelve bours.	Death.
Breath offensive, tongue furred, epileptiform attack, followed the next day by a series of convulsions occurring at short intervals.	Death after twentyeight hours.
Listlessness and languor for several days, then nausea, vomiting, and headache, followed by two severe and general convulsions, -later by a larger number. Temperature never higher than $10212{ }^{2} \mathrm{~F}$.	Death fortytwo hours after first attack.
Failing health and streagth for speral months; headaehe, general pains. nausea, and vomiting. Skin pale, with yellowish tint Slight colicky pains; constipation; finally mild deliriuus; blue iine on a part of one gum.	Recovery.
As in last case.	Recovery.

5. D. D. Stewart, ibid.	$\begin{gathered} \text { Girl, }{ }^{31} \\ \text { years. } \end{gathered}$	As above.
6. D. D. Stewart, ibid.	$\begin{gathered} \text { Bor, } 7 \frac{1}{2} \\ \text { years. } \end{gathered}$	As above.
7. D. D. Stewart, ibid.	$\begin{gathered} \text { Girl, } 12 \\ \text { years. } \end{gathered}$	As above.
8. D. D. Stewart, ibid.	$\begin{gathered} \text { Girl, } 13_{3}^{3} \\ \text { years. } \end{gathered}$	As above.
9. D. D. Stewart, ibid.	$\begin{gathered} \text { Boy, } \\ \text { years. } \end{gathered} 9$	As above.

\qquad

Phila. Medical	years.	largely of buns the glazing on each of
News, June 18,1887.		Which contained alout
		ven grains of elaro
		mate of lead.

infants.

Referesce.	Sex, Age.	Expostre	sispetoss.	Restit.	Rexares.
$\begin{aligned} & \text { 10. Bouchut, Gaz. } \\ & \text { des Hôp., } \\ & \text { vol. i. } \end{aligned}$	8 days.	"Eau de Delacour" on nipples of nurse: child nursed for a few days.	Colic, constipation, pain on pressure on abdomen; prostration.	Death after twelve days.	
11. Cited by Anst, Arch. für Kinderheilkunde, 1886, vili. ${ }^{\text {(Dent. Chem }}$ Zeitschr., 1886, vols. i. and ii.).	Infant.	Cormetics in large quantity on face of nurse.	Severe colic, great debility ; skin of bluish color.	Recosery.	
12. Lōwy, Wiener Med. Presse, 1883, p. 1542.	5 weeks.	Nurse prisoned by cosmetics on face.	Colic, persistent crying ; livid appearance.	Recovery.	
13. Löwy, ibid.	5 weeks.	Goularl's water on breat of nurse.	Colic.	Reenvery.	
14. Lōwy, ibid.		Lead attachment to stopper of nuring-iottle.	Colic.	Recovery.	

(IILLIAFN AND ADOLES('FNTS

Reference.	SEX, AGE	Expostre.	Simptoms.	Restlit.	P-MARES.
15. Chapin, New York Medieal Record, 1884, vol. v. p. 17.	5 years.	A pot of white lead and turpentine was kept during two years ill rewm adjoining that in	Pain in abdomen, which intermitted. worse at night, lasting four weeks; then pain in leors, with weakness; finally almost complete paralysis of less. Improvement after a few days;	At last report, partial recuvery	
16. Chapin, ibid. (brother of last patient). 17. Chapin, ibid.	7 years.	lived ; finally the rom in which they lived was freshly painted and they were expused to the emanations for eight days before symptoms begran.	and increase of paralysis of lears, followed again by improvement; the extensors weak. After thiree months, symptoms worse again, and blue line in case of oldest. not of youngest, child. Gums lecame sott. spongs, and ulcerated: teeth greatly loosened : condition at end of a year even worse than described. Lead in urine.	steady improvement.	-
18. Reeords of Children's Hospital, Boston, July, 1886.	$\begin{gathered} \text { Girl, } \quad 6 \\ \text { years. } \end{gathered}$	Interior of house painted throughout. Five e:l-nary-birds died shortly afterwards.	Almost immediately after this, vomiting, which continued intermittently for two werks; weaknese of legs, toe-drop, waddling grait, coming on atter vomiting. About a month later, waknes of fingers and wris: iseizl: extensor muscles most affected in both arms and lears; knee-jerk absent. Faradic naction of left tibialis anticus much diminished, and contraction feeble; nu marked inerease of galvanic irritability; still sone weakness at the end of a year. Re-examined two years later: no paralysis, but legs easily fatigued.	-	Six months after painting of the hotree and sicknese of this child, an wlder child was attacked with acuite nephritis and died. Some wallpaperubtained recently, and whichat that perioud covered the walls, is found to be arsenical. The patient poisuned br lead had been somewhat rachitic, and had sutfered much from prutracted attacks of vomiting. When four years old she had a convulsion.

CHILDREN AND ADOLESCENTS.-Continued.

Rfference.	Sex, Age.	Exposure.	Symptoms.	Result.	Remarks.
19. Miller, New Orleans Med. and Surg. Jour., 1873-74, i. 198.	4 years.	Drinking-water.	"Paralytic state."	Death after four months.	Both of these cases were in one family. Three
20. Miller, 1 ? ${ }^{\text {d }}$	3 years.	Drinking-water.	Much impairment of general nutrition.	Death after eight years, in spite of removal from exposure.	other children in the same family were nct affected. Many of the symptoms in the last case came on after removal from exposure.
21.	Young lady.	Drinking-water.	Surious impairment of general nutrition ; diplopia; "paralysis" complete for three years.	Recovery.	
22. Letheby, Pharm. Jour., Dec. 1845; cited by Taylor, On Poisons, 3d ed., p. 409.	6 years.	Took lead acetate, gr. İ, two or three times a day, for nine weeks, in a quack medicine.	Loss of flesh; colic ; constipation; black and offensive stools; paralysis of limbs; convulsions; comu.	Death two days after reasing to take the medi ine.	
23. L'Union Med 1857. (Cited in Bull. Gén. de Thérap., vol. lii. p. 381. Author not given.)	Boy, 12 years.	Drank habitually of cider containing ahout 0.25 of lead in each 1000 .	For two weeks loss of appetite, had tuste in mouth, constipation, violent pain at epigastrium, eventually spreading to the whole abdomen, retrattion of belly, coated tongue, blue line. No vomiting or pains qbout joints; no paralysis.	Recor ery.	The father and mother of these children had
24,25 , and 26. Ibid.	Three other children, from 4 to 14 years ild.	As above. Less degree of exposure.	Colic and constipation.	Recovery.	both been severely poisoned in the same manner.

		范	
昜			
		Drinking-water.	
			淢
4	¢	¢	$\stackrel{\circ}{\circ}$

APPENDIN B.

I.

The metheal used by Dr. A. M. Comey, and nsmally employed in the Medieal Departwent af Harvard University, for the detection of lame in the urime, is as bollows:
'The mine is tirst exaporated to dyymes, then finsed in a comeihle, with the addition of a little pure nitre, till it levomes white. 'The ermeibla is then cooled, and dilate IIC I added, how, to extract the residue attere iguition. It is then tiltered, and the iftrate treated with ammonia to alkaline reation, to precepitate the phesphates and irom. Sulphicle of ammonimo is aldent at the same time, which throws down the sulphide of irom and lead. 'This is washed thre times ber deamation with hot water, then water is addend, and the whole is aceidified with $I I(1$, and allowed to stame matil the next dity. It is then tilterem theongh a small filter and the residme washed. 1 lighe pure (froe fiom iron) nitric acid is: then added, dop by drop, by when the
 lend. This is collenterl in a watch-ghass, craporaterl to dryases, and the fimal tost made by the addition of a drop of water and a erystal of iondide of phtasiom. Finally, to diminate bismuth, the iodide of lead is apan dissolved in hot water, filtered, and meprempitated in a perfectly elean toxtube with dilate sulphumade ad. The test-tube is allowed to stand fwemefour homs, and is then twirlad enently letwen the fingers. The sulphate of head, if present, rises in a deliente spiant.

II.

NOTE ON THE DETE("TON OF LEAD IN URINE,

Having had measion to examian fin De. I. .I. Putnam a large momber of speximens of mine for head, I modertonk some experiments to salisty
 amalysis. These experiments have resulted in some slight motilications which others perhaps may time asefth.

Of the sarions metheds friod, induding the dectrolytio process and that depending יpon the solubility of the sulphate of lead in some of the anmonial salts, the one giving me much the best results was as follows:

The mine is mpidly exaporated ower a fire thame in a casserole with a large exese of nitrio acid. After ignition, it is re-ignited with more nitrix ...id until the residne is perfectly white; this is taken up with a few drops f^{\prime} strong hydrochloric acid and the least possible quantity of hot distilled
water, and the resulting smmewhet torbid swhenton is transferred to a small flisk, and thensmphide of ammonimm is alderl in exeess, and the prevepitate, which forms a thin, pusty mass, is weli shaken. 'The degeet of kenping the sulntion of the ignited residne so cemeentated is to insure the preesipitation of the lead ata sulphide in masses large emomgh to be caught by a filter, for alhomagh sohtutions of lend salts of a dilution of one part in linty thonsand are readily darkemed ly the aldition of sulphitle if ammenimen or of sulpheredted hydrogen, get the elosest filter will fitil to semate the sulphide of lowl exen ather long leating and standing, Solitions of somewhat
 by filtering. It will be seen, therefore, that if the amome of mine taken (nsually one quart) imblains one milligramme of lead (at lage amome to be fomed in that quantity of mime), all may la lost by making up the sodn© it this puint to forly rubice antimetres.

If the prempitate at this peont is very bulky, it is washed by denmation, bout if not tow hensy, it is at once thrown on a filter and washed one or twier with hat water. It is then treated with abld dilute hydrochlorios arial of a strength wi we pat of the ordinary emeentrated acied in fifty of wather. 'Ilhis, of' conses, may be dome either in the thask on on the filter, but washing on the filter with both he water and the dilute acid has given me
 the realily soluble eloments of the preepitate are dissolved by the dilate ard, the remaining precipitate, of which the sulphide of lead forms a part, is thown wn atiler, if mot alrody there. If, as somedmes happras, the prempitate contanins an apmeriable amome of sulphate: of calcimm, it is washed with hot water contathing a little sulphide of ammonimer. Pianally, a fiw rolbe centimetres of hot dilute hydrochloric acid (eybal patts of conremtrated acid and water) are pared through the filter, collected in a watchghass, and evapumated to doyness.

The residue on the wateh-ghass is taken up with a few drops of warm wather and passed throngh a small filter onc-half inch in diameter into a
 ghass tubing is gromud flat at ome cond, and this surface is wamed and tomblud with a mixture of solid paralfin, beeswax, and rosin, and applied to the wentre of a miemsope cover-glass. When cond, the cover-glats makes for this litale jar a lirm base which can be easily removed at pleasure. To the solution tiltured from the wateh-glass into this cell is added a drop of sulphurie acid. After several homs the resinting sulphate of lead will have settled on the cover-glass lootom as a thin adherent gray film. 'The supermatant liguid is withdrawn from the cell by means of a little moll of filter-pripere, and the eover glass is then detached. A drop of water is phaced unon it and removed with filter-paper in order to wash off any traces of iron which the sohution here often contains, and then a drop or two of sulphuretterl hydrogen solution is addel. Then when the cover-glass rests nom white paper, the least possible trace of leal can readily be recognized Vol. IV.-41
by the dark stain cansed lyy the addition of the sulphuretted hydrogen. This finad reaction with sulphuretted hydrogen proves much more reliahle than that with the iodide of potasimm, on aceomen of the frequemey with whids taces of iron are fomd at the very end of the amalysis as ordimuly conducted, having ohstinately resisted complete elimination by treatmest with dilute hydrochloric acid, and the iodide of iron hats mod the same eppeatane as traces of iorlide of hed. The final applieation of sulphureter haydrogen proves also of importance in distinguishing a very slight depmesit of sulphate of lead from other matters not lead, which not infrepuently are deposited on the bottom of the cell as a taint whitish film.

By the forvging method a seventh of a milligramme of lead proves not dillient to detect in a quart of normal urine.

MYELITTIS, SPINAL MENINGITIS, AND HEMORRHAGE INTO THE SPINAL CORD OR MEMBRANES.

by mary putnam Jacobi, m.d.

Thousin anatomically distinet, these three affections are clinicully closely associated, and may therefore be suitably discossed torgether.

Myelitis, as here moderstoon, doos not embrace all the inflammations of the spinal cord observed in childhond, but only a certain protion of the diffinsed on interstitial dass, Ben fiom this are exdmold multiple solerosis, syphilitie lesions, and epidemic corbor-spinal meningo-myelitis. These are traterl in separate sections of this work, as are also all the systematie dis-
 ullary discense in ehildhood; primary lateral siderosis, and that, infinitely more freynent, which follows upon cerehal lesions; locomotor ataxia, which is almost monown in childhoorl ; ${ }^{2}$ together with the combined form of prostrior and lateral selerosis known as hereditary ataxia or Friedreich's disense, and of whid about sixty-five casw have, so far, been deseribed. ${ }^{3}$ Among the forms of meningitis, again, the inflammation of the dura mater, known as hypertrophic pachymeningitis, also receives special consideration in another part of this Cyelopedia.

Thus there remain for disenssion in this article acute and chronie transverse myolitis; compression myelitis; adente diffose myelitis; tuberenar meningitis; simple meningitis, anote and dronic ; primary hamatomyelia or hamatorthachis; secondary hematomyelia or hematorthachis; and, finally, hemorrhage into the cord or its membranes by extension from hemorthage of the brain.

The foregoing, like all systems of classification, corresponds to the mental analysis by means of which certatingroups of symptoms and lesions have gradually become isolated from one another ; but it does not immediately serve to guide the climician who is confronted with actual cases of discase. The problem then resolves itself into three stages: 1st, decision

[^256]that disarase of the spinal eord or its membanes exists; 2d, exchasion of the systematie diseases of the cond, or of the sperial diffise forms which have beron above mentioned (moltiple selerosis, cerebro-spinal meningitis) ; id, distinetion between myelitis, meningitis, and int maspinal lomerrhage.

There are, hewever, mo hard-mud-fist lines in mature, and the bombarios between the different firms of spinal-cord disatas are far from inediadedble. Solerosis of the lateral columns, whase combination with posterior selemsis constitues the anatomical perentiarity of Friedreich's disense, is imminent in overy cise of ehronic: transverse myelitis. It is then attended bey all the spastie sym, oms which dhaterize primary or cemebal dese sis. 'The same tanswerse myelitis, and esperially that lom of it which is due to compression, adso determines an aseemding or systematic degronea-
 and canses ataxia. It has been remolly show that the morhid proesse in ande infintile paralysis is far more diffised than wats at one time sinpused. The hesion is mot precisely limited to the anterior coma now to the ganglionice wdts in them, nor to the sagment of the cord corresponding to the musedes finally paralyered. But there is an interstitial inllammation of the corma acompanying and perhaps determining the comepingons lasion of the cells, and this dilfinses to a greater or less extent throughont the comd, and may cem invade the pesterine horms and ront zones.' 'This most typical systematie discone, therefore, grates hy impereppible degrees into the
 different. Again, the syringo-myelia, whidh hitherto has beom mandly bonsidered as a lesion apart, and even as the resiolt of a disintegrating glioma, ${ }^{2}$ has been deseribud by Joffroy as a periependymatous myeditis, for which he proposes the sperial name of "myclite caviaite"." The gromp of disemes which we are here comsidering is ronghly distinguished from all the others mentioned, except cerobro-spinal fexer, ly one important pactial dirmu-stance,-they are all immediately dangerons to life. 'The danger in the systematio diseases of the cord is, on the other hamd, quite remote. Whem, therefore, a chided is seized with ferer, compolsions, and paralysis, and brain-disense hats been exduded, it is of the greatest interest to dentmine whether the spinateord disense is about to prove an anterior pritinmyolitis, with its faromble prognosis, or a commor myditis or meningitis, with its much more serions ontlook.

COMPRESSION MENINGO-MVELITIS.

The genemal picture of mon-systematio or diffise disetse of the :pinal cord in children may be dhained from that lorm of it which is in them the

[^257]If 1 lu have ；湖， dariow品路。 Lerusis nent in ill thu siderro－ hich is villera－ ot \％\％ usis in
 g．ungi－ ；11）the of the sion of re roul， st t！！in－ iutu the atilly sun illy con－ grlimina，${ }^{2}$ which he disumem co whers circmin－ the sys When， sis，：mul 6）dutir－ II ${ }^{10}$ milin－ mingilis，
spinal hemen the
most frequent，－mancly，the eompression meninge－myeditis cansed by caries of the spine，or I＇ott＇s diseates．＇

In the first mase we shall funter，symptoms of myelitis prevereded the

 month：later，suldon lows of power in lowh logs，and in the right band，then，after a fiow
 rent，and those of the arms showed an iarerased excitability to the galvanie current．Sen－ sution intact．The right pupil was lagger．Drofise swenting ；weasional incontineme of

 move right，arm，then walk，and by six months sombld rumbent the warl．＂
 sondinsis，cured in twelve wedes，the deformity remaining，by extension of the spimal eolumn and daily gnlvanism．${ }^{3}$
 motur pewer of legs diminished，whil there was complofe paralysis．On admission，para－ pheria perwisted，with loss of tactilo sensations in legs，mad ambigesia ms high as the thime

 nime months ability to move toes，rigidity disapporard，und badder was controllen．In sixtern monthe pationt comblalk wath the aid of a chair．${ }^{4}$
 after a tall．Power ower logs and badder inpaired for thore werks．Combter－iritation
 pheqia redurned．Recovery at emd of nine months；fresh whase after pummonia；limal rawery．

 symptoms set in，and child diod under symptoms of incronsed hrain－pressure．Ventrieles

 on cord had out impared ita fanctions，lat had apmently ocensiondan irritution resulting in the ventricalar rilusion．${ }^{6}$

（Gse VII．－（iill aged twolve．Curies of spine．Under treatonent by tonies and the
${ }^{1}$ Whatron sinkler，out of one bundred and forty caves of patalysis among chiddren obereved during a period of four yemrs，had five eases of spimal moningitis and three of myelitis．Two of the former and all of the latter depended on caries of the spine． American Jourmal of the Merliend Seienees，April，187．5．
${ }^{2}$ Gowers，Medical Times and Gazette，November，1876，p． 517.
${ }^{3}$ Soltmann，Neurologisches Centralblutt， 1882.
－Glynn，British Medieal Journal，September 22， 1883.
${ }^{8}$ Fiaure，Lanert，A pril 6， 1861.
${ }^{6}$ Brodie，Injuries ts the Spinal Cord，Medico－Chirurgical Transactions， 1837.
leather conse. During course of treatment had an attack of pain in tho sealp und buck, which extended to ribs, acempunied by pasmes in the legs. Alber a week, the puin was relieved, but there remaned stifluess of the legs and entire truak. Numbers ocenreod, and was followed by loss of sensation, and eomplete paraplegia, though with iatact sphinctes. The patient recovered in aboat six months. ${ }^{1}$

Case VIII.-Child two years ohd, with saries and selerosis, without angular curvaturo, of third, form, and ifth dorsal vertebres. Paralysis and atrophy of both lower cxame ities. Dealla. At untopy tumor foumb, consisting of a sate tilled with cheery contents and pus, extendiag from fourth dorsal to tiost lambar vertebra. The dara mater distombed
 thickened, leathery, and eontaining osseous plates. Cord guite noman. ${ }^{2}$

The liability to compression myelitis varies with the seat of the caries, In the lumbar region, according to some statistics, it is rare: Bonvier found only five paraplegias ont of thirty-cight cates of lumbar caries; ${ }^{3}$ Coulroy de Lauréal, only one paraplegia out of fifty-nine similar cases, ${ }^{4}$ Among fifty-six cases of dorsal caries, on the contrary, Botwier observed thintyeight cases of paraplegia, and Condroy nineteen cases ont of seventy-seven in the same loculity. The special predominane of medullary aceidents with dorsal earies is attributed to the narrowness of the spinal canal in the dorsal region, which renders the cord more exposed to compression, and less able to slip ont of reach. The upper dorsal region of the spine is the most liable to aggravated forms of carions disense, the most liable to severe deformity, and the nost liable to abseess with accummlations of puss that fail to become liberated from the spinal camal. It is, finally, the most diffienlt to treat by immobilizing apparatus. For all these reasons, it is easy to understand why earaplegia shon'i ocenr more frequently with Pott's disease in the upper dorsal region of the spine than with curies of any other locality.

Compression may, by exception, be suddenly produced, if the body of a carions vertebat break down suddeuly, so that fragments of bone are disloeated backward and impinge upon the cord. The aredent, though oceurring in the course of a chronic disease, then, in its effect on the functions of the cord, precisely resembles trammatic fracture. In the cervical region, sudden death may result if the odontoid ligament, softened by tuberenkens infiltration, give way, and allow the odontoid process to be driven against the cord, -so sensitive in this region, from its proximity to the respiratery centres and to the origin of the phrenie nerve. In the dorsal and lumbar regions a similar impact of bone may be followed by paraplegia so sudden and so complete as to resemble the effect of intraspiabl hemorthage,-and, indeed, to suggest this, unless the diagnosis has heen plainly indieated ly. the previons existence of an angular curvature or by the sudden development of one coincidently with the paraplegia.

[^258]In the great majority of cases, however, even when the lumen of the camal has been suddenly diminishad by the collapse of a vertehta, ihe cord slips behind the projecting lone, and thas essapes compression from lmone.'

Compression of the cord in caries of the spine is due to another agent, ats was lirst demmstrated condusively ly Michand.2 Irvitation of the spinal dura mater, from contact with the caseons rontents of the bone-aloseess (1) with minute spicule of carions bone, gradually develops an external pachymeningitis. Abmudant inllammatory vegetations form a thick mass aromed the cord, which tends to compress it more and more. The mass frequently contains tuberele. Not infrequently there is also an internal pachymeningitis, and a grayish psendo-membrane, a vasenlar net-work with embryonic comective tissue, spreads over the internal surface of the durat. ${ }^{3}$

Sulmitted to the pressure of these inflammatory products, the cord beomes altered, chiefly through an exeessive proliferation of its nouroglia. A peculiar interstitial myelitis is developed, complianting the meningitis which is the primary lesion. ${ }^{4}$

The proliferating comective tissue at first contains cells, but later becomes converted entirely into a dense retienhom, which greatly increases the consistency of the cord. The nerve-elements degenerate, the myeline wastes, althongh for a while many nerve-fibres persist with a narrowed myeline sheath. In extreme cases all the fibres seem to be destroyed; the ganglion-edls of the gray substance become shrmken and atrophied, and finally disappear; and at the point of greatest intensity of the lesion, all distinction between white and gray substance is obliterated. The walls of the blood-vessels are thickened by a growth of spindle-cells in them. ${ }^{5}$ Beyond the principal foens of myelitis lies an ascending selerosis in the columns of Goll, and a descending selerosis in the lateral colmmes of the cord. ${ }^{6}$ Occasionally the mednlary lesions are preceded by nentitis of the nerve-roots which have been compressed in the thickened dura mater. The first lesions in the cord may then appear as streaks of sclerosis in the posterior columns. It is thence distributed with the irregnlarity which is the anatomical characteristic of all cases of compression myelitis. (Michand.) The cord may be greatly reluced in volume, being not larger than a goose-

[^259] of restorntion.

The irvitative process sustained in the spinal meninges extemes to the mereroots as well as to the cord, exesting an interstitial menritis. 'This,
 gromp of symptoms, which (iowers cepulially cmphasizes as "row symptoms." 'Tluse emsist chiefly in extremely acote pains, which radiath

 mowement, and acompanial by temderness on pressare along the track of the merves, followerl by anosthesiat distriboted in irregular patehes almug the satme track, and, in severe casise, lyy atrophy of the masiles to which the merves are distributed.

When irvitation and inilamation of the merveroots are thas indianten, the existence of a parhymeningitis is at the same time demonstrated, sime the nemitis is always seromdary to this. Myelitis is then knewn to la inn-
 fared.

The myeditis is nshered in ly a seeond gromp of sumptoms, when sh-
 anse. These symptoms are chictly motor. The limhs-in the great majority
 phote paralysis, either gradually, or with grat mpindity or com sudhemess, The musides of the paralyad limbs may be affered with spasms.

The paresis and paralysis are due to invasion by the myditic prowess either of the anterior comat or of the lateral colmmes. 'The semsithitity of the paralyzer limbs aten remains mimpaired. On the other hand, it is often perverted in varions ways. Sometimes the comduction of semsury impresions is melacd, possibly as lom as fin thinty or forty seconds, or the patient sulleqs firm mombense, formieation, tingling, or dull, obtuse pains, which are in marked contrast with the viokent pains excited by irvitative compression of the merveroots.

The frequent prewration of tactile sensibility in the midst of eomple motor paralysis deponds on fwo ciremmstanes. First, it is the anterior ar motor portion of the cord, lying in immediate proximity to the dismand
 ment of the pachemeningitis exeited be the caries. The posterior, somsury portion of the cord, more remote from the fores of irritation, remains for a long time, and possibly alwass, umaffected. In the second place, conduction of sensory impressions will persist after a much more extensive destruction of nerve-fibres than would be compatible with persistence of motor finctions. Hence sensibility may often remain intact, even when the sensory segment of the eord has been invaded by the myelitic process. For the sume reason, even when seusibility has been lost, it may be recovered in a patient in whom absolute paraplegia, nevertheless, persists.

The condition of the shlineters and of the reflexes of the lower extremities dopends both on the situation and on the extent of the spimen dis-
 "xaggaterl, whaterey the lexality of the lesion, provident this ronsist only

 af the peramidal trmes. Ther reflexes of the lower extermities are then

 the pramidal tracts am simatamensly imperded, there is apt to be retromion al' arime and fieres.

If the himbar matagement itsedf happen to be the seat of the merditis, then the reflexes of the lower extremitios, lan from being exaggerated, will to abolished, ${ }^{2}$ and the sphenters will be paralyend, firm deatruction of their
 stane has herome eompletely involvat.

Soveral other important variations of symptoms are ohservel, areording 10 the sithation of the spinal caries, and of its consentive meningemenditis.
 playia, which may cither follow or prevele the paraplegia of the lower extromitios, whid is itself' prokuced by lesion of any part of the cord. 'This suphene is madily explialole; but mud less so is the more exeeptional oeemreme of paralysis of the arms white as yet the legs are thatfected. 'This rematkable fard has beob explained on the hepothesis that the motor trams for the arma may lie more supericially in the rord than these for the legs, and are thas carline inwolved in alesion advaneing from the periphery. (brown-ségard.) Vobpan, however, dams that the amatomical rewese is the truth: that in the revieal region the nerve-fibees fire the arms have alvonly entered the gray matter of the eord, while those for the legs are yet ronfined to the lateral columas. But he considers that on this very accomit Whoth the arm fibres be summited to a greater compressiom, owing to the less resistance of the gray substance than of the white columns to compressing agencies.

Discase in the upper cervical region is distinguished from lesion in the bower hy absence of the musenlar atrophy of the paralyzed mper extremities which is so characteristic a feature in disease at the later locality. ${ }^{3}$ Muscular ntrophy ocenrs only when the trophic centres of the supplying

[^260]

 myeditis, suthires therefore to limit the disumes to the wgion of the there

 spinal an"ossory lomath.

As in the idiopalhis form af 'ervical parlymeningitis, compression lim-

 tion of the hesion in the cond, siner, the the expriments of Ferrier, the finctions of the diflerent newereots have heren approximately determined. ${ }^{4}$
'Thens, the intrinsie museles of the hand are innervated from the dist dusal newe, and weakness and atrophy legimning in them, assonciated with

[^261]mbial hich is vernila. ervical © thore alvoms IIII 1 the
may two
 4 of \|! ar cmon ug my 1, duc (1) 10 110 wriment.4. (s. 'Tlu' Mningitis The crown ail : lalliparalysis. ower cul es of Hu" adulin) tractility ohnimernd
sion lin!in :trouSuf them lowalizaithe lime nel. ${ }^{4}$
the list tted with
\qquad

 arm, which is melacted by the meventh and sixth ronds, mal mised by the filith.
 nanally

Chanacteristie of the menimgo-myditis of this ragion are the pmpillary
 of the centre the pripils, one of looth, are dilaterl; with paralysis they are

In the meningo-myelitis of the "ppor donsal carine, whidh, ats alrealy
 the lower extermitios.

But disense in the יIprev dorsal merion maty also be followed by paralysis of the arms, ${ }^{2}$, lue to an aseonding deremeation that has extemed beyoud the limits of the rohmme of (and and invalded the antrom-latemat molmans. ${ }^{3}$ The eeveral panablegia is then ahways consecontive to the lumbar paralysis.

Seveal wher sympens, that are often emmerated an damederistice of dorsal caries, really bebong to the meningo-myelitis which has been produced ly it. Among the endiest are pains radiating towads the abdomen, and often mistaken for pains in the stomach and howels. These preecte paraplegia. A characteristic advanced symptom, seen only after paraplegia

[^262]has beome confirmed, is paralysis of the intercostal muscles, so that the breathing is sustained exclusively ly the diaphagm.'

Again, characteristic of dorsal myelitis are the mantenance of the reflexes, of electrical reactions, and of rigidity in the paralyged limbs, and the absence of sphincter paralysis and trophical lesions, such as musenar wasting and bed-sores. These peenliarities, both positive and nergative, depend on the fact that the transverse cord lasion is scated above the lumbar enlargement ; the latter is affected only ly the descending lateral solerosis, thes not in its central gray substance at all. Discase of the lumbar collargement, therefore, contrasts with that due to dorsal carios, in all the above partienlars. The limbs som become flaeeid, the reflexes abolished, eleetrical reactions lost. If the gray substance be insaded, the sphincters are paralyzed, the museles waste, and even bed-sores appear, although these are rare in compression myelitis.

If the caries affect the spine below the seeond hman vertelna, it will be below the termination of the corl. When nervous symptoms develop, they are those of nemitis, due to inflammation of the nerves of the cunda equina. ${ }^{2}$

Mnseular atrophy is then an carly symptom ; it is partial and irregularly distributed, the museles nsually be: \because flaced or free from contracture. The limhs are paretic, but are rardy paralyad completely. The reflexes are exaggerated, the sensibility normal.

Attention to the above combination of symptoms will serve to distingnish a neuritis of the cauda equina from a meningo-myelitis, and conversely; and will aid in detecting an incipent caries of the lumbo-saral spine before any angular curvature las become pereptible.

Althongh the combination of root neuritis and interstitial myelitis be the most common result of pachemeningitis from caries, and hence the association or sequence of root and cord symptoms the most characteristic, yet the nerve-roots are not necessarily involved. The corl symptoms may appear primarily, and usually develop in gradations as above describud, Sometimes, however, a child known to be affected with spibal earies will beome paraplegic in the course of a few minutes. Sometimes an arorular eurvature appears coincidently and for the first time, or, when already existing, becomes greatly inereased. The paraplegia is then attributablo to the shock cansed by the impact of the fractured bone upon the cord, and may pass away with the shock of the aceident, even though it return later after a meningo-myelitis has been lighted up. When, however, a suddenlydeveloped paraplegia is both complete and permanent, it is probable that a hemorrhage has oceurred among the neo-membranes of a pachymeningitis, or even into the cord itself. The results of the former aceident may le

[^263] ributahle to he cord, and returu later a suldenlybable that a vmeningitis, lent may be
transitory, as the eflinsed blood is realisorbed ; but the consequences of any extensive hemorrhage into the cord are irremediable. Thas, earies of the spine may determine in the same patient all thre of the cord lesions moder comsideration in this article,-meningitis, myelitis, and spinal hemorrhage.

It is necessary to make a diagnosis between the three lesions whenever motor and sensory symptoms in the limbs compliate the evident manifestations of Pott's discase. It is also often neeressary to decide, in presence of such symptoms, whether or not lott's disease be present ats their ultimate (emse, although its distinguishing teatures are not yet manifest, but latent.

The special symptoms of meningitis are pain in the baek, spontaneons and exaggerated by pressure, and still more by movement of the spinal colomn ; pains madiatine to the trink and extremities, , ith diffused hyperesthesia of the skin and museles; stifferss and rigidity of the spimal columm and of the limbs, the latter often intermittent; exaggerated retheses, and musenar spasms. 'she spinal pia mater is riehly furnished with nerves, which enter from the posterior roots and follow the blookvessels. ${ }^{1}$ Inflammatory irritation of this membrane canses therefore severe localized pain. 'The musenlar spasms depend on reflex irritation of the motor roots, from the irritation of the sensitive ifbres of the pia. It is the tetanic spasm of the muscles of the back that canses its rigidity. The generalized hyperesthesia and exaggerated reflexes are due to erethism of the intra-medullary foci of origin of the posterior spimal roots. (Vulpian.)

Among these symptoms, localized pain and tenderness in the back also indicate caries uncomplicuted by meningitis. But in such a case the pain is mucl: less severe, and the tenderness, instead of extording all along the spine, is limited to the small area of the one or two discased vertebres. Finally, there may be entive absence of pain over a carions vertebra. Rigidity of the spine exists both in caries and in meningitis; but in the latter it is much more marked, tending towards opisthotomes; the patient is unable to sit np. In uncomplieated caries the patient, though holding the back stiffly, is not prevented from walking. By a special maneurre the real rigidity of the spine is shown to be confined to a limited area. The child lying prone upon a couch, the physieian with the left hand fixes the spinal colmmin, while with the other he raises the legs and bemts them backward at the pelvis. Normally the spine of a child is so flexible as to permit movement daring this manenve, at the lumbar, lower dorsal, or口丩per dorsal region; but, if any vertehra be diseased, the movement is ressisted in the corresponding region. But if meningitis be present, the forergong test is too paiaful for exceution. The rachalgie symptoms of meningitis consequent upon caries may be said to be the symptoms of the curics itself, intensified and extended.

Rigidity of the limbs is a sympton which in meningitis may be cansed in three ways: by ${ }^{\text {" }}$ et irritation of the motor roots, by reflex spasn of

[^264]imfation of the postarior roots, an' 'y increased exeftation of the gray matter of' the sord. 'The symptom, however, dows mot belong to menimgitis
 and in spimal canies always, complicates the meningitis. The riginlity is then arempaniol be inerensed retlexes, and both are dow to the selormis of the peramidal tracts which sets in kedow the seats of the principat hesion.

Such selerosis samot be aswribul to a meningo-myeditis mutil erwhal diseme has heron exeluded, as the degemeration of the peramidal trats is mush more frequently seembary to lesion of the hain than of the come

It is, finally, to be remembered that exarperation of the reflexes mul some degree of rigidity of the limhes may be dae simply to lysteria. Surn a manifistation of hysteria is, however, partiondarly rare in children.

The musentar rigidities and exaggerated reflexes of myolitis may he distinguished from those of meningitis by their late oremreme and cont serontive paresis or panalys. For in meditis these sympoms are dow to the serombary degenamion ; in meningitis, to the primary disense, and are
 and the appaname of this symptom among those proper to invitation af the

 tion wer the dura mater, it not infregnently happens that the meningeal process remains latem, and that the tirst eomplination of the Patt's disanses whinh is ohsorved is lass of motor power in the lower limbs, indisating disemse of the core itself. In the absemes of reots sumpoms the paresis or paraplagia may be mattomded hy any perversion of semsation whaterer. ladend, wat only the menimgitis but the vertehral carios may have monaturd
 while all other fimetions rematned monal. Garefin examination will then deteet loxalized stiffuess at some point of the spines, and the carios be discowered which is the root of the whole misehief,

It is chanacteristio of compression myeditis that the paralyad limbs are at first sfiff, and contime so as loug as the lowion remains limited to the white
 and the ganglionie redts of the anterion comma are destrosed, the stifluess piods to the tharedity proper to anterior potio-myditis. Lass of sermibility similarly imblates invasion of the gray substance in its posteriter segment. Both the flamedity and the amesthesia derisively distimguish myeditis from meningitis, and also indiate a severe degree of the mednlary
 diseme of the meninges, the nerveroots, and the cosd are always combinet in the sequene which has beron deseribed. I'rimary attection of the surd does not exist ; but its symptoms may appear first, while those of the parhymeningitis remain latent.

Hemerthage into the membrames on subtance of the rewl, when comphicating compression meningo-myelitis, is distinguished by the sudden ore-
the gray meningitis " nsisially, rigidily is clruxis of 1 lasion il corvornal 11 tran is is in cmorl.
Inexsm: mul ria. Sillill Mill.
is maly be $0: 1011$ are dure to se, anil atre - Pamalysis, aton if the migh combary merningern It's. disumater , indicalius - paresis ar whatever. ermained re to stianl, in will then ins; In disi-

1 limhs ant 40 the white sulnetance, lue stilliumes : of wnlusi\& pusteriur distinguish meclulliary (m) dur to a combinul if the ened nse of the
rimerne of motor and sensory paralysis, or by the sudtenly-marked examerbation of paralytio symptems which had provionsly existev. 'The hemorthge

 freppently wemes into the meromembanes of the spinal dhate, the prowess being completoly analogens to that of cerebat hemorthgie pachymeningitis obsiswed in the alult.

On the wholle, hemorhagio areidents sem to be rave in compression meningo-marditis.'

 lifis carries with it that of' Pott's disenses, in the immense matority of castes. This diagmsis may, however, lee armomo. as is shown ly a case of Dr. lice's: "

 string musdes. In May the entaneons manihility dimini-hed; there whe incomincoce of

 mid procesess.
'Thus the humer, legeiming ontside the spinal ramal, had spreal in two dimetions, - towards the right inferion mevical ganglion, which had apparmaly leren destroyed, and intemally towarls the cort, which had bereme alferted with a sulbante myelitis, chicely rentral. 'This remt abl soltening
 result of vertebal caries, which promeds gradnally inwarl, and which is invarially attemen by desemding selorosis of the lateral colmons. ${ }^{3}$ In rommenting on the resnlts of the antopsy, Dr. (ier remarks that the hace dity of the legs observed during life, and contrasting with the rigidity which

[^265]

 of the intertur werial ganglion, partial ptosis of the right are, and ron-
 :and indiate semme canse of compression lyang entirely ontside of the spinal

 cold alseress,-that is, from the extermal migmation of pres. 'The eases of

 anterior region of the cord. This limitation is to be inferved so long as
 exagerathed instead of being diminishar or aholishem, the semsation intare,
 paralysis is ofico meoveren! trom."

 irvitation which hand excited and kept up the pademeningitis ; the mentingral intammation subsides, and the promerss of the seromblary interstitial myolitis is armented.
 whidh have not lost all their mydine shaths.? Atrophiod ganglimie whis
 is ouly partal, comegh remain intant to mantan the fimetion of the limb.
3. In the alwence of an acromulation of pres, the pachemeningitis may
 mation. This latter may be arrested vither lefone the formation of a spinal "urvature or ather the wethona hats broken down, and earions material hats berm diminated from the bom-tiswe.

[^266]4. Fixation and extension apmatus aphied to the spine tends to luxilibate lle eble of paraplegia liy limiting the perituberenlar invitation of lamebiswne, by relieving the disemed parts of superimombent weight, and by rasing fortions of the collapsed vertobe which may be pressing against
 rann, including the plastic jadsen, is prohally the heast important, and yet it

 mare has apmered for the first time on the spine. A paraphergia of two or three werden' duration has beron seren to disappar immediandy when the child

 from the leximbing. But I an mot awne that any extensive companison in magard to this puint has as yot heem mathe.

OTHER FORMS OF MENINEITAS.

 in chidhomat, and of the myeditis sesomdary to it. Bint seremal wher comditions are liable to induce inflammation of the pinabl membanes. Thberde,
 be fillowed by meningitis. Kahber asserts that childhome comstitntes a previspusition th the discase.' The following is a failly typual ase of mamatic monimuitis:

 the hembling berame labored; there was great tonderness over the dorsat region. In the
 twitheol. Wenth in cobvilsions on the sixth day. At the post-mortem "strong evidence

This märer and incomplete history fials to explain the paralysis of the arms, and does mot mention whether paralysis of the logs existed. It is ovident, howerer, that an asemding entral myeditis had rapidly complieated the meningitis primarily developed at the seat of the how.

Cuse XI.- (Birl of 1 welve. 'Threr momblos lufore ndmission to bospilah, while jumping, fell in lower part of the spine, immodiately upon sacrum. 'There was sharp pain at ones,

[^267]

 recovery wat emplate. ${ }^{1}$

 stipation. Rucovers. ${ }^{2}$
 in bad, nock, and nomborn. In fwodays, mable to turn home, ad movements paintul.

Cinse X/I:-Buy of tiftern. Blow on back with list. In a litthe while severe pain, at first refieved by theder, then returning with fiver. Absess formod, presenting on right
 pain in buck and all parts of the body lememe intensitiod; hend retracted. There was ta

 to left side of hat lumbar vertebra, pasing into spinal amad through lambosamen firat

 heathy. The lambar and brondiat ghads hat a trace of tuberentoms deposit. ${ }^{4}$

The situation of the absects below the cord explains the absence of pataplegia ; the presemee of tuberele perhaps explains the slight revistance of the organism to the trammatism, on even suggests that tuberenlar depusit hat been present in the cord or membrancs, or overlooked:
 turn head, on neemat of pain. Entire spine sensitive. Spech dillicult. Then nll mose ments painful. Temperature $40.5^{\circ} \mathrm{C}$. Pube 108-132. Treated by homides, hechos, iere and saticylate of sodimm, with little sucess. Lakewam baths und cold atlixions. Fiathy morembial ointment and iodide of potussimm. Heness from Mareh 22 to A pin 11, thets complete recovery. ${ }^{3}$

Kahler deseribes a meningitis due to rhemmatism, and relates the following case as an example :

Case NTH.-Girt of edeven, compelled to hat work amidst much cohd and danp. Illness began with ineontinence of urine and feces; general wenkess; persistent choreiform

[^268]trembling of the extremities; adem, with swelline of face, hands, mad foert. After three
 stipution. Drageing mal boring pmins in lambodarsal region of buck mad nonge spine

 plastic exndation in eavity of ntwhod or in the pia, whese presenve upon the sacral and

 tion, emplom, semma, and diuretics efleeted a come in four months.

The chatacteristios of aneme spinal moningitis, as illustratem by the forequing mase, have mondy apparal less distinety in the descripuion given of the chronie meningitis of Pot's disemse, -pain in the burk, nsalally severe, inereased by movement mad pressure, often most intense at the nepk, radiating to the tronk and limbs, acempanicel bey comems and mosernhar hepresesthesia, by fever, and sometimes hy misentar spasm. Differelty of speerh seems liable to orem when the lexiom begins in the eervial rexion; (anvolsions are imminent in yomg chihdren. Exchusion of myditis is mate by the negative symptoms, - nandye, the absence of motor or sensery or sphineter paralysis, and the abseme of deraugement of reflexes or of encerieal readions. The first indieation that the indlammation is extending to the eow is an exagerention of the reflexes, but so long as this symptem is isolated the myelitis is smperficial. Tetamiferm symptoms may be so prominent that the diagnosis from tetimus is rembered difient. New-hom children, liable to septic tetanns from the umbilical womm, are also liable to septic forms of memingitis. Gerhardt states that Billarl has finmod parnlent spinal lepto-meningitis in twenty cases ont of thirty mew-born diblden who had died in comvolsions. In only six of these was the bain also implicated. Such a canse of convulsion would be associated with fever. An apyretic irritation of the spinal membancs at the same age is liable to weme be extension into the aradmod ravity of bow from a hemorrage at the lase of the brain during parturition. 'This hemorthge does mot athen exeite inflammation of the meninges. (Erls.) Kahler ${ }^{2}$ calls meningitis the hyperemia of the spimal meninges, which may be probluced during the comvalsions of tetanus or during the comvalsions of teething. In the subacnte form of tuberenlar meningitis, tetanns, or even cataleptiform rigidities of the limas, may also be most prominent symptoms. In a case seen by the writer in a boy of five, when the four limks were raised vertically to the borly, they would remain in this position indefinitely, in the wasen rigidity of the cataleptic trance. The child at the time was entirely meenscious.

[^269]
NON-CARIOUS MENINGITAS FROM TUBRBCLLE

Tuberde is a more fiepuent canse of spinal meningitis than is tamma-
 meningitisextends thromghom the entire eerecher-spinal system." 'The lesion
 lopte-meningitis. 'Taberenlar grambations extemb along the veseds on tha

 from the viseral fiee of the atwhoid. 'The vasenlar net-work of the
 changed into a thickencel, irregular, opaque membrane, cosered with litte
 furbid serosity ; an almadane of eitrine fluid acemmatas in the cavity of the aramomid, or, in its absence, all the membames are arghtinater by adhesive intlamation. Tuberentar grambations pernetrate the fissures as they follow the Sywian fissumes of the bain. They may even follow the
 famor, wemaioning a shecial form of myeditis. Other grambations rim along the werveroots.

These coneomitant spinal lesions are the proximate canse of many of the semptoms ohservel in the conrse of eerebral meningitis, ats the stifluess of the tromk, the tetanie attacks, the contraction and rigidity of the limbs, the jerking and trembling of their muselos; to a considerable extent, exen the elistribution of the motor and semsory paralysis. ${ }^{2}$

Bat tuberenar disease may begin in the meninges of the spiue, or a gemeralized tuberentesis localize its primary ermption there, before insaling the cerebrum. The sympoms are then more insidions than in tramatic meningitis, developing more slowly, with less violenee, and, although in reality fir more serious, serm for a homg time to indieate mueh less daugerons discase. After exclusion, if possille, of compression meningo-myerlitis, nothing is of more importance in the prognosis of a spinal meningitis that to decide \quad npen its simple of tuberenlan nature. The ahsenee of tammatism, the insidions miset, low fever, irverularity in the mareh, long elmation, tugether with sigus of constitutional depressiom,-loss of weight, failiug
 urime,-in a word, all the signs nsually interproted as peinting to a tubercular canse of local inflammation, mast here be carefinlly considered. If the spinal symptoms have been preceded bey a subarde peremonia, whese resolution is still imperfeet, if cascons glands cam be detected aromon the

[^270]brombin ar elsewhere, the probabilities of a thererentar origin of a spimal meningitis are of "ourse greatly inerasad.

When the disentse begins in the brain, it extemes down the spinal anmal
 of spernh noted in sume of the cases ammet he a minal symptom: it implies the participation, primarily on serondarily, of the medulla mul hypeghossal

NFECTIOtS MENINOITIS:

Diphtheritie paralysis, so lomg remarded as "cessentalal," fhem as due on-
 reently been fomm to la: ansenciated with spinal meningitis. There are patches of healizal meningitis aromen the merveroots affeded with perimemitis, 'lat also diffinsed lexions of the meninges, with fibmimme exulat
 There is in andition a slight tephon-myelitis; ${ }^{3}$ the ganglionic nerve-redls arw altered lye the diphtheritie poisom. This, arronding to bandoney, is the primition lasion; then follows lesion of the rows, and, finally, pardechymatoms mentitis.'

After diphtheria, typhoid fever is the infertions disense most liable to he followed by paralysis. Yet, on the whole, suld seduenee is mare. Landonzy guoters from Colin a statistio of eight handrey rases of andere disenses, ont of which only two were followed by paralysis.

It is highly prohable, howerer, that the spinal manges beeme irvitated and congested mader many ciremmstames in which severe gain in the bark exists, but wo paralysis appars. The violont rachialigia at the begiming of smath-pox and erom liphtheria is prolahly due to the cirendation of the specifie poison of the disease throngh the spinal pia mater, richly suppliad with weres. In heart- and lung-diseases, anote and chomice, the impediment offered to the entraner of venoms boond into the thomax is liable to resinlt, for the spinal cavity as for the ramial, in a great acemmulation of vonous blow in the meminges. On this areome Kahler momerated heartand lung-disansen among the cunses of spimal meningitis; but inacourately. For such secombary congestion is not an inflammation, but resembles the arrest of eirenlation in the simses of the bain, liable to follow cholera infintum.

CHRONIC SPINAL MENIN(ITTIS.

Chronie spinal meningitis in cliklren, muless we acept the rheumaticchoreiform affection described by Kahler as such, seems to exist only as a

[^271]complication of vertebal caries or of intra-spimal tumor. The cord is ahways affected when the pia is involverl ; the lesion is that of a compression meningo-myelitis.

Nevertheless, Seeligmüller relates ns a case of chromic spinal meningitis the history of a girl twelve years ohl, which some ohservers might rather interpret as hysteria :

Cuse .VVIT.-Girl of twelve, honde, mumic, delicate, irrituble amd egwtistic,-so much so
 phaw, had been taken on a sheigh-ride. The illuess begno with vomiting, moderate fiever,
 romiting lested fourten dhys, then diminished, then returned attur an indiseretion of diat and lusted with few interruptions, for nine weks. Coinctubuly occurred elonic contructions. in the arm-mnseles, then in the thighs, then in the buck. By the nimll werk these eonval. sions, which were painfinl to the putient, were sulficiently fiequent to rescmble choren.

Pamatye symptons began in the third week, in the neek and trunk, so that the pribent could mot hodd up her hemd nor sit ap. In the sixth week the lowerextremities were paralyzed and nlso stitf; there whe a lass intense degree of parnlysis of the upper extremities. There was hyperesthesin of the spimal coltman (apinal temterness), nom of the skin or museley ; complete amenlyesia to the prict of opin (lomaty not stated). There was obstinate constipution, slight incontinence of trine.

Paient was setn bey Seligmaller in the fouth month: Was then completely helphess, carried dangling like a doll on the arm of an attendant. The heud could not be held up; the lower extremitios were complaty flaced. Not the lenst voluntary movement except of the toes; the fect were in moderate equinas. There were, howerer, no emaciation, u, comtructions, harlly any less of electrical reuction. The patellar and phantur reflexe, on the montrays, were lost.

The Irentment instituted was electricnl, hydrotherapeolic, and woborant, and lasted ton week, with only slight improvement. A powerni supporting apparatas was thet pros rared, and the same den! thet this came home the chidd begern to use it, though up th this time she had not made the lemit exertion. In six weels she had improved immensely, and was entirely curcd by December.'

In eiting this eurions history I bave emphasized by italies the record of such ciremmstances as seem to me to show that the symptoms were mot din to meningitis nor to anterior polio-myelitis, whose possibility the authur disensses, but rather to a succession of hysterical affections.

IDIOPATIIC MYELITIS.

Observations of idiopahie myelitis in children are few. (Gerhardt.) It most fiequently originates in accidents, but it is not the blows or other mechanical violence that excite meningitis, but rather exposure to damp, cold, and fatigne. Thas :

Cise XVIII.-Boy ten years old, very poor, had sutiered gratly from exposure to mold. Went to bed apparently well, but was seized in the night with convulsions, which succeded each other for fifteen hours, and terminated in deall. At the autopy the bran was found congested over its entire surface. The spinal cord looked "ns if it had been dipment

[^272]In blocd." It was roftenel and alifluent for a spmee of two inches in the lower dorsal region. "The most rapidly produced case of suftening on reeord."
 fatigne, he was selzed with chill and couvalsions, followed by giddiness and vomiting. lemaned in bed ten days, and then found himself' mable to stamd or walk without nsistnee. There was incontinence of urime, and weasionally of feces. On abmission to hospitul, six weeks from begiminig of illness, thore was complete sensory and motor paralysis of hower extremities, mad these wero wasted nud shrumen. There was tenderness on tirm presuare over upper lumbur spine. The boy was treated by a bister to the spine, und the intermal administration of irom, cmatharides, and quasia. 'Trentment was legen , lamany
 restored, the motor fimetions improved so that the boy could walk a few yards. Recovery was eomplete in April. No alectrical treatment was used. Strychane always had ill (allewts. ${ }^{2}$

In some cascs an acute transverse myelitis has been fomed after a fall:
Case $X X$.-Child two and a half years old, twelve days after a hill, had left-sided hemiphegin. Seven weeks hater both lower extremities were paralyond and massibetice, luoth upper extremities paretic. The rellexes were abolished. The hend was retacted; the temperature $37.7^{\circ} \mathrm{C}$; the reetal sphincter was paraly\%ed. The retaction of the houl und paresis of the arms disappeared later in the disense. The child died trom hromehomene monia. The gray substance of the corl was found swollen. Red suflencel foed in anterior
 (ytes. On left side, ganglia-cells alinnt disuppened; on right side, degeneruted. Diffised infltration of lencocytes. Scleronis the antire longth of the antero-lateral mhmas."
 up insemsilde, and remuined so for two days. Then her four limbe wore fomed to be puralyen and anasthetic. The sphineters were paralyad. Semsution orturned in a week; in four wecks the arms cond be moved a litule, and the urine was redumad. Then the right log lugan to grow stifl, though its rigidity would sometimes relax spoutumously. It was not wholly removed by chloroform.

On wimission to hospital, with the right leg extonded mad sill, the pationt had reguined feeble volantary power over loft. Faradiation excited reflex tlexions at atl juints. There was woll-marked ankleclonas, but no exargeration of the reflexes to lickling the soles of the feet. Sonsation was natural in all the limbs. At the arms the paralyed mascles were mand more wasted, und the wasting was conspienoms in the small maseles of the hands. Grent rigidity of the flexors of the fingers in loth hamds. The right pertoral anscle and the mascles of the back were murh wasted. The spine was eurved to the right, and the patient could not sit up without support. The respiration was andominal, the chast senreely moving.

Two month later the eondition of the thonax nad upper extremities was the same, bat the gill could stand atone and walk a little.

In this case the myelitis, after an initial generalization and the setting in of deseending secondary degeneration, seems to have conceatrated itself on the anterior corna of the cervico-dorsal region. There develnged in consequence a condition resembling a very acute progressive muscular atrophy. ${ }^{4}$
${ }^{1}$ MacSwiney, Dublin Medienl Monthly, 1867, p. 243.
${ }^{2}$ Ablotts Smith, Lancet, August 17, 1861.
${ }^{3}$ Turner, Jahrbuch fïr Kinderheilkunde, 1879, Bd. xiii.
${ }^{4}$ Gee, St. Bartholomew's Hospital Reports, 1880, vol. Ixvi.

A similur case is related by Gull; but in this the luealization was effected at the beariminar:
 hater his head hegran to droop, then the maseles of the armes to waste, go that they lames useless. The intercostals comed to act, and the brenthing became diuphragmatic. Tha erector spime masclem and the lawer two-thiteds of the trapeaii also wasted. The ribs wew datened from puratysis of the intereostads. Fourteen months later the putient could walk, but could not sit up without support. The wasted museles, as in idioputhic progremesis musedar atrophy, contracted to furndism in proportion to their mass.

The following case of foml myelitis was developed withomt obvions antecorlent (emmer, and associad with moch more extensive meningitis:

Cuse NXIJ.-Boy of cleven. Adnitted to hospital in Felynary, luving suffered for a week from pulus in the sumbll of the betek, gradually extending uround the body on luth sides as high is tho dmbilicus. These pains were spontaneously worso ut hight, but walking caused severe puin. Prossure over the spinous processes was painful. There waneither sensory nor motor parulysis. The sphinetens were intact. Inseterate fevel was present. Two days after admiswon, tha temperature rose to $103.2^{\circ} \mathrm{k}$., the fever being uttendod by profuse perspintion. Slight hyperasthesia in legs; ineontinenee of urine, contipution, miapism. Eany in March the by hecome completely pmplegie in that lower extremitios, and ansesthetic to the seventh interenstal spaee nad the fith dorsul verteban. The sphincters were paralszed. Burniug pain in baek, incrensed by pressuro, Temperature in groin 102.1°, in axilh $100.4^{\circ} \mathrm{F}$. Bed-sores on suermon und trochmaters, Denth six weeks later. Inflammatory Jymph was sprend over the lower dossh portion of the cord. The membranes were very moch injected, and purtly adherent to the bins. Opposite the flith dorsal vertelara the cord was in white softening for an extent of half an inch."

The following case lies just beyond the limits of childhood, in a ginl of eighteen :

Cuse XXiV.-Sudden attuck of musea and vomitine, with sharp pain in the cervical spine. In two minutes loss of power in arms, in a few minutes more total paralsis of then. In fifteen minutes violent tremor of lower extremities, followed by paress, and flatly total paralysis. The abdominal museles were flaceid, the brenthing almost wholly: diaphragmatie and dysparic. Simsation and reflexes remained normal. In four day: there was a superficial bed-sore on the buttock. On the eighteenth day violent retchines, severe dyspown, and cyumsis for half an hour. Several similar atheek ocenred during the next three days, und finally death from asplyxim on the twenty-second day of the ilfness. An acute myelitis was found in the cervical region from the origin of the third pair of nerves to the dorsul region, where it ceased abruptly. The hood-vessels were grantly enlarged. The "nerve-elements in the anterior and central parts of the gray matter replaced by numbers of granular corpuseles."s

From the extreme suddenness of the nttack, it is to he inferred that the myelitis originated in hemorrage of it least capilary dimensions, althongh no observation of heurorhage is made at the scantily-described antopsy.

Sometimes the fucal myelitis is of limited extent, and its symptoms soon become merged in those of the descending sclerosis, as in the next case :

[^273]Cuse NXV:-Girl of twelve. Whithont nny evident cmase, hur loge hegan to give wis ;
 In in fortnight she was eompetely paruplagie, with complete lows of sensuthon below the
 sis of sphineters, which lasted three monthes. Bedosores orempred it the mane time. In a month, lawever, sensation returned, and fin three months the patient wis nhe to move hor limbe, lat eould not stand. Ih:e legs were very atith, the feet puhted in rigid phantare extension, the sural masches permanmely contracted. The legs were ebonet, from contraction

 paept in the finct that it was secondary to a forml meningomyelitis. The patent had a very marked laterul curviture of the spine, which Dr. Bu\%\%ord, who rehtes the case, thought might have some coological relation to the medulary disease, wad therefore proposed to trat by susprosion mad the pluster juket.'

Another case reported by the same author (Case XXVI.) belongs to a sperial form of myeditis,-speeinl at least in its etiology, which was syphiliife. In this case, also, the secondary spastic paraplegia was the most marked feature. The patient recovered completely noder the influence of twenty-grain doses of indide of petassime given three times a day. The anthor attributes this recovery to the removal not of an overgrowth of connedive tissue in the latemal colmms, hat of hypermia and liquid eflusion in the same lomality. ${ }^{2}$

SYPlliLITLC MYELITIS.

It is a very important fact that inherited as well as aequired syphilis is (apahle of exciting myelitis. Thus:

Case XXVII.-Boy, fifteen, had had previous symptoms of inherited syphilis. Weakmase in legs for two geas. A month bedore ndmision, pain in luabar region, incroased on pressure, then shoming pains in lower limbs, museular twitroings; in a manth, completo payplegia. Admitted to hospital with paralysis of both motion and sensution; paralyed miseles rigid, und reneting excessively to electricity. Superfleial aud deep rellexes both exagrerated. Pain and tenderness in lumbur region persistent, nceompanied by a sense of constriction it the abdomen. Paralysis of the bhatler, incipient bed-sore, no fever. Sensibility begno to return in a month, and patient, under antisyphilitic treatment, entively rocovered in four months. The nttack was nttriluted to a syphilitic thrombosis, followed ly eircmaseribed, but not irreparable, softening of the cord. ${ }^{3}$

The lesions, thongh not the symptoms, of a syphilitic myelitis are described hy Kahler ia the case of a child five months old, who died in the course of a congenital syphilis:

Case XXVIII. - The cord presented nothing abmomal microseopically. Below the decussation of the pramids was a patela of gray discolontion in the left hateral column from sis to seven millimetres bromd. In this were sieve-like perfontions, which under the microseope were seen to be perivascular spaces. The ground-substance of the putch con-

[^274]sisted of a thick net-work of the finest fibrillie, containing only a few eells, no ner-e fibres, an excess of blood-ressels, whose walls were thiekened mad lamen marrowel. ${ }^{\text {d }}$

Suvard (Étude sur tes Myélites syphilitiques, Thèse de Paris, 1882) quotes two cases of paraplagia in congenital syphitis, rehated by Leubuscher and Henocli; also a cense, deserihed by Potain, of a six-monthsold feetus with a syphilitic liver whose cord was completely sclerosed. The author himself has observed no case under the age of eighteen.

TUBERCULAR MYELITIS.

Tuberele, which has been shown to be not infrequent in the spinal meninges, and the canse of the inflammation, may also be located in the cord itself. It is then not disseminated, but concentrated in the form of tumor.

Case $\mathrm{X} X \mathrm{X}$. - Boy three and a half years old. After an ilhess of only three days, both lower extremitios becme paretic, the reflexes slighty exaggerated, and the sphinetor of the bladder relaced. Two months later the child was found considerally amaciated, with an eschar on the right erluteal region and left analgesia below the eighth dorsal verlu bra. Sensibility to tonch was preserved. Extreme hyporasihesia over the same territory, complete paraplegia, increased reflexs; no pain over spinal column. Marked apahy. Death six days after admission. Cheesy tuberele at lower end of dorsal cord in the gray substance. Surrounding white substance swollen and gelatinons. Slight tubereubar meningiti: at lase of brain. ${ }^{2}$

Myelitis due to a tuberenlar neoplasm is essenially a compression lesion. But as the compression is exercisod within the cond, instead of first irritating the membranes, the conselnences are from the beginning a necriobiotic process, and not an irritative proliferation of connective tissuc. The symptoms, therefore, from the hegiming indiate depression of function, and are not preceded by initial symptoms of irritation.

ACUTE INFECTIOUS MYELITIS.

When the poison of acnte infections diseases invades the spinal canal, the meninges and nerve-routs are more profombly affected than the end itself. (See sutpro.) As has leen already mentioned, however, the ganghionic edls of the anterior corma also show traces of the action of the poison. Lamdonzy (loc. cit.) insists finther on the hortensia tint of the nerve-centres observed in antopsies made after acute infections disconect. This is not due either to congestion or to hemorrhage, and the author attril)ntes it to a sohntion oif the hamoghohin, which transules through the walls of the blood-veseds and tinges the smromending tissnes. This solution is attributen to the high bodily temperature existing during the disease ; and the glestion arises whether the ganglionic cells are also directly affiected ly the he:t, and whethen the fibrillary net-wort and eylinder axes of nervetuhes may bewne thereby coagulated. Such changes would be the initial lesions of the bayefitis.

[^275]MaeSwiney reports the following case after a "tonsillitis" that may very well have been diphtheritie, thongh the author does not himself seem to think so:

Case XXX.-Boy of six. Paralysis first manifested by a tendency to trip in rumning. Then the head was held depresed to left shoulder, and 1 wo months later there was wellmarked wry-neek. Then the legs became weak, also the arms, but not the bands, while the museles of the trunk were enfeehled. The child walked in a tothering, straggling why. At the end of thre months there was complete motor paralysis of the four himbs. Museles re ponded perfectly to electricity ; reflexes undecided. Sonsation normal. Afer eight days if' complete paralysis, motility began to return to arms, then to legs, and in a fortnight from the beginning of convalescence the boy left the hospital perteelly well. ${ }^{1}$

Möbins diagnoses as multiple neuritis rather than myelitis a somewhat analogons case oceurring after pertussis:

Cuse XYXI-Child of three. The parmlysis began in the hegr, aseended, and finally aflected all the maseles of the body, even the daphragm, so that the repimation was carricd on by the intereostals, and imperfectly, as shown by the presence of eyanosis. Tendon retlexes absent; superticial retlexes preserved. Sphincters intuct. laprovement began in amomh, and recovery was complete in two menths. ${ }^{2}$

Tetany, the spamodie affection of infants which has generally been considered fimetional, has been fomed associated with myelitis:

Cuse XXXII.-Ginl of eighteen months, had eramps of the four extremities, diagnosed
 (ramps oecurred every day, persisting several honrs. Death aom exhanstion. The cervical cord was found to he softened, with a dattening of its unterior and posterior homs. ${ }^{3}$

The spinal paralysis of the new-horn child, which, as already mentioned, is sometimes due to a hematorrhachis, or a meningitis exeited by that, hats also been attributed to a species of tramatic myelitis due to traction on the legs at liirth.

SPINAL HEMORRHAGE.

The most frequent spinal lesion, however, in new-horn children is the third of those we have here meder consideration,-mamely, hemorthage. This resembles the cerebral hemorhage of parturition, in ocemring ottener in the meninges than in the nerve-tissue itself. It may be prodneed withwit any obvions tramatism to the spine ; ${ }^{4}$ and, if the child strvive, paralysis of greater or less duration is imminent. ${ }^{3}$ Litzmann relates the following culse :

Cas XXXIII.-- Breech presentation. Some uterine inertin, ulso marrowed pelvis. Head, however, did not seem compressed. Some hours nfter bith child's voice fecble,

[^276]donic twithing of maseles, and intwelve homs legs paralyged and insensible Rollex not obtained till the tomblay. I'artial paralysis of hadder. In theo or six weeks return of sensibility. In heft fow some permonent phatar lidexion. At flve months still conn-

 masdes resumel to thadisa.

 shrinkure of the chot.
 the estimate of the therapentio value of galvanism in a case like the foro groing. On the other hamb, the proeess of slarinkage, if the clot be elosely appled to the rarl, is liable, from the irvitation of perssure, to exate a mor
 the latter-i.e., bo spastie paraplenia-are recomed in this rase.

Tho spinal homornages problued during labor are almost always asor ciated with ath eftasion of blome into the cavity of the armednoid at the base af the batim, and the spimal eflision is an extension from this. It

 the spinal emal, extermat to the worl and its membranes, ame this thereform
 of the semptoms be sudhen, they at first consist only in pains, generally intense in the back, but radiating more or lass to the tronk or limbs.
 —deverp more gradally, and as the hemormagic chot begins to compres

 ward. The child was quite unalle to stand, of wom to raise himself in bed. Bowere pain in batk and nerk. No alteration of sensibility, retlexes, or sphineters. Fed on momata

 weok the patient hegan to reoover power of swallowine, and tho storno-mastoids and traperii to regan their tome. Tha lemen color of the fine disappared. In ten days he waalke to mise his hand to his month; on the fourternth, to mise his hemd from the pillow: on the twontieh, to drink amily, and tu stmal with suppror. In twenty-six duys hell the hospital, nhle to brenthe maturally and nse his limhe, though still someswhet unstemdy in walking. ${ }^{2}$
1)r. Foot attributes the foregoing symptoms entirely to a temporary compression of the cord, between the thiad and fifth vertebre, from forcible

[^277]Hexion of the neck during the fall, and emsequent finctional disturbance. He does not think myelitis conld have ore arred, as recovery was too rapid. The eate hemutifilly illustrates paralysis of the spimal aecessory newers, the phenic-originating higher up than the seat of the lesion-being intact. The interenstal nerves were also paralyenc. The paralysis of the pharyx and the glotis eomadently with that of the stemomastoids indiantes the
 nerves. But it is remakiable that the comments on this rase fail exern to diselnss the origin of the symptoms in a tramatie hemorvage. Yet to this they were in all probability doe. It is in the highest dogree inturohathe that in the wide rervical canal the cord combld have bere rompressed maless through firacture and displarement of the vertehae, which evidently had not owemred. In the following case the cervical homorrage was demonstrated:

 arnstion of of eborionshes.

 mond is not dearribent. ${ }^{2}$

In the following rase a hemornhere, probahly similar in matme, was recovered from, beanse oecmring in a far less daugerous locality:

 ntomthes.

The diagnesis was made of a hemorrhage within the dura mater, from
 iug the eanda equina. But, as alreadye stated (sippro), lasions of the cauda "puina determine paralysis of isolatevl musedne, not complete pampleqia. It is prolable that the hemornagie clot lay above the cauda mana and non the limbar cord itself.

The daracteristic ciremstance distinguishing primary hemorronge,

[^278]

 What the hemmernage is itself the resull of a memingitio or myerlitis, as in the following vase:

 hemorhage info the cond is mever mally a primaty pereses, but that is is

[^279]

 Mild savero memithe odd．4

1st．（on its getmal sitmation．Bxtromely dangroms in the cervial rapiom，the danger diminishas in propertions an the candat maina is ap－ proarlicol．

 sinuerficial meningitis，wot cansing patalysis；on，withe wher hand，during

 involverl in the efor，irritative＂rowt symptems＂will procele the paralys．is．

 of the central gray sulstane of the worl at to deatroy its trophic mentres， and heme camse rapid deroblithe and shomghing on the trink．

5th．Bxtremily lucalizad hemondages do not produce parapheria，but

[^280]some special form of meelitis or nemitis. Thens, if limited tor ome antrios
 with pambsis of a single limb or gronj of muscles. 'The hemomitan', however, is then mady accidental, hat man element of a special systematho discome.

DIACNOSLS.

The severnl steps in the diagmois of mydelis, spimal meningitis, aml

 prodominmaly motor, assoriated with paresthestas and hepresthesias. It
 the erembal nevers or of the intelligence, that exdme a eroberal origin for the pamatesis.

 spasms and eontractures, witation of the head, or expather of the spine, are important indications of epinal disease. Fxageromion ame abolition of
 their attophy, patalysis or tomin spasm of the sphinetors, alkalime urime. erstitis, derohitus, are all phemoment to le expered. Ropiratory dishmin ane without demonstable lesion of the thomerio viserea or kidneys prints
 chitis, pulmomary omgestion, or ademat, which are, neverthelese, evidendy secomdary. Acemding to the seat of the disease in the com will there be interference with interessalal or diaphagmatice lorathinge, or paralysis of the
 ration. Alteratioms of the pulse, pupillary phemomenat, profinse swather
 and, taken with more derisive sympons, would tomd to conform the diagmosis, Vomiting, combulsions, and forer, of romse, do mot of themsedver print to an intaspinal atferdion; but when assoretated with sperial localizaltions of pata there help tor indieate that the eanse of the latter is an inflammatory process within the spimal camal.

In young chiklen any aroute spinal atfertion is apt, at the outsod, to bo acompanied be cerebral symptoms, not only the vomiting and convulsions aheady mentioned, but also houdache, delivitim, and retasetion of the heal.: If, howerer, these be dae only to sympathetio hypremia of the cerebat meninges, they will subside, while the sympons chameteristic of spinal lesion will persist and become predominant. Epidemic cerebro-spinal fever

[^281]is distinguisheyl ly the ereption (present in more than half the rasese), the
 the eperial violence of the vomitinge, the alsenee of tammatism, offorn the presence of a damonstable entemis: on epindenic: intheme.
 nemitis remain as the only fethile mon-spinal afferetions which rembld simmbate the initial phemomenat of :ache meningo-myeditis. Of ore first, it is maly the axeptional form lemelized in the musictes of the batek which is
 rigid almast to "pistlownims. The pains, however, do not ratiate to trink or limbs, and from the latter are also ahsent all the other sympens habitmall! present in moningitis. Rhematisum could men be comfenmed with pure myerlitis. In tetams the tomie pasms bexin at the jaws, while these arre alfieded hast, if at all, in meniugitis. 'The spasms are intermittent, and during the remissions the pationt may be free firm pain and musentar rigiditics. Comfinsion, inderd, is pmssible omly Inetwem ineipiont stages of ntimus and meningitis; wedn-marked forms of either have card a physiogm, my perfoetly chametristie.
 forms of disseminated patalysis, as that following diphtheria, have been Shen to twe sometimes of prepherie and semetimes of 'entral origio. "In
 arstitis; the advane of the paralysis is nsially from the legs the the forearms, the tronk and thigho maping, and, as a rule, only the distal portions
 derness on preseme is over the affered merves and musides, white it is abernt from the onine." '

Theresemed step in the diagnosis, after the previons analysis shatl have lowalizend disense within the spinal camal, comsists in the sperial differentiation of the spinal disemese. 'Tuberenar mendingitis, which we have consid-

 it from the subacote form of reveltor-spinal fever, or an attack of the latere may berome the starting-puint of tuburenlar disease of the meninges.

Multiphe sederosis, hats been domerved in mildren, and is saded to have a rettain predilection fire the age of there on four vears. ${ }^{2}$ The insidions cemamenerenent and chromie mareh of this diserase sulfice alone to distinguish it from ande transwerse myditis. The trembling ipron intentional movements is as pathugnomonie of diffinsed selerosis in children as in athlts, and is quite alsent in common meningu-myelitis, even with its secomdary stlerotic derenerations. ${ }^{3}$

[^282]Among the syst matie, disenses of the cord, the anterior polin-myelitis so ferpuent in childhom is partienarly to be considered in the diagmasiv. At the wery outset, and prohaps for several days, the diagnosis might t_{n} impossible. For the "infintile" paralysis may be nsherevl in by convolsions and vomiting, and for several days be attended by fever, pain in the back and limbes, and diffined or paraphegie paralysis. The symptoms, loweever, are nisually much less viobent ; cepecially is it moticemble that the prin is (ustally) slight or altogether absent.' 'There are no muscular rigiditios or spasums the reflexes are malliveted mutil they legrin to diminish, - thus are never exagereratert. In the great majority of eases the initial paralysis recedes atter a few days, and remains limited to certain groups of musides, whieh alome atrophy and lose their edectrical reactions. The batter phernomena are produced with special rapidity.

Dariug the periond of suspicion the diagnosis should ineline towards antrion palio-myclitis, on acome of its much greater frepucoly, even after a trammatism.

Among the other systematic disenses of the cord, true lowemoter ataxia is almost manowow in childhonl. Friedreide's dismase is chanaterizend by its insidions mareh, its hereditary character, and the precedene of ataxio over patalytie symptoms. Selemsis of the lateral colums, oceasioning the spastic paraplegia or hemipheria which is by no means rave in childheonl, is attended by a history of eerelnal disease or of focal myelitis, or by symptoms pointing to the persistence of one or the other.

If the question of diagmosis has been narrowed down to a question betweon common myelitis, tramserse and foral or diffise and aseouting, moningitis, and hemorhage, the third step remains to be taken in deeding betwed there dires.

Inflammations of the meninges and cord are nsually associated, and the term meningo-myelitis, thongh intended to be limited to lepto-meningitis, is for chideren the most appropriate designation for all forms. The disemse may prodominate in either the rord or the meninges, but is hardly wer limited exclusively to one or the other through its entive course. The predominane of pain, musenlar apasm, and rigidity in the back and limhs points to meniagitis; the predominane of motor paralysis, and still mare the oxpmrenee of sensory paralysis, indieate myditis. (See Compressinn Meningo-Myelitis.)

The diagnowis of hemorthare depends, as has been shown, mainly on the suddenness with which the symptoms ocemr. Hemorthage into the meninges is attended with mehe pain and little paralysis at the begimning, but this is liable to inerase from eompression of the cond by the retracting thoul-rlat. With hemorlage into the eord the paraplegia is sudden and complete from

[^283]the Pexgiming. Sudden exacerphations of symptoms in the comse of a myeditis oflon indicate an intramednlary hemormage.

Pathodogical anatomy.

The puthological anatomy of meningitis, myeditis, and indmapinal hemorthare is, like the elements of dingnosis, the same in the child ats in the adult. Only a bride deseription mead, therefore, be given.

Tuberembar dismase, relatively rave in the adult, is much more firequent
 of the cord exists ats a solitary thmor, giving rise to the symptoms of tumor of the cond, which are so dilfiente to distinguish from chromic myelitis, and whidh, inderal, are immediately doe to a myeditis exeriterl by the thberele.

Compression myolitis, the other most frequent-almest chanaeteristioform of transverse cord-disense in childhomal, has also been describerl.

In chronic myeditis-which in children anparars hardly (ever to nemer exerpt as a result of compression, on, in a sumacute form, as a sequel to acoute myditis-the lesions closely resemble those of 'mompessiom, being especially interstitial, and comsisting in an overgrowth of connective tissue, at first containing cells, but finally losing these and becoming a more or less dense reticulnm which replanes merve-elements. The lesion extends firon the periphery to the centre, the meninges always being simultaneously affected, but it is charateristio that the induration affects the whole hiokness of the corrl. In chronic myelitis the lesion is more partial ; it may alsio be more diffised.

In acute tramserse myelitis the nerve-elements are primarily affecten, the cord is softened insteal of being indurated, and may eren bewome difituent like cream, althongh this last change is said to take phace only after death.

The initial step of the lesion is a swelling of the nerverelements, both of the ganglia-cells and of the eylinder-axes of the tubes. ${ }^{1}$ 'The proeesses of the cells brak off; the mudens becomes indistinct, the protoplasma gramine, finally the swollen and shapeless looly begins to shrink, atrophies, and at last disappears. Correlatively, the myedine in the tubes segments, then wastes; tubes sometimes persist for a long time whose eylinder-axis is survonded by a narrow rim of myeline. These are the fobes which are most liable to regenerate, and that without having traversed all phasess of degencration. In the foens of softeming, besides the swollen or wasted tulus and nerve-cells, appear isolated exlinder-axes, swollen and fragmented, merline drons, the spider-cells of Deiters,-i.e., nenroglia cells whose proweseses have beeome distinct throurh inflammatory swelling, -and the gramlar corjuseles, which represent the mltimate morlification of the nenrongliterills. The tissue is also infiltrated with leneorytes, bloocl-corpuseles, and small angilar and fusiform cells, so that in patches all traces of nerve-

[^284]elements have disappareal, and muder a low power of the mieroseope the patch has a gramular apmanace. The benol-vensels are dilated and stuffed with bood-corpmedow, and many of them greaty thickend by collutar infiltration of the perivasombur shenth. The lumen is sometimes eneromehat upon, and the vessel obliterated, a danger which facilitates neerowis. In syphilitie myelitis the chamateristie thickening of the intima of the hount vessels may be expeeted.

The serondary asemding and dessending degenerations of the cord are the same fin ordinary sottening as for compression myolitis. But, as the acoute form of the disase in children is more frequent than the chronie, time is often lacking for the prodnetion of these secondary lesions.

Meningitis is rately focal or limited to a single segment of the cord, exeept in the pardymeningitis of vertebral caries. Even when it has heon caused by a blow falliug in one phace, the inflammation, thongh most intense at the seat of direct injury, usually extends over the greater part of the spinal camal. It is supposed that the cerebro-spinal fluid becomes a vehiche for realily tramsmitting irritamenta firm any given foems of inflummation. In adnte case there is intense hyperemia of the meninges and the extermal and intermal surfare of the dura, usually associated with simitar hyperemia of the pia, turbid flocentent sermm in the cavity of the and anmoid, opacities and thickening of the arachoid from cellalar infiltation, and athesions of the pia, on the one side to the arachoid, on the other to the nervotissue. The amelmoid cavity sometimes emtains pus, and there is sometimes also a purulent intiltration of the meshes of the pia. ${ }^{\prime}$

Chronie meningitis is inticated by the diffused or localizel thickening, opacity, and outhesions of the membranes. The pachymeningitis secondary to caries is characterizel by an abmendant development of inflammatory grambation-tissue, ultimately psendo-membranes.

Meningeal hemorthage is mequivocally demonstrated by the presence of effinsed blood in the spinal camal or the eavity of the amathoid. If some time has elapsed since the occurrence of the aceident, the fluid portion of the blood will have been absorbed ; only the blood-clot or masses of hamatin cerstals or fibrinons exulation will remain. If the fibrin becone organized into a prendo-membrane, it will be diffientt from inspection of the lesion alone to distinguish between a pachymeningitis and a hemorrlage. But taken tugether with the clinicell history the lesions may establish the correct diagnosis.

Hemorthage into the cord is more difficult to distinguish from myelitis. When a softened portion of the cord is red, capillary hemorrhages at least have ocenrred, and are indicated by the presence in the soffened fortos of hematin and blood-corpuseles. This is the red softening, or "hemorthagic myelitis."

[^285]
PROGNOSIS AND NATURE GF FHE DEFASE.

 (ntsised. This is the torm which is at once by far the most frempent in childhond and also the most favomble. In the idiopathice and trammatic variotios of diserse the damger is manally propertioned to the violeme we the initial symptoms. lint an apparently milat ratio may be rally insible
 and, if matreated, for syphilite myolitis.

Analysis of the anatomical lesions of common myelitis shows that this is essentially an achte neronsis of merve-tissme. It "an be experimentally imitaterl by ligating tho aldominal anta and so coting off the
 therefore, that whatever interferes with the nutrition of the mere-tisume of the eord is eapable of produeing merlitis. Pressure serms to at mot
 interstitial tisame, in whiel, throngh presure, the nerve-dements lomome stifled. Fialls atul other trammatisms, whid canse ervat commetion of the spine and viohent vibations of the nerve-tissne, serm able smhlenly and profomaly to impair the capacity of its nerverequents to appopriate untrition. Infections discases act in an obvions manmer directly to prison ueve-dements. Cold, exposme, and fatigne secm primarily to affere the meningres ; and the matrition of the eord is impained when its blowl-supply is perturhed thongh paralytic dilatation of the matritive bhoul-vesseds of the pia mater.

It is possible that in children the cord may be directly exhamstenl by excresive fatigne, as in adults by sexnal exeesses. 'The lmanar protion of the come is the latest part of the cerebro-spinal axis to develop, and during immaturity its finctions shonld not be exeessively exerted.

In the prognosis of spimaterord discases is involved not only the question of danger to life, but also that of recovery from pamalysis and deformity. 'This has been ahrealy discossed in speaking of eompression myolitis from aries, where the prognosis is, on the whole, good. It has ben mentioned in this comertion that the nerve-tubse of the spinal colmm, like those of the spimal neves, are "apable of romeneration. 'They are loss likely to be se in common thanserse myelitis, probably for the reason that in this the nerve-elements themselves, and not the nomoglia, are primarily, and thas more extensively, aflected. Where all hope of regenerating nervetubes themselves is lost, it may still be possible to stimmbate the functions of the motor path whieh lie in arljacent tracts and are relatively minjured. But there are as yet no statisties which may inform us in regad to this posibibility.

[^286]> IMAGE EVALUATION TEST TARGET (MT-3)

Photographis Sciences

TREATMENT

The treatment of meningo-myelitis varies with the canse. In that due to vertebral caries treatment of the lone-disease is of primary importance. It is curious to see the stress laid by many nemrologist 3 upon cauterization of the back, after the method of Percival Pott, while no attempt is made to immobilize the discased spinal column. It is perhaps equally enrions to notice the records of eures effected by this method, associated only with rest in the recmmbent position and tonics. It is also, remarkable that cauterization should have an effeet upon compression myelitis which its partisans, as Charcot, assert is not to be expected for common transverse myelitis. It is to be noted, however, that both the medullary lesion itself and the bonedisease upon which it depends are affections of conncetive tissue,-here neuroglia, there osseous. It is to be anticipated, therefore, that its inflammation would be more easily controlled by counter-irvitation, which tends to divert nutritive currents to the comective tissue of the skin. The focuil myelitis which begins in the parenchymatous elements of the nerve-tissue, and which consists essentially in their necrosis, will not yield to similar treatment, becanse it is an essentially different disnase. If cauterization has cured the paraplegia of Pott's discase withont the aid of immobilising apparatus, similar cures are on record due to the use of the apparatus without the buming. In American practice the immobilizing brace would always be applied for the treatment of the caries, and is expected not only to facilitate the cure of the bone-discase, but also to arrest the oceurrence of paraplegia.

If, nevertheless, this appear in a child already wearing a brace or plaster jacket, the weight of testimony is in favor of cauterizing the back at the level of the bone-disease, with the hope of affecting by counter-irritation the pachymeningitis.

From this point the treatment of the paraplegia is idencical with the treatment of the Pott's disease,-exposure to air and light in a wheel-chair, eod-liver oil, the hypophosphites, and abondance of food, especially milk. This is valuable, among other reasons, on account of the large admixture of carbohydrates it contains in association with the nitrogenous constituents.

In acute or subacute meningomyelitis ice should be applied to the spine promptly, and nearly continuously, unless the patient complain of chilliness or discon fort from the use of it. The iee does not contra-indiate another remedy,-mamely, extremely hot baths. Intense heat has been found very useful in tetanus, and a case of enre is on record where the patient was plunged for several days up to his neck in a smoking manureheap. Halter ${ }^{1}$ has recently revived this recommendation for tetanus. Whatever may be proved to allay the functional irritation of the spinal cord when due to disease of the mednlla may be expected to have efficacy in the irritation resulting from disease of the cord-membranes. The tem-

[^287]perature and the duration of the bath mist be regulated by the sensatici. of the patient, and by their influence upon his restlessness and pain. ${ }^{1}$

At the same stage of the disease at which ice to the spine and heat to the periphery are required, it is often desirable to apply lecehes along the spiaal column. They will relieve pain, and are to be repeated if this return after ten or twelve hours.

Ergot is given, in the hope of directly contracting the dilated bloodvessels. I arge doses are required,-two or three drachms daily of the fluid extract, or five or six graius of the solid extract in capsules, although this is a less powerful method. The above is the dosage for adults, and it may be graded for children in proportion to their age,-for infants five drops of the fluid extract every hour or every two hours. The detestable taste of the drug is likely to mauscate them less than older patients, and the dilated condition of the blood-vessels of the nerve-centres seems to establish a tolerance. If necessary, the fluid extract can be given by the rectum, at least part of the time.

Tincture of belladoma, on the recommendation of Brown-Sequard, has also been largely used for the same purpose as ergot,-namely, to contract the blood-vessels of the inflamed tissines. But there is much less proof of its efficaey in this respect. An overdose, as shown in rabbits poisoned by belladonna, produces excessive venons congestion of the spinal membranes. It is best given in small doses frequently repeated: thus, for ehildren five drops of the tincture every hour.

To quiet the excessive pains of meniugitis, opium is often required, and seems to be free from danger. Opium is the basis of treatment in cerebrospinal fever. ${ }^{2}$ Its effect in slackening the oxidations of tissue, and especially of nervous tissue, ${ }^{3}$ may possibly tend to increwe the resistance of such tissue to the disintegrating influenees of aente inflammation. Thus, while the palliative influence of opium is principally required for meningitis, it is permitted from the analogies with the epidemic disease to hope for some carative influence of opium upon inflammation of the cord itself. For this reason, opinm is to be preferred theoretically to chloral ; yet chloral may often be used symptomatically, to quiet restlessness or procure slecp.

Iodite of potassium has been given in the sceond and third stages of

[^288]meningitis, with the intention of facilitating the reabsorption of inflammatory exadation. It has also, in large doses, - from sixty to one lumdred and fifty grains a day for adults,-ben strikingly beneficial in syphilitio. discase of the eord. Its use is then to be combined with that of meremial inumetions. 'The empirical use of the iodide in many forms of cerehrospinal disease of madefined camsation may perhaps have often been sureressful on aceome of the really syphilitic nature of the cass. ${ }^{1}$ But ioxlide of potassim has also been nsed with apparent sucess in cerebro-spinal fever, ${ }^{2}$ and, as in the case of opinm, its inflnence must be symptomatic. Surh sucess justifies its employment in common meniugitis and myelitis. The experiments of Benelikt upou frogs with iodide of potassimm would indicate that this drug has a special action upon the cervical region of the spinal cord, with the respimary (and cardiac) eentres contanced in it. These, in at sufficient duse, it first irritates and then paralyzes. ${ }^{3}$

From sucis experiments no definite or prexise view conld at present be framed of the therapentic action of iodide of potassimm; but they at least indicate an elcetive tendency of the dirng towards the spimal centres.

If there be reason to believe that a spinal meniugitis is due to rhemmatism, as shown hy its alternation with arthritis in the conse of the same illness, or else in the same patient, speeific treatment by salicylates must be instituted. This form of meningitis is usually much more favorable than the others, and it is important, therefore, to examine scrupnlonsly for its; indiantions, as the history of the patient, high fever, strongly acid uriue, profuse acid sweats, freedom from cerebral symptoms. ${ }^{4}$

If meningitis assume a chronie form, yet there be reason to hope, from its localization and from the improvement in the general health of the patient, that it is not tubercular, great reliance is to be placed on comuterirritation. Narrow strips of blistering plaster may be applied over the spine, sa as to maintain a permanent vesieation ; or this may be applied at intervals of a week, and during the healing of the blistered surface hydrotheranentic treatment may be employed. The cold pack, prolonged so ats to induce sweating, and the alternate hot and cold donehes, are of real value in dissipating the hyperemia of chronie inflammation.

[^289]ammalundrect philitic creurial ercturo-suceresdide of 1 fever,?

Sucll s. The indicute e spinal use, in a
esent be at lenst
rheumat he same must lo ible than y for its id wine, h of the counterover the pplied at e hydrol so as to value in
s, the last ient. She n , in duses ty to walk e exclules

Bd. exxri. vered; the

Benclikt,

- cord, and the spinal

In chronic inflammation the iodides and mereurials, especially the bichoride of mercury in cinchom, ${ }^{1}$ have long been held to prossess a sio cifi influene in promoting the disintegration and realsorption of phastic exulations. The experiments of Horgyes, ${ }^{2}$ showing the rapid combination of ioxline with the albuminoms molecule, lead the author to infer that by this mens the lowly-organized tissue of intlammatory exulation may becone starved out, and hence reabsorption be effected. In syphilitic infection this action may possibly be also exerted upon the mierobe of the constituti, nal diserse. ${ }^{3}$

Local massage is, with the views of the present day, a theoretionally appropriate remedy for inflammatory exulation situated much less profomilly than many for which it is now being tried. No cases of its use in children are, so far, known to the writer ; but it is most rationally indicated, even in (elses where there is little or no paralysis, but where the symptoms of irritation and spastic contractures persist.

The employment of electricity in meningo-myelitis is one of the most disputed questions of therapentics. The passige of the constant current wer the spine-i.e., aceorling to the experiments of Legros and Onimas, through the eord-is alleged to facilitate the retrogression of a myelitie process, and to favor the reabsorption of meningral exmbation. ${ }^{4}$ It is advised to pass the current for a short time only,-say, five minutes,-but the direction of the current is of little consequence. ${ }^{5}$

Thare is much more agreement on the value of electricity directly applied to paralyzed nerves and musdes than on that of the application of the current to the spine. Galvanism does seem to have the power, to a ertain extent, to retard and limit the degeneration and to facilitate the regeneration of nerves. The elinical history of patients teated by galvanism is undonbtedly full of illusions, from the tendency to spontaneons recovery in curable cases, and from the probable influence on the cord of the treatment directly applied to it. Still, galvanism to the paralyzed limbs should not be oritted from the treatment, so soon as the anente symptoms have completely subsided. Great care is required to avoid fatiguing the paralyged nerves or muscles by the galvanie stimulus. The patient must be carefully watched, and if increased irritation or weakness follow the treatment it must be interrupted, or be lessened in frequency or severity or duration. The faradic current must not be tried until after toleration for the galvanic eurrent has been well established. It is useless so long as the

[^290]reaction of degeneration persists; nod it is ahways useless over the comp, to which it does not penetrate.

Strychnine, introdnced by the famons reommendation of Magendic, seems to be rarely well tolerated by ehildren, even in flaceid paralysis.

When this form has lasted some werks and seems to have beemue stationary, it may be desirable to proeure supporting apparatus, by which the child may be enabled to move about in a sitting position. A brace should remove the weight of the body from the spine to the rigid uprights; supported on the pelvis. With this buace on, the child shond be placed in a whel-chair, that he may propel himself by his arms. In many cases the paralysis which persists after an attack of meningo-myelitis is fintetional, and quite disproportioned to the organio residues of the previons inflammation. Such functional paralysis requires the stimulus of voluntary exertion, while at the same time the patient is protected from any manceessary exertion in susi inining weight.' It is needless to add that in those cases which have beeome chronie the most roborant regimen and treatment are essential.

From what preedes, it is evident that no radical difference exists in the treatment of meningitis and that of myelitis. The treatment for the firsi constitutes the treatment for the incipient stage of the second; and the treetment of myelitis represents the therapenties of the advanced stage of meningitis, in which, indeed, as a rule, some degree of myelitis also exists and is the proximate cause of the symptoms. The special indications for the treatment of the compression myelitis of caries have been mentioned. In addition to these, and if such special treatment prove insuffieient, the case is to be treated on general prineiples, as has just been detailed.

The treatment of intraspinal hemorrhage is negative and expectant. Evidently nothing can be done to enre a hemorthage which has taken place. The indiations for treatment are to diminish the hyperemia in which the hemorrhage has originated, or which is collateral to a vasenlar thrombosis that has been the indirect canse. This indication vactically means, in the majority of non-trammatic cases, treatment of the entire anteeedent discase to which the hemorhage is secondary. Immediately after the oceurrence of symptoms of hemorrhage the patient should be phaced in bed, in the prone position (as far as possible), with an ice-bag attached the whole length of the spine, and absolute rest enfored. Ergot is then given, as in acute myelitis. The treatment of subsequent symptoms is that of the meningitis or myeitis consentive to the hemorrhage, or in the midst of which the latter may have onemred.

[^291]By Wharton sinkler, M.D.

Synonymes.-Infantile paralysis; Essential paralysis of children; Acute atrophic paralysis; Infantile spinal paralysis; Atrophic paralysis; Regressive paralysis ; Tephromyelitis.

Under these various titles has the disease of which we are about to treat been deseribed. It has leen very commonly called infantile paralysis, and, as a rule, this term is understond to mean the form of paralysis muder consideration. The name is undesirable, however, because it does mot designate what the character of the disease is, for we may have various forms and varieties of paralysis in children, all of which wonld properly come under the generic term "infantile paralysis." Neither dons the name "infantile spinal paralysis," proprosed by Dr. Mary P. Jacobi, deseribe it more fully, as spinal paralysis in children may arise from pressure myelitis in Pott's disease, from thmors, from spinal meningitis, or from other causes. Aente anterior poliomyelitis deseribes the pathology of the disease, and therefore the nane seems preferable.

Definition.-Polionyelitis anterior is an aflection in whech loss of power in the voluntary muscles oceurs suddenly or in the conrse of a few hours or days. It is maccompanied by sensory changes. After a few days the paralysis leaves some of the parts originally involved, bat the others undergo wasting and remain powerless. The paralyzed museles become atrophied and relaxed, and the shortening of their opponents canses permanent deformities in the affected limbs. The disease is not peenliar to children, although a large proportion of the cases ocemr under five yoars of age, and in the infantile form there are certain distinct features which separate it somewhat from the adult type.

History.-The first writer who deseribed this discase was Jacob von Heine, who wrote a monograph :ipon the subject in 1840, detailing the atrophies and deformities which are characteristie of the affection. Rilliet and Barthez also treat of it in their work on Diseases of Children, monlished in 1853. Duchenne, in his treatise on electricity, disensses the disease at length, and asserts his belief that its origin is spinal, although no post-mortem examination had at the time been made to confirm his view. This author applied the name "arute fatty atrophie paralysis," indicating
therehy the museular changes which take place. It was not mutil $186 ;$ that distinet atteratioms in the spinal cord wave ohserved first lay Combl, and in S665 lrowost and Vinpian lexated the rescontial anatemical lesiom in the anterion horns of gray matter in the cord. Ladekiant Clatise comfinmed these ohservations in Isfis. Charent and Joffroy in 1870 reprorted a case in whid with great care and thoromgness they peinted wit the degeneriation in the anterior gray horms. Sime then mmerom antopsion tave besen reported in other observations in Gomany, Framer, Euglam, and this comentry, and in all of them there has heen striking miformity in the lesions fouml.

Varieties.-There are two forms of the disease, -the aconte and the sulatente or chronic. The former is ly far the most frempently met with in children.

Etiolog.y. As before momked, the disease may ocem at any periox of life, but is much offener fommbluring the first there years than at any other time. Aceording to Gowers, of all the cases moder an years three-fifiths orem in the first two years of life and fomr-fifits in the first three years. It is infrequent during the first year, but it may oceme at that time, and in oceasionally comes on som atter birth.

There is little doubt that a comsiderable momber of cases are congenital. These cases seldom come nuder the observation of the physiecian, for they are nimally taken to an orthopedic surgeon for treament of the clab-fien which is the prominent fature. Dr. T. (. Morton ${ }^{3}$ believes that must canes of congenital club-foot are the resulh of an intra-uterine patalysis, fire in all when examined there is palsy of some of the museles in the limbs afferedel.

The forlowing cate is a good illnstration of congenital dub-foot from an intra-uterine spinal !aralysis:

Edward P. II., nged thre and three-fourths years. Seen March 17, 1890. When his mother was four or five monbl ahtanced in prognance, she saw a man "who walked with his feet extended in the ain, and whe was much nofected therehy. The child was bom with eluh-teot. On examinalion he was find to have pare valgus of the right foot. The platar ard is abent, giving rise to that-foot.

The right enlt is seven and a half inches, the left eight inches; the right thigh is nine and a half inches; the lefi nine inches. The right leg is there-eighthe of an inch shorer than the let heg, and the right fiow thee-cighthe of an inch shorter than its tellow. Electrial examimation shows that the maseles all respond to the faradic eurrent exept the posterior tibial.

One of Ducheme's casce was attackel as carly as twelve days after birth,
Bramwedl ${ }^{4}$ records a case in which an attack of acute anterior polinmyelitis appears to have developed when the child was three weeks old. The patient, however, was not seen mitil she was twenty-eight years of age,

[^292]i) $186: 3$ Comil, wion in whimed dal ation aremal we lewn mind thiss el lexions and the with in revioul oll my other rer-litilis ce yeurs. ce, and it
"qenital." fior thery cluli-fine maty cal|cis for ilt all affered. foot firm

When hix alkell with 1 was luern fivot. Thee It thigh in of an inch its folluw. except the
and the evidene of the uge at which the ntark began depenterl on her having remombered that she hoard an annt say that the patalysis owemert at the age of there werks.

Of there humdred and fithy cates which I have classified fommy own
 the age of the pationt at the mase of the attack is moted in there hmulred and thirty-five cascs. Of these, fifty-six cases nemored muder one yentr: one pationt wats but six weeks of age when attacken, two were hare monthe ohd, finur were fime months, two were five months, deven were six months, and thirty-two were betwen six months and one gear. Between ome and two years of age ome handred and thity-fom of the pationts were attacked, betwern two and there veats there were seventy-seven cases, between three

 forty-seven of the three hamed and thirty-five mases owemed mulder there years, and the average age of the attack in two honded and fory-fime cases wat two yars, one month, and two and one-fifith days.

Mostas.	Years.										
	0	1	2	3	4	5	6	7	8	9	10
0	2	19	27	19	8	0	$\mathfrak{9}$	4	0	\because	1
1	0	11	2	1	0	0	0	10	0	0	$1)$
2	0	1	1	1	1	0	0	0	0	0	0
3	\because	9	8	0	0	0	0	0	0	0	0
4	4	5	1	1	0	0	0	0	0	0	0
5	\pm	2	0	2	0	0	0	0	11	0	0
0	11	23	$!$	1	0	1	1	\because	0	0	19
7	3	1	0	0	$1)$	0	0	0	0	0	0
8	1	6	1	0	0	0	0	1	0	0	$1)$
1	6	1	4	0	0	0	0	0	${ }^{1}$	0	0
10	6	5	1	0	0	1	()	0	0	1	0
11	4	4	1	1	0	0	0	0	0	0	0
Total	41	92	50	99	9	2	3	6	0	3	1

Averuge, 2 years, 1 month, 2.21 days.
It is stated bey some writers that boys are more frepmoty attacked than girls, but from my own cases it doke not appear that the difference is conspichous. Of three hundred and fontr-five of the cases to which I refer ahove, one hundred and eighty-four were boys, an one humdred and sixtyone were giris. In adults, however, the diseatse is probably more fi" fuent in males than in females.

The hereditary influene is not great: oxcasionally two cases are met with in the same family, but this is rare. In the eases which I have examined there were three instances in which a brother and a sister suffered from the disease, and in one case a cousin also had anterior poliomyelitis.

In one of the instances in which a brother and a sister were both
attocked, we are reminded of the epidemie reported by Cordier, of which I shall give all acenont later. The cases were as follows :

Abstract

Raph S., aged three and a hulf years, mod his sister, two years older, were bathy until July, 1886. The girl wastaken sick on July 2, with fever and pain all over. Thin temperature was $10 \% \mathrm{~F}^{2}$. After three or four days she got $n \mathrm{p}$, bit was lune und walked stitlly and with a limp for a fiw days, ufter which she recovered finly. Tho boy was taken down two or three days hiter, with fever and general soreness. He cried with the puin in nis limhs. Ho lay on a bomge for three or four days, and when he got up he could mon walk or stand. Both legs were egually affected at first, but in a few days the right deng began to improve nud foon recovered entively. When 1 examined him, ten months after theattack, ho was able to walk well wiht the aid of an npmatus on the left leg. He combla make every movement with his leg, but it was weak and greatly atrophied. The right thigh measured ten and a half inches, white the left was bet eight and a lulf inches. Tha 12 iscles of both legs responded to the slowly-interripted fandic current, lut in the left it requirel a stronger current.

In many of the cases there was a history of nervons disease in the family ; in two instances a sister had chorea. Dneheme reports an instanee of twin brothers who were simultanconsly attacked with poliomyelitis anterior after san attack of measles, and Seeligminther reported three brothers in the same family who were affected with infintile paralysis.

The season of the year is a most conspichons fartor in the cansation of this disease in children,-a fact to which I called attention some yours ago.

Of the three hamlred and fifty cases above quoted, in two humbed and seventy the scason in which the attack took place was recorded: of thes there were two hmolred and thirtem, or 78.8 per cent, attacked in the hot months of the year,--that is, from May to September, inclusive :

The accompanying diagram exhibits the relation between the temperature and the onset of the attack of polionyelitis in children. I have been enabled, through the courtesy of the Chicf Signal Officer at Washington, to give a table of the mean maximm temperatere, the relative humidity, and

[^293]which
hanlthy er. The I walked ras tuken e puin in rond not right lug ithe after He could the right res. Ther the left it

- in the instanc\% tis antethers in ation of ars ago. dred amed of the: t the boot
temperahave been ington, to idity, and
the anthal latometric pressures at Philadelphat covering the periok of time since areumate records lave been kept at the Signal Office. There will also

1. Mean maximum temperature for sixteen years, 187.1 to 1890 ; 2, dhagram showing month of onset of two hunileal and thirty-live cases of pollomyellts, 1872 to 1890; 3, netual average barometrite pressure for seventeen years, 1873 to $18 \% \%$; average relative humblty for nineteen years, 1871 to $1890 ; 5$, menn datly range of thermometer for ten yeurs, 1876 to 1885 , inclusive.
be found a curve giving the mean thermometer-that is, the average daily range of temperature-for ten years. This has been taken from a diagram in a paper by Dr. Morris J. Levis on "The Scasonal Relations of Chorea and Rhenmatism." ${ }^{1}$ My friend Dr. H. W. Cattell has kindly assisted

[^294] рияッи。

 montl the bumber of cand was rompanatively sumall.

 this disense aeroll in the smmere
'The intlabere of heat is strikingly shown in a case reported lyy lere Dukworth: *

One of my ease was attarked after long exposinge to the sull :

Abstract

Magie d'l), was well math nime yeme of age. In Angust, 1873, she was me lay expmed wery math to the sum. 'That night sla was faken sick. She hat no delirima, and There was no hos of semation, and no tromble with the bather or howels. In fent werk she hegan to meve the arms, and in six werks he begm to nse the loft leg. When som at the uge of aben, the right leg was ntrophiel, the thigh being two inches smatler than the left, and the calf she nut theremighthe ine hes smaller than its fellow. The kime was contactal, und there was slight pes equinus.

Exposure to cold and chilling of the body undonbtedly have a marked

[^295] he highow the masia (14 wly. Thw ! (1) surl in fillow: ?:Is, Hu lamidity 1' muinture momill,10\%. 'Flw' at cast of lar ralative of hawn : \because in whin
twere heme a in adnllo. ansmif if

amhenal-hinulmilumel to the fins mull will Y̌..d numorne "lizatiou mu nhthe latere.
was mur day Ideliriturn, whe Ns: in priwer. II four wewhs When sern it ather than the The knve was
influmere upun the prodartion of these cases. In meverat al my patiente it was anderd that the child had luen sitting on a stome stop prion to the attack, or that it had beomme chillad affer overhating. Gowers has met with two gasem in which the disanse followed sitting on damp grass.

An intere tiag exampar of the influene of hot weather in the emsation
 ' 'ardies.' 'This auther saw thirteren "ases of the disume during the montha

 momberes and with "plail severity. Almost all of them were in groul heath

 of the affertions. In alomest wery wase the lowith of the chith was geond loffore the onsed, which was withent premonitory symphoms.
'The fesor was variable in intensity, the extent of it bemg apmonty groverned by the gravity of the diserase on the extent of the hesions in the
 ing was also doberved, and was pressem in all exerpt the finur fital catam, The patalysis was present in several mases after hereserowl or third day, rither in the lower extremitios atone or in all four extremitien at the same time.

In some rases the nerk-musders were so paralyaed an mot to lo alde to sustain the weight of the heme ; in wher cases the extent of the paralssis was sug great that the chitdrem were mable to muse or to ary. In these susere anses the lesions were wo limited to the cord, but extement to the
 cases. In the fime fatal mases death came at the embl of the third day, the patients being the gomugest of the seriess. In thase which remosered, patalysis did mot disappar with equal mapility in all! : in some the were were improvement and gradual disapparame of the patalysis, whiel fimally remainoll fixed in a single musele or gromp of museles, while in ciluer castes atrephy and deformities momained.
'The anthon's opinion in regary to these cases is hatt they constituted an cpidenie identioal with cpidemies of disemsess whose infections chanater is well recognized. In regrave to the infective agent in this discase, it is lomlieved that it did not anter the arganism with the fiond or drink, mor by incenlation, but with the air that was inspired. The propagation of the disease was traced from one patient to aboher accorting to the dates of invasion and the relations which were snstained between the different families that suffered. The eomtagions character of the disease was believed by Cordier to have been demonstrated by the fact that one diaid was attacked thirty-six hours after a visit to another who was already stiffering from the

[^296]Vol. IV.-44
disense. In two other emses a luy and his sister were exposied, and the finst evidences of the disamse were apparsat ouly eight or ton homs atterwarls.

While these coses ame very interesting, the fide are not strong comph to warmot ins in anypting the amthor's thery as to the infertions chament
 aliss.

The symptons in this eppomie ditter comsiderable in chameter firm
 sions and the fitality ame unusual in this disemse. 'Tluse facts do not himeter
 is well knew that in all epidemies the untinary typer of disemse change beinge more sowere sud mome tisal.
 of polionveditis. In seweral emses which hawe come meder mer notion there
 firtignel and within twent-finu homs was attacked with his disems. "Ihe

 a fall, and in thow meses two days hater. In ome easo the chihd had at fall in which the elavide was boken, and the attank of poliomeditis came or there werks atherwands: in mother case the dild eell out of lad, and

 ing-periokl, it "emos likely that there is some inthence produest he demi-
tha tinst amins． chough hamotw ： or fimun （ W） thiment is，fir it change．

In ：ltak ine them yl minh
（1．Ilw
tion．While we de not believe that myelitio man bex mend he dentition． sill while tevthing the merous system is partionlarly susieptible to impres－

 is mot sperially hishle to the onset of this atfiettom．
 of the disemse．Mast of the dhidren are in exiedlem hemben at the time of its onsed，but a momber may have layd shflering from simmer cemplaint．
 one of the cxanthems．

 twelve：and pummonia，are emse．

Climate exems litalo or mo inthemer on the pmanetion of the disemse

 firom chatres．

Symptoms of the Acute Form．－Is a rule，the patient，who has layn
 Ho is mestess and fretfil，and eries when moverd or handial as if them wome
 sut the morning following the begiming of the attark，the whild is fomed
 bast fir thew or fion days．A few da＇s ather the sulsidenos of the fixer

 used fairly well．＇Then imporement tryins in the legs，sombe of the
 wow the progerses is slow，and it com gromally be deteminest mow whoh
 fing，and the bather is matheoted．Som the pampart limbs bergin to

 made，it is fommed that atere a fiew days them is mo meponse to the faradia

The extent of the paralysis varies，hat it is soldom that all the museles
 gromps of museles in one or hoth limhs remain pamatyand，and the putent
then seon begrins to walk with support. The following aase ilhastrates the features of a typhal ense of the arente form of this disense:

 wenk and feroble.

 hip down, excopt in the flexors of the leg, in whieh thope is slight movement. He omb

Symptoms of the Subncute or Chronic Form.-In this varinty the child has lithe fever or constitutional disturbames, and the onset at the paralysis is gradarl. The lass uf puwer shows itself as a weakness in ome leng, the child limping for a few days and getting worse be degrees. In a werk or langer the paresis extends to the shler leg, and in the conme of a few days more both leas are more or less completely paralyate Ather at statomary promed of a few werks regression Cakes place, as it does in the acute form, some of the moseles reowering power eompletely, while others memain palsied.
(Gowers consilem the smbate form very rave in chidren, and sats that in it there is mo regression, but a stenly progressinn, of the paralysis. Ho is certainly mistaken in this, for eases are met with in which there is a history of gratual onset of the paralysis followed by return of peover.

For example, a bey whom 1 saw at the Inthmary for Nervons bisenses was woll and netive until the age of two suas. In inls, 18it, it was notiod that he was hame in his right leg, then he herame wesk in both lears, and later both arms and the tronk berame son
 time he had a lible diarhas, but no fever was observed. It the end of eight of nine weds he hat eompletely hast pewer in the legs, hat not wholly in the urms. Alume two months later be began to regain pheer in the lugs. When seen in Mardo, 1875, right monthe after the attack, the left leg had reguined all the mosements, but it conld not sut support the weight of the body. The right leg was powerless, but the foot conld be feebly llexet and extended.

Erb" reports a case somewhat of this kind:

A girl of als legran to luve pmalysis of the right leg; it eame on gralualy in duly,

 was able wo watk und the olectrical renctions were mo mil.

Symptoms in Detail.-There are seldom any proplomes. Sometime a child shows a disindination to walk or to stand for seseral days bedere an
 A patient of Secligmialler's sulfered from butermitcont musionar combations for six monthe before the onset of the paralysis.

The disconse may lo divated into fome stages:

1. The initial stare, in which the paralysis is inemoning. This may
 sarioty. Ocemsamally there is an initial stage, the paralysis coming on almuptly.
2. A stationary promer, which may hast from me day to a month or rever lougere.
3. The stage of regression, which is the charateristic feature of the
 remain powerdes. This stare hasts from one to six months.
4. The chronie stagr, in waich the musides atroghy and mudereo fatty dogemation, comtartures take place, and the limberases to grow, and ber romes cold and motled in apparane. Slight and gradual improvemem makes plare in this time and may go on for many mombe, but nstatly att ant almest imperesputhat rate.

There are several mokes of invasion. Finst, the attack may he alsoblutely sudden, coming on withont waming on previons sickness. In one of my patients the child was at phay and there was a sudden lows of power in the legs.

The following "ases show how atrupt the onset may be:
Lewis s., uged two yemrs. The youmpet of six chidren, the others lefing healthy.

 bin fiall ower, and on extmimation fonind that there was complete lose of masular power in the left heg and purtian !ass in the loft arm. Ite bergan to tree the arm in a week, hat it was a month hefure the could sit ulone or draw up the lag. On the dhy of the matack he

 rouple of weds. What examined alowst a year later the lag had improved bat bitle. The chice loss of pewer was in the flexurs of the foot.
 a very hot day, he hat been phying in a danp yari. That evening he vomited and bat fiver. Two days later, white ruming about, his mother motieed sudden loss of power. The parulysis was general and emplete. For two werks he was anable to sit up. Then he began th be his arms, and soch after to sit up and to we his teft leg. On examination five weeks after the atack the right leg was still paralyged ; he conld move the toce, but could move no mher muscle. There was no reaphase to the furadie current, but twenty cells galvatie current gave good reponse. Two years, later there was power to swing the leg from the
thigh. There was still total loss to the faradic current, and the renction of degeneration was present to the galvinie current. Twenty eells produced contractions Anclé> KCIC.

Walter M., aged seven. When four years old, on April 11, ufter walking in the sun from nine A.m. until two r.m., he came home walking bady and comphaning of pain in the back. That aight he had some fever and delirium, bot no convolsions. Next day he continued unwell. Had epistaxis and pain in the left brow. He had some pain and sorene.. in the extremities. One day later, while sitting on a trank, at nine a.m, he zuddenty fell off, and was found paralyzed in all his limbs. He was not uneonscious. His neek wis stiff, and tenderness on movement lasted two weeks. In one week the arms began to improve, and in three weeks he could use the left leg. When seen three yeurs hater there was loss of power in the extensors of the right foot and in the flexors of the left.

In a considerable number of cases the child is fomed to be paralyzed in the morning after a quiet night's sleep. In the majority of cases, however, sickness of some kind precedes the attack for a few hours or days.

In two hundred and fifty-fonr of my cases in which the child's condition was noted, in one hundred and seventy-eight the attack was preceded by indisposition of some kind ; in forty no sickness was observed immediately before the attack; in thirty-six it is not stated whether there was sickness or not. In one hondred and thirty-two of the cases in which siekness was observed preceding the attack the most conspicuous symptons were as follows:
Fever 57
Fever and chills 5
Fever and diarrhea 8
Fever and vomiting 21
Fever with vomiting and diarrhea 10
Vomiting ale te 3
Diarrhoualon 12
Vomiting and whea 7
Muscular hyperaesuresia 9
Total 132

In two eases several lumbricoids were passed after the administration of a vermifuge at the time of the attack.

The length of time between the diseovery of the paralysis and the begiming of the general "constitutional disturbance varied considerably in the two humdred and fifty-four cases in which it was noted:
Immediatcly after 42
One day after 40
Two days after. 15
Three days after 16
Four days after 3
Five days after 2
Six days ufter 2
"Several" days after 2
One week after 11
Two weeks after 13
Three weeks after 8
Four weeks after 4
Five week after 1
Severul weaks after 6
Two to seven months after 8
Uncerwin,--that is, often it was not noted until the child began to walk 34
Before my symptoms 3
Not stated 46
Total 254

As to the charaeter of the fever preceding these attacks, it varies in intensity. Sometimes it is very slight ; ocasionally it rises several degrees above normal. In a patient of Barlow's the temperature was 104°. There is no relation between the intensity of the fever and the degree of the subsefuent paralysis, as in some of the most complete cuses of paralysis the primary fever has: been very slight. Conmlsions occurred during the initial iever in but a small proportion of my cases. Of three hundred and fifty (ases, in one hundred and ninety-four there were no convulsions; in thirty convulsions oceured ; and in one hundred and twenty-six it is not stated in the notes whether convulsions oceurred or not.

In Seeligmäller's cases, convulsions ocenrred in eleven ont of sixtyseven cases. Ducheme reports thirteen ont of seventy; Heine, nine out of eighty-six.

The convulsions are usnally slight, but oceasionally they are severe and general. Delirinm may follow the convulsion for a time, but this is unusual exeept in older children.

As already remarked, the time which elapses after the onset of the general symptoms before the paralysis has been observed varies. Frequently the severity of the symptoms has been so great that the patient has been unable to make any effort to move, and the paralysis may have existed for some time before the parents or friends have observed it. As a rule, when the patient becomes convaleseent and attempts to get $u p$ it is found that one or more limbs are paralyzed. In the most extreme form of polionyelitis the patient is mable to move hand or foot, or even the head, and very frequently in this condition the paralysis is ovenlooked because the inability to move has been attributed to general weakness.

In fifty-seven of my three hundred and fifty mases there was paralysis of all four limbs at the onset, and in twenty-two of these there was paralysis of the trunk and neek muscles as well.

Some writers speak as if at the very onset all the extremitics were always palsied and rapid regression took place, but I am sure this is not the case. The paralysis may be absolutely nomoplegic from the onset, and indeed even a single group of museles only may be paralyzed.

In a patient whom I had the epportmity of seeing the day af r the attack there was paralysis of the ri,ght arm alone. The case is as follows:

Jeremiah D., aged one year. Wis seen August 9, 187\%. The day previous it was found that he could not use his right arm. The child bad been sick for some days with fever, and was nervous, but did not cry when he was moved. He had eight incisors, and
the groms over the molars were not swollen or tender. The boweds had been undisturnem, but ho vomited two or thee days befare the puralysiy cano on.

On examimation be was fomed to be a henthy, well-nomished whild. 'There was an spimal tenderness ar genemal liyperasthesia. He conld mowe the flugers of the right ham mad thex the wrist, but combld not extend it, nor conld he move the rest of the arm.

The extensors of the wrist responded to two inches recoudary induced current, but in
 at all to the lamblie curront. These mascles conld be mase to contract by thirty cells galvanie, the corrent being reversed.
 the following note was made: "Slight power of movement exists in the triceps, but nonn in the biceps. 'The sempuhar muscles ure vasid. ${ }^{\text {." }}$

This was one of the mare enses whero the museles of the forman esempe when tho upper urm is puratyed.

The most frequent form is where luth legs only are paralyzed at the onset. In the cases which I have talubated the following is the distribution of the paralysis at the onset, aud also at the time when the patients applien for treatment:

As yet we have not had sufficient competent observation during the initial stage of the disease to know the exact character of the paralysis at the onset. But few cases have heen recognized by the attending physician at the begiming ; in fact, in the lange majority of eases the physician has not been catled in mutil after the paralysis was observed by some of the family. In one or two instances which have come under my own ohservation, in which there was a plysician in attendance during the initial symptoms, the paralysis was not observed matil after the febrile symptoms: hasd subsided.

The original extent of the paralysis does not by any means correspond to the extent of paralysis observed later, because within a few days from the onset recovery takes place in certain of the affected limbs,-regression, as it is called.

Certain of the muscles sem always to cescape paralysis: paralysis of the facial museles is rate, and the muselos of the cyelalls, ruts, amb larynx ulways essapr, as do the diaphagm and the interenstal mosedes. This fant exphins the absence of any interference with respination. In the alult form of this disease facial paralysis is sometimes oloserver ; I have met with it in oae instance myendf, and in this case it was donble. Seguin reports a similar ase.

The regresuion of the original paralysis is remarkable and very interesting. In a few instances complete recovery serms to take place in all the afferted parts. For exmole, in the siomalled temporary paralysis of Kemedy and Frey ${ }^{1}$ there is complete motor paralysis of all the muscles of the tronk and extremities, followed in a few days by recovery and mo trace of the paralysis remaining. 'This form of the disease is very rare, but Kemnedy reported several examphes coming under his own observation.

Barlow reports the eate of a boy who at the age of five mombs was atfected with maiversal paralysis but recovered contirely exept in the extensor bongus digiternin of the frout.

Alhongh these exceptional enses foreor, it is far more common to find that the regrecesion of the paralysis is only partial.

Lahorde ${ }^{2}$ has remoded a case in whid there were no fewer than there separate attacks in the same chikl. There was complete regression atter the first two attacks, but after the thind the paralysis was permaneme.

I have seen a case like Laborde's. The patient, a gind of eight, hand an attack of paralysis atfecting both the arms and legs, in July, 1888. She waked one moming wih both lens paralyond. The arms were maffected at first, but after fiour or five weeks they became gradually palsied, so that finally she eould not use them at all. In two or three months she began to use the arms, and by November of the same year she was able to walk about. She continued to improve, and during the following year and a hall her mother says that she was ats well as ever, exepet that the right log remained weak and she swong it in walking. In Junc, 1890, there was an attack of general muscular weakness, but this lasted only a day or two. Two weeks later, that is, alont July 1, she began to lose power again. The paralysis came on by degrees, hegiming in the legs and extending to the arms. By August 1 she was paralyzed in both arms and legs, and the trunk muscles were so weak that she conld not sit alone. At times she could not support the hated.

She was now admitted to the Infirmary for Nervons Discases, and there was found wasting of the arm and leg muscles. Inability to sit alone, and to move hands or feet; the knee-jerk was alsent; muscles did not respond to the faradic enrrent, and the galvanic current showed the reaction of degeneration. The sphineters were maffected, and sensation was good.

[^297]It is noticeable how mueh more frequent the paralysis is in the lower than in the upper extromities. By reference to the table on page 696 it will be seen that of the three hundred and fifty cases the paralysis was confined to the arms alone in bat fourteen instances, while it frequen tly attuckenl either one leg alone or both legs.

The hemiplegie form, a!though rave, doos ocenr, as is shown in tho table, where there are twenty-six instances of this varicty of the dismase. Of these twenty-six cases of the hemiphegic form fourtern occurred on the left side and twelve on the rigl: side. Even a crossed variety of hemiplegia may oceur. There is one example of it in my table, in the table of Ducheme there are two, and Sedigitialler has reported one instance of this varicty of paralysis.

The one-sided paralysis of poliomyelitis is radily distinguished from a cerebral hemiplegia by the fact that facial paralysis is rarely associated with it, by the absence of meonscionsness, and by the eleartionl reactions, and also by the fact that there are no secondary contractions in the uper extremitics in poliomyelitis, while in cerebral hemiple is they almost invariably oceur.

In one of my eases the original paralysis was confined to both arms, and did not affect the tronk or the lower extremitics: this case wals like one reported by Sceligmuiller. In his case the paralysis oceurred at the age of seventeen months, and attacked the arms only, but never retreated from them. At rour years of age, when the patient was seen, the arms were much atrophied and faradie contractility in the museles was lost.

The paralysis may be confined to a single group of museles from the very ontstart, and when only one gromp is affected this is most likely to be the flexors of the foot; sometimes the deltoid alone is paralyzed, and occasionally, after the regression of the paralysis from the upper extremity, the museles of the hand alone are found to be paralyzed.

The maximum extent of the paralysis is usually reached in from one to four days: occusionally it takes a much longer time for its development to ocenr, and when it does not reaeh its height until after a week it may br regarded as a subacute variety of the affection. The following case illnstrates an example of the disease in which all the extremities were affected at the ouset:

Alice S., aged three years, had good bealth until the middle of June, 1889; was attacked one night with diarrhou, vomiting, und fever. The next day there was considerable muscular twitehing, but there were no convulsions. She seemed weak and prostrated, and took but little notice of what was going on about her. The fever continued several days, during which time she was sore to the touch, even complaining of the weight of the bedelothes, and cried when she was moved. In a day or two it was found that she did not attempt to move the arm or leg or lift the head. In two weeks she begm to use her arms and sit up. In three or four wecks she began to use the left leg. At the end of thirteen weeks Y everanined her and found that there was complete use of both urms. She could stand on the left leg and use it freely. She could flex slightly the toes of the

Case of Poliomyelitis Anterior, showing Atropiy of Right Lea.
right foot, but could not flex or extend the foot or the leg. She could move slightly the flexors mad extensens of the thigh; the knee-jerk was normat in the teft side, but nbsent in the right side.

The paralysis usmally remains stationary from one to six weeks, and then regression begins. It may, however, hegin to deerease after two or three days; and, again, recosery may not begin fer thre or fom months. As a rule, however, if regression doss not begin in two months it is not likely to oceur. The first improvement nsually takes phace in the parts last affected, and, as a rule, extends until all the parts have recovered except 'fose which are to be permanently paralyzed. Within two or three weeks distinct wasting of the museles begins: the museles are flabby and without tone from the first, but very som the atrophy begins and mpidly increases mutil the shape of the limb is greatly changed. In fat children the appearance of the limb is not so much altered, but in all cases there is great difference in the size of the limbs. In a child three yours of age there may be as much ats an inch of difference in the ciremmerences of the ealves of the legs.

In the paralyzed limb there is not only atrophy of the muscles, but also arrest of growth in the bonc. In the course of a few months the limb becomes notably shorter than its fellow. In the case of the lower extremities this is very marked; and it is noticeable not only in the length of the leg, but also in the length of the foot. After a very few months the foot is fomd to be much shorter than the unaffected one,-a difference of from one-half to three-quarters of an inch being noted in many a ases.

Other changes oceur in the nutrition of the affected part. The skin becomes adherent to the comncetive tissue underlying it, and when one attempts to pinch up the skin it camot be separated from the tissue as in a healthy skin, but the whole mass is brought up together.

The temperature of the limb is very much lowered, there frequently being two or three degrees' difference between the somul and the paralyzed limb. In one case whieh I examined, in which there was paralysis of the left leg, the temperature of the left calf was 74°, while that of the right was 84°,-a difference of ten degrees. The shortening of the limb and foot cannot be considered as due to atrophy of the bone, since in adults no such change occurs; it is merely a retardation of the growth. Seeligmüller has observed an actual elengation of the limb in some cases, whieh he aseribed to the fact that the growing epiphyses suffered traction insteal of the normal compression.

The joints that depend for their support on the tendons that pass over them become relaxed, and the limb may appear elongated from this cause: for example, in paralysis of the shouider muscles the head of the humerus drops out of the glenoid ravity to a considerable extent.

The circulation in the affected limbs is greatly disturbed, the capillary cireulation being sluggish, giving rise to a dusky purplish hue of the skin. Very frequently the surface has a mottled appearance, even in warm
weather. 'There are never, however, any bed-sores, ulcerations, or extreme' trophic changes in the skin.

Doring the anente stage of the primary symptoms the child usmally complains of pain and soreness in the extremities and trumk; when moved or lifted he firequently cries out with pain. There is, however, no tenderness on pressure over the spine, and no hyperesthewin. With the fibrile symptoms the pain and soreness nsmally pass away. There is seddom, if ever, any loss of sensation during the initial symptoms. It is possible, thongh, that this may orenr mud escape detection becmase it has not been specially looked for ; but there are no cases recorded of any loss of sensation in thr affeceded parts. Oecasionally there is tingling or formication in the limhs.

There is very seldom any loss of control of the sphacters; there is no incontinence of urine, and no loss of control of the bowels. Ocyasionally there is paralysis of the bladder, and this is met with in musmally severe cases, in which spinal pain and some evidences of inflammation of the meninges are present. In a patient whom I saw in consultation there was loss of bladder-control for a few days after the fehrile symptoms had subsided. In six of the cases which I have tabulated there was retention of urine lasting a few hours. The longest time the retention lasted was twenty-four hours. Of the cases in which the badder was affected fome were girls and two were boys. In all of them there was marked pain on movement or on being handled. In one case, a boy of four years, the attack of paralysis came on after he had been bathing in a ereek in the ent of July. There was stiffness in the back, and the patient complained of' pain. It is probable that in most, if not all, of these cases there was somb meningitis or a mild form of transverse myelitis. Gowers' thinks that when the badder is affeeted the tromble is likely to last a long time. He reports a cuse of a clild two and a half years of age, who woke up one morning with headache, fever, and weakness of the legs, followed ly complete paralysis. In a few days the urine escaped involuntarily. The arms began to recover in six weeks, and were well in six months; the legs: remained permanently paralyzed. The incontinence of mine lasted for a year.

The paralysis generally develops rapidly. It begins in one limb and surrads to the others quite speedily, or it apparently attacks all the extremiat once.
When single muscies are affected, the deltoid suffers alone more frequently than any other muscle of the arm. It may be paralyzed with other muscles; for instance, the deltoid, supra- and infra-spinatus, bieeps, and triceps are all affected, producing the so-called upper-arm type of palsy of Erb. The extensors and supinators of the hand are ofte., paralyzed, and in some cases the museles of the hand atone are affected, as in a patient under my care, in whom the intrinsie hand muscles are wasted
and the deltoid is paralyzed, while the other muscles of the arm are umaffeeted. In this case there is ulso paralysis of the legs. 'Ilie servatus margmus is occasionally affected, and so are the trapeaii and the other sempular muscles. There is seldom, if ever, complete paralysis of the intercostals or other trimk muscles, but they are frequently grently weakened, so that the patient is scourely able to sit up; and this weukness produces lateral enrvature or antero-posterior emrvature of the spine if the patient is allowed to lo in the erect posture to my extent.

The individual musdes most frequently fomen paralyegt are those of the leg. The tibialis antiens is paralyasl abone oftener than any other muscle. Next in order of frequency comes the gronf of muscles of the anterior part of the leg forming the flexors of the fiont and the extensors of the toes. Then follow the extensors of the leg. 'The facial museles are rately paralyed. There is one case of facial paralysis in my talles, and Gon is and Barlow meh report one.
$\because \because \cdot$ following schedule of symptoms by Jacoli ${ }^{1}$ is usefin in showing the dagnostic fentures of the different palsics:

Upper E.xtremity.-Deltoid.- A lssence of deformity, which is averted by weight of arm. Imability to raise arm. Sometimes snbluxation. Frequent association with paralysis of biereps, machialis anticus, and ouphator longus.

Lower Lastremity.-Hio-Proces.-Rare except with total paralysis. Assoriated with paralysis sartorins. Loss of tlexion of thigh. Limb exteuded (if gluteei intact).

Glutexi.-Thigh alducted. Ontward rotation lost. Lordosis on standing. Frequent association with paralysis of extensors of back.

Quadriceps Extensor.-Flexion and adduction of leg (if hanstrings intaet). Loss of extension of leg. Frequent association with paralysis of tibialis anticus.

Tibialis Auticus.-Often coneraled if extensor commmis intact. If both paralyzed, then fall of point of foot in equinus. Dragging point of foot on promen in walking. Big toe in dorsal tlexion (if extensor pollicis intact). The tendons prominent. Hollow sole of foot (if peroneus longus intact).
E.ctensor Communis.-Nearly always associated with that of tibialis anticus. Toes in forced flexion.

Peroneus Longus.-Sole of foot flattened. Point turned inward. Internal horder elevated.

Sural Muscles.-Heel depressel. Foot in dorsal flexion (calcaneus). Sole hollowed if peroneus longus intact, flattened if paralyzed. Point turned outward (calcanco-valgus).

Extensors of Back.-Lordosis on standing. Projection backward of shoulders. Plumb-line falls hehind sacrum (unilateral). Trunk curved to side. Trunk cannot be meved towards paralyzed side.
dibdominal Muscles.-Lordosis without projection backward of shoulders.

[^298]re mure. sulfer rmitics. ol have Gown without twenty-
re painlo $11^{\text {molin- }}$
malyzud is paral Is orchr we hem da s. The y mgenital the decht u!"un ck-knes, vell as in pr thexion th them. -five pur we may the twin s the reit of tha forms it alysis of this coneformity
quently, iftereruw aticut in Ind a latborduris forwarl. Iy tables
reference is made to the presence of deformitios. The deformities which existed are as fillows:
Tuliper equinus ± 8
culcaneus 5

- valgus 19
". varns 11
valgus, both feet 8
varus, both fiet 1
eguinus, both teet 8
equino-vatus 7
cyuino-varus, hoth tert 2
equino-valgus 3
equino-valgus, boh tiet 1
- (ale:anco-v゙nlyus 3
valgus (L.) thal equitus (R.) 2
equinu-varti (R.) and "quino-valgus (L.) 2
"q̧uino-varis und caleaneo-valgus 1
Gentu valgum I
Contraction at kuce 1
Contmotion ot plantar tasein 1
1)efirmities pursent, hut chameter not stated 9
Nodeformity present 94
Total 172

Comrection of the plantar fascia ocems in a large proportion of rases in connection with equimus and valgus. lit is one of the must tronblesome conditions to deal with, and often canses much pain to the pationt in walking.

The most remarkable symptoms of poliompelitis are the mpid wasting and atrophy of the paralyzed parts and the eaty electrical changes. The atrophy takes phace almust immediately, and, an Jacubi (loe cit.) remarks, is even more mpid than that following the seetion of a newe. All the parts of the limb underge atrophyo even the hood-vessels and nerves. At times the wasting is concealed somewhat if the ehild is very fat, but even then the shape and color of the paralyzed members ate vere different from those of the somed limbs.

The lowering of the temperature is due to loss of masember contretions, which attace blood to the part, to diminished or lost neve influenere, and to shrinkage of the bhood-vessels. Not only are the smalher vesseds atrophied, hont the main tronks are much smaller. The entire iliae artery and even the lower part of the aorta have been fomad distinctly redneed in celibere.

The electrical changes are met with carly in the disease. Faradic eontractility in the affected museles is diminished in from three to five days after the onset of the paralysis. In the case of Jeremiah D., page 695, on the day after the attack there was marked loss in the contractility of the palsied muscles to the faradie current. It the end of a week or ten days

[^299]there is complete loss in the muscles in which the paralysis will be permanent. We can say almost with certainty that those muscles which do not respond to the faradic current at the end of two or three weeks will be permanently paralyzed. This rule is not absolute, however. The muscles in which regression takes place recover the faradic contractility with restoration of power, although the latter may precede the return of electrical contractility.

When the musele has completely lost excitability to the faradie current it still will "espond to the galvanic current, and the reaction may be different from that which is foum in healthy museles. There may be contraction at the opeumg as well as at the closing of the circuit. When the paralysis, has lasted for some weeks the so-called reaction of degeneration is foumd; that is, the contraction which oceurs at the anodal closure equals or is greater than that of the kathodal clostre. We have first in the affected muscles "quantitative" changes,-that is, changes in the degree of irritability ; then, later, are seen "qualitative" changes, by which are meant changes in the order of the response. For example, the normal reaction is-1, KClC ; 2, $\left\{\begin{array}{l}\text { AnClC } ; 3, \mathrm{KOC} ; \text { meaning that the order of strength of contrac- } \\ \text { AnOC }\end{array}\right.$ tion is-first, kathodal closing contraction ; next, anodal closing contraction and anodal opening contraction ; and lastly, kathodal opening contraction. When the paralyzed mascle has undergone degeneration, the reaction is -1 , $\mathrm{KClC}=\mathrm{AnClC} ; 2, \mathrm{AnOC} ; 3, \mathrm{KOC}$; and later, as follows: $1, \mathrm{AnClC}$; $2, \mathrm{KClC} ; 3, \mathrm{KOC} ; 4, \mathrm{AnOC}$. When the musele begins to inprove, there is first a return to the normal reaction to the galvanie current, and later a response to the faradic current.

The reflexes are lost early in the disease. The knee-jerk disappears within the first day or two, and the skin reflexes are lost as carly. Of course the extent to which the reflexes are abolished depends on the portion of the cord affected. If the lower part of the cord only is involved, the plantar and cremasteric reflexes are absent. When the ganglion-cells in the anterior horns through the whole cord have degenerated, the skin and tendon reflexes will be abolished. In case of recovery the knee-jerk may return. In those cases where there is degeneration of the lateral columms as a secondary effect there will be exaggerated knee-jerk and skin reflexes.

Pathology.-For many years there was great diversity of opinion as to the nature of the pathology of this affection, some writers holding that it was a peripheral disease involving the museles primarily, while others thought that there were organic changes in the centres. Of late years improved methods of examination and advanced knowledge have established withont question the nature and location of the lesion. For some time it was generally admitted that the disease was spinal ; but it remained for Chareot and Joffroy to demonstrate the constancy of the lesion in the great ganglion-cells of the anterior comua.

Within a few years (in 1885) Dr. D. Drummond ${ }^{1}$ has had the opportunity of making an antopsy in a very recent case. A child of five years died after a few hours' illness. In the cervical portion of the cord there was molue redness of the auterior gray matter. The vessels firom the surface to the cornua were distended with blood. Microscopically there was seen distention of the capillaries and extravasations in the gray matter, with swelling of the nenroglia and of the ganglion-cells, which were granular, with indistinct processes.

Damaschino ${ }^{2}$ made an examination of the cord of a child of two and a half years, who died twenty-six days after the attack. The left leg and the right arm had been palsied. Foci of red softening were fomed in the anterior cornua in the left lumbar and right cervical regions. There were also present distention of the blood-vessels, enlargement of the musenlar net-work, granular corpuseles in lymphatic sheaths, marked atrophy of the cells and of myeline sheaths of fibres in anterior roots; axis-eylinders had disappeared. Lesions were marked throughout the cord.

Another recent ease was reported by Dr. Charlewood Turner in $1879{ }^{3}$ A child of two and a half years had an attack of paralysis of both legs, reming on suddenly about two weeks after a fall on the back, which did
is seem to affect her at the time. A few days after the loss of power in
.e legs the upper extr mities beeame powerless. The ehild was admitted to the London Hospital two weeks after the beginuing of the attack. At this time there was complete loss of power in all the extremities, with loss of sensation in the lower limbs, and the stools were passed involuntarily. The child had an attack of measles and died six weeks after the onset of the paralysis. At the antopsy changes were found in the anterior horns and autero-lateral columns through the whole length of the cord. About the centre of the lumbar enlargemeat was found a small patch of reddened gelatinous-looking matter in the left anterior cornua. In the neighborhood of this hemorrhagic focus the nervous tissues were eompletely disintegrated, so that no nerve-structure could be distinguished in the anterior horn and in the onter part of the base of the posterior cornua.

In this and some other recent cases aente changes have been found in the anterior horns more advanced than in Dr. Drummond's case referred to above. They may be quite general, but slight in degree, with greater intensity at different points, usually in the cervical or in the lumbar enlargement, or in both. At these spots there is softening ; sometimes there is hemorrhagic infiltration, and sometimes an actual cavity, as in Charlewood Turner's case. The microscope shows extravasated blood often massed along the vessels and scattered throughout the gray matter, together with cells such as are found in myelitis. There are found granule-corpuseles and other preducts

[^300]${ }^{2}$ L'Union Médicale, 1883, quated by Jacobi, op. cit.
${ }^{3}$ Ross, Diseases of the Nervous System, vol. ii. p. 121.
VoL. IV.-45
of degeneration of the nerve-elements. The motor cells lave almost disappeared. When the changes are slight the motor cells may be structurally intact, bat swollen and gramlar. The changes are confined to the anterior hoons or may extend in slight degree into the antero-lateral colnm. The poe atior columns are maffected, hut it is possible that a hemorinagie infiltration may extend into the posterior homs, as seen in Turner's case. In this case the lesion at the base of the posterior comua explains the loss of sensation in the lower extremities which had existed during life. Slighter and diflinsed changes may be found bevond the softencl areas. These changes consist in single granular cells sattered throughout the gray matter, increase of nuclei, dilatation of the blood-vessels, and degeneration or disappearance of the multipolar ganglion-cells. The antero-lateral columns have been found redued in size and the seat of a slight selerosis. The trabenla are then thickened and the nerve-fibres are atrophied. The anterior roots are diminished in size, and show evidences of degeneration muler the mieroscope.

In eases which have been examined post mortem several years after the onset of the paralysis the morbid changes are generally the same. The anterior horns are atrophied, and the antero-lateral columns appar to the naked eve gray, translucent, and atrophied. The posterior corma and vesicular column of Clarke are almost, if not entirely, normal. Mierosoopically lesions are to be found in the anterior homs at the cervical and lumbur eulargements, and in addition to these lesions more or less diffised changes are met with in the gray matter and white columns. The anterior cornua are shmonken in size, and within the diseased foed which they contain is found fibrillated connective tissue rich in muclei. The blood-vessels are enlarged and their walls are thickened. Granule-cells are not found, but generally a large number of corpora amplacea and pigment-granules are met with. The large ganglion-cells and nerve-fibres are more or less completely destroyed in the discased foei, and those which romain are in all stages of degencration and atrophy. Outside of the diseased foci healthy multipolar ganglion-eells may be found.

More or less selerosis of the antero-lateral columens is met with, the nenroglia is thickened, and generally there is some atrophy of the nervefibres. The selerosed area is sometimes confined to the inmediate neighborhood of the anterior horns, sometimes diffised thronghout the antero-lateral columns, the pyramidal tract in the latter case being particularly liable to suffer. As a result of these changes the diseased half of the cord is smaller than the other, and this is often apparent to the naked eye. The alteration if the shape of the cord is most marked when the damage to the gray matter is greatest. The anterior nerve-roots at the most diseased points are small and gray, and the degeneration of the nerve-fibres may be traced down the nerve-trunks. Often a few fibres appear healthy, althongh all the rest have perished.

It is now generally agreed that the primary lesion is an inflammatory
most disructurally the anteI column. morrhagie er's case. olains the ring life. ned areas. t the gray generation atcral colt selerosis. ed. The reneration
cars after me. The sar to the orma and

Microricell and ss diffinsed se anterion they cons-wod-vessels not fornd annles are less comare in all (i) healthy
with, the the nerve-neighbor-ro-lateral - liable to is smaller alteration ay mater are small down the rest have
condition in the anterior horns of the gray matter, and that this may be preceded in rare cases by a slight hemorthage. The inflammation spreals over the greater portion of the cord, hat is most intense and violent in the cervical and lumbar enlargements, where fori of softening and destruction of the ganglion-cells oeemr. When the intlammation subsides, a gradual improvement takes place in those areas where the destruction of the gray matter has been incomplete; but when the nervons matter has been entirely destroyed there is a gradual development of cieatricial connective tissine in its place.

The peripheral nerves have been fomed to be attrophicd.
The musenlar tissue undergoes fegeneration at an carly period. At first the moseular fibres are marowed and in a state of granular degeneration, with increase of the muclei of the shath and of the interstitial tissue. Gramules and pigment masses are found between the sareolemma shaths. In advanced cases there is complete disappearance of the musenlar fibres, and their phace is taken hy fibrous tracts, which are developed partly from the sareolemma shaths and partly from the interstitial connective tissue. Here and there will be fomud healthy musenlar fibres. Sometimes fiat ac(mmulates in the interstitial tissue, so that the musele does not materially lessen in bulk. In some of the lighter cases in which ineomplete reeovery takes place, some of the fibres are restored to their normal appeatamee, but they are smaller and the interstitial eomective tissue is greater in amomet than usual. Barlow (loe cit.) sins that it is now generally conceded that a musele may be much wasted in bulk withont showing any marked sign of degeneration mieroscopieally.

The tendons are atrophied and stretehed. The growth of the bones is always retarderl. The medullary portion is increased relatively, and the fatty contents are more abondant; the extermal hard lamella of the bone is thin and friable. The bones are not, however, especially liable to fracture. The ligaments of the joints are stretched and relased, and the articular extremities of the bones are atrophied, the cartilages thin, and sometimes eroded. The arteries are diminished in calibre.

For the above description of the pathology of this disease I am largely indebted to Ross, Jacobi, and Gowers.

Diagnosis.-This is not diffienlt when we consider the essential features of the disease. Certain of the symptoms are so striking and peculiar that when present the diagnosis can readily be made. But all cases are not typieal, and in the early stages before the full development of the paralysis it is not easy to make a diagnosis. The fever which precedes the attack may be mistaken for the pyrexia of cold, indigestion, or some other cause, and when the paralysis dues appear it may be, and often is, mistaken for wakness from the prostration following the fever. If we bear in mind that the prostration following an attack of illness never amounts to complete loss of power to move, the mistake will not be made.

The chief characteristic features of poliomyelitis anterior are-

1. Au abrupt onset, generally necompanied by fever, vomiting, or diarrhoa, or the paralysis is observed in the morning, after more or less fever has existed for twelve or twenty-four hours.
2. The paralysis usually is complete within a few hours. This is not always the rule, for the paralysis may be gradual and involve one limh after another.
3. Ahsence of disorders of sensation, rigidity, or contractures of the limhs. There may be hyperesthesia or articular soreness on motion, but this is transient. Absence of vesieal or rectal paralysis.
4. The regression. This almost invariahly takes plate. Oceasionally, when but one limb or group of museles is attacked in the onset, there is no regression. 'The loss of power receles gradually from some of the museles, and tinally becomes localized in certain groups which are supplied by the same nerve.
5. The early loss of response to the induced electrical current in the affected museles, and later the raction of degeneration which is fomme. The return of response to the faradic current with restoration of power.
6. The arrest of growth in the paralyzed limb. The shortening of the bones of the foot. The deformities which result, giving rise to the various forms of club-foot. The peculiar condition of the skin in the affected part, with the absence of bed-sores or trophic lesions.

The disenses which are most likely to be confomuded with polionyerlitis are cerebral palsies, general or transverse myelitis, progressive musenlar atrophy, diphtheritie paralysis, and multiple nemritis.

The diagnosis from cerebral palsies is, as a rule, not difficult. A cerebral paralysis is almost always hemiplegic, while in poliomyelitis this form is rave, and especially so in the onset. The hemiplegie type may remain after the recession of the paralysis from the other limbs. Cerebral paralysis is generally preceded by convulsions, and there is stupor or delirimm. Both of these conditions are rare in poliomyelitis. Facial paralysis is frequent in cerehral hemiplegia, and very unusual in the disease under consideration. In cerelral palsy the museles respond readily to the indueed eurrent, and in poliomyelitis there is no response. The kuce-jerk is exaggerated in one and abolished in the other. The skin reflexes may be lost in botl.

The following table from Jacobi ${ }^{1}$ is convenient in showing the differential points in the two diseases:

Polionyelitis

Paraplegic or monoplegic the rute. Hemiplegic as residuum from paraplegin and involving fucial nerve (very exceptional).
Intelligence free (rule).
Intelligence depressed, when spinal paralysis has affeeted imbecile children.

Cerebral Paralysis.

Hemiplegic the rule. Monoplegie as residnum of hemiplegia, or as result of solitary tubercle (exceptlonal).
Intelligence depressed (rule).
Intelligence free (exception, especially with solitary tubercle). fever n, 1mu nally, is no usicles, ty the in the fiomed. er. ng of to the in the yelitis iseular

1 eeresform renain naralyliriulu. vis is remndueed is exloe lost

Pollomyelitis.
Disposition lively.
Initial convulsion unique; generul symptoms of a few hours' duration (rule). Convulsions repeated during two to three weeks before paralysis (?) ; fever a month (rure exception).

Sensibility intact (rule).
Reflexes cutaneons, and tendon lowered or lost (rule). Reflexes preserved when the siugle museles in groups are paralyzed.

Associated movements of hund absent (sceligmüller).
No rigid contractions of upper extremity.
Atrophy of paralyzed maseles and arrested development of limb very marked.

Famdic contractility diminished or lost; dugenerative museular reaction.

Cemebral jaraiysig.
Disposition upathetie or croxs.
Convulsions repented; pyrexia prolonged severul days or weeks (rule).

Sensibility intuct after initial period. Retlexes inturt.

Associated movements frequently observed in hand.
Extensive und rigid contractions of upper extremity very frepuent.
Atrophy very slight.
Electrienl reactions normal.

In myelitis there is more violent and persistent fever. There is hyperasthesia, which is intense, and is followed by anesthesia. There is considerable pain on movements of the tronk, and girdle-pain is generally present. The reflexes and knee-jerk may be absent at first, but in a few days they return and become excessive. The museles may atrophy, but there is no loss of response to the faralic current. Bet-sores ocenr early. The ouset of the paralysis is, as a rule, much less rapid than in poliomyelitis. Transverse myelitis in children is usually due to discase of the vertebre, and this gives rise to deformity, which can be detected.

Progressive muscular atrophy is a rare discase in children, and should not be mistaken for poliomyelitis, even in the chromic form. The onset of the paralysis is gradual and corresponds to the inerease of the atrophy. Faradic contractility remains as long as any musenlar fibres are left. The kneejerks often remain to the last. There is no arrest of growth in the bones.

Diphtheritic paralysis may sometimes be mistaken for poliomyelitis. Often there is so long an interval between the diphtheria and the paralysis that there is a diffienlty in diagnosis. In diphtheritic paralysis there is a history of throat-lesion; the paralysis is less general, and usually affects the pharyugeal museles as well as those of the limbs. The response to the faradic current is lowered, but not complecely lost, and there is no recession of the paralysis from certain museles or gronps of museles, but recovery takes place gradually and steadily.

Multiple neuritis seldom oceurs in children, but when it does it resembes poliomyelitis in many respeets. There is more marked hyperesthesia, and there is tenderness over the nerve-trunks. Movements of the paralyzed limbs are painful. There are sensations of numbness and prieking in the parts affected. The paralysis comes on rather more slowly, and the loss of response to the faradic enrrent is more gradual ; moreover, regression does not occur. In paralysis from lesion of a peripheral nerve there is a close
resemblance to poliomyelitis when the paralysis is limited. It is distingnished by observing the distribution of the injured nerve and the accompanying disturbances of sensibility and trophie skin-lesions.

Hip-joint discase may be mistaken for infantile paralysis. I have sen one case in which the parents thought the leg was paralyzed, when it was immovable from pain in an inflamed hip-joint. An examination shows that there is no paralysis and no interference with reflex actions; inderd, the knee-jerk may be exagrgerated. In hip-disease it is common to tind diffienlty in extending the leg, but the presence of the knee-jerk shows that spinal paralysis does not exist.

Hemorrhage into the groty substanee of the cord may give rise to symptoms which resemble those of poliomyelitis in its sudden onset, the paralysis followed by atrophy, the alisence of reflex action, and the loss of electrical irritability. In hematomyelia, however, the paralysis is more sudden, the initial fever is absent, and there are disturbances of sensibility, paralysis of the sphincters, and bed-sores.

Birth-prelsics are observed immediately after delivery; the face and arm are usnally affeeted, and the wasting which ocents is localized to certain museles. Recovery generally takes phace carly.

Spestic pereplegie is readily distinguished by the fact that the paralysis is gradual, there is but little atrophy, the limbs are in a rigid condition, the retlex actions are exaggerated, and there is no loss of faradie irritability:

Prognosis.-As regards life, the prospects of the patient are exceedingly good. In some cases the child may die from the intensity of the initial symptons or from implication of the respiratory muscles at the onset of the attack. Marked eerebral symptoms are of serions import. After an attack a child may be left so much weaker that he is readily overcome by some other illness.

I have scen one case, not a child, but a youth of eighteen years, who succumbed to an attack of poliomyelitis twelve days from the onset, from paralysis of the respiratory muscles. The patient I saw in consultatien with Dr. Radeliffe Cheston. He had gone to the sca-shore ou an intensely hot day in July, and in the evening there was a sudden change in the temperature. The patient became exceedingly cold, and the next day he had weakness of the legs. In five days there was general paralysis, lout it was not complete in all the affected parts. The legs were motionless, but the forearms, hands, and fingers conld be moved feebly. The head could be extended, and turned from side to side, but not flexed. Swallowing was diffieult, but was relieved for two days, to become again almost impossible. Sensation was good, except for some confusion to the compass-points. All the skin and tendon reflexes were lost, exeept the cremasteric. There was retention of urine for a time on the tenth day, but the bladder regained its, tonc. The muscles responded to a slowly-interrupted faradic eurrent. On the eleventh day the respiratory muscles became weaker, and the patient died on the twelfth day. The mind was elear throughout.
listin-ceolli-

[^301]muscles of the left leng exeept the comerior tihial gronp, and the child wns mable to move any part of the limb, with the exception of flexing the foot and toes. In six weeks the patient had recovered the power of mosit of the lege movements. Another patient, who was in the Infirmary for Nervous Diseases, was totally paraplegie. There was loss of power even in the adductors of the thighs. This little patient regainal the control of nourly all the leg museles, and walked quite well with erntehes.

Treatment.-The treatment may be divided into that which is suitable for the initial stage and that for the chronic period. At the onset of the attack the symptoms should be examined closely, and everything that might temel to prochace reflex irritation should reeeve attention. If the gums are swollen and tender, they should be lanced. If there is any reasm to suspect the presence of worms in the intestinal cunal, a vermifuge shonld h_{k}. administered. I have seen two or three cases in which a dose of samtonine and calomet expelled several lumbrionids and specely ameliosation of the paralysis followed. If the fever is high, means should be used to reduce it.

Leeches may be applied over the spine at the cervical and lumbar enlargements of the cord. Comnter-irritation, in the form of mustard plasters or tincture of iocline, is advisable. 'The application of the spinal ice-bage is a means that is to be strongly recommended. Medicinally, ergot is the remedy which theoretically should be of value, and its use is often followed by improvement. It is best given to children in the form of the fluid extract by the mouth, or ergotine may be given in suppositorics. Ergotine has been advised hypodermically in this disease, but it is exeessively painful in this way, and shonld not be administered except in cases where the patient camot swallow and the bowel is maretentive. Ergot should be given in large doses as long as the stomach will tolerate it. Hammond recommends the fluid extract in doses of ten drops three times a day for inlints of six months, and half' a drachm for children between one and two years. Belladoma has been advised, but its valne is doubtful. Meremry and iodide of potassimm have also been employed, but they are not adapted to the acute stage. If there is any evidence of meningitis as a complication, these remedies are indicated.

The treatment for the chronic stage consists in remedies to restore power to the paralyzed museles and in the use of means to prevent and correct deformities. The most important of the former are electricity and massage. Electriesty may be begm in one week from the onset of the paralysis, provided that there is no fever nor musenlar hyperesthesia. Until after the third or fourtl week, only the mildest eurrents should be used, as stronger eurrents might canse increase of the disease in the eord. Erb recomments central galvanization at this stage. It is given by placing the positive pole (anode) over the spine at the seat of the lesion and the negrative pole (kathode) at the epigastrium. It has also been advised to use galvanism to the cord. It is extremely donbtful, however, if either of these methods is of any value. In using electricity to the muscles it should first be determined which current
to use. This will dopend upon whether this museles respond to the farme eurrent. If they do, then this current should be selected. A murdinal point in the administration of electricity is to nse fie lenst mmoment that will eanse a muserular contraction. 'The slowly-interrupted current is preferable, beranse a greater amon it of contraction can 'o obtained in this why with less pain. 'The application shonld be of short daration; enda musile may be made to contrast three or four times. 'The tremtment shombld bo used dably, If the museles fail to respond to the fiamlie comrent, galvanism shomld be employed. A great olstacle to the use of this form of eleretridity is the pain it musis. Children are much more intolerant of galvanism than of furadism. If the formore is used, it is impuationde to nse a current strong enongh to prodnce mascular contractions. W'e must content ourselves with a emment of molerate intensity. The hest way to use it is to apply the anode, which shonld bo latge and well wetted, over the nerve-trum, and stroke the kathorle firmly over the surfare of the entire limb. In children, and indeed in alnlts, it is best to bergin the use of galvamism by simply applying the wet sponges to the limb affered, withont amy current, gomer throngh the manipulations, however, as if there really was a chrrent. 'The next day one or two cells may be used, and after this the enrent shonld be gradnally increased from day to day. Statie elertrieity has sometimes been used advantageously when mether faradism mor galvanism has been of avail.

Massage is of the greatest valne in infantile spimal paralysis. Not only doss it keep up the nutrition of the museles and rednee the wasting, hat it assists in relaxing the shortened and eontracted museles and tendons, Massare shonld be given by a person skilled in the employment of it, and at the same time that the massage is used the contracted museles should be thoronghly stretrhad. Care shonld be taken not to allow the applieation of masage to be kept up too long. It is best to have the applination short, lont used daily. 'The length of each application will depend, of eonrse, on the extent of the paralysis. If only one leg is paralyzed, ten mimutes is long enough. In some cases the tension of the contracter tendons is so groat that masage and stretehing will not overome it, and then tenotomy is necessary; but in a much larger mmber of eases than is generally believed, faithfin and thorough massage will do as much as tenotomy. Shortaning will ocem after the division of tendons if care is not nsel to keep them stretehed. It is very necessary to overeome contractures as early as possible, for all efforts to restore mosenlar tone in a paralyzed musele will be nugatory if it is kept stretched by the contraction of its opponent. Museles which have no faradie irritability while stretched in this way will often regain it when the rigidity of their antagonists has been overeome.

The tendons about the foot most often require tenotomy, especially the tendo Achillis and the plantar fascia. Ifter tenotomy an aparatus is needed, and manipulation should be kept up as long as there is a tendeney for contraction of the tendon to recur. Dr. V. P. Gibney (loc. cit.) speaks
of an operation for shortening mover-stretehed tendon, as, for example, in calcanens when the temdo Achillis is ma's lengthenerl. The operation was devised by Mr. Alfred Willett, of St. Bartholomew's Hospital, and consists in excising a portion of the tendon and suturing the ends with the smrromnding tissues. In the nse of massuge it is often suggested by the friends of the patient that varioms applications be made; but it is best to manipulate with the bare hand. A little vaseline or oil may be used to facelitate the movements and to prevent irritation of the skin, hat a good massene will rub better with the uncoverel hand and never camse irritation of the skin.

The paralyad limbs should be kept warm. In winter the temperature of the part is greatly lowered. It is well to keep the limb constantly corered with silk or woollen material, or with chmois-skin. The appliation of dry hent to the paralyand part is useful in comection with other means. It has been advised in the cmse of a parnlyed leg to put the limb through a hole in a newspaper and toast it before an open fire. On putting the child to bed at night it is a good plan to use brisk friction for a few minntes over the affected parts, and then envelop them in flamel.

Medienes are of little value in the chronie stage. Strychnine has beron recommended both per os and hepodermically, but it has never been proved to be of use. If the genemal condition is poor, cod-liver oil or the hyonphosphites are indicated ; but the general health in infintile paralysis is usually excellent.

It is of prime importance to give the paralyged parts as much use as possible. If the lower extremities are affected, an effort should be made to have the child walk as carly as possible. 'To accomplish this, apparatus of some kind is needed. The lightest form of instrument should always be used. Theoretically, the use of clastic bands to supply the place of the paralyzed museles shond aid the patient in walking ; practically, the chicf use of the apparatus is to support the joints. Care should be taken to have the steel rods thoronghly paddel at the joints, so as to avoid frietion and the formation of callositics. A well-fitting appuratus should not make pressure at a joint. If all the leg and thigh muscles are powerless, the appaatus should have a lock or eateh at the knce, so that in stambling the joint shall be rigid, and in sitting the catch can be released, to allow flexion of the knee. It is remarkable how well a child who is paralyzed in both legs call walk with apparatus. To aid a child in walking with apjaratus some form of erutel is needed. For several years the Darrach wheelerutch has been used at the Philadelphia Infirmary for Neroons Diseases, and has proved most satisfactory. It is simply a light frame with wheels which turn readily in any dircetion; the top of the framework is padded where it fits under the arms, and there is a picee of covered metal for t ? hands to hold. The use of such apparatus enables the unaffeeted museles to be excrcised, and those enfecbled are brought into play. Another important use of apparatus is the prevention of deformities, and it is with this object in view that the early application of the instruments should be made. Of
cample, in ration was ad consists. h the surthe friends mamipulate c:litate the asselur will ' the skin. emperature tantly cov"plication her means. mb through putting the for at few el. ine has bern been proved m^{2} the hypoparalysis is much use as uld be made ish this, apment should bly the place netically, the l be taken to void friction hild not make owerless, the in stamding sed, to allow paralyzed in or with appalurach wheelous Diseascs, with wheels k is padded netal for t ? d muscles to er important h this object made. Of
course care must be taken to keep the apparatus in repair and fitting properly. The child is constantly ontgrowing them, and parents are otten careless about attention to the repairs. As a rule, the instrunents need mot be worn at night; but if there is much tendeney to contaction of the temblons a lighter form of "pparatus should be applied when the patient goes to bed. 'There is no indication for the application of apparatus in paralysis of the upper extremities. An apparatus has been reeommended in cases of wristdrop trom paralesis of the extensons, but it is not of any practical value in children. A sling or straps to support the arm when there is parnlysis of the deltoid und shoulder muscles are of real utility, for they prevent the weight of the arm fiom dagging the head of the humerus ont of the glenoid (avity, and the stretching of the deltoid iss obviated.

Gowers warns us to be careful about exposure to coll in eases where the back muscles are weak. In such cases the respiratory museles are feeble, and, "although normal breathing may not be impaired, the dimimation in strength may rend r an acute bronchan catarrh rapidly fatal, and this even months after the onset of the paralysis."

In the treatment of these cases the utmost patience and persevernme are requisite on the part of the parents and the physician. If "etemal vigibaice is the price of liberty," so are persistence and longerontinned treatment and care the price of improvement in this disense. The parents of the patient must be made to realize that the treatment will have to be kept up for months or even for years. Constant attention will be required to prevent deformities, for the more the child walks the groater will be the tondeney to deformities from contraction and relaxation of ligaments and tendons about the joints.

HEREDITARY ATAXIA AND LOCOMO'TOR A'TAXIA.

By Challas L. DANA, M.D.

FRIEDREICH'S ATAXIA.

Synonymes.-Herditary ataxia, Friedreich's disease, Fansily ataxia, Gemeric ataxia.

Deflition.-Friedreches ataxia is a chronic dequerative disease, afferting the several hong-tibre systems of the spimal cord, cepeceally that of the posterior eolemn, and later those of the lateral colnmus. It begins in the hmbare region and extends upand and downwad, thally involsing elo modulla and esperially the mudei of the hepoglossal nerve. It develops in child! sol, afterting persons with an imperfectly-developed spinal cord the result of a nemrotice inheritane Clinially the disemen is chatacterized he ataxia beginning in the lower limbs and gradually involving the limhs and the organs of speed. Curvature of the spine, talipes, vertign,
 absert. There is lout little pain or anasithesia, and optie atrophy and viseroal trouhles are manally ahsent.

History.-The disense was lisst deseribed in 1861 by Friedredeh, who reported six cases. (arre reported one case in 1865; Bradhury one case and Corpemer two coses in 1871 ; Kollogg two anses in 1875; Dresehfold three eases in 1876 ; Friodreich there more ases in 1877 ; hahlere and P'ick, Shmidt, Socligmäller, Hollis, and Gowors reported deven more casce ; so that by the eme of the year 1880 thirty-one cases had hern reported. The first lablian emses were mported ly Museo in ISSI. Ameri"an "ases hegan to be reeorded mpidly atter D. . W. E. Suith had reperterl his cases in 1885 . Up to the present tibe one hundred and sistr-five cases have been put on reoord in greater or less detail.

There have been fomteen German ohservers and thirty-three abse, fiftern English and thitty-six cases, six Italian and twenter asers, right French and sistem cases, seventern Amerimen fifty-six cases. A fiw cases of Swiss and other mationalities have also been reported. Amerium physidians have, as may be seen, been partienlarly active in sthdying the peenliar disorder under consideration.

Dr. Kellogg was among the first to ohsorve the disense. Dr. W. Verett smith not only aded to its literature, but also comtributed the results of a post-mortem study mom one cmse. In partienlar, Dr. J. I'. Crozer (irillith has worked up the suljeet in great detail and with the most praseworthy aure. Ilis monograph mon Friedreidh's ataxia is the latest and by fire the most complete aushysis of the suhjee which has been published. An exwhent monograph was also written by Dr. A. Bronsse in 1882 , and a valuable eritionl digest by Ormerod was publishad in Brain in 188. Bury amalyed ail previonsly publishad ases in 1856, and Vizioli did the same in the same year.

To all these writers I mist express my indebtednese, bint more partienharly to Dr. Grifth. To his paper, published'enty in 1889 and contaning an amalysis of one hundred and forty-three cases, there can now be adeled a (ase published in this artide by myself, a ease of Dr. V. I'. (ibbey's.' there (enses by Dr. E. E. Wells," five eases by 'Tonerte, ${ }^{3}$ one of which had been previonsly reported by Blocy, three eases by J. M. Clarke, one case by bahhé, of dombttul dhamere, two ases by Paml Bhoq, a case of Ladame's (iufiox), a seconel ease of my own reported to the New Vork Somologial Society, Jamary 11, 1890, and four case reportad be me for 1): Rook, of Quiney, Illinois, at the same time: total, one humded and sisty-five. Dr. I'. Ladame has written a very good monograph on this subjeet in the Reve Médicale de lu suise: Romande, Jnly, Augnst, and Nowember, 1839. Soa, in a Patis thesis, November, 1888, colleets one lmudred and sisty-five cases, but indedes some which should not be dassed ats Criedreich's ataxia.

Etiology.-Pcetisposing Couses: Hevedity.-The fimdamental factor in predisposition is an inherited or eomate lack of development of the spinal cord, more partienlarly of the colmons of Goll and promidal tracts. This condition is inherited direetly sometimes, but indirectly, as a rule; that is to say, the parents or other members of the family usually show simply a nemotic history, and it is in only a minority of case that there is a history of ataxia in the dimet line of ancestry.

The more frequent condition is this: the parents or grandparents have some nemosis, such as insanity, inebriety, or great newons irritability ; the ataxia ocemring only in the children of one genemtion. Sometimes in a single family the meles and nephews or consins may he found to have the dismos. Hence the name "famil, ataxia" used by son.. writers. There are a good many cases in which the parents were apparently perfeety somed and healthy : yet it is most probable that the sufferers from Friedeech's

[^302]disease inherit a tendency to degenerative processes from some of their ancestors. This degenerative tendeney may have been shown in those ancestors in a very slight degree. The parents rarely have locomotor ataxia, though this has been observed in a few eases. The children of locomotor ataxies do not have Friedreich's ataxia exeept in the very rarest instances, but this may be due in part to the fact that locomotor ataxia early establishes impotence.

Syphilis in the parents is an element in some-perhaps in many-ceses. Congenital syphilis lays a foundation for nemro-degenenative changes, just as does the aequired form. Habitnal intemperance in parents unc ubtedly is a taetor sometimes; much more rurely consanguinity and tubereulosis act as predisposing canses of degeneration.

Race-More cases have been observed in Ameriea than in any other country; while the fewest have been reported from France, despite the attention called to the subject by the French writers Bronsse, Féré, Charcot, Plocq, and Tourette. I am inelined to think that America is rich in this form of degenerative disorder. Seventeen observers have reported fifty-six cases.

Age.-The disease develops at abont the time of puberty, most cases occurring between the ages of six and fifteen years. It is not very rare, however, for symptoms to develop even in infancy, though some of the eases reported at this time were probably of a syphilitic character. In a given family the disease, as a rule, strikes the older members first, but the younger members are attacked at a relatively earlier age. Thus, the oldest chikd becomes ataxic at the age of sixteen, the youngest perhaps at the age of ten. The most typical time af development is a rather late one,-i.e., after twelve years of age, as in Friedreich's original cases. The discase may come on after maturity : in such instances it is only the family history which will justif, the diagnosis of Friedreich's ataxia. True locomotor ataxia may be present in the parents and Friedreich's ataxia in the children.

In American cases the age of development of the disease has been rather earlier than the averago with the exception of the eases reported by Wells.

Sex.-The male sex slightly predominates, its proportion being about sisty per cent. In America the female sex has, however, been more affected, the proportion being thirty-two to twenty-one.

Social Condition.-The patients, so far as reports give data, are the children of the laboring and agricultural classes. They have been formd in the country oftener than in crowded eities.

Diathesis.-Nothing is known specifically regarding the temperament or diathesis of the families affected, except that nervousness and varions neuroses were present.

Over-Productiveness.-Some weight has been attached to the fact that in many instances the family was a large one, and the excessive drain upon "ére, Charrea is rich e reported

most cases

 : very rare, me of the cter. In a rst, but the , the oldest 5 at the age one,-i.e., The discase iily history locomotor n the chil-has been chorted by
cing about been more
a are the reen fomal ad various

fact that frain upon

the mother was thought to be an element in cansation. This is not the case, however. The ataxia appears in edder children, before any drain on maternal energies could have oceurred; while very often the family is small. This is particularly the case with the French patients. In Ameriea one family of thirteen and one of nine children are reported. The remaining families were not large, so far as is known.

Erciting Causes.-Nursing at the mother's breast is thought to have tended to bring out the discase in one Italian family. But the most frequently reported excitants of the disease are the infections fevers, particulanly scarlet fever and diphtheria. Rheumatism, typhoid fever, variola, whooping-cough, and chorea are all said to have preeeded the dismase. In one of my own cases a severe blow on the head is credited by my patient with starting it up. In the other case it was preceded by whooping-cough. In most cases there is no known exciting cause.

Symptoms.-The patient first notices an uncertainty in the gait and mome feebleness in the lower limbs. These symptoms gradually increase until they interfere seriously with progression and force him to leave off active work. With this there may be some slight pains or numbness in the lower limbs, and an examination will show, within a year or carlier, that the knee-jerk is gone. After five or six years the arms become affected with incoördination, and a little later bulbar symptoms, such as thick or scaming speech, and often nystagmus, appear. During this time the patient suffers little pain and has no trouble with the bladder or rectum. Vertigo and headache are often present. Dorsal flexion of the toes, talipes varus or some other form of club-foot, and lateral curvature of the spine are often observed. Oscillation of the head and choreiform or incoürdimate movements of the extremities may develop. As the disease progresses, the legs become weaker, and finally paraplegia, with contractures and muscular wasting, sets in. The disease makes slow progress; often it remains almost at a stand-still for years, and the patients usually die of some intercurrent disease, such as phthisis or an infections fever.

Among the rarely-observed symptoms are tremor, spasms, decreased electrical irritability, muscular atrophy, vaso-motor paresis, polyuria, glycosuria, anæesthesia, fibrillary tremor, choking attacks, ptyalism, strabismus, diplopia, bleph:rospasm, a slight degree of ptosis, sluggish pupils, tachycardia, profuse sweats, impotence, slight vesical incontinence, fragilitas ossium. Many of these symptoms are, however, exceptional and accidental.

The major and essential symptoms are (1) ataxia, beginning in the lower limbs and extending to the arms and tongue ; (2) peculiar rolling, ataxic gait, ataxia gradually involving the arms ; (3) disturbances of speech; (4) talipes and spinal curvatures; (5) gradual development of paraplegia; (6) loss of knee-jerk ; (7) absence of cutaneons anæsthesia, of bladdertroubles, of eye-troubles except nystagmus, and of severe pains; (8) the development of the foregoing at about the time of paberty.

Analysis of Special Symptoms.-I have space only to go over a few of these.

Ateria.-This is the fundamental and by far the most important symptom. By ataxia in its broadest sense we mean a l ss of the power by which one recognizes the degre of (1) passive or (2) active movements of the limbs, (3) their position in space, and (4) the amonnt of reistance or weight applied to the museles. Our cognizance of these different things depends upon afferent sensory nerves supplied to the joints, tendons, tendinons sheaths, and museles. It depends in a very slight degree also upon the cutaneons sensory nerves.
(a) When there is loss of power to perecive the weight of objects and the tension of the muscles, the musele-nerves are chiefly atfected, and we have muscular anasthesia, (b) When there is loss of power to appreciate the amount of tension in or contraction of muscle, and the relation of the limb-segments to each other, there is both a muscular and an articular anasthesia, and we have a condition known as static ataria. (c) When there is loss of power to determine the degree of active contraction of the museles and the movements of the limbs, there is chiefly articular and tendinons anresthesia and loconrotor ataxia.

Now, in Friedreich's disease motor or locomotor ataxia is always present and very marked. Static ataxia, however, which ealls more into play the muscular sense, is less marked. The patients, though walking with a most ineördinated gait, can often stand fairly well with the eyes closed. Finally, muscular anæsthesia, as tested by determining weights and the position of the limbs, is only moderately impaired, and sometimes is not involved at all.

In fine, then, the gait of patients suffering from Friedreich's disease is very incoordinate. The patient rolls and tumbles along like a drunken man. Yet he knows where his legs are, and he can tell differences in weights quite well.

A hitherto undeseribed peenliarity of Friedreich's ataxia, at least as shown in my own patient, is that it involves even the trimk-muscles, so that there is considerable swaying of the body, even when seated.

This hats been shown by a study of tracings of the head-movements when the patient is standing and when he is seated with elosed eves.

It is possible that this unusual degree of trunk-ataxia is due to the coincident involvement of the direet cerebellar tracts. I have observed it in a case of ataxic paraplegia in which the lateral columms were presumably: involved.

Paralysis.-Paraplegia with contracture is a late symptom. Weakness of the lower limbs, with inability to walk far, is an early symptom. This inability is dependent largely upon the excessive incoördination and the consequent extra demand upon the nervous foree in the aet of locomotion.

The deep reflexes are generally lost carly in the disease, and almost always in a year or two after it begins. The eutancous reflexes are
sometimes absent; but there is no diagnostie significance to be attached to them.

Fig. 1.
Anterlor.

Ataxiagram-tracing in a case of Friedreich's disease. Patient standing, with eyes closed thirty seconds. $x=$ beginning of tracing.

Fig. 2.

Same patient, sitting, with eyes closed.
Fia. 3.

Fig. 4.
Anterior.

Same, sitting; cyes closed.

Ataxiagram of ease of typicai locomotor ataxia of seven years' stand-
Ing; patient standing, eyes ciosed thirty seconds.
Sensory Symptoms.-Absence of $\mathrm{p}^{\text {nin }}$ and of any but light grades of anesthesia is a characteristic of the disease. This absence of pain, how-

Vol. IV.-46
ever, is not absolute. There is almost always some complaint at varions stages. Th: pains are not often severe and lightning-like, but are rather dull and myalgic.

The special senses are very rarely affected.
Speceh asually becomes either syllabie or more often drawling, slow, and "thick." Vertigo and nystagmus conclude the list of most importan symptoms.

Case of John Alexander Delahanty--Age, eighteen years; single. U.S. Weaver: Admitted Octoler 5, 1886. (See Photo. I.)

Family Ifistory.-Father died from aleoholism; mother died in confinement. Otherwise anknown or negative.

Previous Ilistory.-Patient was healthy as a child. Had ruboola, parotitis, pertussis, searlatima, and diphtheria when about seven years of age. Has had intermitent fiver several times. Denies syphilis and gonortora. Has no aleoholic hathits. Was in goon bealth till about two years lefore admission.

Present Illness.-About flve years ago, while at his work, he fell, striking on the butck of his heal. He was not rendered unconscions, and som resumed his work. Previous to this he could walk and talk like other people. Som he bergan to have dull and heare selisations, was always tired and sleepy, and could bo aroused from sleep only with ditlieulty: Then he had peeuliar feelings in legs, pain about knees and ankles shooting upward. This was most severe in thighs. IIad pains in lumbar region; constant and severe cephalmlgia. Itad formieation in legs and back, especially abont shoulders. This is less nows. For about two years he had a band-like feeling of oppression over the stomach, and considerable namsea. This has now gone, lut he vomits oceasionally. When these symptoms became marked, his gait was so peculiar as to attract attention. He could not walk straight, but staggered like one intoxicated. This symptom persists. The floor and ground have always felt matural to him, but his ankles were unsteady, as if we were walking on skates. His speech has been peeuliar. There is a sensation of the tongue being tied lack, and he has difficulty in forming the desired word, this giving the speech a thickness. Formerly his words were natural. At the same time his face assumed a flushed appearanee, that has persisted, at times being a dark red. Formerly he could walk readily; mow the distance of a block is done with diffeculty. He bas no difficulty in urinating, lat it in done frequently in excessive amount. At first he was habitually constipated, going four and fire days without movement; now he is regular. Has mueh dizziness. He suys that he hats had diplopia and musee volitantes.

Ihysical Examination, May, 1SSO.-The patient is small of stature,-height, four fiect ten inches. He is well nourished, not anemic. Faee is tlushed, and hands are red and congested. His gait is rolling, staggering, like a drunken man's; be does not bring his feet down hard upon the heel, as in typical locomotor ataxia.

1trart normal, pulse slow and strong. Langs mommat. Liver-dulness normal. Digestive orgams in fitir condition ; pationt is inclined to constipation.

Urine of light specific gravity (1005 to 1010), and he passes one hundred and eighty to one hundred and ninety ounces daily. It contains no albumen or sugar, but the patient suffers greatly from thirst.

Mentally the boy is intelligent, but emotional and impressionable. His speech is thick, he speaks as though his mouth were full, but there is no "seanning" or syllabic utterance. He sleeps well; has sometimes headaches, and often attacks of vertigo. Muscular power is fainly good in the arms and legs. There is no ntrophy. He has no chereic or tremulous movements, except that his head oscillates to and fro when he stands. He has no spasms or contractions.

There is a very slight tendeney to flat-foot, and a slight anterior curvature of the lumbar spine, but no lateral curvature. Weight, one hundred and thirty pounds. The skin reflexes are diminished, the oleeranon and patella reflexes normal; no elonus.
various re rather
ng, slow, יportant

Weaver
t. Other-
, pertussi>, tent fover as in grem a the back 'revious to heary selldifticulty. ard. This re ceplatless now. , and conlese symp1 not walk nd ground Falking on tied bakk, thickness. pd appeardily; now r, but it i foing fiver He suys
, four feret e red and ng his feet

1. Diges
nd eighty he patient
speeeh is r sylhatie o. Musro choreis He has re of the ds. The

Abstract

There was, on first examimation, a elight amome of cutancons anasthesin of the lower limbs; later it disappeared, and he has had, if mything, cutanoons hyperasthesia. His ataxia is very marked in the lower limhs, less in the upper. It is essentinlly a motor ataxia,' being shown in locomotion and in usiug the arms mad hands. In walking he staggers und rolls from side to side, and often falls if he is not careful. He ean, however, stund firly: well with eyes closed. The degree of moviment of the head is shown in the dingrams (Figs, 1-4). He las maso trunk ataxia, as shown above. He knows the position of his, limbs, and apprecintes ditlierences in weight.

His vision is good. My friend Prof. William O. Moore was kind enough to exmuine his eyes (February, 1889), and found nothing alnormal in the fundus. The late Dr. Loring, who exmaned him in 1887, said that he had then some nystagmus. I have never seen it. He has no disorder of the eye-museles. His other special senses me mormal.

Since he came under obscrvation in 1886, the putient's gait has grown worse, but his general eondition has improved. He has gained in weight, and his polyuria has nearly gone. He has often complained of puins in the head and batek, and of vertigo, but has had no tightening or girdle pains. He has control of the bladder and rectum.

He has twice fallen, and broken first his fibula, und next his radius and ulna.

The features of special interest about this case are its origin from a blow on the head and the cercbellar ataxia shown in his gait, both facts suggestive of tumor. Early in the history of his symptoms there was considerable pain, thongh the patient always magnified his symptoms. He seems even to have had a girdle sensation. The presence of the knee-jerks, the extraordinary polyuria, the cutaneous vaso-motor paresis, were all somewhat peculiar though not unique symptoms. Fragility of the bencs is a curious and interesting symptom, and it adds to the links between Fricdreich's ataxia and the locomotor ataxia of adults.

Pathological Anatomy.-Fourteen autopsies have been made upon cases of Frichreich's ataxia, ineluding one by Dr. J. P. Crozer Griffith, not yet published. The discase in most of the cases had lasted over ten years; in one, only two years; in two, eight years. The examinations have led to quite miform results. The lesions of importance were fond in the spinal eord and medulla only. The cord was usually small, flattened, and apparently congenitally imperfect in development. In some cases two central canals have been seen. A selerosis exists through the whole length of the posterior and lateral colnmus, sometimes extending to the anterior columns. The selerosis is most marked in the postero-median columus, which are always affected in toto. The postero-external column is less involved, and there is often a narrow strip of healthy tissue between the posterior horn and the selerosed area, also between the posterior gray commissure and the diseased parts. The posterior column selerosis is usually most marked in the lumbar region. In the lateral columns the selerosis always affeets the erossed pyramidal tracts. The direct cerebellar traets and the so-called ascending antero-lateral tract are diseased in some cases, but apparently not in all. In a few instances the anterior median columus are involved. A zone of healthy tissue is often found between the sclerosed pyramidal tracts and the posterior horn. (Sce Plates I. and II.)

As to the gray matter, it often appears small in amount; there may be
proliferation of cells aromen the central came ; the cells of the anterior und posterior horns and Clark's eohmons are at times few in number or somewhat atrophied. There is, however, no importunt or specific change in the gray matter.

Some chronic lepto-meningitis, especially on the posterior surface, has been noted.

The medulla shows some traces of extension of the selerosis, but in involvement of the cells of the lypoglossal melens is probably the m su significant change. The brain shows no changes of importance in relation to the symptomatology of the discase.

The posterior nerve-roots are extensively sclerosed, the anterior roots less so, and the peripheral nerves show some degenerative changes.

Pathology.-The disease is essentially a primary degencrative one. The persons affected by it are born with nerve-tracts which have not sufficient vitality to develop in acordance with the needs of the individual; consequently they atrophy, and comnective tissue takes the phace of nervefibre. This is the same process that takes place in locomotor ataxia of adults, which is a degencrative atrophy also, bat involving only the posterior colum, as a rule. The distinction between Friedreich's ataxia and true tabes dorsalis is etiological and elinical, but not a pathological one.'

A clinical peculiarity which especially distinguishes Friedreich's ataxia is the freerlom from entancons anæstlesia, pain, and involvement of the organic spinal centres. The lesions show that cutancons sensations must pass up either in the external part of the postero-external column or in the lateral column just external to the posterior horn. The absence of involvement of the sphineters may be due to the fact that the lowest part of the lumbar and the sacral cord are not excessively involved mutil late in the disease.

Diagnosis.-The distinguishing features of Friedreieh's ataxia are the hereditary or fimily history, the age of the patient, the peculiar rolling ataxie gait, the absence of severe pain, of entaneons anmsthesia, and of bladder or rectal troubles, the peculiar thiek speech, the oscillations of the head, the spinal envature, the talipes, and the absenee of optic atrophy, or Argyll-Robertson pupil.

Disseminated sclerosis may comnterfeit Friedreich's ataxia, but in the former there are exaggerated reflexes, spastic phenomena, tremor, paralysis, and often apoplectiform attacks.

My own case closely resembles cerebellar tumor, but is distinguished from it by its long course (five years), freedorn from headache, from vomiting, and from cye-symptoms, involvement oi the arms in the ataxiat, oscillations of the head, thiek speceh, and fragility of the bones.

[^303]PLATE: I.

Fio. 6.

Case I., Rutimeyer nul Quincke, Virehow's Archiv, Ba. xel. 1I. K., fifeen years' duration.

Fin. 7.

Case II., Rutimeyer, Virchow's Arehiv, ibid. 13. K., ten years' duration.

PLATE II.

Firt. 0.

Fia. 8 .

Fia. 7.

Gowers and Fitt, Giny's Hosp. Reports. R. S., ten years' dura tion.

Erlitki and Kibalkin, Archiv f. Psych., 1886. J. W., two years' duration.

Duration and Prognosis.-The diseate is a progressive one, though it may be stationary for a long time, and may even show temporary improvement. The iongest period of duration of the disease on revord is forty-six years, and the shortest two years, the average being fifteen or twenty years. Death oexurs from some interemrent disorder.

Treatment.-A quict life, grool fired, and favorable hygicnies survomdings are the main therapentie helps. Arsonie and varions nerve-tomies may be of temporary bencit. My ease and some of the Freneh eases were bencfited by suspension by the neck in a Sayre's apparatus. If the disease appears in one member of at family, effort shoubl be made to prevent its apparance in others. The infant shor'd not be unsed by its mother ; and special bere should be taken to prevent it from getting any infertions fevers, and from receiving any faths or blows. Its life shombld be exceptionally quiet, so far as physical exertion goos.

HEREDITARY ATAXIC PARAPLEGIA IN CHILDREN.

There is a primary degenerative disorder of the spinal cord oremring in ehildren and chatacterized by sympons of atasia and some cotancous anesthesia and spasm. The disase develops nsially ahont the time of puberty. It progresses slowly, and takes upon itself the characters which I have deseribed mader the name "spastic ataxia," but to which the name atavie paraplegia is more often given. Such cases may for a time be considered of functional or hysterial chanacter. A longer anquantance with them, however, reveals the progressive and ongane chanacter of the disease.

Hereditary ataxio paraplegia letongs to the same group as Friedreich's ataxia. It is a primary degenemative disorder, involving, no dombt, the hateral and postorior columes of the spinal cord, but with a preponderance of the lesion in the lateral colnmas.

Two cases of this disease were reported by me in the Medical Recorel, July 2, 1887. The following is a symopsis of the seromed case:

Femate, aged ninetern; family history grod ; patient of nervons tempermment; supposed hysterical atacks between ages of eight and ten; severe mental and emotional strain at sixteen ; ataxia and amesthesia, with spastic symptoms affecting different extremities for three cors, but mainty lower limbs; temporary visual tronble; diphopia and vesieal paresis; no nemalgie pains. When seen be the witer at the end of three soms, there was spastie ataxia with entaneons anasthesia, manly in left amm and right lay ; some improvement, with shifting, of symptoms; mental depression: no historical erises.

In the three yars subsergent to the above report the patient's comblition lus varied, but, on the whole, there is a progression of symptoms, and, while at first the disense was considered fimetional, I think that now there is no donbt of its orgmic character.

LOCOMOTOR ATAXIA IN OHLLDREN.

The spimal cord of persons moder the age of puberty is not subject to primary systemic degremative changes. This is a general law to which, aside from the cases of Friedreides ataxia, there are hardly any exeeptions. Da Castel' has reported a cone of primary selerosis of the colnmens of Goll. There are several cases of amyotrophie lateral selerosis in young childreno. Cases of lateral selerosis are not bare, but they are ahways secondary, and dependent generally upon bain-lesions. About twenty cases of disseminatod selerosis are on record, but here such systemic degenerations as orene are also serondary.

The posterior colmms alone sem sometimes to be primarily affected, as alrealy indieated; but in ahonst all instaneres the disease takes the type known as Friedreielo's ataxia, and it may be serionsly doubted whether takes dorsalis ever shows itself' in yomeg ehildren in any other way than as hereditary syphilis or as the penliar form Known as degenerative or Friedreids's ataxia. Erb asserts, however, that he has seen three cases of hecomotor ataxia in chidden between the ares of eleven and twenty. Eulenberg we ports one case begiming at the age of nine; Lembuseher, one beginning at the age of there ; Bradbury, one begiming at the age of nineteen; Romak deseribes three eases of tabes in children ared respectively nime, thirtern, and fifteen, ${ }^{2}$ and refers to six others previonsly reported. Thomas Freger reports three casce oreurring under the age of ten. ${ }^{3}$ Strimpell reports a case with tabetic and pmalytie symptoms in a child of thirteen. Babo\% refers to five cases ocemring between the ages of sixteen and twenty. Jos. Eichberg reports a doubtful case of a girl agred fifteen, with optio atrophy and lightuing pains.s

Gombanlt and Mallet have reported a doubtfinl case of tabes with paralysis developing in childhool. ${ }^{6}$

The histories of some of the cuses of Friedreich's ataxia-such, for example, as Dreschfeld's and Seguin's cases-are more like those of cases of

[^304]ient's comuli symptoms, k that now

in.

t suljeet to w to which, exceptions. mins of (Goll. yr children. ond:ury, and lisseminated s oseclir are affected, :1s (ss the typr hether talues n as hererliFriedreid's r locomotor ilenlererg reregiming at en ; Remak ar, thirtern, mas Freyer 11 reports a en. Babez ad twenty. ${ }^{4}$ with optie tales with wh, for exof cetses of
tabes dorsalis in the adult. Still, many of the firegoing cases are far fiom showing typial symptoms of locomotor naxia, and some are prohably instanes of disseminated selerosis, chronic myelitis, nemitis, or hereditary syphilis.

Laomotor ataxia, therefore, when it ocenss in chidren, takes, ne a rule, the type of Friedreid's ataxia. So far as it diverges fiem that type it approblhes in its symptomatolagy to the lowomotor ataxia of allults. The patients then sulfer from pains, amesthesia, hadder-troullen, and visual disturbances. The etiology in such rases is often obscome. Sometimes there is evidence of direct heredity, as in Eichberg's ratse, or of injuries, or of rhematic influences. Most often there is a history of hereditary syphilis.

STRUCTURAL ABNORMALITIES OF THE BRAIN AND CORD.

By SARAII J. MoNU'TI, M.D.,
AND

Saraf E. POST, M.D.

Abnormalities of the brain and cord may be divided into two classes, -namely, those of greater and those of lesser elinical importance. Among the latter may be placed anencephalus, cyelops, absence of the prosencephalon, and absence of the cerebellum,-gross defeets which are, with the exception of the latter, incompatible with prolonged extra-nterine life.

Anencephalus is always associated with a considerable degree of eranial defect. Baner has classified cases of anencephalns into those with and thoser without an occipital fossa, the vanlt of the cranimm being absent in all cases. In a typieal case there are present of the skull, at the most, only the lower portions of the oceipital, temporal, sphenoidal, and frontal bones. The basis cranii is occupied ly a mass of connective tissue and bloodvessels formed from ingrowths of the pia, constituting the psendencephalon or fungus cerebri of the older writers. Rachischisis and amyelia arr accompaniments of this condition.

Absence of the prosencephalon may be found with a complete skull. The cases of Starr ${ }^{1}$ and of Dana ${ }^{2}$ are still fresh in mind. Of Dana's case it is said that the skull was proportionately large and long in its antero-posterior diameter, and that the sutures were open and the bones freely movable. Buth of these children were horn at term and lived a momber of days. A rudimentary thalamencephalon was present in both cases. The cerebellum, mednlla, and pons were reducel in size, but otherwise normal, the difference in size being apparently due to absence of the fibres which depend upon the prosencephalon for development. 'The main interest of these cases has been found in the complete elimination of the pyramidal fibres and the consequent simplification of problems comnected with these and other spinal and intracerebral tracts.

[^305]Cyclops is characterized by an undivided anterior cerebral vesicle, which is oceupied by hat a single ventricle, and in marked cases gives rise to but a single optic nerve and a single eye. 'The malformation of the eyes is, however, but one of a series of defects to be fomed in these cases, as there are also imperfect development of the other parts derived from the anterior ecrebral vesicle, and extensive changes in the bones of the skull and five. The olfactory nerves are nbsent, and the mose is but a rudimentary organ. The deformity of cyelops may exist in the case of an otherwise well-formed child. In a case recently described by William Craig, of Edinhurgh, ${ }^{1}$ the child was otherwise well developed and lived for twenty minutes after birth. Cases partaking partially of the nature of the cyclops have lived to a considerable age. In a case reported by Richter the subject was a male who died of phthisis at the age of nineteen years. The legs were completely paralytic, there was but slight use of the arms, and the intelligence was of low grade. When younger the patient is said to have been able to talk, but later he beame stupid and apathetic. Upon antopsy the posterior third of the corpus callosum was found present, but there had been no further division into hemispheres. The optie nerves were well developed.

Another case is deseribed by Hallich, ${ }^{2}$ in a child living but eight days, where, with hare-lip and other deformities, the surface of the brain was furrowed between the frontal lobes, but showed no further effort at division. There were no traces of the corpus callosmem in this case. A similar case has been reported by Wille. ${ }^{3}$ Difficulty in nomrishing the child has appared to be the direct cause of death in these cases. An interesting point connected with the condition is the fact that cortical convolutions develop independently of a corpus callosum or other tramsverse commissure.

A trilobular brain has been reported by IFeydenreich, ${ }^{4}$ from the St. Petershurg Findelhans, the middle lobe being oceupied by the third ventride. There was no trace of ossification in the skull, yet the chiid lived a mumber of days. One other similar case hat been reported from the same institution in 1850, the total mmber of innates during the interval having been two hundred and thirty-nine thousand eight handred and twentyeight. Geoffroy-Saint-Hilaire mentions a similar case. Domble brain, or four hemispheres, is perhaps less infrequent. A recent case has been reported from Italy by Martinotti and Sperino. ${ }^{5}$

In all cases of this class the deformity is supposed to date from a very early stage of intra-uterine life. Aceording to Richter, ${ }^{6}$ the deformity of eyclops has its origin before the eighteenth day.

[^306]Kölliker tells us that the closure of the medullary canal begins a little candad to the head and proceeds in both directions. This observation is cited as a reason for the fact that in these early deformities the sacral region and the prosencephalon suffer so severely, the part last developed being that which is most apt to be malformed.

The remaining conditions which we have to consider are not inconsistent with a somewhat prolonged extra-nterine life. This class may be subdivided as follows:

1. Abnormalities accompanied by defects in the envelopes of the part:
a. Cr oschisis, $\left\{\begin{array}{l}\text { Eucephalocele. } \\ \text { Hydrencephalocele. } \\ \text { Meningocele. }\end{array}\right.$
b. Rachischisis, $\left\{\begin{array}{l}\text { Myelocele. } \\ \text { Meningocele spinalis. } \\ \text { Spina bifida oceulta. }\end{array}\right.$
2. Abnormalities in which the envelopes are entire:

Hydrocephalus.
Microcephalus.
Porencephalus.
Aberrant arrangement of fissures and convolutions.
Agenesis of cortical elements, commissures, and associative tracts.
Encephalocele is characterized by protrusion or hernia of a part of the brain through an opening in the skull. Accorling to Bruns, cerebral hernias are, with few exceptions, located in the median line of the skull. The majority are found at the posterior extremity of this line,-namely, at the oceipital protuberance,-extending upward to the posterior fontancl or downward to the occipital formmen. Mueh less often the aperture is at the anterior extremity, between the cribriform plate of the ethmoid and the frontal bone or between the halves of the frontal bone at its lower and anterior portion. Exceptional cases are found in which the opening is between the halves of the frontal bone at its upper portion, the anterior fontanel, and the sagittal suture. A few cases have been ob enved in which it was between the temporal and parietal bones.

Congenital cerebral hernias are found between bones, not, as a rule, through openings or foramina in the substance of the bones. There are but few exceptions. The occurrence of such a hernia in the middle of the occipital bone is no exception, because at a certain period of development the halves of this bone are separate. Hernia outside of the median line is so rare that only a single case has come to the writer's notice.

Encephalocele appears as a round or egg-shaped tumor covered with skin, maltered if the tumor is small, but destitute of hair in those of larger growth. The tumor of encephalocele sometimes shows a furrow dividing it into lateral halves, varying in size from that of a nut to that of a man's: fist. In the true encephalocele this tumor is pretty firm. As it contains
more water it fluctuates. Its volume is diminished by pressure during deep inspiration and during sleep, while it is increased in volume during expiration and cries. It is semi-transparent when containing water. Impairment of function is not nsinal where the tumor is small and not disturbed. When disturbed, restlessness, eries, and convulsions follow. Pressure on the tumor produces turning or fixing of the eyes, difficult respiration, weakening of the pulse, nausea, convulsions, and a comatose condition. Lxceptionally no change oceurs in the tumor, but usually it becomes larger, and the more considerable its size at the time of birth the more rapid is its growth. Most of the cases die within a few weeks of birth, from progressive hydrocephalus or diffuse inflammation of the membranes from the distention of the portions over the tumor. A few cases have, however, lived twenty or thirty years, without fimetional disturbances.

Meningocele is characterized by the escape of the arachoid adhering to the dura through an opening in the skull, so that there is formed another vesiele which commmicates with the cavity of the arachoid by a narrow mouth. This vesicle forms a tumor which is filled with fluid and presents a semi-translucent appearance. The case figured below is one exhibited by Dr. MeNutt before the Clinical Society of the New York Postgraduate Medical School, April 16, 1887. The history of this case is briefly as follows :

Fig. 1.

The patient was a male, the first child, born at term, of young, healthy parents. There was a history of privation, anxiety, ind insufficient food during the pregnaney. The delivery was normal. The tumor was observed immediately after birth. It appeared in the oceipital region. The sac of the tumor was, about the convexity, membranous and translucent. Towards the base it was eovered with hair. The bones of the skull were soft, the fontanels large, and the sutures open. Left facial paralysis, shoulderluxation, talipes, and deformities of the wrists and hands were present. The child lived two months. At the time of death the tumor measured nine and threc-fourths inches in ciremmference. The pediele of the tumor was thick and contained cerebral tissue. The oceipital convolutions interlocked, and the cerebellum was absent. A further detailed report of the mieroseopical conditions in this specimen is being prepared. The bony
defeet extends from the level of the inferior enrved line into the occipital foramen.

A vertical section through the skill in the median line is shown in Fig. 2, with the segment of the oceipital bone surromading the defect, which was disarticulated and removed with the thmor. We shall again refer to this drawing, made from a photograph of the specimen.

Myclocele, or hernia of the cord, is one of the conditions commonly designated as spina bifida. As deseribed by Koch, ${ }^{1}$ it is found most frequently in the sacmal region. The spine down to the sacrum is normally. closed, but the posterior segments of the arches of the three upper sacral vertebre are lacking, leaving a four-cornered fissure. The number of the vertebre is normal and the direction of the lamina correct; they simply do not quite meet. The borders of the fissure are covered with the periosteum of the spinal canal, which blends with the lumbo-dorsal fascia. The dura forms the sac of the tumor.

Normally the cord in the new-born ends at the level of the second lumbar verteba, the cord being retracted to this level, according to Ranke, with the later growth of the bony canal. In myelocele at the level of the first sacral or the last lumbar the corl is adherent to the dura, the faseia, and the skin, and retraction is this apparently hindered, because if the cord in a case of myelocele be extended it will reach the level of the third or fourth sacral vertebra. Lumbar, secral, and coceggal nerves are found in the tumor. Where the cord is adherent the membrane covering it is often thin and transparent, apparing to have the character of primitive epiblastic tissuc. Hydromyelius is prosent, ats a rule, to a greater or less degree in all cases.

Meningoede spinalis consists of a hernial sac formed by the dura externally and lined by the pia. The spinal cord does not take part in the formation of this tumor, but lies even more deeply than usual in the lumen of the spinal camal, or, at most, sembls only a few fine nerve-tronks over the thmor. The elassic location for meningocele is the occiput. According to Koch (loc. cit.), its next most frequent location is coceygeal, at the lower extremity of the sacral vertebre, the pediche apparing through the hiatus sacralis. Absorption of the neighboring vertebral segments may oceur from pressure, but a true bony defect is not necessary to the formation of this, tumor. The diagnosis is obtainel from the transparency of the tumor, its fluctuation, its rapid development, and the production of eerebral symptoms when pressure is exerted upon it. The myelocele is, on the contrary, a small, firm, and usually umbilicated tumor, always associated with bony defeet.

Spina bifida, or rachischisis posterior, is characterized simply by absence of a larger or smaller portion of the vertebral areh. In total rachischisis the whole canal lies open, the free borders pointing ontward. The

[^307]cord is only partially developed. Cases of anenecphatus and oecipital enephalocele are allied to this class.

In partinl rachischisis the defect is limited to one region, or even to a single vertebra. According to Koch (loc. cit.), the vertebre are normally formed up to their transverse processes. The intervertebal foramen and the interarticular ligaments also are little altered; but beyond the transverse processes the arch, instead of continuing backward and inward, proceeds in an ontward direction.

In total rachischisis the whole number of vertebre is moder the normal ; the hodies of the defective vertebre are smaller than normal, or may be fissured, giving the variety known as rachischisis anterior. With this malformation the whole cord may be defective, absent, or represented by embryonal tissue, or it may appear as a fissured expanse. In other cases, where the medullary plate has mited to form the medullary tube, the spinal nerves take their origin irregularly, often being in connection with the membranes only and totally detached from the cord.

Spina bifite occulta is a minor allied condition discovered by Virehow and since deseribed in a number of cases.' The defect here is in the lumbar region, it is covered with skin, and hypertrichosis of the part is characteristic of all cases. There have been miformly present also club-foot, a degree of anesthesia, and perforating uleer of the foot. These two varieties of rachischisis were observed by Dareste in his studies npon the artificial production of deformities, and were referred to by him before the Academy in 1877. In one, all the tissues from the lamine outward were wating in the median line; in the other, bone only was wanting, the skin and subeutaneons tissucs being formed.

With a high grade of rachischisis, ventral hernia, imperforate pharynx and rectum, cte., usually are present. J. Bland Sutton finds the origin of this coincidence in the primitive neurenteric canal, the neural canal and the alimentary canal being continuous at a very early date, and hence conditioned by the same lack of formative force.

The older writers regarded meningeal effusion as the primary etiological factor in the production of cerebro-spinal deformities. In the class of cases which we have just considered it was supposed that the envelopes rupture; in the class yet to be considered the envelopes resist the excentric pressure, and embarrassed growth is the result. The more recent literature has not, however, given to meningeal effusion the same prominent place. Dareste and, later, Lebedev, ${ }^{2}$ from studies of the chick embryo, Ackermann, ${ }^{3}$ from a study of the crania associated with hernia of the brain, and William Koch, ${ }^{4}$ from a study of spina bifida, arrive at a common conclusion,namely, that bony defects at least do not necessarily depend upon hydro-

[^308]cephaloid conditions. Koch considers the bony defect in myelocele and encephalocele alike due to failure of separation between the cutaneons and the medullary layer after the formation of the medullary canal. A septum thus continues to unite the neural tube with the skin and prevents mion between the segments of the osscons and musenar layers. These finally, by increasing in thickness, may exert traction upon the neural organ and lift it from its bed in the camal. Increase in size, grovity, and subsequent meningeal effusion complete the work thus begun. We have alveady referverl to the fact that encephalocele and myelocele are apt to be umbilicated or furrowed. The phace of umbilication or furrowing is supposed to locate the septum and primitive defect.

Koch finds the shortening of the spinal colnmn, the absence of some vertebre, and the dwarfing of others in pronounced cases of rachischisis, also the oceurrence of minor degrees of rachischisis without neutral involvement, all opposed to the theory of rupture from distention. In hyhromyelius he would expeet the spinal axis to be lengthened rather than eurtailed.

Ackermann cites further the condition of the cramia in cases of encephalocele as evidence opposed to the theory of rupture by the distention of a hydrocephatic sac. The peculiarity of these crmia is that known as kyphosis ${ }^{1}$ of the base of the skull. In this deformity there is steepness of inclination of the whole base of the skull, and, in addition, sharpening of the oceipito-sphenoidal angle, or the angle formed between the basilar process of the oceipital bone and the body of the sphenoid. In the five skulls examined by Ackermann the angle made by the basilar process of the oceipital bone with the plane of the oceipital foramen was diminished from 146 degrees to $112,104,100,119$, and 132 ; and the angle made by the basilar process of the occipital bone with the body of the sphenoid, from 151 to $133,130,129,144$, and 143.5 . Prognathismus, with its receding foreheal and diminished cranial capacity, accompanies this basilar deformity. In cases of hydrocephalus the first angle was little altered; the sccond was, however, found flattened in all of six cases. In hydrencephalocele also this angle was, as in hydrocephalus, increased to 157,175 , and 178 degrees in three cases. Ackermam finds kyphosis an argument in favor of a primitive bony defect with a resulting diminished intracerebral pressure. Normally, he explains, intracerebral pressure must somewhat exceed that of the surrounding medium. With a bony defect this balance of pressure will be lost, and crushing together of the immature bones will result. In hydrocephalus, on the contrary, the intracerebral pressure is supposed to be increased, and flattening of the basal angles is a consequence.

Fig. 2, representing a vertical section of the skull in Dr. McNutt's case of meningocele, is manifestly an example of this deformity. Further observations not only upon the brain but also upon the skull in these cases are to be desired. The practical importance of the investigation is casily

[^309]seen. If prenatal hydrocephalus leaves its impression upon the base of the skull, this base may be interrogated in regard to a nomber of disputed points.

To constroct the angles referred to by Aekermann, first divide the skull vertically in the median phane, then upon this plane draw lines representing its intersection with the plane of the oceipital formen, with that of the longitudinal axis of the basilar process of the oceipitul bone, and with that of the longitudinal axis of the body of the sphenoid. 'The two latter extend midway between the inner and onter surfaces of the bones, the inequalities of these surfaces being disregarded. We present Ackerman's observations at some length, on accomnt of their interest and apparent value, also as leing in their conclusions harmonions with the more recent experitnental results.

While Koch, Lebedev, and others make meningeal eflusion secondary to a primitive medullary defect, Sutton, on the other hand, aseribes the tumor of oceipital meningocele to primary closure of the cunals comecting the lateral recesses of the fourth ventricle with the subarachoid space. It is associated with a rudimentary or absent cerebellum if developed at an early stage. This variety of meningocele has the same relation to true meningocole that syringomyelocele has to spinal meningocele. Hydrencephalocele would be produced, aceording to Sutton, by dilatation of the central canal and the mechanical withdrawal of cerebral tissue, the agent being the traction exerted by the growing tumor upon the aljacent cerebral mass; Brins thought that a meningocele became a hydrencephalocele by the going over of cerebral substance into the tumor under the combined influences of growth and the eranial defect ; while Koch, on the contrary, holds that the primary encephatocele becomes a hydrencephalocele by the loosening of the band of comection between the neural tube and tue skin and the consequent sinking back of the hernia into the canal. The question as to which existed first, the tumor or the defect, and the question whether the meningeal effusions are primary or secondary, camot thas be said to have yet received a completely decisive answer.

Hydrocephalus may be internal or external. Internal hydrocephalus is characterized by effusion into the ventricles. In external hydrocephalus the fluid is found in the subarachnoid space. Hydrocephalus may be due to stasis of the circulation, meningitis, shrinkage of the brain, or congenital rachitis. In hydrocephalus due to inflammatory action the ependyma is found thickened, red, and granular.

Microcephalus is characterized by narrowing of the brain in all its diameters. Premature synostosis of the bones of the skull has been established by Virehow as a more or less constant concomitant of this condition. The convolutious are simple in arrangement, approaching, according to some authors, the cetacean type. In a case reported by Dr. Mary Putnam Jacobi, ${ }^{1}$

[^310]in a child of three months, the skill measmed hut twelve and a half inches in its greatest ciremmference. There was chision into the ventricles, but the 'pendyma was not ingerted. The convolutions were simple, little enferel, marow, mad thattened. The occipital lobe was lenst developed. 'The corpus cullosmon was small and terminated "prematurely."

Inorecipilie is a term nsed to distinguish microcephatio Damins in which the defere in the oecipital lobe is especially market. This abmomality, aceording to Richter, dates from alout the fourth month, at which time the frontal, parictal, ame temporal lobes have been differentiated, but the orecpital lobe has not yet been fomed. Following Virchow, Richter tiuds the origin of oxecipital ngenesis in prematmre owcipital symostosis. Schrocter in conditions of idiory fomel the corpus callosmm abmomally short in one humberd and ninctem mases.'

Porencrphuelus is chameterizel ly the presence of depressions or atrophicel portions of the surface of the hemispheres. In some cases the pit conmunicates with the lateral ventricle. The surronoding convolutions then converge towards it, and the lesion is more profond and presumably of earlier origin. In the majority of cases the defect is milateral; in othery it is bilateral and even symmetrical. An example of bilateral symmetrical porencephalus is shown in Figs. 3-7. The clinical condition is one of paraplegia of cerebal origin, the development of the parts supplied by the atrophied cortex being impaired. In the case here referved to ${ }^{2}$ there was a history of diffieult labor, with an after-coming head. 'The child sufferer with convalsions for nine days after birth. It lived two years. Voluntary motion never was obtained, the reflexes were exaggenated, and contratures were present in all the extrenities, in the lower extremities the rigidity being most marked. The larymx also was badly developed, and the child had the crowing respiration and the tendency to regurgitation noted in sinrilar cases. The cortical defect was fomm in the parts adjacent to the sulens of Rolando and the preecentral sulcus, there being complete absence of gray matter in the bottom and along the sides of these sulci. The examiation of this brain, made by Dr. W'illiam H. Welsh, shows results which are in some respeets unique. We refer particulaty to the escape of the erest of the convolutions from the atrophic process. Dr. Welsh ${ }^{3}$ refers to this peenliarity as follows:
"The margin of selerotic tissue can be traced up for a certain distame along the sides of the anterior central convolution, and then there appears rather abruptly a cortex two or three millimetres in thickness, which (an be traced over the top of the convolution where it has its greatest thickness. The sclerotic tissue, however, does not disappear, as it can be traced along the deeper parts of this cortex near the junction of white and gray matter. At the top of the anterior central convolution can be made out,

[^311]in normal succession und of alont normal thickness, the molecolar layer, the layer of small sud the layer of large pyramids, and then comes the selerotic tissue, with its abmulant mudei, fibrons texture, and dilated lymph-

Jeft hemisphere. Atrophy of the astewhing frontal eonvolntion, atrophy of the ascending parietal convolution, atrophy of the paracentral lobule, mad possibly atrophy of the anterior part of the thrst temporal convolution. (About two-thilds uctuml size.)
spaces. In following the cortex down the sides of the convolution it is seen that selerosis invales from the deeper parts more and more of the cortex, the layer of large promids first disapparing, then that of small

Fin. 4.

light hemisphere, Atrophy of the aseending frontal convolution, atrophy of the aseending parietal convolutlon, and atrophy of the paracentral lobule. (About twe.thirds uetual size.)
pyamids, while the molecular layer, although abmormally rich in melei, ean be traced all the way down the sides of the convolution. The impression is not that of a selerosis invading the cortex from the surface, but rather that of invasion from the deeper layers of the cortex or from the medullary substance."

Figs. 3, 4, 5, 6, and 7 are taken from this brain.
Vol. 1V.-47

The lesion in these cases would appear to be identical with that of

Fio. 5.

The rlght hemisphere vlewed from above. general cortical sclerosis, from which it often camot be differentiated during life. Records of sixteen autopsies of spastic bilateral hemiplegia collected by Osler have shown five cases of gememal cortical selerosis, seven cases of extensive partial selerosis, including the central en: wolutions, and four cases only of sel rosis, limited to this region. Paraplegia, rigidity, and idioey were present in all, the essentia! lesion in every case being appaiently the atrophy of the central convolntions. The disability in Dr. McNutt's

Fig. 6.

Vertcal secton showing atrophied preecentral eonvolution.
case was as profomed as in the cases where the lesion extended over a larger surface of the hemisphere.

Fia. 7.

Internal aspeet of the right hembsphere, showing the atrophled paracentral lobule with the atrophled band lin the callosum.

The etiology of porencephahes has given rise to many interesting hypotheses. The hemiplegia with which it is associated has in many cases appeared
${ }^{1}$ P'ost, lue. cit.
as the possible origin of the deformity. In Dr. McNutt's case of biplegia, the base of the skull was not examined, but the vanlt was rachitie, and the child's whole condition had a machitic aspect.

In regard to milatemal porencephalus, apparently interruption of the pyramidal tract in any part of its extent will result in a porns if the injury be received during the period of growth. Wigglesworth reports the case of a man dying at the age of fifty-six years in which the left upper extremity had been amputated at the age of fon years. Upon autopsy there was found atrophy of the right post-central convolution. Also we are reminded that in Heubner's case of double porencephalus the symptoms da.ted from convulsions and fever at the age of fifteen months. An embolus was fomed in the right middle cerebral artery in this case. It is probable that basilar kyphosis is at the most but one of a number of conditions capable of producing this deformity.

From even this short and incomplete review of the recent literature of our subject it will be apparent perhars that interest has tended to centre in the collateral etiological evidence to be gained by interrogation of the skull and spinal camal, upon the one hand, and, upon the other, in the revelations afforded by the natural atrophy method of agenesis. In the presente of such observations as those of Richter all doubt as to the commissure system of the corpus callosmm shonld be, it would appear, permanently put to rest. The value of this matmal atrophy method in demonstrating the cerebro-spinal fibres has also been referred to. An abnormal product is in the light of such investigations not a mere monstrosity to be immediately put out of sight, but rather a blunder by which Nature reveals the secerets of her workshop.

The arrangement of convolutions and the degree of development in the nerve-clements have received attention in connection with the brains of imbeciles and criminals, particularly from Spitzka, ${ }^{1}$ Mills, ${ }^{2}$ and Sachs. ${ }^{3}$

It is evident that in this line of investigation, also, there is a wide field for rescarch.

[^312]degia, ol the of the injury e culse er exthere we rodi.tecl is was le that apable
ure of atre in skull evelilesence issure ly put lg the th is in liately secerets

THE SURGICAL TREATVENT OF ABNORMALITIES OF THE BRAIN AND SPINAL CORD.

By P. S. CONNER, M.D.

The congenital or early-developed abnormalities of the brain and spinal cord that may demand and with advantage receive surgical treatment are meningocele, encephalvecke, spina bifida, and hydrocephalus; in other words, hernie and dropsies.

Abnormal protrusion of a portion of the brain or its coverings may he due to too slight resistance on the part of the membranous or bony cranimm, to inereased pressure from within because of ventrienlar dropsy, or to a dragging force from withont consequent upon carly attachment to the fietal envelope. As a result of the action of these causes, the presenting thmor may be a portion (1) of the meninges, containing fluid,-i.e., a meningocele, which, if it ocem at all (and this is much donbted), does so very rurely; (2) of the brain,-i.c., an cucephalocele ; (3) of both brain and covering,i.c., a meningo-encephalocele, whieh is the most frequently observed condition ; or (4) of the brain with included ventricle distended with fluid,-i.r., a hydrencephatocele.

As shown by Berger, there oceurs at times a hyperplasia of the meningeal envelope simulating a neoplasm, and when boain-substance is present it may be of such mised chanacter as to indieate that the protrusion dates back to an early period in the development of the nervons system.

The size of the hemia varies greatly, at times almost equalling that of the head itself. As might be expected from the manuer of its production, its location is along the suture-lines, being in the great majority of instances somewhere on the median line, most commonly in the ocepital region, lunt not seldom in front, at or near the naso-fiontal junction. Very rarely has it been found in the temporal region. When located posteriorly it may be just above the foramen magnum, at the fontanel, or, more usually, between the two at the meeting-point of the several parts of the oecipital bone. That brain is or is not present cannot in many cases be absolutely determined exeept ly actual inspection, or, it may be, careful mieroseopie examination, and it should therefore always be regarded as entering into the composition of the tumor.

When other than quite small, its diagnosis is ordinarily easy, if due consideration is had to its location, its more or less yieldiug and thetuating charater and transluceney, its redueibility, and the effeet of pressure in producing general disturbances (nausea, convulsions, or even coma). It may be confounded with simple serous cyst, but in the great majority of cases sueh eyst maty properly be regarded as having been originally a hernia, the conncetion of which with the interior has been cut off. If small, especially when located near the inner angle of the eye, it may be and has been mistaken for a wen or an erectile tmmor, which latter an encephalocelsmay much resemble in general apparance. In at least one case it has been thonght to be a nasal polyp, and operated on accordingly, with a fatal result. The great difficulty at times, not to say impossibility, of elearly diarmosticating the affection makes it neeessary to view with much suspicion any carly-noticed tumor sitnated in or near the median line, especially in fromt.

In all' the aboormalities under cousideration treatment is either palliative or radical, the former consisting in the application of a protecting pad, and, if permissible, of moderate pressure. Radical treatment has been by puncture, by injection, and by incision followed by either replacement or exeision. Puncture, which until quite recently was the only operation proper to be donc, since the others were almost certain to be followed by fatal septic inflammation, has proved musatisfactory, having ordinarily to be frequently repeated, and being liable, even thongh all antiseptie precautions are taken, to give rise sooner or later to meningitis.

Injections are not to be advised, becanse of the great likelihood of the production of destructive irritation and inflammation.

Shall a cutting operation be done? It is as yet too soon, the cases are too few, to wamant the expression of a positive opinion. Septic meningitis has up to a recent date carried off the majority of the patients. If an operation is to be done, the sat should be freely opened, the protruding bain-substance replaced if possible, the sae exeised and its edges sutured, and the skin-flaps bronght together and mited. Only when the bainhernia is small can it be put back, the obstacle to reduction being either the size of the opening in the skull or the intolerance of the brain to the neressuly pressure.

How shall an irreducible mass be treated? Either by letting it alone, closely cosering it in with sac and skin-flaps, or by excising it. The latter procedure will certainly add to the gravity of the operation, particularly if the case is one of hydrencephatocele, when some part of the lateral ventriele must of neeessity be opened. Further experience must determine how much of the bain may be cat away without resulting death or marked mental impairment.

When t tumor is very small, is not enlarging, and seems to be produeing no disturbanee, it should not be interfered with; nor should any operation be done when the gencral condition is bad, or when there is
present other malformation dangerous to life, or of such nature as to render it undesirable that life should be prolonged.

Spina Bifina.-Hernia of the spinal cord or its envelopes, or both, is commonly known to English and American physicians and surgens as spina bifida, because of the prominence attaching to the associated cleft condition of the spinal column, which only in the most exceptional cases is of the vertebral bodies. In the great majority of patients the non-closure of the posterior arches is in the sacral, lumbo-sacral, and lumbar regions, oecasionally in the dorsal, and much less often in the cervical. In a few instances the entire camal has been found open posteriorly. Like the corresponding brain-hemia, that of the cord may be (1) of the meninges, meningocele, the dropsy occurring in the arachoid cavity and pushing the cord forward against the bodies; (2) of the cord and its coverings, meningomyclocele, the fluid being in the subarachnoid space ; or (3) syringo-myelocele, from distention of the central canal, the cord being flattened and spread out. The second variety is much the more common : 63.2 per cent. of the cases examined by the Clinical Society Committee were of this class. Ordinarily, if not always, congenital, the tumor may, thongh very rarely, manifest itself only some time after birth. In a few cases there is present a thick covering of skin, but usually the integment is very thin and closely adherent, generally entirely absent over the central part of the mass. In Ranke's opinion, it was a growing together of the membranes of the cord and the external skin that prevented closure of the canal. Instead of the ordinary reddish color of the tense shining tumor, the sae may be bluish white, as in a case of Crew's. In other than simple meningoceles the cord or a part of it is found within the sace, more or less closely and extensively attached to it or even passing over in its wall. Not scldom a dimple or depressed furrow indicates the point or line of adhesion. Existing septa may make the tumor multilocular.

Other malformations, especially hydrocephalus and club-foot, are often present. Paraplegia and sphincter-paralysis may exist at the time of birth, in which case death speedily oceurs. In many cases paralysis is developed after a short time. Spontaneous rupture often takes place, in labor or after a few hours or days, with the result ordinarily of cansing death, either quickly from shock, or more slowly from septic meningitis. If the opening is a very small one, such inflammation may not lee developed.

The only other conditions likely to be mistaken for spina bifida are fatty tumors and congenital eysts ; but mistake is not apt to be made if regard is had to the consistency and probably lobulated character of the former, and to the absence of the effect of pressure, of changes of position, of crying, ete., in altering the size of the latter. The cyst may be and often is an original spina bifida in which the vertebral opening has become closed. Fatty, cystic, and even feetal tumors have been noticed coming from within the spinal canal and preventing mion of the arches.

Though the majority of the subjects of this abnormality die early,
largely from maramus, a fow live for many monthe or yours, and individuals have survived to the age of thirty, fifty, even seventy-fom yems. Of Demme's thirty-two patients, however, who were intreated, all were dead within two years. Ocrasionally it happens, as in a case of Whitehode's, that after yaus (twenty-ome in the ase refermed to) of quiescence the tumor conlarges and becomes tronblesome, even dangerons. Spontaneons closure of the opening may oreme.

As in cases of hatin-hernia, sos here, treatment is cither palliative or madial, intended to proteet by pad or other medhanical covering and secure moderate compression, or to remove the tumor and effect closine of the opening. When the protrusion is small, is not cularging or that but slowly, and is covered with hoalthy skin, the palliative treatment should always be adopted. The application of collodion has been found of service. There is much wisdom in tho suggestion that, as a rule, no radical treatment should he instituted for at least two months after birth, as not seldom hy that time indientions of spontaneons healing will manifest themselves, and a lage propertion of the children untit for operation will have died.

The radial treatment has been hy puncture, by injection, by ligatom or elamp-compression, by excision and plastic operation.

Puncture, which has usuadly had to be repeated owing to the refilling of the sace, has oceasionally been followed by come, but ordinarily hats resulted in failure, commonly in death, due to a developed meningitis.

The sucess following the application of a ligature, the érasen-wire, or the clamp has not been such as to give murh eneomragement for their use.

Puncture followed bex simple iodine-injoetion, advised by Velpean and first practised and highly commended by Brainard (iorline gr. v, iodide of potasimm gr. xv , water $\overline{3} \mathrm{i}$), was a favorite method of ireatment until Morton propesed the use of glyerin in place of water (iodine gr. x, iodide of potassium gr. xxx, glycerin $\overline{3} i)$, since which time such solution has been ordinarily emploved ; the glyerrin being thought to lessen the liability of the diffusion of the irritating iodine to the parts outside the sace. Many successful eases have been reported (twenty out of twenty-six treated by simple injection, thirty-five out of seventy-one by the Morton fluid, of the cases examined hy the (committee of the Clinical Society of Loulon), but too mudh regard should not be had to the statisties that lave been acemmulated and publisheel, as they are not very extensive, and there is genel reason for believing that the large majority of the unsucessful cases are not put on record.

Great eare must be taken, in withdrawing the fluid of the sac, not to remove too much, - not more, certainly, than one-half,-and to inject slowly the iodized glyeerin in small quantity (3ss-3iii), as otherwise fatal shoek may be produced or violent inflammation rapidly exeited. I have onre seen an infant several months old die immediately upon being turned over upon its back, after removal of a large part of the fluid in the sac and injection of perhaps forty drops of the glycerin solution.

The existonce of paralysis is a contra-indication to the nse of iocline, muless, as suggesterl by Ashhmst, it can be thrown into the coverings without perforating the sue itself.

When a successful result is to follow the injertion, the sate beeomes filled with new romeetive tissne, which later mulargoes contraction and solidification. Whenever puncture is made, with or withont assocriated injection, the needle shonld be entered at a considerable distance from the median line, to lessen the risk of injuring my part of the cord which may be in the sate: as has been said with truth, we have " no mouns of determining in the living sulbject whether or not the cord is in the sace." Electricml stimulation has been proposed as a method of making such determination.

Though the injeetion treatment in "its mode of action most nearly resembles the matural morle of cure," and its employment has not soldem been followed by a satisfictory result, yet within the last few years direct operation has mudy engaged the attention of surgeons, and in a number of cases the sace has been removed and the andacent soft parts Inonght iugether as closely as was possible. In one case of spentancons rupture, Davidson (of Glasenw) used a thin layer of spouge ent to fit the opening in the sate as a framework for gramlations, and fome after a time that it had entirely disappared; a cure followed. To close the vertebral gap Mayo-Robson introduced a picee of rabbit periostem, without, however, secming the desired result ; and Dollinger has done an osteoplastic operation, breaking down, bending in, and suturing together the everted arches.

Too rapid and excessive escape of fluid should be prevented by the position of the patient rather than by the use of champ or ligature. Any nerves that may be in the sace should, if possible, be dissected ont and returned within the canal.

Zenenko has stated that removal of such nerves apparently canses no discernible disturbances in the finctions of any organs, yet such a case as the one reported by Barton shows that, even if no spectly ill conserfuences result, convulsions, followed by death, may later oecur.

In elosing the womm, the several layers should be separately united by buriod sutures. larkes, who has reported three operations, with two recoverics, attributes the fatal result in the third ease to infection introluced along the tracks of two silk sutures passed through the skin and the deeper parts to strongthen the union, septie meningitis developing very quickly after removal of the stitehes, thongh primary union of the wound itself had taken place. It is of interest to notice that the two children who recovered were very young (four and seven weeks old).

Thongh these excisions and plastic operations have hat seldom been done, thongh it is exceedingly diflicult to keep the wound aseptic, and though the results thus far have not been very encouraging (e.y., three out of five patients operated upon in the Göttingen clinic and reported upon by Hildebrand died), yet future experience, and that on an extended scale, can alone determine the actual value of the really operative treatment of this abormality.

Hydrocermadus.-Consequent ugon interference with the outilow of blood through the Galenic veins or closure of the communication between the ventricles and the subarachoid space, or becanse of some disturbance of the balance between secretion and absorption the canse of which may not be recognizable, there ocents a dropsical aceumulation in the ventricles or subarachnoid space, or both, apparent at birth or manifesting itself soon after. Not seldom various members of the same tamily are affected, and coexistence of other abmormalities (spina bifida, chb-foot, hare-lip, etc.) is freguently olserved. 'Those congenitally affected are, as a rule having few exceptions, short-lived, but when the disease is developed later and thr enlargement is of slow production the patient not very infrequently lives to adult, it may be, thongh rarely, to old age. The size to which the head may attain is at times monstrons : in the Warren Museum is a sknll twentyseven and a half inches in greatest cireumference ; in the Cruikshank Maseum was one of fifty-one inches. Cardinal's head was thirty-two and a

Fig. 1.

quarter inches around, Esquirol's patient's thirty-six inches. In a child twenty-eight months old whom I saw (Fig. 1), the distance from the root of the nose to the occipital protuberance was forty-two inches, and that from one ear to the other over the vertex twenty-seven and a half inches.
flow of setwern mhane ch may ntricles If soon cd, mul cte.) is ing few and the lives to he head twentynk Mno and a

Occasionatly the enlargement is asymmetrinal, even one-sidet. The great disproportion between the size of the head and that of the face gives a peenliar and chameteristic apmearance to the child. When, ats is masally the case, the dropsy is intraventricular, the eyes are carriod downard and ontward, while their position is melanged when the colargement of the head is due to flnid in the arachnoid cavity only. In other than the mikler cases the brain is, as a sule, feebly developed, and often will be foum sprad ont as a thin layer lining the inuer surface of the sar, or resting upon the base of the skull. Henoch reports a case in which the hemispheres hat almost entirely disippeared.

Spontancons bursting of the sace is ustally followed by death, though recovery has been known to take place. Extensive cellulitis and formation of abscesses have been reported.

Of treatment little can be said. The internal alministration of drugs is seldom or never of any value, and lowal applications are practically nseless. The only operative treatment as yet resorted to has been puncture, at times employed since the days of Le Cat, oceasionally with sucense, especially in cases of ataclmoid dropsy. Only a moderate amomet of fluid should be drawn off at a time, and that through a puncture a little to one side of the median line near the anterior fontanel. The aspirator-needle should be prefered to the trocar and cimula.

When closure of the sutures has taken pare yet symptoms of int aventricular dropsy are present (indications afforded by ophthalmoseopic examination are of great value), the ventricles may be tapped through an opening made in the skull, as has been done by Ayres and Keen. The latter advises lateral trephining, and directs to make a large opening one and a quarter inches behind the meatus and one and a quarter inches above Reid's base-line. Puncture towards a point two and a half inches direetly above the opposite meatus. The pmeture will traverse the second temporosphenoidal convolution and enter the normal lateral ventricle at the begimning or in the course of the descending cornu at a depth of about two to two and a quarter inches from the surface. In the case operated upon, the ventricle was reached at a depth of one and three-quater inches from the dura mater. The same oljeetion holds against this operation as against tapping in ordinary cases : reaccumulation of the fluid is almost certain to veenir.

THE OPERA'TIVE SURGERY OF THE BRAIN AND SPINAL CORD.

By charles b. NaNCREDE, M.D.

As this article is strictly confined to the consideration of operative technique, diagnosis and indications for or against operative treatment must be sought in other sections of this work.

The fact that " no injury of the head is too trivial to be despised, and none too severe to be despaired of," should unceasingly influence the surgeon's opinion and control the treatment of head-injuries at all ages, but especially those oecurring during childhood. As the most trivial injuries of the sealp may be complieated with severe eranial and cerebral injuries, or as secondary diseases of the soft structures may initiate fatal intracranial trouble, the proper therapensis of scalp-womeds must first be briefly considered. An insignificant scalp-wound, if it become infocted, may lead to periostitis, purnlent osteitis, osteophlebitis, and encephalitis; or, again, from the periostenm the infective process may, by contimity of tissue, through osteophlebitis, initiate thrombosis of the cerebral simuses, with consequent pyremia. Although such complications, as well as tetanns, are uncommon, they are possible, and mutst not be ignorel.

INCISED, LACERATED, AND CONTUSED WOUNDS OF THE SCALP.
Incisen Wounis.- In view of the just-mentioned facts, and lest the wounds of the soft tissues be only the smaller part of a severe head-injury, the following precautions should always be observed before any examination of the womad is made.

The hair shonld be carefnlly removed from the edges and immediate neighborhood of the womd by the razor or seissors, after a thorough drenching with carbolized water, and the sealp carefilly scrubbed with a nail-brush wet with a mixture of two parts of turpentine and fonrteen parts of alcohol, followed by soap and carbolized water, after which the womnd shonld be thoroughly irrigated with mercuric bichloride solution; now, and only now, can the wound be safely explored with the disinfected finger or prohe. Careful seareh revealing neither foreign bodies nor fracture, any hemorrhage which cannot readily be controlled by compression must be checked by twisting or tying both ends of the divided vessel. When the ends
retract into the dense fibro-edlular tissue, they ann be best secured by passing a needle nomed with a ligature aromen the vessel, including some of the suromuling tissues. Ligatures will probably never be necessary in children exeept when the womd involves the lower part of the temporad fossa, in which case the bleeding may prove difficult to arrest. "Should the bleeding recur or become dangerons, notwithstanding all our local means, the question of applying a ligature to the external or common (nurotid may arise." I quote the foregoing sentence not becanse in my practice any such contingency hats arisen, but because so experieneed a surgeon as Hewitt has evidently known of some such (fuestion arising.

All bleeding having been arrested exeept that which is to be cheeked by the compression of the dressings, the womd, if it have not penetrated the aponemrosis of the ocepito-frontalis muscle, should be clased by fixing one end of a strip of tine aseptic gatuze with iodoform-collodion ${ }^{2}$ upon one side of the ent, when the wonnd can be acenately coaptated, and held so by painting the other end of the ganze strip with more collodion, the drying and consequent fixation of the dressing being hastened by fimning. This expedient is preferable to the use of adhesive plaster, becanse the latter, by the rapid growth of the hair, soon becomes loosened, and, above all, asepticity of the wound is rendered difficult, if not impossible.

When the wound extends through the occipito-fiontalis aponemrosis, catgut or horse-lair sutures will often become necessary from the gaping of the wound, but before their passage the centre of a bunch of fine catgut must be secured by a suture of the same to the deepest prortion of the wound, three or four strands being carefully bronght out between earh pair of sutures. In either variety of scalp-womed, dusting with iodoform, ${ }^{3}$ laying a picee of protective along the line of the womd, and the adjustment of appropriate ascptie ganze compresses to seenre contact of the flap, with the deeper parts, must be resorted to, covering all in with about cight thieknesses of biehloride ganze the immermost lavers of which have been thoronghly moistened with the merenric solution. My preference is to retain all in place by the application of a moist carbolized gauze roller, whieh, when dry, forms a firm unyieding dressing. For appearance' sake a muslin bandage may be applied ontside the ganze roller.

I have entered into these minute details becanse after eompound fraetures, the operation of trephining, ete., the same methor of dressing shonld be adopted, with the exeeption of the drainage, which in enrtain instances must be with the tube, as will be indieated in its proper place.

[^313]Should suppuration beneath the uponemrosis oeenr, from noglect of the proper aseptic preantions or from infection of the womd, eapillary drainage will thil to remove the pus, and a tube or tuber must be substituted, with the application of sud compresses ns will prevent all purntent acemmulations. The womb will rarely be sitnated so as to afford drainge at the most dependent pertion of the aremmulations, under which ciremmstmens comber-openings are indicated, to be kept patent ly the introduction of small drainage-tubes. If the surgeon will remember that this aponemrosis is attached behind to the superior eurved lines of the oceipital bone, to the mastoid proess of the temporal bone and the exgoma haterally, and that it becomes continnons with the tissuns of the upper lid and those over the ront of the nose, together with the position in which the disease will eompel the patient to keep his head, the proper places tomake the comerepopenings can readily be determined in cach case. The most strennons efforts most now, of course, be made, by the ocensional use of the stronger antiseptic solutions, to rember the pus-avities aseptic, and all bagging of pus must be prevented by proper eompresses, for by such means oftentimes a rapid diminution in disinarge, pain, and constitutional symptoms will result. Slomghing may occur, but is marely productive of any asseons necrosis, especially if' strict asepsis be secured. Should the surgeon fear to trust to the maided powers of nature, he may invoke the osteogenctic powers of the diphoe by penetrating the outer table with a fine awl, making the perforations as close together as comvenient. In a few days granulations will spring up from the diphoie and coalesce with those of the soft parts. It can hardly be expeeted that extensive or more massive necrosis will oceur in childhood from tranmatisms, with which we have chiefly to deal in this section, but, shonld this ocenr, it must be remembered that separation of the sequestra will probably occupy months or years, so that the subsequent discharge and exhaustion may at times compel the surgeon to reseet large portions of the calvarium.

Constitutional Treatment.-As this is the form of inflammation too commonly mistaken for crysipelas and alleged to be due to the use of stitches, and as the disease may in some cases either be of a genuine erysipelatons mature or become complicated with erysipelas, attention to the digestive tract by the exhibition of calomel and sorda in small doses, followed by a saline, will prove useful, when indicated by the condition of the tongue and bowels. Quinine, tincture of the chloride of iron, and stimulants when necessary, should then be preseribed, with abundance of mutritions, non-irvitating food.

Lacerated and Contused Wounds: Local Treatment.-After the preliminary antiseptic cleansing previonsly deseribel, these womms, if not penetrating the aponenrosis, should, when needful, be coaptated by game (or shreals of absorbent cotton) and collodion, while division of the aponenrosis, with consequent gaping of the wound, calls for sutures as a retentive measure, even if complete coaptation camot be effected : they shontd be drawn just tight enongh to effeet this end, while dmanage must be provided
for as in inciserd wounds. Under no circumstances should mags of bruised, apparently hopelessly-damaged scalp-tissoe be cut away, for even in the adnlt they rarely slough, much less in children, and, should they dic, no ham will acerue, provided asepsis be seemed: this is a andinal rule.

CONTUSION OF HONE, WITII SUBSEQLVENT OSTEO-MYELATLS, OSTEOMYELITIS FROM MDDDIG-EAR DISEASF, E'TC.
This complication, which probably ulways results from infection, should but rarely oceur when proper aseptic mothoxh, such as suggested, hawe been conscientionsly pursued. When the constitutional or lexal symptoms, of a combination of both, indicate the neressity for operative interference, after the usual preliminary antiseptic preantions, a large flap, its ontline being a shallow emrve so plamed as to avoid the main scalp-vessels and fivom drainage, shonld be raised, all the tissues, indoding the proviostemm, being divided at one ent, which mist be vertical to the skull. l'referahly muder constant antiseptie irrigation, the bone shonld be removed with the gonge, trephine, chisel, saw, or lour of the dental engine, indluding sume of the apmarently healthy bone for a short distance aromed the diseased armo Appropriate tube-drainage being instituted, the flap may be now laid down and carcfully sutured with silkwom-gnt, silk, or prepared horse-hair, and an antiseptie dressing applied over all. That under the most urfavorable circamstances snceess is still attaimable in cases of this nature, which have resulted even in thrombosis of the lateral simus and septic embolism of the heart and long, is proved by a case of Horsley's, the discase originating, as is most usual, from old middle-car disease. Horsley has suggested that when "the first indication of embolism appors, the internal jugular vein shonld be tied in the middle of the neck," though, as he points ont, a serions argument against the performance of this operation " lies in the, at present impossible, task of diseovering how much thrombosis there is, and, further, what risk there is of embolism from the same." ${ }^{2}$

SIMPLE FR.ACTURES OF THE VAUL'T.

Should operation be indicated, -and I must reiterate that in this article I have nothing to do with anything bevond the mere twhigue of the various operations required for injuries and discases of the heal,- the usual antiseptic prediminaries most be attended to with peenliar care, for here, unlike the case of a compond fracture, the "surgeon's acts determine the fate of a fresh wound," and "infection and suppuration are due to his technical faults of omission and commission." Since septic infection and inflammation of the meninges and Lrain constitute the only immerliate risk to life of trephining, no arguments are needed to enforee uminal eare. The prefirable form of flap, that which has been just deseribed in the preeeding section,

[^314]should always be employed where the previous damage to the soft 1 aris admits of it, which in the injuries now nuder consideration, of course, camot interfere. The bone being exposed, the depressed incarcerated fragments must be released by as limited a removal of the overlapping somed bone as will admit the introduction of the point of the elevator: if extensive comminution of the internal table exists, snfficient somed bone must be removed to extract all the fiagments of the internal table.

Oftentimes the ":se of a IIey's saw, by removing the overlapping edge of the external table of the sknll, or by merely widening a fissme, will render elevation possible, but, when the whole thickness of the skull is driven down, the bone can be more rapidly and satisfactorily removed by the use of W. B. I Iopkins's modifieation of the rongenr. Again, in many cases the trephine must be used, especially where other instrments are not available.

METIOD OF PERFORNING TIIE OPERATION OF TREPIINING.

The special instrmenents repuired are an clevator, a knife with maspatory attached, trephines of various sizes, a trephine-brush, a pair of Hey's saws,

Fig. 1.

Hopkins's rongeur.
Fio. 2.

Elevator. a small pair of cutting bone-for(e i_{i}, the gonge-foreeps of Hopkins, and perhaps a lenticular, with which some surgeons still prefer to elevate and smooth the rongh edges of bone; but I have never seen any necessity for its nse, as an elevator in careful hands is perfeetly safe, and its rough serrated edges serve admiably to file away, as it were, any incqualitics left ly fragment. of the brittle inmer table remaining at the periphery of the aperture.

Hopkins's rongenr (Fig. 1) is an admirable instrment, and, where it can be nsed, serves a better purpose

Fia. 3.

Fig. 4.

tha the trephine or Hey's . w (Fig. 4) in removing an overlapping sinelf of bone, while it is an instrument which can be used with more safety and

NG.

patory s sills, ne-for-Hopr, with cefer to 1 edges en any levator y safe, s serve t were, rments ailing thre.
(1) is urpore
rapidity. Of the two forms of trephine, the conionl, commonly called Galt's (Fig. 5), is the safer, since from its form, when properly constructel, it is

Fig. 5.

Fio. 6.

Old-pattern trephine.
almost impossible for it to injure the brain if, a; the last portions of the inner talle are divided, whelue pressure be made; while muler these ciremstanees the old form of instrument (Fig. 6) has oceasionally been areidentally plunged into the brain-substance. Horsley ${ }^{1}$ has devised a trephine with a peenliar handle, with such a thin cutting edge that the huttons of bone when replaced fit much better than they wond if ent on: with the ordinary form of instrmment.

All the instroments, inchending, in addition to those mentioned, a flatconded probe on toothpiek to measure the depth of varions portions of the - ophine-ent, a tenaculom, several hemostatic forceps, a pair of scissors, ete., should be thoronghly boiled ${ }^{2}$ in plain water, and then with aseptic hends removed and placed upon a towel wrong out of a five per cent. carbolic acid solution, another similar towed covering them mutil needed.

A concenient method of supporting and stend ying the head is the use of sand-bags. Anesthesia must be carefully induecd, and, in miy judgment, exept for brain-tmons and perhaps epilepsy, ether should be the agent (mployed.

The $\mathrm{s}^{-\cdots} \mathrm{p}$) surrounding the proposed site of peration, having been shaved and disinfected as previonsly deseribed, where there is no womed, should be incised down to the bone with one strok of the knife, forming a large flap whose outline is a shallow emese po planed as to avoid the

[^315]Vol. IV.-48
main sculp-vessels and favor drainage in the recumbent posture ; this should be rapidly reflected. Any bleeding which does not spontaneonsly cease in a few moments should be arrested by the hamostatic foreeps, or possibly by ligatures, but these are rarely necessary. The periostemm usually readily strips off with the rest of the flap, but this mancuste may be aided by the use of the periosteal elevator of Mr. Victor Horsley's, depicted in Fig. 7. When merely an overlapping edge of bone has to be removed, this

Figi. 7.

Ilursley's perlosteul elevator. separate removal of the periostemm is hardly necessary, the membrane being readily seraped aside by the raspitory. All these mancuvren, with those presently to be deseribed, shonld be executed under a constant flow of tartacid mereuric bichloride solution, one to two thousand or three thonsand.

The trephine, with its centre pin protruded about one-sisteenth of an inch and firmly serewed in this position, should now be applied to the portion of bone which it is intended to remove, the periphery of the trephine somewhat overlapping the depressed bone at one point, as indieated in Fig. 8. The instrument should be worked with a light, sharp, quick move-

Fig. 8.

ment from left to right and from right to left, eare being taken sot to press unevenly, and the pressure being chiefly exerted as the hand is carried from left to right. As soon as a sufficient groove has been cut to stemly the trephine, the centre-pin should be withdrawn, and fixed so ats to a woid injury to the dura mater. When the outer table of the skinll is cut theough, if irrigation is not used, the bone-dust, which up to this time has been dry, becomes soft and blooly; as the instrument penetrates into the diploie.' Both the sound and the feel are also different. When the nse of the centrepin seems undesirable, Dr. P. H. Watson, of Edinburg', hats suggested that the instroment should be steadied by applying it through a perforated

[^316];hould ;e in a dy by earlily cel by n Fig. l, this e periessary, cadily ratspaleluyres, to be ereurie
of an e porephine in Fig. move-

[^317]removed by the rongeur, elevator, or lenticular. When a very large disk is being removed, as one from one and a half to two inches in diameter, the

Fig. 9.

Ientlcular

 bone had perhaps better be removed in the following mamer. When the disk is loosemetl, the elevator may be gently used to lift one edge, after which the dura mater should be carefully stripped off with Horsley's instrument depicted on page 7 j 4 (Fig .7), or ly a smooth, blunt devator. The trephine-disk, as well as any other fragments subsequently removed, shonld at once be transferred to a warm solntion of merenvic bichboride, one to two thonsand, placed in a china reeceptacle, and earefinlly maintained at a temperature of from 100° to $105^{\circ} \mathrm{F}$.When dealing with a punctured fracture, a trephine large enough to include the starring of the onter table with a small area beyoud should be used, when most of the fragments of the inner table will come away with the button. Great care must be exereisel in removing splinters of the imer table, lest the dura mater or venons simuses be womded. When dealing with an ordinary depressed fracture, the trephine shonld be applicd so that only abont two-thirds of the ciremmference will be located upon the sound bone, and the crown of the instrument should be no larger than will admit of the casy introduction of the clevator. If the removal of one button will not allow of elevation of the fragments, more bone can be readily removed by the rongenr or Hey's saw ; if not, a new segment of bone must be removed with the trephine. Certain precautions must be observed when the fracture is near a simus which we suspect has been wounded by the depressed fragments. Thus, the trephine-ent must be planned so as to give free aeress to any hleeding point, rather than merely to admit easy elevation of the fragments. One is often tempted to draw out a long fiagment driven some distance bencath somd bone, whose roncealed extremity lies in close proximity to a large simus, possibly wonding it; but in suel a case this would be a daugerons practice, since without removal of bone access to any herling point camot be obtained. It is far safer to trephine over the site of the concealed extremity of bone, when, if its withdrawal is followed ly hemorrhage from a womed of the sinus, instant compression may be effected, as will presently be indieated: negleet of this rule has been followed in the practice of two eminent Philadelphia surgeons by almost instant death, in one case from an extensive wound of the lateral sinus, in the other from a wound of the superior longitudinal sinus. Large instruments are indicated when operating for intracranial hemorthage, pus, cerebral tmmors, or epilepsy, or after traumatism when

[^318]cerebral localization suggests the gradual involvement of one centre after another.

Whenever trephining is performed, all loose fragments of boue shonld be removed, to make sure that no spienles have womded the dura mater or brain, and depressed pieces clevated, but allowed to remain in situ, muless evidently iufected by the valnerating body, when, unless the damaged portion can be disinfected while in position, the whole piece had better be removed, cleansed, and replaced, as I shall describe. All the fragments should be placed in the warm antispptic solution, as before mentioned. If the simuslike veins of the diploe bled, the bone-tissine aromed the orifice should be erushed into the simus-month from all sides by some blunt instrument, as the elevator, or they must be pharged with a small fragment of antischtic gataze, which may be removed at the end of the operation or allowed to remain for twenty-four hours.

Any hemorthage from bleding points in the dura mater must be arrested by fine catgnt ligatures, passed, if requisite, through the mombune with a curved needle. Should a careful scareh indicate neither subdural blood nor wound of the durat mater, atiter smoothing off the calges of the bone-opening with the rongenr or tile-edge of the elevator to lessen the risk of ulceration of the dura mater, the bony fragments should be replaced as nearly in situ as possible, when, if they are too small to fill up the gap, they should be perforated with the centre-pin of the trephine, placed with one portion of their periphery in contact with the somed bone, and sutured to the sealp by passing a stont catgut thead throngh the perforation, as suggested by W. W. Keen. Where a large gap is still left, osteogenesis may be seened by carefully mineing the smaller bone-ftagments and dusting them over the exposed dua mater. After a final irrigation with merenrie bichloride, a bunch of fine catgut drain should be secured by its middle to the deeper parts of the womed, and the flap then laid down, and sutured by medium silk or, what I prefer, silkworm-rut, placing the stitches about one centimetre apart, bringing out between carh pair three or four catgut threads, which must be kept carefully in contact with one another (Fig. 10) and not sprayed ont (Fig. 11). Horse-hair or fine silk may be used between

Fig. 10.

Proper method of arrranging gut threads for capllary dramage.

Fig. 11.

Dusting with iodoform, ${ }^{1}$ protective to keep the catgat drains moist, - withont which precantion they will

[^319]fail to drain,-and a vollminms mass of wet corrosive gatme will romphote the dressing, all kept in place ats direved mudre the caption Soalp, Womuls.

When the duat mater has beren womdend, it should be carofidly sutured with tine catgut when possible. If this low wot leasible, a mbber dranagetuhe had Defter be used for twenty-fione to finty-right homs, for a roasom
 Certain modifications of epreative methouls, datame, and atter-treatment
 and cpilepst:
 of this article.

It is advisalle to avoid eertain regions of the skall in trephining,
 heres at these pemints with exerptional tomaty, rendering teming of the
 the thickness of the bone: thus, alome the sagital suture, where lies the growe for the longitudial simes, at one portion of the periphery of the trephine-ant the teeth wonld almost certainly tomel the dura mater, while at other portions the lome would be only half sawn theough. In tramatie: cases, where it semis imperative to apply the trephine over a sime, there is, fortumately, very fiequently a separation of the dura mater produced by the ingury, which remove it out of harm's way. Where operating for disease,
 superior longitudinal simes, when the intervening bridge of bone in contact with the vessed can be carefully cut away with the rongenr, its smooth, thin, blont lip safely separating the sims previons to cuch cont; when this instrmment is mot available, the bony bridge shonld be cantionsly divident by a Hey's saw. The risk of injuring this simes in the adult is great, owing to the existence of Patedionian bodies whose perforations of the dura and adthesions to the eranial wall.s are often motoubtedly the cause of injuries at this penint: fortmately, this anatomiacal disposition is practically absent at the age of which I am writing.' Where a sims that is freely expmed has been wommed, phogeng a small oritiee with a bmed of eatent hats proved effective in the hamde of more than one surgeom, ats has also hateral ligation, but in my own experienee pressure ly a small antiseptie part or plugging with a strip of gatze has been perfectly effentive and reliable: very much less pressure is required than is used to arrest berding alter venoscetion.

Trephining ore the anterior inferior angle of the parietal bone is likewise to be avoided, beeme the middle meningeal artery so oftern rms in a bony canal at this point that it must then of neecessity be wound d. Shonld

[^320]this vessed be womeded, it eun he seenered by passing a needla armed with a fine get ligatme thromgh the dara beneath the vessel ; if lying in a beng
 he a touch of a probe heated to a dull-red heat, and antiseptie tampemnade can be vesorted to; or in some eases mo attention newal be faid to the

 had permanemly cetsed by the time the womed was realy for closimese As an axeredingly ratre late compliantion of trephining, 1 wonld montion serombary hemorhage from this vesscl. Thas, Mr: dackson reprots a
 werks alter terphining, ligature of the eatrotid arme ; the patient remerered. This combl oceme only in a septice womm, which it is the smegerm's hosiness to prevent.

Trephining over the fromal simes has been in times past a bughear, but, as this cenvity does not exist before the fifternth to the sixtemen year, wo have nothing to dow with it in this work.

The hiatus left bey removal of portions of the cranial bemes is matally
 more or less complate, thin phate of bome. Somotimes the bony margins, thicken, forming at raised ring, while at other times they becone thinner, and blend with an imperfert ring of osseons tisume which extembs into the librons membane, thas closing the oprening to a barying extent.

OPERATIVE TREATMENT OF EPLDEPSY.

This ronsists, in the first place, in therong excision of the sear in the sealp, shond the disease have resulted from thamatism, which is all the more imperative if pressure on the sicar, ats in a case of my own, preduces the paroxsm on the side of injury. If this prove abortive, on if during the operation depressed on thickened bone be deteeted, - provided the case be not of the Jacksonian form,-brephining, with removal of depressed on thickened onseons tissue, including some of the sumonading bealthy bone, is the next step. If a sar in the dara mater, or even distinet evidenes of lowal diemae, suth as thickening, exist, the diseased portion must te exeised, with surla muderlying portions of the involved brain-substance as are induded in the ciatrix, when possible, of comres, dissecting the membrane off the surface of the comodntions, thas dividing omly such veside of the pia mater as meessity eomplos, in view of the faet that these vessels are for
 portion of cortex damaged hy discotse, not by the knife, be detected, it should be excised, the incisions being dom-ent, wertioul to the surface of the hemisphere and at right angles to the long axis of the convolutions. Where mothing beyond removal of bome has been required, its reposition as just directed may be made, using capillary drainage. When the operation requires exposure of the cortex, no antiseputic solution must be allowed to
tonch it, since, if electricity be necessitated for lowating the centres, the brain will, us Horsley lms pointed out, remain sensitive only in spots, which will prove misleadiug or render all eflorts at localization abortive. In one such case I resorted to the use of phain aseptic-i.e, boiled-water after the dura mater was incised, with perfect aseptic results. Where the membanes have been removed or a portion of cortex has been excised, one or more small robber drainage-tubes shonld be inserted at the most deprendent portions, which should not be allowed to remain for more than twenty-four hours, as will be explained under the section on the removal of brain-tumors. ${ }^{1}$ In other respects the dressings should be appled as for an ordinary trephining.

In the Jacksonian form of epilepsy, ${ }^{2}$ previons to operation the location of the discharging lesion must be carcfully determined, and at the operation -all evidences of bone and meningeal disease having been removed-this portion of the cortex monst be determined by a delicate sterilized electrole, such as that depicted in Fig. 12, using as weak a current as is possible, in

Fig. 12.

Brain electrode. view of the dangers of passing strong currents through the cerebrum. The removal of a portion of the cortical centre where the discharging lesion exists will only for the time destroy movements, " compensation," so fin as the coarser movements are concerned, commencing within a few days to ten or more days after operation, a fact which has been observed by all operators, includiug myself; nevertheless, the patient or friends most be informed of the possibility of permanent loss of function, especially as the necessary dissection of the membranes may damage the outer layer of cells in regions other than those removed, or by destruction of their blood-supply may cause paresis or destruction of function.

The danger to life both of simple trephining and of operations for epilepsy is surprisingly small, provided strict asepsis be seeured. With the oder methods of asepsis, which too often proved a suare, ly deluding tho operators into a belief that they conld with slight risk open the cranimm, undoubtedly the mortality after trephining was per se 10.69 per cent. ; ${ }^{3}$ but with proper precautions this mortality can now be reduced to between two and three per cent. For the proportion of recoveries from the epilepsy the reader is referred to the article on Epilepsy in this Cyelopadia, and aiso to the author's artiele on Injuries of the Head, vol. v. of the " Intemational Encyclopadia of Surgery."

[^321] 3, which ive. In -water here the ised, onl nost deme than removal ad as for cl-this lectrode, sible, in passing the ceref a porre where ists will y movecd, comet whied less, the ent lusis ies may ved, or tion of
for cpiith the ling the ranim, 1. ${ }^{3}$ but cen two psy the nd aliso rational

OPERATIONS FOR COMPOUND AND COMPOUND-DERRESED FRACtures of tile vaulat.
Nothing ned be added here bevond the facts that the formation of the flap, will probably have to be modified becense of the womd in the soft parts probluced by the vuluerating agent, muld that there is the utmost risk that the wound has beeone infected before coming muder the smrgeon's hands; this renders imprative extrat preantions in disinfecting the womend, and presents the most important indieran for operating even when mothing more than a fissime exists,-viz, that it is an infected roound, and cammot be rendered aseptic withont elevation of liagments, with their removal perhaps, for disidfection, even paring with a chisel having been fomed necessary, to grot rid of dirt, ete. The slightest fissure, as by imprisoning a hair, ${ }^{1}$ hat proved the starting-point of sepsis: so that where there is the slightest doubt, all cracks should be carefilly chiselled out and thoroughly irrigated with the bichloride solution.

CONSIDERATION OF TILE DIFFERENT METIODS OF ORAINAGE.

The rutes as to dramage in bain-surgery, in the present state of our knowledge, camot be better formulated than as fillows:

For trephining in epilepsy, for insanity, or for firatures where no lesion of the dura mater exists, catgrat, and catgut only, seems indicated. Where large portions of bone have been removed and replaced in toto, no other method of drainage for the deeper parts is available. With lesions of the dura mater which are reparable by suture, the same kind of drainage is indiated, except when a brain-tumor has been removed.

Wounds of the dura mater which camot be sutured indicate tubedrainage, or, better, Horsley's method (see p. 779). Trephining done for intracranial abseess calls for the tise of the tube very gradually shortened, with the strictest watehing of the case for some weeks after final withdrawal. If the first perforation made does not effectually drain a blood- or puseavity within the membranes or brain then the petient is in the recmubent position, either a sccond opening at the most dependent point should be made and through-dmange instituted, or, better still in many cases, the first button of bone shontd be replaced alter removing a small segment of its periphery, while the second opening is utilized for the drain.

FRACTURES OF TIIE BASE.

In addition to the varions precantions almady advised, including the elevation, disinfection, and removal of fragments, in all fractures of aceessible prortions of the base, certain special measures must be resorted to if good is expected to result. Thus, the extermal anditory canal of the car

[^322]traversed by the line of fracture must be cantionsly but dfectally disinfeeted, fillen with indoform, and lightly plugged with antiseptic ganze. If the cthmoid be fractured, iodoform shomld be carefinlly insufilated into the "pper masal eavities, after a previons disinferetion with a domele or frem spraying with a boro-salieylie solntion, whel hatter may be repeated from time to time. When both walls of the frontal simes are broken, its anterion bomdary most be removed with a harge trephine, and the eavity most thoronghly disinfereted, after which the posterior wall must the perfionaterl, whild at the conclusion of the operation a carcfin] plagging with iodofinm ganze whould be resortel to to prevent infertion of the womed through the nasal passages, remembering that secondary cerebal comperesion may result from swelling of the tampon ly imbibition of womed-fluids. If refuisite to remove infected materials on foregn boclies, the orbital margin shombd the mbesitatingly resectect.

I have thought best to mention these points, for, although most anatomists deny that the frontal simuses exist in the yomme, others insist that they are oreasionally present before puberty, while the students of this book will dombthes draw the line of ehildhond at very different ages. Moreover, althongh the simser may not be present, any resection involving free romoval of bone at the imer extremities of the supra-orhital ridges on of the orlital margins may perforate the uper portion of the masal eavities, thos opening a ronte for infection of the womd if this contingency be overlooked. Where the vanlt of the pharenx seems to have been traversed bey the line of fracture, and the patient is in a condition to stand the regnisite manipulations, the clemsing of the parts with boro-salieylie solution by means of the donche, the anterior or posterior nasal spray, or the posteriur masal syringe, with, perhaps, ocensional insuflations of iocloform, is indicated : cantion must always be exereised lest a dangerons amoment of ioduform be nsed. Thymol, almuiniom acetate, and nomerous other monpoisonons antiseptic solutions may be substituted for, or serve as adjusants to, those already mentioned. Wagner (op. eit.) has shown that ly a resort to these and similar measures twentr-three cases of fractured hase which survied for the first forty-eight homs subsequent to the acerident rexoremerl. Recently in my own practice I have resorted to similar measures so far ats was possible, with the most favorable results, but whether post hoe propter hor or merely post hoc it is diffientt to saly.

TREATMENT OF ENCEPILALITLS

Since this complication is the chicf danger of head-inguries and atter operations, its treatment must be here considered, ${ }^{1}$ ior, althongh atsepsis in operations and antisepsis in injuries will in the vast majority of instances avert intracranial inflammation, yet carelessucss on the part of

[^323]assistants, improper appliation of mothohs, imperfant niter-tressings, or
 hands, will tow ofien begucath to mes this dangeroms disemse fine treatment. It will be noterl that no distinction lans beren made between meningitis mul

 life be sufficient! prolonged; although of intractanial symptoms these indientive of intlammation whid commene within a few hours of an ingury anatly mem meningitis; thase supervening four or live days ation lacerat tion or incision of the bain with mow peredent batin-symptons probably
 beeone pronomed until the twenty-fifth day, upon the atrage.

Prophylaxis ocerpies the first rank. Those, as there is a variety of meningitis arising diredty from the intense congestion of the bain and its membanes from eonemisiom, even withont any cerebal contusion, which sets in very early, sometimes exen within a few homs, I an in the habit in suld cases, moless the patient hats lost much bond or is from any camse peronliarly feelhe, of enforeing the strictest antiphagistie diet fin the first, fontr-cight houss: that is to say, bothing bot water, of perhaps a wery small amomet of milk, is allowed. Dry cold shombld be appliad owe the dressings and to the expesed portion of the head, which should be shatsed if the ingury have bern a severe one: 'The room should be darkened, the load kept slightly elevated, and a calomel purge, ${ }^{2}$ followed by a saline, at one administered. A the the first forty-aight homs, or from the outsed if the patient be feeble or have lost mod bood, a full milk diet must be solbstituted for the starvation plan, althongh omly the smallest ghantity of intriment compatible with supporting the patient's strength shombld be indulged in until after the fifth or sixth day,-i.e., the msalal time for the onset of intracmial inllammation. 'This treatment may serm to many out of vogne, but, when julicionsly resorted to, I am satisfied that it is the satiest comrese to pursue, and on this plan I have treated many hemb-injuries and oprations withont any indieations that I had better have reanded to other mesisures. Por comide, an inerease of dict has becon repated!y followed by vertigo, increased headache, and fever, all of which sempoms have spontanconsly subsided 1 pon returning to a more meagre allowance of food.

At the first inception of pronomed intacranial inflammation in vigorons patients, wet cups to the nape of the neek, or lecehing, will often prove usefinl, with free purging, repeated from time to time as indienten, always remembering that the patient under treatment is to be considered mot as a supposititions "case" of encephalitis for which such and such remedies have

[^324]
IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
been recommended, but as a person whese condition may vary from day to day, -n y, fiom hour to dour.

In cimes past I have thought that bringing the patient rapidly, but slight'y, under the influence of merenry has been of decided benefit, and, witl: the modern views as to the germicidal action of this drug ats an internal remedy in diphtheria, my pactice seems all the more likely to have been a correct one.

Sleeplessinss or the fimions delirimn which at times supervenes within a few houns of a head-injury is best treated by the cantions administration of opium. When the heart's action is strong and frequent, aconite and veratrum viride maty be fomd nseful, either with or withont opium. Chboral and the bromides, as supplementary to opimm, or to replace it, will prove usefin in eases of exeessive wakefulness, and when there is a marked tendency to convulsions.

Blisters and cometer-irritants are of donbtfinl value, and, if resorted to at all, should be used only late in the discense.

A gradual return to a more liberal or to an ordinary diet must he instituted only when, in the judgment of the surgeon, the patient is becoming exhansted, or when all probable danger of a relapse is past.

When stimulants seem required, digitalis, ammonia, and perhaps chloride of barimm are better than alcohol. In the later stages iodide of potassinm, to promote absorption of inflammatory exudates, and ergot, to contract the paretic and therefore dilated vessels, have proved serviceable in my hands.

In those later and insidions forms of trammatic encephalitis to which the terms subacute or chronie may be applied, where the patient alter injury or operation is allowed to continue at or return to school, or even to resume at an early date the boisterons plays of childhood or youth, depletion is out of place, while a more generons diet with juinicions laxatives will prove the best treatment, aided by bodily and mental rest.

After any attack of intracramial inflammation, the patient must regat himself as an invalid for a long period, entirely abstaining from school, moch reading, or work of any kind, and only gradaally resuming these ocenpations, to relinguish them at once upon the slightest sign of cerebral irritability.

GUNSHOT WOUNDS

So far as the bone-lesions are concerned, the same operative measures are indicated as have been already detailed for eompound skit! feactures. The ultimate evils attendant upon the retention of a foreign body in tha brain have been so conclusively shown by Wharton ${ }^{1}$ that, if the operation can be done without fatal injury to the eneephaton, balls should always be removed, since, even primarily, such inguries are certain to be followed by suppurative inflammation, which too commonly is of the diffised form, when death is inevitable. Free dicancuge, rather than the removal of the

[^325]om day to pidly, but nefit, and, as an inly to have nes within inistration conite and III. Chloce it, will a marked resorted to st be instibecoming ps chloride potassimm, metract the ay hands. ; to which at after inor even to , depletion htives will
ust regand mo school, ring these of ecrebral
measures frectures. ody in the operation always be Hlowed by used form, val of the
foreign loody, shonld be the principle most prominently kept in view, althongh to effece perfect drainage, both theoretically and practically, the course of the ball must be followed throughout and disinfected, when the missite, being accessible, and capable yoars hence of producing serioms tromble, should be remoed. The man difficulty in carrying ont these intications is a safe methorl of seaselt for the hall, one which will render it milikely or impossible to make a false passage, which at resort to the nese of any ordinary probe will inevitably result in. Where the ball has dome little beyond penetrating the bone and lies close to the osseons perforation, no donbt the ordinary probe in careful hands has proved both efficient and imoerent ; but even then the aid of gravily and that alome monst be invoked. Far preferable to the ordinary probe is the use of a small French or Nilaton eatheter manipulated in the gentlest manner. Wherever possihle, Fluhree's ahminium probe (Fig. 13) should be used, which is so light that, if

Fia. 13.

Aluminium probe.
allowed to pass along the track of the ball by its own grarity, it is absolutely incapable of penetrating the brain-substance. If it cam be avoided, this instrment should never be enved, but, when bent, the other extremity should he curved in the opposite direction: this is imperative, since it is the only means of indicating what comrse the instrument is taking.

Method of Searching for and Extracting Bullets, etc., embedded in the Brain. -The importance of a carefinl examination of ball-wonnds of the head is turght b a case of Larrey's. A soldier reesived a musket-hall womd in the middle of the frontal bone near the sirus, which passed between the cranime and dura mater and along the longitudinal sinus to the occipital suture. It produced all the symptoms of compression. Larrey, inferring the location of the ball from the patient's complaints of pain at a pwint diametrically opposite to the womd, introdued a gum-elastic somm mutil he touched the bullet. By measurement, the portion of eranium bencath which the ball lay was exposed, a large trephine was applied, pus was evacnated, the ball was removed from between the dura mater and the bone, and reovery ensued. ${ }^{1}$ Here apparent perforation of the brain had taken place, which proper search demonstrated to be an error, the ball being readily and safely removed. The same author reports a second case. A ball penetrated the left parietal eminence of a soldier, passed obliquely along its imer surface, and was arrested about one centimetre from the oceipital suture. The presence of a slight echymosis near this spot, the symptoms, and the employment of a small soft bongie, induced Larrey to lay bare the hone, when le found a small fisaure, applied a large trephine, and removed

[^326]a piece of the bullet; the patient did well for fise days, and then died of a fever. ${ }^{1}$

After the usual antiseptic preliminaries, the opening in the bone must be expuscel by the reflection of a proper flap, and all loose bony fragments must be removed after enlargement of the opening ly trephine, forreps, or Hey's saw. The patient's head must then be phaced so that the track of the ball is as nearly vertioal as possible, when the probe, gently introduced into the brain-opening, must be allowed to graritate along the ball-tre k k.

When the whole cerebral mass has been traversed withont penetration of the opposite cranial wall, the hall usmally, aceording to liluhere, althomg not always, reloonds at an angle equalling that of incidene, and becomes embedidel in the brain abont one inch above, below, in frome off, or behind the peint of lwe struck, aceording to the direction pursised by the ball. If the proke shows that the cerelmal mass has been completely traversed and that the ball has struek the bone, a large eomer-opening is to be made, the membranes carefully incisen, and the ball first songht for in the positions which the above-mentioned rule of Fluher would indiate. If neither erehymosis nor a deeper-seated hardness indieate the presence of the missile at this point, carefinl, methodical seareh must be made in various directions, remembering the possibility of the ball having lost so much of its initial velocity that, instend of penetrating the brain be its rebomm, it may be merely lying beturen the dura and the cerebrom, from which point it may gravitate out of reach if the brain be carelessly depressed or manipulated: in other words, the periphery of the space expersed by the elevation of the membrane shonld be carefully serntinized muless lowal ceehymosis or manifest penetration of the bain exists. When the ball has been found and extracted, and its track and surronnding carefully disinfected by means of the minimmo of merentic solution refuisite, of by the boro-saliedie solution, there remain only the dranage and disinfection of the traek made ly the passage of the missile, which are to be effected in the following manner. A fine antiseptic silk thread is to be attached to one rind of the gravity probe, when the opposite extremity must be introdured at the wonnd of entrance and the instroment withlrawn through the trephine-opening, leaving the thread in the batl-taack: by attaching a fine rubber drainagetube to this thread the tube can be radily drawn throngh the track, after which its lamen must be eleared by carefind syringing with the merenrie or borie solntion ; nothing is now required but the reposition of flaps and an antiseptic dressing, as indicated under the head of Trephining.

Suppose that it prove impossible to find the ball, then the passage of the drain and the comerer-opening will have effected what I have insisted upon as the ehicf iudications,-viz., drainage and disinfection,-and will have

[^327]done all that is possible towards avertion the most fatal complication of ${ }^{\circ}$ thase injuries,-viz, diffuse suppurative cerebritis.

In the event of the ball being deeply embedided, but not having entirely trawersed the whole cerebral mass, the following method of extraction hats been suggested by Fluhier, but, so fiar as I cun ascertain, has not yet been put in practice. The ball having been located by the gravity-probe manipulated as previously described, the instroment should be pushed onward, ulomgsiele the ball, until it strikes the eramial walls,--provided, of course, no vital cerebral structures intervene, 一when its point must be exposed by trephining, and the probe drawn through, leaving two silken theads, which hase been attached to its other extremity, in its track. By means of one of these, threaded through the eyes, a small (No. 2 or 3) English catheter with straightened stylet must be made to follow the cenrse of and replace the probe. The distance of the ball from the womed of entrance having been again aseertained by the probe, a delicate pair of self-closing rat-tootheol foreeps (see Fig. 14), upon one branch of which is seeurely fixed a loop of

Fig. 14.

fine aseptic silk, must be passed dows to the ball bey means of the hop $L_{\text {a }}$, which must travel freely along the catheter. When the site of the ball hats been reached, it must be songht below the catheter ; if not found there, the forepps should be withdrawn and passed down again to one side, and so on until the whole cirenit of the guide has been made, when, if the ball has been previonsly correctly loaten, it will be foman, and can be removed by the foreps, which must be withdrawn with the guide. A rubber drain should now be drawn through the womed by means of the remaining silk theald, and the dressing completer as deseribed for complete penetration of the whole cerebral mass. White seeming a most severe procedure, in appropiate cases I cannot but think that in careful hands the ultimate results, if the patients survive, inlly warrant the additional risk incured.

Of comrse, where the ball is but a short distance beneath the skull, a free removal of bome, incision of the membranes, location with the gravityprobe, and a careful use of the foreeps just deseribed, or any other suitable instrument, followed by suturing of the membranes, partial replacement of the bony fragments if deemed necessary, and such a method of dramage as seems indicated, will be all that is requisite.

MALIGNANT GROWTHS OF THE SKULL.

These may primarily affect the bones, or secondarily spread from the overlying soft parts, but the operative technigue will be similar in either
went. After the usual proliminary antiseptic preantions, an appropriatelyformerl flap or flaps mast be reflected, to obtain the freest posible aceress to the parts, in those cases where the soft parts are involved eutting wide of the apparent limit of the infiltration, so as to remove the discased soft parts with the ossenns tumor. Having perforated the bone at the most eonvenient point with a modimm-sized trephine, to aseretain the thickness of the sknlicase, the remainder of the bony seetions reyuisite to ciremseribe the neoplasm (an be most rapidly eompleted by means of the dental engine, which with a small circular saw will rapidly ent nearly through the bone, when strong entting pliers may be used to complete the sertion. If the dental engine is not at hand, after the preliminary trephining, a series of repetitioms of this procelure, and the use of a Hey's saw, the chisel, or the rongour, will equally effectually, but more showly, enable the surgeon to remowe the tumor.

If the growth or the necessary bony ineisions overlie one of the large ecebral venous simuses, an oproing must be made such as will give free aceess to any bleding point or will admit of ligation of the simus before it is divided; this latter can be readily effected by a trephine-ent on either side of the line of the endangered vessel, followed by the removal of the intervening osseons bridge be the rongeur or chisel from without inward, *o that a sufficiency of bone can be removed to permit the passage of a needle armed with a double ligature, although a carefinl adoption of this method of exposing the simus will in many cases enable the surgeon safely to remove the entire bony surfaces covering the sinus without its ligation, In all these operations the general principles governing the operative treatment of similar neoplasms sitnated elsewhere should control the surgeon's actions,-viz, carly removal and with a free haul. If the latter part of this advice be not strictly adbered to, such operations had better not be attempted, for if timidity gains the upper hand the danger to life is the same, with no reasomable prospect f good accruing. Large portions of sealp, of bone, of the dura mater with its venous sinuses, or even of the cerebral cortex, may requite removal.

I camot do better than briefly relate what some surgeons have done in cases of malignant growths of the cranial bones. Paully" "removel the frontal bone from the root of the nose to the zygoma and up to the hair-line ; in a montl the wound was quite healed." Kronlein ${ }^{2}$ removedsuceessfully, so far as life was concerned-a cancerous uleer two and one-half inches wide, "extending from the root of the nose beyond the line of the hair," with a piece of the frontal bone and dura mater alont three-fourths of au inch in diameter, and, in addition, nearly half an inch of the fals cerebri. Of sixten cases operated upon with full antiseptie precantions, thirteen recovered from the operation, and three died, one from air-embolism,-an

[^328]ropriatelylo arreses to ng wide of 1 soft parts, convenient the skuli"the neorine, which oure, when the dental of repectior the romto remove
e the large give free mus hefiere it on either sal of the nt invererl, assuge of : a ion of this geon safely ts ligation. ptive treatesurgeon's er part of ter not be life is the ortions of en of the
have done "removed Ip to the emoved1 onc-half ne of the fourthis of x ecrebri. irteen re-lism,-an
 sinns, keephng the houl low, and irrigating the womd constanty,-i, re, keeping the womed full of thids, which will be damen inte, the womberl simus instead of' air. 'The dura mater was inecised or excised in nine (astrs; in fomr operations the fals cerehri was cut; the lomgitulinal simus was wice divided ; and in two instaners pertions of brain-substane were wmoved. In all considerable portions of lwe were exemed, atad in tive the gap left monared transumely thre inclues. These sixteren operations were done upon thirtem patients, in all but wa the growth orempeing the fromtal region. Reeurrence atok place in only one instance before healing, and rapid recidives in but four instaners.

Abscenis of tile brain.

Since mearly all, if mot all, operable cases will be fomm to resinlt eithere from a tramationn, with perhaps loulgement of a foreign buly, when the site of the ingury and the progress of the symptums will indieate the howation of the pus-foens,' or from 'hronic suppuative middle-car disease, it will be necessary only to detail the "prative technique andiabable fon the latter class of cases, and to emphasize the proper methents of dmanage which are imperatively demanded for cerchal abseses wherever sitnated. Pus in these cases is more often fomul in the temporn-sphemodid lobe than in the eerebellun or elsewhere, beamse the tympanie reof is the thinnest portion of the middle-arn eavity, while more vessels pass from the tympamm and along the sifumuso-petrosal suture to the dhat mater than from the pesterior purtion of the petrous lame. Nine-tentlis of these alhsersses in the tempuro-sphenoidal lobe oferpy a space three-fourthe of an inch in diameter, whose centre is one and a half inches above and the same distance behind the centre of the cartilaginoms external anditory meatus. ${ }^{2}$ Cerebral abseess is far the most frequent, sine of purulent ene phatic eollecetions resulting firm chronic car-disease, there will be fomed in the eerebrom to one situated in the eerelecllom or in "ther prortions of the encephaton. ${ }^{3}$

Operation for Cerebral Abscess.— \backslash ther the usital antiseptie proliminarics, with, in addition, an attempt to rouder the tympanem: and mastoid cells as aseptic as possible, and the reflection of a proper flap, the erown of at medime-sized trephine shond be applied one and one-fourth te one and (one-hale inches behind and the same distance alove the centre of the cartilaginons external anditory meatus (Fig. 15, $C \times$), and worked coutionsly, owing to the thimess of the bone here; the "ak emoved shomld not show

[^329]

OPRRATIONS FOR INTRACHANIAG HEMORRHAGE

These are pratically restrieterl to cases where the blowh-rollectionseither fluid or cloted-arise from the rupture of the middle meningeal artery or some of its subdivisions, since tramatie intracerehnal and sub)dural hemorrhages in the present state of scienee canmot be distinguished from diffuse multiple laceration of the enerphaton, ete.

In this class of eases I believe, with Mr. Goullee, that chloroform is contra-indiented, while I camot but bedieve that ether is likewise prejulicial, and erertainly is usually monesesary, from the semi-comatose or completely comatose condition of the patient.

When a fraetnre or an external iujury exists, this must first be exphend, and will in most instances reveal the site of the hemormage and its somere ; but, in cases where mither frature nor extemal injury exists, where shall the skull be perforated? Undess sperially "ontra-indicated by some decided localizing symptoms which can be explained only ly a collection of blood compressing the centre indiated, ats the middle meningeal artery or some of its branches are almost insarially the somee of the blood, after the reflection of an appropriate flap, the trephine should be first phaced from one inch and an parter to one inch :nd a half-arcording to age and size of head-behind the external angular process of the frontal bone, on a horizontal line drawn aromed the skull at the leved of the upper margin of the orbit, paatallel with "Reid's base-line" (see Fig. 15). Shonld this opening

Fig. 15.

d. anterior point ior applleation of trephine for intraeranial hemorrhage; B, posterior point for appication of trephine for intracranial hemorrage ; c, point to pertorate for cerebral abscess following chronie suppurative car-disease; D, foramen for mastoid vein; E, point to perforate for cerebellar alscess following chronle suppurative ear-discase.
reveal neither a clot nor a bleeding vessel, a second opening on the same line just below the parietal boss must be made,--i.e., where a vertical line carried direetly upward behind the mastuid process bisects the horizontal line. ${ }^{\text {b }}$

In one suceessfinl case of Kromlein's these two openings were mate and

[^330]a dranagg-tulx passed throngh hoth, while in two cases where the seromd opening was not made the same surgeon mports, asthess also Wretherle, that post mortem a dot was fomed which might casily have lacon monovel hy
 the forreps and antiseptie irrigation, after which all ancessibte bowting vensels, if in the dura mater, slumbl be seremed by ligatures passed with a
 where the main trmek of the middle meniugrad artery lies in a longy canal, as it often dones, a pellet of antispotice was or phorging the canal with a sharpened, disinfected wooken mateh will serve adminably. Where an extensive surfaceooring pressists which hot water will wot cherk, I have snecessfinlly resorted to antiseptice tampomanle.

Where the trephine has bexn appliad at other sithations or for hemorrhages which arise from a laremated s.mes or from vessels of the pia mater, -in both instances probably the operation having been insituted for a depressed fracture and mot for the evacmation of tonel, - the damaged simus must either be ligated or compressed, while the bonding vesed of the piat should ahways be tied with tine catgot when possible, the therend being drawn only sulficionty tight to occlude its lumen, as otherwise its fingile walls will be divided: when the ligature repeaterlly ents throngh, a pan suggested by Fluhrer, and carried ont in one case by myself, will prove effectall,-viz, small serves-lines left on lor several days or until spontaneonsly serarated. ${ }^{2}$

Unless throngh-drainage is elearly neepsary, when two openings have been made, one oritice had better be oedulad by the rephavement of its awn notehed bone-button, and the more dependent one utilizal for dainage. Where neither of the openings is well sithated for drainage, I wombledvise that amother bone-perforation, for this special pronese, be made at the mont dependert portion of the cavity, or that the nearest oproing be entarged by the rongenr, if sulficiently close, in order more perfectly to effect this allessential indication of drainage. 'The reposition of the flap and the nse of drainage-tubes, etce, must be regnlated by the prineiphes haid down elsewhere.

If after trephining severe sceondary hemorthage oceus, Jacobson recommends first the applination of a freezing mixture over the dressings, then placing the patient in the upright posture, next compression of the common carotid artery, and "mally, if this tails, ligation of the same vessel.

The latest statisties of this operation ${ }^{3}$ show that of one hundred and forty-seven cases of intracranial hemornage treated by the expectant plan one hundred and thirty-one died, or abont nine-tenths, while of one hundred and ten operated upom, only thirty-six died, or about one-thive ; moreover, it must be borne in mind that in the majority of those who died after

[^331]

As a prediminary to the comsideration of the mellexls of "prating for hatin-tmones, I have thomght it hest to indinate briadly the readiest metherds for determining the pasition of these two important refiereneropemens, leaving all minuter details for the memodogical artidedes of this work.

 owipital protuberanes, whene it rons downawd and forward at an angle
 angle, becoming more vertiand, and terminates a little above the lowizonta? limb of the fissure of Sylvins: unon sither side of the Rolantic fissme lie the asembing fiomal and parietal eomvolutions.

While the phans devised by Brom, Lans-Champonniere, and whers are reliable, the rendiest method for determining the fissure of Rolando is a simple rombination of Harces, 'Thane's, and Horstere's ats modified by Dr. Morvis J. Lewis, of Philadedphia. Hare has shown that, memsuring backward from the glabella (or masion), the upper extromity of the fissure lies in. 8 per west. of the whole distance between the glalacilat to the inion (extornal orepital protuberamer) behind the glabella, while Thane hats shown that the eommenement of the Ralandic lissure is acenately to be determinch by taking a point one-lalf ind behimd the midepoint of the line drawn from the glabella to the inion.
'The upper extremity of the fissure having been determined bey of the above mothods, a lino drawn at an angle of sixty-sersen degrees (Horsley.) will indicate the upper two-thirds of the fissure.

The lower limit lies abont me-lalf inch abowe the horizontal limb of the fissure of Sylyins, which maty be determined in the following mamer. liy calling the patient alternately to contract and relax the temporal musde and by tracing the temporal ridge with the finger, the point where the ridge for the temporal fation croses the coromal suture (the superior stephat nion) must be determined, thenee a line must be dropped which shatl fall vertieal to the midde of the asgomat ; the conse of the fissure of Sylsins will correspond to a line drawn from the mid-point of the vertical one just described, passing upward and hackward (nemly straight for its anterior half, more curved pusteriorly) to within about one-lalf inch of the centre of the parietal protuberance.

[^332]Having determined the mid-point of the bi-anmal line and the fissure of Sylvias, provide a haldimed swip of parehment-paper from ten to timeteen indhes in longth, granluated into inelnes and fractions of an ind in both divections from ily midelle point (F゙ig. If(), half an inch Ixdind which is

F'w lib.

18
slample form of eyrtomber.
 gradnated strip, and proced as follows. Dlave the median relge of the hong gradmated strip, aganst the mid-point of the bi-amal line, and shift it forward and havkwad matil the same figures indicate the elalselat (nasion) and
 five and one-eighth inehes at the ghabella, it should read five and one-righth at the oreipital protulemanere. When these mes wements coincide, it will be clear that the anterior margin of the angular strip will rorrespond to at
 per cent. of the whole distane betwern nasion and inion, behined the masion. Nothing mow remains lout to draw a line along the aterion mar ${ }^{-i}$ in of the
 indiated Sylvian line, remembering that the lower thind of the Rodandio fissure bends somewhat hackath from the line indiating the conse of its "pper two-thials.

The locations of the diflerent centres with reference to these fissures must be songht in the articles in this work dealing with the localization of the cerebral finntions.

OPERATIONS FOR BRAIN-TUMORS.

Although what follows is in part a reiteration of details already given, the importance of attention to minutise in such operations warmats their repetition.

The had must be carefinly shaved the day before operation, and washer thoronghly with soft soap, followed by ether, or a thorongh sembbing with a mal-brush wet with turpentine one part, aleohol seven parts, mave be used insteal. 'The situation of the growth shonld now be localized amd markel on the sealp, after which the head most be covered with lint wet either with carbolic-acid lotion, one to twenty, or with tartame sublimate solution, ${ }^{2}$ one to three thonsand or four thonsamd, with oil-silk and a layer of cotton

[^333] with and enema on, the moning of operation.

Ahout ome hour previons to the administration of the amestlactic at
 aner, or a proper dose may lo exhibiter lay the month. (Chloroform is
 tollowing ghotation from Mr. Howstey tramber as that great camtion is
 to whid it serms neressary to draw attention. In the first place, the remarkable precelivity of chidhen to the effect of momphane mast be perperty discomatel." . . la mar patient, fomr years ohl, one-twenticth of a grain

 tow much in a brids space of thme. 'Thanks to the ergeat care of Dres. Wilsom and stedman, who hawe assisted me in this respect, I have sede mo aredent ; but I have bere very dexply impresed with the starthing rapidity with which a patient whe hats romeend up in the middlo of the ofreation is sent off again in a moment with only a few whills of the drug. It is perfectly comprehemsible, therefore, that in anasthetis, howewer carefin, might be imbeed to probong the administration beyoud the ponat of just semeling the patient wif again, as, imbed, he would maturally do moder ordinury
 "vidently exeredingly dangerons."
 reguisite, and Schacfer and Horshess experments show that morphine comtracts the arterioles of the central mevons system, thas leseming hemorrhage

The strictest attention to asepsis, as regards instrmonts, hands, amd assistants, must be maintaned. In atdition to the ordinary matrmemes renpired for trephining, such as at least two largearowned trephines, entting bope-firespos, bonc-devators, Horsles's emmeleator, sedpels, hamostatic forceps, Hey's saws, rongeurs, ete., a pair of bhut-pointerd scissors, curved nectles threaded with eatgut, hoth to secenre veseles in the dura matere and to suture this membrane, a needle-holder for the same, and a few wire serres-fines with threads attached, must be provided. When a dental engine with proper salws, burrs, ete., is attainable, and if the surgeon is accus-
 and washecl ubbing with may be nsed and marked t wet either te solution, ${ }^{2}$ er of cotton
the Rolandie line, or at the same spots entting a groove or nick with a gronge, or drilling a little with the centre-pin of a trephine. 'Tlis is an essential prefiminary, as otherwise all lambarks will disarpear with the refluction of the flap.

Since most of these oprotions are prolonger, and sometimes entail the loss of considerable quantities of blood, which children bear badly, the encireling of the head with an Exmard tube should always be tried; but it is not infallible. In one morning I have seen it act perfectly in one operation for epilepsy, in a friend's hands, and in a similar operation of my own conspicnously fail to diminish hemorthage,-nay, more, it actually increased the loss of blowd.

The chief risk being septic encephalitis, Horsley thinks that the spray onght to be used ; but I regard it solely as a cleanser of the atmosphere, and thini that its use is not absolutely necessary. A free irrigation with bichloride solution just before commencing and from time to time during the operation is all that is requisite.

All incisions of the soft parts should be vertical to the skull, and include all the layers at one strokr, not exeepting the pericramim. ${ }^{1}$ A single flap should thas be raised, its ontline being a shatlow cmeve, in order not to divide collateral vessels, and so plamed as to avoid the main scalp-arteries. These indications can readily be fultilled withont interference with drainage, since the patient will be in the supine position. All bleeding that does not quickly cease should be arrested by pressure-foreeps, by ligature, or by needles armed with grut passed aromed the vessels in the sealp-tissmes, since

Fig. 18.

Howsey's trephlne.

Fig. 19.

Fig. 20.

much blood lost means an muncessary risk for a chila to run. If more bone has to be removed than was originally plamed, the periostemn must be caretully dissected lack off each new portion.

If the surgeon promeses to use the ordinary trephining instruments, 1 o shonld now proceed as follows. The trephine-ents, nsing an instrument of

[^334] s is an ith the tail the lly, the al but in one tion of tetually
e spuy shere, on with during
nd insingle - not to rteries. ainage, ocs not or by s, since
the diancter of one and one-half to two ind hes, should be made at the two extrones of the benc-atea to be removed, when the intervening bridge can be partially sawn through with a Hey's saw, and the division completend with the bone-foreps. (Figs. 19 and 20.) A fir safer and almost as mpid plan for the inexperienced operator-sine the bone over some bain-tamors is mot thieker than card-bard-is to remove the bone with the Hopkins rongenr after ore or more proliminary trephinc-ents of the ordinary size. All bone-flagments should be at once plated and kept in a warm antiseptie solution, ${ }^{2}$ as it is best to replace them, where it is possible to preserve the dura mater intact.

Next the dura mater must be ent aromed four-fifths of the asseons orifice, one-erighth of an inch from the bone, so as to leave rom for stitching; start the incision with a scalpel, but complete it with blunt-pointed scissors. Any arteries lying in the line of the proposed dual incision must be tied, by passing ligatmres through the dura mater, benoth and aromed the vessels, with a eurved needle, before incising the membane.

The brain being now expesed, note first if it muges into the womd,i.c., is the intrarmalal tension incrased: Next look for a yellowish tinge or possibly livizity, which will denote a tumor in the corona radiata beneath the cortex.

Now elosely serutinize the vessels and perivascular lymphatics, noting especially "any rellowish-white patches in the walls of the latter, indicating old mischief." Finally ascertain whether the brain has mudergone any alterations in density, althongh in most subeortical tumors the diagnosis can be made certain only by an exploratory incision.

Hemorthage has been mach dreaded in the removal of bran-tumors, but the fear is unfounded, for the arteries, and experially the arterioles, which are chiefly concerned in such operations, rim perpendionlanly to the cerchal surface, and sponge-pressure som checks all bleding. ${ }^{3}$ Shonld this fail, ligature of the larger vessels must be tried, the catgut being drawn only tight enongla to close the lumen of the vessels. If their walls are ton fragile to bar ligation, forei-pressme is alone available. In one case at least, ${ }^{4}$ contimons pressme with iodoform-ganze parking failel to prevent fatal reenrent hemorthage. Fluher ${ }^{5}$ has shown that the ligature often fails to hold on the vessels of the pia mater, and advises leaving Numeley's artery-foreps on any bleeding points until the instruments separate of themselves. Preferable to these, as being far lighter, are the wire serresfines with an attached thread. (Fig. 17.) As the cerebral arteries are

[^335]teminal, avoid every vessel, as fill as possille, this end being ofted attainable by lifting them ont of the sulei between the convolutions, and, after removing the subjacent bain, replacing the piat mater ; if any thrombosis oecms it will probably be only temporary.

If one of the large venous sinnses be womded dhring an operation, its ligation is a pertertly safe procedure, healing oreurring as in veins, and collateral vessels enlarging alongside of the oceluded chamel. Sponge-implantation or antiveptic tampons will alwas: temporarily, and often permanently, arost the bleeding from a womed sims, as I have twice seen. ${ }^{1}$

The risk of air-embolism ${ }^{2}$ is not imaginary, but (an be obviated. ${ }^{3}$
Incisions into the bain must always be clean-ent, vertien to the surfare, and ditected into the corona maliata, when noersary, so as to avoid damage to the fibres coming from other portions of the cortex or those surromeling the seat of operation. The paths pursued be the abres from the cortex mast be kept constantly in mind when incising the bran, and, where possihle, portions of each contre involved shonld be left, as muder such eiremmstances the coasser movements of the part goverbed will often be regained.' Finally, it is of the utmost importane to be thoronghly familiar with the enerphalie blood-supply, in deriding where to make the incisions. in order to have a full moderstanding as to what portions of the remainder of the organ cortainle will be deprived of thein blood-rnpply, and what portions may possibly be rembered avasular. The growth must be emudeated by means of Horsley's Hexible knife (Eig. 22), or by the enucleator, aided

Fig. 22.

Horsley's liexible knife.
by the fingers, but not by cotting instimments. "Malignant growths must be excised very fredy from among the white fibres," sine they ehiefly reenr in this portion of the brain. In all ases adherent or altered dura mater must be treely eut away.

When a portion of hain is exeised, the molerlying cerobral tissme som bulges up almost to a level with the eortex, while the ont alges evert, and.

[^336] bri-firms. I persistence of this dangerems emedition is preventerl by the weiglat and primary mion of the sealp-flap: the advantages affiorded bey the lave one recermembed are thes apparent.

Ather all owing has beem arrested by gentle sponge-presinte of by ligatures, the flap of ceram mater, if the oprative prenerlures have left it intact, shombl be calvefally suttured with chromie catgut to the margins of the membramos opening, leaving space for the case pasange of a drainage tube at the most dependent point. Next the bonc-disks-if the duree be intere-
 np, after the manner of Maerwem, and strewn wer the membame. The aralp-flap shouht then be laid down and seemed by stithes of medimen-siznd silk phaced about ou-thirs ot an ind apart, with horse-hair sutures Ine ween, atter which the whole houd monst be cuveloped in a colmmenes antiseptic dressing.

When brain-simbtance has been remoyed, drainage shombld not be kept up more than twenty-fion homs, berame firm mion must be semerel within four or five days, and a certain degree of pressura shonth in the mean time be exereisel nion the bain which tends to protrude, in order to areid hermia of the organ. Again, there shombld be some protective between the bain
 Briefly, all these desimble ments ane obtamable he the following measures:

1. Place a tube at the mast dependent protion of the womed when the patient lies supine, for twentr-four hours only, to dain all hoonl and serm. Horsley now says that he sews " the womb all aromed dosely exept for ome inch at the most dependent part, where any temsion of womed-discharge (an relieve itself hy esempe between the calges;" lont I still think the original phan the safer, especially for inexperimend op rators. ${ }^{1}$
2. After tewenty-four homs remowe the tube, and redress, as at firt, antiseptically, making firm but gentle pressure owe the eentre of the flap.
3. If on the thire day pain amd throbbing in the womd be complaned of, and the flap, on exposing the womed, be fomed "distended in the eentre, the periphery being firmly mited," undne collection of wombl-hnits has taken place. If it appear probable that the pressure will beak down the mion of the tlap, the track of the drainage-tule must be gently opened up with a proke, and some of the pent-mp thaid let ont; if the mion scem safe to hold, let the aecmmataion alone, since after the evaroation of the fluid the advantages of sumporting pressine are lost. The tension at most nstally requires to be relieved but once. The lignid cushion, mutil absorted, represses the tendeney to hemia, promotes absorption by the moningeal lymphaties of all indlammatory exmbites, thus favoring rapid mion, and serves as a seaffolding for the formation of nomal comective tissue, which is developed in a few days, at least in the lower animals.

[^337]
 Fmover mer timu ntior the first werk.

 cont

Crivis.

 the risk of hemia mondri ly this mothor of tratmont.

 in all varioties reposilion of the bous limgomes, with monlifal drainge, as
 are certain casse, as hall-womals and fwo acoulental romblions which maty compleate :

[^338] It romuli－断＂In

 lowrel In （1）sticy ill ｜ron hanl inuthing Hise lowal f＇deromed lec jart． inr limill－

 lam lang

 mot mexhanially prevolit it．Fimally，the growth is chorekel，and reesem

 protposion，and whidh mast form ：

[^339] mation.

I buse h, a in the habit of giving a duse of opillin, propertionate to the age, about one home tefore this operation. The la ad shonld be sumomeded with a many-tailed hambage, which mas be dawn mon as the thad is asacmaterl, in order to atfore sumpert to the intracramial circulation ; the

 down hey a fen brow strips of adhesive plaster erossing the vertex, to athord
 mane-tailed bandage, both during and atier the oprention, but io monst be peit on with the minimunn of tomsion, be most carefinlly wateded, and be

With an dastic or the many-tailed bandage, atter due asputie preantions, an ordinary fine exploring trouar and camba may be nsed, but, when possible, the aspitator-medte shombld be preferent, ats making a slighter
 The amome of thid to be withdrawn at any given tapping must be joulged of' for cach case at the time of operation. I have remosed many onners, and have stopped only when I thomght that, the bomes lecing ineapable of finther : 1 ppoximation, it womld be diftionte to keep up, due intracranial pressure on the blood-ressels; if this is not dome, of comse a mapid reanemmatation of the flaid will oerom. After the withdanal of the needle or camala, mothing hut a little cotton soaked with iondoform or ordinary coblodion will be requisite to hat the puncture.

PERMANENT DRAINAGE OF 'THE VENTRIOLEK,

This operation, reventy proposed by Dr. W. W. Keen, has as yot hem too seldom tried to decede as to its value. Sill, as one likely to be suggested and attempted by bold aperators, I have thonght it best to give its details aceorling to its origimator.

The motor zone of the brain mast beavoided, -the neighborhood of the Sylvian fisinre,-Deremse of the midde meningeal and cerelmal arteries, and also beanse a pencture here would invoive the intand of Reil and the basal ganglia, -and all known senscorentres, utilizing, as far as possible, moly the so-enlled "Jatent zones." From these comsiderations, Dr. Keen has bexin ferd to propose the three following routes:
" i . Trephine half-way from the inion (the external oecipital protuberance) to the upper end of the lissure of Rolando, ome-half to threwquarters of an inde to either side of the middle line. Puncture towards the imer end of the :anpmorlital ridge of the same side (Fig. 23, A). The puncture will pass throngh the precunens, and the normal ventricle will be struck at some point in the posterior horn at from two and a quarter to two and three-quarters inches from the surface of the sealp.

inallan-

nite to the wromoded we fluid is tion ; the vation, su) rsomes hrith , 10 a alfore and ol the: is must be d, and be ic: prevallbut, whon 11 slighter certainty. low judged wy ownes, alpable of it mananial rapid tro the merdle - ortinary
yout hern o be sugo give its
mol of the teries, and the basal ible, muly , hats brent
al protuto thereme towards A). The le will lw er to two
"ii. 'Trephime at me-thirol of the distane firm the platella for the upper

 thelr lmaginary conthantion to the opposite lixed pontut. (Irawa by Dr. I. M. Taylor.)

Transverse sectlon of the hend one and aquarter lnches behlnd the meatus. The continuons line shows the liae of puncture, the dotted llae its innglnary continuation to the opmosle side of the skull. (Drawn by Dr. J, M, Tayler.)
side of the mildle line. Poncture in the direction of the inion (Fig. 23, B). The puncture will traver os the first frontal convolution well in front

[^340]${ }^{2}$ Ibid.
of the motor zone, and the mormal ventride will be atruck in the anterion horn at about two to two and a quarter indies from the salpl.
 a quarter inches above Redes tase-line. I'uncture towards a point two and a ballf inches directly above the opposite meatos (Fige, 24). The pmeture will oravere the secoml temporo-sphenoidal convolution, and enter the normal lateral ventricle at the begiming or in the course of the desending corm at a depth of about two to two and a quarter inches from the surface. . . In this third ronte the memsurements are for an atult skull, and are to be somewhat reduced for children. In a distemded ventricle from effision the distances would be proportionately less.
"An inch or a half-inel trephine opening having been made, the dura should be examined. If it pulsates, bulges in the womul, and is tense and elastic to the tonch, it will confirm the diagnosis ; should it be tense, elastic, and bulging, but not pulse e, abseess or tumor should be suspected and songht for. The diagnosis f dropsy of the ventricles having been confirmed, the dura should be incised encially and the grooved director now be introluced in the direction and about the depth above indicated, moless fluid is found more superficially. If the first puncture does not reveal fluid, a second or a third may be made. When fomen, it should be evacerated by the introluction of a dressing or hemostatie foreeps. A datange-tube should then be introduced and retained for from twenty-four homs the such time as the surgeon sees fit to attempt its permanent removal." "

The rest of the treatment will be such as before indiated after operations involving incision or excision of portions of brain-tissue.

CRANIECTOMY.

This operation has been recently devised and put suceessfully into practice by Prof. Lamelongue for microcephaly. He believes that the partial idiocy and varions paretie symptoms common in such cases are the results of cerebral lesions due to pressure. An antero-posterior median incision, extending from the frontal to the oceipital suture, should be made down to the bone, the soft parts separated, and a strip of bone about one-half inch in width removed from the left parietal hone, close to, but avoiding womeling, the superior longitutinal sinus. Of course this bone-excision may he extemed forwarl into the frontal hone, or backward into the oceipital, if deemed advisable. Great care must be exereised not to wound the dura mater, the bone being removed, after a preliminary trephining with a small instrument, by means of a Hey's saw, the chisel, or the rongeur. The superficial wound must be closed by sutures, and an antiseptic dressing applied, as elsewhere indicated, no drainage being requisite. If preferrel, capillary drains may be introduced.

[^341]
SURGERY OF THE SPINAL CORD.

This practically resolves itself into trephining-so called-for iugury, and a similar operation for extrat and intra-daral tmmors or prosibly for oth, ne forms of pressure on the cord. With rarard to the adsisability of the e operations I have nothing to suy, as this point is disernsed elsewhere.

TREPHINING OF THE SPINE FOR FRACTURE

This mist be done with the strictest aseptic precautions. The patient had better be turned only three parts over daring the aunesthesian. In incision about four inches in length, with its centre opposite the mast obvionsly damaged spinons process, must be made, and the museles sepmated by the knife-lamdle, elevator, and division loy the kife of resisting tendinons slips motil the lamina are reached. The lips of the womed should be kept apart ly retractors, and cach apparently-damaged spinons prowes seizel with the foreps and gently rockerl to ascertain if it is lowse, when it must be carefully dissected out. If no spine is lowse, the lamine must be divided, by strong conteing forepts or a Lley's satw, on cither side of the spinoms process, the lamine on both sides being cloured of their musentar coverings, and the severel bone carefnlly elevated. Shombla frament of a vertebal body be fomm projecting lackward into the spinal eamal, efforts may be made, with a strong director or a female cathetere, to fore the bone into place. All asily-remorable bleod shonld be got rid of a and, alfer the flushing of the womnd with an antiseptic solution and the arreot of all hemorrhage, tube-drains must be used.

OPERATIONS FOR EXTRA- AND INTRA-DURAL TUMORS; INTLADURAL SECTION OF BOOTS OF NERVES; INTERNAL JACRYMENINGITIS, ETC.
I eamot do better here than quote the details of two "ases "perated upon by Dr. Abbe, of New York, and one operated upon by Dr. J. W. White, of Philadelphia.

Expra-Dural Tumor.-" An incision was made, six inches homg, close to the spinons processes, from the sixth to the twelfth dorsal. The lamine being meovered, some thick broken-lown tissme and pus were seraped amay. The lamine were already hare of periostenm, and the spines and lamina of the eighth, ninth, and tenth were cut away by rongenss. This revealed a dense mass of tissue and desiceated pus, oceupying the entire calibre of the canal and extending up and down for a distance in all of two and a half inches. This compressed the cord tightly against the anterior wall. It was rapidly and thoroughly removed be a sharp Volkmam spoon, until sound bleeding tissue was left on every side. The cord was not seen Vol. IV.-50
to pulsate. The cavity was packed with iodoform ganze, after bichloride irrigation, and an antiseptic dressing mud plaster-of-Paris jacket applied."
 Reanahas.-I shall again quote a case of Dr. Abbe's, which in all its essentids would do equally well for the removal of an intra-dural thmor.

After laying bave and removing the lamine on the right side, the dura, pulsating, as it should in health, was paretured with a knife ; a fine director was slipped in, and the spinal fluid wats slowly let ont mutil it ceaseel to rme. "Then 1 slit up the duat for one and a half ineles. She cord and membrames looked somad." The roots of the nerves reyniring seetion were then hooked up and divided. "The slit in the dura was sow sutured with fine "atgnt." In similar cases the wound may be either packed for the first few days with ionloform ganze and then closed, or closed and drained by the tube from the first, the former, however, being the preferable practice.

Dr. White, after carefinl preliminary antiseptic precantions, operated with the patient in the semi-prone position, a small flat pillow moder the sternum serving to throw ont prominently the dorsal spinons processes. A median incision was carried down to the bone; "the ligaments and museular masses ocenpying the vertebral gutter" on either side were rapidly separated by meats of the knife and a curved periostead elevator. All hemorthage from the muscular branches was arrestel by hamostatic forceps, and free areess wats ohtained to the deeper parts without any transverse division of the deep fascia by foreibly separating the tissues by means of flat rectangular retractors with blunt sermated ealges. The bases of the spinons processes of the fourth and fifth dorsal vertebre were next cut throngh by angular bone-forceps, " greatly enlarging the fied of operation."

With other angubar forepes the lamine of the fifthdorsal were cautionsly divided by "small bites," first on one side, then on the other, and as near is possible to the transverse processes, "ar " which the attachments of the vertebre to the fourth and sixth were divided by the same forceps, cutting transverse! y the axis of the spinal column." A few tonches of the knife and scissors curved on the flat, while the fragment was held by the lion-jaw forecps, served for its removal, whieh gave fair aceess for exploration with the tip of the little finger to the lateral and antro-lateral aspects of the cord. The dum mater was then seized with toothed forceps, nicked, and divided with scissors to the full length of the incision. At places, particularly towards the upper angle of the wound, it was very adherent by new fibrons tissue to the pia mater and cord. All accessible adlesions having been gently separated, the dura mater was mited with interrupted eatgut sutures, introduced at intervals of about one-fourtl to one-third of an inch by meats of long-handled staphylorthaphy-needles; "a medium-sized rubber drain-age-tube was then laid in the wound, its ends projecting at each extrenity. The muscles, ineluding the deep fascia, were then brought together by chromicized catgut stitehes, and the skin and subentancons structures by silver wire," after which an ordinary antiseptic dressing was applied, re-
chloride plied." E Net:ts cessenir.
le dura, alirector 1 to rin. ad menreve then with fine first few the tube ated with stermum I median ar masses rated loy mge fiom ice acress of of the ctaugular processes y angular autionsly is near as ts of the s, cutting the kuife - lion-jaw tion with the cord. divided flarly tow fibrous ing been t sutures, by means cr drainctremity. ether by tures by licd, re-
quiring at first daily renewals, because of the free oozing of cerebro-spinal fluid.

The severe venons bheding which may ocen during these operations from the bone or large spinal veins, when the berding vessel camot be ligated or seenred by forei-pressure,' requires eareful packing with iodoform or other antiseptic gatere.

[^342]
DISEASES OF TIIE PERIPHERAL NERVOUS SYSTEM.

by John Van bibber, M.D.

It will be umecessary, in considering the periphers! diseases of the nervons system in children, te deserite or dwell upon the anatomy mud physiology of the special part of this system under consideration. It is essential, however, to the full understanding of this subjeet to call attention to the great increase of nervons diseases among children of all ages, and to the increased irritability of this part of the system at a very tember age, and, in fact, to notice the development of diseases which heretofore have not been observed as prevalent daring the early years of life. Hence disease of the nervous system in childhoorl is at the present time a most interesting subject, for we are now called upon to see an increased number of little patients suffering from nervons diseases of types and severity before moknown, and the question at once confronts us as to whether the tendeney is inherited from more nervons parents, or whether the present mode of life and education produces this inerensed sensitiveness divertly in the children themselves.

In an article "On the Increase of Nervons Diseases among SehoolChikdren," ${ }^{1}$ came to the conclusion that the strain and worry of schoollife were in a measure responsible for the inerease of nervons diseases among children, and I then contended that over-pressure in school-life had much to do with the carly development of migraine and other neuroses whieh were heretofore noticed only in arlult life. Among the conclusions reacherl in the paper, I quote the following: "It has been alleged that an entlusiasm for hygiene has led the medical profession to attribute many of the ills of childhood to the effects of celucation and confinement in badlyventilated sehools. But I do not think any impartial observer, professional or lay, ean study the statisties colleeted in this paper without being impressed by the increase of nervons diseases in children find the apparent comneetion between the developnent of these imusual maladies and the gradual extension of the public-sehool system. These two facts stand to

[^343]| Neqraloa | $\left\{\begin{array}{l} \text { Crowing-pains, } \\ \text { Migraine, } \\ \text { Intercostal neuralgin. } \end{array}\right.$ |
| :---: | :---: |
| Peripiferal Neuritis. Facial Memiatropiy. | |
| | |
| Pempheral Spasm. | $\left\{\begin{array}{l}\text { Eclampsia, } \\ \text { Tetany, }\end{array}\right.$ |
| | Nodding spasm, |
| | $\left\{\begin{array}{l}\text { Saltalory spmsm, } \\ \text { Habit spasm, } \\ \text { Torticollis, } \\ \text { Trenor, }\end{array}\right.$ |
| Peripieral Painaysis. . . | $\left\{\begin{array}{l} \text { Facial paralysis, } \\ \text { Extensor paralysis, } \\ \text { Refex paralysis. } \end{array}\right.$ |
| Dipitheritic Paralysis. | |

me in the light of emuse and effect, and, though I should the the last one to const any aspersion on the cmobling influence of education, still I cumont shot my ayes to the very dexided exil consequences which medomberdy follow a ton carly and strict euforemont of the present system. . . . These children are to be the men and women of the finture, they are to represent the average health of omr population, and, if on the theshoh of life they are fored into a form of disense which lenves a lasting impression on their manstitutions, I do not think the mational type can cseape decided deteriomtim."

It will be seen in the following short smmany of pripheral mervons dismses that the literature of the varions sulyects is fill and interesting, and that this special branch of nervons diseases is receiving an adequate share of attention from the thinkers of the profession. In a gencral way I think it will be fomed true that in chitdren of tender age the central system is more sensitive than the feripheral, and that morbin proesses are more likely to be developed in the rentral nervons system and in the meninges. Fet from the following table of priphemal nervons diseases the reader will see that the list is quite formidable, and mueh too long for the limited space which can be allowed to its consideration in this volume:

NEURALGIA.

Neuralgia is comparatively rare in infancy and childhood, and, when it oceurs, usually presents the sume features as in the adult. It will suffice in this aticle to curaw attention to two only of the nemalgie,-migraine and intereostal neuralgia.

The so-called growing-prins in young children might perhaps be classed here, although but little has been written to elncidate their real nature. According to Jacobi, they are probably referable to ansemia and imperfeet

[^344]mutrition. Apart from this emdition they are most probably due to the great aetivity at this time of $\mathrm{l}^{\text {P, }}$ ad are more pronomeed atter prolonged and violent exereise. The use of $1 . . . \mathrm{m}$ alkaline baths-at $98^{\circ} \mathrm{F}$.-alleviates this form of nemalgia temporatily, and will be of permanent benefit if systematically kept up for some weeks.

Migraine.-Synonymes.-Hemicrania, Megrim, Siek-headache.
Deflnition.-Migraine is a paroxymal neurosis, characterized by attacks of unilateral headarhe, nansea and vomiting, disturbed sensation, special and general, and vaso-motor disturhances.

Etiology.-It is of frequent oceurrence in childhood, in a large proportion of cases commencing about puberty. Aecording to Gowers,' onethird of all cases arise between the ages of five and ten, and two-fifths between ten and twenty. Henoch ${ }^{2}$ finds that in Berlin it has become much more frequent of late years, which he attributes to the increased exactions of modern education. All anthors agree as to the predominant influenee of eirenmstances that lower the general health, and particularly those that aet upon the nervons organism. Over-study is a frequent source of the discase, espeeially when comnected with over-crowding in school-houses and with insuffiecent receation. It prevails more in the city than in the conntry. Children who are its subjerts usually have a nervous temperament and are often very "bright." The nervonsness may be inherited, or acquired throngh improper training. The influence of heredity is genemally noted: Gowers (op. cit.) found evidence of it in more than one-half of his cases. This may be shown either by a direct inheritance-a member of the family, not infrequently a parent, having suffered from the disease-or indireetly by the oecurrence of other forms of nervons disease in the family. Several children in a family may be affected simultanconsly. Among the affections especially associated with migraine are epilepsy, nenralgia, and insanity. Anemia favors its development, and it is part of the hysterical diathesis. Gowers (op. cit.) notes a comection with the gonty diathesis, and says that it sometimes becomes transformed in the adult into gout. Henoch (op. eit.) has seen it disappear after the passage of round worms. Irritation of the genital organs, as from masturbation, is a possible etiological factor. In those sulbect to the disease, individual paroxysms are readily excited by over-exertion, either physical or mental, mental excitement, and indigestion. Any sudden impression upon the special senses, as a bright light, a loud noise, or a strong odor, will often induce an attaek. Individual experience shows that certain articles of diet are specially cansative of attacks in certain persons.

Pathology.-There are no known anatomical changes. The hypothesis most prevalent regarding the nature of the disease is that it is seated in the

[^345]sympathetie nervous system ; but Struimpell' points out that the presence of the vaso-motor symptoms may be but a reflex of the pain. Aceording to this hepothesis, the pallor and superficial contraction of vessels indicate an irritation of the sympathetie (spastie form), and the superticial congention, ete, a paralysis of the same (paralyic form). Another view, which has been especially mantaned by Liveng, ${ }^{2}$ is that the derangement is in the nerve-cells of the brain, the vaso-motor disturbance being seemdary. Strimpell (op. cit.) believes the pain to be situated in the membranes of the brain. Flint ${ }^{3}$ supposes that there is a toxie agent in the blood. Gowers (op. cit.) hays stress on the close resemblamee in some of its features to epilepsy, partieularly petit mel.

Symptomatology.-The paroxyms reem at varying intervals, usually of from two to ten weeks. They have been known to oceur daily; also to exhibit great regularity, as notert by Troussean. The individual paroxyms last from a few homs to two days. They are preceded by certain prodromes, which often indicate to the sufferer the oncoming of his enstomary attack, such as a fecling of malaise, finluess ahont the head, vertigo, timnitus aurimm, yawning, chilly sensations, and spots before the eves. Often the attack is ushered in hy a vismal anma, ats a bright spot or sudden dimness, os by transient aphasia, or by a tingling sensation in the arm or cisewhere. Frequently the patient awakes in the morning with the headache. This increases in intensity. It is situated in one temple, or in the parietal region; sometimes it is frontal. It may aflect the two sides alternately. According to Hemoch (op. cit.), the milatemal fiatme is not so commonly observed in the chilh as in the adult. The pain is contimons, not intermittent, as in ordinary nemalgia ; it is inereased by noise and light. The affected side of the head is namally hyperesthetic. The chameteristie vaso-motor symptoms aceompany the pain. The face and ar on the affeeted side are often pale and cold, with diated pupil and increase of salivary seeretion. Lees often there are reduess, heat, and congestion, dilated arteries, local sweating, and contracted pupil. A condition of the cerobral rimenation eorresponding to these external phenomena is inferred. But all (ases do not conform to these types, which may be mixed, or alternate, or be entirely absent. There is anorexia, with general sensitiveness to light and somd. Ocalar disturbanes, as bright scintillations and even hemianopsia, are frequent accompaniments. The hadache is suceeded after some hours be nausea and vomiting, the sufferer falls asleep, and when he awakes he is entirely free from pain. Aecording to Gowers (op, cit.), there may be a comsiderable degree of pyrexia in the migraine of childhood. The health in the intervals is good. The discase is chromic, lasting for years, and the patient usually becomes acenstomed to the attacks. It is sometimes trans-

[^346]formed into other neuroses, as nemralgia, gastralgia, lanymgismus stridulus, angina, and paroxysmal insanity; but the most important and frequent of its transfomations is into epilensy, which it so much resembles. ${ }^{1}$

Diagnosis.-The rhief difficulty in diagnosis will be in comection with organie cerebral disease and petit mal. The former is sometimes for a long time characterized only be paroxsms resembling those of migraine, but usally the intervals between attacks are shorter and the relief is less eomplete. The visual ama which sometimes chanacterizes cases of epilepsy is brief, lasting only a few seconds, thos contrasting with that of migraine, which is at least several minutes in duration.

Prognosis.- The prospert of eure is perr, but, by prolonged treatment and great haggienie care, relief may be cexpected, epeceially if there be a detinite calnse which can be removed.

Treatment.-The etiology must be taken into comsideration. Attention should be directed to the diet, mental strain should be removed, and recreation ont of doors insistenl on. Change of climate to the sa-side or momentains will often prove very bencficial. More reliane most be phaed on hygienie treatment than on the action of remed ${ }^{-}$Among those which have proved more or less palliative are gnama, ${ }^{(6)}$ ie, bromide of jotassinm, chloral, antiprin, emetics, hypodernatic injections of morphine, sedative liniments, and hot mustard foot-baths. The bromide is more efficacions in the paralytic (congestive) form. It may he frequently given during an attack, combined with hadian hemp. Sirümpell (op. cit.) especally advocates sulieylate of sodium in strong cafe noir. In the spastie form Gowers (op. cit.) recommends nitro-glycerin in lifuid form-one per cent. alcololic solution-after monls, conbined with gastric stimulants, as hydrochloric or phosphoric acid, pepsin, and tincture of mux vomica. The galvanic corrent las been recommended, but is at best only palliative, A mild corrent, ten to fifteen cells, passed from forehead to oeciput, or through the sympathetic, may reduce the severity of the attack. The main dependence, however, must be on a prolonged hygienie course of baths, frictions of the skin, exereise in the open air, avoidance of wory and fatigue, and carcful exdusion of all articles of diet fom by experience to produce attacks. The use of pulv. snarame, in doses of from twenty to thirty grains, at the onset may abort an attack effectually.

Intercostal Nelbadia.-Intereostal neuralgia aequies a special importance in the child from its comnection with Pott's disense. Being one of the carliest symptoms of that affection, it possesses great valne in the diagnosis at a time when localized symptoms may be lacking, ${ }^{\text {a }}$:nd when remedial measures ate urgently needed and are most promising of results. It is characteristic of irritation communicated to the trunk of a

[^347];tridulus, quenc of tion with or a long aine, hut f is less epilepsy migraine,
reatment were be a

Attenremoved, a sen-side must be ong therse omide of norphine, nore effitly given cit.) espere spastie -one per thants, as (ai. The tive. 1 rthrough dependfrictions gue, and produce to thirty
a special
Being value in ng, ${ }^{2}$ and ising of ak of a
sensory nerve at any part of its course, that the sensation is lelt not at the point of irritation, but at the extromity, often remote therefrom. Aecordingly, disease of different regions of the spine will produce effects in areordance with the distribution of the nerves which go out from it. In disease of the superior extremity of the vertebral colmum,-for instanee, the at las or axis,-pain will be experieneed in the region of the oreciput. When seated lower down in the cervix, it will be fielt in the shonders, in the arms, and at the upper part of the sternmm. When oeenpeing the dorsal regiom, it will be lowated in the middle lire of the chest anterionty, in the cpigatrimm, or in the intereostal spaces at the sidens. In discase of the hunbre vertenne it will be referred to the pelvis and down the lower extremities. Cuter all these varions rivemstanes the pain is inereased ley lecomotion, expeciatly if of an active sort, since the jar to the disenced part is then greater, and reliesed by a rembent position. Acoording to Roberts,' it is wore at night. Sometimes the pain is fixed, sometimes it is lameinating like that of becomotor ataxia; sometimes it is acempanied hy a semsation of constriction. It varies in degree in different ases, and in exerptional cases may be wanting. ${ }^{2}$ Sometimes cardiac papitations and irregular beathing accompany the pains, and indigestion mage be perent. ${ }^{3}$ In hanbar diecose there may be temeromess on pressure at the sides of the umbiliens, and abducting the thighs inereases the suffering. ${ }^{4}$

The source of these pains is believed to be the irritation and compression of the roots of the nerves as they emerge from the intervertebral formina. They may be due to an actual nemitis, arising from extension of the inflammatory process from the dura, or from injury inflieted on the serve. The pains are liable to be mismodersond. If in the abdomen, they may lee considered as "stomath-ache," or hepatie or nephritice colic; if in the limbs, mere "growing-pains," ${ }^{3}$ In all cases, therefore, of persistent pain about the abdomen in the child, an examination shonld be made of the spine.

The treatment of this nembalgia constitutes one of the most important prophylaxes in medicine, for if recognized carly and treated promptly we may be able to save the patient from a life of suffering and deformity. As the pain is due to disease or irritation of the vertebre, all treatment, after the diagnosis has been made ont, must be directed to this point. The recumbent posture is a sine qua non of sucessful tratment. In order to make this possible, the use of some sedative is indicated ; and I have fond codeia the most efficient aud harmless drug to use in this condition. Supןositories of grom feetida will also be of service in quieting the nervousness

[^348]whid always mesnlts from prolonged pain. By these menns it wili be possible to keep the patient in a reemmbent position, lying flat on the stomach or lmak. A board, covered only with a blanket, is the most pactionl basis for this trentment. After this the lateral swing devised by Barwell may be nsed in varions modifientions to suit cad case.

The merlieal treatment is no lese important, and mast inelade varions preparations of lime and iron phosphates, hypophosphites, chalybute bathas, coarso food, as Graham bread, cracked what, barley, bone somp, aud all mutriment rich in phosphates, which may improve matrition and assimilation. If improvement does not take phace muder this treatment, some morer decided mans to prevent pressure and stop the commeneing inflammation must be adopted ; and for adviere on this sulyeet the reader is referred to the article on Curvatures of the Spine and Pott's Discesse, in the thiad volume of this work.

PERIPIERAL NEURITIS.

The calles which give rise to this afferetion are not laterely oprative in the child, and houe it will require but a brief' motiee heres. Nemitis may be acute or chronic, primary or scomdary, lowatized or genemal. It may arrse from a direct injure, as a stato, or indirectly, as atere a fiacture accompanied ber vedundant callus compressing an adjacent nerve. The entrance of septice organisus into a wombled nerve gives rise to a form of nemitis known as asending (memitis migromes); tetams is an instance in point. Nemitis may arise ley dieret extension from contignoms structures, as dis. eased vertebre. Strimpell (op. cit.) suggests this as the mode of origin of the atrophy and paralysis of museles after affections of joints. 'The majority of the cases of the so-called "rhemmatie" paralysis, -as facial,and certain loms of nemalgie, experially sciatica, intercostal nenalgia with zoster, ete., are instances of nemitis. It has recently been diseovered that it is a far more freguent combition than was hitherto supposed, and many affections: have been found to depend upon it which were formerly aseribed to disease of the cord. Such are the "toxie" paralyses, resulting from lead, arsonic, merenry, alcohol, cases orentring in eomection with smallpox, typhoid fever, and some other arote disensen, and diphtheritic paralysis. The latter involves a special pareurhomatons form. When many nerves are insolsed, it is known as "multiple" neuritis. Alcohol is the most frequent cause of multiple nempitis, which is rare thongh not unknown in the child. ${ }^{2}$

Acute nenritis is chameterized by anatomical changes in the nerve similar to those accompanying inflammation elsewhere. They affect chiefly the sheath, which becomes in consequence thickenel, compressing the nervofibres within and producing pain and interfering with their functions. Restoration more or less complete is to be expected in this form, but it often eventuates in the clronic form. Chronic neuritis is accompanied by fatty and atrophic changes, which permanently impair the usefulness of the

[^349]nerve. 'The acote firm commences with severe pain in the comrse of the afiected norve, with marked tendernoss on pressure. Shon mumbenes appears in the purts to which it is distributed, and the limb becomes weak and may be comphtely paralyged. In severe cases the muscles maderge atrophy and exhibit reation of degenemation. There are often odema and herpetic eruption of the part.

Primary multiphe nemitis, whinh is heroming more and more rate ats cases are being investigated and their dependene mon obvions cansern-and
 adhe, anorexia, and sometimes delirim, followed by severe pain in the limbs and loins, often swelling of the joints resembling rhemmatism, and later paresis or pataiysis, with diminishod reflexes, and reaction of degenration. 'The career of the discate may mow be arrested, or it may contime in a chronic form, or may prove fatal from involvement of the respiatory museles. Strämpell (op. cil.) believes that multiple neuritis is a definite form of infections discase.

The diagnosis of memitis is to be based on the limitation of pain and temberness in the eome of a nerve. It is liahle to be mistakin for rhenmatism, periustitis, and nemalgia. The localization of tender spots, the intermissions in the pain, and the intact sensibility point rather to menalgia, Whilst the reverse is true in case of adema, and trophice rhanges in the skin, mails, and hair. Multiple neuritis must be distinguished from poliomyrditis.

There is nothing special in the treatment of the varions forms of nenritis in the child calling for measures different from those used in the adult.

FACLAL, ILEMIATRODIH.

Synonymes.-Progressive ficcial hemiatrophy, Neurotie facial atrophy,

This very rave disease, consisting in a weiting of all the tissuns, induding bone, on one side of the face, frequently begins in childhoosl, sometimes as carly as two or three yars, and usually without assignable cause. Of twenty-five cases collected by Mills,' seven ocentred muler ten and eighteen under twenty years. It is a significunt fact that the atroply is limited to the distribution of the fifth nerw, and, taking this in comection with oceasional pain, spasm, ete, at the onsen, the probability is that it is connerted with some organie disease of the fifth nerve interfering wih the trophie functions thereof. The disease commences gradnally, sometimes at one spot on the eheek, with wasting of skin, subentaneous tissue, musele, aud bone. Cases are reported in which it has extended to the museles of the baek and arm and involved the opposite half of the face, or the entire corresponding side of the body. ${ }^{2}$ The hair drops out, and sometimes the

[^350]teeth. The sensation, the organs of sperial scuse, the secretions of saliva aud tears, are matfected. The same is true of electrical reaction. After some sears the discase ceases to progress and becomes permanent.

Treatment is futile. The affection can be confounded only with the eongenital disparity sometimes met, which, however, differs in being but slight and in the absence of the trophic changes seen in this.

PERIPIIERAL SPASM.

Only spasmodic affections non-central in their origin will be considered, and this will exclude hysterical spasms, which are not uncommon in childhoord.

In the child motor neuroses predominate largely over the sensory; hence neumbia and disturbanes of sensation are rate, whilst all forms of convulsive disorder are excedingly frequent, especially during the first three sars of life. A large proportion of the convolsive disorders of children, whether lowal or general, are reflex in their origin, being due to some excentric irritant aeting upon the pecenliarly impressionable nervous system of the child. As pointed out by (Gowers (op. cit.) and others, this readiness to react to slight stimuli is probably mainly to be ascribed to the imperfect development of the nervons organism in the intant, in consequence of which the lower centres are further advanced in organization than the upper, aud hence are less completely moder the control of the latter.

Eclambsia.-Eelampsia is the term used to designate the non-organic convilsions of children, except epilepsy, which it so much resembles that the distinction is often difficult : from this resemblance edanptic convulsions are often spoken of as epileptiform.

Etiology.-Any irritation is liable, especially in children of a nemrotie constitution, to be followed by convulsions. Among the most frequent scats of such irritation is the gastro-intestinal canal. The cause of the tronble may be an overloaded stomach or intestine, or the presence of irritating material within these. Hard, ernde, indigestible substances, as green apples, the skin of dried fruit, nuts, ete., are esprecially likely to produce an attack. Lumbricoid worms undoubtedly play an important part in the cansation, notwithstanding Henoch (op. cit.) declares that he has not seen a single case of celampsia traceable certainly to worms.

Dentition has hitherto borne a large share of the blame for these cases. The pressure of the developing tooth upon the gum offered so ready an explanation of the event and so simple a means of relief in the gum-lancet, that there was nothing more firmly settled in the minds of physicians of a past gencration than the causal relationship of the one and the therapeutic value of the other. We cannot ignore altogether this clinical experience or this etiological factor. That it produces such milder spasmodic disturbances as obstinate vomiting, diarrhœa, and cough, is a strong ground for believing that it is capable of greater mischief. There is no donbt, however, that its influence has been greatly exaggerated, and that "tecthing fits"
are not nearly so common as was once supposed. Aecording to Henoch (op, cit.), only rarely are convulsions observed in teething children who are not rickety.

Severe paroxysms of coughing, as iu pertussis, may lead to convulsions, possibly from the venous congestion of the batin to which they give rise. Among other canses reported are foreign bodies in the nose, ear, or skin, and the presene of calculi in the genito-minary tract. Dennse 'reports a case in which repeated attacks completely disuppeared on the removal of a reetal polypus. Attacks have beon oceasioned by a fall. Violent excitement, especially fright, is a well-known canse. It is allegred that danges in the milk from imprudences in the diet of the mother or murse may be causative.

Uremia sets in with violent convolsions. Many ande diseases, expecially premonia and the exanthemata,-measkes, scarlatina, small-pox,frecuently begin in this way. The high temperature and possibly, to some extent, the infections material are to blame here, bot in local inflamatory disorders reflex irritation may also be concerned. It is well to remember, however, that symptomatic fever may he present in cases purely reflex. Henoch (op. cit.) saw two cases of simple tomsillitis ancompanied by repeated convulsions on the first day ; and intense fever in any slight local affection may produce them. Attacks of intermittent fever are apt to be ushered in in the child by a eonvulsion, which takes the place of the rigor, itself a convulsive phenomenon.

Symptomatology.-The symptoms are nearly identieal with those of epileps. They begin with sudden unconseonsmess and rolling of the eyeballs upward or to one side. The muscles of the face contract spasmodieally, the month being drawn to one side. The jaws are firmly closed, and chewing movements or grinding of the teeth ensuc. The limbs beome stiff and frequently twiteh. The fingers are flexed into the pallu, and the toes towards the sole. The head is drawn backward, and the museles of respiration contract, producing noisy, hissing inspiration, and often arresting erespiration for some seconds. The museles of the abdomen become rigid, and the wrine and feces are frequently expelled. 'The interference with respiration ocensions some eyanosis. The movements of the tongue and cheeks canse the expulsion of frothy saliva from the montl, often blood-stained in older children, from biting the tongue. The symptoms, which are very alarming to the friends, usually last only a few minutes, gradually abating, and leaving the child in a stupor. Usually there is a repetition of these attacks several times, unconseionsness continuing from one to the other. They may continue for hours or even days, and may by their foree and frequency lead to exhanstion and death. Henoeh (op, cit.) relates a case of temporary aphasia, drowsiness, ete., oceurring without and in place of the convulsion; and in another, where aphasia was the only

[^351]symptom, emplete rewvery ensued softer vomiting cherries. He also calls attention to paresis or paralysis of a limb ocemsionally following comvolsions and lasting several diys, amb montions as to be on the lowkent in such cases for pussible lman-tisumse.

Diagnosis. Whilst freguenty indistinguishable fom cpileptic consul-
 epileptice fit, mad may be very slight or partial. It prosents a mueh greatere varioty in intensity than the epileptie parosysm; it is also less sulden in

 disemse at onere, especially if we are mangminted with the previons history of the child. I'rolonged woma sueveding an attack may justly excete a suspicion of moningitis. Honod (op. cit.) mports a case where coma with fever hastod almost there days and was sumecobed hy temporary aphasiab 'This attack was due to an overlosded stomaid. As a rule, milateral eonvalsions indicate a werobal argin, but exceptionally they are observer in entampia, and, on the other hamb, organie dismae of the bation is sometimes acompanial hy bilateral comvolsions. ${ }^{1}$ it is important to remember that gross disense of the batan in chidhern sometimes comtimes fir monthe without other symptoms than repated convonsions matil a sudden hemipharia or "oma sets in: this shombld inculate the meressity of cantion and delay in deeding upon the matnere of the case. 'The importane of diverting attention to the comdition of the nsemses sestem is evident from what has precoded. The rpiphesses, the fomamels, and the boream shonld bee examined, and in most cases of reenring endampiar between six months and two and a half gears riekets will be fomand to be more or less well marked. Almost always in these rases laryugeal spasm will be present, cither mshering in the comvalsion or oremring in alternation with it. The presence of ferer shonld lead to the examination for lowat infammations.

Prognosis. - The prognosis of celampsia as to life is more serious than in 'pilynsy. It is to be hased nom the age and state of health of the child, and the severity, frempeney, and duration of the fits. A young and fordon child is quickly exhamsted by fropment attaks. If the fits have omtimus for several months, there is consideable danger of their eventating in trae epilepsy. lang or permanent mental deterioration may result mader the same cirvomstances.

Treatment.-The relicf of the convulsion is the first indication to l_{x} followed. If the physician be present during the fit, he may resort to chloroform inialations, so strongly recommended by Henoch, ${ }^{2}$ being carefin, however, to watch pulse aud respiration. Its use becomes improper, of

[^352]He ntsu illowiug lookont consul* of tha - grevier ndelen in severity cereloral a histury excite: a ma will aphatisia. aral collarwal in metimes aber that dhe willımíphegia dolay in ig attenhats prowxaminerd, I wo : anl Almost rering in of tever
ons than te chilk, (1) fecold mintury © in truc ader the

in to l_{c}

 csort to carefin, $\mathrm{p}^{\mathrm{mer}}$, ofconse, if signs of collapse uphent. A watm bath is a domestio remedy which is somediness ellecelive.
 the camse of the attark, whaterer it he, are repuired. Vimeties and parga-

 calomed is most readily mbinistered, laing plated dry within the month

 tu relieve the vemos engongenemt. If woms have bey passed on be

In the intorvols, sulatives, to reliese the medex irritability af the an:-

 remedies esperially addresseel to that diathesis are whem indiented, as iron,
 hat the pressure of an advancing tooth is the canse of the trouble, the grm may le lanced.

TriTAN Y。

Synonymes.-Wamilla, Arthrogrypusis,' Intermittent tetams; Frendr, Combrature essemtidle on idiopathique dess extrémités.
 tomice spatms of the masedes and athenting experially the extronitios. The spasms may orem in paroxsinns on may be imdelinitely persistent. The athection is most frement between hirth and five yeats of age: in a tahle of one hundred and fioty-two cases mollowd hy (iowers (op. ceit.) twentynine per cent. axdured daring the first derade and fifty-five per eent. daring the first two deades of life. It is mudy mome fiempent in mates, experially in the first yans of life. In rare instaners several cases have herom moted in the same limily. The disense is traceathle in the majomity of cases to persistent dianthea, to expsime to eold, mperially during aconte discase (typhoid fever, rhematism, pmomomia, cte.), or to debility. It may be due to tedhing, genito-mbinary irvitation, ete. In yomgg dildren the evidences of rickets are ravely absent, and it is ofion associated then with laryugismus stridulns and erdanpsia. Instances are reeorded in wheh it was dependent upon the presence of a tape-wom. It has been known to prevail in an ondemic form, as in an ontheak in a girls' school in France in 1876, in which thirty of the pupils were attacked. ${ }^{2}$

[^353]The disease sets in with" tingling" or "burning" sensations, followed in in few han's by suden tonic flexure of first the fingers, then the toes. The fingers are in the attitnde of holding a pen, and the feet in that of talipes equinus.' 'The spmism may be limited to these parts, or may extemb to the museles of the nedk and the trank, especially the abdomen. The
 are often spasmodically dosed, and the angles of the month drawn. There may be strabismus. Conscionsness is not lost. The affected muscles are the seat of cramp-like pains, and attempts to extend them produre pain. The spasms are manally paroxymal, lasting from a few minutes to hours, and then gradually abating, to reeme after homs or days. Relief' in the intervals is sometimes not complete. In other cases spasms are contimons for days or longer at a time. There is increased irvitability in the affected nerves and maseles, and perenssion or pressine nom them during the intervals will canse spasmodie contradion. Electrical excitability-hoth fanalic and galsanic-is still more noticeable. The spasm is almost always symmetriand. In young chidren it is namally comtinuons and comparatively mild in degree. It sometimes persists during slecp. Moderate fever is sometmes an acompamiment. The duration is variahle, -from a few days to several weeks. There is a tendeney to recurence.

Post-mortem examination throws no light upon the chararter of the disease, as there are no constant and chameteristic lesions. Gowers (op. cit.) is disposed to regand it as seated in the cord and modulla rather than in the peripheal nerves, basing his opinion on the discovery of slight changes in the motor cells of the cord in severe cases, on slight spinal weakness oecasionally following the disease, on its bilateral symmetry, on the peemliar and miform character of the spasme, and on the musenlar atrophy that has been observed to suceed it.

The diagnosis is to be based upon the peenliar form of sasm, its symmetry, its commencement in the extremities, and its limitation to certain groups of muscles. ${ }^{2}$ The ineremsed irvitahility of the nerves will aid in making the diagnosis. The dependence on diarrhoea and "taking cold" shonld be remembered. In tetams locked-jaw is the earliest symptom, whereas in this malady it is the latest. Disease of the brain is excluded by the absence of hain-symptoms and paralysis and by the bilateral character of the spasm.

The prognosis is favorable. The affection rarely involves any danger to life, and then throngh interferenee with the respiratory function or through associated conditions.

The treatment requires the removal of the eanse, if one be diseovered. The child is to be carefilly protected from exposire, and the bowels must be regulated if at fault. Warm haths and diaphoreties are recommended.

[^354] re thes. that of extend The e jaws There les are e piin. hours, in the timuous affered ing the :- looth always миратаte fever a few - of the (op. cil.) n in the anges in Ss ocmalnemiliar hat hats
ts s.mmcertail aid in cold" mitem, chuled 1 char-

Tonics are required, eqperially cond-liver ail aud iron, on acernut of the associated rickets. Sollatives-the bromides, Culabur bemm, ihlornformmay be tried, but little reliance is to tre phaced on them. Suppositories of gimmi asafintidie will be fomul nsectiol.
 mumber of "aties have bewn deseribed ly Hemein, Eleert, Demme, and others, in which infiunts, and sometimes odeder children, were afferemb with donie spasm of the stermomastoid and aljacent musides, giving risc to mulding and rotatery movements of the lemel. The rotation was almust always towards the sume side. Very frepuently nystagmens arempanient, but rarely strablismus. The movements are, as a rule, contimons; much less often they oceur in parmysims. The nffection is a reflex nemrosis, ustually due to teething. It is to le distingnisheyl from the swaying movements comected with masturbation, and also from a fatal firm sometimes woted in comeertion with epileptic attacks. The treatment consists mainly in the renmeval of the sollree of irvitation.

Shaztory Spasm (State Replex Spasm). - I fiw celem of saltatory spasm have leen repoited in children of ten years aul npward. It consists in clonie spasms of the musches of the legs, cansing the patient to leap or jump or un whenever lue attempts to stand. It onerirs in nemrotic sulijects, and comes on suddenly, nsisully after some depressing iulluence. It generally eontinues some months sud then ceases gradually. It is associated with increased weflex irritability of the cord. The tendon-refleses are correspondingly increased. Strimpell (op, cit.) regards many cuses as hysterical. Nervine tonies offer the best prosperect of benefit from treatment, expecially arsenic in snall doses, and asalfetida in combination with camabis indica, preferably given loy suppository.

Habit spagat (Ilabit Cherea; Mime or Hiftrionie Spasif;
 cte., certain involuntary and usually milateral nasmodic movements, chicfly of the head, fare, and shomiders, have heen described, which are very commonly met in children from four to fourteen years of age. They consist of winking, twitching of the mouth, jerking the head, and similar movements. The affection oceurs especially in nervous and exeitable children, and is usually preceded by depressing influences, such as bad health, overstudy, fright, mental excitement, ete. It may be referable to local irritation in the part affected, as when in the lids from conjunctivitis, and very severe cases are sometimes met with as the result of masturbation. It is, often assoeiated with hysteria, aud often arises by irritation,--not so much direetly, perhaps, as by sugyestion. In this way Gowers (ap. cit.) would explain the cases of apparent heredity. The movements recur every few minutes, but are not always identical. Their most common form is spasm of the orbicularis palpelmarum,-blepharospasm or nictitating spasm,-which may extend to the eyebrows and the facial museles, and even to the oceipitofrontalis. Another frequent form is contraction of the zygomatic museles, Vol. IV.-51
drawing the month to one side. In other gases the hend is drawn backward or forward of to one side, or there is a jerking of the nem or shombler or a slight moverne on of the hand. Sometimes hatf the buty is atfectent. The lagg is monly nflerted. The mosetes of respiration may he involved, giving rise to a sudden inspiration aceompanial by a peculiar monnd. A (enghis is not mummom: Steimpell (op, cit.) reporty the case of a boy, aged ten, who had a peroblar rellex, hollow, barking eongh, oremring spontaneonsly or aftor pimeding my part of his skin; it hasted mome werks, and then disapparesi suldenty. In other cases there is yawning, sucering, werping, or lamghing. Dlemod (op, cit.) reports three cases of the latter in very young infants, origimating in intestinal irritation. Blather reoords a case in which there was a sudden lowl ery. There is momesthesia or pain in these mases. The affection usmally comes after an indefinite perion (monthe or years), but oreasionally persists to molule life.

The spasms are inemsed by obsermation : heme the friemds should In_{w} cantioned to take no notiee of' them. 'They are saddom moder control, and fear of pmishment is likely to aggravate th a b but, acording to (bowers (op. cif.), the promise of a reward at the dose of each day prosiderl the
 the strmg desire to avoid them eflerting that whid the will conld not abone adieve. Attention mist be direeted to the general health, and change of scene and surromelings is advisalile.

Arenie is the best drug, and may be given in combination with guinine and strydmine. Weir Mitchell has enred obstimate cases by the hypodermatie infertion of assenie. The bromides may be requived to quiet cough and spasm or to relieve mental excitement.

It has iwen fomd that there are certain points along the course of the triftacial (and of other nerves when they are involved), and alson owe the cervical portion of the spine, pressure upon which inhibits the spasm. They are known as "pressure-points." The application of the galsanies enrent has the same effect, and may even prove carative. Hence these peints. shonld always be carefally songht for, with a view to obtaining this temporary or permanent redieff.

Tomponas (Wry-Neek).-Torticollis may depend pron several diflerent canses, as caries of the vertebre, rhemmatic inflammation of the museles of the ned, and simple spasm of the sterno-edeido-mastoid and aldacent moseles. For want of space it will be imporsible to describe these several forms. In any ease, however, it is highly necessary to investigate the calnse of the condition and at once sstitute suitable measures for its, relief or eure. In many eases this will be foum very difficult, and in commeneing earies of the cervical vertebre it can e treated only by mechanial means to prevent inflammation and resulting ankylosis of the vertehrar. Pain and stiffiess often accompany the onset, which is very gradual, extending over months. Exceptionally the onset is brief, the affection lopcoming fully developed within a few days. The sterno-mastoid is almost sh is not tell, who misly or "II disalepiug, or ry young in which rese catist (airs), but
thould te: Itrol, anul o Gowers vided the мманиме, not alune hange of
la quinine hypooderiet congh
course of also over re spasm. galvanie nee these ming this
several m of the stoid aull rithe these westigate es for its 1 in cumb chamical vertelnare. dual, excetion beis almost
nlways involved, but rardy alome. 'The traprains, aplenins, senteni, mad
 of their mumas as heregiven. Varions movements may la impresed npot the head, meording to the moseles involved. 'The mose frempent me is that in whid the head is turned upward and towarde the opposite side, the
 twards the sterman. The had may lee drawn lackwarl be the moseles at the mape of the meck. Sometimes the spasmondie movements extend to neightoring mosedes, as of the face and arm. 'The: constant contration of masedes produres more or less fatighan and soremess in themb.

The comse of the discase varies: after a cortain inervise, it maty become permancotly stationary, of it may slowly derdine, and may in exepptional cases even conse altogether. 'The pathology of the atfection, like that of the other nemposes, is maknown. The diagmasis involves one diflienty. The prognosis as to reavery is ball, coperially in severe cotses.

In the tratment nervons sedatives when exert a strikingly palliative dfleet, esperially asatietida, bromide of potassimm, ammahis indica, dhomal, comimo. It has hecn suggested in the epasmolic form to trant the contracterl maseles by ingections of atropine, with a view to relaxing the tense musenlar fibres: this tewtment howerer, has wot yidded any permanent results. Electercity, in buth forms, is of ase in the tratment of finutional on emismodie wry-ned, but if the condition be due to caries of the cervical vertebre this agent will be worse than nedess. Oprations upm the mevers and museles only aggravate the "ase in the spasmotie form, but in the fixal
 permanent ente. Henoch ${ }^{1}$ reports a case of the intermittent form cencring dails with great regrolarity, and rapidly cured by guinine.

Tremone-Henoch (op. cit.) repmets a rase of general tremor in a child of fiftem months, which ended fivorably. This symphom, so common in advanced life, is extremely rave in chihhoorl, and, when mot with, is ushally eomected with surions infections on bain disease. In the case is glustion the trombling was contimoms, and involved the hands, head, and feet. The child eried a great deal, as if in pain, and the ery was quavering in charater. The nemosis, fir such it appars to have bren, disappeared muler chloral hydrate, after lasting twenty-nine days. Demme ${ }^{2}$ reports a similar case, but of longer duration, lasting from the form to the eleventh month.

PERIPIERAL PARADYSIS.

This may be met with as a are serglence of the acnte infections diseases, especially typhoid fever and the exanthemata, and, whilst it is then oftern due to eentral lesions, it may also be referable to periphemal nemitis, single

[^355]or multiple. The most frequent and important of these infections paralyses is the diphtheritie, which will require special consideration. Paralysis also accompanies the "toxic neuritis" produced by lead, arsenie, mercury, copper, ete, which has been previonsly mentioned. Next to the diphtheritie form, the most common of these affections in the child, as in the adult, is facial paralysis.

Faclal Paralysis (Mimetic Paralysis; Bela's Paralysis; Paralysis of the Motor Portion of the Seventh Cranial Nerve).-This affection frequently oceurs at birth or shortly after, usually as the result of injury inflicted upon the nerve in the neek by the foreps. It is also not infrepuent after perfectly normal labor, if prolonged or difficult, and in normal pelves. ${ }^{1}$ Under the latter ciremmstances it has been varionsly attributed to pressure exerted by the promontory of the sacrum or by the ischiatic spines. ${ }^{2}$ Depand saw two cases due to narrowing of the pelvis by tumors. ${ }^{3}$ Under these varions ciremmances the paralysis may be bilateral. ${ }^{4}$ It may also be associated with paralysis of the corresponding arm from injury to the brachial plexus in the neck, as will be described farther on. Lesions have been found in antopsies of such cases, either in or aromd the nerve, especially at its emergence from the stylo-mastoid formen, and inclading fatty degeneration of the nerve itself.s The appearances of the affected parts are similar to those seen in the adult,-immobility of one side of the face and lids, the eve wide open, ete.,-but as distinguisherl from the adult these changes are much less marked in the young child, owing probably to the relatively greater quantity of fluid and adipose tissue in the latter and the smaller development of the musenar tissue. It may be scarcely noticeable when at rest, or a slight drooping of the angle of the mouth may be ai that is olservable, but on erying or langhing it becomes at once obvions. The paralysis may also be limited to a certain part of the tace, as the lips or the eyelids. The orbicularis palpebrarmm is not always affected. The tongue and uvala are usually intact, and hence sucking is not, as a rule, interfered with. Electro-contractility of muscles is sometimes preserved, sometimes lost. ${ }^{6}$ A favorable prognosis may nsually be given under these cireumstances, as the paralysis will almost certainly disappear in a few days or weeks, as the effect of compression wears off. A few cases, however, ane on record in which the injury was so great as to lead to degenerstive changes in the nerve and permanent loss of finction. The

[^356]treatment consists in protecting the eye from air and light, in seeing that the infant receives a due amonnt of nourishment, and in the application of mild emrrents of electricity.

In later childhood the canses and symptoms resemble those of adult life.' Besides cold dranghts blowing upon the side of the face and producing the inflammatory or so-called "rhemmatie" form, from which recovery almost invariably takes place in a few weeks, a common cause is the presenre of an enlarged glamd or abscess upon the nerve-trunk at its emergence from the stylo-mastoid foramen. The commonest canse, however, in children, as we might infer, is caries of the petrons portion of the temponal bone, by which the nerve is injured or destroyed as it traverses the Fallopian camal. ${ }^{2}$ Otorrhea is always presean in this form, and the discharge will often contain fragments of bone, and sometimes the ossieles from the tympannm will eseape. Sometimes there is a tender swelling ower the temporal bone behind the car, and fistale may form commonicating with the carious cavity. Pieces of dead bone may occasionally be extracted from the matus or from the mastoid process. Prolonged paralysis leads to musenlar atrophy and reaction of degencration; the musenlar tissue muy entirely disappar. Autopsy in such cases revals extensive caries of the petrous bone and frequently localized meningitis; loose pieces of dead bone are sometimes fomb. The prognosis as to reovery is bat in these cases; they are often comented with tuberular diseme, which may extend to the batin, or canse gemeal tuberoulosis, or prove fatal by prolucing thrombosis of the cerebal sianses. Henoch (op. cit.) has known the affection to commence as carly as the third month. A frequent canse of it is a noglected otitis media, especially with searlet fever ; and this fact should ineuleate the neressity of paying particular attention to the otorrhea which so frequently arempranies or follows that disease. ${ }^{3}$

In the treatment of facial paalysis we must be guided by the cause when that ean be ascertained. If due to the existence of ear-tronble, that must be removed ; if to cold or exposure, measures with special reference to the rhematic origin should be instituted. But to whatever canse it may be due, meses the trouble be central, clectricity will he fomm of grat service. The use of hoth eurrents is to be recommended, the galvanie to revivify the .erves, and the faradic oo improve the condition of the paralyed muscles. Both enrents are best applied by placing one eleetrode over the exit of the nerve and the other indifferently wer the varions museles. A very mild

[^357] important point in the treatment of facial paralysis is to owreme the com-

 dome by the application of the mbloer hand ame luok desseribed by me,' which
 ease. By this simple apparatus the distortion whidh so impules revorery is
 fibres are promoted and hastemed, and the daration of the disense is propurtionately shortemend. In addition to this, masame or sharp;ooing of the fffereded side is of great value in preventing atrophe and prowheing a more natural eondition of the circolation. 'The application of' a blister belind the car is of lemefit in many casss. Fin the tratment of the caries and oformana I wefer the reader to the articles in this work dealing with these sulyjerts.

Allial to the comgenital paralysis of the fare above refereal to is a similar afliention of the am, che to presenre יyon the bachial plexns at birth. It is most fremuently refinable to the use of the forepss compressing the plexus at the side of the neek just above the elavide, but it may also oerom in labors where wo forepos hase bown used, esperially if protmeted or difficult. Instmmental face presentations are particularly ammable to this aneident, which may affed both arms simultaneonsly, ${ }^{2}$ or may involve only one or more groups of museles, as the deltoin ami extensors, or may extend to other parts, as the face. Depanl ${ }^{3}$ attributed it to tow drep an introxlaction of the foreps into the pelvis; Jacqueneres, to prolonged pressure of the homerns against the axillary plexas. Forrible drageging umon the arm on shonder or distocation of the shonlder during delivery is somotimes abcomentole for it. 'The paralsis nsually passes off in a few days, but if the damage be severe and irreparable it will be permanent. Death may emsu quickly from other inguries receiverl. Anasthesia sometimes aceompanies the motor paralysis. In severe cases, with irmparable lesions, atropioy of the limb soon sets in, with loss of eleetrieal wation, and the limh beromes in time shrivelled and shortenct. The treatment of most value is electrivity, and it should be applied at the carliest periond, hefore misembar and ner ors degemeation have taken phace. The galvanie empent is to be preferwel. In late dhidhood viohnt stretehing of the brachial phexiss, as by a sudden wrow of the arm, may prohner a paralysis continning for werks or montlos. ${ }^{5}$ This last comdition is closely allied to the paralysis often oh-

[^358]served later in life, in which the extensen gronp of maselag is pamayad by

 treaturul of eleetricity, frictions witl lations comaining timeture of mux

 of the paralysis, which is very diffirult to owerome on acoment of the persisent distortion of the hame frem the overaction of the flexor maselos.

 nt variable intervals, nasally months of yours, motil midalle life. As the child growe up, the intervals diminish in lemgth, whilst the altacks lecenme more and more nevere. They eommenee with sevore pain in the eye, oftor
 lowed ly paralysis of the thime and semmemes of the sixth menve, which manally passes off gradmally afler a few days or wros. 'The mature of this affestion is entirely unknown.
 smotimes set \quad up by lowal irritation, of which a well-marked example is the paraplegia due to phamosis, to which atlention was first prominently directed by Sayre in 1870.' Sayre's mases oxarred in heys of from three to fiftecn years, and the symptoms were paresis of the lower limbe of years daration, constant and painfinl erections, amonnting almost to priapisin in some cases, grat mental impability, imbility to ationlate properly, insommia, ete. Relief, nsually complete, was afforded by eirenmeision, the admerent prepure leing torn off from the glans, and the hardencel seeretion

[^359]case of a girl ly clipping the clitoris. Dr. Sayre also saw similar symptoms produced by the irritation of other nerves. Further investigation showed that the irritation may exist in any part of the body. Thorowgoonl, for instance, reports the case of a girl aged ten, suffering from paraplegria, who, on the seeond day after the expulsion of many asearides by an aloetic purgative, was able to rum and walk, and a few days later was perfectly well. Henoch (op. cit.) also reports the case of a loy of seven who had practised masturbation for two years, and sulfered in comsequence with nocturnal ineontinence of urine and inability to walk or even stand or sit without support, and when supported his gait was distinctly ataxic like that of locomotor ataxia. The ataxia was markedly increased on closing the eves. Plantar refle. was weak and slow. The fieces somotimes passed invohntarily. Under treatment by lakewarm baths for ten minutes daily, with cold shower over head and back, and strict watching, he entirely recovered in five weeks. Other forms of paralysis have also been noted from phimosis, as hemiplegia, ${ }^{2}$ strahismus, ${ }^{3}$ ete. Several explanations bave been proposed for this reflex paralysis. Brown-Ségnard suggested a reflex spasm of the arteries of the corl, producing anemia, defective nutrition, and consequent loss of musenlar power. Leyden and others tried to explain them by supposing a nenritis arising at the point of irritation and extending thence to the cord. Inhibition of the cord-centres from protracted reflex irritation (or, in other words, exhanstion from repeated and excessive stimulation) is, however, the most mational theory of the pathology of these cancs.

DIPITLIERITIO PARALYSLS.

One of the most characteristic of the phenomena of diphtheria is the paralysis which frequently follows its attacks. Although the contrary has beon maintained, it may he assumed that when a paralysis of eertain muscles suceeds a sore throat, the latter was a true diphtheria, since ordinary eases of sore throat never produce this sequela. Gowers (op, cit.) estimates that on an average one-fouth of those who do not die from the primary discase suffer from subsequent paralysis. Ont of sixty-eight cases seen by him, fiftern were under ten yars of age. Aecording to the statisties of Bailly, ${ }^{4}$ post-diphtheritic paralysis oceurs in about one of eleven cases. Of ninety cases of paralysis due to diphtheria collected ly Mainganlt, ${ }^{5}$ twentynine ocemred in children. According to the statistics of Lamdonzr, ${ }^{6}$ the tendency to it increases the older the patient, infants being comparatively

[^360]insuseeptible to it. It may follow diphtheria located anywhere, and is as frequent after mild as after severe cases. ${ }^{2}$ It sets in most offon during convalescence from the throat or other primary affection, but sometimes eomes on during the active conrse of the disease. According to Syuire, ${ }^{3}$ there are two kinds of paralysis, one coming on during, or direetly atter, the attack,
and of a gravity propertioned to the general disease, the oher coming on later, not before the second or third week, and not corresponding to the severity of the local lesion or general disatase.

Pathology.-The principal changes are found in the nerves going to the paralyoed parts, and are inflammatory and degenerative, the so-walled "parenchymatons nemitis," or "multiple degenerative nemritis." " They may in severe cases extend back along the anterior roots to the cord. They consist in segmentation and breaking $n \mathrm{p}$ of the white substance of the nerve-fibres, with a multiplication of the nuded of the nerve-sheath, an accumblation of the gramulation-corpuseles among the remains of the fibres, and sometimes even a disappearance of the axis-evinders. ${ }^{5}$

Oertel ${ }^{6}$ foumd hemorrhages in the nerve-sheaths of the peripheral nerves. As a rule, there is no inflammation in the interstitial comective tissue. The palatine nerves offer an exception to this, which is prohably to be referved to their contignity to the inflammation of the primary disease and to the direct extension of this proeses to their shaths. There are often evidences of fatty and gramula degeneration of the motor nerve-edls in the anterior horns of the cord ${ }^{7}$ and in the museles of the heart, palate, and extremities. In consequence of these changes, there is lass of faradie irritability. Gowers (op. cit.) regards the degeneration of the nerve-tibes and the musenar clanges as due to the prior alteration in the merve-edls.

Symptomatology.-The palate sareely ever escapes, and is usually the first part to be affected, the symptoms setting in, as a rule, shortly after the disapparance of the membrane. It may be the only part affected. In consequence of its involvement, when the patient attempts to swallow, fluals regngitate through the mose, and the voice becomes indistinct and masal, owing to the nasal cavity mot heing shout off from the pharym in phonation. On examination of the pharonx, the palate is found to be stationary on inspiration and phonation. Vision for near ohjects-as in reading or writing (near-sightedness)-is next impared, in consefuence of loss of power of aecommodation (paralysis of ciliary musele). The reeti

[^361]muscles may also be involved, produeing strabismus, most frequently extermal strabismus. Later, in a large proportion of eases, there are weakness and ataxia of the limbs, sometimes aceompanied by slight sensory disturb)ances. In some cases there is loss of power of the respiratory museles, the laryngeal museles, the museles of the neek, the bladder or rectum, or other parts. Hemiplegria and general paralysis are rarely-met forms. The onset and progress of the atfection are gradual, never sudden. Owing to the degenerative changes in severe cases, after two or three weeks there is reaction of degencration,' and the knee-jerk is invariably lost. A remarkable fact with reference to the latter, diseovered by Bemharett, ${ }^{2}$ is that this loss oceurs in two-thirds of the cases in which there has been no paralysis whatever. It was usually noted in the second month. Dysphagia may appear if the pharyngeal museles be involved. If the larynx be affeeted, the voice beeomes hoarse or disappears, and food often enters the glottis in consequence of the non-closure of the epiglottis (superior laryngeal nerve). The tongue and face in rare cases are involved. A tendeney to heart-failure is indicated by frequeney, feebleness, or irregularity of the pulse, and fatal syneope is liable then to ocelur. There is sometimes incontinence of urine or retention. Albuminuria is a very common accompaniment of these paralyses. As the extent of the paralysis varies, so do its severity and duration. Recovery ensues in from two weeks to several months.

Diagnosis.-This is usually simple, in view of the previons attack of diphtheria and the peculiarities of the paralysis. Diffeculty may arise from the former having been overlooked. Usually in such eases a history of some sore throat, or of an offensive diseharge from the nose, can be elicited. When the throat- and eye-symptoms have been slight, the paraplegia may simulate locomotor ataxia, which it resembles in certain features, as ataxia and absent patellar reflex; here the previous history, the relative rapidity of onset, the absence of lightning pains and gastric crises, and the spread of the paralysis from one part to another, are to be relied on for the discrimination. Locomotor ataxia also is extremely rare under twelve years of age. The same features are to be depended on for the discrimination from other spinal affections. In simple paraplegia the knee-jerk is usually excessive. Paralysis of the palate does not oceur in hysteria, but the latter may be associated with or suceeed diphtheritic paralysis.

Prognosis.-This is, as a rule, good. Death may ocenr from paralysis of the heart or of the museles of respiration, or from exhanstion due to dysphagia or to inability to get the little patient to take food. In view of the liability to the first of these, in eases even otherwise doing well, a cantions prognosis is advisable. Cardiac paralysis is almost inevitably fatal.

Treatment.-Every effort should be made to keep up the child's strength by food and stimulants. Solid food is generally better swallowed

[^362]than liquid, on aceome of the involvement of the palate. When swallowing is impossible or dangerons from paralysis of the pharynx or superior larynx, rectal nourishment must be resorted to, or fook (as milk, yelk of egg, beef tea) introduced by means of an esophageal tube. According to Gowers (op. cit.), it is absolntely essential to the patient's safety that he should be fed under these eircumstances every twelve hours at loast. If heart-failure be threatened, absolnte recumbeney must be insisted on. I have found good results from the stimulant effect of carbonate of ammonimm, in a mucilaginons solution, which renders the dose easier to swallow. Frietions with stimulating lotions or with oil help to strengthen the patient. As soon as possible the use of electrieity should be commencel ; both eurrents may be nsed, the galvanic being applied from the nape of the neek to the group of museles involved, and the faradic used only to the loal gronps of paralyzed museles. Vigorous massage and shampooing must be resorted to frequently during the day, and sponging with warm whiskey at night will be found of serviee. Under this treatment I have had very gratifying success in two eases of diphtheritie paraplegia. The Germans recommend strychnine very highly, particnlarly by hypodermatic alministration. Henoch (op. cit.) gives from one-sixty-fifth to one-sixteenth of a grain daily. Iron in some form is very important, and general tonics shonld be also used, to buiid up the system as rapidly as possible.

PRIMARY MUSCULAR ATROPHIES.

By JAMES S'TEWART, M.D.

Synonymes.-Idiopathic muscular atrophies; Myopathic atrophies; Progressive museular dystrophies.

Under the head of primary musenlar atrophies are inchoded certain different clinical types, all of which are, however, chamaterized by a primary progressive wasting of some or nearly all of the voluntary museles of the body.

In the present state of our knowledge, it is impossible to say whether we have to do with one disease presenting in different cases different anatomical features, or with a distinct series of primary muscular affections. It is contended by many that there is essentially only one form of primary muscular atrophy, and that the varions clinical differences are simply accidental ; while, on the other hand, it is maintained by some that there is a fundamental pathological difference between at least a certain number of the different types which are deseribed. At the present time the weight of opinion is with the former hypothesis.

The elassification of the primary musenlar atrophies at present adopted, even taking the view that we have several distinct pathological forms to deal with, is far from satisfactory. In order to present the subject in its fullest clinieal aspeet, it is necessary to follow it. The dissimilarities and likenesses of the varions types can in this way be made clarer. It is to be distinctly understood that this classification is purely tentative.

The Various Types of Myopathie Atrophies.-I. Psendo-hypertrophie musenlar paralysis. II. The juvenite form of muscnar atrophy (Erb). III. The facio-scapulo-humeral form (Landouzy-Déjérine type). It is universally admitted that the above types are purely primary museular affections.

A type of muscular atrophy now commonly deseribed as the "peroneal type" has been varionsly deseribed by different authorities, a few contending that it is myelopathie, others that it is neuropathie, while still others rank it among the myopathies.

Leyden and Möbins deseribe what is called the "hereditary type," -an apparently unnecessary subdivision, as heredity is common to all myopathies.

Transitionn forms of the different types are not meommon. Cuses in different members of the same fimily have been deseribed where two and even three different types have been seen.

PSEUDO-HYYERTROPHIC MUSCULAR PARALYSAS.

Synonymes.-Mascular psendo-hypertrophy; Lipomatons muscular atrophy; Lipomatosis luxurians musenlaris progressiva (Heller).

Psendo-hypertrophic mosenlar paralysis is a disease of childhoorl. Cases of what we now know to be cxamples of this disease were deseribed as carly as 1830 , and a marked example, as it affeets families, was described by Meryon in 1852. The first true dinieal deseription was given by Ducheme. So complete was this deseription that little or nothing has been added to the symptomatology since that period.

Etiology.-We have no precise knowledge as to what are the essential causes of this disease. We know that it begins usually between the ages of two and eight, and that it is more commonly observed in males than in females.

It is probable that in exceptional cases signs of the disease may be noticed even as early as the first year, if locked for. Very marely does it appear so late as at the age of puberty. It is asserted that the disease runs a mueh milder course, and that it is later in making its appearance, in females than in males.

In a majority of the eases the inflnence of heredity is apparent, often to a very remarkable extent. Meryon relates an instance where eight brothers died of the disease. In this family all the danghters escaped. In some families, on the other hand, the disease appears to atfect only the females. Again, numerons family eases have been observed where both sexes have suffered. The morbid inheritance is always through the mother. The disease is transmitted by her without her being affected. The malady may be congenital and not hereditary.

Symptoms.-Some form of motor weakness is generally the first symptom which attracts the parents' attention. In numbers of cases the first difficulty noticed was inability of the child to elimb stairs without pulling himself up by holding on to the balusters. Simuianeously with the motor weakness, or more frequently some time after its appearance, there is noticed an hypertrophy of certain minsenlar groups.

The calf-museles undergo this change more frequently and to a greater extent than any other set of muscles. The measurement of the calves of children under ten years often exceeds that of the calves of well-developed adults.

The spinati are probably next to the calf-museles those which are most frequently found hypertrophied.

The deltoids are often found in an hypertrophied condition. A few cases have been recorded where all the museles of the shoulder-joint were hypertrophied.

The biceps, triceps, latissimus dowi, and sterno-mastoids have leen fomed hypertrophied in diflerent cases. The temporals, the masseters, and the muscles of the tongue have been fonnd to hase undergone the same change.

With the exception of the pretomal all the voluntary muscles of the body were fomad by Duchenne in one cans ie hypertrophied.

The musendar hypertrophy eventally disappeats, nod is sumeeded by an atrophic condition of the museles. This change ocenrs enrlier in the hypertrophied muscles of the upper extremities than in those of the lower. The musides of the calves are usmally the last to undergo ntrophy.

The atrophy, however, is frequently the primary pathological chango. This is especially noticeable in the muscles of the trunk and upper extremities. 'The pectorals are generally the first to show sigus of wasting, and, as a rule, it attains a greater degree in this group than in any other.

Next in order in degree of wasting are the latissimns dorsi, the traperii, the servatus magnus, the extensors of the back, mod the museles of the thigh. All the voluntary muscles may hecome atrophied. As a rule, however, the small mascles of the hand escape.

The contrast between psendo-hypertrophic paralysis and progressive muscular atrophy (mydopathic) is nsmally very marken. In the former the small museles of the hand escape, while in the latter the disease nsually bergins in these muscles.

The posture and gait of patients with pronomeed psendo-hypertrophic paralysis are very characteristic. When standing, the abdomen projects forward, and the hollow of the lumbar vertebre is greatly exaggerated. The buttocks are slightly thrown baek, while the shoulders greatly project backward, forming the secondary compensatory enrve for the lordosis. A plommet let fall from the spines of the upper dorsal vertebre will fall considerably behind the saermm. The patient stands with the feet planted widely apart. If an attempt is made to bring the feet together or to straighten the tronk, the child at ore falls forward.

The canse of the lordosis is the weakness of the extensors of the hip. When the patient sits, his lordosis disappears, and in those cases where he is no longer able even to walk or stand, the spine becomes convex, from weakness of the extensors of the back.

The gait in psendo-hypertrophie paralysis is of a peenliar swaying character. The body is thrown to the side of the active limb, so as to bring the centre of gravity over each foot. The passive leg is thus enabled more easily to be swong aroumb. The canse of this waddling gait is the weakness of the extensors of the hip.

A very characteristic symptom of this disease, first pointed out hy Gowers, is the way in which the patient raises himself from the horizontal to the vertical position. Owing to the weakness of the extensors of the knce, the patient has to place his hands on the lower part of the thigha and gradually raise himself upward by this assistance. If the degree of weak-
ness is only slight, he may be able by a single eflont to straightem his tronk. If the weakness is considemble, he has gradually to mise his hauds plated on the thighs one above the other until they rosch the upper part of the thigh, and then lyy a fimal effort he assmmes the erent position. Where there is advaned weakness of the extensoms of the kner, esen with this mamenvre he canot aise himself from the flowr. The writer has had a case muder observation where tho patient was muble to mise himself with his hatuls, but by phacing his chin on the afge of the chatir he effered his purpose through the action of the musides of the neck. Cases of this discase are met with where this characteristic way of rising from the flower is mot seron. The extensors of the thigh not having suffered, the patient is able to rise from the recmment position in the nsmal way.

When the discase is alvanced, certain deformitios set in, as the ressult of museular contraction. In the upper extremities it is common to see the biceps so contracted as to prevent the extension of the arm. The kneejoints become stiff also from contraction of the flexors.

Contraction of the muscles of the calf is frequent. This contaction is so marked in certain cases that the patient is mable to put his heels to the gromed.

Electrical Reactions, etc.-Wven in the early stages of the discase there is usually a distinct lowering of the musenlar irritability to both faradism and galvanism. In the advanced stages this is still more marked. Greatly hypertrophied museles respond but fechly to both enrrents.

Cases have heen reported where little change has been noticed in the electrical reactions through the whole course of the discase. The reaction of degeneration is never present.

The mechanical irritability is usually much deereased. Fibrillary contractions do not ocenr.

Gerhardt' deseribes a case where there was constant tremor in the extremities.

The knee-jerk usually disappears entirely as the disease advances. It is common for patients to complain of coldness, especially in the lower extremities, but usually measurements of temperature are negative. Sensation is always normal. There is seldom any vesical or rectal fature.

Complications.-Exceptionally symptoms of mental weakness are seen. Westphal reports a case complicated with paranoia. In many cases it has been noticed that the patients have been late in learning to speak. Diffienlty of speech (psendo-aphasia) is also an occasional defect.

Epilepsy and irregularities in the size and shape of the skull have been described. Vigouronx and Buss have deseribed a case where there were also present symptoms of Thomsen's disease.

Cases of psendo-hypertrophy of museles with optie neuritis and atrophy of the disk have been noticed.

[^363]Cardine hypertrophy withour valvilar lesion has been said to ocenr. Diabetes insipidus has heeco observerl in a number of cuses.

Pathological Anatomy.-The patholugial changere in the musedes in pando-hypertrophic paralysis ure very marked. We find (1) dhanges in
 changes in the amont of fatt-lepusition in the musches.

Before denth the penda-hypertrophice rondition has generally almost
 in volume. The musdes present a pale yellowish eolor, and are with diffenlty distinguishable firom masses of tat. It is only on curefin microseopie examination that we an be abmolutely certain of the presence of mosemara libres. The misentar fibres present great diversity in their breadth, some fibres being liomad whid are extemely narow, while others are sean to have alont the nomal diameter. All degrees e " variation lom tween these two extremes are to be made ont, wen in one mo de. Hypertrophicel tibres are never seren post mortem. The smallest firmes are fomed in these montly rephaced by fat. Single masenar tibres vary fremuently in their breddh. The transverse striation may he uparent, but it is frequently lost through grombur and hyaline changes.

Inerease in the muldei of the affereted museles has been moticed in some cases. Increase in the comnertive tisste is invarially fomed. The amome of fat between the musemlar bundles and connerive-tissue fiberes varies considembly. Usoally it is very great, but ocensionally it is only slight. In the former case, if we examine a muscle which is in an advanced stage of the disense, we shall find ammerons large fat-cells, while in other muscles, only beginning to suffer, the fat-cells will be few in momber.

Nercous System.-In all the trustworthy rerent examinations of the spinal cord no changes of any significunce have been fomd. The remaning portions of the central and peripheral nervous system have been likewise fonnd normal.

The pathological changes in psendo-hypertrophic museular paralysis may, then, be summarized as follows: 1. Changes in the breadth and contour of the musenlar fibres. 2. Increase in the intermusenlar comentive tissuc. 3. Fatty infiltration of the muscles.

Pathology.-It follows from the post-mortem changes that psendohypertrophie paralysis is essentially a muscular disense,-a true myopathie atrophy. There are differences in opinion as to how this atrophy of the muscular fibres is hrought about. Some contend that the first change is a primary myositis, and that the inereased comective-tissue formation and consequent atrophy of fibres constitute a later manifestation.

The well-known congenital nature of the disease points, however, very strongly to its being primarily due to the connective-tissue changes. The atrophy of the muscular fibres is, according to this view, the direct result of the inerease of interstitial tissuc. The formation of fat, to which the present name of the disease (psendo-hypertrophy) eally owes its origin, is

Hyperare found quenty in frequently
al in some be amonnt varies conlight. In d stage of ar muscles, nis of the remaining " likewise
paralysis and concomertive it psendomyopathic by of the bange is a nation and
ever, very ges. The reet result which the origin, is
merely an evidence of the lowered state of vitality of the tismes concerned, and forms mo cessential part of the disense.

There is an error in development, and that error consists in a temedey to exerssive growth of the mascolar connective tissue.

Why the disone shomblafient matuly the male members of a fimily remains mexplained, ns do many other phemomem in annection with inheritance.

the juvenile tyble of primary muscular atborify.

This type of myonthic atrophy is mow commonly known as "Erlo's jurenile form." 'There is some difference of opinion as to whether it should be described as a distinct form or mot. Gowers' comsiders that this is not nceessary. Hitzig ${ }^{2}$ and sachs ${ }^{3}$ in two excellent papers alsance atrong reasons for its separate consideration. Hitzig's rasons are hased on pathological gromads, whike those of Siches are from the clinical side.

As this form has not as yot heen deseribet in this conntry, exerpt by the writer, I will here give a brief aceont of a case which formed the suljeet of a clinical lecture delivered by me in dune, 188.4 :4

The patient the time the following history was obtained was twentyone years of age. His occupation was that of a farm-labomer, and his complaints were of weakness in the back and legs of three years' standing. He had never suffered from any serions illness previous to the onset of this weakness. He attributed his tromble to a fall which he reenived six months anterior to the above complaints. It was, however, afterwards ascertained that for some time previous to this he disliked going up-stairs, because he found it both difficult and tiresome. No history of hereditary atrophy.

In the upper extremities there was a marked contrast between the welldeve'onal muscles of the forearms and the atrophied ones of the upper arms, the cireumference of the thickest part of the upper arms being an inch lese than that of the corresponding part of the forcarms. At the thickest part of the thighs the circmonference was an inch less than at the thickest part of the legs. In the upper part of the body the following museles were greatly atrophied : the pectorals, especially in their eosto-sternal parts, the lower half of each trapezins, the thomboids, the latissimi and the whole gronp of spinal extensors, and the triceps and the lirachialis anticus of cach side. The biceps of each arm was atrophied and contracted.

The coraco-brachialis, the supra- and infla-spinati, the deltoids, as well as all the forcarm and hand museles, were fomd well developed. In the lower limbs the glutæi and ilio-psoas were in a state of more or less marked

[^364]atrophy. The quadriceps of each thigh was found more extensively atrophied than any other museular group in the lower extremities. The right prenonals were slightly affected, while the left were normal. There was slight hypertrophy of the calf museles.

All the atrophied museles were firm. No fibrillary twitehings. Kneejerks absent. Response to induced current hardly perceptible in the markedly wasted muscies. No reaction of degeneration.

Unfortunately, the subsequent history of this important case is unknown.

The promineni sliacal features of this form of atrophy, which are well illustrated in the above case, are: (1) The time of life at whicin thegins, which is usually before the fiftenth or twentieth ycar. In this partieular it differs from pseudo-hypertrophy, which is practically a congenital affection. (2) The atrophy is limited to a particular group of muscles,-in the upper extremities, to the shoulder and upper-arm museles principally; in the lower extremities, to the gluteal and thigh muscles. The muscles of the forearm, of the hand, and of the legs remain normal, or may even be slightly hypertrophied. Hypertrophy is, however, not the rule. Lipomatosis may ocenr. There is an absence or a diminution of the knee-jerks. This loss is more marked when the quadriceps is the seat of wasting. There are no inbrilary twitchings. There are only quantitative changes in the electrical reactions. The disease may be hereditary.

Clinically, the difference between psendo-hypertrophy and Erb's juvenile form may be said to be as follows: (1) Pseudo-hypertrophy oceurs earlier. (2) The localization of the atrophy is different. Such differences are sircly not sufficient grounds for making two distinct clinical entities. If the esults obtained by Hitzig (op. cit.) prove to be true of all cases, we shall, however, have sufficient reason to consider these forms as distinct muscular atrophies. Hitzig, from examination of the muscles in three undonbted cases of juvenile atrophy, comes to the conclusion that the primary change is an increase in the muscular fibres from parenchymatons inflammation. He further maintains that there is no hyperplasia whatever of the interstitial tissue.

Lipomatosis occurs, he says, after the disappearance of fibres, through their mutual compression, and is never primary.

TIIE FACIO-SCAPULO HUMERAL TYPE OF PRLMARY MUSCULAR ATROPHY: LANDOUZY-DÉJERINE TYPE.

Chinically, this form may be said to be similar to Erb's juvenile variety, with the addition of atrophy of the muscles of the face.

In the cases of this type the atrophy usually begins in the muscles of the face and at a very early age. Commonly both sides of the face are affected, it being exceptional to find unilateral atrophy. One side may suffer a considerable time before the other. The wasting of the muscles of
atroright e was Knecn the eegrins, nlar it ection. upper in the of the ren be ipomajerks. asting. nges in occurs erences ntities. eases, is dis1 three at the natons atever
ricty,
iscles
c are
may es of
the face gives rise to a peonliar, and, it is said by Landonzy and Déjérine, a characteristic, expression. To it they apply the term "myopathic face."

The orbienlaris oris is constantly affeceted, and in consepnence the lips are separated, and when thickened, as they often are, we see the "tapir month" of the authors just quoted.

There is obliteration of the maso-labial furrow, from atrophy of the zygomatici. The orbienlaris palpebrarmof both sides, the frontalis, and the buceinators suffer also. The levators of the angles of the month usually escape.

The atrophy of the shoulder and upper-arm museles corresponds in every particular with that fomd in Erb's juvenile form, and hence does not require any special deseription. Atrophy of the museles of the lower extremitics is also frequently present. In both the upper and the lower extremitics contractures are frequent, occasionally to an extreme degree.

Landonzy and Déjerine' deseribe ac ase of myopathe atrophy of this type where the tongue also was affected. The atrophy appeared first in the arms and shoulders, later in the tongne, and still later in the face.

Fibrillary twitehings are absent. The museles react to both the faradie and the galvamic emrent in proportion usually to the amount of atrophy. There is no reaction of degeneration. Landonzy and Déjérine report an antopsy on a case of this variety. The appearances were those of a primary degeneration of the muscles. There was very slight inere: in the amomnt of comective tissue and fat.

This type of atrophy is very rare. The only case ep to the present time reported in America is by Osler. ${ }^{2}$

TIIE PERONEAL TiPE.

The disease generally shows itself at an early age. Chareot, however, describes two eases in females where the first symptoms were noticed at the ages of fourteen and fifteen. A very exceptional case is reported by Osler, ${ }^{3}$ where the disease made its appearance at the age of forty-seven. Aceording to Charcot, the following is the course of the atrophy. It shows itself first in the peripheral muscles of the lower extremities, nsually in the extensors of the great toe, and afterwards in the common extensor of the toe and peroneal group. The above is the order usually noticed by the parents of the child, hat it is not mulikely that the small museles of the foot are the first to undergo degeneration. The calf muscles are later in being involved. The museles of the thigh suffer still later, and the first of these to exhibit sigus of atrophy is usually the vastus internus. The adductors generally eseape. From two to five years after the beginning of the atrophy in the

[^365]feet and legs, the hands show signs of a similar degencration. The first muscles to be affected are those of the thenar and hypothenar eminences and the interossei. After the intrinsic muscles of the hand, the extensors of the for 1 rm suffer. The pronators and supinators are affected later. In Chareot and Marie's ${ }^{1}$ cases, five in number, the supinator longus escaped, and also the museles of the upper arm, shoulders, neek, body, and face.
J. Hoftman ${ }^{2}$ reports a case where the extension upward of the atrophy was mueh greater than in any cases heretofore reported. The pronators and supinators were atrophic, as well as the muscles of the shoulder. A second case by the same author showed traces of atrophy in the museles of the shoulder and the face. It follows from these observations that, as in ordinary myopathies, the entire voluntary muscular system may become in some cases eventually involved.

Hypertrophy has never been observed.
The atroply and consequent museular weakness progress together.
Fibrillary contractions are common, especially in the museles of the hand, but are neves' so marked as in the ordinary form of musenlar atrophy of spinal origin.

The idio-muscular contraction to perenssion is diminisined even in museles which do not present any atrophy or weakness.

A very noticeable feature in nearly all the eases of this tyje hitherto described is the presence of the reaction of degeneration. Charcot and Maric, Ormerod, ${ }^{3}$ Schultze, ${ }^{4}$ Müller, ${ }^{5}$ Tooth, ${ }^{6}$ and Sachs, ${ }^{7}$ all report cases where there was the reaction of degeneration. Shooting pains in the region of the affeeted moseles have been observed in a few cases. Cramps of the muscles of the thighs are described by Chareot and Marie. Anesthesia and hyperesthesia are also exeeptional symptoms.

A remarkable series of cases affecting many members of a family is described by Herringham. ${ }^{8}$ In all these cases the affection was in the daughter's sons. In the first case of this series, which is the only one fully described, the atrophy first showed itself in the peroneals, and later affected the thenar and hypothenar eminences and the interossei. The reaction of degeneration, which was alsent at first, made its appearance later, both in the muscles of the arms and in those of the legs. Fibrillary tremors were present in the affected muscles and in a number of those apparently healthy.

As already mentioned, there is a difference of opinion as to the nature of this form of muscular atrophy. Sachs and Hoffman look upon it as due to spinal changes. The former considers it due to degenerative changes in

[^366]the ganglion-cells of the lumbar cord. Hoffman, of embryological grounds, that they lead to secondary changes in the nerves, beginning first in the peripheral parts. For it he proposes the name progressive neurotic museular atrophy. Tooth and Sehultze are of the opinion that the disease is one of nerve-degeneration. The only autopsies published-three in num-ber-showed extensive nerve-degeneration, especially in the most peripheral parts, together with an ascending degeneration which involved the columns of Goll.

Those who consider it to be of primary myopathic origin are in the minority.

It is highly probable that we may have a peroneal type of muscular atrophy due to spinal, neural, or muscular changes.

THE HEREDITARY FORM OF PROGRESSIVE MUSCULAR ATROPHY (LEYDEN-MÖBIUS TYPE).

Leyden and Möbins deseribe, under the head of hereditary progressive musenlar atrophy, what they consider a distinct elinical varicip. It is characterized, they say, besides being always hereditary, by beginning usually in the museles of the lower extremities and the back and eventually invading the museles of the upper extremitics. The atrophy is associated with hypertrophy of the calf, and, it may be, other museular groups.

Harrington ${ }^{1}$ describes fifteen eases occuring throughout a period of one humdred and fifty years in one family. In all the atrophy was eonfined to the muscles below the knees and elhows, and made its appearance before the twentieth year.

Sachs and others consider that there is no sufficient reason for the creation of a distinct type on the points laid down by Leyden and Möbius.

As heredity plays an important rôle in pseudo-museular hypertrophy and also in Erb's juvenile form and the peroneal type, it follows that no type can be built on this mere fact; and as to the parts affected, we find mudoubted examples of the other varieties commeneing in the muscles of the back and legs. Harrington's cases are, no doubt, examples of the peroneal type.

DIAGNOSIS OF MYOPATHIC ATROPHY.

As muscular atrophy oceurs from cerebral, spinal, and neural changes, as well as from primary disease of the museles, it is important to examine into the question whether it is posssible to say in any given case what form of atrophy we have to deal with.

1. The Distinction between Primary Myopathy and Atrophy from Disease of the Brain.-It is alleged by some physieians that no pronounced museular atrophy ever results from purely cerebral lesions. It is certainly

[^367]a very rare condition, if we exclude the slight degrees of wasting that naturally result from the disuse of paralyzed parts. The very existence even of' a trophic influence exerted by the brain is denied by some.

Quincke ${ }^{1}$ reports the case of a boy, aged fourteen, who was suddenly taken ill with repeated tremors in the left arm and land. After some time cramps of the leit leg were noticed, and after a particularly violent convulsion of the left extremities paralysis followed.

Recovery of the leg was rapid, while the arm recovered slowly and incompletely and presented considerable traces of atrophy. Repeated convulsive attacks followed, and about two months after the onset the child dich. The atroplyy had in the mem time inereased in the left arm and hand, and there were distinet traces in the left lower extremity. Before death the paralyzed parts had almost completely regained their power. At no time was there a trace of eontracture.

On section, a glioma was fomm in the right motor area. There was no pressure exerted by it on the internal capsule or the large ganglia. The spinal cord was carefully examined from the level of the exit of the seventh eervical nerves upward, but no change whatever could be detected in the ganglion-cells of the anterior horns. The anterior and lateral pyramidal columns presented no traces of degeneration.

Two other cases of a similar nature are reported by Quincke, where paralysis of the extremities was attended by marked atrophy, coming on about four weeks after the loss of power. He refers to two additional cases, one reported by Burresi ${ }^{2}$ and the other by Gliky, ${ }^{3}$ where marked atrophy was found in cerebral tumors.

A careful examination of the cases referred to leaves, I think, little room to doubt that we may have a museular atrophy due to ecrebral causes solely. In all the cases reported a tumor was found implicating the motor area or its immediate neighborhood posteriorly.

The diagnosis between such a condition and primary muscular atrophy cannot present any difficulty.
2. We now come to a more important point,-that is, the diagnosis between a museular atrophy due to primary disease of the museles and one due to degeneration of the ganglion-cells of the anterior horns, or the Diagnosis between Myopathic and Myelopathic Museular Atrophy.

The typical form of myelopathic atrophy is the disease commonly known as progressive muscular atrophy (the Aran-Duchenne or thenar type). This disease nearly always begins in the small museles of the hand; it is for this reason called the thenar type. The cases of myelopathie atrophy which begin elsewhere than in the museles of the hand are very few in number. Myopathies usually begin in the museles of the shoulder, face, or back.

[^368]In the vast majority of myelopathies the degeneration involves the white matter of the cord as well as the anterior horns. As a result of this extension, we have paresis out of proportion to the muscular wasting and hypertomis added to the symptoms of the atrophy. These symptoms are never observed in true myopathies. Frequently also in myelopathies hulhar symptoms make their apparance, from the extension of the degenerative process to the medulla.

True myelopathis atrophy is attended by the reaction of degenemation. In myopathic atrophy it is exceptional to find any electrical change other than a diminished response to both forms of current. Further, in myelopathic atrophy fibrillary twitchings are invariahly present, not only in the atrophied muscles, but also in many that do not as yet show any wasting whatever.

Pain in the neighborhood of the joints in the affected limbs is frequently complained of in spinal atrophy. In my experience it is exceptional to hear of any such complaint in primary musenlar atrophy.

Trophic changes are frequent in myelopathies. They do not oceur in myopathies.

In both forms the degeneration is essentially progressive, but the downward progress is much slower in the myopathic than in the myelopathic variety.

Hypertrophy of certain muscles is the rule in myopathies. It has never been described in myelopathies.

Myopathic atrophies begin early in life, in the vast majority of eases before the tenth year, while myelopathies nearly always begin after the twenticth year.

Heredity is a marked feature in myopathies, but not in myelopathies.
3. The Diagnosis between Myopathic and Neuropathic Atrophics.-The only form of musenlar atrophy (the peroneal type excluded) due to changes in the nerves that may be mistaken for myopathic atrophy is that which results from certain cases of chronic multiple neuritis. The mode of onset and couse of an acnte or subacute multiple neuritis is so characteristic that there is no danger of its being confomed with the disease muder consideration. In chronie multiple neuritis, however, there may he a time when the resemblance is marked; but this rescrablance cannot be for any length of time so elose as to make the diagnosis really difficult. An inquiry into the canses of a given case of chronie multiple neuritis will nearly always elicit a history of alcoholism or a family history of tubereulosis. Chronic multiple neuritis is never hereditary. Clinically it is characterized usually by paralysis ont of proportion to the atrophy, and there moy he distinct symptoms of ataxia. Usually there are marked symptoms of sensory irritation. It is in those cases where the paresis is slight as compared with atrophy, and where, as now and then happens, there is no distinct involvement of the sensory fibres, that the diagnosis becomes at all diffieult.

When, as sometimes happens, degenerative atrophy of the nerves exists in addition to and consequent on a true myopathic muscular atrophy, it will in many cases be difficult or impossible to apportion to each factor its due share in the causation of the wasting.

In this connection it will be appropriate to direct attention to a form of degenerative myositis of a subacute or chronic character recently described by Senator. ${ }^{1}$

Here there is marked atrophy, with paresis, but there are no sensory symptoms exepept great tenderness on pressing the museles. This symptom, together with the clinical course of the disease, will be sufficient to make the diagnosis clear.

THE PROGNOSIS IN THE DIFFERENT TYPES OF MYOPATHIC ATROPIY

The proguosis in all forms of myopathic museular atrophy is very unfavorable. It is most so in the psendo-hypertrophic form. If the patient should attain his twentieth year before the disease is very pronomneed, there is even then only a slight hope that it may not advance. Gowers says that after the power of standing is lost the patient will not likely live more than seven years.

In the other varieties long periods of arrest of the degenerative process are more common, and in a considerable proportion the patient may attain to an advaneed age.

THE TREATMENT OF PRIMARY MUSCULAR ATROPIIES.

In all the forms of myopathic atrophies successful treatment is out of the question. We have no positive knowledge that any drug exerts a beneficial influence. Arsenic and phosphorus are recommended, but in a discase rumning so prolonged and various a course it is casy to be misled as to the action of such agents. Both Ducheme and Erb report cases of arrest following the employment of electricity. Massage is recommended for patients who are no longer aule to walk. In families with a predisposition to atrophy it is important that sufficient exercise be taken. Excessive exereise should be carefully avoided. It is questionable whether the use of splints or plaster bandages does not do more harm than good.

FACIAL HEMIATROPHY.

Facial hemiatrophy is characterized by wasting of one side of the face. The disease was first accurately described by Romberg in 1855, although cases of it had been reported many years previous.

Causes.-The disease is one of childhood, usually beginning from the

[^369]fifth to the twelfth year. It is very rare for it to begin in adolt life. It is not hereditary. As a rule, no exciting cause can be made out. In a certain proportion of cases, however, an apparent exciting canse may be traceable. A case is recorded where it followed a blow on the orbit. The case reported below apparently followed a frost-bite. In Romberg's famons (ase facial erysipelas followed by neuralgie pains immodiately preceded the atrophy. A few alses are on record where it set in after some one of the acnte infections discases.

Symptoms.-Gradual wasting of one side of the face is usually the first symptom observable. It is not meommon, however, to obtain a history of the wasted side being at first taken for the normal one, while the healthy side was supposed to be hypertrophied. The wasting may begin in all parts at about the same time, while in other cases it may begin in one particular part, generally on the cheek. It gradually extends, and usually involves the entire lateral half of the face.

The atrophy affects all the tissues,-skin, subentaneons tissue, muscle, and bone. The hairs drop ont, and, if there be any left, they are thimer and less pigmented than those of the healthy side.

The following ease, which has recently been under the writer's observation, may be taken as a fairly typical one of facial hemiatrophy:

A boy, aged fourteen, was noticed about two years ago to have the two sides of the face unequally developed. This asymmetry was considered by the parents to be owing to swelling of the right side of the face. After some time they consulted a physician, who informed them that the difference was owing to wasting of the left side and not to swelling of the right side. Eighteen months previous to the difference being noticed he was severely frost-litten in the left cheek and car. No history of heredity.

The striking difference between the two sides of the face is very inadequately represented by the ent on the following page. The atrophy, it will be noticel, affeets only those portions of the face which are innervated by the two lower divisions of the fifth. The skin, the subentaneous tissues, the muscles, and the bones are all atrophicd. The museles have, however, suffered less than any of the other tissnes. The skin is not only thinner on the wasted side, but it also has a paler hue. The hairs are finer and smoother than those on the corresponding parts of the opposite side. The lower jaw is not only thinner, but also shorter. The teeth appear to be equally well developed on the two sides. It is difficult to estimate the degree of pure museular wasting. It is certainly not very marked. The museles aet to voluntary impulses as well on one side as on the other.

The following is the result of repeated electrical examinations. The faradie irritability of the facial nerve is normal, being fully equal to that of the right. The response to faradization of the muscles of the left side is as well marked as it is on the right (normal side). The response to galvanization of the left facial nerve is not different from that of the nerve on the right side. The museles of the left side show, however, a readier
response to galvanization than do those of the right. Contraction is obtained on the left from one and a half miliamperes, while it takes three

Left faclal hemiatrophy.
milliamperes to bring ont a similar contraction on the right. There is no change in the normal formula: the K.S.Z. < A.O.Z. a.d A.S.Z. There is no inerease in the mechanical irritability of the muscles or facial nerve on the left side.

Owing to atrophy of the turbinated bones and the nasal cartilage on the left side, the left nostril is wider than the right. There is distinet atrophy of the left half of the tongue, more marked towards its anterior part. The arches of the palate are normally and equally developed. There is no deviation of the uvula.

There is no affection of any of the special senses. He sees, hears, smells, and tastes as well on the left side as he dues on the right. There is no disturbance of either superficial or deep sensation on the atrophie side. Repeated measurements with a surface thermometer and a differential calorimeter have failed to show any difference in the temperature of the two sides of the face.

There is no difference in the size of the globes of the eyes. Neither is there any retraction or other change noticeable. The left disk is normal.

The secretion of saliva and of tears is not lessened on the left side. There is no atrophy to be detected elsewhere.

Course.-Facial hemiatrophy progresses usually mutil it has attained a considerable degree, and then remains stationary for the remainder of the patient's life. It does not interfere with the general health. The term "progressive," which is sometimes used to designate it, is, therefore, not strictly correct.

Pathology.-Many theories have been from time to time alvanced as to the mature of facial hemiatrophy, some contending that it is due to discase of the sympathetic, others looking upon it as an affection of the fifth nerve. A few have sought to explain its origin on the hypothesis of an increased and subsequently contrated interstitial tissue.

The only full and satisfactory post-mortem examination ever performed in a case of facial hemiatrophy is that reported ${ }^{1}$ by Mendel, of Berlin. The patient was a woman who at the time of her death was fifty-one years of age. The atrophy set in a short time after an attack of facial erysipelas at the twenty-fifth yoar. The wasting involved the entire fare, the anterior part of the left half of the tongue, and the museles imervated by the left musculo-spinal nerve.

The following were the changes found after death, which was caused by phthisis. Proliferating interstitial nemritis alfected the entire left fifth from its origin to its terminations. The changes were more advanced in the second division than in the other branches of the nerve. A very marked difference was found also between the right and left descending roots of the fifth, that on the left side having undergone almost complete degeneration. A similar change was foumd in the substantia ferruginea, the nuclens of the so-called trophie root of the fifth nerve.

The examination in this case proves conclusively that in at least certain cases of facial hemiatrophy we have to do with a neuritis of the fifth nerve. Whether these changes are the fundamental lesions in all such cases remains to be determined.

Treatment.-No eases have been reported where treatment has been of any benefit. Once the atrophy is established, be its origin muclear or peripheral, it is useless to expect any beneficial result from electricity.

HEADACHE.

By E. C. SEGUIN, M.D.

Headache is a symptom of such frequency, and one that precedes and aecompanies so many discases, that to treat of it fully would require much space and a critical review of the symptoms of many of the maladies of childhood.

In some cases of non-febrile disease, headache stands out as the chief, or in some cases as the only, symptom; and our study of it will be limited to this category.

The meaning of the symptom headache has been the sulject of many too a primi essays. Often it is judged by its location, by its nature, by its coincidence with external appearances of the face and head, and with too little regard to the patient's general condition. We believe that the attempt to judge of the significance of headache by its location-frontal, vertical, or occipital-is at the present time a vain one. We are absolutely without knowledge of the conditions which lead to the localization of the pain.

Another theoretical view, based on external appearances, is that headache, when it is the chief symptom, may be due to hyperemia or anæmia of the brain. This, also, we believe to be a superticial and misleading view, because there is no known or necessary relation between the state of the intracranial cirenlation and of that of the face and head. For example, Day makes the statement ${ }^{1}$ that nosebleed in school-children is an evidenee of hyperemia. Now, it is well known that nosebleed in children may represent local nasal lesions, general anæmia, or passive congestion dependent upon mitral insufficiency. In cases of the so-called angeiospastic form of migraine, the pallid face is, we think, rather a coneomitant than a genetic state : the cause of the heudache produces external anemia, yet the essential cansal condition may have nothing whatever to do with the circulation: it is iar decper and more olscure.

These considerations lead us to think that classifications of headaches based on their location, and on the apparent state of the blood-supply to the head, are of no practical valne. The time may come when the location

[^370]of headache will be a clue to its puthology, but it is not so mow, Indeed, in the present fragmentary state of our knowledge on this point, the lowalization of a hemdadoe sometimes is a mislending guide; as, for exmuple, the appurent relation between frontal pain and optical defeets. In most cases, we believe, frontal headache is dependent upon general morbid states, while in many cases of eye-strain the pain is mainly or soldy occipital, or even cervicul.

It may be best to treat fully of the most easily remonizel types of headache, and leave all others for the practitioner to stady be the light of the gencral medienl history of the patient and by experimental treatment.

The most elearly defined gromps of headache are :

1. Megrim or migraine (" sick-headadoe," "nervons headache," "nenralgia," "bilious headaches," in popular parlance).
2. Anemic or exhanstion headache.
3. Asthenopic headache, the result of eve-strain.
4. Headache of organic cerebral disease (including syphilitie pain).

Megmin is by far the most easily recognized and definite variety of headache, though its true pathology is at present monown.

Thongh usually considered a disease of adult life, it is, we think, not rare below the age of twelve years, and may affect children as young as six yoars and even younger. It affects the two sexes about to an equal degree.

Its chief characteristics are (t) direct hereditary transmission; (b) periodical or quasi-periodical attacks; (c) tendeney to location in one side of the head (hemicrania); (d) oceurence of prodromi ; (c) similarity of attacks in many succeed'rig years; (f) frequeney of nausca and vomiting; (g) tendeney to spontancons cessation between the fortieth and fifticth years of life.

These characteristics of megrim are worthy of further study.
(a) Hereditury Trensmission.-This is so marked that in some families so-called nervous or sick headache may be traced through three or even four generations. Atavism may oceur. In a large family several members usually escape, or suffer from only very rare ill-defined paroxysms of headache.

Transmission, in our experience, is more frequent and powerful through the mother into female children. Not inflequently the paroxysms of a child are almost identical with those of its parents, even as regards the oceurrence of unusual symptoms, such as hemianopsia, aphasia, ete. As an element in the disenssion of the pathology of migraine it may be well to call attention to the similarly strong hereditary transmission of ocular defeets, refractive and muscular.
(b) Periodicity of Attacks.-As distinguished from all other forms of headache (except, of course, malarial neuralgia of the cranial nerves), a tendency to periodical recurrence is very characteristic of megrim. Attacks oceur monthly or weekly or two or three times a month. In older female children the question of the influence of the menstrual function often comes
up; but a careful review of my chses has leal me to consider that event ns merely an exciting canse of an attack, just ins indigestion or excitement may be, and not as a cenase verce of the disense. Other nemoses hesides meyrim are apt to be more pronomesd at the monstrual periond, simply becmuse the nervous system is then more excitable mod is sometimes profondly disturbed. As a part of the periondicity of megrim most be mentioned its very frequent upparance on first waking or very soon after. This will assist in distinguishing it from amemic and ordiany selool headaches. Exceptions ocen, and attacks may set in at any time of day.
(c) Localization of the Pain at the Onsed of the Altack.-This is almost always striking and characteristic. Pain appenss in one temple, or in the orbit, or (ravely) in the post-anticular aren of the hend,-a depp, perenliar pain, which often sprads to the whole side of the head. Rarely is the pain bilateral, and still more moly does it extend into the fuce, the mose, of down the neek. In carly life this hemicmanal form prevails throngh the whole attack, bot in later years, more especially after forty yous, the pain may "pass over" to the opposite side of the head, preserving all its characteristics. Thus, a megrim may be a left hemicrania for twenty-four or forty-cight homs, then a right hemicrania for another similar periocl. It is extremely rare for both sides to be simulaneonsly involved, as in anemic and dyserasic or toxic headnches.
(d) Oceurence of Prodromi.-All other forms of headache, whether in children or in alnlts, make their appearance as pain pure and simple, hut with megrim it is often different. Varions paresthesire and some suspensions of functions often precede the onset of pain. Perhaps the most frequent of these precmsory signs (involuable as gruides to the palliative treatment of the attack) is some disorder of vision. Sometimes this consists in a general diffinsed obsenration of sight, a clondy vision lasting from a few minutes to half an hour before any pain is noticed. In other cases the ocular prodromi are of a hemianopsic order: sometimes true lateral hemianopsia exists for a time ; in other cases photopsia, or colored vision, is deseribed by the patient, colored zigzag or fortification-like lines appearing on one side of the patient, the zigrag lines presenting somewhat of a rainhow or prismatie color. In other cases colored balls appear and move away before the patient, almost always on one side. In still other cases seintillations of light, or a eentral or lateral sentoma of large size, may appear as preliminary to the advent of pain. A prodromus of much scientific interest, usually combined (coexistent) with lateral hemianopsia or hemiphotopsia, is amnesic aphasia, which may last for half an honr. These ocular phenomena (which have led certain writers into the pathological fault of deseribing an ophthalmie migraine as an eutity) are extremely interesting, especially as regards the theory of the seat of the intimate vascular disorder which lies at the basis of the megrim, but a more elaborate study of them would be out of place in this article. Suffice it to say that, to our mind, these and the sensory prodromi (to be mentioned below) indicate that spasm of one of the
posterior cerebrul arteries or of its most important branch-the necipital artery-is a findamental dement of megrim.

In some cases mombuess nad henviness of one arm or of the neck and arm are describel as prodromi. In some very rave dases mamen is a prodromus (or symptom, probably prosluced by anemia of the medula oblongata), which leads the practitioner, already biassed by medical tradition and popular opinion, into the gross error of looking upon mogrim as a ressilt of indigestion. Among the rurer prodromi may he mentioned unsual mental activity, and even excitement, on the day and evening preceding the paroxsm.
(e) Similurity of Attecks during mamy Suceeding Years.-The attacks, with or withont prodromi, are, as it were, stereotyped. So marked is this that if suljects of megrim are at uny time affected with: toxmemic or amemic headaches, or with the eranial pain of syphilis or cerehral tumor, they themselves most clearly distinguish the two forms of headache.
(f) Frequency of Nenseat and Vomiting.-The occurrence or absence of this symptom of megrim leads to the popular classification of megram into " sick" or " bilions" and " nervons" or " nemalgie" headaches,-a classification which we regret to say is largely aceepted by the profession, and which we believe to be the canse of much misdirected treatment. These gastric phenomena are, we believe, always of central origin, as much so as the oenlar prodromi. The frequent eaincidence of indnlgence in overeating, or of the cating of supposed indigestible food, with nausea and vomiting turing the attack of megrim, apparently makes up a gastric pathology of megrim upon which much useless medication is attempted. In our experience, borne out by that of others, nausea is most frequent in the so-called ophthalmic form of megrim. These gastric symptoms assist in differential diagnosis, as they almost never ocem in other forms of headache. Vomiting may occur with the oceipito-cervieal pain of cerebellar disease, but it is simple vomiting without preceding nansea: the fatient empties his stomach once or repeatedly, but he does not have the distressing constant nansea of megrim.
(g) Cessation of Attacks, or Transformation into another Type of Headache, betweeen the Fortieth and Fiftieth Years of Life.-This singular phenomenon is in some respects alien to the subject in hand, but it is worthy of note as bearing, along with the time of appearance of megrim, and with its frequency of transmission, upon the theory of its production. B ween the fortieth and fifticth years there also oceurs a remarkable quasi-normal event,-viz., the rapid failure and even complete loss of the power of accommodation for vision, hence a cessation of unconscious constant strain to correct hypermetropia and astigmatism.

It may be well to add a general description of an attack of megrim. Usually on waking, or soor: thereafter, the patient discovers a deep-seated pain in one side of the head, generally in the temporal or in the temporo-
orbital or in the supraorbital region. This increases in severity, extends more or less to the whole side of the head (hemicrania), and often is accompanied by nansea and vomiting. The puin usually lasts all day, and the patient awakes the next morning free from hodache and feeling very well. In other cases the onset occurs during waking hours, and may be preceded by certain peculiar symptoms (prodromi), such as temporary lateral hemianopsia or hemiphotopsia (colored fortification-like lines), colored balls before the eyes, cloudy or indistinct vision, temporary amnesie aphasia, shivering, numbness of one arm, ete. In cases of one-sided prodromi, the headache which follows is nsnally limited to the same side of the head and then rums the usual course. In cases preceded by general dimness of vision, the headache is apt to be fronto-temporal and bilateral. In rare cases the headache first appears as an occipital pain ; this is move common in later years, when varius transformations of the affection take place.

A careful study of tiee above points in semeiology, as applied to a child's headaches, will be sufficient to establish the diagnosis of megrim.

The pathology of megrim is extremely obscure; we are only beginning to escape from popular delusions on the subject. It is certainly not a neuralgia, as its quasi-periodic recurrence, its times of appearance and disappearance (as mgards age), and its direct transmission indicate. The pain is not a nerve pain,-i.c., one limited to the area of distribution of one or two nerves. The gastrie theory is, in our opini n, absolutely untenable, since its periods of reeurrence are too regular, and no system of diet suffices for its cure. It is certainly not a menstrua! headache, even though female patients are more apt to have an attack at the "jeriod." That nalassimilation and lithrmia (the gouty diathesis) have something to do with the disease we are disposed to admit, but wonld lay much less stress on this etiological factor than we did twelve years ago. ${ }^{1}$ In many cases the urine frequently or constantly shows deposits of oxalate of lime, uric acid, and lithates. This condition (lithæmia) is, we may here observe, frequently inherited.

The pathology of megrim to which we now incline (allowing due share to various exciting causes and to lithæmia) is that of eye-strain. A full consideration of this proposition wonld be impossible in this article. The principal evidenecs in fivor of this theory are: (1) The fact that almost all subjects of megrim have ocular defeets, usually hypermetropia or hypermetropic astigmatism. (2) That hereditary transmission is frequent in these ocular defects as well as in megrim. (3) That megrim is apt to make its appearance at the age (from cight to twelve years) when elildren begin to use their eyes steadily for near work (study). (4) That in the period of life when accommodative power ceases, megrim also disappears. (5) That we now know from experience that the full correction (when possible) of ocular defeets benefits megrim more than all other therapentic measures.

[^371]Treatment.-The treatment of megrim resolves itself into two distinct categrorics.

1. The Treatment of the Attock.-ln the first phace it is hest, in our experience, for the patient to give up to the attack, and remain quietly at home, in a dark, quiet room. In cases where nausea is prominent, it is best not to give any food, and tw administer broken ice, or weak hot tea.

Several remedies have the power to arrest or "break up" an attack of megrim. They shonld be given carly in the attack, -during the prodromal stage, if possible. Antiprrin holds, in our opinion, the first rank. Five grains given to a child above eight years of age every hour will often wholly arrest the paroxysi For patients over fifteen years of age doses of from ten to fifteen grains are requi col. It is our practice to give from three to eight minims of tineture of digitalis with each dose, to comnteract the depressing effects of antir. rin upon the heart. Caffeine ranks next in efticaey. Pure caffeine shonld be given, and not the citrate or "bromocaffeine." In doses of from one to two grains every quarter of an hour at the begimning of the attack, it often eompletely relieves the patient. It is well to limit the nmber of doses to four or six, according to the patient's strength. Panllinia sorbilis, in the shape of fluid extract or of elixir, has some value, but it must be given freely even to children,- from one-half' to one teaspoonful every half-lour at the onset of the attack.

When an attack of mogrim is fully developed, it is almost impossible to cherk it. In adults, aconitine, croton chloral, gedemium, and sulphonal may be given; but we have had no expertence in the use of these remedies in children. Morphine, of course, will cut short or mitigate ar attack of megrim, especially if given hypodermically ; b at the objections to this practice are so great that we absolutely refuse to employ it. In our expertence, megrim is rendered more frequent and more severe by the use of morphine in adults, and there is no rason why it should not tho the same in children. We have notes of several cases in which an owasional megrim was transformed into a daily headache, with fully-developed morphine-habit, by the mistaken kinduess of the attemding phesician. We would strongly urge upon practitioners to abandon the nse of morphine in megrim.

A great many mitigating measures may also be employed, -heat or cold to the head, applied by means of the rubber bay, sinapisms on the mastoid processes or on the neek, hot mustard foot-haths, the use of the menthol cone, mild galvanization (anoxle to temples and brow), emeties, ete.
2. The Treatment of the Discase: Inter-l'aroxysmal Treatment.-It may be safely said that, owing to our ignorance of the intimate pathology of megrim, no suceessful treatment has yet heen discovered. Until within a few years nothing was attempted in the way of systematic treatment of this discase, beyond regulating the pationt's hyriene. In 1872, Dr. Richard Greene, an English physictan, published a short paper${ }^{1}$ extolling the merits

[^372]Yol. IV.——3
of extract of cannabis indica given in small doses daily for a long time, for the eure of megrim. Soon after, we began using this remedy, and published a report upon the subject in $1877,{ }^{1}$ corroborating Dr. Greene's results. We have continued to employ the drng, with varying suceess; often obtaining intervals of several months by its continued use. Few extracts of cannabis indica are gooxl, and we are in the habit of prescribing Herring's Englisi extract. The dose should be gradually raised from one-tenth of a grain to one-half grain after each meal ; onr rule being to give as mneh as the patient can bear, and keeping up this dose for a year or more, just as we do in the bromidic treatment of epilepsy. Areane, quinine, or iron may be combined in the preseription.

It will be fomed that many subjeets of migraine have lithemia, as shown by the constant or frequent appearance of lithates, urie acil, and oxalate of lime in the urine. This condition may be corrected by a proper diet,-viz, one consisting of a minimum of sweet and starehy foods, a moderate amonut of meats, and an abundance of green vegetables, milk, eggs, ponltry, and fish. The child shouk be made to take some regular exereise, in addition to play ; to use the cold plunge- or sponge-bath (at least from May to November) ; and to secure plenty of sleep. An important part of the treatment of lithemia is the use of an abundance of water, partly taken at meals. A mild alkaline water, such as one of the lithia waters in the market or artificial Viehy water, may be desirable. In the way of drugs, the fiee exhibition of dilute nitromuriatic aeid, in doses of from three to ten drops in a tumblerful of water after meals, is the best. If strong alkalies or lemonjuice are given, they shonld be administered at the close of digestion,- viz., three or four hours after meals.

In onses where anemia and debility with low arterial tension are present, the addition of stryehmine, in doses of from one one-hundredth to one-fiftieth of a grain, to the dose of nitrommiatic acid is valuable. In some censes presenting the opposite condition, of plethora, high arterial tension, and espeeially nervons exeitability, the contimons use of some form of bromide, given at bedtime two or three times a week, will assist the relief of megrim.

The recently-advocated theory that megrim, as well as some other forms of headache, is due to ocular strain, has opened up a new and apparenty more rational treatment of the disease. The oenlar theory of megrim is supported by a remarkable series of facts, some of which have already been refercel to. Another thing in its favor is that it is extremely rare to meet with normal eyes in vietims of megrim : the great majority of subjeets have hypermetropia, astigmatism, or the two combined, besides, in some cases, fanlty museular equilibrium. We are so decply impressed with the importance of ocular strain as a prime factor in the genesis of megrim that we would strongly urge that in every case a thorough examination-i.c., one made while the eyes a.e under the full influenee of atropine-shonld be

[^373] olished s. We taining mnabis English main to patient in the mbined
; shown alate of ,-viz., amome $x y$, and addition to N e treatit meals. irket or free exdrops in lemon-n,-viz., present, , one-fifme canes ion, and promitle, megrim. er forms parenily egrim is dy leen to meet cts have he cases, the imim that on-i.e., rould be
made of the refractive and musenlar power of the cyes of patients suffering from megrim, and that, too, at the carliest possible age. Many adult cases are relieved or almost cured by the correction of ocular defeets, and we believe that if this treatment were applied more extensively to children, even before they begin to have headaches, mode suff ${ }^{*}{ }^{\circ}$ - might be spared, and many cases of so-called nemasthenia, or nervous nstion, suppored to be due to over-study in children and youths, might be prevented. To be successful, the correction of faults must be as perfeet as possible, and in some cases no doubt tenotomy is demanded, and may have to be repeated. Unfortmately, in many cases perfect or casy vision camot be seenred with the means at our command. In some cases several sets of glases have to be tried before .. itable ones are fomd, ats occasionally the glasse ...uch theory demands are mbearable in actual use.

As a part of what might be called the prophylaxis of megrim, especially in chiddren of parents having the disease, we would alvocate that a thorongh examination of the eyes be made before they are sent to school,-i.e., between the ages of cight and ten years. If fants are fonnd, we believe that they should be corrected, even if' megrim, school-headache, or simple asthenopie symptoms have not yet shown themselves.

Closely allied to this subject of the prophylaxis of merrim by the correction of ocular defects is that of school hygiene, as far as it relates to the mode of lighting the rooms and desks, and to the important fuestion of rdative height of the seholar's seat and desk, in order to ohtain a normal working distance between his eyes and the book or paper. These highly important points have been long neglected, and, besides asthenopia, increased myopia, and school-headaches, spinal curvatures may arise from vieions attitules. In the last few years efforts have been made to remedy both these somres of ill health and "hreaking down," hat yet the vast majority of shool-rooms are defeetive and harmfin.

It may be ohjected that we have given far too mueh space to this one form of headache; but we are impressed with its pathological importanere, as heing the sonree of great-often extreme-suffering thronghont life, and as lauling, throngh the causes which proklace it, to other and more serions neuroses. How many persons are disabled for work and pleasme for days and weds by megrim, how many form the morphine-hahit by learning that the dmg will ent short an attack of hoadache, and how many drift into nemasthenia and hypochondriasis, and are foreed to curtail their education, and to restrict or wholly give up active ocmpation, -all becanse in carly youth they were allowed to struggle on, unaided, against defective vision, lithamia proklucerl by ingudicions diet, ete. ; conditions which are all more or less-much more as our experience grows-preventable and remediable by medical art.
2. School-Headache.-Under this head are ineluded simple asthenopic headados, which appen almost daily, and are at once arrested by retief from study. The pain in these cases is usnally frontal, sometimes temporo-
frontal, and may be acempanied by a sense of fatigue or of irritation abont the eves, and in some cases by injection of the eyeballs. In other cases the pain is oceipital, thongh this is far less frequent than in adnlts, who very often have oceipital pain as an immediate result of cye-strain (usually from insufficieney of the recti interni). The child is not anemic, is well in most reepeets, but shorty after begiming his school-work the headache appears. In some children this form of headache is so frequent and severe that sturdy must be given up, or pursued irregularly.

The differential diagnosis of this leadache from the headache of malmutrition and cerebral anemia will be considered in the suceeding section. From malingering the diagnosis is often differelt. By imitation or throngh evil suggestion a lazy child will claim to have headache whenever he attends school. The diagnosis is established upon the following data.

In the malingerer the facies does not indicate the suffering which is loudly complained of; the pain is said to come on at onee after begiming school-work; the child can read pleasant stories, or nse its eyes in ganes requiring fixation and accommolative effort, withont pain ; the ophthalmic examination is negative or nearly so, and attempted correction with weak glasses is not pleasantly received, or is flatly rejected.

The treatment of school-headache is by correction of ocular defeets, whether refiactive or muscular, and by better arrangement of light, seats, ete., in the sehool-room.
3. Headaches of Angmid and Malnuthition.-The diaghosis of these headaches is arrived at by a caucful study of the patient's general condition and by the exclusion of megrim, of asthenopic heudache, and of signs of organic cerehral disease. The child is usually fail, ill nomrished. and pale, eats little or no breakfast, and oftem has deposits of mates, uric acid, and oxalate of lime in his mrine. The headache appeas in the foremoon, at school or at home (independently of eve-strain), and is to a marked degree relieved by food, or ly some stimulating drink, such as coffee or tea. The seat of pain is nsually frontal and vertical, but the whole head may be involved. It is never a distinct hemicrania starting from one spot. There may be an appearance of flushing about the cars and face, whiel often lears to a mistaken view of the ease and to the administration of such remedies as bromides.

The treatment of these eases consists in all measures intended to improve the ehild's mutrition : more slepp; a foreel brakfast of eggs or meat, with tea or enffee (which we believe are not injurions to children abuve six years of age); cold sponging, followed by thorongh rubbing of the body, and a brisk ealisthenic exereise. If the home hom's of meals canse an interval of more than fom hours between breakfast and the mid-lay meal, a portion of liquid food (milk or some form of beef-peptonoid) should be given three hours after breakfast. The mid-day meal should be generons and hot for growing ehildren, and parents or teachers shonld see that this meal is caten slowly and carefully : certainly not less than half an hom
n about ases the ho very lly from in most apyears. rat study y section. - through e attends in games phthatmic with weak

II defeets, ight, scats,
agnosis of
t's general he, and of' nourishent, mates, uric in the fore, a marked ffee or tan. ad may be
ot. There
often leans h remedies
led to imes or meat, fren above ng of the peals cause c mid-rlay id) should The generld see that lf an hour
at table shonld be insisted on. In our opinion, growing children, during school-years, require three full meals a day, each meal to embrate some form of animal food, in order to provide material for cerebral activity as well as for body-growth. In evidently lithamie cases, and where chididren tend to acemmulate fat without corresponding increase in the quality of the blook and in musenkar strengh, sweet foods should be exduded, and starchy foods reduced to a minimum. As a matter of detail we would state it as ourr opinion that the prevalent American costom of eating oatmeal or other tarinareous food at the begiming of brakfint is very pernicions. This starchy form is the least useful for the child, and, hesides, it satisties his appetite, so that when the nitrogenous fork (eggs or meat) is bronght on the table it is refused. The animal forel shonkl, we beliewe, be eaten first ; then if any appetite remains a small portion of farimaceons food is allowable.

The medicinal treatment of these haudaches may be combered as follows. The attacks themedves may be cut short, usially, bey a stimulating foocl, the best of which is hot coffee or tea. Milk or a solid luncheon will often suceed. Catfene in doses of one or two grains every half-homr may be given, or fluid extract of Paullinia sorbilis in doses of one-half or one traspoonful every half-homr. A sinapism on the back of the neck, or the application of heat to the head (hot-water bag or hot dry cloths), may suceed. In some cases simply rest in the horizontal posture, with food, will stop the pain. A general tonic treatment by the administration of arsenie, iron, Calisaya bark, strychnine in small duses (gro. $\frac{1}{100}$ to $\frac{1}{0} 0$ ter (lie), cod-liver oil, and in some cases phosphorns (the best form being Thompon's tincture so diluted with glyerein as to give from gre $\frac{1}{200}$ to $\frac{1}{50}$ for die), will complete the eure. In the cuses where lithemia is present the nse of dilute nitrommriatie acid in doses of from two th ten minims is indicated, and an alkaline water (one of the lithia waters or V'ichy) may be given some thre hours after meals. A very adrantageons combination consists in the addition of from six to ten drops of Fowler's solution to a quart of the alkaline water, the whole to be consmmed in twenty-fome homs. In some rebellions cases of uric-acid formation a strict milk diet continued for two or thee months will suceed; but care must be taken that enough milk be used, -from two to three quarts a day for a child muder fifteen years. As regards iron, it will be fomed that it often inereases headache, and it must be given in extremely small doses, or in the shape of chalybeate waters.

In addition to the above more or less well defined forms of headaches, children suffer from diffised or fronto-vertimal headaches associated with various pathological eonditions, which must be determined by a thorough examination of the patient. Chief among these pathological factors are:
(a) Passive hyperemia due to mitral insuflicieney, or to impending menstruation.
(b) Transitory or accidental dyspejia.
(c) Genital irvitation. (One of the worst cases of oecipital licadache we ever saw in a child was cured by ciremmeision.)
(d) Aural disense, in which case the headache is localized abont the mastoid or the temporal region near the affected car.
(e) Ineipient organic cerehnal discase: this is usually a slarp pain, often nocturnal and cumsing the ehild to ery out. In other cases it is oceipital, accompanied by more or less rigidity of the neek and by vomiting monattended by much mansea. In some cases of cerebual thmor the pain is fixed in one part of the craminn ; but no reliance shonld be placed on this as an indication of the seat of the lesion. When the lesion is syphilitio (which is rare in chidren), the oecmrence of evening exacerbation will often serve as a guide to diagnosis.
(f) Simple fehrile states, or the prodromal stage of exanthemata; in which the headache is diffised and throbbing, and is accompanied by the symptoms of fever.
(f) Malarial headache manifests itself as a diffised pain, usually aceompanied by febrile symptoms. In other cases the pain is strictly in the areat of distribution of one of the cranial nerves (usnally the supm-orhital), and constitutes a true nemalgia, which sometimes presents strict periodicity.
(h) Uremia is a fertile sonree of hadade of great severity. It is often occipital.

The thorough study of a case of headache in a child (or an adult) is, in our opinion, one of the most diffienlt problems of medicine. Usually this, is investigated in a superficial and moseientific manner, and the physieinn often allows himself' to be biassel by the patient's opening statement that he has "nemralgia." The intimate relation of certan forms of headache with states of suboxidation or chemical dyspepsia is also often ignored, and the symptom is treated instead of the fimdamental pathological condition. In our opinion, each case of headache (exeept, of course, the accidental heartaches of the febrile state) shonld he carefilly and specially stndied. The family history should be investigated, the mine carefinly examined (and ly this we mean the examination of a series of specimens), and the state of the eyes, heart, and blowd ascertainel. In anomalons cases, which do not readily fall into one of the recognized categories, all possihle somres of peripheral irritation should be songht for, and malingering borne in mind. Some cases require the co-operative skill of several specialists (ucurologists, ophthalmologists, and gyuecologists), for in a"case of chronic or habitual headale every clue should be investigated in the most seientific manner possible.

The examination of the eves in a case of recurent or nearly constant headache is a matter of such great importance that a word as to its mamer and scope may not be out of place. In the first phace, the examination should extend to the external musenlar appratns, and the balance of power of the varions recti muscles at twenty fect and in accommodation should be accurately determined. In the second place, the refraction should be
tested while the eye is under the fult influence of atropine. We have notes of several cases in which before the use of atropine vision was normal or even above normal (at twenty feet), and yet in which after the action of atropine marked leypermetropia was fanmed. In such cases the good vision was oltained by an meonsions accommolative effort, involving mande expenditure of nerve-fifree,-or, in other worls, strein. A third point is that muder some conditions even a slight fault is worthy of correction, at least tomporarily. By this we mean that in certain conlitions of annemia, nemmathenia, or convalesence from acute disease, the acemmmentative power is enfeebed, and an habitual slight strain, which was well borne while the patient was in good health, beconces a potent secounday canse of new symptoms of the nenrasthenic order.

As regards thempensis ly drugs, it should be as rational as possible at the present time. Several of the best palliative remedies (antipyrin, autifetrin, paullinia) act in a mamer which we do not understand ; bnt other remedices, such as calfeine, croton chloral, aconitine, atropine, the mineral acids, alkaline or ferruginons waters, dietetic and hygienic mensures, are employed mpon tolerably clear indications, and we have a fair knowledge of their mode of action. The remedies to be nsed most sparingly are the bromides and morphine. The former tend to depress the nervons power, and to weaken the strength of the heart and the arteries, which effects are certainly most undesimale in cases of healache of whatever sort. The latter is most dangerons. It affords a sudden complete relief to pain, yet reduces the ability to bear subsecfuent attacks, and is a most fertile somree of the morphine-labit. From our experienee we have no hesitation in stating it as our belief that humdreds of persons are reulered morphiomaniacs by the thoughtless administration of morphine for healiches. Of course there are cases in whiel extramrlinary violence of pain or the eoexistence of uremia or of organic cerebral disease justifies the nse of morphine; yet we hold to onr helief that, as a rule, the physician should stand firm in his refisal to give morphine or any opiate in cases of headache.

CHOREA.

By B. SACHS, M.D.

By chorea we designate a neurosis which is characterized by irregular involuntary movements of the muscles, chiefly of the arms, legs, face, and tongre: these movements hegin somewhat suddenly, are very frequent while the disease lasts, but, as a rule, cease during slecp.

Synonymes.-This nemrosis is known, more especially among the Germans, as chorea minor, in contradistinetion to chora magna, a neurosis of an hysterical or a psychic character. With the latter we are not directly eoncerned, and the trouble moder discossion will be designated as choren, pure and simple. St. Vitus's dance, Scelotyrbe, Melancholia saltans, Chorea of Sydenham, are other names which are oecasionally given to this disorder: the first and the last of these designations are still in common use; the other terms are obsolete.

History.-Choreiform troubles have been well deseribed by medieal authors of many centuries ; but they have generally referred to the dancing manias of a religions character, so common in the Middle Ages. An outbreak of a severe form in Strasburg in the carly part of the fifteenth century has given one of the names in common use at the present day, for during this outbreak the chief magistrate of Strasburg ordered those afflicted with dancing mania ($\chi^{o \rho s} i \alpha$) to repair to the chapel of Saint Vitus in Zabern, a small village in Alsace, not far from Strashurg. The name, St. Vitus's dance, is the only point of affinity between the dancing mania of old and the idiopathic chorea of the present day. Idiopathic chorea was placed on a firm footing by the descriptions of Sydenham, and it is a mere matter of justice to remember his name in connection with this important neurosis. ${ }^{1}$

Etiology.-Chorea is distinctly a neurosis of carly life. With the exception of two cases reported by Sinkler ${ }^{2}$ in persons over eighty years, the vast majority begin in carly youth, and first attaeks of this disease almost invariably oceur thus early. Dr. Stephen Mackencie has given the statistics of four hundred and thirty-nine cases tabulated for the British

[^374]Medieal Assuciation ('ollective Investigation Committere. Of these font humdred and thirty-nine cases, thirty-four per eent. ownorved between the ages of tive and ten years, forty-there per cent, between ten and fifteen years, and sixtem per cent. betwen fifteen and twenty years. The largest number of attacks oecur in the thirtecenth year of life. But some cases oecur even mach earlier than these tables would indiate. I lave secon one ease in a child a little moder one year of age, and several in children between two and three yours of age.

Sinkler ${ }^{2}$ refers to a case of emgenital chorea due to fright of the mother daning pregnaney, and similar cases have been recorded ly others. Hereditary predisposition must be taken into aceomt. Chorea is evidently one of several neuroses which may be developed in the children of parents aflicted with epilepsy, migraine, or chorea. I have on varions oreasions had under treatment a fiather for epilepsy and his chaid for chorea.

Reference must be made to a speciad form of ehorea, the so-colled hereditary chorea of Imontington. ${ }^{3}$ This form appers late in life, gremorally about the are of forty or later ; it oceurs in members of the same family, and is distinguished from the ordinary choren by the association with it of marked psyehie disturbance amomating to dementia.
lerettit gives the history of fomr families desembed from a choreie woman; two families were free, but in the other two families twelve persons were affected with choreat. Additional eases have been reported by MeLeod, ${ }^{5}$ Zacher, ${ }^{6}$ Hoffmann, ${ }^{7}$ and Sinkler, ${ }^{8}$ the last-mamed author showing that the disease was reeognized by Dr. Waters in 1841.

In June, 1890, Weir Mitehell ${ }^{9}$ made an interesting report upon several cases of "spinal chorea," possibly of hereditary form, ocemring in adhlt individuals and resembling dog-chorea.

See:-All authors are agreed as to the greater liability of the female sex. Sinkler has collected three hundred and twenty-cight eases, of which two hundred and thirty-two were females and ninety-six males. Gowers, ${ }^{10}$ who has combined the statisties of several other writers with his own, found that of one thousand eases only three hundred and sixty-five were boys. My own experience is in entire accord with these statistics: of seventy alas, twenty-one were males and forty-nine were females."

[^375]Rece.-Statistics with regard to the influence of race upon chorea are insulticient. Weir Mitchell ${ }^{1}$ thinks that the magro race is almost exempt from choren, bat my own experience is at variance with this. Among the very limited momber of negroes who seek treatment at the New York Polyelinie, there have been a momber of children suffering from chorea, and, curionsly emongh, all of these have been boys. Competition at school seemed to me to have been the exciting canse of these cases.

Climate hats no distinct bearing, as far ns cam be made ont, cither upon the development of the disase proper or umon the ausation of the individual attack, but there seems to be a distinct setesonal influcnce upon the ocemrence of attacks. Dr. Morris Lewis, of Philadelphia, has fomed that the fewest attacks ocenred in Oetoher (4.1 per cent.) and the greatest mumber in March (15.3 per cent.). ${ }^{3}$ On the whole, my own experience is in agreement with this; but I have never been able to overlook the fact that many of the attacks ocenring in carly antumn foblow upon the opening of school, and that in March the strain of winter duties is greatest, and, as applied to the individnal case, partiendarly in private practice, I have always been able to find some other than seasonal and a more plansible influenee. Dr. Morris Lewis has paid much attention to this sulbeet, and his conclusions deserve carreful consideration. It is my daty, therefore, to refer to these additionad faets: mo correspondence has been fomm between the oceurrence of chorea and variations in temperature, humidity, or harometric pressure ; there was a correspondrnee, however, hetween the number of attacks of chorea and the nomber of rainy and elonly days and the number of storm-erntres that passed over Philadelphia. I repeat that atl such statements must be taken with great reserve; they will gain in value if other ohservers in different stations reath the same or similar results.

As regards the cansation of the disease itself, and not of the attacks, other factors play a much more important rôle. Above all, we have to mention fright, the aente diseases, particularly acute rheumatism and searlatina, eardiac disease, and pregnaney.

Fright and strong emotional excitement are so frequently the cause of chorea that it is unnceessary to give statisties on this point. It is the direct canse of chorcie attacks in fully onc-fourth of the reported catses, and in my own eases it was fomd in more than half.

The first attack as well as reeurrent attacks may be due to this cause; a first attaek, as a rule, follows either immediately or within a few days after the fright. Thus, I had under my observation for a long time a child that lived near the Brooklyn Theatre at the time of the great fire. The child was startled by the sight of the flames, and within a few hours began to twiteh, and soon developed severe chorea. In one case the sight

[^376]of a street-brawl, in anothre the sight of' a deand boly, and in still mother the news of the death of the dhild's lithere, was the direct danse of the chomede attack. In children who hase lod choreatrivial ocemeremees are apt to bring on an attack. Slight overstrain at school, the mexperted report of a pistol, a severe thomder-storm, or a severe soolding by a parent (as ocentred in a private case of mine may be sulficient to bring on an attack.

Acule Rheumatism.-Different interpretations have been put nown the firet, but the fiact is mulisputed that in a bery large momber of asose of chorea we also ohtain a history of rhomatiom; hout a cansal relation can be proved in those cases only in which the rhematism distinctly preerded the attack. This ocermed in about one-fourth of the eases reported by Sere, Roger, ${ }^{2}$ the British Malical Assoriation Collertive Investigation Committer, and Gowers. Eichhorst and Strïmpell think the relationship between rhematism and choman oneasional one; Briegeren insists on the existence of an alternation between these emelitions.

Stemer ${ }^{4}$ states that in but four of two hundred and fifty-two cases did chorat develop daring the course of arute artiontar rhematiom. Sturgis found rhematism (preceding?) in twenty per enot. of two humberd and nincteen choreas, but does not think there is any callsal relation, beanse lifteen per cent, of all children are momatie. Altan MeLame Hamilons ${ }^{s}$ fomed twenty per cent. of all sehom-children in New York City choreic, or affecterl with some similar disorder. These statisties are startling, and need verifiation: if correct, the coincidence of the two diseases would be more probable than a cansal relation between the two.

I conld obtain a satisfactory history of rhematism in only eight of seventy cases of chorea. Romberg and Niemeyer denied any redationship, between the two affections, but their objections were mered before the more carefin statisties of went yeas had been remeded. Sinkler found a history of rhemmatism in thirty-seven of two homdred and seventr-nine cases. Hirt, ${ }^{6}$ one of the latest writers on this sulgecet, thinks that there is a common toxic agent, which if it affect the cortex will prohnce choreie movements, if it affect the joints chicfly will give rise to achte rhemmatism. This is jumping at conchasions. That toxic agents may oceasionally produce rheumatism and chorea I am willing to allow, but the large mumber of eases due to fright cannot be acomnted for in this way. Here, again, the germ-theory obseures one vision. An infections or toxic disease may produce chorea, but if it does so it acts simply as a dehilitating factor, just as chorea may be due to any exhausting disease, to a profomed anemia, and the like. Among reeent writers, Herringham, ${ }^{7}$ Chealle, ${ }^{8}$ Mackenzie,

[^377]Bonchand,' believe that an intimate relation exists between chora mul rhemuatism.

Ment-disease precedes chorea in one-g parter to one-landf of the cases. ${ }^{2}$ I have fond organie heart-disease in twelve alses oitt of seventy. There is no need in this instance of assmming any infections ngent as the canse of both the myo- and the ende-carditis on the one hand, and of chorea on the other: if any explanation must be given of the relationship between these two conditions, it seems much more rational to aseribe the choren to the slight derangroments and irregularities of vasenhar supply of the highest nerve-elements, resulting firom the cardiae lesion, althongh there may be no gross signs of finulty compensition.

Pregneney is so frequent a canse of this disorder that chorea gravidarm is a well-known affertion. As a rule, it ocens in women who have had attarks of chorea in carlice life. A first attack daring pregnancy is mare. Women moder twenty-five are most apt to be affected, and the langest number of attacks orenr during the thind month, ${ }^{3}$ and more particulaty daring a first prenuancy. Not long since I had ocension to see in consultation a young lady who had had chorea in childhool, and who had slight dhoreic movements of the tongue during her period of engagement. These disappared before mariage. Shortly atter marriage she beame pregonat, and in the serond or third month of pregnaney she developed severe chorea. Although this lasted a few months, pregnancy was not interfered with, and at full term she gave birth to at strong, healthy child.

I have known cases to develop after childbirth, and in a case seen about six months ago distinct chora was associated with acote preperal mania. In this ase there wats modoubted chorat, and the movements were very different from the ordinary restless movements of acute mania. The association of these two comditions is not smprising, if we regard both of them (the acnte mania and the chorea) as symptoms of exhanstion of the entire central nervons s.stem.*

In the absence of pregnaner, mariage alone, with the attendant exeitements, is sufficient to proxluce a recurrence of chorea. 'This was well illustrated by a case meder my observation at the Polyclinie, of a yomg Russian woman aged cighteen yous, who had mariod a few months previously, who was markedly hysterical and conld be easily hypmotized, and who developed chorea almost immediately after marriage, but was not pregnant when last seen, six months after marriage. The choreie movements, it is worth adding, disappeared entirely during the hypnotie state, as they do in ordinary sleep.

[^378]It acemed proper to introxhe these stutements regarding chorm in the adult, for it is almost invariably the result of choma in arly lite.

Rafler chorat is frepmently mentioned. The refles origin of all functional disorders of the nervons system is meged by many writers; but, if curefilly sifted, it will be fomd that there are very few truly reflex domens. The mily cases I have sem which were of indubitable reflex origin were due to intestinal parasites. I have in mind two coses, and only two, out of a very considerable mmber, in which the presence of a tape-womm semed to aeromet for the chorea; at all events, the latter disappared wery som (within a week) after the removal of the worm. I am in donht as to reflex choreats dine to nasal or ordar trouble; some of these are more properys. habit chorens, or, acording to Gowers, hahit spasms, but of thome cames of true, generally facial, chorea which I have seom, which had bern moder the treatment of rhmologists mod oenliste, and were referved by them to me, all were relieved by general choreie treatment, and not by lowal treatement of the nose or eyes. Allowing for the finct that these cases wore the bery mes which did not do well under local teratment, and that those that do well do not reach the neurologist, yet, from my own experience with a barge mumber of atses which consulted me in the tirst instanee, and firon comeresation with many specialists, I fed warmanted in saying that there are vory few eases of true reflex chorea.

The relation between cpilepsy and chorea is worth mentioning. Gowers refers to a few cases in which epilepsy dated from dhorea, and I have now under olservation at the Montefiore Home a woman about forty years of age who, in addition to carcinoma uteri, presents the most marked chorea of the face-musedes and of the tongue; so extreme are the chowede movements that speed is absolutely unintelligible, and the attempt to the the lips results in the most corions grimates. In this case the chora began after the cessation of epileptic attacks a few yeurs ago.

Pathology; Pathological Anatomy.-The morbid chathers muderlying dhora are still a great mystery. Not that antopsics are wanting, for there are many sudn on record, in spite of the fact that chorea is rately a fatal disense; bat there have been so many different post-montem findings deseribed that each writer may be said to have his own peenlian view of the pathology of this disense. 'Those who may be interested in the older theories ronerening chorea will find them without number in Soltmam's artiele on chorea in Gerhardt's large mamal. Ansthing and everything, from booddiathesis to a tumor in any part of the bain, has at one time or a mother bem hed to be the eanse of chorea. Sée collected eighty four cases of chorea on which a post-mortem examination had been made. In sisteen no changes were formd in the central nervous system. In thirty-two there were lesions in the brain and nervons centres (softening and tuberenlosis), and in the remainder there was congestion of the serous membranes. Ogle ${ }^{1}$

[^379]also speaks equally vagnely of congestion of the nervons centres; Pye-Smith ${ }^{1}$ mentions hyperamia of the brain and cord,--statements which every one will be ahle to take at their tme value. In 1868 Steiner${ }^{2}$ reported the careful examanation of three cases of chorea. He fombla cerebro-spinal anemia and oome connetive-tisme proliferation in the upper part of the spinal cord ; consequently, he looked upon chorea as a sort of "pinal irritation." This view is not shared by any of the more reeent writers, althongh several of them have fomed changes in the spinal cord as well as in the brain.

Meynert ${ }^{3}$ and Ellischer ${ }^{4}$ have fonar? hatine degeneration in the nervecells of the central ganglia. The last-named anthor also fomed changes in the vessels of the central granglia, as well as extravasation of blood into the emmertive tissue of the brain, and numerous emboli in the smallest vessels of the cortex. Flechsig has fomed hyaline changes in the anterior divisions of the lenticular mudens.

Dickinson, ${ }^{5}$ whose studies were made with umsual care, 1as analyzed a large number of positmorten reports, and finds that hyperemia of the brain and eord and mumems hemorrhages into those regions of the brain sipplied by the middte eerehral artery constitute the most frequent morbid condition of chorea, but he obpects to the embolie theory.

The embolic origin of chorea has been maintained by many anthors, chicf among them being Haghlings. Jackson, who hokls, farthermore, that the frequent involvement of the face-muscles proves the cerehral origin of chorea. The association of endocurlitis with chorea (in seventeen of twentytwo fatal cases collected by Dickinson) leuds considerable force to the arguments of those who advance the embolie theory of the origin of chorea. This explanation is masatisfactory in that large momber of cares in which there is no condocarditis, and, furthermore, a most careful examination by Gowers and others has failenl to reveal emboli in the buins of persons who have died with chorea. The most direet proof of the relation between chorea and capillary cmbolism of the brain was given by Angel Money, who by ingections of a flaid into the carotids of amimals produced movements closely resembling thense of chorea, ${ }^{6}$ and this condition was associated with capillary cmbolism of the brain and cord.

To complete the list of post-mortom findings, we add that Golgi found caleification of the cells of Parkinje in the cercbellum (quoted by Gowers). Ellischer ${ }^{7}$ and Lockhart Clarke foand changes in the nerve-elements and comective tissne in the pinal cord, and Ellischer even deseribes a hyaline

[^380]degencration of the axis-eylinders of peripheral nerves. Dana ${ }^{1}$ fomed an intense cerebal and spinal heperemia; Handford ${ }^{2}$ fomb mumerons small hemorrhages, thromboses, and a general dilatation of the blood-vessels in the medulla, pons, and spinal cord. Garrod ${ }^{3}$ attrihotes chorea to an overgrowth of comective tissue in the nerve-entres, while Grosie' proclams himself an adherent of the theory of the embolic origin of chorea.

From the preeding accome of post-mortem findings but one interenere can be malo: the trine pathology of chorea is still moknown. Such facts as we have obtained point to a wide-spreal mutritive and functional disturbane of the higher nerve-dements thronghout the central nervons sestem. This disturbance need mot be due in every case to one and the same canse. The ganglion-cells and higher nerve-ements are very sensitive to the slightest changes of blood-suphly. In one case a gencmal hyperamia may be sufficient to disturt their normal boot-supply, and in another case capillary emboli may produce the same result. As there is good reasom to suppose that irritation of gray matter anywhere in the central nervous system may give rise to epileptic convalsions (how dse can we explain the initial convolsions of anterior polionyelitis?), wh a clange in the nutritive condition of the ganglion-cells and higher nerve-elements in any part of the gray matter of the central nervons sustem may give rise to choreic movements. That chorea is in most instances a ceredral discase may be inferred from the very frequent association of the severer forms with prechic changes, from the involvement of the face, ats oackson pointed ont, and from the association with epilepsy, as proved be cascs of Gowers, and by my own case, recorded on p. 845.

The ocemrenee, or rather the persistence, of chorea in dogs after section of the spimal cord, and the very romarkable casces in man, reported by Weir Mitchell, and resembling dog-chorea, seem to me to point to the possibility of unnstal forms of chorea leing die to involvement of the spinal cord.

In eonelusion, let me remind the reader that the post-hemiplegie chorea of children is quite as apt to ocenr after cortical ats after intra-cerelnal lesions. Inasmuch as I have allowed that gray matter anywhere in the brain or the spinal corel ma; he the seat of the lesion of chorea, I have no rasom specially to defend or combat the older view of the thalamie origin of chorea. In some catses the lesion may the in the thatams, but it may also be in the lenticular nuclens, as in the case of Flechsig, or in any other ganglionic mass.

Symptomatology.-Involmatary and irregular twitching movements of any musele or groups of museles of the body constitute the cardinal symptom of chorea. The muscles of the hands and fingers and of the face and tongue are most often affecterl, but it is not rare io find the legg-

[^381]and trunk-muscles also involved. These twitching movements are apt to be worse on voluntary effort, but they also appar at shorter or longer intervals when no muscular effort is attempted; they may become most marked if the patient makes a determined effort to keep the part alsolutely quiet.

In adidion to these twitching movements there is a general restlessuss of the borly; white under examination the patient changes his position every sceond,—rests first upon one foot, then upon another, keeping up a constant change. If the physician cxamine the hamds, the twitching may be inhibited in them for one monent, but some other part, the face or the leg, will twitch all the more for the time-being.

In a large number of patients but one-half of the body is involved, and in that case we speak of hemichorea. As far as can be gathered from extensive statisties, right and left hemichorea are equally frequent. This is fully contirmed by my own cases.

As a rule, the twitching movements are sodistinct from the start that no special examination is needed for purposes of diagnosis; in some instances, however, the disease, or a choreie attack, begins with a general restlessness, and the choreic movements can be discovered only upon close inspection of the ham or tongue. If the nature of the disease is in doubt, I ask the little patient to place its hand quietly upon my own, or between my two hands: in this way the irregular ehoreie movements can be easily seen or felt. The trne mature of many a trouble which appears to be nothing more than a "little nervonsness" may thms be detected. The very greatest importance, and more than is grencrally allowed, shond be attached to the tongue. In doubtful cases choreic morements of the tongue will often prove the neture of the discase. I have found this to be true in a number of instances of supposed habit chorea or habit spasm of the face-museles.

If the tongue, when protruded, shows the characteristic choreic movements, it is well to regard the disease as true dorea. The exact nature of these tongue-movements is diffient to deseribe; they are slow, coarse, an! :hythmical, and when the tongue is protruded the mouth is opened nnnecessarily widely, and the tongue is soon canght between the tecth. These movements give rise to what I should he inclinel to call the "facies" of chorea.

All the movements of a choreic patient (except in the milder cases) are chanaterized by extreme awkwatness. This is well shown if the patient fastens or unfastens his clothes, in raising a glass of water to the lips, in attempting to hold the pen in writing ; in short, in whatever mascular effort the patient may make. This awkwardness and the eonstant jerking of the head and boty are the sonree of greatest amovance to the patient. In fully nine-terths of the cases the patient, while anooyed, does not :uppar to be fatigned by the jerking movements of the moseles; but in the remaining tenth the movements are so severe that they lead to groat exhanstion. It is fortunate for these patients, as wor all other choreic patients,
that the movements cease during sleep. Two years ago I had under treatment a little girl, six sears of age, the child of healthy aud intelligent parents. I hat carried the child suceessfally through it.s first attack of chorea; in the seeond attack, which came on after a fright, the movements were so extreme and sleep was so poor that within a few weeks the child died of exhanstion; the heart had been involved in the first attale ; it was not involvel in the second attack, exeept that the ahmost continuous and extreme movements inereased the work which it had to perform.

This is the onty fatal case of chorea I have seen among a large number of severe cases. In the severer forms the movements are often so excessive that the bed mis be well padded, or the patient be watched eonstantly, to prevent injury to the body.

Some weakness of the museles is regularly associated with the choreie movements. Gowers has proposed the term "paralytie chorea" for those cases in which there is marked paralysis, but I can find no sufficient exense for the introduction of this term. The difference is one of degree, not of kind.

Speech is frequently involved. The choreie movements of the tongue and laryngeal muscles may make speech altogether unintelligible. In the milder cases there is a little awkwardness of articulation, a tendeney to break off words, to begin sentences again and again, but nothing more.
'Deglutition may be diffieult ; the tongue is frequently bitten, and, from the awkwardness in the use of knife and fork and in passing food to the mouth, the patient is an mongainly sight while at his meals.

Mention should also be made of laringeal chorea, a special form of chorea in which the laryngeal miseles are chicfly affeeted, the result being a peculiar bark, which is repeated at short intervals. These cases are sometimes mistaken for eases of hysterieal bark, but the general restlessness and the age of the patient, and the choreie movements of the tongue, make the diagnosis an casy one. A few years ago I saw a typeal case of the kind at the Polyelinie. The patient was a girl ten years of age, who began to " bark" after a sudden fright. The ehild iresented other symptoms of ehorea, and recovered meder the usual treatment for chorea. There was no symptom of hysteria in the case. From my own experience I infer that this is the rarest form of chorea.

The electrical reactions are sometimes slightly altered in cases of chorea. Rosenthal, Bencdikt, ${ }^{1}$ and Gowers fomed an increased response to the furalic and galvanie currents on the part of the museles and nerves of the affected side. This conld be determined only in cases of hemiehorea. Some have asserted that the reaction of degeneration with qualitative galvanic ehanges (A.C.C. > K.C.C., etc.) oceurs in some instances. I am inelined to question the truth of this statement. I have made a large number of electrical examinations of choreie patients, and have never found a elange of the

[^382][^383]normal galvanic formula. If the raction of degeneration be present, some complieating discase shonld he looked for.

Mental disturbance is not unknown in chorea, thongh it is an exeeptional oceurrence. As a matter of fact the mental calibre of choreic patients, and of choreic children in particular, is rather above than below par. Children who by means of a better mental development stand head of the class, who work for prizes and win them, children who are under constant mental strain, and about whom parents and teachers make much ado becanse they are bright,-these are the very ones most ant to be attacked by chorea. In some execptional eases there is a "chorea of the brain," as well as of the booly, and in those patients a maniacal condition is associated with chorea. It is a rather mare ocenrence to find cases which were at the begiming distinctly chorece, and which became maniacal later on. The reverse is much more frequent. In many cases of aente mania, particularly in young women, I have noticed that the movements of the extremities aud of the tongue were typially ehoreie.

A majority of the patients with severe chorea slow at the start a marked irritability of temper; some exhibit distinet apathy amonnting ahmost to stupor. In a very few eases, partienlarly if the chorea becomes chronic, a condition of dementia may ensue. But I repeat that the mental disturbances are generally slight and transient.

Complications.-Whatever our views of the causal relation may be (see p. 84:3), the faet remains that rhemmatism and cardiace disease are the most frequent complications of chorea. Aente articular rheumatism is a frequent and immediate forermmer of chorea; it may also appear unexpectedly in the course of an attack of chorea. Mevnct, ${ }^{1}$ Barlow and Warner, ${ }^{2}$ and Hirsehsprung ${ }^{3}$ deseribe small subentaneous nodules as eridenee of the rhemmatic diathesis in cases of chorea. In the comse of an attack of chorea with aente artieular rhemmatism, endocarditis may appear. In such cases the endocarditis is to be attributed to the rhemmatism rather than to the chorea.

The condition of the heart shonld be frequently cxamined. The frequener of anemia in cases of ehorea makes it inembent upon the physician to allow for hemic mumurs and for a slight dilatation of the heart, which may be due to profomad amemia. But in a very large momber of patientthe murmors and other diagnostic signs will point to the existence of organie heart-disease. Nitral regurgitation is lex far the most frequent form. In the statisties of the British Medical Association Collective Investigation Committee there were one hundred and sixtecn eases of mitral disease and only six of aortic disease. Gowers, who criticises these staticties justly enough, states that he fond only two instanees of aortic regurgi-

[^384]tation among two hundred and fifty eases of chorea. Sinkler found cardiae murmur in eighty-two ont of two hundred and seventy-nine cases, but he thes not decede how many were due to organic eardiac disease. It may at times be difficult to determine this question, but if a patient whose heart was normal develops a cardiac murmur while muder observation, the probability of an orgamic lesion is very great. As before stated, organic discase of the heart was positively present in twelve of seventy 'ases examined for this special purpose. An excess of urea and phosphates has been foumd in the urine of choreic patients, but very little importance is to be attached to this, as also to the exceptional oceurrene of optic nempitis.

Convulsive attacks are referred to by several authors. I donbt whether this ocenrred in cates of true chorea : while there is no reason why chorea and epilepsy may not oreme torgether, I have not seen a single case in which such an asseriation existed. The cases of this deseription which have been reported have been, as a rule, cases of hemichorea; and it is possible that these convolsive attacks, as well as the hemichorea, were of the poothemiplegic order, and due, therefore, to organic disease of the brain.

Duration.-The duration of the disease varies greatly. As the disense is very apt to relapse, it is better to speak of the duration of attercks. A single attack may last from three weeks to six monthis, and even longer. The average duration is conceded on all sides to be ten weeks. The british Medical Association Collective Investigation Report, as amended by Gowers, shows that fifty-seven per cent, of all "ases last between one and three months. With the cessation of a single attark the disemise can senredy be said to disappear, for the slightest canse, a fright, an arente dismase, werstrain, or mere climatic and seasonal changes, may bring on another attack. Statisties are not avalable on this point, but it is fail to assmme that a majority of the eases of chorea sulfer at least one relapme. Of seventy mases which I have tabulated with the assistance of Dr. Petersom, we observel the first attack in thirty-five, the second in eightem, the thited in eleven, the fourth in fomr, the fifth in one case, and the sixth in one.

This is in agrement with the general experienes that two and three relapes are very common. In a few eases the disease beremen continumes and chronie, as in the patient of Mchluere, who developed chorea in carly life and remained choreie until his death at the are of sixty-xix years.

The interval betwen the relapes varies from a few weeks to one or two years, execpt in cases of chorea of pregnaney, in which an interval of ten years on more may have passed between sureesive attacks. The female sex, for evident rasons, is more prone to relapses than the male sex.

Suceessive attacks are very apt to imitate the first attack in every respect. If the first attack be one of hemichorea, later attacks are apt to be of the sume order. It is generally supposed that hater attacks are apt to be midder than a first attack. If this be the me, there are very marked exceptions

[^385]to it; in my own experienee, a second or third attack may be even more serions than the first. Death in a second or third attack is supposed never to ocelr, yet the little patient referred to above died in a second attack of chorea. All such sweeping statements should, therefore, be aceepted with great reserve.

Diagnosis.-The movements of chorea are so distinctive that it is mot easy to mistake them for anything else. Cases of imitative or possibly hysterical chora maty at first sight so closely resemble true chorea as to lead to a mistake in diagnosis; but in hysterical cases, the perfect rhythm of the movements, the atypieal onset, the prolonged duration of the disease, and the genemal bearing of the patient, will give a chne to the hysterieal character of the tromble.

Post-hemplegie choreie movements are apt to be mistaken for true chorea, or rather hemichorea.

In an article by the author and Dr. Peterson it was shown that choreie movements persisted in six out of one hundred and five cases of infantile hemiplegia, and in one ont of twenty-four cases of diplegia.

About four years ago I was asked by a colleague to sce a case of persistent chorea, which, he said, would not yield to the ordinary treatment. The dector had notied the chorea, hut had overlooked the hemiplegia, the result of an apoplectic attack several montls before I had seen the child. It will be easy to avoid an error of this kind if the physician will inquire into the previons history of the patient, and if he will in every case examine the child for possible hemiparesis, and will also remember that in cases of post-hemiplegie chorea he will tind, as a rule, some rigidities and marked inerease of the tendon reflexes on the paretie side or in the paretic limb (the leg may recover ; a paretic or contractured arm or hand may be the only sign of a preeding hemiplegia). ${ }^{1}$ Morenver, in these eases of hemiplegia the choreic movements persist, and do not oceur in attandes, nor do they yidel to ordinary treatment.

A confusion with epileptiform convulsions is searely conceivable, for the attacks of the latter are less frequent, and there is generally some momentary loss of conscionsness, besides other symptoms pointing to epileqsy. But only very recently I was akked by a colleagne to sce his three-year-old daughter, whose trouble puraled me for a time. The child would give sudden and very quick twitehings of one arm and of a leg; if these twitchings ocenred while the child was walking or rmoning aeross the room it would suddenly stand still, evidently surprised by these jerking movements. It was natual to think of petit mal, but it was only by the frequener of the movements, ly elose inspection of the character of these twithings, and by the general choreic behavior of the child that petit mal could be excluded and the disase recognized as true chorea. The case yielded also to the crdinary anti-choreie treatment.

[^386]Prognosis.-On the whole, the prognosis of chorea is extremely favorable. Death ocenred in only two per cent. of the cases coblected loy the British Medical Association Committee. Sinkler states that in lhiladelphaia in seventy-four yars there have been hat sixty-four deaths from dhorea. If a patient survive the first attack, the promonsis of a sumeeding attack becomes still more favorable, with the rare exeption of whe a eate as I have referred to. It is well, however, to be on one's grand in stating the length of time which an attack is apt to last. So momelh depends uron the kind of care a patient receives, that it is a sate promedure to say that, if all directions are caried out strietly, the child may remeer from a first attack in from six to ten werks, muless complications shond arise. Some cases get well much more quickly, hat these are, atter all, the exeeptions. The more severe the movements are at the start, the more prolonged the course of the discase is apt to be, thongh it is certain that severe cases under proper treatment will yidel much more quiskly than milder eases that are improperly handled. The danger of relapses moder mosual strain or exeitement should be borne in mind.

Treatment. -There is every reason to believe that some of the milder cases of chorea wonld get well with.out an. treatment whatever; but no discase, not even epilepsy, calls for nore active treatment than chorea does in its severe forms.

Rest, absolute rest, is the sire qua n om of all tratment. I am so thoronghly eonvinced of this that I shonld be willing to abambon all medicinal treatment rather than allow a patient with a moderately severe form of chorea to walk about for the first few weeks of treatment. It is my habit to refuse to undertake treatment moless parents promise to carry out this orler strietly. In the milder forms, a few homs's reat in the morning and afternoon may be sufficient to control the movements, but in all other cases the patient, at whaterer age he or she may be, shonld be put to bed at once. Often it will be neeessary to keep the mother or at mure sitting at the bed for a few days to keep the child quict and to prevent any harm coming to the child from the excessive violence of movements. A fier a few days of enforced rest a decided improvement is noticeathle. In morerately severe eases, absolute rest of two weeks shomld be insisted upon. After the expiration of this term, the patient is allowed to remain ont of bed for a few hours at a time, and this is continued, unless the choreie movements shonld inerease, in which case rest in bed must again be insisted upon. For some weeks the patient must not be allowed to indulge in any violent exercise; riding, daming, bicycling, should be prohibited altogether. Snell excreises shonld also be forbiden in those mildest cases which do not require absolute rest in betl.

This rest-treatment can be cenricd ont in dispensary praetice as well as in private practice. It is our cnstom at the Polyelinic to give directions for one or more weeks, and to have patients eall at long intervals, while parents or relatives are expeeted to report regularly. While in bed, children
(an be plasantly entertained by others, mud, if the movements are not exessive, may be allowed to phay or read in hod ; but the reading-matter should be (arefinlly selected so as to keep the patient's mind fiee from all exeitement. If these details are carefully attenden to, the result of treatment will be all the more satisflatory.

Next in importanee to rest is a mutritious and easily digestible diet. I am in the babit of saying in my lectures on the subject that milk and rest will cure most cases of choren. Inasmonh as a large momber of choreic pationts are profoundly anemie, a dict of milk and eggs, of komms, or of matzoon ${ }^{1}$ is the very best.

The monotony of daily life ean be varied to advantage ly the use of lukewarm batis. The immersion in a cold bath or the wet-pack with subserpent frietion is not to be recommended. Whatever good either may accomplish is comoterbalamed by the shock of the cold water. It is a better plan to bathe the patient in lukewarm water, to add cold water to the bath while the patient is in the tub, and by sfuecaing out a sponge held over the nowk and back of the patient to got the effect of dripping water upon the skin. After the bath (which should not be given mutil the first signs of improvement are visible) the patient should be kept abobolutely guict and wapperl up wamle. In spite of the excellent effects of such methond, we are compelled in nearly every case to resort to

Merlicinal Troutment.-Among drugs arsenic is still facile princeps. Dr. Segnin, in a paper ${ }^{2}$ which deserves to be read by every practitioner, places arsenic first and rest second in the treament of chorea. While I think that this order should be reversed, it is due Dr. Seguin to state that in his opinion "physicians, almost withont exception, give nearly useless cluses of arsenic." Dr. Soguin regards eighteen to twenty-five, or even twenty-seven, drops after cach meal as the "really efficacions dose." Very free dilution in some alkaline water is necessary, and the whole quantity may be taken in divided drinks within an hour after a meal. Having full confidence in Seguin's therapentie suggestions, I deem his method worthy of trial ; but I believe that so much more can be aecomplished by rest than by arsenic that these excessive doses will not often be necessary. In every case it will be wiser to begin with only four or five drop: of Fowlers solution ter dif, and to inerease gradually. In case of excessive restlessness I am in the habit of preseribing the arsenie together with the elixir of the bromide of potassium, or in ease sleep is slightly disturbed I give the evening lose only in this way, for it is a fact to which all are agreed that large doses of bromide do not act farorably in chorea. Bastian ${ }^{3}$ and Sehrötter, ${ }^{4}$ among recent writers, make free use of choral and bromides.

[^387]The only other drug which I can conscientionsly reeommend is the tincture of cimicifinga. From iffteen to thirty drops three times daily may be administered in cases in which armenie is not toleraterl by the stomach.

I have never been compretherl to rexort to the lyyurlermic injections of arsenice, as recommended by Eulenhurg and Hmmomed.

Among the immorable drugs which have beon recommended I have made a trial of the oxide aud sulphate of zine, of physustigmine, of the salicylates (Weir Mitchell), and of antipyrin (Simon and Legronx), without feeling that any one of these drugs is superior or even equal in elficiency to arsenic.

In all but the mildest eases nareoties and sedatives will octasionally be necessaly.

In the earlier stages of chorea the patient must ohtain seep at every cost. Chloral (fifteen or twenty grains per rectum) is to be preferred. Chamamm (ten grains) and sulphomal (fiftem, twenty, on thirty grains, according to the age of the patient) may be substituted for chloral. In a few cases of extreme restlessums and insomial have ohtained grod results with hyoseramia (tablets of the ome-hmulredth of a grain), which (an be administerel in the afternown and evening. As the drug is tasteless, ative, and readily absorbed, I can see no sufficient exense for hyporlermie injections. II yoscamia is specially valuable in cases complicated with aconte mania. Were the effect of the drug is at times minaculons. Morphine should never be given. I regret to see its use recommended by a reent author (Hirt). Other drugs will art more promptly withont having any of the disagrecable effects of morphine or the opiates.

Very few rases of chorea get woll withont at some time repuiring a heart tomic. Dipitalis in drop doses of the lluid extract, or from three to five drops of the tincture of strophanthas thee times daily, should be given in case of heart weakness or fechle pulse. And, lastly, we are often compelled to resort to the preparations of iron (tineture of the chlomide of irom, fifteen to thirty drops ter die; Blaud's pills, four to six daily ; and varions clixirs and peptonates of iron). Nany a case will do better on rest and iron tian on rest and arsenic; but rest above all things is the mainstay of treatment.

Electricity has been advised by Erb and others. The generally sedative action of the galvanie current may be emplowed to good advantage, particularly in the evening, when it will help to bring on sleep. A modcrate stabile current (fifteen to twenty cells, not ahove ten milliamperes) applied to the spine will suffice. I am opposed to the use of the galvanie eurrent to the head.

Massuge may be given in selected eases for the purpose of improving the general mutrition and possibly of lessening the choreie movements.

[^388]Much ean be done to avoid relapses, if patients are kept from sehool until every trace of chorea has disappeared, and if they are not allowed for a year or more after an attack of chorea to medergo any severe mental strain.
leriods of examination and of prize competition are franght with the greatest danger for such patients. Girls who have had chorea are in dauger of relapses at the age of puberty; moderate healthfill exercise and a general attention to all principles of hygiene are of importance.

The danger of chorea during pregnancy should be kept in mind, but no one would for this reason object to a girl's marriage, muless she huve chorea at the time of the proposed marriage; for of those who have had chorea in carly childhood, very few, after all, develop chorea during pregnancy.
hool owed cutal re in and

CONVULSIONS IN INEANCY AND CHILDH00D.

By MORRIS J. LEWIS, M.D.

A convulsion should be looked upon ats a symptom, and not as a well-defined disease; but as in children this symptom may be the only one of prominence in many casem, and as we, mufortmately, have very much to lanu in regard to the etiolory and pathongy of the varions conditions of the nervons system which give rise to this sympom, it may not be in-appopriate-and it is certainly more conveniont-to treat it as a separate affection, always loaring in mind that it is merely a symptom.

DEFINITION.

A convolsion (from comello, "I rend, overturn, or tear in pieces") means any violent perversion of the animal movements (Dunglison) ; and under this head would be included choron, camp, and tetams; but in the sense intended in the present article it may be defined as a violent, irrogular, involuntary contraction of the musches, ocerring in paroxyms, ard often accompanied by insensibility. These movements maty be genem or strictly contined to one side of the body, may be tonic or chonie, may affect only a limited group of muscles or a larger mumber, and one form may merge into another. More or less complete loss of consciousness is a matal aceompaniment.

The term celampsia (either from z̈rkupu'ts, "lurilliancy," "flashes of light
 hold of") has been applied by many authors to the convulsions acompanying pregumey, uramia, ete., as well as to those of infuncy ; and it is apt to mislead unless, as suggested by Nothagel, it is applied solely to the comvolsions of infancy and childhood that are to be considered independent of gross lesions: therefore, from this point of view, celampsia has been defined by Ross to be "an aente affection arising without structural lesion of the nervous system, and chareterized by partial or general convulsions accompanied by a more or less complete loss of consciousness."

ETIOLOGY.

Convulsions in children depend upon abnormal conditions of the central nervous system, concerning the mature of which we otill need muth

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
information ; they are, in all probability, due to an exaltation of the lower nerverentres, or, more fropuently, to a suspension of the inhibitory power of the higher cerebral centres, which latter condition is most probably due to an alter wh state of the earebral cireulation, whereby there is a suspension of the nomal supply of nourishment and an interference with the removal of waste material by the blood. Both of these conditions may exist at the same time.

A comvolsion may be cansed by the irritation of foci of cerebral disease ; by reflex irritation, of whatever nature, proceeding from the central or peripheral nervous system ; by abormal states of the hood as form in the acute sperific and other fevers, in disenses of the kidneys, and in acute poisoning, possibly also by anto-infection by pitomaines; by an anemic state of the loain, such as follows severe hemorthages and profise diarrhous; by the interference with the proper oxygenation and decarbonization of the blood in asplyxia, causing vasomotor spasm ; or hy any profound interference with the circulatory and respiratory apparatus.

Acrite intracranial pressure may cause convulsions by protucing a copillary anemiat, and it is possible that acute cerehal hyperemia may also aet in the same manner. ILigh temperature of the body is in itself a fertile somee of convulsions.

All recent investigations tend to prove that the action of the spinal cord proper-and by this is meant the portion lelow the medulla oblongata-in these attacks is that of a conveyer and not that of an originator of nervous fores. In convulsions due to cortical lesions Horsley and Gotch, ${ }^{1}$ be a series of brilliant experiments, have proved that both the tonic and the donic convulsions are entirely of cerebral origin, the spinal cord merely conveying the impulses to the muscles. The same is probabily true of many of the convulsions in childhoud besides those due to cortical lesiona.

Many conditions predispose to this alfection, particularly infancy, with its anatomical and physiological peculiarities and diseases. Many anthors, for the sake of convenienee, divide the convulsions of infaney into three classes: first, "cssential", those which are reflex in origin and not due to any tangible organic alteration ; second, "sympathetic," those which exist in various systemic diseases not acompanied by any gross organie lesion ; third, those which are "symptomatic" of some well-reeognized organie affection. This division is purely arhitrary, and as our knowlelge advances many of the cases now called essential and sympathetie will be eonsidered symptomatic of some sther condition.

Many interesting experiments have been undertaken to diseover what changes in the central nervous system are necessary in order to produce convolsions, but it is not within the scope of this article to discuss fully this portion of the subject: a volume in itself would be required to do

[^389]the lower ry power mbly due nipension e removal sist at the
ebral disse central ; finurl in d in arute n antemic finse diarbonization - profiomel
odncing a 1 may also If a fertile pinal cord ongata-in of nervons tchat be a ic and the ad merely ie of many :2亏.
ancy, with y authors, into three not due to hich exist mic lesion ; ranie atfeceadvances considered
cover what to produce senss finlly ired to dis
justice to it. A few facts, however, should be referred to. Rusmand and 'Temer' were able to produce convulsions in rabhits bey prolucing a profome anemia of the brain by hemorthage, by tying the cervial arteries, and on one ocasion by electaic expitement of the vasomotor nerves of the head after partially cutting off the cerebral booct-suply by ligation. They fomm that arterial congestion of the bran was not capable of producing epileptionemulabions, and condude that "all thenerics are fabe which assert the epileptic attacks to be derived from a sulden determination of boul, whether active, passive, or mixel," and that the medulla oblongata seems freepuently to be the spot from which eclamptic and epileptic attacks proced ; but, in contradistinction to this view, Nothagel ${ }^{2}$ considers it beyond question that typical epileptiform convulsions may arise from cerebal hyperemia.

The former observers rozisider that convulsions may arive from sudden arrest of the mutrition of the brain in three ways: 1 st, rapid losies of blood ; 2d, sudden stoppage of the flow of arterial blood to the brain ; and, Bl, rapid uransiomation of the red blood, by which it is rendered incapable of nourshing the brain.

Brown-Sépuard ${ }^{3}$ considers comvisions prodneed by hemorthage to be identical with those consed by anjuyxian, and that they are doe to the inritation of the mervons centres by carbonic acid which then acemmalates in the blood that remains in the sustem, and not to any alteration in mutrition, which he believes camot take place in so short a time.

This anthor's well-known experiments on guinea-pigs show that after injuries to varions parts of the mervons system an "epileptice condition" was developed in the amimals, se that a trivial irritation of the skin in special areas was sufficient to develop a well-pronomeed epileptic comvolsion. Nothagel ${ }^{4}$ places the "convalsion centre" in the pons, and has fomed that reflex irritation of this part, partienlarly by irritating a certain portion of the floor of the fourth ventride, suffices to throw the whole berly of volontary muscles into tonic and clonic pasm.

Gowers ${ }^{5}$ considers that restraint is the highest function of nerve-edls, and that self-control and the caparity for being controlled are higher functions than liberation of energy ; and explains the convolsions following hemornage on the theory that the first effeet of failing finction may be the liberation of energy.

He arrives at the conchsion that the theory of vasomotor spasm as the immediate cause of the fit is mealled for and unproved ; the imperfect

[^390]mutrition of the gray matter of the cerebrum, or perhaps of the medulla, being the eause of the lowering of the func: ons of the same, with the consecfuent liberation of energy, which thus becomes a sign of failing finnction.

May not the vaso-motor spasm be the starting-point of the anrmia which canses a change in the nutrition of the griy matter?

It, however, remains to be said that we are still very much in the dark as to the inmediate processes producing consulsions; but of the predisposing canses we are not so ignomant.

Dickson' states that every advancing step tends to the confirmation of the statement that the proximate canse of the attack is cerebral anemia and arrest of the brain's nutrition, and that the musenlar manifestation is the result of the loss of eerebral control.

Marshall Hall considered such seizures due to an impoled ebbing of the venons blood from the brain, and Solly brought forward the theory that the attack was "a determination of blood to the hadi" cansing an increased generation of nerve-force.

Many writers still appear to believe that this is the man canse of convulsions, and much of the treatment for infantile convulsions now in vogue is based upon this theory.
J. Hughlings Jackson ${ }^{2}$ conccives of the central nervous system as grouped into three tiers of sensory-motor centres,-the lowest, limited above by the pons; the middle, the so-called sensory and motor cortical centres ; and the highest, the brain in front of the latter centres, -all parts. of the borly being represented in ald tier. The two upper tiers control the lowest, which latter is the first to be differentiated, and about the only part of the brain at all developed in newly-born children, and, on aceome of the want of controlling influence of the as yet undeveloped higher tiers, is apt to discharge nervons force on slight provocation. Convulsions may oceur from diseharges of nerve-fore from each of these tiers.

Fischer ${ }^{3}$ states that many facts go to show that the hemispheres bear the brint of the shatting off of the arterial blood-supply, while the medulla suffers much less or is even stimulated. It would appear from this that in this condition the controlling influener of the higher centres over the lower not only is withdman, or at least diminished, but at the same time the latter is stimulated; there is on this theory a donble reason given why the various reflex influences acting upon the cerebral circulation in childheord and infiney through the vaso-motor system should give rise to convulsions.

In the present article the greatest stress will be placed npon the so-called "essential" convulsions of infancy and childhood, and, although it will be necessary to discuss the various structural and other canses that are known

[^391]medulla, with the of failing

1e anemia a the darls he predismation of memia and ation is the
ebling of the theory causing an use of conw in vogne
system ats st, limitel tor cortical —all parts control the only part account of gher tiers, lsions may heres lour re medulla his that in - the lower time the n why the childhoorl nvulsions. e so-callect it will be are known
to give rise to convolsions, fice reater is refervel to the appropriate artides to be found elsewhere in this work for a fuller consideration of the diseases in question.

The canses of infantile comvolsions are legion; but, gemerally spabking, any disturbance of the nervous system, whether eentral or peripheral, orgamic or functional, may cause them. The loss of comseionsiness has been ascribed to the cerelnal anmmia, but Brown-Serfurd considers that this oceurs too rapidly and is too complete to be due only or chicfly to a contraction of the blood-vessels of the cerebral lobes, but that it is due to an "inhibition of the activity of the cerebral nerve-cells."

Fig. 1 gives a diagrammatic representation of the method in which convulsions, irrespective of their exciting canse, may be produced.

Fig. 1.

Dtagrammatic Itidestration of Conversions, (sughtly monlfled from Inana, article "Convulsions," Fefcrence Itend-Book of the Medical sciences.)-I, juhibitory or comtrothing centres, including $C ; C$, corlleal sensory-motor centres; N, lower tler of eerebral centres; s, excito-reflex nerve; $M_{1}, M_{1}, M_{\text {, groups of museles. }}$

A convulsion may be caused by an over excltation of I, C, N, N or S, or by a wlthdrawal of the Inhibitory action of I, fieluding C. A functional depression of C may cause a liberation of the energy of its cells.

But little aid has been given to the elucidation of this portion of the subject by the ophthalmoscope, mainly becuse the examination is, cluring a paroxsm, a very diffient one, and opportmities marely present themselves. In young children the difficulty is greatly increased, and records of the condition found are wanting.

The observations which have been recorded of the condition seen in epilepsy are at variance: theoretically, we should sce an arterial amemia of
the retima during the initial stages; but one or two isolated examinations are mot sufficient to hase an opinion unm, ats tor man onrecorded dement. enter into the varying condition of the retinal cirentation to make them of value.

Allbutt ${ }^{1}$ has observed pallor of the disks during a fit, and De W'ecker hat describerl a sensible diminution in the size of the artery during the stage of patlor ; but Kostl' aut Niemetsohek ${ }^{1}$ thonght that they reengnized in one case a dilatation of the arteries during the attack. Gowers, ${ }^{2}$ in a rase of consulsions from meningeal hemorthage, in which there was no palior of the face, was able to keep a retinal artery and vein muler view during the whole of a severe fit ; the artery throughont presenterl mot the slightest change in size, but the vein beame large and dark during the stage of lividity.

Fançois-Framek ${ }^{3}$ states that, in epileptic attacks in amimals product by electrical excitation of the cerebral cortex, the ophthalmoseope showent an active emgestion in phace of an anmia of the disks ; at the same time the cerehal vesoels, as seen by exposing the brain, became a lively red, and were never violaceons.

Age.-Age must certainly be considered as har far most important fater in the etiology of convulsions, it being a well-known fact that children muder the age of two years are more frepmently attacked than thone beyoud this age.

In the health reports of the eity of Philadelphia for the ten years 1876 188.5 inchasive, seven thousand five humdred and eight deaths among minors are stated to have been due to "convnlions" and "laryngismus stridulus." The following table of these eases shows the pereentage of deaths that oecur at varions periods of life up to twenty years of age:

Convulsions	Under 1. $.4093$	$\begin{gathered} 1 \text { то } 2 . \\ 133: \end{gathered}$	$\begin{gathered} 2 \text { то } 5 \\ 8 ¥ 3 \end{gathered}$	$\begin{gathered} 5 \text { то } 10 . \\ 178 \end{gathered}$	$\begin{gathered} 10 \text { то } 15 . \\ 38 \end{gathered}$	$\begin{gathered} 15 \text { то } 20 . \\ 20 \end{gathered}$
Laryngismus stridulus	24	7	9	$\overline{5}$.	
Total ${ }^{\text {a }}$. . .	. 5017	1342	902	183	38	26

This shows conelusively that convulsions, whatever be their canse, are much more frequently seen during infaney than later in life, more than twire as many (66.8 per cent.) ocenring during the first year as during the later period up to twenty years.

Tamer ${ }^{4}$ gives the following figures on this point. In 1866, in England, deaths from consulsions were registered as 27,431 , of which number 26,847 oeenred in children under five years of age, 24,577 of these, un 89.5 per eent. of the whole number, being infants noder one year of age.

Mackenzie ${ }^{5}$ gives the following table of the daths from laryugismms

[^392]aminations: al elementse them of reeker ${ }^{1}$ lath lie stage of izoyl in on a calse of a palion of during the test chanme tividity. \therefore produrel pe showerl same time le red, and
t important 't that chilthan these
ears 1876 rong minors stridulus." deaths that

15 TO 20. 26 \because 26
r canse, are - than twire og the later

6, in Enych number If these, in of of age.
uryugismus
159.
, Paris, 1887,
stridulas, taken from the Registrar-Genemal's Reports, for children moder ten years of age :

Females	('sider) Year. $. .1487$	$\begin{gathered} 1 \text { то } 2 . \\ 6!1] \end{gathered}$	$\begin{gathered} 2103 . \\ 152 \end{gathered}$	$\begin{gathered} 3 \text { то } 4 . \\ 9.4 \end{gathered}$	$\begin{gathered} 4 \text { To } 5 . \\ 1 ; 0 \end{gathered}$	$\begin{gathered} \text { STO } 10, \\ \text { isis. } \end{gathered}$	Totalis. 2.51%
Mnles	. 2915	139.5	213	97	(i3)	8K	1771
Totı	02	8;	365	191	\%3	.)	

The pereentage of deathe fir the different years in this table agrens very dosely with the Philadelphia mortality from eonvolsions and laryughmis: stridulus, given above.

Considerable allowance must be made for earelessuess in making out the death-certifiente, the convulsion being merely one symptom among many others, which frequently is present wwats the close of a yomer child's illness, no matter what the disease may be ; this symptom, and mot the exeiting canse, being returned as the canse of death. It is ofien to be looked upon "only as a mote of dying, and one ineidental to the time of life," and as having mothing to do with the eause of death. Contss ${ }^{1}$ comsiders this the eanse of the wide-spread opinion of the danger of infantile convalsions.

In many cases where the child dies in convulsions the original canse and not this symptom is returned on the death-certificate. The total number of children dying in convulsions, no matter what the exeiting cause may be, is impossible to obtain.

Tamieson ${ }^{2}$ gives the following table of three handred and sixty-five deaths from convulsions:

From this it appears that in his experienee nomly half of the deaths during the first year of life from the cause ocemr during the first nowth. The majority of observers differ from Jamieson, and coincite in saying that convulsions are rare in the first month or two of life, except those oceurting just after birth, which are frequently due to direct injury to the brain during labor. With the above exception, no one giees statisties as to the deaths during the rarious months of the first year of life. The Philadelphia Health Reports do not euable me to veriti or disprove this statement.

From Jamieson's table tl would appear to be two periods of fre-quener,-viz., the first month of life, and the period of dentition (six monthes to two years).

An explanation of the prevalenee of convulsions during the carlier

[^393]yous of life must he looked for in the physiongical differenees whieh exist betwern the nervons systems of the infant, on the one hame and of older whildren and :ululte, on the wther.

Granclier ${ }^{1}$ 'photes the experiments of Simonoff; and of 1 ritseh and Hitzige, the fimmer as proving that the anterior lobes of the rerchom porssess a controlling power over the lower centres, and the two latter as proving that the same lobes possess an excito-motor inthence over them, so that the same protion of the bain is controlling or inhithitory, or excitomotor, according to circomstances.

In infaney the higher hain is imperfectly formed, while, on the contrary, the lower verebral centres, including the medulla oblonguta, are mush more fully developed and in the ascendeney, the higher cerebab system having not yet attained the controlling power which comes with later years, amd, as Hughlings Jackson (loc, cit.) says, "ihe younger the infant, the more of a mere ordinary reflex meehanism will be what there is of its, nervons system, and the less cheek there will be of one part by another." As a consequence, a comparatively trivial disturbance will interfere serionsly with the mstable equilibrimn existing between these two systems, and a eonvulsion or an irregular and uncontrolled outbreak of nervous energy is the result.

Every wave of nervons influence is not strictly confined to definite paths, but spreads by radiation, so to speak, upon the neighboring ganglia and overflows into neighboring channels, thus calling into action a larger area than otherwise would be the case. This has heen brought forward as an explanation of the influence upon the knee-jerk that is produced by every sensation or voluntary movement, in the recent investigations by Mitchell and myself. ${ }^{2}$ These experiments were repeated with identical results, but in a much move thorough manner, by Lombard. ${ }^{3}$

The explanation most generally received is that the afferent impression so oceupies the higher centres that their controlling power over the lower centres in the brain and spinal cord is partially removed, 'allowing a greater' response to irritation. In adult life this wave of nervous inflnence arising from reflex irritation also probably passes into the hemispheres, ${ }^{4}$ the resulting movement being less on account of this drain ; but in infant life the lower tier of centres is the only one that is functionally active, so that a greater movement results from a given irritation,-first, because there is less diversion of the overflowing foree, and, secondly, because the controlling power over the lower centres has not been developed by the as yet mudeveloped higher centres. On this theory-there is an additional reason for the convulsive tendeney seen in early childhood.

The nervons system of the child during the first two years of life is

[^394]which exist nd of ollder :ritsel and (e)rum prosasproving so that the reito-moter,
on the enna, are mull bral system with later - the infant, ere is of its, y another." cre serionsly tems, and a us energy is

1 to definiste ring ganglia tion a larger t forward as ced loy every by Mitelecll results, but impression er the lower meg a greater ence arising - the resultant life the e, so that at there is less controlling as yet un11 reason for
undergoing the most mapid development, and the centres are therefore much more impressionable to reflex action. Camses which in an adult will merely pronluce a chall may be sufficient to bring on a convalsion in an indant. Another comdition which shond be looked upoin as a predieposing canse pecular to infancy is the yedding nature of the hamerase, whel maturally allows mone greater changes to take place in the cerchat ciremation, whether of andemia or hyperemia, than cond prasihly exist in ohder childrem and adults.

Jacoli ${ }^{1}$ states that the peripheral morves are relatively large and hut little cexctable during the first days of life, and that their excitability increases very fast towards the end of the first year, ont of all proportion to the slower doveromment of the inhibitory centres. This fact explains the great preponderance of comvolsions during the first year of life.

SEx.-The majority of observers rainede in stating that the male sex is more predisp sed to comvolsions than the female. (iere repents that in 48 cases of laryurismus, due to rickets, seen by him, $3 t$ were males and 14 females, and that in ofjemses of convulsions in rickety chihdren, 38 were males and 18 females; taking these "ases together gives a perentage of 64.2 for the male and 30.7 fe the female sex.

Mackenzid's mortality table for laryogismus stridulus (see p. 863) gives 4771 hoys (65.1 per cent.) to 2 2tat girls (34.8 per cent.), a proportion of 100 to 53.39, which certainly seems to prove this puint; but it would be interesting to know what proportion of hirthis during that period belonged to the two sexes; a greater prepmoderance of male births would maturally increase the momber of male deaths from whatever canse. Of the 7oos deaths oceuring in Philadelphia firom these two affections during 18761885, 3974 were males and 3534 females. During this period the male births mumbered 103,413 , and the female $94,0,8$; it is therefore seen that the propertion of male wfemale children both in the mortality by convolsions (100 males to 88.92 females) and in the momion of hirths (100 males to $90.9+$ females) is nearly the we, more male chikden dying comvolsed, apparently becanse there are more male than female chideren to die: this eonchasion wonld sem natomala a during the carly years of life there is but little if any physiological differenee between the sexes, so that much differenee in the tendeney to disease shonld not be expected.

Meigs and Pepper ${ }^{3}$ in 92 cases fomen a proportion of 47 boys to tio girls, but Steffen ${ }^{4}$ reports 544 cases with a proportion of 386 boys to 158 girls.

Herbitary Influmeces.- A child camot inherit convulsions, or, in other words, a symptom, but it may inherit suld a condition of the nervons

[^395]systom as to predisprese to them. It is a well-known fact that in the children of some families the loast exriting canse will be suflicient to indure eonvolsions, while in others the same somere of irritation, although carricel to a muld greator degrer, will not sutfiee to probluce them. This can be explaned only upon the supposition that the children are born with a comconsice lemene:y, Ocrasionally only revtain children of a family will show this tomeleney, which mate even be comfined to thase of one sex.
 families in which eollertively hore wore os children; these persons were the descemdants of the first, seromel, and thided genemations of two pairs of anmestors ; the serome gemeration consiats of 31 members, 20 of whom have hatd convoulsions.

Coutts (fore cilo) liats found in 100 enses of comsonlsions in infants 29 in which there was a history of meurose in parents or near relatives, and, including the eomvalsions ocemring in brothers and sisters, the family nemmete peremtage ruse to 6:3,
 to have convolsions in thrive earlier days, mal quotes lancereans as stating that dromkands tramait to therir ofloping, among other morbid comelitions, an almormal reflex excitability amb a tendeney to convalsions,

Wood ${ }^{3}$ is of the opinion "hat the tandroney to comvinsions in the chitd is elosely eomected with the rpileptio diathesis, and that in those cases in which the epileptie tendener exists injudicions hygienice tratment or trivial canses may be sufficient to prouluce convolsions.

Some anthors believe that pueneral convolsions in the mother predispose the rhild to combulsions.

It has been doubted whether a healthy child can have convulsions solely from reflex imitation, hat there are some children in whom the most careful investigation falls to diseover any anse in the nervous system or elsewhere for the attacks, and we are foreal to fall back upon the supposition of a "convolsive tendrucy," possibly inherited, as an explanation. Gee (loc. cit.) found inf cases of comvulsions in children, out of a total of 102 , in which he comld mot account for the seizures except upon the supposition that they were dow to the state of health of the children at the time of the attack.

Racorris.-It is grmembly admitted that mehitis moders a child liabla to suffer from convolsions, especially that form called laryogismus stridulas ("inwarl convolsions," ow "holding-heath spells"). The hereditary intluences temeling in this direction must also be looked upon as positive predisposing causes. Ont of 50 cases of laryogismus stridulus seen by Gee (lore cit.) 48 were rickety, and of these 19 had gencral consulsions ; and out of

[^396]in the chilt to induer migh carried \& \%in be exwith a cony will shw
d in thirteen mems were (wo) pairs of Whom have
infints 29 in ives, and, inmily nemotic: whe are liable mx: as stating id comditions, s in the chith those cases in ment or trivial nother predisfutsions solely e most careful n or elsewhere prosition of a Gee (loc. cit.) 102 , in which tion that they the attack. a child liable smus stridulus reditary influnsitive prelisn by Gee (loc. s; and out of ${ }^{\circ}$
 per cent.

Rickets is a murd more , revalent affection than is mistally monsidered, in the higher als well as in the hwor walke of life, alhomgh mere formently sern in the latter.
 were rickety, and guotes Ritter as having had a like experimene at the Aled-

 Years of age showing sigus of mothitis. In Berlin at the 'tnisersity (dinie ${ }^{2}$ the percentage muler this age hav- lexem fomm to be 1:3. dami (hore cit.) states that in his experience this comuedion betwen rickets a. comvolsions hats mot been observed; the former being said to be a rate ative tion at Mellowrme, Anstalia, and vicinity, while the latter are falr from micomimom.

My own experience at the dispensary of the ('hidhem's Hospital lams me to place the peremtage higher than any of the figures fuoterl, rachitis being diagnosticated when the dhidren presented beading of the ribs, markedly-delayed dentition, profisos sweating of the had, abmomally-rpen
 queney of these symptoms orenring athent in the order namme the heading of the ribs being decidedly most often ancountered. Nor wise older than five pears was inchoded in the study. The figures are ats follows:

Total mouber of cases five pears old and moder, 360 ; mumber of cases

Rawhitie cases five yars old and muder, 1:37,-38.05 per cent. ; rachitie calses two years old and under, $110,-41.82$ per cent.

A history as to the presence or absence of former convulsions was entained in 236, and of these 90 were radhitic,- 38.1% prer ent. ; 172 of these 236 were two gears old and mader, and 22 of these were machitic,- -4.44 per cent.

Convolsions ocenred in 20 of the $2: 36$ (asw, - 8.47 per erent. One of these was an epileptice, and three died in comulsions onemring twands the duse of serions illnesses, the others being the su-mallew dentition convolsions and those due to errors in diet.

Of the 20 cases in which convolsions had oremerel, is were rachitic- 40 per cent-and 12 non-radhitic,- 60 per cent Of the 90 radnitic cases, 8 had had convolsions,-8.58 per cent.

It must be horne in mind that all these statieties refer to wielk children of the limmble classes, and therefore do not acemately represent the prevaienee of radhitis among the childen of the commonity at large.

Rickets usually appears from the sixth to the thirteruth month, although

[^397]
 valsions owaming in the finst few months of life. (hanges in the cere-
 in the brain ; and this, together with the presenee of deformity of the rilns, (ansing intofforence with the respination and leficient axygenation of the blood, and the esamiotabes and the softhess of the bones of the head (fressibly allowing pressure to he made mpon the emaial enntents when the dhided is recmmbent), must be looked mon as the exphation of the assuctiation of these two comblitions. dacohir considers that every ane of laryogismos stridulus, withont exception, that oecmis dhring the first eight er nine months of life is due to the presence of eraniotalus. 'This statement does not merd with miversal areeptance, ats this symptom frephently orems in rathitio children where daniotabes camot be detected. "Ont of ninetr-six cases of latrygismmes examined by Lederer ${ }^{2}$ there was emanotabes in ninetrotwo." Pressme with the fingers upon these spots hats heen reported to mathe an attack, ans experience which has recently happened to the writer.

Elsitsser ${ }^{3}$ was the first to prommlgate this theory of the attare bering
 sider the theory entirely explorled. The latter, while admitting that whon cambotabes is present spasm of the ghotis may be expected, is of the opinion that this in no war depends upon it and does not neressarily follow, as the child is attacket ano omly while lying down, but also when sitting inf.
 due to the malmutrition which is present. Senator ${ }^{6}$ states that " The larrygeal spasm is often observed withont there being any marked softoning of the oceipital bone ; inderd, it is a far more frequent eomplieation of riekets than eranotabes itself." In this comneetion it may be mentioned that some anthors hold that manotabes is due to a syphilitie taint and not to rickets: thas, Lees amd Barlow ${ }^{7}$ comsider that the existence of marked cmiotales must be regarded as strong evidence for smspecting syphilis, fortr-seven per eont. of the total mmber atfoeted with ramiotabes being, in the op onion, almost certanly syphilitic. Enstare Smith also believes this condition is most common in cases where there is a distinct syphilitic taint. Haghlings. Jackson (loc. cit.) states that the changes in the ehest-walls which obtain in rachitis, and the eonsequent imperfect respiration, canse adefieient ateation

[^398]so that this Itse of "omin the coretive chang of the vilts, ation of the luand (puswiren the chillt ssemiation of laryuyismus nine momthis toes not meret \% in rachititic "ty-six. "tuck ninety-two." 1 to callse \because. attack being Steltw H^{3} " $4111-$ ing that when of the opinion fillow, at the in sittine Misismus to ho It "the lary"n1 solfoning of ion of rimedets: newl that sumbe hot tor rimetes: ol cramionalume
 the'r opinion, Scondition is Hughling: which oltain icienent alemation

Trmonactoons of
of the boond, and that this, acting on the respinatory ontre, gives rise to an attack of haryone spasm.

These attacks misally oxem at might, when the circmation of the brain is at its minimum, so that $t \mathrm{t}$ influence of the eomdition just mentionem! has a greater elfect. Imperfeet 1 dimation is the aghat ly this athority to be We ordinary ultimate canse of comvolsions in infancy.
 rachitis and in serolina, and the prosenve exerted by these 1 pon the tradhat hats been thomght by some to be the canse of barygismus; whers have believerl that the same comdition prowlues prosesme on the nerves and thens exates spasm of the ghottis. Morrill ${ }^{1}$ reports a cerse undoubtedly due to this callse in a serofnoms child, and bably ${ }^{2}$ reports twenty vases dion in his "pinion to enlargement of the meliastimal glanls. These may be emsidered as possible canses if it is true, as fomom and Iorsidey ${ }^{3}$ state, that the abodueturs of the socal cords die befiere the adducters, and that the former are more prone to disease ; constant pressure on the werment latrugral nerves berting in this manner might, it serms, caltso a spasm of the ghotis be giving that structure over to the adductons. Howner strmgly oproses this theory, white Domaddem ${ }^{5}$ believes the alduetors to be the mere irritable; monstant prossme mon the nerves ramsing them to tail in the performance if their function before the adductors. Lames ${ }^{6}$ 'msiders that larymisumes stridulus oxemring in rickets is due to irritation of this nerve from peesswre her culargement of the extremities of the trandal rings, or to irvitation bey pressure as the norve passes mader the corner of the theroid cart lage; hat this theory larks confirmation. Koppls theory (themic asthma) that the affection is camsel by the pressure on the tradea or merves her an onlanged thyms gham, may be meationed in this comenetion. 'This theory has bern entively explonded, for this combition is mely presem, and, if it is,

 Wearmert.-Dentition.-A lant that secolls to be firmly established in the mind of the pmblie, as well ass in the minds of many of the motical professiom, is that dentition plays the most impurtant rote whe the etology of comvolsions. If the child happens to be cutting teeth at the time of the attack, wo further callise of tromike is inoked for, :med if there is no visiWe irvitation of the gmms it is still the advancing tooth that is thought to be the canse of the attack, the true exciting canse being thins frequently ownloukerl. I do not wish to be understond to say that painful dentition

[^399]may not canse cemoulsions, -in fite, I beline that such is cheasionally the ense, partionlanty when the chitd has a prediepusition in that direetion,-bont the delayed and irrequlare thentition is more often bat another sign of the mathitablembere periomsly disenseed, and this, and mot the dentition, is more likely to be the predisposing canse, althongh an indlamed and tomder gom may preiphitate a paroxysm. . In otitis may be ansed by the intlamed comdition of the gem and be the starting-pent of an attack.

The time of demition. which hegins about the eighth month, is a period of great fimetional activity, fore, besides the eruption of the tweth, the fillieular appazatus of the intestines is madergoing antive development in order to prepare the alimentary sestrm for a radical change of dict. As a consequene, gastro-intestinal disorders and nervons somptoms are fropuent at this time of life. It is diffecult to coneeve how a purely phesiological process, such ati dentition is, cem in a healthe child be the sole canse of convolsions and death, but the irritation and pain which acompane the process in some "ases may be sufliciont to then the sale in fiwo of a nervons ontbrerk.

The period of dentition thas resombles that of pulserty in being a prowd of frequent mowous manifestations.

Sejonmet comsiders the role played ly dentition as of great importane in the producion of an attack, and in his upinion stome children are mom liable to demition comvalsions than others. Soltmam," hasing his comelnsion on expriments made on gomeng dogs, considers by inferene that the exeitability of the sensition nerves in new-horn children is moth less than in aldults, that there is a period exterding from the fifth to the eleventh month, or alont the time of dentition, in which there is :m inemased excitahility of these merves, amb condudes that "teething" has a direet iuth-
 the excitability of the peripheral nerves in yomg children, as mentionerl on page sitó, is of interest in this comoretiom.

Nore than donhle the mumber of deaths from comousions in ehildren oreme during the first yan of life, but areording to bamieson's tables (p. StiB) aro twothids of the comvalsions during the first year oceme during the first six monthe, so that dentition cammot of weressity he taken ats a cause of convulsions in these mase.

Improper Feeding and Indigestion.-The preseme of andigested and madigestille foed in the stomad and intestines is a sery fertile eanse-perhaps
 wem with proper fond twomes thas a wer important factor ; and this statoment gatins strength when at antopsies a very fill stomach is frepuently all that is fome to atomut for the death in convolsions of an otherwise aparently healthy infant. Constipation, partienlarly where large quantities of

[^400]seybalat are impacted in the intestines, is atso an exeming canse that shombd always be berte in mind. Simon' comsiders that eighty per exent. of comsulsions in children arise firon digestive troubles.

This comblition sems capable of producing an antark in an otherwise hatalty child, atthongh some anthors comsider this molikely. It the "cou-
 indigestion beromes thes an excitiog camse, and it is mather curbens that there need be no maked evidenere of thataley or pain previons to the nervous ontherak.

A fit of anger or any other violent emetion en the part of the mothere
 in a pretisposiel musling, probably by mondering it a somre of irvitation to the child's stomatel.

Gastro-Intestinal Disorders.-These disorders, so fropuemity met with in the hot weather, adso produce a protemed impression on the dhild's mervons system, and canse comvolsions in two ways: tirst, he the sublen dian-
 Eastro-intestinal tract misuited to rexive the food which lotime the attark may have been propery proportioned to the ehith's alge, but whin mow ants as a dirent irvitant to the stemad, and is cigeteral, on pasisel into the beweds unprepared fier intestinal digestion. The diarman and vomiting, by incerasing the sperifie gravity of the bond, may an by remberg the latter too dense to circolate properly, thas starving the hain, and may also, as mentioned by Novi, ${ }^{2}$ by depriving the gray matter of the bation of much of
 Inthesinseption is an oxasional wase of combulions in yomg children.

In onder to diseover what rebation existan butween the momber of deaths from emonsions and these from disombers of the alimentary trat, 1 col-
 inclusive all the deaths :mmer miners firm "terthing," "sore momth,"
 "nleration of the stomath and luweds," and, taking these together, :aranged them he monthis and rompared them with the dealis from "convulsions" aud "aryugismus stridulus," similaty arrangent.

The hot months of smmor, as acer one knows, callise the greatest mortality ammgethilden; 10, fi:b deathe enembing from the former elass of discases during the months of June, Juls, Augnst, and September, out of a total of 13,115 for the ten sams in question, July with the highest
 morth also showing the greatest mortality from "comvalsions,"-viz.., 988 ont of a total of 7obs. Aranging these figures in the form of a table, comparisons are morh more easily made.

[^401]Tracing No. 1 represents the deaths from gastro-intestinal disorders, tracing No. 4 the mortality from convulsions, and tracing No. 2 the mean

Fig. 2.
1876-1885.
(

Tracing 1. $-13,115$ deaths from gastro-fintestinal diseases. Read by using co:umn of tigures 0 to 12,000.

Traeing 2.-Menn temperature, Rend by using column of figntes 10 to 80 ,
Tracing 3.-"Storm-eentres" passing within 400 miles of l"hiladelphia, Read by usiug colmmu of ligures 10 to 80 .

Traeing $4,-7508$ deaths from convulslons and laryngismus stridulus. Read by usiug eolumn of tigures 100 to 900 .

Tracing 5.-Total deaths from all eauses la ehblen under 10 years of age,-viz., $86,769$. Read by using column of tigures 0 to 12,0100.
temprature, per month. It will be seen at a glance that an average monthly temperature of $66^{\circ} \mathrm{F}$. or over causes a fearful increase in the mor-
tality from gastro-intestinal affections, and that the highest mean temperature coincides with the greatest number of deaths from convnlsions. Several canses may act torether to produce this July rise in the latter tracing: 1st, convulsions must in many of these cases be looked upon merely as a mode of dying, and not neressarily as a cause of dath per se; ed, the large number of gastro-intestinal disorders oceurring in that month would of necessity increase the number of deaths from convulsions, both in consequence of the intestinal irritation and on accomnt of the great drain on the fluids of the berly cansing deficient cerebral bloorl-sinply; 3d, high temperature is in itself an important factor in the cansation of convilsions.

The convulsion tracing is at its lowest point in November, and from this month there is a gradual rise mutil Mareh is reached, then there is a fall mutil June, and then a sudden rise in July to the highest point, after which there is a steady fall mutil the low point in November is returned to; this camot be entirely explained by either of the thre factors above mentioned, althoegh the gencmal mortality tracing (No. 5) dows bar a general resemblance to it, as would be expected on aceome of the first reason given above. The gastro-intestinal tracing is almost at its lowest print, and an equal or even higher average temperatmre in Angnst, Soptember, and October is not accompanied by a corresponding rise in the eonvolsion traning. Before attempting an explanation an apparent digression will be mate. Gee calls attention to the inflnence of the season mon the number of attacks of laryugismus stridulns, and states that these are apt to oee-ur more frequently when the children are confined to the honse and obliged in consequence to breathe impure air, which has the effect of producing an "erethism of the nervons system which shows itself in turn as a spasmodie thathesis," which, however, in ais opinion, dees not produce the exeessive irritability until it has been prolonged for some time, so that the spring months contain the greatest proportion of the cases ; out of 63 attacks seen by him, ocenrring in the years 1866,1867 , anel 1868, 47 ocenreed in the months of Febrnary, March, April, and May. Barlow, ${ }^{2}$ on the contrary, states that convulsions, and particularly harngismas stridulas, oceur most frequently in coll weather, 70 ont of the $11+$ eases investigated by him in 188.5 ocentring during the months of October, November, December, Jannary, and Febrnary (61.40 per enut.), and being quite evenly distributed among them, February having the greatest nmmber (16) and December the least (13) ; the months of Máy, June, and July show but 10 cases (8.77 per (ent.), March 7 , and the remaining months 9 each. The results obtained ly the study of these two ohservers, the former in London and the latter iil Manchester, althongh these places are comparatively near each other, differ widely, which shonld not be the case had the trie eamse been fomd.

[^402]Henorh ${ }^{1}$ has fombl the greatest mmber of cases of larymgismus stridulus, in horpital as well as private practice, during the months of Jamary to May, indusive, and in this he agrees wilh Gere.
J. Crichton Browne ${ }^{2}$ states that convolsions, from which su many infants and childe: perish, have their minimum death-rate in Septembere and October, their maximm in February and March.

The effere of meterologieal changes on nervons diseases has been reenernizerl for some time ; this is particularly noticeable in nemalgia ${ }^{3}$ and in chowa, the former reported lye Mitehell and the latter by the author,- the perturbing influence apparing to be the complex meteorological disturb)ate known as a "storm." Tracing No. 3 represents the number of stormcentres passing within a cirele of four humbed miles' radins drawn around Philadelphia for the ten years in question, this radins being chosen as it was found that the storms passing within that distance produced the greatest effect on chora, in former studics. The greatest number of storms ocents in Match (see table), which coincides with the spring rise in the convulsion tracing: so that it seems possible that the weather may exert more than a passing influence.

The dissimilarity between the two tracings 3 and 4 in midsmmer is produced by the heat, the great mumber of gastro-intestimal cases incerensing the deaths from convulsions, as previonsly stat. l. No other metcorolugical fartor,-viz., temperature, barometer, mean rei tive humidity, range of thermoneter, or number of clondy days,-either alone or in combination, seems to account for the Mareh rise of the convolsion tracing. The influence exerted by storms may be indirect and not direct in its action, by causing an inerease of other affections in which convolsions close the seene. This study should be applied to the number of attarks, or eases, of consulsions, and not to the mmber of deaths, to ascertain its true value. As tending to uphold the probability of this throry, it is worth mentioning that in the studies just mentioned, the greatest amount of pain and the highest number of attacks of chorea ocenr in Mareh, corresponding to the spring rise of the convolsion tracing, and the lowest number of attacks of chorea in October and November, corresponding to the lowest point reached be: the convulsion tracing, and, while these months do not show the luast amount of nemalgia (June), they ate at least months of less pain than those of winter and spring.

Intestinal Parasites.-The effect produced by the presence of worms in the intestinal canal is as much exaggerated by the publie generally as is the effeet of dentition. Worms are present in many children, particularly those

[^403]of the poorer elasses, and frequently cause no sumptoms whatever, and we not suspected until they are seen in the evacmations. When, however, worms are present in large quantities they modoubtedly may ant very injuriously, and may even be the starting-pint of norvos sompoms oren of convulsions. Mosit of the symptoms are due to the condition of the gastro-intestinal camal, that favors the devapment of the parasites. Worms, are not so frequently fonnd in the intestines of infants as in those of children abont two years of age and over. The tapenom is wey ravely sern in young ehildren. Comvolsions prodnced by these eanses are purely reflex.

Acute Infectious Fevers. - In the arme infections discases convulsions are frequently met with, usually cither at the moset of the attack or towards the elose of the discase. In the former ease they take the place of the rigor seen at the onset of such disemes in later life ; they are to be considered as toxamic convulsions due to the impreguation of the blowl with the specifie poison, which acts bey problucing an inhibition of the controlling action of the higher ecrehral eentres, possibly acting throngh the medulla by cansing a spasm of the arterioles. The suddemess of its onste is to be explained in the same way that is employed to explain a chill or a sudden fever, 一viz., a stimulation or depression, as the ease may be, of the inhibitory chemical centre be the suecitic poison. ${ }^{1}$ Secording to Radeliffe, ${ }^{2}$ these ecnvulsions ocenr in the cold stage of the fever, when the circulation is grea iy wanting in power, and they are confined to this stage except when there hapen to be brain- or kidney-complications. This lats statement cannot be accepted without reservation, as convolsions are known to oceur in these diseases when the fever is high. ${ }^{3}$ Holmes considers the convulsion seen in the begimning of these diseases as entirely due to the high temperature, and that a temperature of $103^{\circ} \mathrm{F}$. in a child is very liable to excite an attack, whieh attack is most frequently seen in the first few hours of the perexial seizure. Machagan ${ }^{4}$ is of the opinion that anmma of the brain is the cause of the headache which is most freguent in the early otage of acute fevers in adults, and of the convulsions seen in a similar period in the fevers of chidhood, the anemia resulting from the contraction of the minute arteries of the brain.

Weleh ${ }^{5}$ considers that the temperature regulation is move labile in infants than in adnlts, and that haman beings may tolerate temperatures of $107^{\circ} \mathrm{F}$. or even higher for a considerable time. He also states that temperatures ranked as high do not in themselves, independently of other factors, necessarily exert any such injurious influences as have been usually attributed to them,- that unless the temperature is suddenly raised no dis-

[^404]turbance of the ccrelmal functions is noticed until the temperature reaches a certain point, beyond waich death ensues, preceded by convulsions and coma; the disturbances of the sensorimm depend in a higher degree upon imution or intoxication than upon heightenet temperature.

Wood ' has shown that heating the brain of a mammal produces sudden insensibility, with or without convulsions, at a temperature of about 108° F., and that this effect is duc to the direct action of the heat.

When convulsions ocemr in the later stages of the discases in question, they are to be explainod by the presence of serions cerebral, respiratory, or urinary eomplications.

Intemhttent Feven- - In chidren convilsions are known to ocenpy the phace of the ciall met with in later life in intermiatent fever. A true chill is rarely scen in an infant or a young child, the convolsions occurving on suceessive days just hefore the appearance of the fever, proving their origin. An editorial in the North Carolina Medical Jownal, 1882, vol. x., states that there is no more fatal discase among young children in makrial distriets of the South than malarial eclampsia. The statement is also made that September and Oetober are the months in which this eomplication is most generally met with, and usnally between 11 A.s. and 5 p.m., the season of the year and the time of day when the ordinary paroxysm of malarial fever is most frequently encountered. Such frequeney of malarial celampsia is not mot with in Philadelphia ; at least it has not been my experience during the last ten years at the dispensary of the Children's Hospital, where large numbers of cases of intermittent fever are seen overy spring and autumn. Meigs and Pepper (loc. cit.) and J. Lewis Smith ${ }^{2}$ consider it not a very rare thing for the fever to be ushered in by a couvulsion. In the pernicions form of intermittent fever this symptom is frequently seen.

Typiofi Fever.-Convulsions are of rare oceurrence in this disease in chidren; they are to be considered as of the same nature as those ocenuring in scarlet fever, measles, ete.

Pxedmonia.-Convulsions are a rather uncommon symptom in prenmonia, cither of the crompons or the catarrhal variety, and they are more frequently seen in very young than in odder chiklren. The opinion generally held is that convulsions are most apt to complicate pneumonia when the discase is situated at one or other of the apices of the lang: thus, Juergensen ${ }^{3}$ states that the most severe cerebral symptoms usually oceur in connection with puemmonia of the apex, setting in with a rapidly-developed fever, and quotes Heinze as holling the same opinion. Among others holding these views strongly may be mentioned Eustace Smith, ${ }^{4}$ Goodhart, ${ }^{5}$

[^405]Loomis, ${ }^{1}$ Hanot, ${ }^{2}$ and Damaschino. ${ }^{3}$ Holt, ${ }^{4}$ on the contrary, after a study of one hundred and seventy-three cases of cerebmal symptoms in this disease, holds that they are not mimately associated with apex disease, such association oreurring in ouly one-fifth of apex cases, but that they ocem more frequently when the discase is extensive and the temperature high (one in three of the cases). He considers that comvolsions in this dismase belong almost withont exception to infancy, being mely met with after two years of age, the time of onset of the discase being the period when they are usually seen. Conts (loc. cit.), quoting from the practice of Enstace Smith in the East London Children's Hospital, states that couvulsions oecour at the onset of premmonia in abont five per cent. of the censes (two in forty one). Enstace Smith (loc. eit.) does not believe that there is any relation between apex premonia and eonvolsions, phemonia of the apex being especially short and favorable, in his opinion.

Toxmmic Convusions.-Under this head shoud be included those convulsions ocenring in uremic conditions, as well as those which follow the administration of poisons. Enstace Smith considers infints to be very susceptible to the influence of lead, and he has several times seen convolsions follow the intermal administration of this drug, and apparently directly due to it. ${ }^{5}$ Convolsions ocenr in uremia when there is no clevation of temperature: so that there cannot be much donbt that they are due to the action on the nervous centres of the morbid materials circulating in the blood. In the acute infections fevers we have, ats previonsly mentioned, besides the impregnation of the system with the special poison, the secondary very important factor of fever, which is prodneed by the action of this poison on the heat-centres: so that two important canses of convolsions may thins be aeting together.

Some of the convulsions oceurring in gastro-intestinal disorders may properly be placed in this elass, as they are possibly ansed by the poisonoms influence of ptomaines developerl in the stomad and intestines, as suggested by Senator. ${ }^{6}$

Whooping-Cough.-Meigs and Pepper mention convulsions as a compheation of this disease in 12 out of 208 of their cases (5.76 per cent.), and quote Rilliet and Barthez as having seen it in 5 ont of 29 cases (17.24 per eent.). Roger ${ }^{7}$ has met with this complication in hospital practice only 15 times in 431 cases (3.48 per cent.), and in his experience it is most frequently seen in infants still at the breast, or at least before the third year of

[^406]life. Comvalsions never usher in this disease, but cither orenr in the couse of a markel nttack or preeipitate the fatal termination in cemplicated casers, which compleation is usually broncho-phemonia. Their ise is therefoll:

1st. The nervous element which is an integral part of whopping-cough.
2d. The high fever which often acompanies severe cares.
Bl. The venons condition of the cerebral cirenation due to the severe paroxysms of conghing of to the pumonary complication, or to hoth. Serons eflision into the ventricles should be mentioned here as a consequence of the vemsity and at canse of the convolsions.

Malformatones and Deseases of the Heabt and Great Ves-stas-- From what has been said in the foregoing pages of the important role phayed ing disturbed circulation in the etiology of comvulsions in children, it is evident that they would frequently be found in association with malformations and diseases of the heart and great vessels, particulanly in the condition k, won as morbus ecerulens.

Imbeation of Pbimbibral Nervis.-A bum or seah produces a much more profound impression upon a child than upon an adult, and convolsions are often thas cansed. There is great shork and a profound impression on the circulation, the arterices contain but little blood, and all the internal veinsare engorged, particulan! those of the abomen, as proved hy frequent antopsies. Although the condition is genemaly deseribed as one of active congestion of all the internal organs, it is more truly a secondary venons congestion. When convulsions oceur in this condition they are nimally preceded by symptoms of profornd prostration. Irritation of the skin in erzematons and other eruptions has been reported as a cause of comvolsions in children, as has the irritation caused loy pins. Tickling hats also heen reported ats a canse. Convolsions due to the stings and bite; of insects must he of bare oceurrence in this comutry at least, althong! they are reported in warm climates.

Earache as a canse of convolsions should always be borne in mind, and this may ocen entirely independently of any meningitie trouble, and be due simply to the pain. Hugnenin" makes the statement that " changes in the calibre of cerebmal ateries oceur in irritation of even a distant sensitive nerve," and Nothagel ${ }^{2}$ holds the same view. Sudden and violent pain is known to canse marked changes in the cerebral cirenlation, and fainting is a very frequent sequence; convulsions have been known to follow a faint produced in this way. Hugnenin (loc. cit.) reports a case following a quickly-performed ciremmeision, and a similar case oceured to the writer when an interne at the Pemsslvania Hospital,-viz, on removing a small piece of bone from a crushed finger, the patient eried out with pain, fell to the floor in a fiint, and immediately becume generally and very severely

[^407][^408]Diseaspes of the Brain anh Spinab, Comb-Comvolsions due to the varions canses previonsly emmerated do mot depend mon any gross lesion of the bain or spinal cord ; there remains a division of comulsions which have such conditions as an exciting canse, - vio., poliomyelitis anterion acuta, and other ade spinal affections; tumors of the bain; the various kinds of meningitis; cerebral hemorthage ; embolism and thrombosis ; injuries to the head and bain from anedent or during difficolt hator ; comenssion of the brain and cord, etco ; and the reader is refinered to the appropriate sections in this work for finther information upon these sul)jerts. A few words in regarel to the general medhanism bey whid eonvulsions are produced in these alfections will not be ont of place in this comeretion. Mary P. Jacobi ${ }^{1}$ states that nemly fiftern per ement of the cases of poliompelitis anterior acouta have convolsions ass in prodromal symptom, and lish ${ }^{2}$ considers that the pathogenie explanation of these inital bmin-sympoms has not yet ineron fomm ; lout if a jeriphemal irritation can so affect the nerverentres as to induce comvolsions, it certainly semes probable that such a sudden impression upon the spinal cord ans orcurs in this affection would he sufficient to do so. J. Hughlings Jackson ${ }^{3}$ lrings forward the hypothesis that these initial convulsions may be due to the aetion of pemaines the result of disintegration ot the nervons matter of the anterion horms on the "ponto-bmilan" centres (lowest tier). It is probable that the convulsions in the varions bain-disorders are due, not to an arterial congestion, as is frepuently thought, but to an inhibition of the eontrolling power of the ecrebrom over the lower ganglia, prodnced by anemia due to vaso-motor spasm or to intracraial pressure cansing impaired nutrition by interferenee with the blood-supply. An unstable condition of the higher contres may also exist, causing explosive development, or rather liberation, of ner wis fore in the gray mater of the motor areas. Intracranial pressure in young infints is mate manifest by the bulging and increased tension of the anterior fontanel. The first effeet of increased flow of arterial blood into the bain is an exaltation of cerebal fimetions, but if the pressure becomes greater the capillaries are compressed, and there i:s a consequent slowing of the cire ilation and a defieient supply of oxygenated blool, so that in truth the effent may cond in being the same ats in asphyxia or in cerebral amemia. When the intramanial pressure is due to a venous impediment from the start, the same nltimate condition obtains. Pressure due to serons effisions acts in a similar maner. The symptoms following a severe apoplexy are due to a great extent to the consequent disturbance of the eireulation, which is generally regarded as an anemia.
${ }^{1}$ Pepper's System of Medicine, vol. v.
${ }^{2}$ Ziemsen's Cyelopedia, vol. xiii.
${ }^{3}$ Lumleian Lectures on Convulsive Seizures, Lancet, Mareh 29, 1890.
due to gross ulsions ante: ; the thromlabor ; to the se sulbh conin this of the 1 sympa initial tion c:ll - seems "ellu's in ${ }^{3}$ briugs e to the atter of is probof to toll n of the luced by fing imble conlopment, or areas. ring and sed flow ions, but there is Frenatel Isphyxiat a venoms Pressure lowing a bance of

SYMPTOMATOLOGY.

It may seem unseientife to spak of the symptomatology of a symptom, but, if the remarks with which this artide opened la remembered, it is hoped the liberty will be allowed. For conseniene of deserption this portion of the suljeet may be divided into three hemls: 1st, haryugismus stridulas ; Dld, the more general "sympathetie" disturbances, and hose seen in the so-ealled "essential" convulsions or eviampsia proper$;$; id, those convulsions comsequent upon gross ecrebral lesioms.

The last division is one which cumuot be disenssed in this article. The reader is, therefore, refervel to the articles on the dismeses and sung, wo of the brain and spinal eord to be fombl elsewhere in this work. The difference between the first and second divisions mast not be eonsidered one of kind, but only one of degree; they have both many of the same predisposing eatses, and the first may merge at any time into the serond; they deserve, however, separate mention.

Labrvasmu's Stridulus.-Synonymes.-Spasm of the glotis; Child-crowing ; Cerebral eronp; Inward convolsion, ete. Considerable confusion has arisen on accomnt of a rather careless nomenclature as applied to this affection and to simple catarhal laryugitis: thus, Mackenzic uses the term "spurious cromp" as synonymons for both disorlers; Meigs and Pepper and Janchi consider" spazmodic or false cronp" a synonyme of simple catarital laryngitis, while Mackenzie, Cohen, Steffen, Johnson, and others apply these terms to laryngismus stridulus.

Laryngismus stridulus is a comparatively rare form of local convolsion which is usually characterized by a spasmodic closure of the glotis, and in severe cases by spasm of all the other museles of respiration. The prominent symptom of this is the peculiar erowing sombl accompanying the efforts at inspiration.

The diaphragm and exte"nal muscles of respiration may be the parts affected, and the glottis eseape, in which case there will be no erowing inspiration. Eustace Smith has found this condition in weakly or prema-turely-born infants only.

The attack passes off in a fen seconds or mimutes, generally in an orlinary fit of erying. It usually comes on towarls midnight, the child having been put to bed apparently in its ordinary health, or else having been fretful and cross for an day or two, and having possibly had an oceasional slight eateh in its respiration. The little patient awakens suddenly, makes a few short spasmodie efforts at respiration, which are followed by a long erowing or whistling inspiration resembling somewhat that heard in whooping-congh ; the closure of the glottis then becomes complete, and all someds cease. The face, which has been slightly flushed or pale, now becomes livid,-this being particularly noticeable about the mouth; the eyes are staring wildly or else are rolled npward; the head is retracted, and in severe cases there is marked opisthotghes; the Vol. IV.-56
thmos may be lene into the palms, the fingers closed over them, the wrists flexerl, and the firemms promated. With this there is strong abduction of the great towe, while the remaining toes are strongly llexed, " "arpo-perdal
atractions." The backs of the hands and the insteps apmene swomen, mal the skin may assume a shing aspere. After this condition has lasterl for a short period, during whid dissolation serons imminent, the crowing inspirntion is again heard, the spasms relax, and the attack ends in a lit of eremg or conrging. Instent oi this monde of termination, it is pussible for denth to oremer durina the fiest paroxym, or at the height of the attack genemal convalsions maye ensuce. 'The epighotis may berome firmly wedred in the chink of the ghotis be the spasm and remain there even after the hatere relases, areording to Cohem, ${ }^{\text {and }}$ and in these eases, mins relief is obtaned, the attack
 as has been deserited and have mo repetition on the tromber or there may be several paroxsms on the same night on on the fiollowing night about the same home, the child being apparently wedl in the interval. An attack of bayngismes may come on in the daytime, and need not be severe; it may come on dwaige mosing ; the chid then drops the nipple, rolls up its eyes, grives a crowing inspiration, and may or may not fles the thmos into the palms; ywn reovering, which it does in a few seromde, a second nttempt to minse may canse a repetition of the symptoms. Such an attack as this may follow an exhbition of temper, or exen an ordinary eremerpell, and is frequently misinterpreted as being an evidene of lond temper. A rondition resembling the "status epileptiens" may he developed, in which the chitd does not filly recoser from one parosym hefore it passes into another. As lefore said, the attacks are apt to come on at night or just as the child is anakening; they may ocen from time to time, on there may be long intervals between them. Fewer is alsent, as a role ; if it is present, it is probably due to the same canse as the attack. Sweating of the hand is a very frequent semptom in rhildren affected with laryugismus, and is due to the rachitis which is nsatly preseat. The "earoopedal" contmetions, alowe mentionel, are oftem entirely absent, and when they are marked, Mackenzie considers that they may be aceompanied bey great pain.

Cheadle ${ }^{2}$ believes this comdition to be identical with tetany, and, as it is ahways accompmied be laryugmus, this las beom usually deseribed as a symptom of the latter,-in his opinion erronconsly. He quotes Ahererombie ${ }^{3}$ as the first to differentiate these two affections. The pulse during an attack is small and sometimes almost impereptible; when the anterion fontand is still open, there is marked bulging during the stage of venous engorgement.

Genekar Convulsions.-Genemal eomvilsions are usually preceded

[^409]e wrists tion of wr-pedal len, and culfor a inspirarying or denth to ral conthe chink relaces, re nttack a scizure here may alowe the thack of ; it may p its eyes, s into the 1 attempt cs as this spell, and A comdi71 the clith other. As e child is ong interit is probis a very due to the ms, alouve Mackenzic
r, and, as described hes Alowlse duriug re anterior of venous
preceded
by signs of perturbation of the nervons system, although Grmeher ' considers these of little importance. The child slecps with its cyes half open, showing the white solerotice benenth the upturnel comene, starts and cries out in its slecp, grits its teeth, twithes its month, and arasionally a smile (risus savdonions) passes amonss its face; there may be also a temenemey to flexion of the thmms in the patms. A gaving into vacancer, usinally to ome side and upward, with an expressionless fare, is somutimes met with as a prodromal symptom, and during this comdition the child's attention manot be monsed. This may pass off in a few seromes or may be the immediato premersor of the attack. Latyngismos stridnlus, as before mentioned, may merge into the more general emvalsion.

These prodromal symptoms may low absent, and the paroxym may come on suddenly ; but this need not follow the prodmand sympoms even when they are present.

Gemeral comvonsions may present themselves in many forms; the attack may resemble in every respet a severe rpileptic paroxsm; it may be tonie thronghout its whole cousse, or violently clonic; it may be partial, affeeting only a single gronp of museles, or any momber motil all the muscles are afferted ; one varicty may merge intu another.

The tomic and the clonic spasms are essentially of the same nature, and, as in epilepsy, the latter coineide with the stage of eyansis, and are probahly
 revelmal centres, mot ats a divent excitant, but as an intermpter and final arrester of the previonsly-eristing spam, su that, as Gowers (ioc. cit.) expresses it, the clomic spasm is onty the tonic spasin spread ont.

Lu the attack of true infant le echampia, where there is no organic lesion an an exciting eanse, it is ver musual for the musements to be strictly contined to one limb, or even to one side of the body; although they are nearly always more pronomed on ome side than on the dher. Simon ${ }^{2}$ states that the right side is the one that is most severely implicated. Is this beanse most children are or will be right-handed? and does the emverse proposition hold trie?

The well-marked paroxysm camot be deseribel more clearly or with hess exaggeration than is done by Meigs and l'epper ${ }^{3}$ in the following worls: "The ehild often ntters a cery, ioses conscionsuess, and is seized with powerful tonic contraction of th- voluntary museles; the eyes are for a moment fixed and staring, and thes drawn obliquely upward un ter the upper lids, so that the white portions of the halls alone are visible for an instant between the partiall ropen lids; the tronk is rigid and stiff, the thorax immovable, the respration suspended by rigid spasm of the respiratory muscles; the face, for a moment pale, usually becomes livid and con-

[^410]gested, and l^{10} veins of the neek are distended. This stage of tonic spasm is followed for - by the stage of clonie spasm, in which involuntary and most irregular and convolsive movements ocenr. The eyes are rarely tixed in one position, but are constantly agitated in varions directions, from side to side, or upward and downward ; very often there is the most violent strabismos; the eyelids are sometimes opened, and at others shat; the pupils may be contracted or dilated. The musdes of the fice next enter into centraction, and occasion the most hideons contortion of the features, the month is distorted into varions shapes, the lips are often covered with a whitish or sanguinolent froth, and the jaws tightly clinched together by tomic: spasms, or agitated by convolsive movements, so as to produce grinding of the teeth. The trunk of the borly is also sometimes variously contorterl by clonic convulsions; the head is usmally stromgly retracted upon the trumb, but in other instances is drawn to one side or violently rotated. The museles about the front of the neek conter into action, and alternately elevate and depress the laryox ; the tongue, when it can be seen, is observed to be moved in different directions, and is sometimes canght between the teeth and severely bitten. The sxtremities, partieularly the superior, are more violently convolsed than any other parts. The fingers are drawn into the palms of the hand ; the foremems are flexed and extended upon the arms by short, rapid, and generally rhythmical movements; the hand is quickly pronated and supinated upon the arm, or, finally, the whole upper extremity is twisted and distorted into varions positions, which it is impossible to deseribe. The inferior extremities umidergo similar movements, bat almost always in a less degree than the upper. The respiration during the attack is irregular, sometimes suspended by rigid spasm of the respiratory muscles, and sometimes accelerated."

The face, insteal of being livid, may be pale throughout the whole of a severe attack.

The attack ends by the movements gradually diminishing in violene, leaving the child in a deep sleep, or else in a state of stupor. The child may have only one such attack and recover entirely, or after apparent recovery may pass iuto a scond, and this may be repeated several times with considerable intermissions of comparative health, or one attack may pass into another with scarcely any intermission, and this state, which is analogous to the status epileptieus, may last for hours, the child becoming more and more stupid after cach attack, until it may become profonndly comatose, and even die in this state. Considerable fever is often present in the status epilepticus, or eclampticus, if the expression be allowed. During the paroxysm the heart's action may be irregular; it is nsually tumultuons. It is very difficult to make any observations on the pulse, on account of the incessant maseular action, and authorities differ widely in their statements in regard to this. In epilepsy, an analogous state, Echeverria ${ }^{1}$ gives drawings
${ }^{1}$ Quoted by Nothnagel, Ziemssen's Cyelonedia, vol. xiv. p. 229. y and fixed n side \therefore iolent t ; the t enter atures, d witl! ogrether roduce urionsly x upon rotated. amately bserved een the rior, are iwn into the arms quiekly xtremity de to deit almost he attack muscles, whole of' violenee, Fhe child arent remes with may pasis is analoing more comatose, the status the parus. It is if the inments in drawings
of splygmographic curves, aceording to which the pulse before the seizure was higher, distinetly dicrotic, and aceentnated. Nothayel (loc. cit.) states that the iris is generally dilated at the begiming of an attack of epilepsy, and this is usually the case in eclampsia, as it frefuently is in the artificiallyproduced ectan!

When convolsions are entirely comfined to one side there is the strongest probability that they are due to gross cerebal lesions, and when they persistently ocenr in one part, are confined to this, or spread to others in some one particular order of sequence (even should they subsequently berome general), then the presumption hecones still stronger, and, in fact, almost amomens to a certainty, that a foects of disense exists in the motor area of the cortex, or in the sulyacent white matter, at the point corresponding to the part primarily affected in each paroxysm. 'This division of the subject properly lolongs to the articles on gross cerebal diseases, to which the reader is referred.

In the genome convulsions, conscionsuess is lost from the beginning, but in the partial attacks above deseribed, this may be retained throughout, or not last until by the successive implication of neighboring areas in the "diseharge" the eomvolsion beeomes general.

It is rave for the lowels to be mochanicully evachated during a severe paroxysm by the fore of the masenar movement. Acrording to Simon (loc. cit.), the sectetion of arine is entirely suspenterl in celampsia, and the subsequent discharge of urine is a eritical phemomenon which annonnes with eertainty the approaching termination of the attack or the end of a series of them, although a few more spasms may orem before their final cessation. The temprature of the body varies acording to the canse of the convulsion : in laryngismus stridulas and in the so-ealled essential convulsions it is usually normal, or nearly so, exerpt in the status eelampticns, as before mentioned. The same is true of mamic convolsions, whereas in those ushering in the acnte diseases there is high fever, $-103^{\circ} \mathrm{F}$. and 104° F. and above.

DURATION AND COURSE.

Eack individual attack of laryngismus is generally of hat short duration, -a few seconds, perhaps,-but one paroxysm may seareely be reeovered from before another commenees, and this coudition may last for homs. As the condition underlying this nemosis is a chronie one, the attacks are liable to return from time a tome'whenver an exeiting canse is present. The chith may have but one attack, or these paroxsms may return for months, or even years, and yet recovery take place. Long periods may intervene between the paroxysms, or as many as thirty or forty may oceur in twentyfour hours (Steffen). In genemal terms it may be said that the tendeney to return extends over several months. In the more severe attacks, general convulsions are apt to supervenc.

[^411]General convolsions differ more decidedly in their duration and conrse than the local variety above described. When they usher in an acute disease they are apt to be single, or at least repeated but once or twice, unless, towards the elose of the disease, when they indicate complieations, und are apt to return more frequently.

When they are simply due to peripheral irritation, or to reflex impressions starting from the gastro-intestinal mucons membrane, they are generally single, and are apt to be relieved on the removal of the cause ; hut if this is not done, other attacks are probable. The duration of the paroxysm itself varies from a few moments to half an hour or more. Meigs and Pepper have seen a case which lasted twelve hours; they may even last longer, but this long duration is rare and usually consists of a repetition of attacks. When the convulsions are due to gross intracranial lesions, the conse is apt to be entirely governel by the chameter of the exciting disense.

When death is due to the convulsions, whether of the local or the general variety, and not to the exciting canse of the paroxysms, it may ocene in three ways: 1st, by apnoa, the child dy, uffocated; $2 d$, in consequelice of the changes ocenring in the hain due .. the venoms stasis, ef"' sion of serum, hemorrhage, etc.; 3d, by exhaustion in consequence of the frequent repetition of the attacks.

PROGNOSIS.

The prognosis of a symptom presenting itself in so many forms, and due to so mony conditions, both functional and organic, of necessity will vary exceedingly. A few genemlitics may be allowed before entering into the disenssion of the prognosis in special cases. A child that has been exhausted by long illuess has on this account a great diminution or even an abolition of its reflex excitability, so that convulsions ocenrring in this condition are of much more serions import than an equally severe attack in a robust chidd, and usually betoken grave cerebral mischief.

The mere discovery of albumen in the urine shonld not of neeessity lead to the diagnosis of kidney-discase, as it may be due to the presence of fever or possihly be in consequence of the severity of the paroxysm. Huppert, ${ }^{1}$ quoted by Nothagel, ${ }^{2}$ has found albumen after every fully-formed eprileptie scizure, the albuminuria lasting from three to four hours; bat other authorities have failed to verify this statement. Mabille ${ }^{3}$ failed to find it in thirty-eight cases, either before, during, or after the seizures. The discovery of large quantities of allumen at any one time, or of its continuous presence in smaller quantities, particularly if casts are fomm, shonld lead to the probable diagnosis of kidney-disease, with the consequent grave progne sis.

[^412]Where no exciting cause can be diseovered, or where the fits continue after the exeiting eanse of the first attack is removed, the prognosis is somewhat doubtful, and the probability that they may become permanent must be entertainel. No convulsion should he lookel upon as of little moment, no matter how prominent an exeiting canse may apparently be discovered, for this may have been but the last increment of excitation that was needed to produce a convolsion in reality due to some severe organie disease; besides, a purely refiex convolsion, when repeated, may leave behind some indefinable and intangible impression which may be the starting-point of fiture attacks, a "habit" being thus induced which is possibly in part identical with epilepsy.

If a positive exeiting cause can be discovered, the fit is in all probability edampsia, particularly if the child has heen in previons good health. A temporary paresis of an arm or a leg is not a proof of central lesion moness the weakness lasts for some hours, when such a prognosis becomes probable, whether the lesion is primary or secondary.

Convulsions are to be looked upon as one of the modes of dying, and thins theoretically may have nothing to $\begin{aligned} & \text { a } \\ & \text { with causing the fatal termina- }\end{aligned}$ tion. It is partly owing to the firequeney of this final symptom that the dread has arisen in the minds both of the medieal profession and of others as to the very unfarorable prognosis of all comvulsions.

The proportion of deaths is a very diffeult thing to estimate, as the records of a large number of attaeks and their subsequent history are wanting. The mortality records are also to be looked upon with suspicion, as previonsly stated. Convulsions of themselves may be the immediate eanse of death, but this termination is rare in comparison with the recoveries, and it should be borne in mind that in proportion to their frequeney they less often point to grave organie misehief in children than in adults.

West ${ }^{1}$ computes that 30.5 per cent. of all deaths under one year oceur from diseases of the nervons system, that 73.3 per cent. of these latter deaths are due to convulsions, and that of the total deaths under five years of age 24.3 per cent, are due to diseases of the nervons system, of which $i 4.3$ per cent, are due to comvolsions. This is equivalent to saying that 22.35 per cent. of all deaths monder one year, and 13.19 per eent. of all deaths under five years, are due to convulsions.

Of the total deaths under ten years in my tables,-viz., 86,769,-7508 were ascribed to eomvulsions, a perecitage of 8.65 , which is not nearly so high a mortality as that given ly West ; but this may be owing to the ages of the cases included in my catenlations.

Convulsions in very young children-that is, within the first few days of life-are in all probability due to meningeal hemorthage, generally produced by injury received during diffieult labors: they are of grave import.

[^413]Osker ${ }^{1}$ states that in children dying shortly after birth in asphyxia or convulsions these symptoms are usually due to this condition, and Nothnagel ${ }^{2}$ makes an aralogous assertion.

In older children this statement does not apply, and the probability of the attack being of rellex origin is inereased. If fever is present, partienlarly if it is high, the aeeompanying convulsion probably annomees the onset of one of the acnte discases, or it may mean thermic fever, and the prognosis varies exceedingly, as will appear later.

The prognosis of eclampsia, so far as it relates to the effect on the future health of the patient, is a very important question.

Many authorities agree that couvolsions in infaney are intimately connected with the epileptic diathesis. Feré ${ }^{3}$ considers that searlatimons echampsia predisposes to epilepsy in after-life. Contts (loc. cit.), after a study of 68 cases of infantile convolsions, in which the health in later years was recorded, fomal that 31 were the subjects of neuroses in later life: thas, 11 had epilepsy (8 grand mal and 3 petit mal) ; 6 were somnambulists, and one of these had melancholia, and another hystero-epilepsy with suicidal tendencies; 3 had melancholia alone; 4 chorea; 7 perioolical migraine ; and of the 37 remaining cases, 6 were eceentric and irritable, and nearly all the remainder were in intellect below their brothers and sisters who had not had convulsions.

Gowers ${ }^{4}$ found 180 cases out of a total of 1450 cases of epilepsy in which the attacks began during the first three years of life; nembly twothirds of the cases begimning in infaney the condition of ortgin of which could be ascertained, arose from the so-called dentition convulsions; and, ascribing to the same cause a similar proportion of the cases respecting which no history was fortheoming, he fonnd a total number due to this cause which constituted 7 per cent. of all those investigated.

A few authors donbt whether infintile convulsions hold any causal relation to this disease ; but enough has been determined to make us wateh each case with care and be reserved in our prognosis.

Rickets is considered to hold a causal relation to epilepsy ; and, as this condition is present in many cases of eclampsia, it may be a partial explanation of the facts stated above.

Arlt ${ }^{5}$ originally called attention to the fact that lamellar cataract has been found to be associated with a previons history of infantile eonvulsions, and Hutchinson ${ }^{6}$ shows that this condition of the lens is usually associated with dental defeets other than those which he believes to be an evidence of

[^414]inherited syphilis. He considers the dental "erosions," as they are erroneously called, to be due to the mercury which has been, in all probability, given for the convulsions which were the cause of the cataraet, bat also allows that the nervous disturbance which attends the convulsions may exert some influence on the growth of the teeth. ${ }^{1}$ Magitot (loc. eit.) believes that the cataract and the defective teeth are both due to infantile convulsions, and confidently asserts that "l'érosion dentaire, dans ses formes d'échonerure, de sillon, de nuppe, etc., est le signe rétrospectif' constant de l'éclampsie infantile." Rachitis and measles are also capable of profucing these dental defects: so that they camot be considered as positive evidence of previous couvulsions. The eataracts and the dental defects should b_{n} looked uron as of the same nature as the deformities and markings on the mails which follow priods of serions disturbances of nutrition, ${ }^{2}$ except that the former are permanent and the latter transient.

The convulsions ushering in the exanthemata are not of so serious a prognosis as those oceurring later in the course of these discases.

In scarlet fever, convolsions at the begiming are of very grave significance, although some patients may recover ; but after the apparance of the rash they usually indicate a fatal termination. In malignant measles convulsions are of frequent oceurrence at the onset, hut if the child has been in previous good health, and the epidemic is of ordinary severity, convolsions at the onset are of no particular significance; not so, however, are those attacks oceurring later in the discase, when this symptom usually indicates a fatal termination by some complication. The same is true of scarlet fever. Convulsions are rarely seen in the other exanthemata.

In whooping-congh, convulsions are of very grave signifience. Ozanam ${ }^{3}$ has seen but one child restored to health after this complication. In the experience of Meigs and Pepper five out of twelve cases were fatal. Roger (loc. cit.) does not consider this symptom necessarily of fatal significance in cases otherwise uncomplicated, but when complieated with a broncho-puemmonia, death in his experience usually followed.

Convulsions are quite frequent in young infants in malformations of the heart and great vessels, and are usually fatal, being the cause of death in fifty per cent. of the deaths from cyanosis. ${ }^{4}$

Toxamic convulsions are also of grave significance, whether oceurring as a symptom of mremia or on accomnt of poisoning. In such wasting diseases as cholema infautum, diarrhoa, etc., convulsions are not uneommon, and usually indieate the begiming of the end.

[^415]Sequel.e.-Among the sequela that oceasionally oceur after general convulsions may be mentioned hemiplegia; contractures; defects of speech and hearing; lamellar cataracts and defective teeth; local palsies, such as squinting, ete. ; and oceasionally, in addition to these, some mental deterioration. Macroglossia has been regarded by some as an occasional sequec. These may be the effeet of the paroxysm itself or may be cansed by the original lesion giving rise to the convulsion. The prognosis as regarls recovery from these complications is unfavorable, though they are not necessarily of unfavorable significance otherwise.

Larymgismes Stridulus. - There are two points to be considered in the prognosis of this rather uncommon affection: 1st, the paroxysm itself, and, 2l, the underlying genemal condition giving rise to the spasm. The orlinary attack is not so fatal as some observers report, although death freouently happens, either from the severity of the paroxysm or, more rarely, from the mechanical wedging of the epriglottis into the chink of the glottis : nevertheless the prognosis is always rather serions, on acconnt of the possibilities. Jacobi ${ }^{1}$ considers that the ehild will get well muless within the first four to six weeks some untowarl circumstance happens. When the paroxysm is a very pronomed one and is acempanied by earpo-pedal spasms or merges into general convulsions, the prognosis beeomes very grave, for then other attacks are likely to follow, in any one of which the child may die.

The spasm may be so sudden in its onset that the erowing inspiration is absent, all respiration ceasing iustantly. This spasm usually relaxes only in death.

Reid 2 states that of 289 cases whieh he collected, 115 died; and Meigs and Pepper state that of 61 cases, 4 died of interenrrent or consecntive discases, while of the remaining 57,32 were eured, and 25 , or about 48 per cent., died of the malady itself; adding these cases together makes a total of 350 , with 140 deaths, a pereentage of 40 .

When the paroxysm has passed over, the underlying eondition remains, and the prognosis of this, if it be riekets, is not isnally menfarable. If an exciting eanse other than this can be found and is removable, the outlook is favorable.

PATHOLOGY.

In discases where the pathology is doubtful, or where the lesions to be expected differ and are not very pronomeed in character, the views previonsly entertained of the cause underlying the disorder unfortmately frequently color the deseription of the conditions found at the autopsy ; aud eclampsia is not an exeeption to this rule.

The post-mortem appearances detailed by anthors a few years ago differ materially from those of more recent date, the former finding signs of

[^416]neral peech ch as tericequel. y the gards neces-
red in itself,
The thi frerarely, rlottis: possitin the hen the o-pedal es very ich the relaxes

1 Meigs

 secutive bout 48 nakes aactive eongestion of the brain, and the latter passive congestion or anemia. But little light has been thrown by antopsies upon the condition of the nervous system which gives rise to convulsions. In true eclampsia, varyiug conditions of the brain and membranes have been deseribed, such as congestion of the eerebral veins and simuses with transudations of sermu, but these are more probably the effect rather than the canse of the paroxysm. The gray matter of the brain has been several times noticed to be paler than usual, but Steffen, ${ }^{1}$ on the contrary, states that a greater or hess degree of hyperemia of the brain-membranes and of the brain itself has ahwas been fomud, and sometimes with effinsion of blood or oedema. A significant fact in regard to the cansation of true edampsia is the state of the alimentary tract, which, in the autopsies where any mention is made of its condition, frequently presents appearances indicating acote indigestion, the stomach sometimes being full of madigested food.

When the convolsions are due to foci of disease, on to genemal systemic disorders, the appearances fomd after death will necesarily vary with the exciting cause.

To cite all the conditions fonm after death in convolsions in children would necessitate enomerating nearly all the pathological conditions to which childhood is liable.

In laryngismus stridulus post-mortom examinations show nothing more positive. Jacohi (loc. cit.) states that the condition fomen is "a positive absence of hyperemia in the brain, and no or very little blond in the heart and cutancous veins."

Different inflammatory conditions are sometimes found in the mueons membrane of the laryn, and oceasionally the eprighotis may be found incaremated in the chink of the glottis.

differential diagnosis.

For the sake of facility in diagnosis, convulsions may be grouped, somewhat arbitrarily, into eight chasses:
I. Convulsions may be an evidenee of reflex irritation from some temporary and comparatively trivial disorder, such as an overloaded stomach, irritation of teeth, carache, woms, constipated bowels, genital irritation, ete.
II. They may constitute an initial symptom of one of the exanthemata or of some other acute disease, thoracie, spinal, or cerebral, or may be due to thermic ferer.
III. They may indieate that the child is suffering from some general condition of ill health, such as indigestion, riekets, cyanosis, ete.
IV. They may indicate gross intracranial discase of a more or less chronic nature.
V. They may be a symptom arising during the course of one of the

[^417]aente diseases, such as whooping-congh, or may be an evidence of toxemia in the exanthemata or in kidney-disenses.
VI. They may be the result of a serions trammatism, such as injury to the head, a violent hemorrlage cansing cerebral amemia, or a severe burn or shock.
VII. They may be one of a series arising without assiguable canse, and constitute epilepsy.
VII. They may indicate nothing more than a mode of dying, particularly in those diseases whieh are acempanied by diarthea and vomiting.

If the child is well nomished and plump, and if there is no fever, the attack is in all probability to be placed in Class I. It may he an attack of laryogismas stridulus; but shond there be high fever, it is more likely that one of the acute diseases is abont to manifest itself. Shonld the rhild be rickety, the somees of irritation mentioned in Class I. are still more potent, so that Classes I. and III are frequently fomed associated.

For the differential diagnosis of Class IV. the reader is referred to other sections, but the general statement may be made that convulsions confined to one side, or to the face and arm, or to either of these alone, returning frequently and matataining the same chamater of inital movements ("primary movements" of Horsley and Beevor), ${ }^{1}$ and of the orler of invasion, shonld suggest strongly their organie nature, particularly if conseionsness is retained throughont, or is present in the earlier part of the paroxysm. The same probability of organic origin exists if the child is under-nourished and weakly, and therefore in a condition in which retlex excitability would naturally be in abevance. Convulsions oceurring in Class V. should offer no difficulty of diagnosis, as the primary discase will be so marked that a mistake would be very mulikely. The same is trme of Class VI. There is, probably, no essential difference between the processes at work in the causation of the epileptic and of the eclamptic paroxysm, and it is impossible to define where the latter ends and the former begins. As previonsly mentioned, the first attack in a young child previonsly healthy is probably eclamptie; the same probability holds good even if there have been previons attacks, provided a canse for the seizure can be found; but if the child has had many before, and if they arise withont definite canse, or arose from a definite canse at first which is now no longer in existence, then it beromes more probable that the attack is epilepsy, particularly if the child has passed the period of infancy.

TREATMENT.

The section upon treatment is naturally divided into two portions: 1st, that appertaining to the paroxysm itself, and, 2d, that appertaining to the

[^418]predisposing canse,-viz., the systemic condition of which the paroxysm is merely a symptom.

The physician will frequently be compelled to treat an attack in ignorance of the exciting canse, as this manifestly cammot be fully investigaterl while the child is being convulsed; but he should avoid falling into the error of treating atl cases alike, as if the convulsion was a discase instead of a symptom of varying significance. It wonld be manifestly improper to treat an attack due to excessive fever or to smontroke in the same way as one due to reflex irritation from digestive disturbances. Fortmately, in our perplexity, there are several agents which are eminently usefinl in quelling nervons outbraks, however they may be produced, thus giving us an opportmity of discovering and possibly removing the exciiing canse.

The opinion generally held, and particularly ly the pulblic at large, is that a convolsion in a child is an evidenee of acnte congestion of the brain, and to combat this condition the warm or hot bath, with or without mustard, is advised by the majority of authorities, in order to draw away the blood from the brain to the skin by cansing an expansion of the peripheral vessels. This treatment certainly has the sanction of enstom, and so universal is the belief in it that, in all hmman probability, the child will be phaced in the bath before the arrival of the physician. That this is miversally applieable and beneficial admits of grave doubts, as will be shown later.

Meigs and Pepper ${ }^{1}$ consider that "it is a good rule always to place the child, no matter what is the cause of convulsion, if it be a severe one, in a warm bath (96° or $97^{\circ} \mathrm{F}$)," and this is mondonbedly a safe rule; but a hot bath (100° to $110^{\circ} \mathrm{F}$.), such as is often employed, may be decidedly harmful, especially if the convulsion follows the ingestion of fool, as the bath eertainly tends to render the digestion of the recently-taken nomishment still more difficult. No one would think of giving a healthy child a hot bath immediately after a meal, for this very reason, as the withdrawal of blood from the stomach and internal organs to the skin would most likely be productive of harm.
A. A. Smith ${ }^{2}$ considers that a hot bath always docs harm, as the child usually has a convulsion or two immediately after it is given. This last statement is, perhaps, overdrawn, although a warm bath would eertainly be the less harmful.

If the bath is given and does not very soon afford relicf, it shonld be suspended. Shonld high fever exist, the warm bath, being below the temperature of the body, exerts a powerful influence in redueing the latter, and thus does good ; not so, however, the hot bath, whieh would be positively harmful here. Cold to the head is usnally advised in comnection with the preceding, and where there is fever this is nseful, but otherwise its utility is

[^419]donhtfin. Where there is anemiat of the brain as the exciting canse of the attack, the hot bath and cold affiusions are contra-indicated. The con lasion therefore is that the hot bath is hamental and contra-indieated in infantile romvolsions, and that the wams bath is a comparatively safe and sometimes usefinl treatment in the "essential" and some of the "sympathetie" class, althongh in the latter, where there is fever, a cool sponge-hath would he more efficacions.

As remarked under etiology, dentition is frequently considered as the cause of the attacks, and, in consempence, laneing of the groms is athesed and sometimes ruthlessly practised. The older authorities advise this more strongly than those of more recent date ; thas, Marshall Hall commeds deep lancing of the gums "twice or even thrice daily ;" but such miversal lancing is horrible, and the operation shonld not be performed imless there be swelling, leat, and reduess over one or more advancing tecth, when it will give deeded relief, as it will when no nervous phenomena aceompany the process ; the same rule should gride us in both conditions. Necdless lancing of the gums only serves to increase peripheral irritation, and thas tends to produce the very :ymptom the operation was intended to relieve. When the grum is of a natural color and hard and not swollen, it should most decidedly not be ent. Henoch (loc. eit.) strongly depreates the use of the laneet.

Should the child be robust and have been in previous good health, and if there is no fever, the probability is that digestive troubles are the cause of the attack, and an emetic, supplemented by a large injection, will be indicated. The emetie becomes peremptory should there be a history of the recent ingestion of unsuitable food. A heaping teaspoonful of a thick mixture of alum and syrup of ipecae may be given as soon as the child can swallow, or the fances may be tickled with the finger or a feather. Should it be thonght that the indigestible food has passed into the intestine, a laxative should be given, and this may be calomel, or, in some cases, castor oil, or simple syrup of rhubarb, either alone or in combination. An enema will also be of strice here.

We now come to a class of remedies that are of great service in convulsions of all kinds. I refer to the bromides and chloral hydrate. These may be used alone or in combination. If the child can swallow, from two to five grains of bromide of sodium or of potassium, preferably the former, on account of the less likelihood of its cansing distmbance of the stomach, with from one to two grains of chloral, may be given in solution every fifteen minutes for from four to six doses at one or two years of age.

If the child is unable to swallow, from five to ten grains of chloral may be given by enema in a small quantity of warm water, and repeated in a short time if the convulsions do not lessen or disappear. The use of chloral by injection is one of the most effectual means of cheeking the paroxysm, and should compression of the rectum laterally with the fingers not suffice to retain the enema, a soft-rubber male catheter may be employed with which to administer the injection as far up the bowel as possible.

Cheadte (loe cit.) advises the hypotermie nse of chatorl in from one- to Threc-grain doses; but Dastre' states that this method of atministering the drug shontd be abmindoned, on acemat of the almost certainty of consequent abscess. The writer has had no experiene with this nse of chlomal.

Most attacks of general convalsions not due to organic diseate will yich to this trentment, but, should the attack prove introctable, other mons must be tried.

Opium is of great value in quilling nervons excitement, lant intense venous engorgement of the bain, either primary or secondary, and coma are contra-indications. 'The most certain method of administration is noorphine by hypodermice ingection, and it should be used without hesitation shomld the attack be a severe one and not yidd to the treatment mentimel above.

For a child one year old, from one-twenty-fourth to one-thirtieth of a grain may be given with bat little danger, and repeated if necessary. But few of the text-books speak of morphine hypodermically in this comection in children. After its use the child will frequently fall asleep and awake much tintter.
A. A. Smith ${ }^{2}$ considers that opiom in the form of landamm or parcgrorie should be given in all ordinary cases ower fom montlis of age, to quell excitement, and then other treatment be instituted; and that pan is an important indication for its use, muless this be due to tor full a stomad or to tight lacing, ete. Plant ${ }^{3}$ is of the opinion that those cases which are due to cerebral anemia from loss of blood or profuse diarrhea, where the features are pale, the fontanel depressed, and the child under one year, particularly demand opium.

Chloroform and ether by inhalation also possess great power in suspending convolsions, and, in a setere attack, should be administered at once; but eaution must be exercised in their use, althongh children bear anesthetics better than adnlts. Henoch (loc. cit.) considers any other initiative treatment a waste of time.

Nitrite of amyl is well known to exert beneficial effeets in certain forms of epilepsy, and its use might naturally be expeeted to be of benefit in cases of eclampsia. Enstace Smith (loc. cit.) and Bridger ${ }^{4}$ both speak highly of its use in this connection. The jouruals contain reports of a few cases in which it was suecessfully employed, while some writers state that they have seen no benefit whatever from its nse. In those eases in which there is anæmia of the brain due to spasm of the arterioles it would seem to be especially indicated. Its action in depressing the funetional activity of reflex motor centres would seem also to make it particularly applicable in cases due to purely reflex causes.

[^420]Other remedies have been mentioned by authors nes of service,-viz, asafetidat, valerian, musk, ete., -hut the tratment mentioned deserves tho most confidence. Blisters and leeches to the naje of the neek mad behind the cars have been recommended, but are morely, if ever, needed in "essential" and "sympathetie" convulsions ; the same may" be said of venesection.

When the attack is aceompanied by high fever, and is probably a prodromal symptom of one of the exunthemata, a werm hath or a cool spongebath will act beneficially in tending to rednce the fever and at the same time faror the apparance of the rash. Bromides and chloral will be needed nlso. When the child is suffering from sunstroke, the main indieation is th lower the temperature, and the cold bath or sponging, the cold ${ }_{j}$ mek, mutipyrin, and possibly morphine hypotermically, should be employed.

Should pain be the exciting cause, anodynes will be needed. This is especially true of earache, when hot anodyne applications and morphine on conane instillations into the ear mar materially aid in addition to the usual antispasmodic treatment. One or two lecehes to the car will be of benefit here.

Where the paroxysm is due to mremin, there should be no hesitancy in the treatment, and the kidneys, skin, and bowels must be made to relieve the system overeharged with morbific products. The reader is referverl elsewhere for fuller details.

If a strong malarial element is present, quinine should be given after the convulsions have been quieted.

Besides the geveral rule laid down for the treatment of convulsions, nothing more definite can be said here in regard to those attacks which are due to gross lesions of the nervous system, as the consideration of this portion of the subject is beyond the scope of the present paper.

For the more local forms of convolsion, known as laryngismus stridnlus, a somewhat different treatment from that for general couvulsions should be employed. The child should be raised into the sitting posture, as this gives it a better opportunity to breathe and removes one possible cause of the attack, -viz., pressure on the occipital bone, especially if craniotabes is present. All useless crowding about the little patient by anxious friends and relatives must be prevented. Slapping the child's face or chest with the end of a towel dipped in cold water, or holding ammonia or acetie acid to its nose, may make the patient take a sudden inspiration and thus abort the attack. A sponge wrung ou' in hot water and applied to the throat, or ice to the epigastrium, as direeted by C. D. Meigs, ${ }^{1}$ may sometimes have the same effect. Iee or spray over th larynx, or a small pieee of iee introduced into the rectum, has also been known to cut short a paroxysm. The fances may be tickled with a feather or the finger to excite vomiting, for this aet is frequently known to interrupt the paroxysm. Should there be incarceration of the epiglottis, as rarely happens, this should at once be

[^421]relonserl by the finger ; if this finil, trachentmy mast be resortex to. Stefien (loce cit.) never sum a tavomble assalt after trachotomy. Emoties camot be administered by the moth doring a serere attack, but they relieve where there is a continalal stridor. Apomorphine hypodermionlly has been suggested by Steffen; 'but this is n somewhat hazardons provedure, and if used at all it should only be in sthenic cases.

Ader ${ }^{2}$ reports a case of lysteria in an adult simulating laryugismus stridulus in which this drug aeted ina very satisfactory manner, much better than nitrite of amyl: so that it seems possible that in suitable cases this remedy would be an efficacions one in severe laryugeal spasm in children.

Ether and chloroform by inhalation will at once cut short the attack, but, as before mentioned, should be used with cantion, and not be trinted to incompetent persons. Nitrite of amyl might be tried if it conld be administered enrly enough.

As in the more general attack, the bromides and chloral are of decided benefit, particularly the latter.

Mackenzie and Steffen (loc. cit.) both speak highly of the use of musk during the attack, or as soon alter it as possible, in one-and-a-half-grain doses.
'The same remarks apply to lameing of the gums as were made moder the head of general ronvalsions.

Should the immediate paroxssm be over, whether it be of the general or the lowal kind, the condition usmally remains which predeposed to the attack, and this must be attended to. The diet of the child should be carefully inquired into and properly suited to its age and condition, and every measure that will improve the hygiene strictly enforect; this is of the ntmost importance. Bromides shonld be given alter both forms of convulsions, in order, if possible, to prevent a return.

If an attack of laryngismos is feared, either from the symptons or from the fact that the child has had a paroxysm on the preeeding night, opium and one of the bromides may he given in combination,-viz, from two to five drops of landanm and from five to ten grains of bromide of sorlimm or potassinm,-and repented if nceessary. This may stop the impending attack in the same mamer in which it aets in laryugeal spasms due to simple catarthal laryngitis, althongh the two affeetions must not be confommed. Antipyrin has rendered grood service in my hands in the latter rondition, and, although the "plortunity hats not arisen for its admanistration in Jaryngismus stridulas, I shonhd not hesitate to nise it, and should expeet benefit from it. Pereeval ${ }^{3}$ has recently employed this drug with suceess in twenty-four cases of laryngismus stridulns accompanied by convulsions, no case requiring more than five grains of the remedy.

[^422]When rachitis is present, treatment addressed to this condition is essential ; proper supervision of the diet, col-liver oil, iron, fresh air, change of loeation, ete, will be indieated, anal thas the tendeney to the attacks of laryngismms may be ultmately eradieated. Any other systemio diseme that is ?resent should reeeive full attention and be treated appropriately.

Rienardson' has nsed peroxide of hydrogen and ozonic ether, alone or in combination, for stridulons spasm in whooping-eongh, with apparent benefit, and, although the author knows of no case of laryngismus relieved by the use of these drogs, it would seem as matural to expect relief in the latter condition as in the former.

[^423]
EPILEPSY.

By LaNDON CARTER GRAY, M.D.

Syno.aymes.-Latin, Morbus saeer sen comitialis; Freneh, L'Epilepsie; German, Fallsucht ; Spanish, Mal caduco.

Deflnition.-The term epilepsy (from srikaubiven, "to seize") is used to denote convulsioms, either tonic or clomic, of one limb or of several, or of the whole berly, with or withont loss of conscionsmess ; or lass of conscionsness of a certain chameter; or certain phenomena acting as equivalents to the typical symptoms.

Clinical Symptoms.-Tn the typical attacks of epileps the patient suddenly loses conscionsmess, htters a sharp antomatio ery, falls, has a series of tonic musenlar movements of short range, and quickly passes into a condition of genemal donie convulsion, which lasts for several seconds or mimutes, when the patient partially returns to consciomsmess, being apparently in a dazed eondition, and then gradually sinks into what seems like a deep slecp but is really a retum to meonsciomsmess, this quasi-slumber nsually lasting for an hour or more. But the deviations from this type, which is known as gremd met, or major epilepsy, are inmmemble. The most frequent variation consists simply in a loss of conscionsmess, either without any convolsive movements or with only very slight ones. This is known as petit mot, or mino: epilepsy. In other cases, cepectially where the heredity is dying ont in a family, there will be comvulsive movements, of the fingers alone ; in others there will be simply a sensation of vertigo, which, inked, vory frequently occus botweon the attacks of groend enal and petit meal; in others there will be varions sensations which are called rume ; and in still others there, are eomditions of double conseinmess, as it is called, in one of which a person may lead his nsual life and in the other lead a totally different one. The most frequent form, however, is either the grenid mal or the petit mat.

The countenance in these attacks varies greatly, being sometimes pale at the outset, and sometimes suffised. It must be borne in mind that statements in regard to this matter are extremely unveliable, as the by-standers are usially too much agitated to be acemate observers. The physician himself seldon sees an attack, moless he be a resident of a hospital: thens, while it would be difficult for me to remember the number of cases that I have
treacd in twenty years of professional life, it is very few indeed that I have scen during an attack.

Hystero-epilepsy is a curious mixture of hysteria and epileptoid symptoms, varying in degree from the pronounced hysterical atack to the frightful cases which are illustrater in the recent French writings, but which are seldom, if ever, seen in this eomntry. All, however, differ from true epilepsy in the admixtu*". or predominance of purposive or seemingly purposive movements instead of rigidly tonic or clonie movements of shocklike character; and opisthotonns is a non-epileptie symptom that is oceasionally ohserved.

Proenrsive epilepsy is a variety recently deseribed by Mairet, consisting of ruming movements forward, but otherwise with the usual phenomena of epileps. It may altemate with ordinary epilepsy or precede or merge into it.

Laryngeal vertigo, so called, is mudoubtedly, in my opinion, a varicty of epilepses, and, although it hats not as yet been deseribed in chitdren, the possibility of its oceurrence in them should be borne in mind. It consists simply of a slight loss of conscionsness, ocasionally with light tonic or clonic movements, and is connected with some laryngeal, tracheal, or bronchial affection, such as laryngeal tumors, asthma, cte. The eases reported have ceased after the enre or removal of the seming canse, but the histories have not extended over a sulficient length of time to exclude the possibility of remerrences.

Certain dream-like states may precede the typical manifestations of epilepsy, or take the place of them. They are simply degrees of impairment of conseionsness. Of the latter, however, the conditions of donble conscionsness are the most marked. One patient of mine, a boy of fourteen, wonkl pass days in wandering about the slums of New York, sometimes carning wages in some light ocenpation, without arousing the faintest suspicion in those about him, butil some morning he would return to li: normal condition, when he would quietly return home.

The epileptie insinities are treated in another article of this Cyelopedia.
We shall have oreasion, in speaking of the pathological matomy of the disease, to dwell upon the fact that epilepsy is but a symptom, just as is eough or fever, so that we may divide the epilejsies into those that are due to recognizable organic disease, those that are reflex, and those that we may call idiopathic. For the present we will speak of the clinieal characteristies of the idlopathie form of the ordinary greand mai or petit mal type. 'This has certain peenliarities which are of great importance from a therapeutic and occasionally from a diagoostie stand-point, and pre-eminent among these characteristics are to be noted the nocturnal recurrence of some, the quasi-periodicity of others, the association of migraine, and the temporary response, generally in a favorable way, to slig! t changes in the enviromment or the tratmont.

The nocturnal recurrence of epilepsy may very readily be overlooked,
and should always be suspected in a child who is hereditarily predisposed to the malady, or in one who complains of waking in the morning exlausted and pale.

The quasi-periodicity of many epilepsies is a matter to which I first called attention some five years ago. It will be found that many individuals smbject to this disease will have a recmrence of theirattacks at certain times. Thas, females are more especially subjeet to it at or about the menstrual period, whilst in others it will be fonmd to ocemr at certain times of the month, or at certain intervals, these intervals consisting sometimes of months and in some rave cases even of years. This may be utilized for therapenties, as I shall point ont farther on.

The association of epilepsy with migraine is a fiet to which I also called attention for the first time some five years ago, and in these cases the epilepsy alternates with migmine, the migraine disapparing when the epilepsy appears, and the epilepsy returning when the migraine disappears. By this I do not mean to say that all cases of migraine are subject to epilepsy, but I do mean to say that there is a very dose relationship between migraine and epilepsy, and in some cases the connection is so close as to permit of this alternation ; indeed, almost all cases of migraine will be found at some period of their lives to have had a loss of conscionsness, with or without convolsive movements, althongh, of course, this fact is nsually strenuonsly denied. But this association of migraine and epilepsy is of considerable therapentic significance, as I shall show.

Another extremely curious characteristic of epileptics is the fact that they are so readily influenced by slight changes in the environment and in the treatment. This was first observed as far baek as 1828 by the great Esquirol, who relates how, being at the head of the Salpettrière, which was even then capacions, he divided his epileptics into groups, and put each group upon a different medicine and one group upon some disguised placebo; how they all improved for a certain length of time, how they all relapsed at abont the same time, and how eath medicament had as much effect as the placelo, and no more. In addition to this, I have pointed out again and again that epileptics will do well for a time upon any change of treatment, whether that treatment be medical or surgical, whether it consist in cutting off the prepuce, removing the elitoris, extirpating ovarics, doing operations upon the male or female genitalia, using the hot iron or the moxa, cutting the eye-museles, or even, as I have done myself, etherizing the patient and cutting a piece of skin out of the buttock; may, more, I have seen improvement effeeted in a patient for months by mere change of loality, and I have known of another inveterate epileptic whose fits did not return for months after she had sonsed herself in a vat of hot water, until the process of cieatrization was completed. These epileptic attacks are prone to recur in very variable spells, oecurring every day, often several in a day, for weeks, perhaps months, and then spontanconsly disappearing for a variable length of time, to recur again and again in the same old manner.

The phails of most epilepties, ats I have pointed out, are large and variable. Marie and Masisi have attempted to show by measmements of the pupil that my statements upon this point are erroncons, but the variability of the pupils renders their measurements questionable, in my opinion. By this statement I do not men to say that the pupils are not large and mobile in other nervons discases, but simply desire to call attention to the fact that this is their condition in epileps.y.

The facies in most epilepties is ummistakable to a trained eye, althongh it is almost impossible to describe its fleeting traits. I think, however, that I conld maks a diagnosis of epilepsy in most cases by the facies alone. Of conrse it is much more marked in the inveterate cases which have been for a long time meder treatment by the bromides, and at this period the aceompancing listlessness, the patlor, the anne, the coated tongue, and the peenliar breath will greatly aid in the recognition.

The temper of most epilepties is extremely irritable, and especially is this the case in children whose malady has given them ill-advised license.

These elamacteristics of the so-calid idiopathic epilepsy must be remembered by any one who would intelligently treat a case of the discase.

The epilepsies of organic origin, or of probable organic origin, are an varions as are the finctions of the brain. Hughlings Jaekson first called attention to a form of epilepsy in which the convolsive movements were localized in one or more limbs, and to this in the course of time has been given the name of Jacksonian epilepsy. It has been found in many instances to be due to recognizable gross organic disease of the cortical motor centres or the maderlying motor tract. The procursive epilepsy is believed by Mairet to be due-upon what grounds we shall learn later onto cerebellar lesion. Almost any disease of the brain or spinal cord may have epilepsy among its symptoms, and this symptom may also be present with tumors of the brain or cord, the different forms of cerebral and spinal meningitis, hemorrhages of the bain or cord, tramata of the brain and corl, ete.

Etiology.-The factors which may be considered as bearing an etiological cansative relationship to epilepsy are-age ; sex ; heredity ; migraine; organic brain, spinal, or peripheral lesions; tramata; lesion of nonnervots organs; hysteria ; malnutrition.

Gowers has analyzed fourteen hundred and fifty cases, with this result:

Under ten ${ }^{\text {cenrs }}$. 422 cases.	From forty to forty-nine years . . 31 enses.
From ten to nineteen years . . . 665 "	From fifty to fifty-nine yems . . 16
From twenty to twenty-nine yeurs 224	From sixty to sixty-nine years . . 4 " From seventy to seventr-nine
From thirty to thirty-nine yours, 87	years 1 case.

In this connection I desire to call attention to the fact that many cases of idiopathic epilepsy will begin with a fit in early infancy, after which no convulsion will ocenr for years, when the attacks will again appear and the case will become one of well-marked epilepsy.

In Gowers's fonrteen hundred and fifty eases the percentage of females was 53.4, and of males $46.6: 36.6$ per cent. were of hereditury origin.

The association of migraine witi epilepsy has been atready mertioned, as has also the comection with organic hain, spinal, and peripheral nervelesions and trammata.

In some rare cases epilepsy may be cansed by diseases of the heart, of the kidneys, rarely of the lungs, and very rarely inded of the genitalia.

The association of epilepsy with hysteria is by no means infrequent.
I have seen three cases in which profomen malnutrition seems to have been the canse of epilepsy, for when the general health was perfectly restored the epilepsy disappeared, and in one case it has not returned for seven years, in another case for six, and in another ease for fom, whilst in none of them was there any hereditary predisposition.

Pathological Anatomy-As I have already said, epilepsy must be regarded as a symptom ; and it may be divided into two grat classes, viz.: 1. Epilepsy from recognizable organic discase; 2. Epilepsy which we may call idiopathic.

The organic lesions which are capable of causing epilepsy are tumors of the brain and cord; meningitis, either tubereular, cerebro-spinal, suppurative from disease of the ear, or by metastasis from other organs; the different forms of myelitis; the cerebral palsies of childhood, such as hemiplegia, double hemiplegia (diplegia), or paraplegia, and due to such lesions as porencephalitis, embolism or hemorrhage from the cerebral arteries, thrombosis of the cerebral arteries or wins, ete.

The pathology of the idiopathic forms is imperfeetly understood at the present day. The old theory of vaso-motor sasm preceding cerebral anamia or hyperemia is now almost entirely disearded by neurologists, as it ought to have been long ago, for there has absolutely never been any logical proof of it whatsoever. It is donhtless true that ligature of the carotid artery and great hemorhage are capable of producing epilepsy, but that the profound ischemia produced by them was present in every case of epilepsy has never been shown, whilst there are many experiments and facts to prove that the cerebrom of epileptie hman beings and animals is not vascularly altered to any marked degree. Vulpian has examined the brains of guinea-pigs artificially rendered epileptic, and has found that they are neither hyperemic nor ischemic during the epileptic attack. The deductions as to the cerebral cireulation that would be drawn by certain authors from the facial circulation are not warmatable, iusmuch as the latter is by no means an index to the former, for it often happens, especially in cerebral trammata, that the face may be deathly pale at the same time that the cerebral meninges are in a condition of profound hyperemia. The same remark also applies to the proof that would be drawn from the condition of the circulation in the fundus oculi. lu some cases of idiopathic epilepsy a selerotic condition will be foond in the brain, in others some old focus of limited meningitis, especially of the pia mater, whilst in muny no
lesions are visible. Great stress has been laid upon selerosis of the comn Ammonis, but this find has by no mems been constant, and it is exceedingly questionable whother it is not a mere coincidence or an effect rather than a canse. Barthes and Rilliet have laid great stress mon a peenliar variety of selerosis to which they have given the name of tuberons or hypertrophic, and in which the convolutions are fomen clevated, studded with round or ovoid tuberosities irregulaty disposed upon the convex portions of the convolutions, rarely in the fissures, the size varying, but sometimes attaining that of a large mut. 'These muelei do not affere the white matter, the gray matter of the cortex, or the central nudei, the basal nuclei being alone affected. M. Chaslin has recently, at the instance of M. Féré, examined five epileptic brains, and in four of them he has found a condition for which he suggests the name of neurogliar selerosis. In this condition the convolutions are marroscopically shrivelled, small, hard, smooth, or slightly ronghened, withont athesion of the pia mater, and otherwise nomal, the pathological alteration extending in a very variable manner over the surface of the cerebrom, with large intervening normal portions, and sometimes reaching to the medulla oblongata, to the comna, or to the cormu Ammonis. In one instance the alteration was fonnd only in one of the olivary bodies. Mieroscopically the fundamental lesion is said to have been due to the presence of a number of rongh fibrillae of an uncertain length which had invated the cerchal tissue, especially the gray cortex. In the author's own words, "In the normal state the first layer of the gray cortex contains certain so-ealled spider-cells, whose prolongations are searcely visible. In this condition, on the contrary, this first layer is formed by a bundle of fibrils arranged nearly parallel to the surface of the cerebrum, and it can be distinctly seen to originate from numerons cells with hypertrophied prolongations. In the preparation which I am viewing at this moment there is a place where this transformation invades all the layers, but leaves intact mumerous nerve-cells and vessels. It can be seen, moresver, that these fibrille in a certain space form in the depth of the cortex a net-work of nodal points, in which lie the cells of the nenroglia. Finally, and I wonld call attention particularly to this fact, this first layer is studded in places by large compact bundles, which are evidently formed from these fibrille. I would observe, in passing, that the vessels which remain do not present a trace of inflammation, there being simply, in certain points, a hyaline transformation of the cupillary wall." M. Chaslin is convinced, following the views of Ranvier, that a distinction should he made between the comective tissue of mesodermic origin and the nenroglia, which is of epithelial or ectodermic origin, the iatter embracing the Mïller's fibres of the retina, the fibres and cells of the nenroglin, in the spinal cord, and the slightly differentiated prolongations of the spider-cells in the brain; and this nemrogliar sclerosis, which he deseribes for the first time, he believes to be entirely distinct from a selerosis of the comective or mesodermie tissue, for he asserts that the peculiar fibrillie of
this pathological condition distinctly emanate from the nenroglia-eells, whilst the non-adherence of the pia mater and the relative integrity of the vessels are indirect proof in the same direction. Moreover, be hats been able to adduce a histo-chemieal proof. These fibrillie and bundles resist, in sections made after hichromate immersion, the sucerssive ation of potassa solution of forty per cent. for ten minutes, as well as washiug with water and concentrated aeetic aedd, whist they romain colored red by the pierocarmine used after washing in water, and they can be preserverl thos in formic glycerin. On the other hamb, the connective tissum treated in this manner swells and decolorizes, so that a section of the spinal cord thos treated showed the pia mater swollen add deeolorized, whitst the nemroglia was intact. In addition, after the action of alcolool diluted to one-third, these fibrillse remained eolored by the carmine when subjected to atectis aded, whilst all other forms of eonnetive tissine of the bonly were decolorizal. This pathological deseription is sodefinitely and judicionsly given that it merits attention. Of the five bains that were examined, four were fomed to be in this condition of nembgliar selemsis, whilst the lifth wats apprently maffected. The author would have us believe that this nemrogriar selerosis is the condition that has been fomm in the cornon Ammonis and in the olivary bodies in some cases of epilepsy.

Nor is our knowletge of the modus operemdi of epilepsy meh more definite than one knowledge of the exact pathology. The older theories have been that the medulla oblongata was the portion of the nervous system most concerned in the production of symptoms. Van der Kolk believed that the nuclei of origin in the floor of the fourth ventricle of the hypoglossal nerve were always in a condition of induration, this induration being in proportion to the amount of tonguc-hiting that was present in the attacks. But this was the airiest of theories, and is searcely worthy of mention, much less of sober discussion. Then Nothagel asserted that there was a certain area in the floor of the fourth ventricle, which he calletl the convulsive centre, irritation of which in some monown manner was eapable of cansing epileptic convulsions. This simply aded another fact to our knowledge of the different cansative krious of epilepsy. But of tate yars, as our knowledge of the fimetions of the cortex of the brain has received so tremendons an impulse from the experiments of Fritseh and Hitzig, facts have acemmulated, t ding to demonstrate more and more strongly that epilepsy in at least a large momber of cases, if not in all, is due to direct or indirect exeitation of the cortex or of the nerve-strands leading from the cortex to the peripheral struetures. It has been shown again and again that electrica! or mechanieal irritation of the motor centres can canse convulsive seizures of tonie and clonic nature, with loss of conseiousuess, and it has also been shown that the same effects can be produced ly the same irritation of the nerve-stramb underlying the cortex. Duret has produced the most wide-spread convulsions by irritating the cerebral membranes, more especially the dura mater. Immuncrable lesions of the
cerebrim, both of the cortex and the muderlying white strands, have brought proof' in the same direction. But we must also remember that epilepsy can be produced by such extractanial lesions as diseases of the spiaal cord, of the peripheral nervons system, and of many of the non-nervons viscera, by alterations' in the blood, such as are to be foumd in albuminuria, and possibly by malnutrition, and by the action of many toxic agents and varions felbrile conditions: so that it would be a matter of large assmmption to say that in all these varions conditions the cortex of the brain must be the part affected. The truth probably is that the epileptic manifestations are due to a peeuliar molecular condition of the motor trant which proceeds from the motor convolutions to the peripheral motor structures, the museles. What this particular molecular condition is we do not know, any more than we know what is the peculiar molecular condition producing chorea, or neuralgin, or tetanus, or hysteria, or any one of the different functional nervous discases, and we probably never shall know nutil the time arrives when we shall possess such instrmments of precision as will enable us to see the molecular play in a living brain and spinal cord, or until we shall have so advanced in our methods of preparation and staining of the nervons system that we can detect such slight cellular alterations as have thus far entirely eluded our vision. The metaphysical theories are puerile that would explain these cellnlar alterations in the present condition of our knowledge. Whatever this altered molecular condition may be, there can be no question that it finds expression in epilepsy throngh the motor tract proceeding from the motor convolutions to the motor struetures, the museles of the periphery. When museles are convulsed, they can be convulsed only by direct excitation of the musele itself or of the motor tract leading from the musele up, to the motor convolutions. But some varieties of epilepsy are evidently due to an excitation that extends into this motor tract from some part of the nervous system without it. For instance, some cases are attended with such symptoms as hemianopsia, or word-deafness, or aphasia, indicating a lesion in the corresponding centres of the cortex, and autopsies have demonstrated the correctness of this view ; whilst the epileptic convulsions that are observed from lesions of non-nervons organs, diathetie conditions, and the action of toxic agents must be from indirect implication of this motor tract.

Idiopathie epilepsy, therefore, is a neurosis, like nenralgia, migraine, hysteria, and chorea, and it is exceedingly questionable whether the selerotic changes that have been found are not effects rather than causes.

Diagnosis.-In the diagnosis of epilepsy it must always be borne in mind that epilepsy is a symptom, and the question of diagnosis is simply a question of what the epilepsy is a symptom. The question must therefore always be asked whether it is a symptom of any organic disease, such as lesions of the brain, of the spinal cord, or of the peripheral nerves; whether it accompanies the cerebral palsies of ehildhood; or whether it bears a distinet relationship to heart-disease, or nephritis, or profound malmutrition.

After all these organic lesions have been excluded, the epilepsy may be said to be idiopathie. Its diagnosis shond not then be difficult. The attads consist of maconscionsness, with tonic or clonic convalsions, or simply of loss or impairment of conscionsiness, without convolsions, or with sery slight ones, needing only to be differentated from hysteria and simulation.

True hysterical attacks do not have the same sharp lass of conscionsness that oceurs in epilepsy, and hysteries do not, therefore, tall and broise themselves or bite the tongue as do epileptics ; moreover, the movements in hysteria are more evidently volitional and of wide range, so that the patient rolls and turns herself in bed or assumes varions attitudes, whilst in epilepsy the muscular movements are limited in range, consisting only of limited movements of flexion and extension, or of simple rigidity. But it shoukd not be forgotten that true epilepsy may be conjoined with true hysteria, in the so-called hystero-epilepsy.

Simulation of epilepsy is extremely vare. When the simulation is artistically done, as I have seen it by a certain professional thief, who is known to his companions as a "dummy clucker," the detection will not be possible except by close ohservation, when the unchanged color in the face, the modiated pupils, and the lack of the long sleep afterwards, together with the tendency to overdo the clonicity or the tonicity of the convulsions, will usually lead to detection.

Prognosis.-At the outset of the question of prognosis arises the question as to what shall be considered a cure. Cases have been known to go withont an attack for ten, fifteen, or even twenty yours, whilst it is not seldom, as I have already said, that a convulsion in infancy will not he succeeded by another for ten or fifteen years, when a whole serics may set in. Under these ciremmstances we must feel a profomed meertainty as to what period of time of freedom from fits shall constitute a cure. In favorable cases immonity from the attacks may he obtained for several years, even as much as six or seven years, as I have known in my own practice. In less favorable cases the violence and the frequency of the attacks may be greaty lessened, so that the life of the pationt is made much pleasanter and more useful, and the tendeney to mental deterioration is decreased. In some eases, however, the attack camot be affected by any means at our command. As a matter of fact, most cases of epileps. of the grand mal type can be improved, but only a few of them can he eured in the sense which I have explained. As to whieh cases ean be improvel and which cannot, I know no other eriterion than the effeet of treatment for a month or two. Idiopathic cases which respond promptly to treatment during this period of time will usually continue to do well, but time alone will show as to how long they can be kept withont their attacks. The sad fact should always be explained to the patient's relatives that they most make up their minds to continuons treatment for years to attain even this result. The cases of petit mal are almost always intractable. I have never yet seen a case materially affected by treatment. Cases of hystero-epilepsy are
usatilly of excellent prognosis, if the patient an be bronght mader proper control and treatment. The anses which are associated with migraine are usually also of exeelent prognsis so fin as grent inmpovement goes. 'The asses of peripheral origin usmi : mprove very greaty, athough there is always, in my exprienee, a larkug convalsive tembeney.

Treatment. The trentment will depend in some degree upon the variety of the epilepsy. Cases of epilepsy mased hy intramaial lesioms whese lowation ean be detemined by our present knowledge of hacalization shonld be operated upon, if it be possible to reath the lowaty afleeted. The sumgeon ean cenily reach the cortex of the cerebrum and the cerelallam, the centrom ovale of the cerchom, and all of the subertient tissue of the cerchellnin, and in a certain momber of instanees our present kowhedge of cerebral and cerebellar loealization will be a relialde guide to lim. But. regard mast also be bad to the mature of the lesion before any surgical procedure is attempted. It would be folly to operate in the hemiplegias, single or donble, and in the paraplegias comstituting the so-ealled cereboal palsies of childhood, as they are dhe to the cerebrad losses of substance known as poremephalitis, to hemerhage, to anterial or venons thrombsis, or to selerosis or encephalitis, which, if not always, are gemerally the resule of preeding arterial tromble, while it is seldom possible to diagnosticate the exact cansative lesion. A proper case of tumor should always be operated npon, althongh cerobal thmors of children are by mo moms so ensy to diagnostieate as are those of adults. Still, when eephalatgia, cerebral vomiting, neuro-retinitis, and the progressive character of the symptoms are such as to warrant a diagnosis of a cerebral tumor that cem be localized in an accessiole area, an operation is not only warmatable but called for. Where the epileps is evidently due to suppurative trouble extending inward from the ear and cansing symptoms of abserss in the temporal lobe, an operation is eminently praticable, and has been done in several instances with great suceess. When epilepsy has followed a cerebral tramma, the sealp shond be carefully shaved, and a cieatrix or depression of the skull searched for, and, if cither is detected, an exploratory trephining should always be done, for in several instances of this lind a very slight adhesion of the membrames has been fomed and removed with good results, or a hematoma or depression of the inner table hatis been discovered. Under antiseptic precautions the trephining is a harmless procedure, and may disclose conditions that conld not have been recognized without it.

In a case of epilepsy oreuring in a child with some peripheral irritant, the latter should always be removed, although such removal may canse no more than temporary improvement; for even this may be a valuable adjuvant to the treatment with drugs. Any phimosis or allherent prepuce should always be rectified. An irritable clitoris shonld always be treated, either by soothing applications, or by carefilly applying with a camel'shair brush a sixty-per-eent, solution of nitrate of silver, the spplications being made as often as may be necessary. If there is a vaginitis, this should
 shonld be reetified ; but I hater an faith whatever in the enative or even palliative effect of removal of insuflicioney of oxnlar maseles. If there is a laryugeal thmor, giving rise to the symptoms of som-aillod larymgral rertigo or epilensy, this tmior should be removed. A memrona slomid be exeised. But in all these cases the opreation should not be tristed to ulane, as the epideptie tendency, one established, as I have said, is wry diftiont to ematiente.

In cases of epilepsy rengoined with hysteria, the hesterioal tomberey should be taken filly into mome. Tom many hesterical chiddren manifowting epideptic tendencies are petted and spailed by dowir parents, until they come to have far lass than the asalal fechle sedfecontrol of chathome, and in many instames they berome perfint savares. All this shombld be morefilly and firmly met, either by the aid of a traned muse or thousand metheds that will vary in every individat case acording h. tace and good sense of the physician and the parents. It is surprising in many instanes to see the effect of surh momal treatment upon the epileptic manifistations of this hysterian mas.

If migmine is associated with the epilepsy, the former should be earofully trated. The best drue with which to do this is a reliable preparation of 'amabis india, preferably the solid extmet, begiming with doses of onetenth of a grain, and gradatly increasing to onc-fhird or one-fourth or even onc-half grain, aceording to the idhosyomes of the patient. Whatever the gomatity, it shond be administered three times a day, and its administation shond be contimand for months. At the same time the epilepsey itself shond be treated, in the manner that will be deseribed. In these eases of associated migraine, attention shombd always baid, also, to the condition of the digestive organs. In cases of coated tongue or foul breath the administration oemsionally of onc-twenticth of a grain of "alomol every home for five eonsentive hours will be fomel nseful, and should be followed some twelve homs subserpontly by a moderate saline laxative; whilst five-minim doses of dilute nitromuriatie acid in a half-wineglassfal of water before meals, or, if this dons not agree with the child, a wineglassful of Viehy or (iesshuebler water, should be given there times a day for a week or two. Comstipation should always be overeome by some gentle lasative, one of the best of which is freshly-ealeined magnesiat, of which chocolate makes are now made be many pharmacists.

Every alse should be carefully interrogated or observed to determine whether there is any marked poriodicity in the return of the symptoms, and at these periods the child should always be kept quict and sperial attention shond be paid to the modiation. In many instances where the attacks return during a certain period that may not extend over a week or a few days, I pat the child to beet at this time, or I add to the medication or inerease the quantity of the drug which I am administering. In noeturnal eases it may only be necessary to administer the drug at bedtime. The
possibility should always be borme in mind, however, of these epileptic nttacks being diverted from their msial period of time, breaking ont at some other, so that a noctmol nttack may come during the daytime, or at an umsinal periond of the month. In such cases it will herome neressary to keep up contimons twatment, simply paying special nttention, in the mamere indicated, to the periouls.

There is no question whatsoever that the bromides constitute the most valuable means of treatment at our disposal. They shonld be given in as large doses as may be noecosary, muless the idiosyncrusy of the patient prohibits them. Mast epileptic chiddren bear remakably well all the bromide that it may be meressary to administer, but there are occasional exerptions. I have repeatedly givel as much as one ounce of the bromide of potassinm at a dose withont my ill effect, whilst in other "ases I have seen collapse proxlued by a dose of ten grains. Oecasionally also, there are cases in which the bromide actual!y seems to agrgavate the diswase.

Baring these considerations in mind, my routine tratment is as follows: I always begin with ten grains of the bromide of ;otassinm, administered three times a day, muless the attack has a marked periodicity, when I administer the bromide at that time in proportionate doses. In the consse of ${ }^{\circ}$ a week I incrase the bromide to fifteen grains three times a day, unless the patient has begm to improve, or $1 . n l e s s$ bromism manifests itself. It the patient does not improve, but beas the medicine well, I ineratse to as much as from thirty to forty grains thrice daily. If the patient manifests symptoms of bromism, but the epileptie manifestations do not improve, I eonjoin with each clase of the bromide of potassimm five grains of the bromide of sodimm, as this combination of the hromides will often increase the effeet upon the disease withont incomsing the constitutional effects of the drug. Having thus got the patient under some control, I keep on with the dose which I have rached. If the pationt ceases to improve, on relajses, I make therapentic use of one of the clinical characteristics of epilepsy which I have deseribed, - viz., the impressiomability of the disease by variations in the tratment and the enviromment. I can masally thas proluce some effect mpon the epileptic manifestations by a lasative, a brisk cathartic, a change of serne, or a combination with the bromide treatment, as already detailed, of bomax, medladoma, or hyoseramine. These adjusant drugs I use for only a short time, gradually discontinuing their use, and I endeavor to employ them in one or two doses daily.

Great stress has been haid by some authors upon the loss of weular reflex, evidened by the ability to tickle the throat with a feather without cansing the patient to gag, as an indication that suffieient bromide has bren used. I have tested this again and again, and have seldom formd it to be of any value, as I have known cases to grow worse when this reflex hand been abolished, and other cases to improve althongh this reflex was "ot abolished, and others still to bear inereasing doses of bromide althongh this reflex had ceased.

Of the bromides, however, I never make use of other than the bromide of potassinm and the bromide of sodinm, as the bromide of amsmonium has proved perfectly worthless in my hands and in those of others, except that I have orensiombly compoyed it as an aljusat in the manner just described. The acoe, of which so much has been made, has seldom beet a serions factor in my mast, and has nsually been overome by the administration from time to time of moderate doses of arsenic, preferably in the finm of Fowler's solation. It has been my expericure that a case which will not improve mader the bromide treatment will not improve at all, and the only exceptions to this rule which I have met are in some few cases that will do well with borax when the bomide has faiterl.

The method of administration of the bromide suggested by Dr. Gowers is oeensionatly very usefinl, especially when alternated with the mondes of treatment that I have just detailed. Dr, Gowers deseribes his methond as that of the maximmodose treatment. He begins with doses of two or three drachms of bromide of potassinm every second or third morning, and iacreases the dose to four drachms every form morning and six drachme or an ome every fifth morning, these doses being given after breakfast in a tumblerful of water, for they may canse epigastrice pain and vomiting if they are not well diluted. He does not increase the dose beyond that which produces tramsient lethargy and mental dulness. The suseeptibility of different patients to these doses varies exceedingly, some being mable to bear more than four drachms, whilst in others, as I have myself seen, one ounce will produce no moplasant symptom. The maximum dose should be reached in two or three werks, and repated three or fon times, after which the doses shonld be gradually reduced, so that the whote course lasts six or seven weeks, when the patient may be left withont treatment for several weeks, or even several months, althongh I have not seen the immunity of six or eight months that Dr. Gowers chams.

Belladonna has not proved of much nse to me, exept as an adjuvant in the mamer deseribed. The dose should be one or two minims of the fluid extract thrice daily, but the drug shonld be carefilly watehed. Borax, ten, twenty, or thirty grains thee times a day, well dilutexl, is in some cases of as much effieacy as the bromide treatment, although it is not generatly so. In every instance, however, in which the bromides fail in their effect, or in which they disagree with the patient, the bomax treatment should be carefully tried, and it is the most valuable of all the adjusants.

I have never been able to satisfy myself that other drings than these mentioned are of any value in epilepsy.

BIBLIOGRAPHY.

[^424]Ferrict, Funtions of the Bmin, 1880.
François-Franck, Leçons sur les Fonetions motriees du Curvenu, Paris, 1887.
Gowers, Epilepsy and other Chronie Disonses, London, : 381.
(Gowers, Dismes of the Nervons System, Philadelphia, 1888.
(irasset, Maladics du systeme nervens, Paris, 1878.
Gray, L. C., New York Medienl Iommal, 1886.
Huhi, Marshall, On bisenses and Demagements of the Nervons System, London, 1841.
Hummond, Disense of the Nervons System, Now York, 1886.
Hughlings Jackson, 'Iransactions of the Intermational Medient Congress, 1881, vol. ii. j) \mathfrak{f}; West Riding Lamatic Asylum Reports, 1875, vol. r. p. 105; Medient Times and Garette, 1876 , vol. ii. p. 702; Brain, 1880-81, vol. iii. 1. 43: ; ibid., July, 1888.

Kusshath and Tember, Moleschott's Untersuchangen, 1י, :ii., 1857.
Luciani. Rivista spromentale di Fronintrin, Reggio-Emiliana, 1878.
Laeimo nud seppilli, Die Functions-Lacalisation nuf der Groshirminde, Lejpsic, 1886 (German tramsation).

Nothaugel, Virdow's Archiv, Bd. xliv., 1868, and Bd. xlix., 1870.
Nothugel, urticle "Epileps" in Von Ziemsens Handbueh der Krmakheiten des Nervensystems.

Pitrès, Revue de Mádecine, August, 1888.
Radelitfo, Epilepsy and other Convulsive Affections, 1858.
Reynolds, in Reynolds's binevelopredia.
Ross, Diseases of the Nervous System, New York, 1883.
Schroeder van der Liolk, Structure and Functions of the Medulla of the Spinal Cord and Medulla Ollongata, 1850.

Sem, article "Trephining for Epilepsy"in Anmad of the Universal Medien Sciences, issures of 1888,1889 , and 1890 .

Vatter, Revie de Médecine, 1887.
Wexphal, Berdin, Klin. Wochensehr., 1871, xxveiii. ; ibid., 1877, p. 121.
Wilks, Lectures on Diseases of the Nervous System, Landon, 1878.
Wood, II. C., Nervons Disences and their Dingnosis, Philadelphin, 1887.
Zohmb, Archives le Neurologie, 1887.

TETANUS.

By F. X. DERCUM, M.D.

Tetanus (French, Tétanos; German, Starkrampf) may be defined as a disease which is chameterized by the gradual onset of tonie spasm of the voluntary museles, the spasm beginuing, as at rule, in the muscles of mastication, spreading thence to the tromk and limbs, and being subject to irregnlarly rewrring exacerbations of short duration. No definition, however, (an in itself be entirely satisfactory, and a detailed description of symptoms is here, as elsewhere, necessary to convey a proper conception of the elinical pieture.

Tetanus has an excectingly extensive literature, hav: \quad ng been known from the curliest times. The majority of writers have de... with the subject in general, and, with the exception of tetames neonatormm, have not treated of its special relations to children. Childhood including, as it does, all the vears from birth to puberty, tetanus has a full claim upon our attention. That tetams oceurs with considerable frequener among ehikeren, a brief study of statisties will readily show. In the valuable collection of cases made by Lamie ${ }^{1}$ from the records of the Glasgow Infimary, fifty in number, nine oceurred among children. Of one hundred and seventyone collected by him from varions other sourees, thirty-five oceured among dhildren. Taking these cases all in all, the relative frequency amonnts to nouly twenty per cent. Again, in the collection made by Poland ${ }^{2}$ of cases oecurring at Guy's Hospital from 1825 to 1857, seventy-two in number, sisteen, or twenty-two per cent., were in children. In the more recent collection by Taylor ${ }^{3}$ of cases occurring at Guy's Hospital from the middle of 1866 to the end of 1877 , fiftr-one in number, twelve, or twenty-three and one-half per cent., were in children. It would be safe to infer, therefore, that the averave percentage is about twenty-two. The statisties of Wallace ${ }^{4}$ present a decidedly smaller proportion,-that is, excluding the cases of tetanus neonatormm. He reports, in all, two humdred and eighty eases, and from the ages of one to fifteen years twenty-cight

[^425]cases ocenr. The significance of this low percentage is, however, impaired when we refleet that the eases collected were those admitted to the Medieal College Hospital of Calcutta and inchuded both natives and Europeans. Further, the statistics of Wallace present other anomalies, such as an excessive proportion of European children suffering from tetanus neonatorum as compared with the natives, and we are led to the conelusion that the peenliar social conditions obtaining in India markedly inflnence hospital admissions. In the Pemssy lvania Hospital the experience has also bern that a large proportion of the cases of tetanus has been in persons under fifteen years of age. Dr. Frederick A. Packard has collected from the hospital record and placed at my disposal thirty-two cases ocenring sinee 1873. Of these, nine, or almost twenty-eight per cent., were in children under fifteen years of age. This does not in" de four cases in children, not recorded, but of which Dr. Packard has personal knowledge. To include them wonld, of course, make the proportion still greater.

Eticlogy.-Two classes of canses are here to be considered, predisposing and exciting. Among the predisposing factors are age, sex, race, climate, and season.

Under five years of age tetanns-exeluding, of comrse, tetanus neona-torum-is excessively rare. Wallace records five caces (four natives and one European) from one to five yars of are. In Packard's collection one instance of five years is recorded. Taking Laurie's collection, ${ }^{1}$ we find first one of five and a quarter, next one of six, and then one of six and a half. At seven years the mumber of cases has already increased to two, at eight to four, and with some modifications the frequency of tetams now increases as we approach the age of puberty, so that at forrteen years the number has reached eight and at fifteen ten. We find also that at fifteen the greatest frequency obtains of any year in the second decade, which, as Gowers has pointed out, is the period during which the greatest percentage of casen oceurs. Further, the cases oecurring in the first half of this decade outnumber those oceurring in the second. In fine, if inferences drawn from hospital statisties be allowed, it wonld appear that tetams is relatively fiequent as we approach the yours of puberty.

Regarding the relative frequener in the two sexes, we find that males predominate, thongh the difference is less marked than among adults. In Laurie's and Taylor's cases the proportion is as three to one, while in Poland's cases it is less than this. In adults, on the other hand, the preponderance of males is finly twice this amomen. Donbtless the increased exposure of male adnlts to injury is an important factor in explaining this difference, but it does not altogether suffice, as the statisties fail to show that decided inerease in the proportion of males in childhood as we approach the period of puberty which we should otherwise expect.

As is well known, negroes and dark-skinned races generally are

[^426]especially liable to tetanus, and, though the evidence as regards children is not such as to make a statistical statement possible, it points in the sume direction. Especially is this true of tetanns neonatormm.

As regards dimate, there can be no doubt that here, as in the case of adults, it acts as a powerful prelisposing canse. Tetanns is far more frequent in hot comotries, as is shown, for instance, by the enormons number of cases recorded by Wallace (loc. cit.). From 1869 to 1879, a space of ten years, there were two hondrel and eighty cases of tetanms in the Calentta Hospital. When we compare this with the fact that in the Pemnsymania Hospital there were but thirty-six cases in seventeen years, the overwhelming influnce of climate becomes very apparent.

The scason of the year also seems to play a part. In Poland's cases the greatest mumber ceenred in the month of June and the least number in February. In Laurie's ases, on the other hand, the greatest number oceured in October and the least in August. Strungely enongh, the maximum number of Wallace's cases oceured in December, the minimum in July. These cases are obvionsly too few upon which to hase a generalization, but the probability is that very changeable seasons-semsons associated with extremes of heat and moisture-favor the development of tetans. The prevailing impression in this comntry, that summer is especially the udson of tetams, is justified by the records of the Pemmsylvania Hospital, the larger number of cases oceurring in June and July. In temperate climates, however, season does not seem to be as potent a factor as in hot elimates. The ahsolute locality makes little difference, as the disease is mot with in monntain, valley, and plain, inland and on the coast, in moist and in dry places.

Lastly, the previous condition of health of the patient appears to exert no influence.

Among the exciting canses of tetanus two especially are recognized,trama and cold. Those resulting from trama are by far the most frequent and most dangerous. The injuries may be of the most diverse character, though they all agree in almost always-if, indeed, not invariablyinvolving a lesion of the external integument. Bruises, burns, erushes, ents, tears, bites, and especially punctured wounds are anong the tramata fomed. As regards children, there is nothing that distiuguishes the wounds from those vecurring in the adult. We find, however, that in the child the parts most frequently injured are the foot and leg, while in the alult they are the fingers and hand. Inded, the proportion of injuries of the hand and fingers is very small in ehiddren. Donbitless the fact that the feet of children of the class who apply to the hospitals for relief are frequently altogether inprotected, and also the fact that in the adult the risk of ingury to the hands through manual labor is mueh increased, largely explain this difference. Further, it is interesting to note that in the tetanus of children womds of the head are rately the exciting canses, while in adults they are fiu from uncommon.

The wound may possess almost any character. It may vary from an insignificant bruise to a frightful laceration, and may result from the most diverse aceidents. In looking over the varions collections of cases, however, we soon recognize that punctured wounds and womds involving violent disruption or dissolution of tissue are by far the most frequent. Cuts and ineised wounds generally are very rarely the exeiting canses of tetanus. For instance, among all the eases moder fiften yens reported by Lauric, Poland, and Taylor, we find euts recorded but thre times, while punctured wounds, lacerations, and burns oceurred some fifty times.

Further, it does not depend upon the kind of tissue that is wounded. The idea that wounds of tendons are most frequently related to tetams falls to the ground when we reflect that the parts most frequently exposed to injury, the hands and feet, are neeessarily largely tendinous in their make-up, and also that wounds of the trink, such as burns and scalds, not involving tendons, are disproportionately frequent. The same reasoning applies to the involvement of nerves.

The wound itself may be in almost any condition. It may, on the one hand, present a healthy appearance and be actively engaged in the process of healing or may even be eompletely healed; or, on the other hand, it may be suppurating, fonl, and even gangrenous. According to Thamhayn, the wound at the time of the appearance of symptoms is most frequently in the stage of eieatrization. It is rather the execption, he states, to find the woumd badly constituted. Watson, on the other hand, makes the signifieant observation that tetanns is more apt to oeenr witle dirty wounds and in abseesses with suppressed suppuration than after fresh and elean injuries.

Among the exeiting causes-doubtful in value, perhaps, but mentionel by varions writers-are alcoholie intoxication, over-exposure to the sun, violent emotion, inflammation of serous membranes, and, lastly, worms. How it is possible that these various canses may becone active factors in the production of tetanus will be discussed under the head of pathology.

Symptomatology.-Is in other diseases, there is in tetanus a periox of quiescence intervening between the exposure to the exciting canse and the appearame of symptoms. In the vast majority of cases it lasts several days or even weeks, and suggests very strongly a period of incubation. I few cases, like that of Robison cited by Govers, present an almost incredibly short period, the symptoms coming on after the lapse of a few minutes. Whether in these cases carlier factors had been at work, so as to make this, tetanic explosion possible, cannot be determined. In view, however, of the recent remarkable advances in the patholory of tetams, a suspicion to that effeet is strongly justified. We all know how careless and unobservant the average man, especially the hospital patient, is with regard to events bearing immediately upon his disease, and how readily minute and insignificunt trammata are forgotten. At any rate, the fact remains that tetanns makes its appearance in the average case from four or five days to two weeks after
most ever, olent Cuts anus. alric, tured
inded.
s falls:
to in-ke-up, olving lies to
the inception of an injury, and this time does not vary for children. In striking an average of the time in Laurie's cases, both for ages under and ages above fifteen, we find it to be about eight days for the former and nine for the latter. The difference of one day is certainly withont signifieanee. We find, hovever, slightly less variation in the former, the shortest time being two days and the longest eight, while for adults the shortest was one and the longest sixteen. This is also prohably without special signifiennee. Occasionally excessively long periods are reported,-beriods extending over several months, -but the probability is that in these eases tetams does not arise from the original trama, but from some sceondary complication, such as bed-sore, or from exposure to cold.

I'reeding the onset of the muscular spasm, the patient is apt to be much depressed. He is restless, and ill at catse, anxions and fearful. He loces his appetite, feels chilly and thirsty, and at times fever is present. Ife may remain in this condition several honss or even several days. Finally a feeling of stiffiness is noticed in the jaws and in the back of the nock. Pains variable in character accompany this sense of stiffess, and are also refereed to varions other portions of the hody. The museles of mastication and of the back of the neck are the once in which these sensations, as well as actual spasm, first make their appearance, though this rule is not invariable. Oceasionally the musdes of deghtition are first involved, and the patient motices an meomfortable sensation in swallowing or perhaps a difficulty in acemplishing the act. Less fremuently the sternomastoids are the first, or among the first, to be involved, and may even present the condition of unilateral spasm. More rarely still, trmuenl museles, or the muscles of the extremities or of the part which is the seat of the tramma, are the earliest to exhibit symptoms. The pains vary greatly. There may, indeed, he nothing more than a vague, unaceustomed sense of diseomfort. On the other hand, they may be very intense, and may rapidly increase as the discase advanes Frequently they are referred to the head and tomples, the back of the uede, and the jaws.

Gradually marked spasm of the museles of mastication makes its appearanee. The patient now notices a distinct difficulty in separating the jaws. This becomes more and more marked until the jaws become fixed in position, and the condition known at trismus, or "lueked-jaw," is established. The masseters and temporals become excessively rigid, and from these muscles the rigidity spreads sucessively to the museles of the batek of the neek, the tronk, and the extromitics. As the intensity of the pasm increases, the muscles become hard and hoard-like to the feel. This is especially true of the abolomen. Generatly the spasm is acempanied by severe pain. The patient now assumes a striking and peenliar position. It is one of extreme extension. The head and trmak are bent forcibly backwarl, producing the condition known as opisthotoms. The expression of the face is also remarkable and characteristic, and when once seen is rarely forgotten. A repulsive grin, the "risus sardonicus," distorts the
features. The lips are slightly parted, the upper lip being pressed against the teeth and the lower slightly everted, while the angles of the mouth are foreibly extended and depressed. At the same time the brow is raised and corrugatel, and the eyes are fixed and scemingly sumken in their sockets. The expression as a whole is that of a hideous grimace, horrible to look upon, and suggestive of the most intense suffering.

The opisthotonns and the risus sardonicus are of course assumed involmatarily, and are merely the result of the overaction of the dominant muscular gronps. However, in execptional eases speeial museular groups are alone or excessively involved, so that the average position is departed from. Thus, at times, instead of the head and trunk being bent backward, the booly is simply rigid and straight, the condition being then termed orthotoms. More rarely, it is said, the body is bent forward, producing emprosthotomns, or to one side, producing plenrothotonus. It has never been the fortune of the writer to observe either of the last-mentioned positions. Gross irregnlarities in the order and degree of muscular involvement, however, doubtless oeenr, and we shoukd remember that great extremes may be met with. It is stated, for instance, that the masseters and temporals may be so little involved that the depressor museles of the jaw may determine the mouth being held wide open instead of rigidly closed (Thamhayn, Gowers); but certainly this condition must be excessively rate. Lastly, the symptoms may be imperfectly developed, the spasm begiming in the regular order, but ceasing after a time to spread, or spreadiag with extreme slowness.

A special form of tetanus, which should be mentioned, is the cephatic tetanus of Rose. Its chicf peculiarity is that, associated with spasm of the museles of deglutition and of the muscles of the jaws, there is a complete paralysis of the facial nerve on one side. In these cases the wound is fomed יpon the fitce or head. In eight cases collected by Bernhardt' the wound was in the im rediate neighborhood of the orbit in six cases, upon the eye in one case, and upon the temple in another. The paralysis of the factal nerve is always upon the side of the womd. The canse of this paralysis is not known, but it is probably reflex in origin. No lesion of the nerve has been fombl. In an antopsy by Lannois ${ }^{2}$ the nerve was carefully dissected out, but failed to reveal any change to either the maked eye or the microscope. Betz ${ }^{3}$ eollected, including the cases of Beruhardt, sisteen cases. These were distributed as follows. Nine were adult males, two middle-iged women, one a girl of eighteen, and another a boy of ten. In three the ages were not stated. Twelve of the entire number proved fatal, among them being the boy. It should be stated that the dysplagia is generally very marked, and that this form of tetanus has in consequence also been termed hydrophobic tetanus.

The condition of tonie spasm having been established in a given case,

[^427]a new feature, an irregularly-reeurring paroxysm of exacerbation, makes its appearance. The contraction of the muscles is suddenly intensified, and the opisthotoms and risus sarloniens hecome acentmated. The paroxism may be very slight, cansing but little change in the patients position and appearanee, or it may be so violent as to raise the patient from the but by the intensity of the opisthotonas produced. At times, indecd, the legs become as rigid as though all their joints were ankylowed, and as though they were of one piece with the trmons. 'The arms may also be involved, espeeially the upper arm, but to a loss extent than the legs. The forearms and hands are affecter, if at all, bat slightly. Ocasionally the paroxysm, instead of being evenly diffised over the museles, is concentrated or especially marked in certain groups. Again, instead of being a wave of intense tonic contraction, it may at times be somewhat convolsive on donie in character.

In duration the paroxysm varies from a few seconds to a fraction of a minute,-rarely longer. Occasionally, however, the attacks recur so frequently that a number of them may be merged together and the apparent duration moch inereased. If the seizure be severe, the thomax and diapharam may become absolutely fixed, and complete arrest of respiration may ensuc. The face grows livid and parple, and the patient may, inded, die during the paroxysm.

During the attack the pain in the muscles is molh inereased, while pain often agonizing in chatacter makes its appearance in the abdomen and back. At times it seems foenssed in the epigastrium, or is cepecially intense between the shoulder-blades, radiating thence abont the tronk or even the limbs. It is stabbing, darting, or shooting in chameter, or it may be replaced by an insufferable sense of constriction. It may, indeed, be so severe that at the on-coming of a paroxysm the patient cries out alond, and contimes to do so as best he may mutil the fixation of the museles of respination makes sercaming impossible.

The seizares reene with varying frequener. They may be few and far between, or even, in rave and very mild censes, entirely absent. On the other hand, they may he so frequent that the patient is for hours in an almost contimons paroxem. Slight canses, such as haulling the patient, a dranght of air, and especially efforts at voluntary movement, such as attempting to rise up in berl, or even the act of swallowing, may suffice to provoke them. The reflex exeitability, both supertieial and deep, is cuormonsly increased. Of course this is also the ease during the intervals, though to a less extent.

As may be inferred from what has been thas far stated, deglatition and breathing are moch interfered with, and sometimes this interference is exceedingly grave. It may be impossible, for instane, to administer foocl. Every attempt may provoke a paroxysm, accompanied by regurgitation and by strangling. The breathing may be exceedingly shallow and rapid, and may during a seizure cease altogether. At other times it is interrupted
by hoarse someds, the result of ineffeetual attempts at speaking. In mild cases, on the other hand, the breathing may during the intervals be almost normal in depth and freduener. The pulse, as a rule, is smatl and rapid, especially during the paroxysm.

The excretory fimetion of the skin is much inereased, sweating, espeeially during and alter the paroxsm, being exeessive. The temperature is very variable: at times there is no noticeable departure from the nomal, but not infrequently there is a rise to from 101° to $102^{\circ} \mathrm{F}$. or more. This rise is generally maintained thronghont, with or withont remissions. Sometimes there is an equerial rise just preceling the termination in fatal cases, and this rise may be extraordinary. Temperatures of $108^{\circ}, 110^{\circ} \mathrm{F}$., and even higher, have been resorded, and the rise has contimued post mortem. The fever in tetams is altogether independent of septic, inflammatory, or other complications. It appears to be purely nervous in origin, and probably arises from a rapid and progressive paralysis of the heat-centres. It is not improbathle that in the cases of extremely high temperature there is really an intrinsic heat-stroke.

The urine is diminished in quantity and high-colored. Mieturition is frequently aceomplished with diffienlty, and occasionally the catheter alone is efficacions. The bowels are, as a mene, obstinately constipated. In the first place, the patient takes very little food, and, secondly, the aet of defecation is rendered difficult by the participation of the external sphineter in the general spasm. The musenlar coat of the bowel as well as that of the bladder is not involved, the spasm appearing to affect the volnutary muscles only.

The appetite is generally lost, thongh this loss may be in part only apparent, as the patient, knowing the pain and consequences of efforts at swallowing, may relise food on this account. Thirst, on the other haml, is oecasionally intense, bronght about, no donlt, by the excessive sweating. The tongue, when it can be seen, is generally fomend coated.

The mental faculties are undisturbed, the mind being elear throughout. Delirium or confusion is not present, unless it be perhaps in cases where nareotics have been freely used or towards the termination of fatal cases when exhanstion has supervened. Sleeplessness and restlessness are constant factors. Spontaneons sleep is infrequent and of short duration.

In lethal cases the symptoms persist until the patient dies of exhaustion. This may ocenr gradually, or quite suddenly after a severe and prolonged paroxysm, when heart-failure appears to be the immediate canse. At other times cyanosis, indneed either by spasm of the glottis or by the genemal fixattion of the respiratory museles, is the most prominent factor. Interenrent tronbles, comected with or independent of the wommd, bed-sores in late cases, ete., may also play a part in bringing about or hastening the fatal result.

In cases that recover, the paroxysms gradually become less frequent, less intense, and of shorter duration. Little by little, general museular resolution sets in ; but the disappearance of the spasm does not occur in all the
muscles at the same time, nor even symmetrically. Soon there is an incrensed nbility to take food, and then follows a gradual roturn of strength. Grodually the spasm becomes less and hess marked, and finally disappears entirely, or a slight stiffuess may persist in the museles for some time and may even be noticeable in the gait.

Temanus Neonatomum. - There em be no longer any dombt that the tetams of new-born children is idential with that of adnlts. The experiments of Bemmer and of l'eiper (see sedtion on l'athology) arre cond hasive. However, a brief' special mention of the subject is warmanted. Like ordinary tetams, it has an excedingly wide geographiaal distribution. It is known not only in India, the W'est Indirs, and the Sonthern States of America, but also in the momans of Switzerland, the highlands of Sootland, and the Aretic cold of I Ieland ; but, in whatever situation it be fomme, it is most frequently associated with filth and igmorance. Among the most common etiological factors are irritation and inflammation of the umbilial cord, injuries to the head or other protions of the benty during birth, cirromeision, cold, and dampness. Whether any value whatever should be attached to the assertion made by Sims and his followers as to displacement of the oceipital bone, is exceedingly doubtful. In the tirst place, as admitted by Sims, the condition is not miform, the bone being sometimes displated inwardly and sometimes ontwardly; further, it is execedingly difficult, in the light cast lately upon the pathology of the disease, to imagine how treatment ly change of position alone conld athect the progress of the disease; and, lastly, it is very evident that some at least of the casse cited were not cases of tetanus neonatormm at all, but of some other affection.

Tetanms neonatormm eomes on gencrally from the formth to the eighth day, oceasionally, however, not motil some days later. Niemeyer makes the signifieant observation that it never ocenss exeppt between the first and the fifth day after the fall of the navel-string. The child at first is restless, eries ont during its sleep, and looks much distressed. It soon refuses to take or becomes incapable of taking the lireast. The nipple, if' seized, cannot be retainol, and the milk is regnegitated, there being marked difficulty in swallowing. On attempting to insert the finger into the month of the patient, we find that the jaws, thongh not alsolutely closed, are more or liss fixed. The fice, also, is now seen to be insolsed. The month is puckered, the lips being slightly depressed. The eves are closed, apparently through spasm of the orhicularis, while the forehead is thrown into wrinkles. The comonemee ats a whole looks dawn; it is pale or even bluish in color. In many cases the trismus predominates very largely over the other symptoms, and sometimes the spasm fials to spread to the trumk and limbs. However, the general involvement may be execssive, and the limbs may be more rigid than in ordinary tetams. The reflex exeitability is heightened, handling and attempts at feeding provoking paroxysms. The paroxyms are generally severe, though the spasm during the intervals is, as a rule, less intense than in other cases. Breathing is much impeded, the
child sometimes dying of suffication. Death supervenes, usually from exhaustion, in from a few hours to two or thre days. The mortality is very great. Wallace reports thirty-four enses with twenty-nine denths, but evelu this showing must be regarderl as rather finvorable. It shond be stated that in many cases the bowels are constipated thronghont. There is alson now and then fever.

Pathology.-Until within reent yours vague and ahstrose theories were the only ones advanced. The absence of constant findings post mortem, the variable condition or even the entire absence of the womd, as well as the inconstancy of the other etiological finctors, rembered an explanation exmedo ingly difhenlt. Heretofore the theory of the exdusively nervous origin of tetams has been maintained, and at present even is hed by Gowers. 'Tom much, however, is left mexplained, and, inderd, the view of the explusively nervons origin constitutes a mere begging of the question. It is supposed, for instance, that the merve-cells are in such a condition that under slight peripheral irritation they expend their nerve-fore with exessive rapidity,-explosively, as it were; or, as Gowers puts it, there is "a diminished resistance to the evolution of nerve-fince by the cells." 'This, certainly is not an answer to the question, but merely a restatement of the problem. The difficulty still remains as to how this condition of the moter apparatus is bronght abont.

Of late gens most interesting diseoveries have been made, the startingpoint of which was an observation by Nieolaier ${ }^{1}$ that the insertion of small partides of earth bencath the skin of mice, guinea-pigs, and wablits prom duced symptoms in every way analogous to those of tetams. Further, pus ohtained from the womms thas prodneed was frequently capable of communicating the disease by inoculation to other animals. In addition, microsoppienl examination revealed the presence of hacill, and one of the forms appeared to be specifie, thongh it was not isolater. Cultures of these bacilli, though impure, likewise proved eapable of producing the elisease in animals inoculaterl with them.

Rosenbach ${ }^{2}$ confirmed the existence of the bacillus of Nicolaier in the pus obtained from the womed of a case of tetanns, as did also Bonome. ${ }^{3}$ The latter obtained the bacillus from the decubitus of a patient who died of tetanus following a fracture of the vertebre. Inoculation of ammals with purticles taken from the region of the sore resulted in tetanus. Injection into the veins resulted megatively. Brieger ${ }^{4}$ made cultures of the bacilli, and obtained a number of poisonous ptomanes, whieh by inoenlation provoked the same symptoms in animals as had followed the experiments of Nicelaicer. He named the prineipal ptomane tetanin. The others allied in character he named tetanotoxin, spasmotoxin, and spasmodin. Further, he

[^428]also suceceded in isolating tetanin from the amputated forenm of in ense of tetanus. Carle and Rattone, cited by Brieger, hatd also injected the contents of an wene phistule fombl upon a man dead two hon's of tetams into the sheaths of the sciatie nerves of rabbits, mud surearled in the majonty of cases in provoking fatal tetanms. From these rabbits the disease was again commomicable to others. Ferrari sureceded in producing tetanus in animals berevating them with blood and eerebro-spinal dhid of a woman who dicd of tetams following ovariotomy. V'anni mud Giarré also sumended be using blood of tetanus alone.

Finther, the following interesting contributions to the sulbert have been made be Bemmer. He relates the case of a patient in whom a splinter recesed mader the finger-mail while playing tempins hand eansed fatal tetanus. l'artiches of this splinter inserted subentanconsly in minals likewise resulted in tatal tetams. He also relates a similur case of a boy who acruired tetums as a result of a punctured wombl of the sole of the foot. In this instanere small particles of stone collerterl from the phate where the boy had hast heen phating produed tetanms in amimals on inombation. Benmer finther exprimentally proved the existene of the tetans-hatillas in soil obtained from varions depthe, espectally the upper hayers, ats wedl an in materials from varions somres, -the sea-shore, the fiedd, the garden, and even the dust of rooms. He also prodnced tetames in animals by inowlating them with fragments removed from the naved of a child dead of tetams neomatormm. Peiper ${ }^{2}$ obtamed similar results ber inocolating animals with f gments of skin from cases of tetames neonatomm.

Among those who have made sucesesfil inoculations from man to animals and from animals to animats should be mentioned Hoelsinger, ${ }^{3}$ Morisani, ${ }^{4}$ Eiselberg, ${ }^{5}$ and Giomano. ${ }^{6}$ Amost all ohsemers identified either in the blond or the pus of the womed the pin-headed, Intistle-shaped bacillus of Nicolaier. Most snceessful of all, however, wat Kitasato, who suleceded in isolating the hacillus and producing absolutely pure cultures. Morphologically this germ proved identical with the bacillus of Nieotaier, and when inoculated it yieded results identical with those obtained by previons observers. Kitasato also demonstrated that its virulence is most persistent, undergoing, mulike other germs, no diminution in repeated ealtures, and, also, that it is possessed of extraorlinary vitality.

Vernenil, ${ }^{8}$ who has given great attention to the sulject of tetams, con-

[^429] orents most frepuently in persons who have to do directly or indiredy with hurses, such as farm-laborers, stablemon, comen, firriers, voterimary surgeons, etce, mul alse among gatemers, who deal laugedy with garth in the fertilization of which horse-mamme has lowem nsed. 'There is, inderd, every masm to believe that the tetans of man and that of the honse are identical diserses and dependent ugon the same barillas.
 of Pastemr, with matter fiom the batanad cord of a horse dead of tetanms, with the resint of induring tetams in the mimals experimenterl mpen. His condusions are very interesting. He maintains, first, that " trammatic tetames of the home and of the mule is at least sometimes, if not always, an infertions disease, tramsinissible to mimals, and very probahly to man. During the evolution of the afferaon a virins is developed and multiphis, which virus, ingered into the aranial dara of another animal, produens the sane infertions disemse." Secomdly, "This virns is fomel in the bulb and spinal marrow of the amimal which is the bearer of the alfertion. Analogons to the rabie wints, its vinulence can be increased by subdural inkenlation in series; like the rabie virus, it is susedptible of attemation be desiocation in the air at a moderate temperatare, and, like the rabie virns alsw, its efferets are more intense when inoentated subhually than when inothlated into the skin or in the muscles of the back." Finally, he believes that we may admit that tetams observed in man is transmitterl to him, directly or indirectly, by a domestic amimal, and in partiendar by the lomere. The last comelnsion is open to oljection, inasmuch as even Vermenil admits that there is a mumerons chass of cases in which no redation, direct or indirect, can be traced between the patient and any equine intluence. Berper, ${ }^{2}$ for instance, records six cases, in but four of which equine influenee existed. Of the remaning two, one appeared to be an instane of contagion from man to man, while the other was prohably diredly of tellinice origin.

Of great interest are the experiments of Rietseh ${ }^{3}$ in this comnection. He inoculated grumeatigigs with the dust of hav, with the result of produenger tetans in the animals so treater. From the guinea-pigs he inoernlated an ass, which also died of typieal tetams. Giombano (loe. cit.) alson inoculated amimals with bits of staw taken trom the locality in which his case of tetanms had received the initial iujury, with results in every way similar to those of Rietseh. Lastly, Abadie ${ }^{4}$ relates the cirenmstances of an epidemic ocenring during the Franco-Prossian wat at the village of Ardemes. All the available houses were filled with womderl, and it became necessary to improvise a hospital in the chureh. Straw was aceorlingl? placed upon the church floor, and the womded were lodged in the straw.

[^430]Several of these enses were attacked ly tetanms in the contse of a few days and sucmmbert, white of the wombled longed in the honses of the village not one was afferterl.

A considerable umbler of instanes of contagion from man to man ure on record. One of the most momikntle experiences is that related by dmom. He had attended and drosed a case of tetames with compermed fracture.
 patient. Bleven days later this woman abso devologey totants. Ball ${ }^{2}$
 injury, amputation at the shoulder, tetans, and denth. Six weds hater he operated fine radieal eme of hernia, the serond patient being phaces in a loal adjoining that in which the dinst lomd latin. This patient also died of tetams. There had beer mo tetanes in the hospitat for right semes peevomsty. Adams a reports a similar instance. The lirst case wats one of amputation of the toe ; death firm tetanms. The second wat one of ligattion of hemorrhoids, the jatient being phased in the same rome ats that orethpied by the first case; alenth from tetanns. Javegnibot ${ }^{4}$ velates an epidemie of fimer cases owemring in the surgical wards of the children's hospital. Other instaness might the cited. The following was firmisheal me ly Dr. F. A. Packame. A lad was admitterl to the surgequal warts of the l'emmshlvania Hospital suffering firm compomel fracture of the foream, Ite sorn developed tetams. Another han, who was comalosent from an exteasive sealp-womel which had not yet entively healed, wats ant as a wated orer the first boy. In a lew days, athongh previonsly doing well, the second boy also devedoped tetams, from which he died.

The most important of the reent contributions to the litemane of tetamas is muloubtedly that of Gumpat. ${ }^{5}$ He points ont that the bacilluts oi tetames does not lave a nidus in any organ. It is fomme for instance, in the eentral nervons sestem in bat five per ent, of the eatses examimed. In the pus, however, especially in that from the deper portions of the womd, it is always fombl, and Brieger's discovery of the ptomane tetanin shows how this sobuble poison may be absorbed from the wound and thus produce telams. Finther, Guelpa does not beliese that rhematic tetamas exists in the true sense of the worl. Canses which dotemine momatism may favor the development of tetamus, but omly as adjusant canses, - that is to say, as canses which render the organism more apt to be influenced bey the pathogenie microbe or by its secretions. It is ertain, moreover, , hat many cases of tetams are pronomed rhenmatic because physicians do not know or are not able to find the avenue of entrance of the microle.

[^431]There is, again, another method of penetration into the animal economy of the hacillus and its products, which Guclpa has been able to contirm by sight. We know that the bacilns of tetans is found in hay, in carth, on walls, ete. What, then, is there surprising in the supposition that man and anmals should introduce this source of infection ly the digestive tract, and that, as is occasimally ohserved in anthas and tuberenlosis, it mate be the intestinal mucous membane, made valnerable throngh sma predisposing canse, which is the seat of incoulation? The experiments of Brieger prove that the batili of Nieolaier are rendily coltivated in mont, milk, ete, and that they secrete their charateristic ptomaines in these melia.

Guclpa cites the case of Zabludowsky in which the tetanie spasm ceased after washing out the stomach, and he also relates the old stery of Betol' of a momber of shaves who hat caten of the flesh of a steer dead of tetams following castration, and who themselves contracted tetams, some of them dying. It is interesting in this comection to state that Gormani, althongh he failed to induce tetams by ferding to dogs and mobhits tetame cultures as well as the flesh of ammals dead of tetams, showed that the viruleme of the bacilhas was umehanged be its passage through the digestive tract, the fieces of amimals so fed proving tetanogenie when inocmlated. May it not be possible that such influences as rold, overexposare to the sma, alen)holie intoxicution, the presence of worms, ete., act by making the intestimal tract in some way volnerable?

Guclpa's conclusions rengrding the nature of tetams are exceding! interesting and important, and are as follows:

1. Tetames is an infections disease.
2. Rhemmatie tetams, in the true sense of the word, does not exist.
3. Althongh the horse is one of the amimals most apt to eontract this disease, tetams is not of equine origin. It wonld be more correct to atttribute it to telluris origin; bat this would be too restricted. We believe it preferable to aflirm simply that it is of mierohie origion.
4. The symptoms of tetams are not divect effects of the microbers, but orem in consegnence of the toxic substances generated by them.
5. During the tirst manifestations of tetanss at least, the multiplication of the microbe is limiterl to the site of the infection. It is only later and quite rame-in six per cent, of the cases, acerding to Rosenbach-that the bacillus becomes genemally diffused through the organisme
6. Althongh opposing the nervons theory of tetans, we must admit that the nervons system posesses an excessive susceptibility altogether peralian to the action of the micro-organisms or the prodncts generated by them.

The above conclusions are eminently justified by the facts in our possession, and they are probably final.

Morbid Anatoiny.-The changes fonnd in the tissues after 'th have

[^432]been varions and of doultful import. At times the investigation yields none but negative results. At other times maked hyperemia of the bain and cond and of their membranes is found. Minute hemorrhages and even extensive extravasations of blood sometimes orectur, at do also effiusions of sermin. In tetams neomatormon there is gencrally marked fulness of the spinal veins, often associated with actual esompe of iblood. Mierosmopically varions appanances have been noted by Rokitansky, Domme, Wagner, Ferhmer, Lacklart Clark, and others. They have been varionsly deseribed as hypermema, exndation, granular degenemation, centres of sottening in gray and white matter, melear proliferation together with the formation of fat-grannles and amyloid bexlies, ete. Certainly, if any interpretation is to be phaced on atese observations it is that the rhanges met with are the result of mpiel tissuc-desthuction; they are, so to spak, the marks of devastation left by the stomi.

The periphea' nowes are at times fome perfertly healthes. At other times nemitis with marke! swelling is fommed near the site of the womd. Foreign particles have also been foomd embedded in a nerve-tronk, or the lator has been hadly ernshed and torn.

The voluntary museles are generally musually pale. Occasiomally minute extravasations of hood are seen, and heve and there individual lomalles of fibres are fomd mpturet. Fatty change and gramuar degeneration are also noted.

In tetans neonatornm the mbilial cord may present nothing aboormal, or it may be the seat of more or less marked intlamation. There may be phlebitis and even a lowalized peritonitis.

Diagnosis.-The symptoms of tetams are, as a ' le, so cleaty marked that only in very exeptional casts can a doubt legitimately arise. The combition which, of all others, most chosely resembles the clinical picture of tetams, is that of strychmine-poisoming. In the first plate, however, strychmine-poisoning presents in its carliest phase nome af the genemal malatise and oppressive fear which preede the outherak of tetams, hut, instead, a feeling of exhilaration and restlessucss. . Igain, we motice that the muscular symptoms, instead of developing gradually, come on with great suddemess, and the spasms, instead of legimning in the jaws and the back of the neek, begin in the extremities or in the whole loody simultamemsly. The museles of the jaws are the last to be involved, and, finthermore, they remain relaxal in the iatervals between the baroxysus. In fact, in stryelmine-poisoning there is nome of that presistent tonic rigidity which is so typieal in tetems. Very slight stiffuess may, indeed, be present in the intervals of the convolsions, lout it is rare. Again, the hands and forearms, almost never incolved in tetams, are here involved to an extreme degree and at an early period. There is also an absene of the risus surdoniers; at least, there is mothing approaching it in the quiescent intervals.

In both tetams and stryehmine-poisoning the reflexes are much increased

In tetanns, however, this is not ohserved until the disease is well developerl, white in strychmine-poisoning it is one of the earliest symptoms. Lastly, the existence of a reeent trama wonld have special signifieance. The mental comdition is in looth instances mimpaired, and affords mo element of differentiation.

Hysteria in a major form, thongh rave, oceurs with sufficent fremenew in children to warrant a word. There may, ineled, be present a gempal rigidity, intermptey now and then hemarkedly opisthotonic spasms. Howeser, paroxysms, atypical and bizarre, are apt to make their appeatane also. Further, the risus sudonicus is absent. The combenance is fiequently extramdinarily placid, or row and then a beatific expersion or an expers sion of anger or fear is present. In the intervals emotional phases and ejaculations, sobling, erving, hysterical gestures, ete, may be indulgod in. Comseionsmess, also, is apt either to be hast or to be mud perverted.

Tetany offers very few points of smilarity to tetams. In the rast majority of cases it commenes be a tomice abism of the foreams and hands, these parts assming characteristie and permliar positions, whieh it is not neessary to detail here. The legs are mext affected, and in severe easen the tronk also participates. The distinetion from tetams is very simple.

Very rarely perhaps it may be meensary to distinguish between tetams and eerelro-spinal meningitis; but the history of the onset, of chill and fever, the presemee of peterehie, the chanateristic attitude, the obvions involvement of cerebal functions, ete, would give abmadant gromme npon which to make the diagnosis. In hydrophobia, also, the history of a bite, and the absence of trismus, of gencral tonic spasm, and of the opisthotonic paroxysm, will serve for differentiation. Even in the dyephagir and cematic forms of tetams the alnsence of the true mbie paroxym and the presence of a milateral complete farial palsy will answer the problem.

Lastly, the reader should be cantioned aganst the varions forms of heal spasm which oceasionally acompany wounds. Ravely in true tetanus slight spasm first makes its apparance in the injured limb, but it is soon followed by involvement of the mascles of the jaws and the back of the weck.

Prognosis.-The death-rate in tetams is very high, and it is practically never possible to give a favorable proguosis. Among chibdren, indecd, the mortality is at times greater than in adults. For instance, of all of Lamrie's Glasgow cases of fifteen or under, not one recoverct.' Of the cases over fifteen, fouteen and one-half per cent. recovered. In Poland's collection but one of the eases of fifteen or under, sixteen in mumber, tecoverel. Of the adults, on the contrary, fifty-six in mumber, eight, or sixteen per cent., recovered. Taylor's statisties show a slightly lower mortality-rate for children, three out of twelve recovering. (Of the

[^433]cases e mine in
O_{1}
of the sivere The co mild at prospee dents, burlen. Other t the pros al few da fourteen fiftlo, an Poland's the third seventh, days. elewen on sixth. I deys. O twenty-se Taylor's ever, int to some ed

Lastly of " rhem tetanns.

In cas Neitlrev t] absence of grave sign

Proph of this hit results. fivet of its lemmer is sitrgerms sil patient. Bermer ${ }^{1}$ ame deep bu'u was fommd
cases collected by Packard from the records of the Pennsylvania Hospital, nine in number, but one recovered.

Onr opinion regarding a given ase is influenced not only by the age of the patient, but also by three other factors. First, the more rapid and serere the development of symptoms, the mo unfavorable is the outlook. The converse, however, does not hold grow. smuch as cases relatively mild at first may suddenly grow frightfful in then severity. Scomelly, the prospect of recovery is, of comrse, lessenct in cases in which ernshing aceidents, scalds, or burns have added a surgioal inerement to the patient's burden. Lastly, our opinion is influcueql by the duation of the case. Other things being efrual, the longer the duration of the case the better is the pros, ct of recovery. The majority of the fatal case . . inate within a fenw days. Thus, of Lamrie's Glasgow cases three died on the first day, fourteen on the second, seven on the third, five on the forrth, two on the fifth, and so on, the latest fatal cases ocouring on the tenth day. In Poland's cases eight died on the first day, seven on the second, seven on the third, nine on the fourth, one on the fifth, five on the sixth, ten on the serenth, and two on the cighth. The hugest fatal case lasted thirty-two days. Of Taylor's cases three died on the first day, five on the second, deven on the thim, seven on the fonth, three on the fifth, and two on the sixth. La other words, the bulk of the eases die within the first five or six days. Occasionally, however, death oceurs as late as the tenth, twelfth, twout - second, twenty-third, or twenty-eighth day, or even later. Oue of Taylor's eases died as late as the one humdred and ninetenth day. Howaver, in these late cases death is not to he ascribed to totamus, but, as a rule, to some complication, such as hed-sores.

Lastly, it should be stated that the prognosis in so-called "idiopathie" m" "rhematic" tetams is much less unfavorable than in ordinary tramatic tetanus.

In casting about for other elements of prognosion we are dis:uppointed. Seither the location of the womd, nor its comdition, nor the presence or absence of fever, is of import. Excessive temperature is, of course, of grave significunce.

Prophylaxis.-The recent and brilliant diseoveries in the pathology of this hitherto obscoure disease will, it is to be hoperd, yidd rich practical results. Almost invaluable, for instance, is the knowledge of the single fant of its contagions and infections natime. Certainly the first lesson to he larued is that every ease of tetamos should be rigidly isolated, and that surgems should practise excessive precaution in passing from patient to patient. An instructive lesson is that furnished by the exprerienee of Berger ${ }^{1}$ and Nothaton. Berger had in his wards a man sutfering from a deep burn which had opened the metanapo-phalangeal artienlation. It was found necessary to amputate, and the patient subsequently developerl

[^434]tetanus. Under Nélaton's care was a boy who had been run over, and in whom there were multiple contused womms, and in addition a large alnasion on the anterior aspeet of the thigh. It happened that Berger, whon hat been present at an operation by Nelaton, requested the latter to see with him his case of tetams. They aceordingly proceeded to Berger's patient, accompanied by the inteme and some of the externes of the service. Along each side of the patient's bed a strip of board had been phacerl, to prevent his falling out. Upon one of these strips Nelaton rested while the dressing was removed. He inspected the wonnd, but did not tonch it, and, on leaving, went to the ward contnining the little lad who had been rum ower. Both himself and his interne now cleansed their hands, finishing by a wash of corrosive sublimate. They removed the dressing, took out some sutures, trimmed off some sloughs, ete., washed the womd with corrosive sulbinate, and applicd salol. They did not, however, finish the dressing, leaving that to an externe. The latter, it was afterwards remembered, had also beren at the bedside of the tetanus patient, and had not been seen to wah his hauds. Nélaton's patient promptly developed tetanns,- Whough, fortunately, he recovered.

It can readily be seen that it is more than ever important that the discharges and dressings of womds in cases of tetams should be at onee destroyed, and that on the termination of a case no other disposition shonld be made of the beddiug than that of consigning it to the flames. Further, the room should not again be nsed for surgieal priposes, - not, at least, until most radical and thorongh cleansing and disinfection have been practised. It is doubtful, indeed, whether it be possible to carry this out effectively, especially when we refleet upon the hardiness and extraordinary vitality of the germs. Kitasato (loc. cit.), let us remember, showed that, thongh they are killed by a temperature of $100^{\circ} \mathrm{C}$. in a few minutes, they can sucessffully withstand a temperature of $80^{\circ} \mathrm{C} .\left(172^{\circ} \mathrm{F}\right.$.) for an hour. Further, they resist a five-per-cent. solution of carbolice acid for ten hous, and only after fifteen is their vitality absolutely destroved. I solntion of five per cent. of carbolie together with one-half per cent. of hadrochloric acid is effective only after five hours. Corrosive sublimate in the strength of one to one thousand is effective only after three hours; though when associated with one-half per cent, of hydrochlorie acid it destrows the germs in thirty minutes. Certainly it seems as though modern methods of matisepsis can prove but a weak and imperfect barvier against these germs, Further, how long they may possibly linger about a hospital ward is surgested by the experiment of Kitasato, in which they were adherent to silk threads, desiecated over sulphuric aed, and afterwards kept in ordinary air; months afterwards they retained their virulenee.

The frequent comnection between tetanus and equine and tellurie influenees should lead us to regard with esprecial apprehension all wounds that have been contaminated with earth, horse-manure, hay, ete., and to exclude such influences by all possible care in ordinary and surgieal wounds. These
influe
not si of 11 denan
iufluences are perhaps excluded with case in the ordinary civil hospital ; not so, however, during the exigencies of wat, as the lamentable story of Analie already eited fully illustrates. Certainly here are tacts which demand the gravest attention on the part of military hegiene.

Treatmext.-As regards the actoal management of the individual cate of tetams, we are confronted first by the knoty problem presented by the wound. Every possible method of dealing with it seems to have been practised, with, in the vast majority of cases, a negative result. Let as atalyeze the condition of the womed in the light of recent developments and see what indications present themselves. Guelpa, we remember", conchudes that "during the first manifestations of tetamus at least, the multiplication of the microbe is limited to the site of the infection," and, further, that "it is only later and quite ravely that the lacillus becomes geucrally diffused throngh the organism." Further, he points out that the facillus is always to be found in the defper portions of the womed ; and this fact seems to have an especial significance. It eortainly suggests that from the superficial portions of the wound the bacillus is soon expelled by the defensive process of discharge and suppuration, white in the deeper portions of the womad, ready escape not being posible, the bacillas is retained sufficiently long to mature and secrete its ptomaines. The very conditions demandel by this view are presented in the kinds of womeds most frequently fomed in tetanns. The punctured womed permits the lowgement of the germ deep within the tissues, with but a narow, simuns, and readily-obstructed outlet. The lacerated womd and the deep burn expose iutermisenlar septa, open up the sheaths of nerves and temdons, joints, ete., and premit of the establishment of mmerous and tortuons tracts of infeetion. Lastly, suceessful inoenlation in animals is made not liy rubbing the virus upon an abraded surface, but by introducing it leneath the skin, into the sheathes of nerves, and beneath the dura of the brain.

If these inferenees le correct, the first indication for treatment is very dear. Upon the very eallest signs of tetams the womd shonkd, other things being equal, be freely incised and its imermost recesses exposed. Guelpa proposes that the wombl be cmretted, the tissues freely released, and, if uecesary, deep excisions of tissue mate. These directions, of course, camot apply to every individual case, hat must be adopted aceording to ciremstances. Guclpa calls especial attention to the fact that it is in the thrombin of veins coming from the womd that the principal nidus of the mierobe is frequently fomed. The operation being completed, Guelpa proposes to irrigate the wound with a strong solution of corrosive sublimate, -from five to ten parts in a thousand,-or even with a strong solution of nitric or sulphurie aeid. The propriety of this proceeding seems to the writer highly questionable. Certainly aboudant and frequent iurigation will aceomplish quite as much, and atd nothing in the way of shock or suffering. Indeed, the surgical interference should be judicions in the extreme, and should be limited to free opening up of the wound, the excision of
ragered edges and slonghs, the removal of clots, thrombi, ete, and thorough washing, the wound being kept open, so that the washing ean be repeatent at intervals.

The mere fact that reoverics have ormsionally oremred ather merwstretching and evern amputation is of no signifienner, inasmuch ats luth death and revovery have ocoured indifferently atier the mast diverse methenls of treatment. Certainly in the present state of our knowledge nerwestretching has mothing to reommond it, while amputation is probably are justibed. It whould be remembered that the average cate of tetams comes muler medialal care aftere the symptoms are filly developed and when some dengres of genemal infertion has taken place. Unless indiated upon genemal sumpieal gromuds, amputation should mot be practised, lest the shock and irritation of another trama be added to that from which the patient is alrould. suffering.

So much fio thamatio tetanns. How shall we deal with the aremue along which, acording to Gucla's thery, indertion takes plare in "idionpathic" or "rhematie" tetams? Evidently the indiation is to treat the digestive trate antiseptically, in addition to free purgation. 'The druse that natmally suggent themselves in this comeretion are salol and salieyliw and Either of these could be alministered in fill desers, followed some lanns later by a brisk saline eathantice. This preliminary treatment conld do me harm, and emtanly deserves trial.

The general indiations for treatment now remain to be considered. First and foremosi, every affort must be made to maintain the strelugth of the pationt. At the very theshold we are mot by the medamian diftienty of administering firod ; even when the trismus does mot of itsolf provent the taking of nomishment, the mere effort at swallowing is apt to provole the parosysms. All momishment should, of comser, be liquid, and yot in extreme wases even this camot be administered by the month. At times, when the "lock-jaw" has been excessive, a tooth has been extmeted in order to gain addifional space. The propricty of this masure is, howered, fin reasons alreaty alvanced, open to question, and esperially laxamse the method of feeding now so extensively and suceresfally patatised among the insane, of passing a soft rubher catheter throggh the more sparions of the two masal cavities and sulficiently far lack matil the there has fairly pased into the eseephagus, is here experially applicahle. The eatheter bexus wamed and carefally oiled, but little irritation is produred, and bey mans of it any desired guantity of liquid nourishment can be given. It may be, howerer, that the operator is so fequently intermpted by the parox yems, or that the presemee of the eatheter in the pharyon provekes the wo to so great an extent, that he will be obliged to desist. However, it is a mothod which should alwars be tried in preference to extraction of teeth or wedal fereling. The last-mentioned should be a dernier ressort.

The food should eonsist of milk, or milk with the addition of raw eggs, or-better, perhaps, than either-peptonized milk. The quantity, of
conllice, "plial, tl here of nomrishin and its
it latrachy sulfins.

Just
 not lne 11 such port artanged. lowise alle oll innped tonching of the boo slight an Ansolute

Finall Their ohy swoully, t leen used. doses firen in adminis. it is of thirty case. drugs wert werealso en of the few

Next in to act als a mide, in las howerer, in whonl "atrd deyrere this chloral presis tion on the a disentise the It slouild be carefilly wa ITrethan to atitain a trial, lecatils nut cutailing fill calse.
couse, must depend upon the age of the patient, but, other things being equal, the maximum amome of loond should be given. Aleohol also is here of modonted serviee, not ondy ly stimulating the digestion of the monrishment taken, bat also beanse of its standying ation upon the heart and its sustaning powers gemorally. Busides, there eam be no doabt that it hargely diminishes the horrible pise haie depression foom which the patient sullicts.

Inst as in strechinc-poisoning, averything that ean pusibly produce prepheral excitation should be removed ar asoided. The bedelothes shombet
 such portions ats are in immediate contact with the borly smooth and everly armuged. It should be also seen to that the dress of the patient is bosere and open about the nock, and that there is mowhere ally constridion or impediment. In the neecosary attentions to the patient, all sudden tonding of the surface by cold hands or umecessary thening or rasing of the body should he avoderl. It shoud be remembered that at times so slight an impresion ass a beath of air is sulficicut to bing on a paroxem. Shoolute quiet of every kind is to the the order of the day.

Fimally, drigg dimedy solative wo the nervons system are indicated. Their ohject shombl be twofold: first, to allay the exersive spam, and, seroudly, to produce slepp. To aromplish these conds memerons drugs have hem userl. Foromost among them stands hromide of potassimn. Latge dowe frequently repeated should be given, and, if there be great diflicolty in administering it by the moulh, it may he ingerted into the bowed. That it is of very deeided value cammot be dombed. H. (. Weod hats collected thirty erses in which recovery followen its usice, thongh in tem of these ofther drugs were given in addition, and in one small beedings: and cherization were also employed. It must be conceded that bromide of potassimm is our of the few drugs that promise an alleviation of the symptoms.

Sext in value comes chloral. 'This drog tembls both to prownere shep and to act as a motor depressant to the eorl. It mast be given, bike the bromide, in large doses, if benefit is to be experted from its mee. Its nise is, howerer, not mattemed with danger to the hant, ciperially in children, in whon cardiae depressants seem to ade with unsinal readiness. To some degree this dillienlty may be met ly the cantions use of digitalis. Further chlowal presents such palpable advantages that the risk of its depressive an tion on the heart ean, other things being empal, be ignowed. Certanly, in a disemse the mortality of which is so high, no time is left for vacillation. It should be used first in monlenate and then in larger doses, the pulse being carffilly watehed, and alcohol and digitalis being used as indinatect.

Urethan is also a drug which may prove of value, thongh it has failed to attain a high reputation as an hepmotie. It is deserving of extended trial, becemse it appeas to have a direct depressant action on the cord without entailing any depression of the heart. Jackman has reported a successlink casce.

Frequently it is not possible to prodme the much-longed-fin sley and quict by mems of chlorad alone, and att such times it is wedl to combine the treatment with the me of mophine. Morphine is a valualle adjusant, hut must be used with diservetion. As a rule, it is well borne, i.c., in monderate dosest, but we should remomber that in the average case respiration is already much interfered with, and that the too firee nse of the oprate may fivor the development of a fatal cymosis. These remarks apply with especial foree to children. However, the suffering of the patient is oftem so great, so evidont, that its use to some extent, at least, is absulutely dempanderd.

Very frepuently the best results are adieverl by a combination of remedies. Either the bromide, chlonal, and morphine may be given together at stated intervals, or, what is perhaps better, the bromide and chloral may be administered in the same dose, while the morphine may be nsed lypothmically as oecasion arises. Ocensiomally it may be well to combine the morphine with some other hypmotic, such as paraldelyde, neither drug being given in full physiological doses. This was recently suceessfully carmied out in a case under the writer's care.

In addition to the varions remedies used to produce sleep and to lessen spasm, active measures are frequently catled for dumg the paroxsm, Chlorofom inhakation hats often been used to mitigate the attacks, as has also ether. Complete relaxation, however, never results mendes the andesthetic be pushed to its fill effect ; and, ats may be supposed, this is not unattended by danger. Esperially is this true of charoform. 'The patient's breathing is already much embarrassend, and care shonld be taken that the ansesthetie is well mixed with air. Nitrite of amyl has also been nesel to break ip the paroxym, and certanly deserves more extensive trial. II. C. Wood speaks highly of its value, and in a case recently under the ohservation of the writer the comvalsions were undonbtedly amelionated by its las, the patient finally reovering. Gowers, however, states that at Giny's Ins: pital it was observel that the spasm beame more intense at first, though slighter aftervards.

Sarions other remolies have from time to time beon used in the treatment of tetams, but with no result that would justify contidence. Amoug these is bloodletting, now happily fillen into disuse, and the indieation for which it would, indeed, be diflienlt to see. Warm haths were also at one time thonght to exereise a beneficial artion in relaxing the spasm ; but the diffienlty attending their use, and the unavoidable and ingurions hambling of the patient, make their utility more than problematieal.

Calabar hean also has been extensively used, and has the advantage of being capable of subentancous administration. It appears really to poseses some value. In the eases collected by Rocmer and by Wood quite a notible perentage, something over fifty per cent., recoverel. This evidence is, hanever, open to the oljocetion made elsewhere regarding isolated cases collected from miscellameons sonves. We are far more apt to glean the trith from
mucti
at lill
secoll
drux. (014 1 ll
II. C. of cise shoul of': 1 toms, proper A 1 bellewd wilhon the per exmesis Itse 1121 gusterl of the : mlnong

Pas
hilve, is
niture o tration excitems lised in together doses shit morphis areorlin on, aligit inereaser
and, if
If it
recourse make an
to. This missible.

Iast
instruete
mosis ma ficiall ress digitalis,
carcfully-preserved hospital records. For instance, among eight enses treated at Guy's Hospital by (alahar hem,' hat one recovered ; nor does this result serm to have varied when the remedy was fortified by the action of other drumes, suld ats chlorad and morphine. In six cases of mixed treatment but
 11. (. Wood fixes as a moderate dose for an adult ome-fifteconth of a gatin of cerpine repated every three homs. If no afteet is produced, the dose shond he increased. Bonchat, rited by Wood, fomed that one-twenticth of a grain given lypodermically to chiddren produced very devided sumptoms, which prased off in a few homs. It would swem, therefore, that a property-proportioned dose would hardly be acompanid by dauger.

Among the varions other drugs that have beren used are camalois indica, belladomat, conimm, tobacoo, lobelia, and emare, all, it is nerelless to say, without fixed result. Camabis indien is certamly very inferior to opium, the purposes of wheh it ouly in a slight meature fills. ('unare, again, is so excesisively dangerons that, althongh its action is sulficiontly well known, its mes must always he regarded as purdy experimental. Though first suggested many years ago, the mecertain composition of individarl samples of the drigg, and the eonsergumt uncertainty in its dosage, have prevented, among other things, its practical application except in isolated instinces.
lassing in review the vatons points in the tratment of tetams, wo bave, in addition to the surgieal tratiment of the womed, first, the maintoname of absolute guiet ; scoondly, eflicient feeding, including the administration of alcohol ; thirdly, the use of various drugs to allay the motor excitement and to proluce sleep. I would sugerest that these drugs be used in the areage case as follows. Bromide and chloral shonld be given together in linll doses, proportioned, of comree, to the age of the child ; these doses should be repeated about every four hours. In addition, morphine, or morphine combined with some other hypotic, shond be given at intervals areording to ciremmstances. Should symptons of cardiac weakness come on, digitalis should be added to the treatment and the amomet of aleohol incrased. Lastly, nitrite of amyl shonld be used to combat the paroxysme, aurd, if inefficient, chloroform or ether should be sulstituted.

If it be impossible to administer the bromide and chloral be the month, reconse slould be had to the rectum, and, if this latter expedient fatil to make an impression, hypodermie injections of eserine should be resorted to. The intravenons injection of chloral, at one time practisecl, is inadmissible.

Lastly, the patient should be closely watched by an attendant previously instrueted in the methods of artificial respiration, for, should profomed eyanosis make its appearanee, ats it is apt to do at the end of a paroxysm, artificial respration must be promptly carried out. It other times atropine, digitalis, and possibly ammonia, should be used subentanconsly. It is not
improbable that every now and then a desperate case may be tided ower ly extreme care and watehfulness.

The bowels should, of course, be opened, though this is often a matter of extreme difficulty. Saline catharties are to be preferred.

As regards the execssive sweating, it does not seem to call for sprial interferones. Gulpa, inded, goes so fin ats to recommend pilowapine, with the idea that the noxions ptomaines will be exereted by the skin. This is, however, purely hypothetical.

ATHETOSIS.-CATALEPSY.-THOMSEN'S DISEASE.

By GEORGE W. JACOBY, M.D.

ATHETOSIS.

Deflnition.-Athetosis (from ${ }^{\text {elferons, " without fixed position") is a name }}$ first used by Hammond in 1871 to speceify a peenliar disorder of motion, dhameterized dhicfly by continnons spasmodic movements of the fingers and tons, and by an inability to mantain the affected parts in any position in which they may have been placed.

History.-Since Hammond's description, cases have been published loy numerons observers, among whom are T. C. Shaw, Clifford Illbutt, Enlenburg, Oulmont, and Gowers. The thesis of Oulmont, in addition to a fow personal cases, presents a résumé of all case's published prior to 1878. Of late gears the original definition of Hammond has not been strictly arthered to, and cases have been described under the name of athetosis which aparently should not be so termed.

Etiology.-In the majority of published cases either wo canse is assinned or the supposed canse camot be acepted by an impartial eritic. Thus, in one case of congenital athetosis the mother during pregnaney was the subject of mulue prychic excitement. In another (ase (Landonzy) the affection appared after a severe fright during childhood. Trammatism (ILughes) and cold (Walker ${ }^{1}$) have also been erediterl with its cousution. In a large nmmber of cases the patients had previonsly been alllicted with epilepse, delirimm tremens, or psychoses of various chanacter. It has frequently heen observed in imbecile children (Shaw).

Serondary athetosis is frequently encountered in childhood as a sequeda of phlionecphalitis (Strimpell). This fact is clamly demonstrated by Onlmont's data. Of eleven cases of athetosis following upon ordinary hemiplegia, thre oceured in dildhood. Twelve cases following upon homplegia with epilepsy oceured in children whose ages varied from a few months to seven years. Sex has no influme upon the protuction of

[^435]the disense; meither is there muy prepoblerame of one side of the body affected over the other.
 childhood furnish few rediable data, Wre are, therefore, obliged to draw , ar conclusions from the antopsies made in moluts. In reforemee to sumbulary atheosis, Kahler and Piek have eleally prowed that all post-lamiplayio disturbances of motion are due to a lesion of the peymaidal tame asemble
 of disondered motion are to be explained by simple invitation mal by total or patial destruction of this system of tibres. In all eases of pmathomiphegic athetosis, anatominal examination has shown the lesion to bow ith the vicinity of this tract. 'The fienes was in the left thalamas in an cater of' Gowers's; Weir Mitedell, Lépine, and Landoney fomed lenions of the striata. In twelve autopsies cited ly Kabler and Pick, the parts mamly involved
 very probable that athetwis, as well ans all the other post-homipleyio dis. orders of motion, is cansed by an irvitative process afforting the pramidal tract at any part of its course. Bernhardt, in a case of hembathetoss post-hemiphegiea, fombl foed of soltening in the right striatumand man fowns aloo in the left. The right anterion communiating and the right sylyan artery were obstruetorl. Ewald in a case ocembing during the comber of a dementia pamatyata, in addition to signs of atente and chanic moniugitis, found tweiremmseriberl foed of soltening in the first left tempural comwhe tion. Rosenbach in a case of bilatemathetosis oeemring during the enuse of a case of tabes dorsalis, in addition to the selerosis of the pasturine
 of the right lentienlar mulems. A case of this kind (athetosis and tanere), hut withont antopsy, was also soen by berger. Morrell in a cater of his found the right corpus striatum to be almost entirely destroyed, the thalimus appearing healthy. Landongy in a case of right hemiathetosis dating fion childhond fomed an old lesion sithated in the anterion purt or the left lenticular murlous.

Cases of athetosis withont homplegia are poobably produced by an irritative cental prowess not sufficiently extemsive to pronluce a paralysis (berger). In one of Oulmont's cases of prinary athetasis a foeds of softening wats fomed in the lentienlar melens and the striatum of our side Lamensten's case is of importance in so fir that the athetosic movemums, which were limited to the fingers of the left hand, ocenved eleven davs before death in a patient suffering with cardiae disease, mo paralysis being manifest. The antopsy revealed a fresh foend lesion at the anterior cud of the right thatamns.

These facts, tugether with Demange's case (conchasive of cortical disease), corroborate the statement that a lesion at any part of the pyramidal tract may produce athetosis. In cases dating from childhood, Gowers, on accomst of its varied position, extent, and frequeney of ocenrence, believes
the ath
edls.
Sy
denly,
Thlı
turl
1x"N11
mulary
Th
ver de
prriphe
As: 1
fiew : an'
thryue
labwere
the tore
the tim?
the mo
whens
allervat
tirely is
entain
incourvel
mivits.

I_{11}

tion d
genemal
less mat
in the
at all
exceptic
brice p
(allerget
the mos
At?
whener
duasact
ctosis 1
movern fitigue,
fingers
monts
the alfe.
are knd
Tlı
bualy
the athetosis to be due to imparment in the mutrition of the growing motor (wlls.

Symptoms.-The spasmodic movements "prab comparatively suldenly, wertan prodromi gemmally having heon ovorloked or disumarded.

The previons histary will atien reveal the prexexistence of motor disturduace. As a rule, a milateral pamlysis or paresis will be fumb to have bere present prion to the devolopment of the athetosis. 'This is then sere"ulare to some other affection of which the paralysis is at sympton.

Tho spasms, which constitute the main symptom of the athetosis, are very 'hatateristic. 'They are logatiand exclosively, of mondy's, in the peripherat emeds of the extromitios, aftecting the timgers, hamb, tows, on finet. As a rule, they are milateral. In rave cases the musides of the nerek and fiare are affected, cansing continual distortion of the thace amd month. The tongue may also be afferted (stribupelt), rendering spered imbistinct and babord. 'The spaths are always of greater intensty in the fugeres than in the tows. They are frempently entively wating in the tows, very ravely in the fingers. In a bey aged fometern (bembarda) and in another (ase (Tison) the movements were confinel the lower extremity. The movements when seen in the dingers and hame are those of adduction and abluation, altermating with movements of smpation and pronations. 'There are entirely involuntary, always slow, extensive, and rhythonicul, execented with a
 furendination. They makr the ingresesion of labored wolnutary movements. The term modile spatin (fowers) expresses the combition chenty.

In some ease heperextension of the fingers, with pusitions of subluxation due to a relaxation of the tembons, is motied. 'Tha movements are gemeally very adive, but are contimally dhuging in intensity and become less marked when the attention of the pationt is distractel. Those present in the toes and feet are of the same chatucter. The movements are present at all times, and in the magority of cases persist during slemp. Only in exeptional casise can they be volmantly suppresed, and then only for a bride period. In a case of our own, ats also in Itammond's original case, (anergetie compression of the wrist-joint probluced temporary vessation of the movements.

Atypual cases, with periodieal presence of the spasms, have also been whereal. Transitory contractures of the wrist and ankle also ocour, the Manateristie mobile spasm disappearing and the special feature of the athetosis being temporarily lost. A remarkable fart in that these athetosie movements may continue indeffintely withont cansing any complaint of fatigue, although the natural functions of the afferted limbs, the hand and fingers especially, become groatly impaired, causing the volnatary movements to be slow and labored (Bemhardt, Rosenbach, Berger). Generally the atfection is comfined to one-half' of the bonly (hemiathetosis), but cases are known in which both sides were affected (athetosis hilateralis).

The most frequent form of athetosis is the secondary or symptomatic
form, in which the movements aprar in the paralyed limbs of hemipheges manally at a time when partal retrogresion of the paralysis hat taken phate. In a case of Barr's the movements first appeared in the nom-paralyand side, subsequently implinating the other. The secondary form is always a symptom of a corehal fowal lesion, and constitutes a seecial form of porthemiplegie distmbame of motion (Gowers), clinically differing materially from post-hemiplewic chorea (Weir Mitehell, Chareot). In these cases the hemiparesis, hemiamesthesia, atrophy, and contacture of the museles, cxaggerated temdon reflexes, disorders of intelligence, aboormal imitability, and epileptie attacks, when present, are also symptoms of the focal lexion. In a limited momber of cases the athetosis has developed primanily withom the preectence of other symptoms in the affected limhs. Of this idi, ;athin form the most interesting variety is the congenital athetosis (Strimpurll, Bommeville, and lilliet). The majority of primary cases are abo bilateral (Bommeville, Wamer). Primary mases have ben deseribed by Lamborer, Gnauck, Oulmont, Eulenburg, and Kirchhof.

Diagnosis,-If we confine ourshes strietly to the definition and the deseription, the diagnosis of the affertion is not differult. The striet localization of the movements in the fingers and toes mot being acknowledged by all anthors, the diagnosis will consequently depend almost entively uph the chatacter of the mowements. In children the diagnosis must allays be made between a hemichomea and a hemiathetosis. The localization of the affection is important here. Wheveas in athetosis only the peripheral parts of the extremities, the hambs and the feet, are affected, in chomen such is not the ease. If the face alome is affectent, the disorder may be considered whorei and not athetosic. The movements themselves are also entiedy different in ehamater in the two disomers. In chorea we have the guids. irregular, misdirected mowements, increasea by voluntary effocts, and irregularly spread over all the moseles. In athetosis the regularity and monotony of the movements form a suflicient contrast to this pieture. In some cases, both factors, lowalization and chanacter of the movements, will be requisite for a corree diagosis; these are the exerptional eases of athetosis i.a which the movements partake somewhat of a choreie charatere. Thus, a case of primary athetosis has leem deseribed which gradually be-
 hemiplegina in which the choreie movements assmed a athetosic chanater (Bembardt).

Prognosis.-The aflection is qenemally chronic, and yemains mehanged for cears. Recovery ocemes, if at all, omly in the rarest cases. A case of primary athetosis of Ganack resultenl in complete reoocery, and Case 28 of Oulmont's thesis was slightly improved. Improvement e seromdary abe has been hemtioned by Hammond, Gowers, and Prous:, hat no case of ene are known. When death ecemsit is not due to the athetosis tos hidh.

Treatment.-la reference to the treatment of the afte ction li^{*} la is 10 be said: thus fir the vamions remedies have prowed of httle arail. Elec-
cmiplugiess ken plate． lyoul side． \therefore at p心： cally firm the hemui－ cles，cxatr－ hility，and lesion．In ily without idis，iathic （Strïu川cell， so lilateral Lambonz： nin and the trice lowati－ showhedent ritely unин mst ahwan alization of （ periphomal chorea such 0 considereal lion entird e the quirk， efforts，anul sularity and picture．In ements，will wes of athe－ fic charathers： radually lie－ choren prost－ sic chanater
enchanged
A cater of 1 Case 28 of oudary cose no catm of wis at mich． III li^{+}在 i is 10 wail．Filec－
triety，the hope of many，is of no value．＇The nature of the lesions known to proxture athetosis is of such a charaver as to predode their possible removal by remedial agencios．In the eases which improved，the remedies employed were galsamism（Oulmont），hromide of potassimm，meremry （Oulmont），iodide of potasimn（Gowers），setms，chinin，and nerve－streteh－ iug（Hammond）．

LITERATURE．

Hammond，W．A，Tremtise on Disensen of the Nervons System，New York， 1872. Allbutt，C．，Medical Theme and（atzetto，1872．
Barrs，（i．A．，Medical Times and（ia\％olte，188．5，wh．i．p． 144.
Burer，Euknhorg＇s Real－Encyklopadir，188．t，vol．ii．j．12！

 Syotm，Philadelpha， 1888.

Hammond，G．M．，Jommal of Nervon and Matal Diemori，1886，p．Fito．
llughm，C．N．，Micnist and Nompologist，1887，p，：88．
Kibhhof，Amhe f．Pswhintrin，vol．aiii．p． 8.
Lulun，Jombedes Areh．f．Klin．Med．， 1880.
Muroll，W．，Lameet，187！，vol．i．1．369．
Oulmunt，Étule Minigues sur l＇A hétnse，Paris， 1878.

Strimpell，Lehthen der sumedhen latholugia，vol．ii．， 1886.
Tison，（iatette des Iopitans，1879，p．8\％．
Walker，British Medical Jommal，188．Von．ii．p． 1148.
Warner，Brain，London，188：－83，p．114．

CATALEPSY．

Defmition and History．－The term atalepser，fomerly empleyed to

Whereas Hipporates emploss the word xasiax ese to represent a eon－
 mincides with our siews．Daring the perion intervening hetween Gald and tholfinam（1692）the most vaied disomers were enfomedel ander this mane．＇The＂teribilitas cerect＂of the limbe was first deseribed by spen－ gel．Oins（．799），Tissot（1807），Fleiteh（18i2），and others gave dear deseriptions of the condition．Gmothalle，howerer，the views and desmp－ tions of the varions anthors became more and more dissonting，matil the
title "catalepsy" embraced descriptions of affections like chorea, chilepsy, hysteria, ete. Even at the present day the precise signifioance of the term as understood by the varions anthors varies greatly, the only common prineiple which is retained by all as a sine qua non being the wasy tlexitility.

Etiology.-Spontancons catalepsy, the term being nsed in contrailis. tinction to induced catalepsy (the cataleptic condition produced in errtan snbjects through the influence of a lond noise, a dazaling light, prolunged fixation of an olject by the eves, or as a senuel of the lethargie condition in hypmotized subjects), may ocenr in both sexes and at all agres. ft is, however, most frefuent in the female sex and in carly adnlt life. The affection is musual in early childhood. To my knowlenge the sumpent ase on record is that of a child three years of age, described by. . . Watenti. Monti records eleven cases encomatered in children. The sexes were alhont "fually affected, and the ages varied from five to fifteen years. Eulenhorg speaks of catalepsy at five years of age; Schwartz saw a case in at bey of seven, and Howey in a boy of eight. The nemopathie constitutions sems to phay as great a part in the production of catalepsy as it does in the production of other nervons affections. We therefore not inferguently tind catalepsy oceuring in families in which insanty and drunkemess are prese ent, and in which the mode of life and a faulty mode of eclucation alson may have had an influcuce upon its production. We do not here refer to thase cataleptic conditions met with as part and pared of certain prychowe.

Etiological importane has been attached to blows and maltreatment (Schnarts, bey aged seven, chorea followed lyy catalepy, after matreatment), and to cmotional disturbance or sudden alarm (Glas, catalepse in a girl of tem, after fright while bathing). Retarded sexual development and chtorsis were in some cases supposed to exert an influence upon its production. In
 suppression of menstroation. Masturbation and reflex irritation hatre also been credited with its production. In short, every factor which is of significane in the profnction of hysteria is spoken of here ; it is alson a fact that catalepsy is most frequently met with in hysterical imblividuals, and that hysteria is one of the mast important elements in its pronduction. We furthermose eneomster a 'ataleptic condition in certain casch of chanm, in varions peschice depressive and exalted conditions (melancholia atho. nita, mania, eestasy), and in varions organic cerebral adfections, esperially meningitis.

Of interest also are the artificially-profluced forms of this disorder. Without entering upon the varions hypotic experiments for the produre tion of catalepsy and hemicatalepses, it is worthy of note that Latiencre hate produced a transient catalepsy by simply covering the eyes of hysterical patients, and that striibing, in a cataleptic sulyect, conld at any time prodnce an attack by the transverse passage of a galvinic current through the head.

Pathology.-Our anatemical knowledge of catalepsy is very slight.

Selwartz, in the ease eited, fomed softening of the striatum and thatams and exudation into the dura spinalis. Meissuer in another case (man, cataleptis, then epileptic, and timally hemiplegic) fomed upon antopsy an epithelioura in the anterior cerebral fossia, growing from the dura. The right cerebsal cortex and the striatum were softened. No dednctions of any kind are admissible from this scanty material, and we can therefore only surmise the pathogenesis from the character of the symptoms. Anthors have here allowed their imagination full sway. Henle believed in a depression of eerebral action, and comsidered catalepsy analogons to synope. L. Meyer believes that the mental impression prodnces an increased musentar tonns. Hammond speaks of paralysis of the will, masked epilepsy, ete. Eulenhurg considers the cataleptic musenar contractions as reflex, and says they must be increased if the voluntary impulse from the cerebrm is almbisled, partienlarly if the reflex inhahitory centres are lost. Soltmam thinks that a comnection is possible between the physiological contraction of the mastles in the new-horn and the contractions in cataleps.

So matter how we endenor to explan the process, we have apparently a contimu as stimulation of the maseles ly some of the motor centres: that these are in a condition of oveaction on arcome of loss of some imhibitwry action scems probable; but which influences are at work in keeping the muscies in such a state of imervation that they are in a condition of contraction just sulficient to overeome the force of gravity and to enable them to retain the limb in the position in which it may be placed, is totally nuknown.

Symptomatology.-In an analysio of the symptoms presented by the parions cases we mast differentiate between those of the paroxysm itself and those of the cansal diseace. The attacks themselves sometimes show cetain prodromal symptoms. Dizainess, headache, hiccoughe, aramps of the stomarh, tremor, heaviness of the limbs, impairment of memory, faint-ium-splls, have all been chassed ass such.

As a male, the attacks occur suldenly, and even if prodromal symptoms are present they are genemally dispoganded. The entire musentar system leremes rigid, and the patients remain fised and immosable in the prosition in which the attack overtook them. The muscles fied hard and tense, and this rigidity is at lirst exeessive, lnt alter a short time the limhs submit to pasive movement, any position in which they may be plated being retained for at fow minutes. The muscular eontractions produced by the electrie envent disappene with the diseontinname of the enment (M. Rosenthal). There is always a certain amome of resistane to passive movements, and this, on eneoment of the impression made upon the operator as thongh he were moulding wax, has heen termed flewibilites cerece. Any desired position mat thus be imposed mon the limb. The leg, arm, hand, ete., may be phaced in any special position (in e, antradistinction to hyphotic catalepsy, no command need be issned nor re. rk made), and it will there remain mitil it falls in consequence of the laws of g'avity. The comntenance is usually
void of any expression, the eves remaining elosed or open, areoreling to their condition at the begimning of the attack. The pmpils are dilaterd and reaetionless. 'The state of sensibility varies; in profomed casses thepe is complete anasthesia, in others sensation is normal, and in still others there is heperesthesia (Pnel, Lasegne). Reflex exeitability is alsent ; in severe cases even the eorneal reflex is mot present. The patellan tumben methex is retainel. Conscionsuess is generally lost, but in some cases it may he partially or entidely (Mosler) retained. The temperature is either retherel or normal; pulse aul respiration are weak, hardly observable, hat remutar. The attacks may last from a fow minntes to several hours, and the wenvery is either gradual ow sudten. In some cases they recour with remankahbe regularity, but their frequeney as well as their severity varies in cach individual case.

Diagnosis.-The diagnosis of the paroxysm presents no diftienty whe ever. If we bear in mind the chamacteristic form of masealar contandion, the fleribilites cerem, it is lavelly possible to confomm the attack with any other disorder. Cases of simple trane shomld not le tevomed cataleptic, , in aecome of the absene of musonlar rigidity. The diagrosis of the cansal atfertion is more diflicult. The eataleptie phenomena alome give us bur che, but the asseciated symptoms ocenring during the attack as well as in the intervals ary important. In all eases of hysterical catalepse the preseme of other lysterial symptoms will reveal their matme. The assertion that catalepsy may be mistaken for tetams, apoplexy or syope is mwarmated, if its characteristics are borme in mind.

Prognosis.-It is rare fir death to oecmer during an attark of catalops ; the prognosis, so fin as life is conernet, is good; lout whether a wemmen of the attack can be presented is more diffentt to miswer. The mature of the camsal aftection will heve be the determining factor. In the magerity of eases the attacks reem at intervals during the entive life of the patient.

Treatment.-In the treatment of this affection we must atowe all endeaver to remove the producing canse of the abmomal combition. That this is not easily aceomplished, and frequently camot be done at all, is shown by the ill suceess which attembs one aflorts in the treatment of ofley severe lorsterical conditions. The general mutrition of the child munt be improved by dietetie or medicimal means; atove all, gend food and frest air are to be recommenderl, and then hydrothemper, masauge, grmastire, and hitter tomies will be fombl of value. The former diepletory mentenf treatment, by means of venesection, diaphoreties, emeties, ete., camont be ton scererely comdemed. Speeitios do not exist. Fion the eme of "atalepy, as for that of all other diseases in which the treatment is difientt, immureable remerties lave been reommended. Chinin, purgatives, anthelumintes, :hloride of sodinm, electricity, ete, have cach been eredited widh the arve of "ertain cases.

During the attack itsolf very little is to be dome. The attack generally ceases by self-limitation, indepentently of any remedies employed. These
asices in
attual of case Pressint patient: capalile

All Hise of t
eases in which the attack may be interrupted by a pail of cold water or the actual cantery are probably not trie cases of eatalepsy. In the majority of enses the use of the faradic brash or the actual cantery is valueless. Pressure over the suprarhital formina, as well as over the ovaries in female patients, may be tried. In a case of Stribbing's, both manipulations were rapable of interrupting the attack temporarily.

All that we can do is to keep up the mutrition of the patient, making nise of the stomach-tube, if necessary.

MYOTONIA CONGENITA.

(THOMSEN'S DLEASE.)
Definition.-This distase, which is named after the physician who, himself alllicted, first attracted general attention to it by his thorongh dencriptimn, is a peenliar disorder of the volmatary movements, chanaterized by an inhibition of these movements, due to a stiffuess and tension of the muscles, and oremring particularly after a period of inactivity.

History.-ln 1876 the disease, as it ocenred in himself and in four generations of his fimily, was first deserihed he Dr. J. Thomsem. Twentythree cases oecured in this family. The title cmployed in his description was "Tonic spusims in vohntarily moved museles." The only references to this "lass of cases which can be fomed prior to 1876 are one by Sir Charles Bell and another ly Leyden. Since Thomsen's publication reports of similar cases have been reveded from nearly all comotries. Many of these cases bave only certain symptoms in common with the affection deseribud by Thomsen, while others, in addition to the characteristic symptoms, present phenomena which point to the existence of central nerve disorder. The most complete publication upon the subjeet, also containing an analysis of the pusitive and donbtful eases published prior to 1881 , is Erh's monograph (on Myotonia Congenita. The momber of cases amalyay in this book is twentr-eight; this number does not inchede the eases (twenty-two or twenty-three) ocenrring in Thomsen's own fimily, two of which only have beyd duseribed, and these without any objentive examination. The case desaribed hy us was the twenty-ninth, and since then a few more casch have beem published. This mumber indudes only the pare and typical cases.

Etiology.-The etiology of the affection demonstrates that the most important fartor in its production is herelity. In the majority of "ases it wat tamily discase, and in nearly all the patients the alfeetion was moticed in carl! childhoonl, as soon as the child was ohliged to make systematic use of its museles. In at momber of "ases, in addition to the presence of the sume athection in other mambers or in collateral branches of the fandily, other menempathie disorders were present.

Thus, Weidnann gives the history of a patient, of whom one brother
Vol.. IV:-60
was epileptic and another had died in consequence of a meningitis; Kumd Pontoppidan deseribes a case in whose family mumerons nemopathie disorders were fomud ; and in the family of a patient of Berohardt's a munner of consangnineons marriages had ocenred.

Males seem to be mere frequently affected than females. Of the influme of other canses, partienlarly psychie emotion, we know litth: case have been deseribed by Secligmailler, Peters, and Engel in which the origin of the affection is ascribed to bight. Engel's case is probably not a gromine case of 'Thomsen's disease. Climate and combtry may have some influme upon its production; the affection appeats to be more common in samdinavia and Germany than in France and Eugland, and is excendingly rare in America.

Pathology.-Antopsies do not exist. In a momber of case pirees of museld have been wither excised or removed by the harpom iden vitem. Thus, miserscopical examinations of musele were made by Pomtick, Petrome,
 all, with the exepption of Erl) and oursolver, with purely negative resilts.
 trophy of all fibres, and great proliferation of melei, with altered apparance of the minute structure (indistinct transerse striation, lumugeneons

Fur. 1.

Mynomin congenita. Quatiriceps femorls. Transverse setion. \times B(x).
apparance (on transere seetion, formation of vacholes in the fibser). In addition, a slight increase of the perimysimm is notiecable. (F゙ig. 1.)

In addition to these puints emphasized by Erth, we were able to domunstate another change which is exoerdingly characteristic. This is the distinet livision of the fibre into angular lields, varying in size, and similar to the faintly-indicated Cohmhein's tiedels of' normal musele. 'The splitting up of the tibre cem in many places he tracel into extremely minnte fiedds, gul in many instances is so well marked that comparatively wide gaps are rishbe between the amgnan fields. Nhust areywhere thanserse seetions dow (with high powers, 1000) a lack of contimity between the gromps of arrous clements. (Fig. 2.) The threals of protophasm which normally

Fi, :

anuert the sutcons dements among themselves are almost everywhere binken. In the nomal slits, correponding to the tromdaries of the sar: fhasts, as seren in longitudinal sertion, no protephasmie comnedions are risible (F゙ig. 3.)

Mieroseopically as well as clinicully, therefore, Thomsen's dismate appears to he an affection of the museles alone. That the diserase is an (r)ngenital malformation of the musenlar fibers is proved by the angenented size of cald imbividaal fibre and by in incrase in mombre of mand and in the brealth of the perimysim. It is obvious that a considerably limer number of embryonic sareoplasts most have entered into the constraction

Fig. 3.

of "ach individual fibre than is the case in normal devolopment. Surha musede neressurily has a considerahly larger momber of sareons dement, (1), which is symomoms, more contractile matter, than a normai mused, and therefore the eontraction of such a ansele is more liable to berwize exagereatel, on', to use amother expresion, totanie. 'This is seem moder the
 contiguity. In normal musele the motor nerves are known to torminate in the form of plates beneath the saroolemma, but upon the surfane of the musede-filire. The contimity between these motor cond-phates and the aljo eent sarcons elements is cstabished by deliate threads of protophatin. The
continut comert ceive h mpinil all the III show il milttel The x pexially This tet ments,
मlemem
Ittaillil4
sulvide,
dements,
will $1 x e$:
ation ol
but why inexplina

Sym
aukwan
of reat, is
is contin
fires lowi
putc will
of the in
sinheyc
 and tonis
any corert
phatc!
minte, if :
his the x^{2}, 1
alle to all
ofl' sthm,
prisolls.
callunt w:
sillyexd
withont :a
the : patish
mally, all
tonylure, at
dillere firo
inervalse
contimuty throughout the muselo-filure is presereal hy surh filaments intercomerting all the sareons elements in every direction. We can thas conceive low the nerve-impulse is tramsmitted from the motor neve to the terminal plate, thence into the adjawent sareons chanents, und finally into all the contactile partiches of a musele.

In Thomsen's discuse the moter nerves and motor cmenthates da not show deviation from the normal, so that the neree-impulse is transmitted into the musele-fibre in the same manner as in the normal cemdition. The res alt of this resption of impulse will be a contraction, which, cespaxially atter a certain rest, will be a hepereontration, or, ruther, tetambs. This tetanus leads to an agghomeration of at certain mumber of saroms de-

 tetame hasts. After the lapse of a few seromits the tetamide combation will

 will be again remdered passille. We cent thas maderstand the pernlian red artion of the musides for the vations stimali when applied diendly te them : but whe the muscless should reate ditierently to indirevt stimulation is still inexpliatille.

 of reot, gradually disappeange, and memaining aheont as long ats the exortion

 of the mused los.
subpertivery, the affection mosists in an inhibition of the rapiol and

 any exation, the sham will be at its heright the museles are then comfledes still, and mosements can be exernted only with the greatest dilli-
 his the, the centire lunly hemme stiff, he foll to the gromul, and wats then me

 perions. 'Thus, a patient who upon getting out of bed in the morning cemmot walk at all, on aceome of the spasm, will alter rejwaterl altempts sleweyd in makiug a few strps, and will then bee ahle to walk for homs without any trouble; the next perion of rest will, however, again bring on the parm. Varions grades of severity are found in varions patients. (ronprally, all the volmatary mushers, with the exepution of those of the fare, tongue, and evoloalls, are thons afferent; in our ense these museles did not dilter from those of the rest of the borly. Certain influencess seem to increase the severity of the symptoms, -above all, long-contimed rest, even
standing ; cold, coll haths, and also great heat, will produce this result. Of great importance in the prodnction of the spasm are prenimen "x. citement, sumben fright, sulden sensery impressions, as a falso suph ate, Mextrate antive excreise tembs to ammionate the condition of the pationts. In cury other way they appele nermal ; no wher symptoms of mevons disomder are ever present; mutrition, ete, is purfect. Objedively we find disorders present which also are contirely confined to the volumbery moter system. 'The mustes show an increase in size, in most cases a tomly athertidevelopment ; the fore of the musches is, however, always less than their size would heal us to suppuse. Fibrillary twitchings or disonders of semsation are not present. The temben reflexes are gencrally mormal, sometimes rexherd, and even vary at dillement times in one and the same pationt. Pernlian changes in the mechanical and chertrieal exeitahility of the maselves are fomad, which have been smmond bey Est moder the mane of maytomie wation (My.R.) The mechanical excitability of the nerves is monal, that of the muscles is increased. In our case, a how with the peremsionhammer produced atow comtaction of the irritated fibres, they remaining contracted and forming a distinct groove in the muscle, which lastenl from twenty to forty secombs. The fanalie excitability of the merves is also normal, that of the masdes is increased and altered. I Iere, alson, a shas, tonic, persistent contraction ocents. Very strong currents produre persistent contractions from both nerve and muscle. Single opening shoms ahways produce quick, lightning-like contrations from nerve anl muside. The galvanic excitability of the nerves is nomat, while the masiles shaw an incorased excitability with qualitative change. The kathonat dosure contraction and anolal dosine contraction are about equal, or the A.C.C. is stronger than the K.C.C. Market logal farrows and depressions are formed under the excitation dectrode. Erb in his cases noted modulatory, mythmial contractions moving from the kathoxle, where they originaterl, to the anote, where they eated. These contractions followed each other "like the waves of water prodnced by a falling stone." In our jatient they were at no time olserved.

Diagnosis.-The diagnosis of the affection now presents no diftieulty, on aceonat of the chameteristies of the "myotomie reaction :" as far at known, no other alfertion gives a similar result to dectrial examination. Simulation can, as Erb puts it, always be detected by a few blows with the perenssion-hammer and a few anodal and kathodal closures with the galvanic comrent.

Treatment and Prognosis.-No treatment seems to exert any infinence upon the affection. Patients in time leam to avoid certain influeneres, such as cold, damp air, bsychical excitement, cte., ami to enconage ofthers, as aetive musentar exereise, and are thus enabled to lead a fainly comfortabe life. The affeetion lasts during the entire life of the patient, and death when it oceurs is due to some other affection.

LITEERATURE.

Thomen, J., Arehiv f. Psyedintric, 187is, vol. vi. p. 702.
Charles Benl, The Nervons Aystem of the IIamma Baxly, chapter on Alliections of the Voluntary Nerves, p. A36, Cone 184.

Jurohy, (i, W., Jourmul of Narvons mol Meatal Disenses, Mareh, 1887, vol. xiv.
Jeyden, Kliaik der Rumkemmaksk ramkeiton, I874, vol. i. p. [28.
K'mal L'ontopindan, Momid's Centralhhat, 1884, p. 520.

Ẅrichmman, Dissert., Bresham, 1883.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographi,
Sciences
Corporation

EX0PhthaliIIC G0ITRE.

By JCHN K. MITCHELL, M.D.

The variety of names which have been given to this affection sinee its comparatively recent recognition shows the uncertainty in which stulents have remained as to its pathology. Exophthalmic groitre, Graves's or baisedow's disease, Cachexia exophthalmica, Tachyeardia strumosa, Exophthatmos amamicns, are but a few of the titles bestowed upon a collection of symptoms now usnally regarded as nervous in their origin.

To the perfect picture of exophthalmic goitre three cardinal symphoms are necessary, -enlargement of the thyroid gland, palpitation of the heart, and prominence of the eyeballs.

Yet, as Tronssean has pointed out, one of these may be wanting, and still the diagnosis be easily made if the others are present. The one must commonly absent is the exophthalnos, as in the case detailed on page 9.9.

History.--Stokes, ${ }^{1}$ who himself added much to the knowledge of this affection, attributes to Flajani (1800) the olservation of the coincident occurrence of eardiac trouble with swelling of the thyroid gland. But the "Clinical Lectures" of Graves ${ }^{2}$ of Dublin in 1885 introduced a more acourate and extended description, and Basedow ${ }^{3}$ in 1840 insisted for the fi"st time upon the diagnostic importance of the three chief symptoms, - palpitation, exophthalmos, and glandular enlargement. The malady has been studied with good results by Charcot, ${ }^{4}$ Von Gracfe, ${ }^{5}$ Tronssean, ${ }^{6}$ and others,

Etiology. - No defined canse is known, but many things seem to ant predisposingly. Of the first importance is sex. Troussean guotes from Withuisen ${ }^{7}$ fifty cases, of which but eight were males. Ross ${ }^{8}$ says "it affeets the female twice as often as the male sex;" but this is a proportion of males far greater than that of most observers. In seven cases tabulatell

[^436]be Von Graefe lut one was a male. Dr. A. A. Eshner ${ }^{1}$ has collected two humdred and twenty-seven cases, -forty-two males and one humdred and dighty-five females. Of seven cases which I have observed myself, none were in men.

Sukes thonght that the disease never ocemred before pulerte, hut since his time many modenhted cases have been observed in children, thongh the average age of ocemrence in Dr. Eshmer's table wats between thirty and thirty-one. ILawkes ${ }^{2}$ mates a case in a ginl of six yours; Pelper ${ }^{3}$ has repreted "a fully-developed "atse" in a girl of ten years, Sollorig ${ }^{4}$ in one of cight, and 'Tronssmu ${ }^{5}$ had a patient aged fourteen years.

Hererlity seems to play but a small part, if any, in the production of the discase: in the case of Hawkes the father is said to have suffered with the came affertion. The establishment of the menses in girls, eepecially if there be diffienty, such as dymonorhoa or irregular flow, is of impurtance, and the tronble is of frequent ocenrence in female ehildren at this time. The amemia and chlorosis which are seen so often about this perind have also an important share.

Insanity, epilepsy, and hysteria are sometimes associated with exophthalmic goitre. Graves even suggests that globus hystericus is due to a pasing swelling of the thyroid gland. Long-contimued mental stratin, anxicty, and mental excitement act also as causes. It is said that the discase has apperred suddenly alter violent emotion.

Of still greater moment is the listory of a tendeney to nervons atfeetions in the family of the patient.

Pathology.-Important changes in the cervical portion of the sempathetic nerve and the lower cervical ganglia have been fomed in soveral enses examined post mortem. \& fiminution of the nerve-elements, tequther with an increase of the connective tissne, enlargement and inflammatory alteations in the midde and lower cervical gamglia, ${ }^{6}$ and great increase of ${ }^{\circ}$ comertive tissue abont the cervical sympathetic, iave been observed. Other students have failed to find any marked changes in the nerves or ganglia.? Yarions alterations in the heart, true hypertrophy, passive dilatation, insufficieney of the valves, fatty changes in the mascula fibre, have all been notel.

The enlargoment in the theroid glame is usually general, thongh the right side is slightiy more affected in many cases. The hypertrophy is never so extreme as in ordinary bronchocele. The arteries are dilated, rooked, and anastomose freely; the veins are varicose. In some of the

[^437]antopsies they have been fomed almost obliterated and reducel to mere filurous eorvs.

The glandular tissue is sometimes itself increased ; in the later stages it has mudergone a retrograde cirrhotic change. The cells are healthy on whitain eysts filled with gelatinoms matter. In the orbit the intrambital tis.ones are fond in an hypertrophied condition, the deposit of adipose tisulne nisually great, the veins enlarged and overfull. A theroma of the ophthatmis: artery is often present.

In this confusion of results the pathologieal anatomy remains somewhat doubtfinh. It has been asserted that the inereased rapidity of heart-antinu is prodneed by irritation of the acelerator nerves in the sympathatio. Others hold that the swelling of the gland and the protrusion of the ey are both due to paralysis of the vaso-motor portions of the same burve; and here it monst be agreal that Russ is right in stying that it is a somewhat surained interpretation to assume that one set of fibres is irritated b the same lesion that has paralyzed another set. He himself offers the not very much more satisfactory surgestion that in peripheral nerves both paralysis and irritation sometimes happen from the same canse in one nerve, as may be the case in a nemitis.

But the whole subject is in too vague a state and offers too many contrindictions for us to do more than mention these differing observations, waiting for firther investigation to settle definitely the pathology of the affectim. ${ }^{1}$

Symptoms.-The disease, usnally slow and chronio in its onset and rmming a long cenrse, may be acnte both in development and in disappearance. This happens in those cases where great excitement or riokent emotion has been the cause. In Solbrig's case (referred to above) the patient had entirely recovered in ten days.

Before any external apprarances of the disease can be seen, the patient is irritable, hysterical, and complaining often of palpitation, shortness of breath, thsining, and choking sensations. On examination, the pulse is found greatly hastened, beating 100 or 120 times in a minute in the less severe cases, and in the worse ones too fast to be comnted. On studying the chest, it will be found that the area of visible cardiae pulsation is inereased ; ${ }^{2}$ the arteries beat violently at the base of the neek, and an epigastrio pulsation is seen. On perenssion, the precordial dulness is generally fomed more extended than is normal ; and on ansenltation, a soft blowing murmur at the lase of the heart, distinctly transmitted into the carotid, and sometimes into the thyroid arteries, is heard. Next in order is the appearmee of thyroid swelling, though it may precede the development of palpitation. The right side is slightly oftener enlarged than the left; both may be equa: y swollen, or the overgrowth may be markedly greater in one lothe

[^438]ced to mere
atere stages it althy or (Onimhital tisumb E tix-olle lisine ephthathanis:
ns: solluwh hat - healt-adtion sympathectie. On of the ex er sther herse; it is a somes s irmitated ber offers the mot nerves hoth in one nerve,
many contrations, waiting e afferetion.'
its onset and in rli:xppearit or violent o above) the
n, the patient shortucs: of the pulse is te in the less On stueduing Isation is inan epigastric nerally foum ving murmir id, and some1e appearance f palpitation. both may be - in one lolve
roducerl exuphGand, 1872;
than in the other. The thmor is soft, pulsating, and a thrill like that of an andrism is commmicaterl to the hand on tonching it.

Exophthalmos comes last in the order of ceemrence, and may vary from a mere prominonce of the evelalls to a degree of protrusion so great that the exelids are mable to close at all and ulemation and destrinetion of the eorna result. The apparance given by the staring mawinking eye is vely strange, and 'as even cansed the patient to be supposed insane. 1 sigu first pointed out by Von Gracfe ${ }^{2}$ is of very grat impertance in the carly rerognition of the disume. On rolling the eychall downward, the mper lid, which in health moves in perfect aceord with it, follows tardily. In exophthatmos mechanieally brought abont, as hy tmons, this does mot oce. 1. This would seem to point to the sympathetie nerve as a partial cause of the protrusion, since Miiller has proved that the smooti museular fibres of the upper lid receive their imnervation firm the sympathetic. The sympom is not invariably present, but Von Graefe has seen it with a very trifling degree of exophthalmos.

With the ophthatmoscope, aceordiug to berker, the retimal arteries are seen increased in size and pulate visibly.

The order in which these thee symptoms are here given, palpitation, thyroid swelling, exophthalmos, is that in which they commonly ocenr, but the rule is not withont exeeptions, and, as has alrendy been said, cases are often seen in which one of the three signs is entirely absent.

Some observers have noticed slight inerease, others slight decrease, of bodily temperature in the eomse of the discase. In my own cases a slight rise of temperature has been always present.

Treatment.-In former days the chief remodies against the disease were quinine, iron, and other tonies, on the theory of its canse being in the anemic state of the sufferer ; nor should such means be neglected. Many mon have pinned their faith to many drugs: hart tonies and heart depressauts, digitalis, veratrom, belladomna, aconite, iodine and its compounds, bromide, arsenic, ice, and hydrotherapy, have all been vamoted, and may indeed all be useful. Troussean asserts that iodine inereases all the symptoms, and recommends digitalis and ice-hags locally applied to the goitre and to the eyes. Recent writers ${ }^{3}$ have fomm tincene of strophanthus of use. Dr. J. D. Ely ${ }^{4}$ thinks that he has cured cases with tineture of phytolacea ilceandra.

The indieations wonld seem to be to decrease the palpitation by removing any external canses which may produce or adle to it, to improve the nutrition should the patient be anmomie, and, white thos treating the symptoms which eanse distress, to endeavor to reach that which is probably the original canse of the discase ly improving or altering from its morbid state

[^439]the sympathetic nerve. The first end may be best gained by preseribing a woidance of exertion, and, so far as may be, of excitement. In bad (ans it is well to pat the patient to bed for a time while carrying ont onhere tratment. The sick person should avoid antirely the ascent of steps. A supher position for some hours during the day should be insisted upon, Manwhile, tincture of strophanthos in small and frefuent doses may lo given, and the effert very carefully watched. Ler-hags to the eyes, to the woitre, about the batse of the neck, and to the ecrvical spine should be applied for as long as the patient can bear them, several times in the day. This is a remedy which may be dangerons in persons with weak hearts, and must also be wateled.

I have over and over seen exedlent results from the bohd nse of tindure of strophanthus, used at first with cantion, the patient being kept at alhentute rest, under milk-diet, and locally treated by gatvanism, as bolow deseribed, and by the use, twice daily, of thorongh massage of the eychalle and the timost. This latter means is followed by marked and immediate lesseming in the ciremaferene of the neek.

Most impertant and most nsefinl of all is the galvanic enment. This is best aphlied ats suggested by Eulenberg: one pole over the cervial armpathetic, the other over the body of the heart. Eulenberg remmands that the negative pole be placed over the nerve in the neck, on eitloer side altersately, or, better, with a divided electrode over both nerves at ones. This has decidedly the most influence, but I have not been able to ste that there was any choice as to the direction in which the comrent should pas. With either the positive or the negative electrode pressed dirmly down at the base of the neek in the worst case which I have seen, the pulse, which had been beating at 125 or 130, would drop in a few minutes to 98 . The treatment must be persisted in for a long while. It maty be weeks lefere any improvement appears. It will probably be months before any las 'ug gain is made. The enrrent-strength can seldom be borne greater than from two to three milliamperes.

Besides the rest and avoidance of exeitement already spoken of the diet shonld be curefully regulated ; coflee and tea should be onitted, and little moat caten. If possible, a comentry life should be chosen. Vinleubery also advises a comse of echalybeate waters, such as those of Schwalland in Europe or the iron aprings of Sanatogat.

The exophthatmos is sometimes so great as to need local tratment. Von Gracfe suggests painting the upper lid and the space between the eycbrows with tincture of iodine, the inunction of ointment of the iodide of potash, wet compresses, and even in extreme cases tarsorrhaphy. It is not likely in young patients that the exophthalmos would be sufficiently grant to call for so severe a measure, but Von Graefe has done the operation in older persons, and Drs. Levis and Roberts have performed it in this comntry.
reseriling band lums here treatI sıйй Mannw givin, he wuitre, pplicel for This is at and must

If !ineture t alsoulule lesuritsen, - allid the lescming.

This is ixal symchuments ither side at mone. a see that mili pros. dewna: oe, whith 18. The is lefure y lals han from the diet and little ery als, Insel| in calturent. the eye wide af It is mot great to ins older

The following notes from the case-book of the out-patient department of the Fhiladelphia lufirmary for Nervons Diseases present an example of the kind of cases mentioned above, in which, while one of the cardinal symptoms was absent, there eombld yet be no donh of the diagnosis. They are printed by permission of D : Wharten Sinkler, in whose dinie they were taken.
L. A., aged 14. An exerlent persomal and family history was given, the patient's own health baving heen pertiect until atom , we yeur since, when she first had slight menstruation. At uhnut the same time she noticed a rapidly-incroasing shantues of hreath on very -light exertion. The menses were irregular. The girl was musually irriahle and nervons. Aiter some months a slight swelling of the throme nppured.

When bronght to the elinie she lad a pulse of 1 各, a blowinge murmer heard in the
 dise. The tumor, which wat decided hut not very harge, was perfectly bilateral, soft and pasatile, and commonicuted a marked thrill to the humd. No exophthunows. She was ordered gulvanism to the sympathetios threw times a serek. After a few applieatims it was moted that within two or three minutes after the curn int hegan to pmas the perlse fell to 108. Persi-ting with the treatuent, a still mors manked improvennent took place, and at the preent time the promise for a permanat cure seems bright. Her general condition is also greetly better under an ordinary tonic treatment.

drat and fifty-one; and Sanzoni, four below ten seas and thirteen between fon and fifteen yeurs ont of two landred and seventeen.

The literature of hysteria in childen is not extensive. A lack in partienlarly to be ohserved in treatises on discases of childrm, as in those of Neigs and Pepreer, West, ${ }^{2}$ and others. Hemoch ${ }^{3}$ considers hysterical affiexo fions in chaldren at some length, Ashby and Wright thase a short but prationd chapter, and Gomathart ${ }^{3}$ reports a case or two buder the had of fumemal nervons disomders. More attention has been paid to the sulbeet If nemotogists and alienists. Georget ${ }^{6}$ recorded observations in 1824, and abes were reported by Lamdonzy ${ }^{7}$ in 1846 , and, ats above mentioned, by Briput, ${ }^{8}$ whose groat work on hysteria appeared in 1859. Jolly ${ }^{9}$ holds dhat in childhood, long before puberty, well-manked hestericul phenomemat nesur, entursing the opinion of Briynet that in one-fifth of all "ases the development of hysteria takes phace lefore the twelfih year. Rosenthal ${ }^{10}$ beleves in its frequency in young gits, but has observed only two instaners inl beys.

Artiches on hysteria in chiddrem, bat in small mumber compared to the fimmene literature of the general sulyect, lave appeared in German, Frendh, Italien, English, and American medieal jonmals. Amemg German writers the sulgeet hats been dismsed by Henoch, ${ }^{1}$ Smidt, ${ }^{12}$ Mondel, ${ }^{13}$ Riewel, ${ }^{14}$ II ere, ${ }^{15}$ Ricemfehl, ${ }^{16}$ Pukler, ${ }^{17}$ Engelsburg, ${ }^{18}$ and Hirschfeld. ${ }^{19}$ Casew have leen reported by Italian observers, as by D'Abudo. ${ }^{20}$ Benmeville and I'(O) ier ${ }^{21}$ in 1880 reported the case of a young boy stricken with hestermepilepry offering all the phenomena manifested bey a what or a yomper grirl, and as cally as 1882 Chateober published a lecture on hysteria in young
dimomemal lerituria is -develuped (orreplatend hil purteis. c colder, in IIysteria minder "onl15: muls. line relse may

- his culens wom five hemy years It of cich hree houn-
${ }^{1}$ Practical Treatise on the Disenses of Children.
${ }^{2}$ Diseases of Infuncy aud (hikthood.
${ }^{3}$ Lectures on Children's Diseases, translated by Juhn Thomson, M.B., ete., New Sydenham Sorciety, London, 1889.
+1 hisasers of Children, Mediond and sirrgical, London, 1889.
${ }^{5}$ (huide to Disemses of Chidmen, (dited ly L. Starr, M D., Phidadelphia, 1899.
${ }^{6}$ W. l'Hyperchondrie et cie l'11vstirie, 1824.
${ }^{7}$ Traité complet de 1'llystérie, 1841.
"Thaté clinique et thérapentique de l'llystérie.
${ }^{9}$ Kidmsen's Cuelopedia of the Practice of Medicine, Amer. ed., 187T, vol. xiv.
${ }^{10}$ Clinimal Treatise on Disenses of the Nervous System.
${ }^{11}$ Wien. Med. Prosse, 1881, xxii. 916 -91s, and ops. cit.
${ }^{12}$ Walimuch f. Kinderlı., 1880, Bd. xv. 11. 1.
${ }^{13}$ Deut. Med. Wochenselhr., No. 16, April 17, 1,884.
${ }^{11}$ Zatitehr. f. Klin. Merd., quoted in Archives of Pediatries, July, 1884.
${ }^{15}$ Wien. Med. Wochenschr., No. 46, Nowember 14, 1885.
${ }^{16}$ ["bher Ilysterie bei Kindern, Biss., Kim, 1887.
${ }^{17}$ Wien. Med. Woehenchr., 1888, xxxviii. 431-433.
${ }^{18}$ Ibid., 1888, xxxviii. 459-461.
${ }^{19}$ Intermat. Klin. Rundshatu, Sptember 28, 1888.
${ }^{20}$ La Riforma Medica, Rome, June 4, 1888, No. 128.
${ }^{21}$ Le Progrès Médical, 1880.
${ }^{22}$ lbid., 1882, x. 985, 1003.
boys; Bommeville and Bomaire also have reported interesting ohserva tions on hystern-epilepsy in a yomg bey, the case having heme comed hy hydropathy with gymastics and intermal treatment. ("asamben ${ }^{2}$ in lase wrote his thesis on hysteria in yonng lows, and Penanioz ${ }^{3}$ in 1 s.an his on hysteria in children, eollerting the most important facte on the wingent.

Among English anthoms Wilks and Gowers ${ }^{5}$ in their text-lumk, and Thompsom, ${ }^{6}$ Roberts, ${ }^{7}$ Barlow, ${ }^{8}$ and Springthorpe ${ }^{9}$ in jommals, haw dis. cussel the subjeet. White Amerimin anthors on lysteria in chidmen have not been momerons, some of the papers have been original in mendual if
 rem. ${ }^{12}$ (iilldte," Lere, ${ }^{15}$ Bemiss, ${ }^{16}$ and Weir Mitchell ${ }^{17}$ have reeordell interesting observations.

ETLOLOMY.

The old chassification into prodisposing and exciting is as armel a sub). division of the canses of hysteria in children ats any other, althugh it is somutimes difficelt to separate one of these clasees of canses firmen the ofler.
 bation might in a certain case be either a predisposing or an exeiting eanse.

Among the most important predisposing eanses may be ramed heerentit, improper echucational methools, neglect of physionl hath, the ill whets of bad example, monsual hardship, climate, and depawed conditions of the bloud.

The influcuce of heredity as a predisposing eanse of hersteria is gemcrally recognized. The neurotic constitntion in, after all, the mast fiemuent predisposition to hysteria, and Briguet, Amam, and others give valuad de statisties to slow the more or less direct tranmission of the diereser from parents to children, particmbarly from mothers to danghters. In such "ano Ixoth the inheritance and the inflnence of parental example may a-xith in producing the disorder. Some years ago 1 saw in consultation a striking (xample of this,-a typical ase of hystero-epilepsy in a gind deven rams of age, whose mother I lad treated several years before for the satae atfece-

[^440]198 wherva. 11 chrex bey m^{2} in $1 \times x x^{\prime}$ Ix,.") lis man Hh!ex.
-lunkic, illil - hatwo dis. ilimern hase methoul an $\therefore 4144^{1!}$ ('arwhen! inter-
groul as sub. lough it is the other. or masturitingerms: al hermality; 11 cflimets of ionns of the
mial is !amnst firmpant vo vatuable iseatse firom | aly arsist in a striking levoll yaurs same atfec
iit., 184%.
al ol' Distases
tion. The physician in attendance at first regarded the case as one of meningitis, probably tubercular. 'The spasm wats very similar in many is its fratures to that from which the mother had suffered. She, like the mother, had the hystero-epileptoid statns, prasing from one attalk to mother firs several hemrs. After a carefal review of the semptoms and the history of the eatie, the doctor became convinced with me that it was one of grave hasteria. She, like the mother, mate a complete remover.

The inheritance of hesteria, as of other mervons diseases, is oftern not dired. Grasset, for example, has shown the comention between the tubercular diathesis and hysteria, believing that hesteria is often the manifespation of this diathexis. The chiblden of the insane, the cpiteptic, the alvolulic, and of these suffering from certain organio diseases, particulaty affietiens which insidiansly modermine nervons stability, may lnowome lysterieal. Childrem af perfectly healthy parents resist the development of hasteria, even under strong exciting canses. The hysterval constitution is amorthid heritage.

The negleet of the physieal health of dildren is a freogent canse of hestria, partionlarly in its minor manifestations. Poor or ladly-selerted fund, imperfect ventilation, tow little smshine, overheating, of exposure, want of edeanlines, -in bridef, berd infantile and jurenile hygiene,--kent to the development of hysteria, as to a multitude of other alfections.

Halitations and the particular roms in houses assigned to the children have sometimes a marked influcace in the devederment of hysterta. The chilhren of the pon are compellad to live as best they can, but the ried and middle claseses and even the poor can improve the chances for mervons and general health by attention to the opportmities within their rach. If whilden are compelled to be a large part of their time within-dons, whenever prsible the most healthfinl rooms shonk:. be set aside for their nso. (luilly, sumbess, badly-ventilated rooms sap nervous vitality; roms of grond size and somthern exposure shond be given preference. Just as the fick, particmlarly of certain classes, get better in sumy romes, so thase in bealth, partienlarly children, will retain their health and powers of resistance to disease in pleasant livingroms.
"It is really smprising," says a reecent writer," "to see the amoment of tronhle and pains bestowed on the proper housing and feeding of horses and dugs or other domestic animals, while at the same time eomparatively little attention is paid to these matters with regard to the rearing of children. Model stables and moxded kemols abomed, white the model nursery is almost mknown. Warming, ventilation, and aspect are all sulojects which are thoroughly considered in the stalle, while as regads the mursery they are generally left for dunce to deeide,-though the health of a child is surely more important than that of a horse or a dong."

[^441]

 ment. In our large rition all phasicians in momiderable pration an wallat

 vations somewhat freprently. About on just sucerediag examinationtime

 While nut a disemee of the ridh, it is, on the whole, more likily to oremer amoner ather the ehididen of the rich of thase who, white met wedthey thems. selven, are willing to surviliee mululy in order th wer-iblulge thap whil-
 are sommetines the victims of hysteria. In our harge citios, in whim all

 gants and ammements failing or cloying, they indulge too mand in .and ing and in efteminate plays. The life of a chita should to made at matrat,

 and out-dow life, which is too often paratioally imposillde in the winter in cities. If parents cammot supply their children with the amomot of air and
 effert to send them to the comatry or sea-shore carly in the epring and lien a long perioul.

Sither an comervatige dimate or one of great variations may devedp hysteria in the yong. Certain satamal influchers are potent in its deved opment. Mang observations have been made be Mitchell, ${ }^{2}$ Lewis, ${ }^{3}$ and others on the eflicts of climate and weasoms upon chorest, and the fiets
 of chideren is not seldom hysterical in nature. Hysterioul chorea and hy:teria of other forms are, on the whole, more likely to develop in the spring, and particularly after a severe winter.

Amemia, chlorosis, of the strmons habit maty be the gromodwak of hysterical seizures in children, and it is for this remon that irm, arsenie,

[^442]la ascinilly （ ：alll pullia \therefore land to tha ial（cリリアリ：1－ iere as：cailleyl
 ，inderal，ismon box：－（：1aray
 Hillatton－timb
 nt tor chat in
t of herstrom． kily to amerm valthẹ Humb－ ＂r thia mill－ loid axallay in which all fir＂ in the winter

 dre as battual， lvolls hatali－
 tho winter in nit ul＇alle and 1 malk wow ring and fors

Baty dewder in it：水地川－
 Hind the fillts． d，the chor＂al
 n the spring，
mombork ol inton，arssule，

 of nervens herak－down whid may show themsenves as majom of miner has－

 inderent perfomanem，beoming erotic and hysterinal．Whila parents and
 callow of this kind，they shombl he carefinl，on the other hand，mot tw lated there inmerent of any kowledge of thought of surh matters to their un－

 way fir its development．

In children，ats in ：ulultr，imitation，mimiars，or nervons contagion often phas：ant impertant role in the production of hasteria．In this way have migimated many of the epidemin＇s and endemices of varions ages and coun－

 ings，their revelations and erstatice seizures．These pilgrimages fonk place fir more than two centuries，and mothing to be compared to them in the mumbers taking pate and the wide diffinsion of the affection hats oremered in mulen times．On a smallur sable，however，ememics of hysteria from imitation have frequently oremord，and some of them have been put on reverd．One of these was an outhreak in a dhureh home lior childern in Miladelphaia，whid has been deseribed by Mitchell（op．cil．）．A mare revent outbrok，which attracted considerable populat attention，was in Fonnary， 8889 ，in a school for sohdiers＇onphans at Mcallisterville，P＇mu－ sylvania．The newspapers contathed sensational aroments of this disorder， which they attributed to diverse callsces．The patients，who were all hove，
indulged in striking and kicking, ruming, and damaging furniture, One eommon manifestation was the calling of everything by a single mame. One boy was attacked after another, and the effect of imitation was often distinctly traceable. It was supposed that many of the catses were intancers of deliberate shamming or feigning, and ame of the boys were persuaded into confessing that this was a fied ; and donbtless in every culternic on epidemie of this kind some cases will be due to deliberate shamming, and others to involuntary imitation or nemromimicry. The affeetion grathally disappeared.

Roberts' relates an interesting experience illustrating this tembency to imitation or nervons mimicry. A boy thirteen years old had an lysterieal bark which degenerated into a hoarse somed resembling the blouting of a groat, this contiming, with some variations as to time of day, fin liftern months and then gradually subsiding. The boy was separated ats moth an pussible from his brothers and sisters, but on one occasion [assed some days with his elder brother, and four months afterwards this brother alson haul an attack of hysterical barking, which lasted a formight. He had a sienor mine years wh, who four years after her brother's reeovery also beymutark and to show other sigus of hysteria. The hystericai bias was inherited from the mother, who in her youth had displayed severe hysterial symptom-

As Roberts says of this family, it is important to mote how hestemia mondels its manifestations, by meonscions mimiory, on a contiguons moded, in all three cases the disomer affecting almost exclusively the diaphagm and laryns, and almost exactly in the same fashion. "This is fuite in harmony with the history of this great nemosis. When hysteria homes ont-epidemically, ats it were-in a shool or numery, ali the (ases develter the same type of manifestations as those exhibited by the indivilual fint attacked."

Mitchedl relates the case of a lad deven years of age, whose sister mine years old, an epileptic, had an hysterical attack ats the result of rmmine a nat into her foot, which semed to have impresed him with the itea that he was alllicterl in the same manuer. After this he fiemuently hat eproms which were lacking in the diagnostie maks of epilepery, and which were eured by the cold donche and the thene of the application of the hot irm. Another pationt after an attack of agne begon to limp and complain of pain in the right knee; hip-joint disease was diagnosticated, and the dild was taken to a surgical institute, where she grew worse and developend pint, hypresesthesiats, psendo-palsier, and contraetures, with at times attarks of hysterial spasm. She was removed to quiet loolgings and got well.

Hysterical symptoms sometimes develop in children apparently as the result of their being in the company of those older than themselves. They see, hear, imitate, what is done by their elders, withont being able properly to understand and correlate such actions. Their minds cannot digest and
make crool nse of the observations and experience of a companionship not fittend for their years.

The lack of momal taining received by the children of hersterital mothers is another canse of hysteria. That any ill treatment, moral or phridal, may callase hysteria in children goes withont saying ; but the chicf fillustation of the truth of this assertion is to be seen in the chilhen of hasterical parents or of those who are diseased by aldohol or are the vidims of some form of mental or moral perversion. In schools, asylums, almshonses, and hospitals hysteria sometimes results firom ill treatment.

Hystria may show itself not only in the comse of an acute disorder, but alko during the time of depression and weakness when the child is convalescing. Every practitioner has seen "ases of this kind, and, inded, in its miner forms the affection moder these viremstanes is so common as searely to be considered werthe of more than passing attention. Some of these "ases, however, assme grave appenaners. Roberts (loc. cit.) mentions the "ane of a boy between eight and nine yan's of age w'w, when reowering tiom a fever, was seized with paroxyms of lond, passionate, and tearlos srying, with incoherent maings of the most distressing chatacter. In the intervals between the paroxyms he appered quite wem. He was sent from homs, an intermpted galsamie emrent wats employed, and in about sis werks the paroxyms ceased altogether. Riegel ${ }^{1}$ marmates five cases of hasterial alfections in children, three of which were in boys from ten to fifteen sears of age and were serpuelae of other discases. The diffocolly in these cases was in respect to the use of the lowere extremities. The patients conld not walk, but bent their kuees together as soon as they were phaced unon their feet, and yet no discase was discoverable. In one of them there wre regular recarring clonic convalsions.

Trammatism is undoubtedly a canse of hysteria both in children and in adults. Injuries may give rise to a great variety of hysterical manifestations, from an isolated ache or mambess to the grotesque train of grave phememen which oedur in lystero-epilepties.

A pomg girl seen in consultation land a clear thanatic history. Two years before coming mader observation she had fallen on the ice and struek her heal upon a marble step, entting it severely, after which she suffered with headache and oceasionally was light-leaded and had great pain man the sent. Later she hegan to have spasms, the first wecmering in a field where she had hold of a rope with a dog. The only thing she remembered was a sharp pain through the sear. Her eves hurt her, and she conld not sue to read. During five months she had many spams, sometimes every day, sometimes not for a week. The sear wats removed, and she had no spasm for five weeks, but after this the spasms recorred. She eventually repovered under treatment directed to her hysterical condition.

[^443]

 dent and inflamather symptons at some more remote periok

F'repuently the begiming of at tain of hasterial phenemana in attribu-

 thrown sume light upen the effert of fright in catablishime the trame has

 hibiture the momal flow of life:" This writer gives an illustration from a

 fiver, and delitum were due to a forlish immersion of herselt in mold water at the age of thitem. 'The dhill, ferer, ctre, were consergemees whid then

 itsidf present at this experiener also whemere the of ere erises ambe sum The hesterian blandues of her hett eer had the same sort of arigin, datine
 Shep in the same bed with andher child, the beft hate of whese fave lowe a

 and lofi behised it an antasthesia of the skin and the blindeness of the exe."
 "pen the inthome of tright, magrin, grind, regred, and atl other paintal
muwnl il muldition MrTvills implutici แurvolis

Cille
miltrow
Allusic liti
 lys:teri:u sy:tellu: int :ldult: thail s:111 niry rem
 disatisc in ant tilul ans Coll "uliar, :lun all Clivict.

Civelt

 wrtain! dillilven. palyly ज्ञाइए inns halve thus:ial :111 time :1tct \|ryl": | prexlaricl max live it is imy shall, wit dre sum aif the 1 of ciremb: a murn yrumid hysteric: lated sulu

III，pir－
all，ill ： willing， ＂athe the －Hisll 11$]^{\prime}$ ；in it cont th：ut （1）： ｜lllll in lot andy to ：100
altrihn－ ＂Merent to have re lix：－ 1：Illullu－
 amdition．In some impressionable children－thoser with plastice，destile

 it is imposible foreplatin all in this way．It is impresihle that a patient．

 ghmod that many，it mot mast，of the grase phomomanat exhibiter lys
 lated symptomins．

[^444]"In spite, however, of the mystery that hangs over the cansation of hysteria and of its precise pathology," says Compland,' "there are "ertain faets of observation comneted with it about which there can be mo mamer of dispute. Observed and recorded in numberless instanere, these firts. surcly are roal pongh, and probably have a real pathohogioul chamge at their root; and to dismiss the discase as unworthy of consideration or th question the reality of its manifestations is surely to abrogate that spint of scientifie inguiry which shonld enter into all investigations into morbid conditions."

In children, perhaps more than in adults, snljective hysterima sympom: may, however, be exagrerated, simulated, imitated, or inducel, to gain sympathy or gratification, or, it may be, merely from a general morhid tendeney; but it is both unscientifie and misleading to regard all hysterical phenomena in children as of this character.

The question of hyprotism in young children is one of some importance in the consideration of the pathology of hysteria. Many hysteri id conditions are practically states of hypuosis. It is said to be casier to hypmotize young persons, especially from sevon to twentyone years, and it was upon this account that the ancient Ligyptian, Greek, and Roman priests and the Indian fakins preferved to employ young children in their initial ceremonies. Ont of seven hundred and forty-fonr p^{-8} sons of different ages who were tested by Liébant in one year, he suceredel in throwing s° x homdred and eighty-two into a more or less decp hymone state, and of the sixty-two who proved 1 m-hypnotizable none were under fourten yeurs of age. ${ }^{2}$ Children are then I "pnotizable as they are hysterical: the one fate presumes the other.

As Blocq (op. cit.) has put the matter, the explanation of many lysterical manifestations in children is to be found in the imperfeet development of the cerebral centres. The inhibitory action of the cortex on the lower contres is then at a minimm, and the child's nervous system therefore responds with too great readiness to all exeitants.

SYMPTOMATOLOGY.

A study of reported cases and of personal ohservations shows that certain phenomena are likely to predominate in the hysteria of eurly life; for aceording to the degree of development of rertain mental farnlties, particularly of the will and intellect, must be the diversity and permanence of nervons manifestations in children.

Hysterical symptoms ram be classified as psychical, motor, semsory; including perversions of the special senses,-vaso-motor, secretory, and miscellaneons,-such as vomiting, phantom tumors, and the mimiery of acnte diseases. In children, as well as in those older, these symptoms may he involmatary, artificially induced, acted or simulated through irresistible

[^445]${ }^{2}$ Bjornstrom, Hypnotism, 1889.
impulsis phenon tion or sis be muldorib mature

Bed complur adoloter

Thic
persisiste hastervic in carl? and an taincel tional specth, ing drad inducend in the ? and les of hlyste tain im in chile or cude jurenil directed quickly

The spasmon terical g as at au typicul "mmon care in nose, of of the in child distasc are m^{2} claracte hysteric as of p ufter th: for mor
impulse, or acts of deception or imitation. Probably in children hysterical phenomena most frequently are cither involuntary or dear cuses of deception or imitation ; althongh I do not bolieve with Roger that every nemosis by imitation or mimiery is a neurosis by simulation. Direct imitation umbubtedly plays a greater part with children than with those of more mature years.

Before taking up symptomatology in detail, it will be well briefly to compare and contrast hysteria in children with the disorder at puberty and addelescence and in adnlt life.

The psyelical phenomena of hysteria in childhood are not so intense, persistent, or multiplex as in older patients, and therefore a true comimons hasterical insanity lasting for weeks or months is mot likely to be observed in early years. The tremendous cmotional and motor excitement shown in sud an affection as acute hysterical mania of severe type camot be sustaned by the weak physical and mental powers of chihthool, as no fimetional disease can exceed the potentiality of a se individual. The exeited speceh, the violent gestionlation, the calculating deception, and the exhansting dramatism-whether such phenomena be voluntary, involuntary, or audued-camot be long maintained by the child. While hysterical mania in the young child may ocem, it can only be a pasing storm, less destructive and less ostentations than in the adult. Some of the mo:e chronic forms of hysterical insanity are somewhat frequently ohserved in children. Certain impulsive and particularly imitative tendencies are highly developed in children, and hence we have many accounts of hysterical epidemies or culdemics among children; but the comparatively slight condurance of juvenile hysterical phenomena is evinced by the fact that, under welldirected physical and moral treatment, even such outbreaks have been quickly sublued.

The motor phenomena of hysteria inelnde general convulsions, lowal spasmodie disorders, chora, tremor, ataxia, paralysis, and paresis. IIysterical general eonvulsions ocem before puberty, but they are not so frequent as at and after that period, and, when they ocenr, are not so likely to be typieal hystero-epileptic attacks. Gowers says that hysteroid attacks are common in girls at ten and twelve years of age, but such is not my experirure in this comutry. Local spasmodic affections, such as twitehing of the nose, of the eyclids, and of the month, general facial twitchings, and spasm of the glotis or even of the laryox, oecur with comparative frepuency in chibdren. Contracture associated with nenro-mimetic joint- and spinedisease is of common ocenrence. Some of the forms of chorea in chiddren are properly designated as hysterical, but most of them are not of this daracter. Chorea is sometimes simply one of the features of a general hysterical condition. Hysterical tremor is an aflection of childhood as well as of puberty, adolescence, and adnlt life, although it is more common after than before puberty. I have never known hysterical tremor to last for months in childhood. Some cases of paralysis in children have been
reported in which tremor also has been present, and occasionally tromers more or less persistent are seen in children who have been subjemed in sudden and extreme fright. Hyaterical ataxia severe in type is bume hut
 oftener observert. In some of these cases it is difficult to say wher her they shonld lee clasifited ats ataxia or chorea.

Pamalysis oecurs in children, in bive cases in very goung ehildrem, hut it is by mo means so common as in later life. Hysterical hemipherial in boys and girls has been reported by competent ohsedvers, lint cases ase bet numerons muder thirteen sears of age. Slight forms of weaknem on law of power in the limbs, which can hadly be called pals, atre sometimes seen in hysterical chidren, passing away in a few minutes, or in sumb homs at the most. The graver forms of motor paralysis in children are mathe associated with hemianesthesia and other hestero-epileptie phemomma. Few such cases, however, have been reported in this comutry, simaty hysterical phenomena are probably more common in children than any other manifestations,-hyperasthesia particularly ; mad this may bre cilleer beal or general. Headache, nemalgias, and lowazed subjective pains are also freguent. Hysterical coxalgia has heen reported. Anesthesia is mot so common, but Chareot, Thompsom, Barlow, Goodhart, and others hase recorded cases. Hysterical achomatopsia, blinduess, and deafness, nisually. milateral, are comparatively frepuent. Vasomotor affections are rate, while some disorders of secretion are common, as, for instime disturbume of the minary secretions. Hysterical vomiting and phantom tumors burds. oecur. Goothat, however, hats seen finctional vomitins and an extrome case of finctional hiecongh in girls of ten and twelve seats repertively. In one case detailed by Henoch, a girl deven years ohd had volent attank of retching, with hematemesis, during which half' a copful of hatekish-wed blook was brought up. Nothing wrong could he detected ly examination of the lungs, teeth, theroat, or tongue. Henoed believed that it was not an attack of simulation, but one of hesteria oceurring after mental excitement. She was cured apparently by the peychical, or perhaps by the pantul, effects of ergotine injections.

For the purposes of study we separate the symptoms of lyysteria, hout, while they may sometimes, they do not generally present themselves as isolated phenomena, but rather as a syudrome, inchoding several of the important sensory, motor, pesehical, or other phenomena. When, for example, decided anasthesia, either for touch, pain, or temperature, is present, it is ustally in association with motor paresis and with perversions of the special semses and of the paydical sphere. Contracture is usually in assonciation with neuro-mimetic joint-affections, and sometimes also with a whole train of motor, sensory, and other manifestations. Often the diagmsis of hysteria can be made by a careful consideration of the fact that, while one symptom in a given ease may be in donbt, another or others are hystrical, and therefore probably the doubtful should also be thus classed. On the
whole, i is partic

Let yreatel thaill lat Pischical .1 tio thint in attruactin dinulu: destructi sistelu "
(irca wherved all attice violenere suicide, ruburnent aubition in extron dherem or stimul) time. cxager rat womall, anting lie neovery.

Theri fatiluce or minises :ul The patic Still mon bite then their own Tery con tendeney Not only sisteen ! the corne ward, shic livingsto sellis to which we
whole, isolated phenomena are more frequent in carly life than later. This is purticularly true of hestericul pain or lopersensilility.

Let us now take up some of these symptoms of symptom-gromps in greater detail. Of the peychieal manifestations little more need be said than hats been said alreally ; but it camoot be tow often weated that the perchical clement is a part of every hysterical manifistation.

A form of hysterical insinty frepuenty chaserved in young childrea is dhat in which the wits of the child are perversely need for the puppose of attracting attention and creating excitement by some outravens or extraordinary' series of events, as the ringing of bedls, bappings and knockings, destruction of furniture, ette. Chidren are fomm concocting an chaborate arstem of fiand and dereption, sumed on by the hysterical temdeney.

Geat mental exeitement, suffieiently marked to be chasoch as mamia, is uberved in hysterical children. In a sedool-ginl deven years ohd, after an attack of typhoid fever, spells of eryiug and of great exeitement and violenee hegan. She would sirike other children and thereten to eommit suicide, beeane morose, and eomplained of headidede. She reeovered on a monant tratment. West mentions the aise of a girl seven yars old, ambitions to learn, in whom the first signs of an overtaxed brain appared in extreme irritability and canseless attacks of firy. She sufferel also from dhorea on both sides of the body, but not severely; she would sometimes stumble and fall. She developed serere houdachers which lasted a short time. She was morbidly solicitons about her own health and disposed to exagereate the slightest ailment. Fortmately, her motleer was a semsible wom, and by julicions treatment, taking her to the comnter, and interating her in botany and pet animals insteal of books, acomplished her meovery.

Therio-mimiery, or the mimiery of animals, is sometimes a striking feature of the endemic or epidemic form of hysteria in children. "The mises and actions of amimals," says Gowers,' "are strangrly imitated. The patient mews like a cat, or, mush more commonly, harks like a dog. still more frequent is a temdeney to bite. Patients sometimes, but rarely, bite themselves. I have known the lip to be bitten, and two patients bit their own fingers, one so severely as to leave a permanont sear an inch long. Sery commonly, however, the patients try to bite other persons, and the tondeney remders considemble care necessary on the part of the attendants. Sot only do they bite, but do so in a curionsly animal mamer. A lad of sixtern years, after failing in an attempt to bite an attentint's hand, seized the corner of the pillow between his teeth, and, throwing his head backward, shook the pillow just as a dog shakes a rat, or as a lion shook livingstone. This therio-mimiery may be in part troly mimetie, but it scems to be the part of a manifestation of some strange amimal instinct which we possess in a latent or modified comdition, like our canine teeth."

[^446]Blocy,' nuder the title of juvenite hysterical mania, considers the question of the mental disonders of grave hysteria in the youmg, revording an interesting ense; but the report is, after all, simply another example of grave hysteria, like the cases en much disenssad by Chareot. 'The hey prosented paresis, twitchings of the limbs, leperesthesia, dilatation of tha prpil, and domble comentric contraction of the field of vision, mate manken on the left. Nervons ill health heman atter an attack of typhaid feme which oredred at two and a hah yours of age. The child began to sulfing fiom headeches, and was never in perieet loealdh; but he wats mot attaded until thirtecen yars old with hysterical paraplegia, pains in the left kine and in the lumbar spine, and later with contractures and hystern-epileptic attacks with periods of viokent mental excitement. In one of the latter attancks he wats stricken with delirimm and momecionsuness, remogniaing nu one, babbling constantly in incoherent fashion, and having spells of fury in which he wishal to strangle his nurse, committing also hasurd ants, trying to drink his urine, ete. This delirions or maniacal sta combinud for twelve days, after which he gradually recosered, but had the at time: wandering atir, some trouble in ideation, wats indifferent, miscrable, wifhow to commit suicide, and had lost eompletely the memory of reenot fats, llis mind atter a time cleared entively, hat he had no remembane of the events which oceurred daring the attark. This ase presents the features of a form of mental disorder oceurring in hysteru-epileptice; and a similar attack or serics of attacks may oceasionally ocene in a cate withont any other history of grave hysterical symptons.

Acoording to Blow, this form of hystericul mania often attacks childien, and particularly boys; but here it mast be remembered that he is speaking of French eliddren: it is certamly rare in this comentry, althongh I have seen a few cases similar to the one deseribed. Bloed refers to at memoir of M. Clopatt on infantile lysteria. This author eollectel two humdred and seventy-two observations on hysteria in children, nindty-sis of these being boys. Of this number one-thind showed mental disorder: Aceording to Bloce, the mental perversion is somewhat uniform. It appears: as attacks in which the eonvolsive dement is sometimes reduced to a minimum, but at other times much prolonged. Often the child presents at first incoherence of words and gestures; he behaves like a madman, constantly bahbling and acting absurdly. More frequently his agitation is violent, and he is fintons, striking, shonting, menacing, speking to bite, pinch, beat, or even strangle. Sometimes his monomania takes the form of emathropr. Commonly the excitement ceases abruptly, the patient seeming to emprye from a bat dream. Such mental attacks may either suceed or take the phace of other hysterical manifestations, and they may or may mot coexist with nervons stigmata.

Hystero-Eplefesy, Cataleisy, Eestasy, Thance, and Mhlei

[^447][^448]

 grathally, and the bey logath to make frighlal movements; his five

 ho appeared to hatw hatheinations of siyht and hatring, and asembed pasitions of defone and of extrome fright, sommemes diffent and ank wiml positions as if treing to hear sumethinge. Ill the moverments and manito. tations were in wery ghick smeresion. He would rise firom beat, pirmuth

 he would get in immediatelly, talk and lamph, and rexithe all the dedails , if the attark, oxplaining his illusinns and hallucinations.

 The hast slack prow ind an attak, and wen buing thown to the gromed

 period of great musements, with the ardhed pasition, then passiomate attithese, with violent aries. Ha hail firom Novomber, 187!, to Domentur,

 of ther semamers.

Bommevillo and E. Bomaime have reported ohservations on a similato

 by tamsicut paralyse.

Camean reports al case in a bey eight yals ohl, whose mother was lays teriwal and whose father had had chorat. 'The bey was shomeder, weak, hand
 womld feign sirknes, and was vicions. The spatims were altermately hime
 ment of the cervical glands, nasal atarrh, and dysepsia. Acrovdiug to
his. 1 m dixy 川 mation, |ayl|w :illuck whitl l, Thur in prilts. 11

OH altwink yrave al D:crchiay stirt al muvern mive li almuen : forns: allthong: 4 allitethuc
 frutllwes tormisis the prol whirls: mol liow emilictin Atates, 1 sullullill presered during white w thery and illn:
(iow Mlise, in are irrey
lino in whin and lungth.

The

asmman

 from tur showk (t
 tathon, mal a tombery to ary at the slightest prowntion. 'They always haplumed in the day, and he had promonitury symptums. If lioll an some

 The inter-paroxysmal symptom most momplated wi was pain in sarions paits of the hanty.

 pardicul, organic, motor, shany, om mixel; and when onere the tain is

 mure likely to he wating han any of the whers. 'The rase may assme

 Nates, with of without reonguition of surromuling permens and objeds;

 during an attack, sometimes they arr oblivions of it ; sumetimes they an ratate with great premision all its details, iry, it may be, some of its phases; they call exom, in some "asers, give vivid aromuts of thair hallurinations and illusioms.
finwers has deseribed some of the mast interesting cases of the seromed dhas, in which the hesterieal element prolominates and the manifestations arre irreqular.

In oure of the mast servere cases of hasteroid attacks met with by him, in which the manifestations of hestariat were mot only intense, hat variod and prolonged, the patient was a givl aged ten. Ite desereibes the rase at lengeth.

The child belouged to a tallented but highly nervons family. She had asymathetie mother, who wats comvineed that her danghter was sulfering from tumor of the batin. Ther illuess had commened after at severe mental show (the death of her father). She hat at first attacks of intense " shaking
of the limhs," sucecaled by violent delivium, and she socramal with pain in the head. Alter this there was presistent mental distmbance, "ranhling in
 and line ing erery one would harm here Frem time to time shan hat attucks of rapid flexion and extension of the legs, durowing almut the arms, and catching at the bedclothes. On some days she wombly ande th no one."

Gowros proceras with great detail to describe the mental amb phesial condition of this patient, and the varions phases of her attacks, whin's montimed for abont amonth. She eomplained of pain in the left parment mande, with also at this point internse suprerticial hepresesthesia. In the iutervals between the attacks somotimes she did mot revergizize her rodatives, sumetimes she wondd scream an if in agome, sometimes saddenly lexome rational. Is the attalise ceased whe complaned that she cond not see with the left eye Vision in this cye was fomed to be one-twentied, with concentric limitation of the fidd; color-vision was mot tested ; ophthalmosempio apparames were nomal. She was not hemiamesthetice. At a smbengent perient whe hat comions mentring of altemating mental states, in seme of whid she was spitefin, passionate, and mischievons, and in others listhess and apathetie. Ater a time here lits wembed, with a series of exemte wedl deserihend bey the physicians who had her in charge, which I will give, as it is deseriph tive of the plan and order in which these attaks sometimes promed:
"(1) The credids were widnly separated, t'is pupils being dibatent and semsitive to light. (2) The eyes were aradably cosed. (3) The hayd rotaterl from side to side on the pillow, the movemont to the lefi bering ahars mowe forcible. (t) The left foream was altermately flexed and extended on the arm, the fingers of the hand being extemded, and the beft leg dawn up and kicked down, the toes being kept extender. Each of the above stages lasted only three or four secomds. (5) Sulden relasation and immohility for ten or liften seromds, broken by a few moans duriug vepiration. (6) She thencd on the right side, and the fingers and twe berame strongly extended batek. Thais tonie sman gradually pased on to the wrists and formoms, when suddenly violent donie spasm owemed all wem the body jt the fare and hands, which continned extemed and stiff. There Was no ery, no tongue-hitag, mo forming at the month. After a few seconds there was sudden cessation of the spasms."

An association of hysterical phenomena with those of trine epilepry-a true epilepto-hysteria, the third class above given-is sometimes ohserver. By epilansy the brain has become so deteriorated and degraded that the patient is liable not only to true epileptic attacks, but also at intervals to hysterical seizures, because of the functional disturbance of untable, ballynourished tissne. We can thus see how the hysterical seizures acemmpury, follow, or replace epileptic attacks of a grave character, and, with Troussean and Gowers, believe that certain forms of convolsive seizure are in the strictest sense internediate or indeterminate. In such cases the hysteria
may diattivel

The

 and epileptie comvolsions in the same chite shomble me be arentoken＂．In
 same attack，bor do the semptoms of one disurder immediately follew on alemate with these of the where．The patient hass semate erises．The

 of hesterieal attack mave bexhibited at one time，and almost any fom of

 Fhesimin to remember is to inguive closely into the chanater not of one but of seretal attacks．

The following case，seen both họ Dr．Weir Mitchell and myeelf，might be chased either as epilepth－hesteria or as the form of hystern－pilepsy with sparate crises：

A hild cleven yars ald，with memotie and phothisieal family history， hand from her infane been somewhat backwarl and perolian，and had a defict of apeed，which exhihiteal itself at times in a temblener to surak Alowly，asociated with some twitching and want of control were the mus－ des of articulation．She had been coddled and somewhat spoiled，and was addictod to mastumbiom，nembly at night．She had searlet fever，and atter this began to have fite or seizures of peenlate chanater．These were fre－ quent，eceral oceuring sometimes during the course of the day．They cummony followed some injure，exeitement，or slight peripheral irrita－ tion：thus，st：iking her toes，pinehing her cheek，or pulling a hair would calse the att acks．When they came on，if walking or standing，sle would benal fowwerd and slip down to the gromed，but soon after would come to be：senses．During the attacks her face was pale．Two weeks lefore she was scen by me the attacks changed，so that she fell preeipitately forward， Vol．1V．－62
and several times severely brised her head. On questioning her dosely, she said she conld sometimes tell when antack wats coming a wel conld sometimes eontrol them and often did. She did not bing them on meself; and combl hardly tell how they came. She said that she sometimes binew what was going on arome her: she seemed to like to dwell on the excitement cansed by the spells. She did not hite her tongue, or sleaty alter the attack, or serean at the begiming. The above deseription answers for the usial chatacter of the attack. At times, however, she hat selizures of a different kind, often of convalsive tremor and clenty hysterical. She was indiaed to be matathfal and disobedient. She improwed considerably in a few monthes mider the cavefin attention of a good minse.

Those phases of hysteria which are known as catalephey, exstasy, and
 Sytem of Practial Modicine" I have detailed a case of cataldoy on autematism in a child two yens old, notes of which case were firmi-hed me ly Dr: De Sohweinit\% of Phiiadedplaia, -so far as I know, the youngest paticut of this kind on record. The ehild exhibited all the phemomenal of hepmenie catalepey and suggestion. Bither by manipulation or command she could be placed in any position, in which she wonld remoin mith ehanged hy others. Many experiments were tried with her stecessfilly. Other (exsess of catalepsy at an early age have ben reported, the younge by dacoli in a child three geas ohl. Hemi-entalepsy hats also been observed in mbidren ats well as in adnlts. Several of these cases have heen reported by me.

A case with rotatory phemomen and other lysterical manifistations came recently to the Phitadelphia Polyelinice service for Nervons biseme. This patient was a school-boy, aged edeven years. At nine years he had berenn to have "scizanes" without apparent canse. At tibst these were rotatory in chameter; they would commence while he wats stambling, and he womld geromed and romad for two or there minutes at a time. He appeared to be conseious during the attads, of which he had fiftere or sixteen lowing the twentr-fom homr. These lasted there months, and then ceased for nine months, when he had seizame of a different chatacter. His legs and ams were drawn enp shmolicatly, and while rigid be was affecterl with a genemal tremor. At the ment he would serean fin sume time, -not a sudden eppeptio serom, but a mightemed ery. Llis fine was suffinsel, and he appeared to be meonseions, but he had mever fillen now hitten his tongue.

Sbringthorper reports a case of trance, exstasy, and hystero-ppilepsy in a dhild ten years old. The patient was a sensitive, emotional gird, with paralytic, epileptic, alcoholic, and thbercular ancestry. When twemty months old she had an attack of smatroke fullowed by a comvolsion, and at seven years of age she had a severe attack of whoopingerongh. (One night in beel she was heard breathing heavily, and for an hour conld mot be

[^449]arousect, but at irrewnlan changerl. sulle exten Imus. ryciusu, sobl Sle sulw" a Misitoms ol and hy:teroi ent. Later of a clainvo time went o and the cons phaties allel

Minor ed thase exhibit The attaclis and 11 right the attacke ra sit down agai aud yot be athervards.

Jocal spai dener. 'Twite monest types

Henodl vialent fits o the monseles, yoral apasm histerical eon of the firont smbling wh miterect at hat cuing or croa Jacobi gi aie wats a bo other four. aldictend to child recovere

Peculiar lirstero-(piley liar ryythmica in one pationt structive poin attacks oceur
aromberl, hut the nest morning wats all right. Other similar seizures oceured at irverular intervals, and after more than a year the chamater of the attacks changed. She began to show signs of mild religions cestasy, which was to sane extent attributable to an extensive acquantanes with the salvation Army. She hat seizures with heavy beathing, quivering lip, tearful face, erying, sohbing, and sighing. She said, "Oh, dear!" "How pretty !" ete. she satw "angels." Atter a time she held conversations with her he"tomly vistons or apparances. Sperial and general sensation were in abeyanes, and leseteroid convalsions in the maseles of the neck were sometimes presgat. Later the ministrations of the Salvation Aruy were changed for those of a dainvogant or mesmerist. She beges to talk gibberish, and after a time went off in severe hesteroid emoulsions; opisthotoms was extreme, and the convolsions were general. Ifer attacks, in short, in their different phases and varicties were hystero-epileptic.

Minor convalsive attacks are not meommon ia hesterical children, and these exhibit, but in very imperfect form, the phemomen of hastero-epilepsy. The attacks secm to be patly puposive and partly momseious. Ashby and Wright describe a mase of this kind in a ginl seven years odd. When thrattack came on, she wonk jump inp in bed, turn romed onse or twice, sitdown again, and arrange the bedelothes, smoothing then carefinlly down, and yet be monscions doring the fit, anci have no remembrance of it afterwards. I slarp word or a prick of a pin would oftem anesest these fits.

Loral spasm of almost any form or seat may oreme in hysterical dhildren. Twitelings of the facial and ocular muscles are perhaps the commonest tepes.

Henord deseribes cases of lowal spasm which took varions forms, as violent fits of hiceongh, voice-ipasm, chorea, asthmatice attacks, spasms of the maseles, face, eyes, and extremities. What he calls voice-spasm or roual pasm has heen deseribed bey other anthors moder such names as lysterical congh, laryugeal spasm, ete. In one case extreme hyperesthesia of the fiont of the chest was replaced by violent spasmolic conghing resmbling whoping-eongh; in another the child after every expiration uttered a half-whimpering or half-squeaking sumbl ; in still another a exuing or croaking somd aceompanied the spasm.
Jambi gives several instances of hersterical congh in youm chidren: oize was a boy six yours old; two others were brothers, one six and the other four. Local treatment did not relieve. One of the children was adided to exessive masturbation, and after suppressing this habit the dilld recovered.

Peanlar rhythmieal movements are somethen present in hysteroid or hastero-ppileptic cases. Gowers says of one of these casce, "This pectiliar rhythmical movement in the legs was a feature of the hysteroid attacks in one patient whose case, althongh published elsewhere, presents many instructive points deserving narration at length. Both epilentie and hysteroid attacks oceurred ; organic heart-disease wats present ; the discase suceeeded
an attack of chorea, and the patient presented a strong inherited temelcoe to neurotic disease. It is probable that the hesteroid convolsion really sucecedet a slight epileptoid seizure."

The recognition of lyssophobia, or hysterial hydrophohia, in children, may be of the utmost importance. A child who has been bitem ley a dug is scizel with cenvulsions, which may come on spontanconsly, or ancidenally as the result of other disease, or hecanse of conversation with regard to hydrophobia, mingled with expessions of fuar because of the biting. lanmediately a diagnosis of hydrophobia is made by the horror-stridelen pelatives and friems, and this is adopted by the thoughtless on landly-tained physician. Through suggestion many of the phenomena of hirstericell attacks are prodncel in children, just as a train of somptoms can bo starkel by hypuotic suggestion. In the psendo-hydrophobic cates barkiug, bitiug, cte., may be thos problucel. Many of these cases are purely hysterical. Not infiequently we see in chidren as well as in adults hysterical seiznets meomerted with the bite of an amimal, in which many of the soteralied hychrophobie symptoms are present. Gowers relates an interesting case of a boy of thirteen, in whom hysterial attacks commeneed after he hat been bitten and frightened by a dog.

Any variety of paralysis may oceur in hysterical children, as hemiplegia, monoplegia, paralegia, local palsies in the face, trimk, or limis, paralysis of the bladder, and vocal paralysis or aphonia.

Gillette, ${ }^{1}$ at a mecting of the New York Obstetrical Socicty, rejorterla ease, alrearly referred to, which, on acemont of the extreme youth of the patient, it might be well to detail. A girl only eighteen months ohl had a habit of walking and plonging and falling on the floor for amusemme, and one evening when she wats about to do so her mother caught her by the arm and stopped her. The arm fell helpless to her side; the edild moned and desired to be held and caressed. No signs of injury conld be fimmd. The next morning the arm was still hanging helplessly by her site, and she was moming and erying as if in considerable pain. The physician rememberend that the child had always been very sympathetic, womderfully so for her age, even weeping when sad pietures or dolefnl stories were presented to her, and therefore believed the case to be one of hysteria. In the evoning the arm was still apparently paralyzed. The next moming the doctor was sent for in haste, and the other arm also lang helplessly by her side. The parents and friends were greatly alamed. The father wats requested to get a ball of variegated colors and offer to play with the child, which he did after all had left the rom but Dr. Gillette, the paticut, and the parents. The experiment was instantly suceessful: the child played ball at once as if nothing vas wrong with her arms. She tried the lysterical attack the next morning, bit it dial not work, and she did not attempt it again.

Some of the forms of paralysis in children set down as hysterien 1 are

[^450]not certail ctement. bes spina airculation to take plat begall com She wats t retirnued. matiscated romplete I amesthesia, sribed red Of diagno tangible cha tathed part many obsel Erght was the patien

The su paretic con I givl of n by ptosis dilated, on tousgue der attack of ct by furmly i thumb firm ese. Her whem she e: ucl. It mi after an epi
Leer ${ }^{1}$ ha Pemsylvan denly. Sho at play anc moments. gologists. of its influe covering ful changed, ans functional p crompy coug laryox, exce
${ }^{1}$ New You
not certiminly of this character, or have in them only a strong hysterical denent. A form of paralysis mentioned by Jacoli, for example, resembes apinal infantile paralysis, and appears to result from a change in the girentation in the spinal cord, baring a great similarity to what is known to take phace after infectious discases. He gives the case of a girl who first begral complaining of stomath-ache and hater was tronbled with namsat. She was taken with typhoid fever, and when convaleseing the masea returned. Shortly afte this she hatd gemeral comsulsions, being constantly maseated and very wean. When seen by Jacohi her weakness was almost complete paraplegia. She had varying conditions of hyperesthesia and ancesthesia, sometimes with coldness and pallor, sometimes with circumaribed red spots; fiequently perspiration alternated with dry coolness. Of diagnostic importance, according to Jacoli, was the smatl mmber of tangible changes in proportion to the large number of symptoms. He attached particular importance to the absence of temperature-elevations, making many olservations. The cuse was regarded as one of vaso-motor nemrosis. Firgot was \cdots ent and the galvanic eurrent to the spine was used. Later the patier s taken to Europe and completely recovered.

The salue writer gives other 'Instrations of hystericul paralytie and parctic conditions in the young, althongh he believes they are not fiequent. I girl of nine years, for instance, fell in oonvulsions, which were followed by ptosis and deviation of the right eye outward, the pmpil somewhat dilated, on the left the pupillary branch being also a little affected. The turgue deviated to the right. The child improved, but after another attack of convulsions had the same paralytic symptoms. Jacoli cured her ly firmly impressing her with the idea of success and then pressing his thanb firmly on the supmorbital nerve and commanding her to open her eye. Her ptosis was instimetly relieved, and she was well for several weeks, when she exhibited the sume symptoms and was relieved in the same manner. It might be fuestioned whether this was not an exhaustion paualysis after an epileptic cerebral discharge, mather than an hysterical palsy.

Lere ${ }^{1}$ has reported a case of aphomia, in a girl four years old, seen at the Pennsylvania Hospital under Dr, addinell Hewson. It developed suddenly: She wats supposed to be hysterical, and was watched carefully while at play anong her companions to see if she did not spoak at ungnarded monents. She was examined bey several physicians, some of them laryngolowists. As a final test, she wats placed under ether, and as she came ont of its influence cried lustily, and talked as patients msually do before reewering finlly from the effects of the anasthetic. Her surroundings were dhanged, and she was eured. Goorlhart attended a ginl of twelve with functional paralysis of the abductors of the vocal cords. She had also a eroupy congh; there was entire absence of any morbid appearance of the haryux, except in the position of the vocal cords. These played some-

[^451]what close together during expiration, and during inspiration the anterior parts completely closed, the left overlapping the right, and laning only a chink behind for the entrance of air into the langs. In the course of half' an hour the paresis had almost disappeared. This patient had hewn in the hospital under Dr. Taylor for cataleptic attacks, and in one of her fits her eyes were tirst turned strongly to one side, and then shor symumed,

Sensory hysterial phenomena are probably more common in children than any other manifestations, a fact which does not serm to be gemerolly appreciated by the profession at large, and, in consequenere, easw inderly hysterical in chatacter are frequently supposed to be organie and of serinis import.

The most common forms of hysterical sensory disorder may lo dassified as hyperesthesia, anesthesia, pains referred to special parts or organs, and pain irregularly distributed over the body.

The meaning of hyperesthesia in chidern should ahways be fully considered. The tenden'y of the phesician, and more strongly of the parents, is usnally towards a grave diagnosis; and many eases simply lyontom have been set down, because of hyperesthesia and the complaint of deypseated pain, as neuritis, meningitis, myelitis, brain-tumor, reflex molualgia, ete. Every one who has heen much with young children knows how impressionable, imitative, sympathy-loving, and olservant of suffering they are. Pain appeals especially to the imangative faculties of sensitivelyorganized young children. According to Ashby and Wright, protably the most comanon firm of hysteria in girls is hyperesthesia, a complaint of tenderness or pain which canoot be accounted for except ? ey a nemrowis, local tenderness about the spine or one of the joints, especially the hip; hypersensitiveness of the thyroid gland or front of the laryox ; hemakhes, either fromal or oceipital, or of the form of "elavos." "Hy:teria," say the same authors, "is apt to mimic varions diseases which are monally accompanied by severe pain, such as peritonitis, pleurisy, rhemmatism; it most, however, be borne in mind that there may be some actual diserte present, and the sensory disturbance is only an exaggerated condition of what would normally exist."

Hysterical loss or diminution of sensation-cither tactile anesthesia, analgesia, or loss of temperature-sense-ocens in children with considerable frequeney, nsually in connection with the other phenomena of hysteroepilepsy, but sometimes as an isolated symptom. Peugnicz has remorded a series of cases of anesthesia of the skin and special senses in children from ten to fifteen years old.

Barlow also has collected a series of eases in children between ten and fifteen years old. A boy two years old, when the skin between his fingers was pricked with a needle, did not wince or withoraw his hand, and when one side of his face was pricked showed the slightest possible play of the features, while upon pricking the cther side he cried. In another atie strong faradism was tolerated with perfect indifference when applied to
either leg ; iuto the st needle was withaltawn watiluy, wl ond hat hee iur ; the al dhuwing : right side " the pout wh on the left. bund what t l ad lowth al fils, was for of his borly tion of the A girt nint of the sphi tuleriant of rears, with found to be the years gesic all ove

At a me soll rejorte contractures boy had ant been dellieat nomena. 1 tortion of tl were firmly equinus. were promi gold coins trieed, but th

Goorthat eleven and t to believe i Mars old, w "His face" right. The markedly so eflorts to me site hand.
hiis toes caus
either leg; in another fanadism was felt, although a needle had been pushect into the skin without the child withdawing the limb; in a fouth the needle was tolerated for several mimutes, and then the limb was slowly withdrawn, but withonst a cry. In still another analgesie paralysis without matin!, which had lasted nine monthe, was also present. A girl five poars od had her arm seorehed over a tract abont three inches long without ereiug; whe also had her thigh deeple cut by a bit of broken pottery without shoring any distres.s. A girl of eleven had complete analgesia on the riglt side of the borly, and also on the left cheek. She conld not loxalize the spot where she was pinched on the right side, but she had no diffienty on the left. 'This child's field of vision was considerably limited, and she bad what the mother termed "blind fits." In a girl nine and a half years old hoth arms and legs were analyesic. A boy nine years old, subjeet to fits, wats found to be tolerant of the applieation of a needle down one side of his body and almost so on the ather side, but he contd localize the position of the needle perfeetly, although it dind not give him any trouble. A ginl nine gears old had paralysis of both lags, withont any affection of the sphincters or wasting or rigidity of the limbs, and was absolutely tolenut of every kind of stimulus applied to the limbs. A girl of cight yars, with a history of convolsive and other hysterical manifestations, was foum to be distinctly analgesie in her arms atier a violent attack. A girl three geurs old, with a history of comvolsive and sercaming fits, wats analgresic all over for two weeks after an attark.

At a meeting of the Clinial Suciety of London, October, 1877, Thompson reported a case of hysteria in a boy, with anasthesia, ischemia, and contractures of the lower limbs. It is perhapes significant that while this boy had an English mother his fether was French. The boy had always been delieate, but in the spring of 1875 he began to show hysterical phenomena. He becume mable to walk, owing to paresis, rigidity, and distortion of the lower limbs, and his voice was almost inandible. The legs were firmly flexed mpon the thighs, and the feret extended as in talipes equinus. The genital organs were ill develojed ; amesthesia and ischamia were prominent symptoms from first to last. Under the appliation of grold coins the amesthesia and iselumia disappeated. Other metals were trim, hat the effect could be produced only by the gold.

Gooklhart has twice seen hemianesthesia with hemiplegia in boys of deven and twelve. In a case muder his own care he wats at first disposed to believe in the existence of some aetual lesion. This boy was twelve pars old, with a nenrotie fimily history. Paralysis came on in the night. "ITis fice was paralyoul on the right side, and the tompue deviated to the right. The right arm was paralyget, the extemsons of the forearm most markedly so, and the wrist dropped as in lead-poisoning. He made evident eflorts to move it when told, but was obliged to call in the aid of the opposite hand. There was less decided faiilure in the legr, but, when he walked, lis toes caught the ground in putting the foot forward, the knee was flex.
the heel drawn up, and the limb moved clumsily as from want of harmony between the eracting museles rather than from actual paralysis, hut the extensurs obvionsly had the worst of it. The loss of sensation was emplente, and thoronghly distrituted to the right half of the hody, mucons mombunc as well as skin. The knee-reflex on the paralyerd side was mankenlly exrerated. . . . The paradysis ioth of sensation and mootion-but the firmen more than the latter-varied much from day to day ; and sometimes the -perial senses sutfered."

Headaches which may be properly dassed as hysterical oredr sometimes, althongh rarely, in chiidren; they are mueh less frequent than in the yomg or middle-aged adult. In children in the majority of cases they are imitative, at least in part. The child of a mother who suffers from migraine or any of the forms of recurring headache will, if precocions or intative, sometimes really or apparently suffer from severe head-pains. Such (enses are very deceptive. The fact that true migrane ocens in very young hitdren minst not be overlooked in making a diagnosis. Sinkler hate written an interesting paper on the subject, giving a munber of cases in children under puberty. In one case nuder my own observation, a child betwern two and three years of age bogan to have mikd attacks of migrane, both the mother and the grandfather of this child having suffered with typial migraine for many years.

West mentions a boy of thirteen who had been ill with healarhe and vague cerebral symptoms. Itis sistor had died with disease of the buin, and he had shown extravagant grief at her death. ILis worst sumptoms: were headache, intense sensitiveness to somels, and dislike of the light. Sometimes he would not allow his head to be brished or even tomelred. He was feeble and ill nomrished, and often walked with a limping gait. In spite of the long continnance of his symptoms, he did not grow worse. When not observed he walked and spoke better, and forgot his headache and other ailments if interested in anything. West also mentions the eale of a girl ten years old, who had a spasmodic congh when yomger, and at cight years of age began to suffer with exeruciating headaches, These were arbitrary in their onset, and, exeept a capricions appetite and a monstipated habit, the elild had no other had symptoms. Sometimes she would lie for hours with her hands to her head, moaning and erying, and would cling to her mother with vehement protestations of affection. If the doxtor went iuto the room mexpectedly, even if she were cheerfully at plap, she would immediately put her hands to her head and eommenee to mom. She alterwards developed a train of grave hysterical symptoms, making the diagnosis clear. Eventually she recovered.

Dessint reporis a case of hysteria in a boy thirteen years of age, in which the affection began with a pain in the right ear. Soon after the pain in the ear ceased he complained of pain in the right hypochondriae region, which gradually extended over the left side, and about the same time he had a dry, empty, barking cough, with muco-purulent sputa. In a few
wecks pa joint. 'I swelling : murler the of irom. to discose fist being and no on arecomet fo comereterl clude :inch

Bomis week: befi of pain in but withou was pale which hard thighs: kn true pain; quinine an in al limpin both feret he would s. hard come diars he con insisted up

Henoch healthy, w the disease of great pis parexpems F.; pulse The central and chest, s skin. He
(ases si serecul tim of the exis Possilly a times, the p cevelyal con smith Lecte
weeks pain was complained of in the left ankle-joint, later in the kneejoint. These pains were accompanied byy firm contractures, but he had no swedling about the joints. His gencrul condition was bad. He recovered muder the use of cod-liver oil, the hyophosphites, and syrup of the iorlide of irom. This case presents the features which should help the physician todiscover that he is dealing with a case of hysterical pain, although on first being called the diagnosis would be difficult. The pain was severe, and no organic condition could be discovered in any of the locations to arement for its presenee ; it passed from one region to others womote and discomeneted ; it attacked tissues and organs so different in character as to exdude such cumses as rhemmatism and gout, which affect particular structures.
bemiss ${ }^{1}$ reports an instance of hysteria in a boy six gears old, who two week- before coming muder the care of the paysiesan had heorm to complain of pain in his abelomen and aromed his waist. He was treated for worms, luit withont result. He was pale, redneed in thesh, and peevish; his tongue was pale and slightly coaterl ; his temperature was $99.5^{\circ} \mathrm{F}$. The pain which had been at first in the abdomen had gradually deseended to the thinghs, knees and feet; it was rather an exeessive hyperesthesia than a true pain; swelling and local heat were absent. He was treated with quinine and bromide of potassimm, and in three days he was able to walk in a limping manner ; but two days later he was found on his back with both feet lifted from the mattress and the thighs liited from the abdomen; he wonld scream if any one even offered to tonch his feet. These symptoms had come suddenly. He got better and worse under treatment. In a few dass he complained not only of his feet, but also of his left hand, which he insisted upon having wrapped up, especially the middle tinger.

Henoch relates the case of a boy, six and a half years ohl, previonsly healthy, who had hact measles, and two weeks after the begiming of the discase another boy fell mon his abdomen. He hegan to eomplain of groat pain, erying and tossing abont contimally. The pain came in paroxisms of increasing frequency and intensity ; temperature about 101° F.; pulse frequent, tongue coated, with fetor of the breath, and thirst. The central symptom was intense hyperesthesia of the skin of the abrlomen and chest, so that severe pains were produced by pieking up a fold of the skin. He made a rapid recovery.

Cases similar to those of Henoch and Bemiss are not infrequent. I have several times been called in to decide upon their character. The question of the existence of a neuritis, dermal or tromeal, is one to be considered. Posibly a mild form of a nemitis or other organic disorder is present sometimes, the pain and suffering proper to the disease being exaggerated by the eerelral condition of the hysterical patient. Starr, ${ }^{2}$ in the Middleton Goldsmith Lectures, says that pains sometimes set down as hysterical are due

[^452]to a neuritis of greater or less severity. While such cases have nisually recovered, they have sometimes been tedions, lasting at least for weres.

A case seen with Dr. Feldstein, of Philadelphia, illustrates this dillientes of diagnosis between hesterieal hyperesthesia and mohiple nemitis, 'This patient, a giol eleven years old, began to complain in the spring of pain in the head and also at the mape of the nexk, the batter associated with a feve. ing of' stiffiess. She soon also made complaint of pains in the spine and of both the upper and lower extremities, and also of miversal tembernow to pressure. The pain and hyperasthesia did not follow the line of the nerve-tronks, but were geteral and dermal ; she spoke of them as being present all the time; but at intervals she had exacerbations of prin in cill comseribed, isolated patches on the extremities, these areas beeming peel and remaning so fir a short time. Her disposition changed: she breane irritable, fretfinl, and excitable. For three weeks she showed some irverglalar but not marked devation of temperatnre. Varions methods of tratment were adopted, including salieylates, iodides, small doses of merenry, thuies, and anodynes; but mothing in the shape of modicine seemed to benefit her mueli. She was three months in bed. At the end of two monthis she showed some enlargement of the thyroid gland. At first she lost flesh, Int at the end of three months was as tleslyy as betore her siekness.

What are known as hysterogenie or epilepto-hysterogenic zones are sometimes present in hysterical children. These are sensitive spots or arens of the skin, and on tonehing, pressing, pinching, or otherwise exeiting then active hysterical or epileptoid manifestations, in some case's even convulsions, ocelle. In one case, in a child, pressure between the scapula would probduce either hysterical convulsions or a state of excitement like a mild mana, In another case, pressine or pinching of almost any portion of the bode would canse spasms, althongh nsinally these hysterogenic zones are in partienlar regions.

Hysterial affections of the eve are seen among children, and relativels with considerable frequeney, and these may be of any of the forms deseribed as ocemring in the hysteria of adolescence and adnat life,-ptosis, strabhis. mus, pupillary alterations, amblyopia and achromatopsia of either one or both eyes, and total blinduess. A tair momber of cases of herstericul amblyopia in children have been reported by observers in varions comentres, the repouters giving different opinions or expressing doubts as to the proper interpretation of the phenomena. The chief point in doubt has usually been whether or not the loss or dimination of sight hats been the resilt of pure frand, of unconscions deception, or of some temprary impurment of the functioning in the cerebral visual centres, either primary or cortical. This problem is by no means so easy of solation as might at firist appear. A child asserting loss of vision in one eye is surprised or trickel into the use of the other ly placing a strong convex or concave lens, or a prism, hefore the unaffected organ, and the inference is made that deesp. tion has been practised by the patient or culprit ; that, in other words, the
inlivid mental rily com mis in former, the latte tainly it
(1). a colome eyc, spea ealse of' si test hy h: fillly man anination that she the truth sulbject to the eye old sibility of the sulficio hesterical ally been f are present rulsions, a danalder.

Years a in the serv phia. Han s.rticles on

Achrom colors. In mother ; in colors ate f reverse orde have been r of the sam patient has is lost, it is sion follow

Of one 1 ples,-that i both eyes, t,
individual can see with the amblyopic or blind eye, but will not, owing to mental perversion or obliquity. Shel a cenclasion, however, is mot neressarily correct. It is possible that the visual eentres of one side of the brain may in such cases be in abeyane as long as the other side is lire to atet, the former, however, being stianlated into functional ativity by incapacitating the latter. Probably pure frand is the best explanation for some, but erertainly it is not for atl.
br. De Solnweinita, ${ }^{1}$ in reporting a case of hysterical monblyonia in a colered ginl nine years of age, who denied even light-perception in one eye, speaks of an interesting experiment learing on this point. "In one case of simulated blimbess (malingering) the subject was made to stand the test ly having it explained to her that those present at the examination fully understood that her statement in regard to sight in the eye under examiation was totally false. She was sutficiently intelligent to appreciate that she had beendeterted in her attempt at deeeit, and readily admitted the truth of the charge. On the other hand, a perfectly intelligent woman sulbject to hysterical amblyopia, in whom the test demonstrated the fact that the ere elamed for blindness had full vismal aenity, ntterly denied the possibility of sight, in spite of the fact of her apparent perfect appreciation of the sulficiency of the tests which demonstrated that she conld see." Both hasterical amblyopia and achromatopsia in children, as in adults, have usnally been found in patients in whom the other phenomena of grave hysteria are present, as, for example, hemiamasthesia, hemiparesis, eontractures, conrulsions, and psychical episodes, nsually of the maniacal or hallucinatory chamacter.

Years ago I reported a case of simulated monocmlar blindness oeenring in the service of Dr. Harlan in the Wills Ophethamio Hospital, Philadelphia. Harlan has reported other similar cases, and has contributed several articles on this subjeet.

Achromatopsia is a "condition in which there is a failure to appreciate colors. In Diltonism, or true color-blindness, one color may be taken for another; in achromatopsia the notion of color may be entirely lost. 'These colors are fomm by the patient to disappear in regular order, and return in reverse order as the patient recovers. Some remarkable cases of this kind have been reported as oceuring among French hysterics. A few examples of the same affection have been reported in America. Sometimes the patient has lost perception of one or several colors. When only one color is lost, it is usnally violet ; if two, violet and green ; then in regular succession follow the colors of the spectrum." ${ }^{2}$

Of one form of hysterical blindness in children I have seen two exam-ples,-that in which the patient complains of sudden blinduess in one or both eyes, this lasting only for a very brief time, as for a few minntes.

[^453]Mendel 'has reported a case of argravented hysteria in a boy ten years old, with amanosis of' first one ere and later of the other. 'This pationt. matermal gramdmother was epileptice. He suffered painfind semsations in the comse of the trigeminns and other merves, and atter a time appareal ip
 of wrine during the day, and within a year and a half pains in the hemb, vomiting, amblyopia in the right eve, mat emaciation. These symptom, vanished, with the exeption of irritability and peevishoms, mad were fild lowed by dromming of the fied, dizay sensations, cmprosthotoms, with mand forwand movements of the body, without loss of comseimsnem, these symptons apparing in paroxisms fire twe days. On the thiternth, in phate of the tonic spatm appared spanodie shaking, spatims of laughter, hallueinations, and loss of conseionsmess, amaturosis of the right eye, and paresis of the right arm. Six days hater the blinderess and patalysis had disapperad, and a general heperesthesiat was developed; then anmurnis of the left eye, hasting twenty-fon' hon's, was alded. The log was remosed to a publie institution, and in three days wats well, nothing remaining of his ohd tronble save a decided excitability.

Among the views that have been suggested to explain these hysterimal defects of vision is that which has also been resorted to for the explanation of many other hysterial phenomena,-namely, hypotic suggestion, in some cases ato-siggestion, perhaps the resnlt of the ofservation or dis. consion of blinduess in others. The patient believes that he camot sere, and therefore does not see. But this explanation, seemingly hacid emongh, is, after all, a begging of the cquestion. The batin, or a pertion of it, must for a time be in a changed condition in order that the sedfeleception may be accomplisheal.

Hystericel deafuess or dimination of haring has been recorded as orcurring either ats an independent sympom on in association with grame hysterical phenomena: I do not recall a single case in my own expericmer in which this h.s been present as misolated symptom in a child muder thirteen yen's of arre. Loss of smell on the same side as deafiness and blinduess has been recorded.

Among the most important hysterical affections ocenrring in children and anong those in which pain is a leading element are those simulating orgamic aflections of the joints. To Shaffer we are indelted for the mant valuable contribution on this sulpeet, one which, although by no menns neglected, has not attracted all the attention which it deserves. A large preentage of his cases were children under the age of puberty, and therefore strietly within the limitations of this paper. His study, while desigmated "The Hysterical Element in Orthopedie Surgery," affords in the ewses which he admirably details a study of almost all the phenomena presemted by hysteria in children,-hyperesthesia and subjective pain, rigidity and

[^454]enntract anld lime of Broul The lits even the articulat mimet tie limish-it't

Jileo
of the j of his c: lijp-joint Atrlowd $\mathrm{p}^{\mathrm{p}} \mathrm{la} \mathrm{w} \%$. rator, cr harr, hel distribut deren y was inte (alse; bu Luder Cl and mol treatmen treatmen pain in the tarst letween cuti. . a moder: replaced adema o was trea years, w and both complain Vari cork, Sl_{1} nthers. the most onter ma cally bac tibial an sion of affection they are cars piltionts. Ins in the

 har lual, illipton, vere finl111s, with is.s, theree cיInth, in lalleghter,
 Ysis lath inturnosis reclitever Ing of his

1ystericul danations stion, in $1 \mathrm{Ol}^{\circ}$ (iss moot ser, elough, *it, must 1 may ly
als ave lys rienee in - thirteren blinducs
rhildien mulating the mont to mealls: A large ind thereile desigthe case presented idity and
contractures, spasm and paralysis, malingering and nenro-mimesis, lying nul limpong, precocity and pervers ? The ohservations to which he refios of linolie, Skey, lagrt, Bimarch, and others wre familan to the profession. The false often so closely resembles the real disemse that, ns shaffio shows, even the most experieneed are at times at a loss to denide whether a given articulation is in a progressive state of chomic disense or simply in at menomimetie state. Ilv gives many instances of neuro-mimesis beth of the limb-articulations nud of the apine.
dacoli has also given a momber of interesting illustrations of nemoses of the joints in chidren from tive to twelve years of age. 'The majonty of his cases had been observed about the knee-joint, but the ankle-joint and hip-joint were by mome fres. 'The internal emelyle of the femme the athloid process of the what, and the vertehal colnmo were the favorite phares. The same aftection, however, hat been ohserved in the sciatic, obturater, crumal, permeal, saphons, and tibial nerves, in the cervial, lumhar, hyogastric, and samal plexuses, and in the peripheric nerve banches distributed about the integuments, joints, periostemm, amo boves. A girl deven years of age appled for surgical treatment for coxalgia. The pain was intense, and the symptoms closely simulated those of organie hiphedisamer ; but the child was not emaciated, and no fever eould te detected. Under chloroform the spasmodie contracture relaxed, me erepitation was fedt, and mobility was complete. The patient recovered muler genemal robormant treatment with an ocemsional sedative, and compulsory exercise. Similar treament sureeded in a girl wine years odd, who suffered from intense pain in the knee-joints, but more frequently in the ankle-joints and in the tarsus and metatarsus. In another case the diffienlty of diagnosis between osteitis and hysteria was very great, and both were probably prescont. A girl of eight years, under treatment for ulnar nemalgia, developed a morlerate swelling at the wrist and shoulder-joint, which disappened to be replaced by severe pain in the toes. Her sulferings were mitigated when cotema of the right foot made its apparance. Another girl, of five years, was treated for aeute rheumatism of the shoulder-joint. A boy of eight rears, with a slight mitral ineompeteney, had rhemmatism of both wrists and both ankle-joints, with fever. After his fever had disappeared he still complained of excessive pain, yelling and sereaming at times.

Varieties of hysterical club-foot have been deseribed by Shaffer, Laycook, Shaw, Little, Skey, Mitehell, Sir Charles Bell, Charcot, Adams, and others. Talipes varus scems to be one of the most common forms, if not the most frequent one, in young girls. In extreme cases of this kind the outer margin of the foot alone touches the ground, the sole presenting vertically backward, as in a case described by Little. The anterior and posterior tibial and gastrocnemius museles may all be tensely contracted. In inversion of the foot in children the probability of the hysterical nature of the affection must always be borne in mind. Such cases are usually milateral; they are always acquired, often suddenly, and the ordinary indications of
diseose and disorganization, sumeh ans pain, hemt, and swelling, now mbont,
 cmotiomal girl of deven yous; amother was in a boy of ten, this lope illow trating many phases which lỵstria may assme in boys of tumbre yano
 sia, talignes, etes. Among other enses of hysterical contrmeture which laye been revorden in chahdran as well an in adults mre those in which the -patan afferend the thomb ane the masserters.

 terical paralysis, holding to theopinion of 'tromerer, that the sumatha maig-
 a case of curvatmre which, althong in an adolesemt patient, illuatum
 with hor spine" fin many vars, and had been trated with plater-af-limis jackets fore two and a half sans. She carried her head and shomberss monsiderable ont of the preprendientar and hent to the right side. In sittiur, the right axilla was two inducs or more outsidea vertical line from the unter adge of the pelvis. She had beom comed, it was stated, a few montha lectine
 tions he fomm that there wats a fixed enver, monderate in dergere, in the humbar region to the left, hat the bending of the borly over to the right was at
 that if ewer the pationt came to see him hohting hersoff in that gusition be would dedine to deal further with the catse. Ifter this she hedd hersedt perfectly straight, with the exeption of at moderate degree of fixed ampat ture which existed in the lumbar region, to the cure of which sulnerguent treatment was directerl.
"In somig children," says Simith, "great weakness of the hark may la present, which, in the varions positions of sitting on standing, allows the spine to bend in various directions, forming at one time posterion empature and at amother one or more lateral emves. Athongh this comblition would probably lead eventually to the formation of lateral curvature, wo in baygnosis a distinction is to be drawn ; fin when this state of weakness existe, support to the hack and rest are more important at first than exercise. In fact, in severe vases the strength of the child is more rapidly and saffy restored bey absolnte rest at first than by attempt to exereise the musdes. These curves are readily movable in any direction, the spine being easily staightened or bent."

Hysterical children are sulbject to varions forms of uight-attacks, so that the term "nocturnal hysteria" is almost justified as deseriptive of ertain

[^455](c)mmon atticlio las gainderl ass thom as " Hilddw:11 1 Miler, lout are 1 lust time of sce int its leel pain, bront
 (all. I 11 m\&illy (: (4) tioncol pait dithicult d tiomal reat attaldes voal dhild maty an hor and alan'm, it silw and -as in ol seming to fin' at time tellow: It sions and apkeatrance
J. K゙.,
slep. II
 stoorl. II hands alos falls down about. II trying to but could

A boy beran to h straisht il dazed and week or to to have th engage in ration he malarial is
common affertions. Under the name of nighteterrots varieties of these attarks luse been fieguently desoribed, wid these are very propery regarden us, at lenst in mang "ases, forms of hysterin. (ollivier spaks of
 childron who are epileptic, or who are sulfering liom some exhansting discese, hut even then may be regarded as hersteriend manilentations. 'There are minst frepuently observed in memotio childern, before and during the time of secomb dentition. Almost any child, however healthy or forthate in its heredity, may under sperial callses, ats indigestion, fright, or acote pain, herome the temporary victim of such seizures. Lamdtied Jomes reconde a case in which the canse was probably inllamatory pain in the pals. I weak, excitable nervons spotem affords the predipusition, while maty canses may directly excite the attacks, among which may be mentimed pain, humger, indigestios, injulicions fording, woms, mastulation, dillenlt dentition, insufficicont an too moda bed-elothing, over-stuly, semsational reading in the evening, and ghost or other terrifying storices. These attack valy considembly, but have some tolerathly constant features. The child may have grone to sleep well, but during the night, and misually within an hall or two alter retiring, suddenly anakes with exere sign of fivght and alam, oftem screaning and gesticulating with tervitiod expression, as if
 -ats in one of the varions hypmotic on hysterical comditions, - the child seming to recognize imperlectly those anome it, although sometimes it will for a time be apparently meonsens of everything but the some of its terror. In some cases, dombtless, the little patient is the victim of illngons and hallucinations, tamstoming objerts withan sight into tervifying apmanares, or having hallucinations of ohjectu, probably usially anmals.
J. K., aged seven, a school-hoy, began to have nervons spells in his skep. He jumps up suddenly fiom a somml sleep and walks romme the house, cerving and trying to sty something, but camot make himself understook. II is mother says that at these times he shakes all over, with his hauls close shat, and, she thinks, with his teeth elosed also. He never falls down, but is wakefind afterwards, and tells what he has beon dreaming about. LIe got out of bed one night, sereaming and erying, and wats fomod trying to creep over the borsan. His father and mother took hold of him, but conk hardly restrain him: his face had at sured expression.

A boy, seven years ohd, had always a tendeney to start at mights, and began to have spells about the same hom, in which he would suddenly stand staight up in bed, seream, and call for his mother, who would find him in a dazel and frightened condition. He had these attacks as often as onec in a week or ten days, and if amoyed or crossed during the day was most likely th have them. He was retiring and solitary in his habits, not caring to engage in play with other boys. About a year before coming under observation he had an attack which lasted about a month, which seemed to be malarial in character, as he had periodical attacks of chill, fever, and sweat.

A fler this he began to complain of dizziness and twitehing in the eyes, and also of tartal loss of vision. Under tonies and systematized exercise no recovered.

Noeturnal incontineme of urine is frequent among hrsterical children, although it shonld be regarded only in special enses as mu hysterical somptom. Acoording to Tronssem, the first canse of incontinence is al momopathie predisposition. In those cases in which perionlicity is a demiderd element, the nervons chanater of the disorder is most probable. 'That ineontinence may be the acompaniment of severe noetmand epilepay shomb ahways be borne in mind, and this probability should be exehulem. 'Tho manner in which hesteria and epilepsy sometimes merge into cuch othup is appurent in some of these cases. The diddren suffer fiom howturnal, periodial nemroses. Of conse in coming to a decision for thempentic purposes with reference to noetmrnal incontinence, all special exciting rauses, digestive, remal, sexmal, genital, and others, should he taken into considemation. Even when such reflex canses of excitement are present, the nemon pathic tendency may have something to do with the continnance of the disorder. As bearing upon the question of the hysterical or, at least, nemotic chameter of night incontinence in children, may be mentioned the fiat that Liébault has in a number of cases enred children of this bad habit beg hypmotic zuggestion.

Somnambolism in its ordinary form might also be classed with :ooturnal hysteria. It eertainly ocems almost invariably among the hesterical and epileptic, at least when it is a persisting affection. Night-terrors are indeed regarded by so...e as a special form of sommambulism. "The vietim of night-tereors," says Leman,' "not only moves his body, but gives voonl evidence of his feelings of apprehension and alarm In like manner, projeeting his dream into action, a sleep-walker may arise from his lod; he climbs ont of the window and descends to the ground, executing all manner of complicated and dangerous movements; he walks long distances, and finally returns to his conel withont waking. In the morning an reeollection of the events of the night survives. Again, the movement maty he less locomotive in character. The intellectual faculties chiefly maty be aronsed, and then only snch movements are exeented as may be nemsany to give expression to mental powers." This hyserical somuambulism or noetambulism has a striking tendency to fwiur at about the same time of the night in many cases. This is usually a companavely early period of the night, soon after the earliest deep sleep. A number of cases of this kind have come under my observation. A child six years old, whose annt hat had chorea in childhood, and whose father walked in his sleep, every night for two weeks went to bed it seven, and got out of bed and went downstairs in a dazed state at 8.20 ; her attack usually lasted about fifteen minutes. She was subjeet to attacks of hysterical erying: A girl, four years

[^456]old, who walking

Octal nocturnin: nighterali themsiolve :nchl "Pathold finertiona the hyste ence, hint rarions 1 the resultt mased lo. noreturnal the prossit It is or fritud, although fever was mas a bo pain in tl methesia. muluged fo wurder al is şmptom: fever, but diarrluea, ter:call fe cousidera records a date, citi suith, 1 Woorl, 'T and Gival referred this list is perhap vulnerab somge el teria, but high tem
ofld, who had chorea and stammered, hat attacks of hallucination and sleepwalkiug at night, usually oreurring within two homs after retiring.

Oevasionally, althongh more rately than in adnlts, children sutfer from nocturnal attaeks of paresis, numbuess, hypreasthesia, hemeralophia or night-blindness, delirinm, or fever. These symptoms sonnetimes show themselves just at the time of waking, particularly sensory phenomena, sad as painfinl numbness. Feré, in an interesting contribution to the "Pathology of Night," has considered many of these forms of northmal fumetional disease, and shows that they are not infrequently comected with, the hestrical diathesis. Darkness exerts not only a purely peychie influeure, hat also a distinetly phesieal influence, on the vital functions. 'The rations nervons phemomena peentiar to night are well deseribed ly féré as the result of a defieiener of phesiologieal exeitation, being in faet paralyses ransed by non-irritation. So fiar as reported experienese go, thes nervons necturnal affections are more likely to ocem in adults than in children ; but the possibility of their occurring in the latter shonld not be overlooked.

It is now generally admitted that, even exchoding eases of simulation or fraud, a fever which may be troly termed hysterical must be recognized, athough there are few records of such eases in young children. Hysterical ferer was probably a correct diagnosis in twe persomal cases. One of these was a boy of ten, with hysteriform choreie movements, aceompanied by pain in the head and limbs, and by irregular but widely-distributed hypermethesia. The diagnosis of meningitis had been made. The temperature ranged for several days between 100° and $104^{\circ} \mathrm{F}$. The patient recovered mader a practically negative treatment. The other was a gill of mine, with stmptoms which closely simulated those of an aberrant form of typhoid fever, but in which some of the most positive signs of the disorder, such as diarrinea, the eruption, ete., were absent. From the time of Briquet lyseterical fever has heen disenssed, and during the last few years it has received considerable attention. Dr. Mary Putnam Jacohi, ${ }^{2}$ in an excelient article, records a ease and reviews at some length the literature of the subject to date, citing Pinard, Hemi Fabre, Bressler, Hale White, Donkin, Creig Suith, Meade, Debove, Barié, and varions physiologieal investigators, as Wrood, Tseheschin, Clarles Richet, Schreiber, Aaronson and Sachs, Ott, and Girard. She omits to mention Briand, Gubler, Rigel, and $:=$ malafoy, referred to in the writer's papers on hysteria. The elinical observers in this list record casos ocemring after puberty, lont a priori hrsterical fever is perhaps more likely to be present in early life because of the greater vuluembility of the thermie centres. In cases of high temperature in fong children we shond always bear in mind the possibility of hysteria, but we should alse remember that in many affections not hysterical a high tempers.ave is observed in children of nenrotic temperament.

[^457]
DIAGNOSIS.

While the diagnosis of hysteria in children is perhaps not much move diffient than in adnlts, the disease is more likely to be overlookerl. Many physicians do not anticipate its oceurrence in children, and, not expreting it, they attribute hysterical affections to more serions causes. They firme, what has been demonstrated by the faets reported in this paper, that hyssterical manifestations are possible as soon as the child has develnom ate eapacity to receive impressions and form conecpts. Hysteria in children must therefore be distinguished from a large number of functional and organie diseases, most of them belonging to the nervons system, althomgh the number of affections thas to be differentiated is not so great befine at after puberty. Great care shond be taken in examining children when hysteria is suspected: their intelligence and shrewhess should wot the noderestiuated. The doetor will often discuss in the presence of the child questions of diagnosis, prognosis, and treatment with much greater freedom than before an adnlt, but most chiddren are observant, and the nemotic and precocions who are the victims of hysteria are particularly keen aud watehful, so that the physician may deceive himself in diagnosis and thwart himself in treatment, especially in his attempts at moral treatment, by mowittingly making the child a confidant of his views.

It should be remembered that diagnosis in nervons discase, as in prychiatry, is sometimes a relative matter. A child or an adult is sane or insume according to the individual, social, national, or even racial standard; so it might he said that a child or an adult is hysterical or not hysterieal aceording to the standards by which it is judged.

The complication of hysteria with organie disease is observed in chitdren as well as in adulte, although probably not so frequently in the former as in the latter. Gowers directs attention to a number of special instances of this complication, and very truly says that the symptoms whid result from a union of these disorders may be most perplexing. Hyperesthesia, anesthesia, contractures, and other phenomena are present sometimes in typhoid fever in young girls. Hysteria simulates or masks tubercular meningitis; rheumatic pains persist with hysterical neuralgia; arthritis may set up in an hysterical joint ; a laryngeal catarrh may exeite hysterical aphonia, and bronchitis hysterical dyspnea and rapid breathing. Hysterical symptoms not only complicate general diseases, but also frequently aceompany other affections, functional and organic. Infantile hemiplegics are sometimes hysterical in high degrec, and real diphtheritic paralysis may pass into hysterical palsy and anrsthesia. These are a few of the complications and accompaniments of hysteria which are given by Gowers, and which have been observed by all neurologists in children as well as in youths and adults.

Shaffer calls attention to cases in which symptoms of actual hip-joint disease-and of other articular affeetions-exist associated with undoubted
hysterical manifestations. A boy twelve years old came into his office limping and complaining greatly of his left knee. He had fillen upon the ive, striking upon his knee-joint, which aceident was followed by a severe arthritis, but in about ten weeks after the injury he walked as well as eier. Some months later, however, he complained of his knee paining him very nuch, and was obliged to stop walking, and after this he hopped around, always holding the leg flexerl on the thigh in one position. Any sulden mution produced sharp pain, and considerable atrophy of the thigh and leg musdes was present. The boy was thin and anemie, and evidently sery apprehensive abont his knee, and was what would be called a nervons boy. The case was evidently one of hysteria imposed upon an original organie pathological condition. He wholly recovered in a few weeks.
"It may be remarked," says Roberts, speaking of a particular case, "of hesteria that, although it initates every nemotic disorder, the imitation is never perfect. There is always wanting, either in the history or in the symptoms, some feature which is essential to the imitated discase." The case which called forth this opinion was an imitation club-foot ; and no one, as he say's, ever saw true club-foot come on, as in this patient, in an abrupt way, withont pain, convolsion, paralysis, atrophy, or associated symptoms of any sort. These remarks are finll of suggestion to one trying to make a dagnosis of hysteria, especially in children. However dose the resenbance, semtiny and analysis of a case will show something, either in the unset, the symptoms, or the course, lacking in the gemune organic discase.

Acrording to Bocy, the diagnosis of a case of hysterical mania may be singularly difficult, the two anfections with which it is most likely to be confonded being momal insanity and meningitis. Of comrse the diagunsis is assisted by a consideration of other hysterical phenomena, such as pain, hyperesthesia, contractures, and visual changes. The mental disorder proper monst be differentiated by the manner of onset, the intermitteney of the phenomena, and ahove all by the presence of these hysterical stigmata.

Forms of orlinary wlioy or imberility may be for a time supposed to be cases of hysteria, but the progrese of such cases will som reveal their true mature, althongh the intiot and the imbeeile, like their better-finmished bother, may be at times hysterical. The affection deseribed by Mandsley as moral imbecility is sometimes, in its incipieney at least, regarded as hysteria. Mandsley's description of these cases will serve to make clear the dagnosis between them and cases of real juvenile hysteria, although in the later moral perversion is eften prominent.
"There are children," says Mandsley,' " of defective mental capacity not reaching the degree of idiocy, or even of positive imbecility, whom it is very diffienlt to know what to do with sometimes. They are dull, lieavy, stupid, uppear careless, indifferent, and as if they will not try to learn anything, and diwolay low or vicious tastes; when seni to a respect-
${ }^{1}$ The Physiology and I'athology of the Mind, 2d ed., London, 1868, p. 328.
able school, they are commonly after some time sent home again as impracticable. Their inability to learn looks very much like stupidity and obstinacy, when it is really the result of discase and marks a corcain measure of imbecility. It is sometimes the misfortune of boys of this sort to be sent, after failing at the usual schools, to some one who advertises fin unruly pupils and who represents himself as possessed of some sperific for managing or training them. A few years since, a boy of this kind was said to have been flogged to death by his master, who was pat unom his trial foul manslanghter, was found gnilty, and recoived a severe sentence. Withont donlot the poor boy was harshly and ernelly used ; but there are median reasons for thinking that the case was not quite so bad as it was represented in the public papers. Dr. Wilks has expressed an upinion to this eflewt, grounding it upon the fact that in some of these cases of half imberility there is an abnormal 'fuantity of serm in the ventricles of the hain, and that death may sometimes take place suddenly in conseruence of the inemense of the fllid beyond a certain extent. In the case referred to, an monstal quantity of sermm was found in the ventricles of the brain after death. In reality, the condition of things may have been the cause of the youth's stupidity, and so his death have been occasioned by a pmishment whid would not have serionsly injured a healthy child. Althongh this would not have been a justification of the punishment, it woukd still absolve the school-master from some portion of his enlpability. When we reflect on the possible state of things in the brain, it will be obvious that no goocl, but much mischief, will be done by harsh meisures; kindness and encouragement, good diet and regular habits, proper borlily exereise, and the regular control of some judicions persons, will be the best means to employ. Above all things it is necessary to forego all attempts to make such defer-tively-organized beings attain to a mental degrec of development which they are by nature incapable of; they should be put to some humble oceupation for which they are fitted.
"There is another class of boys who canse great trouble and anxicty to their parents and to all who have to do with them. Afflicted with a positive moral imbecility, they are inherently vicions; they are instinctive liars and thieves, stealing and deceiving with a comning and skill which could never be acquired; they display no trace of affection for their parents or of feeling for others; the only care which they evince is to contrive the means of indulging their passions and vicions propensities. Intellectually they are defective also, for they usually rad no better at sixteen than a healthy child of six years, and yet they are very acnte in deception and in gratifying the desires of their vicious natures."

The curious affection variously known as convulsive tic, cholalia, coprolalia, and Gilles de la Tonrette's disease is sometimes regarded at first as a form of hysteria, and in fact does oceur in children with a neurotio family history who may present hysterical symptoms. This affection is, however, mather an hereditary psyehosis or monomania, differing from
hysteria, an phenomena. siste"n yea affiects boy: a treatise on andyzad, al the alfectio to the subj ments, loca with explos profanc or a or contortio worls that things desin cases ats sim bereclitary 1

Sometin nine wheth times practi which are forms of h between the binations of seizures, mo the two for cases may bended that

Henoch blend or alt He believes relop, into t greatest who leptic fits. sometimes s conscionsmes dreany stat mase of one have ath att sure that the this is not tl

The mo that the linc
hysteria, among other things, in its persistence and in its narrow range of pheromena. It begins, as a rule, in children between the ages of six and sisteen years, and therefore is property considered in this connection. It affects boys by preference. It was first described by Bonteille, in 1818, in a treatise on churea. In 188.4 and in 1885 Gilles de la Tourette ${ }^{1}$ collected, analyad, and disconsed previons cases, adding others of his own and giving the affection a place in mosology. Dama,' ${ }^{2}$ in this comntry, has contributed to the salyect. The main features of the disease are incerordinate movements, local or gencral, sometimes of great violence, and often associated with explosive disturbances of speceh. The patient bursts ont iuto some profiue or obscene expression, at the same time making a peeuliar grimace or contortion. Instead of a spontancous blaspheny, he may repeat or echo words that he overhears. He often imperatively and explosively utters things desirable to be kept secret. Plysicians should not set down these eases ats simply hysterionl; but they should reeognize their seriousness and lereditary nature.

Sunctimes in children even more than in addults it is difficult to determine whether a seizure shonld be termed epileptie or hysterical. It is at tines practically impossible to come to any deceision. Onitting those cases which are clearly purposive or instances of shamming, the study of other forms of hysterical and epileptic fits must impress us with the kinship between these so-callet distinct discases. As already shown, varions combinations of epilepsy with hysteria are often observed: thus, hysterical seizures, more or less severe, may follow slight and lrief epileptic seizures; the two forms of attacks may altermate in the same patient; or intermediate eases may be fennd in which the phenomena of the two discases are so blendel that it seems almost impossible to separate them.

Henoel disconses the cases in which hysterical and epileptic conditions bend or alternate, and in which the diagnosis is correspondingly diffientt. He believes that some of the cases which he classes with hysteria may develop into true epilepsy, the tendency of the case to end in this way being greatest when cpilepsy is hereditary or when the patient has had true epileptie fits. The description hy Henoch of his cases shows the difficulty in sometimes separating hystero-epilepsy from true epilepsy. He spuaks of conscionsincss as lost or weakened, of the patient going about in a dazed or dremy state, ete. Such patients occasionally hurt themselves, as in the ease of one who fell through a window of a cellar. Some are aware they lave an attack, others are not. The physician can never be absolutely stre that these cases will not degererate into true epileptie attacks, although this is not the rule.

The more one's experience incresses, the more he becomes convinced that the line of denareation between some hysterical and epileptic fits is not,

[^458]so sharp and deep as his reading and his first experiences would leal him to suppose.

Cases of the classical type are the most readily differentiaterl. Charent's diagnostie points in favor of hysteria, often cited, are: (1) The existenne. of hemianesthesia. (2) Aflections of sight (dyschromatopsia and achornmatopsia). (3) The existence of hysterogenic zones, and the methon of provoking or arresting an attack by pressure on these zones. (4) The antion of resthesiogenic agents on the affections of sensibility and of motility.

While the oceurrence of nocturmal attacks is rather in favor of the existence of epilepsy, this is by mo means a sure diagnostic mark. Not only do night-terross, which are largely hysterical, ocemr, but consulsive hysterical attacks are sometimes observed during the night. Aecording to Roberts, these night-attacks find their expianation in the fact that eym then somebody is around to note the performance. He gives an illustrintion of a boy who had paroxysmal attacks of a curions chanacter at night in bed. He had irregular twitehings of the arm and blinking of the ceyelids, which developed into general convulsive fits of short duration. IIe never bit his tongne nor foamed at the month, and the question of unenscionsness was doubtful. The mother slept with the boy. The attacks invariably oeenred early in the night or after seven in the morning, never in the middle of the night, when sleep is most profomd. Roberts holds, and probably with correetness, that the boy would not have had the nightattacks if he had not slept with his mother. During the day he had may hysterical manifestations at different times. After a few months he recoveved entirely.

The nocturnal attaek, if epileptie, usually comes on with a seream or noise, the convolsion is often general, or at least severe, the tongue is oftem bitten, the bed is sometimes wetted, and the patient afterwards passes into a deep sleep, and the next day suffers considerably from soreness of the mnseles and sometimes from headache.

The diagnosis of hystero-cpilepsy from Jacksonian epilepsy due to a lesion causing cortical irritation is sometimes very diffienlt, and some anthorities, as Vietor Horsley, hold that hystero-epilepsy is often, if not always, a true cortical discase,-that the spasms are due to cortical discharge. This point has been referred to by me in a paper on "Cerebral Localization in its Practical Relations:" "Some cases which seem to be clearly cases of hystero-epilepsy elosely resemble organic epilepsy of the Jacksonian type. Hystero-epileptic attaeks, it is well known, can be producel by irritation of the hystero-epileptic zones, deseribed by Charcot, Richer, and others, which are evidently analogous to the epileptogenic zones of BrownSéquard. Almost every form of spasm in localization and extent can be found in descriptions of hystero-cpilepsy. Features of distinction are, however, present. Undoubtedly one reason for the similarity between pas-

[^459]modic affections, reflex, hysterical, toxic, or cerebral, lies in the fact that in these cases, whatever may be the starting-point, central areas are discharged and give definite charater to the convulsions. Horsley speaks of hysteroeqieleys as a cortical disease, but this view camot be upheld for all cases, if he means by this that the spasms are msually the result of cortical disdharge. They are rather sometimes bulbar or spinal, cortical inhibition being removed."

The following diagnostic characters of epileptic and hesterical fits, as given by Gowers, will answer ahost as well for children as for adults :

dpparent couse,	Absent.
Warming,	Any, but especially mihaterul or cpigustric, aurn.
Ouset,	Commonly stdden,
Screaln,	At onset.
Conrulsion,	Rigidity followed by "jerking," rarely rigidity alone.
Biting,	Tongue.
Micturition,	Frequent.
Defication,	Ocensiomal.
Tulking,	Never.
Duration,	A few minutes.
Reetruint,	To prevent accident.
Termination,	Spontancons.

hystehom.
Fmotional distulnuce.
Pulpitation, mahuise, choking, bilateral foot-aturn.
Often gradual.
During course.
Rigidity on "struggling," throwing limbs und head athont.
Lips, hands, or more oftell people and things.
Never.
Never.
Frequent.
Often half an hour or several hours. To control violence.
Spontaneous or artificial (water, etc.)."

One point which will sometimes assist in the diagnosis of hysterical paralysis is brought out by examining a child in a sitting or lying posture. The child will tell you that she cannot walk, that she cannot even stand, but when sitting or lying all the movements of the limbs can be clicited by alroit persuasion and manipulation.

Ahoost any form of paresis or paralysis ocemring among children might, under some circumstances, be mistaken for an hysterical affection; for example, any of the paralyses which follow the acute contagions and infections diseases of childhood, as diphtheria, scurlet fever, measles, small-pox, and typhoid fever. These palsies, however, nearly always have clear marks of their organie origin, the most important of which are trophie and electrieal changes, positive alteration in kner-jerk, and peenliarly-distributed sensury disorder. When, therefore, with wasting, lost farado-contractility or the reactions of degeneration are present, the case may be set down as nut hysterical. Lost knec-jerk, or a very decided difference in the jerk of the two sides, may usually be regardad as proof of organic disease. When anesthesia, analgesia, or hyperesthesia is limited to the anatomical distribution of eertain nerves, the disease is likely to be organic. Pathologically the paralyses are, as a rule, due to neuritis or myelitis or a combination of these two affections, and therefore distinct, trophie, electrical, reflex, and sensory phenomena will be present, althongh, it may be, in varying degree.

For the palsies which follow cerebro-spinal fever or other forms of menin. gitis, cerebral and spinal, the same rules of diagnosis will sulfice, and in these alfections the history of the case will usually afford valuable aid, Practically the same is true of annte atrophie paralysis or anterion puliomyelitis, - the intintile paralysis of most writers, -and of the paralysis of multiple nenritis. In infantile cerehral hemiplegia or monoplegia, -paralytic, spastie, or 'pileptic, -general arrested development, persistent (ontracture, and in many cases convolsions, more or less hocalized and ernerally. with anconscionsmess, will be present. In these cases, howeror, the deretrical changes will either not be present or will be ghantitative ouly. Knce-jerk may be increased on one side, and sensation in rare instances is permanently impaired.

Rachitis in children is often misleading, simulating mot only hysteria, but sometimes very closely serions organic affections incurable in charatere, as progressive musenlar atrophy or psendo-hypertrophy, poliomyelitis, and also the forms of paralysis following or aceompanying diphtherta, wathet fever, manles, cerebro-spinal meningitis, and Pott's disease. Berg. ${ }^{1}$ in describing these cases of rachitic pseudo-paraplegia, says, "The litth pationt of two, four, or even five yars of age is unable to walk, and romurep children to sit or stand. Efforts to walk are not made without aid, as a general thing, but when such efforts are made the feet and legs are spreal wide apart, -for better basis of support, -the boty bent forward to mantan equilibriom. Stumbles and falls are frequent, and the little patient walks like a partial paraplegic. Examination shows a mehitic body ; costal cartilages marked by the so-malled rachitic rosary ; tendemess in the borly of the museles, and over bony prominences at museular insertions. Demonstration proves that every muscle retains its powers intact."

The points for the diagrosis of disorders of common and special sensibility are given sufficiently in the seetion on symptomatology.

As appears from the diseussion already had upon the symptomatelogy of hysteria in children, the varions painful affections of the joints of the limbs and of the spine are partieularly liable to puzzle and confound the diagnostician. Some orthopredie surgeons, and above all Shaffer of New York, have carefully studied these affections from the diagnostie standpoint. Sifting the symptomatology of such cases, it will be found that the cases of neuro-mimetie joint-disease involving such joints as the hip, kne, elbow, ete., will present certain tolerally uniform characteristiss, usually well-marked emotional tendencies, with highly-developed self-conscionsues, suspicion, and watehfiluess ; the museular rigidity or contractme present being genemally variable in character and capable of being modilied by diverting attention and by various sehemes. Shalfer gives the following as the points on which an exclusive diagoosis was made in a certain case:
" 1 . The emotional element in the child: easily affeeted to tears with-
nit pain. of it.
"2. Th directed the
"3. Th chair canno
" 4 . Pa
"5. Shl
right years
" 15 . Th mposite leg "7. Un grord grenera
"8. 1"st
"In this tion wats th tween the s! by the patie

Shatler precision in in allults.
present. It and is aceo joint is atte the articulat reeponse to 1
l'owerfu powerlit an making a di must not be contracture, ever, so read out by Cha members giv organic lesion assist in ad may be read spasm or ec rigidity and

Shaffer g From a stud important po spondylitis, column is usi mimesis, und
put pain. She seemed also very conscions of observation and suspicions of it.
"2. The rigidity of museles of thigh variable, as when attention is directed thereto or diverted therefrom, cte.
"3. The flexion of the thigh which oecors when the patient sits in a chair "annot be obtained when she lies down.
"4. Patient can put on her own shoes and stockings.
" 5 . She attributes discase to and lates back her tronble from an injury eight years ago.
" 6 . There is more or less hyperasthetie pain at almost any puint of apposite leg, or any part of the bedy, when pinched or touched.
" 7 . Uniform tamparature ; no evidence of supmation; gool appetite; good genemal comedition.
" 8 . Psons museles are not involved in the contraction."
"In this case the extremely variable character of the muscular contraction wats the turning-point in the diagnosis; a wide difference existed betwen the symptoms developen at the formal examination and those shown by the patient when she thonght herself' unobserved."

Shatfer has shown the great value of the famalie enrrent as a means of precision in the diaguosis of hysterical joint-affections, either in children or in adnults. Often in these ases some atrophy from disuse and presure is present. In organic joint-diseases marked musemar atrophy is present, and is accompanied by loss of electro-contractility. Indlammation of a joint is attended very constantly with wasting of the musiles that move the articulatiom. Aecording to Shaffer and Segnin, in the organie case the response to the faradic current is lost, or at least depressed.
l'owerful narcotic and hypootie drugs like opium and chloral, and powerful anmesthetics like ether and choroform, may be able to assist in making a differential diagnosis of rigidity and contradure, but their value must not be overrated. Under ether and chloroform the masenlar spasm or entracture, both organic and hysterical, will disappear; it will not, however, so readily yield in the organic case to opiom or chloral. As pointed out by Chareot, if under chloroform the rigidity of the museles of the members gives way slowly, or even persists to any marked extent, a spinad organic lesion is phaced almost beyond doubt. Hypnotic suggestion might assist in a differential diagnosis, as during hyphosis spasm or contracture may be readily made to disappear entirely. In some organic cases, also, spasm or contracture might be modified. In natmal sleep hysterical rigidity and contracture disappear.

Shatfer gives some striking examples of simulated disease of the spine. From a study of these cases and of his arguments and conclusions, the most important points of differential diagnosis wonld seem to he that in chronie spondylitis, before the appearance of deformity, rigidity of the vertebral column is nsually present and due to reflex masenlar spasm, while in neuromimesis, under proper manipulation, normal mobility may be determined;
pain, severe, localized to nerve-lines, and inereased by motion or jarm, is present in the organie affection, lat in neuro-mimesis fhe pain is sunpertinial, msnatly located over or nem the spinons processes, is sometimes transiont, and fiequently changes its location; a nocturnal ery and an mprodonsive facial expression are nsual in Pott's disease and nhemt in nemro-minniner ; and, finally, the gait and attitude of the organie case are chatacteristic.

A sthdy of many meses of hesterial or nemromimetio spinn-riveram shows a not infirenent history of the patient's having olserval on stinliend other coses. Here mimicer is casity explaned ; but in many other "ans it is difficult to understand how an minformed patient can so closely counterfeit a real alfeetion.
"There is this difference," says Shater,' "hetween the hateral (mbature of hysterical origin and true seoliosis. The former partakes of the character of functional weakness, especially of those muscles which ant upen the spinal colnmin extrinsionlly, while the latter is due to a progression musontar contraction, dependent upon canses yet to be pathologically ascertainal, hut which appor to primarily affect those museles which act intrinsimatly. The hesterical form does mot become a true scolosis, in my own experioner, untess the specifie pathological canse be added, and we may perlapsinfor that this specilic canse is more apt to be developed in the hysterimal diathesis, just as we say that chronie joint-discase is more apt to occor in the stomons diathesis. Whatever the pathological condition may be that indnces the penaliar condition known as rotary lateral curvature, we at least know that the muscular contraction is both a painless and a progressive one, and that it resembles in character that fond in true tortioollis, in comgenital clnb-foot, and in many instances in infantile garalysis. The conditions found in troe torticollis especially resemble those which aro apharent in true lateral curvature; and that this eondition is one of contracture, rather than simple contraction, is confirmed by Paget, who says, in spaking of nemo-mimesis of lateral curvature, 'If these signs of distinction are not enongh, ether or choroform will help. Yon ean straighten out the mimic envature when the muscles camot act ; you camot so straightem a real curvature,'
"Recognizing, then, the character and persistency of this eontracture, it is always a matter of difficulty-if it is not an impossibility, in the absence of the symptoms in the earliest stage-to cletermine just when the efficient canse of the progressive seoliosis commences to operate. When the spine is markelly enrved, and rotation is apparent, the diagnosis is mot difficult, and while the tendeney of true seoliosis is to become very slowly worse, and to result in irremediable deformity, the hysterical curvanture, if properly trented, sooner or later recovers, just as do the emotional contractions of the hip and knee.
${ }^{1}$ The Hysterical Element in Orthopadic Surgery, Archives of Medicine, April, 1880, vol. iii. p. 186.
"The er stage of ${ }^{\text {trn }}$ befiene ment each. 'This The dias fion both of all the cire amination w cither local of varying siont parmis logien! mani be exargeral df sumh ac ea ferer, or eve

The prox deney to rela more hysterii on their gha form churing of in liysteri the child. severe forms onders of the of hysteria importance w It showld son of the child, training, shon Hysteria fur cases appe Such pratients Gincers says t attarks, howe laryugral spav: author says t stance of deat another somree times seen in an antomatic into each oth little ginl age and had had a
"The early stage of hysterical lateral emrature, and the first (apparent) stage of true seoliosis, however, present many features in common, mul, as before mentioned, the emotional element is alumst miformly pesent in each. This addes to the dithenlty of diagnosis, and has leyl to many cerrors."

The diagonsis of hysterical fever mast be made by a carefin considernsimu loth of the temperature and the previons history of the child, and of all the eiremmstanes smromuling the ease. In many such casen chose examination will show, on the one hand, the absene of positive evidence of cither lenal or constitutional disorders, or, on the other hand, the presence of varying mul vacilating hysterical phemomenta, such as aphomia, tran-
 lugimal manifestations. Pulse mud rejpiration as well as temperature may be exagremated in cases of hesterical fever, but not meommonly a feature if such at case is the want of correspondence of these great phenomena of fever, or even the existence of any on of the thre ats an isolated symptom.

PROGNOSIS.

The prognosis of hysteria in children is, as a rule, grood, but the tendeney to relapse shouk not be forgotem. That a dild has had one or more hysteriond attacks before the age of puberty shond lead parents to be on their guard for the return of the disorder in the same or some other form during puberty or adolescence. While diflicult to emadicate, the effects of an hysterical inheritance may often he modified to the lasting benefit of the child. Most reported cases of hysteria in hoos and girls, even the severe forms with convolsions, anesthesia, pamysis, contractures, and disorleps of the special semses, have eventally recovered. The oedureme of hysterial in young boys and girls may have a prognostie or prophetic innportance with reference to the future life and career of the individnal. It should sometimes influence the choice of an oecupation or a profession ; or the child, by particular eare and attention to its physical and montal traing, shonld be especially prepared for the profession of its choice.

IIysteria in children, as in adnlts; is marely, if ever, fatal, althongh a few cases apparently hysterical in which death resulted have been reported. Such patients may, of course, perish from aedident or interemment disease, Gowers says that as a rule, to which exceptions are infinitely rare, hysteroid attarks, however severe and alarming in aspect, are devoid of danger, the laryugeal spasm presenting the greatest apparent risk to life, The same author says that a case mentioned by Reynand is the only recorderl instane of death in an attack of this deseription. Gofers also speaks of another sonwe of danger, - the temdency to turn on the face which is sometimes seen in the post-epileptio state, which is, strictly speaking, rather an automatic than a hysteroid phenomenon; but the two conditions merge inth tach other. A patient in whom this symptom was present was a little grinl aged twelve, whe had never suffered from epileptoid seizures, and had had an attack of hysterical paraplegia immediately cured by strong
faradization. "Her fits always oceurred on waking out of slecpl, before whe was quite awake. They commenced with a half-monning, half-singing noise, and the louder this was the worse was the sulsequent attack. 'Then whe gave a sudden spring, mul always thrned on her lime, mod presenty began to semteh her pillow. She would sometimes rise in hed suddenly and then dash her head back on the pillow. The nttacks lasterl moly a few minutes, and always ended suddenly." He had nlso mot with one intane in a little girl, in which death oceurred in conseguence of attarks which "ppeared to be hysteroid, but which perhaps were of internodiate firm between hysteria and epilepsy.

TREATMENT.

The prevention of hysteria in very yonng children is in large purt simply the hygiene of the masery and the removal of had example: When a mother is hysterical, epileptie, or insane, it is a prophylactie agains: hys. teria, as against other disenses, to have the infint nomished be another, a strong healthy mose, or, if this camot he aceomplished, the mith had botter be raised on artificial food. The example olfered by the mother, brothers and sisters, and playmates is often bad. 'The plastie mind of a young, nemrotic, precocions dhild is womderfilly reecptive of impressions whin may lead to the disturbane of the nervons eonilibrim. It is a crime against yomge children to do what I have seen done morre ham onere, -namely, to allow them to be for weeks in company of a mother who is afllicted with the graver forms of hysteria on insanity. I recall two recent instances of patients suffering from hysterical insanity, both mothers of' intelligent and interesting young children. 'These patiems pasewd through many of the most distressing and violent phases of the gravest hysteria, -at times maniacal, swearing, gesticulating, striking and destroying ; at times in a comdition of trance, hyphosis, or stupor ; at times in cutalcptic or herstero-epileptic attacks,-passing from stage to stage through the whole train of nemal phenomema which eurse a patient of this type. Throngh it all, and in sight and hearing of it all. delicate, impressomathe
were interested and often astonished and frightened ohservers. association can seldom fail to plant the seeds of mischiof and misery, maps for all time. The drunken or passomate father is, hoth ly example and by the development of fiar, the canse of hysteria in children; and the presence of imbeciles and epilepties in a family of young children mag lead to the same dire result. Another form of injurious cxample which shonld be removed when possible is that of certain local affections; fur instance, choreie movements, such as suapping the eyes and other grimares, twitching of the limbs and twisting of the bordy, may be developect by imitation, as has been shown under Etiology. These are practically hahitchoreas.
"The family physician who discovers a child to be nemrotie, and whe, from his knowledge of parents, ancestors, and collateral relatives, knows
that a pred mut, shonide healthy, rol this kind to Revoulds is monlily healt slould be si the cudeas development myrarlend in always to directel ; br inclination. paticut knos treatment is to give it ; 1

The curn restonation a plases of the ate. Tomics be resorted tc surlied : one tonies, while tives or even cifinga, valeri Where condit fully used ; b valuable of th bromides, con

Massage,
range with el morements, a of the utmos muder careful

Hydrothe prove of gre tricity, and e other day slio by the rough ment, but as a water baths a

Isolation
of hysteria in
that a predisposition to lyysteria or some other nombis is likely to be press put, shonld excreise all the monal influence which he possesses to have a healther, robonst trining provided. It is not within the serpe of murticle of this kind to diseribe in great detail in what such ednation shomld comsist.

 should be supplied which may give forer, persistenee, unity, and sureess to the conlenvors of the patient.' In children who have a tendeney to the devehpment of hysteria the inclinations should not nlways on altogether be ragarded in choosing a method or pursuing a plan of edncation. It is mot always to what such a child takes that its mind should bee constantly directel ; but, on the contrany, it is often well to edumte it away from its inclination. "The worst thing that can be done is that whieh makes the patient know r feel that she is thought to be pecoliar. Sometimes surli treatment is g atifying to her, and she likes it,-it is enses, nud it seems kind to give it ; but it is radically wrong." "1

The cutative treatment of hysteria in children indmed measures for the restoration and mantenance of the general health, and remedies for special phases of the discase, such, for example, as consulsion, contracture, aphomia, etc. Tonics are often useful and somotimes necessaly, but they should mot be resorted to and depended won blindly. Esery case should be carefully studicel: one may demand mutrients, such ns malt and cond-liver oil with tonics, while another may do better on some reduction of diet, with sedativen or even opiates. Arsenic among mineral remedies, and smbul, eimidifing, valerian, and asafetida among vegetable substances, are valuable. Where conditions of excitement are prominent, the sedatives may be carcfully used ; but their employment should not be long continued. The most raluable of these are sulphonal, chloral, monoisomide of camphor, the other bromides, conium, and codein.

Massage, of much value in adolt hysterical cases, has not so great a mange with children, although it may be used with: advantage, but Swedish morements, and particularly systematized gymmastics and calisthenies, are of the utmost value. Almost any form of jusenile hesteria will improve under carefully-regulated gymmasties.

Hedrotherapy, either general baths, shower-baths, or donches, will often prove of great service, particularly when combined with isolation, electrieity, and eareful dietetic treatment. One or two baths daily or every other day should be used. Care should be taken not to frighten children by the rough use of water-treatment, which is not resorted to as a punishment, but as a means of invigorating and giving tone to the system. Saltmater baths are often especially serviceable.

Isolation of the patient is often of great importance in the grave forms of hysteria in children. This apoling to both the endemic and epidemie

[^460]forms of the disease, and also sometimes to sporadie cases. Chareot strongly directs attention to this matter. A young Russim, whose cease is carefully detailed by him, was ened when he was rigidly isolated from all mataves. The same author refers to an epialemic of hysteria which broke ou in a college moder the charge of monks near Belfort, and in which the soung boys were cured by sonding them home to their fimsiies.

Isolation is chiefly a moral measure in the treatment of hysteriat ; and, after all, the main curative treatment of the disease is mom. Great attention most be paid in some instances to arousing, and in others to controlling, the will. The child should be kept nuder firm but kind contrel; it shonld be enconraged to do for itself, and should be cepriverl of montind sympathy.
"As soon as a child is old enough to develop a will of its own, the first ring it does is to try and get its own way, and one of the carliest iesoms .h has to learn is that it can orly have its nwn way when it is compatible with the comfort and rights of others; and even a mere baby will son find ont how far it may encroach on the kindness or weakness of those around it.
"As we are none of us born models of virtnous behavior, some kind of punishment must necessarily be nsed now and then in the nursery ; but, as far as possible, the child should be made to feel that the pumishment is the matumal result of his bad netion, and not the mere venting of auger and annoyance on the part of the parent or murse. If a child once finds ont that eertain actions always entail umpleasant consequenees, he will no mope think f committing them than be would think of putting his hands in the fire, which, he has early learnei, has an umpensant habit of bumiug. There are no better philosophers than children, who always resign themselves to the ineritable. Let the child find out that bad behavior in the drawing-room means instant banishment to the nursery ; that if he knows his brother with a stick the result is 'no stiek;' that if he refuses to put away his toys one night, he must manage withont toys the next night ; and so on.
"If' the mother merely talks at the child, and says, 'How often must I tell you not to do so?' or', 'I shall send you up-stairs,' the child swon perceives that, after all, this entails no consequences, and he very wisely ate accordingly. On the other hand, nothing should be denied a child withont srae reason. A great many mothers, and most murses, act on the primciple contained in Punch's remark, so delightfully illustrated by Du Manrier, 'Maude, ge anc' see what Baby is doing, and tell him he mustu't." "

For convulsive atacks such measures may be used as compression of the bysterogenie poini,-as, for example, the testicles in boys, the oraries, spine, or infra-mammary region in girls. Observations have been reported by Dreyfus and Aussillaux where the hystero-epileptic attacks have been
stopped by eompresses of cold water to the genitals. Inhalations of ether, dhloroform, nitrite of amyl, and hromide of methyl, and douches of cold water, have all veen snceessfully emploved.

In a case of hystero-epilepsy deseribed by Gowers, after sesemat of the attacks had oecorred, Dr. Wilson, the attendant physician, passed a line band aromd the arm near the axilla, with a knot over the nerve-trmaks, and ans som as the head began to roll the knot was pulled tight : the attack was immediately arrested, and no other onecurred during the night. The patient slept well, but the attacks came on in the monning before she was thoronghly awake and she had forty before eleven A.m., all being the sume in chameter. Again they were arrested by the ligature, and eased.

Contractures, although hysterical, are inot always readily cured. Some pass anay quickly, others remain for years; and Chareot has deseribed the hitter as permament contractures. In the cases treated suceessfilly various measures have been employed, ats faralism, galvanism, Swedish movements, hypmotie suggestion, counter-irritation, and many medicines. Shaffer believes that the use of mechanical force in hysterical contracture is positively contra-indieated. Hypodermic medication will sometimes prove of great value, because of both its physical and its mental effects. The existence of atrophy is, of course, of some importance in determining, in a doubt fin case, both its nature and its treatment. Functional atrophy from disuse cocurs; but when in addition to atrophy there are reactions of degeneration to the galvanic current, the diagnosis of organic disease may be cousidered certain.

In the treatment of hysterical joint-affections it is important to bar in mind several practical matters. These have been well presented by Shaffer in his series of pupers already quoted. It is usually well to stop all local treatment, exeept, perhaps, massage and manipulation of the joint. Exeessive sympathy and attention must be withheld. The child's disense shonld not he diseussed in his or her presence. Introspeetion must be carefully mobated ; the patient's mind must be diverted to objeets outside itself, and an open-air life, with as much exercise as possible, must be secured. Br ingenuity and adroitness, by persuasion, promise, and an occasionad show of assistance, both the limp, and the contracture can often be either sorly or rapidly overcome.

THE DISORDERS 0F SLEEP.

By Clearles P. Putnam, M.d.

It would be outside of the seope of this article to diseuss the mature and causation of sleep. 'Though many theories have been proposed, none of them have obtained general recognition.

Whatever be its nature, sleep lirings a time for rest and repair of the whole body, but especially of the brain. To a certain extent the tissues are always wasting and always being repaired, but in sleep the repair gres on at a more rapid rate than the waste. Pettenkofer and Voit foum that of the total amount of carbonic acid eliminated during twenty-fom hours fifty-cight per cent, is given off during the day and forty-two per cont. during the night, while the amonnt of oxygen taken in during twelve houss of the night far exceeds that taken in during twelve hours of the dey.

Especially for children is a sufficient amount of sleep neeessary. Want of sleep quickly interferes with the proper performance of all their finnetions and serionsly iuterferes with their health.

Hilton says, "In infancy the child who sleeps much mostly thrives, Mutatis mutandis, the observation is equally true that the wakeful, restles child seldom displays the evidence of active mutrition. . . . Growth--the renewal of some parts, and the fresh development of others-seems thas th claim sleep and rest as its helpmates."

The amount of sleep required varies at different ages. New-born infants often do nothing bnt sleep and eat, except when they are being dressed. From fifteen to eighteen hours may be considered the necesany amoment at this age. At one year thirteen hours is not too much. Childrem two, three, and four years old often sleep eleven or twelve honrs or even more, and sometimes take a nap in the middle of the day besides. I chilt that took less than twelve hours of sleep at this age could not be considemet a good sleeper. Nor shonld the sleeping hours of a child up to ten rears of age fall below ten hours.

The most common disorders of sleep are night-terrors, sommambulism nightmare, dreans, and insomnia. Of these, night-terrors are the mor common in childhood, and will therefore receive the most attention in this article. What is said about night-terrors will apply also, with certa modifications, to the other affections nbove mentioned.

1008

In ord points in t diservation of waking silipmorel, slepp.

Drams in a loss of timps: The fiumetions, a onces. Who consionsnes uuder contr functions ar constituted 1 from the un themselves i would do if the hest that :on.)

The exeit disturbance it of events of exeitation, fro another to an
W. Bevan sleep, olject-e scionsuess gor rached for ar vons centres In these cases lapse of conse subjective stat initiated, beco neted and si which in healt run riot, -and Lyman gi des on night-t of Medicine."
Soltmann, "rankheiten," bition of the r

In order to understand these disorders, it is necessary to consider certain points in the physiology of the cerebral fimetion in relation to slecp. When observations are made on a person going to sleep (and the converse is true of waking up), it is evident that one function of the brain, then another, is anjemed, until enongh of them are at rest to constitute what we eall somd slep.

Dreams, somnambulistic attacks, and night-terrors find their explanation in a loss of the higher and an exaltation of some of the lower cerebral finetimus. The conseions life of the individual is in the realm of the highere fuuctions, and these constantly exereise a kind of inbibition on the lower anes. When by the smspension of the higher fimetions, those concerned in conscionsness, this inhibitory influence is lost, the lower functions, no longer day.
IVant heir fune under control rin wild in various ways. When, therefore, these higher functions are suspended, two sets of symptoms are olserved,-first, those constituted by the loss of the higher finctions; second, those which arise from the umatural prominence of the lower finctions, which manifest themselves in response to varions excitations, just as the higher functions would do if they were in working order. These manifestations represent the best that the crippled brain can do at the moment. (Hughlings Jackson.)

The excitation which gives rise to these manifesaaions may be now a disturbance in the digestive, respiratory, or other organs, now a recollection of events of the day, now something else not to be recognized; and such excitation, from whatever source, may give rise in one case to a dream, in another to an attack of sommambulism, in another to one of night-terror.
W. Bevan Lewis says, ${ }^{1}$ speaking of mocturnal erises of the insane, "In :leep, object-conscionsness quickly, even suddenly, suceumbs; subject-conscionsuess goes more slouly, and the more profound depths are not usually rached for an hour, or even longer ; the reflex excitability of all the nervons centres (spinal also) is reducel,-the organic functions are lessened. In these cases of noeturnal exeitement, however, the effect of this periodie lape of conscionsness is to call up more turmoil at lower levels; all those :nbjective states arising from epi- and ento-peripheral stimuli, or centrally initiated, beoome the snbject-matter of the mental view ; all those disconnected and simultaneonsly originating ideas which crowd the mind, and which in healthy waking states are reduced to serial, orderly thought, now run riot,-and beyond this hallucinations of the special senses prevail."
Lyman gives a similar deseription of this process in the excellent artides on night-terrors in his book on "Insomnia" and in Pepper's "System of Merlicine."
Soltmann, in his article on night-terrors in the "Handbuch fïr Kinderbrakkeiten," refers to Langendorff's investigations on the centres of inhibition of the reflexes, which showed that frogs that had been blinded began

[^461]to croak when they were touched on the baek with a wet finger, althengh this did not happen in the case of an uninjured frog where the inhibition haul not been destroyed; and he thinks that in the ease of night-terrors where the inhibitive power of the senses, mainly of sight, is removerl,-that is, in sleep or when the eyes are closed,-the reflexes make themowhes manifest hecause no longer under control, an explanation which SchmidtRimpler had given for the delirium which had been induced in certain conditions by shatting the eyes or darkening the room.

Night-TERRORS.

Synonymes.-Pavor nocturnus; Nächtliehes Aufschrecken; Terrenrs nocturnes.

A child that has gone to bed apparently well and has slept soundly fior an homr or two, or perhaps been slightly restless, suddenly starts with a piercing cry which resounds through the honse. He is fombl sitting in in bed, or standing in the middle of the room, or perhaps cowering in at corner, trembling, sereaming with terror, and staring ont as if at some definite object. The skin is covered with sweat; the hands elutels cach other and abything within reach, or are moved about as if for purposes of defence against some attack; when spoken to, the ehild evidently docs not muderstand. He calls for his mother or his nurse, but does not know her when she comes, and perhaps alternately clings to and repulses her. He may make it evident that he is afraid of some particular object, some terrible form, hmman or animal ; but much more frequently he exinibits only general, undefined terror. After a time, from a few minutes to an hour, or even longer, he gradually comes to himself, though still frightenel, and sometimes to a degree still under the same delusion as lofore; recornizes persons around him, and seeks and aceepts consolation from them. When asked to tell what frightened him, he generally can give no idea, but soon wishes to be put to bed, and usually goes off into a sleep from which he may not awake until morning.

After such an attack children sometimes pass a large quantity of urine or have a movement of the bowels.

Occasionally these "terrors" are reported as oceurring twice or oftener during the same night (in one case, according to Dr. West, seven or eight times), but usually there is only one.

Such attacks come on at varions intervals;-every night, every few nights, or at longer periods, quite irregularly.

In the morning the child seems about the same as usmal, and when questioned about the attack generally denies any knowledge of it, or sommtimes any mention of the subject brings a certain puzzled lock to the face, and the patient evidently wishes to avoid talking abont it. Orasionally older children tell of certain monsters or dangers whicis had terrificel them.

Such attacks oceur in all degrees of severity, but they have certain peenliar characteristics. They oceur almost always an hour or two after
going to sl acelir at thi scions of the and never o plete or nea a dim conse The attacks between the the calse.
terrors oceur tinue 1 p to

Atkinson ciated with 1

In a very in the day (I hour in the 1

Children Thens, Steinet "almost neve anamic, rach rons irritabil Yet it is not show that goo

When a e profoumd, has for some cans or, rather, of of nervons fon or filly asle thought. On lise curs. That mer, but is a are present re: his full conse nurse. The in tive insignific: tumed sleep is tived with awake the brai only its lower similar conditi then he has an

Immediate whers they are disturlance of
going to sleep, or, if there is more than one attack, the first one is apt to oecmr at this time. During an attack the patient is for a time quite meonscions of the outside world. The attack is always, as it is called, a " terror," and never of an agreable character, as is often the case with dreans. Comphete or nearly complete forgetfuluess of the attack is ahways observed, only a dim conscionsness of something disagrecable being sometimes left behind. The attacks usually ocemr between the second and the sixth yar,-that is, between the first and the second dentition,-thongh this is not always the case. Attacks of screaming that later develop into well-marked nightterrors oceur long before the first dentition is over, and they sometimes conthue up to the age of fourtem, or even, it is said, to the age of puberty.

Atkinson says that nocturnal incontinence of merine is frepuently associatel with night-terrors.

In a very few cases attacks closely resembling night-terrors have occurred in the day (Henoch and others), and occasionally, too, they oceur at a later hour in the night than that mentioned above.

Children who have these attacks are generally delicate or excitahle. Thus, Steiner voices the general opinion of writers when he says they are "almost never perfectly healthy and robust, but, as a mule, delicate, weakly, anmuic, rachitic, and apt to show besides night-terrors other signs of nerrous irvitability, especially if they come from weakly or nervons parents." Yet it is noticable that almost every one uses qualifying expressions to show that good health is not altogether inconsistent with this disturbance.

When a child has an attack of night-terrors, his sleep, thongh apparently profomel, has really only suspended the higher functions of his bain. Then, fur some cause not always explained, there oceurs a stimulation of the brain, ny, rather, of such parts of it as are still active, and there is an explosion of nervons foree, which would not have oceured if he had been filly awake or fully aslecp. The child's behavior is no longer the result of sober thought. Only imperfectly does he see through his eyes or hear through lis cars. That which most impresses him as if seen has mo material existenee, but is a distorted recollection, or bundle of recollections, which to him are present realities. Sooner or later he regains, generally only by degrees, his full conscionsness. He sees his own bedroom, his prarents, and his muse. The images which tervified him just before fade away into comparative insignifieance or are altogether extinguished.’ II is desire for accustumed sleep comes back, all the more foreibly hecause a part of the bain is tired with its excrtion, and presently he is sound asleep. While fully awake the brain does not know, or knows only dimly, what happened when moly its lower functions were at work, lom when the child is again in a similar condition on another night the same recollection may come up, and then he has another night-terror of the same character.

Immediate causes for some attacks are satisfactorily made ont; for others they are not easily fond or are not fom at all. Often there is a disturhance of the digestive organs, after the removal of which the attacks
cease. Such a condition may be due either to a weak digestion or to improper food. Less frequently attacks are attributed to catarins of the rexpiratory tract, to enlarged tonsils, to trouble in the ear, to morbid expitement of the mind during the day, to fever, to worms,' to teething, to alcomol, stramonimm, belladonna, or quinine, to irritation of the skin, and to illventilated bedrooms. (P. Niemeyer.)

A large number of the reported cases are attributed to alaming orenrrences during a day. They are frequently reported, for the bery reason that they are comparatively of infrequent ocenrence.

Thus, Wertheimber reports the case of a boy who on one arcasion hat been scolded and threatened by a gardener for helping limself to flowers. An hour and a half after going to bed he started up trembling and with open eyes riveted on the corner of the room, screaming, as if in great lour, "Go away, go away, for God's sake!" Another day he heard his fitther read of some boys who had been ill treated, and he again awoke an hom and a quarter after going to beel, started up with a ery, and was fomed with his hands folded, trembling and begging for merey.

Meigs and Pepper report the case of a child who had been bitten by a parrot, and that of another who had been frightened by a white dog.

But in some cases excellent observers have been mable to fiod any immediate cause that could fairly account for the attacks.

Thus, Steiner says, "I have observed night-terrors in chihlren with quite normal digestion and daily movements of the howels. Their appetite was just as good on the days when they had attacks as at times when they had none. The majority of my patients were ehildren between the ages of three and six years,-of an age, therefore, when no teething is going on,and I am not able to cite a single case where the night-terrors could be bronght into any causal connection with worms: in a word, all the cireumstances which are commonly designated as the regular excitants of nightterrors played in my cases a very subordinate rote or none :lt all. By this I would by no mems let it be understood that certain immeliate canses (the predisposition being already there) camot and do not have a partial influence on the mumber and severity of the paroxysms, but the important factor in this condition must always be fomb in a disturbance of the mutrition of the brain. Of these immediate canses the most important are a bad mental training, the telling of ghost-storics to children before heltime, and going to sleep in the dark. All these things are well calculated to stimulate the lively imagination of ehildren already timid and excitable."

Nevertheless, it is difficult to belicve that all of Steiner's cases oceurred independently of any external stimulns, so strong is the evidence of others to the contrary. Indeed, some of Steiner's patients were affected with serofilous ophthalmia and other ailments, that seem quite sufficient to call out night-terrors.

[^462]That in physical dist

The writ their parent. only the mi they hatd not

Still, the immerliate e. sider whethe form of nigl the attacks, anee of othe but purely o by the brain

We shon
Soltmann savs, "If' we fluence,--tha taills of sigh eures, it then tion of irrita of optic fibre: the thalamus axipital lobe are projected (everchal hyp
"It seem: peripheral sen of the irritat (movement of

It is well moly one class haps others, b and the symp other in thein children affect horrol at ant breath, wrings he cries out, ' he makes onl idiopathic atta sulbjective terr the symptoma which through

He calls t

That in the complex condition of an apparently healthy child certain phrsical disturbances might easily be overlooked is not unnatural.

The writer has seen children with night-terrors who were considered by dieir parents to be perfectly well, but who were apparently cured be taking wuly the mildest fook for their supper,-say, bread and milk, -although they lad not shown any signs of digestive disturbance.

Still, there is no ghastion that in some cases every attempt to find an immediate excitant of the attack has been fruitless, and we may well consider whether, as with epilepsy, there may not be eyclic explosions in the form of night-terrors for which the hain is preparing all the time between the attacks, so that the attacks take place not as the resnlt of any disturbance of other organs, nor even muder the stimulus of distorted recollections, but purely or mainly as the result of a certain degree of tension acquired by the brain in this interval.

We should also remember that more than one canse may be at work.
Soltmann seems to have something like this idm in his mind when he suv, "If we are convinced that the attacks occur withont any ontside in-fluence,-that is, spontaneonsly,-and ahwas with terrifying visions, phantains of sight, with reproduction or fimtastic distortion of previons experiences, it then beeomes evident that we are dealing with periodical manifestation of irritation resulting from aboormal excitement of the prolongation of optic fibres in the brain,-that is, of central sensation areas (pulvinar of the thalamus optiens, corpori geniculata, quadrigemina, and cortex of the (weipital lobe), which, however, in aceordance with the law of cecentricity are propected onto the fied of vision. It is, therefore, a cerebral neurosis (erebral hyperesthesia of the optic tract).
"It seems to me not improbable that a morbid misinterpretation of peripheral sensial exeitation can give rise to the attacks, when the souree of the irritation is in the optie media,-mamely, in the retinal vessels (morement of blood-corpuseles)."

It is well to mention here that, though most observers have recognized only one class of attacks, Silbermann, and after him also Baginsky ard perhaps others, believe that night-terrors should be divided into the in'opathic and the symptomatic. Silbermann holds that these classes differ arom each wher in their symptoms, in the quality of terror, and in t'se kind of children affeeted. He says, "In the idiopathie form the patieat gazes in horror at an imaginary oljeet; in the symptomatie he is distressed for breath, wrings his hands, and makes motions for defence. In the idiopathic he cries ont, 'The black eat!' 'The black dog !' ete. In the symptomatic he makes only short ejaculations, 'Ach!' 'Aeh!' Weh!' Weh!' The idiopathic attacks are expressions of oljeetive terror; the symptomatic, of subjective terror. The idiopathic is a transitory hallucination of the sight; the symptomatic, a sensation of distress arising from digestive disturbance which throngh the ageney of the vagus nerve gives rise to dyspuoa."

He calls the idiopathic form "a transitory hallucination of sight, an
expression of imagery of terror (objective terror) cansed by abmormally incresed irritation of the brain (cortex)," while the symptomatie form he regards as "a reflex nenrosis of the pulmonary vagus resulting in dyspurea and thereby in a semsation of terror (sulbective terror)." Idiopathic altandis oecor, he thinks, always in children that are delicate and excitable, and without any exeiting canse in any other vagus ; while symptomatie attenks oreur only in strong and robust children, always as the result of a digestive disturhance.

It is hard to convince one's self that there are two classes so definitely. separated from each other. It is true that between two individual sases there may be a vast difference in all the partienlars mentioned bey siltsermann, but, taking all cases together, the clegrees of difference are so slight that it is almost or quite impossible to draw a line of demaration. It least it is often observel that nervous and excitable children have an attak brought on by a definite canse, and equally that chiddren apparently perfectly well have attacks for which no callse can be assigned.

When an attack of night-terror ocens, the question naturally (omes up, how likely is it that this attack is eomected with any serions aerebtal or other disease? There is no doulot that attacks which camoot be distingnished from hambess nightertors oceur as a result of febrile affections, and as symptoms of epriepsy, of tuberenlar meniugitis, and perhaps of other diseases.

The statement that night-terrors pure and simple sometimes turn into epilepsy shonld also be considered.

Wood, in his "Nervons Discases," says, "In a latge majority of cales night-terrors are not connected with any organie discase of the bain, of with epilepsy." "Night-terrors which are the outcome of serions buindisorder are rare, and not to be positively distinguished by their semptoms from those of less serions import. They, however, frequently reen severat times a night, and continne for many weeks, whilst the night-terror of irritation usually happens only once, and extremely rurely more than twiee, in a single night, and does not continue to reeur for weeks, exeept it be at considerable intervals. Moreover, the serions night-terror is almost invariabl? aceompanied by the other manifestations of disorder of the bratin's action, which point out its true menning."

In the Metical and Surgical Reporter, December, 1889, Wood says (if corvectly reported), "Night-terrors are not rarely the precursors of epileps.!." He wats deseribing the case of a boy who screamed at night from the age of three to nearly eleven. The boy was wakened with differulty, and sometimes had a condition of perverted conseionsness in which he recognized his purents but believed himself beyond their help and sympathy. Then for six months he had attacks of roming in a circle and falling unconseions. After that he had a tremor, and a little froth was noticed at his mouth. Menwhile the night-terrors lad ceased. Wood believes the tronble in this case to have been epileptic.

Soltman into cpilepsy a givern attad Moizard accurred in t prorted a case case of Dels: at the outsent Moizard's on

Henoch a tell-year-ol years becfore, atter assocciate epileptic atta tervers, whid

Lyman si nervons dysp sars that long almont the sal Money, al: This is the pors and epile but one case, being quite ge on night-terro lepsy, which i length. At ld epilepsy at all this comnection morning more of attacks. in so far as t two of the nen teprors are oed carefilly for a

Prognosis concernel, mus many years. of cases they a stability which nerrous disetse

Persons the mia, and analog clildren who a and remain so

Soltmann says, "Attacks [of night-terrors] are observed to go over into epilepsy, , . . and there are enses where it is impossible to say whether a given attack is night-terror or epilcpsy."

Moizard quotes Jules Simon as having sem several cases where epilepsy ocemred in the form of hallueinations and night-terrors, and ne having reported a case where cpilepsy followed night-tervors. Moizard also quotes a mase of Debacker where the following surcession was noted : night-terrors at the outset, then hallueinations, sommambulism, and epileps. One of Moizard's own cases had a similar course.

Henoch reports a case where night-terrors took the phace of epilepsy. I ten-year-old gin had had a great many epileptic attacks at intervals three vears hefore, then after in interval she had several more, which were soon after assoriated with hallucinations and seremming, and a month later these epileptic attacks entirely disappeared, and their phace was taken by mightferrors, which, however, sometimes ocentred twice in one night.

Leman says, "Insanity, hysteria, nemasthenia, epilepsy, chorma, and nervons dyspepsia are often discovered among their near relatives." West says that long-continned attacks may issue in serions disense, and bonchut almost the same.

Money, also, says, "Night-terrors are a species of reflex cortical epilepse."
This is the evidence, stell as it is, on the comertion between night-terross and epilepsy. But it is noticoble that of these anthors Wood cites but one case, Moizard three, and Henoch one, the rest of the statements being quite general. Although Soltmam sparks of epilepsy in the artiele on night-terrons, he does not speak of night-terrors in the article on epilepse, which immediately precerles it and which treats of epilepsy at great length. At least eight writers in treating of night-terrors do not mention eprilepsy at all. Nor am I aware of any article on epilepsy which mentions this comection between the two affections. Epilepsy ocenrs early in the morning more often than at night, and the hour nsually varies in a sorics of attacks. Altogether, the connection betwen night-teroms and epilepsy, in so far as they are separate diseases, is no clomer than that between any two of the neuroses ; and yet, inasmueh as attacks closely resembling nightterrors are occasionally only symptoms of epilepsy, it is well to wateh carefully for a time before deciding that epilepsy is not present.

Prognosis.-The prognosis, so far as the night-terors themselves are concerned, must be regarded as good, even though the attacks last for a great many years. It most, however, not be forgotten that in a great majority of ' cases they are symptoms of a neurotic condition, and that the same instability which gave rise to them is likely to show itself in other forms of nervons discase and in general lack of vigor.

Persons thas affected are likely to be candilates for hysteria, nemasthenia, and analogons diseases. On the other hand, it must le said that many dhildren who are sulyeets of night-terrors are at the time in grood health and remain so during their whole lives, and that many who are in delicate
health at the time that they have the attacks grow up to have aropage strength.

When the attacks are only symptoms of epilepsy, rabies, or some other disease, of course the prognosis depends on that disense.

The possibility that night-terrors will turn out to be the precursons of epilepsy and other discases has been spoken of ahrady. Comandy the proportion of cases that turn out in this way is very small.

Treatment- -The treatment of the affection must be divected th the soure of peripheral irritation, if one can be found, and to the general localth, including the aequirement of a stable brain. Disturbances ariving from indigestion, from catarth of the mucons membmes, from enlaryment of the tonsils, from worms, from tecthing, or from other analogons distur), ances, maturally call for their appopriate treatment. My expericuere has been that sweets, jellies, jams, ete, taken at supper are more likely to canse such disturhances than forks of any other one kind usually found in an ordinary diet, even in cases where there is no special evidence that the digestion is ont of order. Cases have beeta reported where the removal of tonsils, the relief from worms, or the development of teeth was followed by relief from night-terrors.

No donht, as has been said in regard to frights, greater emphasis is laid on these disturbances as canses of the disease than on the more common ones, for the very reason that they are uncommon.

Varions remelies have been used with suceess for the general healdh,iron, phosphorus, cod-liver oil, salt-water bathing, freshair in the bedroom, light gymmasties, cte.

When the attacks ofene fiequently, it is well to give bromide of sodimm or of potassimm, in doses of from two to ten grains, either at night or three times a day, in order to break up the labit. Chloral also may be nsed in small doses for a similar purpose, especially when the carly part of the night is disturbed and restless, and it may be combined advantageonsly with the bromides; but this drug shonld be given with the greatest cate, as children readily become acenstomed to it.

It seems almost mmecessary to suggest the avoidance of ghost-stories and other exciting tales at bedtime; on the other hand, going to bel in the dark, which bas been regarded by many as a serions evil, will hardly be so considered in this country.

Wertheimber praises the use of quinine, and thinks it has a direct sedative action on the cerebral cells,-an explanation which seems to be contrary to the general reputation of quinine. Jacobi ${ }^{1}$ also reports a case of cure by quinine (or, more strictly speaking, by sulphate of einchonine) when he thought the affection was due to intermittent fever.

A digestible and mutritions but not stimulating diet should be recommended.

[^463]As regar terror's ippil wet pre-emil
1)reams: infants a sm showing tha drow are ably day, they oft proted by the taken place i tion of then properly to 1 or night-tem

Nightman sations of dione's selff fro

Somnamb indule all m while still at might have nut have pe langing out

Although could not ha observed in cl

The patie of what has!

If we red results in mot distingnished emotional dist

These aft inasmnch as and mindne ar

They seld the other han impaired. they can be t marning that not be overlo

Insomnia It is, however

DREAMS, NIGHTMARE, SOMNAMBULISM.

As regards their mature and cansation, much that has been said of nightterrors applies also to dremas, nightmare, and sommambulism. They ure not preberminently affections of childhood.

Deams are not at all memmon among children : even in quite young jutints a smile or a frown is often seen to pass over the features in slecp, slawing that part of the brain is active; and from the time that children are able to distinguish the experiences of the night from those of the day, they olten relate their dremms. Dremms are known only as they are reputed by the dremer, whoreollects eertain orenrrences that sem to hate taken place in the night. There is, stricetly speaking, no ontward manifestation of them, for when drems give rise to any motor action they are properly to be classed under the head of nightmare, sommambulistic attacks, of night-terwors.

Nightmate may be eonsidered a peenliar kind of dream, in which sensations of distress are coupled with a feeding of inability to move or save one's self from some terrible situation, or similar symptoms.

Somumbulism, though literally meming sleep-walking, shonld properly indude all motor action in sleep. In sommambulistic attacks the patient while still asleep walks about, or performs various other acts, such as he might have performed in the day;--sometimes, also, acts which he could not have performed in the day, such as elimbing on dangerous ledges, hanging out of windows, cte.

Athough adnlt sommambulists have done intellectual work w' ${ }^{\prime \prime}$ h they could not have performed in the day, this does not seem to have been observer in children.

The patient when awake has no knowledge, or only a dim recollection, of what has happened in a somumbulistio attack.

If we regard as sommambism everything in which cerebal action results in motor action, we must include under it night-terrors, which are distinguished from sommambulism mainly by the fact that it implies also amotional distress in a condition of partial sleep.

These affections are closely related to eath other and to night-tervors, masmuch as they too depend on suspension of eertain cerebral functions and mulue aetivity of others.

They seldom, perhaps never, give rise to serions disturbanees, but, on the other hand, they often indicate that the genemal health is more or less impaired. In the rare cases where they require any special interference they can be treated on the same general principles as night-tervors. The warning that they give of some possible impairment of the health must not be overlooked.

INSOMNIA.

Insomnia oceurs in children, thongh much less often than in adults. It is, however, for the child a more serious affection than it is for the adnlt.

No child can lie awake for several nights, or even for only a considerable part of each night, without suffering serionsly from it.

The causes of insommia meo often the same as are fomblin adults, but the most common of them are indigestion, over-fitigue, and nervons expite ment. Parents and marses are more responsible for the sleeplessmess of the child than they are lid ely to be aware of. It may be ohserverl that lion carliest infancy certain nurses, without any apparent effiet, bring aboul a great deal of sleep for a child, while other norses mattingly keep a child awake and on the qui cire. Infants that are habitmally put into the cranlle asleep and suateled ont of it as soon as they wake do mot fied as mum at home there as those that are put in awake and left to lie awhile aftere waking. When, therefore, infants thins trained awake, they are startley at their mexpected surroundings, and sometimes not readily put to sleep again.

The treatment of insommia in infints and children is similar to that in adnlts, but, while the nmmber of ordinary canses for insommia is fewor in ehildren, the influences that bring it abont are often slight and diffienlt to diseover. I have already spoken of the influence which a murse may lave, withont knowing it, upon a child's sleep. Insomnia may be eansed be hunger or by an overloaded stomach. It is due sometimes to cold, but mush oftener to heat and want of ventilation. Children require even more ventilation in the aight than in the day, becanse the doors are not opening and shating in the night.

BIBLAOGRAPIIY.

C. G. Hesse, ['cher das machtliches A ufschreeken der Kinder im Schlufe, ete., Alten. burg, 1845.

Charles West, Diseases of Infaney and Childhood.
A. Tacobi, Anorican Wedieal Monthly, 1801.

Syducy Riuser, Nightmare of Children, Medion Times and Gazette, 1867.
E. Bouchut, Traité pratique des Mahdies des Nouveau-nés et des Enfants.

Steiner, Juhrbueh für Kiuderheilkunde, 1875.
A. Wertheimber, Deutsches Mrehiv für Kin. Med.
O. Solmamm, Haudbuch der Kinderkrankheiten, 1880.

Honry M. Lyman, lasomnia, and other Disorders of Sleep; also in vol. v. of Pep per's System of Medicine, 1880 .
O. Silbermann, Jahrbueh für Kinderheilkunde, 1888.

1I. B. Atkinsen, Arehives of Pedintries, 188 I.
Moizard, Revue Mensuelle des Maladies de l'Enfance, 1884.
Meips and Pepper, Diseases of Children.
L. Mandelstamm, an articlo in lassian, 1885, noticed in Jahrb. für Kinderheilkunde
A. Buginsky, Lehrmueh der Kiuderkrankheiten, 1887.
A. Money, Treatment of Diseases in Children, 1887.
I. C. Wood, Nervous Diseases, 1887 ; also, Medical and Surgical Reporter, 1889.
G. L. Ullman and William Evatt, Albany Medicul Annals, 1889.
W. Bevan Lewis, Text-Book of Meutal Diseases, 1890.
A. Ollivier, Revue Mensuclle des Maladies de I'Enfanee, 1889.
E. Henoch, Vorlesungen über Kinderkrankheiten, 1889.

The va ally group sional aldi valletics of the represe child whoss are neverth Idiocy extreme stı mervons cel mental facol

While the former moment's ex tille. The imsanity, an wild are b "primitre v

It seem: disturbance. the climacte fimily histo of an imper cral physiol yous organix would have tres perform strain added

Etiology to deferetive minst be sou preverling ge
s excitte as of the hat firum aborit a pat child he emaulle as mull hile atter a startlell t to skep
to that in fewer in tiflieult to may have, cansed by cold, lunt nire cem is are but

IDIOCY AND IMBECILITY.

By EDWHARI N. BRUSII, M.D.

The varions grades of mental deficioney observed in children are usnally grouped moder the two heads idioey num imbeeility, with the oceasiomal addition of a thim term, -forblo-mindedness. 'These terms represent varieties of mental power and notivity in an asembling seale, fiom the inliot, the representative of the lowest expression of human intell! gence, to the dhild whose mental powers are not markedly delicient, but in whom there are nevertheless evidences of mental enfechlement.

Idiocy may be definad as mental dedicioney of varying grades down to extreme stupidity, resulting from imperfect development or disease of the nervons centres, either promatal or ocemming befine the evolntion of the mental faculties in childhoord.

While idioev and insanity are usually regarded as distinet conditions, the former due to fanlty development, the latter an aeguired condition, -a moments considemation will show that the contrary proposition is frepuently true. The moml imbeeile has his comerpart in the case of so-colled moral insaity, and the erratic conduct and one-sidedness of the feeble-minder dild are but carlier manifestations of the " partial insanity," "paranoia," "primaine verrincktheit," or "folie héréditaire," of later development.

It scems within the bounds of modem teaching to say that the mental disturbanes which may ocen at the eritieal perionts of life, puberty and the climacterie, and which are so commonly fomm to be associated with a family history of some form of nemosis, are in many instances the result of an imperfect nervons organzation whieh has given way unde: the genetal physiological perturbations of these perioxds. Had this dnfective nerrous organization been more distinctly marked, idiory in some of its grades would have resulted ; under the conditions which did exist, the nerve-entres performed their functions with sufficient correcthess until an unnsual strain added a new factor to the problem.

Etiology.-In a broad sense etiologically idioey may be said to be due to defective brain-development. The etiohory of the defective development must be sought for in the life-listory of the preceding generation or of preeeding generations, patermal or maternal, or both. The hysterical, the nnurotic, the cachectic (syphilitie, tubereular, ete.), the insane, and the
drumken ancestry of idiots are, in many instances, the sonrees to which we must look for etiological information. In the variety of idioey known ats cretinism' heredity and enviromment are almost the only factors which nead to be dealt with in a consideration of its cansation.

Statistics gathered in Europe show that male idiots are more munarons than female. This disparity has been explained by the greater liahility to injuy of the mate head at delivery from foreeps, prolonged pressure in the matermal parts, ete, owing to its greater size.

Injuries to the feotal head during the period of utero-gestation play a not unimportant part in the production of idiocy, and are to be considerevt etiologically in conjunction with possible heal-injuries during prohngel labor or from foreps delivery.

Shattleworth, superintendent of the Royal Albert Asylum for 1diots, England, states ${ }^{2}$ that poolonged labor, without instrumental interference, is the assigned cause of : idiocy in twenty-nine per cent, of the cases athmitted to that asylmm. He is of the opinion that judicions instrmmental interference will in matiy cases prevent the evils of too protracted compresion.

Down ${ }^{3}$ states that in twenty per cent, of two thonsand idiots examined by him there were matred symptoms of suspended animation at birth.

Crichtom Browne ${ }^{4}$ has contributed two valuable papers upon the angency of protracted and abormal labors in the prodnetion of idioes and other mental discases. He is of the opinion that with advancing civilization there has been an increase in the size of the hman head without a proportionate increase in the pelvic diameters. To this he attributes in some degree the preponderance of idioey in civilized over savage nations.

The health of the mother during the period of pregamey and the arefidents incident to that period have more or less influenee in the production of mentally deficient offipring. Down (op. cit.) states that in twenty per cent. of the cases which he observed there was a history of disturbmef of the mother's physieal health during pregnancy: In many other cases there were histories of falls, hemorrhages, ete. The nervons state of the muthor at this period donbtless has some influence. The same observer fomb in thirty-two per cent. of his eases a history of grent anxiety, emotional axeitement, or fright on the part of the mother during pregnancy. It may be questinned how much of this nervous and emotional disturbance wats but the expression of an mistable nervous system in the mother, which, being tramsimited to the child, resulted in idiory.

Carpenter ${ }^{3}$ records some remarkable results of fright and anxicty in pregnant women as olserved in ninety-two children born in Lamlan shortly after its siege. Sixteen were still-born ; thirty-three died within ten month;

[^464]eight werc numerons

Griesin not to be some stress

Intemp time of con ness in the

The in subject has IInth, ${ }^{2}$ the popular op ILuth is of with the gu position, ar nenrotic or be more lia the parenis feetly healt harmless.

Dr. F. titled" A C fifty idiot a nine males which there four female the first gro ity and no 1 two females in which the imbecile, as mancy. In four childre group there and imbecil sides, and of cight female seven famili chuldren of and eight f five families in the remai
eight were idiotie, and died before the age of five years; and two hand numerons fiactaves of the bones of the limbs.

Griesinger ${ }^{1}$ says, "Violent shock and gricf during pregnamey appenr not to be without influence" as a canse of idioey. This author also lays some stress upon great anmemia of the mother as a ransal element.

Intemperance in one or both parents, and especially intoxication at the time of conception, is regarded byany as a finitful source of mental weakness in the offispring.

The influence of consanguinity is a point so much disputed that the subject has become a difficult one to discuss. According to Mr. Alfied Huth, ${ }^{2}$ the data are misleading ank defective. However, the come assis of ppular opinion is mudoubtedly against consanguineons marriages. Mr. Huth is of the opinion that mere consunguinity has little or nothing to do with the question, and that such marriages, where there is no fimily \bar{j} edisposition, are harmless. It scems certain that when there is a family defert, ncurotic or otherwise, a mion of two elements of the same stock would be more liable to result in a defective ofispring than in cases where one of the parenis came of a distinet and possibly stronger stock. Between perfeetly healthy persons of good family history, such marriages are probably hammess.

Dr. F. Norton Maming presents some valuable data in an article entitled "A Contribution to the Study of Heredity," ${ }^{3}$ based upon a study of fifty idiot and imbecile children under care. These fifty children, twentynine males and iwenty-one females, belonged to twenty-one families, in which there were eighty-two children in all, forty-eight males and thirtyfour females. He divides these twenty-one families into four gronps. In the first gronp, including three families, in which there were no consanguinity and no known insane relatives, there were six chikdren, four makes and two females, all imbecile. The second gronp consisted of only one family, in which there were eight children, of whom three were most ummistakably imbecile, as the result, it is asserted, of aceidents to the mother during presnancy. In the thind group, in which twelve families are represented, fortyfour children are ineluded, tweaty-six males and eighteen females. In this group there was no consanguinity of parents, but there was marked insane and imbecile heredity. In five of the families there was insanity on both sides, and of the cighteen children of these families twelve, four males and cight females (all the females), were imbecile or idiotic. In the remaining seven families insanity was present on one side only. Of the twenty-six chuldren of this group, sixteen males and ten females, fourteen, six males and eight females, were idiotic or imbecile. The fourth gronip contained five families. In three of these families the parents were brother and sister, in the remaining two they v . first-cousins. Of the twenty-ferer children,

[^465]fifteen males and nine females, fifteen, thirteen males and two females, were idiotie or imbecile. Of the seventeen children whose parents were brothers and sisters, nine only were idiots, hat they were profoundly so ; while of the seven children whose parents were cousins, six were imbeciles and idions. In these instances, however, there was a family history of insanity, several cousins of the parents being insane.

The cases above recorded exhibit in a striking way the influenee of heredity and in a measure the results of consanguineons mariageres, although deductions drawn from these cases alone might be misleading.

An example of the misapplication of facts is shown by the frequent quotation of the statisties of Dr. Howe by writers who wish to demonstrate the harmfuluess of consanguincons marriages. Dr. Howe says," "The statistics of the seventeen tamilies, the heads of which, being homed-rehatives, intermarried, tell a fearful tale. Most of the parents were intemperate or serofulons; some were both the one and the other; of conse there were other canses to increase chances of infirm offipring besides that of the intermariage. There were born nuto them ninety-five children, of whom forty-four were idiotic, twelve others were serofulons and puyy, one was deat, and one was a dwarf. In some cases all the children were cither idiotic or very serofulous and pmay. In one family of cight children five were idiotic." Writers who quote this passage lose sight oftell of the qualifying clause which Dr. Howe introduces.

The elements of dronkemess and serofula would alone areonnt in a large measure for the degenerate offspring. Indeed, it has long lacen ohsereed that the parentage of idioce is, as a rule, of a degencrate and weakly order, to which the scrofitons and tuberenlar belong.

When all the etiological factors of which we have any knowledge have been considered,-the degencracy of familics, consanguinity, ill beathe of accidents during pregnancy, heredity, ete., we are still met by cases that cannot be explained by any of these. Parents with excellent family history, not even remotely related, with other ehildren mentally and physienlly somed, oceasionally give birth to idiotic children. Such abeddents are often wholly inexplicable: we can only conjecture that in some way the cerehral development of the elild in utero was arrested, with the natural result, deficient mental power.

A consideration of the etiology of idiocy would be incomplete which made no reference to those forms of mental defect resulting firom arreted development during infancy aur carly childhood. Doubtless many of these cases in their remote origin are due to canses above emmerated, which, however, do not become fully operative matil extra-uterine life has advaneed to some degree. Other cases are purely accidental in origin, arising from the discases and aceidents of infancy and childhoorl. Such are the cases of idioey arising from convulsions, epileptic or oherwise, from

[^466]trauma, causes wi varions fi dental, pr of mexce setting in a weak ne

Statist often misl the condit

The ed males and $63,311 \mathrm{wr}$ to the colo probably report idio tween den and omissi

The m Idiocy of formation. as well as which are ar carly e defects wil

In mal ments are disturbed others the

Among Gottried he as a clel be known in the Roy suffieient n tation tell come would grade who versaries of and can gi history. I thing of G his general which be h which was
tranma, meningitis, aequired hydroeephalus, raehitis, ete. These varions causes will be more fully enumerated and discussed in referring to the rations forms of idioey. As has been said, some canses are purely aceidental, preventing the development of a perfectly healthy brain in a child of unexceptionable heredity, while other apparent causes are but exciting, setting in motion latent elements or producing the strain which overthrows a weak nervons organization.

Statisties as to the relative frequeney of idioey are unsatisfactory and often misleading. Those collected in forcign countries are inapplicable to the conditions of life in America.

The census of the United States for 1880 returne 76,895 idiots- 45,309 males and 31,586 females-in a population of $\boldsymbol{s}, 155,783$. Of these, 63,311 were native whites, 4007 were foreign whites, and 9577 belonged to the colored races. The ratio to population is 1 to 652 . These statisties probally approximate the truth; but the matural hesitancy of parents to report idiotic children, and the confinsion, even in professional minds, between dementia and idioey, have doubtless been the cause of ma:y errors and omissions.

The mental and physical condition of idiots varies with the individual. Idiocy of the lower grades is usually associated with some physical malformation. Congenital idiots very frequently exhibit a defieient physieal as well as mental organization. This is not so often true of those cases which are occasioned by an arrest of the mental growth during infancy or carly childhood. A reference to some of the more marked phesical defects will be made when considering the forms of idiocy.

In many cases muscular co-ordination is impaired ; the bodily movements are awkward, irregular, and occasionally choreiform. Speceh is disturbed in some instances, in some cases being wholly unintelligible, in others the voice being harsh and ill modulated.

Among imbeeiles are foumd occasionally the so-called idiot-satents. Gotfriced Mind, an imbeeile cretin, was one of this class. So skilful was he as a delineator on canvats of eats, singly and in gromps, that he came to be known as the Katzen-Raphael,-the "cats' Raphael." The writer saw in the Roval Albert Asylum, in England, an imbeeile youth, who had only sufficient mental capacity to do simple errands, yet who could withont hesitation tell the day of the week upon which any date for years past or to come would fall. I have now under observation an imbecile of rather low grade who has a remarkable memory for dates. He is able to tell the amiversaries of the birth or death of innmerable poets, authors, and statesmen, and can give at once the dates of many of the great events of the wordd's history. He has also some ability in acquiring languages, knowing something of Greek, Latin, French, German, and Scandinavian. An idea of his general intelligence is given by his estimate of the cost of a building which he had watehed during its construction for some months, the cost of which was several thousand dollars. When asked its probable cost, he
replied, "One hundred and fifty dollars," and, seeing a look of incredulity in his questioner's face, quickly lowered his estimate by twenty-five dullars. Blind Tom also belonged to this order.

Diagnosis.-In many instances diagnosis is not difficult, even in the carliest stages of infancy, but in others it is no easy matter to decide, until considerable time has elapsed, whether we have to deal with a case of slow development, a backward chikd, or a ease of mental enfecblement.

The development of normal children is by no means in aceordance with any fixed rule, nor docs it proced by regular gradations. Impaired ,n deficient mutrition, aente diseases, and other causes hinder and even at times set back the physieal and mental development of infints, and should tre borne in mind in forming an opinion. Defeets in the sense-organs should be looked for, especially deafness, as these may lead to a diagnosis of deficiont brain-power which does not exist.

If there are other children in the family, the history of their mental development and the progress of their physical attainments will form the best standard for comparison that can be obtained. At what age did thee appear first to notice mother or murse? when did they first attempt to talk? when did they begin to creep or stand or walk?

There are children who are backward, who develop slowly, both bodily and mentally. Dentition is delayed, they do not attempt to stand or walk until long after the usual period, spech is slowly developed, and in every way they retain the appearance and manners of infaney mitil well advanced, Such children often cause great anxiety to parents lest this mental and physical hebetude be continued throngh life and idioey or imbecility result.

Of such children Seguin long ago said, "The idiot even in the slightest degree presents an arrest of development both of body and of miud; the backward child does not remain stationary, but his development goes on more slowly than that of other children at his age."

The backward child at four or six may represent in general intelligence the ordinary child of two or three, but repeated examinations and the statements of parents will show, if it be a case merely of retarded development and not one of idioer, that in many ways it is in advance of the ehild of younger years. There will be a history of both intellectual growth and physical growth, slow, to be sure, but regular and cons:stent the one with the other, which cannot be shown in the idiot or imbecile.

Many eases of idiocy, where there is but slight defect, do not show it until the age of two or three years. Deficient physical powers, incourdinate movements, and an ungainly aspect may exeite fears, which, as the period at which greater mental and physical ability is expeeted is reached, are confir ad. Where but slight degrees of mental deficieney-imbecility or feeble-minded states-exist, the diagnosis, especially in the early years of childhood, is difficult. The physieal powers may be normal, the body' well formed, the expression ple ring and intelligent. In these eases it is only as time progresses that the mental defect beeomes manifest. Some show it
at the scho latter the chazacter w who had su and even ga the ordinar ignorant pe

To this the best sul wilful disol

In some between sta imberility, a The clinical mental deve to at the beg

Classific been propos impossible.
two or more standard of

The clas the P'ennsyl
I. Idiocy: becility : (a) insunity.

Dr. Slunt the medical easter, Engla

1. Microcepl
2. Hydrocep ital).
3. Scrofinlous
t. Sensorial
4. Eclampti
5. Epileptic
${ }^{1}$ Idiocy unt
${ }^{2}$ Kerlin, M
365°; Savage, ln etc., p. 281,
${ }^{3}$ British M Vol, 1 V
at the school-age, others at puberty, and still others later in life. In these latter the defeet is usually in but one or two directions, a one-sidedness of character which attracts attention. Ireland' says, "I have seen individuals who had sufficient mental power to pass college examinations, take degrees, and even gain prizes, who were so manifestly unfit to condnct themselves in the ordinary affairs of life that they were the laughing-stock of the most ignomant people aronnd them."

To this elass belong the moral imbeciles, ${ }^{2}$ chiidren who carly show, amid the best surroundings and training, a perverted moral sense, exhibited by wilful disobedience, phenomenal eruelty, or systematic mendacity.

In some of these cases it is difficult, as Spitzka says, to distinguish between states of inherent mental weakness which may be properly called imbecility, and similar states which are more correctly classed as insanity. The elinical and etiological resemblance of the various states of arrested mental development to the degenerative insanitics has already been referred to at the beginuing of this article.

Classification.-Varions classifications of idiory and imbecility have been proposed. As will readily be conjectured, an ideal elassification is impossible. If it is based uron etiology, the same ease may helong in two or more suldivisions; if upon mental capacity, it is difficult to fix a standard of comparison.

The classification of Dr. Kerlin, the able medical superintendent of the Penusylvania Institntion for Feeble-Minded Children, is as follows: I. Idiocy : (a) apathetic ; (b) excitable. II. Idio-imbecility. III. Inbecility : (a) lower grade; (b) middle grade; (c) high grade. IV. Juvenile insanity.

Dr. Shuttleworth, a well-recognized English anthority in this field, and the medical superintendent of the Royal Albert Asylum for Idiots, Laneaster, England, proposes ${ }^{3}$ the following classification :

CLASS A CONGENITAL.

1. Microcephalie.
2. Hydrocephalic (also non-congenital).
3. Scrofilous-" Mongol type."
t. Sensorial (also non-congenital).
4. Primarily nenrotic.
5. Paralytic (also non-congenital).
6. Choreic (also non-congenital).
7. Cretinoid : (a) sporadic, (b) endemic.

CLASS B.-NON-CONGENITAL.

a. Developmental.
9. Eclamptic.
11. Syphilitic.
10. Epileptic.
12. Post-febrile (also accidental).

[^467]
b. Accidental or Aequired.

13. Toxic.
14. Tramatic.

15. Emotional.
16. From mixed causes.
vision o ocular a may be and stra
Dr. Shuttleworth confirms by this classification what has been said as to cases belonging in more than one subdivision of the classification. It will be observed that he makes a broad general division into congenital and non-congenital. He remarks, in the course of the lecture in whid this, elassification is proposed, that the subdivision "developmental," which he places under the head "non-congenital," might with some propricty be retained in the congenital group.

While the idiocy in these cases may not be developed until dildhond is somewhat advanced,-the first or second dentition, for example,-lhere can be no doubt that in many of them the canse of the mental cattastrople is imnate.

Dr. Langrlon Down ${ }^{1}$ has, owing to a resemblance, observed by himself and others, of eertain idiots to the varions races of men, propered a grouping upon an ethnological basis into Cancasian, Ethiopian, Malay, and Mongolian types.

Dr. Ireland, the most recent English author on the snbject, propuses, in his work, ${ }^{2}$ the following classification, which has been adoptel in this article: I. Gcuetous; II. Microcephalic ; III. Eclamptic ; IV. Epileptic; V. Hydrocephalic ; VI. Paralytic ; VII. Cretinism; VLII. Tramatic; IX. Inflammatory ; X. Idiocy by deprivation.

Genetous Idiocy.-As the mijority of cases of idiocy are congenital, the use of this term by Dr. Ireland is perhaps unfortmate; but he distinctly excludes from this class those cases, though congenital, whose pathology is apparent, as microcephalic, hydrocephalie, ete., and includes all those of pre-natal origin whose cause is not well made ont. These are the cases in which the foree of heredity is most marked, and among them are included those occasional instances of idioey which seem to mark a commencing diminution of vital foree in the parents, the idiot being the youngest of a large fimily, or the child of parents of whom one or luth are of advanced years.

Plithisis, scrofila, and rachitis are found in these children, and mans of them eventually suecmb to these diseases. The general bodily comblition is usnally below par, the skin is cold, the circulation feeble, and sensibility impaired. These patients seem to have received, with the heritage of a defective brain, a feeble, dwarfed, and erippled body. The finger and toes are short and wad-shaped, the feet or hands may be deformed, ani
${ }^{1}$ Observations on an Ethnic Classification of Idiots, Reports of London Ilospise 1866, vol. iii.
${ }^{2}$ Idiocy and Imbeeility, by Willinm W. Ireland, M.D. Edin., Medical Superintendera of the Seottish Nutional Institution for the Edueation of Imbecile Children.
and shriv lips are t to the im defective is not wh

In ma narrow ar than in f along the "It might pommel bo front."

In five one were b month or 1 paralysis of It is am forms are fu mon. The "The hair straight, and the cheeks r the interinal canthic fold the forehead levatores pal ing of the tongue long, a slightly di appearamec o
"This ty congenital id humorons; t abnormal ; tl is greatly in characteristic: average, and Among g training is co

Microce
hat idiots ha
vision or hearing defective. Not infrequently there is some defeet in the ocular apparatus: the eyelashes may be absent or inverted, or the lids may be everted, and coloboma iridis is occasionally present. Nystagmus and strabismus are not uncommon. The ears are occasionally misshapen Yamantic;
conymital, fut he dis:where pat ncludes all ese are the or them are ark a conbeing the ne or luth
and man! wily condi, and serns he heritag The fingen formed, ani
don Hospita
Superintender and slurivelled. The teeth appear late, are defective, and decay early. The lips are thickened and often fissured, and the saliva dribbles away. Owing to the imperfect museular control over the lijs and tongue, there is often defective and stammering speech in those cases in which the specelh-faculty is not wholly wanting. Hare-lip and cleft palate are occasionally observed.

In many of these cases, as in some other forms of idioey, a high and narrow arch of the palate is present. The areh is usually narrower behind than in front, and in some instances there is a narrow furrow roming along the middle of the arch. Dr. Ireland says of the high narrow areh, "It might be compared to the inside of a saddle viewed from below, the pommed heing turned backward, for the areh is sharper behind than in frout."

In five hundred and seventeen cases examined by Dr. Howe, twentyone were blind, twelve were deaf, twenty-three had some defect about the month or nose, fifty-four had deformed hands or fect, and in ninety-six paralysis of one or more museles was observed.

It is among idiots of this class that the Mongolian and other ethnic forms are found. Of these the Mongolian type seems to be the most common. The following is Dr. Down's description of the Mongolian idiot: "The hair not black as in the real Mongol, but of a brownish color, straight, and scanty ; the face flat and broad, and destitute of prominence; the cheeks rounded and extended laterally ; the eyes obliquely placed, and the internal canthi more than normally distant from one another (the epieanthic fold often abnormally large); the palpebral fissure very narrow; the forehead wrinkled transversely, from the constant assistance which the levatures palpebrarum derive from the oceipito-frontalis musele in the opening of the eye; the lips large and thick, with transverse fissures; the tongue long, thick, and much roughened; the nose small ; the skin has a slightly dirty, yellowish tinge, and is deficient in elasticity, giving the appearance of being too large for the body.
"This type oceurs in more than ten per cent. of eases: they are alvays congenital idiots; they have considerable power of imitation; they are humorous; they are nsually able to speak; the co-ordinating faculty is abnomal ; the cirenlation is feeble; the improvement whieh training effects is greatly in excess of what wonld be predicated if one did not know the characteristics of this type; the life-expectancy is, however, far below the arerage, and the tendency is to tuberenlosis."

Among genetous idiots are some of the most favorable eases, so far as training is concerned, and, on the other hand, some of the most hopeless.

Microcephafic Idiocy.-The impression prevails to a great extent that idiots have, as a rule, small heads, but observation shows that this is
not the case, the microcephales forming bat a small proportion of the whole number of idiots and imbeeiles. The skull in idiocy shows fre. quently lack of symmetry, but, excluding the two varieties microcequates and hydrocephales, it will be fomed that the skull of the idiot has upen an average nearly as great a cireumference as that of the normal child of the same age or general physical development.

Spurzheim, Gall, Combe, and others attempted to demonstrate in a meas. we the truth of their phrenological doctrines throngh observations made anong idiots in whom eertain mental faculties-as, for example, memory -were prominent; but their views have no influence njon the present opinions as to the canses and pathology of idiocy. A perfectly-formet cranium often contains a brain almost wholly incapable of mental function,

Irelaud considers that a cranimm below seventeen inches in cirennference is incompatible with active mental powers, and as a matter of convenience he fixes this as a standard of microcephaly.

In the majority of instances the skull of the microcephate is oxyeephalie. Few cases reael ordinary stature, and not infrequently a dwarfied body is associated with microecphaly. Occasionally these unfortunates are exhibited as relies of a lost race, as, for example, the so-called Aztec children who are figured and described in Dalton's Physiology. They wrye a boy and a girl aged respectively about seven and five years. The bor weighed twenty pounds, and was two feet nine and three-fonths inches high. The antero-posterior diameter of his head was four and one-half inches, the transverse less than fonr. The girl was two feet five and onfhalf inches high, and weighed seventen pounds. The antero-posterior diameter of her head was forr and one-third inches, the transverse only three and three-fourths inches.

Microcephales are active observers of what goes on about them, are frequently restless and active, sometimes irritable and pugnacious. They are not retentive of impressions, and are therefore not capable of more than the simplest training and instruction.

The brain of the microcephale, according to Gratiolet, has "stopped growing too soon," and, while there is some question as to the eause of microcephaly, it scems very evident that the real condition is one of arrested development (pre-natal) of the eerebral hemispheres. Virchow, and othes following his dictum, have advanced the theory that microcephaly is due to premature synostosis of the cranial bones ; but, while this condition has been found in certain cases (Bailarger reports several instances, three if one family, in which the fontanels were closed at birth), it cannot be ngarded as the cause.

Post-mortem examinations show that the smallness of the brain is at the expense of the cerebrum, the cerebellum being much. larger in propor

[^468]tion than in the healthy brain. In the cerebrom some of the lohes are usually diminished in size, sometimes being quite rudimentary, leaving the deper folds and structures of the brain meovered.

Eudampte Ibocy.-This form of idicey is one that oecurs during the development of the child after birth, and is due to the convulsive seizures of that period. Epileptic convulsions are not included in the causes of this form of idioey, as they relate to another variety.

In regarding edampsia as a cause of idiocy it is well to bear in mind that it may be in some instances merely concomitant, the result, rather than the canse, of a brain-defect which, passing beyond the convolsive stage, results in idiocy.

In proportion to the large number of infants and yonng children who suffer from convulsions, few, fortunately, become idiotic or imbecile.

Teething forms the most prominent canse of infantile convulsions. Intestinal diseases-constipation, exhaustive diarrhea, intestinal worms-and anemia are also enumerated among the exciting canses.

An mastable nervons organization seems to be the heritage of some families, the majority of the children at some period of carly life being subjects of eclampsia.

At the Larlswood Asylum, England, fourteen per cent. of the cases were ascribed to convulsions due to tecthing. Convulsions are sometimes followed by hemipkegia, and a form known as paralytic idiocy may result, as will be shown farther on in this article.

Eelamptic idiots are not hopefinl cases in the way of instruction, and in those instances in which the edampsia is but an early symptom of adrancing brain-change of a degencrative type they pass into the lowest order of mental deficieney.

Epheretic Imocr.-The natiral tendeney of epilepsy is towards mental deterioration, and, as Eeheverria has said," "the carlier the age at which epilepsy springs up, the deeper it undermines the organic and moral constitution, and the more disastrous are its results."

In celamptic idiocy the convulsions start, or are the first elements in, a series of changes which result in a cessation of mental development, and not infrequently in a retrograde movement. The convolsions cease, and are not further complications of the case. In epileptic idiocy the cause becomes also a complication, and, as time progresses, an aggravation, of the mental deficieney.

Bearing in mind Esquirol's very graphic distinetion between idiocy and dementia,-the dement "was a rich man who has become poor ; the idiot, on the contrary, has always been in a state of want and misery,"-it is casy, from the history of the case, to distinguish between those cases of profound dementia which result occasionally from epilepsy, and deficient mental development which it also eanses.

[^469]Ireland is inclined to fix the age of seven as the period before whint if mental impairment results he would call the case one of idioery. It is apparent that it is impossible to draw any hard-and-fist line which shall separate mental impairment from hindered mental development. I am inclined to place the age-limit considerably in advanee of this line. An epileptic idiot is one whose mental development was arrested or preveritenl by the oceurrence of epilepsy in infancy or childhood. From this chasifieation would be exchoded all those cases in which epilepsy is devoloned subsequently to observed mental defect. In these cases the epilepsy is a complication, and may be expected to inerease the mental defect.

Petit mal and grand mal are both observed. The former, as is the case
forgotten gait was genema i was listle were disc sulstitute physiciem trol over convulsio developm eorrecet to at the age systemati

A cas lepse upo aged thirt he was re had an cl he became and frien for the i gradually necessary was marl comprehe childish. was and assuulted flesly, his he appear

His c ference of and fiveinches.

The in general there is a diet and great and seen seric bromide

Hyd cephalus frequentl. instances

[^470]re which y. It is ich shall I an ine. An revented s chasifileveloped epsy is a
; the case rolucing the epistated ly it would ilepsy or
ntile epiosy begall ole cullis, exphorles
sily manin mental rly childe already
rule, ex--minded. sally minin a fair and preat can be
sertion,alicnist,? nsylvania as seen in ssation of as. ralf years , she had
forgotten her name, and had lost to some extent her power of speech. Her gait was feoble and meertain, grasp uwkward, and muscular movements in general ineoörlinate. She was untidy in her habits, and her expression was listless and stupid. She had been saturated with the bromides, which were discontinued, mad iron, cod-liver oil, and out-of-door air and exercise substituted. At the end of nearly a year she remombered the names of her plysician and friends, spoke plainly and more fluently, and had better control over her museles. At the age of nine she remained epileptic, but the 'convulsions were less frequent, and there had been slight progress in mental development. Her parents were of opinion-and their judgment appeared correct to me-that she had not regained the intellectual capacity present at the age of five, when the fits commenced. There had been, however, no systematic mental training.

A case now under my care exhibits the deteriorating influences of epilepss upon both the mental and the physical expression. The patient, a man aged thirty-eight, has been an epileptic since the age of three. As a child he was regarded as feeble-minded, but went to school, and could road and had an elementary knowledge of arithmetic. As the convulsions continued, he became more dull, was irritable and at times violent towards his teachers and friends, and at the age of twenty-five was for a while in an institution for the insane. He was again taken home, where he remained, sinking gradually into fatuity, until the age of thirty-five, when it again became necessary to place him under charge. When admitted to the hospital there was marked loss of mental power. He could not read, and was able to comprehend only the most simple things. His language and manner were childish. He had hallucinations, especially after convulsive seizures, and was and is at times violent under their influence. He believes that he is assulted in his fits and that he is called opprobrions names. He is very fleshy, his face has lost much of its human expression, and when excited he appears almost bestial, with his protruding jaws and thick lips.

His cranium is well shaped and fairly symmetrical. It has a cireumference of twenty-three inches, with an antero-posterior diameter of seven and five-eighths inches and a transverse diameter of five and six-eighths inches.

The medical treatment of epileptic idiots is the treatment of epilepsy in general, plus the endeavors to train and develop the mental facultics. If there is any one thing upon which stress should be laid, it is attention to diet and untrition. A word of caution may not be ont of place against too great and routine reliance upon the bromides. Among the insane I have seen serious and sometimes lasting harm result from prolonged use of the bromide salts.

Hydrocephalic Idiocy.-The majority of cases of congenital hydroecphalus die carly. In those who survive, mental development is very frequently hindered, in some cases almost wholly prevented. In a few instances the hydrocephalic condition does not increase, the brain passes
through the normal stages of growth and devolopment, and lyot litthe mental impairment-in some none-is observed in after-life.

Hydrocephalus resulting in idioey may be either congenital or anpuired. The aequired form is most frequently observed from the thid to the tenth year. Aceording to Steiner, ${ }^{1}$ the majority of eases oceur before the fourth yeur. In acute hydrocephalus the termination is so commonly fatal that it coul be but an infrepucint eanse of idiocy. Some few cases pass into a chrouic: form. As a rule, they are feeble, serofulons, rachitie, or tubemenar, and die carly. Chronic, slow-developing hydroephalus is the form most commonly productive of idiney. The fimily history of these cases will nsually show the presence in direct or remote progenitors of tuberentar, serofulons, or syphilitic diseases.

The diagnosis of hydrocephalus is ordinarily easy, but it may be emo fombed with hypertrophy of the brain, and its presence is not always productive of an enlarged cranium. Griesinger ${ }^{2}$ points ont that hydrocephalus may be present in a cranimm considerably below the normal size. In land calls attention to the same fict.

In hypertrophy of the buin there is eulargement of the skull, but the enlargement is most prominent on each side, above the superciliary regrinn, while in hydrocephalus the increase is most prominent at the temples, and there is commonly a greater distance between the eyes. In cases of lydroephalus without cranial enlargement, the expectation would be that the brain, being wholly subjected to the pressure, would suffer greater disturbance of function than in cases where the bones of the skull yidded. Deafness is not infrequently associated with hydrocephalus, and in some instances blindness.

Hydrocephalic idiots are gentle and trusting in their mamers, and arpe of the more favorable class as regards the results to be looked for from training and education. The complications to be expected are the onset of' genemal tubercular discuse, epileptic convulsions, which usually overthrow the effects of training, and serofula.

Paradytic Imocy.-Infantile paralysis, whether of congenital origin or appearing in childhood, is in a certain proportion of eases followed by idiocy or imbecility.

Osler ${ }^{3}$ says, " A lesion so serious and extensive as that which is associated with infantile hemiplegia may serionsly interfere with cerebral development, and among the most common sequences we find various anomalies of intelligence,"

Dr. Osler's book is hased upon one hundred and fifty-one cases, twentythree leing from the Pennsylvania Institution for Feeble-Minded Children at Elwyn. Of the remaining cases, mental defeets were observed in but twelve, but the author calls attention to the fact that the majority were seen

[^471]marty, before mental development wombld be retarded. The greater number showed paralytic symptoms before the fouth yenr of life.

The influene: of aboomal habors, instromental delivery, ete., in the produetion of idiney has nkeady bern referved to, mard ()sher makes montion of these as cansative in infantile cerehral palsies. 'The disemests of ehildhoord are sometimes followed by pamlysis of cerebul origin, as monsles, wathet ferer, esperially cases with renal hesions, diphtherit, and whopping-eongh.

The pathology of these cases is yot to be worked out. Osle: in his monk points ont the conditions which have been observed, but calls attentim to the lack of observations in cases which have proved fatal soon aiter the onset of the paralysis. In some instances the paralysis is enngronital, and due to fanlty development of the motor zones or comdncting trads on to discases or injuries diring inta-nterine life. Cerebral lumorrhage ocenrs in chiddren, as also embolism or thrombsis of the eerebral vessels. In the sixteen cases reported by Oster in which these conditions were fobud, but one, excluding three congenital cases, was moder three rars of age, while ten were over six. Atrophy and cerchal selerosis have been found in several instances. Wilmarth at the I'onnsylvania Institution for Feeble-Minded Chitdren has collexted a remarkable and interesting serins of hains showing selerosis. Porencephalns has been fonm in a few autopsies of paralytic idiots.

Cases of pabalytic idioey usmally improve mentally moder training, miless the fituity is profonnd. The paralysis will require great patience in its treatment, without much hope of favorable results. The leg nsually regains much of its lost power, but the arm remains weak, and contractions, choreform movements, and convulsions are among the seguele. The use of supporting apparatus is not inferquently rendered impossilina or futile through lack of intelligent co-operation on the part of the patient

Creminism, the seventh in order in this classifation, has already been exhaustively treated by Dr. Judson S. Bury. ${ }^{1}$

Treumatic Infocy.-Idiots whose condition is due to tramatism may be ineluded in some of the varieties already mentioned,-c.gf, eclamptie or paralytic,-or in the class immediately following in Ireland's classification, -iuflammatory. 'There are some eases in which the mental state appears to be wholly due to tramatism, which may oecur during intra-uterine life, during delisery, as in the paralytic cases referred to above, or during childhood; but, moless the history of the case is very clear, it will often be extremely diffient distinctly to separate trammatic cases from others.

Savage (op. cit.) is of the opinion that in purely tramatie cases it is the sudden injury that produces harmful results, and that injuries occurring in the first three or four years of childhood are more commonly followed by arrested brain-development than those oceurring during intra-uterine life or parturition.

[^472]There are no distinctive features, outside the history of the case, to distinguish a case of trammatio idiocy from certain others. The decrree of mental deficiency is liable to be of the nature of imbecility rather than of the profoumder state of idioey, maless the tramatism sets up serious inflammatory or destructive brain-changes, in which case, life being spared, the degres of mental impairment may be profound. Some of the cases aseribeed by parents to accidental injury may prove upon inguiry to be congenital, the very injury to which the idiocy is aseribed being due to the child, defective ability te walk or otherwise care for itself.

Inflammatony Inhocy.-Instances of impared or arrested mental development following inflammatory disturhances of the brain are met with among idiots and imbeciles, and properly belong nuder this division. Coptain cases among congenital idiots are doubtless due to inflammation of the brain or its membranes before birth, but nothing in the coindition of the patient will permit us to diagnose the canse during life. Inflammation may extend to the brain from aural or masal disease, and, while such cases are usually fatal, idiocy may follow in some instances in the few who surrive. Under this head belong those casse of lyypertrophy of the brain with mental enfeeblement which are oceasionally observed. The diagnostic differences between these cases and hydrocephalus have been referred to under Hydroephalic Idioes. The liypertrophy is largely due to comective-tissue changes, and the mental deterioration to disturbanee of bain-function from pressure. Such cases are usually progressive, are hopeless, and the children generally die young, from paralysis or comvulsions. In some cases the brain post mortem has been found to be very heavy. In one case reported by Spitaka the brain weighed sixty-eight onnces.

Imocy by Deprivation.-This is the coudition which results when a child, either congenitally or in early life before the mental farmities are developed, is deprived of sight and loaring, and is thus in a sense shout off frem the world. The well-known case of Kaspar Hanser, who, though possessed of his senses, was for some mysterions reason deprived of the power of exereising them, belongs to this order.

While these persons differ from troe idiots, the difference, until mens were devised for edueating them, was in kind and not in degree. The idiot, by reason of brain-defect, is defieient mentally becamse his brain is to a greater or less degree incopable of receiving and recording impressions, while these, whose lorains are capable of receiving and stering up impressions, ate deprived of $t: 0$ of the most impor ant chamels through which the imbressione : mst come. This, in early times deaf-motes, who were considered incapabie of chucation, were in law regarded as idiots, incapable of holding property, executing contracts, or testifying in courts of law. Since deaf-mutes have bron edncated, these restrictions have been removel. Dr. Howe has shown, in the famous case of Laura Bridgman, what caut be done i. such cases, demonstrating that, except when ueglected and uneducated, they are not true idiots.

Mental Disturbances, etc.-Idiots oceasionally have attacks of mental disturbance, which may be of an excited or depressed character, or may be associated with active hallucinations or delusions. They are also sulbject to delirium from fever, meningeal inflammation, ete., like other children. Carson, of Syraeuse, has reported a case of opinm-habit in an idiot who at, the age of seven took ten grains of solid opium in twenty-fone hours.

Growth and Weight in Idiots.-After a carefnl inguiry and extended examination, Dr. Tarbell, of Boston, amonneed the following conclusions, at a meeting of the Medical Olficers of American Iustitutions for Liliots. ${ }^{1}$ First, idiotic and feeble-minded children are two inches shorter and nine pounds lighter than normal ciildren of their age. Seoond, the relative rate of growth of the two sexes in idiots corresponds very nearly to that of the two sexes in normal children, and is subject to the same variations at the age of puberty.

Dr. Shuttleworth, of the Royal Albert Asylum, Lancaster, England, announces about the same conclusions, in a paper presentel to the same hody. ${ }^{2}$

Pathological Anatomy.-The pathology of the various forms of idiocy has been briefly referred to moder each class, where it scemed necessary. It remains to be said that the statement of Griesinger (op. cit.) may be adopted, that " there is seareely any portion of the brain which has not been fomend either altogether absent or quite rudimentary in these creatures." The microseopieal appearances of the idiot brain have been as varicd as has been the gross anatomy.

Education of Idiots.-The practical questions which will be put to physicians by anxions parents and guardians will relate to the probability and possionlity of improvement in the cases brought to their attention, and to the best means of bringing this about.

Though St. Vincent de Panl gathered a few idiots about him and strove to improve their condition, the first real attempt to train an idiot may be suid to date from the experiments of Itard in 1801 with a being whom he cousidered a stvage, but who was really an idiot. While Itari never continued his attempts in a second ease, his pamphlet, "De l'Elucation d'un Homme sauvage," was found by those who followed him to be full of suggestive ideas.

At the present time all civilized nations pay more or less attention to the care and training of chme unfortunate beings. After the carlier and irregular ottempts at training and education of idiots made in France at the Biectre and La Salpetrière, the first systematic effort, in this direction were made in the Uni d States; and the sehools of this comtry have since deservedly been model - for imitation by other countries.

Education and training must, ii: the nature of things, have small beginnings with some if' ts. In m ny, habits of neatness form the necessary
starting-point. In others, the use of the hands, fect, eyes, and tongue mast be tanght by slow and patient training.

The idiot often does not know how to co-ordinate his movements. His motions are awkward and rude. As fir as possible these must be correcter, as the very groundwork for future effort.

The leading prineiple in the education of idiots demands that each "ase be studied by itself, and the training adapted to its peculiar mental and physical deficiencies. The general health mist be improved, convulsions, as far as possible, controlled, and, when operative interference or orthopedic apparatus can be called to the aid of malformed or paralyzed extremities, the relief to be afforded will be fom a valuable aid in securing further physical improvement. Operative interference upon these cases must, however, be undertaken with caution. The deformed and paralyzed members are often so defective in innervation and untrition that reparative processes take place slowly or not at all. It will thus be seen that the work of the teacher must be directed by the knowledge and judgment of the physician.

No rule can be fixed as to the age at which training can be commencel. Much, when these cases are recognized, can be done by judicious pareuts at home. These unfortunates must often be tanght with great patienee what normal children will acquire by natural observation and imitation; and if this is impressed upon parents the subsequent work of the teacher will often be much casier.

Removal from home to institution life, even for children of the wealthy, offers the best prospects of improvement. Association with children of similar defeets is not harmful, while, on the contrary, if there be other children in the family, the effect of constant association with an idiot may be bad for them, and, unless carefully guarded, the weak one is apt to be imposed upon and tyrannized over by the others.

As a result of education and training, a small proportion may be permanently :mproved, so as to take care of themselves and carn their own living. Others, in larger numbers, will be able to support themselves under suitable guardianship; while a still larger proportion will never advance beyoud a certain point, will always remain liable to retrograde changes, and will demand continous supervision.

Auguste Voisin, ${ }^{1}$ Lićbault, ${ }^{2}$ and others have made use of hypnotism lỵ suggestion in the treatment of backward and imbecile children, expecially cases in which there seemed to be moral perversion,-maurcis sujcts, as Voisin calls them. They have succected in producing a change in the habits and general mental state of several of these cases, which has in a few instances continned for three or four years. The patients are hyp-

[^473] irrected, adl case tal and culsions, hopredie emities, further st, hownembers mocesses k of the he phy-
menced. wents at lee what ; and if her will
wealthy, dren of be other liot mav pet to be he per1eir own emselves ll never trograde otism by specially sujets, as e in the has in a are hyp al Jo: al,
notized, and while in the hypnotic state their bad or perverse traits are enmmeraed and the "suggestion" of a different course is made. Sevctal séances are required in the more perverse cases, according to these authors, while in some the "suggestion" is effective if made but two or three times.

In some cases of moral imbecility life-detention will be necessary, and no less an authority than Dr. Kerlin believes that the ordinary rontine of education should be denied them, as by education they will simply attain greater expertness in crime.' Such cases should be trained to useful cmployment, and thus rendered as far as possible self-supporting.

[^474]
INSANITY.

By E. C. SPITZRA, M.D.

Infantile mental disease offers some of the most important prohlems to the perdiatrist and pedagogue. The often unseen or too tardily recognized seeds of insanity in the adult are frequently sown aud murtured during infancy and adolescence. In this regard the snbject before us, might well merit separate volumes, for discussion, covering, as it does, a large share of the general subject of the etiology of insanity. In this artide it is not the intention to cover so wide a ground, but to limit oursetves strictly to those forms of mental disorder which are peenliar to childhomel. The related suljects of idioey and imbecility are disenssed in another part of this volnme, and hence are not considered in their important relations to the inherited forms of mental degeneration here.

Thus limited, infantile insanity is a rare disorder, and, as the material for its stady is seldom to be obtained in asylums for the insane, the literatme of the subject owes more to the general medical writer than to the psyehiatrist. Of 1532 insane individuals statistieally studied by Hagron, ${ }^{1}$ 27 are recorded as congenitally insane and 32 as having acopaired the disease daring childhood. Inasmuch as of 500,000 inhabitants of the same district 149,850 ($299^{97} 00$ per eent.) were meter the fiftemth yar, he arrived at the conclusion that one in 70,684 chiden ammatly became insune, exeluding those lum so. It is difficult to obtain correct figures showing the frequency of infantile insanity, for the reason abowe statuld Thus, Moeller in 1867 fombl not a single insane infant in the asylums of Saxony ${ }^{2}$ in 1871 he formd seven aceumntated in the mean time, to which small momber one was added up to 1875 . But during tho same period there were in the same comntry, outside of its asylums, 122 (ase

[^475]registere
in all 1!
reluctanc asylum opert con crepancy as contral

On of asylur even wel experieng larity of of sane h recorded hoorl, wh muder on sons insan year than insane an amoung t between and nearl among th nation in wear and dildhowd of herecti growing

Anotl drem is th are yet \mathbf{r}

$1 \ln W$

 the fotal mt amone the chillhowd.${ }^{2}$ Pate included in ena uf fubr insymuralle usend in its
${ }^{3}$ Chor
with cardi disentused mentul disis in the fe Inumation disertsseel
registered up to 1867,38 from 1867 to 1871 , and 34 from 1871 to 1875 : in ull 194 cases residing with their families, and but 8 in asylums. The reluctance of parents to submit infants and children at a tender age to asylum treatment, and the lesser liability of insanity in a child to lead to open eonflicts with social usages and eriminal law, explain this great diserepancy between the proportion of adult and infmatile asylum residents as contrasted with the corresponding non-asylum population. ${ }^{1}$

On carefully examining the antecedent history of the adult inmates of asyhums, it is frequently possible to trace the premonitory signs and even well-marked ontbreaks of insane behavior to childhood. In our experience, limiting the term insanity so that it does not inelude mere singuharity of behavior, but such acts and symptoms as throw the individual out of sane hamony with his surromdings, over four per cent, of 3244 adult recorded private cases may be justly regarderl as having been insane in childhool, while but 12 patients afllicted with infantile forms of insanity came under our observation during their infaner. ${ }^{2}$ Just as there are more persons insane in the population of the same age who have passed the fortieth year than among those who have passed the thirtieth, so there are more insane among those between the twentich and twenty-fifth years than among those who are under twenty, twice as many insane among those between the fifteenth and twentieth years as among those moder fifteen, and nearly fom times as many insane between the fifth and tenth years as among those in the first half-decade of life. These figures find their explanation in the inerease of injurions inflnenes-vicissitntes, intoxiants, wear and tear-with advancing age. That there exists any insmity in dildhere whatever is but an illustation of the immutability of the laws of hereditary transmission on the one hand and of the vulnerability of the growing brain to mutritive disorders on the other. ${ }^{3}$

Another reason for the rarity of demonstable mental disorder in children is the slow development of the human mental functions where these are get rudimentary; the building-material for such romplex mental dis-

[^476]turbances as delasions and morbid projects is lacking, and hence thesp symptoms do not often develop. It is conceivable that a brain may be predestined to insanity even before the faculties of langrage and facial expres. sion have become manifest, and it were just to pronounce its bearer insane if other means of so proving him existed ${ }^{1}$ than those words and antions Which the immature mind has not yot attained the faculty of evolving. Under these circumstances advance in coluation, with the powers and privileges it confers, also extends the soil on which the dread harvest of mural obliquity, illogical construction, morbid fancy, and brooding melandoly is to be reaped in distress, disaster, often in suicide or erime, aud ulthutely in the dereliet acemmulations of on momerons asylums.

Deliria before the speech-faculty is developed are conceivable, but they are not demonstrable. Hallucinations must oceur even in the infant at the breast, when the vasenlar current rushes over the cortical registrating mosaic laden with the toxic elements of zymotic disease! But threre is neither power to ennmeiate nor systemized memory to recollect the phantasmagoria of infantile illusions and hallucinations. ${ }^{2}$

From birth and up to the end of the first month of life the emutral nervons system, commensurate with the immaturity of the higher trats, ${ }^{3}$ is capable of mediating only reflex and erude co-ordinated acts. It is clamod that taste, tonch, and smell precede sight and hearing, but even taste is so undiseriminating that the most mascons articles are swallowed ly infants, if not with relish, without apparent disgust. ${ }^{4}$ As regards tonch, it is

The brain of an eight-months old child, whose father is a paranoite und whose (tuberenlous) mother is of an insune stock, is asymmetrical in weight of hemispheres in the basilar parts and asymmetricul as well as atypical in the gyri. Kemarkable, thongho inexplicable as noteworlay, is the fact that there is a superficial resemblance betwern it and the brain of II. J. Boldt's case of aeromegaly which I have in my keeping. The atypical brain of Muhr's classieal case and those of three similat ones in our possession were as atypical in the infancy of their once possessors they thew are found to be.
${ }^{2}$ Nutritive brain-disorders, as far as these merit a diseussion separately from the underlying diseases which lead to them, are diseussed in this paper. Precedent soms to justify the disenssion of anemia and hyperamia of the brain in children. A ide from hyperamia and anmmin incident to other diseases with which they are disensed in ohner parts of this work,-as, for exumple, hydrencephatoid in conjunction with cholera infantum, -there are no distinetive eonditions in children justifying the designations of cermal unamia or hyperamia, pure and simple. Those rare conditions of which racular or nutritive conditions of the brain, and of tioc brain ulome, are the important pulhological factors, are discussed herein. For rensoma opposing the now nearly obsolete views of older writers on this head, see the writer's article on Anemia and Hyperamia of the Brain in Pepper's System of Medicine, vol. v.
${ }^{3}$ Whose myelin is not yet developed: the associating tracts still have the upparent vaseuharity and translucent grayish-reddish tinge of the embryonie perion. The cortical nerve-elements, especially the large pyranids of the paracentral region (Betz), are also as yet undeveloped.
"In uttempting, by means of a iiberal applicution of asafctida, to chect: the thumb sucking proelivities of an infiunt, the experimenter's attention was ludieronsly directen th the possibility of inculcutung any drug habit, provided it be begun early enough. Up o
many m the newtainly de with its are not f apprentic wintles, I and meo ing in) ev weeks a is not be infints lo

Enot suckling'), of canse). festerl. ${ }^{*}$ annotion exprecsion latter cire properly

Durins surers, sit tional imp it lo. Pe recornized
and bryoud discriminuton mensure.

I The re gradual der world,--two
${ }^{2}$ Ancm curimity is tl cult to retul lenth werek o
${ }^{3}$ The pu infint, in ord

- We hat une ntrollabl croms charact dulge in the the carpet wa hands fier a beth sides by
${ }^{3}$ A child but no child o malernity said occurrenee wa

I'e these be pre-cxprescr insure 1 antions ewolving. nill mivof moral urluly is ithuallely
but they intiant at gist trating there is plantas-
te central tracts, ${ }^{3}$ is is. claimed n talste is ved by inouch, it is

- and whose nie: $\mathrm{p}_{\text {hur res in }}$ e, though hav wero it and The atypicul tion were as
romen the unnt sexils bis
Arite from reed in olher ra intantum - of cervirut vaterulat or pithologieal ews of ollder he Bruin in
he apparent The cortical $\mathrm{tz})$, are also
the thumbv directod to ugh. Up o
many months before the space-sense is even crudely developed.' Whether the new-born infant distinguishes light and darkness is a question: it certainly does not acpuire the assuciation which mables it to follow a light with its eye before the seventh or minth day, while less brilliant objects are not fixated prior to the tenth or fourteenth day. ${ }^{2}$ A long and tedions apprenticeship must he served by the limbs, the eyes, and the equilibrimmcentres, before distance, perspective, and direction beeome even the crude and meonscions conceptions they are in the two-year-old ehild. Of hearing no evidence can be obtained during the first days ; ${ }^{3}$ during the following weeks a reflex contracture of the eyes is roted after lond noises, but it is not before the second and sometimes not before the fourth month that infants learn to appreciate the direction of a somed.

Emotions are at first limited to plasure in its most animal form (during suckling), and pain (undifferentiated as regards its quality or interpretation of (cunse). Ohservers like Darwin state that fear is the first emotion manifestel.* This is not always the case ; but, be it as it may, anger, the next emotion ion develup, is in some infants a reaction from fear, in others an expression of disappointment in obtaining a eoveted object. It is under the latter circumstances that the watehful parent or guardian may do much in properly moulding a character inclined to morbid egotism.

During the first few months of life, some infants exhibit, to carefnl obarvers, singular and isolated manifestations, indicating that the erude functiomal impulse occasionally falls into a pre-existing rat, fragmentary though it be. Peeuliar halbits, movements, and grimaces of the parent ean thus be reeornized in the child. ${ }^{5}$ Good observers believe, with some reason, that
and bryond the cighth month the child-an intelligrent one, and since become a good discriminator-was not hroken of the hahit by this, a priori one would suppose, radical metsure.
${ }^{1}$ The reader is raferred to Meynert's fascinating and philosopheal description of the gradual development of the sense of promal identity and differentiation of the outer world,-1wo of the fundamental finctors of heallhy indiviluality.
${ }^{2}$ An chormons individual ditference exists in this respeet. As Darwin has shown, carioity js the momplying incentive to higher intellect al development, and it is not diflcult io rad the horosenpe of children who fail to flxate oljects ans late as the eighth or tenth werk of life.
${ }^{3}$ The pathetic tale of the deaf-mute mother who mised a rock and let it fall near the infint, in order to test its haring, and was overjoyed at the result, is aporeyphat.

* We have an observation of a child at the second inonth, whose first emotion was an uncontrollable outhurst of laughter, in consequence of an impatient movement of a ludiernus charater on the part of the nurse, which the ehild provoked uguin and again, to indulge in the same enchimation cach time. The sume child at four months while sitting on the carport was suddenly attacked by a young flecey dog ; he started baek, trembling in his bands for a moment, and then, flushing up, threw himself forward, grasped the dog on both sides by the neek, held him there, and broke out in exelmmations of anger.
" I child of German parentage aged nine weeks in our presence said "Gockelgock," but no child of German parents would ever be capable of saying, as a child of Bohemian maternity said at the eloventh week, also in our presence, "Tszaitz." In both cases the occurrence was isolated, not preceded nor followed for months by a similar one.

$$
\text { Vol. IV.- } 66
$$

imperative conecptions, morbid fears, and imperative movements may foreshatlowed at this carly periohl. ${ }^{1}$

The first exheational step in the civilized infant's carcer is the inenlenttion of dembliness. A fair estimate of a child's ancestry may nestally $l_{\text {s }}$. derived from its tolemere or intolerance of a soiled or wet diaper." One of the most marked antipathies shown by the child of fastidions parents at the early age of a few weeks or months is to moisture, and symbulicespressions of this dislike lead the wateliful murse to establish the first efepe of mental discipline.

Dislike to fellow-ereatures, manifested by aggressive pushing on passive pouting, is not nsually shown before the tenth or twelth month, and is often as apparently inexplicable as the so-called instinctive arersion or attachment of animals. These apparently trivial acts merit more carefin study than they have yet obtained.

As with animals, the power of the infant to understand words and shent sentences exceeds the power to express them. With the completion of the first year the chikl, rising ereet, passes rapidly throngh that great step in evolution accomplished by its ancestry slowly and gradually in the gedagieal past, and with a wider horizon of vision and the added gange of its own menfered steps, its ability to react on the impressions made by its surround. ings increases mentally, week by week, in a progressing ratio. That it is the bearer of the vices as well as of the virtues of a long ancestry it now manifests by developing self-eonscionsuess, obstinaty, and egotism,-or, rather, borm and matmrally developing as an egoist, it soon learns the inmediate profit to be derived from low comming and simulation. To steal, to lice, to hide, and to sham are as matmal acts at this age as any act of sulfpreservation, aggressive or defensive, is in the lower animals. Here, again, the muse may lay an important fom reward and punishment, a higher ceoism, of which truthfulncoss and honesty are inseparable elements. And at this period also the outeroppings of the imitative tendency eanot be neglected, either by the momalist when knows the great force of example, the sociologist who appreciates the influence of enviromment, or the alienist who sets their tragical influme when of a bad character in commonicated insmity. ${ }^{3}$

Frem the end of the first to the third year the hand of the child is used. Much more than theorists admit rests on the proper employment of that wonderful mechanism, to the overgrowth of one part of which man ore

[^477]his sulx as the e cions mis portant and tild
lıa a mumb the corr temperas may pro true of permitti have bee breaks t to severe

[^478]turhance. Chronic masal catarit, through the assoeiated headachers, ollim canses duhess, which interferes with mental concentration and consernently with the edncation of chiddren thas ntflicted.'

Abomal states of the digestive apparatus are fremuently arensed of eansing mental distmonaces in children, chiefly hypoehondriacml in chatanter. There is a peculiar condition ohserved in girls alont the periexl of puberty, which, whatever its original canse, is intensified and modifind bey the state of the stmadh. This state does not uphear to be contimomsty pathologicul, for even where death from starvation has ensued the stonach was fomd normal in strocture. It seems to be rather a fimetional perversion. A patient of this dass develops a slight dyspepsiat, and, remberen morbidly sensitive by an existing nervons predisposition, exaggeratod ly the pubescent state, she contracts a positive dislike for food. limproper feod-for injudieions parents attempt to homor the patient with pies, pastries, and candies-canses finther distress; then tonies, appetiaing cordials, and chalyheates, with which a mistaken if well-intentioned therapernsis drenches her, increase the dislike, which ultimately becomes metamorphomed into the conviction that all food is injurions. The patient's energices then beeme devoted to the one fixed purpose of resisting its introduction, and, if the religions training be of a certain kind, the delusion may develop that eating is sinfin and that (iod has forbidden the patient to cat. Meanwhile, the stomach, originally perhaps but slightly diseased, ceases to present any active signs of gastric catarrh; yet the patient does not resme eating, bint lives for months on an occasional sip of tea or broth, and is visited ly crowds of marvel-lovers, to be canonized as a "fasting girl." The proper place for such a child is the asylum, where the apparatus employed for fored feeding with digestible and assimilable food would soon werrome the starvation and the delusion which first grew out of and later maintained it.

Much interest attaches to the influence of intestinal parasites in insanity. That these are competent to provoke a variety of nervous troubles, such as eclampsia, epilepsy, chorea, hemiplegia, and paraplegia, is admitted, but few authors recognize that actual insanity may thence result. The rapid cure of a maniacal delininm after the expulsion of ascarides, in several eases, proves that this etiologieal assignment is a correct one. ${ }^{2}$ As a rule, the mental disorders thus eansed are of an acnte type and often associated with eqlampsia. Those parasites which have their seat low down in the bowel or rectum, such as the oxymis, have a less direct relation to mental disturbance, when, as in not a few cases, they provoke mesturbation, either by

[^479]the sem passuge

Selt modific: siderati,

Fe insunity This re: or frigh of intan majority followed fimels lou This lun tures dor deliria " benign, the more crasia, w

Asid. which n meresles, ireaded particula oping m enfechlerd That it result is of excell tie, or hla tina. It the specif or are 1 ' The form opinion, 1 such as $t h$ arilences
${ }^{1}$ A did
befine the y try, 188: , r ill on the t] maniacal f repeated, " IV—."
${ }^{2}$ Letze cular and ${ }^{\mathrm{m}}$
the scratching of the noms they (anse, or by wandering into the genital patsanges.

Sclf-abuse beats such intimate relations to the propluction und clinical modification of mental disease in chidren, that it requires a separate consideration, togrether with the special form of insanity it canses and morlifes.

Febtrile and other acute disorders sometimes canse serions and inearable insanity, usually combined with more or less armest of development. This result is most apt to follow when some momal emose, such ats a shork or fright, is superaded. ${ }^{1}$ Anthors attribute from ten to thirty per cent. of infantile insmity to the nente discases of chilhoorl, the overwhelming majority thercof heing sennela of the exanthemata. Exchuding those cases followed by simple imberility, ammesia, aphasia, and dementia, the writer fimbls but seven per eent. of his cases to be attributable to these canses. This low perentage may be accomated for by the fact that the writer's figmese do not include those cases which terminate fatally, noe thase ephemeral deliria which sometimes in children replace madarial attacks, and which are brnign, self-limiting, and not apt to fall meder the ken of the alienist, like the more serions and protracted mental complications of the paladal dyscrasia, which may attain the degree of a pseude-eretimism.

Aside from a few cases of hallucinatory delirimm eomplieating pertussis, which maturally takes the form of precordial terror, it is searlet fever, mensles, typhoid, and aente articular rhematism which are most to be dreaded in reference to their immediate and remote mental sequelse. It is partienlarly the third-named which exerts a disastrons effect on the developing mind. The bright child heromes at laggard, the brilliant memory enfebled and obliterated, and the momal mature apparently verolutionizad. That it is to the acute disorder, and to no predisposition, that this dire result is attributable, is proved in every physician's experienee with families of exeellent physieal and mental health, of whom the single dullard, huat tic, or black sheep has beeome surlh after a typhoid, a typhens, or a searlatina. It is not yet determined whether these pisyehical results are due to the speeifie lisease-germ and its direct noxions influence on the nerve-centres, or are produed more indirectly loy the profomed nutritive disturbance. The former is, however, the more probable hypothesis. It is, in the writer's opinion, bised on the following series of fats: 1st. Analogrons affections, such as the progressive fatal sopor following diphtheria, are aceompanied by evidences of mieroparasitic invasion of the nerve-centres. ${ }^{2}$ 2l. The psy-

[^480] TEST TARGET (MT-3)

Photographic Sciences Corporation

(716) 872-4503
chical results of post-febrile insanity are fifferent from those resulting from simple mutritive disturbance. Bd. The organic nervons diseases exerptionally following essential and exathematons fever are nsually multilocular, and indicate the operation of an irritant distinct from a mere deprivation of 'mutriment.

Nasse ${ }^{2}$ classifies the febrile imsanities according to their period of development: A. Coinciding with the fever as to time, and ranging from delirium to ontspoken insanity. B. Developing as ap aparent continuation of the specifie somatic disorder, so that a true convalescence cannot be spoken of. This is often associated with heperthermic states. (: Developing during consalescence. The latter group, in the writer's opinion, belong to a different class from the other two ; they are probably merely anemic or adynamic, and are mush more benign in character and prospect. The first two groups are more frequent in elildrem, the third is more often found in adults.

Of moral canses, fright is the most influential in producing mental aberration,-as, indeed, it is with regard to the nenroses generally. Its fire quent rôle as an important aceessory factor in febrile and post-febrile infuntile insanity has been referred to. Independently of somatic complications, sudden terror seems competent to mbalance even the healthy infantile mind; and many morbid fears, imperative coneeptions and acts, which torture the individual throughont an otherwise healthy career, have unguestionably their origin in the carlier periods of life. Anxions mothers, in inipressing their young with caution regarding real and imaginary dangers, are apt also to impress them with a morbid anxiety anent the latter. Ghost-stories have been respensible for mumerons cases of neurotic disorder, and silly jokes perpetrated by thonghtless adults on timid children have produced most serious results as regards their mentality. Lyssophobia with a fatal termination counts more victims, particularly among the young, than real rabies. ${ }^{3}$ The somatie signs of terror and fear in chldren are in their higher grades evidences of a serious disturbance of imervation. Restlessness, repelling motions to strangers and even parents, tearing off of the clothing, vague destructiveness, are acompanied by pallor, cyangsis, diminution of conscions-

[^481]mlting from ; exceptionultiloendar,' deprivation
criod of deanging from it contimuachec (ammot
es. ($:$ D er's opinion, ably merely ind prospect. s more often cing mental ly. Its firecbrile in finmplications, antile mind; a torture the ionably their ressing their apt also to -storics have d silly jokes odnced most fatal termireal rabice. ${ }^{3}$ igher graides ess, repelling ng, vague deof conscious-
invasion by an grave. Mental mimals without wer, Journal of
stphul.
rand of N (curo)
ged eleven yaris ult persons and risis," merdictend etention thus dicovered. Need een followed?
ness, dilatation of the pupils, and inereased and intermittent heart-action. Attacks of this character are sometimes accompanied by diarrhoea, and usnally foilowed by copions discharges of mine possessing the hysterieal character. Intereurent with the disturbed conseionsmess, incomprehensibly strange arts are notiecel,-meaningless langhter, rhythmical sing-song, and wikd explosions of passionate attachment to the parents or other relatives, i: singular contrast with the preeding and ensuing defensive and repelling acts and cries.

Childen affected with organic carliac disense or defeet are particularly liable to these distressing results of fear and terror, and a faral result is exeptionally recorded in ases which have become historical. A distressing form of mental aiseration, paror noctur:us, to which also healthy children are liable, has been in several of these instances the apparent ratse of death. This peculiar disturhanee may be disposed of at this point : a chidd, as the result either of a sudden fright, or of the reproduction of that fright in the form of a dream, awakes suldenly, exbibits the signs already detailed, a after full retum of conseinosness becomes calm and goes to sleep. The attacks under proper dietetie treatment and moral management become less and less frefuent and severe: the importance of early instituting these latter is not to be underrated, for in the author's experience two eases have oceured in which true epilepsy developed from what originally was a simple pator nocturnus. ${ }^{1}$

Masturbation is, of all accessory causes of mental disorder in ehildren, the one whose influenee is most reatlily recognized, althongh a small minority of witers deny altogether its power for doing such evil. ${ }^{2}$ The classical writers regarled it as an important and frequent etiological factor, Saze attribute as high as twenty-five per cent. of all eases to this cause (Ellinger). Luther Bell, who furnishes one of the earliest and best pictures of this condition, gives as its leading features loss of self-respect, a mischievous, dangerons disposition, amd a tendency to dement:a. Griesinger adds that the majonity of cases are marked by a profomed dulness of sentiment, by mental exhanstion, and by religions delnsions, with hallucinations of hearing. What the writer regards as the typical masturbational psychosis oceurs between the thirteenth and the twentieth year. In yomger suljects the

[^482]symptoms found between these ages are seldom developed, the dementia is not so peenliarly variable, and is more like a true imbecility. I_{n} andidtion, infantile insane masturbators are more liable to epileptiform compliantions and blind impulsive outhrests of maniacal firy. Both these fuatures are characteristic of other forms of insanity in the very young.

The progress of this disorder is charaeteristically vartiable. Destructive and aggressive tendencies preponderate at some periorls, depression, anxicty, and mental and physical lethargy at others. As a mate, there is a gradual
dementia la aldi(0114) e fiatures
estructive , anxicty, a gradual d "rually he mulerde genemal
is so great Buy who twid, may active in gle, at the istes. The Es to oectur e day prod in oblitling nature imaiteriate se, in those , anl (1ppor (соmparass irritalle caing preis system, in of con-
inlmational ating clil. lave thus other disbeen com! folie du Itedl, these , probalay loleserme. similarly
re is luo irricessive days
detceted at this period. A most favorable form of mental disturlance is simple stupor, ${ }^{1}$ which in young masturbators is sometimes associated with anxious or hypochondriacal states. Over minety per cent. of this class of cases recover, in the writer's experience.

Few patients suffering from the fully-developed masturbational peychosis recover. The most favorable outlook is in those cases in which it is rapidly produced as a consequence of acemmulated excesses extending over a brief period of time. Reactus of a favorable kind is more apt to vecur moder these eircumstances than where the nervons system beromes broken down by slow stages and by repeated on long-contimed assaults. Olen it is a question, practically spea'iner, as to which of two factors does prewde the other,-extinction of sexmal desire by overstimulation, or dementia. The supervention of a stuporons state ${ }^{2}$ through the intense exhanstion induced by the excesses which often follow the "first lesson" in the habit may prove the salvation of the patient, ly directing attention to the vice and extinguishing the temptation to indulge in it.

Of individual symptoms the most mufavorable one in a proguostic respect is a loss of the sense of shame. ${ }^{3}$ As long as shame is present, an incentive to control the habit can le ereated, provided it does not already exist in the patient's mind, and the ability to refrain from indulgence, after the serions consequenees are pointed out or the patient's pride is called into phay, is the most efficient guarantce of recovery. As a rule, the younger the child the easier is it to check the habit by methods purely supervisory and cuercive. It is in older hubitues that the habit and the entailed deterioration are sometimes arrested because temporary or lasting impotency enforces continence. It hest, recoverics muder these ciremmstavees are but imperfeet. More frequently seminal leakage, dimmal or nocturnai emissions, contimue the damage after puberty. For this reason, the prognosis generally becomes more and more serious with advancing years.

The expression of countenance characteristic of patients who in this cond tion reaeh the period of puberty and continue in it is well illustrated in the aceompanying wood-ent.

The morbid anatomy of masturbational insanity is unknown as far as

[^483]the infantile period is coneerned. That the mutrition of the bumand ppinal cord is serionsly impaired by this habit is not alose supported by the frequent association of signs of so-called cerobro-spinal exhanstion ami irritation with the masturnational neurosis, but also by the profomen necerntic passive bain-changes discovered in one subject sufferiag from its most aggravated form. ${ }^{1}$

The treatment of this form of mental disorter it is enstomary to recarel as among the most difficult if not hopeless tasks of the alienist. 'The majority of those who have interested themselves in the subject are indined to adopt the adage, "once an onanist, always an omanist," or to fall into the still more diastrons error of regarding marriage, or what is its physiolugieal equivalent (if a sorry moral altemative), as the panacea for all mastorhatory disorders, mental as well ats physieni. ${ }^{2}$ While the desirability of permitting the sexual organs to fumetionate in a normal instead of an abnormal direction in precocions individuals is evident, yet the limits of this work confine ns to the treatment of the babis in those who have not passent the fourteenth year. This may be bricfly epitomized as foilows. In infints, painfill corpoal punishment shonld follow every attempt at touching the privates or excenting thigh-friction. ${ }^{3}$ To no other argument is so young a child accessible, and its effeet is rapid and radical. Nowhere woukd a eeptain kind of sentimentality directed against conporal pmishment descrse the adjective foolish so moch as if exerted in such a case.

In children who have rached the period when the sense of shame beeomes developed, constant observation to determine the frequeney and extent of indulgence should be made. No false acensation should be risked as a venture. By such, attention might become directed to the very point it is so desirable not to call a child's attention to. But if the existence of the viee become established, a well-acted performance on the part of the parent, such as expressing surprise at the child's bad appearance or capricions appetite, a frequent reenrence to the same topie throngh the day, and particulaly that comparison with other children ${ }^{4}$ which aronses emulation
${ }^{1}$ It was particularly the lumbar spinal cord which exhibited general atrophy and the oceipital lobes of the eerebrum which showed caleitieation and lacuan softening in symmetrical patches. In this eotmection the eyc-disturbances of masturbators are to ba burne in mind: eoncentrie limitation of the tield it vision is found in aduth sutherps, and temporary amblyopia in youthtul habitues.
${ }^{2} \Lambda$ case of chileptiform status followed by a condition resembling jaretic dencentian and recovered from through continence in a youth who had hever indulged in artioncial sexual acts, but who had mimited aceess to the opposite sex at the age of thirteen, mod another where coitus at cleven was followd by semmal loses and diabetes, -ako recovered from through continener,-teaclu a diflerent lessom. It is also to be borne in mind bey these who advise illieit intereoure for so-called metheal reasons, that the spermatorbom for which it is recommended is not improved by an added gonorimea, but apt to be aggravated therohy.
${ }^{3}$ The usual and, from its signifleance being misundestood, most oceult mud hence most dangerous form of the hatit. See Journal of Mental Science, lece cit.

4 With this it is assmoed that the stamhards of compmison shall not be the very childran from whom the labit may bave been aepuivel by imitation. It is Mantegazza, the writer
min and Miterl by stion: and 1 nerotic its most
to regarl ist. The e inclined , fall into ts plysior all masability of of an albits of this not passout In intants, uching the
io voung a ould a cernt desorve
shame leey and ex1 be riskel very pint xistence of part of the ce or caprire day, and comulation

Milyy and the ,hing in syme e to be burne "re, and lent•
dementia and tificial sexual , and mumbler covered from by thuse who , tor which it atel therevy. alt anul hrinee
very clildrun zan, the writer
and hence introspection, may suffice to cheek the hahit in sensitive and sensible children, whom a butally formulated aceusation would certainly confirm in the had hathit from the very perverseness which grows ont of it. Should these indireet and diplomatie measures fath, the direct acensation must be made, and made by a stranger, preferably the physician, still permitting the child to believe that its parents are kept in ignorance. Thas we appeal to that last remmant of self-resperet, and one which involves a most powerful motive for self-restraint, - the fear of heroming an ohject of contempt in its own homschold and of losing the confidence of its nearest on earth. Constant observation must be contimed at every sacrifice, and should the vice be repeated, a threat to divulge the fatet, which is as yet kept a supposed seeret hetween physician and child, may be made, but if made must be execoted, and mechanical restraint applied. The varions forms of restraint it is not our purpose to discuss in full here ; they will sary with the sex, age, and character of the child. The condless sleeve will suffice for the mannal performer. Thigh-friction can be prevented by bather knce-caps held apart by a firm wooden rod comnected with the knee-eaps by ball-and-socket joints. It is needless to add that any local somree of irritation, oryuris, adherent prepuce, or acemmulated smegme preputialis, should be inguired into, and, if discosered, removed. ${ }^{\text {t }}$

Shonld all these measnres fail, and what is known as "psyehicel mian-ism"-that is, the ability to provoke the orgasm withont manipulation or friction, and, worse still, withont erection-be aequired, there is no wther refluge but asylum treatment. Unfortunately, we have in this land as yet no institutions calculated for or competent to treat such cases, and in Europe there is but a single institution, the "Medical-Padagogium" of Görlitz (1russia), whose medical directors devote attention to this numerous and sad class of invalids.

Another form of men al perversion oceuring in infarey is a peculiar form of moral imbecility. Morality in the higher sense being an acenirement of more mature life, the moral insanity of children does not manifest itself so much in an absence of that moral sense which is regarded an an

[^484]
nod nature:" miniolls, that ness at play, infancy comre sometimes uticularly at to withraks acte, such ats theres, stanp'vel, of such approthension a comoulsion ach children land soltish, stively arme, mals, destrorre to others, may develop iling to onanand, finally, nental results ibed. Singully developed, g some act of form of this, hg and enttiug tal al loy the omeroy. The ulses and the t the ordinary fected in some en better dewhere these - perverted to e unfortumate nes the terror titutions, and In such a case pert observer, aracter, is mot subject may

1 single symptom nity. Incundiny ase, and even in
deceive the alienist and eriminal jurist, leading the former to regarl it as having recovered, the latter to consider it fitter for the reformatory than for the asylum. ${ }^{1}$

Among these cases of "original" moral imberility " there are many which exhibit a tendency to the firmation of delusional opinion and morbid projects. Nothing is more common in this fiedd of the alienist's experience than to have a chidd, precocionsly bright in some respects, but morally defective, and the curse of the househohl in every uther, piok up some notion from the daily papers and form a sentimental ataldment to some partionalar person, of whom it is as extravagantly fomed as it is emel and cold to others. In ermeetion with such an attachment, sometimes shown to a teacher or to a neighboring mechanic or official personage, some particular brauch of learning, or, more often, of medanical labor, is eultivated by the child. If a healthy emmation can be excited on this basis, - that is, if the child can be induced to excel in its performanes in order to plase the person to whom it has formed an attachment,-a chamel is opened for redaming it.

Usmally the home surroundings of chidren aganically tainted with mom imbecility, paranome tendencies, and mental lethargy are of a most mhaplay character. Numerous cases recur in the anals of every asym for defective childrea and for the insane where such children led a comparatively healthfin and useful life as long as they remainod at the institution, and relapsed at home owing to injudicions management. An hysterical mother, a perverse project-making father, or both parents thwarting eard other, are not calenlated to combat morbid tendencies inherent in the infautile organism. The management, control, edneation, and eivil as well as criminal eompetency of such children are topics which, in view of the approaching ! roblems likely to grow ont of the thratened over-population of our large eities, if not of the comutry at large, may need to be disenssed from other than strictly medieal and sentimental points of view.

[^485]INDEX TO VOLUME IV.

Anencephatus, 728.
Ancurimm, cerebral, 520. intrucranial, 554.
easaing opite neuritia, 101.
eflects of, on the ret.1a, 181.
millary, leading to cerebral bemorriage, 528.
of the retim, enpillary, 295 , mite.
If aal, 181.
Angina pectoris, masange in, 3314.

Angioma of the ehoroid, 1it, 183.
of the eyelid, 59 .
Anglos on the buse of skull, Ackermunn's, 734. 735.
Aniline dyes, poisoning from, 509.

Anlline-peironing, tho eye in, 232.

Animal mechantes, 261.
motion, 211.
Ankle-ilonus in meningo-myelitis, 349.
production of, 45.4, 450.
Ankyloblepharon, 61.
Anomalies of eornea, congenital, 119.
of retinal blood-vessels, 165.

Anophthalmus, 120.
Anterior poliomyelitis. Pc jomyelitis.
stapliyloma following purulent ophthatmin, 81 .
Anthroponetry, 241.
manual of, 250.
Antiseptie bathing, 337 .
processes. See Disinfection. use of hent, 337.
Antwerp civil hospital, 41].
Anxicty a enuse of feeble health, 317.
Aortic insufficiency, ophthalrooseopic signs of, 177.
Aperients, 295.
Aphasin, 462.
ntnxie, 569.
from brain-tumor, 563.
from eerebral hemorrhage, 538.
motor, 569.
Aphonin, liysterical, 981.
A pophectic elot, history of, 531. oyst, formation of, 531 .
Apoplexy, 525. Sce Corebral llemorrhage.
of the new-born, 483.
Apparntus for gymnastics, 370 . for regisiering the kneejerk, 459.
Appetite of school-children, 348.

Apprenticeship of dependent children, 432.
Aran-Duchenne type of progressive muscular atropby, 822.

Arch of palate in idiots, 1027.
Arches of tho foot, 263.
Arcus senilis, 118.
Areas of speech, 570 .
Argyll-Robertson's operation for ectropion, 152.

Argyria, eye- \#ymptoms in, 233.
Arm-meanuremuntw, 25.3, 25.
Arsente, don+ of, B01, bios.
uffeet of, on the akin, (i)l.
eliminntion off, 604.
for muitiple selerosia, 512. in brenat-milk, 604.
in hubit-kpamm, 80\%.
in the tissmes, 603, 600.
limit of tolormnee of, 608. materials containing, 500.
moderato doser of, kils.
toxie duses of, 600, 60f.
Armenie-eating in Styria, 60\}.
Arsenical poisoning, 503.
asute, 60ts, 611,613.
anatomical up-
jearances nfter, 603.
aniline dyes in, 590.
bibliography of, 11.I.
lu, nes in, 604.
bewels in, 602, 006, 810.
enuses of, 599.
deceptive nbatement of symptoms in, 607.
dellnition of, 509.
degenerative changes in, till3.
diagnosis of, 611.
meute anes, 611.
diurcties in, till.
etiology of, 500.
eye in, 234.
eyelids in, 612.
exeretions in, 60.1.
Fowler's solution, fi01.
from modicinos, 600, 604.
from moderate dosage, 608.

Preen tarlatinn in, 600.
intertines in, 602.
iron sesquioxide in, 613.
kitueys in, 603.
literature of, 614.
liver in, ti03.
nervous system in, $603,607,610,612$.
obscure ?nses of, 606.
paralyses from, ti03, $607,610,612,614$.
patiology of, 601.
pharynx in, 610.
prognosis in, 613.
secretions in, biOl_{1}.
skin-disease from, 602, 611.
sources of, $509,609$.
stomach ia, 602, 604.
suseeptibility to, 801 .
symptoms of, 606, 612 .
treitment of, 613.
urine in, 605.
violet-powder cases of, 602.
wall-paper in, 599, $600,605,609$.
Arterial blocknge, 275, 270 .
plugging, by embolism, 532.
by thrombosis, 531. pulsation of the retina, spontancous, 166.

Arterina thrombosis of the ret. inn, 170.
Arterio-venoms commanleation in retimal bloor-verseln, lett,
Artery, hyalold, 1 ersimtent, 181 , 166.

Arthrogryposig, i09. sie Tet. nny.
Artifleial eye, 157.
Asejisis, menns off, 1:37.
Asciptle bathing, 3is. 7.
Asepties, ohemicul, 3iti.
Aspergillus of the ear, 12,
Aspiration in hydroeephalus, 782.

Assochated movemes ta alterin-
fantile lemijulegh siss.
Astigmatiom in seluoclehilitren, 369.
correction of, 1.4.
nature of, 143.
varicties of, 14.
with myopia, 1.13.
Asylums, 418.
Asymmetry, eranial, in cereliral palsy, 511 .
facial, in corobral pralgy, 541.

Atuxia defined, 720 .
fumily, generie, or haredi-
tury, 716 . Sie
Friedreich's, 201, 716.
nge ns a factor $\mathrm{ln}, \mathrm{r} 18$.
ancesthesin, muscular, in, 720.
enatomical fentures of, 723.
ntaxingrams in, 721.
utuxie symptoms of, 720.
bones in, 733.
cases ol', 716, 722.
causes of, 31 ?
cerebollur complications in, 723.
eharneters of, 710 .
clinical peculiarities of, 72.1.
conditions lemding to, 717.
co-ordimation in, icen $_{2}$.
definition of, 716 .
dingnosis of, 72.4.
dinthesis in, 718.
durution of, 725 .
essential characters of, 724.
etiology of, 717.
exciting causes of, 710.
fragility of bones in, 72%
gait in, 720.
geography of, 718.
beredity in, 717.
history of, 716.
incoördination in, 720 .
its relationship, to mul-
tiple selerosis, 508,
lesions in, 723.
literature of, 716, 717.
locomotor disordersin, 720.
medulla in, 724
motor disturbances in, 720.

Apasing
drasiagra
disease,
Ataxic pis
725.

Atheroma
Atheromat 69.

Athetoria,
118 as
biblio
bilater
canaes classe.
definit
dingn!
etiolog
finger:
histor.
kinds
literat
pathol
of the ret. imunteullon exseln, 1r.b. sintent, 101,

Sive Tet.
$1: 17$
$3: 17$
eir, 12.
itrocephalus,
erts ufter in ia och-chilitren,
al, in cercural
rebral palay, 20.
ic, or haredi716. , Friedrcich's. 201, 716. fuctor in, ils sin, muscular, 0 .
enl features uf,
rams in, i21.
symptoms of,
, 733 .
710, 722
f, 717.
complica-
in. 723.
crs of, 110.
peculiaritics

ons leading to
antion in, ${ }^{2} 20$.
on of, 716.
is of, 724.
is in, 718.
14 of, 725.
il eharacters of,
y of, 717.
causes of,
y of bones in,
720.
phy of, 718.
y in, 717.
of, 716.
lination in, 720.
tionship to mul-
sclerosis, 508.
in, 723.
ire of, $716,717$.
tor disorders in,
sin, 724
disturbances in

Athetonis, previous hintory in, 4:7, 0:19.
primary, 1010 .
proiromes of, $9: 19$.
prognosia in, 9.10.
suoundary, 9:37, 039.

symptomatio, 937, 039.
sy:mptorsis of, $9: 3$.
toes in, 9:39.
treatment of, 010 .
types uf; $9: 19$.
ranilutorna, $0: 3$.
varieties of, 019.
Athietes, physicai ilefeets of, 871.

Athletio mports for pirls, 29s.
training, historio examples
showing its benefits, 27 T .
Atmospiere, normal, 378.
Atomizer, uses of in oironic diserses of tho mbdile ent, 35 .
Atrophies, idinputhio musenhar, 812.
myoputinic, 812. Siee Atrophien, 1'rimary.
primary museular, 812. clise " \boldsymbol{n} mition
81と.
clinieni types of, 812.
kituis of, 812.
bumes of, 812 .
synonymes of, 812.
tyer of, 812. See alsis D'rogressive Muscular Atropliy.
Atrophy, lirb's juvenile form of, N17. S'ee Muscular Atrophy.
lipomatous muscuhar, 813.
muscular. Ned Atrophies,
Muscular Atrophy, and Progressive Muscular Atrophy.
of bulb following ophtiatimia neobutorum, 81 .
of muscles. See Muscular Atrophy.
of the optio nerve, hered-
itary, subjectivo
symptous of, 20 I.
color-perception in, 204.
ophthmimoscope in, 204.

Atropine for corbeal ulecr, 1118. in interstitial keratitis, 115.
in opinthalmia neonatorum, 84.
in wounds of the eye, 149 .
Attenuation of viruses, 334 .
Attic, ehronic purulency of, 16, 27. Sce Tympanum.
of the car, polypus in, 23.
of the ear ilrmm, puruient dinease oft, 16, 27.
Attitudes, fally, 355, 356. at seioel, 35 s .
Auditory apparatus of a child, 2.
canal, 8.

frnetare involving,

 761.defects, signiticance of, 464 .

Auditory tract of brain ivented 573.

Aırı, יpileptic, 809.
Aurai hygiene, 3s.
of heaf enihitren, 17.
of deaf-muten, 15.
Auricio, athance of, t
ut birtil, 8 .
disenses of, is.
of skin of, 3.
treatment of, 5 .
malformations of, 4.
wounde of, th.
Aиseinelz's tachyscope, 201.
Avernge not synonymous with mean, 217.
Awkwurdness from myotonia oungenita, 918.
Aztec chilidren, the, 1028.

b.

Bnck, wenkness of, 990 .
Thackuche at selool, 351
Backward ehihiren, hand-training of, 101%.
developuent not idioey, 102 .
intelleet, managemont of, 996.

Bacterin, ehemioal agonts against, $1: \%$.
destruction of, 33:n. by cell-action, 335. by beat, :389.
in bliphuritis, 51.
in phlyetenular ophthaimia, 1 H .
in tenr-nppuratus, 77.
in tubereular meningitis, 517.
of purulent ophthalmia, 78.
of' soppurative meningitis, 491.

Bng for inflating the middlo eatr, 10, 20.
Bulnnce - walking, horizontai bur, 305.
Balance of muscular tension, 260-202.
Balle, extraction of, frual hounds of hemi, 764, 765.
Bandnging the eyes conicmned, 87.

Barking, hysterieal, 964, 971. in ehoren, 8.19.
Basal fracture of skull, 761 .
gangiin, tumors of, 575.
Bascdow's divense, 952. See Exophtalmic Goitre.
Buso of brain, tumors of, 582.
positions in exereise, 304.
Base-line, Reid's, 771.
Basilar angles in skull-dcformity, 734.
kyphosis, 73.4.
meuingitis coexisting with optic neuritis, 190.
Bathing, 29.1.
azeptic, 337.
hubituni, 290.
Beard on the correlation between brain-develojment and body-development, 27 s.
Seanty and deformity, relations of, 245.

YoL

Bulgian desk and sent for sehesel, 3 (i3.
Belladonna in myolitis, 659.
Belladonsa - poisoning simulatod by ursenical poisoning. 806.

Bell's paralysis, 804. Nee Paralysis, Fucial.
Bienfinisamee, Institutions de. 413.

Bilious headnohe, 831. N'm Megrim.
Billings on air-supply for chiddren, 879.
Billings's form:ula for the theoretical velocity of air in a ventilation-thue, 381 .
Birth, premature, trentment of, j48.
Birth-palsies, 486, 535. diseriminated from poliomyelitis anterior, tilo.
due to intracranial hemorrhage, 516.
prognosis in, 516, 517. trentment of, 548.
Bisulphicle of carbon poisoning, the eye in, 234.
Bivalve speculam fur mares, 31 .
Blennorrhoea of the conjunctiva, it.
Blephuritis, 50.
bacteria of, 51.
enuses of, 50 .
detinition ot, 50.
etiology of, 50.
eyelashes in, 51.
pediculosa, 53.
prognozis in, 52.
simplex, 51.
syinptoms of, 51.
synouymes of, 50 .
treatment of, 52 .
types of, 50, 51.
uleerosa, 52.
varietics of, 50, 51.
vaso-motor, 51.
Blepharo-phimosis, 65.
Bropharoplastic operation of Inasner d'Artha, 15\%.
Blepharophasty, 151.
Blepharospasa, b0, 801. relief of, 105 .
Blindness ns a symptom, 452. due to the abuse of quinine, 230.
following hemorrbage, 181, 208.
following myopin, 368.
following ophthumia neonatorum, 82.
following searlet fever, 219.
from brain-tımor, $559,569$. in idiots, 151.
in whooping-cough, 221.
in yellow fever, 224.
of hysteria, 214.
psychical, 570.
simulatod, 230, 987.
Blisters in acute hydrocepbalus, 471.
in tubercular meningitis, 523.

Blockage, arterial, 275, 279.
Blood-eurrent during exerclse, 275.

Blood-extravasations within the eyo, tramuntic, 167.
Blood-letting in aente bydrocephalus, 470.
Bloot-pressuro a cause of hemorrhage, 52\%.
Blood-vessels, eauses of degenoration in, 531.
cilio-retinal, 165.
disense of, iending to cerobral hemorrhage, 52s, 529.
retinal, 163.
increase or deerenso in the number ot, 165.
thickening of the waiz of, 166.
Blowing the nose, 38 .
Blows, effects of, "1pon the eyc, 166.
" Hlue child," 535.
Blue line, 631. Nee also Lead. line.
Boatd of Ilealth in Ihlinois, 405.

Boarding-schools for boys and for girls eompared, 373, 37.t.
Boards of Health, duties of, 403.

Buating, training for, 295 .
" Bedy brain-work," 277.
Body, moasurement of, 241.
proportions of, $2 \cdot 12,251$.
viewed as an engine for eonverting mechanical energy into mechanicul force, $25!$.
Body-movements in walkiug, 266.

Boiling, disinfection by, 339 .
Bone. Nee names of the different bones.
replacement of, after head operations, 779.
replicement ol fragments in the skull, 777.
Bone-lesions in cerebral palsies, 483.

Bodes eonsiused as levers, 260. of the foot, 203.
Borie acid in ehronio otitis media, 21.
Buston Freo Mospital, 411. scarlet fever in, 406.
Bowditeh on phthisis among gehool-children, 353.
Bowditeh's table of height and weight of boys, 285.
table of heigbt and weight of girls, 299.
Boxing the ears, 5, 15.
Boys, development of, 283.
Boys' heights, 248, 285.
school, day's work in, 373.
Bradford, Eng., hespital at, 411.
Brain, abnormanities of, structural, 728. See Abaormalities.
absence of, 728.
arens of, 564, 565 .
blood-supply of, 525 .
in convulsions, 860.
carcinema of, 551.
its pathology, 553.
eholestentoma of, 554 .
eoncrssion of. See Con. cussion.

Brain, cortienl areas of, 3 , 565.
eyst of, 551.
double, 729.
dropsy of the, 466.
echinceocets of, 553.
finding and extrneting bullets from, 765.
foetal und infantile, differ-
ences from the alult
brain in pathology, 4*3.
glionat of, 551 .
gliogareoma of, 551 .
guamma of, $551,554$.
hernia of, 730 . Nee lin. ecphalocele, and Hernia Cerebri.
incisions into, 778.
infantile, functiona? peculiarities of, 864.
inflammation of. Sie Cere britis.
irritations of, 566 .
its relation the muscles, 27.

Interal view of, 573.
lipoma ef, 55.1.
mierocephalic, lu2s.
motor areas of, 564 .
myxomar of, 554.
osteoma of, 554 .
papil!oma of, 554 .
parasitic eyst of, 553.
psimmoma of, 554.
removal of bullet from, 767.
sareome of, 551.
sclerosis of, 736, 738.
senso-motor centres in, si60.
sensory-motor nreas of, 5 fio.
syphilitio discase of, 554.
teratoma of, 554.
trilobular, 729.
tubercle of, its patholng?, 552.
its seats, 551.
visual areas of, 565.
water on the, 460 . See Hydrocephalus.
Brain-ubscess. Nee Abscess of Brain.
Brain-nffections in lead-poison. ing, 627, 630, 631.
Brain-atrophy, local. See Po. reneephalus.
Brain-eavities, 482. See Porencephalus.
Brain-changes due to an embo lus or thrombus, 53.4.
Brain-congestion reliered by massage, 329.
Brain-eyst, fortuation of, 531 . from embilism or thrumbo. sis, 533.
Brain-development, how ho. fected by exereise, 277.
Brain-lisease, atrophy follur. ing, how distinguishey from primary myopathy 821.
convuisions from, 880 .
epileptoid seizures due to, 461.
ophtbalmoseope in, 184.
Brain-electrode, for localizing the lesion in Jroksonian epi. lepsy, 700.

Brain-h
guishe 1032,
Brain-le ingitis
Brain-sh
cephal
Brain -
loeal
Brain-sul
sfter re
Brain - 81
76
use
77
Brain-tut
agra
njhus
ntaxi
ntrop
553
blsal
biblio
blind
enses
575
enuse
centru
cerebe
chang
5.58.
chokor
eollate
conva
cortiea
$\stackrel{8 y}{8}$
crying
death
demen
diagno
fr
fr
frr

of

differe
583.
disposi
effeets
epileps
etiolog.
extirpir
778 .
eye-syt
fever is
general
beadae
hemorr
mova
basa

Brain-hyportrophy distinguished from hydroeephalus, $1032,1034$.
Brain-lesions in tubercular meningitis, 516 .
Brain-shrinkage and hylrocephalus ex vacuo, 466, 472. Brain -softening lue to elot, 534.
jocal, causes of, 534. seat of, 535.
Braiu-substance, compensation ofter removal of, 760 .
Braiu-surgery, drainage in, 761.
use of the cyrtometer in, 774.

Brair-tamors, 551.
agraphia in, 563 .
nuhasia in, 563.
ataxia in, 580.
atrophy ol optic nervo in, 550.
basal, 582.
ganglia in, 5 i2.
bibliography of, 588 .
blinduess in, 550.
cases of, $563,567,572$, $575,577-579,581,582$. causes of, 555 .
central, cases of, 567 .
cerebellar, 551, 559, 561 . ataxia in, 580. gait in, 580. operations for, 587. symptous of, 579.
changes of disposition in, 558.
choked disk in, 559.
collateral effects of, 554.
couvulsions in, 558.
cortical, 561, 562.
symptoms of, 562.
eramial nerves in, 576.
crying in, 558.
death from, 585.
dementia in, $559,562$.
diagnosis from brain-absecss, 583.
from ehronic hydroeephalus, 584.
from mu'tiple selerosis, 510.
from tubercular meningitis, 584.
of cases involviog a paristal lobe, 568.
of existence of, 583 . of variety of, 583 .
differential diagnosis of, 583.
disposition in, 558.
effects of, 554.
emucleation of, 778.
epilepsy in, 563, 564.
etiology of, 555 .
extirpation of, 568,586 , 778.
eye-symptoms of, 559.
fever in, 560.
general symptoms of, 557 .
headache in, 557.
hemianopsia in, 569, 570.
bemorrhage during removal of, 777.
in basal ganglia, diagnosis of, 574 .

Brain-tunors in eorpora quad1semina, 574.
in cortex of eerebral hemispheres, $\boldsymbol{S}^{F}{ }^{3}, 561$.
in crura eerebri, 574.
insomuia in, 560 .
in the Sylvian fissure, 571.
irritations from, 566.
Jacksonian epilepsy in, 564.
literature of, 588.
local spasus in, 564.
symptoms of, 560.
localization of, 562 .
location of, 572.
mental aetivity in, 558, 562.
motor area in, 564.
of unterior central convolutions, 563 .
of froutal convolutions, 562.
of medulla, 576.
of oceipital lobe, 569 .
of paracentrat lobale, 562.
of parietal lobe, 568 .
of pens, 576.
of posterior centrul convolutions, 563.
of temporo-sphenuidal lube, 571.
operation for, $580,764$.
optie nenritis in, 559 .
pain in, 557.
Mapillitis in, 559 .
paralysis from, 567, 571.
paruphasia from, 571.
prognosis in. 585.
proportion of eases suitable for extirpation, 587.
palse in, 560.
rending in, 569.
retlexes in, 577.
removal of, 58 亿.
respiration in, 260 .
sex in, $55 \hat{6}$.
situation of, 583 .
stat'bties of, 551 .
surgical treatment of, 586 .
symptoms of, 5.57 .
in frontal lohar involvement, 562.
syncope in, 560.
syphilitie, treatment of, 585.
table of, 551.
table showing sex in, 556.
temper in, 558.
treatment of, 585, 774.
ufter operation for, 780.
varicties of, 551 .
vascularity of, 586 .
vertigo in, $560,577$.
vomiting in, 5.9.
word-hlindness in, 569.
word-deafness in, $569,571$.
Brain - work compared with musele-work, 278.
Brain-wounds, gunshot. See Wounds, Gansiot.
Breakage of retina, 167.
Break-down of healthat school, 350, 852.
Ireast-wilk, arsenic in, 604.
Breathing during exerciso, 275.
B.idgeport IIigh Sehool, ventilation of, $382,385,389$.
Bright's disease, ey e-symptoms of, 209, 211.
ophthalmoseopic features of, 208.
Isrissaml's appuratus for registering the knec-jerk, 459 .
Jroca's rentre, lesion of, 569 .
Bromides, ill etfects of, 1031.
in ueute hydrotephalus, 471.
in convulsions, 549, 894.
in epilepsy, 910.
in land-poisoning, 632.
in sick headnehe, 792.
in tetanus, 933.
Bromism, how avoided, 910.
Brush, Dr. E. N., on idiocy und imbecility, 1019.
Brush, trephine-, 752.
Bullets, extraction of, from bead wounds, 764, 765.
Buphthaimos, 118.
Burnett, Dr. Charles II., on disenses of the car in children, l.
Burning of school-houses, 3 \%6,
Burns, convalsions from, 878 .
Byers, Dr. J. W., on prophylaxis of disease in children, 332.

c.

Calculus, lachrymal, 72.
Calendulat in elironic otitis me. dia, 21.
Culf-museles of ehildren, 255, 81:3.
Calisthenics in schools, 369.
Culomel in acute bydrocephaIus, 470.
Culves of legs, comparativo measurements of, 255 , note.
Canal, auditory, 8 .
of Cloquet, persistent. 164.
Camalieali, anomalies of, 71.
Canaliculas, luchrymal, slitting of, 75 .
stricture of, 75.
surgieal operations on, 151.
Canon of Carus, 246.
of Polykleitos, 24:3, 244.
of Story, 216.
Cantus galli, 881.
Capacity for crime, 422.
Capillary nneurism of the ret-
ina, 225, note.
Carbo-hydrate llict, 292.
Carbo-hydrates work-producers as well as heat-producers, 259.

Carbolic neid as a disinfectant, 3.1.

Carbon bisulphide, cye-troubles due to, 234
Carbonaceous foods, 292.
Carbonic acid expired by ehildren, 379.
in air, hosy estimatod, 390-394.
poisoning, 377.
Carcinoma of brain, seats of, 551.
of skull, 767. See Malignant Growtbs.

Cardine stimulants in tubereular meniugitis, 523.
Caries of petrous bone, 4.
of spinal colimn, meningomyelitis from, 615.
myelitis in, 645 . Nee MeningoMyelitis.
Carpo-pedial spasm, 882. See Tetany.
Carroll's medifieation of Lange's air-test, 393.
Catalepsy, 9.11.
anatomionl features in, 943. artificial, 942.
attacks of, 043.
enuses of, 942.
definition of, 941 .
diagnosis of, 944.
etiology of, 9.12.
history of, $9+1$.
hypnotic, 942, 943, 978.
hystorical, 978 .
induced, "12.
medicatit , 944.
onset of,
pathology of, 942.
prognosis of, 944.
spontaneous, 942.
symptomatology of, 943. treatment of, 944.
Catamenial period, dangers of, 300.
hygiene of the, 300 .
rest during the, 300.
Cataract, 127.
aequired, 131.
lamellar, 132.
anterior eapsular, 129. polar, 129.
(acquired), 133.
axial, 129.
capsular, 133.
causes of, 130 .
acquired, 131. lamellar, 132.
contral congenital, 128.
complete congenital, 128.
congenital, 12%.
eentral, 128.
membranous, 131.
posterior polar, 130.
dingnosis of, 128.
discission of, 155.
etiology of, 130.
false, 133.
thuid, 131.
hard aequired totul, 131.
incomplete congenital, 128.
iridectomy for, 130.
lacteous, 1:11.
hameltar, 12!.
acquired, 132.
its association with convulsions, 888.
membranacoons, 131. milky, 131.
Morgatuinn, 131.
needling of, 155.
operation for, 155.
partial eangenital, 128, 129.
perinuelear, 132.
polar, 129, 13t), 133.
posterior polar, 130, 133.
punctate, 129.
pyrnuidal, 129.

Cataract, pyramidal, following cormeal ulcer, 80 .
soft aequired total, 131.
spurious, 133.
stellate, 129.
traumatic, 132.
treatmont of, 130.
traumatic, 132.
true, 133.
varictios of, 128.
ot nequired, 131.
zonular, 129.
(acquired), 132.
Catarrh, masal, dulness of mind associated with, 1014.
vaginal, varicties of, 414.
Catarrh-sauffis to be avaided, 38.

Catarrhal eonjunctivitis, 86 . ophthalmia, 85. See Ophthalmia, Muco-purulent.
Catelectrotonos, 455.
Catgut drainage in brain-surgory, 7th.
of trephine-wound, 757.
Catharties in acute hydrocephalus, 470.
Cat's eye, amaurotic, 175.
Cauda equina in meningo-myelitis, 652.
Causation of lisense, 833.
Caterization in spinal diseases, 678.

Cavities in brain-substance, 482. See Porencephalus.
Cell-action iu preventing diserse, 335.
Cellar-air oljjectionnble, 389.
Cellar-moisturo, ovils of, 375.
Cellar-plan showing a cumbined heating and ventilating appratus, 383.
Cellars, construction of, 396.
Cellular elements destroyed during exercise, 274.
Cellulitis of orbit, $\mathbf{1 2 3}$.
Central magnitude in anthropometry, 247.
Centres, excito-motor, 864 .
inhibitory, 860, 861, 864. senso-motor, 860 .
Céplialalgie scolaire, 349 .
Cerebollar abscess, operation for, 770.
with optio nouritis, 191.
ataxia, 580.
diagnusis of, 580.
disease, cases of, 581.
tumors, operations for, 58%. cases of, 581, 582. vertigo, 580 .
Corebral abscess, bibliography of, 494. See Ab. scess.
occurrence of, with neuru-retinitis, 191. anemia, tho ophtbuluaseope in, 184.
and muscular force, correlation of, 278.
mneurism, 529 .
cortex, functions of, 561. tumors of, 561.
croup, 881.
degeneration due to ombo-
lism or thrombosis, 534.

Cerebral disease, ophthalmoscopo in, 158.
hemlaches, 838.
hemorrhage, 525.
ago of patients with, 529.
aphasia from, 538.
associated movements atter, 538,530 .
cases of, 527 .
causes of, 526, 529.
clot after, 531 .
contractures after, 539, 540.
convulsions with, 530,
direct causes of, 529 .
etiulogy of, 526, 529.
heart-diseases und, 530.
hemiplegia from, sum.
infoetions diseases leading to, 530.
kidney-diseases in, 530.
locality of, 529.
ophthalmoscopic features of, ISt.
paralysis $\mathrm{in}, 530,53 \pi$.
seat of, 529.
strabismus from, 538.
symptoms of, 535.
syphilitie origin of, 531.
tracings of ussociated movements after, 539.
traumatic, 527, 53.35.
bernia, 730. See Lineph. alocele and Hernia Cere. bri.
bypersmia, ophthalauscopio features of, 1st.
palsies, 479.
age of patients with, $480,541$.
analysis of eases of, 541.
anatomjeal features of, 480.
aphasia after, 53 .
bibliography of, 479, 489.
causes of, 450.530 .
ooma in, 488, 53\%, 547, 548.
coupared with polio. myelitis anterior, 718.
contractures in, 486 , 539, 549.
convulsions in, 485_{1} 486, 536, 537, 545 .
cortical lesions in, 5],3,
orunial asymmetry in, $6+1$.
definition of, 479.
deformities from, 5\% ${ }^{6}$.
diagnosis of, 487, 513. of the seat of lesion, 54\%.
differential diaguosis of, 546 .
diplegia in, 541.
due to hemorrbage, 530.
eneephalitis in, 481.
congenital, 482.

Cerebral

\section*{oplothatmo} | 8. |
| :--- |
| 8. |

;2j.
atients witb,
rom, 538. movement A8, $53!?$
527.
, 526, 520. , 53].
res after, 539 , ns with, $5: 30$ ases of, $5: 9$. of, $526,5 \times 9$.
eases ual,
in from, 530. disctases ; to, 530 . गf, 520. soscopie feat ; 18t. $\mathrm{in}, 530,53 \mathrm{~T}$. 29.
as from, 538. s of, 535
origin of,
of assuciated ients alter,
e, 527, $3: 35$. See Enceph. LIernia Cere-
ophthalmo. ares of, 181 .
antients with, 11. of cases of,
al features of,
after, 53 s .
phy of, tis,
; ISO, 530.
4, 488, 337, 18.
with puliois anterior,
ures in, 486, 19. ms in, 485, 36, 537, 545 . lesions in, 513. asymmetry in,
n of, 479 . ies from, $5 ? 6$. 3 of, 481, 513. the seat of sion, 544. ial diagnosis in, 5.11 . hemorrhage,
litis in, 481. renital, 182.

Ccrebral palsies, epilcpsy with, 487, 540.
etiology of, 480.
faco in, 486, 537, 541.
faradisu in, 488.
from embolisu, 532.
from hydrocephalus, 488.
from intromanial tumor, 488.
from moningitis, 487 , 488.
from myelitis, 487, 488,
from thrombosis, 530 .
from transverse myelitis, 488.
from tubular meningitis, 488.
Gothic pratate in, 511.
hebetude in, 488.
hemiplegic, 530, 537, 541.
hemurrhagio, diagnosis of, 54.
bistory of, 479 .
idiocy fo'lowing, 54], 547.
leptocephalus in, 541 .
lesions in, 4s0, 543.
literature of, 479,489
looulizing symptoms of, 485 .
morocephalus in, 541
weningeal cases, 544.
lesions in, 543.
microcephalus in, 511 .
motor symptoms of $486,538$.
muscuar contractures in, 486 .
wasting in, 486.
nature of, 479.
paruplegic, 54].
pathological anatomy of, 450 .
polioencephalitis ns a canse of, $544,5: 5$.
porencephaly in, 482.
prognosis in, 488, 546, 547.
retloyes in, 537 .
seat of hemorrhage in, 543.
strabismus in, 511 .
symptomatology of $485,542$.
tabular view of results of, 511.
teeth-deformitiesafter, 541.
temperature in, 537.
thrombosis in, diagnosis of, 5 tif.
treatment of, 488, 54R. convulsioas in 549.
spastio palsies, eases of, 542.
thermometer, 494.
Cerebritis, litliuse suppurative, following a gunshot wound, 767.
prevention of, 781 .
treatment of, 763. See Eneephalitis.
Cerebro-spinaldeformities. See Abnormalities.

Cerebro-spinal fever discriminuted from myelitis, 672. meningitis followed by deafness, 40,43.
ophthalmoseopic features of, 194.
sclerosis, multiple, 495. See Sclerosis.
Cerebrum, ubsence of, 728 .
Corumen, 6, 7, 11.
in elironic otitis media, 32 . removal of, 12.
Cesspools, disiufection ol; 342 .
Chuir for pupils at school, 359, 300, 361.
ribbed, in gymnastic3, 312, 313.
too high, 365.
Chalazion, 54
Chareot's disease, 495. See Selerosis, Multiple.
Churity institutions, 419.
Chart of personal and family history, 286.
Chemical asepsis, 337.
disinfection, 339.
examination of urine for lead, 641.
Chem-sis of the conjunctiva, 101.

Chest, massuge of, 327. mobility of, 253.
Chest-defects of the young, 371.
Chest-development corrected by training, 371.
Chest-expansion during various nets and in various positions, 275.

Chest-mensurements, 253.
Choyno-Stokes respiration in neute hydrocepha. lus, 468.
in bain-tumor, 560).
in tubereular meningitis, 5:9.
significance of, 519.

Chicken-pox, ophthalmoscopio leatures ot, 221.
Child convicts, 423.
Child-erowing, 881.
Chiddhood, psychoses of, 452.
Children in city schools, 349 .
liability ol', to nervous diseases, 788.
medico-legal testimony of, 435.
weakly, at school, 353 .
Children's bospitals, 409.
Chloral in chorea, 855.
in eonvalsions, 894.
in tetanus, 933 .
Cblora hydrate in acute hydroeеph.slus, 471.
Chloride of sulphur peisoning, the eye in, 23.4.
Chlorine as a disinfectant, 310.
Chloroform in brain-surgery, 775.

Chlorosis, massage in, 331.
Choked disk in brain-tumor, 659.
in optic neuritis, 190 , 191.

Cholera, ophthalmoscopic features of, 224
Cholesteatoma of brain, 554 .

Chorea, 840
anatomical features of, S 45 . arsenic in, Sif.
awk wardness in, 848, 849.
barking in, 849.
bathing in, 854.
brain-, 850 .
brain in, 816 .
bromides in, 854 .
errdiae disease in, 844, 850.
enuses of, 840 .
cerebral origin of, 847 .
ehloral in, 855.
ehronic, 850,851 .
cimicifoga in, 855 .
elimate in, 842.
complications of, 850 .
eongenital, 841.
convulsions with, 851 .
detinition of, 840 .
deglatition in, 849 .
dementia after, 850.
diagnosis of, 852.
diet in, SJ3.
digitalis in, 855.
distinguished from athetosis, 940.
from epileptiform convalsions, 852.
from multiple sclerosis, 509.
dogs with, 847.
doubtful pathology of, 847.
due to eye-strin, 145.
duration of, 851, 853.
emboiism in, 846
exercise in, 853.
exhaustion from, 848 .
electrienl reactions in, 849.
electricity in, 855.
emotional eauses, 842 .
endoearditis with, 850 .
epilepsy in relation with, 845.
etiology of, 840 .
excitement as a cause, 842 .
facies of, 848 .
fright in, 842
from lead-poisoning, 624.
galvanism in, 855.
gravilarum, 844, 856.
gray matter of brain in, 847.
heart-diseaso in, 844, 850.
heart-tonics in, 855 .
heredity in, 841.
history of, 840 .
how distinguishable from athetosis, 940 .
hyaline degenerations in, 846.
hyoseyamia in, 855.
hysterical, 852.
in schvol-ehilitren, $850,856$.
injuries received in, 8 ± 9.
intellect io, 850.
iron in, 855.
its relation to other dis-
enses, 461.
jerking movements in, 848 .
laryngeal complications in, 849.
mania with, 850.
marriage followed by, 844.
marrmge in, 856.
massuge for, 329, 855.
medication in, 854.

Choren, mental disturbances in, 850.
mind in, 850.
luovements of, 848 .
names of, 840 .
negroes with, 8.12 .
not the nneient daneing
munin, 8.10.
one-sided, 848, 851, 852.
onset of, 848.
ophthalmoseope in, 196
opiates to bo discarded in, 855.
paralytie, 849.
parasites causiog, 845.
pathology of, 8.15.
persistent, 852.
post-homiplegic, 852.
pregnaney a cacese, 844,856 .
prognosis in, 853.
puerperal, 8.44.
rnco in, 842 .
reading in, 853.
recurrenco of, 842, 851 .
reflex, 845.
rest essential to eure of, 853, 854.
restlessness in, 848.
rheumntic, 843,850 .
sohool-ehildren with, 856.
school-intluences in, 842.
sedatives in, 855.
sex in, 84].
sleep in, 849.
speech in, 849.
spinal, 841.
spinal cord in, 846, 847.
statistics of, 840, 843 .
sulphonal in, 855.
swallowing in, 849.
syuptoms of, 847 .
synonymes of, 840 .
temper in, 850.
tongue in, 848, 849.
toxio enuses of, 843 .
trentment of, 853.
twitehings in, 847 .
wenther in, 842.
with hereditary oyphilis, 535.
worms ns a cause, 845.
Choreic hemiplegia, 457.
Choroid, abnormalities of, 160 . angiomn of, 174, 183.
colobomn of, 162.
detaelsed, 169.
enehondroma of, 174 .
granaloma of, 174.
in renal diseaso, 210.
partly involved in a mevus, 183.
rupture of, from contreeonp, 166.
sareoma of, how discrituinated from subrctinal effusion, 172.
tuberele in, 227.
tumors of, 172, 173.
Choroidal embolism, 179.
Choroiditis from ametropin, 170.
metastatic, after mimps, 207.
purulent, as a result of obstructive vasoular diseaso, 179.
Chromate of lead, poisoning
from, 617, 618.

Chromium as n factor in leadpoisoning, 626.
Church reformatory work, 430.
Cicatrieinl ectropion, how trented, 153.
Cigarettes forbidden to gympasts, 294.
Cilia of uyelids, 62. See Eyelashes.
Cilio-retinal blood-vessels, 165.
Circulation of blood during exercise, 275.
Circulatory system, disorders of, revealed by the ophthalmoseope, 177.
Circumeision, convulsions after, 875.
for headnche, 838.
for retlex paralysis, 807.
Cistern-overtlows, 398.
City hospitals for children, 409 . sehools, children of, $3: 9$.
Civil law regarding eapacity of eommitting erime, 422 .
Claw-hand in myelitis, 650.
Cleunliness in prophyluxis, 337 .
Cleft eyelid, 67.
Cleveland Iligh Sehool, Ohio, 346.

Ohio, sehool punishments in, 374.
Clonic freial spasm, 801.
spasm of anklo, 404, 459.
Clequet's ennal, persistent, 164.
Clot, njopleetic, history of, 531 .
in brain, kinds of, 534, See Smbolisu and Thombosis.
nfter hemorrhage, 531.
intraernnial, removal of, 772.

Clothing of girls, 300 .
of pupils, 367.
Club-foot from poliomyelitis, 702, 703.
hysterieal, $989,995$.
Codeia in I'ott's disease, 793.
Cod-liver oil for multiple sclerosis, 512.
Coll bath, 38, 294. feet, 321.
Cold-water bathing, dangers of, 38.

Colic from lead-poisoning, 625.
College-life, physical eulture in, 286.
Coloboma of choroid, 162 . of oyelids, 67.
of iris, 124.
of sheaths of the optio nerve, 163 .
Color-hlindness, 238,
hysterieal, 987.
treatment of, 239.
Color-perversions in hysteria, 215,987.
Color-symptoms due to tobaceo, 230.

Color-visions seen in hemiernnia, 195.
Coma, significanee of, 488.
Combustion of tissues during exercise, 274.
Comey's test for lead in urine, 640.

Common lnw regarding enpacity of committing erime, 423 .

Compensation after loss of brain. esubstance, 760.
Competitivo examinations in sehools, ? 4 I .
Compound traeture ol the vaule of the eranium, 761.
Compression-myelitis, 6.f6. Ne Meningo-Myelitis.
Compressional disease of the spinal cord, 646. Ser Men. ingo-Myelitis.
Compulsory vaceimation, 405.
Concealed traumatism of tho еус, 166 .
Concussion of the hruin, liet in, 763.
shaving the head in, 763.
treatment of, 763
of the spino, malingering in, 201.
ophthalmoscopic features of, 200 .
Conditions tivoring diseave, 335.
of disease, 333.
Confession of erime by chilliren, 424.

Confidenee of a child, how best gained, 436.
Congenital eyanosis, the ophthalmoseope in, 177.
Conical cornea, 117.
Conjunctivn, ehemosis of, 101 . eroup of, 95.
diseases of, 7 T.
essential shrinking of, 100 .
hemorrhape trom, 101 .
hyperami of, 86.
lupas of, lul.
lymphangit is of, 91.
pimples of 1 3.1. See also Keratitas, 1Hyyetenular.
pterygium of, 102.
tuhercle of, 99.
tupsors of, 102.
xerosis of, 99 .
Conjunctival entarrh, epidemic, 8 tb .
Conjunctivitis, noute, distinguished from mieo-purulent ophthalmia, 85. astivalis, 92.
eatarrhal, 85. Sep Ophthalmia, Mucu-Purulent. chronic, 91.
eroupous, 95.
diphtheritic, 96. She Ophthalmia, Diphtheritic. follieularis, 87.
membranous, 95.
phlyetenular, 93. See also Kerntitis, Phlyctenular. purulent, 77. See Ophthalmia Neonntorum. toxie, 91.
Conner, Dr. P. S., on the surgieal treatment of abnormal. ities of the brain and spiaal eord, 741.
Consunguincous marriages, 1021.

Conscienee, nature of, 422.
Consent to erime, capacity of, 425.

Constipation, 295.

Colstipation from lead-poisoning, 631.
Construction of children's hospitals, 409.
of hoxpitals, 416.
Consumption in sunool-chil(iren, 352.
contagious discases in sebools, 413.
inculatory periods of, 408.
isolation of patients with, 183.
ophthalmia in schools, 407.
Contour of muscles, recording uf, 458.
Contracture discriminated from hysterical contruction, 1002,
Contraetures after hemorrhagio hemiplegin, 339,541 .
hysteriend, treatment of, 1007.
in multiple cerebro-spinal sclerosis, 501.
provention of, 543.
Contrecoup, rupture of the choroil from, 160.
Contused sealp-wounds, local treatment of, 750 .
Cunns, posterior, $1+2$.
Convalcseent hospitals, 418.
Convolutions of brain, functions of, 585 .
Convulsion-centre, 859.
Convulsions, 857. See also Laryngismus Stridulus. age in, 862 .
anesthetics in, 895.
anatomical changes in, 890 .
anodynes in, 890̆, 896.
autopsies after, 890.
blue-disease with, 878 .
brain in, 858.
brain-discaso a cause of, 880.
brain-lesions in, 890 .
bromides in, 894.
burns causing, 878.
cataract anil, 888.
causos of, 460, 857.
grouped, 891.
in general, 801 .
central, or noa-peripheral, 857.
lesion 4 in, 858.
cerebral, 858.
chloral in, 891.
chloroform in, 895.
cirenlation in, 878.
eirculation-disorders lending to, 880.
cireumcision causing, 878.
classes of, 858.
elassitication of, 881, 891.
cold to head in, 893.
complicating pncumonia, 87%.
deaths from, 862.
detinition of, 857.
dentition in, 863, 869, 894, 1029. 1034.
diagnoxis of, 88 7.
diagram illustiating, 861.
illustrating the effect of the sensons and temperature in, 872.
diet a cause of, 870.

Convulsions, differential diagnosis of, 891 .
digestive troubles with, 871.
diseriminnted from cpilepsy, 893.
due to otitis media, 24.
earnche with, $878, \$ 96$.
effects of, on health, 888.
emetics in, 894.
emotional, 879.
enemata in, 894.
onteric fever as a cause of, 876.
epilepsy and, 866, 887. following, 888.
epileptiform, 854 , " 83. Ste also Epilepsy.
essential, 860.
ether in, 895.
etiology of, 857 .
oxanthemata with, 889 .
exciting causes of, 860 .
eye in, 861 .
fainting followed by, 878 .
fever a chuse of, 875 , 876.
fooll a canse of, 870.
iriglit a cause of, 879.
from cerebral hemorrhages, 530.
from lead-poisoning, 628, 630.
from polionyelitis anterior, 880.
gastro-intestinal disorders in, 87 t .
general, 882.
albuminuria in, 886.
bowels in, 885.
consciousness in, 885 .
courso of, 886 .
death from, 886.
duration of, 886 .
eclamptio condition after, 884.
epileptitorm, 883 .
torms of', 883.
history of $n \eta$ attack of, 883.
onset of, 883.
paroxysin in, 883.
prodromes of, 883.
prognosis in, 886.
pulse in, 884.
significance of, 887 .
spasms of, 883 .
stupor following, 881.
symptoms of, general, 883.
frodromal, 883.
urine in, 885.
varieties of, 883.
grouping of, 891.
guinen-pig experiments regarding, 879.
gum-laneing in, 894.
health after, 888.
heurt-diseases with, 878.
beredity in, 865 .
hot bath in, 893.
imporfeet respiration a cumse of, 868.
improper dict a canse of, 870
in noute hylrocephalus, 468.

Convulsions in rento infections fevers, 875.
is cerabrn1 phesies, 485,536.
in heart-diisenses, prognosis in, 88!!.
in inherited syphilis, 590, 591, 592.
in measles, 889.
in multiple cerebro-spinal selerosis, 501, 509.
in polionyelitis unterior, 695.
in scmilet fert, 889.
in whooping-eough, 859.
indigestion a factor in, 870 .
infantile, 857.
insect-bites 1 cause of, 878 .
intermittent fever in, 876 .
intestinal lisorders in, 871 .
intesting: parasites a causo of, S74.
inwarl, 866, 881.
irritation of nerves in, 878 .
irritations enusing, 877.
kinds of, 8!
lancing the gums in, 894.
laryngenl cauces of, 879.
malarial, 876.
mechanism of, 864,880 .
meteorological conditions
favoring, 871, 874.
morbus cceruleus with, 878 .
morphine in, 895.
mortality from, 887.
nerve-centres in. 858 .
nerve-irritation in, 878 ,
newly-born with, 887.
nitrite of amyl in, 895 .
non-organic, 796. See also Eclampsia.
of special muscles or parts, 885.
ophthalmoscope in, 861.
opiates in, 895.
averfeeding in, 870 .
pain ift, 896.
paroxysm of, how treated, 893.
pathology of, 890.
periphernl, 858.
peripheral nerve-irritation in, 878 .
pertussis with, 877.
pneumonia as a canse of, 876.
post-mortem appearances after, 890.
process of, 864.
prodromes of, 882.
ruehitis and, $866,888$.
rellex origin of, 864,366 .
remedies in, 895.
results of, 888.
rickets a chuse of, 866,888 .
saham, 801.
scalds onusing, 878 .
season of ycar in, $871,87 \%$.
sequels of, 890 .
sex in, 865.
significance of, 857.
skin-disease with, 878.
spinal cord in, 838.
spinal-cord diseaso causing, 880.
statistics of, $862,86 v, 866$, 871, 877, 887.
stings as u causo of, $\mathbf{8 7 8}$.

Convulsions, stomneh dioorders in. 871.
symptonatology of, 881 .
tecthing in, 803, 869, 891 , J1129, 1030.
temperature a eause of, 875 . temperature in, 871, 874.
tendency towards, \$66.
tickling a cause of, 878.
toxwmic, $875,877$.
significance of, 889.
tracings illustruting the effoct of tho senson on, 872.
treatment of, $548,892,896$.
typhoill lever and, 876 .
unilateral, 885.
uramie, 797, 877.
treatment of, 896.
vnrieties of, 858,891 .
warm bath in, 893, 896.
wenther is, 8 il , 8 子it.
whooping-ecugh with, $87 \overline{7}$.
with eborea, 85 l.
worms as nenuse of, 874.
Convulsive centre, 905.
is epilepsy, 965.
tendency, 871.
tio, 801, 996.
Co-ordination, disturbances of, 460.
the office of sensations, 56%.
Copenhagen, school-heulth of, 347.

Coprolalia, 996 .
Cord, nbnormalities of structurnl, 72s. See Abnormalities.
hernia of spinal, 732.
Corectopia, 121.
Cornea, abscess of, 10f, 107, 109. affeotions of, 103 .
amyloid degeneration of, 10].
anomnlies of, 119.
congenitnl opacity of, 119. staphyloma of, 119.
conical, 117.
dermoid tumor of, 118.
diseases of, 103.
herpes of the, 117.
in ophthalmia neonatorum, 81.
infantile ulcerntion of, 99 .
inflammations ol, 103. See Keratitis.
massuge of, 110.
neerosis of, 99.
pemphigus of, 100.
tumors of, 118.
varicties of xerosls in, $\mathbf{1 0 0}$.
Corneal lescomn, 107.
tuttooing for, 154.
mneula, 107.
nebuln, 107.
opneity, 'interstitinl, 113.
perforation, prevention of, 10 s .
treatment of, 109.
staphyloma, 107.
operution for, 154.
uleor, 105.
causes of, 106 .
cireular, 106.
constitutions treat
ment of, 109.
ereeping, 106.

Corneal uleer, dentition in, 110. due to ophthaliaia, 80. otiology of, 106. excavated, 105. gouged-out, 105. infecting, 100. phlyctenular, 104. resulta of, 107.
serpiginous, 100.
shnllow centrit, 106 . sloughing, 10t. small centrnl, 105. teeth i.i, I10. trentment of, 10 s . results of, 110 .
Corporn qualrigemina, tumors o1, 574 .
Corporal punishment a cure for infantile masturbation, 1050.
in roformatories, 434. in schools, 374.
Corpus eallosum, tabes of, 739.
Correctional institutions, 425 , 429.

Correlation and eonvertibility of heat nud motion, 258.
Corrosive sublimnte as a disin-
feetent, 341.
Cortienl agencies, idioey from, 546.
areas of brain, 505.
irritntions of brain, 566 .
speceh trens, 570.
Cost of ventilating school-
houses, 387, 388.
Cottnge hospitnls, 413, 414, 419. plan for, 420.
system in reformatories, 431.

Cotton-holder for ear-discase, 21.

Cough, hysterjenl, 979, 984.
in habit-spnsm, 802.
Country privy, supervision of, 400.
sites for children's hospitnls, 410.
Crab-louse in eyebrows, 53.
Crmmp, massuge in, 329.
Crnnial defects, 734 . See $A b-$ normalities of Crunium.
fracture, basal, 761.
eompound, operations for, 761 .
peculiarities as signs of divease, 448.
vault, frictures of, their surgical trentment, 751.
Craniectomy, 78.1.
Crnnioschisis, 730.
Craniotabos, laryngismus stridulus in, 868 .
syphilitie, 868 .
Crnnium proganæum in eerebral pulsy, 541.
Crooping in infaney, 281.
Crime, juvenile, 422.
publie suethods of jreventing, 426.
nature of, 426.
treatinent of, 425.
Crises, nocturinl, nature of, 1009.

Cross-eye, 136. See Strnbismus.
Croup, cerebrnl, 851.

Croup, false, 881.
of the conjunctivn, 95. spurious, 881.
Crompous ophthnimia, 95.
Crowing, 881.
Crurn cerebri, tumors of, 5%.
Cry, sigailicance of, 430 .
Cryptophthimos, 68, 120.
Crystalline lens, diseases of, 126. See Leas.

Crystalloconus, 126.
Cubit, nn old standard of mens. urement, 214,253 ,
Cup of celluloid nfter remonal of purt of skull, 780.
Curtnios for school windows, 385.

Curvature, laternl, of spine, \%in. of spine, hysterieul, how dingnosed, 1002.
Curves described by foot in walking, 627.
by head nnd hips in walking, 266 .
Custody of ehiddren, public, 429.

Cutaneous signs of lead-joison. ing, 629.
Cynnosis, congenital, ophthal. moscopie symptoms ol, 17 خ.
Cyclopia, 121.
Cyclops, 729.
Cyrtometer for the head, 774.
Cyst, npoplectie, formation of, 531.
cerebrn!, due to embolism or thrombosis, 533. embolic, 534.
intrneranial, trentwent of, 780.

Meibomian, 54.
operntion for, 151. of brain, sents of, 551 . of orbit, 123.
Cystie tumor of brain, pathology of, 553 .
Cysticereus cellulosx in the cye, 238.
of the brain, 551, 553.
Cytophingic processes, 331 , 335.

D.

Daeryoadenitis, 70.
Daeryocystitis, 72.
Daeryops, 70.
Dactylology, 40.
Danp soil as a cause of phthisis, 354.

Dama, Dr. C. L., on hereditary ataxia and locomotor ataxia, 716.

Daneing as an exereise, 282.
mnnia not identical with chorea, 810.
Darkness, physieal and psyehienl effects of, 993.
Day at school, routine of, 373, 374.

Day's work in sehools, 344.
Deaf ehildren, hygiene of, 47.
Deaf-muteness, congenital, \%2, 45.
dnetylology in, 46.
detection of, 46.
due to malformations, 3.
late
lesio
men
prev
speer
Deafnozs,
of,
nititit
Sue
follo
follo
lyst
impr
in 1
incou
ineur
its e
meeh
progi
41.
Death, th
Debility
336, 34
De Chnun
chililre
Defective
belormiti
Abnorit
Deformity
tio
exere
32
frow
spina
Degenerat
vessels,
Degonerat
ical poi:
Delinquen

Delusional
11153.

Dementia
idio
in inv
sele
infint
syphil
Dengue, o
ures of,
Denomina 430.

Dental irr
the enr,
Dentition
in eon
in cor

Deaf-muteness, educution in, 46.
from ehronio non-purulent otitis media, 32 .
hvgiene in, 45. chronio otitis media, 36. latent heuring in, 47 . lesions in, 45.
montal defeet from, 1034.
nervisus lesions in, 45.
prevention of, 36.
speech taught in, 46.
Deafness, anatomioal features of, 48.
nutilicinl relief of, 48.
due to enr-plugs of wax, ete., 11.
following cerebro-spinal meningitis, 40, 43
following mumps, th. lysteriad, 988.
improved by systematic training, 48.
in multiple eerebro-spinal sclerosis, 501.
incomplete, 47.
incurable, 39.
its effects on the external nuditory eanal, 14. mechanionl relief of, 30 .
prognosis and treatment of, 41.

Death, the eye-fundus at, 239. Deliility as a fictor in disense, 331, 343.
De Chaumont on air-supply for chilitren, 379.
Defective ventilation, 386 .
beformities, oerebro-xpinal. See Abnormalities.
Detormity and beauty, relations of, 245.
exercise for the cure of, 324.
from poliomyelitis anterior, 702, 703.
spinal, in sehool ehildren, 355.

Degeneration of cerebral bloodressels, 529.
Degenerative ehanges in arsenical poison'ng, 603.
Delinquent ehildren, isolation of, 428.
munual training of, 4:33.
reclamation of, 426.
Dolnsional insanity, ehildish, 1053.

Dementia distinguished from itliocy, 1029.
in multiple cerebro-spinal selerosis, 500-511.
infantile, 419, 452, 453. syphilitic, 597.
Dengue, ophthalmoseopic fentures of, 224.
Denominational reformatories, 430.

Dental irritacton, its effects on the enr, 14.
Dentition as a enuse of nente purulent otitis me(lia, 23.
of convulsions, 796.
in convulsions, 89t.
in corneal ulceration, 110.

Dentition in salanu eonvulslons, 801.
relution of, to rcehitis, 461.
Depressed vitulity a cause of disease, 343.
Dereum, Dr. F. X., on tetanus, 913.

Dermoid eyst of eyebrow, 69. tumor of cornea, 118.
De Schweinitz, Ir. G. E., on affections of the eyelids, lachrymal appuratus, conjunetiva, and eomaea, 50 .
Desk-construction, prineiples of, 365.
Desks at school, 358.
too high, 356 .
Destruction of cell-elements during evercise, 274.
Detached ehoroid, 169. retina, 168.
Detection of motor disturbances, 453.
of sensory disturbatiees in young ehildren, 449, 45i.
Determination of sensory dis. turbances, 449.
Develop,ment of museles by exercise, 273, 274.
physical, 241.
of boys, 283.
Diabetes in multiple ecrebrospinal selerosis, $502,507$. ophthalmoscopic features of, 224.
Diagnosis, electrical, 454.
Diagrams of curves deseribed by the loot in walking, 267.
of curves of heal and hips in walking, 266.
of foot-motion in running, 269.
of foot-movement in high jutnping, 273.
of hand-motion in rowing, 270.
of head motion in rowing, 270.
of heights of boys, 218.
Dinnoux's operation for entropion, 152.
Diarrhœe, feecal nir-poisoning a cause of, 395.
Diet, 291. See niso Foods. whilo trnining, 291.
Dietaries, 293.
Digestion, impairment of, due to eye-strain, 145.
Diphtherin as a cause of nsthenic mastoid periostitis, 29.
in rehools, 407.
of the eonjunctiva, 96 . See Ophthalmia, Diphtheritic.
oplithalmoscopy of, 219.
propngated by air- and water-pollution, 395.
propagation of, 407.
return of pupils to school after, 404, 405.
Diphtheritio meningitis, 661. ophthalmia, 96. Sce Ophthalmia, Diphtheritic. parnlysis, 808 . See Paralysis, Diphtheritie.

Diplegin, acute onset of, 536 .
In cerobral palsies, 5.11.
Dipioie, nbsence of, 754, 755. bleeding from, 757.
osteogenetio powers of. 750 .
Direct stemm-heat, 3×9.
Direction-test for sensory disturbances, 450.
Disoipline in reformatories, 43.4.
Disciasion of eataract, 155.
Diseases due to depressed vitality, 313. schwol-induences, 343. of the eye, 120 . nervous system, 417.
Disinfectunts, absorbent, 142.
definition of, 337.
Lisinfeetion by absorbents, $3+2$. by bichlorido of meroury, 341.
by boiling, 339 .
by earbotio aeid, 341.
by ehlorine, 340 .
by fumigation, 339 .
by gascous agents, 339 .
by heat, 338 .
by perchloride of iron, 342.
by permanganate of potassium, 342.
by steam, 339.
by sulphur dioxide, 310.
chemieal, 339.
of cesspeols, 342.
of sewers, 342 .
of water-elosets, 342 .
proeesses of, $3: 7$.
Disk, atrophy of, from embolism, 178.
chokel, in optic neuritis, 190, 191.
malformation of, 159.
Disloention of lens, 127.
Disordered menses during sehool-years, 351.
Displacement of pupil, 124.
Disseminated sclerosis, 495.
See Selerosis, Multiple.
Distichinsis, 62.
Disturbances of eo-ordination, 440.
of hearing, their significance, 451.
of vision, significance of, 451.
sensory, how detected in young ebildren, 449.
Diving, dangers of, to the ear, 35.

Dizziness from brnin-tumor, 560.

Dobell's solution, 34.
Dog-choren, 847.
"Doli capneitas," age of, 422, 424.

Double consciousness in epileptics, 899, 900.
Drain-elfluvin, 394.
Drainage nfter trephining, 772.
for hospitals, 415.
in brnin-surgery, 761.
in cunshot wounds of the hend, 364.
natural, 397.
of buiddings, 39.4.
of cerebral ventricles, permanent, 782.
plans for, 396.

Drainage－tube nfter removal of brain－tuubr， 774.
Draughty school－rooms， 380 ．
Drawing in schools， 366 ．
Dreams，nature of， 1008,1011 ， 1017.

Dress－reform， 3110.
Dressing the wound after re－ moval of bratn－thmor， 77% ．
Drill，military，in sehools，：372．
Drinking－water，lead－poisoning from，bls．
Drinks while training， 294.
Dropsy of the brain， 466 ．See Ilydroceplalus．
Drugs as causes of conjunctivi－ tis， 91 ．
Drum of ear，1t．See Men－ brana ！！ympani，
Drunkaris＇children，convul－ sions in， 866.
Duet，nasal，72．See Nasal Duet．
Dulness of intellect， 996.
Dura mater，bleeding from， 757. exciyinns and incisions of， 769.
hæmatoma of，ophthalmo－ scopio observations in， 192.
inflammation of，ophthal－ muscope in， 192.
wounded in trephining， 758.
Dust ns a cause of phethisis， 352.
Dyaamograph， 462 ．
Dysentery，thecal air－poisuning n cause of， 395.
Dysinlia， 463.
Dysphagia，hysterical，453．
Dystrophies，progressive mus－ cular， 812.
Dwarfness not a monstrosity， 249.

Dying，the eye－fundus of the， 239.

Dyspepsia at school， 348.

Ear， 1.

E．

absence of， 4.
anntomy of， 2.
aspergillus of， 12.
at birth，2， 7 ．
boxing the， 5,15 ．
canal of， 8 ．
ehronic discharge from， 14. cleansing the， $\bar{i}, 6,7$ ．
diagnosis of foreign bodies in， 9 ．
discharge from，its signifi－ cance， 25.
diseases， 1.
age ns a factor in， 1.
of the middle， 16 ．
drum of，14．See Men－ brana Tympani．
effects of teething on， 14. epithelial plugs in， 11 ．
exmminations of， 7 ．
external，1．See Auricie．
fistula of， 4.
foreign bodios in， 8 ． oansing retlex pho－ nomens， 10.
hygiene of， 38 ．
in deaf－mutes， 45.

Ear，Inflammation of，due to nspergillus， 12. due to plugs，II．
external dilfuse， 12. S＇re Otitis．
inflation of middle， 19.
injuries of， $5, \%$ ．
insects in， 10.
insuthation of powders
into， 22.
intermal，disenses of， 39 ． causes of， 40. classes of， 40 ． firms of， 40. mumps a cause of， 40 ．
effects of quinine on， 44.
effecte of salicylic aced on， 44.
injuries leading to dis－ ен⿱⿱亠䒑日\zh20 of， 40.
pathology of， 42.
labyrintli of， 39.
maggots in， 10.
malformations of， $3,4,8,1 \mathrm{I}$ ．
mastoid disease of，29．Ste
Martoid Disease．
membrann tympani of， 3 ．
widdle，3， 8 ．
aeration of， 17 ．
diseases of， 16.
inflummation of， 18 ． Ste Otitis Medin．
pathology of， 16.
mirrors for， 7.
nervous connections of，
with tbe teeth，14， 23.
of a child，peculiarities of， 2， 15.
ossicles of， 3.
parneentesis of membrana
tympani in， 22.
piereing the，b ．
plugs of wax in， 11.
polypi in，13，25，26．
poultices to，eondemned，
13，19， 24.
pulling the， 6.
reflex phenomena from ir－ ritation of， 10 ．
relations of，with the teeth， 14， 23.
ringing in， 13.
speeulum for， 7 ．
structure of， 39.
surgical injuries of， 9.
syringing the，s ．
toilet of，11， 12.
treutment of aspergillus in， 12.
otitis， 13.
tympanic envity of， 3.
vernix enscosn in， 7 ．
washing out the， $6,7,8$ ．
Earnche，16，18，24， 37 ．
hysterieal， 984.
in convulsions， 878.
in deaf－mutes， 46.
treatment of， 13.
Ear－disease a cnuse of suppura－ tive aneningitis， 490.
causes of，3， 15.
petrous bone in， 4.
prevention of，$\because 8$ ．
Ear－drum，jerforation－whistle of， 16 ．

Ear－trumpet，30， 47 ，
War－wax，II，ti7．Nof＇erumen，
Darth for privice， 100 ．
Earth－elosate，disposa！if wat．
ters from，100，102．
for eoountry selloos） 1 ，
Enting－labits of Nehoml－chil．
dren，3fs．
Echolalia， 996.
Eelanipin，alimentary rmmul in， 746.
cankes of，161，71．6．
chlorofora in，zos．
detinition of， $796, \mathrm{sin}^{5}$ ．

diagtusis oft，its．
digestion in， 796 ，
epilepsy simulated ly， 797， 708.
etiology of，74t．
heredity in，s6t，
malurial， 876.
pripheral irritations caus．
ing， 797.
prognosis int，798，ms．
stomnel in， 7 ！6．
symptoms of，i9\％．
teething in， 7 ！ 4 ．
treatment of， 798.
uræmia and， 597.
worms in， 716.
Eelnmptic idiocy，1029．
Eetopin lentis，126．Nee Lens． tursi，66．
Eetropion，63， 64.
cientricial，how treatel， 153.

Eezema of the conjunctira， 93.
Sie nlso Keratitis，Pblycten－ uhar．
Education，moral value of， 427.
physienl，28s．
sexin，tibl．Sem also School．
Edueational gymnastics，303．
Edwards，Dr．W＇m．A．，on mas－ sige， 325.
Effluvia，poisonous， 394.
Egyptian ophthatmia，8s．See Ophthalmia，Granular．
standard of anthropometry， 242.

Electicn of places for tre－ phining， 77 I ．
Electric light，effeers of，ujon the retinn， 170.
reactions of normal and paralyzed maseles com－ pared， 704.
Electrical dingnosis，45\％．
in purnlyses， 457.
Electrodes tor dingnosis， 45% ．
Elevator，IIorsley＇s periusteal， 754.
in skull－fracture， 752.
Embolic eysts， 034.
Embolism，cerebral，cnuses of， 532.
effects of，533， 534. cases of， 533.
defined， 525.
meningeal，signs of，544．
of the choroid， 179.
symptoms of，535．
witbin the eycball， 17%.
Embolus discriminated from thrombus， 534.

Embryot jersing Eululssioy Nee M Einhetr bimotion bimotion Encephur

in ${ }^{\text {co }}$
 оріи
 prol
 sep sha
 stili sup sym

tren
Encepha
diang
loca
pall
size
Encepha
lead－p
Enchond
174.

Enteric 1

Fintozoa
Entropio
oper
Enucleat
Environ
427， 42
Epicanth
exte
Epidemi
Ejpilepsy
nge
anat
and
turn
bella
bibl
born
brai
cau
cha

Chn
clas
elin
con
cort
eour
defi

Emhryonle conditlons of retinn, persistent, 161.
Eulssions, nocturnal, 1019. Nee Masturbution.
litmetropin, I.10.
limotional eonvalslons, 8\%.
limotions, levelopment of, 1H11.
Encephatitis, congenital, 482.
in cerebral palsies, 481.
mercurluls in, 761.
opiates in, 764.
proplyylaxis of, 763.
sedutives in, 7 h.
septin, frevention of, 736 . dhaving tho head iat, 703 .
stimulants in, 761.
suppurative, 493.
symptoms of, 763.
treatment of, 762.
Encephalocele, 730 .
contents of, 711 .
diagnosis of, 742.
locality of, 731, 741 .
nature of, 7\$1.
palliative trentment 742. roduction of, 712.
rize of, 741.
Encephalopathie affeetions in lend-poisoning, 027, 634, 031. Enchondroma of the choroid, 174.

Enterio fevor, causation of, 394. convulsions in, 870.
diseases of labyrinth in, 43.
followed by meningitis, 601 .
mental sequela of, 10.45.
ophthalmoseopio lesions in, 217.
Fintozor in the eye, 238.
Entropion, 132, 63. operations for, 151.
Enucleation of the eye, $149,150$.
Environment, morial results of, 427, 428.
Epicanthus, 60.
externus, 67.
Epidomies in sehools, 103-108.
Epilepsy, 893.
nge in, 202.
nnatomical features in, 903. and choren, 846.
mura of, 849.
bellatonna trentment of, 911.
bibliography of, 911.
borax in, 910,911 .
brain in, 903.
bromides in, 910.
cruses of, 902,900 .
characters of, compared with those of hysterienl fits, 999.
Chaslin's views on selerosis as n enuse of, 904 .
classifiention of, 903.
elinical symptoms of, 899. complienting idiocy, 1030 . consulsive centre in, 905 . cornu Ammonis in, 904. eortical involvements in, 905.
countenance in, 899, 902.
curnbility of, 907.
definition ol; 894.

Epilepsy, deteriorntion iulloving, IOtio.
development of, from hysterin, 99 F .
diagnosis of, 901 .
from hysterin, 997.
Jncksonian form from hystero - epilepsy, 918.
discriminaterl from convalsions, 892.
diseriminated from hyster. fenl uttncks, 947.
double eonsciousness in, 899, 900.
drainage-tube after trephining tor, 750.
dream-like stntes in, 900. effects ol', 10:11.
enviromment in, 901.
etlology of, 902.
extruerunial lesions unasing, 90 t.
fice in, 899, 902.
tollowing night - torrors, 1017.
from brain - convulsions, 563, 501.
from lent-poisoning, 617, 628, 6:30.
from otitis, 451
guinen-pigs with, 943.
histological changes iu, 904.
bysterin with, 976 .
hysterical. See IIysteroEpilepsy.
bystorienl affinities of, 947.
hystcro-, 900, 972. See
IIystero-Epilepsy.
idiocy following, 1029.
idiopathic, 900 , 103.
diseriminated from symptomntic epileptiform convulsions, 966.
niture of, 906.
in oerebral palsies, 540.
in gehoul-chillren, 350.
its rolation to hemierania, 792, 901 .
Jacksonian, 902.
how distinguished from hystero-epilepsy, 998.
lesion in, localized by eleetrienl test, 780.
operative surgery in, 760.
laryngeal, 900.
lesion determined by eleetricity, 761 .
lesions associnted with, 903.
lesions in, 002, 903.
major and minor, 899.
malnutrition acause, 90:3.
maximum-dese trentment
with bromides, 911.
migraine relnted to, 792, 901.
modus operandi of, 905.
names of, 896 .
neuroglinr selerosis in, 904.
night-nttacks of, 500, 998. nocturnal, 900, 998.
only a symptom, 900.
oporative treatment of, 759 .

Epilepsy, ophthalmoscope in, $197,861$.
organide ort•部s af, 9062.
pathologica: natomy of, 603.
periodieity 14, 901, 9109.
peripheral losang cunsing, 906.
trentment of, y0s.
plsecboer in, 901 .
proceted by night-terrors, 1014.
procursive, 900 , 902.
prognosis in, 917 .
pupils in, 9012.
recurrence of, 0101.
aderosis of brain-clements in, 2104.
sex in, 1003.
simulated by echupsin, 790, 797, 798.
simulution of, 907.
statisties of, 962.
surgical treatment of, 908.
sy'mptoms of, elinionl, 89y.
synonymes of, 890 .
syphilitie, 592.
enses of, 593.
symptotus of, 593.
tecthing a enuse of, 1030.
theories regarding, 900.
treatment in the ilt, 901.
treatment of, 908.
of peripheral cases, 918.
operative, 758.
trephining for, $759,908$.
types of, $809,900$.
varicties of, 91013.
vertigo in, 8!9, 900.
with eorebral palsies, 487.
with migraine, 909.
Epileptio cinildren, pyrommia in, 452.
condition, 859.
convulsione, methods of producing, 905.
diathesis nad convulsions, 8 6R.
idioey, 1029.
seizures in multiple cero-
bro-spinal selorosis, 501.
Epileptiform convulsions, 796, 883. See nlso Eclampsin.
diseriminated from choren, 852.
phenomena due to foreign boily in the ear, 10, 12.
Epilepto-hysterin, 973, 976.
Epileptoill state with organic
brain-disense, 461.
Epiphorn, $\% 1$.
from dueryoeystitis, 72.
operations for, 150.
Episeleritis, 123.
Epithelint plags in the ear, 11.
Erb's juvenile form of muscular atrophy, 817.
Frect posture, mechanics of,261.
Ergot for multiple sclerosis, 511 .
in myelitis, 678.
in suppurntive meningitis, 492.

Erysipelas of eyelids, 56.
ophthalnoseopic fentures of, 22.

Erythema nodosum with tubersular meningitls, 518.
liserine for corneal ulcer, los.
in ophthalmia noonatorum, 81.

In wounds of the oye, 1+15.
Esmarch tube in head-sargery, 776.

Easontial shrinking of the cornen, 10t.
Etablissement do Henfaisance, 119.

Lithmod bone, frneture of, 762.
Eustnehian tube, anatomy of, 17.
artiticial opening of, 19.
closure of, 17.
functions of, 17.
in ebronic non-purulent otitis media, 31 , 33.

Evolution of mind, 426.
Exaltations of motility, 460 .
Examination of ehildren, medico-legal, 435.
physical, 287, 438.
Examinations in sehools mischief done by, 344.
of physicians in court, 4.1.
Exanthemata, convulsions in the, 88%.
Exanthematous disenses, disinfoctants in, 338,340 .
eye-complications in, 220.
in schools, 403. opbthalm eopy 210.
ophthalmin, 85 .
Exenvated eorneal ulcer, $\mathbf{1 0 5}$.
Excess of frod, 293.
Excitubility of museles, 456.
Exeito-motor centres, 864.
Exereise, 255.
nbuse of, $2 \% 9$.
nnd longevity, $=79$.
and respiration, 274, 275.
avoidance of dangers in, 280.
benefits of, 279,371 .
cure by, 301.
effects of, 274 .
on appetite, 276.
on diaphragim, 276.
on hourt, 276.
on nervous system, 276.
on puberty, 276.
for girls, 296.
for young children, 28I, 282.
good effects of, 277, 371.
heart during, 275.
historic examples showing its benefits, 277.
ill effeots of, 279.
in ehildhood, 281.
in infaney, 281 .
in treatuent of spinal curvature, 357.
injurious in some enses of chorea, 853.
moral effects of, 276 . of school-ehildren, 369 preparation for, 279.
pulse in, 275.

Rxerciso, systematic, 289.
neconl wind in, 275.
skin in, 276.
sumbary of benellts of, 279.
table of results of, 296 .
Exercisea classiled, 282, 304. modico-gymuastle, 30:. vurieties of, 27.4.
Exhaustion of museles from overwark, 280.
Exophthalmic goltre, 952.
numtonical features of, 95%
cardiac symptoms in, 953, 054.
canses of, 952.
llet in, 956 .
etiology of, 052.
exophithaimos absent in, 952.
exophithalmos in, 955, 956.
eyo-ground in, 205.
galvanismin, 055,956 .
beart in, 05:3, 954.
heredity in, 952.
history of, 952.
losions in, 953.
mames of, 952.
nerve-lesions in, 953, 1555.
puthology of, 953.
pulse in, 9int.
sex in, 1 in2.
strophanthus in, 955, 0.6.
sy mpathetic nerve in, 055.
symptoms of, 254.
synonymes of, 952 .
thyroid gland in, 053, 954.
irentment of, 955.
Expert testimony, 44.
Exposuro to wenther, dangers of, 281.
Extension of limbs in swimming, 271.
Externai hydrocephalus, 471.
hygiene of sehools, 87.5.
rectus, paralysis of, 1 Bis.
Extra-lural tumor of tho spinal eanal, 785.
Extravasations of blood within the eyo, traumatic, 167.
Extremities, lower, mensurements of the, 254.
upper, measurements of the, 253.
Eye, 50.
abnormal pigmentation in, 160.
abnormalitics in, 159.
absence of, 120 .
matropia in, 140.
artificial, 157.
atropine in wounds of, 149.
blind spot of, covered by a membrnac, 159.
burns of, 148.
diliary wounds of, 149
congenital absonce of, 120. closure of, 120.
diseases of, 120.
external muscles of, 133.

Eye, disonses of lens of, 126 See Cataract, and Letnn, effect of blows unon, 3 lif . emmetropia of, 140 . enlargement of; $11 s$. enuelention of, after wuunds, 149, 15%. enerine In woumils of, 140 . far-xighted, JII.
foreign bodies in, 147 . glases for, 141.
hygiene of, 3tif.
hyperopin of, 141.
dysterical afliections of, 086 .
in albinoes, 160.
in thphtheritio paralysis, 809.
in general nnwmin, 181,
in pernicions anwmin, 182 . in leueovythwmin, 182.
injuries of, 117.
its relations to the orbital walls, 122.
lucal diseares of, 159.
malformations in, 159 .
massage of, 110.
penetrating wounds of, 14%, 148.
rofraction of, 140 .
retinal affections of. see Retina.
rupture of, 148.
scetions of, 122
surgieal operations on, 150. nfter-troatment 150.
sympathetio intlamuation of, 149 .
symptomntie disorders of the interior cif, 177.
traumatism of fundus of, 167.
vitreons humor of, 126.
wounds of,]47.
Eyeball, cohesion of, to the lide, 64.
foreign body within, l6s.
penetriting wound ol, 168.
Eycbrow, cysts of, 69
disenses of, 69.
Eyebrows in lepra, 60.
lico in the, 53 .
Eye-fliseases in schools, 365 .
Eye-lisk, abnormal tint of, 161 . congenital deprosits of pig. ment on, 160.
malformations of, 159.
retainel nerve-sbenths of, 101.
transparency of nerve. fibres of, 161.
Ey elashes, uffections of, 02.
in blepharitis, 51.
inversion of, 82.
suddenly turning gray, 65.
Eyelid, abscess of, 56 .
nngioma of, 59.
atheroma of, 58.
cohesion of, to the eycball, 64.
colobomn of, 67.
elephantiusis of, 60 .
fissuro of, 67.
furuncle of, 55 .
injuries of 148.
inversion of, 62, 63.
lepras of, 60.
-
lens of, 126. t , and lans. 8 upion, 166 . ff, 1.10 of, 118. 9,157 . unds of, 119. 11. $\$ \ln , 14$. (if). 141. etions of, ひ\& 6. 60. paralymis, momin, 181. anuenla, Is2, omin, 182. 17. to the orbifal
of, 159.
$8 \mathrm{in}, 159$.
wounds of, 147
140.
tions of. S'ee
48.
22.
ations on, 150.
atment uf,
inflammation
disorders of or cí, 177.
of fundus of,
nor of, 126.
47.
of, to the liles,
within, l6s.
wound of, 168 .
f, 19.
.
a, 60 .
chools, 365. mil tint of, 19 fl . eposits of pig160. ns of, $15!$.
-ve-sheaths of,
y of norve, 161. ions of, 62.
is, 51 .
62.
rning grey, 65 . f, 56 .
59.
to the eycbill,
67.
of, 60 .
55.
148.
, 62, 63.

Eyelld, Ilpomatous ptosin of, 58. lupus of, 60.
molluscum contaglosum of, 58.
mollusenm ीbrosum of, 59.
nevis of, 59 .
neuromn of, 59 .
cotlema of, 55 .
phlegmonous intlammation of, 56.
plastic operations on, 151.
plexiform nenroma of, 50 .
post-varioloun ulcer of, 55.
pseudo-erysipelas of, 56 .
ptosis lipomatosa of, 58.
sareona of, 59.
sebacenus tuinor of, 58 .
syphilitio diseasa of, 67.
Eycliils, nbsence of, 68.
affoctions of, 50 .
conzenital lefocts of, 66.
pitosis of, 66.
union of, 120.
defocts of, 61, 66.
eryaipelas of, 56.
granular, 88 . See Ophthalmia, tiranular.
hyportrophy of, 58.
tusuors of, 58.
Eyo-muscles, insufficioney in, 1:19.
periodio paralysis of, 807.
syphilitio paralysis of, 596, 597.

Eyes, conjugato deviation of, 13.4.
conjugate voluntary mortions of, 569.
Eyesight, defectsof. See Vision.
Eye-strain, $1: 39$.
a cause of megritu, 832, 8:4, 837.
detection of, 838.
in myopia, 142.
in schools, 366 .
its effects on character and the pursuits of life, $1+5$.
relief uf, 197.
results of, 144.
Eyo-symptoms in chronic hy. drocephalus, 475.
in multiple sclerosis, 499, 507.
of disease of the circulatory system, 177.
ol lend-puisoning, 627.
of vasoular discasc, 177.

F.

Free, levelopinent of tho, 252. massage of, 328.
myopathic, 819.
Facial atrophy, neurotic, or progressive, 795.
hemiatrophy, 795, 821. See Ilemiatrophy.
paralysis, R04. See Paralysis, Facial.
spasin, clonic, 801.
Facio-scapulo-hnmeral type of primary muscular atrophy. sis.
Fiecal poisoning a cause of lysentery and diarrboen, 395.

Fwal polwoning a cause of typhoid, :145.
Fainting in lead-polsoning, 62N.
Fiall of hand and of head In rowing, 270 .
Fulav crunp, 881.
tewtimony of chllifren, how detecterl, 136, 437.
Falx cerebrl, opreratious Involvlug, $768,769$.
Fumily history, chart of, 2×6.
Faralisa in infantilo hemiplegin, 188.
Fasting girls, liat.
Fiats are work-prolucers It well as beat-producers, 259.
forco-values of, 291.
Futty foods, 292.
Febrile symptoms of lead-pojsoming, 629.
Feeble-minded children, 449, 452, 453, 1019. speeeh of, 46 H.
Feeble-mind dness in parnlyt. ics, 511.
Female proportions, Greek standurd of, 251.
Fever, hysterieal, 993.
Fibrous nolluscum of eyelhl, 59.

Fifth norve, atrephy from dis. ense of, 795 .
Figure, ideal perfection of, 2.15. proportions of the hulutu, 212.

Filth-llisenses, 391.
Fire-drill in large schools, 3:7.
Firoplaces fur a school-house, 38.1.

Firo-proof stairways in sehoulhouses, 376.
Fissure of eyelid, 67.

> of ltolando, situation 773.
of Sylvius, situation of, 773.

Fistu' napillary, 73.
ot car, congenital, 4. of lachrymal gland, 79. of lachrymal sac, 73.
Fixtures for washing in schools, 398.

Flexibilitns cerca, $941,943,914$. Nee Catalensy.
Flexible knite, JIorsley's, 778.
Flexion of subs in swimming, 271.

Floor-construetion for hospitals, $416,417$.
Flue-ventilation of schuolrooms, 381. sehemes for, 389.
Fluids while truining, 244.
Flush-tanks for sehools, 399.
Fly-paper, poisoning caused by, 590.

Foeal sclerosis, 495. See Sclyrosis, Multiple.
Folie du doute, 452.
Follieular ophthalmia, 87.
Fontanol in ncute hydrocephalus, 468.
in chronio hydrocephnlus, titl.
Food, improper, promoting inental disorder, 104%.

Fould, cholce of, 292.
clamification of, 201,
force-value of different, 259. 201,
hent-unith of, 250.
furnelity of, 29:1.
virliety ol, 29\%.
Fuot, functions of inuscles of the, 262.
mechanisu of the, 262.
motion of the, in running, 260.

Foot-metharements, 25.1.
Fout-movemonts in high jumping, 273.
In walking, 267.
Footntools for young pupila, 365.
Foramen Itiviui, d.t.
Force-vulne of lifferent foods, $259,201$.
Forceps, Morsley's, 776.
Nunneley's, 778.
self-elosing rat-toothed, 767.

Forceph-delivery, illiocy follow-
ing, 1020.
Forces developer in the human economy, 258.
Forearin as a wandard of measurement, 244, 25 :
Forelead-mirror, 7.
Forelgn bodies in the eyo, 147.

Form of eontracture in cerebral palsies, 510.
Foul smells, injurious effects of, $3!1$.
Fourth ventriele, convulsive centre in, 905.
Fowler's solution, poisonons deses of, 00 t .
Fracturo involving the auditor; canal, 661.
the pharyngeal vault, 762.
of ethmoid bunc, 762.
of frontal sinus, 762.
Fraetures, eompound, of the eranial vault, operation for, 761.

Fragility of bones in Friedreich's diseasu, 723.
Frankfort-on-the-Main, school gymuasties of, 373.
Freo gy mnastic games, 282.
Friction in massage, 327.
Friedreich's ataxin, 201, 716. See Ataxia.
Fright a cause of convalsions, 879.

Frog-movements in swimming, 271.

Frontal bone, operations on, $768,763$.
lobes of brain, tumors of, 562.
sinus, fracture involving, 762.

Fumigation, 339, 341.
Fundus of the eye, traumatism of, 167.
Funcrals a source of contagion, 407.

Fungus cerebri, 728.
Furniture of sehools, 358.
Furuncle of cyelid, 55.
Fury, outbreaks of, 1052.

G.

Ginfanometer, dingonstionse of, 453.

Gamer for ehlliren, 28%.
free gymmastie, 282.

(Baseous ilsinfectanta, Bid
Gantrle dineano followerl by retinal chungea, 20%.
hemorringe followed by loss of visuni power, 207.
troubles due to ametropin, 145.

General ounvulslons, 882. S'e Convulsions.
parulysisand multiple selerowis, relations oft, 504.
Generntive orgatis, correlation of their disenser with oye. leshons, 212.
Gonoric ataxia, 710. See Atuxin, Friedrcieh's.
Geneturs idioey, 102t.
(ienitals nfter rape, 439, 440.
(ionius, the intrmitien of, $2 \pi!$.
German masies, roturn of pupils to sehool after, 40.5 .
sehool-desks und scints, 359 , 380, :261, 302.
Germieddes. Stee Disinfectants.
(erms of divense, 33:].
fimnts not monstrosities, 249 .
(iirls at school, health of, 316 .
effects of eye-strain in, 110.
exercise for, 296.
growth of, 2010.
tablo of heights and weights of, 209.
Girls' school, day's work in, 374.

Glnsses for long-sighted ehildren, 369.
for myopie children, 368.
Glnucoma, 125, 236.
congenituin, 118 .
ophthalmoscopic features of, 236.
Gllomn, case of, 57 I .
intracranial, seats of, 551 .
of the pons, 578 .
of the retinn, 175 .
prognosis of, 176.
symptoms of, 175.
treatinent of, 176.
pathology of, 552.
Glio-sareoma of bruin, sents of. 551.
patbology of, 553.
Globus hystericus, canse of, 953 .
Glottis, spasm of, 881.
Gluttony, examples of axecs. sire, 293.
Glyeosuria in multiple cerebrospinal selerosis, 502,507 .
ophthalmoscopic features of, 224.
Qoitre, exophtbalmic, 952. See Exophthalmic Goitre.
ophthaimoscopy of 205.

Gonococeus in ophthalmia, 78.
Gonorrhœer distinguished from leucorrbœa, 14.

Gothio palate in cerebral pary, 5.3.

Gouge ventilator, 389.
thouged-ont ufeor of cornea, 105.
(Gould, Dr. (3. M., nad ITr. C.S. Turnlahl, on dleceses of the eye, 120.
(ionty dhathesis in megrim, 8:2, MJI, 837.
firale-examinathons in sehool, 317.
tirnefo's operation for entropion, 152.
for entrabisuns, 156 .
flrund jury textimony, ifl.
(irand mal, 890. S'e Epilepsy.
©iranular eonjunctivitis, 88.
Sce Ophthabmin, wranular.
Ornalations in ophthalmin, 80.

Granuloma of the chorold, 17.J.
(irnves's danase, 052. Sie Exophthandio doitre.
Gray, Dr. l., C., on cerebral pnlsies und suppurative meningitis, $7 \% \%$
on epilepry, 899.
(irny cyelnshes, 65.
tuberele of the retina, 229.
(treek standard of femalo symmetry, nncient, 251.
standarta of anthropometry, ancient, 243.
Green tarlatum, poisoning from, $6811,600$.
Growing-puins, 789, 793.
Growth of boys, 284, 285.
Guararu for slek-hendache, 792.
(iuinca-pigs, induced convulsions in, 879 .
Gum-lancing in convulsions, 89.1.

Gummata of brain, seats of, 551.

Gums, lend-line on, 623, 630.
Gunshot wounds of bruin, 784 .
Gymnasium, mevantages of, 284.

Gymnast defined, 302.
Bymnantic games, 2\&2.
Gymnasties, netive, 302, 303.
rexthetic, 30.3.
ancient, 301.
приaratus for, 370 .
base positions ir 304.
elassitied, 3u,
ednentional,
for ehildren, 2 d 2.
for girls, 297, 357.
history of, 301 .
in schools, 302, 369.
medienl, 303.
military, 303.
modern, 301.
objective active, 303.
passive, 303.
prssive, 303.
pealngogic, 302.
positions in, 304.
results of, 200.
school, 302, 369.
subjective active, 302. passive, 303.
Skedish, 301.
Gymnasts, defective build of, 371.

H.

Ifnlift choren or apasm, 8ill.
Hiemntemesin, hysterleal, sion).
Hemm mat, 528.
of the durn mater, ophthas. mile lentures ol', lu2.
IIrmatomyellin, 671 .
Hemntorrhnehix, 671.
Hair, wavhling the, 38.
Half-stretch walk, ind.
Jhallucinations, lufnatile, 10 ll . of childioonl, 452.
linmblion, Dr. A. M., on ding. nosis of nervous dispares, 147.
liand, innervation of, 155l.
its relative memarement, ins eompurod with the entle benly, 254.
Hand-atomizers, 35.
Ilmal-mirror for the ent, 7.
Iland - movements in rowing, 270 .
Handlerafts tamght in reformatories, 4: \% .
Hardness of hearing, 47 .
Uarvari University, phyajul tralning in, 3 il.
Jasner d'Artha's blepharuphas.
tic operatlon, 153.
Haward on backnche trom fatigue, 351.
Ilend, blows upon, 555.
eyrtometer for, 774.
massuge of, 328.
peculiarities of, as indi. entlog disease, 418.
Headnche, 828.
nnæmic, 828, 836.
dict in, 836.
mediention in, 873.
treatment of, 836 .
34 n 8ymptom, 828.
asthenopice, 835.
at school, 348.
nural lisease in, 838.
bruin-disense in, 838.
canses of, 828.
eerebral disense in, 838.
elassifiention of, 829.
dyspeptic, 837 .
enr-disease in, 838.
etiology of, 828.
eye-troubles in, 838. See also Megrim.
febrile, 838.
fron eye-ktrain, 144.
from hyperiemia, 837.
from menstrual erisis, 83\%.
fron mitral insufficiency, 837.
genituls in, 838.
hysterienl, 984.
in brain-tumor, 557.
in multiple cerebro-spinal selerosis, $500,513$.
in tubereular meningitis, 514, 515, 516, 519.
kinds of, 829.
locality of, 828.
malarial, 838.
malnutrition a cause of, 836.
massige in, 329 .
medication in, 839.
nouralgie, 450.

Ifemue
sch
sill
H / y
i.
nir
vap
ilealth,
boht
Hearing
at b
lefe
Illst
impe
Inter
mee
lor
nonl
duo
mass
ophit
with

Heart-im
275.

Heart-inj
exercis
lleart-mı orcise,
Heart-stl
menin,
Heat and

Heating
rat
sc
38
by f
by $8 t$
of hr
llebetude
Height.
llemerale
feature
Hemiana
983.

Homiano
569.

IIemiath
Hemiatrd

Healuehe of hypermetrople chilitren, 319.
school-, sils.
reat of, 828.
slek. Sice Migruhe.
signilicance off, 450, 828.
t. ${ }^{-9}$ of, 824.
ui. ateral, 790. See Mi. graine.
urabitie, 838.
virletion of, d50.
Ilealdeleformities in ecrebral pulay, 5ht.
Head-enlargenent in elironio hyd reophalus, 171, 17.t, 47.
non-hyifroe phati inl
Ilend-injurien, its.
general trentment of, 763.
Heal-movements in rowing, 270.
in watking, 268.
Ilealth, hest condithons of, 25%. boarth, Intien of, Jllis
r rs, scholurship, 3316.
Ilearing. nnatomical busis of, 48.
at birth, 8 .
defeetive, t7, 49. terts of, 19.
diaturbanees of, 'lo ir nig. nitiennee, 451.
imperfeet, 47.
latent in learf-mutes, 47. mechanism of, 18.
Heart-disonse a canse of ecrebral hemorrinage, 531\%. and ehoren, 84.
due to lend-poisuning, 622. massige in, 3:1.
ophthatmoseope in, 17%.
with phlebitis, lemling to retimal venous thrombor. sis, 170.
Ilcart-impulse during exercise, $2 i 5$.
Heart-injury from injulicious exercise, 280.
Ileart-muselo bencfited by exercise, 276 .
lleart-stimulunts in tubereular meningitis, 523 .
lleat and motion, 258.
as a disinfectant, 338.
from muscular contractions, 258.
in tetanne, 259.
in treatment of myelitis, 678.

Ileating and ventilating apparatus combin d, for a schuol-houso, 383, 384, 385.
by furmaces, 390
by steam, 390
of hospitals, 413, 413, A14.
IIebetude, significance of, 488.
lleight. See Stuture.
Ilemeralopia, ophthatmoscopic features of, 230.
Ilemianæsthesia, bysterical, 983.

Homianopsia in brain-tumor, 569.

Ilemiathetosis, 939.
IIcmiatrophy, facfal, 7リл, 824 . cases of, 825.

Ilemiatrophy, facha, снинея of, 22.
cimirne of, 827.
eleurienl reauthas in , n2\%.
ethology of, 8:1. pathology of, 827. prognonim $1 \mathrm{n}, 827$. "perial s"nves $\mathbf{i n}, 821\}$. ну"pteman of, 82\%. trenthent of, 82%
Hembentalepry, Vis.
Ifomiohoren, 818, 851, 85y.
'emierunia, 790. Nee Migraine, and Megritu.
Hemiplegis. 188. See also Cerebral Phaion.
ethmes of, b:
followed by uthetoris, 937, $9: 38$.
from brain-tumor, 5 5\%.
from cercbrul embolism, 532.
from eerebral hemorriag 330.
from thrombonis, B:3.
byaterienl, 970 .
In antorlor pollomyelitls, 1308.
in corebral pulsies, 5 hl .
infintile, 50.
yphilithe, 591.
enses of, 50 \}.
with choren, $4: 77$.
Itemorrhage, corebral, 525. See Cerebral IIemor. rlage.
oplithalmoseopio featuresuf, 184. results of, 5.11
effects of, on the retina, 181.
followenl by loss of visual power, 207.
from cranial sinuzer, 756.
from duri mater, 757.
from sealp-wound, 749.
from vertebrul or spinal voins in uleration.s, 787.
in operations for braintumor, 776.
in trephining, 750.
into the retima, non-tranmatie, 180.
recurrent, 180.
traumatic, 180.
into spinal eanal, $\mathbf{1 5 2 , 6 5 4}$. intrueranial, operations for, 771.
intraspinal, 671.
meningeal, 326,670 . See also Cerebral Hemorrhage.
anutomical features of, 676.
complicating meningomyelitis, Bbt.
diagnosis of, 676.
patholugical anatomy of, 676.
post-mortem detection of, 073.
signs of, 344.
spinal, 667. See Spinal Jemorrhage.
IIemorrhagie inflammation of the labyriach, 43 .

Nemorrhugie myelitis, 076
Heputic dixeme, ghthatmosers pic fonturen of, 207 .
Heroditary ataxin, 716. See Ataxla, Friestreleh's. utaxto puraplegin, 7*!.
nerve-atrophy, the eye in, 203.
nervoins illsense, 418 ,
prugresmive museular atrupisy, \$21.
taben, its rolationshlp to maltijile nelerosin, 508.
Hermdity In tubereular meningitlin, 317 .
of near-sight, $3 B 8$.
of otitim morlia, 32.
Ilernilt, cercbral, 730, See Bin. cophatocelo.
following an operation, 770.
prevention of, 780.
treatmont of, 781.
of mplanal cord, 732. Sice also Spina ISflia, 743.
Herןuм cornce, 117.
lubialls with uural dirense following oerebro-apinal meningitis, 12.
Herschel, sir John, on the distitution between the terms cerersye and menn, 247, wote.
Hoy'4 мыw, 752.
Ihecough, hysterical, 970 .
High leasks as cure of deformsty, "isi.
Itigh jurlping, 318 .
physies ot", 273.
Hindu stamilaris of anthropumetry, 212.
llip-johnt disenso dinoriminated from anterior polion myelitis, 710 .
hysterin complisating, 995.

Ilip-movements in walking, 266 .
llistory, chart of personal and fumi'y, 296.
Jistrionie spasm, 801.
llolding-brenth spells, 866 .
Hollow-buck in gymnasts, 371.
IIopkins's rongeur, 752.
ltordeolum, 53.
Horizontal bar, 305, 300.
Horsley's fexible knife, 778
forceps, 776 .
periosteal elevator, 754.
trephine, 776.
IIospital, Antwerp Civil, 411. Buston Free, 411.
II spitals, chililren's, 409.
ndministration of, 413.
air-supply in, 14.
annexes of, 413.
block-plans for, 411.
construction of, 416 , 418.
drninage of, 415.
fireplace in, 414.
lloor-construetion, 41 b.
foal air from, 415.
beating of, 411, 413, 414.
hot-watar heating in, 414.
in cities, 409.
in the country, 410.

Hospitals, ehildren's, locnlities of, 409, 410 .
mill-construction for, 416, 417.
partitions of, 417. puvilion style, 410. plans for, 409, 410. plastering of, 418. plumting of, $\$ 15$. porcelain stoves for, 414.
radiators for, 414.
roof ot, 416.
sewerage of, $\$ 15$.
sites of, 409,410 .
specifientions for, 409.
stairs of, 117.
stenm-heat in, 414.
subsoil nenr, 409, 410.
surrounelings of, 409 , t 10.
ventilntion of, 411, 413, 414.
walls of, 417.
water-closets of, 415, 416.
water-supply or, $: 10$. convalescent, 418 ,
cottage, $413,414,419$. plath for, 420.
Leeds, Englnnd, 411.
Norfolk nnd Norwich, 411. sea-shore, 419.
specinl, 418.
IIot-air furnnces, 390.
Hot-water henting, 4] 4.
pipes in school-houses, 376.
Howis uperation for entronion, 152.

House-drainage, plans for, 397.

Ilumin body, mensurement of, 241.

Hyaloid nrtery, persistent, 126, 164,166 .
Iydrurgyria, 232.
llydrastin in ohronic otitis medin, 21.
Ilydrencephalocele, 730.
Ilydrocephnlic idiocy, 1031.
Hydrocephalocele, origin of, 734, 735.
Hy drocephalus, 466. neate, 467 .
age of pritients, 468.
a antomical fentures of, 464.
blisters in, 471.
blood-letting in, 470.
brain-lesions in, 469.
bromilles in, 471 .
entomel in, 470.
eathartics in, 470.
causes of, 467.
chloral hydrate in, 471.
clinieal history of 468 . cold in, 470. convulsions in, 468 . eupping in, 470 . clurntion of, 469. effusion in, $468,469$. ice-bug in, 471. invasion of, 468.
lodites in, 470.
leeching in, 470.
non-tubercular, 467.
onset of, 468.

Hydrocephalus, neute, pathological anatomy of, 469.
post-mortem shanges in brain afte, 470. symptoms of, $4 \Delta 8$. trentment of, 470. nspirntion for, 782 .
ehronic, 471.
brain in, 476.
clussificution of, 472 .
development of body in, 476.
diagnosis of, 477.
ditferentiated from
cerebral timor, 584.
evacuntion of thaid of, spontancous, 477.
surgicnl, 477.
external, 47 .
onuses of, 472.
forms of, 472.
eyes in, 475 .
fluid of, 475 .
bend-enlargement in, 471, 474.
intellect in, 477.
internal, 472.
nequired, 474.
natomical fiatnres of, 47:1.
blood-pressure in, 473.
brnin in, 474.
causes ol', 472.
congenital, 472, 474.
ranium in, 471, 474.
inflummatory, 474.
non - inflammatory, 472.
pathologienlenatomy of, 474.
rachitis and, 473.
varieties of, 472.
mental symptoms of, 476.
prognosis in, ${ }^{\prime} \neq 6$.
special senses in, 475 , 476.
spontancous evacuntion of fluid of, 477. symptoms of, 475.
syphilis in, 592.
trentment of, 477.
varieties of, 471.
visual imphirment in, 476.
congenital, 746.
cnuses und varieties of, 735.
external, 472.
intraventricular, 747.
size of hend in, 746.
êreatment of, 747.
unsymmetrical, 747.
distinguished from hyper.
trophy of brnin, 1032.
external, 471.
ex vacuo, 466, 472.
forms of, 466, 467.
how diseriminnted from the cerebral pulsies, 488.
in cercbellar disease, 581.

IIydroceplialus, nature of, 166 . not alwnys the cause of skull-enlargement, 592.
not the enuso of congenital hydrocephalocele, Tijt. purtinl, 475.
simple internal, ophthal. moscopic fentures of, 152. syphilitie, 502.
tapping for, 782.
treatment of, surgical, -82.
Ilyilrophobia, hysterical, \&sio.
Ilydrophthulmos eongenitus, 118.

Hygiene, 2.11.
genoral rules of, 290.
of deaf children, 47.
of ear, 38.
in deaf-mutes, 45.
of schools, 3.13 .
externnl, 375.
personal, $3 \cdot 13$.
Hymen, ubsence of, 441. integrity of, 440 .
Ilyperamia, eerebral, ophthalmoscopic features of, 184. of petroas bone, 4.
IIypera<thesia, detection of, 455.

Ilypernet ropia, 141.
in ehidren, 464.
in school-children, 349,369.
$11 y p e r o p i n$, tests of, $1+1$.
Hyperostosis of petrous bone, 4.

IIyportrophies of the eyelids, 58.
lyypertrophy of brnin distin.
guishod from hydrocephatus, 1032, 1034.
Mypnotic phenomenn, age in, 968 .
in hystorin, 9 ti6.
suggestion in bysteria, as8.
Hypnotism, catnleptic, 978 .
from missage, 329.
in the truining of illiots, 1036.

Mypopyon-keratitis, 100, 107.
Hysteria, nehromatopsia in, 97 , 987.
nge in, 958, 969.
nmurosis in, 988.
nmblyopin frum, 987.
nnæmia in, 962.
aniesthesin in, 957, 970, 982.
nnerthetics in dingnosis of, 1001.
nnulgesin in, 982.
anatomical features of, 0.6.
animal mimiery in, 071.
aphouia in, gri.
atnxin with, 970 .
nutomatism in, 9 日时, 978.
barking in, 96t, 971.
bathe in, 1005.
bibliography of, 959 .
biting in, 971.
blindness of, 214, 970, 108 \%.
boys with, $958,960,963$, 990, 1003.
catalepsy in, 972, 978.
canses of, 960 .
cerebral centros in, 968.
chililren with, 958.
eblorosls in, 962.
re of, 166. cause of nent, is2,
congenital cele, $i=1$,
, ophthalires of, 192.
ryical, 782 ical, !sio. congenitus,
en, 349,369 . 111.
trous bone,
the eyelils,
rain distinIrocephalus,

na, age in,

966.

ysterin, 188.
tie, 978.
329.
g of idiots,
, 108, 107.
opsia in, 97 ,
9.
n, 987.
, 937, 970,
diagnosis of,
tures of, 967. y in, 971 .

TO.
, 1666,978
t, 971.
f, 959.
214, 970, 98% $8,960,963$,

172,978
s in, 968.
958

Ilysterin, choreic symp 969.
olassitication of symptoms of, 968.
clavus in, 982.
elhmate in, 962.
club-foot in, $989,995$.
coddling a cause, 962,963 . color-blindness in, 987. companionship in, 904. complieations with, 989, 99.1.
constitution in, 960,962 .
contracturos in, 069,970 . treatment of, 1007.
convalescents with, 965 .
convulsions in, 969, 979.
cough in, $979,984$.
cure of, 1005 .
curvature of spine in, 1002.
deufness in, 970, 988.
death from, 1003.
decoption in, 964, 967,968, $969,971$.
definition of, 958 .
diagnosed from epilepsy, 997.
from idioey, 995.
from imbecility, $0 \% 5$. from joint-discase, 1000.
from meningitis, 095.
from moral insanity, 995.
from paralysis of children, 999.
from spinal diseaso, 1001.
diagnosis of, $970,994$.
by eleotricity, 1001s.
diathesis in, 961, 962.
dramatism in, 969.
drugs in dingnosis of, 1001.
caraehe in, 081.
ecstasy in, 972,978 .
ellucation in, $962,1005$.
electrionl diagnosis in, 1001.
electrieity for, 965.
enviromment in, 96\}, 962, 1004.
(pidemics of, 963,969 .
epilepsy in, 972,976 . See Epilepto - IIysterin, and Hystero-Epilepsy.
related to, 997.
epileptoid, 901. See also
Epilepto-Hysteria, and
Hystero-Epilepsy.
etiology of, 8 fo.
eye in, 986.
fatality in, 1003.
feigned paralysis in, 980 .
fever of, 993.
fright a cause of, 966.
galvanic treatment of, 965 .
grave, 972.
hæmatemesis in, 070.
hallucinations in, 979.
headache in, $971,984$.
hemianesthesia in, 983.
hemiplegia in, 970 .
heredity in, 960,961 .
hip-joint disense with, 995. home-life in, 961.
hydrotherapy in, 1005.
VoL. IV.-68

IIysteria, hygieno of, 961, 1004.
byperresthesia in, $082,985$.
hyperesthesia of, diagnosed from that, of multiple neuritis, 980.
hypersensibility in, 971.
bypnotic phenomona in, 466, $968,088$.
hypnoties in dingnosis of, 1001.
hypnotism in, 978.
bysterogenic points in, 1006.
imitative, 063, 969.
impressions causing, 966 .
in lead-poisoning, 629.
ineontinence of urine in, 992.
in-door life in, 962.
indulgence a causo, 962.
infuntile, 958.
inhibitory centres in, 968.
insanity and, 995.
insanity in, 969, 971, 972.
isehemia in, 907, 983.
isolation $\mathrm{in}, 1005$.
Jint-affections in, 988, 1000.
treatment of, 1007.
kinship of, with epilepsy, 997.
literature of, 959.
lysaphobia in, 980.
maniacal, 969, 971, 972.
massage in, 1005.
masturbation in, 963.
medication in, 1005.
migrai. e in, 984.
mimiery in, $963,964,969$, 971, 9S9, 1002.
mischievous tendencies in, 971.
monomania in, 972.
moral training in, 965 .
treatment of, 1006.
mortality from, 1003.
motor phenomena in, 969.
narcoties in diagnosis of, 1001.
nature of, 958 .
neuro-mimetic, 966, 989.
night-attucks in, 990, 998.
night-terrors in, 990, 992.
nocturnal, 990, 998.
of childhood, 453.
organio diseases with, 094.
pain in, 971.
paralysis in, 970, 980, 983.
pathology of, 967 .
peculiarities of, in childron, 969.
predisposing causes of, 960 .
predisposition to, 1005.
prevention of, 1004.
prognosis in, 1003 .
prone decubitus in, 1003.
prophylaxis of, 1004.
pisychical phenomena of, 969.
psychological nutomatism in, 966.
reality of, 968.
relapses in, 1003.
rhythinical movements in, 979.

IIysteria, rotary seizures in, 978.
season in, 962.
sensory disturbanees in, 970, 971.
phenomena in, 982.
gex in, 058.
sexual organs in, 963 .
shanming in, 964,967 , 968, $369,971$.
simulating meningitis, 662.
spinal disease, 1001.
social conditions in, 062.
sounambulism in, 992.
spasm in, 979.
spinal curvature in, 890.
diseaso diagnosed from, 1001.
stigmatiation in, 967.
subjective symptoms of, 968.
symptomatology of, 908.
symptoms in, significanco of, $967,969$.
symptoms of, elassified, 968.
complicating other diseases, 995.
syndromata of, 970 .
talipes in, 989 .
temperature-sense in, 982.
therio-mimiery in, 971.
throat-affections in, 981.
trance in, 972,978 .
transformation of, into epilepsy, 997.
traumatism as a cause, 965.
treatinent of, 1004.
ourative, 1005.
hygienic, 1004.
moral, 1006.
of contractures from, 1007.
of convulsions in, 1007.
of joint-affections in, 1007.
preventive, 100\%.
tremors in, 969.
twitehings in, 469.
unilateral nervo-phenowena in, 970.
urinary secretions in, 970 .
vision in, 986.
vomiting in, 970.
water-treatment in, 1005.
zoanthropy in, 971, 972.
zones in, 986, 998.
Hystorienl chililren, moral treatment of, 909.
cyo-troubles, 216.
prognosis und treatment of, 217.
fever, 993.
mania, diagnosis of, 985 .
spasin, how distinguish-
able from tetalus, 928.
Hystero-cpilepsy, 900, 973.
age in, 973 .
attacks of, 974.
boys with, 973 .
cases of, 973 .
consciousness in, 975.
diagnosed from Jacksonian
epilepsy, 998 .
kinds of, 973 .
opisthotonus in, 974.
phases of, 975, 976.

Ilystero-epilepsy, prodromes of, 975.
prognosis in, 907.
sex in, 073.
symptoms of, 075 .
treatment of, $\mathfrak{0} 09$.
of attncks of, 1006 .
types of, 973 .
uneonsciousuess in, 975.
varied phenomena of, 970. varicties of, 973.
Itysterogenio zones, 974 .

I.

Iee for ophthalmin neenatorum, 83.

Ice-bag in ncute hydrocephalus, 471.

Ice-treatment in myelitis, 678.
Ideal perfection of the huuan figure, 245.
positions for exercise, 318.
Idiocy, 1019.
accidental, kinds of, 1026.
aequired, 1022.
kinds of, 1026.
anatomical features of, 1035.
backwnrilness distinguished trom, 1024.
causes of, 1019.
elassifiention of, 1025.
congenitnl, kinds of, 1025 .
consanguinity of parouts in, 1020.
ernimin in, $102 \mathrm{~S}, 1032$.
delects associated with, 102. I .
detinition of, 1010 .
degrees of, 1023.
deprivntion resulting in, 1034.
diagnosis of, 1024 .
distinguished from dementia, 1029.
drunkenness a causo of, 1021, 1022.
eelamptie, 1029.
education in, 1035.
epileptie, 1029.
prognosis in, 1030.
treatment of 1031
ethnic torms of, 1027.
etiology of, 1019.
extra-uterine origin of, 1022.
eye-grounds in, 199.
following eongenital palsjes, 547.
fright of mother a cause of, 1020 .
from eortieal ngenesis, 546.
from bydrocephalus, 477, 103I.
genctous, 1026.
causes of, 1026 .
complications in, 1026.
deformities with, 1027
physical defeets with,
1027.
prognosis in, 1027.
grades of, 1023, 1025.
growth in, 1035.
henlth in, 1036 .
heredity in, 1020, 1026.

Idiocy, hydrocephalie, 477, 1031.
hypnotism for, 1036.
hysterical phenomenn in, 995.
in paralyties, $511,1032$.
inflummatory, 1034 .
institutions for, 1030.
intemperance a cause of, 1021, 1022.
kinds of, 1025.
maternal health a fator in, 1020.
mental disturbauces with, 1035.
miorocephalic, 1027. skull in, 102 s .
Mongoli o typo of, 1027.
non-eongenital, kinds of, 1025.
one-sided intelligence in, 1023, 1025.
oxyeephalic, 1028.
paralytic, 541, 1032. pathology of, 1033.
parentage in, 1020.
prrtial, 995, 1023, 1024, 1025.
pnthological anatomy of, 1035.
petit mal in, 1030 .
physien condition in, 1023.
prolonged labor a cause of, $1020,1033$.
raee resemblanees in, $\mathbf{1 0 2 0}$, 1027.
schools for, 1035.
sex in, 1020 .
size of skull in, 102s, 1032.
statisties of, $1020,1023$.
syphilitie, 597.
training in, 1035.
traumatic, 1033.
varieties of, 1025.
weight in, 1035.
Idiosyncrasies of vaseular distribution to the optie nerve nut retina, 163.
Idiot-snvants, 1023.
Itliots, blinduess of, 451.
Imbeciles, intelligent traits in, 1023.

Imbeeility, 1019.
elassifiention of, 1025.
dingnosis of, from insanity, 1025.
bysterieal phenomenr in, 905.
in paralytios, 541.
kinils of, 1025.
moral, $995,006, \quad 1025$, 1052.
ophthalmoseopio features of, 199.
partial, 695.
varicties of, 1025.
Impotence, presump,tion of, in children, 425.
Improvisation by feeble-minded children, 453.
Impulses, mnniaenl, 1052.
Impurities in nir of sehoolrooms, 377,374
Incised wounds of sealp, 748 .
Ineisions into the brain, surgiセルl, 758.

Inclined rope elimbing, in gym. nnstics, 307, :310.
Incontinence of urine, 992.
Ineubatory jeriods of conta glous divenses, 40x.
Indigestion from lead-poison-
ing, 625 .
Individuality, nature of, 42%.
Indolent habits a entive ff spinal curvature, 257.
Industrial sehools, origiv re, 42
Infantile spinal paralysis, was. suge in, 330 .
Infants, eleanliness of; 1042. education of, 1042.
emotions in, liffl.
hand-training of, 1042. imitativeness of, 1041, 1042
imperntive movements in, 10.12.
tikes and dislikes of, 1042.
meral sense in, 1012.
physically defective, 449.
sense-development in, 1040.
speeeh - ncquisition 1042.

Infections diseases followell by multiple cerebro. spinal selerosis, 543. means of ehecking their spreat, f0:3, 407.
myelitis, 666 .
Infirmities of genius, 279.
Inflation of the middle ear, 19, 20.

Inhibitory centres, S60, stil, 864.

Injuries of the cye, 14i.
Jnhocence, presumption of, in chiklren, 422, 424.
Inoceipitie, 736.
Inoculation as a means of prophylaxis, 334.
Insanity, 1038.
neute diseases leading to, 1045.
age in, 103s, 1039.
nutecedents of, 10:39.
nnthelmintics in, 104 t.
at puberty, 452.
brain in, 1040.
dingnesis of, 452.
diet favoring, 1144.
digestional disturbances favoring, 10.44.
edscation favoring, 1040 .
exnnthematous dizenses lending to, 1045.
exeiting eatses of, 10.4?
febrile disorders leading to, 1045.
tright ins a eause of, 1016.
frou heretitary syphilie, 597.
heredity of, 1030.
hysterical. See IIysterieal Mania,
hysterical aets in, 1017 .
injuries enusing, 1043 .
intestinnl purnsites 1044.
introspective, 452.

Insanlty, n
moral,
of ehil
pain rn
purtial
predis
$103!$
predis
rarity
1038
statisti
temper
$104:$
terror
traum?
varieti
worins
Iascet-bites
878.

Insolntion,
features
Insomnin,
1018
enuses effects
froul b
in lead
nature
treatm
Institution:
children,
Institution 419.

Iosullation otiti of pov

Insular s. Sclerosis
Intell ct, i
effeet 0
276.

Iotelligene spinal se Intercostal Internal e:

572
ear, 3
m
Intervlewi
444.

Intestinal seopic fe:
Intracerebr
sign
lesions
throml
Intruerania
of 0
aneuri
growth

Insanity, masturbational, 1048, 1049, 1050. treatment of, 1051.
moral, 1052.
causes of, 1046 .
of childhood, 1038.
pain raroly a cause of, 1043 .
partial, 1019.
predisposing causes of, 1039.
pretisposition to, 1038, 1040.
rarity of, in children, 1038 , 1039.
religious, 452.
statistics of, 1038.
temperature ns a cause of, 1043.
terror \mathfrak{f} eause of, 1046.
traumatism eausing, 1043 .
varicties of, 452.
wortins as fuctors in, 1044 .
Insect-bites, convalsions from, 878.

Insolation, ophthalnoscopic features of, 104.
Insomnin, bibliography of, 1018.
causes of, 1018.
effects of, 1018.
from brain-tumor, 560.
in lead-poisoning, 629. nature of, 1017.
treatment of, 1018.
Institutional lifo of dependent children, evils of, 431, 432.
Institutions de bienfino "\&co, 419.

Insufllation of boric acid in otitis incdin, 21, 25.
of powlors into the ear, 22.

Insular sclerosis, 495. Šée Sclerosis, Multiple.
Intell ect, aberrations of, 452.
effect of exercise upon the, 276.

Intelligence in-multiple cerebro. spinat sclerosis, $500,509,511$.
Intercostal neuralgia, 792.
Internal capsule, contents of, 572.
ear, 39. See Enr, Otitis Interna, eto.
lesions of, 40, 41, 42, 43, 4i, 45.
malformations of, 45.
Interviewing a medical witness, 44.

Intestinal diseases, ophthalmoscopic features of, 207.
Intrncerebral heunorrhage, signs of, 544.
lesions, signs of, 544.
thrombosis, signs of, 544.
Intracranial abscess as a eause of optic neuritis, 191.
aneurism, 554.
causing optic neuritis, 191.
growths, eye-symptoms of, 185.
in inf: ney, 184.
ooplar symptoms of, 185.
optic neuritis in, 185.
vurieties of, 185.

Intracranial hemorrhage, statisties of operations for, 772.
lesions, our lack of knowledge regarding, 484.
tumor, 551. Nee also Brain-Tumor.
diseriminated from the cerebral palsies, 488.
Intra-dural tumor of the spinal canal, 785.
Intraocular tension, relief of, 180.

Intruspinal hemorrhage, 671. causes of, 671. diseriminnted from poliomyelitis anterior, 710.
prognosis in, 671.
trentment of, 682.
Inunction, disinfectant, 338.
Inwarl convulsion, 881 .
Iodides for multiple sclerosis, 511.
in noute hydrocephalus, 470.
in convulsions, 549.
in lead-poisoning, 632.
in myelitis, 679.
in tubereular meningitros 523.

Sodoform, itsepticized, 757.
in scalp-wounds, 749.
Iridectomy, 154.
for eataract, 130.
for glaucoma, 125.
Irido-cyclitis, 124.
Iris, colobomm of, 124.
Iritis, 124.
trentment of, 125.
Iron ir the treatment of multiple sclerosis, 511.
Irregular mental development, 43.3.

Ischæmia, hysterical, 967, 983. of the retina, 179.
Island of Reil, thmors affeeting, 571.

Isolation of pratients with contagious disenses, 403.

J.

Jackson, Dr. Iughlings, on the ophthalmoscope ns a means of diagnosis, 158.
Jacksonian cpilepsy dingnosed from brain-tumor, 564.
from hystero-epilepsy, 998.

Epasm, sensations in, 566.
Jacobi, Dr. A., on tuboreular meningitis, 514.
Jncobi, Dr. Mary Putnam, on myelitis, spinal meningitis, and spinal bemorrhage, ete., 643.

Jacoby, Dr. G. W., on athetosis, ete., 937.
'aeseho-Arlt operntion for entropion, 151.
Johnson, Lindley, on oh:1dren's hospitals, 409.
Joint-affections, hysterical, $988,1000$.

Joint-disease, hysterical, trentment of, 1007.
Joint-diseases diagnosed from hysteria, 1000.
Joint-pain, non-rheumatle, 451.
Jones's operation for cetropion, 152.

Jumping, 317, 318.
physies of, 273.
Juvenile crimo, 422
publie methods of preventing, 426.
delinquents, reelamation of, 421.
form of muscular atrophy, Erb's, 817.
K.

Kaleidoscopic visions in hemiorania, 195.
Katzen-Raphael, 1023.
Koating, Dr. J. M., and Dr. J. K. Young, on physical development, 211.
Keating, J. Percy, on juvenile crime, 422.
ficrntitis, 103.
hypopyon-, 106.
itherited, 112.
interstitial, 112.
age of patients, 113.
ntropine in, 115.
eauses of, 112.
diagnosis of, 115.
eitology of, 112.
iritis with, 114.
mercurials in, 115.
physioue of patients, 114.
prognosis in, 115.
reeovery from, 114.
sex n factor in, 113.
statistics of causation, 112.
symptoms of, 113.
synechim in, 114.
synonymes of, 112 .
syphilis a cause of, 112.
treatment of, 115.
malarial, 116.
marginal, 104.
prrenchymatons, 112.
phlyctenular, 103. See Ophthalmia, Phlyetenular. See also Cornoal U'leer.
cuuses of, 10%.
definition of, 103.
symptoms of, 104.
synonymes of, 103.
treatment of, 104.
ulceration in, 104.
punctata, 116.
purulent, 106.
pustular, 103. See Kern-
titis, Phlyctenular.
statistios of, $\mathbf{1 0 3}$.
stru'nous, 103, 110, 112.
See Keratitis, Phlyctenular.
syphilitic, 112.
vascular, 111.
vesicular, 103. See Kern-
titis, Phlyctenular.

Keratoconus, 117.
Keratoglobus, 118.
Keratomalacia, 99.
Keratosis obturans, 7.
Kidney in arsenical poisoning, 603.

Kidney-disease, eye-symptoms of, 209, 211.
ophthalmoseopio features of, 208.
Kidneys in lend-poisuning, 629.
Kindergarten system, 345.
Kneading in massuge, 327.
Knee-jerk, effect of sensation or volition on, 864 .
production of, 454, 459. registration of, 459.
Knce-pain, signifieunce of, 451.
Knife for paracentesis of the membrana tympani, 22. Ilursley's flexible, 778 .
Kyphosis as a frotor in porencephalus, 739.
basilar, 734.
oecipito-sphenoidal angle in, 734.

L.

Labyrinth of ear, disease of, in searlet fever, 43. disenses of, 39 .
in typhoid fever, 43.
hemorrhagic inflamuation of, 43 .
Lacerated scalp-wounds, local trentment of, 750 .
Lacerations as a sign of rape, 440, 441.
Laehrymal abscess, 73.
treatment of, 76 .
apparatus, affections of, 69. relief of obstructions of, by operation, 150.
ealoulus, 72 .
canal, 72. See Nasal Duct. duet, distention of, 70.
fistula, treatment of, 76.
gland, extirpation of, 76.
fistula if, 70.
hypertrophy of, 70.
mumps of, 70.
spontaneous prolapse of, 70.
syphilis of, 71.
tumors of, 71 .
sac and duct, diseases of, eause of, 74.
from exanthematous diseaser, 74.
prognosis of, 75.
syphilis in, 7.1 .
trentment of, 75.
anomalies of, 72.
fistula of, 73 .
secretion, pathulogy of, 77.

Lagophthnimos, 61.
congenital, 68.
Lalling, 463.
Lambdaeismus, 463.
Lancing the gums in convulsions, 894.

Landonzy-Déjérine type of primary muscular utrophy, 818.
Lange's methods of air-anal.-
sis, 390, 391, 393.
Laryngeal eonvulsions, 879. vertigo, 900.
treatment of, 909.
Laryngismns strilulus, 881. age in, 862.
anesthetics in, 897.
antipyrin in, 897.
attack of, 881 .
bromides in, 897.
carpo-pedal spasm in, 882.
chloral in, 897.
course of, 885 .
craniotabes in, 868 .
deaths from, 862, 865.
diet in, 897.
duration of, 885 .
effeet of seasons on, 873.
gland - enlargement and, 869 .
musk in, 897.
names of, 881 .
nerve-irritation in, 869.
night-attacks of, 809.
onset of, 881 .
paroxysms of, 885.
post-mortem appearnnees after, 891.
prognosis in, 890.
prophylaxis of attack of, 897.
rachitis with, $\varepsilon 66,868$, 898.
recurrenee of, 885 .
sex in, 865.
statistics of, 862, 865 , 873, 890.
symptoms of, 881.
synonymes of, 881.
tetany with, 882.
tbymus gland in, 869.
treatment of, 896.
Lashes. See Eyelashes.
in blepharitis, 51.
Latent strabismus, 139.
Lateral eurvature of spine, 355 .
eauses of, 355 .
solerosis, eye-ground in, 203.
sway of foot in walking, 268.
ventricle, tumors of, 574.
Latrines for sehools, 399.
Laws designed to olieek the sprend of contagious disense, 403, 406.
Laxatives, 295.
Lead, nbsorption of, 620.
aetion of, 620.
colio, 625.
olimination of, 620, 632.
in the tissues, 619, 620.
Lead-line on gums, 623, 630.
Lead-poisoning, abeyance of, 620.
nbsorption in, 620.
acute, 624, 630.
adoleseent cases, tabulated, 637.
age in, 623.
aleohol in, 626.

Lead-polsoning, anæmia ln , 021.
analysis of urine in, 0.40 .
anatomical changes in, 621 .
atrophy of muscles in, 626, 631.
bibliography of, 633 .
blue line in, 623, $6: 31,631$
bones in, 621.
bromides in, 632.
cachexia in, 624, 631.
eases tabulated, children
and youth, 634, 630, 637.
canses of, 616.
ehunges produced by, 621,
chemical tests of urine in, 6.40.
children having, 623, 634. ohorea in, 629.
chromate of lead in, 617, 618, 634.
chronie, 624, 630.
colio in, 625, 631 .
Comey's method of urine analysis in, 640.
constipation in, 631.
convulsions in, 628.
cutnneous affection in, 629.
digestion in, 625, 631.
diureties in, 632.
effeet of, on offspring, 617 .
electricity in, 638.
elimination in, 620, 632.
encephalopathic symptoms
in, 627, 630, 631.
epidemics of, 618, 623.
epilepsy from, 617, 628, 630.
etiology of, 616.
eye-symptoms in, 627.
eye-trenbles due to, 232.
fainting in, 628.
febrile state in, 629
frequency of, 617, 619.
general cachexia from, 624 , 631.
gestation in, 617, 618.
guins in, 623, 630, 631.
heurt in, 622.
history of, 615 .
hysterical symptoms in, 629.
indigestion in, 625.
infuntile eases tabulated, 636.
insomnia in, 629.
iodides in, 632.
kidney in, 622, 629
lead-line in, 623, 630, 631.
literature of, 633.
liver in, 621, 623.
misear iages from, 617.
motor sy mptons in, 626.
muscular complications in, 626, 631.
nerves in, 616, 621.
nervous symptoms in, 626 .
neuralgio pain in, 629.
neuritis from, 616 .
nutrition in, 625.
obscure cases of, 617, 619, 620.
oeular symptoma in, 232, 627.
paralysis from, 622, 626, 631, 633.
varieties of, 626.

Lead-poisor 619
pregnit
progno recent
ing,
renal it
solerot
sensory
sequenc
631.
skin in,
sources
strychn
sulphur
suscept
symptos
sympto
tablos of
tosts of
tissue-e
trentme tremor urremic
urine in
visual sy
vouiting
625.
water-pi
Worcest
urino
wrist-dr
Leaders (pi)
398.

Leading que
legal exam 438.

Leaping, phy
Lecehing in
lus, 47
in myeli
in tuber
223.

Leeds Gener
land, 411.
Jeg, masrage
Leg-mensure
Leg-movemer 265.

Leg-muscles,
245.

Legal nge of
examinat
435.

Lens, defents
of p
disenses
disloentio
ectopia o
pupi
luxation
Lenticonus, 1
Lenticular, 75
Lepra of eyel 60.

Leprosy, eye-
Leptocephalu
palsy, 541.
Lepto-mening
infantum
drocep
optic nell
Leuoocythæm
scopic featu

Lead-poisoning, pathology of, 619, 621.
pregnancy in, 617.
prognosis in, 631.
recent discoverles regarding, 61t.
renal affections in, 629.
selerotio affections in, 630 . sensory syuptoms in, 627.
sequence of symptoms in, 631.
skin in, 629.
sourcos of, 616,620.
strychnino in, 633.
sulphur baths in, 0.33.
susceptihility to, 620 .
of ehildren to, 623 .
symptomatology of, 623.
symptoms of, special, 624. tables of cases, 634, 636, 637.
tests of urine in, 640.
tissne-changes from, 616.
trentment of, 632.
tremor in, 629.
uremic symptoms in, 630.
urine $\mathrm{in}, 619,640$.
visual symptoms in, 627.
vomiting as a symptom of, $\mathbf{6} 25$.
water-pipes in, 618.
Worcester's analysis of urine in, 640.
wrist-drop in, 631.
Leaders (pipes for drainuge), 398.

Leading questions in medico-
legal exumination of children, 438.

Leaping, physics of, 273.
Lceching in nente hydrocephalus, 470.
in myelitis, 678
in tubercular moningitis, 523.

Leeds General Infirmary, England, tll.
Leg, massage of the, 327 .
Leg-measure, 254.
Leg-movements in walking, 265.

Leg-muscles, functions of, 262, 265.

Legal age of responsibility, 422.
examination of childron, 435.

Lens, defents of form in, 120. of position of, 126. of transparency of,
127. See Cntaract.
diseases of, 126.
dislocation of, 127.
ectopia of, 126. pupillary, 127.
Inxution of, 127.
Lenticonus, 126.
Lenticular, 756.
Lepra of eyelids and oycbrows, 60.

Leprosy, cye-symptoms of, 229.
Leptocephalus with cerobral palsy, 541.
Lepto-meningitis defined, 660.
infantum, 467. See Hy Irocephalus, Acute.
optic neuritis in, 193.
Leacocythmmia, ophthalmoscopic fentures of, 182.

Leucoma, adherent, following corneal alcer, 80 .
corneal, 107.
tatlooing tho cornea for, 154.
treatment of, 110.
Lencorrhœa distinguished from gonorrheea, 44.
Lever-action in the movable purts of the body, 260.
Lewis, Dr, M. J., on convalsions in infaney and childhood, 857.
Lico in eyebrows, 53.
Lid-abscess, 56. See Eyelids.
Lid-cramp, tio.
Lids, atfections of, 50 .
Liebreich's desk and seat, 360, 361.

Life, the nature of, 258 .
Light, excessive, ill effects of, upon the cye, 170.
for the school-rootu, 366 .
Lincoln, Dr. D. F., on schoolhygiene, 343 .
Ling's movement cure, 301.
lipoma of bruin, 554 .
Lipomatosis, 813.
Lipomatous ptosis of the syelids, 58.
Lippitudo, 52.
lip-reading by deaf-mules, 16.
lisping, 463.
Lithemia in megrim, 832, 8\%.1, 8:37.
liver, acute yellow atrophy of, diseriminated from tubercular meningitis, 521 . in arsenical poisoning, 603 . in lead-poisoning, 621, 623.
Liver-discase, ophthalmoscopio fentures of, 207
Locomotion, meehunics of, 261.
Locomotor ataxia in children, 726.

Long-sight in school-children, 369.

Longevity and excreise, 279.
Loss of appetite among schoolchildren, 848.
of sight from sudden hemorrhage, 181.
Lower extremitics, measurements of the, 254.
Lauch for school-children, 348 .
Lung-disease in schools, 352.
lung-oxpansion in various acts and positions, 275.
Lung-power, deticient, 371.
Langs of skilled leapers, 273.
Lupus of conjunctivi, 101. of eyelid, 60 .
Luxation of lens, 127.
Lymphangiectasis of the conjunotiva, 91.
Lyssophobia, 1046 . bysterical, 980 .

M.

Maclaren's system of exercise, 296.

McNutt, Dr. Sarnh J., nnd Dr. Post, on structural abnormalitics of brain and cord, \%28.

Macrocephnins with cercbral palsy, 5.11.
Macula, corncal, 107.
Madden on the infirinities of genius, 270.
Malarial convulsion, 8'6.
disease, ophthatmoscopio features of, 222.
headuche, 838 .
Male proportions, 255.
Males, proportion and growth of, 283, 284, 285.
Maltornations of the interaal eur, 45.
Malignant growths of skull, trephining for, 768. cazes of, 768 . operations for, 768.
Malingering, hysterienl, 964, 067, $968,987$.
in cases of spinal concus. sion, 201.
in schools, 836.
"Malitia supplet retatem," 422, 424.

Malleus, removal of, in ehronio purulency of the attio of the tympanum, 28.
Maloney otophoue, 30, 47.
Man, classitication of, by races, 212.
propertions of, 242.
Mania, hysterical, 095.
in childhood, destructive, 452.

Maniacal impulses, 1052.
Mrnual training of delinquent ehildren, 433 .
Map-drawing in sehools, 366.
Marginal keratitis, 104.
Marringes, consungaineons, 1021.

Maseachusetts law regarding vacciation, 406 .
publio school for dependent children, 432.
Massage, 325.
bihliogruphy of, 331.
elassitication of, 326.
definition of, 325.
effects of, 326 .
ellleuruge in, 326.
for anæututosis, 331.
for constipation, 330 .
for liver-disease, $3 \mathbf{3} 0$.
for splenic discase, 330.
friction in, 327.
hacking in, 327.
history of, 325.
in ancmia, 331.
in angina peetoris, 330 .
in anterior poliomyelitis, 330.
in chlorosis, 331.
in choren, 329.
in congestion of the brnin, 329.
in crimp, 329.
in diphtheritic paralysis, 330.
in headache, 329.
in heart-disenses, 331.
in infantile spinal paralysis, 330.
in myelitis, 681.
in neuralgins, 329.
in celema, 331.

Massage In periphoral neural. gins, 329.
in wasting diseascs, 329.
kneading in, 327 .
local, 327.
movements in, 328, 329.
of abdomen, $328,330$.
of chest, 327.
of cornea, 110.
of free, 328 .
of head, 328.
of leg, 327.
of neck, $328,329$.
of throat, 328.
percussion in, 327 .
pétrissage in, 327.
punctuation in, 327 .
sensitive points in, 329.
Swedish movements in, $328,329$.
tapotement in, 327.
temperature in, 331.
varieties of, 326.
Massings of the optio nerve, 161, 162.
Mastoid, nhscess of, 20, 30 .
disease, 29.
forms of, 29.
treatment of, 30.
periostitis, 29.
causes of, 23.
prognosis of, 29, 30.
sequestruin in, 29.
symptoms of, 29, 30.
varieties of, 29.
Masturbation, brain-lesions from, 1050.
countenance in, 1049.
cure of, 1050 .
deteriorntion nfser, 1049.
effects of, $963,977,974$, 10.47, 1048.
freial spasm from, sol.
impotency from, 1019
induced by intestinal worms, l0.t5.
infantile, 1048.
insunity from, 101%, 1048 , 1049, 1050.
mechnnieul prevention of, 1051.
moral trentment of, 1050 .
nodding spasm from, 801 .
paralysis from, sis.
prognosis in, 1140.
psyobical, 1051.
shame lost after, 1049.
signs of, 1048.
stupor after, 1049.
Masturbational psychosis, 1047, 1049.

Masturbntors, nasnl mucous membrase in, 1044.
Meals of sehool-ohildren, 348 .
"Mean" not synonymous with "average," 247.
Measles, convulsions in, 889.
Germnn, return of pupils to sohool after, 405.
ophthalmia following, 85, 86.
optic neuritis in, 220.
return of pupils to sehool after, 404, 405.
Measurements of arm, 253, 254. of body, 241 .
of chest, 253.

Measurements of face, 252.
of foreurm, $244,254$.
of band, 254.
of lower extremities, 254.
of male sex, 255.
of man, 241. See Anthropometry.
of neek, 252.
of trunk " 52
of typis. \quad nn. 254.
of uppr ities, 253.
physicu.
(ents not lhe
st working
food, 259 .
Mechanice, raimal, 261.
of locomotion, 264.
of museles, 2 tio.
Medienl examination of students, 288.
teatimuny, 444.
Melico-gymmastic oxercisea, 303.

Medico-legal examinations, oral, 435.
physical, 438.
tact required in eondueting, 436, 437.
testimony of ehildron, 435.
Medulla, cases of tumor in, 579. tumors of, 576
Mege locornea, 118.
Megalophthalinos, 119.
Mogrin, 790,829 . See also Migraine.
anemia in, 834.
mutipyrin in, 833 .
uttreks of, $529,831$.
cuffeine in, 833 .
eunnabis indier in, 834.
causes of, 791, S31.
eessation of attroks, 831 .
elarneteristics of, 829,832 .
debility in, 834.
deseription of, 831 .
diagnosis of, 792, 832 .
diathesis in. S32, 834
epileptic affinities of, 901, 909.
eye-strain in, 145,834 .
cyo-troubles nssociated with, 831, 832, 834
gouty diathesis in, 832,834 , 837.
heredity in, 829.
hysterical, 984.
indigestion in, 830, 831, 832.
inter - paroxysmal treutment of, sil3.
lithæmia in, 832, 834, 837. menses in, 829, 832.
morphine in, $833,839$.
nausea in, 831
ophthalmoscopic peculint:ties of, 196.
opiates in, 833.
pathology of, 832.
periodicity of, 829
prodromi of, 830.
prognosis of, 792.
prophylaxis of, 835
scotomata forerunning, 830 , 832.
sent of pain in, 829, 832.
suectacles for, 835.
subjoctive symptoms of, - 195.

Megrim, trunsmission of, s29. treatment of, 833, $9: 2$.
unifurmity of uttacks, 831.
visual prodromes of, 830 , 832.
vomiting in, 831.
Meibominn eyst, 51 . operation for, 151.
Melancholia saltans, 810. See Choren.
Members of the body, relative size of, 242.
Membrana tympani, 3, 1.t. appearunces of, 13. destruction of, 26. disenses of, 15. function of, 15 . in chronie uon-suppurutive otitis melia, 32.

Inflammation of, 15. injuries of, 5 , bit malformations of, 14 . perforation of, 5,16 . suppurative berforation of, 16.
Membrane of Shruphell, 15,28,
Membranous conjunetivitis, 95, Meningeal nttery, uidde, wounded in trephining, 758.
dofects, congenitn], 730.
ombolism, signs of, 544 .
hemorrhage, 526, 650, 671. See Cerebral Ilemor. rhage.
signs of palsies, 544.
thrombosis, signs of, 54t.
Meningitis, busilar, coexistent with optio neuritis, 190. corebral, 489.
spiual symptoms in, 660.
cerebro-spinal, distinguished from cerebral palsies, 48\%.
from tuberenlar meningitis, 520.
ophthalmoscopio features of, 194.
chronic, counter-irritution in, 680.
chrovie epinal, 661.
cases of, 602.
diagnosis from the cerebral palsies, 4×7.
diphtheritic, 661.
due to otitis medin, 24,27 .
ending in hydrocephalus, 467. See llydrocephalus, Acute.
following concussion, treatment of, 663.
operntions for onceph. alocele, 742.
typhoid, 661
infectious, 661.
of dura, ophthalmoseopio observations in, 102.
ophthalmoscopic features of, 192, 193.
rheumatio, dingnosis of, 521.
from uncomplicated enries, 653.
salioylntes in, 680. spinal, 658.
features

Moningitis, simulated hysterienl, 662.
spinal, anatomical fentuics of, 670.
cases of, 657.
diseriminatod myclitis, 659.
due to Pott's disease, distinguishing symptoms of, 653.
non-earious, 657.
pathological anatomy of, 675, 676 .
treatment of, 682,
rheumatio, 658.
septic, 659.
tubercular, 658, 660.
cataleptic symptoms in, 659.
suppurative, 489.
anatomical fcatures of, 490.
bacteria in, 490.
oaleitur sulphido in, 492.
causes of, 489 .
diagnosis of, 491.
distinguished from the cerebral palsies, 487.
ear-diseaso n cause of, 490.
ergot in, 492.
otiology of, 489.
mercurials in, 492.
optic neuritis in, 491.
pathologioal anatomy of, 490.
prognosis in, 492.
pus-evacuation in, 492.
quinino in, 492.
symptoms of, 491.
trammatic, 400.
treatment of, 492,
syphilitic, 591.
diseriminated from tubercular menidgitis, 520,591 .
ophthalmoscopic fentures of, 191.
tubercular, 514.
anatumical features of, 516.
ataxia in, 519.
baeillus in, 517.
bowels in, 519 .
brain-lesions in, 5]6.
cardiad stimulants in, 52i.
causes of, 517.
Cheyne-Stokes respiration in, 519.
complications of, 517.
convulr ons in, 515, $516,519,52 \%$.
diagnosis of, 518.
fromaente nephiritis, 521.
from acute yellow atrophy of the liver, 521,
from cerebral ab scess, 49\%.
from cerebral tumor, 581.

Mcoingitis, tubercular, diagnosis of, from hydrocephaloid ronditions, 522.
from other forms of meningitis, 520.
from pneumonia, 521.
from syphilitio meningitis, 591.
from typhoid fover, 52l.
from uriemie poisoning, 52 t .
ctiology of, 517.
eyes in, 515, 516, 522. general tuberoulosis with, 517.
headache in, 511, 515, 516, 519.
hend-retraction in, 520.
heredity in, 517.
infection of, 517 .
intelligence in, 514, 515.
iodides for, 523.
latent form of, 516 .
leeches for, 523.
mind in, $\begin{gathered}14,515 .\end{gathered}$
neek-rigidity in, 520.
of tho spine, 659.
of the pin mater, bibo. onset of, $514,5 \mathrm{Ls}$.
ophthalmoscopy in, 19:3.
puralysis in, $515,519$.
pathological anatomy of, 516 .
premonitory symptoms of, 514.
provention of, 522,
prognosis of, 522.
pulso in, 515, 516, 519.
puifils io, 515, 521.
recovery from, 522.
sighing a sign of, 519 .
sigus of, 51-1, 518.
sleep in, 514, 515,516, 519.
slages of, 514.
statio ataxia in, 519.
stimulation in, 523.
surgical interferenco in, 524.
symptoms of, 514,518.
tartar conctic oint. ments in, 522.
temper in, 51:.
temperature in, 519 ,
treatment of, 522 .
tuberele of, 517.
vesicatories for, 523.
vomiting in, 514, 516, 519, 523.
with erythema nodosum, 518.
Moningocele, 731.
causes of, 735.
discriminated from dermoid cyst of the oyebrow, 69.
rarity of, 741.
spinal, $732,743$.
Meningo-myelitis from com.
pression, 614.

Moningo-myelitis from compression, abscess in, 656.
antatomical changes in, 647.
ankle-clonus in, 619,
apparutus in treatnsent of, 657, 678.
arm-paralysis in, (19, 650, 651.
arm-reflexes in, 650.
bolludonna in, 679.
cases of, 045 .
cauda equina in, 652.
cauterization for, 678. cervienl, 649.
inchymeningitis in, 651.
claw-handi in, 650.
cold apiliontions in, 678.
development of, 646, 647.
diapiragm in, 650.
diaphragmatic respiration in, 052.
discriminated from spinal meningitis, 654.
due to pachymeningitis, 647 .
due to sarcoma, 655.
elcetricity in, 6SI.
erget in, 679.
oxtension nul fixation in, 657.
food in, 678.
heat applied in, 678.
biceough in, 65tl.
ice to spine in, 678.
iodides in, 679, 681.
leeching in, 6.9.
lesions in, 647.
localization of, 648.
lumbar, 648, 649.
massage in, 681.
merourials in, 681.
motor power restored after, $\mathbf{6} 56$.
muscular atrophy in, 649.
nouritis due to, 647.
not nlways due to caries, 655.
opintes for, 679.
pachymeningitis in, 647, 650.
pains in, 651, 679.
paraplegia from, 646, 649.
paresis in, 64s,
pathology of, 647.
prognosis in, 656.
pupillary symptoms of, 651.
recovery from, 656.
refloxes in, 649.
exnggorations of, $\mathrm{in}, 654$.
in ciorsal cases, 652.
regeneration of nervetubes after, 65b.
respiratory disorders in, 650.
rostoration of func-
tiuns after, 648.

Meningo-myelitis from eompression, retention of excreta $\ln , 619$.
riglidities from, 653, 654.
root-syinptoms in, 648, seat of, 646.
sensory disturbances from, 648.
slow pulse in, 650.
sphincters in, 6.19.
spinal hemorrhago in, 654.
spontar nous recovery from, 656.
sudden paraplegia in, 652.
surgical treatment of, 657.
symptoms of, 6.48. syncope in, 650.
tactilo sense in, 648.
treatinent of, 857,678 . of paralysis in, 682.
vomiting in, 650.
Moningo-myolocele, 743.
Menorrhagia with optic neuritis, 213.
Menstrual disorders during school-life, 351. eye-troubles due to, 212.
period, rest during the, 300.

Mental and physical superiority correlated, 278.
defect, grades of, 1019.
development, irregular, 453.
disorders of ehildhood, 452. See also Insanity.
disturbanees, dyspeptic, 1044.

Mercurial poisoning, effects of, on the oye, 232.
Mercuriuls in myelitis, 679, 681.

Mereury, bichloride of, as a disinfectant, 341.
in suppurative meningitis, 492.

Metnmorphopsia, traumatic, 170.

Metastatic choroiditis in mumps, 207.
eye-disease in gangrenous varice[la, 22].
Methods of anthropometry, 249.
Microbes, See Bacteria.
Microcephalus, 735.
brain in, 1028.
in eerebral palsy, 541.
in illiots, 1027.
instruction in, 1028.
standard of, 1028.
treatment of, by eranicetomy, 784,
Micro-organisms. See Baeterin. Microphthalmos, 119, 121.
Microscopic proofs of rape, 443.

Microtia, 4.
Middle car. See Ear, Middle. at birth, 18.
disease of, braia ab. scess $\mathrm{in}, 769,773$,

Middle ear, disease of, lending to osteo-111yelitls, surgienl treatment of, 751.
pus-recumulation in, $18,24$.
meningeal artery, intraeranlal hemorrlage from, 7 71.
wounded in trephining, 758 .
Migraine, 700. See Megrim.
culases of, 790.
defnition of, 790.
diagnosis of, 702.
otiology of, 790 .
hysterical, 984.
in chlldren, 450.
pathology of, 700.
prodromes of, 791.
prognosis of, 792.
relations of, to epilepsy, 901.
subjective symptoms of, 195.
symptoms of, 791.
treatment of, 792.
with epilepsy, trentment of, 909 .
Miles, Dr. F. T., on hydrocephalus, 466.
Miliary aneurism preeeding intracranial hemorrhage, 528.
tubereulosis, ophthalmoseople features of 227.
Military drill for boys, 372. gy mnastics, 303.
Miliu'3, 58.
Milk-seeretion, arsenie in, 604.
Mill-construction of hospital floors, 416, 417.
Milliamperemeter, diagnostie uses of, 455 .
Mills, Dr. C. K., on hysteria, 058.

Mimetio paralysis, 804. See Parnlysis, Fucial.
Mimie spasm, 801.
Mind, effects of exercise upon, 276, 277.
evolution of, 426.
in multiple corebro-spinal sclerosis, $500,503,5] 1$.
Minors, legal olpucities of, 425.
Mirrors for the ear, 7.
Mirror-writing as a symptom of eerebral defect, 463.
Mitchell, Dr. J. K., on exophthalmie goitre, 952 .
Mitral disease, ophthalmoseopic signs of, 177.
Mobility of ehest-walls, 253.
Modesty not always a proof of morality, 438.
Modulus of Carus, its defects as a standurd of human symmetry, 246 .
Moisture in the air of schoolrooms, 396.
Molluseum contagiosuin, 58. fibrosum of eyelid, 59.
Monoplegia from brain-tumor, 567.

Monstrosity, mornl, 1052.
Moral ideas of children, 435. imbecility, 995, 996, 1052.

Moral Imbecllity, training in eases of, 1037.

Muscles, e functi
Insanity, isolation in, 1053. power inereased by physieal exerolse, 276.
sense, development of, 422, 424.
treatment of hysteria, 1006.
Morality, nature of, 426 .
Morbid projects and attach. ments, 1053 .
Morbus saeer, 899. See Fpr lepsy.
Moribund state, oplithahuoscopy of, 239.
Morphine as a preparation tor anaesthetics, 775.
in tetanus, 933.
Morphine-habit, origin of, 833 , 839.

Motility, exaltation of, 460 .
Motion and heat, 258.
Motor areas of the brain, 564, 566.
disturbances, detcetion of, 453.
significance of, 453.
muscles of the eyc, paraly. sis of, 134.
tract locatod, 572.
of nerve-centres specially liable to dis. ease in childhool, 484.
specially liable to jorencephaly, 483.
Moulds of muscular contour 458.

Moutb, tapir's, 819.
Mouth-breathing as a habit, 39 , cure of, 38.
evils of, 38,39 .
in ehronio non-purulent otitis media, 31 .
underclothing in, 38 ,
Movement cure, 301.
diseases benefited by, 324.

Movements, associated, after infantile hemiplegia. 538.
elassified, 302, 304 .
concentric, 302.
eurative, 309 .
eccentric, s02.
medier-s, 302.
Swedish. See Swedish
Movements.
Muco-purulent ophthalmia, 85. See Ophthalmia.
Multiple cerebro-spinal scierosis, 495. See Scleresis. neuritis. See Neuritis.
Mumbs, eye-troubles following, 207.
followed by deafness, 40.
of lachrymal gland, 70.
return of ehililren to school after, 405.
Murder committed by children, 423.

Muscles, ebemical reactions of, 256, 257.
development of, by excreise, 257.
cerrelated to braindevelopment, 277.

In exe injure involu skil mecha of the struct thelr
posi tonielt velunt work
Muscle-stri
congenit
Muscle-wer
of detor:
Musele-wor
brain-wo
Muscular a
atroph

Museuler atrophy, primary, peroneal type of, 819.
reactions in, 820.
progressive, AranDuchenne typo $0^{\circ}, 822$.
hereditary type of, 821.
Leyden - Mäbius type of, 821.
thenar typo of, 822.
contour, roeords of, 462.
contractility, formule lor, 450.
dystrophles, progressive, 812.
impairment, detection of, 455.

Faralysis, pseudo-hypertrophie, 813.
Muscular-sense triset, 572.
Mussol-poisoning, oye-troubles die to, 232.
Mutisw, enuses of, 464.
Muybridge's etudies in animal motion, 264.
Hyelitis, 643. See also Menin-go-Myelitis, nad l'oliomyelitis Anterior.
after spinal hemorrhage, 668.
anntomical fentures of, 675.
canses of, 677.
eavitury, 644 .
elassiticatios. of eases of, 65^{9}.
sumpression, 644. See Mo-ningo-My elitis.
defined. 843.
dingnosis of, 672.
of varieties, 613.
discriminated from anterior polionyelitis, 674, 709.
from ecrebro-spinal fever, 172.
from locomotor ataxins, 674.
frous multiple neuritis, 673.
from multiple sclerosis, 673.
from other spinal disenses. 173.
from rhoumatism, 673.
from tetanus, 673 .
duc to pressure, 648.
electricity io, 681.
gencral or transverse, diseriminated fromanterior poliomyelitis, 709.
hemorrhagic, 676.
idiopathic, 662.
oases of, 662-665.
causes of, 662, 664.
infectious, 666.
its relation to other diseases, 644.
lesions in, 675.
limitations of the term, 643.
nature of, 677.
non-transverse, 45 .

Myelitis of the anterior cornua, distinguislied from the cerobral palsies, 48%.
ophthalmosoopic fentures of, 200 .
pathological anatomy ol', 675.
prognosis in, 677.
septic, hemorrhage in, 670. symptoins of, $6 ; 2$.
syphilitie, 665.
systemutic, dist'ngulshed from other locms, 644.
transverse, 457.
treatmont of, G82. Sce also Meningo-Myelitis, Treaturent of.
tubereular, libs.
varieties of, 643, 675.
Myelocele, 732.
Myeloputhies
distinguished
trom myopathies, 822.
Myographium, elinical, 462.
Myopathic atrophies, 812 . See Atrophies, Primary; nlso Mnscular Atrophy.
distinguished from neuropathie atropinies, 823. of the fuee, 819.
Myopathies dlstinguished from
myolopathice, 822.
Myopia, 1-12.
blindre tollowing, 368 .
C..uses of, $142,36 \mathrm{~S}$.
eomplications of, i 49 .
due to unsuitable desks, 358.
glasses for, 368.
herelity in, 36s.
in diphtheritic paralysio, 809.
in schools, 365.
mechanism of, 142.
ophthalmoscope in, 1.12.
strain in, 142.
symptoms of, 142.
irentment of, 143.
Myositis, degenerative, 824.
Myotonia congenita, 945.
awkwardness due to, 949.
canses of, 945 .
complieations in, 945 .
definition of, 045 .
description of, 949.
diagnosis of, 956 .
etiology of, 945.
heredity in, 915.
histological pecaliarities in, 946-949.
history of, 945 .
literature of, 951 .
mieroscony of, 9.16949.
movements in, 9.19.
museles in, 946, 948 .
pathology of, 946.
prognosis in, 950.
sex in, 946.
spasms in, 949.
stiffiness from, 9.49.
syinptomatology of, 949.
tetanic fcatures of, 949.
trontment of, 950 .
Myotonic reaction, 950 .

Myrlngitls, 15. Sem Membrana Tympani, Inflammation of. Mytilotoxine, eye-troubles due to, 232.
Myxoma of the bruin, 55%.

N.

Nrevns involving a part of the ehoroid, 183.
Ninnerede, Dr. C. B., on the operative surgery of thehrain and npibat cord, 748.
Nares in non-purulent elironle otitis medin, 31.
speculum for, 3.4 .
Nasal douche not nivisable in ehronie disease of ${ }^{\circ}$ the midulle ear, 3.4 . uso of, to be avoided, 39.
duet, anomalies of. 72 . obstruction of, 73
Naso-pharynx in chronio nonsuppurutive otitis media, 33.
Nature never perfeet, 215.
Near-slghtedness, 142, 368, See Myорін.
Nebula, cornenl, 107.
Neck at various ages, measurewents of, 252.
massage of, 328, 320.
Neck-rest position, 321.
Necrosis cornce, 93. of ossieles in chronic purulency of the attic, 28. of temporal bone, 4.
Needling of entaract, 150,
Negro, coojunetivitis astivalis in, 03.
Nsoplasm, intrneraniai, See Brain-Tumor.
Nephritis, eye-symptoms of, 209, 211.
from lead-poisoning, 622.
of measles, eye-fundus in, 220.

Nerve-atrophy, hereditary, the eye in, 203.
Nerve-fibres of the retina, abnormal transpareney of, 161 .
Nerve-injuries resulting in ehanges in cye-fundus, 206.
Nerve-lesions in arsenical poisoning, 603, 607, 610.
Nerve-sheaths of diak, retained, 161.

Nerve-symptons in tumors of pons and medulla, 57 fl .
Norvous eonnections between the teeth and the enr, 23. disenses, dingnosis of, 447. hereditary, 4.18. of children, 788. of school-children, 3413 . ophthalmoscope in, 181.
syphilitic, 590 . table of, 780.
headache, 831 .
prostration, 350, 352, 35.l.
symptoms due to cyestrain, 145.
system, diseases of, 447. effects of exercise upon, 276.

Nervous system in chllilren, peeuliarities of, 8144.
in hereditury syphills, 500.
in rickete, 4610 .
peripheral disenses of, 788.

Neurn!gia and healache, 8:IS. in children, 789.
intercostul, 792.
intractable, section of posterlor roots ef spinai nerves for, 786.
mature of, 149.
rare ln ir uncy, 150.
varieties , 451.
Neuralgias, poriphernl, masage in, 324.
Neuratgic pain from leadpoisoning, 620.
Neurasthonin in sehot-children, 350 .
Nouritis, nente, 701.
alcoholie, 795.
nscemling, 794.
ehronie, 741.
multiple, how distingulshed from prrimary mubcular atrophy, 823.
dingnesis of, 7145 .
due to compression me-ningo-myelitis, 6.17.
frow leud-poisoning, 621.
in arsenicul poisoning, 603, 607, 610, 612.
in diphtheritic paralysis, 809.
inlectiousness of, 705.
migrans, 79.1.
multiple, 709, 791, 795.
discriminated from hysterical hyperasthesin, 086.
from poliomyeli-
tisanterior, 760.
of cauda equina, 652 .
of fith nerve leading to hemiatrophy, 827.
of optie nerve and the ret-
ina, tramatic, 160, 172. optie, due to intrneraninl growths, 185. See Optie Neuritis.
paralysis from, 794.
peripheral, 744.
primary multiple, 795.
Neurogliar selerosis in epilepsy, 904.

Neuroma of the eyelid, 59.
Neuro-retinitis, See Optic Nenritis.
Neuroses, redex ocular, 145.
Newly-born, nerves of the, 865.
Nictitnting spusm, 801.
Night, pathology of. 993.
Night-blindness, 2:3.
Nightuare due to eye-strain, 145.
nature and cause of, 1017.
Night-terrors, $1008,1010$.
a form of mental aberration, 1047.
nge in, 1011.
attack of, 1010, 1011.
cnuses of, 1011.

Night-terrorn, central origin of, 1013.
ciasser of, 1013.
complleations of, 101%
description of, 1010.
alet $\mathrm{In}, 1016$.
digestion in, 1012, 101t, 1016.
epilepsy from, 1047. epllejtic, 1014.
fright a canne of, 1012. general health in, 1011 . hallucinathons in, 10i3. hysterienl, WHO, 992. idiopnthie, 1013. medieation in, 1016. names of, 1010 . nature of, lomo. prognosis in, 1015.
prophylaxis of, 1016.
significance of, 184, 101.1. sulyjects of, 1011.
symptomaitic, 1013.
synonymes of, 1010.
time of, 1010.
varieties of, 1013.
Nitrato of sllver for multiple sclerosis, 511.
for ophthalmia neona. torum, 81, 81.
Nitrogenous foods, 291.
Noctambulism, 992. See Somnambulism.
Nocturnal erises, nature of, 1000.
emissions, 1049. See Masturbation.
hysteria, 090.
Nodding apasm, 801.
Norfolk and Norwich Mospital, 411.

Nostril, closure of, its effect on hearing, 17.
Notre Dume Academy, hurning ef, 377.
Nurneley's forceps, 778.
Nursery, requirements of, 961.

O.

Oatmeal at breakfast, 837 .
Oljective symptoms of chil. dren's diseases, 447.
Jecipital deficieney, congenital, 736.
lobe, tumors of, 569.
meuingoeele, causes of, 735.

Occipito-frontal aponcurosis, wounds of, 749, 750.
Oceipito-sphenoidal angle in skull-defects, 734.
Ocular museles, disenses of external, 133. insufficiency in, 139. nystagmus of, 134. paraiysis of, 134. spasm of, 134. syphilitic paralysis of, 596, 507. neuroses, 145.
Edemn, massage in, 331. of cyollds, 55.
Ointment, Pugenstecher's, 53.
Oliver, Dr. C. A., on opbthalmoscopy, 158.

Oaanism.
One leg, 8 t
Unyx, 106.
Opacities 166.

Opacity of 110.

0 pen air 281, 282.
Operations eplinal co Operative eranial g
Ophthalmia ehronle contagi eroupel

Onaniam. Siee Masturbation. One log, standing on, 355. Onyx, 10.
Opacities of retina, ahot-silk, 166.

Opacity of cornen, congenital, 119.

Open air for young ohilliten, 281, 282.
0 perations on the bruin and apinal cord, 748.
Operative removal of intrieranial growthe, 190.
0 phtialinia, 77.
elirunic, 91.
contagious, in school, 10°. oroupous, 95.
relation of, to diphtheritio ophthaluilu, 98.
diplitheritic, 96.
bactoria of, 96 .
onuses of, 96.
oontagion of, 90.
dingnosia of, 37.
diseriminated from eroupous ophthaimin, 90.
etiology of, 96 .
pathology of, 96 .
syinptoms of, 97 .
kynonymes of, 96 .
treatuent of, 98.
Egyptian, 88. See Oph-
chatinin, Granular.
exanthetantous, 85,86 .
follieular, 87.
treatment of, 88.
gonorrhenal, 77.
granular, 88.
bacteria of, 89 .
causes of, $88,89$. contagion of, 89,90 . definition of, 88. dingnosis of, 90 . etiology of, 88. granulations in, 89. mersuric chlorido in, 90.
nanes of, 88 .
pannu lue to, 90.
progn s of, 90 .
race r a factor in, 88.
sequela of, $9{ }^{\prime}$.
symptoms of, 89.
synoaymes of, 88 . treatuent of, 90.
muco-purulent, 85.
baeterin of, 86 .
causes of, 85 .
definition of, 85 .
diagnosis of, 86.
infection of, 86 .
prognosis of, 86 .
pterygiun superius after, 86.
synonymes of, 85 . treatment of, 86.
neonatorum, 77.
adherent leucoma after, 80.
anntomical featares of, 79.
antisepsis for, 81, 82.
atrophy of eye in, 81. atropine in, 84.

Ophthalmin neonatorum, bace teria in, 78.
blindnesa following, $8:$
cintarnet, pyramiant, after, 80.
causes of, 78.
complientions of, 80.
congenital origin of, 78.
conjunctiva in, 81, 83, 84.
cornea in, 80 .
didinition of, 77.
diugnosis of, 81.
disoriminated from eroumas ophthalmia, 95.
effueta of, 80, 82.
eserine in, 8.
etiology of, 78.
gопососеия in, 78, 79.
ice-treatment of, 83.
inoculation of, 78.
leucomin following. 80.
nitrate of silver treatreent of, 84.
onset of, 79.
panophthaluitis 81.
pathology of, 79.
prognosis in, 82.
prophylinxis ol, 82.
pyranidal cataract following, 80.
scason of the yoar in, 79.
sex ar a factor in, 79.
stages of, 79.
staphyloma following, 81.
statistics of, 82 .
symbiepharon following, 81.
symptoms of, 79.
synonymes of, 77.
trentment of, 83. prophylaetic, 82.
uleerated cornes from, 80.
vaginal dischnrges a chuse of, 78
phlyctenular, 93. See also
Keratitis, Phlyctenular.
purulent, 77.
pustular, 91 . See also
Kerntitis, Phlyetenular.
return of childrea to school alter, 405.
scrofulons, Y3. See also
Keratitis, Phlyctenular.
Ophthaimoplegin externa, 135.
Ophthaimoscope, how to ase, 159.

Ophthalmoscopio features due to quinine-poisoning, 230.
due to nilver-poisoning, $2: 33$.
due to toxics, 230.
signs of approaching dis. solution, 239.
symptoms of heart-diseases, 177.
Ophtha'moscopy, 158.
in aortic insufficiency, 177.
in cerebral anemia, 184.

Ophthatmoncopy in cerchro-甲ihnal meningitts, 191.
In eongenital oyunosis, 177.
in Friedreich's ataxia, 211.
In hematomar of the do : mater, 192.
In insolation, 101.
In intrucraulul nbscess, 191. aneurism, 191.
in leptor-meningitis, 193.
in meningitis, 191-193.
in migruine, 100.
in mitral disense, 177.
in myopia, 1:2.
in prachymeningitis, 192.
in simple internal hydiro-
cephislue, 192.
in syph'litio meniugitis, 194.
in thermie fever, 10.1.
of brain-disoriters, 184.
of eholera, 224.
of ehorea, 196.
of diengue, 224.
of clinbetes, 224.
of iliphtheria, 210.
of disenses of the repro-
ductive orgubs, 212.
of enteric fever, 217.
of epilopsy, 197.
of erysipelas, 222.
of exunthematous diseases, 210, 221.
of exophtinulmic goitre, 205.
of gastrio dlscuses, 207.
of glaucomn, 233.
of glycosuria, 22.
of Graves's disensu, 205.
of hemeralepin, 230.
of hepatic disease, 207.
ol hereditary optie-nerve
atrophy, 203, 204.
of hysterin, 214.
of idiocy, 199.
of imbecility, 109.
of intestinal disenses, 207.
of kidney-disense, 208.
of lead-poisoning, 232.
of leprosy, 229.
of lesions lependent npon special dyscrasia, 217.
due to salicylic acid, 231.
due to tobaceo, 231.
of liver-lisense, 207.
of malaria, 222.
of measles, 220 .
of menstrual disorders, 212.
of miliary tuberculosis, 227.
of mumps, 207.
of nervous lisenses, 184.
of night-blindness, 236.
of parotitis, 207.
of pertussis, 221.
of rellex disense of the eye-
fundus, 206.
of relapsing fever, 218.
of renai disease, 208.
of retinitis pigmentosa, 234.
of rheumatism, 222.
of rubella, 220.
of scarlet fever, 218.
of selerosis, 203.

Ophthalmoscopy of mall-pox, 221.
of apinat-cord dinemsen, 20t.
of symptonsatio disorilers of tho interior of the eye, 177.
of syphlilis, 226, 227.
of tubes dorsalis, 201 .
of typhus, 218.
of uriemie poisoning, 210 .
of varieelin, 221.
of varioia, 221.
of wl. pring-cough, 221.
ot yellow fover, 223.
Opistes in myelitis, 679.
Opinthotonns in hystero-epilepsy, 974.
Optic nerve, atrophy of, 2033.
See Atrophiy.
colohoma of sheaths of, 163.
implicated by extension in inllammatory processes, 171.
in general anwuia, 181.
in pernicious anmemia, 182.
massinga, 161, 162.
sarcolin of, 174.
tuberele of, 229.
tumors of, 174.
vascuiar distribution to, 163.
neuritis, binocular, 185.
cuuse of, when it necompanies brain-fosions, 184, 187, 189.
cansed ly masturbation, 21.1.
elinical history of, 187.
degenerative changes in, 188.
due to intracranial an. enrism, 191.
to intrnermial growths, 185.
from intracranial the nor, 551 .
in remingitis, 491.
its value as a diagnostic sign of brainlesion, 189.
ophthalmoscopie nppenrances in, 188.
prognosis in, 190.
progress of, 190.
traumatic, 169, 172.
treatment of, 190.
types und stages of, 188.
unilateral, 186.
visions in, 189.
with intracranial abscess, 191.
thalami, tumors of, 574.
Oral examination of children, medico-legal, 135.
Orbit, acquired anomalies of, 121.
cellulitis of, 123.
cysts of, 123.
disenses of, 120.
osteoma of, 121.
sections of, 122.
tumors of, 123.

Orbit, vancutar disemsen of, 123.
woundi of, $169,172$.
Orbital inflammations involving the optie nerve and retina, 171.
tuberculosis, 121.
walls, nhoormalities of, 121.
Osnieles of the ear, 3.
ankylonis of, 48.
linnotions of, 18.
impuired motility of, 48.
in chronic non-Huplurative otitis media, 32.
in purulent otitis medin, 26, 28.
necrosis of, ill chronic pura. lency of the attie, 28 .
Osteoma of brain, 554 .
of orbit, 121 .
Osteo-myeifis from bone-contusion in sealp-wounds, treat. usent of, 751 .
Ostitis of petrous bone, 4.
Otitis exterma diffusn, 12.
treatment of, 13.
interna, primary, 42.
myphilitien, 42.
labyrinthica, 11.
modia, neute catarrhal, 18. neute jurulent, 23.
curses of, 2:3.
due to teching, 2!3.
from exanifienatons dinease, 23.
from exposure,
o. anulations in, 25.
of rellex orfgin, 23.
results of negleet in, 25.
trentment of, 24.
acute symptoms vecurring in chronic
cases, 30.
air-bag in, 19.
oltronic, ntomizer in, 35.
ntrophic form of, 36.
catar.ranal, adenold growths in the naso - pharyax with, 33,37 .
enuge of, 33.
deaf-moteness in, 36.

Dobell's solution for, 34.
earache in, 37.
Eustachian tubes in, 53.
examination of, 34.
inflation of mid. die car in, 35.
paresis of velum paiati in, 33.
treatment of, 34.
of carache in, 37.
chronie maco-purulent, 21.
chronic non-purulent,

Otitla modia, chronio non-puru. lent, cerumen in, 82.
deafners in, 81.
effects of, 32.
Eustachion tubea in, 31.
hearing in, I_{1},
heredity in, 32.
membranioin, 32.
naso-pharynx fin, 33.
onset of, 81 .
osmicles in, 32.
pathology of', '31.
pharynx in, 3:1.
bymptoms of, 31.
velum pulati in, 33.
chronie purutent, cnuses of, 25.
eflects of, 25, 26.
lotione for, 27.
perforntion in, 25.
signa of, 25.
treatment of, 21, 21.
from fooil, ete., forted through the linstu. chinn tubee, 18.
in eariy infincy, treatment of, 18.
polypi in, 25.
spraye for nares in, 35, 36.
temperature of room in, 20.
tonsils in, 35, 37.
treatment of atrophic cnses, 36.
with epilepsy, 451.
Otophonc, 36, 47.
Otorrhoa from neglectel otitis, 14.

Over-excrcise in infaney, 281.
Overflow of tenrs, 71.
Over-stimulation in sehool, 345 .
Over-study a cause of consump. tion, 354.
Over-training, ill effects of, 280, 286.

Overwork in sehools, 344, 345, 354, 788.
muscles in, 280.
Owen's method of nir-nnalysis for carbonie aeid, 392.
Oxygen, demand for, during exercise, 275.

P.

Pacchionian bodies, rarity of, in childhood, 758.
Pachymeningitis from carics, cervieal, 650.
hæmorrhngica, 527, 528. syphilitic, 531.
of the spinal cord, $78{ }^{-}$. enonression from, 647, CIS.
opithidinoscopic features of, 182.
Pagenstecher's ointment, 53.
Pain, how estimated, 449.
in hend, significance of, 450. See 11 eadache.

Pain in P cancen of, l'uint, arae l'alatal aro deform
ies,
Painles, bir cerebire Puis
]'aluini fo
pie foutn
Pannas fro min, proriton phiycte
Panophthal neomatort
Paplititis In
Yapilioma o
p'urucentesl
tympani,
Paralalin, 4
l'arulysen, d
trleit
diagnes eni di
I'aralysis, a
See
rior.
agitans
chore
Bell's, 8
noill
cercbral
rell
diphthe
dia
ye
freg
mas
pat
prop

stat
ByII

trea
due to la
facial, si
cau
con

oleg

lesig
mun
pros
sy 142
tren
feigned
from ar
603, 6
from bra
from lea
from ne
from l^{3}
648.
from $\left.{ }^{8}\right]$
669.
from tul

Paln in Potl'in diseaso, slgnifi. cunen of, 653.
puint, arsenimai, 811.
Palatal areh in liliocy, 1027.
doformity in cerebral pil. slos, 511.
Painies, birth-, 5ils. cerobral, 474. See Cerebra' 1'ninien.
Paludal fevers, oplithalmoseoplo feutures of, 22:.
Pannus from granular ophtialm’ㄱ, 90 .
perltomy for, 153.
phiyctenular, 104.
Ponophthatmitis in ophthatuis neonatorum, 81.
Papilitils in brain-tumor, 559.
papilloma of brain, 554 .
Puranentesis of membranas tympani, 22, 26.
Puralalin, 403.
Puralyses, detection of, by eleotricity, 457.
diagnosis of, from hynteri-

Paralysis, aoute atrophic, 68:3. See Pullomyolitis Antorior.
agitans diseriminated from choren, 500.
Boll'm, 804. See Paralymia, Ficial.
cercbrai, 479. See Cerebral Palsies. reflexos in, 567. diphtheritic, 808. dlagnosis of, 808, 810. clectricity in, 8]0. eye in, 219, 809. frequency of, 80 s . lesions in, 804. mussarge in, 330. myopia in, 809. pathology of, 809. prognosis in, 810. spinal meningitis in, 661.
statistics of, 808 . symptous of, 809. thrrat in, 809. treathent of, 810 . voico in, 809. due to lead-poisoning, 626. facial, 804. eaunes of, 804, 805. congenitni, 804, 806. clectricity in, 305, 800.
lesions in, 804, 805. museles in. 806 , prognosis in, 804, 805. sympitoms of, 804,805 . treatment of, 805. with tetanus, 918 .
feigned inysterical, 980.
from arsenieal poisoning, $603,607,610,614$.
from brain-tumor, 567.
from load-poisoning, 622.
from neuritis, 794.
from Pott's disense, 646, 648.
from spinal hemorrhage, 669.
from tumor in the Sylvian fissure, 571 .

Paralysis, hymterieal, 9711,081 , 483.

In F'rielrelch's atnxia, 720.
In meningo-myelitis, 619, 651 .
In multiple corebro-zininal nclerosis, 501.
in tubercular meningitia, $515,519$.
infantile, 456,457, AR3.
Sice also l'ollomyelitis Anterior.
filiocy following, 10:12.
spinul, masange in , 33 3, 130.
minetle, 804. S'ee Praralysls, Fucint.
multiple, 701.
of oyo-miseles, 1.35
of meningo-ingelitis, treatment of, 182.
of thiril nerve, 135.
periodical oculo-motor. 807.
peripheral, 80:
pendo-hypertrophle muscular, $457,814$.
anator il foatures of, 816.
atroply of muscles in, $81.1,816$.
catuses of, 812.
compilientlor:s of, 815.
doformities from, 815.
degenorative clanges $\ln , 816$.
diseriminated from Jirb's juvenile atropliy, 818.
electrical reactions in, 815.
essential nuture of, 816, 817.
etiology of, 813.
fatty logenerations in, 816.
gait in, 814.
hercdity in, $813,810$.
hypertropily of museles $1 \mathrm{n}, \mathrm{S} 13$.
knee-jerk in, 815.
lorilosis in, 81 .
mental symptoms in, 815.
museles in, 813, 816 .
names of, 813 .
nerve-losions in, 81 B.
nerve-symptoms with, 815.
patbological anatomy of, 816 .
posture in, 814.
pseudo-mphasia 815.

1 ctions in, electrical, -15.
sexes in, 813, 816.
sy inptoms of, 813 .
synony - ₹ of, 813.
reflex, 807.
circumcisín for, 807.
from mafturbation, 808.
from phimosis, 807.
regressive, 683. See Polio-
myelitis Anterior.
rheumatic, 794.

Paralysin, upinal, significance of, 172.
nyphilitle, 591, 595, 590. temporary, in pollomyelitia unterior, 697.
toxie, 7 IH.
Paraiytle lillocy, 1032.
P'uranoia, 1013.
I'araphasia from braln-tumor, 571.
frout violour training. 163 ,
D'arnplegin. See Corebral laiнен.
epillepry in, 540.
filse racbitic, 1000.
from hereditary yy_{j} hillis, 505.
from l'ott'e ilisease, 6.16, 018.
hereditury alaxic, 725.
in cerebral palaiex, 511.
in Friedreloh's ataxia, 720. infintlle, 157.
Parasites In the eyo, 238.
Jarental responsiblijiy, 4.30. rights, forfeiture of, 129.
Pareais due to myellis, B48.
l'urotitla, ophthalnoscono in, 20%.
Parsons's disinfecting solution, 3.12.

Partial hydrocephalus, 475.
lartleipution in orime, Infantile, 425.
1'urtitions of hospitals, 417.
l'athogenesis, naturo of, 333.
l'avilion stylo of hospitals, 410 , 111.

Pavor nocturnus. See NightTerrors.
l'eculiarities of vaseular distribution to the optio nervo and retina, 163 .
l'edagogle gymuastics, 302.
l'ediculi in the eyebrows, 53.
'ediculus pubis, 53.
Pelvic orgitns in diagnosis, 464.
1'emphigns of the cornen, 100 .
l'eudulum-movement of the leg in walking, 265.
P'enmanshij' systems, faulty, 361.

Pentuthlon of the Groeks, 274.
lerchloride of iron as a disinfoctant, 342.
Pcrcussion in massage, 327.
Periceratic hypertropliy, 92.
Period when return of children to school may be permitted after contagious disease, 404, 405.

Periodio amblyopin, 223.
Periodical oculo-motor paralysis, 807.
Periosteal elevator, 754.
Peripheral nervous disenses, table of, 789.
nervous system, diseases of, 788
neuralgias, massage for, 329.
neuritis, 794. See Neu. ritis.
paralysis, 803.
spasm, 796. See also Eelanpsin.
Peritomy, 153.

Permanent Irninage of cerebral ventricles, 782.
l'ermanganate of potassium as u disinfeetunt, 342.
l'eroxide of hydrogen as a oleanser and n test tor pus, 29.
Persistent fetal vessels of the retinn, 164.
Personnl history, ehart of, 2s6.
hygiene, : 43.
Personnlity, nature of, 427.
l'ertussis, ophthalmoseopical features of, 221 .
with convulsions, 577 .
Petit mal dilforentiated from hemiernnia, 792. prognosis in, 907. symptoms of, 899 .
Pétrissnge, 32 ī.
P'atrous bone, disenses of, 4.
l'hnryngen tonsil, 17. vault, frneture of; 762.
Pharynx in ehranio non-suppurntive otitis media, 33.
Phimosis causing reflex parnlysis, 807.
l'hlebitis from hen't-disease lending to retinal venous thrombosis, 179.
Phlegmonous inflammation of the eyelids, 56.
Phlyctea pallida, 92.
Pblyetenular conjunetivitis, 03. Né also licratitis, llabetemular.
keratitis, 93 , 603. See Keratitis, J'hlyetenular.
pannus, 104.
uleer, 104.
Phosphorns for multiple selerosis, 512.
Photographic studies of animal motion, 264.
Photographs of gymnasts, 371.
Phthirinsis palpebrarum, 5 3.
Phthisis in sebool-chilitren, 352.

Physienl and mental excelleneo correlated, 278
culture, 250, 255.
in eolleges, 286.
development, 211.
eduention, 288.
examiantion of children, medieo-legnl, 438.
of student., 287 .
exercise for deformity, 324 .
training, historic exnuples showing its benctits, 27. See also Exercise.
cautions regarding, 280.
in reformat ries, 43 t.
in sehools, 369 .
of girls, 296.
Physicians, testimony of, 444.
Physique, molern, is eomparison with that of tho uncienta, 24t.
of sehool-children, 349.
Piers of the foot, 263.
Pigment-deposits on the disksurthee, 160.
Pigmentation of the choroid, abnorual, 160.

Pimples of the conjunctivn, 94. See also Keratitis, I'hlyotenulnr.
link-eye, s6.
Plating out the ehildren of reformatories, 431 .
objections to the system of, 432.
Plans for howpitals, 410 .
Plnntar areh. 263.
Plastering of hospitals, 418.
llay, benetits of, 372 .
for sehool-girls, 347 .
in infaucy, 2s].
Plays, chassified, 282.
l'lexiform neuroma of eyelid, 59.

Plogs of wnx or epithelium in the ear, 11.
llumbing for hospitals, 415. for schools, 397-4122.
Pneumonia, convulsions in, 873.
its diserimination from thbercular meningitis, 521.
loints of determination in motor disturbnnees, 453.
in sensory disturbnnces, 449.
Poisoning, ursenieal, 590. See Arsenieal Poisoning.
by nir or wnter, 394.
by lend, 615. See Lend-
loisoning.
Poisons lending to nervocs disease, 616 .
lolioencephalitis ns n enuse of infintilo pulsies, 544.
(true and so-called), 482.
loliomyelitis nnterior, is3.
acute chses of, 691.
furms of, 691.
nge at onset of, 685
unatomical changes in, 704.
anterior cornua in, 705.
npparatus for, 713, 714.
arrest of growth in, 708.
atrophies from, 699, 703, 707.
bones in, 699, 707 .
bronchitis following, 715.
oare of putients with, 715.
enuses of, 68.1.
cerebral pulsics compared with, 708.
charmeteristics of, 707.
chronic stnge of, 69:3.
type of, 692.
cireulation in, 699.
club-foot from, $\mathbf{7} 12$.
tabulated cares of, 703.
congenital, 684.
contagious nature of, 689.
contractions nfter, 702, 703.
convulsions in, 695, 880.
cord-lesions in, 704.

Poliomyelitis nnterior, comnter irritation in, "l". crutches for, 71.1. defiation of, tis:3. doforuities nfter, 702 tubulnted, 703. dentition ns a canse of, 690.
dingnosis of, 707.
discriminated
from birth - palsies, 710.
from cerchral palsies, 708 .
from diphtheritio paralysis, 709.
from genernl or tranaserse mye litis, 709.
from hip-joint lis. ease, 710 .
from intraspinal hemorrhinge, 710
from multiple neuritis, 709.
from myelitis, 674.
from progressive mascular atrophy, 709.
from spustic paraplegin, 710.
electrienal changes in 703.
renctions in, ios.
tests in proghosis of, 711.
electricity in trent ment of, 712.
epidemics of, 687.
ergot in, 712.
eticlogy of, tist.
exercise in, 714.
faradic current in diagnosis of, 7 713.
fever of, $689,694,695$ 707.
galvanie eurrent in diagnosis of, 70.4 .
heat as a cause of, 18%
in the treutment of, 314.
bemiplegia in. 698.
heredity in, 685.
history of, 683.
of enses of, bill.
ice-bng in, 712.
infection of, 680.
initinl stage of, 693
invasion of, 691, 692, 693.
joints in, 609.
lecehing in, 712.
lesions of the spinal cord in, 704.
limb-shortening in 699.
massnge in, 330, 713.
medication in, 712, 714.
mieroscopic lesions oi, 704-707.
muscles nffecterl in, 700.
museular ntrophy in, 699, 703, 707.

Soliomyeliti

Poliomyelitis unterior, names of, 683.
normal elcetrie reactions of museles, 704. nutritive elanges in, 609, 703, 707.
onset of, $601,692,693$, 70 s.
over-exereise a chuse of, 690.
paln in, 700.
paralysis in, 1691, 692, 69.i, $700,701$.
paralytic symptoms in, 701.
pathology of, 704.
primary lesion of, 707.
prodromes of, 093, 894.
prognosis in, 710.
reflexes in, 704.
regression of pnralysis in, 693, 696, 609, 708.
sobedulo of paralytic symptoms in, 701.
sclerosis in, 706.
senson of year in, 685 second nttacks of, 697.
sequele of, 702.
sex in, 685.
shortening of limbs in, 1991.
signs of, 457.
sphincters in, 700.
spinal cord in, 70.4 .
stiges of, 693, 712.
subncute eases of, 991.
symptoms of nente, 691.
of chronie, 692.
of, in detail, 693.
of résumé of, 708.
of, schedulod, 701. of subuente, 692.
ononymes of, 683.
.emperature in, cansation of, 680. of paralyzed parts, 699, 703.
tendons in, 707, 713.
tenotorny in, 713.
traumatism as a cause of, 1990.
trentment of, 711, 712. upper-irm paralysis in, 700.
varieties of, 681.
various typers of, 690.
vormifuges in, 712.
wasting atter, 609, 703.
worms in, 712.
Politzer's nir-bag, 19.
Polyp-snare for the ear, 25.
Kons Varolii, tumors of, $5 \pi 6$.
cases of, $578,579$.
Poor-houses, contmminating influence of, 428.
Poreclnin stoves for hospitals, 414.

Porcneephnlus, 474, 481.
analysis of a ense of, 736741.
unatomienl fentures of, 730-738.
basilnr kyphosis as a factor in, 730.

Porencophalus, causes of, 535, 738.
congonital, $7: 16$.
detinition of, 482.
description of, 482 .
diseriminated from cortical ugenesis, 546.
donble, 739.
etiology of, 738.
illustrations of, 737, 738.
limited, 540.
origin of, 483 .
pnthological anstomy of, 736-738.
sents of, 483, 484.
symmetricn, 730.
unilateral, 740.
unknown in adult life, 483.

Positions in gymnastics, 304.
select, for exereise, 318.
Post, Dr. A., on affections of tho nervons system in liereditary syphilis, 590.
Post, Dr. Sarah J., nud Dr. MoNutt, on structural abnormalities of the brain and cerd, 728.
Post-natnl persistence of the hyaloid nrtery, 161.
Post-variolous ulcers of the eyelid, 55.
P'osterio. roots of spinal nerves, section of, for neuralgin, 786.
staphyloma, 142.
Posture in writing, 364.
l'otassiun permanganate as a
disinfectant, 3.12.
Pott's tlisease, bed in, 794.
diagnosis of, by the nttendant nouralgin, 793.
intorcostal neurngia in. 792.
mediention for relief of, 79.1.
moningo-myelitis froul, 645 .
neurnlgia of, 792.
pains of, 793.
paraplegia from, 646.
pesture in, 793.
prophylaxis of, 793.
sedatives $\mathrm{in}, 793$.
treatment of, in tho
neuralgie stage, 793.
vertebral fracture in, 61t.
Ponltices to the enr condemned, $13,19,24$.
l'redisposing conditions of diseaso, 33l.
Pregnaney, eheren in, 844.
Pro-hehrymal abseess, 73.
Premature birth, eare of chilil nfter, 548 .
l'ressure-points in hnbit-spasm, 802.
l'resumption of innocence in chilitren, $122,424$.
Prevention of crime, 422.
of juvenile crime, public methods of, 426.
Preventive medicine, $: 332$.
Primary mascular alrophies, 812. See Atrophies.

Primary schools, 3.15.
Princo's pulley-operation for strabism:ns, 156.
l'risms for measurlng insufficiency, 140.
Prisons, contaminating inlluenee of, 428.
Pritcharll, Dr. W. 13., on multiple ecrebro-spinai selerosis, 495.
l'rivate reformatories, 430.
Privy-vaults, construction of, 396.
disinfoction of, 342 .
Probe, aluminiom, 765.
Prognathism in deformed skulls, 734.
Prugrescive lineial hemintrophy, 795.
muscular ntrophy diseriminated from anterior poliomyelitis, 709.
dystrophies, 812.
Prolapse of lachrymal gland, 70.

Prophylaxis by disinfection, 333.
detinition of, 332.
metheds of, 336 .
of disense, 332. (See also under the names of various diseases in this index.)
principles of, 332.
Proportions of the human body, 242, 251.
of the male bedy at various ngos, 28.
Prosencephalon, absence of, 728 .
I'rostration, nervons, 350,352 , 351.
l'rotection agninst disense, 332 , 334.

Psammoma of brain, 554.
Pscudencophimion, 728.
I'seudo-hypertrophie musenlar paralysis, 813.
I'seudo-paraplegia, rachitic, 1001.

Psychienl onanism, 1051.
P'syohioally defective infants, 449.

Psychoses of childhood, 452.
l'syehosis, masturhational, 1047. 104!.
1'terygimm, 102.
superius, 86.
Ptomaines of tetnuus, 922.
Ptesis, eongenital, 66.
in multiple eerebro-spinal sclerosis, 500.
lipomntosn, 58.
Puberty, exercise and, 276.
eyes nt, 145, 146.
girls ut, 297.
in the eivil lnw, 422.
insanity at, 4.52.
mental disturbances at, 1019.

Publie sehuol gymnasties, 372.
supervision of ehaldren placed ont from public institutions, 432.
P'uerperal mania with ehoren, 8H.
Pulley-operation of Prince for strabisuus, 156.

Pulsations in the retinal bloodvessels, spontancous, 160
Pulse during exercise, 275. while standing, sitting, and lying down, 275.
Puncta lachrymalia, anomalies of, 71.
Punishment of ohildren, 1006.
l'unishments in reformatorics, 434.
in schools, 374.
Pupil, artificial, 154.
displacement of, 124.
of the eye in diagnosis, 464.

Pupillary membrane, persistence of, 124.
Purpura hemorrhagica, ophthilmoscopio features of, 183.
Pus in the ear detected by the use of peroxide of bydrogen, 29.
in the middle ear of young infants, 18.
Pustular kerntitis, 103. See Keratitis, Phlyctenular.
ophthalmia, 94. See also Keratitis, Phlycterular.
Putnam, Dr. C. P., on tho disorders of sleep, 1008.
Putnam, Dr. J. J., on toxic affections from arsenic nod lead, 599.
Pyramidal cataract after ophthalmia neonatorum, 80.
Pyromania, 1052. in childhood, 452.

Quadrilobular brain, 729.
Quetelet on ancient and modern development of the human body, 244.
views of, ss to the standard of human symmetry, 247.

Quinine, controlling drugs should be given with large doses of, 45.
effects of, upon the eye and vision, 230.
upon the internal ear, 44.
in snppurative meningitis, 492.
R.

Rabbit's cornea, transplantation of, 110.
Race us a factor in granular ophthalmia, 88.
as affeeting stature, 251.
Races of man, classifieation of, 242.

Rachischisis, partial, 733. posterior, 732.
varieties of, 730 .
Rachitic pseuds-paraplegin, 1000.

Rachitis, convulsions with, 866, 867.
diagnosed from hystoria, 1000.

Rachltis simulating other diseases, 1000.
Radiators in hospitals, 414.
will not ventilate, 390 .
Rain-wnter pipes, 398.
Ralfe's table of food-values, 291.

Rape, capacity of a cbild for committing, 425.
genitals after, 439.
gonorrhoer after, 444.
sperinutozon as a sign of, 439, 440.
what constitutes, 441.
Raphael of cats, 1023.
Ratio of fresh sir required by children as eompared with adults, 379.
Rat-toothed forceps, 767.
Reastion, myotonic, 950.
Reelamation of juveniie offenders, 422, 426
Records of muscular contour, 458.

Red softening of thespinal cord, 676.

Reflex netion in chiliren, 864.
changes in the retina, 206 , 208.
ocnlar neuroses, 145.
paralysis, 807.
phenomena due to foreign body in the enr, 10.
uvular, abolition of, 910 .
Reflexes after cerebral hemorrhnge, $537,538$.
ascertainment of, $454,459$.
in multiple cerebro-spinal sclerosis, 501.
in neuritis of cauda equina, 652.
in spinal meningitis, 653.
loss of, $454,459$.
Reformatories, apprenticeship from, 432.
corporal punishment in, 434.
cottage system of, 431, 432.
denominational, 430.
diseipline in, 434.
evils of a life in, 431, 432.
for children, 429.
for young men and youth, 429.
handierafts taught in, 433, 434.
manual training in, 433.
on the cottage system, 431 . pliysical training in, 434.
placing out children from, 431, 432.
private, 430.
publie, 428.
punishments in, 434.
religious training in, 430 , 432.
sectarian, 430.
state supervision of private, 432.
studies suitable for, 433.
trades taught in, 433, 434.
woman's inflnence in, 434.

Refruction, 140

Registration of knee-jerk, 459. of muscular contours, 458. of tremor, 461.

Regression of paralysis in pioho myelitis anterior, 693, 696, 699.

Regressive paralysis, 683, See Polionyelitis Anterior.
Regulations for preventing the spread of contagions dis. eases, 403, 407.
Reid's base-line, 771.
Relnpsing fever, ophthalinos. copy of, 218.
Relative size of the members, 242.

Religious trnining, reformatory effeet of, $430,433$.
Renal disease. See Kidneys. eye-symptoms of, 209, 211.
its relation to eerebral ${ }^{1}$-3morrhage, 530 .
ophthalnoseopic features of, 208 .
Reproductive organs, the relation of their diseases to various eye-symptoms, 212.
Respiration during exercise, 274, 275.
nasal, 17.
Responsibility, moral, age of, 422, 424.
of the parents of delioquent children, 430.
Rest at tho menstrual period, 352.
in treatinent of spinal curvature, 357.
Retina, breakage of, 167.
capillary aneurism of, 225, note.
damaged by direct solar rays, 170.
detached, 168.
detachinent of, with renal disease, 211.
glioma of, 175. See Glioma,
implicated by extension in
inflammatory processes, 171.
in Bright's disense, 209, 211.
in cerebral disease, 158 .
in general ancemia, 51.
in pernicious anæmia, 181, 182.
ischemin of, 179.
observations on, 158.
penetrating wound of, 168 ,
persistent embryonic features of, 164 .
refex origin of lesions in, $206,208$.
sarcoma of, 176.
shot-silk opacities of, 166 .
tubercle of, 227, 229.
vascular distribution to, 163.

Retinal arterial dilatations as sociated with aneurisu, 181.
srterios, spontaneous pul. sations in, 166 .
in general amemia, 181.
in pernicious nuemin, 182.
arterio-venous communication, 166.

Ketioal bloo
a
effects rhage embolis hemorr
ree
pulse goitre
thrombo
vessels,
in the
Retinitis.
of Brig
211.
pigment
syphiliti
with ski
Retro-bulbar
amaurosis,
Reynolds, S
typical for
Rheumatic
oriminatio
Rheumatism
850.
diserimi
litis, 6
ophthalt of, 22

Rhinismus,

Rhotaoismus
Ribled ehai
312, 313.
Rickets a cal
drocep
age in,
beaded r
diagnosi
frequenc
nerve-co
rib-bead
rosary of
signs of,
statistics
sympton
with ecla
with la
ment
Rigidity of t
menin
of the l
ningit
Riaging in t
tom of otit
Rivinus,'segt
Roberts on t
of boy
on the 1
Roberts's tab
developmer
284.

Rolandic fiss
773.

Romberg's
aance of, 5
Rongeur, Ho
Roots of host
Rosary, rach
Roseola, reti
school after
Rotary seiz 97 S .

Vol.
members,
min, . 31. næmia, 181,

3 communica-

Ristheln, eye in, 220.
return of pupils to school after, 405.
Rontine of a sehool-day, 373, 374.

Rowing advantagoous to students, 278.
physics of, 269.
preparetion for, 295.
Rubella, rundus osuli in, 220.
Rubeola fundue oculi in, 220.
Ru if's statistics of heredit. y $8 y_{1}$ hilis, 590 .

Running av an exercise, 290. physies cf, 268.
Rupture of choroid from conirecoup, 166.
Ruttan system of heating and ventilating, 389.

s.

Sachs, Dr, B., on eerebral hemorrhage, thrombosis, and embolism, 525. on ohoren, 840.
Saddle, deformity due to the, 281.

Sago-grains in ophthalmia, 89.
Saint Vitus's dance, 840. See Chorea.
Salaam eonvulsions, 801.
Salieylic neid as a cause of eyetroubles, 231.
effects of, upon the internal ear, 44.
Saltatory spasm, 801.
Sanitation, 335.
methods of, 336 .
Santonin as a cause of eyoimpairment, 232.
Sarcoma causing meningo-myelitis, 655.
cerebral, optic-nerve lesions in, 186.
pathology of, 553.
seats of, 551.
of ehoroid, description of, 172, 173.
discriminated from subretinal effusion, 172.
symptoms of, 172, 173.
of eyelid, 50.
of optic nerve, 174 .
of retina, 176 .
Sargent on physical education, 288.

Saw, Hey's, 752.
Scalds, eonvulsions from, 878. Scalp-wounds, 748.
contused, bonc-losions in, 751.
local trentment of, 750.
with osteo-myelitis, 751.
dressing of, 749.
examination of, $7 \$ 8$.
hemorrhages from, 749.
ineised, 748.
constitutional treat. mint of, 750.
necrosis in, 750.
suppuration in, 750.

Scalp-wounds, incised, treatment of, 749.
lacernted, local treatment of, 750 .
tube-drainage for, 750.
Scarlet fever, contagion of, 406. convulsions in, 889.
deaths from, 406.
disense of labyrinth in, 43.
ophthalmoseopic features of, 218.
return of pupils to school after, 404, 405.
statistics of, 406, 407.
Scelotyrbe, 840. See Chorea.
Scholarship vs, health, 346 .
Sohool and dyspepsia, 348.
ve. "soeicty," 347.
Seliool-books, type for, 366.
School-children, chorea in, 350.
epilepsy in, 350.
food of, 837.
lateral spinal curvaturo in, 355.
nervons diseases of, 788.
neurasthenia in, 350 .
physique of, 349.
Sehool-day, routiae of a, 373, 374.

Sehool-desks, 356, 358.
School-girls, backache of, 351.
health of, 346 .
menstrual disorders of, 351.
Sehool-gymnastics, 372.
School-headache, 835.
Sehool-honses, air-furnaecs for, 390.
air of, 377.
air-8upply for, 385.
bad air of, 377.
burning of, 376 .
coal used in heating, 387.
construction of, 376 .
of rentilators for, 382 , 383.
cost of ventilating, 387, 388.
curtains for, 385.
defective ventilntion in, 386.
drnuglity roums in, $\mathbf{3 8 6}$.
fireplaces in, 384.
tires in, 376 .
flue-ventilation in, 386.
furnaces for, 390 .
grounde of, 375.
heat wasted in, 387.
beating and ventilation of, combined, 383 , 385 .
apparatus for, 376,385 , 389.
by hot-air furnaees, 390.
by Ruttan's syatem, 389.
of, with ventilation, 383, 385.
lighting of, 366,375 .
moistening the nir of, 390 .
ncighborhood of, 375 .
plumbing for, 397-402.
precautic s against fires in, 376.
reclusion of, 375 .
shaft for ventilating, 381.

School-houses, site of, 354, 375 . slow-burning construction in, 376.
stairways in, 376.
stcam-heating of, 376 .
and ventilation combined for, 383 .
stoves in, 381 .
surroundings of, 37%.
ventilating-stoves in, 3S4.
ventilation of, 352, :376, 385.
by steam-fans, $3 s 8$.
ventilaters of, 376 .
window-ventilation in, 385 . windows of, 366 .
School-hygieno, 343.
nall megrim, 835.
Sehool-punishments, 374.
Sohool-rooms, bad air of, 377.
earbonic acid poisouing in, 377.
cubie spuee for eneb child it1, 350 .
flue-ventilation of, 381.
impure air of, 377.
space required for each child in, 380.
tabular view of air-space required in, at various phees, 380.
temperature of, 390 .
ventilation of, 377 .
Schools, contagions diseases in, 103.
cpidemics in, 403-408.
extornal hygiene of, 375 .
industrial, origin of, 428.
nervous disorders in, $: 340$.
publio industrial, 428.
Scientific basis of an artistic onception of human symmetry, 246.
prevention of juvenile crime, 426.
Scleritis, 123.
Sclerophtholmin, 110.
Sclerosis as a lesion, 504.
lateral, eye-groumd in, 203.
multiple cerebro - spinal, 495.
ncute disonse a cause of', 503.
anatomical characters of, 504.
ursenic for, 512.
ataxia in, 499, 508.
easos of, 496, 497.
causes of, 502, 50 t .
elinical history of, 496 .
cod-liver oil for, 512.
colll as a cause of, 503.
contractures in, 501.
convulsions in, 501, 509.
deafness in, 501.
degenerative changes in, 504.
dementia in, 500, 511.
diabetes $\mathrm{in}, 502$.
elitferential diagnosis of, 507.
discriminated from brnin-tunors, 510. diseriminated from cheren, 509.

Sele rosis, multiple cerebro-spinal, discriminated from Friedreich's ntaxia, 50s.
discriminated from myelitis, 671.
diseriminated from paralysis agitans, 500.
diseriminated from tabos, 508.
cleetrieity for, 512, 51:3.
epilopsy with, 501.
ergot in, 511.
etiology of, 502,506 .
eyc-symptoms in, 194, $499,5019$.
general paralysis simulating, 504.
glyeesuria in, 501,507.
headache in, $500,513$.
heredity in, 502.
histology of, 505.
history of, f195, 496.
hyoscyamine for, 518.
inflamuatory origin of, 506.
iodides in, 511.
iron as a remerly, 511 .
lesions of, 504 .
location of, 504,507 .
mental impuirment in, $500,511$.
shock a eauso of, 503.
names of, 495.
nitrate of silver in, 511.
onset of, 496.
origin of, 502,506 .
pallintive treatment of, 513 .
paresthesise in, 501, 509.
paralysis in, 501.
patholegical anatomy of, 504.
phosphorus for, 512.
prognosis in, 510.
ptosis in, 500.
reflexes $\mathrm{in}, 501,507$, 509.
romedies in, ह11.
geat of, 495, 504.
sensory disturbances in, $501,509$.
sex, 50.I.
speceh-defects in, 500, 508.
strabismus in, 499.
symptoms of, 490-502, 507.
significance of specinl, 507.
synonymes of, 495:
syphilis as a factor in, 502, 507.
tranmatie origin of, 503.
treatmont of, 511.
tremor in, 496, 498, 499, 507, 508, 512.
types of, 195.
typieal cuses of, 497.
vertigo in, 50 t.
neurogliar, in epilepsy, 904 .

Sclerotic, diseases of, 123. Seoliosis disoriminated from bysterical eurvature, 1002, 1003.

Scotoma, central, as a symptom of injury from exposure to the direct solar rays, 170 .
Scotorbata caused by tolneco, 230.

Sereens for school-room windows, 346.
Serofulous ophthalmia, 9\%. See also Keratitis, Phlyctenular.
Seurvy, ophthalmoscopic features of, 183.
Sell-shore hospitals, 419.
Seats at school, 350,3 , s , 300 , 360, 361 .
summary of rules for, 365.
Sebiceous eyst of eycbrow, 69. tumor of eyelid, 58 .
Seelusion of persons ill with a eontagious disease, 403, 407.
Second wind, 275.
Seetarian reformatories, 4:0.
Sections of eye and orbit, 122 . of head, showing the trephining points, 683.
Segmont of Rivinus, 15,2 .
Seruin, Dr. E. C., on bendache, 828.

Seguin's thermometer, 465.
Self-elosing rat-toothed foreeן, 767.

Self-protective powers of the human organism, 335 .
Semi-mntes, 47.
instruction for, 48.
Seminal omissions, 1049. Sre Masturbation.
stains, examination of, 442.
Sensations in brain-tumor, diarnostie value of, 5 fit.
their olliee in co-ordination, 567.
Sense-perversions in meningomyelitis, 648.
Senses, order of development of, 1040 .
Sensitive points, 329.
Sensory disturbances in children, how detecterl, 449, 455.
in multiple cerebrospinal sclerosis, 501.
Sensory-motor arens of the brain, 565 .
Sequestrum in mastoid perios. titis, 20.
Serres-fines, 775.
Sewage-disinfection, 342.
Sewer-gas contamination, 115. poisoning, 394.
Sewerage, 344.
of hospitats, 415.
phans for, 396.
Sex in early childhood, 297.
in edueation, 351.
Shot-silk opacitles of retina, 1616.

Shonlder-deformity, 356, 358,
Shrapnell's inembrane, 15, 28,
Shrinking of the cornea, essentinl, 100,790 .
Sick-headache, 831. See Megritu.
Side-stroke swimming, 272.

Sideways
315,31
Sigit, de
lost
Signs of pliys
Silpi Sas
portion
212, 21
Silver nit
bro-spi
Silver-po
toms 0
Simulate
sinkior,
litis nn
Sinus, fr
ing, 76
Sinnses,

Sito of so
Skin in
Skin-dise
poisoni
Skin-dise 211.

Skull, de
mz
whli
seeti
Skull-ent
cephati
Skult-fira
trep
Slee!, br,
erisi.
disur
norl
fal
of sc
refle
repa
Sleeping
01, ${ }^{2}$.
Smali.po
retui
af
ulce
55

Smatlnes
Share for
Sncering
Snufl' ns
discana
"Society
Sultenin
of 8
Suil-moi
hyg
sui-pipe
Soil-pois
Soil-wat

Sideways banging position, 315, 317.
Sight, defeets of. See Vision.
lost atter sudden hemorrhage, 181.
Signs of virginity, 440 .
physica!, of nervous disease, 447.
Silpl Sastri queted, on the proportions of the human body, 2.42, 246.

Silver nitrate for multijule cere-bro-spiual sclerosis, 511 .
Silver-joisoning, cye-symptous of, $23: 3$.
Simulated blinilness, 239.
sinkler, Dr. W., on poliomyolitis unterior,
Sinns, frontal, tacture involving, 762.
Sinusea, cranial, avoilance of, in trephining, 75 s . hemorrhages from, 750, 758.
ligation of, $768, \quad \mathbf{6 6}$, 772, 778.
wornils of, 756, 758.
Site of sehool-house, 354.
Skin in leal-poisoning, 629.
Skin-tlisease from arsenical poisoning, 602, 611.
Skin-tiseases, retinitis with, 211.

Skull, defects of, See Abnormalities, ete.
fractare of base of, 761.
malignant growths of, 767 .
Nee Malignant Growths.
section of, in mevingocele, 731, 731.
Skull-enlargement, non-hydroeephalic, 592, 1032, 1034.
Skull-fractures, surgieal treatment of, 751.
trephining in, 752.
Sleep, brain in, 1009.
brain-repair in, 1008.
erisis in, 1009.
disorders of, 1008 .
normal duration of, in infancy, 1008 .
of school-boys, $37:$
pliysiology ot, 1009.
retlexes in, $\mathbf{1 0 0 9}$.
repairs during, 100 S .
Sleeping-apartments, hygiene ot, 35.
Smuli pox, prevention of spread of, 405 .
return of pupils to school after, 404, 405.
ulcer of eyelid following, 55.

Suallness of chest, 371.
Suare tor polypi in the ear, 25.
Sneeaing to be repressed, 38.
sunff as a cause of entarrhal disense, 38,
"Sosiety" er. school, 3.17.
Soltening of brain, seats of, 535.
of spinal cord, red, 676.
Suil-moisture und phthisis, 35.t. hygienic effects of, 375
Suil-pipe, ventilation of, 397.
Soil-poisoning, 396, 397.
Soil-water, disposul of, 396 .

Solar ruys, offect of, upon the retina, 170.
Sommambulism, canses of, 1017. hysterical, 992.
nature of, $1009,1617$.
Since per chilil in sehool-rooms, 380.

Spasm, earpo-pedal, 882, See Tetany.
eauses of, 460 ,
elonic facial, sul.
dancing, 80\}.
fimeial elonic, sol.
from brain-irritation, 566, lubit-, 801,
histrionic, s0l.
hysterical laryngeal, 979 .
in athetoses, 939.
laryngeal, s79,
mimic, s01.
nictituting, 801.
nodiling, s01.
of ankle, clonie, 454, 459.
of eyelitis, 60 .
of glottis, 881 .
of ochlar museles, 134.
peripheral, 796. Sice ulso Eelampisia.
retlex statie, 8 th 1.
saltatury, s0l.
statio retlex, sol.
tetanoil, 7!9. Nee Tetany.
tonic, of voluntary maseles, 915, 949. See My. otonia.
Spasmus nutans, 8 011.
Spastic ataxia, 825.
paraplegia aliseriminated from poliomyelitis anterior, 710.
Spear-Bearer, statue of the, 2.4.

Special hospitals, 418.
Speetaeles for far-sight, 1H, 369.
for hypermetropic schoolehiklren, 369.
tor insutlieieney, 110.
for myopie school-ebildren, 368.
for strabismus, 138.
Spectral appearances in hemierania, 105.
Speech, ntax;s disturbances of, 4133.

Speech-aroas, cortical, 570 .
Specel-delvetr, 482.
cerebral, 463 ,
elassifieation of, 162 ,
in multiple cerebru-spinal selerosis, 560, 508.
varjeties of, 463.
Specels-impairment after cere-
bral hemorrhage, 538,
Speech-tract located, 572.
Spermatorrhou, 1050.
Spermatozon as a sign of rape, 139, $410,442$.
detection of, $\$ 12$.
durability of, 443 .
Spiegelsehrift, 463.
Spina bilidn, 732.
ablation of sue in, 7.45 . complications of, 743. cystic closure of, 743. delects associated with, 783.

Spina bifida, deformities associated with, 743, 746.
diagnosis of, 743.
oceultu, 733.
operntions for, 741.
prognosis in, 743.
puneture in, 74.4.
tapping in, 744.
treutment of, 744.
varieties of, 743.
Spinal eanal, uxtra-lural tumor ot, 785.
intra-thral tumor of, 785
column, disease of, diagnosis of the seat of, 793 . trephining the, 785.
concussion, eye-symptoms in, 200.
cord, hernia of, 732.
in convulsions, 858.
prebymeningitis of, 785.
red soltening of, 676
stuetural abnormalities of, 728.
curvature from jll-chosen exereises and sports, 357.
hysterical, 990.
provention ot, 357.
sex in, 35t;
treatment of, 357 .
deformity from unsuitable lesks at school, 356, 3.8.
from muscular weakness, 350 .
in school-children, 355 .
hemorrhage, 667.
brain complications in, di6s.
eapillary, 670.
eauses of, 671 .
diagnosis of, 674.
lue to myelitis, 670.
electrical treatment of, 6 B 8.
meningeal, 670.
myelitis following, 6 6s.
of the newly-born, 667. paralysis from, 669. spontaneous recovery after, 668.
paralysis, infintile, massuge in, 330 .
Spinal-cord divenses, elassilieation of, tifl.
convulsions from, 880 . eye-ground in, 200.
lesions and syphilis, 595.
neuro-mimetic, 1002,
Spitzka, Dr, E. C., on insunity, 1038.

Sports of infancy, 281.
Sprays for mares in ehronie dis-
ease of tho middle ear, 35 .
Spring catarrh, 92.
Spurious croup, 881.
Squint, I36.
Stairs of hospitals, 417.
of school-houses, 376 .

Stammering, 463.
Standards of anthropometry, ancient, 242, 244.
Standing, mechanics of, 261. on one leg, 355.
position in gymnastics, 304.

Staphyloma, anterior, following ophthaimia neonatorum, 81
congenital, 119.
corneal, 107.
operations for, 153.
posterlor, 142.
treatment of, 111.
Starehes, force-value of, 291.
Starr, Dr. M1. A., on intrucranial tumors, 501.
State industrial schools, origin of, 423.
publio school for pauper children, Massachusetts, 432.
supervision of children placed ont from public institutions, 432.
Statio ataxia in tubercular meningitis, 519 .
Statistice, anthropometrical, 249.
of blindness due to oph. thalmia neonatorum, 82 .
of headache in schools, 349.
of health at various sehools, 346, 347.
of hereditary syphilis, 590.
of scarlet fevor, 406, 407.
of spinal corvaturo from muscular weakness, 356.
Statuary, Greek, proportions of, $243,244$.
Stature as influenced by race, 251.
by sex, 252 .
causes affecting, 251.
of boys, 248 .
relation of, to weight, 283, 281, 285.
Statutes regarding eapacity for committing crime, 423 .
Stenm-hent, direct, 389.
for hospitals, 414.
germ-destruction by, 339.
with ventilation, 385,389 .
Steam-heating combined with ventilation for a school-bouse, 383, 384.
Steam-pipes in school-houses, 3713.

Sternberg's disinfecting solution, 342.
Steward's surface-thermometer, 465.

Stewnrt, Dr. James, on primary muscular atrophies, 812.
Stiff movements due to myotonin, 949.
Stigmata degenerations in cerebrat palsies, 541.
Stigmatismus, fli3.
Stimulation in tubercular meningitis, 523.
Stings, convulsions from, 878.
Stomach after arsenical poisoning, 602, 604.

Stoels, disinfection of, 338.
Stooping position in school injurious, 359.
Story's improved canon of symmetry, 246.
Stoves for school-liouses, 384.
Strabisın⿱s, 136.
advanceurent of tendon for, 156.
atropine in, 138.
causes of, 136, 137.
characters of, 136.
oxamination of, 137.
from eerebral hemorrhage, 538.
glasses for, 138.
in cerebrul pulsies, 541.
in multiple cerebro-spinal selerosis, 499.
latent, 139.
operations for, 139.
pulley-operation for, 156.
spectacles for, 138.
tenotomy for, 139, 156.
treatment of, 138.
varieties of, 136.
vision in, 137.
Strain of the eyes, 139.
Streteh walk, 323.
Stroking in massige, 326.
Structural abnormalities of brain nod spinal cord, 728.
Strumous kerntitis, 103. See
Keratitis, Phlyetenular.
Strimpeli's disense, 544, 545. See P'olio-Encephalitis.
Strychnine-poisoning, bow distinguishable from tetanus, 927.

Studies of animal motion, 261. suited lor reformatory schools, 433 .
Stuttering, 463.
Stye, 53.
Styria, arsenic-eating in, 601.
Subjective gymansties, 302, 303.
symptorus of children's diseases, 447, 448.
Sugar, foree-value of, 291.
Suggestive questions in medico-
legnl examinations, 43 s .
Sulphur chloride, eye-troubles due to, 23.4 .
dioxide, disinfection by, 340.

Superior oblique musele, paraly sis of, 135.
Suppurative meningitis, 489.
See Meningitis, Suppurative.
Surface-thermometer, 465.
Surgical int otereace in tubercular meningitis, 524.
Susceptibility to disease, 3:36.
Sway of the body in walking, 266.
of tho foot in waiking, 267. of the head und hips in walking, 260.
of the leg in walking, 267.
Swedish movements with massage, 328, 329.
Swimming, physios of, 271.
varieties of, 271, 272.
Sylvius, fissure of, its location, 773.
tumors in, 571.

Symblepharon, 64.
following ophthalmia neo. natornm, 81 .
Symptomatic disorders of the interior of the eye, 177.
Syuptoms, objective, of children's disenses, 447.
subjective, of children's disenses, 447, 448.
Syphilis a caute of keratitis, 112.
a chuse of thrombosis, $5: 0$, 5.1.
as a factor in scle"osis, 502 , 507, 511.
chorea with, 595.
hereditary, as a factur in disease of the intermal ear, 42.
dementia from, 597.
idlioey from, 597.
in Friculreich's ataxin, 718.
insanity frou, 597.
nervous system in, 590.
statixtics of, 590 .
symptome of, 590.
of eyelids, 57 .
of lachrymal gland, 71.
ophthalinoseopio features of, 226.
Syphilitic brain-tumors, treatment of, 585, 588.
epilepsy, 592. See Epilepsy.
hemiplegia, 594.
meningitis, 591.
discriminnted from tubercular disease, 520.
ophthalmoscopic feat. ures of, 194.
percentage of cases with nervous symptoms, 591.
myelitis. 665.
origin of cerebral palsies, 531.
paraplegia, 595.
Syringing the ear, 8 .
Syringo-my olocele, 743.
T.

Trabes dorsatis in childbood, 201.
hereditaria, its relationship to multiple cerchrospinul selerosis, 508.
of corpus callosum, 739.
Table for use with Wolpert's air-tester, 393.
of age in cases of poliomyelitis anterior, 685.
of averago heights in either sex, 252.
of averago proportions and growth till maturity, 284.
of brain-tumors, 551.
of eases of infantile leadpoisoning, 636.
of cases of lead-poisoning in ehildren and adolescents, 637.

Table of of
of
pol
783

of ho
gel

of m
of $\quad{ }^{2 a} 5$
of por
of poi
of res
showi

Tables for
Tabular vi
per
views
Tache mén
Tachyenrd Exophth
Tachyseope
Tact regu of child
Tactilo sen
Taliper, by
"Thpir un
Tapotemer
Tapping
782.

Tarlatan,
from, 60
Tarsal tum
Tartur
tabereul
Thttooing
coma, 1
Tear-duct,
Tear-ghn
See Lacl
Tear-stono
Tears, ove
Tceth, de
defort
sies
in ke
Tecthing
effect
all
Temperat
331.

Table of causes assigned for bemiplegia, 530.
of deformities following poliomyctitis anterior, 793.
of differences between poliomyetitis and cerebral paralysis, 708.
of hoights and weights of school-girls, 299.
of masculine proportions, 255.
of paralysis from poliomyelitis anterior, 690.
of poripheral nervous diseases, 789.
of poisoning by lead chromate, 634.
of results of exercise, 296.
showing effect of seasons of the yeur in causing poliomyelitis anterior, 6SG.
relation of weight to height in boys, 283. when return to school is permissible to children after recovery from contigious disense, 404, 405.

Tables for anthropometry, 250.
Tahular viow of required spuce per head for sehool-chitdren, 380.
views of results in cerebral palsy, 54 .
Tache méningitique, 468.
Thehyenrdin strumosn, 952. Sce Exophthalinic Goitre.
Tnchyseope, 264.
Tuct required in examination of children, 436, 437.
Tactile sense tract, 3 :2.
Tulipes, hystorien, 989.
"Tapir mouth," 819.
Tupotement in massuge, 327.
Tapping for hydrocephalus, 782.

Tarlatan, green, poisoning from, 6101.
Tarsal tumor, 54.
Tartar emetic ointment in taberuahr meningitis, 522.
Tuttooing the cornea for leucoma, 154.
Terr-duet, distention of, 7θ.
Toar-gland, atiections of, 69. See Lathrymal Gland.
Tear-stone, 72.
Teurs, overtlow of, 71.
Teeth, defective, how caused, 889.
deformed, in cerebral palsies, 511.
in keratitis, 110.
Teething as a cause of convelsious, 796, 869, 894. of purulent otitis media, 23.
of sulanm convulsions, 801.
effect of on the external alisitory cmand, 1.t.
in convulsions, 894.
Temperature during massage, 331.

Temperature of a school-rooin, 391.

Temperature-disturbances, signitleance of, 465.
Temperature - sonse, hysterical suspension of, 982.
Temporal bone, infuntile, 2,3.
Temporary paraly*is, 697.
Temporo-sphenoidal lobe, tumors in, 571.
Tendon retlexes, cause of exaggeration of, 665, note.
Tenotomy for strabismus, 15 th .
Tophromy elitis, 683. See 1'oliomychitis Anterior.
Terntology, cephalic, 728.
Teratoma of brain, 55.
Testimony, medienl, $1 / 4$.
before a grand jury, 444.
of ehildren, medico-legal, 435.

Test-types for schools, 368.
Tests of sensory disturbances, $449,451$.
of urine for lead, 640.
Tetanilla, 799. See Tetany.
Tetanin, 822.
Tetanus, 913.
administration of food and medicines in, 932 .
nge in, 914.
in prognosis of, 92 s .
anastheties in, 934 .
anatomical features of, 926 . appetite in, 926.
artificial teoling in, 931. respiration in, 935.
bacilli as causing, 022 , 930.
breathing in, 919.
bromides in, 933.
Culabar bean in, 934.
eannabis indica in, 935.
cunses of, 914, 922.
children as subjects of, 913.
chloral in, 933 .
chloroform in, 934 .
climate in, 015.
eontagion of, 925, 929.
curare in, 935.
eyanosis in, 935.
death from, 9211.
death-rate in, 928.
definition of, 913.
deglutition in, 918, 919.
dingnosis of, 92 .
disinfection in, 929, 930, 831.
distinguished from bysterical rigidity, 928.
from strychnino-poisoning, 927.
from tetany, 928.
emprosthotonus in, 918.
epidemies of, 92 t.
equino influeneo in, 924. etiology of, 014, 922.
exacerbations in, 919.
exciting eauses of, $9 \not 16$.
facial puralysis with, 918.
facies in, 917.
features of, in myotonia congenita, 949.
food in, 931 .
germs of, 022, 930.
heart in, 920.

Tetanus, heat in, 259, 920.
heat in treatment of, 678.
horses subject to, 921 , 930.
hydrophobie, 918.
idiopathic, 925, 926, 929, 932.
ineubation of, 916.
infantile, 914.
infection ul', $925,929$. by the intestinal tract, 926.
inoculation with, 923.
intellect in, 920.
lesions in, 927.
loeked-jaw in, 917.
lower animals with, 923 .
mastication in, 917.
modication in, 933.
micro-organisus causing,
922, 930.
mind in, 920.
morbid anatomy of, 926.
morphine in, 934.
mortulity in, 928 .
neonatorum, 921.
chuses of, 921, 922.
denth trom, 922.
diagnosis of, 462, 927.
filth a factor in, 921.
geographical rango of, 321.
history of, 921.
identical with ordinary tetanus, 921, 923.
oceipital bone in, 921.
onset of, 92 .
prognosis in, 922.
nerve-centres in, 920.
of Rose, eephatie, 918.
of the newly-born, 921.
See Tetunus Neonatorum.
onset of, 916.
opiates in, 934 .
opisthotonus in, 917.
origill of, 923,920 .
crthotonus in, 918.
pains in, 917.
paroxysins in, 919.
pathology of, 922, 926.
perspiration in, 920.
pleurothotonus in, 918.
prevention of, 929.
prodromes of, 917.
prognosis in, 928.
prophylaxis in, 929.
ןtomaines from, 922, 939.
pulse in, :20.
race in, 914.
recovery from, 920.
rospiration in, 919.
rbeumatic (80-called), 925,
926, $929,932$.
risus sardonicas in, 917.
senson of the year in, 915,
sedatives in, 933, 934.
sex in, 914.
skin in, 920.
sources of poison of, 922 ,
920, 930.
statistics of, 913.
strychnine-poisoning dis-
criminated from, 927.
sweating in, 920.
symptomatology of, 916 .

Tetrnus, temperature as a cave of, 915 .
temperature in, $\mathbf{9 2} \mathbf{2}$.
thermometry in, 920.
tonie sparmin, 918.
trauma ns a canse of, 915.
treatment of, 931.
trismus in, 917.
urethnn in, $1: 3:$
wrine in, two.
virus of, 022, 224.
wounds cansing, 016, 931.
Totany, 799.
causes of, 799.
dingnosis of, 80f.
history of, 709.
how listinguishable from tetanus, 02 s .
its relations to laryngismus stridulus, 88 .
names of, 799 .
prognosis in, 800.
symptoms of, 799, soo.
synonymes of, 799.
treatment of, 800 .
Thenar type of progressive muscular atrophy, 82..
Theoretical velocity of air in ventilation-fletes, 381.
Thermic fever, ophthalmoscopio features of, 194.
Thermometer, cerebral, 494. in tiagnosis, 465.
Thickening of walls of retinal blood-vessels, 166.
Thigh-museles, finctions of, 262, 265.
Thomsen's disoase, 945. S'ee Myotonia.
Throatindiphtheritic paralysis, 809.
massage of, 328.
Thrombosis as a cnuse of infantile palsies, 183.
causes of, $531,532$.
defined, 525.
due to altered blood, 532.
frequency of, 531 .
meningeal, signs of, 544 . retinal, 179.
symptoms of, 535.
syphilitic, 5:31, 5:32.
Thrombins discriminated from embolus, 534.
Tic, convulsive, 801, 996.
Tickling, convulsions from, 878.
"innitus aurium from otitis, 13.
from quinine, 4.4.
Tobace as in cause of eye. lesions, 231.
forbi lden to gymnasts, 29 t.
Tonicity of muscles, 256.
Tonsil, pharyngenl, 17.
Tonsillitis follewed by retinal changes, 207.
Tonsils in ehronie disease of the middle enr, 35 .
Torticollis, 802.
Toxmmic convulsions, 877. significance of, 889 .
Toxic nffections from arsenie and lead, 599.
Toxics, eye-lesions due to, 230.
Trachomn, 88. See Ophthalmia, Granular. folliculare, 87.

Tracings of nssociated movements of hemorrhagle hembplegla, 539.
Tracts of brain, functional, 572, 573.

Trades taught in reformatories, 433.

Training of the color-blind, 239. physicul, 290.
of girls, 296.
process of, 295.
use of alcoliol in, 29.4.
'Transient amblyopia, 223.
'Iraps for sewer- and drainpipes, 398.
Tranmatie ectropion, how trented, 153.
metnmorphopsin, 170.
neuritis, optic, 169, 172.
Trummatism of the eye concealed, 166.
Tremor, 803.
estimation and significance of, 431.
from lead-poisoning, 629.
general, 803.
in multiple selerosin, 496, $498,499,507,508,512$.
Trephine, forus of, 753.
IIorsley's, 776.
size of, 756.
Trephine-brush, 752.
Trephine-disk, aseptic treatment of, 756.
removal of, 755, 756 .
Trephine-wound, dressing of, 757.

Trephining, avoidance of sinuses in, 758.
elosure of the histus nfter, 759.
dangerous regions in, 758. dangers of, 760 .
election of site for, 758 .
for epilepsy, 759.
for intractanial absecess of hemorrhage, place of, 771.
for perinanent drainage, 782.
hemorrhage in, 75 f.
middle meningenl artery in, 758.
of fractured eranium, 752. place for, 758.
preparatory operations for, 753.
process of, 754.
secondary hemorrhage after, 772.
sinuses in, $756,75 \mathrm{~s}$.
ginal, 785.
Trichinsis, 62.
Trilotalar brain, 729.
Trophic disturbances, signifieance of, 405.
Troussenn's mark in meningitis, 515, 520.
Trunk at various nges, its measurements, 252.
muscular support of the, 261, 262.
Tube-drainage in brain-absecss, 770.
in brain-surgery, 701.
Tubercle, intraocular, 227, 229.

Tubercle of brain, seats of, 351
See Braln, 'Tubercle of. of conjunctiva, 99. of petrous bone, 4 .
Tubercular brain-tumor, case of, 571 . treatment of, 585. disease in school-ehthtren, 352.
meningitis, 514. Sie Meltingitis, Tubereular. myelitis, 666.
spinal meningitis, 660. diagnosis ol', 660. non-carious, 660. primary, 660 .
secondary, 861.
Tubereulosis, miliary, ophthal. moscople features of, 227.
orbital, 121.
Tumor, extra-dural, of the spinal canal, 88.

$$
\text { tarsul, } 54 .
$$

Tumors of choroid, 172.173. of conjunetiva, 102. of cornen, 118. of cyelids, 58. of luchrymal gland, Tl. of optie nerve, 171 . of orbit, 123 .
Turnbull, Dr. C. S., and Dr, (7.
M. Gould, on tiseases of the
cye, 120.
Turners' exercises, 301, 3is.
Tympanic eavity of the ear, 3 . syringe, 29.
Tympanum, chronie purnlency of attic of, 27.
forms of, 27.
operation for, 28. ossicles in, 28. treat ment ol, 28.
Type for sehool-books, 366 .
Typhoid fover diseriminated from tuberenlur meningitis, 521.
disease of labyrinth is, 43.
followed by meringitis, 661.
mental sequele of, 104 a .
origin of, 394.
Typhus, ophthalmoscopy of, 218.
return of pupils to school after, 404, 405.
U.

Uleer, eorneal, 105. Nee Corneal Ulcer.
in ophthalmia neonatorum, 80.
of the eyelids, post-vario. lous, 55.
phlyetenular, 104.
Uleeration of the cornen, infuntilc, 99.
Underelothing of children, 38.

Underhanging exereise in gymnusties, 306, 307, 309.
Upper extremities, measurements of, 253.

Üramic

polse

lirethan
lrinals,
of, 399
U'rine, ar
incol
Uvular r

Vaceinati
sol
$\ln I!$
in M
regu
Vagima a
Vaginal
444.

Valvular

Van Bibl of the system Varrentr 300, 36
Varicella feature
Variety o a selioo Vascular

Urwmic convulsions, 797, 877. poisoning distingulshed from tubercular meningitis, 521.
eye-symptoms of, 210.
lirethan in tetnnus, 033.
U'rinals, construction and eare of, $3 \% 9$.
Urine, arsente in, 61:3. incontinenoe of, 992.
Uvolar rettex, abolition of, 910 .

v.

Vnceination, effective compulsory, 105.
in Illinois, results of, 405. in Massachusetts, 400. regulations for, 406.
Vagimanter rape, 430, 440.
Vaginal catarrh, varieties of. 44.

Valvular heart-disenseas n canse of embolism of retinal arteries, 177.
from lead-poisoning, 62 .
ophthanlmoseopic signs ol, 177.
Van Bibber, Dr. J., on dixeases of the periphoral nervons system, 788.
Yarrentrapp's desk and seat, 360, 361.
Varicella, ophthalmoscopic fentures of, 221.
Vuriety of positions essential in a selioel, 359.
Vaseular disease leading to ophthalmosoopice ehanges in the eye, 177. diseases of orbit, 123. keratitis, 111.
Vaulting, 318, 320.
Vaults, eonstruetion of, 396. disinfeetion ot, 312,
Velum palati in chronic nonsuppurative otitis media, 33.

Venous pulsations in the retim, 168.
thrombosis of the retinn, 179.

Fentilating stoves for sehoolhonses, 384.
Ventilation by flues, 381.
by menns of heating apparntus, 383, 384, :385̄, 389.
by the Gouge system, 389.
by the Ruttan system of heating, 389.
cellar-plan of apparatus for, 383.
conl used ins 387.
construction of npparatus for, 382.
cost of, in schooks, 387. fireplaces in, 384.
heat wasted in, 387.
in ear-hygiene, 38.
mechanieal, 388
metheds of, 381.
of Bridgeport IIigh School, 382, 385.

Ventilation of hospitals, 411, 413, 414.
of sehrol-rooms, 352.
ef sehools, 377, :381.
of suil-pipes, 307.
steam-tims in, 888.
stenm-heating combined with, 385, 389.
steves for, 38.4.
wasted heat in, 387.
windews in, 385.
Ventrleles of brain, permaneut druinuge of, 782.
Ventricular hydrocephalus, Arainge for, 783, 784.
Vernix caseosa in the ear, 7.
Vertebral column, trephining the, 785.
Vertigo, epileptic, 899, 900.
from brain-tumor, 560, 577, 5810.
in multiple eerebro-spinal selerosis, 500.
laryngeal, 900. treatinent of, 909.
Vesicular keratitis, 103. See Keratitis, Phlyctenular.
Vice, insane developments of, 1032.

Vieiousuess, inherent, 996.
Virginity, signs of, 410.
Viruses, attenuated, 33 l .
Vision, disturbances of, 451.
in diphtheritic paralywis, 809.

Visual areas of brain, 565, 578.
defeet :, signifieance of, 164.
impairment in hydroeephalus, 475.
traet, located, 572.
Vitnlity, depressed, as a factor in disense-production, 34.3.
Vitreons, diseases of the, 126.
Vitrifiel pipe-drain, 397.
Vitruvian standard of homan symmetry, 243.
Voiee in diphtleeritic paralysis, 809.

Voluntary museles, 256.
work in the reformation of juvenile offenders, 430.
Vomiting lue to leal-poisoning, 620.

Vulva after rape, 439, 4.0.

W.

Walk, varieties of, 268, 323.
Walker, Dr. Jerome, on the medico-legal testimony of chilliren, 135.
Walking on horizontal bar, 305. physics of, 265.
self-aequired by some infants, 281.
Wall-paper, poisoning from, 599, 605, 609.
Walls of hospitals, 417.
Ward in hospital, 412.
Wash-stands in schools, 398.
Waste-pipes, 398.
Waste-water, disposal of, 396.
Wasting diseases distinguished from paralysis, 457.

Wasting disenses, massage in, 329.

Water on the hrain, 466.
Whter-elosets, disinfection of, 3.2.
for hospitals, 415.
iu schools, 398.
Water-poisonlug, 394.
Water-pollution ns a enuse of typhoid, 394.
Wax in the ear, 6, 7, 11. See Cerumen.
Weak bnek, 1090.
Weak muscles a eause of spinal deformity, 856.
Weakly children, odueation of, 335.

Weight of Loys, its relation to height, 283, 284, 285.
Wet cellars disulowed, 375.
clothing, avoilance of, 38.
feet, evils of, 38.
Wharton Jones's operation for ectropion, 152.
Whoping eough cousulsions in, 877, 880.
eye-complications in. 221.
return of pupils to selsool after, 401, 405.
Will, freedom of', 427.
nature of, 426.
training of, 1106.
Windows of school-houses, 346.

Window-ventilation in sehools, 355.

Winking, execssive, in children, 61.
Wire serres fines, 775.
Witnesses, juvenile, managoment of, 435.
medical or professional, 44.

Woakes's acconnt of the nerrous and arterial relations between the ear and the teeth, 12:3.
Wolpert's method of nir-amalysis, 392.
Woman's intlucnce in reformntories, 43 .
Worcester's tests for lend in urine, 641.
Word-deafness in brain-tumor, 571.

Work, amount of, eonsistent with the best health, 258.
educible from various foods, $25!$.
varieties of, accomplished within the body, 257.
Worms as eauses of convulsions, 796.
causing chorea, 845 .
in infantile paralysis, 712.
inducing masturbation, 1045.
mental disturbances due to, 104.
reflox paralysis from, 808.
Wounds, gunshot, of the brain, nntisepsis in, 76.
druinage in, 764, 766.
probing of, 765, 760.

Wounds, gunshot, of the head, 764.
of the cye, 147.
of the orbital walls, 169, 172.
of the scalp, 7.18. See ScalpWounds.
Wrist-drop in load-polsonling, 631.

Wry-neck, 802.

X.

Xanthopsin from hepatle dis. ease, 207.

Xianthopsia from santonin, 232.

Xerophthalmon, 103.
Xerosis conjunctive, 99. of cornea, virictics of, 100.

Y.

Yard walk, in exereise, 323.
Yellow atrophy of llver, S'e Livor, Aonto Yellow Atrophy of.
Yellow fever, ophthalmoseopio features of, 224.

Young, Dr. J. K., nnl Dr. J. M. Keating, on physleal de. velopment, 241.
Yurth, dovolopuent in, 283. overtraining of, 2×6.
Z.
Zoetrope, 264.
Zones, hysterogense, 97.1, 075 , 980, 998.
Zoósporms, detection of, 42. durnbillty of, 443.
Zymotic discascs, 333.

Abdonien,

88,
oxami
in racl in tabe tumor
Abnormalis Iv. of bra 711.
of ext
eo
di
fr
of fom
of inte
315.

Abscess, n]
nnal, articul
cerebe)
cerebr
in bort
in hip
nastoi
of join
of live
of pan
openin
ralmar
pericar
perinel
periton
perity]
plantur
rectal,
retro-b
retro-p
right il splenic
Absence of
of eard
of hym
of rect!
of vagi
Absorption
Accessory nt
organs, Achromatol
Acno, ii. 5 .
Aconite-poi
Acate brone

GENERAL INDEX.

THE VOLUMES ALE: INHICATEG BY ItOMAN NUMEIEALA.

A.

Abdonion, enlargement of, 1. 86, iii. 190 , $201,210$. examination of, i. 8.l. lit rachitis, 1. 85, ii. 231. In tabes, iii. 210. tumors of, iii. 213, 732.
Abnormalities, cerebro-spinul, iv. 728, 733, 741.
of brain nud cord, Iv. 728, 741.
of extremities, iii. 020. conrenital, iil. 929. digital, iii. $938,9+1$. from maternal impressjons, i. 101-216.
of fomale genitals, iii. 7.41. of intestine, oongenita), iii. 315.

Abseess, alveolar, iii. 931, 98.4. anal, ih. 346.
urticular, iii. 1152.
cerebellar, iv. 191, 770. cerebral, iv. 49:3. in bors ", iii. 993, 1145.
in hip-joint disease, iii. $116 t$.
mastoid, iv. 29.
of joints, iii. 1153, 1155. of liver, iii. 466.
of pancreas, iii. 380, 400.
opening of, iii. 1155.
yalmar, iii. 845.
perienrdial, ii. 860. perinephritic, iii. 301. peritoneal, iii. 274. perityphlitic, iii. 282, 297. plantur, iii. 845
rectn\}, iil. 3.15.
retro-bulbar, iv. 222.
retro-pharyngenl, ii. 430. right ilite, iii. 282. splenic, ii. 896.
Absence of bladder, iii. 671. of cardine septa, ii. 750. of hymen, iv. 441, 749. of rectum, iii. 326, 338 . of vagina, iii. 749.
Absorption by tho skin, i. 963. Accessory mammæ, iii. 754. organs, iii. 367.
Achromntopsia, iv. 238, 987.
Acue, ii. 5.
Aconile-poisnning, iii, 861.
Acute bronchitis, iii. 602.
auscultation in, ii. 604.

Acute bronchitis, bacteria of, ii. 602.
breathing in, ii. 603. atpullary, li. 60.4. dingnosls of, 3i. 603. lung-sounds in, ii. 60). pathology of, fi. 602. prevention of, 11. $\mathbf{1 6 5}$. prognesls of, ii. 603. respiration in, ii. 603. symptoms of, li. 602. temporiture in, il. 603.
treatment of, ii. 606.
bronebo-pnoumonia, $\quad 1 \mathrm{i}$. 617.
anatomical characters of. ii, 622.
atelectasis in, ii. 62.1.
auseultation in, if. 633.
bacteriusn of, il. 621.
causes of, ii, 018 .
comblications of, ii. 628.
consolilation of lung in, ii. 627.
cough in, hi. 6:is, 61θ. diagnosis of, ii. 632.
diet in, ii. 6 . 89.
emphysemr in, ii. 627. etiology of, 1. 618. mierococcus of, ii. 621 . nervous sy stem in, ii. 632.
origin of, ii. 622.
pathology of, ii. 622.
prevention of, ii. 637.
prognosis in, ii. 636 .
respirution in, ii. 630, 1331.
signs of, ii. 634.
stimulation in, ii. 639.
symptoms of, ii. 629.
tempernture io, ii. 629, 631, 641.
treatment of, ii, 638. catarrhal intlatamation of intestine, iii. 81. constipation, iii. 191. eonsumption, i. 404. oroupous inflammation of intestine, iii. 87. autopsy after, iii. 87. colon in, iii. 88.
microscopieal appearances after, iii. 88 .

Acute croupous Inflammation of intestine, pseuilo - mombrane in, iil. 87, 88.
coryan, ii. 386.
losquamative entarri, ili. 80.
darrhoal disense, iii. 89.
entero-colitis, 1ii. 134. See Entero-Colitis.
follioular pharyngitis, 13. 425.
soro throat, $\mathrm{ii}, 411$. diagnosis of, ii. 420.
trentment ol, li. 120.
suppurative symovitis, iii. 11:32.
tonsillitis, ii. 442.
tubereulosis, i. 401, i\}. 179.
yollow atropliy of the liver,
iii. 50)7. See Liver, Yel-
low Atrophy of.
Adenitis, ii. 907.
Adenoill growths, ii. 484.
Addison's disense, iii. 820.
anatomieal features of, iii. 82.1.
complications of, iji. 826.
course of, iii. $\$ 26$.
diagnosis of, iii. 826. ${ }^{1}$ nathology of, iii. 825. prognosis of, iii. 820.
symptoms of, iii. 821.
trentment of, ili. 827.
keloid, ii. 94. See Morpheer.
Adenitis, ii, 907.
eatises of, ii. $911,912$.
diagnosis of, ii. 915.
in tabes mesenterica, iii. $210,215$.
suppuration in, ii. 917.
syimptoms of, ii. 913.
treatment of, ii. 915.
Adenoid growths in the vault of the pharynx, ii. 48.1.
eauses of, ii. 485.
complieations of, ii. 488.
effects of, ii. 486, 487.
histology of, ii. 484.
in otitis modin, iv. 33, 37.
pro-nosis in, ii. 491.
removal of, ii. 491.
respiration in, ii. 487.

Adenoid growthain the vauit of the pharynx, symptomm ot, 11. 487.
trentment of, il. 491, volee in, II. 189.
Adenomata, namal, ii. 369. uterine, ill. 717.
Albuminuria, or IPright's disепse, canses of, Hi. 32%.
clayluria in, iil. 520.
functlonal, iii. 530 .
in diphtherin, i. B0:3, 826, 62s, 672.
in zenrlet fever, $\mathrm{i} .50 .4,570$, 578.
trentment of, iii. 528, 529, 530.

Alimentary canal in infaucy, 1. 4, 3I, 41.
Alopeeia nreuta, 11.190.
syphilitic, ii. 122, 203.
Altituile in asthma, 1. 662.
in emplysema, i1. 651.
In hay-fever, ii. 605.
in phithinis, II. 081.
its influence on eretinism nud goi(re, il. 280.
Alveolar nbsecess, ii. 931, 934, 1017.
arch, 3i. 935.
Amaurosis due to quinine, iv. 230.
hysterieal, iv. 988.
producel by erysipeias, iv. 222.

Amblyopir due to tobacco, iv. 230.
ex nnepria, iv. 137.
from abuso of nicohol, iv. 2:31.
hysterical, iv, 987.
in Ilright's disease, iv. 211.
periodio or transient, iv. 223.
with strabismus, iv. 137.
Ametropia, vorrection of, iv. 138.
effects of, iv. $1+1$.
eye-strain of, relieved, iv. 107.
negleeted, iv. 170.
prognosis of, iv. 14.1.
uncorreeted, ir. IJ.
varieties of, iv, 110.
Ammonmmin, iii .765.
Amputation in eompound frne-
ture of femmr, iii. 1092.
Amputations, iii. 1311.
ankle, iii. 1327.
nrm, $\mathrm{ji}, 1322$.
nt wrist, iii. 1320.
at wrist-joint, iii, 1320.
digital, jii. 1317, 1325.
fingers, iii. 1317.
hip, iii. 1332.
knee, iii. 1330.
leg, iii. 1328.
lower extremity, iii. 1325.
of ankle, iii. 1327.
of arm, iji. 1322 .
of elbow, iii. 1321.
of lorenrm, iij .1320 .
of leg, iii. 1328.
of lower cxtremity, iii. 1325.
of thigh, iii. 1331.
of toce, jij .1325.

Auputations of upper extrenity, 311. 1317, 1:324.
operation of, III. 1313.
special, iii. 1317.
upper extremity, iii. 1317, l32.
Amyluid degeneration, iii. 9.1. cornenl, Iv. 101.
in hij-Hiscase, iil. 1192.
of liver, ili. 430. See LJuer, Amy!oil.
Anematosis, lii, s08.
Anemin, lil. 770.
amiomical charaeters of, 1ii. 776.
cerebrnd, iv, 184.
ohlorosis with, iii. 7 il.
elassifeathon of, iii. 770.
eytogenic, iii. 770.
diagnosis of, iil. 776.
infuntum pseudo-leukemen, iii. 794.
in lead-poisoning, iv, 621.
leukumica, ili. 7 íl.
lymphatic, iil. 801.
of malnutrition, $\mathbf{i i i} .774$.
jurasitie, iii. 778.
pathology of, iii. 776.
pernlolous, lii. 772, Iv. 182.
post-hemorrhagic, iii. 774.
splenio, ill. 79s.
symptoms of, iii. 775, 798. toxic, jii. 8 is.
trentment of, iii. 776.
Anasthesin in chililren, iii, 841 , 913.
deteetion of, iv. 45 .
in pelvic exumination of children, iii. 733.
mascular, iv. 720.
Anæsthetics, iii. 913.
aceidents from, iii. 927.
ehloroform :ii. 914.
ether, iii. 01:8.
in bruin-surgery, iv. 7 it5.
suggestions for the aimin-
istrution of, $\mathrm{iii}_{\mathrm{a}} \mathbf{9 2 5}$.
Anal malformations, iii. 321. elnssiticntion of, iii. 322.
develophent of, iii. 321.
pathology of, iii. 321.
Analysis of foods, i, 311, 313.
of milk, i. 275, 279, 280, 282, 283, 28 ; •-9, 284, $290,300,3$ г 39 , 310.

Anastomosis
artigenital
, iii. 320.
wn from dis. s, iii. 957.
Abatomy of appendix vermiformis, iii. 285.
of ealeuli, jii, 0100.
of children, $i .: 3-8,11-50$.
of female genjats, iii. 611 . of inguinul hernias, iii. 23G. of intestine, iii. 76.
of joined twius, j. 938.
of synovial membrane, iii. 1127.

Ancurism, antiseptic treatment of, ii .876 .
cardiac, ii. $840,8.11,842$.

A neurlam, cerebral, 11. 874, if 529.
due to embollsm, il. 87 f .
following sunatroke, 11. sis.
intracrinial, ii, 8i,
ligation for, il. 875.
procens of repairing after IIgation, i1. 870.
retinal, iv, 181.
siontaneous, H. 872.
truumatic, ii. 875.
Angina outarrimlia, ii, al 9.
erythematosn, ii. 119.
pectoris, iv, 3:3.
simplex, ii. 410.
tonsillare, 11.413.
Angionn envernosn, ii. 107. of choroil, iv. 174, 183.
of inrynx, ii. 511 .
of lip, ii. 948, 0.19.
of nose, $\mathrm{ii},: 3 \%$.
plexiformin, ii. 105.
simplex, ii. 105.
Ankle-elonus, iv. 454, 150, tify.
Ankle-joint amputations, iil. 1327.
dinease, iii. 1218.
diagnosis of, iii. $121!$. excision in, iii. 1250. prin in, iit. 1211. symptoms of, i11. 1219. treatment ol, iii. 120)
Inxations, iii, 1126.
spruin of, iii. $8: 8$.
Ankylosis, ili. 1258, 1266.
causes, iii. 1268.
delinition, iii. 1266.
dingnosis anil signs, iii. 1268.
ia wry-neck, iii. 984, 1209.
ol elbow-joint, oateotouy in, iij. 1288.
of hip-inint, osteutomy in, iii. 1285.
of knee-joint, iii. 1280.
of 'empora-maxillary joint, iii. 1289.

Anomulies of kidney, iii. 525 .
Antiseptio injections in cmpyemu, ii. 712.
bathing, iv. 337.
operation for uncurism, ii, 876.
for bare-lip, ii. 1001.
plearotomy, ii. 709.
remedies, ii. 185.
treatment of lioils, ii. 21.
A ntrum, nbscess of, ii. 1023 .
eyst ol, ii. 1024.
disenses of, ii. 1022.
thenors of, ii. 1025, 102b, 1027.

Anus, abscess of, iii, $\mathbf{3 4 6}$.
absenec of, iii, 333 .
artificial, jii. 325-331.
ufter colutomy, iii. 359.
censequences of forming, iii. 357.
operation for, iii. 323 , $324,325,326,357$, See also Colotomy.
condylonate of, iii. 339.
discases of, $\mathrm{ii}, 338$.
lissure of, iii. 312.
fistuln of, iii. : 140 .
imperforate, iii. 321, 323.
narrowiug of, iii. 322, 323.

Aphasia,
atax
trom
from
iv.
in c
lury
moto
Appendi
frequ
stati
Appenti.
disen
forei
in pt
remo
Aren gers
opac
pellu
Arsenic,
effect
60
elimi
for
in br
in hat
limit
60
mate
59
modo
toxic

Auus, ecelunlon of, iii. 321,323 . diagnusia of, lii. 321 , 323, 321.
operationa for, IVi. 32:1, $321,325$.
pruritus of, ili. 3.18.
atricture of, iii. 343.
syphilitio nffeetions of, iii. 349.

Anvil-shaperd uterum, iii, 7.17 .
Aurta, eongenital transponition of, with the pulmonary artery, li. 760.
hypophania of, It, 762.
Aortio valvular disense, ii. 836. auseultation in, ii. 837. eutses of, ii. 836.
ehronic, if. 838.
embienations in , ii . 837.
dangers in, il. 838.
definition of, 1i. 8:36.
ding sosis of, ii, 836 .
history of, $\mathrm{ii}, 8: 36$.
murmura in, il. 837.
myocarlitis following,
ii. 838.
pathological eauses of, il. 836 .
prugnosis in, ii. 838.
pulse in, ii. 836, 837.
rienmatimm preeed. ing, il. 837.
treatment of, ii. $8: 8$.
Aplusia, i. 117, Iv. diti
ataxic, iv. 549,
from brain-tumor, iv. 50%.
from eerebal hemorrhage, Iv. 538.
from typhoid, i. 472.
in cereliro-spinal fever, i. 829.
laryngeal, ii. 508.
tnotor, iv. 569.
Apprendicitis, iii. 282, 298.
frequeney ot, iii .201.
stntisties ot, iii. 297, 208, 299.

Appendix vermiformis, anatomy of, iii. 285.
disense of, iii. 282. See Perityphitis.
foreign bodies in, iii. 248.
in perityphlitis, iii. 290.
location of, iii. 2st.
remeval of, iii. 310.
Area germinativa, i. 0.16.
oprat, i. 9 :8, 953.
peliucida, i. 918.
vasculosn, i. 953.
Arsenic, doses of, iv. 601, 608.
effeet of, on the skin, iv. 601.
elimination of, iv. 60)
for multipie selerosis, iv. 512.
in breast-milk, iv. 601.
in habit-spasm, iv. 802.
in the tissues, iv. 60s, 805 .
limit of tolerance of, iv. 608.
muteriais containing, iv. 599.
modernte doses of, iv. 608.
toxie doses of, iv. 600, 606.
Arsenicai poisening, iv. 599. neute, iv. 601, 611, 613.

Arsenioal poitoning, acute, anatomical appearancer nfter, iv. 603.
aniline dyes in, iv. 599 .
bones in, iv. 60-4.
bowels in, iv. 602, 601t, 610.
ctuate of, Iv. 509 .
dellnition of, iv. 509.
tegenurntive changed in, iv. 60%.
dingnosi of, iv. 611.
etiology of, iv. 540.
excretions in, iv. 604.
eye in, iv. 24.4.
from medieines, iv. 600), 606.
intertines in, iv. 602.
killnoys in, jv. 60:3.
Hiver in, iv. 003.
nervous system in, iv. $603,607,1510,612$.
obsure eases of, iv. 6013.
paralyses from, iv. 603, B07, 610, 612, 61.t.
pathology of, iv. 601.
prognosis in, iv. 613.
sceretions in, iv. b0t.
skin-tiscase from, iv. b02, 611 .
sources of, iv. 599 , 609.
stomach in, iv. 602, 10 \&.
syiuptous of, iv. 606, 612.
tisntrient of, iv. 613. urine in, iv. 605.
wail-paper in, iv. 599, 1300, 605, 609.
Arthro-sneningitis, iii. 1127.
Artieulations, lixeases of inajor,
iii. 1139. See Joints.
diseases of minor, iii. 1252. Sce Juints.
Artifieisl anremia, iii. 1261.
rnus after colotemy, iii. 359.
prognosisafter, iii. 343s.
feeding of infints, its great dnngers, iii. 64.
respiration, iii. 847.
Ascarides, iii. 224.
causing abseess of liver, iii. 477.
dingnosis of, iii. 226.
in the bile-lluets, iii, 419.
lumbricoid, iii. 224.
prognosis in, iii, 220.
treatment of, iji. 226.
Ascaris lumbricoides, iii. 224.
diagnosis of, iii, 226.
habitat of, iii, 225 .
misehief done by, iii. 225.
symptoms of, iii. 225.
Ascites, iii. 511.
unntomical fentures of, iii. 512.
canses of, iii. 511 .
differentiation of, iii. 513.
pathology of, jii. 512.
prognosis of, iii. 513.
surgery of, iii. blt.
symptoms of, iii. 512.
treatment of, iii. 514.

Aseltes with eirronle peritonitle,
iii. 279, 2N0.

Asepnis for wounda, lii. 811.
in lupmrotumy, ihi, 261.
ra, untise μ uln, iii. 123.
Astuntorsis, $\mathrm{ii} .10,11$.
Asthma, II. 183.
uitituid in the cure of, ii . (142.
bronchitis as eaushg, ii. 653.
cardiate, 1i. 654.
eansen of, it. B5.2.
elinient history of, ii. 65s.
dethition of, ii. 652.
dilignosis of, ii. 835 .
etiology of, ii. 652.
gouty, ii. 65 l .
horedity ill, ii. 6is.
inistory of, ii. Miss.
$\mathrm{p}_{\text {nthology of, ii. } 633,65 \mathrm{~s} .}$
peptic, ii. 35.
prevention of, ii, 660,
prognosis in, il. 060.
reflex chases of, ii. this.
saturnine, ii. bod.
sex in, ii, 653.
skin-irritutions as enusing, ii. 651.
thymic, 11. 724.
treatment of, ii. 660.
uriemic, ii. 651.
vinso-motor:nthences in, ii. tb53.
Ataxia delined. iv. 720 .
fumily, iv. 716. See Athain, Friedreich'n.
Fricalroich"r, iv. 20i, 716.
anenthesia, nuseuiar is, iv. 720.
anatomical features of, Iv, 723.
ataxie symptoms of, iv. 720 .
bones in, iv. 733.
eatnes ol', iv. 717.
cerebellar complications in, iv, 723.
charucters of, iv. 716.
clinical peenlintities of, iv. 724.
co-oriliation in, iv. $\% 20$.
diagnosis of, iv. 721.
dinthesis in, iv. 718.
daration ol', iv. 725.
etiology of, iv. 717.
fragility of bones in, iv. :23.
geography of, iv. 718.
heredity in, iv. 717.
history of, iv. 716.
incoiralination in, iv. 720.
lesions in, iv. 723.
literature of, iv. 716. 717.
loeomotor diserders in, iv. 720 .
medulla in, iv. 724.
motor disturbances in, iv. 720.
muscular anæsthesia in, iv. 720.
paralysis in, iv. 720.
pathology of, :...724.
prognosis in, iv, 725.

Atuxia, Friodreich's, puberty and, iv. 719.
retlexes in, iv. 720.
sonsory symptoms in, iv. 720 .
speech in, is. 722.
spinal cord in, iv. 723.
statio disturbances 17 , iv. 720.
suspension in trent. mont, ir, 725.
symptoms of, iv. Tl!. syphilis a thetor in, iv. 7.8.
tomperament is, is. 718.
treatment of, iv. 725. walk in, ir. 720.
from cortient paralysis, iv. 515%.
generie, or herelitary, iv. 716. See Friedrcich's Ataxia.
hysterieal, iv. 970.
in m . Itiple cerebro-spinal sclerosis, iv, 499.
locomotor, diseriminated from myelitis, iv. 674.
spastic, iv. 72.
static, ir tubersular monin. gitis, iv, s11).
Atelectasis pulmonum, ii. 577.
nequired, ii. 578, 581, 583.
alter breech-prescntaticns, ii. 578,5811 .
anatomical eharncters, , ii. 579.
ausculation in, ii. 582 .
bronchitis as a canse, $i i$. 579.
causes of, ii. 578.
congenital, ii. 578 , 580, $58:$.
diagnosis of ii. 582.
etiology of, 57 s .
history of, ii. 57%.
in broncho-pnemmonia, ii. 625.
in phthisis, ii. 677.
lobular, ii. 570.
pathology of, ii. 579, 626.
physical signs of, ii. 582.
stimulants in, ii. 585 .
symptoms of, ii. 581.
synonymes of, ii. 577 .
treathent of, ii. 583 .
whooping-cough as a cause of, ii. 579.
Athetosis, iv. 93%.
bilateral, iv. 989.
enuses of, iv, 937.
definition of, iv. 033:.
diagnosis of, iv. ! 111 .
pathology of, iv. als.
primary, iv. 140.
prolromes of, is. 939.
prognosis in, iv. 940.
secomdary, iv. 9:7, 039.
spasms in, iv: 934.
symptomatic, iv. 937, 939.
symptems of, iv. 939.
trentment of, iv. 940.
varicties of, iv. 939.
Achletes, physical defeots of, iv. 371.

Athletie sports for girls, is. 298.

Athletio training, examples showlog the benefits of, iv. 27%.
Atomizer, uses of, in disenses of the midille enr, iv. 35.
Atroplio rhinitis, ii. 406.
Atrophios, idiopathio musenlar, iv. 812 .
myopathic, iv. 812. See
Atrophies, Primary.
primary muscular, iv. slz.
classification ol', is. 812 .
elimical types of, iv. 812 .
kinils of, iv. 812 .
mmmes of, iv. 812. syuonymes of, $i v$. 812.
types of, iv. 812. S'e ulso Progressivo Mus4. 'ir Atrophy.

Atrophy, Eri venile form of, iv, 81 . See Musenlar Atropby.
lipomatous museular, iv. 813.
musenlar. See Atrophies,
Musenlar Atrophy, mad
Progressivo Muscular Atrophy.
of bulb tollowing ophthalmia neonatormm, iv. 8 l .
of museles. See Miscular At. sphy.
of the optio norve, hered-
itary, eolor-percep-
tion in, iv. 204.
ophthalmescope in, iv. 204.
sulyjective sy otoms of, iv. 204.

B.

Bacillus, i. 153.
how to stain for observation, i. 160-169.
of ammonineal formentrtion, i. 152.
of anthrax, i. 153, 154, iii. 766.
of broncho-pneumonin, $i i$. 621.
of butyric acid fermentation, i, 1:4.
of cholera, i. $900,916$.
of cholern nostras, i. 186.
of denguc, i . sish.
of divlithrali, i. 152, 154, 58.
of enteric lever, i. .154, 161, 4 16, 151.
of ethyl aleohol, i. 153.
of glanders, $i, 16 s$.
of green diarrhon, iii. 184.
of Kilebs and Loetller, i. 587.
of lactio acid, i. 153.
of leprosy, i. 153, 167.
of malignont odema, i. 15\%.
of phithisis, li. 672, 675, 6713, 684.

Bnelllus of splenio fever, i. 153. of syphilis, i. 167.
of tuberculosis, i. 153, 10\%,
ii. 182, 672, 681, iii. 70 .
the genus, i. 153.
(Sie also lactoria.)
Buck, examination of, i. 97.
topography of, i. 2s, 3k.
Bacterin, antugonistio species,
iii. 17%.
us a canse of boils, ii, 19. of disease, iii. 183.
as specitic tuctors in dis. саse, iii. IS\%.
classification of, 1. 148.
connting ot, i. Is6.
eulture of, i. 15s, $169,186$.
definition of, i. 150.
destruetion of, iii. 105, ir.
3:33, 335, $337,339$.
examination of, i. 158 ,
lieenl, i. 64, 301, iii. 170.
in alimentary camal, i, 302305.
in blepharitis, iv, 5:.
in cerebro-spinal fever, i. 51%.
inconstant, iii. 177, 183.
in constipation, lii. 199.
in cow's milk, iii. 70.
in dental earies, ii. 926.
in dinrrhom, iii. 62, 70, i2.
in enteric tever, i. 154, 161 , $445,451$.
in fuces, iii. $100,175,176$, 182.
in fevers, i. 422.
in foorls, i. 301.
in la perlèche, ii. 963.
in milk, iii. 189.
in ophthalmia, iv. 94.
in pertussis, 3. 06 .
in tear-mplaratus, iv, 7\%.
intertinai, iii. 73, 170, 171 , 183.
in tuboreular meningitis, iv. 517.
in typhoil, i. 154, 164, 4.15, 451.
in uleerative endoearditis, ii. TSti.
isolation of, i. 169.
morphology of, i. 156.
multiplication of, i. 157%
of cancom oris, $\mathbf{i i} .978$, $9 \% 9$.
of diphtheria, i. 154.
of prommonia, ii. 588.
of purulent ophithalmia, iv. 78.
of small-pox, i. 724.
of stombtitis, ii. 957, 961 .
of suppurative meningitis, iv. 491.
patlological prot.orti.. of, 1. 2 s.
proparme on of, for tho miernscope, i. 1510.
proparation of, i. 168.
proper, isereribed, i. 156.
ptomahines dovelopeel by, i. 183, 190, 422, 451, 586, 588, 9010
staining of, i. 160, 162, 16s,
trunsmission of, to the fortus, 1. 235.
(See nlso Bucillus.)

Bacterlo

Rell's pa
Bladder,
diso
doub
exst
irita
malf
open
11
sive.
tumo

Blepharit
brete
defin
otiole
eyela
podic
prog
simpl
sym
treat1
typos
uleer
varie
vaso
Blepharo-
Blephisrop
Blepharo
Blindness
duot
follor
from
in id
in
in $y e$
of hy
mood, ac
amm
nppe
bucil
ohar
ohon iii. 183. urs in dis. of, to the foo-

Bacteriology, praotical, 3. 147.
Rell's paralysis, iv, 8et.
Bladdor, absenco of, iii. 177.
diseases of, iii. 67.4.
double, iii. 671.
exstrophy of, iii. 658.
iritability of, iii. 675.
causer, iii. 675.
diagnosis, iii. 676.
prognosis, iii. 676.
treatment, iii. 676.
malformations of, iii. $6: 33$.
openod in hip-ubscess, iii. 1191.
stuan it, iii. 596.
tumors of, iii. 679.
diagnosis of, iii. 1880.
pathulory naic morbid : satomy of, iii. 679.
prognosis in, isi. 880.
symptoms of, iii. 680 . treatment of, iii. 681.
Blopharitis, iv. 50 .
bacteria of, iv. 5 .
causes of, iv. 50 .
definition of, iv. 50.
etiology of, iv. 50.
eyelashes in, iv. 51.
podiculosa, iv. 53.
prognosis in, iv. 52.
simplex, iv. 51.
symptoins of, iv. 51.
trentment of, iv. 52.
typos of, iv. $50,51$.
ulecrosa, iv. 52.
varietios of, iv. 50, 51.
vaso-motor, iv. 51.
Blepharo-phimesis, iv. 65.
Bhepharophasty, iv. 151.
Blepharospasm, iv. 60, 801.
relief of, iv. 105.
Blindness he a syuptom, iv. 452.
duo to the abuso of quinine, iv. 230.
following hemorrhago, iii. 57, iv. 181, 208.
myopia, iv. 368.
ophthalmia neonatorum, iv. 82.
searlet fever, iv. 219.
from brain-tumor, iv. 559, 369.
in idiots, iv. 451.
in whooping - eotgh, iv. 221.
in yellow fever, iv. 224.
of hysterin, iv. 214.
psyohienl, iv. 570.
simulatod, iv. 239, 087.
Mood, neetono in, iii. 765.
ammonia in, iii. $\mathbf{7 6 5}$.
mmount of, iii. 755.
appearance of, in leakomia, iii. 783 .
btoillus anthrnois in, iii. i66.
tuboreulosis in, iii. 766. characteristics of, iii. 755. ohemical ebanges in, iii. 764.
tests for, iii. 58.
olassifieation of disenses of, iii. 763.
diminution of amount of, iii. 770 .

Blood, diseases of, iii. 755.
examimation of, iii. 780.
fatty neids in, iii. T66.
fibrin in, iii. 756.
filaria in, iii, 767.
fotal, iii. 405.
bemoglobin in, iii. 756, 765.
in chlorosis, iii. 759.
in dyspepsia, iii. 3.
in joints, iii. 1138.
in leukumin, iii. 787.
in lymphatio anemia, iii. 803.
in pernicious nurmia, iii. 813.
in stools, iii. 98, 100.
in urine, iii. 526.
parasites in, iii. 766.
plasma, iii. 750.
plasmod' m mahrive in, iii. 767.
speeifie gravity, iii. 755.
sugar in, iii. 766.
urio acid in, iii. 766.
Bone, nbscess in, iii. 993, 1145.
neute influmation of, iii. 092.
unkylosis of, iii. 1285.
deformities ef, iii. 127 S . ostouchasis for, iii. 1273.
when ndvisable, iii. 1273.
when not advisuble, iii. 1279.
ostcotomy for, iii. 1279.
for special cases of, iii. 1?s!.
history of, iii. 1279.
in anterior tibial curvatures, iii. 1294.
in bow-log, iii. 1203.
in club-foot, iii. 1297.
in elbow-ankylosis, iii. 1288.
division in amputation, iii. 1315.
oxeision in club-foot, iii. 976.
foreeps for, iii. 1314.
marrow in lenkwmia, iii. 791.
soalpel for, iii. 1 C82.
Brain, absenoo of. iv. 728.
areas of, iv. 564, 565.
blood-supply to, iv. 525.
in convulsions, is.
s60.
careinoma of, iv. 551.
its pathology, iv. 553.
cholestentoma of, iv. 55 .
compression of, iii. 854.
concussion of, iii. 851.
cortical areas of, iv. 564, 565.
eyst of, iv. 551.
double, iv. 720.
dropsy of, iv. 466,
echinoceceus of, iv. 553.
fimling aud extructing bullets from, iv. 763.

Brain, iotal and infantile, differences from the adult bruin in pathology, iv. 483.
glioma of, iv. 551.
gliosaremat of, jv. 5 51.
gumman of, iv. $551,554$.
hernial of, iv. z30. See Encephatocele and liornin Corebri.
incisions into, iv. 728.
infantile, functional poenliarities of, iv. sith.
inthammation of. See Cerebritis.
injuries to, iv. 851.
:rritutions oft, iv. 56 h .
its relation to the rauseles, iv. 275.
lateral vlew of, iv. 573.
lipoma of iv. 554.
miorocephatic, iv. 1028.
motor areas ot, iv. 564.
myxoma of, iv. 554.
osteoman of, iv, 5.54.
pmpilloma of, iv, 55t.
pmrasitie eyst of, iv. 553.
ןеammomal of, iv. 554.
removal of bullet from, iv . 767.
sareoma of, iv. 551.
selerosis of, iv. 736, 738.
senso-motor centres in, ir. 800.
sonsory moters, nreas of, iv. 565.
syphilitic disonse of, iv. 55.
toratoma of, iv. 554.
trilobular, iv. 720.
tuberele of. its pathology, iv. 552.
its seate, ir. 351.
visual arens of, iv. 565.
Brain-tumors, iv. 551.
agraphia in, iv. 5 too.
nphasia in, iv. 5 tis.
ntuxia in, iv. 580.
basal, iv. 582.
basal ganglia in, iv. 572.
bibliography of, iv. 588.
blinduess in, iv. 559 .
caluses of, iv . 555.
centrnd, cases of, iv. 567.
cerebellar. iv. 551, 559, $56!$.
ntaxin in, iv, 580.
operntions for, iv. 587 .
symptoms of, iv. 579.
choked disk in, iv. 5 59.
collateral effects of, iv, 054.
convulsions in, ir, 558.
cortical, iv. 561 , bit.
symptoms of, iv. 562.
cranial nerves in, iv. 576.
orying in, iv. 558.
death from, iv. $5 * 5$.
dementia in, iv. 559, 562.
diagnosis of eases involviug a parietal lobe, iv. 568.
of existence of, iv. 583.
of vuriety of, lv. 583.
differential diagnosis of, iv. 583.
disposition in, iv. 558.

Brain-tumors, effects of, iv. 554 . enucleation of, iv, 778 .
epilepsy in, iv. $5133,564$.
etiology of, iv. 555 .
extirpation of, iv. 568, 586, 775.
eye-symptoms of, iv. 559. fover in, iv. 5 tio.
general symptoms of, iv. 557.
bearlache in, iv. 557.
hemianopsia in, iv. 569, 570.
hemorrhage during removal of, iv. 777.
in busal ganglia, diagnosis of, iv. 574.
in corpora quadrigemina, iv. 574.
in eortex of the cerebrul hemispheres, iv. 551,561. is erura cerebri, iv. 574.
insolunin in, iv. 560.
in the Sylvian fissure, iv. 571.
irritations from, iv. 566.
Jacksonian epitepsy in, iv. 564.
literature of, iv. 588.
lucal spasms in, iv. 504. syimptoms of, iv. 560.
localization of, iv. 562.
loeation of, ir. 572.
mental activity in, iv. 558 , 562.
motor area in, iv. 564.
of anterior central convolutions, iv. 563.
of frontal couvolutions, iv. 562.
of medulla, iv. 576.
of occipital lobe, is. 569.
of paracentral lobule, iv. 562.
of purietal lobe, iv. 568. of prone, iv. 576 .
of posterior central convolutions, iv. 363.
of temporo-splienoidal lobe, iv. 57 l .
operations for, iv, 586, 771. optic neuritis in, iv. 559.
pain in, iv. 557.
papillitis in, iv. 559.
paralysis from, iv. 507, 571.
parmphasia from, iv. 571.
prognosis in, iv. 555.
pulse in, iv. 560.
rending in, iv. 569.
reflexes ', iv. 577.
removal of, iv. 586 .
respiration in, iv. 560. sex in, iv. 556.
situation of, iv, 583 .
surgical treatment of, iv. 586.
symptom. 3 of, iv. 557 .
in frontal lohar involvemert, iv. 562.
syncope in, iv. 560.
syphilitic, treaturent of, iv. 585.
table of, 1v. 551.
showing sex in, iv. 556.
temper in, iv. 558.
treatment of, iv. is 5,774 .

Brain-tumors, treatment of, after operation for, $i v . ~$ 780.
varieties of, iv. 551.
vascularity of iv. 586 .
vertigo in, iv. $560,577$.
vomiting in, iv. 559.
word-bliuduess in, iv. 569.
word-deafness in, iv. 569, 571.

Bright's diseuse, iii. 525, 532.
acute, iii .532.
age in, iii. 536 .
ehronie, iii. 555.
eomplications of, iii. 548.
convulsions in, jii. 537. course of, iii, 542 .
dingnosis of, iii. 546.
Iropsy in, iii. 538 .
duration of, iii. 542.
etiology of, iii. 533.
heart in, iii. 539.
pathological anatomy of, iii. 534.
polyuria in, iii. 5ils.
pyrexia in, iii. 538.
retina in, iii. 540.
skin in, iii. 510.
symp,torus of, iii. 537, 555.
synonymes of, iii. 5\%3.
thirst in, iii. 538.
trentment of, iii. 550.
urine in, iii. 538.
vomitiog in, iii. 538 .
Bronchitis, ii. 600 .
a cause of usthma, ii. 653 . noute, ii. 600. See Claronic Bronehitis.
as a canse of atelectasis pulmonum, ii. 579.
eapillary, ii. 604, 611, 615. chronic, ii. 6ll. Nee Chronie Bronchitis.
croupous, ii. 613.
deaths from, ii. 610.
fibrinons, ii. 613.
mechnnieal, ii. 013.
psendo-membranous, ii.
613. See I'seudo-plastio Bronohitis.
terminnl, ii. 615.
Bronchocele, ii. 720. See
Goitre.
Broncho-pneumonia, acute, ii. 61\%. See Acute Bron-cho-Pucunonia.
chronic, ii. 642.
ehcesy musses in, ii. 644.
degenerations in, ii. 644.
discriminated from ucute bronchitis, ii. 6ï I, 611.
in cancruin oris, ii. 980.
subaente, ii. 642.
pathology of, ii. 643.
with oroup, ii. 524, 526 .

C.

Calculus, biliary
nding to pancreatic sostruction, iii. 387.
cæеムl, iii. 288.

Cutculus, pancreatic, iii. 383. forming eyst, iii. 38% leading to liver-dis. esse, iii. 387. relurval of, iii. 396. preputial, iii. 632. prostutic, iii. 631. renal, iii. 5iz. urethral, tii. 632. vesical, iii. 596.
age in, iii. 598. anatomy of, iii, 86\%. complications of, iii. 614. coogenital, iii. 596. cutting for, iii 601.
diagnosis of, iii. 603. facial expression in, iii. 604.
frequency of, iii. 596. henorrhage in cutting for, iii. til 5 .
heredity in, iii. 596 .
lateral lithotomy for, iii. 609.
medinn tithotomy for, iii. 613.
operations for, iii. 608.
pain in, iii. 604.
retlexes in, iii. 604 . sounding in, iii. 6ilti. symptoms of, iii. 604.
Cancer of liver, iii. 457. of ovary, iii. 739.
of pancreas, $\mathrm{ini}_{\mathrm{i}} \mathbf{3 9 6}$.
of rectum, iii. 354 .
of epleen, ii. 901.
of stomach, iii. 54. See
Gastric Caneer.
of testicle, iii. 698.
of thy roid, ii. 723 .
of uterus, iii. 717.
Caneruin oris, ii. 974.
bncillus of, ii. 979.
blood in, ii. 977.
omuses of, ii. 074.
eautery in, ii. 982.
course of, $\mathrm{ii} .476,977,980$.
dingnosis of, ii. 981.
diarrhœu in, ii. 080.
feverin, ii. 980.
heart in, ii. 980.
kidneys in, ii. 980.
lungs in, ii. 979, 980.
morbid anatomy of, ii. 978 .
mortality in, ii. 981.
nutrition in, it. 983.
potassimm chlorate in, ii. 983.
prognosis of, ii. 981.
syuptoms of, ii. 980 .
treatment of, ii. 981.
Cardiac ancurism, is. 840 .
Care of the newly-born, j. 236.
Curies, iii. 102s. See also Put's
Disense und MeningoMyelitis.
dental, ii. 024.
arrest of, ii. 930.
hacteria in, ii 926.
cances of, $\mathrm{ij}, 925$.
ferment of, ii. 926.
heredity $\ln , \mathrm{ii} .928$.
origin of, ii. 929.
pathology of, ii. 927.
phenomenn of, il. 927.
prevention of, ii. 928.

Caries, dent
of bond
153.
of the of the
Catalepss, i causes
dingros
history
hyprot
liysteric
indticed
onset of
patholo
prognos
symptor
treathe
Cataract, ir
nequire
axial, i
capsula
canses !
congeni
tue
pos
diagnos
discissio
etiology
false, iv
fluid, iv
hardace
irillecto
Jacteons
lamellar
membra
milky,
Morgag
neculling
operatio
perinuel
polar, is
posterio
133.
punctat
pyramid
soft ncq
spurious
stollate,
traumat
treatme
truc, iv.
varictie
zonular,
Chtarrh. S
nitis.
acute br
des
atrophic
antuma
chronic,
152.
dry unsa
gastric,
in phthi
intestim
nasal, n consu
Cerebral hem

Caries, dental, process of, ii. 926 . progress of, ii. 929
of bones in serefulosis, ii. 153.
of the ribs, ii. 717 .
of the sternum, ii. 717.
Catalepsy, iv. 941.
causes of, iv. 942.
diagnosis of, iv. 944.
history of, iv. 941.
hypnotie, iv. 942, 943, 978. hysterical, iv. 978.
induced, iv. 942.
onset of, iv. 913.
pathology of, iv. 942.
prognosis of, iv. 944.
symptomatology of, iv. 943.
treatment of, iv. 94.
Cataraet, iv. 127.
aequired, iv. 131.
axial, iv. 129.
capsular, iv. 133.
enases of, iv. 130.
congenital, iv. 128. membranous, iv. 131. posterior polar, iv. 130.
diagnosio of, iv. 128.
discission of, iv. 155.
etiology of, iv. 130.
false, iv. 133.
fluid, iv. 131.
hard acquired total, iv. 131.
iridectony for, iv. 130.
lacteous, iv. 131.
lamellar, iv. 129, 88s.
membranaceous, iv. 131.
milky, iv. 131
Norgaguian, iv. 131.
neerling of, i . 155.
operation for, iv. 155.
perinuchar, iv, 132.
polar, iv. 129, 130, 133.
posterior polar, iv. 130, 133.
punctate, iv. 129.
pyramidal, iv. 80, 129.
soft aequired total, iv. 131.
spurious, iv. 133.
stellate, is. 129.
trammatic, iv. 132.
troatment of, iv. 1:30.
true, iv. $13: 3$.
varietics of, iv. 128, 131.
zonular, iv. 129, 132.
Catarrlh. Sue Coryan and Rhinitis.
aente bronchial, ii. 601.
desquamative, iii. 80, 163.
atrophie, ii. 406.
autumat, ii. 663.
elrenic, in serotulosis, ii. 152.
dry nasal, ii. 406.
grattric, iii. 8, 19, 32, 33.
in \quad,hthisis, ii. 685.
intestinal, iii. 91, 163.
nusal, us a forerumer of consumption, ii, 332.
Cerebral hemorrlage, iv. 525.
age of patients with, iv. 529.
aphasia from, iv. 538.
contractures alter, iv. 539, 540.
convulsions with, iv. 530.

Cerebral hemorrhage, ctiolngy of, iv. $526,529$.
heart-diseases and, iv. 530.
hemiplegin frem, iv. 530.
infections disenses leading to, iv. 533.
kidney-disenses in, iv. 530.
locality of, iv. 529.
ophthalmoscopie features of, iv. 184.
paralysis in, iv. 530, 5.月.
seat of, iv. 529.
symptoms of, iv. 535 .
syphilitio origin of, iv. 531.
traumatic, iv. 527, 535. palsies, ir. 479.
eauses of, iv. 480, $53{ }^{10}$.
cema in, iv. 488, 54', 548.
centractures in, iv. 549.
convulsions in, iv. 485, 51s.
cortical lesions in, iv. 543.
cranial asymmetry in, iv. 541.
diagnosis of, iv. 487, 543.
of seat of losion, iv. 544.
differential diagnosis of, iv. 487, 484, 546.
due to hemorrhage, iv. 5:3.
encephalitis in. iv. 181.
epilepsy with, iv. 487, 540.
from embolism, iv. 5:3.
from hydrocephalus, iv. 48 s .
frem intraeranial tumor, iv. 488.
from meniogitis, iv. 487, 488.
from myelitis, iv. 487, 488.
from thrombosis, iv. 530.
from transverse myelitis, iv. 488.
from tubular meningitis, iv. 488.
bemiplegic, iv. 530, 537, 5.11.
hemorrhagic, diagnosis of, iv. 54 .
idiocy following, iv. 541, 547.
lesions in, iv. 480, 513. localizing symptoms of, iv .485.
macrocephalus in, iv. 541.
mierocephalus in, iv. 511.
motor symptoms of, iv. 486,538 .
muscular contractures in, iv. 486.
paraplegle, Iv. 541.

Cerebral palsies, pathologioal anatony of, iv. 480. polioencephalitis us a causo of, iv. 51., 545.
porencephaly in, iv. 482.
prognosis in, iv. 485, 546, 517.
reflexes in, iv. 537.
seat of heworrhage in, iv. 543.
strubismus in, iv. 541.
symptomatology of, iv, $485,542$.
temperatare in, iv. 537.
thrombosis in, diagnosis of, iv. 514.
treatment of, iv. $4 * 8$, 518.
spastic palsies, cases of, iv. 542.

Cerebritis, diffuse suppurative, following ${ }^{n}$ gunshot wound, iv. 767.
prevention of, iv. 781 .
treatment of, iv. 763, See Encephalitis.
Cerebro-spinal fever, i. 51.1.
anatomical characters of, i. $\mathbf{3} 40$.
bacterin in, i. 517.
blood-changes in, i. 511.
causes ot, i. 517, 521.
cerebral effects of, \mathbf{i}. 514, 541, 542, 543, 545.
coma of, i, 546 .
complications of, i. 52, 532, 535. 546.
conditions favoring, i . 518, 521.
contagiousness of, i. 518.
convulsions in, i. 530 .
diagnosis of, i. 524, 539, 346.
diet in, i. 551.
digestive system in, i . 532.
ear in, i. 538 ,
eclampsia in, i. 531.
endemic, i. 516, 539, 540.
epidemic quality of. i. 515, 519, 520, 524.
eruption of, i . 533 .
etiology of, i. 517, 521.
exudation of, i. 517, 542, 513.
eye $\mathrm{in}, \mathrm{i} .530,53$.
geographic range of, i. 137, 515 ,
headache in, \mathbf{i}. $5: 33$.
lygiene of, i. 518 .
hyperesthesia in, i. 52s,
influence of race and climate in, i. 137.
of sex $\ln , \mathrm{i} .522$.
joints in, i. 536.
kidneys in, i. 544, 545, 546.
macule of, i. 536, 515.

Cerebro-spinal fever, meningitis in, 1. 514, 541, 543, 547.
microbe of; i. 517.
mortality from, i. 540.
muscular contractions in, i. 528.
nephritis in, i. 544, $545,546$.
nervous system in, i. 527.
non-contagiousness of, i. 518 .
nursing in, i. 554.
nutrition in, i. 554.
onset of, i. 525.
orjgin of, i. 514, 517.
pain in, i. 525, 527.
paralysis in, i. 529.
pathological anatomy of, i. 540.
prevention of, i. 547, 552.
prognosis in, 3.544.
pulso in, i. 533.
pupil in, i. 537.
respirntory system in, i. 535,541 .
secondury, i. 522.
spots in, i. $536,545$.
strabismus in, i. 530, 537.
stupor of, i. 531.
symptoms of, i. 524, 525, 527, 539.
temperature in, i. 533.
trentment of, i. 547, 548, 552.
urinary organs in, i. 536.
voriting in, i. 526.
sclerosis, multiple, iv, 495. See Selerosis.
Chloresis, iii. 777.
anatemical fentures of, iii. 780.
blood in, iii. 779.
causes of, iii. 757.
complications of, iii. 781.
dingnosis of, iii. 782.
pathology of, iii. 780.
prognosis in, iii. 782.
rubra, iii. 778, 780.
symptoms of, iii. 778.
trentment of, iii. 782.
Cholera, Asiatic, i. 909.
bacillus of, i. 155,900 , 005, 910-914.
dejections in, i. 902, $905,915$.
diagnosis of, i. 917.
disinfection in, i. 902, 905, 907.
enteroclysis in, i. 917, 918.
food in, i. 903.
foulroynnte, l. 916.
hygiene during, i. 902, 904.
hypodermoelysis in, i. $917,920$.
infantum, iii. 108, 126. See Diarrhoer, Acuto Myotic.
bacteria in, lii. 130. baths in, iii. 132. causes of, iii. 126.

Cholera infantum, complications of, iii. 133
dingnosis of, iii. 130. diseriminated from neute dyspeptio dinrrboen, 112, 130.
from gastro-onteritis, iii. 301.
etiology of, iii. 126.
geographie range of, i. 142.
hygienie treatment of, iii. 133.
hyperpyrexia of, iii. 132.
hypodermic medicntion in, iii. 132.
ice ill, iii, 133.
kidneys in, iii. 129.
nervous symptoms in, iii. 128 .
nourishment in, iii. 133.
opinm in, iii. 132.
pathology of, iii. 130.
prognosis in, iii. 13].
prophylaxis against, iii. 131.
prostration in, iii. 127, 133.
scicrema following, iii. 129.
gtimulants in, iii. 133. stools in, iii. 127.
symntotus of, iii. 127.
temperature in, iii. 128, 133.
treatment of, iii. 131.
vomiting in, iii. 127, 133.
infectiots quality of, i. 900. microbe of, i. 155, 900, 905, 910-914.
milk a vehicle of, i. 901.
mortality from, i. 921.
premonitory signs of, i. 914, 915.
prevention of, i. 902,904 , 906.
prognosis in, i. 921.
prophylaxis agninst, i. 902, 905-909.
ptomaine of, i. 900.
quarantino against, i. 905, 907-909.
stages of, i. 914-916, 921.
gymptomatology of, i. 914.
temperature in, i. 916.
uxien, i. 917.
trentment of, i. 917.
Choren, iv. 840.
anatomical features of, iv. 845.
arsenic in, iv. Sby.
brain in, iv, 816.
cardine disease in, iv. 841 , 850.
causes of, iv .840.
corebral origin o!, iv. 847.
chronic, iv. $850,851$.
climute in, iv, $\delta 42$.
complientions of, iv. 850.
congenital, iv. 841 .
convalsions with, iv. 851.
dementia after, iv. 850.
diagnosis of, iv. 852.

Cherea, diet in, iv. 853.
due to eye-strain, iv. 145.
duration of, iv. $851,853$.
electrical reactions in, iv, 849.
electricity in, iv. 855.
embollsui in, iv. 846.
emotional causes, iv. 812 .
endocarditis with, iv. 850 .
epilepsy in relation with, iv. 845.
etiology of, iv. 840.
exercise in, iv. 853 .
fright in, iv. 842.
galvanism in, iv. 855:
gravidarum, iv. S44, 856.
henrt-disease in, i:. 84t, 850.
heredity in, iv. S41.
history of, iv. 840.
hysterical, iv. 852.
in school-children, iv. S50, 856.
intellect in, iv. 850.
maoin with, iv. 850 .
massage for, iv. 329, 855.
medication in, iv. 854.
mind in, ir. 850 .
movements of, iv. 848 .
one-sided, iv. 848, \$51, 852.
onset of, iv. 848 .
ophthalmoscopie in, iv. 190.
paralytic, iv. 849.
pathology of, iv. 845
persistent, iv. 852.
post-hemiplegic, iv. 852.
prognosis in, iv. 853.
puerperal, iv. S. 44.
race in, iv. 842.
reflex, iv. 845.
rheumatic, iv. 843, 850.
school-chiddren with, ir. 856.
sehool-influences in, ir. 842.
speeeh in, iv. S49.
spinal, iv. 841.
spinal cord in, iv. 846, 847
statistics ol', iv. $840,843$.
symptoms of, iv. 847.
temper in, iv. 850.
tongue in, iv. 848, 849.
trentment of, iv. 853 .
weather in, iv. 842 .
worms as a cause, iv. 8!5.
Choreic hemiplegin, iv. 457.
Choroid, abnormalities of, iv. 160.
angioma of, iv. 174, 183.
coloboma of, iv. 162.
detached, iv. 169.
enehondroma of, iv, 174.
granuloma of, iv. 174.
in renal disease, iv. 2]0,
rupture of, from contre-
coup, iv. 166.
sarcomat of, iv. 172.
tubercle in, iv. 227.
tumors of, iv. 172, 173.
Choroidal eubolism, iv. 179.
Choroiditis from ametropia, iv. 170.
metastatic, iv. 20t.
purulent, iv. 179.
Cbronic bronchitis, ii, 611.
auscultation in, ii. 612.
prognosis of, ii, 612.
signs of, ii, 612.

Chronle
diarrl
Dia
Clavicle, f

tongue,
Closure of
Club-foot, ii
anatom.
dinguos
etiology
non-def
osteotot
prognos
talipes,
treatme
Club-hand,
Culoboma of
of cyeli
of iris,
of shen
nerve
Color-blinde
hysteric
treatme
Color-perver
iv. 215,98

Color-sympts
iv. 230.

Color-visions
nia, iv. 10
Colutomy, iii
maxsthe:
artilicin]
nsepsis
for impe
329.
inguinal
lel't luml
lumbar,
disady
of the g
operation
prognosi.
results of
statistics
when jus
when re
See als
Vol.
i3.
iv. 145 51, 853.
855.
846.
, iv. 842. i, iv. 850 . tion wilh,
850.

848, 849 .
v. 853.
842.
ses, iv. 845.
, iv. 457. ities of, iv.
. $174,183$. . 162. 69.
fif iv. 174.
iv. 14. c, iv. 210 . roul contre-
172.
227

172, 173.
i, iv. 179.

netropia, iv.

20%.
 79.

ii. 811 .
on in, ii. 612. of, ii, 612.
i, 612.

Chronic bronehitis, treatment of, il. 612.
types of, ii. 611.
diarrioen, iii. 149. See Diarrhee, Chronic.
Clavicle, frncture of, iii. 1059. during birth, iii. 1059.
from convulsions, iii. 1059.
incomplete, iii. 1059.
intru-utorine, iii. 1059. non-union in, iii. 1060. treatment of, iii. 1001. union nfter, iii. 1060 .
luxations of, iii. 1101.
neromial, iii. 1103.
both ends involved, iii. 1103.
congenital, iii. 1102.
sternal, iii. 1101.
Cleft, faeial, il. 937 . See Fissure.
nasal, ii. 941.
of hard palate, ii. 1011.
palate, ii. $995,1007$.
bony, ii. 1011.
nature of, ii. 1007.
nursing in, ii. 1008.
operation for, ii .1009.
sutures for, ii. 1011.
time for operatiog in, ii. 1008 .
tongue, ii. 947.
Closure of flet al vessels, i. 252.
Club foot, iii. 955.
matomy of, iii. 958.
diagnosis of, iii. 963.
etiology of, iii. 955.
non-deforming, iii. 963.
osteotomy for, iii. 1297.
prognosin. iii. 064.
talipes, iii. 055.
treatment of, iii. 964.
Club-hand, iii. 936.
Colobomn of ehoroid, iv. 162.
of eyelids, iv. 67.
of iris, ir. 124.
of sheaths of the optic nerve, iv. 163.
Color-blindness, iv. 238.
hysterical, iv. 987.
treatment of, iv. 239.
Color-perversions in hysteria, iv. 215, 987 .

Color-symptoms due to tobacco, iv. 230 .

Color-visions seen in hemicranin, iv. 195.
Colotomy, iii. 357.
anesthesin in, iii. 260, 358.
artiticialanus alter, iii. 359.
asepsis in, iii. 358 .
for imperforate unus, iii. 329.
inguinal, iii, 300, 362.
lett lumbar, iii. 32s, 358.
lumbar, advantages and
disadvuntnges of, iii. 362.
of the groin, iii. 260, 328.
operation of, lii. 358.
prognosis after, lii. 363.
results of, iil. 362.
statistics of, iii, 363.
when justifiablo, iii. 357.
when requisite, iii. 30 t .
See also Luparotomy.
Coma, significance of, iv. 488.
Vol. IV.-70

Coneussion of the brain, diet in, Iv. 763.
shaving the head in, iv. 763.
treatment of, iv. 763.
of the spine, mulingering in, iv. 201.
ophthalinoscopio fentures of, Iv. 200.
Congenital defects, ete., ii. 935.
Conjunctivn, chemosis of, iv. 101.
croup of, iv. 95.
diseases of, iv. i7.
essential shriuking of, iv. 100.
hemorrhage from, iv. 101.
hyperwmin of, iv. 86 .
lupus of, iv. 101.
lymphangiectasis of, iv. 91.
pimples of the, iv. 94 . See also Keratitis, l'hlycten. ular.
pterygium of, iv. 102.
tubercle of, iv. 99.
tunors of, iv. 102.
xerosis of, iv. 99.
Conjunetivitis, acuste, iv. 85.
testivalis, iv. 02.
catarrhal, iv. 85. Sce 0phthalmin, Mueo-Purulent. chronic, iv. 91.
croupous, iv. 95.
diphtheritic, iv. 96. Soe Ophthalmia, Diphtheritic.
follicularis, iv. 87.
membranous, iv. 9 .
phlyctennlar, iv. 93. See also Keratitis, Plalyctenular.
purulent, iv. 77. See Ophthalmia Neonatorum.
toxic, iv. 91.
Constipation, ubdominal distention with, iii. 196, 201.
anamia with, iii. 191, 207.
bacterial influences in, iii. 199.
caehexia duo to, iii. 201.
caluses of, $\mathrm{ii}, 194$.
causing convalsions, iii. 198.
perityphlitis, iii. 290.
ehlorosis after, iii. 199.
ehronic, iii. 196, 198, 201, 203.
complientions with, iii. 207.
congenital, iii. 203.
diagnosis of, iii. 202.
diet in, iii. 205, 206.
due to blood-changes, iii. 197.
constriction, iii. 196.
habit, iii. 195, 199.
organic disease, iii. 195.
paralysis, iii. 190.
peritoneal affections, iii. 196.
spasm, iii. 197.
effects of, iii. 198.
electriclty for, iii .207.
food as cuusing, iil. 206.
ln treatment of, iii.

Constipation, habitual, iii. 106, 198, 201, 203.
in dyspepsia, iii. 7, 21.
in peritonitis, iii. $270,271$. infuntile, defined, iil. 193. massage for, iil, 207.
non-medicinal.cure for, iii. 205.
nurslings with, iii. 200, 201.
pathology of, iii. 198.
prognosis of, iii. 202.
symptotns of, iii. 200.
treatment of, iii. 203.
Contractions of liver, iii. 488.
Contractures after hemorrbagio hemiplegin, iv. 539, 540.
hysterical, treatment of, iv. 1007.
in multiple cerebro-spinal sclerosis, iv. 501.
prevention of, iv. 549.
Convulsions, iv. 857. See ulsa Laryngismus Stridulus.
ago in, iv. 862.
autopsies after, iv. 890.
brain in, iv. 858, 880, 890.
burns callsing, iv, 878.
cataraet and, iv. 888.
causes of, iv. $460,857,861$, 891.
central, iv. 857.
cerebral, iv. 858.
circulation in, iv. 878, 880.
elassification of, iv. 881, 891.
cold to head in, iv. 803.
deaths from, iv. 862.
dentition in, iv. 863, 869, 80.1, 102!, 1030.
diagnosis of, iv. 887.
diet a causo of, iv. 870.
differential diagnosis of, iv. 891.
earache with, iv. $878,896$.
effects of, on health, iv. 888.
emotional, Iv. 879.
enteric fever as a cause of, iv. 876.
epilepsy und, iv. 866, 887, 888.
epileptiform, iv. 859, 88:. See also Epilepsy.
easential, iv. 860 .
exanthemath with, iv. 889.
fover a cause of, iv. 875 , 876 .
food a cluse of, iv. 870.
fright a cause of, iv. 879 .
gastro-intestinul disorders in, iv. 871.
genoral, iv. 882.
albuminuria in, iv. 886.
bowels in, iv. 885 .
conscioushess in, iv. S85.
denth from, iv. 886.
duration of, iv. 886 . celtuptio condition ufter, iv. 884.
epileptiform, iv. 883. forms of, iv. 883. paroxysm in, iv. 883. prodromes of, iv. 883. prognosis in, iv. 886. significance of, iv. 887. spasms of', iv. 883.

Convulsions, general, atupor following, iv. 884. symptoms of, iv, 883 varioties of, iv. 883.
health after, iv. 888.
heredity in, iv. 865.
hot bath in, iv. 893.
in reute infectious fevers, iv. 875 .
in cerebral palsies, 485, 536.
in inheriled syphilis, iv. 590, 591, 502 .
in measles, iv. 889.
in multiple cerebre-gpinal scleresis, iv. 501, 509.
in poliomyelitis anterior, iv. 695.
in scarlet fever, iv. 889.
infintile, iv. 857.
insect-bites a cunse of, iv. 878.
intermittent fever in, iv. 876.
intestinal parasites a cnuse of, iv. 874 .
irritation of nerves in, iv. 878.
irritations causing, iv. 877.
kinds of, iv. 891.
laneing the gums in, iv. 894.
laryngeal causes of, iv. 870.
malarial, iv. 876.
mortality from, iv. 887.
nerve-contres in, iv. 858 .
nervo-irritation in, iv. 878.
newly-born with, iv. 887.
ophthalmoscope in, iv. 861.
pain in, iv. 890.
paroxysm of, how treated, iv. 893 .
patbology of, iv. 890.
poripheral, iv. 858, 878.
pnemmonia as a cause of, iv. 876.
post-mortom appearances after, iv. 890.
prodromes of, iv. 882.
rachitis and, iv. $866,888$.
rellex origin of, iv. 864, 86 t .
remedies in, iv. 895.
results of, iv. 888.
galaam, iv. 801.
scalds causing, iv. 878.
soquels of, iv. 890.
sex in, iv. 865.
spinal cord, iv. 858, 880.
statistics of, iv. 862, 865, $866,871,877,887$.
symptomatology of, iv. 881.
toxsmic, iv. $875,877$.
treatment of, iv. 548,892 , 896.
uræmic, iv. 797, 877.
treatment of, iv. 806.
varieties of, iv. $858,891$.
worms as a cause of, iv. 874.

Cornea, abscess of, iv. 106, 107, 109.
affections of, iv. 103.
anomalies of, iv. 119.

Cornea, eongenital opacity of, iv. 110.
congenital staphyloma of, iv. 119.
conieul, iv. 117.
dermoid tumor of, iv. 1.8.
disenses of, iv. 103.
herpes of, iv. 117.
inflammations of, iv. 103. See Keratitis.
necrosis of, iv. 99.
pemphigus of, iv. 100.
tumors of, iv. 118.
xerosis in, iv. 100.
Corneal loucoma, iv. 107.
maeula, iv. 107.
nebula, iv. 107.
opacity, interstitial, iv. 113.
perforation, prevention of, iv. 108, 109.
stapliyloma, iv. 107, 154.
ulcer, iv. 105.
circular, iv. 106.
creeping, iv. 106.
duc to ophthalmin, iv. 80.
etiology of, iv. 106.
excavated, iv. 105.
infeeling, iv. 106.
phlyctenular, iv. 104.
serjiginous, iv. 106.
sloughing, iv. 106.
tecth in, iv. 110.
trentment of iv. 108.
Coryza, ii. 341.
acute, ii. 386.
antiseptic treatment of, ii. 301.
causes of, ii. 388.
definition of, ii, 386.
etiology of, ii. 388.
cxamination in, ii. 389.
symptoms of, ii. 386.
trentment of, ii, 390.
syphilitic, ii. 201, 379, 388.
ulcerous, ii. 411.
Costal beads in riekets, ii. 22.1, 225, 226, 235.
Cough defined, ii. 340.
from laryngeal growths, ii. 509.
in phthisis, ii. 676.
in psendo-membranous laryagitis, ii, 525.
nasal, ii, 3.1.
nocturnal, ii. 342.
reflox. See Refiex Cough.
with enlarged tonsil, ii. 467.
Cough-contre, ii. 310.
Cretinism, ii. 279.
bones in, ii. 288.
brain in, ii. 287, 288.
climate in, ii. 280.
definition of, ii. 279.
deformity in, ii. 282, 285.
description of, ii. 281, 284.
distribution of, ii. 279.
endemieity of, ii. 281.
free in, ii, 282.
foetal, ii. 252.
functions in, ii. 282, 283.
gengraphy of, ii. 279.
goitre as related to, $\mathrm{ii}, 259$, 283.
head in, ii. 282.

Cretinism, beart in, ii. 289.
heredity in, ii. 2 si.
history of, ii. 270.
influence of siltitude on, ii . 280.
of elimate on, ii. 2 s 0 .
of locality on, ii. 2×0.
intelligence $\mathrm{in}, \mathrm{ii}, 281,2 \$ 5$.
loculities of, ii. 280.
minilln, ii. $281,2 \times 5$.
morbid anatomy of, ii. 280 290.
muscles in, ii. 285.
kin, ii. 2s3.
] chology of, ii. 2s6-290.
prophylaxis of, ii. 2 Hl.
seapula in, ii. 289.
secretions 1n, ii. 283.
scnses in, ii. 284.
skull in, ii. 286, 288.
soil and, ii. 281.
spheno-busilar bone in, ii. 286.
spine in, ii. 288.
sporalic, ii. 284, 287.
sympitomatology of, ii. 281.
thyroid in, ii. 279, 286, 2s7, 290.
treutment of, ii. 292.
Crime, juvenile, iv. 422.
Cronp, ii. 521 .
entarrhal, ii. 516.
false, ii. 516 .
spasmodic, ii. 516 .
Croupons jneumonia, ii. 586
See Premmonia, Croupous.
rhinitis, ii. 400.
Cyelienl voulting, iii. 22, 23, 24.

Cyst, dermoid, iii. 737, 738 . of bile-duct, iii. 378.
of liver, iii. 425.
of pancrens, iii. 383, 386.
See l'uncreatie Cysts.
Cysts in the colon, iii. 93.
of kilney, iii, 582.
of penis, iii. 637.
of testicle, iii. 689.
of vagina, iii. 724.
Cystitis, iii. 6i6.
causes of, iii. 677.
diagnosis ot, iii, 678.
pathology of, iii. 677.
prognosis in, iii. 678.
syuptoms of, iii. 677.
treatment of, ii. 1678.

D.

Deaf-muteness, congenital, iv. $32,45$.
daetylology in, iv. 46.
detection of, iv. 40.
education in, iv. 46.
hygione in, iv. 45.
lutent hearing in, iv. 47.
lesions ill, iv. 45.
prevention of, iv. 36.
speceh thught in, iv. 46.
Deafness, anatomical features of, iv. 48.
hysterical, iv. 988.
improved by systematio training, iv. 48.
incomplete, iv. 47.

Deafncss, incurable, iv. 39.
prognosis and treatment of, iv. 41.

Defects, fioial and oral, $\mathbf{i i}, 935$. Veformities, facial and oral, i . 0:15.
of bone, iii. 1273.
of infintile paralysis, tii. 1298.

Dengue, i. 878 ,
bactoria of, 1, 883.
entises of, l .881.
comptientions of, i. s90, 821.
differential diagnosis of, i. 80:3.
epicternices of, i. 879.
eruption of, $1.888,899$.
etiologe of, i. 888
geography of, 1. 879, 881 .
invasion of, i. 887,809 .
mierococei in, j, 883 .
ophthatmoseopie features of, jv . 22..
pathological anatomy and pathology of, f. 895.
prognosis in, i. 802.
stages of, i, 887-890.
symptomatology of, i. 886890.
troatment of, i. 896.
Dentition, i. 373.
alleged disordors of, i. 350, 379, ii. 15 !, 920.
nnomalies of, i. 376.
dangers of, i. 75.
delayed, i. 02, 376.
in ruchitis, i. 382, ii. 226.
irregnlar, i. 377.
multijule, i. 377.
precocions, i. 376.
second, disorders of, i. 385, ii. 934.

Development, physical, iv. 241. Diabetes mellitus, ii. 320.
eanses of, ii. 322.
diagnosis of, ii. 325.
etiology of, ii. 322.
nerve-inthonces in, ii. 322.
pathology of, ii. 322.
prognosis of, ji .325.
syanptoms of, ii. 324.
trentment of, 325.
Dingnosis, i. 73.
of nervous diseases, iii. 447.

Diarrhea, neutc. See Catarrb, Intestimal.
acuto dyspeptic, iii. 109.
nntisejties for, iii. 122. nsepsis in, iii. 123.
breast-milk in, iii. 115. canses of, iii. 109.
change of air for, iii. 113.
olinical history of, iii . 109.
complications of, iii. 113.
course of, iii. 109.
tliagnosis of, iii. 111.
dietetio treatment of, iii. 114.
formonted milk preparations in, iii. 116.
foods in, iii. 115.
frosh air for, iii. 113.

Diarrhoen, acute dyspeplic, hygionto treatment of, iii. 113.
milk in, iii. 115.
pathology of, iii. 109.
prognosis in, iii. 112.
prostration in, iii. 111.
relnipes in, iii. 110 .
symptoms of, iii. 109.
trentment of, iii. 113, 126.
wet-nurse in, iii. 115. noute myeotie, iii. 108.
medicinal treatment of, iii, 117.
anmmica, iii. 774.
bactorial, iil. 109.
choleriform, iii. 126. See Cholera Infantum.
bathing in, iii. 14.
chronic, iii, 149.
primary casos of, iif. 149.
fatal cases of, iii. 151.
prognosis of, iii. 151, 152.
treatment of, iii. $157,158$.
secondary cases of, iii. $149,152$.
appearance in, iii. 153.
appetite in, iii. 153.
causes of, iii. 149.
clange of air in, iii. 160.
olothing in, iii. 158.
complications in, iii. 155.
corneal ulcers in, iii. 155.
diagnosis of, iii. 153.
diet in, iii. 158.
etiology of, iii. 149.
infuntile, iii. 150. mouth in, iii. 153 . nutrition in, iii. 154.
cverfeeding in, iii. 158.
prognosis in, iii. $155,157$.
prophylinxis of, iii. 157.
pulse in, iii. 150, 154.
skin in, iii. 154.
stools in, iii.- 151, 152, 153.
$8 y \mathrm{mptoms}$ of, iii. 150.
treatment of, iii. 159.
fatty, iii. $98,99$.
fibrimons, iii. 163. See Membranons Enteritis. in dyspepsia, iii. 4, :33. infectious, iii. 62, 108.
inflammatory, iii. 134. See Entero-Colitis, Acute. mucous, iii. 16\%. See Membranous Enteritis.

Diarrhœen, simple, iil. 100. canses ef, iii. 10%.
pathology of, iii. 107.
symptoms of, lii. 107.
tremtment of, iii. 108.
Diarrheal discase, iii. $6 \mathbf{i}$.
acute dearjuamative, iii. 79, 80 .
nnatomical features of, iii. 75.
bacteria in, iil. 62.
brain-lesions in, iii. $89,95$.
broncho - pneumonis in, iii, 89.
cпuses of, ifi. 62, 64, 70, 10:3.
eontagion of, iii. 68,
dentition in, iii. 64.
diet in, iii. 6 .
epislemics of, iii. 68.
etiology of, iii, 62.
food in, iii. BI, 65, 69, 102, 193.
heart $\mathrm{in}, \mathrm{iij}, 90$.
hygienc of, iii. 67, 69.
kidneys in, iii. 90.
liver in, iii. 00.
lungs in, iii. 8!.
month in, iii. 80.
pathological anatomy of, iii. 75, 79.
prophylnxis of, iii. 101, 106.
ptomuines ns intluencing, iii. 71, 74.
scamon of the year in, iii. 68.
stomach in, iii. 90.
stools in, iii. 95.
toxio symptoms in, ii . 71.
tuberculosis in, iii. 90.
weaning as a cause, ii . 66, 69.
Diet after weaning, i. 337.
Dilatation of the heart, ii, 759. See also Enlargement of the lleurt and 11 ypertroplay of the Il cart.
cruses of, ii. 810.
compensatory, with hypertropliy, ii. 801.
consecutivo, ii. 716.
idiopathic, ii. 796.
over-distention in, ii. 812.
over-exertion in, $\mathbf{i i}$. 811.
overfeeding in, ii. 810.
physical signs of, ii. 802, 803.
prognosis in, ii. 807.
right ventricular, if. 834.
sceondary, ii, 792, 790.
signs of, ii. 802,803 .
symptoms of, ii, 801.
treatment of, ii. 810.
with hypertrophy, ii. 791.
of right ventricle in triens-
pid inndequacy, ii .834.
of the stomnch, ii .41 .
anatomical features of, ii. 44.

1108

GENERAL INDEX.

Dilatation of the stomach, causes of, il. 42.
coniplications with, ii. 45.
dingnusls of, $\mathrm{ii}_{\mathrm{i}} 45$.
dinphragin in, it. 45. diet in, ii. 50 .
external signs of, ii. 45.
foods in, ii. 50 .
in dyspepsin, li. 7.
medleation in, ii, 51.
non-medicinul trentment of, ih. 49.
palpitation in, ii. 47.
pathologienl anatomy of, ii. 44.
prognosis in, ii. 48.
akimmed milk in, ii. 50.
stenosis of the pylorus in, ii. 40, 42.
symptoms of, ii, 44. trentment of, ii. 48.
Diphtherin, 1. 580.
nlbuminuria in, i. 603, 626, 672.
anatomical characters of, i. $589,608,625,639$.
apoplexy, pulmonnry, 1 n , i. 616.
atomizer in, i. 664, 671.
bacteria of, i. 152, 154, 585-501.
blood in, i. 602, 612, 62C, $650,651$.
brain in, i. 613.
causes of, i. 585.
elinical history of, i. 618621.
commmaiention of, i. 592 . congestion of the lungs in, i. 650 .
constitutionnl disense, i. 602.
dingnusis of, i. 128, 605.
disinfectants in, i. 651-656. emphysenta from, i, 615. epidemie nature of, i. 581. eruptions in, i. 625.
etiology of, i. 585 .
fnuces in, i. 606, 613, 619.
foflicular tonsillitis in, i 606.
feod in, i. 657.
geographical range of, etc., i. $140,581,584$.
germicides in, i. 663.
beart-fialure in, i. 616, 637-613, 650.
history of, 1. 580.
hygiene of, i. 656.
ineubntion of, i. 598.
jsolation of patients, i. 651-655.
kidneys in, i. 603, 618, 626, 628.
laryngo-tracheal, i. 606.
liver in, i. 617.
lungs in, i. lil4, 616, 650,
membruae of, i. 601, 605 , 610.
mortality from, i, 650 .
mouth in, i. 617, 623.
mucous membrnnes in, i. 610.
nares in, i. 605, 611, 621 .

Dipintheria, nursing \ln, i. 355.
oesophagus in, l. 623.
ordinnry type of, i. 610.
paralysis of. See Dipbthoritic l'uralysis.
pathology of, i, 589, 608.
pbaryngitis in, l. 607, 608.
pleurisy ln, i. 615.
pueumonia in, 1. 615.
prevention of, $\mathbf{i} .651$.
prognosis of, i. 649-651.
pseudo - membrnnes of, 1. 601, 610, 611, 621.
ptomaines of, i. 610.
pulmonary ademn in, 1. 616, 650.
senrlatinul, i. $564,568,569$, 574, 600, 607.
septic poisoning in, i. 650.
severe type of, i. 619.
solvents in, i. 679.
stonnch in, i. 611, 617, 623.
sulphur-fumigation in , $\mathrm{i}_{\text {. }}$ 652.
temperaturo in, i. 620.
tongue in, i. 61\%, 620.
tonsils in, i, 606, 613.
toxtemin from, i. 603.
transmission of, i. 594.
trentment of, i. 602, 651, 656, 672.
urgemin in, i. 65t).
urinary organs in, i. 603, 618, 624, 626.
uvula in, i. 613, 614.
virus of, i. 585,589 .
wounds ns the sent of, i. 624.

Diphtheritic paralysis, i. 629, 635,672 , iv. 808.
enrdine, i. 6:37.
cnuses of, i. 6.43.
clinienl history of, \mathbf{i}. $0: 11$.
diaguesis of, iv. 808 , 810.
dysphagin in, i. 636.
heart-fnilure in, i. $637-$ 643.
multiple, i. 635.
mutations of, i. 635, 647.
prthology of, i. 639, 644,645 , iv. 809.
symptoms of, iv. 809 .
temdon reflexes absent, i. 633.
trentinent of, i, 672,iv. 810.

Dislocntions, iii. 1043, 1097. congenitnl, iii. 945.
Ductus arteriosus, closure of, i. 252.

Dyspepsin, iii. 1.
neidity of stomnch in, iii. 6. acute, iii. 4, 5, 9, 12, 14. blood in, iii. 3 .
bowels in, iii. 3, 4, 7, 19.
brenst-milk in, iii. 2.
catarrbal, iii. 8, 19.
causes of, iii. 2.
ehronic, iii. 5, 6, 9, 10. 16. colonic, iii. 163. See Mem-
branous Enteritis. constipation in, iii. 721. dingnosis of, lii. 9-11.
diet in, iii. 14, 18.

Dyspepsia, digostion in, lii. 13 effoets of, iil. 5, 11.
exercise in, ill. 17.
tlatulene in. iii, 7.
fontanel in, iii. 5 .
food in, lii. $2,3,13,18$.
hyglene in, lii. 10. inhorited, lii. 3.
lavage in, lii. 6.
lesions in, iii. 3, I.
monls in, iil. 18.
milk In, iii. 2, 14.
nervous, iii. 7, 11, 36. nurse in, iii. 2.
pathology of, iii. 3.
pepsin in, lii. 13, 20.
prognosis in, iii. 8, 11.
stimulants in, iii. 16, 21
stomneli in, iii. 7, 8, 1\%.
stoels in, lii. 7.
symptoms of, iii. 4, 8, 9 .
tongue in, iii. 5, 6, 8, 1i.
trentment of, lii. 11.
vomiting in, iii. 5, 6, 12.
worms in, ili. 6.

E.

Ear, iv. 1.
nnatomy of, iv. 2.
camal of, jv. 8.
chronic discharge from, iv. 14.
clennsing the, iv. $5,6,7$
disenses, iv. 1.
drum of, iv. 14. See
Membrana Tympani.
exnmlantions of, iv. 7.
fistuln of, iv. 4.
foreign bodies in, iv. 8.
hygiene of, iv. $38,45$.
inflammation of, iv. 11, 12. See Otitis.
injuries of, iv. 5, 9.
internal disenses of, iv. 39.
injuries lending to disease of, iv. 40.
labyrinth of, iv. 39.
maiformations of, is. 3, 4, 8, 14.
mastoill disease of, iv, 9. See Mnstoid Diseaze.
membrana tympani of, iv. 3.
middlo, iv. 3, 8, 16, 18. sie
Otitis Medin.
ossiclos of, iv. 3.
parneentesis of membrana tympnni in, jv, 22.
polypi in, iv. 13, 25, 26.
ponttices to, condeuned, iv. 13, 19, 24.
reflex phenomena from irritution of, iv. 10.
speculum for, iv. 7.
structure of, ir. 39.
surgical injuries of, iv. 9.
syringing the, iv. 8 .
wnshing out tho, iv, 6, i, 8.
Earnehe, iv. 16, 18, 24, 37.
hysterical, iv. 984.
trentment of, iv. 13.
Edampsin, causes of, iv. 461, 796.
dentition in, iv. 796.
diognesis of, iv. 798.

Eciampsia, epilepry simulated by, iv. 797, 798.
peripheral irritations causlag, iv. 797.
progaoxis in, iv. 798, 888. symptoms of, iv. 707. trentuent of, iv. 798.
Eczema, ii. 61.
causes of, ii. 61-64.
dlagnosis of, ii. 69.
etiology of, i1. 61-64.
prognosis in, il. 77.
symptomatology of, il. 64, 67.
troatment of, ii .70 .
varieties of, ii. 6.-69. vesioular, ii. 65.
Elephantiasix, ii. 93.
pithologe of, ii. 94.
progncals of, ii. 91.
treatment of, ii. $9 \ddagger$.
varieties of, ii. 93, 94.
Embotism, cerobral, causes of, iv. 532.
effects of, iv. 533, 534.
meningeal, signs of, iv. 54.
of the chorold, iv. 179.
within the eyeball, iv. 177.
Enbolus diseriminated from
thrombns, iv. 544.
Embryology, i. 039.
Emergeneies, iii. 839.
Emphysema, ii. 645.
causes of, ii. 645.
course ot, ii. 618.
diagnosis of, ii. 649.
pathology of, ii. 617.
prognosis in, ii. Gä0.
symptoms of, ii. 648.
treatment off, ii. 650.
varietics of. ii. 645.
Епируепи, ii. 705.
aspiration in, ii. 707.
exploring-ncedlo in, ii. 706.
paracentesis in, ii. 707.
pleuritic, ii. 690.
plearotomy in, ii. 709.
pus of, ii. 706.
thoracentesis in, ii. 707.
treatment of, ii. 709.
Encephalitis, congenital, iv. 482.
prophylaxis of, iv. 763, 775.
symptoms of, iv. 763.
treatment of, iv. 762.
Eneephalocele, iv. 730, 741. diaynosis of, iv. 742.
palliative troatinent of, iv. 742.

Endocarditis, acute, ii. 768.
anamin of, ii. 779.
uuscultation in, ii. 776 , 780.
oardiac hypertrophy in, ii. 779. nodules in, ii. 7 : 4 , 777.
symptoms of, ii. 779.
causes of, ii. 768.
concealed, ii, 775. diagnosis of, ii. 780. dropsy of, ii. 779. embolism from, ii. 779.
etiology of, ii. 768.

Endocarditis, neute, fibrous nodules in, ii. 774, 777. feetal, il. 771, 772. witral stenosis in, il. 776.
over-exerciso 118 a cause of, ii . 784.
pathology of, it. 872.
physlent signs of, 11 . 776.
prognosis in, ii. 782.
prophyiaxis against, ii. 78 a.
rheumatisminits relntion to, ii. 770 .
scarlet fever in its relation to, ii. 771.
septic, ii. 7 s 5.
sex in, ii. 772.
signs of, ii. 776.
subcutaneous nodules in, ii. 777, 778.
symptoms of. li. 775.
treatment of, ii. 783.
valvular disease as a caluse of, ii. 771.
chronic, ii .815 .
suhacute, ii. 768.
Enlargemont of the heart, ii. 759. See also Dilatation of the Iieart und liypertropliy of the lleart.
auscultution in, ii. 799.
causes of, ii. 702, 805.
diagnosis of, ii. 804.
effects of, ii. 798.
histology of, ii. 791.
muscular overwork in, ii. 806.
overwork in, ii. 806.
pathology of, ii. 789, 794.
prognosis of. ii. 805 .
results of, ii. 798, 799.
rheumatism in, ii. 809.
sent of, ii. 805.
symptoms of, ii. 799, 800.
treatment of, ii. 807.
varicties of, ii. 789, 805.
Enterio fever, i. 441.
uleoholio stimulants $i n, i$. 485, 496.
analysis of symprome of, i. 462.
anatomical lesions in, i. 452, 458, 475.
antipyretics in, i. 492.
aphusia from, i. 472.
bacteria in, i. 445.
bath in, i. 488, 494, 495.
bed-sores, i. 474, 491.
bowels in, i. 453, 467 .
enuses of, i. 442.
climatio influences in, i. 443.
clinical course of, in childhood, i. 459.
cold affusion in, i. 494.
collupse in, i. 464.
complications of, i. 458, 464, 465, 469, 471, 474, $476,485$.
constitutional symptoms in, i. 451.
contagiousness of, i. 449.
convalescence fron, i. 463, 464, 495.
courso of, i. 458- $\mathbf{4 6 3}$.

Enterio fover, dejections in, 1. 482.
delirium in, 1. 459, 471, 487.
diagnosis of, i. 478.
diarrhoea in, i. 467, 489, 406.
disinfectants in, i. 482.
duration of, i. 4.41, 463.
encmatu in, cold, i. 495.
epidemics of, i. 447, 449, 482.
epistaxis in, i. 466.
eruption of, i. 4(10, 474.
etiology of, i. 242.
geogruphy of, i. 443.
leart in, i. 456, 464, 491.
hemorrhage in, i. 466, 468, 490.
incubation of, i. 4.4.
inoculation of, i . 446.
intestimal hemorringo in,
i. $468,490$.
perforation in, i. 468.
lesions ol', i. 452.
lobar preumonia as a complication of, i. 458, 465.
lunge in, i. 457, 465.
mesenteric glands in, i. 455.
mouth in, i. 488.
nervous system in, i. 470.
neuralgia in, i. 472.
onset ot, i. 459, 460.
osseous system in, i. 475.
pathology ot, i. 450.
perforation of k owel in, i. 454, 4i8, 491.
peritonitis in, i. 469, 491.
P'eyer's patches in, i. 453.
pneumonia in, i. 465.
prodromes of, i. 459.
prognosis in, i. 481.
prophylaxis against, i. 481.
ptomaine of, i. 451.
rash in, i. 460, 473.
reflexes in, i. 472, 473.
relapses of, i. 461.
sequels of, $i, 476$.
specific treatment of, i. 495.
spots of, i. 460, 473.
symptoms of, i. 458, 462.
temperature io, i. 459, 460, 462, 476.
thoracic troubles in, i. 491. tougue in, i. 460. 470, 488. treatment of, i. 181, 485.
tympany in, i. 453, 468.
type of, in childhood, i. 451, 458, $460,462$.
ulceration of the bowels in, i. $453,454$.

Enteritis, membranous, iii. 163.
Entoro-colitis, acute, iii. 134. bloody stools in, iii.

13x.

catarrbal, iii. 140.
causes of, iii. 134.
complications of, iii. 142.
convulescenco from, iii. 145, 149.
croupous, iii. 139.
diagnosis of, iii. $1+2$.
enemata in, iii. 147.
forms of, iii. 134.
furuncles in, iii. 142.

Entero-eolitis, neute, glanils in, iii. 142.
hygicue of, ili. 144. irrigatlon of bowel ln, 1il. 147.
magnesium sillcate n, iii. 146.
milk diet In, lii. 145. mouth in, iil. 137, 142. nerveus symptoas in, iii. 137.
nutrition in, lii. 139. poultices in, iii. 147.
prognosis $\mathbf{i t}$, iii. 141, 113.
propiliylasis in, iii. 143.
abreds in stools of, iii. 138.
stomatitis in, iii. 142. stocts in, iii, 137. symptoms of, $\mathrm{iii}, 134$. tongue in, iii. 137. tonies ufter, iii. 119. trentment of, iii. 143. varieties off, iii. 134, 139.

Enuresis, iil. 591.
Epilopsy, iv. 899.
aura of, iv. 890.
brain in, iv. 903.
bromides in, iv. 910 .
causes of, iv. $902,900$.
convulsivo centro in, iv. 905.
cornu Ammonis in, iv. 904. cortical involvements in, iv. 905.
curability of, iv. 907.
diagnosis of, iv. 906, 998.
doublo aonsciousness in, iv. 899, 000.
enviromment in, iv. 901.
etiology of, iv. 902.
face in, iv. $899,902$.
histological changes in, iv. 904.
hystero-, iv. 900,972 . See Hystero-Epilepsy.
idiocy following, iv. 1020. idiopatiic, iv. 900, 903.
in cercbral palsies, iv. 540.
Jucksonian, iv. 902.
lesions in, iv. 902, 903.
major and minor, iv. 899.
nocturnal, iv. $900,908$.
operative trestuent of, $i v$. 759.
ophthainoscope in, iv. 197, 861.
pathological anatomy of, iv. 003.
poripherni lesions cansing, iv. 906.
procursive, iv. $900,902$.
prognosis in, iv. 907.
recurrence of, iv. 901.
selerosis of brain-elements in, iv. 904.
symptoms of, clinical, iv. 899.
syphilitic, iv. 592.
trentuent in tho fit, iv. 901.
treatment of, iv. 908.
operative, iv. 759, 908.
types of, iv. $899,900,903$.

Epileptic conilition, iv. 859. convulsions, methoils of produeing, Iv. 905. dinthesis, iv. 860. idiooy, iv. 1029. melzures in wultipie selerosis, iv. 501.
Epileptiform convulsions, iv.
794, 883. Sce Eolaupsla.
Epilepto-hysterin, 1v. 973, 976.
Eplleptoid atate with organic
brain-disease, iv. 461.
Epistaxls, li. 345 .
causes of, ii. 3.17.
diugnosis of, ii. 350.
disonses aspociated with, ii. 348.
horcdity in, ii. 349.
idiosy uerasy in, ii. 310 .
mental emotions causing, il. 350.
pathology of, ii. 355.
poriodieal, il. 353.
predisposition to, ii. 340.
prognosis in, 1i. 854.
sulutary, ii. 351.
spontaneous, ii. 335.
surgical treatment of, ii. 358.
symptoms of, ii. 356.
treatment of, ii. 357.
vicarious, ii. 353.
Erysipelns, i. 771.
ambulatory, i. 780.
nntisepties in, i. 783.
baterin of, i. 772.
enuses of, i. 771.
cerebral symptoms, i, 776.
complicutions of, i. 778, 781.
contagion of, i. 773.
dingnosis of, 1.770.
epiliomics of, i. 773.
extermal applications in, i. 781.
in the new-born, i. 777.
integument in, i. 775.
kidneys iu, i. 770.
pathological anatomy, i. 778.
prevention of, i. 781.
prognosis of, i. 780.
iroplaylaxis ol', i. 781.
pseudo-, i. 780.
sareoma banisied by, i. 772.
sequelso of, i. 778.
skin in, i. 775.
stimulants in, i. 784.
symptoms of, i. 774, 776, 777.
treatuient of, i. 781.
varieties of, i. 771.
Erythomn, ii. 14, 17, 39, 40. culuses of, ii. 14.
diagnosis of, ii. 16, 40.
etiology of, ii. 14.
prognosis of, ii. 40.
symptoms of, ii. 14.
treatment of, ii. 15, 16, 40.
varietics of, ii. 14, 17, 39.
Exorcise, iv. 255.
nbuse of, iv. 270.
avoidance of dangers in , iv. 280.
bencfits of, iv. 279, 371.
offects of, iv. 274, 276, 279.

Exerolse for giris, iv. 296.
for young cilildren, iv. 28i, 282.
ill offocts of, iv. 275.
injurious lu some casce of chorea, iv. 853.
morai effeets of, iv. 276.
Exophtimlinio goitre, iv. 052. nnatomical featuros of, iv. 953.
canses of, iv. 952 .
etiology of, Iv. 952.
oxophthalmos in, iv. 955, 956.
fundus oculi in, iv. 205.
galvanism in, iv. 955, 956.
heart in, iv. 953, 054.
heredity in, iv. 052.
leslons in, iv. 953.
pathology of, iv. 953.
sympathetio nervo in, iv. 955.
syuptoms of, iv. 954.
thyroid gland in, iv. 953, 954.
troatment of, iv. 955.
Eye, iv. 50.
abnormalities in, iv. 159.
ametropin in, iv. 140.
artificial, iv. 157.
burns of, iv. 148.
ailiary wounds of, iv. 149.
disenses of, iv. 120, 159.
external muscles of, iv. 133.
leus of, iv. 124. See Cataract and Lens. emmetropia of, iv. 140.
enucleation of, after wounis, Iv. 149, 157.
far-sighted, iv. 141.
glasses for, iv. 141.
foreign hodies in, iv. 147.
inggiene of, iv. 30t.
hy jeropia of, iv. 141.
injuries of, iv. 147.
malformations in, iv. 159.
massago of, iv. 119.
ophthalmoscopy of, iv. 158.
penetrating wounds of, iv. 147, 149.
refraction of, iv. 140.
retinal affections of. See Retina.
rupture of, iv. 148.
surgical operations on, iv. 150.
traumatism of fundus of, iv. 107.
vitreous humor of, iv. 126.
wounds of, iv. 147.
Eye-disk, abmormal tint of, iv. 161.
congenital deposits of pig. ment on, ir. 160.
malforuations of, iv. 159.
retained nervo-shoathis of, iv. 161 .
transparency of nervofibres of, iv. 161.
Eyelil, abscoss of, iv. 56.
ungioma of, iv. 59.
atheroma of, iv. 58.
coloboinn of, iv, 67 .
fissure of, iv. 67.

Eyelid,
inju
inve
inve
lupu
moll
mol
ney
noul
code
pile
plas
seb
syp

Face,
de
fis
foe
obl
pa
ter
Foodin
art
int
ru
Feedin
298.

Fever,

279.

ne cases of
iv. 276.

- iv. 052. features of,
v. 052.
Iv. 952. ios in, iv. uli in, iv. in, iv. 955
$\therefore 953,954$.
, iv. 952 . iv. 053. of, iv. 05:3. io nerve in,
of, iv, 054. and in, iv.
of, iv. 955.
n, iv. 159. v. 140.

8.

of, iv. 140. 120, 159. uscles of, $i v$.
. 1213. Sice : and Lens. iv. 140.
of, after
$140,157$. 141.
iv. 141.
in, iv. 147.
366.
v. 141 .
147.
in, iv. 150.
110.
y of, iv. 158. unds of, iv.
r. 140. ns of. See 148. ions on, iv. fundus of, of, iv. 126 147. tint of, iv.
sits of pig. 160.
of, iv. 159.
-sheaths of,
of
161.
161.
v. 56
50. $\begin{array}{r}58 . \\ \hline\end{array}$ 67.

Eyolid, furuncle of, iv. 55.
injuries of, iv. 148.
luversion of, lv. 62, 63.
lipus of, iv. 60.
mollusceun contagiosun of, iv. 58.
molluscun fibrosum of, iv. 50.

heuroma of, Iv. 59.
cerlemu of, IV. 55.
phlegmonous inflammation of, iv. 50 .
plastle operations on, iv. 151.
ploxiform nenroma of, iv. 50.
post-variolous uloor of, $i v$. 55.
psendo-crysijpelas of, iv. 50.
ptosis, iv. 58, 06.
sarcoma of, iv. 59.
sebaceots tumor of, iv. 58. sypuilitie limease of, iv. 57.
Byelids, absence of, iv. 68.
affections of, iv. 50.
congrenital defects of, iv. 16.
defects of, iv. 61, 06.
orysipelas of, iv. 56 .
granular, iv, 88. See Oph thalmia, Granular.
Eyo-strain, iv. 180.
a cause of megrim, iv. 832, 834, 837.
detection of, iv. 838.
in myopia, iv. 142.

$$
\text { in schoots, iv. } 366 .
$$

its effects on eharacter and the pursuits of life, iv. 1.15.
relief of, iv. 197.
results of, iv. 144.
F.

Face, congenital defects of, ii. 935.
deformity of, ii. 930 .
fissures of, ii. 937, 910.
foetal tumor of, ii. 939.
oblique fissure of, ii. 037.
paralysis of. See laralysis, Facial.
teratomata of, ii. 939.
Fooding, i. 270.
artifieial, i. 288-329.
intervals between, i. 273. rules for, ii. 273.
Feeding-tubes, i. 294, 296, 297, 208.

Fever, i, 417.
antipyretics in, i. 434.
bacteria in, i. 422.
bathing in, i. 436.
causes of, i. 421.
cerehral symptoms in, i. 431.
cerebro-spina!, i. 514.
eonstipution in, i. 433.
continued, i. 433.
delirium in, i. 431.
diet in, i. 433.
enteric, i. 441. See Enterio Fever.

Fever, heat-production and bent-loss in, 1. 417, 418. bectic, 1. 427.
prek in, 1. 4332, 437.
puludal. See Malaria.
poisons of, $\mathrm{i} .422,423$.
pulse in, 1. 420.
relapsing. Sce Rolapging Fever.
remittent, i. 478.
aemrlet. See Soarlet Fever.
skin in, i. t10, 120.
sponging in, i. 436.
spottod. See Cerebro-Spinal lever.
stimulants in, i. $4: 37$.
symptoms of, l. 427.
thermie, i. 433.
torgue in, i. 420.
treatment of, l. 433, 074.
typos of, 1. 427.
typhoil. See Enterio Fever.
typhus. See Typhus Fever.
Foetai appondages, disenses of the, i. 233.
oirculation, i. 27, 28, 64, 253, 250.
diseases, infectous, 1. 217. non-inf'eatious, l. 230. heart, i. 20.
membranes, i, 951.
syphilis, i. 221-225.
dingnosis of, i. 222.
liver in, i. 224.
[athology of, i. 223.
prognosis of, i. 225. signs of, i. 223.
Foods, i. 4.
artificial, i. 310, 311, 315, 318, 321, 340.
force-values of, iv. 250, 291.
houselold preparation of, 1. 320-329.
infunts', so called, i. 340 .
patent, i. 310, 311, 315, $318,321$.
Fractures, iii. 1043.
calses of, iii . 1047.
commiauted, iii. 1049. complete, iii. 1019.
oomplicated, iii. 1049.
comporind, iii. 1049.
crepitus as a sign of, iii. 1053.
deformity as a sign of, iii. 1053.
during birth, iii. 1052.
forearm, iii. 1076.
fragility of bones in, iii. 1047.
greeu-stick, iii. 7i\%.
lieredity in, iii. 1049.
impacted, iii. 1049.
ineomplete, iii. 777.
intra-nterine, iii. 105I.
mode of repair, iii. 1053.
multiple, iii. 1049.
of bones of face, iii. 1054.
of earpal bones, iii. 1082.
of clavicle, iii. 1050.
of condyle of humerus, $i \mathrm{ii}$. 1072.
of coronoid process, iii. 1075.
of epicondyle, iii. 1070.

Fractures, of epitrochlea, 11. 1071.
of formur, iil. 1082. Siee Femur.
of thbila, lii. 1003.
of foot-bones, iil. 1097.
of forearm, iii. 1076. See Forearin.
of great trochanter, iil. 1084.
of liand, lii. 1082.
of humorus, lii. 1062.
of ieg-houes, Zll .1003.
of lower extremity, iil . 1082.
of neek of femur, iii. 108 I .
of neek of humerus, iil. 1003, 1005.
of olecranon, ili. 1074.
of scapuln, iii. 1062.
of surgical neck of bumerus, iil. 1005.
of tibia, fii. 109:3.
of upier extrenity, ili. 1059.
of uppor maxilla, ili. 1055.
purtial, iii. 1010.
phenomena and syuptons of, iii. 1052.
simple, iii. 10 (9).
special, iii. 1054.
sprall, lii. 1019.
statistles of, iii. 1046.
swelling of, iii. 105%.
treatment of, iii. 1051.
Functional disorders of the heart, ii. 742-745.

G.

Gangrene, iii. 008.
after fructure, iii, 1077.
of the labia, iii. 728.
of the mouth, ii, $972,974$.
See Cancrum Oris.
of the skin, ii. 58.
eauses of, ii. 59.
diagnosis of, ii. 59.
history of, ii. 58.
patinology of, ii. 59.
prognosis in, ii. 54.
symptomatology of, ii. 50.
treatment of, ii. 60.
of the spleen, ii. 897.
Gangrenons halano-posthitis, iii. 705 .

Gastralgia, iii. 25, 1024.
eatises of, iii. 25.
diagnosis of, iii. 27.
history of, iii. 25.
onset of, iii. 27.
pathology of, iii. 26.
periodicity in, iii. 27.
sex in, iii. 25.
symptoms of, iii. 26.
treatment of, iii. 28.
Gastrectasia, iii. 41.
Gastric eancer, iii. 54.
catarrh, iii. 1, 8, 32.
acute, iii. 33.
anorexia in, iii. 36.
aphasia in, iii. 37.
causes of, iii. 34 .
characters of, iii. 33,

Gastric oatar,h, eomplicutions of, Hh. 36.
convulalous in, iit, 36. dingnosis of, iii. 37. food in, ill. 3 s . pathology of, lil. 133, 35. pregnosis in, iii. 37.
symptoms of, SII. 35.
treatment of, lif. 38.
types of, 111.35.
vomiting lin, iil. 36.
deformitien, ili. B0.
disortern, iii. 1, 30. See Stomuch, Diseases of.
hemorrbage, lil. 55.
blindness nfter, iii. 87. cunes of, iii. 56.
dinguesia of, ill. 67.
of the new-born, 17. 50.
prognosis in, iil. 58. 8yptoms of, iii. 87. treatment of, hil. 58. varieties of, iil. 56. vomiting his, ii1. 50. uleer, iii. 51.
canses of, iii. 52.
diet fin, Iii. 54.
hemorrhuge from, iil. 53.
pathology of, iii. 52. prognosis in, iii. 54. syinptems of, 3il. 51. treatment of, iii. 34.
Gastritis, lii. 32.
causes of, iih. 32.
diphtheritic, iii. 33.
lesions in, iii, 32.
symptoms oft, lii. 32.
Gastro-duodenitis cause of icterus, iii. 415, ni7.
Gastrolyniu, iii. 25.
Gastro-enteritis, chronio pseu-do-membranous, iii. 163. Sce Membranous Enteritis.
Genital organs, feamale, iil. 741.
Gland, thymus, ii. 543. thyroid, ii. 543. See Thyroid Gland.
Glands, abscess of, ii. 014, 017 , 919.
bronehinl, ii. 659.
dizorders of, ii. 1 .
enucleation of, ji. 918. excision of, $\mathrm{ii}, 017$. extirpation of, for tuberculosis, ii. 184.
in phthisis, ii. 677.
in scrofula, ii. 153.
in syphilis, ii. 203.
lymphatic, their distribu-
tion and drainnge, ii. 155.
of the mediastinum, disease of, ii. 729.
scrofulous, ii. 007.
sobaecous, ii. 1.
strueture of, ii. 907.
sweat-, ii. 11.
tuberculosis of, ii. 168.
Glandular disense, scrofulous, ii. 153.
abseess in, it. 158, 162. dentition in, ji. 15.t.
dingnosis of, ii. 158.
exeiting ounses of, i . 154.
dhadular disease, injurion as causing, 1i. 15%.
leslous of, II. 153.
prognosis hi, 13. 157, 163.
seats of, H1, 913.
secondary, II. 912.
suppurntion in, li. 15\%, 102.
treatment of ii. 160, 102.

Goitre, II. 720 .
aud eretinism, 11. 279, 286, 2010, 292, 721.
еаивен of, 11. 720.
dingnesis of, II. 722.
exophthalmic. Sec Exophthalmic (ioitre.
geologial reiations of, 11. 721.
heredity in, II. 721.
myxadema la its relation to, 11. 721.
pathology of, ii. 721.
prognosis $1 \mathrm{n}, \mathrm{ii} .723$.
symptoms of, il. 722.
trentment of, il. 723.
varicose, $\mathrm{ii}_{\mathrm{i}} 722$.
varieties of, i. . 721 .
Guas, congenitul hypertrophy of, ii .945 .
malon of, ii. 045.
hypertrophy of, ii. 986. operation for, ii. 987. In aoute rickets, ii. 251.
in seurvy, ii. 985.
suppurative inflammation 61, it. 984.
Gymnasties, netive, iv. 302, 303.
esthetie, iv. 303.
ancient, ic. 301.
appuratus for, iv. 370.
classified, iv. 302. educational, iv. 303.
fur vhildren, iv. 282.
for girls, iv. 297, 357.
history of, iv. 301.
in sehools, iv. 302, 369.
Inedieal, iv. 303.
militury, iv. 303.
passive, iv, 303.
perlagogie, iv. 302.
positions in, iv. 304.
school, iv. 302, 369.
Swedisli, iv. 301 .

H.

Jrmophilia, ii. 870, 879. arthritis in, ii. 883. causes of, ij .880 . elimate in, ii. 881. dingnosia of, ii. 883. theredity of, ii. 879,880 . joints in, ii. 883. mortality from, ii. 884. pathology of, ii. 881. petechia in, ii. 883. prognosis in, ii. 884. prophylaxis of, ii. 884. sex in, ii. 880.
symptoms of, ii. 882.
treatment of, ii. 884.
wounds in, ii. 885.
Hare-lip, ii. 937, 945.
bilateral, ii. 997, 1004.

Lare-lip, double, II. 097, 1004. nature of, if, 905. operation for, 1i. 000, 1001, 1(0)1, 1007, 1081.
Hay-faver, ii. 0fis. enuses of, H . Bbl. diagnerls of, Hi, 667. bintory of, 11. nifit. pathology of, il. 606. prognesls of, 11. 607. resurts for, 1i. 6 HR . symitoms of, ii. t6B. treatment of, ". 607.
Head, anntomy of, I. II.
blews upon, is. 555.
eyrtometer for, iv. 774.
defects of, the to maternal impressions, i. 200.
distortions of, in labor, i . $251,208$.
enlarged, i. 95. See Hydroeephalus.
injuries of the, in lubor, i. 258, 267.
muskuge of, Iv, 328.
sections of the, l. 14,16 , 55, 90.
Headache, iv. 828.
anremic, iv. 828, 830.
asthenopic, iv. 835.
cuuses of, iv. 828.
cerebral disease in, iv. 838.
elassification of, iv. 829.
dyspeptic, iv. 837.
ear-disease in, lv. 838.
eye-troubles in, iv. 838. See also Megrim.
hysterienl, iv. 984.
in multiple ecrebro-spinal selerosis, iv. 500, 513.
in tubereular meningitix, iv. $514,515,510,510$.
malarial, iv. 838.
of hypermetropie children, iv. 340.
sick. S'ee Migraino.
signifleunce of, iv. 450, 828.
types of, iv.
uvilateral, iv. 790 . See Migrainc.
uriemie, iv. 838 .
varielies of, iv. 450.
Heart, uneurism ot, ii. 840, 8.11.
anomalies of, in the foetus, i1. 749 .
nortiedisease of. See Aortic Valvular Disease of the Heart.
bifid at apex, ii. 750 .
bilocular, ii. 750 .
congenital disease of. See Ileart-Disease, Congenitnl.
defects of ventricular septum of, ii. 753.
difatation of, ii. 759. Sec Dilatation of the IIenrt.
enlargement of, ii. 789 . Sce Enlargement of the lleart, Dilatation of the Heart, and llypertrophy of the lleart.
functional disorders of, ii. 742.
hypertrophy of, ii. 789.

Ifeart,
.- Iesic

Heart-d

Hent a
in
liemor

E n of the artropby

Heart, inflammation of. Ser Endoearditis und Myocarditis.

- lesions and congenital defoets of, at the pulatenary erillee, 1i. 757.
lesions and ilefects of, at the mortic orifice, ii. 760 .
new growths of, il. 813 .
ryphilitio disenso of, il. $812,8.4,8.5$.
Heart-dinense. Sice Aortie V'alvular Disense, Cardias Aneurista, Dilatation of the Heart, Enduenrilitis, 'ericarditis, Myoentil. tis, Enlargement of the Heart, Functional Disoriders of the lieart, hy. pertrophy of tho lleart, Mitral lunderjuncy, M1tral Stenosis, Trionsphil Inderquacy, and Valvilar Disense.
congenitul, ji. 747, 782 .
diagnosis of, 1. 76.1.
fuetal, ii. 747, 748.
pathology of, ti. 748.
prognosis in, il. $i 66$.
symptoms of, ii. 762, 761.
treatment of, ii. 766 .
Heat and motion, iv. 258.
an a disinfectant, iv. 338.
from muscular contructions, iv. 258.
Heating and ventilating apparatus combinel, for a school-house, iv. 383, 384, 385.
by furnaces, iv. 390 .
by ateam, iv. 390 .
of hospitals, iv. 411, 413, 411.

Hemiatroply, facinl, causes of, iv. 824.
etiology of, iv. 824.
pathology of, iv. 827.
prognosis in, iv. 827.
symptoms of, iv. 825.
treatment of, iv. 827.
Hemierania, iv. 790. Sece Megrim.
Hemiplegia, iv. 480. See also Cerobral P'asics.
causes of, iv. 530 .
hysterical, jv. 070 .
in anterior poliomyelitis, iv. 698.
in cerebral palsies, iv. 541.
syphilitio, iv. 594.
Heuorrhage, cercbral, iv. 525. See Cerebral Hemorrhage.
in trephining, iv. 756.
intraeranial, iv. 771.
intraspinal, is. 652, 651, 671.
meningenl, iv. 526, 670. See also Cerebral Hemorrhage.
anatomical features of, iv. 676.
diagnosis of, iv. 670.
pathologienl anatomy
of, iv. 676.
spinal, iv. 66 \%.

Hereditary ataxia, iv. 716. See Atuxin, F'rietroieh's. atnxic pmrujlegia, iv. 725. nervint disease, iv. 448. progreasive maseular atrophy, iv. 82t.
syphilis, il. 186.
tahes, its relationship to multipile seleresia, iv. 308.

Heredity in enleull, iii. 507.
in chlurosls, iii. 737.
in deformities of tho breast, iil. 753.
in deformity, iii, 9:3.
in exeessive growthe, iii. 0:30.
in frature, iii. 1048.
in hernia, iii. 2:37.
in leuksemin, iii, \%8.
in polydactylism, iii. 9:19.
ill yphal curvature, iii. 1003.
in tubereular meningitis, iv. 517.
of near-sight, iv. 348 .
of otitis media, iv. 32.
Hermaphrohism, jii. 663.
diagnoses of, iii. $66 y$.
treathent of, iii. 1371.
Hernin, lii. 2:31.
canses of, iii. 231.
cerebral, iv. 730. See Encephatocele.
following un operation, iv. 774.
prevention of, iv. 780.
treatment of, iv. 781.
congenital inguian, iii. 2:3.
testicle in, iii. 235-237.
uubilieul, iii. 232. mpraratus for, iil. 233, 234 ,
cluses of, iii. 232. operation for, iii. $23+$.
definition of, iii. 2:31.
diaphrugmatic, iii. 24.
encysted, iii. 236.
femmal, iii. 243.
funicular, iii. $2: 36$.
hereditary, iii. 237.
lumbur, iii. 245.
strangulated, iii. 240, 241. care of, iii. 241-243.
through the linea alba, iii. 233.
trentment of, iii. 238.
varieties of, iii. 231, 232, 230.

Herices zoster, ii. 41.
Hip-jount ampututions, 1332.
ankylosis, osteotomy in, iii. 1285.
disense, iii. 1156.
nlasess in, iii. 11lie, 1188.
complications of, iii. 1191.
diagnosis of, iii. 1168. excision for, iii. 1194. extension in, iii. 1173. fixation in treatinent of, iii. 1175.

Ilip-joint lisentae, goneral tuberculosis as a compli ention of, iii. 1193.
hemorrlage in, $\mathrm{Hii}_{\text {. }}$ 1193.
intra-pelvie abseces in, iii. 1188.
limitation of motion in, lii. 1163.
long eplint in, iii. 11811.
munual ostcochasis in, iil. $12 \% 4$.
motion in trenting, iii. 1173.
museular wasting in, ili. 1101.
operation for, iii. 1193, 11198.
passive motion in, iii. 1188.
results of, iil. 1188 , 110\%.
eplint in, iii. 117\%.
stagen of, iii. 1160.
statistics of, iii, 1180.
symptems of, iii. 1161.
treatment of, $\mathbf{i i} .1173$, 1177.
luxations of, iil. 11161123.

Hospitale, chilidren's, iv. 409.
alluinistration of, jv. 413.
construction of, iv. 416, 419.
drainage of, ir. 415.
heating of, iv. 411, 413, 411.
localities of, jv. 409, 410.
mill-construction for, iv. $416,417$.
puvilion style, iv. 410
plans fir, iv. 409, 410.
plimmbing of, iv. 115.
sewerage of, iv. 415 .
sites of, iv. 409, 410.
surroundings of, iv. 409, 410.
ventilation of, iv. 411, 413, 414.
water-closets of, iv. 415, 416.
Ilydatid of kilney, iii. 584. of liver, iii. 425, 445.
dingnosis of, ii , 452.
echinococeus in, iii. 447.
prognosis in, iii. 454.
symptems of, iii. 448.
treatment of, iii. 455.
IIydrarthrosis, iii. 1227.
Ilyilreneephalocede, iv. 730.
Hydrocele, iii. 691.
of corl, enuses of, iii. 692.
treatment of, iii. 693.
Hydrocephalucelo, iv. 734, 735.

Hydrocephalus, iv. 466.
acute, iv. 467.
brain-lesions in, iv. 469.
causes of, iv. 467.
elinieal history of, iv. 468.
convulsions in, iv. 468.

Itydrocephalus，acute，effusion in，iv． $468,469$. non－tubereular，iv． 467.
onset of，iv． 468.
pathologrical matomy of，iv． 469 ．
syp ms of，iv，468． treatment of，iv． 47%.
ehronie，iv． 471.
brain in，iv． 476 ．
diagnesis of，iv． 477.
ovnenation of tind of，
surgieal，iv． 477.
oxtormal，iv． 47.
tluid of，iv． 475.
head－enlargement in， iv．471，47．1． intellect in，iv． 477. internal，iv， 472. anatomicnl font－ ures of，iv． 171. pathological anat－ omy af，iv． 474. varicties of，iv． 422.
prognosis in，iv．476． speeial sunses in，iv． 475， 476.
symptems of，iv． 475. treatment of，iv． 477. varieties of，iv． 471. congenital，iv． 746.
canses of，iv． 735.
extermul，iv． 472.
intruventrienlar，iv． 747.
tratment gf，iv． 247 ．
dietinguished from hyper－
trophy of brain，iv． 1032. extermal，iv． 471.
ex vaeno，iv．466， 472.
forms of，iv． $466,467$.
partial，iv． 475.
simplo internal，ophthal． moscopic fontures of，is． 112.
syphilitic，iv． 592.
trentment of，surgieal，iv． 782.

IIydronephrosis，iy 505.
diagnosis of，iv，bris．
pathology of，iv．bitio． prognosis of，iv． 568.
treatment of，$i v, 56 s$.
Hydrophobin，iv．858，803．See Habies．
ilygiene，i． 36 n ．
general artiele on，iv．2．ll．
of dress，i． 366 －370，414．
of femalo puberty，i ．41\％．
of foosl，i．370－372．
of puberty，i． 407.
of schools，iv． 343.
Hymen，iii．71．1，74！．
absence of，iii 749
varicties of，iii．716，7．19．
Hypertrophies and atrophies，
ii． 85,97 ．
Hypertrophy of the heart，ii． 78！，790，70‥， 797.
blood in，ii．ses．
compensation in，ii． 806.
in ehronic valvular disease，it． 816.
signs of，ii． 801.

Hypertrophy of the heart， symptoms of，ii．soo． trentment of，ii．sos．
Ilypogastric artery，clesure of， i． 252.
Hypospradia，iii．648．
diagnosis of，iil． 650.
etiology of，iii．6Is．
prognosis in，iii．6íl．
treatment of，iii． 854 ．
Hysterin，nehromatopsia in，iv． 970， 087.
amblyopia from，iv． 987.
anæmia in，iv． 942.
nntesthosia in，iv．967， 970 ， II． 2.
analgesia in，iv． 982.
nnimal mimiory in，iv．9il． nphonia in，iv． 981.
utnxia with，iv． 670.
autumatism in，iv．966， 978.
blindness of，iv．214，970， 987.
boys with，iv．958，960， $963,990,1003$.
cutulepsy in，iv．972， 978.
muses of，iv． 960 ．
chlerosis in，iv． 962.
choreic sy mptoms in，iv． 304．
claves in，iv． 982.
elimate ir，iv． 962.
club－foot in，iv．989， 095.
color－blinduess in，iv．9s7． complications with，iv．IS：）， 991.
constitution in，iv．960， 902.
convulsions in，iv．969， 979 ． cough in，iv．97！98．t．
denfness in，iv． 98.
deception in，iv．904，967， 968， $069,171$.
diugnosis of，iv，970， 091. by electricity，iv， 1001 ． diathersis in，iv．961，962． eestasy in，iv． $972,978$.
education in，iv．002，1005． electridity for，iv． 165.
enviromment in，is．961， 069， 1004.
epilepsy in iv． $972,976$. See bpilept，－2！．vs terin Inll Ilyatero－ Euilepsy．
related to，iv． 947 ．
etiology ot，iv．960．
fright a eatse ol，iv． 960 ． grave，iv， 972.
hemlache in，iv．971，981．
hemimnesthesia in，iv．98：3． hemiplegia in，iv． 9710.
hydrothernpy in，iv． 1005. bygiene of，iv．961， 1004.
hypersonsibility in，iv． 971.
hypnotio phenomenn in，iv． $906,468,088$.
hypmoties ill dingnosis of， iv．1001．
hypnotism in，iv，97s．
imfative，iv． 963 ， 969.
in－thoor life in，iv． 9 tid．
intlulgence a caise，iv． 962. infantile，iv． 958.
inhibitory eenires in，iv， 968.

IIysterin，insanity in，1r． 950 ． 971， 972,905
ischuemia in，iv． 96^{-}， 983.
joint－nflections in，iv． 0 ss ， 1000， 1007.
mimiery in，iv． 968,90$\}$ ， $969,971,959,1002$.
mischievous tendencies in， iv． 1171.
menomanla in，iv． 972 ．
moral training in，iv．905， 1006.
motor phemomena in，iv． 069.
nature of，iv．958．
numro－mimetic，iv．966， 959.
night－attacks in，iv．990， 998.
organio diseases with，iv． 094.
pain in，iv． 071.
puralysis in，iv．970，980）， 98：？
puthology of，iv． 967.
predisposing cunses of， iv ． 960， 1005.
：acvention of，iv． 1004.
prognosin in，Ir．1003．
reality of，iv．（968．
sensory dixturbances in，iv． 970， 071.
phenomena in，iv． 98.
sex in，iv． 958.
shamming in，iv．961，96it， 96s，069， 971.
spaxm lin，iv． 979.
spinal cirvature $i n$ ，$i s$ ． 490，1001．
symptoms in，iv．967， 969.
symptoms of，elassifiel，is． 96s．
trance in，iv． $972,97 \mathrm{~K}$ ．
trnasformation of，into epi－ lepsy，iv． 997.
traumatism as a canse， iv ． 965.
trentment of，iv．＇001．
curntive，iv． 1005.
hygienie，iv．100．f．
moral，is． 1006.
of contractures from， iv． 1007.
of convuleions in，iv． 11107.
of joint－affections in， iv． 1007.
preventive，iv．100．
unilatern！nerve－phenom． ena in，iv． 970.
vision in，iv． 6 ats．
water freatment in，iv． 1005.
zones in，iv．986， 098.
Hystere－ppilepsy，ir．900， 973. consciousness in，iv． 975.
dingnosed from Jacksonian epilepsy，iv． 998.
kints of，iv． 973.
phases of＇，iv．975， 976.
prognosis in，iv． 907.
sex in，iv． 973.
8ymploms of，iv． 975.
trentment of，iv．10日月， 1006.
varieties of，Iv．97il．

1，15．950，
inces in，ix．
in，iv． 9×8.
$\therefore 964,967$ ，
re in，is．
iv．06i，
assitied，iv．
$2,178$.
If，into cpi－
cause，ir．
＇100：．
1005
.1004.
106.
ures from，
ons in，iv．
ectious in，
iv． 100 J.
o－phenom．
in，iv．
iv． 175.
Incksoninn
98.

5， 066 ．
907.
1.

Tcterus，ili．108．
dingnosis of，iii． $4 i 3$.
embryonmm，iii． 106.
fietal，iil． 416.
later infantile，iil．41．4．
cunses of，iii． $11 / 4$.
symptoms of，iii．Ho．
neonatorim，iii．$\$ 105$.
benign，iii．406． 4117.
diagnosis of，iii． 113 ．
grave，iii． $4114,112$.
canses of， ii .409.
dingnosis of， iii ． 412，413．
liver in，iii．109．
pathology of，iii． 411，411， 412.
prognosis in，iii． 414.
septie form of，iii． 111，＋12．
trentment uf，iii． 411.
mild，iii． 405.
canses of，iii． 107. liver in，iii． 407 ． origin ol＇，iii． 10%. puthology of，iii． l10s．
symptoms of，iii． 148.
septis form of，iii． 112.
trentment of，iii．117．
typhoid，iii． 507.
varieties of，iii．105，107．
Ichthyosis，ii， 85.
Idiocy，iv．1619．
nequired，iv．1022，1026．
eauses of，iv． 1019.
congenital，kinds oif iv． 1025.
consal guinity of parents in，iv． 11120.
eraniam in，iv．In2s． 1032.
defects nasocinted with，iv． 1021.
degrees of，iv．i 103 ．
diagnoxis of，iv．1124．
cchamptic，iv． $102!9$.
olucntion in，iv， $10: 15$.
opileptic，iv．1029．
genetoms，iv．1120．
gruiles of，iv．1023，1023．
heredity in，iv．1020， 102 l ．
hyilrocephatic，iv．497， $10: 3$.
in paralytles，iv．511， 10.32. indlammutory，iv． 1031 ．
institutions for，iv．1030．
microcephalic，iv． 1027.
Mongolian typo of，iv． 1027.
ono－sided intelligence in， iv．1023， 1025.
oxycephulie，iv． 1028.
paralytic，iv．511，1032．
parentage in，iv． 1020.
partinl，iv．946，1123，1025．
pathologioal unatomy of， iv． 1035.
statistics of，iv．1020， 1023.
syphilitic，Iv． 507.
training in，iv． 11035.
varietios of，iv． 1025.

Imberitity，iv． 1010.
dingnesis of，from insanity， iv． 1025.
hysterical phenomenn in， iv． 905.
in paralyties，iv． 541.
moral，is．995，996，1025， 11152.
pratin］，iv． 995.
varieties of；iv． 11225.
limprossious followel by defects， i．213．
matermal，i．191，21s．
Incontinence of nrino，ibi，501．
Iufaney，physiology of，i． 51.
Infint－ferding，i． 270.
Indintile paralysis－leformitios，
hij，iii． 130 k ．
knee，iii． 1306.
knock－knce，iii． 1308.
mechanien treutment
of，iii． 120 s ．
pescalcaneas，iii．1306．
pes ofuiaus，iii．1299， 13010.
pes valgus，iii． 1304.
pes vnrus，iii．1303．
shonller，iii． 1310.
яріне，iii． 1300.
Infants，cloanliness of，iv． 1012.
edneation of，iv 10.12 ．
feorling of，i．2＇il．
hanl－training of，iv． 1012. imitntiveness of，iv． 1011.
wral sense in，iv．1112．
sense－dovelopuent in，iv． 10% ．
speech－acquisition in，iv． 10.42.

Infections heemoglobinuria of the new－born，iii． 827.
diagnosis of，iii． 837. otiology of，iii． 828.
pathology of，iii．833， 8：5．
prognosis in，iii．siss． Bymptoms ot＇，iii，s2！． trentment of，iii．siss．
Injuries of newly－lurn，i． 25 s ．
of pharyns，ii．1t！．
Inllammation，neuto caturrhal， iii， 81 ．
elironic，of intestine，fol－ lowing nento cronp－ ous form，iii．！3．
following follicular al－ cernton，iii．93．
chronic catarrhal，follow－ ing mente lisease of the intestine，iii． 91.
of intestine，nento oroup－ ous．Sce Acato Croup－ ous Ithlammation．
of lymph－nomlules，intes－ timal，iii．8．t．
deep uleers in，iii． 8 ．5．
gross appearumes
nfter，iii．S4．
healing of，iii． 87.
post－linortem changes ntter，iii． 83.
progenosts of，iii． 87 ． ulversin，iii． $84,85,86$. Heep，iil．85，86． superlicial，iii． 85.
Inflammations，ii．1．1，：3i．

Insunity，iv． 1038.
bruin in，iv． 1040.
education favoring，iv． 1040.
oxeiting causes of，iv．104：3．
fright us a eause of，iv． 1016.
hereslity of，iv．1033．
injuries ennsing，iv．1043．
masturbational，iv． 1048 ， 10．19，1054， 1051.
mornl，iv．1052．
min raroly a cause of，iv． 14.43.
prodisprasing canses of，iv． 1039.
predispesition to，iv．1038， 1040.
statistics of，iv． 1 ．＇8．
terror a canse of，iv．1016．
tranmatism causing，iv． 1043.

Insommia，iv．10］7．
enuses of，iv． 1018.
eflects of，iv．i01s．
mature of，iv．1017．
trentment of，is． 1018.
Iutestinal hacterin，iii． 170.
malformation，thagnosis of， iii．319．
prognosis in，iii． 319.
symptoms of，iii．318．
treatment of，iii． 319.
varieties of，iii． 315 ．
membranons entarrh，iii．
lis3．Sice Membranous binieritis．
obstruction，ascpsis $\mathrm{in}, \mathrm{iii}$ ． 265.
by fibrous bands，iii． 213.
classes of，iii． 217.
diagnosis of，iii． 206 ．
from constriction，iii． 203， 217.
from forcign borlies， iii．247， 26 万．
laparotomy for， iii． 249.
symptoms of，it． 219.
treatmont of，iii． 2.19.
from intussusception． See Intussuscopition． Erom peritonitis，iii． 276.
from volvulus，iii．250， 267.
ilen－ctecal，iti．20．
operation for，iii． 205. prognosis of，iii． 265.
trentment of，iii． 265.
Intestine，nbnormulities of small，iii． 315.
absence of iii， 315 ． of large，iii．338．
acuto crouprons inflam－ mation of：see Aconto Croupmas Inflammation．
anaterve of， ii .76 ．
eong．malformations of 1 nige，iii． 317.
resection of，for obstrue－ tion，hii． 263.
rupturo of，frotn imper． vious reetlim，iii． 332 ．

Intracranial tumors, iv. 551.
Intubntion, ii. 531.
dnngers in, ii. 538.
for eroup, ii. 53.
operation for, ii, 534.
recoveries nfter, ii. 538.
rules for, ii. 534 .
tubes for, ii. 532 .
Intussusception, iii. 25I, 258.
urtificial anus for, iii. 263.
causes of, iii. 252.
chrodic, iii. 256, 257, 260.
complications of, iii. 253.
dingnosis of, iii, 256.
ileo-eacnl, iii. 253, 256, 263.
laparotomy for, iii. 260. manipulation of, iii. 254, 258.
morbid anatomy of, iii. 253.
operation for, iii. 260.
reduction of, iil. 254, 262.
symptoms of, iii. $2 \overline{3} 4$.
treasment of, iii. 257.

J.

Jaw, cysts of lower, ii. 1025.
defcets of lower, ii. 949, 950.
of upper, ii. 912.
excision of, ii. 1031.
tibroma of upper, ii. 1025.
fracture of, ii. 1013. of lower, ii. 1015.
luxation of, ii. 1016.
sarcomata of lower, ii . 1029.
tumors of lower, ii. 1028. of upper, ii. 1025.
Jaws, ii. 920.
ankylosis of, ii. 1034.
closure of, ii. 1032.
congenital defects of, ii. 935.
injuries of, ii. 1013.
necrosis of, ii. 1020.
periostitis of, ii. 1019.
Joined twins, i. 922.
anatomy of, i. $927,938$.
causation of, i. 92.4.
classification of, i. 925.
genesis of, i. 922.
literature of, i. 938.
nervons system in, i. 029 .
nomenclnture of, i. 925.
respiratory system of, i. 928.
skeleton of, i. 927.
Juvonile crime, iv. 422.

K

Keraitis, iv. 103.
hypopyon-, iv. 106.
inherited, iv. 112.
interstitial, iv. 112. causes of, iv. 112. diagnosis of, iv. 115. prognosis in, iv. 115. symptoms of, iv. 113. trentment of, iv. 115 .
malarial, iv. 116.
margimal, iv. 104.
pareuchymatous, iv. 112.

Keratitis, phlyctenular, iv, 163. See Ophthalmia, Phlyctenular. Sce also Corneal Uleer.
punctata, iv. 116 .
purulent, iv. 106.
syphilitic, iv. 112.
vascular,: 111.
Kidnoy, eysts wi the, iii. 582.
pathology of, iii. 58:3.
treatment of, iii. 584.
floating, iii. 522.
dingnosis of, iii. 524.
treatment of, iii. 524.
form of, iii. 516.
grannlar, iii. 535, 555.
hurse-shoe, iii. 518 .
hydatid of, iii. 584 .
pathology of, iii. 584.
symptoms of, iii. 584. treatment of, iii. 585.
injuries of, iii. 586.
progoosis in, iii. 587.
symptoms of, iii. 5 s 6 . trentment of, iii. 588.
movable, iii. 522.
prolnpsed, iii. 590.
sarcoma of, iii. 2 3.
solid tumors of, iii. 579.
dingnosis of, iii. 582.
patholog: of, iii. 579.
symptows of, iii. 580.
trentment of, iii. 582.
surgical diseates of, iii. 559.
tubercular and ecrotulous, iii. 575.
symptoms of, iii. 578. tratment of, iii. 578.
Kidneys, noomalies of, iii. 516 .
Knce-joint amputations, iii. 1330.
ankylosis, osteotomy in, iii. 1286.
diseares, iii. 1205.
supparntive synovitis in, iii. 1207.
symptous of, iii. 1207.
trentment of, iii. 120%.
synovitis in, ili. 1205.
treatment of, iii. 1206.
tubercular, iii. 1208.
symptoms of, iii. 1208.

Iuxations, iii. 1123.
compound, iii. 1124.
eongenital, iii. 1123.
operntions on, iii. 1214.
arthrectomy, iii. 1215.
L.

Lachrymal apparatus, disenses of, iv. 50 .
Laryngeal stenosis, ii. 495. See Stenosis.
Larybgismns stridulus, iv. s81. carpo-pedal spasm in, iv. 882 .

Laryngismus stridulus, cranio. tahes in, iv. 868. denths from, iv. 862 , se5.
duration of, iv. 885.
nerve-irritation in, iv. 869.
night-attacks of, iv, 80%.
paroxysms of, iv. 885. prognosis in, iv. 890.
prophylaxis of attack of, iv. 807.
rachitis with, iv. 860, $868,898$.
statisties of, iv. 862 , $865,873,890$.
symptoms of, iv. 881. trentment of, iv. 896 .
Laryngitis, tibrinons, ii. 521. psendo-membranous, 521.
bacteria in, ii. 522 .
cunses of, ii. 521, 522.
complications of, ii 523, 524, 526.
cough of, ii. 524.
cyanosis in, ii. 526.
diagnosis of, ii. 527 .
falso membrane of, ji . 523.
intubation for, ii. 530.
its relation to diphtherin, ii. 521, 523.
pathology of, ii. 523.
prognosis in, ii. E27.
respiration in, ii. 525 , 527.
streptococeus of, ii. 522.
symptoms of, ii. 524 .
tracheotomy for, ii , 530, 543.
treatinent of, ii. 52s.
spasmodic, ii. 516.
causes of, ii. 51 li , 519.
course of, ii. 517.
dingnosis of, ii. 518.
pathology of, ii. 516 . prognosis in, ii. 519.
prophylaxis of, ii. 519 .
symptoms of, ii. 51%.
treament of, ii. 519.
Laryngotomy, ii. 575 .
anasthetics in, ii. 575.
compured with tracheotomy, ii. 575.
operation of, ii. 575.
Laryngo-tracheotomy, ii. 576.
Larynx as a seat of tuberculosis, ii. 174.
fibroma of, ii. 507.
foreign body in, ii. 569.
lacerations of, trented by
tracheotomy, ii. 573.
malignant growths of, ii. 511.
prognosis of, ii. 512.
treatment of, ii. 512, 514.
myxoma of, ii. 507.
papillary growths removed
by tracheotomy, ii. 572.
papilloma of, ii. 50 ?.
stenesis of, ii. 495. See
Stenosis of the Laryax.

Larynx,

Latoral 1001.

Lead-po
acut
and

Larynx, tumors of, ii. 505 . treatment of, Ii. 514, 515.

Lateral eurvatures of spine, iii. 1001.

Lead-poisoning, iv. 616.
acute, iv. 624, 630.
anamia in, iv. 621.
anatomical changeg in, iv. 621.
atrophy of muscles in, iv. 621, 631.
enchexia in, iv. 624, 631.
causes of, iv. 616.
ebemical tests of urine in, iv. 640.
chorea in, iv. 629.
chronic, iv. 624, 630.
colic in, iv. 625, 631.
constipation in, iv. 631.
eonvulsions in, iv. 628.
digestion in, iv. 625, 631.
elimination in, 1v. $620,6: 32.3$
encephalopathic symptoms in, iv. 627, 630, 631.
frequency of, iv. 617, 619.
general eachexin from, iv. 624, 631.
gums in, iv. 623, 630, 631.
heart in, iv. 622.
killney in, iv. 622, 629.
liver in, iv. 621, 623.
motor symptoms in, iv. 626.
muscular complications in, iv. 626, 631.
nervous symptoms in, iv. 616,621, 626.
obscure enses of, iv. 617, 619,620.
ocular symptoms in, iv. 232, 627.
paralysis from, iv. 622, 626, 631, 633.
pathology of, iv, 619, 621.
prognosis in, iv. 031.
reeent discoveries regarding, iv. 616.
renal affections in, iv, 629.
sensory syiuptoms in, iv. 627.
skin in, iv. 629.
suseeptibility to, iv. 620, 623.
symptoms of, iv. 623, 624.
treatment of, iv. 632 .
uremiv symptoms in, iv. 630.
urine in, iv. 619, 640.
wrist-drop in, iv. 631.
Lithuria, ii. 296.
a normal charaster of early infuntile life, ii. 296, 297, 319.
appetito in, ii. 314, 315. Gatuses of, $\mathrm{ii}, 300$.
conditions faroring, $\mathrm{ii}, 297$.
diagnosis of, ii. 303.
diet in, $\mathrm{ii}, 302,315,318$.
fresh air in (reatmont of, ii. 302, 313.
imperfect development in, ii. 305.
kidneys in, ii. 310 .
mal-assimilation in, il. 314.
oxidation in, ii. 313.
pathology of, Ii. 308.

Lithuria, prognosis in, hi. 311. treatment of, $\mathrm{ii}, 313$.
Liver, abscess of, iii. 463.
eomplications of, iii. 474.
diagnosis of, iii. 475.
etiology of, iii. 469.
jaundice in, iii. 474.
morbid anntomy of, iii. 475.
prognosis in, iii, 475.
symptomatology of, iii. 476.
treatment of, iii. 479.
amyloid, iij. 439.
ascites in, iii. 4.13.
autopsy of, iii. 442.
dingnosis of, iii. 444.
etiology of, iii. 440.
morbill nnatomy of, iii. 440.
prognosis in, iii. 4ft.
symptoms of, iii. 412.',
treutment of, iii. 444.
eirrhosis of, iii. 188.
ateoholic, iii. 491.
atrophic, iii. 492.
dietetic, iii. 490.
etiology of, iii. 490.
hypertrophie, iii. 493.
pathology of, iii. 491, 493.
prognosis in, iii. 498.
ptomaines and, iii. 490.
rachitie, iii. 492.
symptomatology of, iii . 494.
treatment of, iii. 498, 499.
varicties of, iii. 488.
zymotie, iii. 490.
congestion of, iii. 430 .
dingnosis of, iii. 4:32.
symptoms of, iii .430.
trentment of, iii. 434. eontractions of, iii. 488.
eyst of, iii. 425.
enlargements of, iii. 422 .
fatty, disenses nssociated with, iii. 436.
etiology of, iii. 435.
fatty degeneration of, iii. 435.
morbid anatomy of, iii. 436.
symptoms of, iii. 437.
urine in, iii. 437.
foctal, iii. 403, 40.I.
hydatill ol; iii. 425. See Mydatid.
in chronic disease, iiii. 95. in leukrmia, iii. 7sG, 792. of children, iii. 423.
yellow atrophy of, iii. 507.
causo ot, iii. 507, 508.
history of, iii. 507 .
puthology af, iii. 508.
symptomatology of, iii. 503.

Lymphatic anæmia, iii. 801.
diagnosts of, iii. 807.
etiology uf, iii. sul.
prthology of, iii. 80 \&, 805.
symptoms of, iii. 802.
treatment ol, iii. 80 s .
M.

Major articulations, diseases of, iii. 1139.

Malaria, i. 825.
bacteria of, i. $479,826-831$.
benign type of, i. 834 .
eachexis of, i. 845.
causation ol, i. 826.
ehanges in its geographio range, i. $825,831$.
chronic, i. 845.
complications in, i. 836, 846.
intermittent, i. 833.
microbes in, i. 826.
nervous aystem in, i. 836.
neuralpia from, i. 837, 844.
night-nir in, i. 831.
pathology of, i. 826, 832.
pernicious intermittent, i. 834.
pnemnonia, its relation to, i. 839 .
poison of, i. 826, 830.
prognesis in, i. 847.
prophylaxis of, i. 847.
quotilian type, i. 833.
remittent type, i. S.42.
spleen in, i. 840, $816,851$.
stages af, i. 835.
symptomatology of, i. 833.
tertian type, i. 833.
thermometry of, i. 844.
treatment of, i. 8.17.
Malarial cachexia, i. 8.45.
disease in the foetus, i. 228.
Malformations of the penis, ure-
thra, and bladder, iii.833.
of tho rectum and anus, lii. :315.
of the teeth, i. 378.
Mammary glunds, abnormalitics of, iii. 741.
Massage, iv. 325.
classifiention of, iv. 326.
effects of, $\mathbf{j v} \mathbf{3 2 6}$.
effleurage in, iv. 326.
friction in, iv. 327.
hacking in, iv. 327.
kneading in, iv. 327.
local, iv. 327.
movements in, iv. 328, 329.
pereussion in, iv. 327.
pétrissage in, iv. 327.
punctuation in, iv. 327.
sensitive points in, iv. 329.
Swerlish movements in, iv. $328,329$.
tapotement in, iv. 327.
temperature in, iv. 331.
varieties of, iv. 326.
Mastoid, ubseess of, iv. 29, 30.
disease, iv. 29.
trentment of, iv. 30.
periostitis, iv. 29.
causes of, iv. 29.
prognosis of, iv. 29, 30.
symptoms of, iv. 29, 31.
varieties of, iv. 29.
Masturbation, brain-lesions from, iv. 1050.
countemanco in, iv. 1049.
eure of, iv. 1050.
effects of. iv. 963, 977, 979 , 1047, 1048.

Masturbation，infantile，iv． 1648.
insanity from，iv．1047， 1048， $1049,1050$.
moral treatment of，iv． 1050.
paralysis from，iv． 808.
prognosis in，iv． 1049.
signs of，iv． 1048.
Masturbational psychosis，iv． 1047， 1049.
Maternal impressions，i．191， 216，217， 218. as producing defects，
duformitios，or iks, i 190－216．
Measles，i． $6: 5$
black，i． 678 ．
complications of，i．677， 679.
contagion of，i． 675.
convalescence from，i， 682. diagnosis of，i． 678.
epidemic characters of，i． 680.
cruptive stage of，i． 677.
foetal，i． 228.
hemorrbagic，i． 678.
bygicaic conditions in，i ． 681.
malignant types of，i． 678. pathological nnatomy of，i ． 676.
pnemmonia in，i． 680.
prevention of，i． 681.
prognosis in，i． 680.
symptomatotogy of，i． 676. treatment of，i． 681.
Meazurements of arm，iv．253， 251.
of body，iv． 241.
of chost，iv． 253 ．
Meclanical treatment in infan－
tile paralysis，iii． 1298.
Mediastinal abseess，table of cases of，ii．736， 737.
emphysema，ii．619， 650.
tumors，ii． 653.
Mediastinitis，ii． 728.
mycotic，ii． 729.
non－suppurativo，ii．729， 738.
suppurative，ii． 728.
Mediastinum，abscess of，ii． 728.
cancer of，ii．720， 732.
discases of，ii．726， 730 ．
glandular diseaso of，ii． 729.
bydatid disease of，ii． 730.
lymphadenotra of，ii．729．
lymphoms e，ii． 729.
lympho－sarcema of，ii． 728.
sarcol：of，ii， 726.
woutic is ii． 729.
Medico－lega，（estimony，iv． 425.
Megrim，iv．790， 829.
attacks of，iv． $829,831$.
causes of，iv．790， 831.
characteristics of，iv． 829 ， 832.
diagnosis of，iv．742， 832.
pathology of，iv． 832.
periodicity of，iv． 829.
prodromi of，iv． 830.
prognosis in，iv． 702.
prophylaxis of，iv． 835 ．

Megrim，symptoms of，iv． 791
Membrana tympani，iv．3， 14. destruction of，iv． 26. discases of，iv． 15. function of，iv． 15. intlammation of，iv． 15.
injurics of，iv．5， 16. malformations of，iv． 1.4.
perforation of，iv．5， 10.

Membranous enteritis，iii． 163. Nee Enteritis．
Meningitis，basilar，iv． 190.
cerebral，iv． 489.
cercbro－spinal，iv．487．Sce
Cerebro－Spinal Fever．
ehronic，counter－irritation in，iv． 680.
chronic spinal，iv．661．
dingnosis from the cerebral palsics，iv． 487.
diphtheritic，iv． 661.
inficetions，iv． 661.
rhcumatic，diagnosis of，iv． 52 J ．
spinal，iv． 658.
simulated hysterical，iv． 662.
spinal，anatomical features of，iv．6i6．
pathological anatomy of，iv．675， 676.
treatment of，iv． 682.
tubercular，iv．658， 660.
suppurative，iv． 489.
bacteria in，iv． 490.
causes of，iv． 480.
diagnosis of，iv．491．
optic ncuritis in，iv． 491.
pathological anatomy of，iv． 490.
prognosis in，iv． 492.
symptoms of，iv． 491.
treatment of，iv． 492.
syphilitic，iv． 591.
ophthalmoscopic feat－ ures of，iv． 194.
tubereular，iv． 514.
ataxia in，iv． 519.
bacillus in，iv． 517.
brain－lesions in，iv． 516.
enuses of，iv． 517.
complications of，iv． 517.
convulsions in，iv．515， al $6,519,523$.
diagnosis of，iv． 518.
heredity in，iv， 517.
infection of，ir． 517.
of the spine，iv． 659 ．
of the pia mater，iv． 660.
paralysis in，iv．515， 519.
pathological anatom＊ of，iv． 516 ．
prevention of，iv． 522.
prognosis in．iv． 522.
symptoms of，iv．514， 518.
treatinent of，iv， 522.
tuberele of，iv， 517.

Meningocele，iv． 731.
causes of，iv． 735.
spinal，iv．732， 743.
Meningo－myelitis from con－
pression，iv． 044.
nbscess in，iv． 656.
anatomicnl changes in， iv． 047.
ankle－clonus in，iv． 649．
cervical，iv． 649.
due to pachymenin－ gitis，iv． 647.
due to sarcoma，iv． 655.
extension and fixation in，iv． 657.
lesions in，iv． 647.
lumbar，iv．6．13， 649.
pachymeningitis in， iv．647，650．
paraplegia from，iv． 646， 649.
paresis in，iv． 648.
pathology of，iv． 647.
prognosis in，iv． 656
reflexes in，iv， 649.
respiratory disorders in，iv． 650.
sent of，iv． 646.
sensory disrurbances from，iv． 648.
symptoms of，iv． 618.
tactile sense in，iv． 648.
treatment of，iv．657， 678.

Meningo－myclocele，iv．7．13．
Migraine，iv．790．See Megrim．
Milk，abnormal，i． 276.
analyses of，i． $275,270,280$ ， 282，283，284，289，290， 306，307， 310.
as a vehicle of infection， i． $557,594,901$ ．
asses＇，i．290．
cbemical analysis of，i．288， 307， 366.
condensed，i．315， 339.
cows＇，i．290， $306,308,309$ ， 310， 339.
digestion of，i． 68.
buman，its analyses，ete．， i． $275,279,280,282$ ， 283，254，289， 290 303，306，308， 310.
of the wet－nurse，i． 270 ， $280,282,283,284,335$, 336.
peptonized，i．317， 340.
variations of，i． 280.
Minor articulations，liscases of， iii． 1252.
surgery，iii． 839
Mitral inadequacy，ii．815， 817. cuuses of，ii． 817.
clinical history of，ii． 819.
diagnosis of，ii． 817.
dietetics of，ii．S23， 821.
excreiso in the treat－ ment of，ii． 823.
lesions following，ii． 821.
non－rheumatic，${ }^{* 2}$ ． 819 ， 821.

Mollus
Motlus
Morph

30.
 743.

from com iv. 644. iv. 656. ebanges in, us in, ir.

ㄷ. 649.

achymenin. 6.47.
arcoma, iv.
and fixation 57.
iv. 647.
. $6.13,649$ ingitis in, 650.
from, iv.
iv. 648.
of, iv. 647. in, iv. 650 , iv. 649. y disorders 50.
646.
disturbances . 648.
of, iv. 6 : 8 .
nso io, iv.
of, iv. $657_{\text {. }}$
, iv. 743.
See Megrim. 276.
:75, 270, 280, $4,289,290$, of infection, 301.
sis of, i. 288,
$15,339$.
$06,308,309$,
68.
alyses, ete., $7!, 280,282$, 1, 289, 290, , 308, 310.
rse, i. 279,
$3,284,335$,
317, 340.
. 240.
, cliseases of,
ii. $815,817$. ii. 817 .
story of, ii.
ff, ii. 817. f, ii. 823 ,

I the treatii. 823 .
llowing, ii.
atte, ${ }^{\circ} \cdot 810$,

Mitral inadequacy, nutrition in, ii. 823.
pathological canses of, ii. 817.
poricarditis eomplicating, ii. 821.
prognosis in, ii. 821, 822.
signs of, ii. 821.
symptomatology of, ii . 819.
trentwent of, ii. 822.
stonosis, ii. $815,827$.
nuseultution in, ii. 828.
causes of, il. 828, 8:30.
olinical history of, ii . 831.
dangers in, ii. 832.
diagnosis of, ii. 828.
foetal, ii. 830.
heurt-sounds in, ii. 829.
in endocarditis, ii. 776, 777.
marmur of, ii. 828, 831.
non-rhemmatie, ii. 832. pathologicul causes of, ii. 828.
prognosis in, ii. 822.
rhemmatic, ii. 8.30.
symptoms of, ii. 832 .
trentment of, ii. 833.
Mollusca, fibromatous, ii. 9.
Molluscum epitheliale, ii. 9.
Morphœea, ii. 94.
causation of, ii. 95, 96.
lesions of, ii. 94, 95.
morbid anatomy of, ii. 95.
prognosis in, ii. 96.
treatment of, ii. 96.
Mouth, lisenses of, ii. 952 .
Muitiple cercbro-spinal selero-
sis, iv. 495. See Selerosis.
Muscles, exhanstion of, iv. 280 . functions of, iv. 256, 260, 261, 262.
involuntary, iv. 280 .
mechanies of, iv. 260.
structure of, iv. 256.
tonicity of, iv. 256 .
voluntary, iv. 256.
work of, iv. 257, 260.
Musculnr atrophy, iv. 812 . See alno Progressivo Mascular Atrophy.
diaguosis of, iv. 821 .
Erb's juvenite form of, iv. 817.
fneio-scapulo-humeral type of, iv. 818.
hereditury progressive, iv. 821 .
Landouzy - Déjerine type of, iv. 818.
myopathic, prognosis in, iv. 824 .
treatment of, iv. 82.1.
primary, iv. 8I2.
lesions in, iv. 820 , 821.
muscles in, iv. 819.
peroneal type of, iv. 819 .
reactions in, iv. 820.

Musoular atrophy, progressive, Aran-Duchenno type of, iv. 822. hereditary typo of, iv. 821.
Leyden - Möbins type of, iv. 821 . thenar type of, iv. 822.
contractility, formulw for, iv. 456 .
dystrophies, progressivo, iv. 812.
paralysis, psendo-hypertrophie, iv. 813.
Myelitis, iv. f.43. See also Meningo-Myelitis and Poliomyelitis Anterior.
anatomical features of, iv. 675.
caluses of, iv. 677.
compression, iv. 644. See Moningo-Myelitis.
diagnosis of, iv. 643, 672.
elcotricity in, iv, 681.
general or transverse, iv. 709.
hemorrhagic, iv. 676.
idiopathie, iv. 662 .
infections, iv. 60f.
lesions in, iv. 675.
non-transverse, iv. 457.
of the anterior cornua, distinguished from the cerebral palsies, iv. 487.
pathological auatomy of, iv. 675.
proguosis in, iv. 677.
septic, iv. 670.
symptoms of, iv. 672.
syphilitie, iv. 665.
systematic, distioguishod from other forms, iv. 644.
transverse, iv. 457.
treatment of, iv. 682. Sce also Meningo-Myelitis, Treutment of.
tuberenlar, iv. 666.
varieties of, iv. 643, 675.
Myelocele, iv. 732.
Myocarlitis, ii. 840 .
aeute, ii. $810,841$.
canses of, $\mathrm{ii}, 840,846$.
ehronic, ii. S40, $811,843$.
diagnosis of, ii. 844, 846 .
foetal, ii. 840.
forms of, ii. 84 I .
infectious, ii. 845.
parenchymatons, ii. 845 .
pathology of, ii. 811, 846.
physical signs of, ii. 843 .
prognosis of, ii. S44, 8.16.
rhemmatic, ii. 840.
syinptoms of, ii. 842, 816 .
syphilitic, ii. $842,844,845$.
trentment of, ii. 841, 847. varieties of, ii. 8JI.
Myopathie ntrophics, iv. 812.
Sre Atrophies, Primary ; also Musenlar Atropliy.
Myopathies distingnished from myelopathies, iv. 822.
Myopin, iv. 112.
causes of, iv. 142, 868.
complications of, iv. 142.
glasses for, iv. 368.
ophthalmoscope in, iv. I42.

Myopia, strain in, iv, $1 / 42$.
symptoms of, iv. 142.
treatment of, iv. 143.
Myotonia congenita, iv. 945.
causes of, iv. 945.
complications in, iv. 945.
diagnosis of, iv. 950.
bistologienl peenliarities in, iv. 9.46-949.
microscopy of; iv. 016, 949.
muscles in, Iv. 046, 948.
pathology of, iv. 946.
prognosis in, iv. 950 .
symptomatology of, iv. 919.
treatment of, iv. 950.
Myxoedema from thyroid extirpation, ii. 290.
relation of, to goitre, ii. 721.
Myxoma, ii. 366 .
of the larynx, ii. 507, 511.
N.

Nevas, ii. 103.
causes of, ii. 103.
elassification of, ii. 103.
diagnosis of, ii. 107 .
electrolysis for, ii. 113.
enlargement of, ii. 105, 106, 108.
extirpation of, ii. 113.
location of, $\mathbf{i}, 108$.
medication for, ii. 109.
nervous influenco in, ii.
103, 104.
pathology of, ii. 104-107.
pigmentosus, ii. 98.
prognosis in, ii. 108.
surgery in, ii. 110 , III.
symptomatology of, ii. 107.
treatment of, ii. 109.
varicties of, $\mathrm{ii} .103-107$.
Nasal adenomata, ii. 369.
culeuli, ii. 303.
catarrh, ii. 841. Sce Coryza und Rhinitis.
cleft, ii. 941, 942.
obstruetion, ii. :"26.
bony, ii . 327-331.
catuses of, ii. 326.
congenital, ii. 327,331
denfness from, ii. 333, 336.
deformities from, $i i_{\text {. }}$ 334.
dingnos's of, ii, 337.
effects of, ii, 331.
hypertrophied mombranes in, ii. 337.
pharyngeal discasedue to, ii, 334.
prognosis in, ii, 339.
removal of, ii. 331.
symptoms of, ii. 336 .
polypus, ii. 330, 343, 36b.
septum, deflection of, ii. 398.
speculum, ii. 350.
stcnosis, ii. 395.
Naso-pharynx, fibroma of, ii 374.
mulformation of, ii. 327.

Nase-pharynx, sarcema of, li. 373.
tumors of, ii. 374.
Natlonality in disense, i. 132.
Nervous diseases, diagnosis of, iv. 447.
hereditury, iv. 448.
of children, iv. 349, 788.
ophithalmoseope in, iv. 184.
syphilitic, iv. 590.
table of, iv. 789.
headache, iv. 831.
prostrution, iv. 350, 352, 354.
systom, diseases of, iv. 447.
Neuritis, nevte, iv. 794.
alcoholie, iv. 795.
ascending, iv. 794.
chronic, iv. 79.f.
diagnosls of, iv. 795.
infeetiousness of, iv. 795. migrans, iv. 794.
multiple, iv. 709, 794, 795, 827.
optic, due to intracranial growths, iv. 185. See Optie Neuritis.
peripheral, iv. 764.
primary multiple, iv. 795.
Neurogliar selerosis in epilepsy, iv. 904.

Neuroma of the eyelid, iv. 59.
Neuro-retinitis. Sce Optic Neuritis.
Night-blindness, iv. 230.
Nightmare, matoro and canso of, iv. $115,1017$.
Night-terrors, iv. J008, 1010.
attaek of, iv. $1010,1011$.
eauses of, iv. 1011 .
complications of, iv. 1014.
description of, iv. 1010.
digestion in, iv. 1012, 101.t, 1016.
epileptic, iv. 101 t.
fright a cause of, iv. 1012.
hallucinations in, iv. 1013.
idiopathic, iv. 1013.
prognosis in, iv. 1015.
prophylaxis of, iv, 1016.
signifieance of, iv. 464, 1014.
varicties of, iv. 1013.
Nose, congenital atrophy of, ii. 9 43.
conncetion of, with the middle car, ii. 3:3.
cyets of, ii .372.
defeets of, ii. 942.
deformity of, ii. 215.
development of, ii. 936 .
double, ii. 913.
exostosis of, ii. 372.
esseous cyst of, ii .372.
tamors of. See Tumors of the Nose.
Nursing of siek children, i. 347.

Ophthalmin, iv. 77.
chronic, iv. 01.
contagious, in scheol, ir.

$$
407 .
$$ 407.

Ophthalmia, croupous, iv. 95. diphthoritie, iv. 96.
symptoms of, iv. 97.
treatment of, iv. 98.
exanthematous, iv. 85 , 86. follicular, iv. 87, 88. gonorrhoal, iv, 77. granolur, iv. 88.
treatment of, iv. 90.
muco-purulent, iv. 35. trentment of, iv. S6.
neonatorum, iv. 77.
anatomical fentures of, iv. 79.
nutisepsis for, iv. 81, 82.
bacteria in, iv. 78.
cataract, pyramidal, after, iv. 80.
causes of, iv. 78. cornea in, iv. 80. dingnosis of, iv. 81. effects of, iv. 80, 82. pathology of, iv, 70. prognosis in, iv. 82. prophylixis of, iv. 82. statisties of, iv. 82. symptors of, iv. 79. trentment of, iv. 83. phlyetenular, iv. 93. purulent, iv. 77. postulnr, iv. 0 f.
Ophthalinoscope, bow to use, iv. 159.

Ophthalmoscopy, iv. 15s. See Index to vol. iv.
Optic nerve, atrophy of, iv. 203. colobomat of sheaths of, iv. 163.
massings, iv. 161, 162.
Eareomn of, iv. 174.
tuberele of, iv. 229.
tomors of, iv. 174.
neuritis, hinocular, iv. 185. elinical history of, iv. 187.
degenerative changes in, iv. 188.
in meningitis, iv. 491.
its value as a diagnestic sign of brainlesion, iv. 189.
ophthalmoseopie appearances in, iv. 188.
prognosis in, iv. 190. progress of, iv. 190.
traumatic, iv. 169, 172. treatment of, iv. 190. unilateral, iv. 186.
thalami, tomors of, iv. 574 .
Orbit, aequired anomalics of, iv. 121.
diseases of, iv. 120.
tumors of, iv. $12: 1$.
Osteoclasis, iii. 1273.
Osteotomy, iii. 1279.
application of, iii. 1281.
general remarks on, iii. 1281.
spceial applications of, iii. 1284.
technique of, iii. 1283.
Otilis externa diffusn, iv. 12. interne, primary, iv. 42. syphilitica, ir. 42.
Jabyrinthien, iv. 41.

Otitis media, ncute catarrhal, iv. 18.
neute purulent, iv. 23. catuses of, iv. 23. treatment ol, iv. 24.
chronic, ntowizer in, iv. 35 .
catarrhal, iv. 33, 37.
cause of, iv. 33.
examination of, iv. 34 .
treathent of, iv. 3.4, :17.
chronio muco-paru-
lent, iv. 81.
chronie non-purulent, iv. 31 .
effects of, iv. 32.
hearing in, iv. 31. membrama is, iv. 32.
onset of, iv. 31.
pathology of; iv. 31.
symptoms of, iv. 31.
chronie porwi at, perforntion in, iv. 25.
signs of, iv. 25.
treatment of, iv. 21, 26.
polypi in, iv. 25.
sprays for nares in, iv. 35, 36.
tonsils in, iv, 35,37 .
treatment of atrophie eascs, iv. 36.
Ovary, absence of, iii. 741.
aceessory, iii. 742 .
cancer of, iii. 739.
congenital malformations of, iii. 732.
disenses of, iii. 731.
listology of, i. 939.
imperfeet development of, iii. 732.
in hernia, iii. 235.
physicnl examination of, iii. 732.
ruptured, iii. 739.
section of, i. 939,940 .
structure of, i. 939.
tumors und inflammations of, iii. 732.
vesicles of, i. 939.

P.

Pachymeningitis from cervical earies, iv, 650.
hamorrhagica, iv. 527,52s. syphilitic, iv, 531.
of the epinal eord, iv. 785. compression of eorl from, iv. 647, 648.
Pancreas, abnormalities of, iii. 366.
abscess of, iii. 380 .
enrcinoma of, iij. 396, 397.
comparative anatomy of, iii. 367,368 .
cysts in, tii. 379. See Pancreatic Cysts.

Pancrens,
376
fuetal,
functi
gangr
histold
in dia
intlan
injuri
physi
prola
$37: 3$
rolati
resect
seler
seere
surg
tuber
wour
Pancreat eyst,
juic

Pancrea

Palsies,

Pannus
$\underset{\text { panoph }}{p \text { ph }}$
neon
Paraly

Paraly

Pancreas, diseases of, iii. 365 , 376-402.
duet of, iii. 366.
fectal, i. 37.
funetions of, iii. 360.
gungrene of, iii. 380.
histology of, iii. 367.
in diabetes mellitus, ij. 323.
inllammation of, iil. 876 . See Pancreatitis.
injuries of, iii. 372, 388.
operations on, iii. 373,375.
physiology of, iii. 369.
prolapse of, in wounds, iii. 37:, 374.
relations of, iii. 185.
resection of, iii. 375 .
selerosis of, iii. 377.
etiology of, iii. 377.
treatment of, iii. 378.
seeretion of, iii, 369.
surgery of, iii. 373.
syphilitic lesions of, ii. 195, iii. 400.
tuberculosis of, iii. :399.
wounds of, lii. $372-375$.
Panerentio ealeulus, iii. 38:1. eyst, causes of, iii. 387.
description of, iii. 386, 388.
diagnosis of, iii. 389 , 391.
drainage of, iii. 395.
extirpation of, iii. 393. operation for, iii. 393. prognosis in, iii. 392. rupture of, iii. 392. treatment of, iii .393.
duct, contraction of, iii. 388.
ligation of, iii. 369. obstruetion of, iii. 379. stenosis of, iii. 370.
juice, iii. 369.
effect of, iii. 369, 37 I.
functions of, i. 67, iii. 365
Pancreatitis, acute, iii. 370. clinieal history of, iii. 376.
interstitial, iii. 377. symptoms of, iii, 376. treatment of, iii. 377.
Palsies, birth-, i. 266, 267, iv. 535.
corebral, iv. 479. See Cerebral Pnlsies.
Pannus from granular ophthalmin, iv. 90.
peritomy for, iv. 153. phlyetenular, iv. 10 t.
Panophthalmitis in ophthalmia neonatorum, iv. 81.
Paralyser, detection of, by electricity, iv. 457.
diagnosis of, from hysterical disease, iv. 999.
Paralysis, acute atrophic, iv. 683. See Polionyelitis Anterior.
Bell's, iv. 80.t. See Paralysis, Facial.
cerebral, iv. 479. See Cerebral Palsics.
diphtheritic, i. 629, 635, iv. 808. See Diphtheritic Paralysis.

Puralysis, fucinl, iv. 804.
causes of, iv. 804, 805. congenital, jv. 804, 805.
lesions in, iv. 804, 805. museles in, iv. 806.
prognosis in, iv. 801 , 805.
symptoms of, iv. 801, 805.
trentroent of, iv. 805.
feigned hysterical, iv. 980. !ysterical, iv. 970, 981, 983.
infuntile, iv. 456, 457, 68:1. See Voliomyelitis Anterior.
mechanionl treatment of, iii. 1298.
mimntie, iv. 814.
multiple, iv. 794.
peripheral, iv. 803.
pseudo-hypertrophic museular, iv. 457, 813.
cunses of, iv. 813.
complications of, iv. 815.
doformities from, iv. 815.
degenerative ehanges in, iv. 816.
herelity in, iv. 813, 816.
knee-jerk in, iv. 815.
lordosis in, iv. 814.
meutal symptoms in, iv. 815.
museles in, iv. 813, 816.
pathological anatomy of, iv. 816.
symptoms of, iv. 813 , 815.
synonymes of, iv. 813 .
reflex, iv. 807.
rheumatic, iv. 79.
spinal, significunce of, iv. 672.

Parasites in blood, iii. 766.
in intestinal oanul, iii., 217. causes of, iii. 217.
clinieal history of, lii. 218.
effects of, iii. 217, 218, 222, 225, 228.
irritation produced by, iii. 219.
pathogeny of, iii. 217.
pathology of, iii. 218.
propagation of, iii. 219.
prophylaxis against, iii. 220.
ptomaines from, iii. 218.
tape-worms, iii. 221. Sce Tape-Worm.
Parnsitio discases, ii. 124.
Paratyplilitis, iii. 282.
Parotitis, i. 767.
dingoosis of, i. 769.
etiology of, i. 76 s .
metastasis in, i. 767, 769.
pathological unatomy of, i. 768.
prognosis of, i. 870.
symptomatology of, i. 768.

Parotitis, treatment of, i. 770.
P'ediculosis, ii. 134.
corporis, ii. 1:15.
lelvis in rnehitis, ii. 236.
l'emphigus, ii. 44, 47. syphilitie, ii. 119.
Penis, disenses of, iii. 691. mulformations of, iii. 633.
l'ericurditis, ii, 848.
chuses of, ii. 8.48.
dingnosis of, ii. 860, 893.
effects of, ii. 864.
ellusion in, 3i. 819, 850.
etiology of, ii. 848.
heart in, ii. 850 .
illiopathic, ii. 858.
orthopnoea in, ii. 850 .
paracentesis in, ii. 864.
pathology of, ii. 847.
prognosis in, ii. 86 i.
rhemmatie, ii. 848.
septic, ii. 849.
sy mptoms of, ii. 850.
treatment of, ii. 864.
Pericardium, absenee of, ii. 750. as in seat of tuberculosis, ii. 17.1.
diseases of, il. 8.18.
infantilo, it. 848.
Pericementitis, ii. 9:11.
Perinephritic abseess, iii. 559.
Perinephritis, iii. \$59.
diagnosis of, iii. 563.
etiology of, iii. 560 .
pathology olf, iii. 559.
prognosis of, iii. 564.
symptoms of, iii. 561 .
treatment of, iii. 564.
Periorehitis, iii. 696.
l'eriostitis, iii. 003, 099.
P'eripheral uervous system, diseases of, iv. 788.
Periproctitis, iii. 345.
Perituneal abscess, iii. 274.
disease as a causo of constipation, iii. 106.
Peritonemm, dropsy of, iii. 511.
in acute diarrhœal disense, iii. 90.
in its relations to the cescum, iii. 286.
Peritonitis, iii. 268.
ucute, bowels in, iii. 270, 271.
causes of, iii. 270 .
cirenmseribed, iii. 274.
diagnosis of, iii. 275.
diffused, iii. 294, 297 . laparotomy for, iii. 277.
nutrition in, iii. 276.
perforative, iii. 273, 277.
prognosis in, iii, 275.
septic, iii. 26!, 270.
symptoms of, iii. 27), 275.
traumatio, iii. 273.
treatment of, iii. 276.
varietics of, iii. 269.
adhesive, iii. 300.
uppendicular, iii. 282.
chronic, iii. 277.
complieations of, iii. 279.
dingnosis of, iii. 279.
pathology of, iii. 278.

Perltonitis, chronic, prognosis in, 3ii. 279, 280. symptoms of, iil. 27 s . trentment of, hii, 280. tubercular, 3ii. 277.
general or diffuse, operation for, ili .308.
infantile, lii. 269.
Intra-uterine, iil. 263, 288. perityphitio, iii. 312, 313. plastic, ill. 291.
suppurative, 1il. 271, 27%.
tubercular, iii. 212, 214, 277.

Perityphlitic abscess, iii. 282, $202,297$.
Perityplilitis, iii. 282.
abscess from, iii. 291, 292, 311-318.
anatomical features of, iii. 290.
appendix in, iii. 282, 290, 291, 298.
cæcum in, iil. 284.
causes of, iii. 284, 237.
olinical history of, iii. 291.
constipntion in, iii. 299.
course of, lii. 296.
dingnosis of, jii. 300.
diet in, iii. 315.
etiology of, iii. 284, 287.
frecal concretions in, iii. 287.
laparotomy in, iii. 284, 307, 312, 313.
lesions of, iii. 290.
mortality from, iii. 302.
operntions for, iii. 284, 297, $305,306,312,313$.
pathological anatomy of, iii. 290.
penetration of bowel in, iii. 291, 292, 300.
peritonitis in, iii. 291, 312, 313.
prognesis in, iii. 302.
seat of, iii. 290.
statistics of, iii. 286, 287, $291,293,298,300,302$.
symptoms of, iii. 29.1-300.
tranmatic, iii. 289.
troatment of, iii. 303.
varieties of, iii. 291, 296
Pernicions unemin, iii. 772.
causes of, iii. 809, 810 .
diagnosis of, iii. 819.
infectious, iii. 810 .
pathology of, iii. 814, 817.
prognosis of, iii. 820 .
symptoms of, iii. 811 .
treatment of, iii. 820.
Pertussis, bucteria in, i. 706. bronchi in, i. 708, 709.
complications in, i. 708 , 711, 721.
contagion of, i. 704, 706, $713,715$.
cough in, i. 711.
dingnosis of, i. 715.
etiology of, i. 703, 713.
heart ins i. $\mathbf{7} 10$.
bygiene of, i. 717.
lungs in. i. 708, 712, 713.
puthology of, i. 706, 713.
pneumonia in, $\mathbf{i}, 710$.
prognosis in, i. 715.
prophylaxis of, i. 715.

Portussis, stages of, i. 713, 710, 720.
symptous of, i. 713.
treatment of, i. 715, 710.
Pharyngitis, 1. 6117, 608.
Pharynx, adenold growths of, ii. 481.
diseases and injuries of, il. 41%.
tumors of, ii. 505.
Phlegmon, \{i. 24 .
iththisis, il. 670. See also Tuberculosis.
anatomieal characters of, ii. 675.
atrophy in, il. 676.
bacillus of, $\mathrm{ii} .672,675,676$, 684, 686.
cascous, ii. 673.
catarrh of, ii, 685.
causes of, ii. 671, 680.
chronic, ii. 673.
climate in, ii. 680, 681.
complientions in, ii. 678.
eough in, ii. 676.
expectorntion in, ii. 677.
fever of, ii. 876 .
fistula in ano with, ii. GS6.
hemoptysis in, ii. 677, 681, 686.
beredity in, ii, 672, 679.
hygiene of, ii. (isk.
larynx in, ii. 685.
lyinphatic glands in, ii. 677.
meningitis with, ii. 1678 .
miliary, ii. 673.
milk as a vehicle of, ii. 679.
night-swerts in, ii. 686.
ozone in the cure of, ii. 681.
pathology of, ii. 675.
pharyngeal ulceration in, ii. 684.
pleurisy with, ii. 685.
prognosis in, ii. 679.
respiration in, ii. 674.
scrofula iu relation to, ii. 672.
symptoms of, ii. 670, 674, 67 t.
treatment of, ii. 679.
tuberculosis identieal with, ii. 670 .
varieties of, ii. 673 .
Plysical development, iv. 2.l1.
Plastic surgery, iii. 864.
Pleurisy, anatomical features of, ii. 689.
asepsis in, ii. 703.
causes of, ii. 688.
constitutional syinptoms of, ii. 697.
diagnosis of, ii. 691, 693, 698.
empyema of, ii. 690, 705.
beart in, ii. $690,645$.
idiopathic, ii. 699.
lung-retractions after, ii. 690, 694, 700.
paracentesis in, ii. 702, 707.
pathology of, ii. fis9.
physien sigus of, ii. 693 .
pleural effusions in, ii. 690, 695, 696.
prognosis in, ii. 609.
ralles in, ii. 697.
secondary, ii. 689, 689.

Pleurisy, signs of, 11. 693. suppurative, il. 705.
syuptoms of, ii. 691, 697. temperature in, li. 8u2.
thoracentesis in, 3 i .702 , 707.
treatment of, il. 699.
Pieurotomy, antiscpsis after, $i i_{\text {. }}$ 713.
antiseptic, ii. 709.
drainago after, $\mathrm{ii}, 709,71 \mathrm{i}$, 715.

Listerism nfter, ii. 713.
lung-dilatation after, ii. 713.
resoction of ribs following, ii. 714.

Pneumonia, acuto catarrina, ii. 617.
lobulnr, ii. 617.
bronehial. See BronchoPneumonia.
catarrhul, ii. 617.
croupous, ii. 586.
anatomical characters of, ii. 588 .
bacteria of, ii. 588.
causes of, ii. 5 kti .
cercbral symptutis in, ii. 597 .
cough in, ii. 598.
diagnosis ol, ii. 594.
expeetoration in, ii. 593.
bepatization in, ii, 589. infection of, ii. 587.
nervous sympitous in, ii. 503,595 .
pathology of, ii. 588.
prognosis in, ii. 595.
respirution in, ii. 596.
secondury, ii. 594.
symptoms of, ii. 590, 542.
treatment of, ii. 597.
lobar, ii. 586.
Jobular, ii. 579, 617.
Poisoning, iii, 859-862. Siee
also Arsenical Poisoning and
Lead-Poisoning.
Poliomyelitis unterior, iv, 683. age at onsct, iv. 685.
anatomieal ehanges in, iv. 704.
anterior cornua in, iv. 705.
atrophies from, iv. 649, 703, 707.
bones in, iv. 699, 707.
causes of, iv. 684.
chronic stage of, iv. 693.
club-foat from, iv. 702.
congenitul, iv, 681.
cord-lesions in, iv. 70t.
deformities after, iv. 702.
diagnosis of, iv. 707.
electrical changes in, iv. 703.
reactions in, iv. 708.
electricity in treatment of, iv. 712.
etiology of, iv. 684.
fever of, iv. 689, 694, 695, 707.

Poliomyelitis anterior, infection of, iv. 689.
jointe in, iv. 699.
losions of spinat oord in, iv. 704 .
microscopio lesions of, iv. 704-707.
muscalar atrophy in, iv. 699, 703, 707.
nutritive chnnges in, iv. 609, $703,707$.
paralysis in, lv. "01, 692, 691, 700, 701.
pathology of, iv. 704.
prognosis in, iv. 710.
reflexes in, iv. 701.
regression of paralysis 10, iv. 69:t, 696, 699, 708.
selerosis in, iv. 796.
sequolne of, iv. 702.
aigas of, iv. 457.
spinal cord in, iv. 731.
stages of. iv. 693, 712.
symptoms of acute, iv. $641,692,693,701$, 708.
tenotemy in, iv. 713.
treatment of, iv. 711, 712.
varietics of, iv. 684, 690, 712.
Polypi, nasal, ii. 330-338, 366368.

Porincophalus, iv. 479, 431, 736-740.
anatomical features of, iv. 736-738.
causes of, iv. $535,738$.
congenital, iv. 736.
description of, iv. 182.
pathological anatomy of, iv. $73 \mathrm{t}-738$.

Portal vein, liseases of, iii. 403.
Pott's discase, ubseess in, iii. 1025.
cervical earies in, iii. 1028.
diagnosis of, iii. 1027.
dorsal caries in, iii. 1031.
etiology of, iii, 1019.
fixative njparatas for, iii. 103 s .
of lumbar region, jii. 1032.
patholory of, iii. 1021.
prognosis in, iii. 103!.
symptomatology of, iii. 1023.
treatment of, iii. 1035. mecbanical, iii. 1036.

Preputial calculi, iii. 590.
Prevention of erime, iv. 122.
Prinary muscular atrophies, iv. 812.

Prolapse of reetum, iii. 317.
Prophylaxis of disease, iv. 332.
Prarigo, ii. 47.
Pseudo-membranous laryngitis, ii. 521.

Psoriasis, ii. 49-55.
Ptomaines, i. 189. 196.
as a canse of disease, i. 122,
ineculation with, i. 100.
of chelerr, i. 400.

Ptomaines of diphtheria, i. 586, 588.
of eateric fever, $i_{4} 451$.
Puberty, i. 389.
nge of, i. 390, 392, 410.
chlormammin ut, i. 400.
dlsosses of, i. 393.
evolution of, i. 389, 391.
hygiene of, i. 389, 407, 412.
hysterical disorders of, i. 305.
in females, i. 390.
menstrual disorders of, \mathbf{i}. : 99.
physical and moral culture at, i. 407, 412.
premature, l. 93, 392, 410.
signs of, i, 392, 394.
trentment of nervous disorilers of, i. 415.
Purpura, il. 78, 83.

R.

Rabies, iii. 893, 895.
Race in llisease, i. 132.
Rachitic rosary, i. 80, ii, 224,
225, 226, 227, 235, 241.
Rachitis, ii. 224.
acute, ii. 25., 277, 278.
anatomical characters of, ii. 233, 237, 244.
baths in, ii. 262.
beads in, ii. 224, 225, 226, 227, 235, 341.
bone-formation in, ii. 235, $237,238,239,213,2 H 1$, 251, 263.
brain in, ii. 245.
causes of, ii. 217.
charactors of, essential, ii . 255.
complications in, ii. 263.
convulsions in, ii. 232.
craniotabes in, ii. 225.
deformities in, ii. 224-2:30, 235.
dentition in, i. 382, ii. 226.
foetal, ii. 251, 252.
frictures in, ii. 229, 235, 251, 263.
geography of, ii. 248.
histology of, ii. 237.
hygiene of, ii. 248.
intra-uterine, ii. 251, 252, 257.
laryngismus in, ii. 231, 264.
metullary spaces in, ii. 242.
morbid anatomy of, ii, 233. physiology of, ii. 245.
pathological anatomy of, ii. $233,255$.
p.nnantion of, ii, 257.
pr, gnosis 1s, ii, 256, 257.
rits in, ii. 224, 225, 226, 227, 235, 241.
skייll ; n, ii. 22.।, 225, 236.
spinal column in, ii, 227.
symptomatology of, ii, 22 I.
thorax in, ii. 224-227, 231, $235,241$.
treatment of, ii. 257, 262.
Rectal deformities, $\mathrm{iii} .318,321$. causes of, 304.

Rectal deformities, eiasalfication of, iii. 332.
prognosis in, iii. 36.4.
malformations, iii. 321.
Rectuas, abnormalitles of, iil. $318,321$.
cancer of, lii. 304.
diseaser of ili. 4.4.
foreign borlies in, iii, 356.
imperforate, iii. 321, 32:, $326,327$.
inflammation of, lii. $\mathbf{3 4 4}$.
maligrant disease of, iii. 354.
operations fur, tii. 323, 324, 325.
polypus of, iii. 352.
prolajsus of, iii, 347. See Prolapsus.
sarcotaa of, iii. 351.
stricture of, iii, 346 .
Reflex hetion in chilitren, iv. 864.
changes in the retina, ir. 20t, 208.
cough, ii. 340.
ocalar nearoses, iv. 145.
paralysis, iv. 807.
uvalur, abolition of, iv. 910.

Reflexes after cerebral hemorrbage, iv. $537,538$.
ascertainment of, iv. 45 I , 459.
loss of, iv. 45 !, 459.
Reformatories, apprenticeship from, iv. 432.
cottage system of, iv. 431, 432.
denomisational, iv. 430.
handierafts taught in, jv. $433,43.4$.
manual trining in, iv. 433.
physical training in, iv. 43.1.
private, iv. 430.
public, iv. 428.
sectarian, iv. 430.
trades tanght in, iv. 433, 434.
wotann's influence in, iv. 44.

Relapsing fever, i. 50.
bacteria of, i. 505, 509.
causes of, i. 505.
complieations in, i. 507, 509, 512.
diagnosis of, i. 5109, 510.
hygiene in, i .511.
mortality from, i. 509 , 511.
pathology of, i. 505. prognesis in, i. 511. relanses of, i. 500. symptoms of, j. 506. treatment of, i. 511.
Renal calculus, iii. 572-576.
Letina, breakago of, iv. 167. 225.
detached, iv. 168 .
in 13right's disease, iv. 20!), 211.
ischremia of, iv. 179.
penctrating wound of, iv. 168.
sarcoma of, iv. 176.

Retina, shot-silk opacities of, iv. 166.
tuberele of, iv. 227, 221.
vascular distribution to, iv. 163. See ulso Ophthaimuscopy.
Retinitis. See $0_{\text {ptic }}$ Nenritis. of Hright's diseasc, iv. 210.
plgmentosa, iv. 2\%.
Myphilitic, iv. 220, 227.
Rhenmatism, i. 110, 785 .
nente, i. 785.
arthritis in, i. 785, 790. Siee also Rheumatoid Ar. thritis.
baeilli of, i. 7133.
etuses of, i. 787.
ehildhoor, its peculiaritles in, i. 705.
chronie, $\mathrm{i}, 821$.
diagnosis of, i. 809.
endocurditis in, i. 786, 797, 811.
etiology of, i. 787.
family history in, i. 11:3, 789-791.
fibrous nodules in, f. 785, 801, 813.
heart-disense in, i. 786, 794, 797, 806, 812, 817, 519.
meningitis in, i. 805.
microbes of, i. 793.
nodules in, i. 785, 801, 813.
pathology of, i, 702.
pericarditis in, i. 788, 791, T315, 798, 811.
prevention of, i . 821 .
prognosis in, i. 812.
purpurio erythema in, i. 803.
scarlatinal, i. 570, 788 .
symptoms of, i. 786,794 , 806.
tendinous nodules in, i. $785,801,813$.
transmissibility of, to off-
spring, i, 113, 789-791.
treatment of, i. 814, 821.
Rheumatoid arthritis, i. 822.
causes of, i. 822.
dingrosis of, i. 823.
pathology of, i. 822.
symptoms of, i. 822.
treatment of, i. 823.
Rhinitis, ii. 398. See ulso Coryza.
atrophica, ii. 406-408.
eroupous, ii. 400, 405. causes of, ii. 401.
foetida, ii. 406.
hypertrophica, ii. 393, 398.
purulent, ii. 412, 417. trentment of, ii. 4]7.
RubeJn, i. 684.
bacteria of, i. 688.
cluses of, i. 687.
eontagion of, i. 687.
dingnosis of, i. 698.
epilemies of, i, 686, 687.
etiology of, i. 687, 697.
infectiousness of, i. 687.
mortality from, i. 698.
prodromes of, i. 689, 699.
prognosis in, i. 698.
rash of, i, 691, 693.

Rubelln, rolapsa in, i. 698. symptoms of, f. 69.1.
syonymes of, 1. 684.
Rubeola. See Mensles.
S.

Sacro-iline joint-ilisense, ili. 1170-1172.
Sarcoma of kidney, iif. 213. of liver, $1 \mathrm{il}, 457-460$.
Scubies, 1i. 131, 133.
Searlet fover, i. 555.
shbuninuria lo, 1. 504, 570, 578.
angina of, i. $568,560$.
chuses of, i. 556 .
complications of, i. 569, 577.
conditions favoring, i. $557-$ 560.
eonvulsions in, i. 570.
diagnosis of, i. 570 .
diphtheritic symptoms in, i. $564,568,569,574,607$. dropsy of, i. 573 .
ear-troubles after, i. 570.
epinlemics ol, i. 559, 500.
eruptions of, i. 563, 567, 578.
forms of, i. 565.
isolation of, i. 561, 575 .
kilneys in, i. 122, 564,570 , 571, 578.
maligmant form of, i. 569.
mortality from, i. 57 t.
pathology of, i. 562.
prevention of, 1. 560.
prognosis in, i. 573.
rhenmatism after, i. 570 , 788.
soro thront in, i. 556,564 , $568,569,577$.
symptoms of, i. 565 .
temjerature of, i. 5 (i6.
thront-symptoms in, i. 556, 564, 566, 568, 569, 577.
treatment of, i. 574.
uremie symptoms in, i. 579.
virus of, i. 556, 557.
School-hoases, iv. 376.
School-hygiene, iv. 34.3.
Schools, contagious iliscases in, iv. 403.
epidemics in, iv. 403-408.
exterual hygiene of, iv. 375.
inlustrial, origin of, iv. 428.
nervous disorders in, iv. 349.
public indnstrial, iv. 42s.
Selerema nconatorum, ii. 90-92.
Seleroderma, ii. 88-90.
Sclerosis, multiple cerebro-spimal, iv. 495.
eauses of, iv. 502, 506. elinical history of iv. 496.
contractures in, iv. 501.
convulsions in, iv. 501, 509.
differential diagnosis of, iv. 507.

Sclerosis, muitiple cerebro-nh. nal, epilepusy with, iv. 501 .
eye-symptoms in, ir. 19:, 499, 509.
glycosuria in, iv. 50), 507.
histology of, iv. 505.
lesions of, iv. 504.
location of, iv. 50 l , 507.
origin of, iv. 502, 504,
puralysia in, iv. 501.
pathological anatomy of, iv. 504.
prognosia in, iv. 510.
rellexes in, iv. 501 , 507, 500.
strabismus in, iv. 499.
symptoms of, iv. turn $502,507$.
syphilis as a factor in, iv. 502,507 .
trentment of, iv. 511.
tremor in, iv. 406, 4!8, 499, 507, 508, 512.
neurogliur, in epilepsy, iv. 90).

Seoliosin, iil, 1-3.
Scrofulosi*, ii. 136 .
anatomical characters of, ii. 143-148.
bueilli in, ii. 144.
bud bygiene as a eause of ii. 1.10 .
caries of bones in, ii. 153.
causation of, ii. 138, 911.
chronic entarrh in, ii. I52.
clothing in, ii. 160.
conjunetiva in, ii. 152.
corneml uleers in, ii. 152.
glands, lymphatic, in, ii. 15%.
its probable relation to tubercalosis, ii. 138, 142147.
its relations to gout and lithogenesis, ii. 297, 301
locnl trentument in, ii. 161 . manifestations of, ii. 149. microscopic examination of the tissnes in, ii, 14.
morbid anntomy of, ii. 14\%.
nature of, ii. 138, 911.
otorrhoen in, ii. 152.
pathology of, ii. 142-148.
phthisis as a eause of, ii. 138.
surroundings as aflecting, ii. 140 .
symptoms of, ii. 148.
town-life as favoring development of, ii. 208.
treatment of, ii. 150.
types of, ii. 148.
Scrofulous abscess, ii. 014, 917, 919.
abscess and tuherculous glands contrasted, ii. 910. glands, ii. 907 .
lichen, ii. 150.
lupus, ii. 150.
sore throat, ii. 428.
Scurvy, ii. 26i.
bones in, ii. 275, 276.
gingivitis of, ii. 985.
gnms in, 31.274.

Seurvy, symptoms of, ii. 273. treatment of, ii. 277.
Septicallia, iii. 909.
Sieep, disorders of, iv. 1008.
Sore mouth. Sce Stomatitis. putrid, il. 969.
thront, 11. 419-426.
acute tubercular, ii . 429.

Spasm, carpe-pedal, iv. 882. See Tetany.
habit-, iv. 801.
histrionic, iv. 801.
hysterical laryngenl, iv. 979.
laryngeal, Jv. 879.
mitule, tv. 801.
nictitnting, iv, 801 .
periphernl, iv. 706. See also Eolampsia.
rebex static, Iv. 801.
saltatory, iv. 801.
static reflex, iv. 801.
tetanoid, iv, 709. See Tetany.
tonic, iv. 945, 949. See Myotonia.
Spina bifida, iv. 732.
oomplications of, iv. 743.
dingnosis of, iv. 743. occulta, iv. 733.
prognosis in, iv. 743. treatment of, iv. 7.14.
Spinal canal, tumor of, iv. 785.
trephining tise, iv. 785.
cord, heruia of, iv. 732. pachymeningitis of, iv. 785. red softening of, iv. 6713.
structural abnormalitics of, iv. 72 s . surgery of, iv. 7.18
curvature, iii. 1001, iv. 357.
hysterical, iv, 990. troatment of, iv. 357.
deformity, iv. $356,358$.
homorrhage, iv. 667 . capillary, iv. 670. causes of, iv. 171. dingnosis of, iv. b7t. moningeal, iv. 670. paralysis from, iv. 669.
meningitis. See Meniugitis.
paralysis, infantile, massage in, iv. 330.
Spinal-cord abnormalitics, surgical treatmont of, iv. 741.
disenses, classitication of, iv. 644.
convulsions from, iv. 880.
neuro-mimetic, iv. 1002.

Spinc, lateral and functional eurvatures of, iii. 1001. deformity in, iii. 1006. diagnosis of, iii. 1009. etiology of, iii. 1002.

Spine, lateral and funetional eurvatures of, hereifIty of, ili. 100 I.
pathology of, iii. 1008. trestment of, iil. 1012. posterior enrvature of, iii. 10 i 9.
rotation of, iii. $1010,1012$. sensitive, iii. 1010.
Spleen, anatomy of, ii. 886 . auscultation of, ii, 803.
diagnosis in disease of, ii. 892.
disenses of, ii. 886,892 , 811.
enlurgement of, ii. 887, 888, 891, $802,893$.
funetions of, ii. 858 .
laparotomy of, ii. 002.
leukremin in its relations to, ii. $889,800,903$.
morbid anatomy of, ii. 890.
red corpuseles in thair rolation to, ii. 880.
removel of, ii. 888,899 , 90\%, 30%.
surgical treatmont of, ii . 902.
tubereniosis of, ii. 175, 901.
tumors of, ii. 901.
Spleen, wandering, $i i .900$, 903.
white corpuseles in relation to, ii. S89.
wounds ot, ii. 899.
Splonitis, supprative, ii. 896, 897.

Stenosis, mitral, ii. 827. Sce Mitrai Stenesis.
nasal, ii. 328, 345.
of aurta, congenital, ii. 8 is.
of larynx, ii. 495.
canses of, ii .400.
diugnosis of, ii. 502.
laryngoscope in, ii. 503.
nature of, ii, 495,
neoplastic, ii. 500.
sinsm in, ii. 497.
of pylorus, iii. 39.
calles of, iii. 39.
congenital, iii. 39.
diagnosis of, iii. 40.
nutrition in, iii. 40.
patioo ogical anatomy of, iii. 40.
prognosis in, iii. 41.
treatment of, iii. 41.
of tricuspid orifice, ii. 756.
of vaginn, iii. 749.
Stomach, acidity of, in dyspepsia, iii. 6.
catarrh of. See Gastric Cutarrb.
deformitics of, iii. 60.
dilatation of, iii. 41.
disenses of, iii. 1, 30.
disordered, iii. 1, 33.
displacements of, iii. 59.
distention of, iii. 40 .
functional disorders of, iii. 1.
in dyspepsia, iii. 7, 13.

Strmach, inflammation of, ili. 32.

Irritable, iii. 820.
neuralgit of, tii. 25.
spastn of, iii. 25.
Stomatitis, aplithous, саине of, ii. 905.
diagnosis of, ii. 067.
pathology of, ii. 966.
symptoms of, ii. 068.
catarrhai, ii. 95:\%.
chuses of, ii. 954.
diagnosis of, ii. 0.38.
puthology of, ii. 961.
symptoms of, ii. 954.
trentment of, 3i. 956.
erythematous, ii. थ5R.
membranous, ii. 968.
diphtheria and, ii. 1068.
vuricties of, ii. 069.
of scurvy, i'. 085.
parasitic, ii. 057 . baciilus of, ii. 957, 461.
diagnosis of, ii. 961.
etiology of, ii. 057.
miero-organism of, ii. 057, 961.
prognosis in, ii. 961.
prophylaxis against, ii. 061.
symptoms of, ii. 960 .
treatment of, ii. 961 .
simple, ii. ©53.
uicerative, ii. 1069.
canses of, il. 969, 970.
contagiousness of, ii. 970.
diagnosis of, ii. 972. puthology of, ii. 970 . symptoms of, ii. 972.
treatment of, ii. 073.
with uleerations, $\mathbf{j i}$. 964 .
See also Stomatitis, Aph-
thous.
Stone, ceenl, iii. 288.
in bladder, iii. 596, 617.
prevontion of, iii. 631.
prostatic, iii, 6:31.
Stools, bacteria in, iii. 100.
bloody, iii. $100,131$.
chemical inspection of, iii. 96.
color of, iii. 97.
consistency of, iii. 97.
disinfeetion of, iii. 101.
Strabismus, iv. 134.
advancement of tondon for, iv. 156.
causes of, iv. 136, 137.
characters of, iv. 136.
glasser for, iv. 138.
latent, iv. 139.
operations for, iv. 139.
treatment of, iv. 138.
varictics of, iv. 136.
Suppurativo meningitis. See
Meningitis.
Surgery, iii. 839.
minor, iii. 839.
plastic, iii. 864.
Synovitis, iii. 1127.
Syphilis, ii. 186.
acquired, ii. 116.
anatomical characters of, ii. 194.
bonos in, ii. 197, 216.

Syphilis, congenital, ii. 186. ita contagiouaneas, 11 . 200. NerealmosyphSile, Late Congenítal, and Syphilia of the Nore.
eraniotabes in, i1. 198.
dentition in, II, 201.
diagnosis of, Ii. 2011, 222, 380, 381.
epiphyses in, 1i. 147.
glanda in, ii. 203.
hamorrhagieaneonatornm, ii. 121, 20.5.
hereditary, ii. 186.
hydroeephalus from, il. 215.
infuntile, 3.186.
inherited, ii. 116, 186.
kilneys in, ii. 196, 2ei.
late congenital, bones in, il. 221, 22\%.
focai trentment of, $\mathrm{ii}, 211$.
mandfestutions of, if. 192, $169,212$.
matermi transmissions of, ${ }^{1} 1.188,193$.
nervoun systen in, iv. 530.
nose in, if. 378-38i.
of noso, congenital, ii. 378.
origin of, ii. 187.
osscous system in, ii. 197.
paternal trunsmission of, ii. $188,190$.
pathology of, ii. 194.
periontitis ns a sign of, ii. 222.
proguosis in, ii. 207, 222, 382.
spleen in, ii. 195, 201, 207.
symptoms of, ii. 199, 222.
teeth in, ii. 204, 216.
transmission of, ii, 188-192.
trentment of, ii. 207.
Syphilitio ehildren at birth, ii. 199.
oruptions elassified, ii. 117, 1210.
lesions of the heart, ii. $842,844$.
osteo-myelitis, ii. 220.
osteo-periostitis, ii. 221). pemphigus, ii. 119.
skin-nffections, ii. 116.
sore throat, $\mathrm{ii}, 4: 36$.
uicerntions, ii. 121.
Syphifodermata, ii. 117-122.

T.

Tabes in pernicious anamia, iii. 812.
mesenterica, iii. 208.
diagnosis of, iii. 211), 213.
lymph-bodies in, iii. 211.
pathology of, iii. 210.
prevention of iii. 215.
prognosis in, iii. 214. rachitis and, iii. 215. symptoms of, iii. 209. treatmeat of, iii. 215.

Tabes menenterlea, varieties of, 1ii. $208,210$.
Tulipen, iil. 055, 958.
calcaneuн, II. $978,978$. enneation of, ili. 955. equino-varum, iih. 958. eguinas, lii. V6s, 9\%8. valgus, ili. v6is.
varan, iii. 958.
Tape-worm, ili. 219.
broud, ili. 220.
diagnosis of, ili. 22\%.
jrognosis of, lii. 223.
nymptoms of, ili. 222.
treatment of, iii. 223.
Teeth, abnorımilities of', l. 376, ii. 921 .
eure of, il. 9:22, 933.
caries of, i. 301, ii. 92.
disenses of, ii . 120.
finuctions of, hi. 120 .
irregularities of, ii. 421.
plagging of, ii. 030 .
juijitis of, ii. 930.
temporurs, 1. 373, ii. 921. 10:3.
Testicle, benign fungus of, iil. 609.
enneer of, ifi. 69s.
dineases of, iil. 691.
hydrocele of, iii. 691.
in hernin, iii. 235-237.
neophasus of, iii. 698.
retained, canses of, iij. 635.
sarcomm of, iii. 699.
syphilis of, iii, 698.
tubercle of, iii. 698.
tumors of, lii. 696.
Testimony, medico-legal, iv. 435.

Tetanus, iii. 002, Iv. 913.
bacilli us enusing, iv. 922, 930 .
causes of, iv. $914,922$.
climute in, iv. 915.
contagion of, iv. 925, 429.
diagnosis of, iii. 90 !, iv. 927.
epidemies of, iv. 924.
freies in, iv. 917.
heart in, iv. 920.
idiopathic, iv. 925, 029, 932.
infection of, iv. ©25, 929.
lesions in, iv. 927.
loeked-jaw in, iv. 917.
miero-organisms eansing, iv. 922, 931.
neonatorum, iv. 921, 923.
opisthotonus in, iv. 917.
paroxysms in, iv. 919.
puthology of, iii. 903, iv. 922, 926.
prevention of, iv. 929.
prognosis in, iii. 901 , iv. 928.
ptomaines from, iv. 922 , 930.
rhenmatie (so-ealled), iv. $925,926,929,932$.
sourees of poison of, iv. 922, 9213.930.
statisties of, iv. 913.
symptomatology of, iii. 903 , iv. 916 .
thermometry in, iv. 920.

Tetania, trauma as a eanse of, iv. 415.
treatment of, iii. 90.f, Iv. 931.

Tetany, iv. 799.
Therapeuties, general, f. 956.
'Thomsen's dlяенке, iv. 037.
Throat, apithoum, h. 422. erynizelatona, 1i. 420. harpetle, 11.422.
membranous sore, 3. 422.
rheumntic sore, $\mathrm{li}, 421$.
serofolous, $1 \mathrm{i}, 42 \mathrm{~s}$.
sure (acute), if. 410.
syphilitie, il. 430.
tubercular, il. 429.
ulvernteil, il. 426.
Thromboria, iv. 525.
Thy mue gland, H. 543.
a true lymph-giand, if. 724.
disenses of, il. 72.
enlurgei, ii. 724.
tuberculosis of, ii. 180, 725.

Thyroid glanil, ii. 543. See Goitre.
nbance of, ii. 719.
dixeases of, ii. 719.
eniargement of, ii. 720.
extirpation of, Hi. 719.
functions of, ii. 719.
inflamuation ol', ii. 720.
Tinen circinata, ii. 127. See Tinea Trichopliytina Corparis.
decalvans, ii. 99.
fuvesa, ii. 12.1.
kerion, ii. 129.
tonsurans, ij. 128.
trichophytina, ii. 126.
cajitis, ii. 128. eorporis, ii. 127.
Tongue, ii. 620.
absence of, ii. 946.
acute inflammation of, ii. 989.
amputation of, ii. 946.
billd, ii. 947.
eysts of, ii. 9.16.
defeets of, ii. 935. 946.
dinenses of, ii. 088 .
hypertropliy of, ii. 916.
new growths apon, ii. 996.
rash of ii. 092.
tumors of, ii. 946. 990.
ulieration of, ii. 681, 990.
Tonsillitis, ii, 44].
neute, ii. 412. eomplications of, ii. 450.
course of, ii. 450 .
dingnosis of, ii. 453.
etiology of, ii. 443 .
lacunar, ii. 447.
parenelymatous, ii. 448.
pathology of, ii. 452.
prevention of, ii. 114.
symptoms of, ii. 445, 454.
treatment of, ii. 456. varietics of, ii. 445.
chronic, ii. 461.
varieties of, ii. 441.
Toasils, amatomy of, ii. 437.

Tonsils, arteries of, il. 410. cinronie eniargemont of, $i i$. 461).
causer of, 3i. 46]. diugnosia of, li. 468. loeal treatment in, $i 1$. 471.
nightimare in, if. 464. pathology of, ii. 4112. prognosis in, ii. 440. aymptoms of, ii. til. treatiment of, ii. 470.
diseases of, 11. 437.
functions of, ii .410.
hypertruphy of, II, 401.
Torticollis, ili. 079-985.
Tracheotony, ii. 515, 5:\%9.
anesthetlea in, Ii, 518.
choice of operntions in, il . 519, 575.
complications of. 11. 510).
emplyseman after, Ii. 562.
erysipelatafter, il. 561.
general remarky on, ii. 539.
hemorrhage from, il. 560. socondary, after, ii. 561.
instramonts required for, i3. 5.15.
operations for, ii. 540, 550.
prognosis after, ii, 54.
rapid, ii. 566.
statiaties of, ii. 544, 545.
symptoms hadicuting, ii. 540, 5 t3.
Trachcotony-tube, ii. 5.10, 543, 547.
care of, ii. 557.
change of, if. 55%.
removal of, li, 558, 503.
Trephining, avoillance of sinuses in, iv. 758 .
dungers of, iv. $758,7100$.
election of site for, iv. 758.
hemorriage in, iv. tis.
middle meningeal artery in, iv. 758.
place for, iv. 758.
process of, iv. 754.
sinuses in, iv. 756, 758.
spimal, iv. 785.
Tricuspid inadecuacy, ii. 815, 833.
causes of, ii, 833 .
clinical history of, ii . 835.
diagnosis of, ii, 834.
foetnl, ii. $8: \% 4$.
pathological causes of, ii, 833.
post-mortem appent-
ances ulter, ii. SS.
signs of, ii. 83.4, N35.
treatment of ii. 835.
valve, abnormality of, ii . 756.
stenosis of, ii. 756 , 815.
thickening of, ii. $8:$
Tubercular meningitis. See Meningitis.
Tuberculosis, i. 164-185.
neute, i. 168, 179.
bacillus of, i. 165.

Tuberculosis, bueiliux of, its on. trance into the organiza. tion, i. 168, 164, 170.
bronchi in, I. 178.
vansea of, f. 166.
constitutional predisposi. tlun to, I. 106.
hereditary transmission of, f. $166,167$.
hyglene of, I. 182, 183.
its lientity with phthisis, \&. 671 .
Ite relution to serofula, f. 142-118.
miliary, i. 179.
of intestinc, f.176.
of joints, 1. 173.
of larynx, i. 1 it.
of lungs, 1. 168, 180.
of lymphatio glands, i. 177.
of pharynx, i. 174.
of pleura, 1. 173.
of spleen, 1. 175, 941.
prodisposition to, I. 166, 169.
prevention of, i. 182, 183.
symptomatology of, 1. 177.
treatiment of, 1. 182, 184, 183.

Tumors, eureinomatous, of jaw, ii. 1027, 1031.
eavernons vascular, il. 107.
cystic, ii. 339.
dermoid, of pharynx, if. 371.
intracranial, jv. 551.
of juw, cartiluginous, ii . 1026.
fibromatuos, ii. 1025. osseous, ii. 1021^{16}. sarcomatous, ii. 1026.
of larynx, ii. 505. dingnosis in, ii. 510. etiology of, ii. 507.
of nose. See Nose.
Typhoid fever. See Eateric Fever.
Typhomalaria, i. 842.
Typhus fever, i. 497,408.
causes of, i. 497, 148.
diagnosis of, i. 499.
pathology of, i. 498.
prognosis of, i. 501.
symptoms of, i. 498.
treatment of, i. 498, 502.

U.

Ulcers, ii. 24, 26, 28=31.
l'mbilicus, diseases of, iii. 683.

Upier extremity nmputations, iii. 1317.

Urethra, mnlformations of, iii. 633.

Urethral caleali, iii. 596, 632.
Urethritis, iii. 7106.
Urinary diatheses, ii. 293.
Urine, incontinence of, iii. 591.
retention of, iii. 674.
Urticaria, ii. 33-36.
Uterus, discases of, iii. 711.
malformed, iii. 743.

V.

Vaccination, 1. 713, 719.
dangerm of, 1. 7.17, 751.
methods of, 1. 749.
virus of, i. 747.
V̈uginu, Ilisenses of, (1i, 711.
Vnricullı, i. 75.1-7166.
Valvuhar changes from endocarditis, 1i. 77:1.
disease, amatomical fenturea of, 11.815 .
aortic, ll. 836 . Nee Aortio Valvalar Die ense.
concurrent affections ln, ii. 816.
etlology of, ii, 816.
mitral, ii. 817. Sie Nitral Inadequacy and Mitral St nortw. patiologs of, li, 81b.
tricuspid, il. 833. S'ee Tricuspid Inmie. quacy.
Variola, 1. 722.
bacteria of, 1. 724.
cnuses of, i. 723.
complications of,
733, 736.
confluent, 1. 729,
contagion of, 1.7
diagnosis of, i. 7
foetnl, i. 22s, 7
hemorrhugic, 少7 732.
Juenbution of, 1.70
inoculation ot, $1=\mathbf{T 3}, 74$
modiffed, i. 727, 729, 74
jathology of, p 724.
prognosis in, 18 736. ©
prophylnxis ay inst\$712.
second attacks of, 72 .
sequelse of, i. 733.
stuges of, i. 726-731.
symptoms of, i. 726.
trentinent of, i. 739.
types of. i. 720.
Varioloid, i. 227, 729, 732.
Vault of pharynx, adenoid growtis of, ii. 18.t.
fracture of, iv. 762.
Vosical ealculi, iii. 596.
Vulva, diseases of, iii. 711 .

W.

Weaning, j. 270.
diet after, i. 337.
Wet-nurses, i. $3: 30$.
Worms. Nee Ascarides, Para-
sites, Tape-worm, ete.
Wounds, iii. 857, 468.
after-treatmont of, iii. 883.
amputation for, iii. 869.
asepuis for, iii. 841.
bleerling in, iii, 869.
contusel, iii. 857, 884.
drainage of, iii. 879, 886, 859.
dressing of, iii, 843 .
fever in, iii. 869.
healing in, iii. $572,874$.
hemorrhuge in, iii. 876-
870, 88\%.

Wounds, incised, iii. 857. \quad Yellow fever, causation of, i. \mid Yellow fever, pathology of, i. incernted, iii. 857, 884. peisoned, iii. 858, 890, 898. punctured, iii. 857, 883.

Y.

Yellow fever, 1. 853.
as a children's diseasc, i. 853.
black vomit in, i. 867.
blood in, i. 865 .
864.
prognosis in, i, 872.
prophylaxis of, i. 875 .
quarantine in, i, 875.
stages of, i. 863.
symptums of, i. 865 .
temperature in, i. 865, 866.
transmission of, i. 856, 860, 863.
treatment of, i. 872.
vomiting of, i. 866, 867.

THE END.
logy of, 1.
372.
i. 875. .875.
865.
, i. 865,
i. 856,860 ,
872.

366, 867.

[^0]: ${ }^{1}$ Sehwartze, Pathological Anatomy of the Ear, p. 17.

[^1]: ${ }^{1}$ Sexton and Pinkerton.

[^2]:

[^3]: ${ }^{1}$ See Schwartze, Chirurgischer Krunkheiten des Ohres, aud Samuel Sexton, M.D., Diseases of the Ear, William Wood \& Co., 1888.

[^4]: ${ }^{1}$ Made by J. A. Maloney, Washington, D.C.

[^5]: ${ }^{1}$ Arehiv für Ohrenheilkunde, 1887, Bd. xxv. i). 46.
 ${ }^{2}$ Ibid., 1887, Bd. xxv. p. 237.

[^6]: ${ }^{1}$ Lucae, 1882.

[^7]: ${ }^{1}$ Arehiv für Ohrenheilkunde, Bd. xviii. p. 305; ibid., Bd, xx. p. 209.
 ${ }^{2}$ Deutsche Med. Wochensehr., 1884, No. 6.

[^8]: ${ }^{1}$ Dr. C. J. Blake, of Boston, found that in eight thousand seven hundred and fifteen cases of ear-disease two thousand one hundred and seventy-five, or twenty-five per cent., were children under fourteen years of age, all of them pupils in the public sehools.

[^9]: Vol. IV.-4

[^10]: ${ }^{1}$ Haudbuch der Kinderkrankheiten, C. Gerhardt, Tübingen, 1882.
 ${ }^{2}$ Traité pratique des Mahadies des Yeux chez les Enfants, I'uris, 1887.

[^11]: ${ }^{1}$ Die Behaidlung der häufigsten und wiehtigsten Augenkrankheiten, Wien, 1889.
 ${ }^{2}$ Medical News, February 8, 1890.

[^12]: ${ }^{1}$ Berlin. Klin. Wochenschrift, 1882, xix.
 ${ }^{2}$ Recueil d'Ophtalmologie, November, 1887, p. 674.
 ${ }^{3}$ University Medical Magazine, March, 1889.

[^13]: ${ }^{1}$ Bull. et Mém. de la Soe. Franç. d'Opht., P'uis, 1886, iv. 88-91.
 ${ }^{2}$ Ibid.
 ${ }^{3}$ Archives d'Ophtalmologie, May-June, 1889.

[^14]: ${ }^{1}$ Tratactions of the American Ophthalmohogical Society, 1887.
 ${ }^{2}$ Transations of the Ophthalmologien Soelety of the United Kingdom, viii. 41.
 ${ }^{3}$ Ibid.

[^15]: ${ }^{1}$ Transuctions of the Ophthulmological Society of the United Kingdom, viii. 41.
 ${ }^{2}$ Vierteljahrsehrift für Dermutologie, Wien, 1884, xi. 117-119.
 ${ }^{3}$ Medical and Surgical Reporter, Mareh 15, 1890.

[^16]: ${ }^{1}$ Syphilis und Auge, Wiesbuden, 1889.
 ${ }^{2}$ British Medicul Journul, 1863 ; ibid., 1885, ii. 62.
 ${ }^{3}$ Edinburgh Medienl Journal, September, 1888.
 ${ }^{4}$ ILard Chanere of the Eyelids and Conjunctivn, Cincinnati, 1886.
 ${ }^{5}$ Mémoires de la Nociété Française d'Ophtalmologie.
 ${ }^{6}$ Ophthalmological Hospital Reports, ii. 258-283.
 ${ }^{7}$ See also Burlow, quoted by Alexunder, loc. cit.

[^17]: ${ }^{1}$ Transactions of the American Ophthalmologieal Society, 1886.
 ${ }^{2}$ Disenses of the Skin, $2 d{ }^{1}$.
 ${ }^{3}$ Vierteljuhrschrift f. Derman:' M. Syphilis, 1888.
 *Transuctions of the American Ophthulmologien Society, 1885.
 ${ }^{3}$ lhid.

[^18]: ${ }^{1}$ Unpublished Imagural Dissertation, "Painful Tumors, with Special Reference to Neuromns," Irize Thesis, University of Pemsylvinia, 1881.
 ${ }^{2}$ British Medical Joumal, 1870, ii. 706.
 ${ }^{3}$ Anmales d'Oculistique, May and June, 1889.

[^19]: ${ }^{1}$ Klin. Monatsh, f. Augenheilkunde, Februnry, 1888.
 ${ }^{2}$ Dent. Med. Zeitg., No. 15, 1888, and Centralblatt f. prakt. Augenheilkunde, February, 1888.
 ${ }^{3}$ Nervous Disenses, 2d ed., 1885.
 ${ }^{4}$ A Manual of Discases of the Nervous System, 1888.
 ${ }^{5}$ Transactions of the County Medieal Society of Philadelphia, 1888.

[^20]: ${ }^{1}$ Hand-Book of Ophthalmolos., 1878.
 ${ }^{2}$ Klin. Monatshl., April, 188:, quoted by Swanzy.
 ${ }^{3}$ British Medical Journal, 1882.

[^21]: ${ }^{1}$ Czermak, Wien. Med. Wochenschr., 1888.
 ${ }^{2}$ University Medical Magazine, January, 1890.

[^22]: ${ }^{1}$ Prag. Zeitschr. f. Heilkunde, 1381-2, ii. 429.
 ${ }^{2}$ Ophthalmological Society, Heidelberg, 1881 ; see Archives of Ophthalmology, vol. xvi.
 ${ }^{3}$ Rev. Clin. d'Ocul., November 5, 1886.
 ${ }^{4}$ Centralbl. f. prakt. Augenheilkunde, January, 1888.
 ${ }^{5}$ University Medical Magazine, March, 1889. Since writing this I have learned that the original color has returned to the eyelashes.

[^23]: ${ }^{1}$ Transactions of the Ophthalmological Society of the United Kingdom, London, 1883 , iii. 283-287.
 ${ }^{2}$ See also a paper by O. Bull, Archives of Ophthalmology, 1888, vol. xvii., on "Synchronous Movements of the Upper Lid and Maxilla."
 ${ }^{3}$ Ophthalmological Hospital Reports, 1874-76, vol. viii.

 * Klinisehe Darstellungen der Krankheiten und Bildungsfehler des menschlichen Auges, Berlin, 1838.

[^24]: ${ }^{1}$ Quoted by Manz, Graefe u. Saemisch, Mandbuch der gesammen Augenheilkunde, vol. ii.
 ${ }^{2}$ Neurolog. Centralbl., 1885, No. 13.
 ${ }^{3}$ Graefe u. Suemisch, Handbuch der gesammten Augenheilkunde, vol. ii.

[^25]: Revue Générale a'Ophtalmologie, December, 1888.
 s Du jolobome e 'ngénitul des Puupières, Lyyons, 1888.
 ${ }^{3}$ Arenives of Ophthulmology, vol. xv.

 - Annales d'Oculistique, January-February, 1889.
 ${ }^{B}$ Archiv f. Augenheilzunde, xv. 2.

[^26]: ${ }^{1}$ Ophthalmie Science and Practice, 1884.

[^27]: ${ }^{1}$ Archives of Ophthalmology, 1879, viii. 370.
 ${ }^{2}$ See, also, Centrulblatt f. prukt. Augenheilkunde, 1800.
 ${ }^{3}$ Trunsactions of the Ameriean Ophthalmologic. 1 Soeiety, 1884, vol. iii.
 ${ }^{4}$ Klin. Momatsbl., xiii. 302 ; also Ophthmonogienl Hospital Reports, vol. viii.
 ${ }^{5}$ Transuctions of the Americm Ophthalmological Society, 1887.

[^28]: ${ }^{1}$ British Medical Jourmal, 1882, ii. 633.
 ${ }^{2}$ Anu. di Ottulm., vol. xvi., 5-6, p. 501.
 ${ }^{3}$ Centralbast f. prakt. Augenheilkunde, December, 1880.

 - Ophthnlmic Review, 1889.
 ${ }^{5}$ Transactions of the Pathological Soeiety of Philadelphia, xii. 238.
 6 Transactions of the Ophthalmologieal Socicty of the United Kingdom, 1882, vol. ii.
 ' Arehives d'Ophtalmologie, 1880, p. 432.
 ${ }^{8}$ Wiener Med. Presse, 1886, No. 7.
 ${ }^{9}$ Epiphora, strit tly spenking, is mu excessive secretion of tears, while stillicidium lachrymarum is an rvertlow from obstruction; but, us Mr. Nettleship remarks, no useful purpose is served b_{5} keepiag the two names.

[^29]: ${ }^{1}$ Berlin. Klin. Woehensebr., No. 24, 1880
 ${ }^{2}$ Jahresber. d. Augenheil.-Anstnit in Mugdeburg, Nugel's Juluresbericht, 1885.
 ${ }^{3}$ Transuctions of the O_{p} bthalmologienl Soclety, 1874.
 ${ }^{4}$ Bull. et Mén. de ln Soc. de Chil. Paris, ix. 180.
 ${ }^{5}$ Wien. Med. Wochenschr., No 12, 1888; Medicul News, October 13, 1888.

[^30]: ${ }^{1}$ American Journal of the Medical Sciences, 1880.
 ${ }^{2}$ Trunsactions of the American Ophthalmologienl Society, ii. 587.
 ${ }^{3}$ Medical News, February 6, 1886.

 - Archiv f. Augenheilkunde, xvi. 381.
 ${ }^{5}$ Centralblatt f. prakt. Augenheilkunde, 1886, S. 222.
 ${ }^{6}$ Medical Record, 1886, xxix.
 ${ }^{7}$ Hospitalstid, Nos. 21 and 22, 1865,-ubstract, Archives of Ophthalmology, vol. xv.

[^31]: ${ }^{1}$ Centrulblatt f. prakt. Augenheilkunde, supplement, 1887.

[^32]: ' IIygeia, 18

[^33]: ${ }^{1}$ Hygeia, 1887, abst. from Centralblatt f. prakt. Augenheilkunde, July, 1887.

[^34]: ${ }^{1}$ Klin. Monatsbl. f. Augenheilkunde, July, 1887.
 ${ }^{*}$ Die Ursachen und die V'erhütung der Blindheit, p. 118.
 ${ }^{3}$ Medical Chronicle, 1888.
 ${ }^{4}$ Hygeia, 1884, p. 404.
 ${ }^{6}$ Medical Record, July 24, 1886.
 6 New York Medical Journal, October 25, 1885.
 ${ }^{7}$ Archiv f. Gynäkol., xxii. 329.

[^35]: ${ }^{1}$ Annales d'Ocalistique, 1881, p. 63.

[^36]: ${ }^{1}$ See Lancet, July 20, 1889.
 ${ }^{2}$ New York Medical Record, August 20, 1887.

[^37]: ${ }^{1}$ Archiv f. Gynäkol., 1888, xxxi. 2, S. 240.
 ${ }^{2}$ For further statistics in regard to the comparative value of various forms of prevent-
 e treatment, see Peuch, Arehives de Tocologie, des Maludies des Femmes et des Enfants
 ${ }^{2}$ For further statistics in regard to the comparative value of various forms of prevent-
 ive treatment, see Peuch, Arehives de Tocologic, des Maludies des Femmes et des Enfants nouveau-nes, Février, 1890.
 ${ }^{3}$ Wien. Med. Wochenschr., 1885, Nos. 30, 31, 32.

[^38]: ${ }^{1}$ Eritish Median Journal, February 4, 1888.

[^39]: ${ }^{\prime}$ Klin. Monatsbl. f. Augenheilkunde, February, 1889.

[^40]: ' Medieal Record, May 21, 1887.
 ${ }^{2}$ Inaugural Dissertation, St. Petersburg, quoted in Medical Chronicle, June, 1888.

 * In the event of an epidemic of purulent or moco-purulent ophthalmia in a school, workhouse, or similar institution, scrupulous uttention to isolation of the affected inmates, strict cleanliness, and especially the use of separate utensils, towels, ete., are necessary. Touehing the proper regulations under such circumstances, the reader is referred to a paper on "The Ophthalmic Isolation School at Hanwell," by Sydncy Stepheuson, Lancet, April 5, 1890.
 ${ }^{4}$ Archives of Ophthalmology and Otology, ii. 54.

[^41]: ${ }^{1}$ Grafe u. Saemisch, Handbuch der gesammten Augenheilkunde.
 ${ }^{2}$ Hand-Book of Disenses of the Eye, 2d edition.
 ${ }^{3}$ Diseases of the Eye, translated by F. Fergus, M.B.
 4 Fid., 2d edition.
 ${ }^{5}$ Wratsch, No. 7, Abst. in Archives of Ophthalmology, December, 1888.
 ${ }^{6}$ Berlin. Klin. Woehenschrift, No. 22, 1888.
 ${ }^{7}$ Centralblatt f. prakt. Augenheilkunde, September, It. ${ }^{27}$.

[^42]: ${ }^{1}$ Therapeutische Monatsheft, June and July, 1889.

[^43]: ${ }^{1}$ Medical Record, March 24, 1888.
 ${ }^{2}$ Polyclinic, January, 1888.

[^44]: ${ }^{1}$ See, espeeially, observations of Vossius, loe. cit.
 ${ }^{2}$ Medieal Record, Oetober 6, 1888.
 ${ }^{3}$ New York Medical Journal, Oetober 6, 1888.

 - Archives of Ophthalmology, September, 1888.

[^45]: ' Diseases of the Exe, Eilinhurgh nod Lombon, 1889.
 ${ }^{2}$ Nordisk Ophhatmologisk Tidskivit, No. 1; Ameriemn Jourmal of the Medien sciences, siptember, 1 s8s.
 ${ }^{3}$ Arehives of Ophthatmohngr, x. 416.

 - Coutralblatt f. prakt. Augenheilkunde, Mareh, 1888.
 ${ }^{s}$ Lancet, July 14, 1888.

[^46]: ${ }^{1}$ This disease is so closely allied to phlyetenular kematio that further disclassion of it will be found under Diseases of the Cornea.

[^47]: ${ }^{1}$ Inaug. Dissert, Basel, 1887.

[^48]: ${ }^{1}$ Pepper's System of Medicine, v. 216, article on "Catalepsy," by Charles K. Mills, M.D.

 Vol. IV.-7

[^49]: ${ }^{2}$ Klin. Monatsbl. f. Augenheilkunde, November, 1881.
 ${ }^{3}$ Bull. de la Clin. Nat. Ophth., vol. vi., No. 2, p. 57.
 4 Ibid.
 ${ }^{5}$ Ihid.

 - Proceedings of the Philadelphia County Medical Society, 1888.

[^50]: ${ }^{1}$ Abstract in Arehives of Ophthahnology, 1887.
 ${ }^{2}$ Münch. Med. Wochenschr., 1886, Nos. 13 and 14.
 ${ }^{3}$ Archiv f. Ophth., Bd. xii. Abth. ii. p. 250.
 ${ }^{4}$ Arehiv f. Psyeh. II. Nervenk., Bd. ii. S. 389 ; Bd. iii. S. 162.
 ${ }^{3}$ Berlin. Klin. Wochenschr., 1883, No. 6, S. 90.

 - Archives of Ophthalmology, 1886, vol. xv. p. 382.

[^51]: ${ }^{1}$ Transactions of the Ophthalanological Society of the United Kingdom, 1886.
 ${ }^{2}$ Trunsactions of the l'athological Society of Philadelphia, vol. xiii.

[^52]: ${ }^{1}$ Abst. in Archives of Ophthalmology, 1886, p. ${ }^{120} 0$
 ${ }^{2}$ Klin. Monatsbl. f. Augenheilkunde, vol. xxiii. p. 329.
 ${ }^{3}$ Americun Journal of Ophthalmology, June, 1887.
 ${ }^{4}$ Aunual of the Universul Medical Sciences, 1889, vol, iv.
 ${ }^{5}$ American Journnl of Ophtmilmology, December, 1887.

[^53]: ${ }^{1}$ New York Medical Record, August 20, 1887.
 ${ }^{2}$ Klin. Monatsbl. f. Augenheilkunde, October, 1887.
 ${ }^{3}$ Transactions of the American Ophthalmological Society, 1873-1879, vol. ii. p. 386.
 4 Archives of Ophthalmology, 1883, p. 523.
 ${ }^{5}$ Trans ictions of the Pathological Society of Philadelphia, 1886.

[^54]: ${ }^{1}$ Abst. in Archives of Ophthalmology, 1884, p. 484.
 ${ }^{2}$ Centralblatt f. prakt. Augenheilkunde, June, 1879.
 ${ }^{3}$ Ibid., April, 1888.
 ${ }^{4}$ For syphilitic diseases of the conjunctiva, sre Diseases of the Eyelids, page 57.
 ${ }^{5}$ Centrulblatt f. prakt. Augenheilkunde, February, 1887.

[^55]: ${ }^{1}$ Recueil d’Ophtalmologie, October, 1888, p. 631.
 ${ }^{2}$ Annales d'Oculistique, tom. xe. pp. 14, 176 ; tom. xci. pp. 44, 209.

[^56]: ${ }^{1}$ Archiv f. Ophth., vi. 2, 135.

[^57]: ${ }^{1}$ Recueil d'Ophtalmolugie, 1887, pp. 205-210.

[^58]: ${ }^{1}$ Journal d'Cphtalmologie, tome i. p. 606.
 ${ }^{2}$ University Medical Magazine, October, 1888.
 ${ }^{3}$ Ophthalmic Review, 1888.
 4 Editorial in Medical News, February 23, 1889.

 - University Medical Magazine, September, 1889.

[^59]: ${ }^{1}$ Ophthalmic Surgery, by R. B. Carter and W. A. Frost.

[^60]: ${ }^{1}$ Oplathalmic Hospital Reports, vol. i.
 ${ }^{2}$ Centralblatt f. prakt. Augenheilkunde, July, 1888.
 ${ }^{8}$ Diseases of the Eye, 1887, p. 142.
 4 These figures are taken from Hirschberg, loc. eit.
 ${ }^{6}$ Progrès Méd., May 14, 1887 ; Centralblatt, May, 1887.
 ${ }^{6}$ Soe. franc. d'Ophth., 1887, abst. in Arehives of Ophthalmology, 1888, vol. xvii.
 ${ }^{7}$ Ibid.
 ${ }^{8}$ Ibid.
 ${ }^{\text {o }}$ Reeueil d'Ophtalmologie, September, 1887.

[^61]: ${ }^{1}$ Trunsactions of the Ophthalmological Sociecy of the United Kingdom, vel. viii.
 ${ }^{2}$ Ophthalmic Review, 1885 , vol. iv. p. 321.
 ${ }^{8}$ Quoted by Power, loc. cit.

 - American Journal of the Medical Sciences, December, 1888.
 ${ }^{5}$ Bull. d'Ocul., vol. x., Nos. 10 and 11; also Archives of Ophthalmology, December,
 Vol. IV.-8

[^62]: ${ }^{1}$ Royal London Hospital Reports, January, 1887.
 ${ }^{2}$ Revue générule d'Ophtulnologie, A pril, 1889.
 ${ }^{3}$ Archiv f. Augenheilkunde, xvii. 4, 188 i.

[^63]: PROPERTY OF $\begin{aligned} & 1 \text { Transactions of the American Ophthalmological Society, } 1889 . \\ & \text { Centrablat fr prakt. Augenhcilkunde, } 1888 .\end{aligned}$
 WESTERN LNIVERSITY MEDICAL S Suidel

[^64]: ${ }^{1}$ This term is often, as Horner observes, incorrectly used as synonymous with phlyctenular keratitis.
 ${ }^{2}$ Transactions of the American Ophthalmological Society, 1874.
 ${ }^{8}$ University Medical Magnzine, January, 1889.

[^65]: ${ }^{1}$ Annales d'Oculistique, July and August, 1888.
 ${ }^{2}$ Medienl News, April 4, 1885.
 ${ }^{8}$ Quoted by Hansell, loc. cit.

 - Ophthalmie Review, 1887, p. 5.
 ${ }^{5}$ Essuys on the Morbid Anatomy of the Human Eye, Edinburgh, 1808.
 ${ }^{6}$ Inaug. Diss., Königsberg, 1889, Schmidt's Jabrbücher, No. 10, 1889.

[^66]: ${ }^{1}$ Anomalies de Développement et Maladies congénitales du Globe de l'Eil, Paris, 1886.
 ${ }^{2}$ Wallenberg, loc. cit.
 ${ }^{3}$ Beitrag zur Lehre vom Staphyloma Cornex Congenitum, Inaug. Dissert., Königsberg, 1887.

[^67]: ${ }^{1}$ London Ophthalmic Hospital Reports, vol. xi. p. 429.
 ${ }^{2}$ Severnl other cases have since beeti reported : see Ann. Uni ;i. Med. Sci., 1889.
 ${ }^{3}$ Studied by Hocquart, Arch. d'Oph., vol. i. p. 289.

[^68]: ${ }^{1}$ Traité complet, tome ii. p. 381.
 ${ }^{2}$ Royal London Ophthalmic Hospital Reports, July, 1888.
 ${ }^{3}$ Graefe's Arehiv, Band xxxiv., Abth. 4.

[^69]: ${ }^{1}$ Trans. Amer. Ophthalmol. Soc., reported by Dr. W. S. Little, 1888.

[^70]: ${ }^{1}$ It hardly needs mention that the lens may also be dislocated by intraocular growths pushing the lens out of position or rupturing its ligament, or by such changes in the globe as staphyloma, retro-ocular tumor, buphthalmos, ete., that also rupture the zonula.

[^71]: ${ }^{1}$ See Archives of Ophthalmology, vol. xix. No. 1, 1890.

[^72]: ${ }^{1}$ Especially to Clinical Illustrations of Reflex Ocular Neuroses, by G. M. Gould, M.D., in The American Journnl of the Medical Sciences, January, 1890.

[^73]: ${ }^{1}$ Arlt on Injuries of the Eye considered Medico-Legally. Translated by C. S. Turnbull, M.D., Philadelphin, 1878.

[^74]: ${ }^{1}$ In all ophthahnoseopic examinations, the writer has endeave sd to make it an inflexthle rule to obtain in association as many of the ophthatmic conditions as possible; and in numerous instances he has been rewarded by the discovery of an . Alar symptom that has proved of immense collateral advantuge.
 ${ }^{2}$ Archiv für Ophthalmologic, xxviii. 1, 139.
 ${ }^{3}$ Text-Book of Ophthalmoscopy, p. 98.

[^75]: ${ }^{1}$ Text-Book of Ophthalmoseopy, Part I., 1886, Plate II. Fig. 5.
 ${ }^{2}$ Beitraige zur Pathologie des Auges, 1856.
 s Ibid.

 - Athas of Ophthalmoscopy, Plate XII. Fig. 3.

[^76]: ${ }^{1}$ Einstellungen des dioptrischen Apparates, S. 31.
 ${ }^{2}$ Lelirbuch der Ophthaln:oseopie, S. 258.
 ${ }^{3}$ Text-Book of Ophthalmoscopy, p. 100.

 - Archiv f. Path. Anat., xiiil. $97 .{ }^{6}$ Hidid, xiii. 357.
 ${ }^{6}$ Klinische Monatsblatter für Augenheilkunde, 1874, S. 186.
 ${ }^{7}$ Hand-Atlus, Tuf. VI. Fig. 36.
 ${ }^{8}$ Athas of Ophthalmoseopy, 1870, Plate XII. Figs. 1 and 2.
 ${ }^{9}$ A IHand-Book of Ophthalmic Science and Practice, 1884 (Amer. edit.), p. 201. Vol. IV. -11

[^77]: ${ }^{1}$ A Text-Book on Discases of the Fiye, 1800, Plate III. Fig. 2.
 ${ }^{2}$ Lehrbuch der Ophthalmoserpie, 1868, s. 2fif.
 ${ }^{3}$ Virchow's Archiv, x. 267.

[^78]: ${ }^{1}$ A Text-Book of Ophthalenoscops, Part I., 1886, p. 93.
 ${ }^{2}$ Transations of the Ophthalmological Socicty of the United Kingdom, 1884, p. 357.
 ${ }^{3}$ Athas d'Ophtalmoseopie, Ilate VIl. Fig. 4.
 ${ }^{4}$ Archiv für Augenheilkunde, xxi. 29.
 ${ }^{5}$ Archives of Ophthalmology, viii. 501.
 ${ }^{6}$ Transactions of the Ameriean Ophthalmological Society, iv. 558.
 ${ }^{7}$ Archives of Ophthalmology, xi. 461.
 ${ }^{8}$ Text-Book of Ophthalmoseopy, p. 95.
 ${ }^{9}$ Arehiv für Augenheilkunde, xix., Tuf. IV.
 ${ }^{10}$ Ibid., March, 1888.

[^79]: 1 Transactions of the A meriean Ophthalmological Socicty, 1881.
 ${ }^{2}$ Archives d'Ophtalmologie, iii. 502
 ${ }^{3}$ Transactions of the Ophthalmological Society of the United Kingdom, 1884, p. 15%.

 - Gesammenten Scluriften.
 ${ }^{5}$ Klinische Monatsblatter, 1863, S. 260.
 ${ }^{6}$ Proceedings of the P'hiladelphia County Medieal Society, is. 54.
 ${ }^{\top}$ Archives of Ophthalmology nud Otology, iii. 70.
 ${ }^{8}$ Klinische Monatsblütter, 1863, S. 259.
 ${ }^{9}$ Transactions of the Ameriean Ophthalmological Society, 1882.
 ${ }^{10}$ Gracfe und Saemiseh's Mandbuch, 1880, ii.
 ${ }^{11}$ Recueil d'Ophtulnologie, September, 1888.

[^80]: ${ }^{1}$ Ophthal. Beobachtungen, 1867, S. 260.
 ${ }^{2}$ Archiv für Ophthalmologie, i. 403.
 ${ }^{3}$ Transactions of the Ophthalmological Society of the United Kingdom, ii. 55.
 ${ }^{4}$ 1bid., ii. $57 . \quad{ }^{6}$ Ibid., 1883, p. 101.
 ${ }^{6}$ Trunsictions of the Americun Ophthulnological Society, 1888, p. 117.
 ${ }^{7}$ Royal London Ophthalmic Hospital Reports, Jantary, 1888.
 ${ }^{8}$ Trinnactions of the Ameriem Ophthalmolugienl S ciety, iv. 511.

[^81]: ${ }^{1}$ Transactions of the Pathological Society, 1871, p. 222, and A Treatise on the Diseases of the Eye, 1883 (Amer. ed.), p. 503.
 ${ }^{2}$ Lehrbuch der Ophthalmoseopie, 1868, s. 446.

[^82]: ${ }^{1}$ Arehiv für 0
 ${ }^{2}$ On Wounds tion in this cuse, it writer's care some ti for damages was sth revealed a large eh jective symptoms. result of bringing ir
 ${ }^{3}$ Transuctions 0

[^83]: ${ }^{1}$ Arehiv für O_{p} hthalmologie, i. 2, 154.
 ${ }^{2}$ On Wounds and Injuries of the Eye, 1859, p. 233. In reference to the legal ques tion in this case, it may be of interest to note, in passing, an instance which eame under the writer's eare some time ago, where n fortunate (or possibly unfortunate) attorney in a suit for damages was struck in the left eyo by the fist of the defendant. Careful examination revealed a large ehoroidal break in the maeular region, with all the eharneteristie subjective symptoms. Medieal testimony, expressed very briefly and to the point, had the result of bringing in the verdict of " mayk.om," with the necompuaying penalty.
 ${ }^{3}$ Transuctions of the American Ophthalmological Society, 1871, p. 128.

[^84]: ${ }^{1}$ Sen N wes, a Text-Book on Diseasts of the Eye, 1890, p. 577, on the same sulject.
 ${ }^{2}$ Transaetions of the Ophthalmological Society of the United Kinglon, v. 11.
 ${ }^{3}$ Ibid., vi. 38.
 'Quoted by Noyes, a Text-Booh un Disenses of the Eye, 1890, p. 5 is.

[^85]: ${ }^{1}$ Die Netzhautablönng, Wiesbaden, 1887.
 ${ }^{2}$ Annales d'Oenlistique, Mareh, $1888 . \quad{ }^{3}$ Ibid.

 * A Text-Book on Discases of the Eye, 1890, p. 586.
 ${ }^{5}$ Archiv für Ophthalmologie, iv. 2, 226 .
 ${ }^{6} 1$ bid., xi. 1, 191.
 ${ }^{7}$ A Treatise on Diseases of the Eye, 1881, p. 350.
 ${ }^{8}$ Berlin, Graefe und Saemisch, vi. 588.

[^86]: ${ }^{1}$ IIand-Book of Ophthulmology, 1878, p. 484.
 ${ }^{2}$ Archives of Ophthalmology und Otology, ii. 173.
 ${ }^{3}$ Tramsactions of the Americun Ophthalmologicnl Soeiety, 1888, p. 68.

 * Zeitschrift für Schulgesundhciteptlege, No. 4, 1889.
 ${ }^{5}$ Westnik Ophthałmologii, May, 1889.
 6 Moniteur d'Oputalmologie, Junuary, 1889.

[^87]: ${ }^{1}$ Centralblatt für prakt. Augenheilkunde, iv., 1884.
 ${ }^{2}$ The Lancet, 1880, i. 766.
 ${ }^{3}$ Arehives of Ophthahology, 1881, p. 42.

 - Archiv für Ophthalmologie, xv. 1, 223.

[^88]: ${ }^{1}$ A Treatise on Aınaurosis, 1842, p. 96.
 ${ }^{2}$ Fuchs's (loc. cit.) statisties give but eleven under teu years, and twenty-seven under twenty years of age, out of two hundred and fifty cases.
 ${ }^{3}$ Das Sareom des Uvenl-Tractus, 1882.
 4 Diseases of the Eye, 1889, p. 348.

[^89]: ${ }^{1}$ The fact that II of leuco-sarcoma in a point.
 ${ }^{2}$ Die Intraoculären

[^90]: ${ }^{1}$ Transactions of the American Ophthalmolngical Society, 1889, p. 451. ${ }^{2}$ Archiv für Ophthalmologic, x. 1, 193.
 ${ }^{3}$ Royal London Ophthalmic IIospital Reports, 1888, p. 1.

 * Ayres, Jomrnal of the American Medical Association, December 10, 1887.
 ${ }^{5}$ Loc. cit., March 8, 1890.
 ${ }^{6}$ Lehrbueh der Augenheilkunde, S. 642.

[^91]: ${ }^{1}$ Archiv für Ophthalmologie, xxxiv.
 ${ }^{2}$ Die Krankhaften Geschwülste, ii. 1, 159.
 ${ }^{3}$ Transactions of the Ophthalmological Society of the United Kingdom, 1885, p. 62.

 - Archiv für Ophthalmologie, xvi. 129.

[^92]: ${ }^{1}$ Noyes (A Text-Book on the Disenses of the Eye, 1890, p. 583) saya, "a single ense is given in which the patient survived after the removal of a sceondary tumor."
 ${ }^{2}$ Wells, A Treatise on Diseases of the Eye, 1883, p. 550.
 ${ }^{3}$ Dujardin's report of a case of monocular glioma in which four weeks after the enueleation of the affeeted cye the fellow-eye, which appeared perfectly normal, both externally and ophthalmoscopically, became totally blind, is intereating as showing that the neoplasm had most probably travelled back to the optic nerve of the affected organ, and, upon reach ing the chiasm, had destroyed the related tissues of the sound eye.
 ${ }^{4}$ Transactions of the Ophthalmological Society of the United Kingdom, v. 64.
 ${ }^{6}$ Archives of Ophthalmology and Otology, 1874, p. 241.

[^93]: ${ }^{1}$ Medical Opht
 ${ }^{2}$ Inaug. Diss.,
 ${ }^{3}$ (iraefe und St_{1}

 - Berliner Klin
 ${ }^{5}$ Archiv fiir O_{1}
 "Archiv für Ps
 ${ }^{7}$ Transuctions d Yel. IV.-1:

[^94]: ${ }^{1}$ Medical Ophthalmoseopy, 1882, p. 200.
 ${ }^{2}$ Inaug. Diss., Würzburg, 1878.
 ${ }^{3}$ Graefe und Saemiseh, v. 524.
 ${ }^{4}$ Berliner K linische Wochenschrift, 1868.
 ${ }^{6}$ Archiv für O_{p} hthalmologie, xviii. 207.
 ${ }^{6}$ Archiv für Psychiatrie, ix. 3, 389.
 ${ }^{7}$ Trunsuctions of the Ophthalmological Society of the United Kingdom, 1881, p. 55. Vel. 1V.-12

[^95]: ${ }^{1}$ Loe. cit., iv. 158.
 ${ }^{2}$ Beitraige zur Puthologie des Auges, Plate XXX.
 ${ }^{3}$ Royal London Ophthalmic Hospital Reports, x. 3, 336.

[^96]: ${ }^{1}$ Archiv für Ophthalmologie, xiv.
 ${ }^{2}$ Archiv für Path. Anatomic, x. 159.
 ${ }^{3}$ Medical Ophthalmoscopy, 1882, p. 29.
 ${ }^{4}$ Arehiv für Ophthalmologie, viii. 1, 143.

[^97]: ${ }^{1}$ Chronic endoearditis will be spoken of more fully under "Chronic Bright's 1hisease," to be foum in a suceeding seetion: this has been done not only to kepp the subject-mater together for associated reference, but also beemse it wilt most probably be sought for in this position.
 ${ }^{2}$ Birmingham Medical Leview, Juy, 1880, p. 26.

[^98]: 'A Treatise on :
 ${ }^{2}$ Soe Norris's " Jedicine.
 ${ }^{3}$ Medieal Ophthe
 ${ }^{4}$ Klinische Monu

[^99]: ${ }^{1}$ a Treatise on Amanrosis, 1842, p. 36.
 ${ }^{2}$ See Norris's "Medical Ophthahmseopy" in volume iv. of Pepper's System of Merlicine.

 3 Medical Ophthalmoscopy, 1882, p. 328.
 ${ }^{4}$ Klinische Monutsblatter, 1879, iv. 144.
 ${ }^{5} 1$ bid., 1880 , i. 1.

[^100]: ${ }^{1}$ Trunsactions of the Ophthalmological Society of the United Kingdom, 1881, ${ }^{2}, 51$.
 ${ }^{2}$ Pepper's System of Medicine, vol. iv.
 ${ }^{3}$ Gowers, Centrallb, für d. Med. Wiss., 1875, p. 675.

 - Deutsches Arehiv für Klin. Med., 1877, S. 1.
 ${ }^{5}$ The Lancet, December 7, 1887.
 ${ }^{6}$ See Liebreich, Deutsehe Klinik, 1861, 50, and Beeker, Arehiv für Augenheilkumde und Ohrenheilkunde, i869, i, S. 951.

 TArehives of Ophthalmology and Otology, vol. i. No. 1, p. 341.

[^101]: ${ }^{1}$ Archiv für Ophthalnologie, xxiv. 3, 241.
 ${ }^{2}$ Transactions of the Ophthahoological Society of the United Kingdom, 1882, p. 86.
 ${ }^{3}$ lbid., v. 1 \& 6.
 ${ }^{4}$ Loc. cit., iv. 168.
 ${ }^{5}$ Transactions of the Ophthnlmological Society of the United Kingdom, iii. 106.

[^102]: ${ }^{1}$ Medical Ophthalmoscopy, 1882, p. 123.

[^103]: ' Mrdical News, Junuary 12, 1889.
 ${ }^{2}$ Medienl Ophthalmoseopy, 1882, p. 141.
 ${ }^{3}$ Intracranial Tumors, 1888, p. 64.

 - Archiv für Ophthalmologie, xix. 3.
 ${ }^{5}$ Klinische Monatsblätter, 1874.

[^104]: ${ }^{1}$ Royal London Ophthalmic Hospital Reports, vii, 678.
 ${ }^{2}$ Transactions of the Ophthalmological Society of the United Kingdom, p. 110.
 ${ }^{3}$ Royal London Ophthalmic Hospital Reports, vii. 180.
 ${ }^{4}$ Intraeraninl Tumors, 1888, p. 36.
 ${ }^{5}$ Boston Medical und Surgical Jourma, April 10, 1890.

[^105]: ${ }^{1}$ Archiv für Ophthalmologic, vii. 2, 88.
 ${ }^{2}$ Intracrunial Tumors, 1888, p. 67.
 ${ }^{3}$ Klinische Monatsblätter, 1868, S. 302.
 ${ }^{4}$ Leber, Neuritis Optica, 1887.

[^106]: ${ }^{1}$ Discuses of the Eye, 1889, 1. 301.
 $\left.{ }^{2}\right]$ ntracranial Tumors, 1888, p. 38.
 ${ }^{3}$ Tramsactions of the Ophthalmological Sueiety of the United Kingdom, i. 70.
 ${ }^{4}$ Mbid., i. 95.
 ${ }^{5}$ True as this may be in the main, it is equally certain that enses of double optic neuritis in nssociation with other seemingly foeal symptoms have been recorded where postmortem examination hus failed to reveal ang gross intracranial lesion. Fagge furnishes us with a most instructive example. (See Bramwell, Intruocular Tumors, 1888, p 42.)
 ${ }^{6}$ Transactions of the Ophthatmological Society of the United Kinglem, 1881, p. 82.

[^107]: ${ }^{1}$ Transactions of the Ophthalmological Society of the United Kingdom, 1881, p. 112 et seq.
 ${ }^{2}$ Ibid.
 ${ }^{3}$ For definition of these terms sce page 128 et seq. of vol. ii. of Gowers's Manual of Diseases of the Nervous System, 1888.

 4 Pepper's System of Medicine, v. 117.
 ${ }^{5}$ Edinburgh Medicul Journal, 1879, p. 1073.

[^108]: ${ }^{1}$ Edinburgh Medical Journal, 1877, p. 688.
 ${ }^{2}$ British Medical Journal, 1887, i. 723.
 ${ }^{3}$ Ibid., A pri' $21,1888$.

 - Ibid., A pril .4, 1888.
 ${ }^{5}$ Deutsche Medici- 'sche Wochenschrift, No. 18, 1887.
 ${ }^{6}$ Reference Hand-isook of the Medical Sciences, vol. i:i.
 ${ }^{7}$ Archiv für Ophthalmologie, 1878, ii. 171.
 ${ }^{8}$ A Mnnunl of Diseases of the Nervons System, 1888, p. 497.
 ${ }^{0}$ Archiv fiir Ophthulmologie, xxxiii. 2, S. 225.
 ${ }^{10}$ Journnl of Nervous and Mental Diseases, Jannary, 1889.

[^109]: 'American Jourmal of the Medical Sciences, January, 1884.

[^110]: ${ }^{1}$ Intracraninl Tumors, 1888, p. 45.
 ${ }^{2}$ Medienl Ophthalmoscopy, 1882, p. 150.
 ${ }^{3}$ Medico-Chirurgienl Transactions, 1879, p. 411.

[^111]: ${ }^{1}$ A Clinical Memoir on Certain Diseases of the Eye and Ear consequent on Inherited Syphilis, 1803, 1]. 164.
 ${ }^{2}$ Ste article by Mills, Medieal News, Mardl $3,1888$.
 ${ }^{3}$ Archiv fïl Augrakrankleiten, 1878, s. 357.
 4 See Seguin upon this suhject, Annual of the Universal Medieal Sciences, 1889, ii. 59.
 ${ }^{5}$ See Thermie Ferer, or Sunstroke, by H. C. Wood, Jr., M.D., 1872, p. 102.
 ${ }^{6}$ Ammerican fommal of the Medien Sciences, July, 1879, p. 105.
 7 Medical Oplithalmoseopy, 1882, p. 161.

[^112]: ${ }^{1}$ Medieal Ophthilmoseopy, 1882, p. 168.
 ${ }^{2}$ Extract from the notes of a private patient.
 ${ }^{3}$ This patient writes, "One curious thing, a sort of compensation for the diseomfort of over-sensitiveness, is the vivid bemty of the impression mathe by colors which are rather lame to a bealthy eye. Sometimes, curling up in a certain big chnir after dinuer, and going ofl in a tive minutes' map, my eyes on their flrst opening see in certan pantings on the wall some things which the artist probably nimed to suy, but which do not always show; something in the tirst ghane ont of the window: harmonies of tints, depths and perspectives in the lights and shadows, as if we had enught Nature umawares and oil ghard. Even the first glimpse under such eonditions of the gilt letteri ir on some books on the shelver, some of them pretty shabby, too, affeets one with a positive thrill of pleasure at their beaty."

[^113]: ${ }^{1}$ In this comection, though not exactly akin, it is of extrome interest to note the changes of eolor seen by Dr. S. Weir Mitchelbs patient (quoted in Dr. Edward 1I. Clarke"s untinished essay, "Visions: A Stmdy of False Sight (Pseudopia)," 1878, p. 246), who during a severe illness had a series of "visions." "Bright green" changed to "hrown," and "vivid red" beame "haek," as her general symptoms subsided.
 ${ }^{2}$ Plibladelphia Medical Times, February 5, 1887.
 ${ }^{3}$ Ophthalmie Review, Mareh, 1890. 'Medical Ophthahmosenpy, 1882, p. 172.
 ${ }^{5}$ On page 558 of his "Manual of Disenses of the Nervous System," 1888, the uses these words: "In most cases of choren the ophthahoscopic appearances are those of health. In a few there is optie neuritis, usually slight in degree, just enough to be mequivocal. It passes away when the chorea is over. In only one case have I seen considerable neuritis, comparable to that seen in a case of thmor: the inflammation passed entirely away with the choren. It is probable that the neuritis is related to the eause of the chorea rather than directly to the morbid process in the brain. Many of the patients had considerable hypermetropin, and it is known that this condition disposes to slight neuritic changes in the disks, und may aid other influences in leading to the change."

[^114]: ${ }^{1}$ New York Medicat Joormal, June 23, 1888.
 ${ }^{2}$ Monentary lessening of hypermetropia, reversnl into myopin, und inerenses of myopia, throurh all grodes and amounts of astigmatiom.
 ${ }^{a}$ Roynl London Ophthalmic Mospital Reporta, viii. 181.
 4 Medienl Ophthulmoseopy, 1882, p. 17 I.
 ${ }^{5}$ Edinburgh Medical Jourmal, Mureh, 1888.
 ${ }^{6}$ New Lork Medieal dourme, Aprit 5, 1890.
 ™edical Ophthalmoseopy, 1882, p. 172.
 ${ }^{\text {B }}$ Further on in the text, the nuthor modifes this statement by the following words: "The only devintion from the normal state of the fundus which has seemed to me frequent

[^115]: ${ }^{1}$ Medical Ophthalmoseopy, 1882, p. 173.
 ${ }^{2}$ Lamet, February 17, 1874.
 ${ }^{3}$ Ueber Verituderingen des Augenhintergrundes, 18 -8.
 4 West Riding Asylum Reports, i.
 ${ }^{6}$ On the Use of the Ophthatmoseope, 1871.
 6 Medieal Ophthalmoseopy, 1882, 1. 173.
 ${ }^{7}$ Sitzongshericht der Heidelberg. Ophth. Gesellsehaft, 1877.
 ${ }^{6}$ See Gowers's Medienl Ophthalmoseopy, p. 174, ed. of 1882.
 ${ }^{9}$ Inaugual Dissertution, 1887.

[^116]: ${ }^{1}$ Sue Tramsactions of the American Ophthalmological Society, 1887.
 ${ }^{2}$ This is true even in the adult imbecile of the sume grade.
 ${ }^{3}$ Archives of 0_{p} phthalmology, 1880, ii. 199.
 ${ }^{4}$ Sitzungshericht der lleidelberg. Ophthalmologischer Gesellschaft, 1879.
 ${ }^{5}$ Archiv für Psychiatrie, x. 146.
 ${ }^{6}$ Transactions of the Ophthalmological Society of the United Kingdom, i. 240.
 ${ }^{7}$ The Ophthathoseope in Disenses of the Nervous System mad of the Kidneys, 1871.
 ${ }^{8}$ A Text-Book on Disenses of the Eye, 1890, p. 631.
 ${ }^{9}$ On Railway and Other Injuries of the Nervous System, 1875.

[^117]: 'A Contribution to the Surgery of the Spinal Cord, 1889, p. 182.
 ${ }^{2}$ Op. eit., p. 178.
 ${ }^{3}$ Trumations of the Clinicul Society of London, 1875, p. 80 ,
 ${ }^{4}$ Comld disturbed menstrual function have heen a factor in the production of the opticnerve change ?
 ${ }^{5}$ Boton Medical and Surgical Journal, November, 1888.
 ${ }^{6}$ Virchow's Archiv, 1888, xxvi.
 'Schuidt's Juhroücher, 1884.
 ${ }_{8}$ Truité prutique des Maladies du Système nerveux, 1881.
 ${ }^{9}$ Nourclle Étude sur quelpues Points de la Sclérose en Plaques disséminées, 1869.
 ${ }^{10}$ Hund-Book of the Diseases of the Nervous System, 1880̈, p. 527.
 ${ }^{11}$ A Manual of Disenses of the Nervous System, 1886.
 ${ }^{12} \mathrm{~A}$ san exception to this rule, see case at ten yents of age by Lulenberg (Ross, Diseases of the Nervous System, p. 213). Another, from Erb's practice (Ziemssen's Cyelopadia, xiii. i24), is quoted by Sinkler (Medicul News, July 4, 1885).

[^118]: ${ }^{1}$ Transactions of the College of Physicians of Philndelphin, February 1, 1888.
 ${ }^{2}$ St. Bartholomew's Hospital Reports, 1882, p. 305.
 ${ }^{3}$ New York Medical Record, March 13, 1885, and British Medical and Surgical Jousnal, October 15, 1895.

 - Philadelphia Medical News, July 4, 1885.

[^119]: ${ }^{1}$ Transartions of the American Ophthatmological Society, v. 663.
 ${ }^{2}$ Manum of the Diseaces of the Eye, 1846, p. 215.
 ${ }^{3}$ This series of color-change and loss, which the writer has been so fortunate as th study in Dr. Norris's grouping of eases, is exceedingly interesting, und is of value, in the pathological sense at least, in the study of the evolution of the color-sense.

[^120]: ${ }^{1}$ Trinnsactions of the American Ophthalmological Society, 1882.
 ${ }^{2}$ See article by Leplaine, Onzette des Hópitaux, 1889, No. 5.
 ${ }^{3}$ Mammal of Disenses of the Nervons System, 1888, p. 811.
 4 Medical Ophthalmoseopy, 1882, p. 170.
 ${ }^{6}$ Diseases of the Eye, 1889, p. 386.

 - Pepper's System of Medicine, vol. iv.
 ${ }^{7}$ Klinische Monntsblätter, Janunry, 1880.

[^121]: ${ }^{1}$ 'Transactions of the Ophthalmological Soeiety of the United Kingdom, 1886, p. 60.
 ${ }^{2}$ T'wo cases only can be found in the table.
 ${ }^{3} O_{\mathrm{O}}$. cit., p. $76 . \quad{ }^{4}$ Op. cit., p. 108.
 ${ }^{5}$ hehre von den Augenki,nkheiten, ete., 1817, i. 195.
 ${ }^{6}$ Essays on the Morbid Anatomy of the Iuman Eye, 1218, ii. 179.
 ${ }^{7}$ Quoted by Lawrenee in his Treatise on the Diseases of : ne 'iye, Americnn edition by Istac Ilays, 1843, p. 109.
 ${ }^{8}$ Treatise on Disease 3 of the Eyc, ii. 364.

 - Annales d'Oeulistique, 1866.
 ${ }^{10}$ Royal London Ophthalmic Iospital Reports, iv. 381.
 ${ }^{11}$ Annales d'Oculistique, September-Oetober, 1888.
 ${ }^{12}$ Revue Générale d'Ophtulnologie, Oetober, 1888.

[^122]: ' American Jonrnal of the Medical Sciences, 1886.
 ${ }^{2}$ A Text-13 ouk on Disenses of the Eye, 1890, p. 668.
 ${ }^{3}$ See Gowers, Manual and Athas of Medical Ophthamoscopy, 1882, p. 250.

 - Journal d'Ophtalinologie, Marth, 1872.
 ${ }^{5}$ Sce Gesammelte Schriften (Müller), 1874.
 ${ }^{6}$ Berliner Klinische Wochenechrift, xvii.
 ${ }^{7}$ Deutsche Molicinische W ochensehrift, 1882, s. 179.
 ${ }^{8}$ Fortochritte der Medicin, 1887.
 ${ }^{9}$ Hand-Book of Ophthalmology, 1878, p. 54.
 ${ }^{10}$ Ergebnisse der Untersuchung init dem Augenspiegel, 1876.

[^123]: ${ }^{1}$ Edinburgh Medical and Surgical Journal, xxiv. 64.
 ${ }^{2}$ Hocken, A Treatise on Amaurosis, 1842, p. 127.
 ${ }^{3}$ Journal de Médecine, tome x.
 4 British Medienl Journal, July 21, 1888.
 ${ }^{6}$ Deutsche Medicinische Wochenschrift, 1887.
 ${ }^{6}$ Archiv fur Ophthalm ,ie, xii. 2, S. 149.
 ${ }^{7}$ Ibid., vii. 1, S. 150.

 - A Treatise on Bright's Disease mad Diabetes, 1881, p. 161.

[^124]: ${ }^{1}$ See Da Costa and Longstreth, American Journal of the Medical Sciences, July, 1880.
 ${ }^{2}$ A. V. Meigs, Trmasactions of the College of Physicians, 1888, p. 411.
 ${ }^{3}$ Trunsactions of the Ophthalmological Society of the United Kingdom, p. 14.
 'Gowers (Medical Ophthalmoseopy, 1882, p. 184) mentions the rarity of early retinal changes without albuminuria in gramular kidney-disease.

 Vol. IV.-14

[^125]: ${ }^{1}$ Transactions of the American Ophthalmological Society, v. 190.
 ${ }^{2}$ Medical Ophthalmoscopy, 1882, p. 190.

[^126]: ' A Treatise on Bright's Disense, 1881, p. 113.
 ${ }^{2}$ Medical Ophthalmoscopy, 1882, p. 323.
 ${ }^{3}$ Loc. eit., p. 326.

 - Transactions of the Ophthalmological Soeicty of the United Kingdom, 1881, p. 57.
 ${ }^{3}$ Ophthalmologische Mittheilungen, 1874, p. 93: quoted by Norris, in A Practical System of Medicine by Ameriean Authors, vol. iv.

[^127]: ${ }^{1}$ Mcdical Ophthalmoseopy, 1882, p. 222.
 ${ }^{2}$ Gaillard's Medical Jourmal, June, 1888.
 ${ }^{3}$ Pepper's System of Medicine, vol. iv.
 4 Medical Ophthalmoscopy, 1882, p. 221.
 ${ }^{6}$ Transactions of the American Ophthalmological Society, 1888, p. 106.

[^128]: 'These de Paris, reported by lower, in Tamsactions of the Ophthalmological Society of the United Kingdom, 1888, p. 14.
 ${ }^{2}$ Essays on the Morbid Amatomy of the Human Eye, 1818, ii. 171.
 ${ }^{3}$ A New Treatise of the Diseases of the Eyes, 1741, p. 194.

 * Recueil d'Ophtalmologie, 1884, p. 164.
 ${ }^{6}$ Inaugural Dissertation, St. letersburg, 1887.
 ${ }^{6}$ Archives of Ophthatmology, 1882, p. 428.

[^129]: ${ }^{1}$ Trunsactions of the Ophthalmological Society of the United Kingdom.
 ${ }^{2}$ Ibid., 1888, p. 7.
 ${ }^{3}$ Although it is doubtful whether this functional disorder should eome under the above category, yet, as the nssociated conditions are so symptomatic of sexual derungement, it has been thought best to place it there.
 ${ }^{4}$ Clinicnl Lectures on Certain Discases of the Nervons System, 1888, p. 10.
 ${ }^{5}$ American Journal of the Medical Sciences, Octcber, 1873.
 ${ }^{6}$ Transactions of the American Ophthulmological Society, 1889, p. 330.
 ${ }^{7}$ Op. cit., p. 328.
 ${ }^{8}$ Medical Chronicle, August 2, 1889.
 ${ }^{9}$ Klinische Monutsblitter für Augenheilkunde, November, 1881.
 ${ }^{10}$ British Medical Journal, 1879.
 "Ophthalmic Review, 1882.
 ${ }^{12}$ Transactions of the Ophthalmological Society of the United Kingdom, vii. 292.

[^130]: ${ }^{1}$ Transactions of the Ainerican Ophthatmological Society, 1888, p. $\mathbf{~} 5$.
 ${ }^{2}$ New Y'ork Medical Journal, February 9, 1889.
 ${ }^{3}$ Clinical Lectures on Certain Diseases of the Nervous System, 1888, p. 131.

 - Op. cit., p. 143.
 ${ }^{5}$ Quoted by Gowers, Manual of Diseases of the Nervous System, 1888, ii. 907.

[^131]: ${ }^{1}$ This is both remarkable and highly symptomatic, as being opposed to the ordinary color-loss seen in orgnnic change of the second nerve. -

 Amorioun Journal of the Medient sciences, November, 1889.
 pROt is. Wenchincll, Wear and 'teur, or Hints for the Overworked, 1874, p. 29.
 WESTEGi: $1 /$ bíselty
 MiEUluah ve.....
 1EIFA!

[^132]: ${ }^{1}$ Lectures on Disenses of the Nervons System, especially in anen, 1885, p. 269.
 ${ }^{2}$ Op. cit , p. 270.
 ${ }^{3}$ Royal London Ophthadmic Hospital Reports, ix. 12ü.
 -This Cyclopedin, i. 471.
 ${ }^{3}$ Hinuische Monatsblitter für Augenheilkunde, August, 1805.

[^133]: ${ }^{1}$ Traité Ieonographique, p. 188.
 ${ }^{2}$ Royal London ${ }^{3}$ phthatmic IIospital Reports, vi. 214.
 ${ }^{3}$ Medical Times mad Gazette, May 11, 1867.
 4 Medical Ophthalmoseopy, 1882, p. 240.
 ${ }^{5}$ A System of Practieal Medicine by Ameriean Authons, vol v.
 ${ }^{6}$ System of Medicine, vol. i.
 ${ }^{1}$ Schweigger (Iland-Book of Ophthalmolugy, 1878, p. 419), in spenking of an epillemic of reeurrent fever which oceurred in the Charite IIospital in Berlin, snys that there whs simple unihaterul iritis in neurly one-hulf of the cases.
 ${ }^{8}$ Klinische Monntsblitter fïr Augenheilkunde, April, 1880.
 ${ }^{9}$ Veriaderungen des Augenhintergrundes.

[^134]: ${ }^{1}$ Pepper's System of Medicine, vol. iv.
 ${ }^{2}$ Quoted by Norris.
 ${ }^{3}$ Archiv für Ophthalmologie, vol. xxiv., mentioned in Gowers's Medical Ophthalmoseopy, 1882, p. 243.
 ${ }^{4}$ The Laneet, September 15, 1887.
 ${ }^{5}$ Wesuik Ophthalmologii, 1887.
 ${ }^{6}$ Thomson and Gould, Annual of the Universal Medicnl Sciences, vol. iii., 1888.
 ${ }^{7}$ Quoted in Gowers's Medical Ophthulmoseopy, 1882, p. 249.
 ${ }^{8}$ Medieal Ophthalmoseopy, 1882, p. 249.
 ${ }^{9}$ Transactions of the American Ophthalmological Society, 1887.
 ${ }^{10}$ During the time of his illness he wis unable to speak, and his eyesight became bad,the latter condition persisting.

[^135]: ${ }^{1}$ Medical and Surgical Reporter, 1880, p. 249.
 ${ }^{2}$ Archives of Ophthalmology and Otology, iv. 448.
 ${ }^{3}$ Op. cit., p. 248.
 ${ }^{4}$ Deutsche Medicinische Wochenschrift, No. 11, 1888.
 ${ }^{5}$ Medical Ophthalmoscopy, 1882, p. 348.
 ${ }^{6}$ Op cit., p. 244.
 ? Quoted by Jennings in vol. i. of this Cyclopedia, p. 763.

[^136]: ${ }^{1}$ Archives of Ophthalmology, 1884.
 ${ }^{2}$ Deutsehe Medicinisehe Wochensehrift, 1887.
 ${ }^{3}$ Stillé (Intermational Encyclopedia of Surgery, Ashhurst, 1881, p. 185) quotes Purinaud (Arehives Générales de Méleeine, June, 1879, p. 641) ns snying, "Besides the sefuele common to all the forms, there is one that is indeed rare and scems peculiar to erysipelas of the face. It is blindness due to an atrophic degencration of the optie papilla, which sometimes affects only one eye, und sometimes both eves. The impuiment of sight, when it oceurs only in one eye, begins towards the close of the attack, or when the swelling of the eyelids has subsided suffieiently to permit them to be raised. When both eyes have been involved, the impairment of sight uppears not to have been noticed before the complete subsidence of the erysipelas, and, after varying in degree, to have left a permanent defect of vision, sometimes, however, in regard to certain colors."
 ${ }^{4}$ Munehener Medieinische Wochenschrift, 1889.

[^137]: ${ }^{1}$ Americnn Journal of the Medicai Sciences, April, 1877.
 ${ }^{2}$ Journal d'Ophtalmologie, 1872.
 ${ }^{3}$ Medical Times and Guzette, 1877.
 4 Mcdical Ophthalmoscopy, 1882, 1. 247.
 ${ }^{6}$ Annali di Ottalmologin, 1877.
 ${ }^{6}$ This Cyclopedia, i. $854 . \quad{ }^{7}$ Op. cit., p. 857.

[^138]: ${ }^{1}$ An Aecount of the Bilious Remitting Yellow Fever as it appeared in the City of Philadelphia in the Year 1793, 1704.
 ${ }^{2}$ Quoted by Matas, this Cyclopredia, vol. i. p. 801.
 ${ }^{2}$ A System of Practical Medicine by American Authors, vol. iv.
 ${ }^{4}$ Archiv fur Ophthulmologie, xii. 2, 210.
 © A Praetical Manual of the Diseases of Children, 1879, p. 157.

[^139]: ${ }^{1}$ Outlines of the Practice of Medicine, 1880, p. 366.
 ${ }^{2}$ Recueil d'Ophtalmologie, 1887.
 ${ }^{3}$ See photo-lithograph of Gowers's preparation of eapillary aneurism and varicose capilharies from the retima in a case of diabetes with retinal hemorrhages (Medical Ophthalmoseopy, 1882, p. 376), from a case under the care of Mackenzie and Nettleship (Royal London Ophthalmic Mospital Reports, ix. 150). Here, as Gowers says (op. cit., pp. 197, 198), "the chief ehange beyond adema was a peenliar hyaloid degeneration of the intima of the arteries and. numerous capillary aneurisms."
 ${ }^{4}$ See article ly Nettleship and Edmunds in the Transactions of the Ophthalmological Society of the United Kingdom, i. 124.

 Vol. IV.-15

[^140]: ${ }^{1}$ At the present time the writer has under his care an eighteen－year old girl，who when first seen，three weeks ago，had a vision of ${ }_{1}{ }^{5}$ ，which is rapidly nppronching the nomal under the use of inercurial inunctions．In this case the choroid does not uppear to be in－ volved．

[^141]: ${ }^{1}$ At the present time the writer is stulying such a case at Dr. Wm. F. Norris's clinie at Wills Eye Hospital. In this cave the upper incisors are chamateristic.
 ${ }^{2}$ Transactions of the (${ }^{1}$ hthatmological Soricty of the United Kingdon, ii. 60 .
 ${ }^{3}$ In this case, Nettilship says that "the apparances in the left were like those in Plate V., Fig. 1, of Lirlmeich's Athas ; those in the right resembled Plater I V., Fig. 1."

 - Archiv tur Ophthalamogic, xiv. 1.
 ${ }^{5}$ Ibid., ix. 3.
 ${ }^{6}$ Archiv für Pathologische Anatomic, xxxvi. 448.
 ${ }^{7}$ Tramactions of the Ophthalmological Society of the United Kingdom, vi. 348.
 ${ }^{8}$ Transactions of the American Ophthalmolugical Society, 1883.
 ${ }^{9}$ Oesterreichisehe Zeitschrift für Praktische Iteilkunde, Junuary, 1855.
 ${ }^{10}$ Archiv für Ophthulmologie, xiv. 1.

[^142]: ${ }^{1}$ Medieal Times, 1884, ii. 80.
 ${ }^{2}$ Archiv fïr Ophthalmologie, xix. 1.
 ${ }^{3}$ Wiener Med, Jabrhücher, 187%.

 - Amat. Path. Gén., 1862.
 ${ }^{6} \mathrm{~K}$ 'inische Monatshlattor für Angenheilkunde, 1867, 1.166.
 ${ }^{6}$ Transactions of the Ophthalmolegieal society of the United Kingdom, 188e, p. 346.
 ${ }^{7}$ Krankhafter Geschwülste.
 ${ }^{8}$ The Leprous Disecses of the Eye, 1873.
 ${ }^{9}$ Leprosy as a Cause of Blindness, 1889, p. 76.
 ${ }^{10}$ Op. cit., p. 66.

[^143]: ${ }^{1} 0_{p}$. cit., p. 71.
 ${ }^{2}$ Archives of Ophatmology, x. 220.
 ${ }^{3}$ Neul, Traité complot.
 ${ }^{4}$ Sce Groming, Archives of Ophthalmology, x. 81, and Brown, Trunsacti ms of the - hathatmological Society of the United Kingdom, vii. 199.
 ${ }^{5}$ Niectical Op thatmoserpy, 1882, p. 238.

 - P cpper's siss em of Medicine, vol. iv.

[^144]: 1 Medieal Ophthalmoseopy, 1882, p. 289.
 ${ }^{2}$ Medieo-Chirurgical Transuctions, 1847.
 ${ }^{3}$ Liverpool Medico-Chi:urgical Jourmal, January, 1888.
 ' Archiv für Ophthalmologie, 188t, iv., and 1887, 1.
 ${ }^{5}$ In muny casc's as seen in adtults there are an indescribable tint and appenrance of the merve-head which seem almost pathognomonic.
 ${ }^{6}$ Infrequently, \mathfrak{c}. for instance, when the study of color-chunges constitutes the work of the patient, trilling chunge - 1 green und red are recegnized quite early in the case.
 'Annual of the Universal Medieal Seiences, 1888, iii. 126.

[^145]: ${ }^{1}$ Gazzotta degrli Ospitali, Milan, 1880.
 ${ }^{2}$ Archives Mensumles dr Mruevine et Chirmrerie, 1887.
 ${ }^{3}$ Ophthmanc Review, Octobor, 1888.

 - A Text-Book on Disenies of the Eye, 1890, p. 681.
 ${ }^{8}$ Recueil d'Ophtalmologio, 1887.
 ${ }^{6}$ Centralhatt fur Praktisehe Angenheilkande, April, 1881.

[^146]: ${ }^{1}$ Tramenetions of the Amerienn Ophthatmological Society, 1885, p. 54.
 ${ }^{2}$ Royal Landon Ophthalmie Hospital Reports, vi. 1, and vii. I.
 ${ }^{3}$ A Treatise on the Diseases of the Eye, 1883 (Americna edition), y. 600.

 - Galezowski, Das Amblyopies et Amauroses toxiques.
 ${ }^{5}$ Gatli, Gazzetha degli O-pituti, Milen, 1880.
 ${ }^{6}$ Ophthalmic Review, June, 1888.
 ${ }^{7}$ Quoted in Gowers's Medical Ophthanouscops, 1882, p. 239.
 ${ }^{8}$ Op. eit , p. 239.

[^147]: ${ }^{1}$ Brain, ix. $456 . \quad{ }^{2}$ New York Medical Journal, April 5, 1890.
 ${ }^{3}$ Tramsactions of the Ophahmolngien suciety of the United Kingdon), v. 149.
 ${ }^{4}$ Thise de Paris, 1874.
 ${ }^{5}$ Centralbhatt fiur Praktiecho: Augunheilkunde, May, 1889.
 ${ }^{6}$ Jour. de Médecine et Chirurgie, 1887.
 ${ }^{7}$ Graefe und Saemisch, Handbuch der Gesammten Augenheilkunde, Band v

[^148]: ${ }^{1}$ The sketel does not show this.
 ${ }^{2}$ Even in the enrliest stage this is not strictly true, becuse if careful texing for central collop-pecption be made at that time, evidences of slight green and red suburmal perefptimn cin be determined in most instances. In contrudistinction to this, however, lyyerasthe ia has been mserted in a few eases, - possibly from primary almomal excitation through dight exacerbations of clnonic low-grade inthumatory changes.
 ${ }^{3}$ At times these clinical grompings may he interfered with, giving rise to all maner of anomalous symptoms.

[^149]: ${ }^{1}$ Transactions of the American Ophthalmological Socicty, 1887, pp. 555, 556.
 ${ }^{2}$ American Journal of the Medieal Seiences, A pril, 1842.
 ${ }^{3}$ A Treatise on the Diseases of the Eye, 1883 (American edition), p. 606.
 ${ }^{4}$ Foerster (Ueber Hemeralopie, 1857) has found that blue, violet, and red are the colon that are the most difficult to recognize by these eases.
 ${ }^{5}$ Transactions of the Ophthalmologieal Society of the United Kingdom, 1888, p. 163.
 ${ }^{6}$ Archives d'Ophtalmologie, 1883, p. 386.

[^150]: ${ }^{1}$ Anteric when the pat
 ${ }^{2}$ One di
 ${ }^{3}$ Careful

[^151]: ${ }^{1}$ Anterior leucoma with ring-like opacities in the lens, the sequela of a traumatism when the patient was six or seven years of are.
 ${ }^{2}$ One diopter.
 ${ }^{3}$ Careful examination showed that this was dependent upon insufficiency of the interni.

[^152]: 1 This test cannot always be depended upon, as there are exceptions.
 ${ }^{2}$ A Treatise on the Diseases of the Eye, 1868, p. 474.
 ${ }^{3}$ Zeitsehrift der Wiener Aerzte, $186{ }^{\circ}$.
 ${ }^{4}$ Archiv für Ophthalmologie, vii. 2, 63.
 ${ }^{6}$ Ibid., xi. 2, 148.
 ${ }^{6}$ Annali di Ottalmologia, vol. xvii., No. 1.
 ${ }^{7}$ Pbilosophieal Trunsactions, London, 1777, 1xvii. 260.

[^153]: ${ }^{1}$ Medico-Chirurgical Trunsutions, 1818.

[^154]: ${ }^{1}$ Anmades d'Oculistique, 1875 , 1xxiii. 1.
 ${ }^{2}$ Cumada Lancet, April, 1888.
 ${ }^{3}$ Truité des signes de la Mort, 1863.
 4 Arehive Générales de Medceine, 18:0, 6, xv. 408.
 ${ }^{5}$ Dentisehe- Arehiv fill Klinische Medicin, xxi. 100.
 ${ }^{6}$ West Riding Asylam Reports, 1871, i. 73.

[^155]: I See for complete bibliography Dr. J. H. Baxter's Statistics, Meelicad and A nthropologieal, of the Provost-Marshal-Gencral's Bureath of the United States, vol. i., mud Roberts's Manuat of Anthropometry.

[^156]: ${ }^{1}$ Baxtur,
 ${ }^{2}$ Merm an lionked, or not pasuge is wor lhis result, be one rif much i use the word 1 mel. all menn.

[^157]: ${ }^{1}$ Baxter, op. cit., p. lxix.
 ${ }^{2}$ Mean and Aneruge.-The distinction between a mean and an average is often overlooked, or not elearly comprehended. Sir John Herschel so clearly exhilis it that the passage is worth quoting entire. Speaking of M. Quetelet's homme moyeit, he says, "Now, this result, be it obscrved, is a mean, as distinurished from an average. The distinction is one rf much importance, and is very properly insisted on by M. Quetelet, who proposes to use the word mean only for the former, and to speak of the later (average) as the 'arithmel. al mean.' We prefer the term average, not only becuase both are truly arithenetical

[^158]: means, but because the latter term carries unready with it that vitiated and vulgar associatedion which renders it less fit for exact and philosophical use. An average may exist of the most different objects, as of the heights of houses in a town or the sizes of bows in a library. It may be convenient to convey a general notion of the things averaged, but involves no conception of a natural and recognizable central magnitude, all differences from whicla ought to be regarded as deviations from a standard. The notion of a mean, on the other hand, does imply such a conception, standing distinguished from on average by his very feature, -viz., the regular march of the groups, increasing to a maximum and then again diminishing. An average gives us wo assurance that the future sill le like the past. A mean may be reckoned on with the most implicit confidence. All the philosophical value of statistical results depends on a due appreciation of this distinction, and acceptance of its consequences."-Wlinburgh Review, vol. xci. ; Baxter, op, cit., 1. lxvii.

[^159]: ${ }^{1}$ For more

[^160]: ${ }^{1}$ For more detailed information the reader is referred to Baster, vol. i. p. 43.

[^161]: ${ }^{1}$ From Phy
 ${ }^{2}$ This rule life, for very rur and calf measur three.

[^162]: ＇From Physical Culture，A．J．Reach Co．，Philadelphia，p． 52.
 ${ }^{2}$ This rule has long been observed，especially among urtists，but it is not true to life，for very mrely do we tind either men，women，or children whose neek，upper－arm， mid calf measurements are the same．As a rule，the upper am is the smatles i° the three．

[^163]: ${ }^{1}$ Surgent, Physicul Truining Conference, 1889, p. 71.

[^164]: ${ }^{1}$ Young, New York Medienl Record, iii. 10.

[^165]: ${ }^{1}$ See Russimn Imperim Guards' Murch, Park's Hygiene, p. 392.

[^166]: ${ }^{1}$ Pettigrew, Animal Locomotion, etc., p. 81.

[^167]: ${ }^{1}$ A Trentise on the Animal Economy, p. 177, Dublin, 1782.
 ${ }^{2}$ Cyclopredia of Amatomy and lhysiology, vol. iv. p. 188.
 ${ }^{3}$ Op. cit., p. 375 .

[^168]: ${ }^{1}$ White, Lippincott's Monthly Mngarine, June, 1887, p. 1013.
 2 "In this connection it is worthy of mention that the most athletic seniors in the clases of 1885-86 and 1886-87 (Hurvard) included one honor man who received honors, fine who receivel honorable mention, und welve who were entitled to write commencement parts." -Report upen Athletics, ctc., Cambridge, 1888, p. 22.

[^169]: ${ }^{1}$ Roberts, The Physieal Development mad Proportions of the Llaman Body. ${ }^{2}$ Street.

[^170]: ${ }^{1}$ Physical Training Conterence, 1889, p. 65.

[^171]: ${ }^{1}$ Report upon Athletics, Harvard College, 1888, p. 36.

[^172]: ${ }^{1}$ Op. cit., p. 55 , Exercise and Training.

[^173]: ${ }^{1}$ Chapman, Treatise on Human Physiology, p. 39.
 ${ }^{2}$ Lessons in Elementary Physiology.

[^174]: ${ }^{1} A$ Phys p. 1024 .

[^175]: ${ }^{1}$ A Physician's View of Exercise and Athletics, Lippincott's Magazine, June, 1887, p. 1024 .

[^176]: ${ }^{1}$ Amorican Association for the Adraneement of Physicnl Education, 1890.

[^177]: ${ }^{1}$ Bowditch.

[^178]: ${ }^{1}$ Clarke, Co-Educ ition, p. 60.

[^179]: ${ }^{1}$ The term gymnast designates a graduate from the Royal Gymnastic Central Institute, Stockholm, Sweden. We desire here to express our indebedness to Miss Anna Jonsson, of Plabadelphia, who is a graduate of this institution, for much assistanee in the preparation of that portion of this article which relates to the Swedish system of gymmastics.

[^180]: 'Tho mame given to a Swedish apparatus consisting of a number of horizonta? has arranced about eight inches apart, one nbove the other, from the door nearly to the ceiling.

[^181]: ${ }^{1}$ Education, February, 1886.

[^182]: ${ }^{1}$ St. Louis School Report, 187\%-73, p. 18.

[^183]: ${ }^{1}$ See New York Medical Record, November 12, 1881.

[^184]: ${ }^{1}$ Six Leetures on School-Hygiene, Ginn \& Co., 1885.

[^185]: ${ }^{1}$ Nothnagel, in Ziemssen'3 Cy: ${ }^{\text {a }}$,

[^186]: ${ }^{1}$ W. H. Rouse, in Michigan Board of Health Report, 1880.
 ${ }^{2}$ Treatise on Orthopædic Surgery, p. 148.

[^187]: ${ }^{1}$ Report of Pubiic Schools for 1878-79.

[^188]: ${ }^{1}$ Fox, Sunitary Examinations of Water, Air, and Food.
 ${ }^{2}$ Hygiene, 1873, p. 115.
 ${ }^{5}$ From article in the Youth's Compunion, August, 1880. Vol. IV. - 93

[^189]: ${ }^{1}$ Massachusetts Board of Health, Fifth Report, 1874, p. 50.
 ${ }^{2}$ Ibid., Fourth Report.

[^190]: ${ }^{1}$ Buckminster Brown, Lecture before the American Socinl Seience Association, 1879.

[^191]: ${ }^{1}$ Report of schools, 1875-76.

[^192]: 1 "Lomb l'rize Dissays," published by the Americun l'ublie Healli Aseocintion, 1886.

[^193]: ${ }^{1}$ Op. cit., p. 163.

[^194]: 1"For ordinary and the most favorable circumstances the actual velocity in the flue is hest if it be established at ubout five feet per second."-Prow. W. P. Trowbridae, in Sonitary Enginecr.

[^195]: ${ }^{1}$ Buck, loc. cit., p. 625.

[^196]: ${ }^{1}$ Centralblatt für Allgemeine Gesundheitspllege, ii. 236.

[^197]: ${ }^{1}$ Purkes's Hygriene, American edition, 1884, p. 146.

[^198]: ${ }^{1}$ Philadelphin Medical Times, May 29, 1875.

[^199]: ${ }^{1}$ Connecticut State Board of Health, Second Report, p. 48.

[^200]: 1 Michigan Bonrd of Health.
 ${ }^{2}$ Report of Metropolitan Board of Health, New York, 1873, p. 58.4.

[^201]: ${ }^{1}$ See 1 Green's Criminal Law Reports.
 ${ }^{2}$ See Austin's Jurisprudence, section 26.

[^202]: 1 See Law Reports (N. S.), jo.

[^203]: ${ }^{1}$ Ribot's IEredity, p. $342 . \quad{ }^{2}$ Destiny of Man, p. 42.
 ${ }^{8}$ Principles of Psychology, p. 504.

[^204]: ${ }^{1}$ Archives of Pedintrics, May and June, 1886.

[^205]: ${ }^{1}$ See the admirable works of Amidon, Bartholow, or Birdsall.

[^206]: ${ }^{1}$ Benedikt, Handbuch der Elektrotherapie, p. 81, and translation in Bartholow's treatise.

[^207]: Vol. IV.-30

[^208]: Any one desiring a full list of the articles appertaining to this subject shoutd consult the article of Dr. Willi:m Osier in the Philadelphin Medical Sens, July $1+$ to August 11 , 1sis, we the reprint of the sume in book form ly Bhakiston \& Son, 1859, wad the article of Drs. B. Sidelo and \mathfrak{F}. Petersom, based upon an analysis of ome humbed and forty ches, in the donrmal of Nerrous and Mental Diseqses, May, 1890. The most prominent entrihutons to this subject, however, aside from those of the two amthers mentioned, are as finlows:

 Andry, Revue de Médecine, Nos. G_{m} m 7, 1888.
 Conard, These de Paris, Paris, 1868.
 Fisher und Peterson, Cranin! Memarments in Twomy Cases of Infantile Cerebral Hemorthare, Niw York Mediad Journal, April 6, 1899.

 Gandard, These de Genève, 1884.
 (iowers, Dinetoses of the Nervous System, 1888, p. 801.
 Henoch, New Sydenham society pullichtion, London, 1889.
 Hewonet, Arch. de Phess, 1881, thme iv.
 Hoven, Arch. f. P.yoh., 1888, vel. wix.
 Jendrassik und Marie, Arch de l’hys., 1885.
 Kast, Arch. f. P'sych., 18si, vol. xioii.
 Kinaly, Journal of Nervons and Mental Disenses, Augnst, 1887.
 Kundral, Die Porencephatic, V'ienna, 188.
 Little, Ohstemical Socictys Transactions, 1862.
 NeNutt. American Jomimi of the Medical Sciences, Jamary, 1885; Arehives of Pediatrics, Jumary, 1885; Americm Jommal of Pediatrics, January, 1885.

 Sinkler. Mcdical News, 1885.
 stembechaer, Areli. R. Psyeh., Bd. xvii.
 Strimplll, Juhrl. f. Kimderheilk., 1884 and 1889. xxi., xxii.

 Wallenberg, Arch. f. P’sych, u. Nervenkrank., Bd. xix. Heft 2.

[^209]: 1 Athas de l'A natomie.
 ${ }^{2}$ Carswell, Tuerek, Vuipian, und others.
 ${ }^{3}$ Deutsches Archiv für Klin. Med., 1879, Bd. axiii.

[^210]: ${ }^{1}$ Diseases of the Nervous Syiter:
 ${ }^{2}$ Duekworth, Latham, London Lancet, May 16 and August 29, 1885.

[^211]: ${ }^{1}$ Ptosis was presert in Sparks's case (Medical Times and Gazette, December 29, 187\%), and in Westphal's ense, George Keinghohd, nine years old. This calse nlso showed optic ncuritis and nystagmos mong the eye-symptoms.
 ${ }^{2}$ Pollard's patient, a ing seven and a half years old, could speak no words distinctly. and had a very limited vocabulary. London Laucet, August 25, 1878, p. 183.
 ${ }^{3}$ Unger's eave, three yeurs; case quoted by writer, sixteen years.

[^212]: 1J. M., a boy four and two-lhids years olld, reported by Diekinson (Medical Times and Gazote, Febriary 2, 1878), conld not walk on necount of atuxia, but there was no paralysis.
 ${ }^{2}$ Schüle, Deutsehes Archiv f. Klin. Med., 1871, Bd. viii. p. 223.
 ${ }^{3}$ Diekinson, Medical Times and Gazette, February 2, 1878; Westphal, Charité Anualen, 1887, Bd. ex:ii. p. 454.
 ${ }^{\text {' Charcot, Jour. de Med. et de Chir., 1887; Oppenheim, Berlin. Klin. Wochen- }}$ schrift, 1887.

[^213]: ${ }^{1}$ fomblon Lancet, 188°.
 ${ }^{2}$ Ibia, releved to by Seguin in Am, of Univ, Med. Sci. for 1888.
 ${ }^{3}$ Eraest Eugedman, cight years ohd, was the only child among the five attiocted. The next yonngest pationt was twenty-three yenrs old. Arehiv fiil P'syehintrie and Norven. krankheiten, Bd. xvi. S. 698.

[^214]: ${ }^{1}$ Foeke, Inmurural Dissertation, Berlin.
 ${ }^{2}$ Pepper's System of Medicine, vol. v., art. "Disseminated Sclerosis."

[^215]: ${ }^{1}$ Disenses of the Norvous System, p. 11.
 ${ }^{2}$ Mickle on General l'urolysis of the Insane, 2 ded ., p. 231.

[^216]: ${ }^{1}$ Fox, Pathological Anatomy of Nervous Centres, f. 119 .
 ${ }^{2}$ Spitzka, Pepqer's Syste:n of Medicine, vol. v., art. "Dissminated Scleroris."
 ${ }^{3}$ Burneville and Benerikt assert that the process is " "dilluse nemitis," mad that the term "oclerose en phaques", a misnomer.

[^217]: ${ }^{1}$ Rindtleisch, Pathology.
 ${ }^{2}$ For full disension ree Stricker's Histology.
 ${ }^{3}$ W. Bevan Lewis, Text-Book of Mental Disenses, p. 463.

[^218]: ${ }^{1}$ Spitaka, Text-Book of Mental Disenses, pr. 463.

[^219]: ${ }^{1}$ In Wilson's case, a girl, Anne S., aged eight, the nystagmus was always and only horizontal. British Medical Journal, November 25, 1876.
 ${ }^{2}$ A nerican Journal of the Mcdical Sciences, October, 1888, p. 374.

[^220]: ${ }^{1}$ Osler, in his monograph, "The Cerebral Palsies of Children," pp. 66, 67, calls attention to the difficulty attending a differential diagnosis in some of these cases.

[^221]: ${ }^{1}$ Duchenne has reported a case in a boy of sixteen, and Meschede one in a patient twelve years old, also a boy.
 ${ }^{2}$ Medical Record, September 18, 1888.

[^222]: ${ }^{1}$ Bristowe's case, female, aged thirteen, Medical Times and Gazette, June 21, 1879, p. 673.

[^223]: ${ }^{1}$ L'Encéphate, 188\%.

[^224]: ${ }^{1}$ Nilson, in Arch. f. Kinderk., 1886.

[^225]: ${ }^{1}$ Laneet, 1883.
 ${ }^{2}$ Suchs and Peterson, Journal of Nervous and Meatat Diseases, May, 1890.
 ${ }^{3}$ The Cerebral Palsies of Childr'n, Monograph, Philatelphia, 1889.

[^226]: ${ }^{1}$ American Journal of Obstetrics, 1885.

[^227]: ${ }^{1}$ Loe. cit., p. 308.
 ${ }^{2}$ Diseases of the Nervous System, p. 801.

[^228]: ${ }^{1}$ Annals of Anatomical and Surgical Society, Brooklyn, 1879.
 ${ }^{2}$ Canada Medien and Surgical Journal, 1886.
 ${ }^{3}$ See this Cyclopedin, vol, ii. p. 874, article by Dr. Warren.
 ${ }^{4}$ Journal of Nervous and Mental Disenses, 1887 and 1890.
 ${ }^{5}$ Pathologie des Kreishufes und der Ernährung, p. 84.
 ${ }^{6}$ Diseases of the Nervous System, p. 777.
 Yol. IV.-34

[^229]: ${ }^{1}$ Intracerebral Hemorrhage in the Young, Journal of Nervous and Mental Diseases, September and October, 1887.

[^230]: ${ }^{1}$ Archiv für Klinische Medizin, 1878, vol. xxii.
 ${ }^{2}$ Maladies des Enfants.
 ${ }^{\text {s }}$ Jahrbuch für Psychiatrie, 1881.
 'On this subject, see Rumpf, Dic Syphilitischen Erkraukungen des Nervensystems, ehapter v .
 ${ }^{3}$ Virchow's Archiv, vol. lxxxiv, p. 269.
 ${ }^{6} \mathrm{Ibid}$. , vol. lv. p. 368.
 ${ }^{7}$ The subject of secondary degenerations after cerebral lesions is treated in anothe.: portion of this volume.

[^231]: ${ }^{1}$ British Medical Journul. June 18, 1887.
 ${ }^{2}$ Jnhrhuch für Kinderheilkunde, No. 22, 1885.
 ${ }^{3}$ Case of Hmalford, British Medienl Jonrmul, 1887, p. 1098.
 ${ }^{4}$ Gowers refers to one such cnse by Money (Treatment of Disease in Children, p. 413).
 ${ }^{5}$ Vorlesungen über Kinderkrankheiten, 1881, p. 223.
 ${ }^{6}$ Osler, op. cit., p. 93, suggests that in diphtheria there may be plugging of the smaller cerebral arteries with micrococci.

[^232]: ${ }^{1}$ Brain, vol. i.
 ${ }^{2}$ Ashby and Wright, Diseases of Children, p. 389.

[^233]: ${ }^{1}$ Mentioned by Dr. Sansom, in his urticle on chronic endocarditis, this Cyclopadia, vol, ii. p. 832.
 ${ }^{2}$ Wiener Med. Blitter, 1883.

[^234]: ${ }^{1}$ Archiv f. Psych., 1888, vol. xix. p. 297.
 ${ }^{2}$ Jourmal of Nervous and Mental Diseases, Augast, 1887.

[^235]: ${ }^{3}$ Soltmann's observaions (Meynert, Psychiatry, trunsiated by Suehs, p. 166) are to the point.
 ${ }^{2}$ In the paper so often referved to, we have given distinet proof that it is a mistake to attribute all diplegias and paraplegias to meningeal hemorrhage at birth, and to suppose that the acute cases me amost invarinbly hemiplegic in form. We have hemiplegia une to trammatism at birth, and diplegias as well as paraplegias of acute onset.

[^236]: ${ }^{1}$ Wiener Med. Woehenschrift, `'os. 82 und 33, 1888.
 ${ }^{2}$ Coma nad convulsions will be uisensed under the head of Dingnosis.

[^237]: ${ }^{1}$ Virehow's Archiv, 1885, vol. cii.
 ${ }^{2}$ This condition has been ably described and analyzed by P. C. Knapp, Journal of Nervous and Mental Disenses, 1887, p. 480.

[^238]: ${ }^{1}$ Sachs and Peterson, p. 313.

[^239]: ${ }^{1}$ Berlin. Klin. Wochenschrift, 1890.
 ${ }^{2}$ See ulso a paper by Drs. Fisher and Peterson, Cranial Mensurements in Twonty Cases of Infantile Cerebral IIemiplegin, New York Medical Joumal, April 6, 1885.

[^240]: ' Arch. f. Psych., 1888, vol. xix. p. 563.
 ${ }^{2}$ Ibid., vol. xix. p. 297.
 ${ }^{3}$ See Fig. 7.

[^241]: ${ }^{1}$ Edes, Pepper's System of Medicine.
 ${ }^{2}$ Medical Nows, February 18, 1888.

[^242]: ${ }^{1}$ Jahrb. f. Kinderheilk., N. F., 1884, vol. xxii.

[^243]: * Medieal News, vol. li. No. 9.
 \dagger Transuctions of the New York Academy of Medieme, iii. 187.
 \ddagger Pruger Vierteljuhrschrift, Bd. 1xxviii,

[^244]: * Tahrlath f. Kinderheilkunde, xiii. 322.
 \dagger lhid., xxiii. 462.
 \ddagger Deutsehes Arehiv für Klinisehe Medicin, xvi. 463.
 \% Wiener Medicinische Juhr!uch, xxi. 1, 110.
 || Americm Journil of the Medical Sciences, 1884, ii. 119, Case LXV.

[^245]: ${ }^{1}$ Die syphilitischen Erkrankungen des Nervensystems, von Theodor Rumpf, Wiesbaden, 1887.

 590

[^246]: ${ }^{1}$ Rumpf's method of reckoning is a little obscure. Apparently six of the cases said to have died of convulsions are counted as cases of nervous disease; one died of inflammation of the brain, and two are still living: these nine cases are practically thirteen per cent. of the seventy preguancies.
 ${ }^{2}$ Syphilis of the Nervous System, 1889, p. 10.

[^247]: ${ }^{1}$ Epilepry and other Chronic Convulsive Diseases，etc．，by W．R．Gowers，M D．， FR．C．P．，I881．

 Vol．IV．－38

[^248]: ct, January,

[^249]: ${ }^{1}$ Berlin. Klin. Woehenschrift, 1885, No. 7.

[^250]: ${ }^{1}$ Trumactions of the Pathologient Suciety oi London, 1881, vol. xxxii.
 ${ }^{2}$ See also Fletchor Beach, Cases of Idiney and Imbecility due to Inherited Syphilis, American Journal of Insanity, January, 1888.

[^251]: * A small, and probally insiguificant, amount of ursenic is said to come from the imported hides, preserved with arsenie, from which the glue-size is sometimes made.
 ' \dagger A case has recoutly come to the writer's notice where almost all the papers of a putient's house, fifteen in mmber, which ham been put on by one of the best dealers in Boston twenty years ago, contained arsenic, and most of them in large amounts.

[^252]: * Even the peatants of sigria are said to fall victims ocensionally to their habit. Sce also a cave reported in the Dublin Quarterly Journal, vol. xxxvi. p. 4 is.

[^253]: * Compare J. C. White, loc, cit.

[^254]: * Recent researches by the writer have shown that it is not uncommon to tind truees of msenic in the urine of persons in mpment henth.

[^255]: * Oliver (British Medical Journal, 1885, vol. ii. p. 730) calls attention to the fact that encephatopathie symptoms, though usually of late oceurence, may oceur very carly, espoeially among women. The same fuct is noted in the British Medient Journal, 1885, vol. i. p. 496, mad elsewhere, and, indeed, was long ago pointed out by Tanquerel. The case of one of the workmen at Clichy is ulso on record, who suddenly became insnne, while bis history presented elear evidence of lead prisoning. I have seen a drinking-water case of grent severity, where the ancephnlopathie symptoms were not, to be sure, the first to appaur, but were preceded only by puins in the nbdomen and clsewhere, und gencral signs of failing health, the cause of which was not recognized. (See above, under Epilepsy.)

[^256]: ' Volpian, Matadies de la Moelle épinière, vol. i.
 ${ }^{2}$ Gowers, Diseases of the Nervous System, ן. 287.
 ${ }^{3}$ Ibid., p. 344.

[^257]: vol. viii. p. 18; Angel Money, Tranemetions of the Pathological Society, 1884, p. 45; Förter, Inhrbuch lïr Kinderheilkunde. Bd. xv. Heft 3 u. 4.
 ${ }^{2}$ Allen Starr, Amerienn Jommal of the Medical Sciences, May, 1888.
 ${ }^{3}$ La France Médienle, October, 1887.

[^258]: ${ }^{1}$ Elliott, Dublin Monthly Journal, 1886, vol. Ixi. p. 7.
 ${ }^{2}$ Kabler, Meniagitis Spinalis, Leipsic, 1861, p. 80.
 ${ }^{3}$ Gazette des IIôpitaux, 1858, p. 286.

 * Quelques Considérations sur te Mal vertébral chez l'Enfant, Coudroy de Laureal, Thèse de Paris, 1874.

[^259]: ${ }^{1}$ Vulpian, Maladies de la Moelle épinière; Follin, Traité de Path. externe; Grasset, Truite des Maladies nerveuses; Puel, Thèse de Paris, 1878, Du Mal vertébral. This eseape of the cord from compression in the roomy spinal eanal was pointed out by Cruveilhier.
 ${ }^{2}$ These de Paris, 1871. This thesis was written under the inspiration of Chareot, who hmself has written on the same sulject,-Gazette des Hòpitaux, 1874. These essays conslitute an epoch in the history of Pott's disease.
 ${ }^{3}$ Vulpian, loc. eit. ; Puel, loc. eit.
 ${ }^{4}$ Gowers, Disenses of the Nervous System, 1888, p. 249.
 ${ }^{5}$ Charcot, Archives de Physiologie, 1868, p. 785.
 ${ }^{6}$ Bonchard's researehes on the secondary degenerations of the cord were made chiefly upon cords affected with compression myelitis.

[^260]: ${ }^{1}$ The cntire cord mny be encireled by a narrow zone of interstitial myelitis, and the disense is then catled cortical myelitis.
 ${ }^{2}$ Reflexes are abolished by lesions of the posterior roots of the postern-external columns (columns of Burdach) of the central gray matter, anterior root-fibres, or anterior roots. "1t is probable that the superficial reflexes pass directly into the posterior horns, the deep rellexes through the postero-exteronl column." (Bramwell.)
 ${ }^{5}$ Kahler, Prager Med. Wochensehrift, 1883, p. 458.

[^261]: 'Arising from the forth and tith eervieal region, hence ut the limits betwern the upper and lower erriend regions.
 ${ }^{2}$ Miehel, quoted by Treves, International Encyelopedia of Surgery, vol. iv. p. 041.
 ${ }^{3}$ Kinhler, tee. eit., 1883, p. 58. See Jothroy, Archives de Physiologie, 1873. Kinhler quotes firm Proust an adalt case where there wns excessive atrophy of the musches of the ball of the thomb and the interossei, without paralysis of the arms.

 - Localization of Atrophic Paralyses, Brain, vol. iv. p. 223.

[^262]: ${ }^{1}$ Ut supra, p. 646. ${ }^{2}$ Ui supra, Chse I.
 ${ }^{3}$ Erb, Ziemssen's Cyelopedia; also Gowers, lue. rit., p. 225. Leyden says he has never seen a compression myelitis progress upward. But positive observations of such ascension are recorded by Vulpian and by others.

[^263]: ${ }^{1}$ Sayre claims to determine diaphrumatic brenthing artificially by means of the plaster jacket, and ascribes to this part of the benefleial influence of his method.
 ${ }^{2}$ Mme. Conta, Du Mul de Pott au-desssous de la Moelle chez les Enfunts, Thẻe de Paris, 1887.

[^264]: ${ }^{1}$ Kolliker, Handbuch der Gewebelehre, 1868, p. 340.

[^265]: I Gowers says that homorthag has mot been proved. Yet he himself cites a case where of chidd, ndected with an mugular eurviture, fell in waking neress the room, and on

 ambie, St. Bartholonew's 1 Iospital Reports, 1882 , vol. xviii.
 ${ }^{3}$ Michond, lee. cit.

[^266]:

 ${ }^{3}$ Britis\$ Mediem dourmi, May, 18stb.
 ${ }^{4}$ Lue. a
 ${ }^{5}$ Thise de Paris.

 *Bramwell, Disenses of the Spital Cord, 18s2, p. lise.

[^267]: ${ }^{1}$ Meningitis Spimalis, H. Kuhter, Leipsie, 1861.-M most erndite monograph. The writer chaims ($p, 2$) that the flrst antopsies on the spinal cord wero made in the filteenth contury.
 ${ }^{2}$ Robinson, Lancet, March 1, 1862.
 V'OL. IV.-42

[^268]: ${ }^{1}$ Disy, Luneet, May 5, 1883.
 ${ }^{2}$ Meningitis Spinalis, Rendu, Gaz. des Hóp., 1884.
 ${ }^{3}$ Förster, Juhrb, fïr Kinderheilkunde, Bd, xv., Hit. 3 u. 4.

 * Wilks, Guy's Hospital Reports, 3d Series, vol. ii. p. 158.
 ${ }^{5}$ Förster, loc. cil.

[^269]: ${ }^{1}$ Kuhler, op. eit, , p. 29. See also Ball, Du libumatisme viveŕral, Thèse d'Agréy., 18ef, p. 04. The cases quoted from other writers by Ball seem all molt. They ean be refinred to here only to justify the occasional etiology of undoubted spinnl meningitis in aluacks of rheumatiom.
 ${ }^{2}$ Op. eit., p. 26.

[^270]: ${ }^{1}$ Archives de Physiologie, 1870.
 ${ }^{2}$ Liouville, loe. cit. According to Kahler (loe. cit., p. 43), tuberele of the spinal meninges is always seeondary to cerehral or to general tubereulosis. But Liouville admits the possibitity of primary spimal tuberculosis.

[^271]: ${ }^{1}$ Pierret, Comptes-Rendue Soe de Biol., 1876.
 ${ }^{2}$ Ocrem, Dentelbes Arehiv fïr Klin. Med., 1871, viii.
 ${ }^{3}$ Déjerrine, Arehives de Physiologic, 1878.

 - Landouzy, Des Parulysies dans les Maladies niguës, Thèse de Conemurs, 1880.

[^272]: ${ }^{1}$ Lahmung meh Spinal Meningitis, Archiv für Kinderheilkunde, 1880, Bĩ. ii., 2, s. 133.

[^273]: ' Gull, Guy's Hospital Reports, 3 d Series, 1858, vol, xiv. p. 195.
 ${ }^{2}$ Oxley, British Medieal Journal, Oetober, 1870.
 ${ }^{3}$ Shann, Lancet, December, 1881, p. 1048.

[^274]: ${ }^{1}$ Buzzard, Lancet, July 23, 1881, p. 123.
 ${ }^{2}$ "Anything which interferes with the transmission of motor impulses from the cerebrum down the lateral columns exaggerates the tendon reflexes, becnuse the normal bulanee between the reflex function of the cord mud the controlling intluence of the brain is thereby disturbed."-Buzzard, loce eit.
 ${ }^{2}$ Dixon Mann, Lancet, July 21, 1884.

[^275]: ${ }^{1}$ Knhler, Myelitis in Hereditary Syphilis, Juhbuch für Kimderkrmkheiten, 1879, Bd. xiv. S. 392.
 ${ }^{2}$ Eisensehutz, Jahrbuda fur Kinderkrakheiten, Bd. iii., N. F., 1870.

[^276]: ${ }^{1}$ MacSwiney, Dublin Monthly, I88t, vol. Mxxii. p. Hit.
 ${ }^{2}$ Möbius, (ntralblatt fir Nervenheilkumd, 1886.
 ${ }^{3}$ Ge\%a Dul" *ka, Centrallatt für Klin. Med., 1882, Bd. iii. S. 528 ; Lit\%mann, Arehiv fiul Gyn., 1881 ; "nd Medead Times and Gazate, February 2l, 1881

 - Weber, Beibrige zur Pathol, Anat. der Neugeborenen, Kiel, 1859 (quoted by Litzआ!(11).
 ${ }^{3}$ Little, 1 ramsuction . if the Obstetrienl Society of London, 1862.

[^277]: ${ }^{1}$ Wabrbull fïr Kinkermakheiten, 1881, Bd. svi.
 ${ }^{2}$ Dublin Monthly, 1881, vol. Ixxi.

[^278]: ${ }^{1}$ Under which title it is described.
 ${ }^{2}$ Hughliums Jackson, I Anert, Juhe, $188,9$.

[^279]:

 Revere des Sciences Médionles, A pril, 1889, 1. 400.

[^280]: ${ }^{1}$ P＇ick，Jahatheb fur Kindurkrankbreiten，1883，Bd．xix．
 z＂spontancous meningeal bemorriare is unknown in ensly childhood．＂Gowers，op． clt．，15 201.
 ${ }^{3}$ Gruset，op．cit．，p．678．We have cited a case（Cuse XII．）where epllepay was followed by weningtis．
 ${ }^{6}$ Clitiond Allbett，Lancet，18i0，vol．ii．p． 84.

[^281]: ${ }^{1}$ See Lange, Jabrb, für Kinderkrnah., 1879, Bu. xiii. S. 94.
 ${ }^{2}$ Retraction of the head may be called either a spinal or a cerebral syaptom.

[^282]: ${ }^{1}$ Multiple Neuritis, M. Allen Starr, New lork Medical liecord, January and February, 1887.
 ${ }^{2}$ Marie, Revue de Mélecine, Juillet, 1883, Sclérose en Plaques chez les Linfunts.
 ${ }^{3}$ It is more liable to be mistaken for choren.
 YoL. IV.-43

[^283]: ${ }^{1}$ When pain is severe, it is to be inferred that a localized meningitis complicates the systematic lesion, or that the medullary lesion has extended to the posteriur rovt zone.

[^284]: ${ }^{1}$ This is beautifully shown in some of Bramwell's illustrations from nature, loc. cit.

[^285]: ${ }^{1}$ In cpidemic cerebro-spinal fever the pia-infiltration is gelatinous, excessively abundant, and produced with great rapidity.

[^286]: ${ }^{1}$ These experiments have recently been repeated by Herter. See Ihiladelphin Medical News, Marels, 1889, A Study of Experimentul Myelitis.

[^287]: ${ }^{1}$ Berliner Klinische Wochenschrif, 1888.

[^288]: 'Halter thinks that heat is useful in tetanus because tending to destroy its pathogenie mierob: In non-specific meningitis the object of the bath is mather to determine bood to the surface of the body, and to act upon the vast surface of cotaneous nerves. sitll, it is to be remembered that the ral origin of many cases of meningitis is entirely obseure, that the meninges are always liable to be alleeted in infections diseases, and many cases of apparently spontancous meningitis may yet be shown to depend on bacterial infection. Finally, diseases which begia with a chill frequently do well under treatment by heat.
 ${ }^{2}$ Stillé, Epidemic Cerebm-Spinal Meningitis, 1867, p. 158. Large doses are advented as alone efficacious. They are needed early in the attack. As the opium enn only aet symptomatically in this disease, analogy would seen to justify its employmint in other furms of meningo-myelitis.
 ${ }^{3}$ Nothuagel and Rossbueh, Handbuch der Araneimittel.

[^289]: ${ }^{1}$ Behin, Schmidt's Jahrb., 1865, Bd. exxvii. S. 16, rehtes three adult cases, the lat that of a woman with paraplegia and sphincter-paralysis coming on after eonfinement. She had been trented for two months without success, when the iodide was first given, in duses of from one to five grommes a day. Improvement in ten days, begiming ability to walk in four weeks, and reeovery in eight weeks. The sphincter-paralysis in this ease exeludes the diagnosis of neuritis.
 ${ }^{2}$ Wunderlich, Arch. fir Meilk., 1864, Bd. v., and Schmidt's Jahrl., 1865, Bd. cxxri. S. 38. Three cases out of six were treated by iodide in harge doses, and recovered; the other three died.
 ${ }^{3}$ Ueber die Wirkung des Iod und Iodkalium auf das Nerven-System, Benedikt, Schmidt's Juhrbücher, 1861, Bd. exv. S. 284.

 - Rheumatic meningitis of the cerebrum is more frequent than that of the corl, and its elinical identity is betor estabished; but it does not seem to complicate the spinal rheumatic meningitis.

[^290]: ${ }^{1}$ One-sixtieth grain of the salt three times a day for children under ten.
 ${ }^{2}$ Arch. f. Exp. Pharm., 1878, Bd, x.
 ${ }^{3}$ The reports of Seguin on the beneficial influence of iodide of potassium (one hundred and fifty to one huodred and eighty grains) upon rapilly-advanciug syphilitic myelitis all refer to adults.
 ${ }^{4}$ Erb, Ziemssen's Handbuch.
 ${ }^{5}$ The marked difference in the action of the poles, which are extermil to the cord, does not imply nny corresponding difference in action nt the intrapolar space occupied by the disensed tissues.

[^291]: ${ }^{1}$ In the hystericnl paralyses which ure so easily confounded with those dependent on chronic meningitis (see supra, Cuse XVI., from Seeligmüller), this supporting method is absolutely essential. An adult womun mbler the writer's care, confined to bed and a recumbent position fur three yeurs, was enabled to walk in a few weeks by neans of a Taylor brace and Sbatler chin-piece.

[^292]: ${ }^{1}$ Disenses of the Nervons System, p. 2int.
 ${ }^{2}$ (Gowers (op. cit., p. 204) does not believe this, and says that there is no vulid evidence of the intra-uterine development of the paralysis.
 ${ }^{3}$ Philadelphia Medical News, July 12, 1890.
 ${ }^{4}$ Studies in Clinienl Medicine, vol. i. No. 1, p. I1.

[^293]: ${ }^{1}$ American Journal of the Medical Sciences, A pril, 1875.

[^294]: ${ }^{1}$ Phila. Med. News, Nov. 13, 1886.

[^295]: ${ }^{1}$ Regressive laralysis, William H. Barlow, M.D., Munchester, 1878.
 ${ }^{2}$ Lancet, 187%.

[^296]: ${ }^{1}$ Lyon Médical, January und February, 1888.

[^297]: ${ }^{1}$ Dublin Quarterly, 1850 ; Berlin. Klin. Wochenschr., 1874.
 ${ }^{2}$ De la Paralysie de l'Enfance, Paris, 1864, p. 36.

[^298]: ${ }^{1}$ A System of Practical Medicine, Lea Brothers \& Co., 1886, vol. v. p. 1123.

[^299]: ${ }^{1}$ Chareot and Joffroy, quoted by Jucobi, loc. cit.

[^300]: ${ }^{1}$ Quoted by Gowers, op. cit., p. 264.

[^301]: ${ }^{1}$ The Limitation of Therapeuties in Infantile Paralysis, New York Medieal Jourmal, April 3, 1886.
 ${ }^{2}$ American Journal of the Medical Scienees, April, 1875.

[^302]: 1 New York Medical Record, October 1, 1887.
 ${ }^{2}$ Journal of the American Medical Associntion, 1888, p. 303.
 ${ }^{8}$ Ieonographie de !a salpertriere, voll i.

 - Britiah Medieal Journal, March 23, 1880.
 ${ }^{6}$ Le Prugrès Médical, June 30, 1888.
 ${ }^{6}$ La Frunce Médicale, Appil 28, 1888.

[^303]: 'Some assert (Blocq and Marinesceo) that Friedreich's ataxia is a primary degenerative disense of the spinal vessels, and that the ne:vous tissue is seeondurily involved. All agree that the posterior columns and literal truces are first and most nffected, because they are latest in being developed and are the mast bighly differentinted and specinlized.

[^304]: ${ }^{1}$ Gnzette Medicnle, 1874, No. 3.
 ${ }^{2}$ Berlin. Ḱlin. Worhenselir., 1885, No. 5.
 ${ }^{3}$ Ibid., 1887, No. 7.

 + Progrès Módical, 1888, Nos, 23, 24, 30.
 ${ }^{3}$ Cincinnnti Lancet and Clinic, 1888, p. 354.
 ${ }^{6}$ Arch. de Méd. Expér. et d'Amat. Path., May, 1889.

[^305]: ${ }^{1}$ Journal of Nervous and Mental Diseases, July, 1886.
 ${ }^{2}$ Ibid., January, 1888.

[^306]: ${ }^{1}$ Edinburgh Medienl Journal, vol. xxxii. No. 3.
 ${ }^{2}$ Hadlich, Arch. f. Psych., 1880, Bd. x. p. 97.
 ${ }^{3}$ Wille, Arch. f. F'ych., 1880, Bd. x. p. 97.
 4 Heydenreich, Virchow's Archiv, iv., 1885, Bd. c. p. 24.
 ${ }^{5}$ Internat. Monatschr. f. Anat. u. Phys., 1888, p. 11.
 ${ }^{6}$ Virchow's Archiv, Bd. evi. p. 390.

[^307]: ${ }^{1}$ Beitrige zur Lehre der Spina Bifida.

[^308]: ${ }^{1}$ Conrad Brunner, Virchow's Archiv, Bd. cvii. p. 494.
 ${ }^{2}$ Virchow's Archiv, Bd. Ixxxvi. p. 263 ;
 ${ }^{3}$ Die Schädeldifformität bei der Encephalocele Congenita.

 - Beitrige zur Lehre der Spina Bifida.

[^309]: ${ }^{1}$ Post, Basilar Kyphosis, New York Medical Record, December 12, 1889.

[^310]: ${ }^{1}$ New York Medical Record, January 11, 1881.

[^311]: ${ }^{1}$ Neurolog. Centralblatt, October, 1886.
 ${ }^{2}$ McNutt, American Journal of the Medical Sciences, January, 1886.
 ${ }^{3}$ Ibid., January, 1885.

[^312]: ${ }^{1}$ American Journal of Neurology and Psychology, 1882, p. 386.
 ${ }^{2}$ Journal of Nervons and Mental Diseases, September and Octuber, 1886.
 ${ }^{3}$ Ibid., September and October, 1887.

[^313]: ${ }^{1}$ Hewitt, Hohmes's System of Surgery, 3d ed., vol. i. p. 570.
 ${ }^{2}$ Plain collodion will do very well, while shreds of absorbent cotton can be substituted for the gauze.
 ${ }^{3}$ Notwithstanding the experiments of haboratory investigators, I still eling to the use of this drug, my clinieal experience apparently contradicting that of the experimenters. Probnbly both are eorrect, recent observations going to show that iodoform destroys the virulence of the ptomaines resulting from the multiplication and growth of certain of the microoorganisms.

[^314]: ${ }^{1}$ Medical Press and Circular, 1886, N. S., p. 495.
 ${ }^{2}$ The Operations of Surgery, p. 197, W. H. A. .facobeon, F.R.C.S., Philadelphia, 1889. This suggestion has been recently suceessfully curried into effect by another surgeon.

[^315]: ' At least o wher surgeon clams the peculiar form of hindle flgured, and I cannot shy that Mr. In dey does more than state his prefrrenee for this form of instrment.
 ${ }^{2}$ Boiling in plain watar will render aseptic any instrument if kept up for mot less than five minutes, and bas the advuntage of not injuring the edge of eutting instruments. For this reasons 1 sueel instru ients are desirable; but even ivory or ebony handles will often stand this treatment : if not, they must be clemsed by long imnersion in the five per cent. carbulic neid solution.

[^316]: ${ }^{1}$ This is absent in early life, and at all ages over a large part of the sqummon bons and in the occipital fosse.

[^317]: ${ }^{1}$ In sets of trephining instruments munufactured over fifty yems ngo, there was a similar sted instrument with two handes constructed tor this special purpose, as well as -smented trephines, such as were reinvented by Dr. J. B. Roberts a few years since.

[^318]: ${ }^{1}$ I specially mention this because I have known of a surgeon placing the bone in : mereuric solution contained in a metal hasin, which, of course, decomposed the antisepti", subsequent neerosis of the replaced button resulting, compelling its removal.

[^319]: 1 This drug should be curcfully washed with bichloride, repowdered, and kept in useptic receptacles.

[^320]: ${ }^{1}$ They are said never to have been observed belore se zen years of age, and after that but ravely before puberty.

[^321]: ${ }^{1}$ see page 779.
 ${ }^{2}$ For the preparation of these cases for operation, arrest of hemorrhage, etc., see sections on removal of brain-tumers, pp. 774, 777, 778.
 ${ }^{3}$ See International Encyclopadia of Surgery, vol. v., art. "Head-Injuries."

[^322]: ${ }^{1}$ see report of a case of the author's rend before the Philadelphia County Medical Society, Muy 8, 1889.

[^323]: ${ }^{1}$ For a more elaborate treatment of this subject consult the author's urticle in the International Eneyclopedia of Surgery.

[^324]: ${ }^{1}$ I ned hardly point out that in any important operation upon or injury of the head the whole sealp had better be shaved, for many and obvions reasons.
 ${ }^{2}$ Calomel will remain upon the irritable stomach when other purgatives will be at once rejected.

[^325]: ${ }^{1}$ Philadelphia Medical Times, 1879.

[^326]: 'Anthor's article, Interuational Encyclopredia of Surgery, vol. v. p. 73; also Larrey's Memoirs of Military Surgery, Amer, ed., 1814, vol, i. p. 307.

[^327]: ${ }^{1}$ Op. cit., loc. eit.
 ${ }^{2}$ Any bemorrhage at this or any wher stage of the operation must be arrested as indicated in the sections on Trephining and Brain-Tumors, pp. 756, 757, 750, 777, 778.

[^328]: ${ }^{1}$ Verhandlungen der deutsch. Ges. f. Chirurgie, 1883.
 ${ }^{2}$ Deutsche Zeitechrift f. Chirurgie, 1885, Bde. xxi. u. \quad xiii.

[^329]: ${ }^{1}$ Since the operntion under these cirenms'ances will be indicated upon bowhaing and other grounds. I have not mentioned the usat symptoms or the fact that the dura mater dues not pulsate mal bulges into the trephine ; yet this is nol a certuin sign of anything lout increased intracmanal tension, and there may be a distant focus of pus with a pulsating brain.
 ${ }^{2}$ Barker, British Medical Journat, 1887, wol. i. p. 407.
 ${ }^{3}$ Barker, ilid., December 11, 1886, p. 1155.
 Vol. IV.-49

[^330]: ${ }^{1}$ Kroulcin, Deutsche Zeitsehrift f. Chirurgie, 1886, Bd. xxiii. Heft 3 und 4

[^331]: ${ }^{1}$ Northwestem Lancet, November 15, 1885.
 ${ }^{2}$ Fluhrer, op. cit.
 ${ }^{3}$ Weisemann, Uuher die Indicationon zur Trepanationen mit hesonderer Berticksichtigung, ete., Deutivehe Zeitechrift f. Chirurgie, 188., Bde. xxi. u. xxii.

[^332]: ${ }^{1}$ This is a far better showing than that of my statisties endreted in 1883 , and is unquestionably due to the prevalence of tatiseptic methods. Indued, Kronlein maintains that this operation, nseptically performed, is perfecty sate, deall resulting simply from complications unconnected with the operation.

[^333]: ${ }^{1}$ An miline pencil will sometimes sutice; forline will not do if carbolic acid be ned; while, ulthough it may blister, nitrate of silver exposed to the sunlight is the only sure agent.
 ${ }^{2}$ Tarturic solution of mercuric bichloride.

[^334]: ${ }^{1}$ This stripping off of pericranium involves no interference wath the nutrition of the bone.

[^335]: ${ }^{1}$ See p. 750 for special directions for using the large trephines.
 ${ }^{2} \mathrm{Or}$ between warm aseptic aponges (Iorshy).
 ${ }^{3}$ Clotting is also favored by the presence in quantity in the brain of the lecithin proteil compound diseovered by 1 br . Woolridge to phy a very important purt in the process of coagulation.
 ${ }^{4}$ Birlsull and Weir, Ammals of surgery, August, 1887, p. 149.
 ${ }^{5}$ New York Medical Jommal, March $28,1885$.

[^336]: ${ }^{1}$ See aulhors article "Head-lnjuries," International Encyolopadia of Surgery ; ako

 ${ }^{2}$ See Depn on Air-Embedism, or Berlin, Klin. Wochenschr., 1881, p. 673.
 ${ }^{3}$ See page 260.
 Amerienn Jourmal of the Medical Sciences.
 ${ }^{5}$ See Birdall and Weir's casc'; Nancredr, Medical News, November 24, 1888.

[^337]: 'Horsley's second paper.

[^338]:

[^339]:

[^340]: ${ }^{1}$ From Dr. Keen's paper.

[^341]: ${ }^{1}$ Medical News, December 1, 1888.

[^342]: ${ }^{1}$ Sce pp. 737, 778

[^343]: ${ }^{1}$ Archives of Pediatrics, vol. ii. No. 2, F'ebruary, 1885, p. 95.

[^344]: ${ }^{1}$ Pepper's System of Medicine, vol. v. p. 1217; Anæmia of Infancy and Childhood, A. Jucobi, Arehives of Medicine, vol. v., 1881.

[^345]: ${ }^{1}$ A Manual of Diseases of the Nervous System, by W. R. Gowers, M.D., F.R.C.P., Philadelphia, 1888.
 ${ }^{2}$ Lectures on Children's Diseases, by E. Henoch, vols. i. and ii., New Sydenham Soc. Trans., 1889.

[^346]: ${ }^{1}$ Text-Book of Medicine, A. Strümpell, Amer. ed., 1887.
 ${ }^{2}$ Megrim, Sick Headache, and Some Allied Disorders, by E. Liveing, Louton, 1873.
 ${ }^{3}$ Principles and Pructice of Medicine, by A. Flint, Gth el., Philudelpma, 1886.

[^347]: ${ }^{1}$ Pepper's System of Medicine, vol. v. p. 1231.
 2 "The puin" (in Pott's disease) "is referred to the spinal column only in very rare instances."-Cyclopedia of the Diseases of Children, vol. iii. p. 1024.

[^348]: ${ }^{1}$ This Cyelopadin, vol. iii. p. 1024.
 ${ }^{2}$ Maladies du Système nerveux, par A. Vulpian, Paris, 1879, p. 29; Pott's Disease, Shuffer, New York, 1879, p. 5.
 ${ }^{3}$ Bodily Deformities, Reeves, London, 1885, p. 127.

 - Ibid.
 ${ }^{6}$ Orthopedie Surgery: Bradford and Lovett, New lurk, 1890.

[^349]: ${ }^{1}$ Lancet, July 9, 1887, p. 59.
 ${ }^{2}$ Gowers, op. cit.

[^350]: ${ }^{1}$ Pepper's System of Medicine, vol. v. p. 604.
 ${ }^{2}$ P. Davidoff, Thesis, Erlangen, 1875; H. Emminghaus, "Ueber halbseitige Gesichtsatrophie," Deutsches Archiv f. Klin. Med., 1873, xi. 96.

[^351]: ${ }^{1}$ Jahresber. des Berner Kinderspitals, 1879.

[^352]: ${ }^{1}$ Henoch ($\mathrm{q} \%$. cit.) reports a case of intussuseeption at eight years, in which unilatral convulsions took place on the day of denth.
 ${ }^{2}$ Op. cit. We could hardly go so far with this excellent anthor as to intrust its administration to the friends. He deelares his belief, however, that it is perfectly sufe to do so, and that he has never seen my ill eonsequences therefrom.

[^353]: 'Some authors-as Strumpell, Henoch, Koppe-make a distinction between the paroxysmal and the peristent forms of contracture, deseribing the hatter under the mame of idioputhice contractures, or arthrogryposis. There appears no sutlicient ground, however, for such a distinction.
 ${ }^{2}$ Simon, Matraits, Thèse de Paris, 1877. Strümpell expresses a doubt as to the gemuineness of the disease in such cases (op. cit.).

[^354]: ${ }^{1}$ Strümpell, op. cit.
 ${ }^{2}$ Henoch ($o p$. cit.) regards the affection ("idiopathic contractures") ns an nbortive form of eclampsia.

[^355]: ${ }^{1} O_{p}$. eit. Similar enses are reported by Folliet and Simon, Rev. Mens., February, 1883; Lancet, 1879, i. 26.
 ${ }^{2}$ Neunzehnten Jahresbericht des Jemer'schen Kinderpitals, Bern. 1882.

[^356]: ${ }^{1}$ Paralysies ohstétricales des Nouvean-nés, Paris Thesis of P. A. H. Nadaud, No. 282, 1872. Also Duhlin Quarterly Jourmal of Medieal Seience, 1859, vol. xxvii. p. 155, enses of Dr. George H. Kidd. Also, Henoch, op. cit.
 ${ }^{2}$ Evory Kennedy, Dublin Journal of Medical Science, 1836-37, vol. x. p. 430.
 ${ }^{3}$ Nudand, op. cit.
 ${ }^{4}$ Gowers, op. cit., p. 647.
 ${ }^{5}$ Parrot et Troisier, Note sur l'Anatomie pathologique de la Paralysie faciate, etc., Paris, 1876, vol. iii. p. 449 et seq.
 ${ }^{6}$ Guéniot, Paralysie consécutive à la Compression des Nerfs, Paris Thesis, No. 134, 1872.

[^357]: ${ }^{1}$ Gowers (op. cit.) reports an interesting case in which complete and permanent paraly sis Whe camed be a sehool-master's striking a boy with the corner of a book jast below the emr.
 one per eent, an estimate which Gowers (op. cit.) Hinks too low. Of eighty cases of facial pamlysis (not inchding coses due to em-disense and sybilis), it occurred but twier inder ten yours (Gowers).
 ${ }^{3}$ (rowers (op. cit.) Culls attention to the furow that is seen in the paralyzed cheek in children as the result of secondary contmeture ns voluntary power mourns. It is quite as disflguring as the previous condition, and in severe cmses may be permanent.

[^358]: ' Medical News, vol. xlvii. p. 6.37.
 ${ }^{2}$ Midwitres, W. Smellie, Landon, 1758, vol. ii. p. 506.

 * Guéniok, Bullelin de la société do Chimgie, Paris, 1867, vol. viii. pr 34.
 ${ }^{4}$. Sumel des Aceromements, 184i, vol. ii. 1. 785.
 ${ }^{3}$ Henoeh, op. cit. A viohnt wreneh in putting on a child's jacket prohued puralysis of the deltoid, which disappured only nther several veeks' "pplicution of frictio and electricity

[^359]: ${ }^{1}$ New York Modienl Jomrmal, May, 1874.
 ${ }^{2}$ Nemrolog. Contrablatt, 1884.
 logieal Sowiety of Eughand, wol. v.

 * Articles by Sayre on the subjeret were poblinherl in the following: Transactions of the American Medieal Association, 1870; Medionland Sargienl Reporter, 1876, val. xxxv.;
 Transactions of the Ninth Intermational Melfal Congress, vol. iii.
 ${ }^{6}$ The following case, which I take from my motrobek, is tyjucal of this condition and shows the resulfo of operation. II. B., there years old, a willoleveloped boy, walk bal bully,
 thigh; glutal moscles flat abl flably. Fromurnt priagism, genitalia wery spositive, and prepuce long and narrow. Operation of eircumersion was performed $\Lambda_{\text {pril }} 9,188$. Large ghantity of stnegma thried out. No after-treatment. The chitd impreved at once, and gradually recovered muscular levelopment in the glatoal region. In three months after operation the thighs were as well develoned as the rest of the body.

[^360]: ${ }^{1}$ Lancet, July 28, 1883.
 ${ }^{2}$ Otis, American Journal of Obstetrics, 1874-75, vol. vii. p. 478.
 ${ }^{3}$ Eiggleston, Jommal of the Amoriom Medient Association, 1886, vol. vi. p. 611. In this ease the strahismos was assoeiated with paraplegin.
 ${ }^{4}$ Ulyse Bailly, Paris Thesis, 1872, No. 19, Paralysies conséchtives à quelques Maladies aigneês.
 ${ }^{5}$ Parnlysie diphthéritique, Paris, 1860.
 ${ }^{6}$ Des Paralysin's dans les Mundies aiguës, Paris, 1880, quoted by Gowers, op. cit.

[^361]: ${ }^{1}$ Yet Henoeh (op. cit.) has urver seen it after any firm exerpt laryngen diphtherin.
 ${ }^{2}$ Acembing to Ifenoeh (op) cit.), it is even more frequent after mild than after severe cases.
 ${ }^{3}$ Paralysis after Diphtheria, Transactions of the International Medieal Congress, Seventh Session, 1881, Londen, vol. iv.

 * Déjérine, Lésions du Système nurreux dans la Paralysic diphthéritique, 1878; D'Espine and Gombault, as quoted by Samé, Diphtherie, Paris, 1877.
 Bubl!. Einiges über Diphtherie, Zeitschr. f. Biologie, Munich, 1867.
 ${ }^{6}$ Denteches Archir f. K'in. Med., viii. 1871.
 ${ }^{7}$ Oertel, op. eit.

[^362]: ${ }^{1}$ Henoch (or. cit.) did not observe nny diminution of electrical excitability in his cases.
 ${ }^{2}$ Virchow's Archiv, 1885, Bd. xcix. p. 293.

[^363]: ${ }^{1}$ Quoted by A. Pick in Eulenburg's Real-Encyklopädic, Band xvi. p. 99.

[^364]: ${ }^{1}$ Diseases of the Nervous System, Amer. ed., p. 395.
 ${ }^{2}$ Berlin. Klin. Wochenschr., 1888, Nos. 25, 34, 35.
 ${ }^{3}$ New York Medical Journal, December 8 and 15, 1888.

 * A full description of this case will be found in the Canada Lancet for September, 1884:

 VoL. IV.- 52

[^365]: ${ }^{1}$ Revue de Médecine, 1886, p. 1004.
 ${ }^{2}$ American Journal of the Medical Seiences, September, 1889.
 ${ }^{3}$ On Heredity in Progressive Muscular Atrophy, as illustrated in the Farr Family of Vermont, Archives of Medieinc, 1880.

[^366]: ${ }^{1}$ Revue de Médecine, sixième année, p. 97.
 ${ }^{2}$ Archiv für Psychiatrie und Nervenkrankheiten, Band xx. S. 685.
 ${ }^{3}$ Brain, vol. vii. p. 334.
 ${ }^{4}$ Ueber den mit Hypertrophie verbundenen progressiven Muskelseliwund, etc., 1886.
 ${ }^{6}$ Zur Einleitung in die Elektrotherapie, Wiesbaden, 1885.
 ${ }^{6}$ Brain, July, 1887.
 ${ }^{7}$ New York Medical Journal, December 15, 1888.

 - Brain, vol. xi. p. 230.

[^367]: ${ }^{1}$ American Journal of Insanity, quoted in Juhresber. f. ges. Med., XXII. Juhrgang, p. 161 .

[^368]: ${ }^{1}$ Deutsehes Archiv f. Klin. Med., vol. xlii. p. 492.
 ${ }^{2}$ Virchow-Hirseh, Jahresbericht, 1877, Band ii. S. 124.
 ${ }^{3}$ Deutsches Archiv f. Klin. Med., Band xvi. S. 463.

[^369]: ${ }^{1}$ Zeitschrift für Klin. Med., Band xv. S. 61.

[^370]: ${ }^{1}$ Headaches, p. 391, 4th ed., June, 1888.

[^371]: ${ }^{1}$ New York Medical Record, December 81877.

[^372]: ${ }^{1}$ The Pratitioner (London), vol. ix. p. 267.

[^373]: ${ }^{1}$ New York Medical Record, December 8, 1877.

[^374]: ${ }^{1}$ The history of ehorea has been well written by Soltmann in Gerhardt's Manual, vol. v.
 ${ }^{2}$ Journal of Nervous and Mental Diseases, July, 1881.

[^375]: ${ }^{1}$ British Medical Joumal, February, 1887.
 ${ }^{2}$ 'epper's Systen of Medicine, vol. v. p. 441.
 ${ }^{3}$ Medical und Surgical Reporter, 1872.
 ${ }^{4}$ Berlin. Klin. Wochenschr., 1885.
 ${ }^{5}$ Journal of Mental Scienees, 1881.
 ${ }^{6}$ Neurolog. Centralbatt, 1888.
 ${ }^{7}$ Virchow's Arehiv, vol. xei.
 ${ }^{8}$ Jonrnal of Nervous and Mental Diseases, February, 1889.
 ${ }^{9}$ At the meeting of the American Neurological Asweiation. See Journal of Nervous and Mental Disenses, 1890, p. 427.
 ${ }^{10}$ Diseases of the Nervous System, p. 957.
 ${ }^{11}$ This table includes only cases seen within the last year and a half.

[^376]: ${ }^{1}$ Lectures on Nervous Diseases.
 ${ }^{2}$ The Polyelinie, January, 1887 : ef. also Dr. Mitchell's views.
 ${ }^{3}$ Wieke's (1844) and Gerhardt's statisties are in general agreement with this.

[^377]: ${ }^{1}$ Mém. de l'Acad., xv. 180_{0}.
 ${ }^{2}$ Arch. gén. de Méd., 1886, xii.
 ${ }^{3}$ Berlin. Kilin. Wochenschr., 1886, No. 10.
 ${ }^{4}$ Ziemssen's Cyelopredia, vol, xiv. p. 427.
 ${ }^{5}$ American Psychologienl Journal, February, 1876.
 ${ }^{6}$ Pathologie und Therapia der Nervenkraukheiten, p. 397.
 ${ }^{7}$ Lancet, January 12, 1889.
 ${ }^{8}$ Ibid., May 4, 1889.

[^378]: ${ }^{1}$ Rev. mens, de l'Enfance, 1889.
 ${ }^{2}$ Statistics of the British Medical Association Collective Investigation Committee und of Gowers.
 ${ }^{3}$ This statement is based upon numerous statisties.
 4 Ruheman (Berlin Dissertation, 1889) and Landield Joues (British Medienl Journal, 1889) are the recent writers on the choren of pregnamey.

[^379]: ${ }^{1}$ British and Foreign Medico-Chirurgical Review, 1868.

[^380]: ${ }^{1}$ Guy's Hospital Reports, 18 T.
 ${ }^{2}$ Jahrb, f. Finderheilkunde.
 ${ }^{3}$ Allg. Wien. Med. Że e tung, 1868.
 ' Ziemssen's Cyelopredia, vol. xiv.
 ${ }^{5}$ Medieo-Chirurgical Transactions, 1876, vol. xli.
 ${ }^{6}$ Lancet, 1885.
 'Virchow's Archiv, vol. lxi.

[^381]: ${ }^{1}$ Medial Reeord, October 19, 1889.
 ${ }^{2}$ Brain, July, 1889.
 ${ }^{3}$ Lancet, November 22, 1889.
 ${ }^{4}$ Berlin. Kilin. Wochenschr., Augusi 19, 1889.

[^382]: ${ }^{1}$ Quoted by Gowers.

[^383]: VoL, IV.-54

[^384]: ${ }^{1}$ Lyon Médical, 1875, No. 49.
 ${ }^{2}$ Transactions of the International Medical Congress, 1881, vol. iv. p. 116.
 ${ }^{8}$ Jahrb. f. Kinderheilkunde, March, 1881.

[^385]: 1 Wochenhb, der Gevell-ch, der Wiencr derzte, 1869.

[^386]: ${ }^{1}$ See Sachs and Paterson, Journal of Nervous and Mental Diseases, May, 1890.

[^387]: ${ }^{1}$ Very few children will, in my experience, continue taking either koumys or matzoon for any length of time.
 ${ }^{2}$ New York Medical Journal, March 21-May 31, 1890.
 ${ }^{3}$ Bumin, 1889.
 ${ }^{4}$ Wiener Med. Wochenselr., 1889.

[^388]: ${ }^{1}$ Arsenic, like the iodides, is frequently not well borne at first; ufter a few day's intermission we can go on increasing the dosage without incurring further trouble.

[^389]: ${ }^{1}$ Remarks before the Congress of Americun Physicians wat Surgeons, Philadelphia Medical News, Scptember 2E, 1888.

[^390]: ${ }^{1}$ New Sydenham Society's Translations, 1859, vol. v.
 ${ }^{2}$ Ziemssen's Cyclopredia, Amer. ed., vol. sii.
 ${ }^{3}$ Lectures on the ! Dagnosis and Treatment of Functional Nervous Disorders, 1868, Part T. p. 37.

 4 Quoted in Ziemssen's Cyelopredia, vol. xiv. p. 198 and vol. xi. p. 281 ; nlso Virchow's Archiv, vol. xliv.
 ${ }^{5}$ Disenses of the Bram, London, 1885, p. 47.

[^391]: ${ }^{1}$ Gey's Hospital Reports, 1873, 3d ser:, p. 18.
 ${ }^{2}$ Brain, April, 1886.
 ${ }^{s}$ Quoted by Haguenin, Ziemssen's Cyclopedia, vol. xii. p. 661.

[^392]: ${ }^{1}$ Quoted by W. R. Gowers, Medieal Ophthalmoscopy, 1879, Jp. 158 and 159.
 ${ }^{2}$ Loc. cit., and London Lancet, $187 \overline{5}$, vol. ii. p. 655.
 ${ }^{9}$ Leçons sur les Fonctions motrices du Cervean et sur l'Épilcpsie cérébrale, Paris, 1887, p. 175.

 * Practice of Medicine, 1872.
 ${ }^{5}$ Diseases of the Throat and Nose, London, 1880, vol. i. p. 480.

[^393]: ${ }^{1}$ Ninth International Medical Congress, Washington, 1887, vol. viii. p. 510.
 ${ }^{2}$ Australian Medical Journal, 1878.

[^394]: ${ }^{1}$ Gazette Médicale de Paris, Junuary 21, 1888.
 ${ }^{2}$ Philadelphia Medial News, February 13 and 20, 1886.
 ${ }^{3}$ American Journal of Psychology, October, 1887.

 * Wernicke, quoted by Nothuagel, Ziemssen's Cyclopiedin, vol, xiv.

[^395]: 1 A. Jacobi, Introductory to Kealing's Cyclopiedia of the Diseases of Children, vol. i. 1. 3 ; also Iutestinal Diseases of Infancy aud Childhood.
 ${ }^{2}$ St. Bartholomew's Hospital Reports, 1867, vol. iii.
 ${ }^{3}$ Diseases of Childron, Paladelphit, 1874.
 ${ }^{4}$ Ziemsseu's Cyclopedin, vol. vii. p. 995. Yol. IV.-5.5

[^396]: ${ }^{1}$ American Journal of Ohstetrics, 1869-70, vol. ii.
 ${ }^{2}$ The Book of Health, edited by Malcolm. Morris, London, Paris, and New York, 18×3, p. 234.
 ${ }^{3}$ Nervous Diseaces and their Diagnosis, 1888.

[^397]: ${ }^{1}$ American Journal of the Modical Sciences, Junary and April, 1872.
 ${ }^{2}$ Senater, Zienssen's Cyclopredia, vol. xvi.

[^398]: ${ }^{1}$ Pepper's System of Medicine, vol. ii.
 ${ }^{2}$ Quoted by Mackenzie, Reynolds's System of Medicine, vol. iii. p. 449.
 ${ }^{3}$ Der weiche IIinterkopf, 1843 , p. 161.
 ${ }^{4}$ Manual of the Discases of the Throat and Nose, vol. i.
 ${ }^{5}$ Ziemssen's Cyclopredia, Amer. ed., vol. vii. p. 1000.
 ${ }^{〔}$ Ibid., vol. xvi. p. 199.
 " "Relationship of Cmmotabes to Riekets ond Congenital Syphilis," Transactoms of the Pathological Society of London, 1881, vol. sxxii. p. 327 et seq.
 ${ }^{8}$ A Practical Treatise on Discase in Children, London, 1881, p. 208.

[^399]:
 ${ }^{2}$ (iaz. Hebdom, de Méd. at Chirurg., 1881, pp. 85and 85.
 ${ }^{3}$ British Medien Jourmal, August 29, 188if.

 - New York Medical Jompal, July 4, $488.5, \mathrm{p} .2$.
 ${ }^{3}$ Americen Journal of the Madical Sciences, July, 1886, p, 93 et seq.
 ${ }^{6}$ Disension on lickets, Transactions of the Pathological Society of Londen, 1881, vol, xxxii. p. 358.

[^400]:
 ${ }^{2}$ Juhmueh I'. Kinderhesikunde, B. siv. H. I.

[^401]: I L'Union Médiealo do Cmada. Aumush. 1887.

[^402]: 'St. Bartholomew's Mospital Reports, vol. ii.
 ${ }^{2}$ British Medical Juurnal, June 18, 1887.

[^403]: ${ }^{1}$ Lectures on Children's Disenses, New Sydenham Socirtş, London, 1889, vol. i. p. $18{ }^{2}$.
 ${ }^{2}$ The Book of Healh, edited by Maleohm Morris, London, Paris, and New York, 1883.
 ${ }^{3}$ Captain Catlin's Investigations, Americun Journal of the Medical Sciences, April, 1887, and Transuctions of the College of Physicians of Philadelphia, vol. vi. Two papers,

 4Sensonal Relations of Chorea and Rheumatism, Medieal News, Philadelphia, November $18,1886$.

[^404]: ${ }^{1}$ H. C. Wood, Toner Lecture, No. 4, 187\%.
 ${ }^{2}$ The Dymmies of Norve and Mascle, London, 1871.
 ${ }^{3}$ Transactions of the International Medical Coneress, Philadelphia, 1876, p. $\mathbf{7 9 6}$.
 4 Fever: "Clinieul situde, by 'T. J. Mnclagan, Lumdon, 1888, p. 965.
 ${ }^{5}$ The Curtwright Lectures, On the General Puthology of Fever, Philadelphin Medicul News, A pril 7 and 14, and May 19 and 26, 1888.

[^405]: ${ }^{3}$ A Study of Morhid and Normal Physiology, Smithsonian Contributions to Knowledge, 1880 ; also, Pepper's System of Medicine, art. "Thermic Fever," vol. v. p. 394.
 ${ }^{2}$ Diseases of Children, 4th ed., p. 285.
 ${ }^{3}$ Ziemssen's Cyelopedia, vol. v. p. 102.
 ${ }^{4}$ Clinical Studies of Disense in Children, Philadelphin, 1876, p. 49.
 ${ }^{5}$ Disenses of Children, edited by Sturr, Phihdelphin, 1885, p. 344.

[^406]: ${ }^{1}$ Pepper's System of Medicine, vol. iii. p. 329.
 ${ }^{2}$ Da Traitement do la Pueumonie aigué, Paris, 1880, p. 56.
 ${ }^{3}$ La Pneumonie aiguë chez les Entimts, Paris, 18if7, p. 63.
 ${ }^{+}$Medienl Reeord, April 7, 1888.
 ${ }^{3}$ On Disease in C l/dren, 1884, p. 275.
 ${ }^{6}$ Quoted by Hemwh, loe. eit. ; also Berlin. Klin. Wochensehr., 1868, No. 24, und Zeitschrift f. Klin. Med., Bd. vii. H. 3.

 7 De la Coqueluche, vol. ii. p. 582.

[^407]: ' Ziemssen's Cyclopredia, vol. xii. p. 434.
 ${ }^{2}$ Ibid., vol. xii. p. 13 ; ulso, Virchow's Archiv, Bd. xl.

[^408]: ${ }^{1}$ Maurice Raynand, Gaz. Hebdom. de Méd. et Chir., 1881, p. 239.
 ${ }^{2}$ Diseases of Chiduen, 1887.
 ${ }^{3}$ Dynamics of Epilepsy and Convilsions, Guy's Hospital Reports; 3d ser., 1873, vol. xviii. p. 181.
 ${ }^{4}$ Practical Medicine, revised ed., vol. ii. p. 870.
 ${ }^{5}$ Disenses of the Throat and Nasal Pussages, New York, 1879, 2d ed., p. 629.
 ${ }^{6}$ British Medical Jeurnal, February 8, 1890.

[^409]: ${ }^{1}$ Diseases of the Throat and Nasal Passages, 2d ed., 1879.
 ${ }^{2}$ London Lancet, Mry 7 and May 14, 1887.
 ${ }^{3}$ Thesis for Degree of M.D., Cambridge, Ballière \& Co.

[^410]: ${ }^{1}$ Convulsions in Children, Gaz. Méd. de Paris, January 21, 1888; also review in Archives of Pediatrics, Philadelphia, May, 1888, p. 305.
 ${ }^{2}$ Des Convulsions clıez les Eıfants, Gaz. des Hôp., 1882, tome 1v. pp. 428-436.
 ${ }^{3}$ Op. cit., pp. 542, 543.

[^411]: ${ }^{1}$ H. C. Woonl, A study of Morbid and Normal Physiology, loc, cit.

[^412]: ' Virchow's Archiv, vol. lix.
 ${ }^{2}$ Ziemssen's Cyelopedia, Amer. ed., vol. xiv. p. 233.
 ${ }^{3}$ Anales Médico-Psychologiques, 1880, 6th ser., vol. iv. p. 415.

[^413]: ${ }^{1}$ Diseases of Children, 5th Amer. ed., 1874, p. 44.

[^414]: ${ }^{1}$ Cerebral Palsies of Children, Medical News, Philudelphia, August 11, 1888.
 ${ }^{2}$ Ziemssen's Cyclopredin, vol. xii. p. 178.
 ${ }^{3}$ Éelampsie et Épilepsie, Archives de Neurologic, 1884, tome viii. p. 48.
 ${ }^{4}$ Epilcpsy and other Consulsive Disenses, 1881, p. 2\%.
 ${ }^{5}$ Quoted by Wells, Treatise on the Diseases of the Eye, 1869, p. 219.
 ${ }^{6}$ Imperfect Teeth and Lamellur Cataract, Transuctions of the Pathological Society, London, 1875 , vol. xxvi. p. 235 et seq.

[^415]: ${ }^{1}$ Loe. cit., and discussion on M. Magitot's puper "Sur l'Érosion des Dents considérée comme signe rérospectif de l'Échmpsie infantile," Transuctions of the Intermational Medical Congress, Seventh Session, 1881, vol. iv. 1. 128.
 ${ }^{2}$ J. M. Da Costa and Morris Longstreth, Transactions of the College of Physieians, 1877, vol. iii. pp. 109 and 113.
 ${ }^{3}$ Quoted by Steffen, Ziemssen's Cyelopredia, vol. vi. p. 706.

 - Keating und Edwards, Diseases of the Heart und Circulation, ete., Philadelphia, 1888

[^416]: ${ }^{1}$ On Craniotabes, American Journal of Obstetrics, vol, iii., November, 1870.
 ${ }^{2}$ Infuntile Laryugismus, quoted by J. Lewis Smith, loc. cit., p. 443.

[^417]: ${ }^{1}$ Ziemssen's Cyelopadia, vol. vii. p. 1012.

[^418]: ${ }^{1}$ Topography of the Cerebral Cortex, American Journal of the Medical Sciences, April, 1887, p. 347.

[^419]: ${ }^{1}$ Loc. cit., p. 551.
 ${ }^{2}$ New York Medical Record, 1880, vol. i. p. 521.

[^420]: ${ }^{1}$ Étude critique des Travaux récents sur les Ane;thésiques, Revue des Sciences Médicales, etc., Paris, 1881, p. 747.
 ${ }_{2}$ Anerican Journal of Obstetrics, 1880, vol, xiii. p. 705.
 ${ }^{3}$ Archives of Pediatrics, 1884, vol. i.

 * London Lancet, April 22, 1882, p. 668.

[^421]: ${ }^{1}$ Meigs and Pepper, loc. cit.

[^422]: ${ }^{1}$ Ziemssen's Cyelopredia, vol. vii. p. 1022.
 ${ }^{2}$ University Medical Magazine, Mareh, 1889, p. 35
 ${ }^{3}$ Antipyrin in Laryugismus stridulus, London Laract, 1888, vol. ii. p. 961.
 Vol. IV.-57

[^423]: 1 The Avelepiad, 1887, p. 54.

[^424]: Althans, Diseases of the Nervons System, New York, 1878.
 Brown-Sequard, Researehes on Epilepsy, Boston, 1857.
 Dereum, Medical and Surgical Reporter, 1886.
 Keheverria, Epilepsy, New York, 1870.
 Féré, Les Épilepsies, Puris, 1890.

[^425]: ${ }^{2}$ Glangow Medical Journal, 1853-54, i. 339.
 ${ }^{2}$ lbid., 1857, iii. 1.
 ${ }^{8}$ Guy's Hospital Reports, 1878, Series III., xxiii. 339.
 ${ }^{4}$ Lancet, August 12, 1882.

[^426]: ${ }^{1}$ Including his miscellaneous collection.

[^427]: ${ }^{1}$ Zeitschrift f. Klin. Med., Berlin, 1883-84, vii. 410-424.
 ${ }^{2}$ Lyon Méd., 1889, lxii. 380.
 ${ }^{3}$ Memorabilien, Heilbr., 1885, N. F., v. \boldsymbol{i}.

[^428]: ${ }^{1}$ Deutsche Med. Woehenschrift, 1884, No. 5 :
 ${ }^{2}$ Archiv f. Klin. Chirurg., Berlin, 1886-87, xxxiv. 80G-317.
 ${ }^{3}$ Giorn. di r. Acead. di Med. di Torino, 1886, Ser. III., xxxiv. 759.
 ${ }^{4}$ Deutsehe Med. Worhensehr., 1887, xiii.

[^429]: ${ }^{1}$ Berliner Klinische Wochenschrift, 1887, xxiv. 54I, und Zeitschrift für Hygiene, 1888, iii.
 ${ }^{2}$ Centralhlatt f. Klin. Mell., Leipzig, 1887, viii. 777.
 ${ }^{3}$ Centralbat f. Bateriologie n. Pamsitenkunde, Jem, 1887, ii. 145.
 4 I'rogresso Med., Napoli, 1887, i. 885.
 ${ }^{5}$ Wiener Klin. Woehenschr., 1888, i. 282 at seq.
 6 Contrablatt f. Bacteriohurie n. Pamilleukunde, 1888, ii. 623.
 ${ }^{7}$ Dentsche Med. Wochensehr., 1889, xv. (63.). For in detailed deseription of the bucillus the reader is referted to the original puper.
 ${ }^{8}$ Revue de Chirurgie, 1889, vii. 757, ulso Revue Scientillque, 1888, xif. 225.

[^430]: ${ }^{1}$ Transuctions of' the Ninth International Medical Congress, 1887, 373.
 ${ }^{2}$ La France Médicule, 1888, i. 866.
 ${ }^{3}$ Semane Medinule, Augnst 7, 1888.
 4 L'Union Médieale, 1888, Sér. Be, xlvi. 893.

[^431]: ${ }^{1}$ Muench. Med. Wochenschrift, 1887, xxxiv. 427.
 ${ }^{2}$ Dublin Journal of Medieal science, 1887, Series III., Ixxxiv. 457.
 ${ }^{3}$ Lancet, 1888, ii. 419.

 * Revue Mensuelle des Maladies de l'Fufame, 1889, v. 508.
 ${ }^{5}$ Journal de Médecine de Paris, Jimuary 13 und 20, 1889.

[^432]: ${ }^{1}$ Rifurma Med., Nu li, 1889, v. 1202.

[^433]: ${ }^{1}$ Loc. cit. Of the miscellaneous cases collected by Laurie from various sources filty per cent. of the cases aged fifteen or under recovered. The bulk of these cases had doubiless found their way into modical journals by the very reason of their recovery, and are therefore valueless for statistical purposes.

[^434]: ' La France Médicate, June 21, 1888.

[^435]: ${ }^{1}$ Case of a boy. Athetosis oceurred suddenly after a bath in very cold water.

[^436]: ${ }^{1}$ Diseases of the IHeart and Aorta, Dublin, 1853.
 ${ }^{2}$ Clinical Lectures, Dublin, 1835.
 ${ }^{3}$ Basedow, Casper's Wochensehr. f. d. ges. Heilk., No. 13, 1840.

 - Gazette Médienle de Paris, 1856.
 ${ }^{5}$ Arehiv f. Ophthalmologie, Bd. iii., 1857.
 ${ }^{6}$ Guzette Médicale de Paris, 1862; Clinique Médicale, 1865.
 ${ }^{7} 1$ have been unable to verify this reference.
 ${ }^{8}$ Diseases of the Nervous System, Londe:i, 1883, vol. i. p. 709.

[^437]: ${ }^{1}$ Jefferson Medienl College Prize Fssay, 1888.
 ${ }^{2}$ Laneet, 1831, p. 180.
 ${ }^{3}$ Transaction of the Mredical Society of Pennsylvania, vol, xii., 1879.
 ${ }^{4}$ Zeitschrift f. Psychitatrie, 1870.
 ${ }^{3}$ Gazete Módicale de Paris, 1862.
 ${ }^{6}$ Peter, Garette Hebdomadaire, 186t, p. 180.
 ${ }^{7}$ Jaceoud, Batholugie Interne.

[^438]: ${ }^{1}$ See also Brown-Séquard, Lancer, vol. i., 1875, who has artifieialiy produced exophthalmos in mimals; Boddaert, Bulletin de la Société de Médeeine de Gand, 1872; Eulenherg, Ziemssen's Cyclopadia.
 ${ }^{2}$ Tronsseau, Clinique Médicale, tome ii.

[^439]: ${ }^{1}$ Graves. ${ }^{2}$ Deutsehe Klinik, 1864, p. 158.
 ${ }^{3}$ Brower, Journal of the American Medical Associntion, xi., 1886. The author lays least stress on the more important part of his treatment, -galvanism to the sympathetic.
 ${ }^{4}$ Medic: 1 Age, Λ pril 10, 1888.

[^440]:
 ${ }^{4}$ Lectures on Disenses of the Nervons System, 1883.
 ${ }^{5}$ Epilepsy and other Chronic Convulsive Diseases, 1885; also, A Manat of Diseases of the Nervous System, 1888.
 ${ }^{6}$ Lancet, November 3, 1877.
 ${ }^{7}$ Prawtioner, Lendon, November, 1879.
 ${ }^{8}$ Britioh Madical Jonrma, December s, 1881.
 ${ }^{9}$ Australaian Medical Gazette, Junuary', 1885.
 ${ }^{10}$ American Fonmal of Obstetries and Disenses of Women and Chiddren, 1506.
 ${ }^{11}$ Archises of Medicine, December, 1879; Fehruary, 1880; A prit, 1880.
 ${ }^{12}$ American Jourmal of Obstateres and Diseases of Women and Children, Oetoher, 1880.
 ${ }^{13}$ 1hid., cte., 1881 , vol. xiv. p. 604.
 ${ }^{14}$ New York 11 dicul Jumat and Obstetrienl Review, 1882, p. 66.
 ${ }^{15}$ lbid.
 ${ }^{13}$ New Orleans Medionl amd Surgical Journul, October, 1886, p. 2505.
 ${ }^{17}$ Lertures on Nervous Disenses, ete.

[^441]: ${ }^{1}$ Brain, January, A pril, and July, 1884.
 ${ }^{2}$ Jessie Orima Waller, in Nineteenth Century, 1889.

[^442]: :The writor, in American System of Practical Medicine.
 ${ }^{2}$ Leetures on Nirvous Disenses, ete.
 ${ }^{3}$ Polycliuice, January, 188\%, vol. iv. p. 205.

[^443]: ${ }^{1}$ Arch. f. Kinderh., from Zeitschr. f. Klin. Med., Bd. vi. H. 5, Bd. v. II. 7 u. 8. Quoted in Archives of Pedintrics, July, 1884, vol. i. p. 486.

[^444]: 1 Ameriem System of Dractical Medicime，vol．v．

[^445]: ${ }^{1}$ Lancet, November 3, 1877.

[^446]: ${ }^{1}$ Manual of Diseases of the Nervons System.

[^447]: ${ }^{1}$ Rev. gein. de Clin. et de Thérup., Puris, 1889, pp. 7í8-771.

[^448]: ${ }^{1}$ American System of Practical Medicine, vol. v.
 ${ }^{2}$ References to these writers are given in the beginning of the article.

[^449]: ${ }^{1}$ Austrahasian Medical Gazette, January, 1885, p. 106.

[^450]: ${ }^{1}$ New York Medical Journal and Obstetrical Review, 1882, vol. xxxyi. p. 66.

[^451]: ${ }^{1}$ New York Medieal Journal mad Obstetrical Review, 1882, vol. xxxvi, p. 67.

[^452]: ${ }^{1}$ New Orleans Mcdical and Surgical Journal, October, 1886, p. 255.
 ${ }^{2}$ Medicul News, 1887, vol. i. pp. 141, 189, 197, 225.

[^453]: ${ }^{1}$ Journal of Nervous and Mental Disenses, April, 1890, p. 275.
 2^{2} American System of Practical Medicine, vol, v. ρ. 247.

[^454]: ${ }^{1}$ Deutsche Med. Wochenschr., No. 16, 1884.

[^455]: ${ }^{1}$ Curvatures of the Spine, 3d ed., Loudon, 1889.

[^456]: ${ }^{1}$ American System of Praction Medicine, :ol, v. p. 371.

[^457]: ${ }^{6}$ Brain, October, 1889, vol. xii. p. 308.
 ${ }^{2}$ Journal of Nervous and Mental Diseases, June, 1890, vol. xvii. No. 6, p. 373. Yor. IV", 68

[^458]: ${ }^{1}$ Archives de Neurologie, July, 1884, und Junanry and March, 1885.
 ${ }^{2}$ Journal of Nervous and Mental Diseases, July, 1886, vol. xiii. p. 407.

[^459]: ${ }^{1}$ Transuctions of the Congress of American Physicinus and Surgeons, 1888.

[^460]: ${ }^{1}$ The writer, in American System of Practical Medicine, vol. v. p. 275.

[^461]: ${ }^{1}$ Text-Book of Mental Diseases, 1890.

[^462]: ${ }^{1}$ Debacker reports a case cured by removal of a tape-worm.

[^463]: ${ }^{1}$ American Medical Monthly, 1861.

[^464]: ${ }^{1}$ Ante, vol. ii. p. 279.
 ${ }^{2}$ British Medicul Jourmal, January 30, 1886.
 ${ }^{3}$ Transactions of the Obstetrical Luciety of London, December, 1876, vol. xviii.
 4 West Riding Lumatic Asylum Medical Reports, vols, i. and ii.
 ${ }^{5}$ Iluman Plysiology, Philedelphia, 1876, p. 921 .

[^465]: ${ }^{1}$ Mental Pathology.
 ${ }^{2}$ The Marringe of Near Kiu.
 ${ }^{3}$ Australian Medical Gazette, August, 1885.

[^466]: ${ }^{1}$ On the Causes of Idiocy, p. 35.

[^467]: ${ }^{1}$ Hiocy and Imbecility.
 ${ }^{2}$ Kerlin, Medical News, March 19, 1887; Blmadford, Insanity and its Trentment, p. 365; Savage, Insmity and Allied Neuroses, p. 27\%; Spitzka, Insanity, its Classification, etc., p. 281,
 ${ }^{3}$ British Medienl Journal, January 30, 1886.
 VoL, IV.-6.5

[^468]: ${ }^{1}$ Combe, Observations on Mental Derangement, p. 277 et seq. ; Spurzheim, Obserrs tions on the Deranged Manifestations of the Mind, p. 119 et seq.

[^469]: ${ }^{1}$ American Journal of Insanity, July, 1873.

[^470]: ${ }^{1}$ Lectures on the Diseases of Infaney.
 ${ }^{2}$ Epileptics: their Mental Condition, Journal of Mental Science, vol. xi. p. 352.

[^471]: ${ }^{1}$ Compendium of Children's Disenses.
 ${ }^{2}$ Mental Pathology and Therapentics.
 ${ }^{3}$ The Cerebral Pulsies of Children, p. 40.

[^472]: ${ }^{1}$ Ante, vol. ii. p. 279.

[^473]: ${ }^{1}$ Revue de l'Hypnotisme, November, 1888, and June, 1889; British Medical Jo: al, September 21, 1889.
 ${ }^{2}$ Emploi de la Suggestion hypnotique pour l'sducation des Enfunts et des Adolescents, Revue de l'Hypnotisme, Junuary, 1889.

[^474]: ${ }^{1}$ Medical News, March 19, 1887.

[^475]: ${ }^{1}$ Sce ulso Koster mad Tigges, (Geshichte und Stutistik der Westphalischon Provinainl Anstalt, Masberg, supplement to Zeitsehrift fur Psyehiatrio, wh. xxiv. p. 2ne, and .f. L. Koch, Zwidfaltens Irrenpflegeanstalt, zur Statistik der Geisteskrankheiton in Wïrtumbep, Stuttgart, 18:8. The nhove and Hugen's coutribution are summorizel by F . Mondlar (Heppenheim), Beitrag zar Lehre von dem im Kindesalter ent tehenden Irsein, shatistische Untersuchungen ülser (iteisteskmonkeiten, Erlangen, 1876. The statisties of Oldendorff are not cited hore, sit they take no necount of the insune ontside of asyluns, and do not disergminate between insanity and idhoes.

 I Imberility und idiocy were strietly exchuded from this computation.

[^476]: ${ }^{1}$ In Würtemberg, of 104 infantile lunatic 24 were resident in mad 80 out of asylums, the total number of insane of nll ages in the comitry being 3948 . It shembld be mbled that, among the adult insune, in 380 the disorder coukl be aseertained to luwe "omanned in childhoerd.
 ${ }^{2}$ Parar nocturmus and eerehral exhaustion, although diseusseal in this arlicle, ure not included in this computation. From a strictly scinntifie point of view the mentul phonomena of fobrile deliria and the somnolence attenduat on cerelimal diphtheritle infection are inspurable from other mental dimerders. For practichl remsons, the term insuity is hre used in its pepular sense.
 ${ }^{3}$ (Chereie mental disumler, epileptic mental states, and the mental fentures nssoelated with cardine lesions, tubereularand other forms of meningitis, are, to avoid repetition, not distused here: they will be fouril deseribed in connection with the correifonding fimdamental disorders. The cases of "retlex insanity" (finor with numesin) emserl by splinters in the feet (Jördens), head-injuries (Savage), whether iy forespsapplication or other tramatiom, and intestinul worms (cansing erslas, hatheinatory manin, ete.), properly are disensed in associntion with "rellex epil'psy" und "eehmpsia."

[^477]: ${ }^{1}$ In psendo-hypertrophic museular atrophy, a disease frequently found in familics afficted with neural degenemtion, we have seen imperative movements of a peculiar eharacter. In one case this movement was a unilateral runing of the index knuckle aeross the tip of the nose, and had been noticed sinee the child was able to sit up, and contimes now to his seventeenth year.
 ${ }^{2}$ Curions estimates have been made as to the period when this intoleraner is first manifested, varying so much that we must attribute them to the varying customs of differna nationalities.
 "Montal contagion, folie à deure, folie commaniquée.

[^478]: ${ }^{1}$ Sir Charles Bell, The Human Hand.
 ${ }^{2}$ Steiner, Compendium der Kinderkrankhitm, and A. Vogel, Kinderkrankheiten.
 ${ }^{3} \mathrm{~A}$ s in the classical canes of Tordens and Engelken, where the censers were respectively a glass splinter in one great toe and a carions twoth. Pressure on the tere in the former case, and attempts to extruct the tomh in the latter, prowed anente mental disturbunce.
 "See Deaf-Mutism, in Dr. Bumett's article on Disenses of the Earr, ante, p. 36.

[^479]: ${ }^{1}$ There is no justificution for the creation of a special clinien type, " $\Lambda_{\text {prosexiat natisals," }}$ us Guye (Allgemeine Zeitschrift für Psychntrie, 1888, p. 587) claims. This writer sembs to ignore the frequent presence of thickening and varicose developments of the natal mucons membrare in masturbators.
 ${ }^{2}$ However, care should be taken not to confonnd the results of parasitic irritution with those due to the drug employed in removing it.

[^480]: ${ }^{1}$ A distressing ease of this kind is that of Louisa W., demenstrated by the writer befure the New York Neurohogical Society (American Journat of Neurology and Psychintry, 188^{2}, vol. i. p. 502). She discovered her brother's denth from searlatima while herself ill on the third day after the outhreak of the disense in her. Epileptiform attacks and manineal furor alternated, and left her in a demented state, in which she continually repeuted, "My mame is Lomisa W__ and Pupa W——and Mamma W-_ and Baly W-_." The hatter referred to the deceased brother.
 ${ }^{2}$ Letzerich, of Brunswiek, Germany, in the case of his own child, found the perivasculur and pericelhular spaces of the cerebral cortex crowded with micrococei. I have found

[^481]: a similar condition in 4 case of ervipelas with delirium, and one case of invasion ly an unidentified micro-organism in a pationt dying with signs of delirium grave. Mental disorder cun be produced by experimentul inoculation of the brain in unimals without demonstrable orgnie reaction of that orgmo or membranes (Mollenhater, Jourma of Nervons and Mental Disenses, september, 1890).
 ${ }^{1}$ Multiple selerosis following variohn, scarlatina, ste., necording to Westphal.
 ${ }^{2}$ Allgemeine Zeitschrift für Psehiatrie, 1870 ; see also Amerian Joumal of Nemrology and l'sychintry, 188.3, p. 206.
 ${ }^{3}$ A distinguished physieinn of New York City, being called to a boy aged olveven yars who had been frightened into lyssophobin by his comarades and by some adult persoms and who ahready presented laryngeal spasms, told him that if he passed the "erisis," predielent to oceur at exnetly uine o'elock, he would be sufe. The boy's expectunt attention thus directed to the minute-hund of the clock, instend of to his sensutions, he recovered. Need the writer state what the result would have bean if any other course had been followed?

[^482]: 'In one case the child had beon liberally doed with whiskey,-a panacen, us I nm informed, even among eomparatively well-educated people in cortain districts of Alabuma; in the other, gross dietetic errors were permitted after an abmocensioned by a lightning. stroke. In the latter case the patient had been psychieally shocked only, and the transformation to a true epilepy oecorred ower thre months after the origimal fright.
 ${ }^{2}$ I believe but a singhe one, Mohins, who, in Schmidt's Jahluineher, in reviewing the writer's monograph (Journal of Meatal scienee, 1887, 1888), nseerts that the vice never causes insunity! It is but justice to this distinguished nemrolugist to add that in making this shatement he believed himself to voice the opinion of all German alienists; and it is cue to the harge und eadite boly of German alionists to state that Möbius habed :ander a misemeption of his representative prsition when he indulged in this pronur ciamento.

[^483]: ' Not to be confounded with delusional stupor.
 ${ }^{2}$ Inaptly called "primary dementia" by some English writers.
 ${ }^{3}$ Providing ulways that it be a real loss of modesty und absence of contrition, ano not an affectation, such as musturbutors are apt to indulge in, ither from motives of bruvado or of concealment.

[^484]: believes, who, in his "Fisiologia dell' Amore," siys that if an inhabitant of some distant planet were to wisit the carth and dexerihe the various living forms inlabiting it, he cond not fail to incorporate the masturbational habit as a charmeter of our race. While his exaggeration is obvious in more than one direction, yet it must be admitted that among males of civilized races the habit is frightfull; common. In captivity male monkeys, elephats, bears, and other animals trequently fall victims to self-abuse; and it appars that civilization, with its associated artiticial conditions, is responsible for the great preponderance of this ingurious habit in the mate of our own speces.
 ${ }^{1}$ The exaggerated clams made by authority too eminont to attack lightly, that paralysis, imbecility, and epilepsy conld be rolieved and curel by remowing preputial adhesions, have led to as extreme a raction. Nodoubt exists to-day that the claims above stated were based on selfideception, and that they were seientitically indefensible, but it is not the less true that a profound influme for good can be exerted on the develnpment of a ehild, mentally as well as physically, by remedying redundancy or adhesions of the prepuce.

[^485]: 1 The writer is prepared to say that the demoralizing influence of such a child on other children is so great that, if the principle "the greatest good to the greatest number" be made the leading one in the asylums for idiotic and defeetive children, it were better that one incurable unfortunate should be imprisoned for life in a conmon jail than that twenty cuseble childrensituld have their cases jeopardized by being compelled to associate with it.
 ${ }^{2}$ The writer is not acquainted with any better English equivalent for the word originar, as wed by the Germans, unless it be our fimiliur term "congenital."

